

Luca	Berton

Ansible	for	VMware	by	Examples
A	Step-by-Step	Guide	to	Automating	Your
VMware	Infrastructure

Luca	Berton
Czechia,	Czech	Republic

ISBN	978-1-4842-8878-8 e-ISBN	978-1-4842-8879-5
https://doi.org/10.1007/978-1-4842-8879-5

©	Luca	Berton	2023

This	work	is	subject	to	copyright.	All	rights	are	solely	and	exclusively
licensed	by	the	Publisher,	whether	the	whole	or	part	of	the	material	is
concerned,	speci�ically	the	rights	of	translation,	reprinting,	reuse	of
illustrations,	recitation,	broadcasting,	reproduction	on	micro�ilms	or	in
any	other	physical	way,	and	transmission	or	information	storage	and
retrieval,	electronic	adaptation,	computer	software,	or	by	similar	or
dissimilar	methodology	now	known	or	hereafter	developed.

The	use	of	general	descriptive	names,	registered	names,	trademarks,
service	marks,	etc.	in	this	publication	does	not	imply,	even	in	the
absence	of	a	speci�ic	statement,	that	such	names	are	exempt	from	the
relevant	protective	laws	and	regulations	and	therefore	free	for	general
use.

The	publisher,	the	authors,	and	the	editors	are	safe	to	assume	that	the
advice	and	information	in	this	book	are	believed	to	be	true	and	accurate
at	the	date	of	publication.	Neither	the	publisher	nor	the	authors	or	the
editors	give	a	warranty,	expressed	or	implied,	with	respect	to	the
material	contained	herein	or	for	any	errors	or	omissions	that	may	have
been	made.	The	publisher	remains	neutral	with	regard	to	jurisdictional
claims	in	published	maps	and	institutional	af�iliations.

This	Apress	imprint	is	published	by	the	registered	company	APress
Media,	LLC,	part	of	Springer	Nature.

https://doi.org/10.1007/978-1-4842-8879-5

The	registered	company	address	is:	1	New	York	Plaza,	New	York,	NY
10004,	U.S.A.

For	my	son	Filippo,	the	joy	of	my	life.

Preface
This	book	is	a	guide	to	automating	your	VMware	infrastructure	using
the	Ansible	open	source	technology.

If	you	are	an	IT	professional	in	information	technology	in	any
industry	and	you	would	like	a	jargon-free	understanding	of	Ansible
technology,	including	VMware,	Linux,	and	Windows	Systems
Administrators,	DevOps	professionals,	thought	leaders,	Infrastructure-
as-Code	enthusiasts,	and	information	technology	team	members
providing	leadership	to	a	business,	this	book	is	for	you.

This	book	can	be	a	powerful	resource	for	computer	engineers	and
leaders	who	believe	that	innovation,	automation,	and	acceleration	are
drivers	for	a	successful	business	of	tomorrow.	Look	back	on	your	career
path	and	think	of	at	least	three	times	a	lack	of	infrastructure
automation	has	been	a	challenge	for	your	project’s	deadline.	Remember
the	human	errors	that	impacted	your	business	continuity	and	then
think	of	when	effective	infrastructure	performance	enabled	your
projects	to	succeed.

Consider	the	need	for	business	and	information	technology
departments	and	get	curious	about	what	that	means	for	information
technology	and	business	stakeholders.

A	successful	infrastructure	is	a	matter	of	gradual	improvements	and
good	habits	that	you	can	achieve	by	using	more	automation	on	your
journey.

Learn	how	to	become	more	productive	and	effective	using	the
Ansible	open	source	automation	technology.

Engineers	have	great	impact,	power,	and	responsibility	for	the
success	of	the	business.

What	Is	In	This	Book?
This	book	provides	in-depth	content	on	the	following	topics:
The	Ansible	code	language	for	beginners	and	experienced	users	via
examples
Ansible	installation	on	the	most	common	operating	systems
Troubleshooting	of	common	errors

Information	on	the	latest	releases	of	Ansible	and	ansible-core
packages
Ansible	for	VMware	infrastructure	code	snippets	and	examples

Your	Development	Environment
This	book	does	not	require	you	to	use	a	speci�ic	IDE.	You	need	a	simple
base	environment	consisting	of
A	common	editor:	terminal	(VIM,	Emacs,	Nano,	Pico,	etc.)	or	GUI	(VS
Code,	Atom,	Geany,	etc.)
A	workstation	with	Ansible	or	ansible-core	packages
VMware	vSphere	ESX,	VMware	vSphere	ESXi,	or	VMware	vSphere
vCenter	Server	(for	VMware-speci�ic	code

Additional	Online	Resource
Luca	Berton	maintains	a	popular	website	on	Ansible	development	at
www.ansiblepilot.com.

http://www.ansiblepilot.com/

Introduction
I	wrote	this	book	to	share	with	you	how	to	automate	tasks	in	your
VMware	infrastructure	with	Ansible.	Ansible	is	rapidly	ramping-up
automation	technology.	It	has	become	popular	nowadays	as	an	open-
source	IT	infrastructure	automation	tool.	You	may	have	heard	of
technologies	such	as	Puppet,	Chef,	and	Terraform.	What	makes	Ansible
so	successful	is	that	it	is	free,	portable,	powerful,	remarkably	human
readable,	easy,	and	fun	to	use.	Ansible	has	expanded	to	be	very	valuable
in	further	use	cases	in	production,	acceptance,	and	testing	(PAT)
infrastructure	design	patterns	under	the	categories	of	Provisioning,
Con�iguration	Management,	Application	Deployment,	Continuous
Deployment,	Automation,	and	Orchestration.	Especially	in	the	post-
pandemic	world,	we	all	live	in	an	interconnected,	fast-paced	world
driven	by	innovation	and	acceleration	in	technology.	IT	infrastructure	is
more	than	ever	a	key	cornerstone	in	the	innovation	journey	of	every
modern	business	corporation.	A	lot	of	enterprises	already	take
advantage	of	the	timesaving,	error-avoiding,	and	auto-healing
infrastructures	permitted	by	modern	IT	automated	infrastructure.	In
example	after	example	I	will	show	you	the	best	way	to	simplify	your
VMware	journey	and	get	the	best	value	from	your	Ansible	code.	Every
IT	department	nowadays	manages	some	resources	on	bare	metal
servers,	virtual	machines,	the	cloud,	containers,	and	edge	computing.
And	the	demand	is	growing	more	and	more	year-over-year.	In	this
book,	you	are	going	to	learn	how	to	enable	Ansible	to	interact	with	your
VMware	infrastructures	such	as	data	centers,	clusters,	host	systems,
datastores,	and	virtual	machines.	For	example,	you	can	automate	the
creating,	deleting,	updating,	and	gathering	of	information	for	virtual
machines.	Say	goodbye	to	mundane	and	annoying	manual	activity	and
focus	your	effort	on	how	to	scale	your	infrastructure	and	enable	your
business	for	the	challenges	of	tomorrow!

For	all	of	you	who	are	security	paranoid,	Ansible	provides	out-of-
the-box	support	protection	for	sensitive	data.	For	example,	you	store
credentials	and	tokens	in	an	Ansible	Vault	using	at	least	the	AES-256
security	cipher.

Are	you	ready	to	automate	your	day	with	Ansible?

Some	interesting	resources	to	explore	for	a	deep	dive	into	the
Ansible	product:
Of�icial	Ansible	documentation,	https://docs.ansible.com/
Wikipedia	Ansible	page,
https://en.wikipedia.org/wiki/Ansible_(software)

https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://en.wikipedia.org/wiki/Ansible_%2528software%2529
https://en.wikipedia.org/wiki/Ansible_%2528software%2529

Who	Is	This	Book	For?
This	book	is	designed	for	IT	professionals	in	the	information
technology	industry	who	would	like	a	jargon-free	understanding	of
Ansible	technology	for	automating	a	VMware	infrastructure.

This	book	offers	systems	administrators,	developers,	DevOps,
decision	makers,	and	thought	leaders	a	guideline	about	implementing
Infrastructure-as-Code	in	your	VMware	infrastructure.

This	book	is	designed	for	beginners	of	Ansible	technology	and	is	a
great	companion	to	intermediate	and	expert	levels	to	the	state-of-the-
art	of	the	Ansible	platform.

The	already	experienced	Ansible	users	are	going	to	love	the	unique,
speci�ic	code	samples	and	examples	for	the	Ansible	for	VMware
infrastructure.

You	are	going	to	learn	how	to	save	time	and	avoid	human	errors	by
ef�iciently	automating	your	VMware	infrastructure	using	the	Ansible
open	source	IT	automation	technology	enabling	IaC	for	DevOps
methodologies.

You	can	read	this	book	with	two	different	mindsets:	development
and	operations.	Both	mindsets	are	going	to	love	the	practical	approach
of	code	snippets	and	code	nutshells	to	easily	apply	to	your	day-to-day
journey	and	challenges.

Many	of	the	IT	engineers	I	work	with	are	already	familiar	with
administering	a	�leet	of	Linux	servers	and	are	comfortable	interacting
via	the	OpenSSH	protocol	using	command-line	commands.	These	users
use	the	so-called	“imperative”	programming	to	interact	with	machines.
The	Ansible	platform	evolves	your	�leet	management	as	a	declarative
programming	language	so	people	already	familiar	with	con�iguration
management	tools	(Puppet	or	Chef)	can	�ind	some	connecting	dots.

Modern	IT	Infrastructure
Deploying	and	managing	applications	requires	more	and	more	server
machines	that	are	reliable	and	ef�icient.	Traditionally,	system
administrators	took	care	of	this	burden	for	the	internal	(developers)
and	external	(users)	stakeholders	who	interact	with	the	systems.

The	day-to-day	tasks	of	a	system	administrator	involved	the	manual
installation	of	software,	changing	of	con�igurations,	and	management	of

services	on	servers,	virtual	machines,	and	nodes.	And	every	day	the	IT
department	received	requests	to	boost	the	data	center’s	resources	in
order	to	accommodate	the	business	needs	or	better	tackle	the
marketplace.	System	administrators	realized	they	couldn’t	scale	their
manual	systems	management	scripts	as	fast	as	the	business
stakeholders	demanded:	the	hosted	web	applications	increased	the
complexity,	email	�low	increased,	and	new	releases	of	the	operating
systems	continued.	API-driven	server	management	and	con�iguration
management	tools	like	Ansible	helped	make	things	manageable	for	a
time.

You	could	see	this	trend	in	the	rise	of	the	application-as-service,
developer-centric	methodologies	DevOps	and	DevSecOps.
Microservices,	and	serverless	application	architecture	meant	that	a
more	seismic	shift	was	coming.	Instead	of	thinking	in	terms	of	servers
and	infrastructure,	developers	expect	to	be	able	to	manage
containerized	application	lifecycles,	with	no	regard	for	the	servers	on
which	their	applications	run.

Modern	business	applications	require	one	or	more	of	the	following
features:
Self-healing	infrastructure
Auto-scaling/elasticity
High	availability	with	multi-server	failover
Flexible	or	multi-tier	storage	backends
Multi-cloud	compatibility
Enabling	DevSecOps
The	containerized	app	development	and	deployment	became	more

and	more	popular	with	a	huge	number	of	technologies	to	real-time
check	these	boxes,	like	Apache	Mesos	and	Docker	Swarm.	Some	cloud
vendors	even	built	their	container	orchestration	and	management
products	to	meet	the	needs	of	cloud-native	applications.	Examples:
Amazon	Elastic	Container	Service	(Amazon	ECS)	by	Amazon	Web
Services	(AWS),	Google	Container	Engine	(GKE)	by	Google	Cloud
Platform	(GCP),	Azure	Container	Service	by	Microsoft	Azure,	IBM
Bluemix	Cloud	Kubernetes	Container	Service	by	IBM	Cloud,	Oracle
Container	Cloud	Service	(OCCS)	by	Oracle	Cloud,	and	Alibaba	Cloud
Container	Registry.

Creative	software	engineers	and	solution	creators	love	to	use	the
Ansible	Automation	Platform	(formerly	Ansible	Tower).	It	is	the
enterprise	product	used	to	store	resources	across	your	team	and
trigger	automation	recipes	and	work�lows	in	the	DevSecOps
environment.	Other	popular	tools	like	Jenkins,	Rundeck,	GitHub
Actions,	GitLab	CI/CD,	Atlassian	Bamboo,	CircleCI,	TeamCity,	Travis	CI,
BuildMaster,	Bitrise,	Buddy,	or	Go	CI	may	also	be	used	to	enable
continuous	integration	and	continuous	deployment	in	your
organization.

Author	Bio
I’m	Luca	Berton	and	we’re	going	to	have	a	lot	of	fun	together.

I’ve	been	an	Ansible	expert	and	working	directly	with	the	Ansible
Engineering	Team	of	Red	Hat	for	three	years.

I	have	more	than	15	years	of	system	administration	experience,
working	with	infrastructures	either	on-premises	or	with	the	major
cloud	providers	and	technologies.

I’m	an	enthusiast	of	open	source	and	I	support	the	community	by
sharing	my	knowledge	in	different	events	of	public	access.

I’m	also	a	co-founder	of	the	FSUG	Padova,	my	hometown	Linux
Users	Group,	visited	by	Richard	Stallman,	the	founder	of	the	Free
Software	Movement	in	2007.

I	consider	myself	a	lazy	person,	so	I	always	try	new	ways	to
automate	the	repetitive	task	of	my	work.

After	years	of	Perl,	Bash,	and	Python	scripting,	I	landed	on	the
Ansible	technology.	I	took	the	certi�ication	and	worked	for	more	than
three	years	with	the	Ansible	Engineer	Team.

I	consider	Ansible	the	best	infrastructure	automation	technology
nowadays.	It’s	human-readable,	the	learning	curve	is	accessible,	and	it
is	very	requested	by	the	recruiters	in	the	market.

On	every	page	of	this	book,	I’m	going	to	share	with	you	one	speci�ic
use	case,	the	possible	solution,	the	code,	the	execution,	and	the
veri�ication	of	the	target	system.	All	these	solutions	are	battle-tested
and	used	by	me	in	my	everyday	automation.

You	can	easily	jump	between	lessons	and	review	them	as	many
times	as	you	need.

https://www.fsugpadova.org/

Awards	and	Recognitions
Since	2021,	I	have	shared	my	knowledge	about	Ansible	in	my	Ansible
Pilot	project	and	it	is	gaining	more	traction	among	IT	professionals
every	day.

Some	major	milestones:
“Ansible	Anwendertreffen	-	From	Zero	to	Hero:		How	to	build	the
Ansible	Pilot	Community”	by	Luca	Berton	(Red	Hat	CZ)	15:	15	-	16:	00
February	22,	2022
Author	of	Red	Hat	Ansible	Playbook	included	in	RHSB-2021-009
Log4Shell	trigger	Remote	Code	Execution	in	log4j	(CVE-2021-44228)
January	12,	2022
The	Ansible	Bullhorn	#41	-	A	Newsletter	for	the	Ansible	Developer
Community,	January	7,	2022
The	Ansible	Bullhorn	#34	-	A	Newsletter	for	the	Ansible	Developer
Community,	September	17,	2021
Are	you	ready	to	have	fun	together?

Conventions	Used	in	the	Book
This	is	a	practical	book,	so	it’s	jam-packed	with	code	to	be	used	on	the
command	line	plus	commands	and	Ansible	language	code	samples.

You	are	going	to	�ind	commands	and	code	samples	throughout	the
book	either	inline	(for	example,	ansible [command]),	or	in	a	code
block	(with	or	without	line	numbers)	like

YAML file example

The	command-line	commands	use	the	standard	POSIX	conventions
and	are	ready	to	be	used	in	a	Unix-like	system	such	as	Linux,	macOS,	or
BSD.	Each	of	the	commands	is	assumed	to	be	used	by	a	standard	user
account	when	the	pre�ix	is	the	$	(dollar)	symbol,	or	by	the	root	user
when	the	pre�ix	is	the	#	(number	sign)	symbol.	You	are	going	to	�ind
this	code	in	some	installation,	code	execution,	and	troubleshooting
examples.	The	commands	were	tested	in	the	most	used	Linux
distributions	on	the	market	nowadays.

https://www.ansiblepilot.com/
https://www.ansible-anwender.de/post/2022/01/register/
https://mailchi.mp/redhat/the-bullhorn-41
https://us19.campaign-archive.com/%253Fu%253D56d874e027110e35dea0e03c1%2526id%253D5f02018283

The	Ansible	language	code,	used	in	the	Ansible	Playbook	examples,
mostly	uses	the	YAML	and	INI	formats.

The	YAML	format,	a	human-readable,	data-serialization	language,	is
extremely	popular	nowadays	for	con�iguration	�iles.	The	code	follows
the	latest	YAML	1.2.2	speci�ication.	It	uses	Python-style	indentation	and
a	more	compact	format	for	lists	and	dictionary	statements.	It’s	very
close	to	JSON	and	can	be	used	as	an	XML	alternative.	The	YAML	code
was	validated	using	the	YAMLlint	popular	validator	and	tested	in	the
most	used	Ansible	versions	out	in	the	market	nowadays.

The	INI	format	used	in	some	Ansible	Inventory	examples	is	a	well-
known	format	for	con�iguration	�iles	since	the	MS-DOS	operating
system	and	uses	key-value	pairs	for	properties.

The	Ansible	code	included	in	this	book	was	tested	by	the	author	and
the	technical	reviewer	in	a	wide	variety	of	modern	systems	and	uses
the	Ansible	best	practices	about	Playbooks,	Roles,	and	Collections.	It
was	veri�ied	using	the	latest	release	of	the	Ansible	Linter.

Some	code	may	intentionally	break	a	speci�ic	Ansible	best	practice
rule	only	to	demonstrate	a	troubleshooting	session	to	reproduce	a	fatal
error	in	a	speci�ic	use	case.

Chapters	at	a	Glance
This	book	is	going	to	become	a	cornerstone	on	your	journey	through
the	Ansible	platform	for	the	VMware	infrastructure.	Although	there	are
four	chapters,	the	book	is	jam-packed	with	code	samples	and
command-line	commands	that	save	time	and	avoid	human	mistakes
enabling	IaC	for	DevOps	and	DevSecOps	methodologies.

Learn	about	the	state-of-the-art	Ansible	platform	today	in	Chapter
1.	Concepts	like	inventories,	Playbooks,	tasks,	common	computer
coding	language	statements	concepts	and	code	reuse,	facts	and	magic
variables,	roles,	and	collections	are	explained	and	clari�ied	as	well	as
powerful	key	advantages	such	as	idempotency.

Learn	how	to	successfully	install	the	Ansible	platform	on	the	most
used	modern	operating	systems	in	Chapter	2.	Familiarize	yourself	with
the	Ansible	community	vs.	ansible-core	packages	for	the	most	used
Linux	distributions,	macOS,	and	Windows.

Learn	how	to	apply	all	this	knowledge	to	the	VMware	infrastructure
domain	with	speci�ic	Ansible	Playbook	code,	such	as	how	to	upgrade
VMware	Guest	Tools	or	move	virtual	machines	between	servers	in
Chapter	3.

Any	source	code	or	other	supplementary	material	referenced	by	the
author	in	this	book	is	available	to	readers	on	GitHub	via	the	book’s
product	page,	located	at	www.apress.com/978-1-4842-8878-8.	For
more	detailed	information,	please	visit	www.apress.com/source-code.
You	can	also	download	the	codes	from	GitHub	at
https://github.com/Apress/Ansible-for-VMware-by-Examples_Luca-
Berton.

Acknowledgments
To	my	son,	family,	and	friends	who	make	life	worth	living	and	whose
support	and	encouragement	makes	this	work	possible.

I’d	like	to	thank	my	technical	reviewer,	Nikhil	Jain,	previously	a	Red
Hat	colleague,	who	joined	my	effort	early	on	and	contributed	to	the
project.

To	everyone	I’ve	worked	with	over	the	years	and	shared	any	ideas
for	this	book:	thank	you	for	the	knowledge	you’ve	shared.

Table	of	Contents
Chapter	1:		Ansible	for	Beginners	with	Examples

What	Is	Ansible?	
Ansible
Three	Main	Use	Cases
Four	Key	Tenets	of	Ansible
Six	Values	of	Ansible
Ansible	History
Ansible,	Ansible	Tower,	and	the	Ansible	Automation
Platform

Getting	Started
Ansible	Architecture
Connecting	with	Managed	Nodes
Ansible	Installation
Running	Ad-Hoc	Commands	with	Privilege	Escalation	on
Ansible
Recap

Inventory
Simple	INI	Inventory
Simple	YAML	Inventory
Adding	Ranges	of	Hosts
Hosting	in	Multiple	Groups
Host	Variables
Group	Variables
Inheriting	Variable	Values
Using	Multiple	Inventory	Sources

The	localhost	Inventory
Recap

Playbook
YAML	Syntax
helloworld.	yml
Tip	1:		ansible-playbook	–check	Option
Tip	2:		Debug	Day-to-Day	Usage
Idempotency
multipleplays.	yml
privilege_	escalation.	yml
Common	Ansible	Modules
Recap

Variables
Not	Permitted	Variable	Names
variableprint.	yml
variableprint.	yml	-	Extra	Variables
Host	Variables	and	Group	Variables
Array	Variables
array.	yml	Execution
Registered	Variables
registeredvariab	les.	yml	Execution
Filters	and	Templates
Recap

Facts	and	Magic	Variables
Ansible	Facts
Magic	Variables

Recap
Vault

Creating	an	Encrypted	File
Viewing	an	Encrypted	File
Editing	an	Existing	Encrypted	File
Encrypting	an	Existing	File
Decrypting	an	Existing	File
Changing	the	Password	of	an	Encrypted	File
Playbooks	and	Ansible	Vault
Recap

Conditional
Basic	Conditionals	with	“when”
Conditionals	Based	on	ansible_	facts
Recap

Loop
with_	*	Statement
loop_	with_	items.	yml
Recap

Handler
rollingupdate.	yml

Role
Role	Tree	Directories
Using	Ansible	Roles	in	a	Playbook
Order	of	Execution

Ansible	Galaxy
Installing	Roles	from	Ansible	Galaxy	Manually

Installing	Roles	from	Ansible	Galaxy	requirements.	yml
Collection
Ansible	Plugins
Key	Takeaways

Chapter	2:		Installing	Ansible
Ansible	Community	vs.		ansible-core	Packages

ansible-core
The	Ansible	Community	Package

Additional	Collections	Installation
Installing	the	community.	vmware	Collection	via	the	ansible-
galaxy	Command
Installing	the	community.	vmware	Collection	via	the
requirements.	yml	File
Verifying	the	Currently	Installed	Version	of	community.	
vmware
Links

Ansible	Installation	for	RedHat	Enterprise	Linux	(RHEL)	8
Code

Ansible	Installation	for	Ubuntu	22.	04	LTS
Code

Ansible	Installation	for	Fedora	36
Code

Ansible	Installation	for	CentOS	9	Stream
Links
Code

Ansible	Installation	on	Windows
Links

Code
Ansible	Installation	for	macOS

Code
Ansible	Installation	for	SUSE	SLES	(Linux	Enterprise	Server)	15
SP3

Links
Code

Ansible	Installation	with	PIP
Code

Ansible	Installation	for	RedHat	Enterprise	Linux	9
Links
Demo

Ansible	Installation	for	Amazon	Linux	2	(AWS	EC2)
Links
Code

Ansible	Installation	for	Debian	11
Code

Key	Takeaways
Chapter	3:		Ansible	for	VMware

Con�iguring	Ansible	for	VMware
The	Ansible	vmware.	vmware_	rest	Collection
Con�iguring	a	Python	Virtual	Environment	for	Ansible
VMware
Ansible	Troubleshooting:		VMware	Failed	to	Import
pyVmomi
Ansible	Troubleshooting:		VMware	Unknown	Error	While
Connecting	to	vCenter	or	ESXi

Ansible	Troubleshooting:		VMware	Certi�icate	Veri�ication
Failed	Connecting	to	vCenter	or	ESXi
Creating	a	VMware	Virtual	Machine
Deploying	a	VMware	Virtual	Machine	from	a	Template
Starting	a	VMware	Virtual	Machine
Stopping	a	VMware	Virtual	Machine
Taking	a	VMware	Virtual	Machine	Snapshot
Deleting	a	VMware	Virtual	Machine	Snapshot
Adding	a	New	Hard	Disk	to	a	VMware	Virtual	Machine
Expanding	a	Virtual	Disk	in	a	VMware	Virtual	Machine
Gathering	VMware	Host	Information	on	a	Cluster
Getting	a	VMware	Virtual	Machine	UUID
Ansible	Dynamic	Inventory	For	VMware
Getting	a	VMware	Virtual	Machine	Running	Host
Getting	VMware	Datastore	Status
Uploading	a	File	to	the	VMware	Datastore
Getting	the	Status	of	VMware	Guest	Tools
Upgrading	VMware	Guest	Tools
Live	Migration	of	a	VMware	Virtual	Machine	Using	vMotion
Changing	the	Boot	Device	Order	of	a	VMware	Virtual
Machine

Key	Takeaways
Chapter	4:		Closing	Remarks

Key	Takeaways
Index

About	the	Author
Luca	Berton
is	an	Ansible	Automation	Expert	who	has
been	working	with	the	Red	Hat	Ansible
Engineer	Team	for	three	years.	With
more	than	15	years	of	experience	as	a
system	administrator,	he	has	strong
expertise	in	infrastructure	hardening
and	automation.	An	enthusiast	of	open
source,	he	supports	the	community	by
sharing	his	knowledge	in	different
events	of	public	access.	Geek	by	nature,
Linux	by	choice,	Fedora	of	course.

	

About	the	Technical	Reviewer
Nikhil	Jain
is	an	Ansible	expert	with	over	12	years
of	DevOps	experience.	He	has	been	using
Ansible	and	contributing	to	it	from	its
inception.	He	currently	works	closely
with	Ansible	Engineering.

He	is	an	open	source	enthusiast	and
is	part	of	the	Ansible	Pune	Meetup
Organizing	team.	He	has	presented
multiple	Ansible	sessions	at	various
global	and	local	events.	Apart	from
sitting	in	front	of	his	computer
automating	things	using	Ansible,	he
loves	watching	sports	and	is	a	regular
part	of	the	local	cricket	team.

	

(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2023
L.	Berton,	Ansible	for	VMware	by	Examples
https://doi.org/10.1007/978-1-4842-8879-5_1

1.	Ansible	for	Beginners	with	Examples
Luca	Berton1		

Czechia,	Czech	Republic

	

What	are	Ansible’s	basic	concepts,	architecture,	and	terminology?	You
are	going	to	do	a	deep	dive	into	Ansible	jargon	and	take	your	�irst	steps
toward	using	the	best	open	source	automation	technology	on	the
market.	If	you’re	completely	new	to	Ansible,	this	is	the	foundation	of
your	journey.	You’ll	learn	the	terminology	used	by	automation
professionals	all	around	the	world.	If	you	already	know	something	about
Ansible,	I’m	sure	that	you	are	going	to	�ind	some	valuable	information
about	Ansible	automation	and	some	recent	changes	in	its	release
policies	and	tools.

This	chapter	provides	a	description	of	the	Ansible	technology	and
how	to	write	and	execute	your	�irst	Ansible	Playbook	code.

What	Is	Ansible?
Let’s	begin	with	a	short	overview	about	what	Ansible	is	and	why	it	is	so
powerful.

Ansible	was	created	more	or	less	in	February	2012	by	Michael
DeHaan,	a	brilliant	employee	of	Red	Hat	at	the	time.	Michael	was
inspired	by	several	tools	and	his	direct	experience	in	the	system
administrator	industry.	There	was	a	strong	need	for	con�iguration
management	to	enable	the	use	of	the	same	con�iguration	across	a	Linux
administrated	�leet	and	the	ability	to	consistently	modify	the	con�ig	�iles
every	time.	Michael	started	the	Ansible	tool	in	Python,	the	most
interesting	computer	language	at	the	time,	and	built	the	foundation	of

https://doi.org/10.1007/978-1-4842-8879-5_1

the	module-based	and	agentless	architecture.	Every	module	performs	a
speci�ic	task	and	creates	some	Python	bytecode	that	gets	sent	directly	to
the	execution	node	via	SSH	for	Linux,	Unix	(*BSD),	and	macOS	targets.
For	Windows,	target	Ansible	produces	a	PowerShell	or	CMD	deliverable,
shared	via	WinRM	to	perform	the	expected	outcome.	This	simple	and
extensible	approach	created	the	initial	community.	Michael	created	a
company	to	support	the	initial	demand	and	it	was	acquired	by	Red	Hat
in	2015.	At	the	present	time,	Red	Hat	is	leading	the	Ansible	project	and
creating	the	roadmap	for	the	Community	and	Enterprise	deliverables	of
the	Ansible	project.

Ansible
Infrastructure	automation	tool
Open	source	Infrastructure-as-Code	(IaC)
Let’s	begin	this	adventure	with	the	fabulous	open	source	technology

named	Ansible.	It	is	classi�ied	as	an	infrastructure	automation	tool,	so
you	can	automate	your	system	administrator	tasks	very	easily.

Ansible	enables	in	your	enterprise	a	process	called	Infrastructure-as-
Code,	a	way	to	processes	the	provisioning	and	managing	of	machines
using	simple	human-readable	de�inition	�iles.	This	is	extremely	useful	in
a	data	center	environment	when	the	same	task	is	commonly	repeated
among	a	bunch	of	machines.	Before	Ansible,	manual	con�iguration
required	complex	and	specialized	technical	people	for	hardware
con�iguration	and	interactive	con�iguration	tools.	Ansible	lets	you	use
DevOps	methodology	principles.	This	programming	style	is	also	called
“declarative”	because	its	focuses	on	the	outcome	of	the	execution	and
not	on	the	single	action	such	as	in	the	traditional	imperative
programming	languages	(C,	C++,	Java,	Python,	etc.)

With	Ansible,	you	can	deploy	your	IaC	on-premises	and	on	the	most
well-known	public	cloud	providers.

Three	Main	Use	Cases
Provisioning
Con�iguration	management
Application	deployment

The	three	main	use	cases	of	Ansible	are	provisioning,	con�iguration
management,	and	application	deployment.	But	gaining	an
understanding	of	the	technology	I’m	sure	you	can	invent	some	more
ways	to	use	it!

Provisioning
The	process	of	setting	up	the	IT	infrastructure
Let’s	start	talking	about	provisioning.	All	system	administrators

know	how	important	it	is	to	manage	a	uniform	�leet	of	machines.	Some
people	still	rely	on	software	to	create	workstation	images.	But	there	is	a
drawback	because	with	imaging	technology	you’re	only	taking	a
snapshot	in	time	of	the	machine,	so	every	time	you	need	to	reinstall
software	because	of	the	modern	key	activation	systems	or	update
manually	to	the	latest	security	patches.	Ansible	helps	automate	this
process	by	create	a	smoother	process.

Con�iguration	Management
The	process	of	maintaining	systems	and	software	in	a	desired	and
consistent	state
The	second	key	use	case	is	con�iguration	management:	maintaining

an	up-to-date	and	consistent	way	across	your	�leet	of	coordinating
rolling	updates	and	scheduling	downtime.	With	Ansible,	you	can	verify
the	status	of	your	managed	hosts	and	take	action	in	a	small	group	of
them.	A	huge	variety	of	modules	is	available	for	the	most	common	use
cases,	including	checking	the	compliance	of	your	�leet	to	some
international	standards	and	applying	resolution	plans.

Application	Deployment
The	process	of	publishing	your	software	between	testing,	staging,	and
production	environments
The	third	key	use	case	where	Ansible	is	useful	is	application

deployment.	It	can	automate	the	continuous	integration/continuous
delivery	work�low	pipeline	of	your	web	applications,	for	example.	Your
DevOps	team	will	be	delighted!.

Ansible	For	DevOps
Ansible	is	used	to	apply	DevOps	principles	in	worldwide	organizations.
Let	me	quickly	summarize.	The	DevOps	methodology	consists	of	a	very
high-level	set	of	best	practices	to	follow	in	the	full	software	lifecycle
from	the	initial	design,	coding,	testing,	releasing,	active	use,	and
retirement	from	the	market.	These	principles	apply	to	small	as	well	as	to
big	projects	and	are	used	by	today’s	IT	professionals	worldwide	in	small
to	large	organizations.	Generally	speaking,	it	applies	engineering
principles	to	the	software	creation	process.	DevOps	is	so	popular
because	has	the	following	strengths:	performance,	reuse,	repeatability,
fault	tolerance,	and	cost	reduction.	Also,	the	software	used	in	a	DevOps
environment	is	de�ined	as	“toolchains”	rather	than	a	single	command	or
tool.	The	toolchains	are	usually	speci�ically	designed	for	one	speci�ic
task.	A	common	way	to	classify	them	is	using	DevOps	categories.	Each
category	re�lects	the	key	aspect	of	the	software	design,	development
testing,	and	delivery	process.	The	eight	DevOps	categories	are
Plan:	The	product/project	manager	analyzes	the	requirements	and
feedback	from	internal	and	external	stakeholder	and	creates	a
product	roadmap.	The	software	is	typically	Jira,	Azure	DevOps,	or
Asana.
Code:	The	development	process	that	produces	the	code	of	your
project.	Toolchains	vary	based	on	the	computer	language	used	and
source	code	versioning	management	tools.
Build:	These	toolchains	are	very	speci�ic	according	to	the	computer
language	of	your	team.	Methodologies	of	continuous
integration/continuous	deployment	(CI/CD)	and	build	status	apply.
Test:	Continuous	testing	toolchains	guarantee	fast	and	updated
results	based	on	business	risks	often	based	on	IaC	and	many	DevOps
pipelines.
Release:	A	set	of	tools	that	packages	your	software	in	a	repository.
Deploy:	The	software	enters	the	production	phase.	IaC	to	release	in	a
two	stages	blue-green	deployment	to	use	new	production	services
without	any	interruption	of	the	service.
Operate:	Infrastructure	con�iguration	and	management.
Infrastructure	scaling	and	acquisition	of	feedback	about	the	service.
Monitor:	Application	performance	monitoring	and	end	user
experience	feedback.

Four	Key	Tenets	of	Ansible
1.

Declarative:	You	declare	what	you	want	rather	than	how	to	get	to	it.	
2.

Agentless:	You	don’t	need	to	install	an	agent.	It	takes	advantage	of
OpenSSH.

	
3.

Idempotent:	An	operation	can	be	run	multiple	times	without
changing	beyond	the	initial	operation.

	
4.

Community	driven:	Open	source	and	extensible	by	Ansible	Galaxy
collections	and	roles.

	
The	four	key	tenets	of	Ansible	are	declarative,	agentless,	idempotent,

and	community	driven.	With	“declarative,”	it	means	that	you	can	use	it	in
a	way	very	similar	to	a	programming	language	to	apply	sequencing,
selection,	and	iteration	to	the	code	�low.	With	“agentless,”	it	means	that
Ansible	operates	in	a	way	that	doesn’t	require	installing	an	all-active
process	(agent)	on	the	target	machine;	it	uses	the	SSH	connection	and	a
Python	interpreter.	For	Linux	and	Unix	machines,	this	means	using	SSH,
either	using	OpenSSH	or	in	constrained	environments	Paramiko	(a
Python	OpenSSH	library).	For	Windows	hosts,	this	means	using
Windows	Remote	Management	via	PowerShell	remoting.

The	language	itself	is	idempotent,	which	means	that	the	code	will
check	a	precise	status	on	the	managed	machine.	It	means	that,	for
example,	the	�irst	time	it	runs,	your	code	will	change	something	and	the
following	runs	only	verify	that	nothing	has	changed	and	then	it	moves
forward.	The	last	tenet	is	“community	driven,”	which	means	that	Ansible
is	an	open	source	technology.	Moreover,	there	exists	a	public	archive			of
extension	resources	called	Ansible	Galaxy	where	you	can	download	code
made	by	other	open	source	contributors	to	extend	it	even	more.	This
code	is	organized	in	roles	and	collections,	and	you’ll	see	them	later	in
this	book.

Six	Values	of	Ansible
Simple:	YAML	human-readable	automation
Powerful:	Con�iguration	management,	work�low	orchestration,
application	deployment

Cross-platform:	Agentless	support	for	all	major	OSes,	physical,
virtual,	cloud,	and	network
Works	with	existing	tools:	Homogenizes	the	existing	environment
“Batteries	included:”	750+	modules	available
Community	powered:	Downloads	of	~250k/month,	~3,500
contributors,	1,200	users	on	IRC
Now	let’s	talk	about	the	six	values	of	Ansible.	The	�irst	is	that	it	is

simple:	the	code	is	written	in	the	YAML	language,	also	known	as	a
human-readable	data	serialization	language.	It	is	well	known	and	easy	to
learn.	It	is	very	often	used	for	con�iguration	�iles	of	services,	databases,
and	inside	applications	where	data	is	stored	or	transmitted.	Ansible	is
powerful.	It	is	battle-tested	in	con�iguration	management,	work�low
orchestration,	and	application	deployment.	The	third	value	is	that	it’s
cross-platform	by	nature.	It	offers	agentless	support	for	all	major
operating	systems,	physical,	virtual,	cloud,	and	network	providers.
Another	value	of	Ansible	is	that	it	works	with	existing	IT	tools,	so	it	is
easy	to	homogenize	the	existing	environment.	It’s	common	to	hear	a
success	story	about	integration	with	popular	DevOps	or	DevSecOps	tools
like	Jenkins,	Rundeck,	GitHub	Actions,	GitLab	CI/CD,	Atlassian	Bamboo,
CircleCI,	TeamCity,	Travis	CI,	BuildMaster,	Bitrise,	Buddy,	or	Go	CI	might
to	enable	CI/CD	in	your	organization.	The	“batteries	included”	part
means	that	Ansible	has	more	than	750	modules	currently	available	to
automate	most	common	tasks.	These	modules	come	out	of	the	box	via
the	Ansible	community	package	and	can	be	easily	installed	on	top	of	the
ansible-core	platform.	More	details	about	Ansible	packaging	are	in
Chapter	2	of	this	book.	The	last	value	is	that	Ansible	is	community
powered.	Every	month	it	has	more	than	250,000	downloads,	an	average
of	3,500	contributors,	and	more	than	1,200	users	on	IRC.

Ansible	History
2012:	Developed	by	Michael	DeHaan
2015:	Acquired	by	Red	Hat
2016:	AnsibleFest	events
2020:	Red	Hat	Ansible	Automation	Platform	1.0
2021:	Red	Hat	Ansible	Automation	Platform	2.1
2022:	Red	Hat	Ansible	Automation	Platform	2.2

Let’s	talk	more	about	the	main	events	in	Ansible’s	history.	The	�irst
release	of	Ansible	was	on	February	20,	2012.	Michael	DeHaan	created
the	Ansible	tool	and	started	advertising	the	�irst	initial	community.	Later,
he	founded	Ansible	Inc.	(initially	AnsibleWorks	Inc.),	which	guaranteed
the	commercial	support	and	sponsorship	of	the	project.	On	October	16,
2015,	Ansible	Inc.	was	acquired	by	Red	Hat,	which	evaluated	Ansible	as
a	“powerful	IT	automation	solution.”	This	is	great	recognition	for	the
Ansible	technology	that	everyday	helps	enterprises	innovate	in	the	IT
industry.	Every	year	since	2016,	the	Ansible	Community	reunites	at	an
event	called	AnsibleFest	(virtually	during	pandemic	time)	with
conferences	for	users	and	contributors	all	around	the	planet.

Ansible,	Ansible	Tower,	and	the	Ansible	Automation
Platform
Ansible
Community-driven	project	with	fast-moving	innovations	using	the

open	source	paradigm	but	only	command	line	tools.
Red	Hat	Ansible	Tower/Ansible	Automation	Platform
A	framework	designed	by	RedHat.	It	provides	a	web	UI	to	manage

your	infrastructure.
Ansible	is	an	open	source,	community-driven	project	with	fast-

moving	innovations	but	only	command-line	tools.	Enterprise	needs
more	services	and	some	stable	releases.	For	example,	they	need	an	SLA
for	support.	Red	Hat	offers	this	service	to	companies	under	the	Ansible
Tower	umbrella,	now	rebranded	as	Ansible	Automation	Platform.	The
Ansible	Automation	Platform	includes	Ansible	Controller	(previously
known	as	Ansible	Tower)	and	Automation	Hub.	Ansible	Controller	offers
an	easy-to-use	web	user	interface	as	a	way	to	organize	the	automation
needs	of	your	organization.	It	also	offers	a	REST	API	and	web	services.	It
is	designed	to	form	more	than	a	one-person	IT	department	and	teams
that	need	to	share	processes	and	sensitive	data.	It	also	provides	role-
based	access	control	(RBAC)	to	easily	assign	based	on	your	team’s	needs
and	skill	sets.	It	is	the	center	of	all	the	automation	tasks	and	jobs
operations.	Red	Hat	also	releases	the	open	source	part	of	the	Ansible
Controller	called	AWX	project,	the	upstream	project	of	Ansible	Tower,
available	since	September	2017.	Red	Hat	also	maintains	Ansible	Core

https://github.com/ansible/awx

(previously	known	as	Ansible	Engine).	Ansible	Core	is	the	milestone	that
contains	the	Ansible	platform,	language,	and	tools	to	succeed	in	your
automation	journey.	Red	Hat	provides	commercial	support	for	the
enterprise	customers	of	these	products	as	well	as	the	project	roadmap
for	the	community.

Getting	Started
It’s	time	to	take	your	�irst	step	with	Ansible	technology.	You’ll	learn	how
to	connect	to	the	managed	hosts	and	how	to	execute	some	simple	tasks
using	the	Ansible	command	line	tool.

Ansible	Architecture
Let’s	begin	by	talking	about	the	Ansible	architecture.	The	node	where
Ansible	is	actually	installed	is	called	the	Ansible	control	node	and	it
manages	your	�leet	of	nodes.	The	controlled	node	is	called	a	managed
node	or	target	node.	The	target	node	could	be	Linux,	Mac,	Windows,	or
network	equipment.	Each	target	has	some	speci�icity	like	different	Linux
distributions	and	module	usage.	We	will	discuss	the	speci�icity	in	the
next	sections.

Figure	1-1 Ansible	architecture	schema

Connecting	with	Managed	Nodes
The	connection	between	the	control	node	and	managed	nodes	is
managed	by	the	SSH	protocol	without	any	requirement	for	a	speci�ic
client	on	the	Linux/Unix	target	machine.	Other	competitors	require
client	software	often	called	an	agent.	With	an	SSH	connection,	the	only
requirements	are	a	username	and	a	public/private	OpenSSH	key	to
access	the	target	machine.	There	are	some	ways	to	automate	this	�irst
script	step.	After	completing	the	SSH	connection,	another	requirement	is
a	Python	interpreter,	which	comes	out	of	the	box	for	modern	operating
systems.	Ansible	uses	the	SSH	connection	in	SFTP/SCP	mode	to	transfer
�iles	between	the	control	and	target	nodes.	The	Windows	target	is
connected	with	the	WinRM	technology	and	uses	PowerShell	as	an
interpreter	by	default,	but	you	can	also	choose	CMD.

In	Ansible	2.8+	you	can	also	use	OpenSSH	with	Windows	but	it’s	still
a	limited	option.

Ansible	Installation
The	Ansible	installation	on	the	control	node	is	covered	in	Chapter	2	of
this	book.

Creating	a	Basic	Inventory
/etc/ansible/hosts

demo.example.com

default	inventory	�ile	/etc/ansible/hosts

demo.example.com	is	a	managed	host
The	list	of	managed	hosts	is	stored	in	/etc/ansible/hosts,

specifying	the	hostname	of	the	IP	addresses.	In	this	example,	it	contains
only	one	host	named	demo.example.com	that	resolves	in	your	local
DNSF	or	more	inventory	options	such	as	a	static	IP	address,	username,
connection	type,	and	SSH	key	path.	Refer	to	the	host	variables	section	in
the	following	chapter.

Running	Your	First	Ansible	Command

The	ping	command	is	your	�irst	Ansible	command.	It	simply	interacts
with	the	target	node	and	returns	a	“pong”	status	when	successful.	Once
Ansible	is	successfully	installed	(see	Chapter	2)	on	your	Ansible	control
node,	you	can	use	the	Ansible	command	line	tool	from	your	favorite
terminal	application.	The	name	of	the	terminal	application	might	vary
based	on	your	operating	system	(Linux/Mac/Windows)	but	the
parameters	and	output	of	the	Ansible	command	are	always	the	same.
The	command	result	status	could	be	SUCCESS,	CHANGED, SKIPPED,
OK,	and	FAILED.	The	SUCCESS	status	means	successful	execution	of	the
command	and	no	modi�ication	performed	on	the	target	machine.	The
CHANGED	status	means	successful	execution	of	the	command	and	some
changes	performed	on	the	target	node.	The	SKIPPED	status	means	some
condition	doesn’t	permit	the	execution	of	the	task	on	the	target	node
(usually	a	when	statement).	The	OK	status	means	an	idempotent	result
on	the	module,	the	changes	are	already	present	in	the	target	node,	or	the
module	interacts	in	read-only	mode	in	the	target	node.	The	FAILED
status	means	some	error	during	the	execution	of	the	command	or
communication	with	the	target	node;	usually	more	details	are	provided
in	a	descriptive	message.

This	is	your	�irst	Ansible	command:

$ ansible all -m ping

ping	module	executed	on	all	hosts
demo.example.com	replied	with	a	success	code

The	output	includes
Target	host:	demo.example.com
Command	result:	SUCCESS
Return	value:

"ping": "pong"

Each	Ansible	command	is	called	also	a	module	in	Ansible	jargon.
The	�irst	line	executed	the	Ansible	ping	module	on	all	hosts.	The
response	is	a	pong.	Please	note	that	this	means	that	Ansible	is	able	to
connect	with	the	SSH	username,	identify	it	using	the	public	key,	and

execute	the	local	Python	executer.	So,	it’s	completely	different	from	any
ping	in	networking.

Running	Ad-Hoc	Commands	on	Ansible

$ ansible all -a '/bin/echo example'

The	output	includes
Command	result:	CHANGED
Return	value:
example
/bin/echo example	command	executed	on	all	hosts
demo.example.com	replied	with	a	changed	code	and	print	example
on	the	standard	output
Ansible	can	also	execute	commands	on	the	target	host	and	report	the

status	on	the	console	of	the	Ansible	control	node.	In	this	example,	the
/bin/echo example	command	was	executed	on	all	hosts.
demo.example.com	replied	with	a	changed	code	and	printed	the
example	text	on	the	standard	output.	You	can	substitute	the	echo	with
printf	bash	command	for	Linux	systems.	Note	that	every	time	the
Ansible	module	alters	any	con�iguration	on	the	target	machine,	you	will
receive	a	changed	Ansible	status	in	return.

Running	Ad-Hoc	Commands	with	Privilege	Escalation	on
Ansible

$ ansible all -m ping -u devops --become

The	output	includes
Command	result:	SUCCESS
Return	value:

"ping": "pong"

ping	module	executed	on	all	host	as	user	root	after	login	with
user	devops
demo.example.com	replied	with	a	changed	code	and	print	“ping”:
“pong”	on	the	standard	output
In	this	example,	you	run	the	ping	module	against	the	all	host	as

user	root	after	a	login	with	user	devops.	demo.example.com
replies	with	a	changed	code	and	prints	“ping”:	“pong”	on	standard
output.

Recap
In	this	section,	you	learned	the	basic	concept	of	the	Ansible	architecture,
how	to	write	a	list	of	managed	hosts,	and	how	to	execute	some	simple
commands	against	it.

Inventory
In	this	section,	I’ll	explain	what	an	Ansible	Inventory	is,	why	you	need	it,
the	different	types,	and	how	to	edit	and	use	it	in	your	day-to-day	journey.
An	inventory	is	the	set	of	hosts	Ansible	can	work	against.
They	can	be	categorized	as	groups/patterns.
The	list	of	multiple	hosts	managed	by	Ansible	is	called	an	inventory.

An	Ansible	inventory	is	fundamentally	a	list	of	target	hosts	to	execute
your	automation	against.	The	target	hosts	can	be	in	the	same	or	different
infrastructure(s).	The	hosts	can	be	organized	in	one	or	more	groups	or
patterns	in	order	to	�ilter	hosts	according	to	common	criteria.
all	keyword

The	keyword	all	includes	all	hosts	of	the	inventory,	except
localhost.	The	special	keyword	all	includes	all	the	hosts	of	the
inventory	used.	It	will	be	very	useful	in	the	following	lessons.	The	only
exception	is	localhost,	which	you	need	to	specify.

Simple	INI	Inventory
./ini_simple_inventory

host1.example.com

[frontends]

host2.example.com
host3.example.com

�ile	name:	ini_simple_inventory
host1.example.com	is	ungrouped
host2.example.com	and	host3.example.com	are	grouped	as
frontends
The	simplest	inventory	type	is	the	INI	inventory,	by	the	type	of	the

�ile	stored	by	default	in	/etc/ansible/hosts.	You	can	specify	a
customized	Ansible	inventory	using	the	-i	parameter	in	your	ansible
or	ansible-playbook	terminal.	In	this	example,	host
host1.example.com	is	ungrouped	but	host2.example.com	and
host3.example.com	are	grouped	as	frontends.

Simple	YAML	Inventory
You	can	express	the	same	inventory	using	the	YAML	syntax.
./simple_yaml_inventory.yml

all:
 hosts:
 host1.example.com:
 children:
 frontends:
 hosts:
 host2.example.com:
 host3.example.com:

�ile	name:	inventory.yml
host1.example.com	is	ungrouped
host2.example.com	and	host3.example.com	are	grouped	as
frontends

In	this	example,	the	host	host1.example.com	is	ungrouped,	but
host2.example.com	and	host3.example.com	are	grouped	as

frontends.

Adding	Ranges	of	Hosts
Group	members	can	be	de�ined	also	using	ranges	by	numbers	or	letters.
./ini_range_inventory

[frontends]
www[01:99].example.com

[backends]
back-[a-f].example.com

The	frontends	group	contains	all	hosts	from
www01.example.com	to	www99.example.com.
The	backends	group	contains	all	hosts	from	back-
a.example.com	to	back-f.example.com.

In	the	range	by	numbers,	you	can	also	specify	a	stride	as	the
increment	between	a	sequence	of	numbers.	In	this	INI	example,	the
frontends	group	contains	all	hosts	from	www01.example.com	to
www99.example.com.	The	backends	group	contains	all	hosts	from
back-a.example.com	to	back-f.example.com.

Hosting	in	Multiple	Groups
Hosts	can	be	present	in	multiple	groups.
./ini_groupsmultiple_inventory

host1.example.com

[frontends]
host2.example.com
host3.example.com

[prod]
host2.example.com

[dev]

host3.example.com

hosts	host2.example.com	and	host3.example.com	are
present	in	multiple	groups.
In	this	INI	example,	hosts	host2.example.com	and

host3.example.com	are	grouped	as	frontends.	The	host
host2.example.com	is	present	in	the	frontends	as	well	as	the
prod	group.	The	host	host3.example.com	is	present	in	both
frontends	and	dev	groups.

Host	Variables
In	an	inventory,	you	may	want	to	store	values	as	variables	and	associate
them	with	a	speci�ic	host	or	group.
./ini_hostinventory

[frontends]
localhost ansible_connection=local
host1.example.com ansible_connection=ssh
ansible_user=devops
host2.example.com ansible_connection=ssh
ansible_user=ansible
host3.example.com ansible_user=example
ansible_ssh_private_key_file=~/prj/id_rsa
host4.example.com ansible_host=10.0.113.111

ansible_connection and ansible_user	customized
variables
This	example	scenario	is	very	common	because	it	de�ines	different

connections	with	different	hosts.	For	example,	use	local	connection	for
the	localhost	and	ssh,	the	default,	for	all	the	other	hosts.	For	each
host,	you	can	also	customize	the	login	user	devops	for
host1.example.com	and	ansible	for	host2.example.com.	The
host	host3.example.com	authenticates	with	the	user	example	with	a
custom	SSH	key	path.	The	host	host4.example.com	has	an	inventory-
de�ined	static	IP	address.	This	means	that	Ansible	resolves	the
host4.example.com	with	10.0.113.111.

Group	Variables
Group	variables	enable	you	to	assign	variables	to	a	speci�ic	group
de�ined	in	an	Ansible	inventory.
./groupsvariables_inventory_ini

[frontends]
host1.example.com
host2.example.com

[frontends:vars]
ntp_server=europe.pool.ntp.org

./groupsvariables_inventory_yaml.yml

frontends:
 hosts:
 host2.example.com:
 host3.example.com:
 vars:
 ntp_server: europe.pool.ntp.org

It	is	extremely	useful	not	to	repeat	the	same	value	for	a	lot	of	target
nodes,	for	example	for	the	same	NTP	server	for	all	your	host	in	your
network.	In	the	two	inventory	�iles	in	the	example	(INI	and	YAML
formats),	the	variable	ntp_server	assigned	the	value
europe.pool.ntp.org	for	all	the	hosts	of	the	group.

Inheriting	Variable	Values
Hosts	and	groups	can	be	combined.
./ini_variableinheriting_inventory

[asia]
host1.example.com

[europe]
host2.example.com

[frontends:children]
asia
europe

[frontends:vars]
ntp_server=europe.pool.ntp.org

./variableinheriting_inventory.yml

children:
 frontends:
 children:
 asia:
 hosts:
 host1.example.com:
 europe:
 hosts:
 host2.example.com:
 vars:
 ntp_server: europe.pool.ntp.org

In	this	example,	the	group	frontends	has	two	members,	asia	and
europe.	These	two	groups	contain	only	a	single	host	each,
host1.example.com	and	host2.example.com,	respectively,	but
can	contain	more	hosts.	The	variable	ntp_server	is	de�ined	at	the
frontends	level.	So,	in	the	end,	the	ntp_server	variable	is	visible	in
all	three	groups:	frontends,	asia,	and	europe.	The
host1.example.com	and	host2.example.com	hosts	inherit	the
ntp_server	variable	from	their	related	groups.

Using	Multiple	Inventory	Sources
It	is	possible	to	use	multiple	inventory	�iles	for	each	execution.

$ ansible-playbook -i production -i development
playbook.yml

Execute	the	Ansible	Playbook	named	playbook.yml	against	the
production	and	development	inventories.

This	example	executes	the	Ansible	Playbook	named	playbook.yml
against	the	production	and	development	inventories.

The	localhost	Inventory
One	special	case	in	inventory	is	with	the	localhost	host.

./ini_local_inventory

localhost ansible_connection="local"

File	name:	inventory
/etc/ansible/hosts	default

You	need	to	specify	the	connection	type	as	local;	otherwise,
Ansible	presumes	to	use	the	default	SSH	connection.	It’s	very	common	to
also	specify	the	Python	interpreter,	as	mentioned	in	the
ansible_python_interpreter: "
{{ansible_playbook_python}}".

Recap
Now	you	know	more	about	Ansible	INI	and	YAML	inventory	�iles	to
specify	target	hosts	of	your	automation	as	well	as	variables	with
parameters	that	affected	your	execution.

Playbook
In	this	section,	I’ll	explain	what	an	Ansible	Playbook	is	and	why	you	need
it.	I’ll	cover	how	to	start	with	a	simple	Playbook	from	the	basic	syntax
and	how	to	add	more	tasks.

A	playbook	is	a	set	of	plays	to	be	executed	against	an	inventory.

YAML	Syntax

A sample YAML comment
statement # Another YAML comment

https://docs.ansible.com/ansible/latest/inventory/implicit_localhost.xhtml

A sample string
'Another string'
"Another string"

with_newlines: |
Example Enterprise
813 Howard Street Oswego
New York, NY 13126

without_newlines: >
This is an example
of a long string,
that will become
a single sentence.

yaml_dictionary: {name1: value1, name2: value2}

yaml_list1:
- value1
- value2
yaml_list2: [value1, value2]

Every	Playbook	is	based	on	YAML	syntax	so	the	�ile	is	easy	and
human	readable.	YAML	is	a	text	format,	and	you	can	easily	recognize	it
by	the	presence	of	the	three	dash	symbols	at	the	beginning	and	three
dots	at	the	end.	The	three	dots	are	not	mandatory,	so	a	lot	of	people	omit
them.	This	�ile	type	is	very	sensitive	to	spacing	between	elements.	It’s
strictly	important	that	elements	of	the	same	level	are	in	the	same
indentation,	unlike	in	some	programming	languages.	You	can	use	the
symbol	#	for	comments,	even	on	lines	with	previous	code.	A	string	is
very	important	and	you	can	specify	it	directly	or	with	a	single	or	double
quotes.	I	recommend	using	double	quotes	as	a	general	rule.	Using	the
pipe	and	major	statement	you	can	de�ine	multi-line	strings.	The	�irst
statement	keeps	the	newlines,	the	second	does	not.	Other	useful	data
structures	are	dictionaries	and	lists,	which	you	can	see	in	action	on	the
grayboard.

helloworld.yml

helloworld.yml

- name: message demo
 hosts: all
 tasks:
 - name: sample message
 ansible.builtin.debug:
 msg: "Sample Text"
...
file name: helloworld.yml
Name of the playbook: "message demo"
Hosts of execution: "all"
List of tasks
One task named "sample message"
Module ansible.builtin.debug
Argument `msg` of module debug

This	is	the	output	of	the	execution	of	the	helloworld.yml.	Note
that	the	command	used	is	ansible-playbook.	The	�irst	parameter	is
the	inventory	�ile	and	the	second	is	the	Playbook.	In	this	execution,	the
play	is	executed	against	the	host1.example.com	node.	The	output	is
very	clear	by	the	step-by-step	execution.	When	the	command	is
successful,	the	output	is	highlighted	with	a	green	color.	A	warning	is
presented	in	orange	and	an	error	in	red.	The	most	observant	of	you	have
noticed	an	extra	task	executed	called	Gathering Facts,	which	is
performed	by	Ansible	to	acquire	some	information	about	the	managed
node.	I’ll	discuss	fact	gathering	in	the	following	section.	Try	the
execution	of	this	code	and	become	con�ident	with	this	output	summary.
It	will	be	very	useful.	Two	tasks	are	being	executed.

Tip	1:	ansible-playbook	–check	Option

$ ansible-playbook -i inventory --check
helloworld.yml

The	output	includes

Target	host:	demo.example.com
Command	result:	ok=2
Return	value:

Sample Text

A	very	useful	option	is	–-check	for	Ansible	Playbook	commands.
The	Ansible	Playbook	will	be	executed	in	a	sort	of	“dry	run”	mode.	In
this	mode,	Ansible	simulates	the	execution	on	the	target	machine	and
reports	each	change	but	doesn’t	perform	any	actual	action	on	the	target
machine.	Not	all	Ansible	modules	support	the	check	mode.

Tip	2:	Debug	Day-to-Day	Usage
helloworld_debug.yml

- name: message debug demo
 hosts: all
 tasks:
 - name: sample message
 ansible.builtin.debug:
 msg: "Sample Text"
 verbosity: 2
...
file name: helloworld_debug.yml
Name of the playbook: "message debug demo"
Hosts of execution: "all"
List of tasks
One task named "sample message"
Module debug
Argument `msg` of module debug
Argument `verbosity` is `2`

This	tip	allows	you	to	keep	the	debug	code	in	your	Playbook	and
enable	the	execution	only	when	you	need	it.	For	example,	the	message	is
printed	only	when	Ansible	is	invoked	with	output	level	two.
Execution	without	any	verbose	parameter

$ ansible-playbook -i inventory
helloworld_debug.yml

The	output	includes
Target	host:	demo.example.com
Command	result:	skipped=1
Return	value:

skipping: [demo.example.com]

This	is	the	output	of	helloworld_debug.yml	when	it	is	executed
normally,	which	means	not	in	debug	mode.	Note	that	the	hello	message
is	skipped.
Execution	with	the	verbose	parameter

$ ansible-playbook -i inventory -vv
helloworld_debug.yml

The	output	includes
Target	host:	demo.example.com
Command	result:	ok=2
Return	value:

ok: [demo.example.com] => {
 "msg": "Sample Text"
}

This	is	the	output	of	helloworld_debug.yml	when	it	is	executed
in	debug	level	two	mode.	Note	the	two	V (like Victor)	letters	in
the	command	line.	And	note	that	the	hello	message	is	printed.

Idempotency
One	important	characteristic	of	most	Ansible	modules	is	to	be
idempotent.	It	means	that	before	executing	any	actions	on	the	target
node,	the	module	checks	the	actual	status.	If	the	actual	status	matches
the	desired	once,	no	action	is	performed.	If	the	current	status	diverges

from	the	expected	one,	an	action	will	take	place.	Please	note	that	if	you
execute	the	Playbook	another	time,	the	desired	status	will	be	found	and
no	further	actions	will	be	performed.	This	property	is	called
idempotency	and	you’re	going	to	take	advantage	of	it.

multipleplays.yml

- name: first play
 hosts: www.example.com
 tasks:
 - name: first task
 ansible.builtin.yum:
 name: httpd
 status: present
 - name: second task
 ansible.builtin.service:
 name: httpd
 enabled: true
- name: second play
 hosts: database.example.com
 tasks:
 - name: first task
 ansible.builtin.service:
 name: mariadb
 enabled: true

File	name:	multipleplays.yml.	Two	plays	inside	to	be	executed
against	web.example.com	and	database.example.com.

The	multipleplays.yml	Playbook	contains	two	Ansible	plays.	In
the	beginning,	the	�irst	Ansible	play	is	executed	against	the	target
www.example.com	host	and	installs	an	Apache	web	server	and
enables	it	on	boot.	The	second	play	is	executed	against
database.example.com	and	enables	on	boot	the	execution	of	the
MariaDB	database	management	system.	As	you	can	see,	using	multiple
plays	is	a	very	powerful	way	to	execute	different	tasks	in	different	hosts.
Now	the	de�inition	of	a	Playbook	makes	more	sense.

http://www.example.com/

privilege_escalation.yml

- name: install httpd
 hosts: web.example.com
 become: true
 become_method: sudo
 become_user: root
 tasks:
 - name: install httpd
 ansible.builtin.yum:
 name: httpd
 status: present

privilege_escalation.yml	speci�ies	that	privilege	escalation	is
necessary.	The	become_method	speci�ies	the	escalation	method.
become_user	speci�ies	the	destination	user	(default	root).

Some	action	needs	to	be	taken	by	a	user	with	administrative	power.
In	Linux,	it’s	typically	the	root	user.	Some	distributions	allow	for
privilege	escalation	using	the	sudo	command	using	the	wheel	group.
The	Ansible	task	will	install	the	httpd	Apache	web	server	software	so
Ansible	needs	the	root	privilege	to	perform	the	task.	This	step	is	called
“privilege	escalation.”	The	yum	module	needs	to	perform	some	action	on
the	managed	node.	In	the	Playbook,	when	it	is	not	necessary,	you	can
disable	it.

Common	Ansible	Modules
The	most	used	Ansible	modules	included	in	the	so-called	“core”	platform
are	listed	under	the	builtin	collection	and	are	shipped	with	each	version
of	Ansible.
Files	modules
copy:	Copies	�iles	from	a	local	�ile	or	directory	to	the	managed	host
fetch:	Copies	�iles	from	remote	nodes	to	local	�iles
file:	Sets	permissions	and	other	properties	of	�iles

lineinfile:	Adds	or	veri�ies	that	a	particular	line	is	or	is	not	in	a
�ile	con�iguration
synchronize:	Synchronizes	content	using	Rsync

Software	package	modules
package:	Manages	packages	using	the	autodetected	package
manager	native	to	the	operating	system
yum:	Manages	packages	using	the	YUM	package	manager
apt:	Manages	packages	using	the	APT	package	manager
dnf:	Manages	packages	using	the	DNF	package	manager
gem:	Manages	Ruby	gems
pip:	Manages	Python	packages	from	PyPI

System	modules
firewalld:	Manages	arbitrary	ports	and	services	using	�irewalld
reboot:	Reboots	a	machine
service:	Manages	services
user:	Adds,	removes,	and	manages	user	accounts

Net	tools	modules
get_url:	Downloads	�iles	in	HTTP,	HTTPS,	and	FTP
nmcli:	Manages	networking
uri:	Interacts	with	web	services

Refer	to	the	of�icial	Ansible	website	for	the	full	list	of	modules
included	in	the	builtin	collection	available	in	the	of�icial	website.

Refer	also	to	the	full	list	of	modules	divided	by	collections.	Please
note	that	modules	in	a	collection	might	require	an	additional	collection
installation	process.

Recap
In	this	section,	you	put	the	foundation	of	the	following	operation	on	an
Ansible	Playbook.	Keep	going	and	soon	you	will	be	able	to	automate	all
your	system	administrator	tasks.

Variables

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/index.xhtml
https://docs.ansible.com/ansible/latest/collections/index_module.xhtml

In	this	section,	I’ll	explain	what	Ansible	variables	are,	why	you	need
them,	the	different	types,	and	how	to	edit	and	use	them	in	your	day-to-
day	journey.

Variables	store	dynamic	value	for	a	given	environment.
In	your	Playbook,	it	is	a	good	practice	to	use	variables	to	store	all	of

the	dynamic	values	that	you	need.	By	editing	variables	you	can	reuse
your	code	in	the	future,	only	parameterized	according	to	your	business
needs.

Not	Permitted	Variable	Names
No	white	spaces:	my var
No	dots:	my.var
Don’t	start	with	a	number:	1stvar
No	special	characters:	myvar$1

Ansible	allows	combinations	of	letters	and	numbers	in	variable
names.	If	you	plan	to	use	numbers,	be	aware	that	you	can’t	use	them	at
the	beginning,	but	this	is	a	general	rule	in	the	information	technology
world.	The	four	main	limitations	in	variable	names	are	no	white	spaces
are	allowed,	no	dots,	don’t	start	with	numbers,	and	don’t	use	special
characters.	On	the	right	are	examples	of	invalid	variable	names.

variableprint.yml
./variableprint.yml

- name: variable demo
 hosts: all
 vars:
 fruit: "apple"
 tasks:
 - name: print variable
 ansible.builtin.debug:
 msg: "The value of the variable {{ fruit
}}"
file name: variableprint.yml
Name of the playbook: "variable demo"

Hosts of execution: "all"
List of tasks
One task named "print variable"
Module debug
Argument "msg" of module debug

The	variableprint.yml	Playbook	is	similar	to	the
helloworld.yml	Playbook.	The	syntax	and	the	structure	of	the
elements	are	very	similar,	except	for	the	presence	of	the	variable	fruit.
Variables	store	information	like	strings,	numbers,	and	more	complex
data	structures	like	lists,	dictionaries,	and	such.	In	this	case,	the	variable
has	the	name	fruit	and	the	value	apple.	The	debug	module	in	this
case	will	concatenate	the	text	“The	value	of	the	variable”	with	the	value
of	the	fruit	variable,	“apple”	in	this	example.	Please	note	the	double
brackets,	which	means	the	value	of	the	variable.	It’s	a	best	practice
always	to	include	the	double	brackets	within	the	double	quote	in	the
code.
Execution

$ ansible-playbook -i inventory variableprint.yml

The	output	includes
Target	host:	demo.example.com
Command	result:	ok=2
Return	value:

ok: [demo.example.com] => {
 "msg": "The value of the variable apple"
}

The	output	of	the	execution	of	variableprint.yml	is	very
similar	to	that	of	the	helloworld.yml	�ile.	Please	note	the	printing	of
the	message	“The	value	of	the	variable	apple,”	which	is	obtained	by
combining	the	string	with	the	value	of	the	variable.	Also,	this	execution
is	successful,	as	you	can	see	in	the	play	recap	area	and	by	the	green	color.
Two	tasks	are	being	executed.

variableprint.yml	-	Extra	Variables

$ ansible-playbook -i inventory -e
fruit=banana variableprint.yml

The	output	includes
Target	host:	demo.example.com
Command	result:	ok=2
Return	value:

ok: [demo.example.com] => {
 "msg": "The value of the variable banana"
}

You	can	override	the	Playbook	variables	to	specify	the	value	in	the
command	line	before	the	execution.	When	you	set	the	variable	value	in
this	way,	it	is	called	an	extra	variable.	This	output	of	the	execution	of
variableprint.yml	is	very	similar	to	the	previous	one.	Please	note
the	printing	of	the	message	“The	value	of	the	variable	banana,”	obtained
by	combining	the	string	with	the	value	of	the	variable.	The	value	passed
from	the	command	line	overrides	any	Playbook	value.

Host	Variables	and	Group	Variables
inventory_host_variables

[servers]
demo1.example.com ansible_user=devops

inventory_group_variables

[servers]
demo1.example.com
demo2.example.com

[servers:vars]
user=alice

Host	and	group	variables	can	be	de�ined	in	your	inventory	�ile.	In	the
left	column,	you	see	an	example	of	a	host	variable.	The	variable
ansible_user	is	assigned	the	value	devops.	This	host	variable	is
available	for	demo1.example.com.	On	the	right	column,	you	see	an
example	of	a	group	variable.	The	variable	user	is	assigned	the	value
alice.	This	group	variable	is	available	for	demo1.example.com	and
demo2.example.com	with	the	same	value.

inventory_host_dir

[servers]
demo1.example.com

host_vars/demo1.example.com

ansible_user=devops

inventory_group_dir

[servers]
demo1.example.com
demo2.example.com

group_vars/servers

user=alice

You	can	achieve	the	same	result	by	also	using	directories	to	populate
host	and	group	variables.	As	you	can	see,	the	result	are	the	same	as	the
previous	example	but	using	more	�iles.	In	the	left	column,	you	see	an
example	of	a	host	variable.	The	variable	ansible_user	is	assigned	the
value	devops.	This	host	variable	is	available	for
demo1.example.com.	On	the	right	column,	you	see	an	example	of	a
group	variable.	The	variable	user	is	assigned	the	value	alice.	This
group	variable	is	available	for	demo1.example.com	and
demo2.example.com	with	the	same	value.

Array	Variables

array.yml

- name: Array demo
 hosts: all
 vars:
 users:
 alice:
 firstname: Alice
 homedir: /users/alice
 bob:
 firstname: Bob
 homedir: /users/bob
 tasks:
 - name: Alice's first name
 ansible.builtin.debug:
 var: users['alice']['firstname']
file name: array.yml
Users are organized in a hierarchical data
structure.

Returns 'Alice'
users.alice.firstname
Returns 'Alice'
users['alice']['firstname']

An	array	is	a	very	useful	data	structure.	You	can	organize	the
information	in	a	hierarchical	data	structure.	In	the	example,	it’s	easy	to
read	the	list	of	users:	alice	and	bob.	Each	element	of	the	list	has	two
properties:	firstname	and	homedir.	You	can	access	the	data	with	dot
notation	or	square	brackets.	In	both	cases,	you	obtain	the	same	result.

array.yml	Execution

$ ansible-playbook -i inventory array.yml

The	output	includes
Target	host:	demo.example.com

Command	result:	ok=2
Return	value:

ok: [demo.example.com] => {
 "users['alice']['firstname']": "Alice"
}

This	output	of	the	execution	of	array.yml	is	very	similar	to	the
previous	one.	Note	the	output	of	“Print	Alice’s	�irst	name:	Alice”.	Ansible
accessed	the	array	variable	value	and	showed	it	in	the	output	message
as	expected.

Registered	Variables
registeredvariables.yml

- name: wget installed demo
 hosts: all
 become: true
 tasks:
 - name: wget installed
 ansible.builtin.yum:
 name: wget
 state: present
 register: install_result

 - name: yum printout
 ansible.builtin.debug:
 var: install_result
file name: registeredvariables.yml

Store the standard output in the variable
install_result
that could be printed as well

Another	very	useful	data	structure	is	a	registered	variable.	You	can
save	the	output	of	any	commands	inside	a	registered	variable.	This
example	will	be	printed	on	the	screen.

registeredvariables.yml	Execution

$ ansible-playbook -i inventory
registeredvariables.yml

The	output	includes
Target	host:	demo.example.com
Command	result:	ok=3
Return	value:

ok: [demo1example.com] => {
 "install_result": {
 "changed": false,
 "failed": false,
 "msg": "Nothing to do",
 "rc": 0,
 "results": []
 }
}

This	is	the	output	of	the	execution	of
registeredvariables.yml,	as	expected.	At	�irst,	the	yum	module
veri�ies	the	presence	of	the	package.	If	it’s	missing,	it	proceeds	with	the
installation.	The	output	of	the	setup	process	is	stored	inside	a	registered
variable	that	is	printed	on	the	screen.

Filters	and	Templates
You	can	perform	some	alterations	of	variables	or	con�iguration	�iles
using	the	Ansible	native	support	for	Jinja2	�ilters	and	templates.	They
are	parts	that	extend	the	functionality	of	the	Ansible	control	node.
Ansible	�ilters	manipulate	data	at	a	variable	level.	The	most	common	are
Assigning	default	mandatory	values
{{ variable_name | default(5) }}

Making	variables	optional
{{ variable_name | default(omit) }}

Assigning	a	ternary	value
{{ status | ternary('restart', 'continue') }}

Managing	data	types
{{ variable_name | items2dict }}

Formatting	data	to	JSON	and	YAML
{{ variable_name | to_json }}, {{ variable_name |

to_nice_yaml }}

Working	with	regex

{{ "ansible" | regex_replace('^.', 'A') }}
Ansible	templates	work	similarly	by	taking	advantage	of	the	Jinja2
programming	language	via	the	Ansible	built-in	template	module.

Recap
In	this	section,	you	explored	variable	usage	inside	the	Ansible	Playbook.
You	now	are	aware	of	the	use	of	tools	like	the	user-de�ined	host,	group,
and	registered	variables.

Facts	and	Magic	Variables
In	this	section,	I’ll	explain	what	Ansible	facts	and	magic	variables	are,
why	you	need	them,	the	different	types,	and	how	to	edit	and	use	them	in
your	day-to-day	journey.

Ansible	Facts
In	Ansible	jargon,	the	system	variables	related	to	target	hosts	are	called
facts.	Inside	them	you	can	�ind	system	information	or	runtime	values,	as
well	as	the	use	of	the	behavior	or	the	state	of	the	system	as	con�iguration
on	other	systems.

They	are	so	powerful	because	you	can	obtain	a	very	comprehensive
vision	of	the	current	host,	the	operating	system,	the	distribution	used,
the	IP	address,	the	networking	con�iguration,	the	storage	con�iguration,
and	more.

Listing	All	Facts	About	a	Machine	Ad-Hoc

$ ansible -m setup one.example.com
demo.example.com | SUCCESS => {
 "ansible_facts": {
 "ansible_all_ipv4_addresses": [
 "192.168.43.35",
 "10.0.2.15"
],
 "ansible_all_ipv6_addresses": [
 "fe80::a00:27ff:fe71:bd5a"
],
 "ansible_apparmor": {
 "status": "disabled"
 },
 "ansible_architecture": "x86_64",
 "ansible_bios_date": "12/01/2006",
 "ansible_bios_vendor": "innotek GmbH",
 "ansible_bios_version": "VirtualBox",
 "ansible_board_asset_tag": "NA",
 "ansible_board_name": "VirtualBox",
 "ansible_board_serial": "NA",
 "ansible_board_vendor": "Oracle Corporation",
 "ansible_board_version": "1.2",
 "ansible_chassis_asset_tag": "NA",
 "ansible_chassis_serial": "NA",
 "ansible_chassis_vendor": "Oracle Corporation",
 "ansible_chassis_version": "NA",
 "ansible_cmdline": {
 "BOOT_IMAGE": "(hd0,msdos1)/vmlinuz-4.18.0-
348.el8.x86_64",
 "biosdevname": "0",
 "crashkernel": "auto",
 "net.ifnames": "0",
 "no_timer_check": true,
 "quiet": true,
 "rd.lvm.lv": "rhel_rhel8/swap",
 "resume": "/dev/mapper/rhel_rhel8-swap",

 "rhgb": true,
 "ro": true,
 "root": "/dev/mapper/rhel_rhel8-root"
 },
 "ansible_date_time": {
 "date": "2022-07-22",
 "day": "22",
 "epoch": "1658504009",
 "epoch_int": "1658504009",
 "hour": "15",

The	best	way	to	understand	Ansible	facts	is	to	list	them	by	yourself
using	this	simple	ad-hoc	command.	You	will	be	surprised	by	the	amount
of	information	you’re	going	to	obtain	from	the	host,	such	as	the	current
hardware	con�iguration,	architecture,	processor,	RAM,	available
memory,	storage	con�iguration,	and	so	on.	There	is	also	information
about	the	software	con�iguration,	such	as	operating	system,	the
distribution	used,	the	IP	address,	the	networking	con�iguration,	the
storage	con�iguration,	and	more.

Listing	All	Facts	of	a	Machine	Playbook
facts_printall.yml

- name: facts_printall
 hosts: all
 tasks:
 - name: Print all facts
 ansible.builtin.debug:
 var: ansible_facts

You	can	access	the	same	amount	of	data	from	the	Ansible	Playbook.
In	this	simple	example,	you	list	all	Ansible	facts	for	all	hosts	of	the
inventory.	The	expected	result	will	be	the	same	as	the	previous	ad-hoc
execution.

facts_printall.yml	Execution

ansible-playbook -i inventory facts_printall.yml
PLAY [facts_printall]
**
TASK [Gathering Facts]

ok: [host1.example.com]
TASK [Print all facts]

ok: [host1.example.com] => {
 "ansible_facts": {
 "architecture": "x86_64",
 "bios_date": "10/12/2020",
 "bios_version": "N22ET66W (1.43)",
 "br_4332d8483447": {
 "active": false,
 "device": "br-4332d8483447",
 "features": {
 "esp_hw_offload": "off [fixed]",
 "esp_tx_csum_hw_offload": "off
[fixed]",
 "fcoe_mtu": "off [fixed]",

This	is	the	output	of	the	execution	of	facts_printall.yml.	In
this	execution,	the	play	is	executed	against	the	host1.example.com
node.	The	output	is	very	long,	with	all	the	facts	obtained	automatically
by	Ansible	in	the	task	Gathering Facts.	I	encourage	you	to	run	this
code	to	get	con�ident	with	Ansible	facts.

Referencing	a	Fact
facts_printone.yml

- name: facts_printone
 hosts: all
 tasks:
 - name: Print a fact
 ansible.builtin.debug:

 var: "{{ ansible_facts['architecture'] }}"

You	can	easily	interact	with	facts	by	specifying	the	fact	name.	In	this
example,	you’re	listing	the	architecture	of	the	managed	nodes	(example:
architecture: x86_64).	Feel	free	to	customize	the	code	to	the
Ansible	facts	that	better	�it	your	needs.

Magic	Variables
Magic	variables	are	internal	variables	of	Ansible	used	to	expose	some
system	status	or	runtime	con�igurations.

Common	Magic	Variables
hostvars
groups
group_names
inventory_hostname
ansible_version

With	the	hostvars	magic	variable,	you	can	access	variables	de�ined
for	any	host	in	the	play.	It	is	very	useful	when	you	want	to	access	the
property	of	one	host	from	another	one.	You	can	combine	hostvars
with	Ansible	facts	to	access	a	property	of	other	hosts.	The	groups
magic	variable	lists	all	the	groups	in	the	inventory.	You	can	use	groups
and	hostvars	magic	variables	together	to	list	all	the	IP	addresses	of
the	hosts	in	a	group.	group_names	is	a	list	of	which	groups	the	current
host	is	part	of.	The	Inventory_hostname	magic	variable	contains	the
name	of	the	host	con�igured	in	the	inventory.	The	ansible_version
magic	variable	contains	the	version	information	about	Ansible.

Recap
Ansible	facts	and	magic	variables	are	very	useful	in	your	Ansible
Playbook	especially	when	you	need	to	execute	operations	that	impact	all
hosts	in	the	inventory.	For	example,	to	generate	a	custom	/etc/hosts
�ile	for	all	the	hosts	involved	in	the	inventory,	you	can	apply	a	loop	or
other	statements,	which	you’re	going	to	explore	in	the	next	lessons.

Vault
In	this	section,	I	am	going	to	talk	about	how	to	store	secured	and
encrypted	sensitive	data	(passwords,	API	keys,	usernames,	tokens,	etc.)
using	Ansible	Vault.	Ansible	Vault	stores	variables	and	�iles	in	an
encrypted	way	and	lets	you	use	them	in	Playbooks	or	roles.	The
encryption	is	strong	using	AES	256	as	a	cipher	to	protect	your	�iles	in	the
recent	versions	of	Ansible.	The	ansible-vault	command	line	utility
is	used	to	manage	Ansible	Vault	�iles.

Example	of	contents	of	a	�ile	encrypted	with	the	ansible-vault
tool:

$ANSIBLE_VAULT;1.1;AES256
39393061383130646631353339636263623336366237396361393

439626232366164306137333230
3239633330353939363733316661336339396233373337300a343

132623636653835623030316565
[...]

Creating	an	Encrypted	File
The	create	parameter	of	the	ansible-vault	tool	enables	the	�ile
creation	followed	by	the	�ilename,	so	the	full	command	for	the
secret.yml	�ile	should	be

$ ansible-vault create secret.yml
New Vault password: password
Confirm New Vault password: password

The	command	prompts	for	the	vault	password	to	be	used	two	times
and	then	opens	a	new	�ile	using	your	terminal	default	editor	(Vim,	Nano,
Emacs,	etc.).	In	this	example,	the	password	used	is	password	but	I
strongly	encourage	you	to	use	one	as	secure	as	possible.

You	can	also	store	the	password	in	a	�ile	(password.txt)	and	pass
it	as	a	parameter	using	the	--vault-password-file=	option:

$ ansible-vault create --vault-password-
file=password.txt secret.yml

Viewing	an	Encrypted	File
The	view	parameter	of	the	ansible-vault	tool	enables	you	to	read
the	encrypted	�ile	followed	by	the	�ilename,	so	the	full	command	for	the
secret.yml	�ile	should	be

$ ansible-vault view secret.yml
Vault password: password
INFERNO.
I.
Nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura
ché la diritta via era smarrita.
Ahi quanto a dir qual era è cosa dura
esta selva selvaggia e aspra e forte
che nel pensier rinova la paura!
Tant'è amara che poco è più morte;
ma per trattar del ben ch'i' vi trovai,
dirò de l'altre cose ch'i' v'ho scorte.

Please	note	that	you	can	use	the	ansible-vault view
filename	command	to	view	an	Ansible	Vault-encrypted	�ile	without
opening	it	for	editing.

Editing	an	Existing	Encrypted	File
The	edit	parameter	of	the	ansible-vault	tool	enables	the	�ile
editing	followed	by	the	�ilename,	so	the	full	command	for	the
secret.yml	�ile	should	be

$ ansible-vault edit secret.yml
Vault password: password

This	command	allows	you	to	edit	an	encrypted	�ile.	Behind	the
scenes,	the	command	decrypts	the	�ile,	makes	the	changes,	and	saves	the
newly	encrypted	�iles.	All	the	operations	are	executed	in	a	secure	way.

Encrypting	an	Existing	File

The	encrypt	parameter	followed	by	the	�ilename	of	the	ansible-
vault	tool	enables	you	to	encrypt	of	any	clear	text	(not-encrypted)
Ansible	Playbook	�ile	to	Ansible	Vault.	The	full	command	from
cleartext.yml	to	secret.yml	�ile	should	be

$ ansible-vault encrypt cleartext.yml --
output=secret.yml
New Vault password: password
Confirm New Vault password: password
Encryption successful

Please	note	that	if	you	omit	the	--output	option,	the	original	�ile
will	be	overwritten	with	the	encrypted	one.

Decrypting	an	Existing	File
The	decrypt	parameter	followed	by	the	�ilename	of	the	ansible-
vault	tool	enables	you	to	decrypt	any	Ansible	Vault	to	a	clear	text	(not-
encrypted)	Ansible	Playbook	�ile.	The	full	command	from	secret.yml
to	cleartext.yml	�ile	should	be

$ ansible-vault decrypt secret.yml --
output=cleartext.yml
Vault password: password
Decryption successful

Please	note	that	if	you	omit	the	--output	option,	the	original	�ile
will	be	overwritten	with	the	decrypted	one.

Changing	the	Password	of	an	Encrypted	File
The	rekey	parameter	followed	by	the	�ilename	of	the	ansible-vault
tool	enables	you	to	change	of	the	password	of	any	Ansible	Vault	�ile.	The
full	command	for	the	secret.yml	�ile	should	be

$ ansible-vault rekey secret.yml
Vault password: password1
New Vault password: password
Confirm New Vault password: password

Rekey successful

This	command	also	allows	you	to	rekey	multiple	Ansible	Vault	�iles
at	once.	It	prompts	for	the	original	password	and	then	the	new
password.

Playbooks	and	Ansible	Vault

$ ansible-playbook playbook.yml
TASK [include_vars]
*********************************fatal:
[localhost]: FAILED! => {"ansible_facts": {},
"ansible_included_var_files": [], "changed": false,
"message": "Attempting to decrypt but no vault
secrets found"}

$ ansible-playbook --vault-id name@prompt
playbook.yml
Vault password (default): password

$ ansible-playbook --vault-password-file=vault-
password.txt playbook.yml

To	run	a	Playbook	that	accesses	�iles	encrypted	with	Ansible	Vault,
you	need	to	provide	the	encryption	password	to	the	ansible-
playbook	command.	If	you	do	not	provide	the	password,	the	Playbook
will	return	an	error.	To	provide	the	Vault	password	to	the	Playbook,	use
the	--ask-vault-pass	or	the	--vault-id	option.	For	example,	to	provide
the	Vault	password	interactively,	use	--vault-id name@prompt	as
illustrated	for	the	Vault	named	“name.”	Alternatively,	you	could	use	a
password	�ile.

Recap
In	this	section,	you	explored	the	Ansible	Vault	security	storage	to	save
secrets	and	con�idential	information	inside	Ansible.	As	you	saw,	these
tools	are	robust	and	completely	integrated	inside	the	Ansible	technology.

Conditional
In	this	section,	I’ll	explain	what	Ansible	conditional	operations	are	and
how	you	can	use	them	every	day	in	your	Ansible	Playbook.	A	conditional
statement	checks	a	condition	and	performs	one	or	a	set	of	tasks
accordingly.

Computers	have	the	ability	to	execute	a	huge	amount	of	operations
and	tasks.	Sometimes	you	need	to	execute	one	task	or	a	set	of	tasks	only
when	some	conditions	are	happening.	Common	use	cases	involve
speci�ic	values	of	a	variable,	in	most	cases	boolean	(True	or	False),
some	environment	variables,	some	running	conditions,	or	some	speci�ic
version	of	the	operating	system	in	the	running	node.	In	Ansible,	you
express	the	conditional	with	the	when	statement.	It’s	very	powerful
because	it’s	based	on	the	Jinjia2	tests	and	�ilters.	You	may	also	specify
complex	expressions,	combined	by	traditional	comparison	operators
and	also	by	the	and,	or,	and	not	logical	operations.	You	can	use	the
built-in	Ansible	tests	and	�ilters	or	expand	with	a	collection	or	create
your	own.	The	code	is	executed	only	when	the	result	of	the	when
expression	is	True.

For	example,	let’s	imagine	an	Ansible	Playbook	that	installs	a	web
server	on	Linux.	You	need	to	use	YUM/DNF-speci�ic	code	for	RedHat-like
systems,	APT	for	Debian-like	systems,	and	ZYPPER	for	Suse-like	systems.
Another	example	is	the	need	to	install	a	different	package	name	or
version	based	on	the	operating	system	version,	such	as	version	8	and
version	9	of	the	Red	Hat	Enterprise	Linux.

Basic	Conditionals	with	“when”
conditional_basic_false.yml

- name: conditional_basic
 hosts: all
 vars:
 configure_nginx: false
 tasks:
 - name: reload nginx
 ansible.builtin.service:

 name: nginx
 state: reloaded
 when: configure_nginx

This	is	the	basic	example	of	the	usage	of	the	when	statement	in	your
Ansible	playbook.	The	task	reload nginx	is	executed	only	when	the
configure_nginx	boolean	variable	is	set	to	true.	We	expect	this
task	to	be	skipped.	Let’s	see	the	output	of	the	executed	code.

The	execution	output	includes
Target	host:	demo1.example.com
Command	result:	skipping=1
Return	value:

TASK [reload nginx]
skipping: [demo1.example.com]

This	is	the	output	of	the	execution	of
conditional_basic_false.yml.	In	this	execution,	the	play	is
executed	against	the	demo1.example.com	node.	The	output	is
highlighted	with	green	and	blue	colors.	As	you	can	see,	the	task	of	the
task	reload nginx	is	read	by	Ansible	but	skipped	based	on	the
conditional	statement.
conditional_basic_true.yml

- name: conditional_basic
 hosts: all
 vars:
 configure_nginx: true
 tasks:
 - name: reload nginx
 ansible.builtin.service:
 name: nginx
 state: reloaded
 when: configure_nginx

This	is	the	same	basic	example	of	the	usage	of	the	when	statement	in
your	Ansible	Playbook	but	you	changed	the	variable	value	from	false
to	true.	The	task	reload nginx	is	now	going	to	be	executed	because
the	configure_nginx	boolean	variable	is	set	to	true.	Let’s	see	the
output	of	this	code	execution.

The	execution	output	includes
Target	host:	demo1.example.com
Command	result:	ok=2
Return	value:

TASK [reload nginx]
ok: [demo1.example.com

This	is	the	output	of	the	execution	of
conditional_basic_true.yml.	In	this	execution,	the	play	is
executed	against	the	demo1.example.com	node.	The	output	is
highlighted	in	green.	As	you	can	see,	the	task	of	the	task	reload
nginx	is	read	by	Ansible	and	executed	successfully	in	the	conditional
statement.

Conditionals	Based	on	ansible_facts
conditional_facts.yml

- name: conditional_facts
 hosts: all
 tasks:
 - name: Shut down Debian-like systems
 ansible.builtin.command: /sbin/shutdown -t now
 when: ansible_facts['os_family'] == "Debian"

It	is	very	useful	to	combine	conditional	and	facts.	You	can	adapt	the
execution	of	your	code	based	on	variable	values,	runtime	conditions,	the
value	of	the	IP	address,	the	version	of	the	operating	system,	some
storage	or	�ile	system	object	status,	and	so	on.	In	this	example,	suppose

you	want	to	shut	down	only	the	Debian-like	target	system,	so	Debian
and	Ubuntu	managed	hosts.

The	execution	output	includes
Target	host:	demo1.example.com
Command	result:	skipped=1
Return	value:

TASK [Shut down Debian-like systems]
skipping: [demo1.example.com]

As	you	can	see,	the	status	of	the	task	Shut down Debian-like
systems	on	the	target	demo1.example.com	is	skipped.	This
means	that	the	system	demo1.example.com	isn’t	using	a	Debian-like
Linux	operating	system.

Recap
Conditionals	are	very	important	because	they	enable	you	to	create
Ansible	Playbooks	that	respond	to	some	events,	conditions,	or	Ansible
facts.	This	statement	is	the	foundation	of	the	smart	Ansible	Playbook.

Loop
In	this	section,	I’ll	explain	what	Ansible	loop	operations	are	and	how	you
can	use	them	every	day	in	your	Ansible	Playbook.	Loops	automate
repetitive	tasks.

Computers	are	great	for	the	fast	execution	of	a	block	of	code	of	tasks.
According	to	Moore’s	Law,	every	two	years	the	number	of	transistors
doubles	in	a	dense	integrated	circuit.	Computers	are	faster	than	any
human	on	the	planet	and	they	make	no	mistakes.	In	computers,
programming	language	loops	are	also	called	iterations.	Ansible	includes
several	statements	for	iteration:	the	loop	statement	and	the
with_items	statements.	The	with	statement	relies	on	plugins.

loop_simple.yml

- name: Check services

 hosts: all
 tasks:
 - name: httpd and mariadb are running
 ansible.builtin.service:
 name: "{{ item }}"
 state: started
 loop:
 - httpd
 - mariadb

This	example	checks	that	two	services	(httpd	and	mariadb)	are	in
the	“started”	state.	Every	service	name	is	listed	directly	as	a	list	element
under	the	loop	statement.	Please	note	the	usage	of	the	variable	item
that	iterates	the	current	values	in	each	iteration.	Here	item	is	going	to
be	expanded	for	each	element	of	the	list	(in	this	case,	httpd	and
mariadb).

loop_hash_or_dict.yml

- name: users and group example
 hosts: all
 tasks:
 - name: add users to groups
 ansible.builtin.user:
 name: "{{ item.name }}"
 state: present
 groups: "{{ item.group }}"
 loop:
 - name: alice
 group: wheel
 - name: bob
 group: root

Some	use	cases	require	more	complex	iteration	variable	types	such
as	hashes	or	dictionaries.	As	always,	Ansible	relies	heavily	on	Python
data	types.	This	is	an	example	of	a	dictionary	with	two	keys:	name	and
group	for	each	element	of	the	list.	You	can	access	the	current	item

loop	variable	using	a	dot.	Speci�ically,	name	can	be	retrieved	with	the
item.name	and	group	with	item.group	variables,	respectively.

with_*	Statement
with_items

Like	loop	for	simple	lists,	a	list	of	strings,	or	a	list	of
hashes/dictionaries.	Faster	to	list	if	lists	of	lists	are	provided
with_file

This	keyword	requires	a	list	of	control	node	�ile	names.	The	loop
variable	item	holds	the	content	of	the	�ile
with_sequence

Requires	parameters	to	generate	a	list	of	values	based	on	a	numeric
sequence.	From	0	to	10,	for	example.

loop_with_items.yml

- name: Example with_items
 hosts: all
 vars:
 data:
 - alice
 - bob
 tasks:
 - name: Print values of data
 ansible.builtin.debug:
 msg: "{{ item }}"
 with_items: "{{ data }}"

In	the	loop_with_items.yml	Ansible	Playbook,	the	variable
data	is	a	list	of	strings.	The	task	Print values of data	uses
with_items	to	iterate	item	by	item	and	print	on	the	screen.

Recap

Loops	statements	are	very	useful	to	automate	repetitive	tasks.	Loops	are
the	foundation	of	a	successful	Ansible	Playbook.

Handler
In	this	section,	I’ll	explain	what	an	Ansible	Handler	statement	is	and	how
you	can	use	it	every	day	in	your	Ansible	Playbook.

Handlers run operations on change

Handlers	are	very	important	for	idempotency.	They	allow	you	to
execute	some	steps	only	if	necessary	and	to	save	computer	cycles	when
there	is	no	need	for	them	to	be	executed.

rollingupdate.yml

- name: Rolling update
 hosts: all
 become: true
 tasks:
 - name: latest apache httpd package is
installed
 ansible.builtin.yum:
 name: httpd
 state: latest
 notify: restart apache

 handlers:
 - name: restart apache
 ansible.builtin.service:
 name: httpd
 state: restarted

The	rollingupdate.yml	�ile	is	composed	by	one	task	and	one
handler.	The	handler	code	is	executed	only	if	necessary.	Please	note	the
notify	statement;	it	mentions	the	name	of	the	handler	to	run.	This
Playbook	checks	the	version	of	the	Apache	http	web	server	on	all	hosts.

If	an	update	is	available,	the	yum	module	provides	the	upgrade	process
and	restarts	the	daemon	at	the	end.	If	an	upgrade	is	not	necessary,	the
handler	code	is	not	necessary.	A	more	complex	Playbook	can	have
multiple	handlers	and	you	can	reference	them	by	name.

Role
In	this	section,	I’ll	explain	what	Ansible’s	role	is	in	code	reuse	and	how
you	can	use	it	every	day	in	your	Ansible	Playbook.	The	Ansible	role
enables	code	reuse	in	Ansible.

Roles	are	like	functions	in	the	traditional	programming	world.	An
Ansible	role	enables	code	reuse	and	sharing	in	a	public	directory	called
Ansible	Galaxy	(https://galaxy.ansible.com/).	Creators	from
all	over	the	world	contribute	code	in	the	Ansible	Galaxy	directory.	The
usage	of	Ansible	roles	dramatically	speeds	up	any	Ansible	Playbook
development,	enabling	access	to	a	lot	of	high-quality	resources.	Another
amazing	public	resource	is	the	Linux	System	Roles:		A	collection	of
Ansible	roles	and	modules	at	https://linux-system-
roles.github.io/at.

Role	Tree	Directories
This	is	a	directory	tree	example	of	the	role.example	Ansible	role:

role.example/
|-- defaults
| `-- main.yml
|-- files
|-- handlers
| `-- main.yml
|-- meta
| `-- main.yml
|-- README.md
|-- tasks
| `-- main.yml
|-- templates
|-- tests
| |-- inventory

https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://linux-system-roles.github.io/
https://linux-system-roles.github.io/at

| `-- test.yml
`-- vars
 `-- main.yml

Please	note	that	not	every	role	will	have	all	of	these	directories	but
it’s	good	to	know	the	scope	and	how	to	take	advantage	of	them	in	your
coding.

Directory	description:
defaults

In	the	main.yml	�ile	you	can	de�ine	the	default	value	for	each
variable	user	in	the	role.	These	variables	are	intended	to	be	overwritten
in	your	Playbook	when	you	execute	the	role.
files

In	the	files	directory,	you	store	all	the	static	�iles	present	inside	by
role	tasks.
handlers

Every	handler	is	supposed	to	be	de�ined	in	the	main.yml	�ile	under
this	directory.
meta

This	is	the	most	descriptive	part	of	the	Ansible	role,	and	the
main.yml	�ile	includes	information	about	the	creator,	the	�iles	license,
the	tested	platforms,	and	optionally	the	Ansible	role	dependencies.
tasks

This	is	the	heart	of	your	automation	and	effectively	contains	all	the
Ansible	tasks	to	be	executed.
templates

All	Jinja2	templates	of	the	role	are	under	this	directory.
tests

Any	code	to	test	the	Ansible	role	was	originally	stored	under	this
directory.	Nowadays	it’s	substituted	by	the	Ansible	Molecule	project
(https://molecule.readthedocs.io/en/latest/).

https://molecule.readthedocs.io/en/latest/
https://molecule.readthedocs.io/en/latest/

vars

The	main.yml	�ile	in	this	directory	represents	the	Ansible	role’s
internal	variables.	Often	these	variables	are	used	for	internal	purposes
within	the	role.	These	variables	have	high	precedence	and	are	not
intended	to	be	changed	when	used	in	a	Playbook.

Using	Ansible	Roles	in	a	Playbook
./role_simple.yml

- name: role example
 hosts: all
 roles:
 - role1
 - role2
file name: role_simple.yml
Apply the "role1" and "role2" to the "all" managed
hosts

./role_vars.yml

- name: role example
 hosts: all
 roles:
 - role: role1
 - role: role2
 var1: value
 var2: value
file name: role_vars.yml
Apply the "role1" and "role2" to the "all" managed
hosts

"role2" has two variables parameters

Order	of	Execution

./role_vars.yml

- name: order of execution example
 hosts: all
 pre_tasks:
 - debug:
 msg: 'pre-task'
 notify: my handler
 roles:
 - role1
 tasks:
 - debug:
 msg: 'first task'
 notify: my handler
 post_tasks:
 - debug:
 msg: 'post-task'
 notify: my handler
 handlers:
 - name: my handler
 debug:
 msg: Running my handler

For	each	play	in	a	Playbook,	tasks	execute	as	ordered	in	the	tasks	list.
After	all	tasks	execute,	any	noti�ied	handlers	are	executed.	When	a	role	is
added	to	a	play,	role	tasks	are	added	to	the	beginning	of	the	tasks	list.	If	a
second	role	is	included	in	a	play,	its	tasks	list	is	added	after	the	�irst	role.
Role	handlers	are	added	to	plays	in	the	same	manner	that	role	tasks	are
added	to	plays.	Each	play	de�ines	a	handler’s	list.	Role	handlers	are
added	to	the	handlers	list	�irst,	followed	by	any	handlers	de�ined	in	the
handlers	section	of	the	play.	In	certain	scenarios,	it	may	be	necessary	to
execute	some	play	tasks	before	the	roles.	To	support	such	scenarios,
plays	can	be	con�igured	with	a	pre_tasks	section.	Any	task	listed	in
this	section	executes	before	any	roles	are	executed.	If	any	of	these	tasks
notify	a	handler,	those	handler	tasks	execute	before	the	roles	or	normal
tasks.	Plays	also	support	a	post_tasks	keyword.	These	tasks	execute
after	the	play’s	normal	tasks,	and	any	handlers	they	notify	are	run.

Ansible	Galaxy
https://galaxy.ansible.com/

Installing	Roles	from	Ansible	Galaxy	Manually

$ ansible-galaxy install geerlingguy.redis -p
roles/

Installing	Roles	from	Ansible	Galaxy	requirements.yml
The	requirements.yml	�ile	allows	you	to	specify	all	the	Ansible	roles
you	need	in	a	row.	For	example,	the	following	�ile	allows	you	to	install
the	geerlingguy.redis	Ansible	role	version	1.5.0.	If	you	omit	the
version,	the	latest	release	is	used.

Best	practices	recommend	storing	the	requirements.yml	�ile
under	the	roles	directory	of	your	Ansible	project.
roles/requirements.yml

- src: geerlingguy.redis
 version: "1.5.0"

It’s	super	easy	to	consume	the	requirements.yml	�iles	using	the
ansible-galaxy	tool.

$ ansible-galaxy install -r
roles/requirements.yml -p roles

The	option	-r	allows	you	to	recursively	install	all	the	necessary
dependencies	of	your	Ansible	role.	The	option	-p	as	usual	speci�ies	the
target	directory	in	your	�ilesystem.

Collection
An	Ansible	Collection	is	a	distribution	format	for	shipping	some	Ansible
resources.	It	is	usually	speci�ic	for	a	single	use	case	and	contains	all	the
relevant	Ansible	resources	that	distribute	playbooks,	roles,	modules,	and

https://galaxy.ansible.com/

plugins.	For	users,	the	Ansible	Collection	is	easy	to	download	and	share
via	the	Ansible	Galaxy	directory.	For	developers,	the	Ansible	Collection	is
easy	to	upload	and	share	via	Ansible	Galaxy.	Plus,	an	Ansible	Collection
has	a	de�ined	standard	directory	structure	and	format.

Refer	to	the	“Installation	of	the	Additional	Collection”	section	in
Chapter	2	for	some	code	samples	about	how	to	install	the
community.vmware	Ansible	Collection.

Ansible	Plugins
Plugins	extend	the	functionality	of	Ansible	and	unlock	many
applications.	For	example,	the	lookup	plugins	enable	you	to	extend	Jinja2
to	access	data	from	outside	sources	within	your	playbooks,	and	they
execute	and	are	evaluated	on	the	Ansible	control	node.	Famous	use	cases
are	for	reading	from	Windows	INI	style	�iles	(ini),	reading	from	CSV	�iles
(csv�ile),	listening	�iles	matching	shell	expressions	(�ileglob),	reading
lines	from	stdout	(lines),	generating	a	random	password	(password),
reading	from	a	Unix	pipe	(pipe),	and	returning	content	from	a	URL	via
HTTP	or	HTTPS	(url).

The	full	list	of	plugin	types	includes	action,	cache,	callback,
connection,	�ilter,	inventory,	lookup,	test,	and	vars.

Please	refer	to	the	of�icial	“Ansible	Working	with	Plugins”	guide	at
https://docs.ansible.com/ansible/latest/plugins/plu
gins.xhtml	for	more	details.

Key	Takeaways
Whether	a	beginner	or	an	experienced	Ansible	user,	you	now	have	more
familiarity	with	the	Ansible	code	language,	architecture,	and
terminology.	You	explored	concepts	like	ad-hoc	commands,	inventories,
Playbooks,	variables,	facts	and	magic	variables,	vaults,	conditionals,
loops,	handlers,	roles,	and	Collections.

In	the	next	chapter,	you	are	going	to	install	an	Ansible	control	node
on	the	most	used	operating	systems.	The	following	chapter	is	completely
focused	on	VMware	automation	with	Ansible.

https://docs.ansible.com/ansible/latest/plugins/plugins.xhtml
https://docs.ansible.com/ansible/latest/plugins/plugins.xhtml

(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2023
L.	Berton,	Ansible	for	VMware	by	Examples
https://doi.org/10.1007/978-1-4842-8879-5_2

2.	Installing	Ansible
Luca	Berton1		

Czechia,	Czech	Republic

	

It	is	simple	to	install	most	common	and	modern	operating	system
nowadays.	The	main	requirements	for	Ansible	are	only	the	Python
interpreter	and	some	Python	libraries	to	read	and	format	YAML
documents	and	to	interact	with	SSH	for	Linux/macOS	target	hosts	and
WinRM	for	Windows	target	hosts.	All	of	this	is	handled	by	the	operating
system	package	manager,	so	you	don’t	need	to	worry	about	it.	Ansible	is
already	included	in	most	recent	Linux	distributions	out	of	the	box.	Most
of	the	time,	this	doesn’t	require	additional	repositories	or	complex
commands.	You	can	install	Ansible	simply	by	using	the	distribution
package	manager	or	the	Python	Package	Manager	(PIP).	After	the
installation,	you	start	your	journey	simply	typing	“ansible”	in	your
favorite	terminal.	Ansible	is	able	to	handle	every	workload	from	a
simple	“ping”	module	to	testing	the	connection	to	the	target	node	to	a
complex	automation	work�low	(also	called	an	Ansible	Playbook).

Ansible	Community	vs.	ansible-core	Packages
At	the	moment,	there	are	two	ways	to	install	Ansible	in	your	system:
the	ansible-core	package	and	the	Ansible	community	package	.
These	packages	always	confuse	early	adopters	as	well	as	some	long-
time	users	(after	Ansible	version	2.9).	These	two	packages	respond	to
the	needs	of	different	use	cases.	The	Ansible	community	package	is
maintained	by	the	Ansible	community,	while	ansible-core	is
maintained	by	the	Ansible	Engineering	Team.	The	Ansible	community

https://doi.org/10.1007/978-1-4842-8879-5_2

package	offers	the	functionality	of	ansible-core	plus	85+
collections	containing	thousands	of	modules	and	plugins.	The	Ansible
Engineering	Team	focuses	on	stability	and	reliability,	while	the	Ansible
community	strives	to	provide	the	latest	features	and	functionality	to	a
broader	audience.	If	you	need	the	full	Ansible	experience	and	the	latest
and	greatest	features,	the	Ansible	community	package	is	the	way	to	go.
However,	if	you	need	only	the	Ansible	stable	and	reliable	platform,
ansible-core	is	the	better	choice.

Before	2021	and	until	Ansible	version	2.9,	the	Ansible	Engineering
Team	released	only	one	package	with	the	Ansible	platform	and	all	the
additional	collection	codes	in	one	package	called	ansible,	similar	to
the	Ansible	community	package.	The	main	drawback	of	this	release
approach	was	that	the	size	of	the	package	was	too	much	(hundreds	of
MB	of	storage	space)	for	content	that	was	used	rarely	by	customers.
Another	big	drawback	was	that	the	bug	�ixes	required	waiting	for	the
next	release	cycle.	By	2021,	starting	with	version	2.10,	Ansible
Engineering	Team	decided	to	focus	on	the	ansible-core	package.
The	ansible-core	package	contains	the	Ansible	platform,	the
runtime	tools,	and	the	ansible.builtin	modules	and	plugins
collection.	A	crazy	note:	The	2.10	version	of	the	ansible-core
package	was	initially	called	ansible-base.	The	advantage	of	this
approach	is	the	smallest	possible	storage	platform	footprint	and	a
release	cycle	based	only	on	the	Ansible	technology.	The	Ansible
community	package	is	a	convenient	release	of	the	ansible-core
platform	plus	all	the	additional	modules	and	plugins	of	other	available
Ansible	collections.	The	most	famous	and	most	used	collections	are
community.general	for	UNIX	and	POSIX	utilities,
community.windows	for	Windows	target	hosts,	amazon.aws	for
Amazon	Web	Services,	community.azure	for	Azure,
kubernetes.core	for	Kubernetes,	and	community.postgresql
for	PostgreSQL.	In	summary,	Ansible	distributes	two	deliverables:	the
latest	and	greatest	features	in	the	Ansible	community	package	and	a
minimalist	platform	called	ansible-core.	Generally	speaking,	if
you’re	in	a	production	environment,	you	should	prefer	the	ansible-
core	package	plus	only	the	needed	collections.	If	you	are	a	developer,
you	might	prefer	the	Ansible	community	package	with	all	the	tools	and

additional	collections.	Apart	from	this	general	advice,	you	can	choose
the	Ansible	package	that	�its	your	need.	These	packages	allow	you	more
�lexibility	and	storage	savings,	especially	for	production	virtual
machines	and	containers	use	cases.

At	the	writing	of	this	book,	the	Ansible	Engineering	Team	released
version	2.14.0	of	the	ansible-core	package,	and	the	Ansible
Community	Team	released	version	6.1.0	of	The	Ansible	community
package	(July	2022).

You	can	check	your	currently	running	Ansible	release	using	the
ansible	command	with	the	--version	parameter.	The	�irst	line	of
the	output	should	show	you	the	exact	running	version.	The	version
below	uses	the	release	number	2,	major	13,	and	minor	1:

ansible [core 2.13.1]

You	can	get	more	details	on	the	current	releases	and	maintenance
plans	on	the	Ansible	of�icial	website.

ansible-core
The	ansible-core	package	is	for	Ansible	expert	users	or	production
systems.	It	contains	only	the	Ansible	platform	technology	and	enables
you	to	install	the	additional	collections.	This	is	the	main	building	block
of	the	Ansible	architecture.	The	ansible-core	package	includes	the
Ansible	platform	for	developing	the	Ansible	Playbooks	such	as
conditionals	and	blocks,	and	it	includes	a	loop	and	other	Ansible
imperatives	plus	an	extensive	architectural	framework	to	enable
Ansible	collections	and	all	the	command-line	tools	for	interacting	with
automation	(ansible-playbook,	ansible-doc,	etc.)	The	release
cycle	is	approximately	twice	per	year	by	the	Ansible	Engineering	Team.

The	Ansible	Community	Package
The	most	complete	Ansible	experience	is	guaranteed	by	the	Ansible
community	package,	which	contains	thousands	of	modules	and	plugins
and	the	ansible-core	platform.	The	Ansible	community	package
includes	the	ansible-core	Ansible	platform	and	85+	collections
containing	thousands	of	modules	and	plugins.	It	requires	the

https://docs.ansible.com/ansible/latest/reference_appendices/release_and_maintenance.xhtml

ansible-core	package	to	be	installed	on	the	system.	The	release
cycle	is	approximately	twice	per	year	by	the	Ansible	community,
following	the	ansible-core	release	plan.

Additional	Collections	Installation
Both	Ansible	platforms	can	be	extended	using	additional	Ansible
collection	resources.	Read	more	about	the	current	Collection	Index	on
the	Ansible	of�icial	website.

The	ansible	command-line	tool,	ansible-galaxy,	is	designed	to	easily
download	and	maintain	any	collection	in	your	system.	Suppose	you
want	to	download	the	community.vmware	collection	via	the	ansible-
galaxy	command.	You	can	specify	the	collection	name	straightaway	or
via	a	requirements.yml	�ile.

Installing	the	community.vmware	Collection	via	the
ansible-galaxy	Command
Let’s	see	how	to	install	the	community.vmware	collection	via	the
ansible-galaxy	command:

$ ansible-galaxy collection install
community.vmware

Installing	the	community.vmware	Collection	via	the
requirements.yml	File
You	can	automate	the	installation	of	the	community.vmware	collection
using	the	requirements.yml	�ile	for	the	ansible-galaxy
command.	The	Ansible	best	practices	recommend	storing	the
requirements.yml	�ile	under	the	collections	directory	of	your
Ansible	project:	collections/requirements.yml.

collections:
 - name: community.vmware
 source: https://galaxy.ansible.com

https://docs.ansible.com/ansible/latest/collections/index.xhtml

–	command	execution

$ ansible-galaxy install -r
collections/requirements.yml

Verifying	the	Currently	Installed	Version	of
community.vmware
After	a	successful	installation,	you	can	verify	the	currently	installed
version	of	the	community.vmware	using	the	command	line:

$ ansible-galaxy collection list community.vmware

The	command	may	return	multiple	results	if	they	apply,	with	the
relevant	�ile	system	path	and	version(s).	If	no	result	is	returned,	it
means	that	no	versions	of	the	Ansible	collection	are	currently	installed
in	the	system	right	now.

Links
Ansible	Core	of�icial	documentation,
https://docs.ansible.com/ansible-
core/devel/index.xhtml
ansible-core	package,	https://pypi.org/project/ansible-
core/
Ansible	community	package,
https://pypi.org/project/ansible/

Ansible	Installation	for	RedHat	Enterprise
Linux	(RHEL)	8
You	can	install	the	latest	release	of	Ansible	in	Red	Hat	Enterprise	Linux
version	8	using	the	Ansible	Engine	Software	Collections	(RHSCL)	using
the	YUM/DNF	distribution	tools.

The	easier	way	to	install	and	maintain	Ansible	inside	Red	Hat
Enterprise	Linux	version	8	is	by	using	the	DNF	package	manager
(previously	on	RHEL	known	as	YUM).	The	repository	that	contains
Ansible	2.9	is	called	the	Ansible	Engine	Software	Collection,	ansible-

https://docs.ansible.com/ansible-core/devel/index.xhtml
https://pypi.org/project/ansible-core/
https://pypi.org/project/ansible-core/
https://pypi.org/project/ansible/

2.9-for-rhel-8-x86_64-rpms.	The	main	advantage	of	using
RHSCL	is	that	you	don’t	need	any	external	repository	such	as	EPEL	for
this	content.	Software	collections	(RHSCL)	are	fully	supported	by	Red
Hat	and	included	in	your	subscription	plan.

Please	note	that	ansible-core	is	supported	since	RedHat
Enterprise	Linux	(RHEL)	version	8.6	and	version	9.0.
ansible-core	for	RHEL	8.	6	and	9.	0	AppStream	repository,
www.redhat.com/en/blog/updates-using-ansible-
rhel-86-and-90
Activate	the	EPEL	(Extra	Packages	for	Enterprise	Linux)	repository,
https://docs.fedoraproject.org/en-US/epel/

Code
The	following	code	installs	the	latest	version	of	Ansible	2.9	in	your
RedHat	Enterprise	Linux	(RHEL)	8.
Install	Ansible	RHEL8
Please	note	you	need	root	privileges	to	execute	the	following

commands.	First,	you	need	to	enable	the	RHSCL	using	the
subscription-manager	tool:

subscription-manager repos --enable ansible-2.9-
for-rhel-8-x86_64-rpms

Then	you	can	perform	the	installation	of	the	ansible	package
using	the	YUM	or	DNF	tool:

yum install ansible

This	command	installs	the	Ansible	package	as	well	as	all	the	needed
dependencies	python3-babel, python3-cffi, python3-
cryptography, python3-jinja2, python3-markupsafe,
python3-pycparser, python3-pytz, python3-pyyaml,
sshpass,	and	weak	dependency	python3-jmespath.

Veri�ication

https://www.redhat.com/en/blog/updates-using-ansible-rhel-86-and-90
http://www.redhat.com/en/blog/updates-using-ansible-rhel-86-and-90
https://docs.fedoraproject.org/en-US/epel/
https://docs.fedoraproject.org/en-US/epel/

You	can	verify	the	successful	installation	of	Ansible	using	the
ansible --version	command	in	any	terminal.	At	the	time	of
writing	this	book,	it’s	available	in	version	2.9.27	on	Python	3.6.8	(July
2022).

Ansible	Installation	for	Ubuntu	22.04	LTS
You	can	perform	the	installation	of	the	latest	release	of	Ansible	in
Ubuntu	22.04	LTS	via	the	universe	and	PPA	repositories	using	the
distribution	package	manager	(APT).	The	�irst	method	to	install	Ansible
is	by	using	the	universe	repository,	the	default	that	you	get	after
installation.	The	main	advantage	of	using	the	universe	repository	is	that
you	don’t	require	any	external	repository.	The	second	method	to	install
Ansible	is	by	using	the	Personal	Package	Archives	(PPA)	repository.
Please	bear	in	mind	that	adding	repositories	mean	different	quality
assurances.

Code
You	can	install	the	Ansible	package	in	Ubuntu	22.04	LTS	with	the
universe	and	ansible/ansible	PPA	repositories.

universe
Install-Ubuntu-Universe.sh
Please	note	you	need	root	privileges	to	execute	the	following

commands	or	use	sudo	before	the	following	commands.	First,	you	may
need	to	update	the	package	manager	metadata	cache	using	the	apt
tool:

apt update

Then	you	can	install	the	ansible	package	using	the	apt	or	apt-
get	tool:

apt install ansible

This	command	installs	the	ansible	package	as	well	as	all	the	needed
dependencies:	ieee-data, python3-argcomplete, python3-
dnspython, python3-jmespath, python3-kerberos,
python3-libcloud, python3-lockfile, python3-
netaddr, python3-ntlm-auth, python3-packaging,
python3-pycryptodome, python3-requests-kerberos,
python3-requests-ntlm, python3-requests-toolbelt,
python3-selinux, python3-simplejson, python3-
winrm,	and	python3-xmltodict.

Veri�ication
You	can	verify	the	successful	installation	of	Ansible	using	the

ansible --version	command	in	any	terminal.	At	the	time	of
writing	this	book,	it’s	available	in	ansible-core	version	2.10.8	on
Python	3.10.4	(July	2022).

PPA
Install-Ubuntu-PPA.sh
If	you	prefer	to	install	ansible-core	using	the

ansible/ansible	PPA	repository,	you	must	�irst	enable	it	using	this
command:

add-apt-repository --yes --update
ppa:ansible/ansible

Please	verify	that	the	Ansible	package	isn’t	installed	or	remove	it
using	the	command	(expect	a	failure	otherwise):

apt remove ansible

Finally,	you	can	use	the	ansible-core	command:

apt install ansible-core

Veri�ication

You	can	verify	the	successful	installation	of	Ansible	using	the
ansible --version	command	in	any	terminal.	At	the	time	of
writing	this	book,	it’s	available	in	ansible-core	version	2.12.4	on
Python	3.10.4	(July	2022).

Ansible	Installation	for	Fedora	36
You	can	install	and	maintain	Ansible	in	Fedora	36	using	the	AppStream
repository	for	your	DNF	package	manager.	The	easier	way	is	using	DNF
and	the	AppStream	repository	that	comes	out	of	the	box	with	Fedora
Linux.

Code
Install	Ansible	in	Fedora	version	36	via	the	AppStream	system
repository	using	the	ansible-core	or	Ansible	community	packages.

Please	note	you	need	root	privileges	to	execute	the	following
commands.	You	can	install	the	latest	release	of	the	Ansible	community
release	using	the	DNF	tool:

install-Ansible-Fedora.sh

dnf install ansible

This	command	installs	the	Ansible	package	as	well	as	all	the	needed
dependencies	(ansible-core, libsodium, python3-bcrypt,
python3-jmespath, python3-ntlm-auth, python3-
packaging, python3-pynacl, python3-pyparsing,
python3-requests_ntlm, python3-resolvelib,
python3-xmltodict)	and	weak	dependencies	(python3-
paramiko, python3-pyasn1, python3-winrm).

Veri�ication
You	can	verify	the	successful	installation	of	Ansible	using	the

ansible --version	command	in	any	terminal.	At	the	time	of
writing	this	book,	it’s	available	in	ansible-core	version	2.12.5	on
Python	3.10.4	(July	2022).

Ansible	Installation	for	CentOS	9	Stream
You	can	install	and	maintain	Ansible	in	CentOS	9	Stream	using	the
AppStream	repository	or	the	EPEL	Next	(Extra	Packages	for	Enterprise
Linux)	repository	for	your	YUM/DNF	package	manager.	The	easier	way
is	by	using	DNF	and	the	AppStream	repository	that	comes	out	of	the
box	with	CentOS	Linux.
ansible-core	package	in	the	system	AppStream	repository
The	easier	way	to	install	and	maintain	Ansible	inside	CentOS	Stream

version	9	is	using	the	system	AppStream	repository.
Use	EPEL	Next	additional	packages	for	CentOS	Stream
Another	way	is	to	use	the	additional	EPEL	Next	repository.	This

repository	contains	enterprise-quality	packages	for	CentOS	Stream,
similar	to	EPEL	packages	but	targeting	RHEL,	CentOS,	Scienti�ic	Linux,
and	Oracle	Linux.

Links
CentOS	Stream	download,	www.centos.org/centos-stream/
EPEL	9	is	now	available,
https://communityblog.fedoraproject.org/epel-9-
is-now-available/
Introducing	CentOS	Stream	9,
https://blog.centos.org/2021/12/introducing-
centos-stream-9/,
Install	EPEL	(Extra	Packages	for	Enterprise	Linux),
https://docs.fedoraproject.org/en-US/epel/

Code
To	install	the	latest	release	of	Ansible	Core	in	CentOS	Stream	version	9
via	the	AppStream	system	repository,	please	note	you	need	root
privileges	to	execute	the	following	commands.	You	can	install	the
ansible-core	package	using	the	yum	or	DNF	tool:

Install-Ansible-CentOS-Stream9.sh

http://www.centos.org/centos-stream/
https://communityblog.fedoraproject.org/epel-9-is-now-available/
https://communityblog.fedoraproject.org/epel-9-is-now-available/
https://blog.centos.org/2021/12/introducing-centos-stream-9/
https://blog.centos.org/2021/12/introducing-centos-stream-9/
https://docs.fedoraproject.org/en-US/epel/
https://docs.fedoraproject.org/en-US/epel/

dnf install ansible-core

This	command	installs	the	Ansible	package	as	well	as	all	the	needed
dependencies:	emacs-filesystem, git, git-core, git-
core-doc, perl-Error, perl-Git, python3-babel,
python3-cffi, python3-cryptography, python3-
jinja2, python3-markupsafe, python3-pycparser,
python3-pytz, python3-pyyaml,	and	sshpass.

Veri�ication
You	can	verify	the	successful	installation	of	Ansible	using	the

ansible --version	command	in	any	terminal.	At	the	time	of
writing	this	book,	it’s	available	in	ansible-core	version	2.12.0	on
Python	3.9.8	(July	2022).

Ansible	Installation	on	Windows
You	can	install	and	maintain	Ansible	inside	Windows	via	the	WSL
(Windows	Subsystem	for	Linux)	and	Ubuntu	20.04	LTS	image.	WSL	is
available	since	Microsoft	Windows	10	version	2004	or	build	19041	and
Windows	11	too.

Of�icially,	Microsoft	Windows	is	NOT	a	supported	operating	system
for	the	Ansible	Control	node,	but	the	Ansible	Community	Team	is
working	hard	to	eliminate	barriers	to	native	Windows	controllers.	The
reason	behind	this	is	that	there	is	a	lot	of	POSIX-speci�ic	code	deeply
baked	into	most	of	Ansible	that	prevents	it	from	working	on	native
Windows.	Windows	doesn’t	have	the	fork() syscall
implementation.	Ansible	Controller	Worker	model	since	version	2.11
uses	a	lot	of	the	POSIX	fork()	syscall.	At	the	moment,	there	are	two
possible	workarounds:
Cygwin
Cygwin	enables	POSIX	compatibility	but	sometimes	the	execution

just	breaks	and	it’s	dif�icult	to	troubleshoot,	so	it’s	not	a	reliable
solution.
Windows	Subsystem	for	Linux

The	best	alternative	at	the	moment	is	to	use	Windows	Subsystem
for	Linux	(WSL).	Run	WSL	version	2	if	Windows	10	is	later	than	build
2004	or	Windows	11.	Ansible	works	great	on	WSL	version	1	and	WSL
version	2.

For	systems	that	don’t	support	the	nested	virtualization	technology
or	a	virtualized	environment	to	use	the	WSL	version	2,	you	must	force
the	WSL	version	1	using	the	wsl --set-default-version 1
command.

Links
More	technical	information:
WSL	(Windows	Subsystem	for	Linux),
https://docs.microsoft.com/en-
us/windows/wsl/compare-versions
Ansible	on	Windows	FAQ,
https://docs.ansible.com/ansible/latest/user_guid
e/windows_faq.xhtml
WSL	on	Windows	11,
https://arstechnica.com/gadgets/2021/10/the-best-
part-of-windows-11-is-a-revamped-windows-
subsystem-for-linux/

Code
To	install	the	latest	version	of	Ansible	on	Windows	using	Microsoft
WSL,	you	can	activate	it	by	executing	PowerShell	as	a	user	with
administrator	rights.
install_wsl.ps1

wsl --install

This	command	takes	care	of	the	installation	process	of	all	the
necessary	Microsoft	WSL	components:	Virtual	Machine	Platform,
Windows	Subsystem	for	Linux,	WSL	Kernel,	GUI	App	Support,	and	the
Ubuntu	image.	The	changes	require	a	system	reboot.	After	a	few
minutes,	you	will	be	able	to	set	up	the	WSL	login	credentials	(Linux

https://docs.microsoft.com/en-us/windows/wsl/compare-versions
https://docs.microsoft.com/en-us/windows/wsl/compare-versions
https://docs.ansible.com/ansible/latest/user_guide/windows_faq.xhtml
https://docs.ansible.com/ansible/latest/user_guide/windows_faq.xhtml
https://arstechnica.com/gadgets/2021/10/the-best-part-of-windows-11-is-a-revamped-windows-subsystem-for-linux/
https://arstechnica.com/gadgets/2021/10/the-best-part-of-windows-11-is-a-revamped-windows-subsystem-for-linux/

username	and	password)	and	proceed	with	the	installation	like	a	real
Ubuntu	Linux	machine.

apt-get install ansible

The	apt	package	manager	takes	care	of	all	the	necessary	package
dependencies	from	the	ubuntu	repository:	ieee-data, python3-
argcomplete, python3-crypto, python3-dnspython,
python3-jmespath, python3-kerberos, python3-
libcloud, python3-lockfile, python3-netaddr,
python3-ntlm-auth, python3-requests-kerberos,
python3-requests-ntlm, python3-selinux,	and	python3-
winrm python3-xmltodict.

Veri�ication
You	can	verify	the	successful	installation	of	Ansible	using	the

ansible --version	command	in	any	terminal.	At	the	time	of
writing	this	book,	it’s	available	in	ansible	version	2.9.6	on	Python
3.8.2	(July	2022).	I	suggest	evaluating	the	installation	of	the	latest
release	of	Ansible	via	PIP	in	this	system.

Ansible	Installation	for	macOS
The	easier	way	to	install	and	maintain	Ansible	inside	macOS	is	to	use
the	Homebrew	package	manager	from	https://brew.sh/.	The
main	advantage	of	using	brew	is	that	it	takes	care	of	all	the	necessary
dependencies,	and	it	also	manages	the	upgrade	process.	An	alternative
is	to	use	Python	PIP	but	you	need	to	download	the	relevant	software
packages.	PIP	could	be	a	solution	for	a	developer	who	always	has	the
latest	up-to-date	release.

Code
First,	verify	that	the	Homebrew	package	manager	is	successfully
installed	on	your	system	or	refer	to	the	installation	process	on	the
of�icial	website	(one	command	line	to	copy	and	paste).	This	step	usually
requires	you	to	open	a	terminal	on	your	macOS	and	type	the

https://brew.sh/

installation	command.	When	Homebrew	is	successfully	installed,	you
can	proceed	with	installing	ansible	in	your	system.

Install	the	latest	release.

$ brew install ansible

This	command	installs	the	ansible	package	as	well	as	all	the
needed	package	dependencies:	openssl	and	sqlite.

Veri�ication
You	can	verify	the	successful	installation	of	Ansible	using	the

ansible --version	command	in	any	terminal.	At	the	time	of
writing	this	book,	it’s	available	in	ansible-core	version	2.13.1	on
Python	3.10.5	(July	2022).

Ansible	Installation	for	SUSE	SLES	(Linux
Enterprise	Server)	15	SP3
You	can	install	and	maintain	the	Ansible	latest	version	in	SUSE	Linux
Enterprise	Server	(SLES)	version	15	SP3	using	the	SUSE	Package	Hub
repository	for	the	Zypper	package	manager	tool.

Links
SUSE	Package	Hub:	Community	maintained	packages	for	SUSE	Linux
Enterprise	Server/Desktop,	https://packagehub.suse.com/
How	to	register	SLES	using	the	SUSEConnect	command	line	tool,
www.suse.com/support/kb/doc/?id=000018564
SUSE	Package	Hub	repositories	for	SUSE	Linux	Enterprise	Server,
www.suse.com/support/kb/doc/?id=000018789

Code
You	can	install	the	latest	version	of	ansible	in	SUSE	Linux	Enterprise
Server	15	SP3	using	the	SUSE	Package	Hub	repository.	Please	adapt	the
code	to	your	distribution	version.

https://packagehub.suse.com/
https://www.suse.com/support/kb/doc/%253Fid%253D000018564
http://www.suse.com/support/kb/doc/%253Fid%253D000018564
https://www.suse.com/support/kb/doc/%253Fid%253D000018789
http://www.suse.com/support/kb/doc/%253Fid%253D000018789

Please	note	you	need	root	privileges	to	execute	the	following
commands.
Install-Ansible-SLES-15-SP3.sh

SUSEConnect -p PackageHub/15.3/x86_64

The	�irst	line	activates	the	SUSE	Package	Hub	repository	and	the
second	installs	ansible	in	your	system	using	the	Zypper	package
manager.

zypper install ansible

This	command	installs	the	ansible	package	as	well	as	all	the
needed	dependencies:	libsodium23, python3-Babel,
python3-Jinja2, python3-MarkupSafe, python3-
PyNaCl, python3-PyYAML, python3-appdirs, python3-
asn1crypto, python3-bcrypt, python3-cffi, python3-
cryptography, python3-jmespath, python3-packaging,
python3-paramiko, python3-passlib, python3-ply,
python3-pyasn1, python3-pycparser, python3-
pycryptodome, python3-pyparsing, python3-pytz,
python3-setuptools, python3-simplejson,	and	python3-
six.

Veri�ication
You	can	verify	the	successful	installation	of	Ansible	using	the

ansible --version	command	in	any	terminal.	At	the	time	of
writing	this	book,	it’s	available	in	ansible	version	2.9.6	on	Python
3.6.13	(July	2022).	I	suggest	evaluating	the	installation	of	the	latest
release	of	Ansible	via	PIP	in	this	system.

Ansible	Installation	with	PIP
Performing	the	installation	of	Ansible	using	PIP	ensures	that	you
always	fetch	the	latest	release	of	the	ansible-core	or	the	Ansible
community	packages.	PIP	is	the	Python	package	manager,	and	it	will

take	care	of	all	of	the	processes	and	manage	the	necessary
dependencies.	It	takes	care	of	the	download	and	installation	process	of
packages	directly	from	the	of�icial	PyPI	website	as	well	as	all	the
necessary	dependencies.	PIP	is	designed	to	be	OS-independent	so	it’s
available	in	a	large	variety	of	modern	operating	systems.	It	could	be	a
great	solution	for	developers	who	always	want	the	latest	up-to-date
release.	The	alternative	approach	is	to	use	the	OS-speci�ic	package
manager,	such	as	Linux	YUM,	DNF,	APT,	Zypper,	and	macOS	Homebrew.
This	second	approach	puts	more	emphasis	on	stability	so	the	latest
release	may	not	available	yet.	If	you	need	the	latest	release	of	Ansible,	I
suggest	you	use	PIP.

Code
You	can	proceed	with	the	installation	of	the	latest	version	of	Ansible
with	PIP,	the	Python	package	manager.

code	PIP
You	can	install	the	software	for	just	the	current	user	or	system-wide.
First,	verify	that	PIP	is	successfully	installed	on	your	system.	Usually,
you	need	to	install	it	with	your	distribution	package	manager	such	as
yum,	DNF,	apt,	or	Zypper.

Please	adjust	python	to	python3,	and	python3.9	as	needed.

Install-pip-user.sh

$ python -m pip install --upgrade -user pip
$ python -m pip install --user ansible

Install-pip-global.sh
Installing	software	system-wide	requires	root	permission

privileges.

python -m pip install --upgrade pip
python -m pip install ansible

Veri�ication

You	can	verify	the	successful	installation	of	Ansible	using	the
ansible --version	command	in	any	terminal.	At	the	time	of
writing	this	book,	it’s	available	in	ansible-core	version	2.13.1	on
Python	3.9.2	(July	2022).

Ansible	Installation	for	RedHat	Enterprise
Linux	9
The	latest	release	of	Ansible	Core	(ansible-core	package)	for	RHEL
9	is	inside	the	system	AppStream	repository	for	the	DNF	package
manager.
ansible-core	is	included	in	the	RHEL	9	AppStream	repository

No	additional	repositories	(such	as	Ansible	Engine	or	EPEL)	like
previous	versions	are	necessary	for	basic	automation.	However,	if	you
need	additional	support	you	should	buy	the	Red	Hat	Ansible
Automation	Platform	additional	subscription.

Links
Ansible	Core	package	included	in	the	RHEL	AppStream,
https://access.redhat.com/articles/6325611
Using	Ansible	in	RHEL	9,
https://access.redhat.com/articles/6393321

Demo
Perform	the	installation	of	the	latest	Ansible-Core	in	RHEL	9	using	the
DNF	Package	Manager.
Install-Ansible-RHEL9.sh

dnf install ansible-core

Veri�ication
You	can	verify	the	successful	installation	of	Ansible	using	the

ansible --version	command	in	any	terminal.	At	the	time	of

https://access.redhat.com/articles/6325611
https://access.redhat.com/articles/6325611
https://access.redhat.com/articles/6393321
https://access.redhat.com/articles/6393321

writing	this	book,	it’s	available	in	ansible-core	version	2.12.2	on
Python	3.9.10	(July	2022).

Ansible	Installation	for	Amazon	Linux	2	(AWS
EC2)
You	can	install	and	maintain	Ansible	in	Amazon	Linux	2	using	the
Amazon	Extras	Library,	amazon-linux-extras,	or	the	EPEL	additional
repositories.
ansible2	topic	in	Extras	Library	repository
ansible	in	EPEL

Ansible	is	included	in	the	Extras	Library	included	in	Amazon	Linux
2	repository	using	the	amazon-linux-extras	command.	Another
option	is	to	install	and	maintain	Ansible	inside	Amazon	Linux	2	using
the	EPEL	additional	repository.

Links
Amazon	Linux	2,	https://aws.amazon.com/it/amazon-
linux-2/
Enable	the	EPEL	repository	in	Amazon	Linux2,
https://aws.amazon.com/it/premiumsupport/knowledg
e-center/ec2-enable-epel/
Extras	library	(Amazon	Linux	2),
https://docs.aws.amazon.com/AWSEC2/latest/UserGuid
e/amazon-linux-ami-basics.xhtml#extras-library
Extra	Packages	for	Enterprise	Linux	(EPEL),
https://docs.fedoraproject.org/en-US/epel/

Code
You	can	install	Ansible	in	Amazon	Linux	(EC2)	2	using	the	Amazon
Extras	Library	or	the	EPEL	repositories	for	the	YUM	package	manager.
Let’s	start	with	the	Amazon	Extras	Library	option.

Please	note	you	need	root	privileges	to	execute	the	following
commands.

https://aws.amazon.com/it/amazon-linux-2/
https://aws.amazon.com/it/amazon-linux-2/
https://aws.amazon.com/it/premiumsupport/knowledge-center/ec2-enable-epel/
https://aws.amazon.com/it/premiumsupport/knowledge-center/ec2-enable-epel/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/amazon-linux-ami-basics.xhtml%2523extras-library
https://docs.fedoraproject.org/en-US/epel/
https://docs.fedoraproject.org/en-US/epel/

Install-Ansible-Amazon	Linux2-Amazon	Extras	Library.sh

sudo amazon-linux-extras install ansible2 -y

Veri�ication
You	can	verify	the	successful	installation	of	Ansible	using	the

ansible --version	command	in	any	terminal.	At	the	time	of
writing	this	book,	it’s	available	in	ansible	version	2.9.23	on	Python
2.7.18	(July	2022).	You	might	consider	installing	the	latest	ansible-
core	release	via	PIP	in	this	system.

EPEL
You	can	install	Ansible	in	Amazon	Linux	(EC2)	2	using	the	EPEL

repositories	option	for	the	YUM	package	manager.	Please	note	you	need
root	privileges	to	execute	the	following	commands	or	use	sudo
command.
Install-Ansible-Amazon	Linux2-EPEL.sh

amazon-linux-extras install epel -y
yum-config-manager --enable epel
yum --enablerepo epel install ansible

Veri�ication
You	can	verify	the	successful	installation	of	Ansible	using	the

ansible --version	command	in	any	terminal.	At	the	time	of
writing	this	book,	it’s	available	in	ansible-core	version	2.9.25	on
Python	2.7.18	(July	2022).	You	might	consider	installing	the	latest
ansible-core	release	via	PIP	in	this	system.

Ansible	Installation	for	Debian	11
You	can	install	and	maintain	the	latest	version	of	Ansible	in	Debian
using	APT	and	the	main	default	repository.	Ansible	is	included	in	the
default	main	repository	so	you	can	install	it	simply	with	your	usual

package	manager,	apt.	You	can	expect	the	latest	version	of	Ansible	in
the	main	repository.

Code
You	can	install	Ansible	in	Debian	11	using	the	apt	package	manager	and
the	main	default	repository.

Install-ansible-debian.sh
Please	note	you	need	root	privileges	to	execute	the	following

commands	or	use	sudo	before	the	following	commands.
First,	you	may	need	to	update	the	package	manage	metadata	cache

using	the	apt	tool:

apt update

Then	you	can	install	the	ansible	package	using	the	apt	or	apt-
get	tool:

apt install ansible

This	command	installs	the	ansible	package	as	well	as	all	the	needed
dependencies:	ieee-data, python3-argcomplete, python3-
dnspython, python3-jmespath, python3-kerberos,
python3-libcloud, python3-lockfile, python3-
netaddr, python3-ntlm-auth, python3-packaging,
python3-pycryptodome, python3-requests-kerberos,
python3-requests-ntlm, python3-requests-toolbelt,
python3-selinux, python3-simplejson, python3-
winrm,	and	python3-xmltodict.

Veri�ication
You	can	verify	the	successful	installation	of	Ansible	using	the

ansible --version	command	in	any	terminal.	At	the	time	of
writing	this	book,	it’s	available	in	ansible	version	2.10.8	on	Python
2.9.2	(July	2022).	You	might	consider	installing	the	latest	ansible-
core	release	via	PIP	in	this	system.

Key	Takeaways
You’re	now	able	to	successfully	install	an	Ansible	Control	node,	the
“server”	node	that	runs	the	automation,	in	all	of	the	most	used	Linux
and	Enterprise	Linux	distributions,	macOS,	and	Windows	operating
systems.

The	newest	Ansible	package	distribution	policy	(community	vs.
core)	enables	more	�lexible	and	space-ef�icient	ways	to	deploy	the
Ansible	platform	and	add	only	the	relevant	collections	for	your
automation.

A	lot	of	the	most	recent	operating	systems	fully	embrace	this
approach,	and	the	list	goes	on	and	on.

In	the	following	chapter,	you	are	going	to	apply	all	the	Ansible
language	code	knowledge	to	automate	the	VMware	infrastructure	via
code	nutshells	and	commands	snippets.	By	automating	simple	and
complex	tasks,	you’re	going	to	save	time	and	build	an	Infrastructure	as
Code	(IaC)	by	applying	DevOps	methodologies.

(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2023
L.	Berton,	Ansible	for	VMware	by	Examples
https://doi.org/10.1007/978-1-4842-8879-5_3

3.	Ansible	for	VMware
Luca	Berton1		

Czechia,	Czech	Republic

	

By	now,	you	probably	understand	that	Ansible	is	a	phenomenal	tool	for
automating	system	administrator	tasks.	In	this	chapter,	the	key	focus	is
on	the	VMware	infrastructure.	I’m	going	to	share	with	you	some	day-to-
day	use	cases	to	save	time	and	reduce	errors.	In	the	following	pages,
you’re	going	to	learn	about	the	most	important	Ansible	modules	and
plugins	to	automate	your	VMware	infrastructure.	There	is	code	to
speci�ically	interact	with	VMware	data	centers,	clusters,	host	systems,
and	virtual	machines.	By	the	end	of	this	chapter,	you	are	going	to	be
able	to	automate	mundane	activities	like	spinning	up	a	virtual	machine
or	adding	a	second	hard	drive	with	a	few	lines	of	code.

Con�iguring	Ansible	for	VMware
All	Ansible	resources	to	interact	with	the	VMware	infrastructure	are
packed	inside	the	Ansible	collection	community.vmware.	The
resources	are	written	in	Python,	as	is	Ansible,	and	require	some	Python
dependency	in	order	to	work.	The	main	dependency	of	the	collection	is
pyVmomi	,	the	Python	SDK	for	the	VMware	vSphere	API	that	allows
you	to	connect	and	manage	VMware	ESX,	ESXi,	and	the	vCenter
infrastructure.	Each	of	the	Ansible	modules	interacts	with	a	speci�ic
element	of	the	VMware	infrastructure:	data	center,	cluster,	host	system,
and	virtual	machine.	I’ll	show	you	step	by	step	how	to	prepare	your
Ansible	controller	to	interact	with	the	VMware	infrastructure.	This

https://doi.org/10.1007/978-1-4842-8879-5_3

initial	con�iguration	can	be	a	roadblock	for	some	VMware	users	to	start
using	Ansible.

Please	refer	to	the	following	sections	to	troubleshoot	the	most
common	Ansible	for	VMware	errors	and	how	to	�ix	them:
VMware	failed	to	import	pyVmomi
VMware	unknown	error	while	connecting	to	vCenter	or	ESXi
VMware	certi�icate	veri�ication	failed	connecting	to	vCenter	or	ESXi

The	Ansible	vmware.vmware_rest	Collection
The	vmware.vmware_rest	Ansible	collection	is	an	alternative	to	the
community.vmware	collection	based	upon	the	VMware	vSphere
REST	API	interface	and	does	not	rely	on	any	third-party	libraries	such
as	pyVmomi	and	vSphere	Automation	SDK	for	Python.	It	does	require
the	aiohttp	Python	library	for	Python	3.6	or	greater.

The	vmware.vmware_rest	collection,	at	the	moment	of	writing
this	book,	is	focused	only	on	the	life	cycle	of	a	VMware	virtual	machine
and	managing	VMware	vCenter	server	appliance	(VCSA)	automation
resources.

The	collection	is	supported	by	the	Ansible	VMware	community	and
includes	the	VMware	modules	and	plugins	to	help	the	management	of
the	VMware	infrastructure	but	at	the	moment	offers	limited	automation
options.

Read	more	about	the	vmware.vmware_rest	collection	in	the
website	documentation	.

This	book	covers	the	community.vmware	collection	that	at	the
moment	offers	more	automation	resources.

The	Ansible	community.vmware	Collection
VMware	vSphere	7.0,	6.0,	5.5,	5.1	and	5.0
The	supported	nodes	include	all	the	modern	releases	of	VMware

vSphere.	The	full	list	includes	the	latest	releases	of	vSphere	as	well	as
7.0,	6.0,	5.5,	5.1,	and	5.0.	The	Ansible	community.vmware	VMware
collection	requires	the	Python	pyVmomi	library.	pyVmomi	is	a
software	development	kit	(SDK)	that	interacts	with	the	VMware

https://docs.ansible.com/ansible/latest/collections/vmware/vmware_rest/docsite/guide_vmware_rest.xhtml

vSphere	API,	enabling	you	to	manage	ESX,	ESXi	and	the	vCenter
infrastructure	in	order	to	execute	the	Ansible	automation.
Python	pyVmomi	supports	2.7.x	and	3.4+.
Ansible	collection	community.vmware

The	Ansible	collection	community.vmware	contains	modules	and
plugins	packed	with	a	lot	of	useful	automation	to	perform	any	tasks	and
operations	in	your	VMware	infrastructure.	Please	consider	taking	a
look	at	the	of�icial	documentation	because	it’s	an	evolving	collection.
Note	that	the	community.vmware	Ansible	collection,	as	the	name
suggests,	is	provided	by	community	support,	so	it’s	not	directly
maintained	by	the	Ansible	Engineer	Team.	The	community-supported
collection	receives	best-effort	support	from	volunteer	Ansible
developers	and	creators.	You	can	contribute	as	much	as	you	like	in	the
open	source	spirit.

Links
Introduction	to	Ansible	for	VMware,
https://docs.ansible.com/ansible/latest/scenario_
guides/vmware_scenarios/vmware_intro.xhtml
community.	vmware.	vmware_	guest_	info,
https://docs.ansible.com/ansible/latest/collectio
ns/community/vmware/vmware_guest_info_module.xhtm
l

Code
Please	allow	me	to	guide	you	through	the	three	main	steps	of
automating	your	VMware	infrastructure	using	Ansible.	I’m	going	to
share	with	you	all	the	relevant	resources	to	be	successful	on	your
Ansible	journey	from	the	beginning.	Let’s	consider	the	use	case	of
gathering	information	about	a	VMware	virtual	machine	using	the
Ansible	Playbook.	Here’s	how	to	con�igure	Ansible	for	VMware:
1.

Install	pyVmomi.	

https://docs.ansible.com/ansible/latest/scenario_guides/vmware_scenarios/vmware_intro.xhtml
https://docs.ansible.com/ansible/latest/scenario_guides/vmware_scenarios/vmware_intro.xhtml
https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_info_module.xhtml
https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_info_module.xhtml

First,	you	need	to	install	pyVmomi,	the	VMware	vSphere	API	Python
Bindings.

Don’t	panic!	The	�irst	time	you	try	to	execute	an	Ansible	Playbook
on	a	system	without	the	required	pyVmomi	Python	library,	you	will
receive	a	fatal	error.	This	error	may	also	indicate	that	Ansible	is	not	able
to	locate	the	Python	library	in	the	current	Python	virtual	environment
or	Ansible	execution	environment.	Whenever	the	pyVmomi	Python
library	is	missing,	the	execution	terminates	with	a	FAILED	status	and
you	will	see	the	following	fatal	error	and	description:

An exception occurred during task execution. To
see the full traceback, use -vvv. The error was:
ModuleNotFoundError: No module named 'pyVim'
"Failed to import the required Python library
(pyVmomi) on demo.example.com's Python
/usr/libexec/platform-python. Please read module
documentation and install in the appropriate
location. If the required library is installed,
but Ansible is using the wrong Python interpreter,
please consult the documentation on
ansible_python_interpreter"

You	can	use	PIP,	the	Python	Package	Manager,	to	install	the	required
pyVmomi	Python	library.	Please	note	that	you	may	need	to	adjust	the
command	based	on	the	Python	version	running	on	your	system.	For
example,	pip3	for	Python	3,	pip3.9	for	Python	3.9.	Some
distributions	require	installation	of	the	python3-pip	package.	The
following	command	installs	the	pyVmomi	Python	library	system-wide
using	root	privileges:

pip install pyVmomi

Under	the	hood,	PIP	takes	care	of	all	the	necessary	Python
dependencies:	requests,	six,	chardet,	idna,	and	urllib3.

After	this	command,	you	should	have	pyVmomi	successfully
installed	on	your	system	and	you’re	ready	to	move	to	the	following	step.

2. Install	the	community.vmware	collection.	
Second,	you	need	to	install	the	Ansible	community.vmware

collection.	The	best	Ansible	way	is	via	a	requirements.yml	�ile.	You
can	also	perform	it	manually	using	the	ansible-galaxy	command,
but	I	prefer	to	automate	as	much	as	possible	of	my	work�low.	You	can
also	insert	this	code	in	a	script	or	Ansible	Playbook.	The	Ansible
requirements.yml	�ile	allows	you	to	specify	all	the	Ansible
Collections	or	Ansible	Roles	that	you	want	to	install.	In	this	use	case,	it’s
just	simply	a	YAML	document	with	the	name	of	the
community.vmware	collection.

requirements.yml

collections:
 - name: community.vmware

The	execution	is	pretty	smooth	via	the	ansible-galaxy	tool:

$ ansible-galaxy install -r requirements.yml

After	this	command,	the	community.vmware	collection	will	be
successfully	installed	in	your	system	and	you’re	ready	to	fully	execute
your	Ansible	code.
3.

Ansible	code,	inventory,	and	Playbook	
Once	everything	is	done	on	the	node,	you	can	con�igure	the	Ansible

inventory	on	the	Ansible	controller	machine	and	run	your	�irst	Ansible
Playbook	with	the	vmware_guest_info	module	to	verify	the
successful	con�iguration.

The	Ansible	inventory	is	super	simple	and	is	limited	to	localhost
because	the	Ansible	controller	is	going	to	connect	to	the	VMware
infrastructure	via	the	VMware	API.
Inventory

localhost

The	vm_info.yml	Ansible	Playbook	simply	gathers	the	VMware
virtual	machine	details	from	the	VMware	infrastructure	and	prints
them	on	screen.	The	variables	used	inside	the	Ansible	Playbook	are
de�ined	in	the	vars.yml	�ile.	It’s	a	good	test	because	you	can	connect
to	the	VMware	infrastructure,	request	some	information	with	a
parameter	(the	virtual	machine	name)	to	the	VMware	API,	and	return
some	information	in	a	JSON	format.	You	can	process	this	information
and	execute	more	automation	or	simply	print	on	screen	like	in	this
example.
vm_info.yml

- name: info vm demo
 hosts: localhost

 gather_facts: false
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: get VM info
 vmware_guest_info:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 datacenter: "{{ vcenter_datacenter }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 name: "{{ vm_name }}"
 register: detailed_vm_info
 - name: print VM info
 ansible.builtin.debug:
 var: detailed_vm_info

I	prefer	to	store	all	the	connection	parameters	in	a	separate
vars.yml	Ansible	Playbook	�ile	that	can	be	shared	among	different
Ansible	Playbook	�iles.	I	strongly	recommend	you	encrypt	this
document	as	an	Ansible	Vault	because	there	is	the	username	and
password	to	connect	to	your	VMware	infrastructure.
vars.yml

vcenter_hostname: "vmware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vm_name: "myvm"

These	are	simple	variables	used	in	the	Ansible	Playbook	that	you
must	customize	to	re�lect	the	one	actually	used	in	your	VMware
infrastructure.	The	variable	vcenter_hostname	contains	the
hostname	or	IP	address	of	your	VMware	ESXi	or	vCenter.	The	variable
vcenter_datacenter	contains	the	name	of	the	data	center,	for
example,	vmwaredatacenter.	The	variable
vcenter_validate_certs	is	a	boolean	that	enables	true	or
disables	false	for	the	SSL	certi�icate	validation.	I	disabled	the	SSL
certi�icate	validation	in	order	to	use	a	self-signed	certi�icate	in	my
infrastructure.	I	encourage	you	to	use	a	valid	SSL	certi�icate	or	insert
the	local	certi�ication	authority	in	the	chain	of	trust	of	your	system.	The
variable	vcenter_username	contains	the	username	to	connect	to
your	VMware	infrastructure.	When	it’s	a	local	username,	you	should
append	the	suf�ix	@vsphere.local	or	use	an	LDAP/ActiveDirectory
credential.	The	variable	vcenter_password	contains	the	password
used	for	the	connection.	Please	be	very	careful	about	the	case	and
special	characters.	You	might	need	to	escape	some	of	them	to	use	with
Ansible.	The	variable	vm_name	contains	the	name	of	the	virtual
machine	that	you	would	like	to	get	information	about.	In	this	example,
it’s	myvm.	Feel	free	to	customize	your	code	or	use	an	extra	variable	in
the	command	line.

When	the	previous	steps	are	successful,	the	Ansible	execution	is
super	smooth	and	you	will	see	onscreen	all	the	details	of	your	myvm
VMware	virtual	machine.

The	output	includes
Target	host:	localhost
Command	result:	ok=3
Return	value:	A	long	JSON	output
The	most	important	key	is	instance	where	you	can	read	all	the

relevant	information	about	the	VMware	virtual	machine.	Let	me	give
you	one	example:
Running	server:	"hw_esxi_host": "vmware.example.com"
Running	cluster:	`"hw_cluster": "prod-cluster"
Virtual	machine	name:"hw_name": "myvm"
Motion	id:	"moid": "vm-17923"
Instance	UUID:	"hw_product_uuid": "4225a846-b176-
892d-0e27-10a4106269a0"
Number	of	CPU	processors:	"hw_processor_count": 1
Number	of	CPU	cores:	"hw_cores_per_socket": 1
RAM	resources:	"hw_memtotal_mb": 1024
Datastore	name:

"hw_datastores": [
 "Datastore-1"
],

Datastore	directory:	"hw_folder":
"/vmwaredatacenter/vm/myvm"
Datastore	�iles:

"hw_files": [
 "[Datastore-1] myvm/myvm.vmx",
 "[Datastore-1] myvm/myvm.vmsd",
 "[Datastore-1] myvm/myvm.vmdk"
],

Network	interfaces	and	status:

"hw_interfaces": [
 "eth0"
]
"hw_eth0": { ... }

Status	of	VMware	Guest	Tools:	"guest_tools_status":
guestToolsNotRunning"

Maybe	this	doesn’t	sound	so	exciting,	but	from	now	on	you	can
execute	any	Ansible	automation	against	your	VMware	infrastructure
without	any	further	interaction	with	VMware	vSphere	user	interface	or
the	complex	VMware	API.	You’re	of�icially	taking	your	�irst	steps	inside
the	Ansible	for	VMware	infrastructure	automation.	I’m	sure	that	you
are	already	thinking	about	how	you	can	automate	the	most	boring	task
you’re	executing	again	and	again,	each	day.

Con�iguring	a	Python	Virtual	Environment	for	Ansible
VMware
Using	a	Python	virtual	environment	is	a	convenient	way	to	use	the
Ansible	for	VMware	resources	without	interfering	with	your	operating
system.	It’s	very	useful	when	you	want	to	use	the	latest	releases	not	yet
available	as	a	package	or	a	speci�ic	version	of	the	resources.	It’s	also	a
nice	way	to	maintain	the	community.vmware	Ansible	collection	and
the	related	Python	libraries’	dependencies	without	interfering	with
your	operating	system.	A	Python	virtual	environment	is	a	con�ined
space	created	by	Python	where	you	can	use	a	speci�ic	version	of	the
Python	libraries	and	resources.	Con�igure	your	Python	virtual
environment	for	Ansible	VMware	community.vmware	collection	to
use	the	latest	releases	of	Python	3.8	with	the	latest	pyVmomi	and
VMware	vSphere	Automation	SDK	for	Python	libraries.	This	initial
con�iguration	is	sometimes	a	roadblock	for	some	VMware	users	to	start
using	Ansible.

Links

Ansible	collection	community.	vmware,
https://docs.ansible.com/ansible/latest/collectio
ns/community/vmware/index.xhtml
Python	pyVmomi,	https://github.com/vmware/pyvmomi
VMware	vSphere	Automation	SDK	for	Python,
https://github.com/vmware/vsphere-automation-sdk-
python

Code
In	order	to	successfully	use	the	Ansible	collection	called
community.vmware	of	modules	and	plugins	to	manage	various
operations	related	to	virtual	machines	in	the	given	ESXi	or	vCenter
server,	you	can	con�igure	a	Python	virtual	environment.	These	two	are
the	main	Python	dependencies	to	handle	in	your	Python	virtual
environment	for	Ansible	VMware:
pyVmomi:	VMware	vSphere	API	Python	bindings
vsphere-automation-sdk-python:	VMware	vSphere
Automation	SDK	for	Python
The	Ansible	For	VMware	resources	are	written	on	top	of	the

pyVmomi	Python	SDK	for	the	VMware	vSphere	API	that	allows	users	to
manage	ESX,	ESXi,	and	the	vCenter	infrastructure.	Another	useful
library	is	VMware vSphere Automation SDK for Python;	it	is
used	for	additional	features	such	as	list	tags	in	the	Ansible	dynamic
inventory	vmware_vm_inventory	plugin.	This	example	uses	Python
3.8	so	the	pip3.8	tool	adapts	to	your	current	con�iguration.	Some
Linux	distributions	require	the	installation	of	the	python-pip	or
python3-pip	package	in	order	to	provide	the	PIP	tool.	Please	adjust
python3.8	to	python,	python3,	and	python3.9	and	pip3.8	to
pip, pip3,	and	pip3.9	according	to	the	running	version	in	your
system.
configure-Python-venv.sh

$ python3.8 -m venv venv
$ source venv/bin/activate

https://docs.ansible.com/ansible/latest/collections/community/vmware/index.xhtml
https://docs.ansible.com/ansible/latest/collections/community/vmware/index.xhtml
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/vmware/vsphere-automation-sdk-python
https://github.com/vmware/vsphere-automation-sdk-python

(venv) $ pip3.8 install --upgrade pip setuptools
(venv) $ pip3.8 install --upgrade pyvmomi
(venv) $ pip3.8 install --upgrade vsphere-
automation-sdk-python

The	�irst	command	initializes	a	new	Python	virtual	environment
named	venv	using	the	Python	module	venv.	You	can	customize	the
name	as	makes	sense	for	you,	but	you	should	change	it	accordingly	in
the	venv	part	of	the	activation	script	venv/bin/activate.	You	can
leave	the	virtual	environment	at	any	time	by	typing	the	deactivate
command.	A	prompt	change	with	the	Python	virtual	environment	name
(venv)	between	brackets	is	a	common	way	to	verify	that	you’re
actually	operating	inside	the	venv	Python	virtual	environment.	One
good	practice	is	to	upgrade	the	PIP	package	manager	to	the	latest
available	version	and	set	up	tools	to	easily	manage	the	installation	of
packages	and	then	proceed	to	install	the	Python	resources.	In	this	case,
the	pyVmomi	and	vsphere-automation-sdk-python	Python
libraries	are	installed.

If	the	installation	of	vsphere-automation-sdk-python
library	fails	using	the	PIP	package,	you	should	rely	on	the	GitHub
archive.	Substitute	the	last	line	with	the	following	command:

(venv) $ pip3.8 install --upgrade
git+https://github.com/vmware/vsphere-automation-
sdk-python.git

The	PIP	package	installer	takes	care	of	all	the	necessary	Python
dependencies:
for	pyVmomi:	six	and	requests
for	vSphere-Automation-SDK-Python:	cffi,
cryptography, lxml, nsx-policy-python-sdk, nsx-
python-sdk, nsx-vmc-aws-integration-python-sdk,
nsx-vmc-policy-python-sdk, pyOpenSSL, pycparser,
vapi-client-bindings, vapi-common-client, vapi-
runtime, vmc-client-bindings, vmc-draas-client-
bindings.

Once	installed,	you	can	produce	a	requirements.txt	�ile,	which
is	useful	to	share	with	other	systems	or	recreate	the	Python	virtual
environment	using	the	command

(venv) [devops@demo ~]$ pip3.8 freeze >
requirements.txt

This	is	an	example	requirements.txt	�ile	for	my	Python	virtual
environment	Ansible	For	VMware:
requirements.txt

certifi==2022.6.15
cffi==1.15.1
charset-normalizer==2.1.1
cryptography==37.0.4
idna==3.3
lxml==4.9.1
nsx-policy-python-sdk @ file://localhost//tmp/pip-
req-build-lv0gh902/lib/nsx-policy-python-
sdk/nsx_policy_python_sdk-4.0.0.0.0-py2.py3-none-
any.whl
nsx-python-sdk @ file://localhost//tmp/pip-req-
build-lv0gh902/lib/nsx-python-sdk/nsx_python_sdk-
4.0.0.0.0-py2.py3-none-any.whl
nsx-vmc-aws-integration-python-sdk @
file://localhost//tmp/pip-req-build-
lv0gh902/lib/nsx-vmc-aws-integration-python-
sdk/nsx_vmc_aws_integration_python_sdk-4.0.0.0.0-
py2.py3-none-any.whl
nsx-vmc-policy-python-sdk @
file://localhost//tmp/pip-req-build-
lv0gh902/lib/nsx-vmc-policy-python-
sdk/nsx_vmc_policy_python_sdk-4.0.0.0.0-py2.py3-
none-any.whl
pycparser==2.21
pyOpenSSL==22.0.0
pyvmomi==7.0.3

requests==2.28.1
six==1.16.0
urllib3==1.26.12
vapi-client-bindings @ file://localhost//tmp/pip-
req-build-lv0gh902/lib/vapi-client-
bindings/vapi_client_bindings-3.9.0-py2.py3-none-
any.whl
vapi-common-client @ file://localhost//tmp/pip-
req-build-lv0gh902/lib/vapi-common-
client/vapi_common_client-2.34.0-py2.py3-none-
any.whl
vapi-runtime @ file://localhost//tmp/pip-req-
build-lv0gh902/lib/vapi-runtime/vapi_runtime-
2.34.0-py2.py3-none-any.whl
vmc-client-bindings @ file://localhost//tmp/pip-
req-build-lv0gh902/lib/vmc-client-
bindings/vmc_client_bindings-1.60.0-py2.py3-none-
any.whl
vmc-draas-client-bindings @
file://localhost//tmp/pip-req-build-
lv0gh902/lib/vmc-draas-client-
bindings/vmc_draas_client_bindings-1.19.0-py2.py3-
none-any.whl
vSphere-Automation-SDK==1.78.0

Ansible	Troubleshooting:	VMware	Failed	to	Import
pyVmomi
You	may	obtain	the	Failed to import the required Python
library (pyVmomi)	fatal	error	when	you	try	to	execute	your
Ansible	Playbook	code.	This	error	is	incredibly	common.	This	fatal
error	message	happens	when	the	Ansible	control	node	is	not	able	to
execute	your	Ansible	Playbook	code.	This	fatal	error	message	happens
when	you	try	to	execute	some	code	against	your	VMware	infrastructure
without	the	necessary	Python	SDK	for	the	VMware	vSphere	API.	The
community.vmware	Ansible	collection	requires	the	pyVmomi
Python	SDK	library	to	be	installed	on	the	Ansible	controller	in	order	to

execute	the	code.	The	root	cause	may	be	related	to	Ansible	not	being
able	to	locate	the	correct	path	for	the	Python	library	or	the	missing
library	at	all.	The	library	can	be	installed	system-wide,	per	user,	in	a
Python	virtual	environment,	or	in	an	Ansible	execution	environment.
You	should	use	PIP	to	take	care	of	the	installation	and	maintain	the
pyVmomi	Python	library	in	your	system.	These	circumstances	are
usually	related	to	the	con�iguration	of	your	Ansible	controller	node	and
usually	are	not	related	to	an	Ansible	Playbook.

Code
Let	me	show	you	how	to	reproduce,	troubleshoot,	and	�ix	the	Ansible
fatal	error	ModuleNotFoundError: No module named
'pyVim'".

In	this	example,	execute	the	code	in	an	Ansible	controller	without
the	pyVmomi	Python	SDK	library	installed.	I’ll	demonstrate	this
behavior	using	the	vm_info.yml	Ansible	Playbook	that	gathers	the
myvm	VMware	virtual	machine	details	from	the	VMware	infrastructure
and	prints	them	on	screen.	The	�irst	execution	leads	to	an	(expected)
failure	because	the	pyVmomi	Python	SDK	library	is	missing.	Then	you
can	install	the	necessary	Python	dependency	using	the	PIP	tool.	The
second	execution	of	the	same	code	returns	a	successful	execution.
vm_info.yml

- name: info vm demo
 hosts: localhost

 gather_facts: false
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: get VM info
 vmware_guest_info:
 hostname: "{{ vcenter_hostname }}"

 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 datacenter: "{{ vcenter_datacenter }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 name: "{{ vm_name }}"
 register: detailed_vm_info

 - name: print VM info
 ansible.builtin.debug:
 var: detailed_vm_info

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.
Inventory

localhost

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.
vars.yml

vcenter_hostname: "vm-ware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vm_name: "myvm"

In	an	unsuccessful	execution,	the	output	is
Target	host:	localhost
Command	result:	failed=1
Return	value:

fatal: [localhost]: FAILED! => {"ansible_facts":

{"discovered_interpreter_python":
"/usr/libexec/platform-python"}, "changed": false,
"msg": "Failed to import the required Python
library (pyVmomi) on demo.example.com's Python
/usr/libexec/platform-python. Please read module
documentation and install in the appropriate
location. If the required library is installed,
but Ansible is using the wrong Python interpreter,
please consult the documentation on
ansible_python_interpreter"}

The	fatal	error	message	gives	you	the	full	path	of	the	system-wise
running	Python	interpreter	(/usr/libexec/platform-python
speci�ically).	So,	you	need	to	perform	the	installation	of	pyVmomi	in	the
currently	running	user	or	system	wide.	The	�ix	requires	you	to	install
the	missing	pyVmomi	Python	library	in	the	right	place	in	your	system.

Sometimes	the	root	cause	of	the	failure	is	the	permission	bits	for
newly	created	�iles.	Some	high-security	systems	have	strict	non-
standard	settings	via	a	global	/etc/profile	�ile	or	.bashrc	inside
the	user's	home	directory.

The	standard	POSIX	utility	umask	allows	you	to	set	the	octal	value
to	set	the	permission	for	new	�iles.

The	Ansible	Engineer	Team	highly	recommends	that	you	run	umask
0022	before	installing	any	packages	to	the	virtual	environment.

The	default	umask 0022	result	into	a	newly	created	directory
called	permissions	is	755	and	�ile	permissions	is	644.

The	two	options	to	install	the	pyVmomi	Python	library	are

Install	pyVmomi	system	wide.

pip install pyVmomi

Install	pyVmomi	for	a	user.

$ pip install --user pyVmomi

Please	adjust	the	pip	tool	according	to	the	version	installed	on	your
systems,	such	as	pip3	for	Python3	and	pip3.9	for	Python3.9.	Some
distributions	require	the	installation	of	the	python3-pip	package.
PIP	takes	care	of	downloading,	installing,	and	verifying	all	the
necessary	dependencies:	requests,	six,	chardet,	idna,	and
urllib3.

Once	the	pyVmomi	Python	SDK	library	is	installed	in	the	system,
the	Ansible	Playbook	execution	is	successful	with	the	following	output:
Target	host:	localhost
Command	result:	ok=3
Return	value:	A	long	JSON	output	of	the	myvm	virtual	machine

Please	refer	to	“Con�iguring	Ansible	For	VMware”	for	more	details
about	the	JSON	output	of	the	vm_info.yml	Ansible	Playbook.

Ansible	Troubleshooting:	VMware	Unknown	Error	While
Connecting	to	vCenter	or	ESXi
You	may	obtain	the	Unknown error while connecting to
vCenter or ESXi	fatal	error	when	you	try	to	connect	to	your
VMware	infrastructure.	This	error	is	extremely	common.	The	full
message	of	the	Ansible	fatal	error	is	Unknown error while
connecting to vCenter or ESXi API, [Errno -2] Name
or service not known.	This	fatal	error	message	happens	when
the	Ansible	controller	is	not	able	to	connect	to	your	VMware
infrastructure.	The	root	cause	might	be	a	misspelled	hostname	in	your
Ansible	Playbook,	a	connection	problem,	or	eventually	a	secure	VPN
connection	that	is	not	enabled	to	reach	the	VMware	vCenter/ESXi	host
or	a	con�iguration	on	the	�irewall	on	the	target	host.	To	summarize,	it
might	be	a	code	or	network	root	cause.	This	is	a	typical	roadblock	that
sometimes	stops	you	from	successfully	running	your	Ansible	For
VMware	Playbook	code.

Code
Let	me	show	you	how	to	reproduce,	troubleshoot,	and	�ix	the	Ansible
error	Unknown error while connecting to vCenter or

ESXi API [Errno -2] Name or service not known.
In	this	example,	I’ll	introduce	a	very	simple	and	common	typo	error

in	the	hostname:	vm-ware.example.com	instead	of	the	correct
vmware.example.com	of	the	VMware	infrastructure.	I	always
suggest	using	your	browser	to	try	to	access	the	URL	as	a	�irst	test.	You
can	easily	test	this	host	by	copying	and	pasting	the	address	and	trying
to	reach	the	VMware	vSphere	web	interface.	If	your	browser	returns	a
“host	unavailable”	message,	it	becomes	clear	that	the	hostname	was
misspelled.	The	issue	may	be	more	complex	depending	on	your
network	topology	and	may	require	analyzing	the	network	traf�ic
between	the	Ansible	controller	and	the	target	machine.	Please	verify
the	�irewall,	VPN,	and	other	rules	as	well.	Let	me	share	with	you	the
example	with	a	misspelled	hostname,	vm-ware.example.com
instead	of	the	correct	vmware.example.com	of	the	VMware
infrastructure,	just	a	simple	human	typo	mistake.

The	vm_info.yml	Ansible	Playbook	simply	gathers	the	VMware
virtual	machine	details	from	the	VMware	infrastructure	and	prints
them	on	screen.	The	variables	used	inside	the	Ansible	Playbook	are
de�ined	in	the	vars.yml	�ile.

vm_info.yml

- name: info vm demo
 hosts: localhost

 gather_facts: false
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: get VM info
 vmware_guest_info:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"

 datacenter: "{{ vcenter_datacenter }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 name: "{{ vm_name }}"
 register: detailed_vm_info

 - name: print VM info
 ansible.builtin.debug:
 var: detailed_vm_info

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.
Inventory

localhost

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.
vars.yml

vcenter_hostname: "vm-ware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vm_name: "myvm"

In	an	unsuccessful	execution,	the	output	is
Target	host:	localhost
Command	result:	failed=1
Return	value:

fatal: [localhost]: FAILED! => {"changed": false,
"msg": "Unknown error while connecting to vCenter

or ESXi API at vm-ware.example.com:443 : [Errno
-2] Name or service not known"}

The	fatal	error	message	gives	you	the	full	hostname	and	port	vm-
ware.example.com:443	user	by	Ansible.	Just	copy	and	paste	the
vm-ware.example.com	hostname	and	port	HTTPS	(443)	to	spot	the
misspelling	human	error.

The	�ix	is	very	easy	and	requires	you	to	only	modify	the
vcenter_hostname	variable	in	the	vars.yml	�ile	with	the	right
hostname.
vars.yml

vcenter_hostname: "vmware.example.com"

Using	the	right	hostname	in	the	vcenter_hostname	variable,	the
execution	is	successful	with	the	following	output:
Target	host:	localhost
Command	result:	ok=3
Return	value:	A	long	JSON	output	of	the	myvm	virtual	machine

Please	refer	to	“Con�iguring	Ansible	For	VMware”	for	more	details
about	the	JSON	output	of	the	vm_info.yml	Ansible	Playbook.

Ansible	Troubleshooting:	VMware	Certi�icate	Veri�ication
Failed	Connecting	to	vCenter	or	ESXi
You	may	obtain	the	Unable to connect to vCenter or ESXi
API [SSL: CERTIFICATE_VERIFY_FAILED] certificate
verify failed (_ssl.c:897)	fatal	error	when	you	try	to
connect	to	your	VMware	infrastructure.	This	is	a	common	error.	The	full
message	of	the	Ansible	fatal	error	is	Unable to connect to
vCenter or ESXi API at vmware.example.com on
TCP/443: [SSL: CERTIFICATE_VERIFY_FAILED]
certificate verify failed (_ssl.c:897).	The	root	cause	is
related	to	the	SSL	certi�icate	validation	necessary	for	encrypting	the
information	shared	via	HTTPS	connections	to	the	VMware	vSphere	API.

It	might	be	an	invalid	SSL	certi�icate,	an	invalid	hostname,	an	inability
to	validate	the	chain	of	trust,	or	a	self-signed	SSL	certi�icate.	Ansible
modules	have	the	validate_certs	boolean	parameter	to	enable	and
disable	the	SSL	certi�icate	validation	process.	The	most	common
scenario	is	to	skip	the	validation	of	self-signed	certi�icates,	which	ends
with	a	fatal	error	regarding	the	certi�icate	SSL	validation.	The	easy	�ix	is
to	disable	the	SSL	certi�icate	validation	process	in	the	Ansible	Playbook
or	add	the	certi�icate	chain	of	trust/certi�icate	authority	in	the	Ansible
controlled	system.

Code
Suppose	your	VMware	infrastructure	uses	a	self-signed	certi�icate	such
as	the	one	that	came	out	of	the	box	with	the	VMware.	Let	me	show	you
what	happens	if	you	don’t	specify	the	validate_certs	parameter
for	the	Ansible	module.	The	validate_certs	boolean	parameter
defaults	to	true	so	Ansible	will	perform	the	certi�icate	SSL	validation.

Let	me	demonstrate	this	behavior	using	the	vm_info.yml	Ansible
Playbook	that	gathers	the	myvm	VMware	virtual	machine	details	from
the	VMware	infrastructure	and	prints	them	on	screen.	The	�irst
execution	leads	to	an	(expected)	failure	because	the
validate_certs	boolean	parameter	is	missing,	so	it	defaults	to
true.	Then	you	correct	the	Ansible	Playbook	to	include	the
validate_certs	boolean	parameter	with	the	false	value	to
disable	the	certi�icate	SSL	validation.	The	second	execution	of	the	code
returns	a	successful	execution.

Error	Code
vm_info_error.yml

- name: info vm demo
 hosts: localhost

 gather_facts: false
 collections:
 - community.vmware

 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: get VM info
 vmware_guest_info:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 datacenter: "{{ vcenter_datacenter }}"
 name: "{{ vm_name }}"
 register: detailed_vm_info
 - name: print VM info
 ansible.builtin.debug:
 var: detailed_vm_info

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.
vars.yml

vcenter_hostname: "vmware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vm_name: "myvm"

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.
Inventory

localhost

In	an	unsuccessful	execution,	the	output	is
Target	host:	localhost
Command	result:	failed=1
Return	value:

TASK [get VM info]
fatal: [localhost]: FAILED! => {"changed": false,
"msg": "Unable to connect to vCenter or ESXi API
at vmware.example.com on TCP/443: [SSL:
CERTIFICATE_VERIFY_FAILED] certificate verify
failed (_ssl.c:897)"}

Fixed	Code
It’s	possible	to	avoid	SSL	certi�icate	validation	by	setting	the	parameter
validate_certs.	For	a	self-signed	certi�icate,	you	need	to	disable
the	SSL	certi�icate	validation.	However,	I	strongly	recommend	creating	a
custom	chain	of	trust	or	using	a	valid	SSL	certi�icate.	The	only	change	is
the	addition	of	the	validate_certs	parameter	to	the
vmware_guest_info	Ansible	module	using	a
vcenter_validate_certs	variable	de�ined	in	the	vars.yml	�ile.

vm_info_fix.yml

- name: info vm demo
 hosts: localhost

 gather_facts: false
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: get VM info
 vmware_guest_info:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 datacenter: "{{ vcenter_datacenter }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 name: "{{ vm_name }}"
 register: detailed_vm_info

 - name: print VM info
 ansible.builtin.debug:
 var: detailed_vm_info

The	new	vars.yml	also	includes	the
vcenter_validate_certs	variable	set	to	false	to	disable	the	SSL
certi�icate	validation	process.
vars.yml

vcenter_hostname: "vmware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vcenter_validate_certs: false
vm_name: "myvm"

Once	the	validate_certs	is	set	to	false,	the	Ansible	Playbook
execution	is	successful	with	the	following	output:
Target	host:	localhost
Command	result:	ok=3
Return	value:	A	long	JSON	output	of	the	myvm	virtual	machine

Please	refer	to	“Con�iguring	Ansible	For	VMware”	for	more	details
about	the	JSON	output	of	the	vm_info.yml	Ansible	Playbook.

Creating	a	VMware	Virtual	Machine
You	can	automate	the	creation	of	a	VMware	virtual	machine	guest	using
an	Ansible	Playbook	and	the	vmware_guest	module.	The	creation	of	a
VMware	virtual	machine	is	one	of	the	most	mundane	activities	for	a
system	administrator.	It’s	also	one	of	the	most	error-prone,	because
traditionally	it	requires	some	human	interaction	in	the	VMware
vSphere	user	interface.	The	traditional	way	of	creating	a	virtual
machine	requires	�illing	out	some	forms	in	the	vSphere	client	or	web
user	interface.	These	forms	may	sound	complex	for	early	adopters
because	they	are	designed	for	a	lot	of	use	cases	so	they	have	plenty	of

options	inside.	For	example,	let’s	create	a	Linux	virtual	machine
running	a	64-bit	operating	system	with	the	following	assigned
resources:	1	CPU,	1GB	RAM,	and	10GB	of	thin-provisioned	storage	(see
Figure	3-1).

Ansible	vmware_guest	Module
community.vmware.vmware_guest

The	Ansible	module	vmware_guest	is	used	to	interact	with	your
VMware	infrastructure	and	create	or	manage	VMware	virtual	machines.
The	full	name	is	community.vmware.vmware_guest,	which	means
that	it	is	part	of	the	collection	of	modules	that	interact	with	VMware
and	is	community	supported.	The	module	vmware_guest	has	a	very
long	list	of	parameters	to	customize	all	your	needs	to	create	a	VMware
vSphere	virtual	machine.	The	resource	allocation	list	is	especially
extended	to	cover	the	more	possible	use	cases.	I	suggest	you	begin	with
a	minimum	solution	and	then	improve	it	little	by	little	until	you	reach
your	expected	outcome.	It	may	be	dif�icult	to	troubleshoot	several	lines
of	code	and	options	at	a	time.	Please	refer	to	the	manual	for	the	full	list.

Links
community.	vmware.	vmware_	guest,
https://docs.ansible.com/ansible/latest/collectio
ns/community/vmware/vmware_guest_module.xhtml

Code
Here’s	the	code	to	create	a	virtual	machine	named	myvm	with	the
following	resources			(see	Figure	3-1):
1	CPU
1GB	of	RAM
10GB	of	thin-provisioned	storage	in	the	datastore	named	Datastore-1
network	card	named	VM	Network	of	type	vmxnet3
create_vm.yml

- name: create vm demo

https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_module.xhtml
https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_module.xhtml

 hosts: localhost

 gather_facts: false
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: create VM folder
 vcenter_folder:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 datacenter_name: "{{ vcenter_datacenter
}}"
 folder_name: "{{
vcenter_destination_folder }}"
 folder_type: vm
 state: present
 - name: create VM
 vmware_guest:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 datacenter: "{{ vcenter_datacenter }}"
 name: "{{ vm_name }}"
 folder: "{{ vcenter_destination_folder }}"
 state: "{{ vm_state }}"
 guest_id: "{{ vm_guestid }}"
 cluster: "{{ vcenter_cluster }}"
 disk:
 - size_gb: "{{ vm_disk_gb }}"
 type: "{{ vm_disk_type }}"

 datastore: "{{ vm_disk_datastore }}"
 hardware:
 memory_mb: "{{ vm_hw_ram_mb }}"
 num_cpus: "{{ vm_hw_cpu_n }}"
 scsi: "{{ vm_hw_scsi }}"
 networks:
 - name: "{{ vm_net_name }}"
 device_name: "{{ vm_net_type }}"

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.
vars.yml

vcenter_hostname: "vmware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vcenter_cluster: "Development"
vm_name: "myvm"
vm_guestid: "centos64Guest"
vm_disk_gb: 10
vm_disk_type: "thin"
vm_disk_datastore: "Datastore-1"
vm_hw_ram_mb: 1024
vm_hw_cpu_n: 1
vm_hw_scsi: "paravirtual"
vm_net_name: "VM Network"
vm_net_type: "vmxnet3"
vcenter_destination_folder: "myvm"
vm_state: "poweroff"

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.
Inventory

localhost

A	successful	execution	output	includes
Target	host:	localhost
Command	result:	ok=3
Return	value:

TASK [create VM folder]
changed: [localhost]
TASK [create VM]
changed: [localhost]

If	the	virtual	machine	is	already	present,	the	module	return	an	“ok”
status	(the	vmware_guest	module	is	idempotent):

Target	host:	localhost
Command	result:	ok=3
Return	value:

TASK [create VM folder]
ok: [localhost]
TASK [create VM]
ok: [localhost]

After	the	execution	of	the	code,	you	expect	the	following	result	in
your	VMware	vSphere	client	user	interface.	See	Figure	3-1.

Figure	3-1 VMware	virtual	machine	created	with	Ansible

Deploying	a	VMware	Virtual	Machine	from	a	Template
You	can	automate	the	deployment	of	a	VMware	virtual	machine
template	using	an	Ansible	Playbook	and	the	vmware_guest	module.	A
VMware	virtual	machine	template	is	a	previously	created	image	that
you	can	use	as	a	master	image	to	create	more	virtual	machines	in	your
VMware	infrastructure.	The	template	images	simplify	the	provisioning
process	of	guest	virtual	machines	by	using	a	previously	prepared
master	image	with	the	installed	base	operating	system	and	the	most
used	enterprise	software.	It’s	useful	for	the	Microsoft	Windows
operating	system	because	VMware	takes	care	of	the	activation	and
serial	number	key	under	the	hood.	The	deploying	of	a	virtual	machine
from	a	template	is	one	of	the	most	repetitive	activities	for	any	person
managing	the	VMware	infrastructure.	There	is	usually	a	copy	from	the
template	phase	and	a	customization	phase	with	some	parameter
speci�ications	for	customizing	the	guest	operating	system.	This	task
usually	requires	some	human	interaction	to	complete	some	forms	in
the	vSphere	client	or	web	user	interface.	This	operation	is	sometimes
error	prone	because	it	is	human	dependent.

Ansible	Module	vmware_guest
community.vmware.vmware_guest

The	Ansible	module	vmware_guest	is	used	to	interact	with	your
VMware	infrastructure	and	create	or	manage	VMware	virtual	machines.
The	full	name	is	community.vmware.vmware_guest,	which	means
that	it	is	part	of	the	collection	of	modules	that	interact	with	VMware
and	is	community	supported.	The	module	vmware_guest	has	a	very
long	list	of	parameters	to	customize	all	your	needs	to	create	a	VMware
vSphere	virtual	machine.	Please	refer	to	the	manual	for	the	full	list.

Links
community.	vmware.	vmware_	guest,
https://docs.ansible.com/ansible/latest/collectio
ns/community/vmware/vmware_guest_module.xhtml

https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_module.xhtml
https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_module.xhtml

Code
I’m	going	to	show	you	how	to	deploy	a	virtual	machine	named	myvm
from	a	template	mytemplate	without	any	customization	(see	Figure
3-2).	The	Ansible	Playbook	includes	the	�ile	vars.yml	for	some
common	variables	for	the	VMware	infrastructure	and	has	two	tasks	for
creating	a	virtual	machine	folder	in	the	datastore	and	one	for	deploying
the	virtual	machine	from	the	template.
vm_deploy_template.yml

- name: deploy vm from template demo
 hosts: localhost

 gather_facts: false
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
tasks:
 - name: create VM folder
 vcenter_folder:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 datacenter_name: "{{ vcenter_datacenter
}}"
 folder_name: "{{
vcenter_destination_folder }}"
 folder_type: vm
 state: present
 - name: deploy VM from template
 vmware_guest:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"

 password: "{{ vcenter_password }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 datacenter: "{{ vcenter_datacenter }}"
 cluster: "{{ vcenter_cluster }}"
 name: "{{ vm_name }}"
 folder: "{{ vcenter_destination_folder }}"
 template: "{{ vm_template }}"

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.
vars.yml

vcenter_hostname: "vmware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vcenter_cluster: "Development"
vm_name: "myvm"
vcenter_destination_folder: "myvm"
vm_state: "poweroff"
vm_template: "mytemplate"

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.
Inventory

localhost

A	successful	execution	output	includes
Target	host:	localhost
Command	result:	ok=3
Return	value:

TASK [create VM folder]
changed: [localhost]
TASK [deploy VM from template]
changed: [localhost]

After	the	execution	of	the	code,	you	expect	the	following	result	in
your	VMware	vSphere	client	user	interface.	See	Figure	3-2.

Figure	3-2 Deploying	a	VMware	virtual	machine	from	a	template	with	Ansible

Starting	a	VMware	Virtual	Machine
You	can	automate	the	startup	of	a	VMware	virtual	machine	guest	using
an	Ansible	Playbook	and	the	vmware_guest_powerstate	module.
Some	organizations	turn	off	virtual	machines	to	manage	off-peak	and
on-peak	moments,	for	backup	purposes,	overnight	maintenance,	or	for
environmental	reasons.	Whatever	your	why,	Ansible	can	automate	the
virtual	machine	lifecycle	with	few	lines	of	code.	The	management	of	the
power	state	transition	of	a	VMware	virtual	machine	is	one	of	the	most
mundane	activities	for	a	VMware	infrastructure	administrator.	The
traditional	way	of	manually	changing	the	power	state	of	a	virtual
machine	requires	you	to	access	the	vSphere	client	or	web	user
interface.	This	procedure	might	be	error-prone	if	you	turn	on	or	off	the
wrong	virtual	machine.	For	example,	let’s	automate	the	transition	from
Powered	Off	to	Powered	On	of	the	virtual	machine	guest	myvm	using	an
Ansible	Playbook	and	the	vmware_guest_powerstate	module	(see

Figure	3-3	for	before	the	execution	and	Figure	3-4	for	after	the
execution).

Ansible	Module	vmware_guest_powerstate
community.vmware.vmware_guest_powerstate

You	can	manage	the	power	state	of	any	virtual	machine	in	your
VMware	infrastructure	using	the	Ansible	module
vmware_guest_powerstate.	The	full	name	of	the
vmware_guest_powerstate	module	is
community.vmware.vmware_guest_powerstate,	which	means
that	it	is	part	of	the	collection	of	modules	that	interact	with	VMware
and	is	community	supported.	It	manages	the	power	states	of	virtual
machines	in	vCenter.

Parameters
hostname	string/port	integer/username	string/password
string/datacenter	string/validate_certs	boolean:	Connection	details
state	string:	present/powered-off/powered-on/reboot-
guest/restarted/shutdown-guest/suspended
force	boolean:	No/yes
answer	string:	A	list	of	questions	to	answer,	should	one	or	more	arise
while	waiting	for	the	task	to	be	complete
The	following	parameters	are	useful	in	order	to	start	a	VMware

vSphere	virtual	machine	using	the	module
vmware_guest_powerstate.	First,	you	need	to	establish	the
connection	with	VMware	vSphere	or	VMware	vCenter	using	a	plethora
of	self-explanatory	parameters:	hostname,	port,	username,
password,	datacenter,	and	validate_certs.	Once	the
connection	is	successfully	established,	you	can	specify	the	desired
power	state,	in	this	case,	powered-on.	You	can	also	force	the	power
state	change	using	the	force	parameter	(default:	disabled).	You	can
also	specify	the	reply	to	some	answer	that	can	arise	while	waiting	for
the	task	to	complete.	Some	common	uses	are	to	allow	a	CD-ROM	to	be
changed	even	if	locked	or	to	answer	the	question	as	to	whether	a	VM
was	copied	or	moved.

Links
community.	vmware.	vmware_	guest_	powerstate,
https://docs.ansible.com/ansible/latest/collectio
ns/community/vmware/vmware_guest_powerstate_modul
e.xhtml

Code
I’m	going	to	show	you	how	to	start	the	virtual	machine	named	myvm
from	the	power	state	Powered	Off	to	the	power	state	Powered	On	using
an	Ansible	Playbook.	The	Ansible	Playbook	includes	the	�ile	vars.yml
for	some	common	variables	for	the	VMware	infrastructure	and	has	one
task	for	powering	one	of	the	virtual	machine	with	the	speci�ied	name
myvm.	Under	the	hood,	Ansible	interacts	with	the	VMware	API	via
Python	libraries	to	execute	the	operation	and	verify	the	successful
startup	of	the	virtual	machine.
vm_start.yml

- name: start vm demo
 hosts: localhost

 gather_facts: false
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: power on VM
 vmware_guest_powerstate:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 name: "{{ vm_name }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 state: powered-on

https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_powerstate_module.xhtml
https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_powerstate_module.xhtml

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.
vars.yml

vcenter_hostname: "vmware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vm_name: "myvm"

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.
Inventory

localhost

A	successful	execution	output	includes
Target	host:	localhost
Command	result:	ok=2 changed=1
Return	value:

TASK [power on VM]
changed: [localhost]

If	the	virtual	machine	guest	is	already	in	the	powered-on	status,	the
execution	output	includes
Target	host:	localhost
Command	result:	ok=2
Return	value:

TASK [power on VM]
ok: [localhost]

You	can	see	the	result	of	the	startup	of	the	VMware	virtual	machine
in	the	VMware	vSphere	Web	User	interface.	See	Figures	3-3	and	3-4.

Figure	3-3 Before	starting	a	VMware	virtual	machine

Figure	3-4 After	starting	a	VMware	virtual	machine

Stopping	a	VMware	Virtual	Machine
You	can	automate	the	shutdown	of	a	VMware	virtual	machine	guest	by
using	an	Ansible	Playbook	and	the	vmware_guest_powerstate
module.	If	your	enterprise	is	used	to	turning	off	some	virtual	machines
off-peak	for	backup	purposes,	overnight	maintenance,	or
environmental	reasons,	you	can	bene�it	from	the	Ansible	automation
platform.	You	can	easily	automate	the	virtual	machine	lifecycle	with	a
few	lines	of	code,	one	of	the	boring	activities	for	a	VMware
infrastructure	administrator.	You’re	probably	familiar	with	the	manual

way:	the	one	that	requires	to	access	the	vSphere	client	or	web	user
interface	in	order	to	turn	off	a	virtual	machine.	Please	note	that	you
should	be	very	careful	to	turn	off	the	right	virtual	machine.	Moreover,
virtual	machines	sometimes	need	to	be	forced	to	shut	down	when	the
operating	system	doesn’t	support	ACPI,	there	is	a	problem	with	the
guest	operating	system,	or	simply	if	doesn’t	work	on	the	�irst	try.	Let’s
automate	the	graceful	guest	shutdown	and	forceful	power	off	to	change
the	power	state	from	Powered	On	to	Powered	Off	of	the	virtual	machine
guest	myvm	using	an	Ansible	Playbook	and	the
vmware_guest_powerstate	module	(see	Figure	3-5	for	before	the
execution	and	Figure	3-6	for	after	the	execution).

Ansible	Module	vmware_guest_powerstate
community.vmware.vmware_guest_powerstate

You	can	manage	the	power	state	of	any	virtual	machine	in	your
VMware	infrastructure	using	the	Ansible	module
vmware_guest_powerstate.	The	full	name	of	the
vmware_guest_powerstate	module	is
community.vmware.vmware_guest_powerstate,	which	means
that	it	is	part	of	the	collection	of	modules	that	interact	with	VMware
and	is	community	supported.	It	manages	the	power	states	of	virtual
machines	in	vCenter.

Parameters
hostname	string/port	integer/username	string/password
string/datacenter	string/validate_certs	boolean:	Connection	details
state	string	-	present/powered-off/powered-on/reboot-
guest/restarted/shutdown-guest/suspended
force	boolean:	No/yes
answer	string:	A	list	of	questions	to	answer,	should	one	or	more	arise
while	waiting	for	the	task	to	be	complete
The	following	parameters	are	useful	in	order	to	start	a	VMware

vSphere	virtual	machine	using	the	module
vmware_guest_powerstate.	First,	you	need	to	establish	a
connection	with	VMware	vSphere	or	VMware	vCenter	using	a	plethora

of	self-explanatory	parameters:	hostname,	port,	username,
password,	datacenter,	and	validate_certs.	Once	the
connection	is	successfully	established,	you	can	specify	the	desired
power	state,	in	this	case,	shutdown-guest	to	gracefully	ask	the	guest
operating	system	to	shut	down	or	powered-off	to	turn	off	the	virtual
machine	guest.	You	can	also	force	the	power	state	to	change	using	the
force	parameter	(default:	disabled).

Links
community.	vmware.	vmware_	guest_	powerstate,
https://docs.ansible.com/ansible/latest/collectio
ns/community/vmware/vmware_guest_powerstate_modul
e.xhtml

Code
Here’s	how	to	get	the	virtual	machine	named	myvm	from	the	power
state	Powered	On	to	the	power	state	Powered	Off	using	an	Ansible
Playbook		(see	Figure	3-5	for	before	the	execution	and	Figure	3-6	for
after	the	execution).	Let’s	�irst	try	the	shutdown-guest	operation	to
gracefully	ask	the	guest	operating	system	to	shut	down	and	then
powered-off	to	forcefully	turn	off	the	virtual	machine	guest.	The
Ansible	Playbook	includes	the	�ile	vars.yml	for	some	common
variables	for	the	VMware	infrastructure	and	has	one	task	for	powering
one	of	the	virtual	machine	with	the	speci�ied	name	myvm.	Under	the
hood,	Ansible	interacts	with	the	VMware	API	via	Python	libraries	to
execute	the	operation	and	verify	the	successful	startup	of	the	virtual
machine.	A	timeout	of	120	seconds	(2	minutes)	is	set	for	the	guest
shutdown	task;	the	default	of	the	vmware_guest_powerstate
module	returns	immediately	(value	0)	after	sending	the	shutdown
signal.
vm_stop.yml

- name: stop vm demo
 hosts: localhost

https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_powerstate_module.xhtml
https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_powerstate_module.xhtml

 gather_facts: false
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: guest shutdown
 vmware_guest_powerstate:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 name: "{{ vm_name }}"
 state: shutdown-guest
 state_change_timeout: 120
 register: shutdown
 ignore_errors: true

 - name: poweroff
 vmware_guest_powerstate:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 name: "{{ vm_name }}"
 state: powered-off
 when: shutdown.failed

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.
vars.yml

vcenter_hostname: "vmware.example.com"
vcenter_datacenter: "vmwaredatacenter"

vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vm_name: "myvm"

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.
Inventory

localhost

Three	possible	scenarios	for	the	virtual	machine	shutdown	might
happen:	a	gentle	guest	shutdown,	a	power	off,	or	an	already	powered-
off	status.

Successful	execution	of	the	guest	shutdown	output	produces
Target	host:	localhost
Command	result:	ok=2 changed=1
Return	value:

TASK [guest shutdown]
changed: [localhost]

If	the	guest	shutdown	operation	is	unsuccessful	any	reason,	the
execution	moves	to	the	power-off	operation,	which	produces
Target	host:	localhost
Command	result:	ok=3 changed=1
Return	value:

TASK [guest shutdown]
fatal: [localhost]: FAILED! => {"msg": "VMware
tools should be installed for guest
shutdown/reboot"}
...ignoring
TASK [poweroff]
changed: [localhost]

If	the	guest	is	already	in	the	power-off	state,	the	shutdown
operation	returns	the	following:
Target	host:	localhost
Command	result:	ok=3
Return	value:

TASK [guest shutdown]
fatal: [localhost]: FAILED! => {"msg": "Virtual
machine myvm must be in poweredon state for guest
shutdown/reboot"}
...ignoring
TASK [poweroff]
ok: [localhost]

You	can	see	the	result	of	the	shutdown	of	the	VMware	virtual
machine	in	the	VMware	vSphere	web	user	interface	in	Figures	3-5	and
3-6.

Figure	3-5 Before	stopping	a	VMware	virtual	machine

Figure	3-6 After	stopping	a	VMware	virtual	machine

Taking	a	VMware	Virtual	Machine	Snapshot
You	can	automate	the	process	of	taking	snapshots	of	a	VMware	virtual
machine	by	using	an	Ansible	Playbook	and	the
vmware_guest_snapshot	module.	VMware	virtual	machine
snapshots	are	a	convenient	way	of	storing	a	particular	state	of	a	virtual
machine	in	time.	Virtualization	enables	you	to	take	snapshots	also	at
runtime.	Some	enterprise	backup	solutions	such	as	Veeam	Backup	and
Replication	rely	on	the	VMware	snapshot	feature.	The	traditional	way
of	manually	taking	a	snapshot	of	a	virtual	machine	requires	access	the
vSphere	client	or	web	user	interface.	It	requires	several	interactions
with	the	user	interface	in	order	to	execute	one	VMware	snapshot.	From
the	Ansible	point	of	view,	the	vmware_guest_snapshot	module
identi�ies	the	virtual	machine	by	the	name	myvm	in	this	example,	and
you	can	also	de�ine	the	desired	snapshot	name,	for	example,	Ansible
Managed	Snapshot,	for	an	easier	way	to	�ind	it.	When	snapshots	starts
to	pile	up,	you	will	de�initely	love	the	name	and	description	feature!	If
you	prefer	a	date	and	time	notation,	use	the	ansible_date_time
Ansible	fact	variable.	In	particular,	for	the	ISO	8601	notation,	the	global
standard	for	date	and	time,	the	notation	just	speci�ies
ansible_date_time.iso8601	in	your	Ansible	Playbook	and
obtains	a	value	like	2022-08-02T00:45:55+0000.	See	Figure	3-7	for
before	the	execution	and	Figure	3-8	for	after	the	execution.

Ansible	Module	vmware_guest_snapshot

community.vmware.vmware_guest_snapshot

You	can	manage	the	VMware	snapshots	using	the	Ansible	module
vmware_guest_snapshot.	The	full	name	is
community.vmware.vmware_guest_snapshot,	which	means	it
is	part	of	the	collection	of	modules	that	interact	with	VMware	and	is
community	supported.	It	manages	virtual	machine	snapshots	in
vCenter.

Parameters
hostname	string/port	integer/username	string/password
string/datacenter	string/validate_certs	boolean:	Connection	details
state	string	-	present/absent/revert/remove_all
remove_children	boolean:	No/yes
snapshot_name	string	description	string:	Name/description	of	the
virtual	machine	to	work	with
memory_dump	boolean:	No/yes	because	memory	snapshots	take
time	and	resources
The	following	parameters	are	useful	in	order	to	take	a	VMware

virtual	machine	snapshot	using	the	module
vmware_guest_snapshot.	First,	you	must	establish	the	connection
with	VMware	vSphere	or	VMware	vCenter	using	a	plethora	of	self-
explanatory	parameters:	hostname,	port,	username,	password,
datacenter,	and	validate_certs.	Once	the	connection	is
successfully	established,	you	can	specify	the	desired	snapshot	state,	in
this	case,	present	to	take	a	snapshot.	You	can	also	revert	or
remove	a	snapshot	with	the	same	Ansible	module.	If	you	want	to
remove	a	snapshot,	you	can	also	remove	all	the	dependent	snapshots
using	the	parameter	remove_children.	It’s	a	good	practice	to	set	the
name	and	description	of	the	snapshot	using	the	the	snapshot_name
and	description	parameters.	An	advanced	practice	is	to	create	the
memory	dump	of	the	virtual	machines.	Please	note	that	memory
snapshots	take	time	and	resources	will	take	a	longer	time	to	create.	By
default,	memory	dumps	are	disabled	but	you	can	enable	them	using	the
memory_dump	parameter.

Links
community.	vmware.	vmware_	guest_	snapshot,
https://docs.ansible.com/ansible/latest/collectio
ns/community/vmware/vmware_guest_snapshot_module.
xhtml

Code
Here’s	how	to	take	a	snapshot	named	Ansible	Managed	Snapshot	of	the
virtual	machine	named	myvm	using	an	Ansible	Playbook	(see	Figure	3-7
for	before	the	execution	and	Figure	3-8	for	after	the	execution).	Let	me
encourage	you	to	set	a	name	and	description	to	easily	�ind	it	in	your
VMware	vCenter.	The	Ansible	Playbook	includes	the	�ile	vars.yml	for
common	variables	for	the	VMware	infrastructure	and	has	one	task	for
powering	one	of	the	virtual	machine	with	the	speci�ied	name	myvm.
Under	the	hood,	Ansible	interacts	with	the	VMware	API	via	Python
libraries	to	execute	the	operation	and	verify	the	successful	startup	of
the	virtual	machine.
vm_snapshot_create.yml

- name: vm snapshot demo
 hosts: localhost

 gather_facts: false
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: create a snapshot
 vmware_guest_snapshot:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 datacenter: "{{ vcenter_datacenter }}"

https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_snapshot_module.xhtml
https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_snapshot_module.xhtml

 validate_certs: "{{ vcenter_validate_certs
}}"
 name: "{{ vm_name }}"
 state: present
 snapshot_name: "Ansible Managed Snapshot"
 folder: "{{ vm_folder }}"
 description: "This snapshot is created by
Ansible Playbook"

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.
vars.yml

vcenter_hostname: "vmware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vm_name: "myvm"
vm_folder: "myvm"

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.
Inventory

localhost

A	successful	execution	output	includes
Target	host:	localhost
Command	result:	ok=2 changed=1
Return	value:

TASK [create snapshot]
changed: [localhost]

You	can	see	the	result	of	the	process	of	taking	the	VMware	snapshot
in	the	VMware	virtual	machine	in	the	VMware	vSphere	web	user
interface	in	Figures	3-7	and	3-8.

Figure	3-7 Before	taking	a	VMware	virtual	machine	snapshot	with	Ansible

Figure	3-8 After	taking	a	VMware	virtual	machine	snapshot	with	Ansible

Deleting	a	VMware	Virtual	Machine	Snapshot
You	can	automate	the	process	of	taking	and	removing	snapshots	of	a
VMware	virtual	machine	by	using	an	Ansible	Playbook	and	the
vmware_guest_snapshot	module	(see	Figure	3-9	for	before	the
execution	and	Figure	3-10	for	after	the	execution).	VMware	virtual
machine	snapshots	are	a	powerful	way	to	store	a	particular	state	of	a

virtual	machine	in	time,	but	when	they	start	to	pile	up,	they	become
dif�icult	to	manage.	The	higher	the	number	of	snapshots	you	have,	the
more	usage	of	storage	space	is	needed,	so	it’s	always	a	good	best
practice	to	maintain	good	snapshot	hygiene.	The	traditional	way	of
manually	taking	the	snapshot	requires	access	the	vSphere	client	or	web
user	interface.	The	user	interface	requires	several	interactions	in	order
to	delete	one	VMware	snapshot.	From	the	Ansible	point	of	view,	the
vmware_guest_snapshot	module	identi�ies	the	virtual	machine	by
the	name	myvm	in	this	example;	you	can	also	search	for	a	desired
snapshot	name,	for	example,	Ansible	Managed	Snapshot.

Ansible	Module	vmware_guest_snapshot
community.vmware.vmware_guest_snapshot

You	can	manage	the	VMware	snapshots	using	the	Ansible	module
vmware_guest_snapshot.	The	full	name	is
community.vmware.vmware_guest_snapshot,	which	means
that	it	is	part	of	the	collection	of	modules	that	interact	with	VMware
and	it	is	community	supported.	It	manages	virtual	machine	snapshots
in	vCenter.

Parameters
hostname	string/port	integer/username	string/password
string/datacenter	string/validate_certs	boolean:	Connection	details
state	string	-	present/absent/revert/remove_all
remove_children	boolean:	No/yes
snapshot_name	string	description	string:	Name/description	of	the
virtual	machine	to	work	with
The	following	parameters	are	useful	in	order	to	take	a	VMware

virtual	machine	snapshot	using	the	module
vmware_guest_snapshot.	First,	you	must	establish	the	connection
with	VMware	vSphere	or	VMware	vCenter	using	a	plethora	of	self-
explanatory	parameters:	hostname,	username,	password,
datacenter,	and	validate_certs.	Once	the	connection	is
successfully	established,	you	can	specify	the	desired	snapshot	state,	in
this	case,	absent	to	delete	a	snapshot.	You	can	also	manage	a	snapshot

with	the	same	Ansible	module.	If	you	want	to	remove	a	snapshot,	you
can	also	remove	all	the	dependent	snapshots	using	the	parameter
remove_children.	You	need	to	specify	the	exact	snapshot	name	that
you	would	like	to	remove	in	the	snapshot_name	parameter.

Links
community.	vmware.	vmware_	guest_	snapshot,
https://docs.ansible.com/ansible/latest/collectio
ns/community/vmware/vmware_guest_snapshot_module.
xhtml

Code
I’m	going	to	show	you	how	to	delete	a	snapshot	named	Ansible
Managed	Snapshot	of	the	virtual	machine	named	myvm	using	an
Ansible	Playbook	(see	Figure	3-9	for	before	the	execution	and	Figure	3-
10	for	after	the	execution).	The	Ansible	Playbook	includes	the	�ile
vars.yml	for	common	variables	for	the	VMware	infrastructure	and
has	one	task	for	powering	one	of	the	virtual	machine	with	the	speci�ied
name	myvm.	Under	the	hood,	Ansible	interacts	with	the	VMware	API	via
Python	libraries	to	execute	the	operation	and	verify	the	successful
startup	of	the	virtual	machine.
vm_snapshot_remove.yml

- name: vm snapshot demo
 hosts: localhost

 gather_facts: false
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: remove snapshot
 vmware_guest_snapshot:
 hostname: "{{ vcenter_hostname }}"

https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_snapshot_module.xhtml
https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_snapshot_module.xhtml

 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 datacenter: "{{ vcenter_datacenter }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 name: "{{ vm_name }}"
 folder: "{{ vm_folder }}"
 snapshot_name: "Ansible Managed Snapshot"
 state: absent

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.
vars.yml

vcenter_hostname: "vmware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vm_name: "myvm"

vm_folder: "myvm"

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.
Inventory

localhost

A	successful	execution	output	includes
Target	host:	localhost
Command	result:	ok=2
Return	value:

TASK [remove snapshot]

changed: [localhost]

You	can	see	the	result	of	the	delete	operation	for	the	VMware
snapshot	in	the	VMware	virtual	machine	in	the	VMware	vSphere	web
user	interface	in	Figures	3-9	and	3-10.

Figure	3-9 Before	deleting	a	VMware	virtual	machine	snapshot

Figure	3-10 After	deleting	a	VMware	virtual	machine	snapshot

Adding	a	New	Hard	Disk	to	a	VMware	Virtual	Machine
You	can	automate	the	addition	of	a	new	hard	disk	to	a	VMware	virtual
machine	guest	using	an	Ansible	Playbook	and	the
vmware_guest_disk	module.	This	is	useful	adding	extra	storage	to	a

virtual	machine,	one	of	the	tedious	activities	for	a	VMware
infrastructure	administrator.	The	manual	way	requires	you	to	�ill	out
some	forms	and	access	the	vSphere	client	or	web	user	interface	in
order	to	add	a	new	virtual	hard	drive.	Please	note	that	you	should	be
very	careful	to	attach	the	drive	to	the	right	virtual	machine,	one	of	the
manual	sources	of	the	problem.	A	few	operating	systems	support
storage	hotplugs,	but	most	need	to	shut	down	the	virtual	machine
before	changing	the	storage	con�iguration.	Each	virtual	hard	drive	must
be	connected	to	a	virtual	storage	controller.	VMware	supports	the	most
used	SCSI	controller	types	(BusLogic	Parallel,	LSI	Logic	Parallel,	LSI
Logic	SAS,	and	VMware	Paravirtual	SCSI)	as	well	as	AHCI,	SATA,	and	the
newest	releases,	plus	NVM	Express	(NVMe)	controllers.	Check	the
maximum	number	of	supported	virtual	storage	controllers	in	your
running	VMware	infrastructure	version	(maximum	of	four	SCSI
controllers	and	four	SATA	controllers)	in	the	latest	releases.	Let’s	see
how	to	automate	the	addition	of	a	1GB	hard	disk	to	a	VMware	virtual
machine	guest	named	myvm	using	an	Ansible	Playbook	and
vmware_guest_disk	module	(see	Figure	3-11	for	before	the
execution	and	Figure	3-12	for	after	the	execution).	This	operation	only
adds	the	virtual	hard	drive;	you	should	partition	and	format	a
�ilesystem	via	the	operating	system.	This	operation	varies	operating
system	by	operating	system:	Linux	uses	CLI	and	GUI	fdisk,	parted,
gparted,	qtparted,	KDE Partition Manager	and	GNOME
Disks Utility,	macOS	uses	Disk Utility,	and	Windows	uses
Disk Management.

Ansible	Module	vmware_guest_disk
community.vmware.vmware_guest_disk

You	can	manage	VMware	virtual	hard	drives	using	the	Ansible
module	vmware_guest_disk.	The	full	name	is
community.vmware.vmware_guest_disk,	which	means	that	it	is
part	of	the	collection	of	modules	that	interact	with	VMware	and	is
community	supported.	It	manages	disks	related	to	the	virtual	machines
in	a	given	vCenter	infrastructure.

Parameters

hostname	string/port	integer/username	string/password
string/datacenter	string/validate_certs	boolean:	Connection	details
datacenter	string:	The	datacenter	name	to	which	the	virtual	machine
belongs	to
scsi_controller/unit_number/scsi_type	string:	SCSI	controller	details
size/size_kb/size_mb/size_gb/size_tb	string:	Disk	storage	size
disk_mode	string	—
persistent/independent_persistent/independent_nonpersistent
The	following	parameters	are	useful	in	order	to	add	a	disk	to

VMware	virtual	machine	using	the	module	vmware_guest_disk.
First,	you	must	establish	the	connection	with	VMware	vSphere	or
VMware	vCenter	using	a	plethora	of	self-explanatory	parameters:
hostname,	username,	password,	datacenter,	and
validate_certs.

Once	the	connection	is	successfully	established,	you	can	specify	the
desired	disk	con�iguration:	in	this	case,	it’s	to	add	a	new	disk	to	the
virtual	machine.	The	mandatory	parameters	are	only	datacenter	and
unit_number.

The	datacenter	parameter	speci�ies	which	datacenter	name	the
virtual	machine	belongs	to,	for	resource	allocations.

The	disk	must	be	connected	to	a	SCSI	controller	inside	the	virtual
machine,	so	you	should	specify	all	the	small	details	like
scsi_controller,	unit_number,	and	scsi_type.

According	to	SCSI	standards,	valid	SCSI	controller	numbers	are	from
0	to	29,	and	unit	numbers	are	from	0	to	15.

You	may	be	interested	in	taking	a	deep	dive	into	performance
analysis	to	properly	adjust	these	parameters.

You	can	specify	the	disk	size	via	various	parameters	according	to
the	needed	size	unit:	kb,	MB,	GB,	TB,	etc.

One	of	the	most	important	parameters	is	the	disk_mode	(defaults
to	persistent	mode).	Other	options	are
independent_persistent	and	independent_nonpersistent.

Links

community.	vmware.	vmware_	guest_	disk,
https://docs.ansible.com/ansible/latest/collectio
ns/community/vmware/vmware_guest_disk_module.xhtm
l

Code
I’m	going	to	show	you	how	to	add	a	1GB	disk	to	a	virtual	machine
named	myvm	using	an	Ansible	Playbook	in	the	SCSI	controller	number	1
and	unit	number	1	(see	Figure	3-11	for	before	the	execution	and	Figure
3-12	for	after	the	execution).	The	Ansible	Playbook	includes	the	�ile
vars.yml	for	some	common	variables	for	the	VMware	infrastructure
and	has	one	task	for	adding	a	disk	to	the	virtual	machine	with	the
speci�ied	name	myvm.	Under	the	hood,	Ansible	interacts	with	VMware
API	via	Python	libraries	to	execute	the	operation	and	verify	the
successful	startup	of	the	virtual	machine.
vm_add_disk.yml

- name: vm disk demo
 hosts: localhost

 gather_facts: false
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: add disk to vm
 vmware_guest_disk:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 datacenter: "{{ vcenter_datacenter }}"
 name: "{{ vm_name }}"

https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_disk_module.xhtml
https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_disk_module.xhtml

 disk:
 - size_gb: "{{ vm_disk_gb }}"
 type: "{{ vm_disk_type }}"
 datastore: "{{ vm_disk_datastore }}"
 state: present
 scsi_controller: "{{
vm_disk_scsi_controller }}"
 unit_number: "{{ vm_disk_scsi_unit }}"
 scsi_type: "{{ vm_disk_scsi_type }}"
 disk_mode: "{{ vm_disk_mode }}"

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.
vars.yml

vcenter_hostname: "vmware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vm_name: "myvm"
vm_disk_gb: 1
vm_disk_type: "thin"
vm_disk_datastore: "datastore"
vm_disk_scsi_controller: 1
vm_disk_scsi_unit: 1
vm_disk_scsi_type: 'paravirtual'
vm_disk_mode: 'persistent'

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.
Inventory

localhost

A	successful	execution	output	includes

Target	host:	localhost
Command	result:	ok=2 changed=1
Return	value:

TASK [add disk to vm]
changed: [localhost]

You	can	see	the	result	of	the	addition	of	the	virtual	disk	in	the
VMware	virtual	machine	in	the	VMware	vSphere	web	user	interface	in
Figures	3-11	and	3-12.

Figure	3-11 Before	adding	a	new	hard	disk	to	a	VMware	virtual	machine

Figure	3-12 After	adding	a	new	hard	disk	to	a	VMware	virtual	machine

Expanding	a	Virtual	Disk	in	a	VMware	Virtual	Machine
You	can	automate	the	expansion	of	a	hard	disk	to	a	VMware	virtual
machine	guest	using	an	Ansible	Playbook	and	the
vmware_guest_disk	module.	This	is	useful	for	managing	storage	on
a	virtual	machine,	one	of	the	tedious	activities	for	a	VMware
infrastructure	administrator.	You	are	probably	familiar	with	the	manual
way,	which	requires	access	to	the	vSphere	client	or	web	user	interface
and	operating	with	the	forms.	This	manual	operation	is	human
dependent	so	it	is	error	prone.	What	happens	if	you	extend	the	space	to
the	wrong	virtual	machine?	VMware	doesn’t	allow	you	to	shrink	the
virtual	disk,	so	the	only	option	is	to	recover	the	virtual	machine	from	a
backup	(if	you	have	one).

Ansible	Module	vmware_guest_disk
community.vmware.vmware_guest_disk

You	can	manage	the	VMware	virtual	hard	drives	using	the	Ansible
module	vmware_guest_disk.	The	full	name	is
community.vmware.vmware_guest_disk,	which	means	that	it	is
part	of	the	collection	of	modules	that	interact	with	VMware	and	is
community	supported.	It	manages	disks	related	to	a	virtual	machine	in
a	given	vCenter	infrastructure.

Parameters
hostname	string/port	integer/username	string/password
string/datacenter	string/validate_certs	boolean:	Connection	details
datacenter	string:	The	datacenter	name	to	which	the	virtual	machine
belongs	to
scsi_controller/unit_number/scsi_type	string:	SCSI	controller	details
size/size_kb/size_mb/size_gb/size_tb	string:	Disk	storage	size
disk_mode	string	—
persistent/independent_persistent/independent_nonpersistent
The	following	parameters	are	useful	in	order	to	expand	a	virtual

disk	in	a	VMware	virtual	machine	using	the	module
vmware_guest_disk.	First,	you	must	establish	the	connection	with
VMware	vSphere	or	VMware	vCenter	using	a	plethora	of	self-

explanatory	parameters:	hostname,	username,	password,
datacenter,	and	validate_certs.	Once	the	connection	is
successfully	established,	you	can	specify	the	desired	disk	con�iguration.
In	this	expansion,	a	disk	is	connected	to	a	virtual	machine.	The
mandatory	parameters	are	only	datacenter	and	unit_number.	The
datacenter	parameter	speci�ies	which	datacenter	name	the	virtual
machine	belongs	to,	for	resource	allocations.	The	disk	must	be
connected	to	a	SCSI	controller	inside	the	virtual	machine,	so	you	should
specify	all	the	small	details	like	scsi_controller,	unit_number,
and	scsi_type.	According	to	SCSI	standards,	valid	SCSI	controller
numbers	are	from	0	to	29,	and	unit	numbers	are	from	0	to	15.	You	may
be	interested	in	a	deep	dive	into	some	performance	analysis	to	properly
adjust	these	parameters.	You	can	specify	the	disk	size	via	various
parameters	according	to	the	needed	size	unit:	kb,	MB,	GB,	TB,	etc.	One
of	the	most	important	parameters	is	the	disk_mode	(defaults	to
persistent	mode).	Other	options	are	independent_persistent
and	independent_nonpersistent.

Links
community.vmware.vmware_guest_disk,
https://docs.ansible.com/ansible/latest/collectio
ns/community/vmware/vmware_guest_disk_module.xhtm
l

Code
I’m	going	to	show	you	how	to	expand	the	size	of	an	additional	disk
connected	to	a	virtual	machine	named	myvm	using	an	Ansible	Playbook.
The	disk	is	connected	to	SCSI	controller	number	1	and	has	unit	number
1	(see	Figure	3-13	for	before	the	execution	and	Figure	3-14	for	after	the
execution).	The	virtual	hard	disk	had	a	size	of	1GB	and	you	want	to
expand	it	to	2GB.	The	Ansible	Playbook	includes	the	�ile	vars.yml	for
common	variables	for	the	VMware	infrastructure	and	has	one	task	for
expanding	the	virtual	hard	disk	of	the	virtual	machine	with	the
speci�ied	name	myvm.	Under	the	hood,	Ansible	interacts	with	the

https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_disk_module.xhtml
https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_disk_module.xhtml

VMware	API	via	Python	libraries	to	execute	the	operation	and	verify	the
successful	startup	of	the	virtual	machine.
vm_disk_expand.yml

- name: vm disk demo
 hosts: localhost

 gather_facts: false
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: expand disk in vm
 vmware_guest_disk:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 datacenter: "{{ vcenter_datacenter }}"
 name: "{{ vm_name }}"
 disk:
 - size_gb: "{{ vm_disk_gb }}"
 type: "{{ vm_disk_type }}"
 datastore: "{{ vm_disk_datastore }}"
 state: present
 scsi_controller: "{{
vm_disk_scsi_controller }}"
 unit_number: "{{ vm_disk_scsi_unit }}"
 scsi_type: "{{ vm_disk_scsi_type }}"
 disk_mode: "{{ vm_disk_mode }}"

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.

vars.yml

vcenter_hostname: "vmware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vm_name: "myvm"
vm_disk_gb: 2
vm_disk_type: "thin"
vm_disk_datastore: "datastore"
vm_disk_scsi_controller: 1
vm_disk_scsi_unit: 1
vm_disk_scsi_type: 'paravirtual'
vm_disk_mode: 'persistent'

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.
Inventory

localhost

A	successful	execution	output	includes
Target	host:	localhost
Command	result:	ok=2 changed=1
Return	value:

TASK [expand disk in vm]
changed: [localhost]

You	can	see	the	result	of	the	expansion	of	the	virtual	disk	in	the
VMware	virtual	machine	in	the	VMware	vSphere	web	user	interface	in
Figures	3-13	and	3-14.

Figure	3-13 Before	expanding	a	virtual	disk	in	a	VMware	virtual	machine

Figure	3-14 After	expanding	a	virtual	disk	in	a	VMware	virtual	machine

Gathering	VMware	Host	Information	on	a	Cluster
You	can	automate	the	information	gathering	of	VMware	ESX/ESXi	hosts
in	a	VMware	cluster	using	an	Ansible	Playbook	and	the
vmware_host_config_info	module.	Reporting	is	a	good
management	practice	that	every	VMware	infrastructure	administrator
usually	performs	on	a	regular	basis.	Reporting	enables	resource
planning,	allocation,	and	optimization	aligned	to	the	business	needs.
You	are	probably	used	to	performing	this	task	manually	by	accessing
the	vSphere	client	or	web	user	interface	and	navigating	through	the
various	forms	for	each	cluster	and	VMware	ESX/ESXi	host.	This	is

exactly	the	repetitive	and	boring	kind	of	task	that	automation	can
simplify	to	prevent	errors	and	save	time.

Ansible	Module	vmware_host_con�ig_info
community.vmware.vmware_host_config_info

You	can	collect	con�iguration	and	runtime	information	about	a
VMware	ESXi	host	using	the	Ansible	module
vmware_host_config_info.	The	full	name	is
community.vmware.vmware_host_config_info,	which	means
that	it	is	part	of	the	collection	of	modules	that	interact	with	VMware
and	is	community	supported.	The	module’s	purpose	is	to	gather	an
ESXi	host’s	advanced	con�iguration	information.

Parameters
hostname	string/port	integer/username	string/password
string/datacenter	string/validate_certs	boolean:	Connection	details
cluster_name	string:	Name	of	the	cluster	to	which	the	ESXi	host
belongs
esxi_hostname	string:	ESXi	hostname	to	gather	information	from.
The	following	parameters	are	useful	in	order	to	gather	information

about	all	VMware	ESX/ESXi	hosts	in	the	given	cluster	using	the	module
vmware_host_config_info.	First,	you	must	establish	the
connection	with	VMware	vSphere	or	VMware	vCenter	using	a	plethora
of	self-explanatory	parameters:	hostname,	port,	username,
password,	datacenter,	and	validate_certs.

Once	the	connection	is	successfully	established,	you	can	specify	the
full	esxi_hostname,	the	ESX/ESXi	hostname,	or	list	all	the	hostnames
in	the	current	cluster	cluster_name.

Links
community.vmware.vmware_host_config_info,
https://docs.ansible.com/ansible/latest/collectio
ns/community/vmware/vmware_cluster_info_module.xh
tml

https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_cluster_info_module.xhtml
https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_cluster_info_module.xhtml

Code
I’m	going	to	show	you	how	to	gather	con�iguration	information	on	all
the	ESX/ESXi	hosts	in	the	current	VMware	production	cluster	using
an	Ansible	Playbook.	The	Ansible	Playbook	includes	the	�ile	vars.yml
for	some	common	variables	for	the	VMware	infrastructure	and	has	two
tasks.	The	�irst	task	acquires	information	from	the	VMware
production	cluster	and	saves	the	result	in	the	cluster_info
Ansible	variable.	The	second	task	prints	onscreen	the	values	of	the
cluster_info	Ansible	variable.	In	a	real-world	scenario,	you	can	also
perform	operations	based	on	the	status	of	the	cluster_info	Ansible
variable.	Under	the	hood,	Ansible	interacts	with	the	VMware	API	via
Python	libraries	to	execute	the	operation	and	verify	the	successful
startup	of	the	virtual	machine.
host_info_cluser.yml

- name: host in cluster info demo
 hosts: localhost

 gather_facts: false
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: Gather info about all ESXi Host in the
given Cluster
 community.vmware.vmware_host_config_info:
 hostname: '{{ vcenter_hostname }}'
 username: '{{ vcenter_username }}'
 password: '{{ vcenter_password }}'
 validate_certs: "{{ vcenter_validate_certs
}}"
 cluster_name: "{{ cluster_name }}"
 register: cluster_info

 - name: print cluster info
 ansible.builtin.debug:
 var: cluster_info

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.
vars.yml

vcenter_hostname: "vmware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
cluster_name: "production"

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.
Inventory

localhost

A	successful	execution	output	includes
Target	host:	localhost
Command	result:	ok=3 changed=0
Return	value:

TASK [Gather info about all ESXi Host in the given
Cluster]
ok: [localhost]
TASK [print cluster info]
ok: [localhost] => {
 "cluster_info": {
 "changed": false,
 "failed": false,
 "hosts_info": {

 "esxi1.example.com": {
 "Annotations.WelcomeMessage": "",
 "BufferCache.FlushInterval":
30000,
[...]
 "Vpx.Vpxa.config.workingDir":
"/var/log/vmware/vpx",
 "XvMotion.VMFSOptimizations": 1
 }
 }
 }
}

Getting	a	VMware	Virtual	Machine	UUID
You	can	automate	the	gathering	of	the	UUID	of	a	VMware	virtual
machine	using	an	Ansible	Playbook	and	the	vmware_guest_info
module.	The	Universally	Unique	Identi�ier	(UUID)	identi�ies	in	a	unique
way	the	virtual	machine	in	your	VMware	infrastructure.	It’s	created	the
�irst	time	you	power	on	the	virtual	machine.	It’s	extremely	useful	for
performing	day-to-day	operations	as	well	as	the	VMware	motion
between	hosts.	It’s	better	than	a	virtual	machine	name	because	it
uniquely	identi�ies	the	virtual	machine.	The	drawback	is	that	it	is
composed	of	a	128-bit	integer,	so	it’s	not	the	best	mnemonical	value!
It’s	usually	printed	in	the	hex	value	with	dashes.

Ansible	Module	vmware_guest_info
community.vmware.vmware_guest_info

You	can	collect	information	about	a	VMware	virtual	machine	using
the	Ansible	module	vmware_guest_info.	The	full	name	is
community.vmware.vmware_guest_info,	which	means	that	it	is
part	of	the	collection	of	modules	that	interact	with	VMware	and	it’s
community	supported.	The	module’s	purpose	is	to	gather	info	about	a
single	VM.	The	vmware_guest_info	module	is	a	substitute	for	the
previous	deprecated	community.vmware.vmware_guest_facts
module	that	will	be	removed	in	a	major	release	after	2021-12-01.

Parameters
hostname	string/port	integer/username	string/password
string/datacenter	string/validate_certs	boolean:	Connection	details
name	string:	Virtual	machine	name
The	following	parameters	are	useful	in	order	to	Get	VMware

vSphere	virtual	machine	UUID	using	the	module
vmware_guest_info.	First,	you	must	establish	the	connection	with
VMware	vSphere	or	VMware	vCenter	using	a	plethora	of	self-
explanatory	parameters:	hostname,	port,	username,	password,
datacenter,	and	validate_certs.	Once	the	connection	is
successfully	established,	you	can	specify	the	virtual	machine	name	to
obtain	all	information	about	it.

Links
community.vmware.vmware_guest_info,
https://docs.ansible.com/ansible/latest/collectio
ns/community/vmware/vmware_guest_info_module.xhtm
l

Code
I’m	going	to	show	you	how	to	gather	information	about	a	speci�ic	myvm
VMware	virtual	machine	and	select	the	UUID	using	an	Ansible	Playbook
(see			Figure	3-15).	The	Ansible	Playbook	includes	the	�ile	vars.yml	for
common	variables	for	the	VMware	Infrastructure	and	has	two	tasks.
The	�irst	task	acquires	information	from	the	myvm	VMware	virtual
machine	and	saves	the	result	in	the	detailed_vm_info	Ansible
variable.	The	second	task	prints	onscreen	the	values	of	the
detailed_vm_info	Ansible	variable.	Speci�ically,	the	UUID	value	is
stored	inside	the
detailed_vm_info.instance.hw_product_uuid	parameter.
Under	the	hood,	Ansible	interacts	with	the	VMware	API	via	Python
libraries	to	execute	the	operation	and	verify	the	successful	startup	of
the	virtual	machine.
vm_uuid.yml

https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_info_module.xhtml
https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_info_module.xhtml

- name: vm UUID demo
 hosts: localhost

 gather_facts: false
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: Get VM UUID
 vmware_guest_info:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 datacenter: "{{ vcenter_datacenter }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 name: "{{ vm_name }}"
 register: detailed_vm_info
 - name: print VM UUID
 ansible.builtin.debug:
 var:
detailed_vm_info.instance.hw_product_uuid

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.
vars.yml

vcenter_hostname: "vmware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vm_name: "myvm"

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.
Inventory

localhost

A	successful	execution	output	includes
Target	host:	localhost
Command	result:	ok=3 changed=0
Return	value:

TASK [Get VM UUID]
ok: [localhost]
TASK [print VM UUID]
ok: [localhost] => {
 "detailed_vm_info.instance.hw_product_uuid":
"4225a846-b176-892d-0e27-10a4106269a0"
}

You	can	see	the	result	of	gathering	the	UUID	of	a	VMware	virtual
machine	in	the	VMware	vSphere	web	user	interface.	You	can	�ind	this
information	in	the	VMware	vSphere	web	console	under	“Hosts	and
Clusters”	or	“VMs	and	Templates.”	The	list	view	shows	a	lot	of
information	such	as	state,	status,	provisioned	and	used	space,	host	CPU,
and	memory.	If	the	list	doesn’t	show	the	UUID	columns,	click	the	gray
area	of	one	column	and	select	Show/Hide	Columns	and	enable	UUID
from	the	pop-up	list.	See	Figure	3-15.

Figure	3-15 vmware_guest_info	after	execution

Ansible	Dynamic	Inventory	For	VMware
You	can	automate	listing	the	virtual	machines	in	your	VMware
infrastructure	using	the	vmware_vm_inventory	Ansible	Inventory
plugin.	One	of	the	advantages	of	this	plugin	is	that	you	can	use	the
dynamic	listing	as	an	Ansible	inventory	for	your	execution.	Inventory
plugins	allow	you	to	expand	the	capabilities	of	your	Ansible	by	creating
a	listing	of	the	target	nodes	on	the	�ly	from	a	speci�ied	data	source.	The
data	source	contains	the	connection	parameter	to	your	VMware
infrastructure	and	the	output	contains	the	list	of	all	the	virtual
machines.	There	is	no	manual	way	to	accomplish	this	task	except	to
manually	create	an	Ansible	inventory	of	VMware	virtual	machines.	The
manual	creation	of	the	Ansible	inventory	is	error	prone	by	nature
because	even	a	simple	typo	can	have	a	huge	impact	on	an	execution,
such	as	a	failure	or	wrong	target	host.

Ansible	vmware_vm_inventory
community.vmware.vmware_vm_inventory

The	Ansible	Inventory	Plugin	queries	your	VMware	infrastructure
via	the	VMware	APIs	and	returns	to	Ansible	a	list	of	virtual	machines
that	can	be	used	as	target	nodes.	The	purpose	is	to	get	virtual	machines

as	inventory	hosts	from	the	VMware	environment.	In	this	way,	you	can
execute	your	Ansible	automation	to	all	your	virtual	machines,	for
example.	Please	note	that	the	inventory	YAML	con�iguration	�ile	MUST
end	with	vmware.yml,	vmware.yaml,
vmware_vm_inventory.yml,	or	vmware_vm_inventory.yaml
�ile	names.	The	full	name	is
community.vmware.vmware_vm_inventory,	which	means	that	it
is	part	of	the	collection	of	modules	that	interact	with	VMware	and	is
community	supported.
Python	requirements
As	with	the	community.vmware	collection,	this	plugin	requires

the	pyVmomi	Python	library	installed	in	your	Ansible	controller.	For
advanced	parameters	such	as	the	tag	feature,	you	must	install	the
VMware	vSphere	Automation	SDK	for	Python	library.

Links
community.vmware.vmware_vm_inventory,
https://docs.ansible.com/ansible/latest/collectio
ns/community/vmware/vmware_vm_inventory_inventory
.xhtml

Code
In	this	example,	you	are	going	to	list	all	the	available	virtual	machines
and	speci�ically	the	myvm	test	machine	created	earlier	in	this	book.

The	�irst	step	is	to	speci�ically	enable	the	vmware_vm_inventory
Ansible	Inventory	Plugin	in	your	con�iguration	�ile.	You	can	enable	it	via
ansible.cfg	in	the	current	path	or	system-wide	via
/etc/ansible/ansible.cfg.	Simply	add	the
vmware_vm_inventory	plugin	name	inside	the	key
enable_plugins	in	the	inventory	section.

ansible.cfg

[inventory]
enable_plugins = vmware_vm_inventory

https://github.com/vmware/vsphere-automation-sdk-python
https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_vm_inventory_inventory.xhtml
https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_vm_inventory_inventory.xhtml

The	second	step	is	to	create	the	data	source	with	your	VMware
infrastructure	connection	parameters.	The	following	is	a	simple	YAML
data	source	to	list	all	the	virtual	machines	that	connect	to
vmware.example.com	VMware	vSphere	with	a	given	username	and
password	and	to	disable	the	SSL	certi�icate	validation	(for	self-signed
certi�icates).	It	enables	group	mapping	of	the	results	by	VMware	virtual
machines.	It	disables	tags	associated	with	the	VMware	virtual	machines
(requires	vSphere	Automation	SDK	Python	library).
inventory.vmware.yml

plugin: vmware_vm_inventory
strict: False
hostname: vmware.example.com
username: username@vsphere.local
password: MySecretPassword123
validate_certs: False
with_tags: False
groups:
 VMs: True

The	default	view	output	shows	all	the	available	VMware	properties
associated	with	the	VMware	virtual	machine.	Specifying	the
properties	parameter	in	the	YAML	data	source,	you	can	display	only
the	ones	needed,	such	as	name, config.cpuHotAddEnabled,
config.cpuHotRemoveEnabled, config.instanceUuid,
config.hardware.numCPU, config.template,
config.name, config.uuid, guest.hostName,
guest.ipAddress, guest.guestId, guest.guestState,
runtime.maxMemoryUsage, customValue,
summary.runtime.powerState,	and	config.guestId.	Here	is
an	example	of	the	properties	parameter	to	display	only	the	power
state	and	the	name	of	the	virtual	machine:

properties:
 - 'runtime.powerState'
 - 'config.name'

Another	useful	parameter	is	filters,	which	allows	you	to	search
only	for	virtual	machines	in	a	particular	state.	Here	is	an	example	of	the
filters	parameter	to	search	only	the	virtual	machine	in	a	powered-
on	state:

filters:
 - runtime.powerState == "poweredOn"

Here	is	an	example	of	the	filters	parameter	to	search	only	for
the	virtual	machine	with	a	speci�ic	operating	system	class:

filters:
 - config.guestId == "rhel7_64Guest"

The	ansible-inventory	tool	can	generate	a	JSON	list	view	using
the	inventory	data	source	inventory.vmware.yml	as	input.

$ ansible-inventory -i inventory.vmware.yml --list

A	successful	execution	output	includes	the	following	output	for	the
myvm	VMware	virtual	machine:

$ ansible-inventory -i inventory.vmware.yml --list
{
 "VMs": {
 "hosts": [
 "myvm_42254893-3793-0e4f-9f61-
7c37d244c2a8"
]
 },
 "_meta": {
 "hostvars": {
 "myvm_42254893-3793-0e4f-9f61-
7c37d244c2a8": {
 "config": {
 "cpuHotAddEnabled": false,
 "cpuHotRemoveEnabled": false,

 "guestId": "centos64Guest",
 "hardware": {
 "numCPU": 1
 },
 "instanceUuid": "5025d3e9-
6c26-30b5-d29a-2c1be5fa3862",
 "name": "myvm",
 "template": false,
 "uuid": "42254893-3793-0e4f-
9f61-7c37d244c2a8"
 },
 "config.cpuHotAddEnabled": false,
 "config.cpuHotRemoveEnabled":
false,
 "config.guestId": "centos64Guest",
 "config.hardware.numCPU": 1,
 "config.instanceUuid": "5025d3e9-
6c26-30b5-d29a-2c1be5fa3862",
 "config.name": "myvm",
 "config.template": false,
 "config.uuid": "42254893-3793-
0e4f-9f61-7c37d244c2a8",
 "guest": {
 "guestState": "notRunning"
 },
 "guest.guestState": "notRunning",
 "name": "myvm",
 "runtime": {
 "connectionState": "connected"
 },
 "runtime.connectionState":
"connected",
 "summary": {
 "runtime": {
 "powerState": "poweredOff"
 }
 },

 "summary.runtime.powerState":
"poweredOff"
 }
 }
 },
 "all": {
 "children": [
 "VMs",
 "centos64Guest",
 "poweredOff",
 "ungrouped"
]
 },
 "VMs": {
 "hosts": [
 "myvm_42254893-3793-0e4f-9f61-
7c37d244c2a8"
]
 },
 "centos64Guest": {
 "hosts": [
 "myvm_42254893-3793-0e4f-9f61-
7c37d244c2a8"
]
 },
 "poweredOff": {
 "hosts": [
 "myvm_42254893-3793-0e4f-9f61-
7c37d244c2a8"
]
 }
}

The	ansible-inventory	tool	can	also	generate	a	graph	view
using	the	inventory	data	source	inventory.vmware.yml	as	input.
This	view	is	useful	to	visualize	the	relationship	with	other	VMware
infrastructure	resources.

$ ansible-inventory -i inventory.vmware.yml --
graph

A	successful	execution	output	includes	all	the	groups	related	to	the
myvm	VMware	virtual	machine:

@all:
 |--@VMs:
 | |--myvm_42254893-3793-0e4f-9f61-7c37d244c2a8
 |--@centos64Guest:
 | |--myvm_42254893-3793-0e4f-9f61-7c37d244c2a8
 |--@poweredOff:
 | |--myvm_42254893-3793-0e4f-9f61-7c37d244c2a8

You	can	use	the	groups	as	a	source	for	an	Ansible	Playbook
execution.	In	this	way,	you	obtain	the	execution	of	your	Ansible
Playbook	across	all	the	dynamically	generated	Ansible	inventories.	In
the	previous	example,	the	myvm	machine	is	part	of	the	all,	VMs,
centos64Guest,	and	poweredOff	groups.

Now	you	can	use	your	Ansible	dynamic	inventory	for	VMware	in	any
Ansible	interaction	such	as	the	ad-hoc	ping	command	against	the	all
target	nodes	group.

$ ansible -i inventory.vmware.yml all -m ping

The	best	result	can	be	obtained	by	combining	Ansible	dynamic
inventory	for	VMware	and	an	Ansible	Playbook	using	the	ansible-
playbook	command.

$ ansible-playbook -i inventory.vmware.yml
playbook.yml

In	this	way,	you’re	able	to	execute	the	Ansible	Playbook	named
playbook.yml	against	the	dynamically	generated	list	of	all	the	virtual
machines	in	your	VMware	infrastructure.

Getting	a	VMware	Virtual	Machine	Running	Host

You	can	automate	the	gathering	of	the	running	host	of	a	VMware	virtual
machine	using	an	Ansible	Playbook	and	the	vmware_guest_info
module	(see			Figure	3-16).	Refer	to	the	“Getting	a	VMware	Virtual
Machine	UUID”	section	for	more	details	about	the
vmware_guest_info	module.	Accessing	the	current	running	host	of
the	VMware	virtual	machine	is	useful	to	produce	an	accurate	report	of
the	infrastructure’s	current	load	distribution,	to	better	distribute	the
workload	between	VMware	host	resources,	and	to	perform	the	day-to-
day	operations	as	well	as	the	VMware	motion	between	hosts.

Code
I’m	going	to	show	you	how	to	gather	information	about	the	myvm
VMware	virtual	machine	and	select	the	running	host	using	an	Ansible
Playbook.	The	Ansible	Playbook	includes	the	�ile	vars.yml	for	some
common	variables	for	the	VMware	infrastructure	and	has	two	tasks.
The	�irst	task	acquires	information	from	the	myvm	VMware	virtual
machine	and	saves	the	result	in	the	detailed_vm_info	Ansible
variable.	The	second	task	prints	onscreen	the	values	of	the
detailed_vm_info	Ansible	variable.	Speci�ically,	the	running	host
value	is	stored	inside	the
detailed_vm_info.instance.hw_esxi_host	return	value.
Under	the	hood,	Ansible	interacts	with	the	VMware	API	via	Python
libraries	to	execute	the	operation	and	verify	the	successful	startup	of
the	virtual	machine.
vm_running_host.yml

- name: vm running host demo
 hosts: localhost

 gather_facts: false
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:

 - name: Get VM info
 vmware_guest_info:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 datacenter: "{{ vcenter_datacenter }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 name: "{{ vm_name }}"
 register: detailed_vm_info

 - name: print VM Running Host
 ansible.builtin.debug:
 var:
detailed_vm_info.instance.hw_esxi_host

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.
vars.yml

vcenter_hostname: "vmware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vm_name: "myvm"

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.
Inventory

localhost

A	successful	execution	output	includes
Target	host:	localhost

Command	result:	ok=3 changed=0
Return	value:

TASK [print VM Running Host]
ok: [localhost] => {
 "detailed_vm_info.instance.hw_esxi_host":
"host1.vmware.example"
}

The	execution	of	this	code	is	idempotent.
You	can	see	the	result	of	the	gathering	of	the	running	host	of	a

VMware	virtual	machine	in	the	VMware	vSphere	web	user	interface	in
the	“host”	�ield	on	the	Summary	page	in	Figure	3-16.

Figure	3-16 Getting	a	VMware	virtual	machine	running	host	via	the	VMware	vSphere	web	UI

Getting	VMware	Datastore	Status
You	can	automate	the	gathering	of	the	status	of	a	VMware	vSphere
datastore	using	an	Ansible	Playbook	and	the
vmware_datastore_info	module	(see	Figure	3-17).	Datastores	in
VMware	vSphere	are	storage	resources	for	virtual	machines	and
VMware	resource	that	use	the	VMFS	�ile	systems.	VMware
infrastructure	administrators	know	that	storage	plays	a	key	role	in	a

healthy	and	performance	infrastructure.	An	accurate	report	of	the
current	capacity,	provisioned,	free	space,	and	maintenance	mode
information	of	the	VMware	datastore	is	crucial	for	a	better	distribution
of	the	workload	between	VMware	resources	and	it’s	useful	for
performing	day-to-day	operations	as	well	as	the	VMware	storage
motion.

Ansible	Module	vmware_datastore_info
community.vmware.vmware_datastore_info

You	can	collect	information	about	a	VMware	datastore	using	the
Ansible	module	vmware_datastore_info.	The	full	name	is
community.vmware.vmware_datastore_info,	which	means
that	it	is	part	of	the	collection	of	modules	that	interact	with	VMware
and	is	community	supported.	The	module’s	purpose	is	to	gather
information	about	datastores	available	in	a	speci�ic	VMware	vCenter.

Parameters
hostname	string/port	integer/username	string/password
string/datacenter	string/validate_certs	boolean:	Connection	details
name	string:	Datastore	name
The	following	parameters	are	useful	in	order	to	get	the	VMware

vSphere	datastore	status	using	the	module
vmware_datastore_info.	First,	you	must	establish	the	connection
with	VMware	vSphere	or	VMware	vCenter	using	a	plethora	of	self-
explanatory	parameters:	hostname,	port,	username,	password,
datacenter,	and	validate_certs.	Once	the	connection	is
successfully	established,	you	can	specify	the	datastore	name	to	obtain
all	information	about	it.

Links
community.vmware.vmware_datastore_info,
https://docs.ansible.com/ansible/latest/collectio
ns/community/vmware/vmware_datastore_info_module.
xhtml

https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_datastore_info_module.xhtml
https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_datastore_info_module.xhtml

Code
I’m	going	to	show	you	how	to	gather	information	about	a	speci�ic
VMware	vSphere	datastore	using	an	Ansible	Playbook			(see	Figure	3-
17).	The	Ansible	Playbook	includes	the	�ile	vars.yml	for	some
common	variables	for	the	VMware	infrastructure	and	has	two	tasks.
The	�irst	task	acquires	information	from	the	Datastore	VMware	vSphere
datastore	and	saves	the	result	in	the	datastore_info	Ansible
variable.	The	second	task	prints	onscreen	the	values	of	the
datastore_info	Ansible	variable.	Under	the	hood,	Ansible	interacts
with	the	VMware	API	via	Python	libraries	to	execute	the	operation	and
verify	the	successful	startup	of	the	virtual	machine.
datastore_info.yml

- name: datastore info demo
 hosts: localhost

 gather_facts: false
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: datastore info
 vmware_datastore_info:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 datacenter_name: "{{ vcenter_datacenter
}}"
 name: "{{ vcenter_datastore }}"
 register: datastore_info
 - name: print datastore info
 ansible.builtin.debug:

 var: datastore_info

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.
vars.yml

vcenter_hostname: "vmware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vcenter_datastore: "Datastore"

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.
Inventory

localhost

A	successful	execution	output	includes
Target	host:	localhost
Command	result:	ok=3 changed=0
Return	value:

TASK [datastore info]
ok: [localhost]
TASK [print datastore info]
ok: [localhost] => {
 "datastore_info": {
 "changed": false,
 "datastores": [
 {
 "accessible": true,
 "capacity": 3298266447872,
 "datastore_cluster": "N/A",

 "freeSpace": 26407337984,
 "maintenanceMode": "normal",
 "multipleHostAccess": true,
 "name": "Datastore",
 "provisioned": 4256761358544,
 "type": "VMFS",
 "uncommitted": 984902248656,
 "url":
"ds:///vmfs/volumes/57a8979d-e0af2c70-3730-
141877595c4b/"
 }
],
 "failed": false
 }
}

You	can	see	the	result	of	the	gathering	of	the	VMware	vSphere
datastore	status	and	information	in	the	VMware	vSphere	web	user
interface	in	Figure	3-17.	You	can	�ind	this	information	in	the	VMware
vSphere	web	console,	in	the	“Storage”	area.

Figure	3-17 Getting	VMware	datastore	status	in	the	VMware	vSphere	web	UI

Uploading	a	File	to	the	VMware	Datastore
You	can	automate	the	uploading	of	a	�ile	in	the	VMware	vSphere
datastore	using	an	Ansible	Playbook	and	the	vsphere_copy	module
(see	Figure	3-18	for	before	the	execution	and	Figure	3-19	for	after	the
execution).	The	VMware	datastore	is	the	VMware	storage	area	where
virtual	machines	and	VMware	resources	are	shared	between	VMware
hosts.	The	VMware	infrastructure	administrator	uploads	ISO	image	�iles
before	creating	a	new	VMware	virtual	machine.

Ansible	Module	vsphere_copy
community.vmware.vsphere_copy

You	can	collect	information	about	a	VMware	datastore	using	the
Ansible	module	vsphere_copy.	The	full	name	is
community.vmware.vsphere_copy,	which	means	that	it	is	part	of
the	collection	of	modules	that	interact	with	VMware	and	is	community
supported.	The	module’s	purpose	is	to	copy	a	�ile	to	a	VMware	vSphere
datastore.

Parameters
hostname	string/port	integer/username	string/password
string/datacenter	string/validate_certs	boolean:	Connection	details
datastore	string:	Datastore	name
src	string:	Source	�ile	name
path	string:	Destination	�ile	name
The	following	parameters	are	useful	in	order	to	copy	a	�ile	to	a

VMware	vSphere	datastore	status	using	the	module	vsphere_copy.
First,	you	must	establish	the	connection	with	VMware	vSphere	or
VMware	vCenter	using	a	plethora	of	self-explanatory	parameters:
hostname,	port,	username,	password,	datacenter,	and
validate_certs.	Once	the	connection	is	successfully	established,
you	can	specify	the	source	src	�ile	in	the	Ansible	controller	�ilesystem,
the	target	VMware	datastore	datastore,	and	the	target	path
datastore	�ilename.

Links
community.vmware.vsphere_copy,
https://docs.ansible.com/ansible/latest/collectio
ns/community/vmware/vsphere_copy_module.xhtml

Code
I’m	going	to	show	you	how	to	upload	the	�ile	ubuntu-22.04-live-
server-amd64.iso	ISO	image	to	the	Datastore	VMware	vSphere
datastore	using	an	Ansible	Playbook.	The	source	and	destination	paths
are	speci�ied	as	variables	mysrc	and	mydest,	and	you	can	customize
them	in	the	Ansible	Playbook	or	use	as	extra	variables	via	the	command
line.	The	Ansible	Playbook	includes	the	�ile	vars.yml	for	some
common	variables	for	the	VMware	infrastructure	and	has	one	task.
Under	the	hood,	Ansible	interacts	with	the	VMware	API	via	Python
libraries	to	execute	the	operation	and	verify	the	successful	startup	of
the	virtual	machine.
datastore_info.yml

- name: datastore copy demo
 hosts: localhost

 gather_facts: false
 vars:
 mysrc: "iso/ubuntu-22.04-live-server-
amd64.iso"
 mydest: "ISO/ubuntu-22.04-live-server-
amd64.iso"
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: copy file to datastore
 vsphere_copy:
 hostname: "{{ vcenter_hostname }}"

https://docs.ansible.com/ansible/latest/collections/community/vmware/vsphere_copy_module.xhtml
https://docs.ansible.com/ansible/latest/collections/community/vmware/vsphere_copy_module.xhtml

 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 datacenter: "{{ vcenter_datacenter }}"
 datastore: "{{ vcenter_datastore }}"
 src: "{{ mysrc }}"
 path: "{{ mydest }}"

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.
vars.yml

vcenter_hostname: "vmware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vcenter_datastore: "Datastore"

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.
Inventory

localhost

A	successful	execution	output	includes
Target	host:	localhost
Command	result:	ok=2 changed=1
Return	value:

TASK [copy file to datastore]
changed: [localhost]

An	unsuccessful	execution	output	speci�ies	the	reason	why	it	fails.
In	the	following	example,	the	source	�ile	iso/ubuntu-22.04-live-
server-amd64.iso	is	not	available	in	the	Automation	Controller	�ile
system.
Target	host:	localhost
Command	result:	failed=1
Return	value:

TASK [copy file to datastore]
fatal: [localhost]: FAILED! => {"changed": false,
"msg": "Failed to open src file [Errno 2] No such
file or directory: 'iso/ubuntu-22.04-live-server-
amd64.iso'"}

You	can	see	the	result	of	the	uploading	of	the	�ile	to	the	VMware
vSphere	datastore	in	the	VMware	vSphere	web	user	interface.	You	can
�ind	this	information	in	the	VMware	vSphere	web	console,	in	the
“Storage”	area.	You	can	browse	the	datastore	path	via	the	“Files”	area.
See	Figure	3-18.
10	�iles	before	upload	are	already	present	in	the	ISO	folder	of	the
Datastore	datastore.

Figure	3-18 Before	uploading	a	�ile	to	the	VMware	datastore

11	�iles	are	present	in	the	ISO	folder	of	Datastore	datastore	after
uploading.	See	Figure	3-19.

Figure	3-19 After	uploading	a	�ile	to	the	VMware	datastore

Getting	the	Status	of	VMware	Guest	Tools
You	can	automate	the	gathering	of	the	status	of	VMware	virtual
machine	guest	tools	using	an	Ansible	Playbook	and	the
vmware_guest_tools_info	module	(see			Figure	3-20).	VMware
guest	tools	are	a	set	of	services	and	modules	that	enable	additional
features	for	better	performance	of	the	guests’	operating	systems	and
seamless	user	interaction	with	VMware	virtual	machines.	An	accurate
report	of	the	current	status	of	the	VMware	guest	tools	in	your	VMware
virtual	machines	(running,	not-running,	up-to-date,	not-installed)	is
crucial	for	a	better	performance	of	workload	distribution	across	your
VMware	infrastructure.

Ansible	Module	vmware_guest_tools_info
community.vmware.vmware_guest_tools_info

You	can	collect	information	about	the	status	of	VMware	guest	tools
using	the	Ansible	module	vmware_guest_tools_info.	The	full
name	is	community.vmware.vmware_guest_tools_info,	which
means	that	it	is	part	of	the	collection	of	modules	that	interact	with
VMware	and	is	community	supported.	The	module’s	purpose	is	to
gather	information	about	VMware	guest	tools	installed	in	a	VMware
virtual	machine.

Parameters
hostname	string/port	integer/username	string/password
string/datacenter	string/validate_certs	boolean:	Connection	details
name	string:	Virtual	machine	name
The	following	parameters	are	useful	in	order	to	get	the	VMware

guest	tools	status	using	the	module	vmware_guest_tools_info.
First,	you	must	establish	the	connection	with	VMware	vSphere	or
VMware	vCenter	using	a	plethora	of	self-explanatory	parameters:
hostname,	port,	username,	password,	datacenter,	and
validate_certs.	Once	the	connection	is	successfully	established,
you	can	specify	the	VMware	virtual	machine	name	to	obtain	all
information	about	the	VMware	guest	tools	on	it.

Links
community.vmware.vmware_guest_tools_info,
https://docs.ansible.com/ansible/latest/collectio
ns/community/vmware/vmware_guest_tools_info_modul
e.xhtml

Code
I’m	going	to	show	you	how	to	gather	information	about	a	speci�ic	myvm
VMware	virtual	machine	and	select	the	running	host	using	an	Ansible
Playbook	(see			Figure	3-20).	The	Ansible	Playbook	includes	the	�ile
vars.yml	for	some	common	variables	for	the	VMware	infrastructure
and	has	two	tasks.	The	�irst	task	acquires	information	from	the	myvm
VMware	virtual	machine	and	saves	the	result	in	the	vmtools_info
Ansible	variable.	The	second	task	prints	onscreen	the	values	of	the

https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_tools_info_module.xhtml
https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_tools_info_module.xhtml

vmtools_info	Ansible	variable	using	the	debug	Ansible	module.
Under	the	hood,	Ansible	interacts	with	the	VMware	API	via	Python
libraries	to	execute	the	operation	and	verify	the	successful	startup	of
the	virtual	machine.
vm_guest_tools_info.yml

- name: vmware guest tools info demo
 hosts: localhost

 gather_facts: false
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: guest tools info
 vmware_guest:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 datacenter: "{{ vcenter_datacenter }}"
 name: "{{ vm_name }}"
 register: vmtools_info

 - name: print guest tools info
 ansible.builtin.debug:
 var: vmtools_info

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.
vars.yml

vcenter_hostname: "vmware.example.com"

vcenter_datacenter: "vmwaredatacenter"
vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vm_name: "myvm"

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.
Inventory

localhost

A	successful	execution	output	of	virtual	machine	without	with
VMware	guest	tools	installed	Open	VM	Tools	includes
Target	host:	localhost
Command	result:	ok=3 changed=0
Return	value:

TASK [guest tools info]
ok: [localhost]
TASK [print guest tools info]
ok: [localhost] => {
 "vmtools_info": {
 "changed": false,
 "failed": false,
 "vmtools_info": {
 "vm_name": "myvm",
 "vm_tools_install_status": "toolsOk",
 "vm_tools_install_type":
"guestToolsTypeOpenVMTools",
 "vm_tools_last_install_count": 0,
 "vm_tools_running_status":
"guestToolsRunning",
 "vm_tools_upgrade_policy": "manual",
 "vm_tools_version": 10282,

 "vm_tools_version_status":
"guestToolsUnmanaged",
 }
 }
}

In	this	case,	the	VMware	virtual	machine	myvm	VMware	guest	tools
status	is
VMware	guest	tools	installed	("vm_tools_version_status":
"toolsOk")
VMware	guest	tools	running	("vm_tools_running_status":
"guestToolsRunning")
VMware	guest	tools	type	OpenVM
("vm_tools_install_type":
"guestToolsTypeOpenVMTools")
VMware	guest	tools	upgrade	policy	manual
("vm_tools_upgrade_policy": "manual")

A	successful	execution	output	of	virtual	machine	without	VMware
guest	tools	output	includes
Target	host:	localhost
Command	result:	ok=3 changed=0
Return	value:

TASK [guest tools info]
ok: [localhost]
TASK [print guest tools info]
ok: [localhost] => {
 "vmtools_info": {
 "changed": false,
 "failed": false,
 "vmtools_info": {
 "vm_name": "myvm",
 "vm_tools_install_status":
"toolsNotInstalled",

 "vm_tools_install_type":
"guestToolsTypeUnknown",
 "vm_tools_last_install_count": 0,
 "vm_tools_running_status":
"guestToolsNotRunning",
 "vm_tools_upgrade_policy": "manual",
 "vm_tools_version": 0,
 "vm_tools_version_status":
"guestToolsNotInstalled",
 }
 }
}

In	this	case,	the	VMware	virtual	machine	myvm	VMware	guest	tools
status	is
VMware	guest	tools	NOT	installed
("vm_tools_version_status":
"guestToolsNotInstalled")
VMware	guest	tools	NOT	running
("vm_tools_running_status":
"guestToolsNotRunning")
VMware	guest	tools	upgrade	policy	manual
("vm_tools_upgrade_policy": "manual")

You	can	see	the	result	of	the	gathering	of	the	status	of	the	VMware
guest	tools	of	a	speci�ic	virtual	machine	in	the	VMware	vSphere	web
user	interface	in	the	“VMware	Tools”	�ield	on	the	Summary	page.	See
Figure	3-20.

Figure	3-20 VMware	guest	tools	status	in	VMware	vSphere	web	UI

Upgrading	VMware	Guest	Tools
You	can	automate	the	upgrade	of	the	VMware	virtual	machine	guest
tools	using	an	Ansible	Playbook	and	the
vmware_guest_tools_upgrade	module	(see	Figure	3-21	for
before	the	execution	and	Figure	3-22	for	after	the	execution).
Maintaining	up-to-date	VMware	guest	tools	is	a	good	practice	to	obtain
the	best	performance	from	your	VMware	virtual	machines.	The
upgrade	procedure	supports	the	VMware	guest	tools	and	the	Open	VM
tools	(open-vm-tools,	the	open	source	implementation	for	Linux
guest	operating	systems).

Ansible	Module	vmware_guest_tools_upgrade
community.vmware.vmware_guest_tools_upgrade

You	can	collect	information	about	a	VMware	datastore	using	the
Ansible	module	vmware_guest_tools_upgrade.	The	full	name	is
community.vmware.vmware_guest_tools_upgrade,	which
means	that	it	is	part	of	the	collection	of	modules	that	interact	with
VMware	and	is	community	supported.	The	module’s	purpose	is	to
smoothly	upgrade	the	VMware	guest	tools	installed	in	a	VMware	virtual
machine.

Parameters
hostname	string/port	integer/username	string/password
string/datacenter	string/validate_certs	boolean:	Connection	details
name	string:	Virtual	machine	name
The	following	parameters	are	useful	in	order	to	upgrade	the

VMware	guest	tools	using	the	module	vmware_datastore_info.
First,	you	must	to	establish	the	connection	with	VMware	vSphere	or
VMware	vCenter	using	a	plethora	of	self-explanatory	parameters:
hostname,	port,	username,	password,	datacenter,	and
validate_certs.	Once	the	connection	is	successfully	established,
you	can	specify	the	VMware	virtual	machine	name	to	obtain	all	of	the
information	about	the	VMware	guest	tools	on	it.

Links
community.vmware.vmware_guest_tools_upgrade,
https://docs.ansible.com/ansible/latest/collectio
ns/community/vmware/vmware_guest_tools_upgrade_mo
dule.xhtml

Code
I’m	going	to	show	you	how	to	upgrade	guest	tools	for	the	myvm	VMware
virtual	machine.	The	Ansible	Playbook	includes	the	�ile	vars.yml	for
common	variables	for	the	VMware	infrastructure	and	has	�ive	tasks.
The	�irst	task	ensures	the	myvm	VMware	virtual	machine	is	powered	on.
The	second	task	acquires	the	UUID	of	the	myvm	VMware	virtual
machine	and	saves	the	result	in	the	detailed_vm_info	Ansible
variable.	The	third	task	executes	the	VMware	guest	tools	upgrade
consuming	the
detailed_vm_info.instance.hw_product_uuid	Ansible
variable	(see	“Getting	a	VMware	Virtual	Machine	UUID”	section).	The
fourth	task	obtains	the	updated	VMware	guest	tools	information	and
saves	it	in	the	vmtools_info	Ansible	variable.	The	last	task	prints
onscreen	the	values	of	the	vmtools_info	Ansible	variable	using	the
debug	Ansible	module.	Under	the	hood,	Ansible	interacts	with	the

https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_tools_upgrade_module.xhtml
https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_guest_tools_upgrade_module.xhtml

VMware	API	via	Python	libraries	to	execute	the	operation	and	verify	the
successful	startup	of	the	virtual	machine.
vm_guest_tools_upgrade.yml

- name: vmware guest tools upgrade demo
 hosts: localhost
 gather_facts: false
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: VM powered-on
 vmware_guest_powerstate:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 name: "{{ vm_name }}"
 state: powered-on

 - name: VM get UUID
 vmware_guest_info:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 datacenter: "{{ vcenter_datacenter }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 name: "{{ vm_name }}"
 register: detailed_vm_info

 - name: vmware guest tools upgrade
 vmware_guest_tools_upgrade:
 hostname: "{{ vcenter_hostname }}"

 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 datacenter: "{{ vcenter_datacenter }}"
 uuid: "{{
detailed_vm_info.instance.hw_product_uuid }}"

 - name: guest tools info
 vmware_guest_tools_info:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 datacenter: "{{ vcenter_datacenter }}"
 name: "{{ vm_name }}"
 register: vmtools_info

 - name: print guest tools info
 ansible.builtin.debug:
 var: vmtools_info

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.
vars.yml

vcenter_hostname: "vmware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vm_name: "myvm"

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.

Inventory

localhost

A	successful	execution	output	includes
Target	host:	localhost
Command	result:	ok=6 changed=1
Return	value:

TASK [VM powered-on]
ok: [localhost]
TASK [VM get UUID]
ok: [localhost]
TASK [vmware guest tools upgrade]
changed: [localhost]
TASK[guest tools info]
ok: [localhost]
TASK[print guest tools info]
ok: [localhost] => {
 "vmtools_info": {
 "changed": false,
 "failed": false,
 "vmtools_info": {
 "vm_name": "myvm",
 "vm_tools_install_status": "toolsOk",
 "vm_tools_install_type":
"guestToolsTypeOpenVMTools",
 "vm_tools_last_install_count": 0,
 "vm_tools_running_status":
"guestToolsRunning",
 "vm_tools_upgrade_policy": "manual",
 "vm_tools_version": 10282,
 "vm_tools_version_status":
"guestToolsUnmanaged",
 }
 }
}

After	the	execution,	the	VMware	virtual	machine	myvm	VMware
guest	tools	status	is
VMware	guest	tools	installed	("vm_tools_version_status":
"toolsOk")
VMware	guest	tools	running	("vm_tools_running_status":
"guestToolsRunning")
VMware	guest	tools	type	OpenVM
("vm_tools_install_type":
"guestToolsTypeOpenVMTools")

Please	note	that	VMware	guest	tools	must	successfully	be	installed
to	be	able	to	successfully	upgrade	them.	An	unsuccessful	execution
output	includes	a	fatal	error	message:
Target	host:	localhost
Command	result:	ok=3 failed=1
Return	value:

TASK [VM powered-on]
ok: [localhost]
TASK [VM get UUID]
ok: [localhost]
TASK [vmware guest tools upgrade]
fatal: [localhost]: FAILED! => {"changed": false,
"msg": "VMware tools is either not running or not
installed"}

You	can	see	the	result	of	the	upgrade	of	the	VMware	virtual	machine
guest	tools	of	a	speci�ic	virtual	machine	in	the	VMware	vSphere	Web
user	interface	in	the	“VMware	Tools”	�ield	on	the	Summary	page.	See
Figures	3-21	and	3-22.

Figure	3-21 Before	the	VMware	guest	tools	upgrade	in	the	VMware	vSphere	web	UI

Figure	3-22 After	the	VMware	guest	tools	upgrade	in	the	VMware	vSphere	web	UI

Live	Migration	of	a	VMware	Virtual	Machine	Using	vMotion
You	can	automate	the	live	migration	of	a	VMware	virtual	machine	guest
using	VMware	vMotion,	an	Ansible	Playbook,	and	the
vmware_vmotion	module	(see	Figure	3-23	for	before	the	execution
and	Figure	3-24	for	after	the	execution).	The	VMware	vMotion

technology	allows	zero-downtime	live	migration	of	a	VMware	virtual
machine.	Combined	with	VMware	vSphere	Storage	vMotion,	you	can
achieve	this	across	vSwitches,	clusters,	and	even	clouds	(depending	on
your	VMware	license).	This	is	a	great	feature	for	mission-critical
business	continuity	resources.	Ansible	is	able	to	take	advantage	of
VMware	vMotion	and	enable	more	automation	scenarios	in	your
VMware	infrastructure	with	the	vmware_vmotion	module.	For
example,	you	can	systematically	move	resources	to	power	down	hosts
or	provide	better	resource	allocation.

Ansible	vmware_vmotion	Module
community.vmware.vmware_vmotion

The	Ansible	module	vmware_vmotion	is	used	to	move	VMware
virtual	machines	in	your	VMware	infrastructure	using	VMware	vMotion
technology.	The	full	name	is
community.vmware.vmware_vmotion,	which	means	that	it	is	part
of	the	collection	of	modules	that	interact	with	VMware	and	is
community	supported.	The	module’s	purpose	is	to	move	a	virtual
machine	using	vMotion.

Parameters
hostname	string/port	integer/username	string/password
string/datacenter	string/validate_certs	boolean:	Connection	details
destination_host	string:	Destination	VMware	host
destination_datastore	string:	Destination	VMware	datastore
destination_datacenter	string:	Destination	VMware	datacenter
destination_cluster	string:	Destination	VMware	cluster
destination_resourcepool	string:	Destination	VMware	resource	pool
destination_datastore_cluster	string:	Destination	VMware	datastore
cluster	(storage	pod)
The	following	parameters	are	useful	in	order	to	live	migrate	a

VMware	virtual	machine	using	vMotion	using	the	module
vmware_vmotion.	First,	you	must	establish	the	connection	with
VMware	vSphere	or	VMware	vCenter	using	a	plethora	of	self-

explanatory	parameters:	hostname,	port,	username,	password,
datacenter,	and	validate_certs.

Once	the	connection	is	successfully	established,	you	can	specify	if
you	want	only	to	change	the	VMware	host	destination_host
(VMware	host	vMotion)	or	also	change	the	storage	with
destination_datastore	(VMware	storage	vMotion).	More
complex	scenarios	can	be	speci�ied	using
destination_datacenter,	destination_cluster,
destination_resourcepool,	and
destination_datastore_cluster.

Links
community.	vmware.	vmware_	vmotion,
https://docs.ansible.com/ansible/latest/collectio
ns/community/vmware/vmware_vmotion_module.xhtml

Code
I’m	going	to	show	you	how	to	move	the	VMware	virtual	machine	myvm
from	the	host	host1.vmware.example.com	to	the	host
host2.vmware.example.com	using	an	Ansible	Playbook	(see
Figure	3-23	for	before	the	execution	and	Figure	3-24	for	after	the
execution).	The	Ansible	Playbook	includes	the	�ile	vars.yml	for
common	variables	for	the	VMware	Infrastructure	and	has	two	tasks.
The	�irst	task	performs	the	moving	operation	on	the	myvm	VMware
virtual	machine	and	saves	the	result	in	the	vm_info	Ansible	variable.
The	second	task	prints	onscreen	the	values	of	the
vm_info.running_host	Ansible	variable.	For	more	information,
refer	to	the	section	“Getting	a	VMware	Virtual	Machine	Running	Host”.
Under	the	hood,	Ansible	interacts	with	the	VMware	API	via	Python
libraries	to	execute	the	operation	and	verify	the	successful	startup	of
the	virtual	machine.
vm_vmotion.yml

- name: vm vmotion demo

https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_vmotion_module.xhtml
https://docs.ansible.com/ansible/latest/collections/community/vmware/vmware_vmotion_module.xhtml

 hosts: localhost

 gather_facts: false
 vars:
 destination_host: "host2.vmware.example.com"
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: VM vmotion
 vmware_vmotion:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 vm_name: "{{ vm_name }}"
 destination_host: "{{ destination_host }}"
 register: vm_info

 - name: VM running host
 ansible.builtin.debug:
 var: vm_info.running_host

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.
vars.yml

vcenter_hostname: "vmware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vm_name: "myvm"

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.
Inventory

localhost

A	successful	execution	output	includes
Target	host:	localhost
Command	result:	ok=3 changed=1
Return	value:

TASK [VM vmotion]
changed: [localhost]
TASK [VM running host]
ok: [localhost] => {
 "vm_info.running_host":
"host2.vmware.example.com"
}

If	the	virtual	machine	is	not	compatible	with	the	VMware	format	on
the	target	host,	the	module	returns	the	following	status:
Target	host:	localhost
Command	result:	ok=1 failed=1
Return	value:

TASK [VM vmotio]
fatal: [localhost]: FAILED! => {"changed": false,
"msg": "(\"The virtual machine version is not
compatible with the version of the host
'host2.vmware.example.com'.\", None)"}

After	the	execution	of	the	code,	you	expect	the	following	result	in
your	VMware	vSphere	client	user	interface	in	the	“Host”	�ield	on	the
Summary	page.	See	Figures	3-23	and	3-24.

Figure	3-23 Before	moving	the	VMware	virtual	machine

Figure	3-24 After	moving	the	VMware	virtual	machine

Changing	the	Boot	Device	Order	of	a	VMware	Virtual
Machine
You	can	automate	the	changing	of	boot	devices	order	of	a	VMware
virtual	machine	using	an	Ansible	Playbook	and	the
vmware_guest_boot_manager	module	(see	Figure	3-25	for	before

the	execution	and	Figure	3-26	for	after	the	execution).	Changing	the
boot	devices	order,	verifying	the	boot	device	order	status,	and	enabling
the	BIOS	setup	are	boring	and	repetitive	activities	that	any	VMware
infrastructure	administrator	would	like	to	automate.	Save	time	and
avoid	human	error	in	the	changing	of	boot	order	of	your	myvm	VMware
virtual	machine.

Ansible	Module	vmware_guest_boot_manager
community.vmware.vmware_guest_boot_manager

You	can	collect	information	about	the	VMware	guest	tools	status
using	the	Ansible	module	vmware_guest_boot_manager.	The	full
name	is	community.vmware.vmware_guest_boot_manager,
which	means	that	it	is	part	of	the	collection	of	modules	that	interact
with	VMware	and	is	community	supported.	The	module’s	purpose	is	to
manage	boot	options	for	the	given	virtual	machine	in	a	VMware	virtual
machine.

Parameters
hostname	string/port	integer/username	string/password
string/datacenter	string/validate_certs	boolean:	Connection	details
enter_bios_setup	boolean:	Enter	in	the	BIOS	setup
boot_order	list:	Boot	devices	order	(�loppy,	CD-ROM,	Ethernet,	disk)
The	following	parameters	are	useful	in	order	to	change	the	boot

devices	order	of	a	VMware	virtual	machine	using	the	module
vmware_guest_boot_manager.	First,	you	must	establish	the
connection	with	VMware	vSphere	or	VMware	vCenter	using	a	plethora
of	self-explanatory	parameters:	hostname,	port,	username,
password,	datacenter,	and	validate_certs.

Once	the	connection	is	successfully	established,	you	can	enable
entering	the	BIOS	setup	using	the	enter_bios_setup	boolean	and
the	boot	devices	order	via	the	boot_order	list,	such	as	�loppy,	CD-
ROM,	Ethernet,	and	disk.	The	system	will	try	to	boot	from	the	order	of
the	speci�ied	devices.

Code

The	Ansible	Playbook	includes	the	�ile	vars.yml	for	common
variables	for	the	VMware	Infrastructure	and	has	one	task.	Under	the
hood,	Ansible	interacts	with	the	VMware	API	via	Python	libraries	to
execute	the	operation	and	verify	the	successful	startup	of	the	virtual
machine.
vm_change_boot.yml

- name: vm change book demo
 hosts: localhost

 gather_facts: false
 collections:
 - community.vmware
 pre_tasks:
 - include_vars: vars.yml
 tasks:
 - name: VM change boot order
 vmware_guest_boot_manager:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 validate_certs: "{{ vcenter_validate_certs
}}"
 name: "{{ vm_name }}"
 enter_bios_setup: true
 boot_order:
 - cdrom
 - disk
 - ethernet

The	vars.yml	�ile	stores	all	the	VMware	infrastructure	connection
parameters	that	may	be	shared	among	different	Ansible	Playbook	�iles.
vars.yml

vcenter_hostname: "vmware.example.com"
vcenter_datacenter: "vmwaredatacenter"
vcenter_validate_certs: false
vcenter_username: "username@vsphere.local"
vcenter_password: "MySecretPassword123"
vm_name: "myvm"

The	Ansible	inventory	is	only	the	localhost	because	you’re
executing	the	Ansible	automation	on	the	Ansible	controller.
Inventory

localhost

A	successful	execution	output	includes
Target	host:	localhost
Command	result:	ok=1 changed=1
Return	value:

TASK [VM change boot order]
changed: [localhost]

The	execution	of	this	code	is	idempotent.
You	can	see	the	result	of	changing	the	boot	order	in	the	BIOS	setup

of	a	VMware	virtual	machine	in	the	VMware	vSphere	web	user	interface
using	the	web/remote	console.	See	Figures	3-25	and	3-26.

Figure	3-25 Before	changing	the	boot	order	of	the	VMware	virtual	machine

Figure	3-26 After	changing	the	boot	order	of	the	VMware	virtual	machine

Key	Takeaways
This	chapter	moved	deeply	into	VMware	infrastructure	automation	and
providing	some	code	nutshells	and	code	sample	snippets	to	use	in	your

day-to-day	journey.	It	demysti�ied	the	successful	setup,	installation,	and
troubleshooting	of	Ansible	for	VMware.

Now	you	have	a	great	overview	of	the	powerful
community.vmware	collection	resources	that	you	can	use	to
automate	simple	and	complex	VMware	repetitive	tasks	that	were
previously	done	manually	via	the	VMware	vSphere	user	interface.

In	the	next	chapter,	I	thank	you	and	recap	how	to	move	forward	in
your	Ansible	automation	journey.

(1)

©	The	Author(s),	under	exclusive	license	to	APress	Media,	LLC,	part	of	Springer	Nature	2023
L.	Berton,	Ansible	for	VMware	by	Examples
https://doi.org/10.1007/978-1-4842-8879-5_4

4.	Closing	Remarks
Luca	Berton1		

Czechia,	Czech	Republic

	

Please	let	me	remind	you	that	Ansible	is	an	evolving	open	source
product,	so	check	out	the	Ansible	of�icial	website	at
www.ansible.com	for	the	latest	news	and	updates.

In	this	book,	we	covered	the	most	useful	day-to-day	code	snippets
and	activities	to	automate	your	VMware	infrastructure.	Use	this	book	as
guidance	in	your	day-to-day	life,	but	also	use	your	own	creativity	to
invent	new	automation	work�lows.

This	is	where	Ansible	starts	becoming	thoroughly	useful	and	time
saving.	Every	day	I	found	new	ways	to	automate	my	daily	tasks	using
Ansible	and	discovered	new	modules,	plugins,	and	collections	designed
by	third	parties.

The	number	of	people	who	contribute	day	after	day	to	the	Ansible
project	is	impressive	and	it	means	they’re	creating	a	great	worldwide
community	that	communicates	in	the	same	language	and	shares	the
same	ideas,	opinions,	problems,	and	solutions.	The	most	successful
enterprises	and	professionals	are	innovating	their	businesses	in	this
way.

This	is	where	this	book’s	story	ends	but	your	journey	begins.	My
purpose	was	to	share	with	you	real	examples	to	be	used	every	day.	It
was	nearly	impossible	to	include	all	the	possible	scenarios	in	only	one
book,	but	I’ve	included	the	most	frequent	and	generic	use	cases.	I	know
you’ll	come	up	with	ideas	and	problems	that	you	would	like	to
automate	with	Ansible.	If	not,	just	think	about	the	most	boring	and
repetitive	task	that	you	execute	at	least	twice	per	day	and	�ind	a	way	to

https://doi.org/10.1007/978-1-4842-8879-5_4
http://www.ansible.com/

automate	it	(coffee	tasting	doesn’t	count).	You	start	with	a	simple	code,
obtain	a	minimum	viable	solution	to	re�ine	with	your	team,	and	that
will	lead	to	an	automated	complex	work�low.	I’m	excited	to	hear	about
your	automation	story.	I	believe	that	this	is	the	true	essence	of	open
source	in	the	21st	century	and	we	need	to	be	very	proud	of	it.	These	are
the	kind	of	things	that	push	innovation	in	your	business	and	accelerate
your	business.	Your	boss	is	going	to	love	it!	Check	out	the	online	and
local	communities	and	events	for	more	automation	ideas.

From	the	depth	of	my	heart,	I	wish	you	the	best	of	luck.	Have	a
bright	day	and	let’s	automate	more!	From	now	on,	the	sky	is	the	limit!

Key	Takeaways
This	book	is	a	cornerstone	in	your	journey	with	the	Ansible	platform
for	an	information	technology	VMware	infrastructure.

You	now	have	a	comprehensive	overview	of	the	state-of-the-art
Ansible	platform,	its	strengths,	and	the	programming	language
constructs	with	some	battle-tested	code	nutshells	and	command-line
command	snippets.

The	Ansible	platform	technology	evolves	every	day,	but	the	concepts
and	main	statements	are	stable	and	have	long-lasting	applications.

This	knowledge	will	guide	your	journey	to	upskill	yourself	with
Ansible	and	implement	VMware	Infrastructure	as	Code	(IaC)	using
DevOps	methodologies.

Index
A,	B
Amazon	Linux	2	(AWS	EC2)
Ansible
agentless
application	deployment
architecture
community	driven
con�iguration	management
connect	with	managed	nodes
declarative
DevOps
�iles	modules
handler
history
host	in	multiple	groups
idempotent
infrastructure-as-Code
installation
create	basic	inventory
run	ad-hoc	commands	with	privilege	escalation
run	�irst	Ansible	command

inventory
modules
modules	and	plugins
net	tools	modules
playbook
powerful	IT	automation	solution
project
provisioning
Python
ranges	of	hosts
Red	Hat
simple	INI	inventory
simple	YAML	inventory
six	values

software	package	modules
system	administrator	tasks	automation
system	modules
variables
VMware	errors
VMware	infrastructure

Ansible	Automation	platform
Ansible	Collection
Ansible	community	package
Ansible	community.vmware	VMware	collection
code,	inventory,	and	Playbook
community-supported	collection
installing
modules	and	plugins
installing	pyVmomi
Python	pyVmomi	library

Ansible	conditional	operations
ansible_facts
basic	conditionals	with	“when
computers
Jinjia2	tests	and	�ilters
loop
iterations
loop_with_items.y
with_*	statement

Ansible	controller
Ansible	Controller	Worker	model
Ansible-core	package
Ansible	Core
Ansible	dynamic	inventory	for	VMware
code
community.vmware.vmware_vm_inventory
data	source
plugin

Ansible	Engine
Ansible	Engine	Software	Collection	(RHSCL)
Ansible	execution	environment

Ansible	facts
facts_printall.yml	execution
machine	Ad-Hoc
machine	Playbook
reference

Ansible	fatal	error
Ansible	For	VMware	Playbook	code
Ansible	Galaxy
Ansible-inventory	tool
Ansible	Managed	Snapshot
Ansible	ping	module
Ansible	Playbook
Ansible	role
Ansible	Galaxy
Ansible	Playbook	development
collection
directory	tree
playbook
Plugins

Ansible	Tower
Ansible	variables
array	variables
array.yml	execution
�ilters	and	templates
group	variables
host	variables
not	permitted	variable	names
registered	variables
registeredvariables.yml	execution
variableprint.yml

Ansible_version	magic	variable
Ansible	VMware	con�iguration
failed	to	import	the	required	Python	library	(pyVmomi)
Python	virtual	environment
unable	to	connect	to	vCenter
unknown	error	while	connecting	to	vCenter
vmware.vmware_rest	Ansible	collection

Application	deployment
Array	variables
Array.yml	Execution

C
CentOS	9	Stream
cluster_info	Ansible	variable
community.vmware	collection
community.vmware.vmware_guest
Con�iguration	management
Control	node

D
datastore_info	Ansible	variable
Datastores
Debian
Debian-like	target	system
detailed_vm_info	Ansible	variable
DevOps
Ansible
categories
toolchains
tools

E
Encryption
enter_bios_setup	boolean
ESXi	fatal	error

F
facts_printall.yml	execution
Fatal	error	message
Fedora	36
Filters	and	templates

G
Gathering	VMware	host	information,	cluster
Ansible	Playbook
code

parameters
vmware_host_con�ig_info	module

Gathering	VMware	virtual	machine	UUID
Ansible	Playbook
code
parameters
vmware_guest_info	module

Getting	VMware	datastore	status
Ansible	Playbook
code
day-to-day	operations
parameters
vmware_datastore_info	module

Getting	VMware	virtual	machine	running	host
Ansible	inventory
Ansible	playbook
detailed_vm_info	Ansible	variable
vars.yml	�ile	stores
vmware_guest_info	module
VMware	vSphere	web	user	interface

Group	variables
Ansible	inventory
inheriting	variable	values
localhost	inventory
multiple	inventory	sources

H
helloworld_debug.yml
helloworld.yml
Host	variables
Human-readable	data	serialization	language

I,	J,	K
Idempotency
Infrastructure	as	Code	(IaC)
Infrastructure	automation	tool
Install	Ansible
Amazon	Linux	2	(AWS	EC2)

code
Extras	Library
links

Ansible	community	vs.	ansible-core	packages
CentOS	9	Stream
AppStream	repository
code
links

community.vmware	collection	via	the	requirements.yml	File
Debian	11
APT
code

Fedora	36
code

links
macOS
code

PIP
code
OS-speci�ic	package	manager

RHEL	9
demo
links

SUSE	SLES	15	SP3
code
links

version	of	community.vmware
Windows
code
links
WSL

Inventory
Inventory_hostname	magic	variable

L
Localhost
Localhost	Inventory

M,	N
Machine	Aad-Hhoc
Machine	Playbook
macOS
Magic	variables
Ansible_version
group_names
hostvars
internal	variables,	Ansible
Inventory_hostname	magic

Memory_dump	parameter
multipleplays.yml	Playbook
myvm	VMware	guest	tools	status
myvm	VMware	virtual	machine

O
Open	source	Infrastructure-as-Code	(IaC)
OS-speci�ic	package	manager

P,	Q
Personal	package	archives	(PPA)
pip	tool
PIP	package	installer
PIP	package	manager
Playbook
Ansible	Galaxy
Ansible	modules
Ansible	role
check	option
debug	day-to-day	usage
helloworld.yml
idempotency
multipleplays.yml
order	of	execution
privilege_escalation.yml
YAML	Syntax

playbook.yml

Plugins
privilege_escalation.yml
Provisioning
Python	Package	Manager	(PIP)
Python	SDK	library
Python	virtual	environment
pyVmomi	Python	SDK	library

R
Red	Hat	Enterprise	Linux	version	8	(RHEL)
code
RHSCL
Ubuntu	22.04	LTS
code,	universe
PPA,	code

YUM
Registered	variables
Reporting
Requirements.txt	�ile
RHEL	9
Role-based	access	control	(RBAC)
Role	handlers
rollingupdate.yml	�ile

S,	T
SCSI	controller	types
Self-explanatory	parameters
Self-signed	certi�icate
Simple	INI	inventory
Simple	YAML	inventory
Software	development	kit	(SDK)
SSL	certi�icate	validation
SUSE	Linux	Enterprise	Server	(SLES)	version	15	SP3
SUSE	Package	Hub	repository

U
Ubuntu	22.04	LTS
Universally	Unique	Identi�ier	(UUID)

Upgrading	VMware	guest	tools
Ansible	Playbook
code
parameters
vmware_guest_tools_upgrade	module

V
variableprint.yml
vars.yml	�iles
Vault
encrypted	�ile
create	parameter
edit	parameter
password	change
view	parameter

encryption
existing	�ile
decrypt	parameter
encrypt	parameter

vCenter	infrastructure
vm_info.yml	Ansible	Playbook
vmtools_info	Ansible	variable
VMware	Datastore,	uploading	�ile
Ansible	Playbook
code
parameters
vsphere_copy	module

vmware.example.com	VMware	vSphere
VMware	guest	tools	status	gathering
code
parameters
vmware_guest_tools_info	module

VMware	infrastructure
VMware	infrastructure	automation
VMware	vCenter
VMware	vCenter	server	appliance	(VCSA)
VMware	Virtual	Machine,	adding	hard	disk

Ansible	Playbook
code
guest	myvm
operating	systems
parameters
vmware_guest_disk	module

VMware	virtual	machine,	boot	devices
Ansible	Playbook
code
parameters
vmware_guest_boot_manager	module

VMware	virtual	machine	creation
Ansible	Playbook
assigned	resources
code
Ansible	module	vmware_guest
vSphere	client

VMware	virtual	machine,	deleting	snapshot
Ansible	Playbook
code
parameters
vmware_guest_snapshot	module
vSphere	client/web	user	interface

VMware	virtual	machine	deployment
Ansible	Playbook
code
Microsoft	Windows	operating	system
template
vmware_guest	module
Ansible	module	vmware_guest

VMware	virtual	machine,	expanding	virtual	disk
Ansible	Playbook
code
parameters
vmware_guest_disk	module
vSphere	client/web	user	interface

VMware	virtual	machine,	live	migration

Ansible	Playbook
code
parameters
vmware_vmotion	module

VMware	virtual	machine	shutdown
Ansible	Playbook
code
guest	myvm
parameters
vmware_guest_powerstate	module
vSphere	client

VMware	virtual	machine	startup
Ansible	Playbook
code
infrastructure	administrator
guest	myvm
parameters
vmware_guest_powerstate	module

VMware	virtual	machine,	taking	snapshots
Ansible	Managed	Snapshot
Ansible	Playbook
code
parameters
vmware_guest_snapshot	module

vmware_vm_inventory	Ansible	Inventory	plugin
VMware	vMotion
vmware.vmware_rest	Ansible	collection
alternative
Ansible	VMware	community
Ansible	community.vmware
life	cycle
pyVmomi
site	documentation

VMware	vSphere	Automation	SDK	for	Python	library
VMware	vSphere	client
VMware	vSphere	datastore
VMware	vSphere	REST	API	interface

VMware	vSphere	web	user	interface
vsphere-automation-sdk-python	library

W,	X
Windows	Subsystem	for	Linux	(WSL)

Y,	Z
YAML	language
YAML	syntax
YUM

	Front Matter
	1. Ansible for Beginners with Examples
	2. Installing Ansible
	3. Ansible for VMware
	4. Closing Remarks
	Back Matter

