

High-Performance
Web Apps with

FastAPI
The Asynchronous

Web Framework Based on
Modern Python

Malhar Lathkar

High-Performance Web Apps with FastAPI: The Asynchronous Web

Framework Based on Modern Python

ISBN-13 (pbk): 978-1-4842-9177-1		 ISBN-13 (electronic): 978-1-4842-9178-8
https://doi.org/10.1007/978-1-4842-9178-8

Copyright © 2023 by Malhar Lathkar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Divya Modi
Development Editor: James Markham
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Piaxaby

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at https://github.com/
Apress/Build-High-Performance-Web-Apps-with-FastAPI-by-Malhar-Lathkar. For more detailed
information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Malhar Lathkar
Nanded, Maharashtra, India

https://doi.org/10.1007/978-1-4842-9178-8

Dedicated to my late father,

Shri V. K. Lathkar.

You stood behind me like a rock.

It helped me to get rid of fear of failure.

v

Table of Contents

About the Author��xiii

About the Technical Reviewer���xv

Acknowledgments���xvii

Introduction��xix

Chapter 1: �Introduction to FastAPI��1

Type Hints��2

The typing Module��6

Asynchronous Processing��8

The asyncio Module��8

ASGI��11

About REST Architecture��13

What Is an API?���14

REST���17

REST Constraints��17

HTTP Verbs���19

POST Method��19

GET Method��20

PUT Method��20

DELETE Method��21

FastAPI Dependencies���21

Starlette��22

https://doi.org/10.1007/978-1-4842-9178-8_1
https://doi.org/10.1007/978-1-4842-9178-8_1#Sec1
https://doi.org/10.1007/978-1-4842-9178-8_1#Sec2
https://doi.org/10.1007/978-1-4842-9178-8_1#Sec3
https://doi.org/10.1007/978-1-4842-9178-8_1#Sec4
https://doi.org/10.1007/978-1-4842-9178-8_1#Sec5
https://doi.org/10.1007/978-1-4842-9178-8_1#Sec6
https://doi.org/10.1007/978-1-4842-9178-8_1#Sec7
https://doi.org/10.1007/978-1-4842-9178-8_1#Sec8
https://doi.org/10.1007/978-1-4842-9178-8_1#Sec9
https://doi.org/10.1007/978-1-4842-9178-8_1#Sec10
https://doi.org/10.1007/978-1-4842-9178-8_1#Sec11
https://doi.org/10.1007/978-1-4842-9178-8_1#Sec12
https://doi.org/10.1007/978-1-4842-9178-8_1#Sec13
https://doi.org/10.1007/978-1-4842-9178-8_1#Sec14
https://doi.org/10.1007/978-1-4842-9178-8_1#Sec15
https://doi.org/10.1007/978-1-4842-9178-8_1#Sec16

vi

Pydantic��23

Uvicorn���23

Installation of FastAPI��24

Summary���28

Chapter 2: �Getting Started with FastAPI��29

Hello World���30

Create an Application Object��30

Path Operation Decorator���30

Path Operation Function���32

Start Uvicorn���32

Externally Visible Server���34

Interactive API Docs���36

Swagger UI���37

Redoc���42

JSON Schema���44

Path Parameters��46

Using Type Hints���47

Type Parsing���48

Query Parameters��49

Optional Parameters���51

Order of Parameters���53

Validation of Parameters��55

Validating String Parameter���56

Validation with RegEx���59

Validating Numeric Parameters��60

Adding Metadata��62

Summary���64

Table of Contents

https://doi.org/10.1007/978-1-4842-9178-8_1#Sec17
https://doi.org/10.1007/978-1-4842-9178-8_1#Sec18
https://doi.org/10.1007/978-1-4842-9178-8_1#Sec19
https://doi.org/10.1007/978-1-4842-9178-8_1#Sec20
https://doi.org/10.1007/978-1-4842-9178-8_2
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec1
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec2
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec3
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec4
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec5
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec6
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec7
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec8
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec9
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec10
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec11
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec12
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec13
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec14
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec15
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec16
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec17
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec18
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec19
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec20
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec21
https://doi.org/10.1007/978-1-4842-9178-8_2#Sec22

vii

Chapter 3: �Request Body���65

POST Method���65

Body Parameters��67

Data Model with Pydantic��69

dataclasses Module��70

BaseModel��71

Pydantic Model As Parameter��73

Model Configuration���76

orm_mode��77

Pydantic Fields���80

Validation���82

Custom Validation���85

Nested Models���87

Summary���91

Chapter 4: �Templates���93

HTML Response���93

Template Engine��96

Hello World Template���98

Template with Path Parameter���100

Template Variables���101

Passing dict in Template Context��102

Conditional Blocks in Template���103

Loop in Template��105

Serving Static Assets���107

Using JavaScript in Template���108

Static Image���111

CSS As a Static Asset���113

Table of Contents

https://doi.org/10.1007/978-1-4842-9178-8_3
https://doi.org/10.1007/978-1-4842-9178-8_3#Sec1
https://doi.org/10.1007/978-1-4842-9178-8_3#Sec2
https://doi.org/10.1007/978-1-4842-9178-8_3#Sec3
https://doi.org/10.1007/978-1-4842-9178-8_3#Sec4
https://doi.org/10.1007/978-1-4842-9178-8_3#Sec5
https://doi.org/10.1007/978-1-4842-9178-8_3#Sec6
https://doi.org/10.1007/978-1-4842-9178-8_3#Sec7
https://doi.org/10.1007/978-1-4842-9178-8_3#Sec8
https://doi.org/10.1007/978-1-4842-9178-8_3#Sec9
https://doi.org/10.1007/978-1-4842-9178-8_3#Sec10
https://doi.org/10.1007/978-1-4842-9178-8_3#Sec11
https://doi.org/10.1007/978-1-4842-9178-8_3#Sec12
https://doi.org/10.1007/978-1-4842-9178-8_3#Sec13
https://doi.org/10.1007/978-1-4842-9178-8_4
https://doi.org/10.1007/978-1-4842-9178-8_4#Sec1
https://doi.org/10.1007/978-1-4842-9178-8_4#Sec2
https://doi.org/10.1007/978-1-4842-9178-8_4#Sec3
https://doi.org/10.1007/978-1-4842-9178-8_4#Sec4
https://doi.org/10.1007/978-1-4842-9178-8_4#Sec5
https://doi.org/10.1007/978-1-4842-9178-8_4#Sec6
https://doi.org/10.1007/978-1-4842-9178-8_4#Sec7
https://doi.org/10.1007/978-1-4842-9178-8_4#Sec8
https://doi.org/10.1007/978-1-4842-9178-8_4#Sec9
https://doi.org/10.1007/978-1-4842-9178-8_4#Sec10
https://doi.org/10.1007/978-1-4842-9178-8_4#Sec11
https://doi.org/10.1007/978-1-4842-9178-8_4#Sec12

viii

HTML Form Template���115

Retrieve Form Data��117

Summary���120

Chapter 5: �Response��121

Response Model���122

Cookies��125

set_cookie() Method���125

Cookie Parameter���126

Headers��129

Header Parameter��130

Response Status Code���131

Response Types���134

HTMLResponse���135

JSONResponse���136

StreamingResponse���136

FileResponse��138

RedirectResponse���139

Summary���141

Chapter 6: �Using Databases���143

DB-API��144

Creating the Books Table��144

Inserting a New Book���147

Selecting All Books���150

Selecting a Single Book��151

Updating a Book���152

Deleting a Book��153

Table of Contents

https://doi.org/10.1007/978-1-4842-9178-8_4#Sec13
https://doi.org/10.1007/978-1-4842-9178-8_4#Sec14
https://doi.org/10.1007/978-1-4842-9178-8_4#Sec15
https://doi.org/10.1007/978-1-4842-9178-8_5
https://doi.org/10.1007/978-1-4842-9178-8_5#Sec1
https://doi.org/10.1007/978-1-4842-9178-8_5#Sec2
https://doi.org/10.1007/978-1-4842-9178-8_5#Sec3
https://doi.org/10.1007/978-1-4842-9178-8_5#Sec4
https://doi.org/10.1007/978-1-4842-9178-8_5#Sec5
https://doi.org/10.1007/978-1-4842-9178-8_5#Sec6
https://doi.org/10.1007/978-1-4842-9178-8_5#Sec7
https://doi.org/10.1007/978-1-4842-9178-8_5#Sec8
https://doi.org/10.1007/978-1-4842-9178-8_5#Sec9
https://doi.org/10.1007/978-1-4842-9178-8_5#Sec10
https://doi.org/10.1007/978-1-4842-9178-8_5#Sec11
https://doi.org/10.1007/978-1-4842-9178-8_5#Sec12
https://doi.org/10.1007/978-1-4842-9178-8_5#Sec13
https://doi.org/10.1007/978-1-4842-9178-8_5#Sec14
https://doi.org/10.1007/978-1-4842-9178-8_6
https://doi.org/10.1007/978-1-4842-9178-8_6#Sec1
https://doi.org/10.1007/978-1-4842-9178-8_6#Sec2
https://doi.org/10.1007/978-1-4842-9178-8_6#Sec3
https://doi.org/10.1007/978-1-4842-9178-8_6#Sec4
https://doi.org/10.1007/978-1-4842-9178-8_6#Sec5
https://doi.org/10.1007/978-1-4842-9178-8_6#Sec6
https://doi.org/10.1007/978-1-4842-9178-8_6#Sec7

ix

aiosqlite Module���154

SQLAlchemy���156

async in SQLAlchemy���163

databases Module��164

Core Expression Language���165

Table Class Methods���166

FastAPI Path Operations���167

PyMongo for MongoDB��170

Motor for MongoDB��177

Summary���179

Chapter 7: �Bigger Applications��181

Single File App���182

APIRouter���185

Router Package��189

Mounting Subapplications���191

Dependencies��194

Example of Dependency Injection��195

Query Parameters As Dependencies��196

Parameterized Dependency Function���200

Using Class As Dependency���202

Database Session Dependency��204

Dependency in Decorator���205

Middleware��207

CORS��209

Summary���210

Table of Contents

https://doi.org/10.1007/978-1-4842-9178-8_6#Sec8
https://doi.org/10.1007/978-1-4842-9178-8_6#Sec9
https://doi.org/10.1007/978-1-4842-9178-8_6#Sec10
https://doi.org/10.1007/978-1-4842-9178-8_6#Sec11
https://doi.org/10.1007/978-1-4842-9178-8_6#Sec12
https://doi.org/10.1007/978-1-4842-9178-8_6#Sec13
https://doi.org/10.1007/978-1-4842-9178-8_6#Sec14
https://doi.org/10.1007/978-1-4842-9178-8_6#Sec15
https://doi.org/10.1007/978-1-4842-9178-8_6#Sec16
https://doi.org/10.1007/978-1-4842-9178-8_6#Sec17
https://doi.org/10.1007/978-1-4842-9178-8_7
https://doi.org/10.1007/978-1-4842-9178-8_7#Sec1
https://doi.org/10.1007/978-1-4842-9178-8_7#Sec2
https://doi.org/10.1007/978-1-4842-9178-8_7#Sec3
https://doi.org/10.1007/978-1-4842-9178-8_7#Sec4
https://doi.org/10.1007/978-1-4842-9178-8_7#Sec5
https://doi.org/10.1007/978-1-4842-9178-8_7#Sec6
https://doi.org/10.1007/978-1-4842-9178-8_7#Sec7
https://doi.org/10.1007/978-1-4842-9178-8_7#Sec8
https://doi.org/10.1007/978-1-4842-9178-8_7#Sec9
https://doi.org/10.1007/978-1-4842-9178-8_7#Sec10
https://doi.org/10.1007/978-1-4842-9178-8_7#Sec11
https://doi.org/10.1007/978-1-4842-9178-8_7#Sec12
https://doi.org/10.1007/978-1-4842-9178-8_7#Sec13
https://doi.org/10.1007/978-1-4842-9178-8_7#Sec14

x

Chapter 8: �Advanced Features���211

WebSockets���211

How Do WebSockets Work?��212

WebSocket Server��213

WebSocket Client���214

WebSockets Module in FastAPI��215

Test WebSockets with Insomnia��221

Multiclient Chat Application���222

GraphQL���226

The Schema Definition Language���227

Queries���228

Mutations��229

Subscriptions��230

Schema��231

Strawberry GraphQL���231

FastAPI Events���238

Mounting WSGI Application��239

Summary���241

Chapter 9: �Security and Testing��243

Exception Handling��243

User-Defined Exception��245

Security��248

Basic Access Authentication���248

OAuth��250

OAuth2PasswordBearer��252

Table of Contents

https://doi.org/10.1007/978-1-4842-9178-8_8
https://doi.org/10.1007/978-1-4842-9178-8_8#Sec1
https://doi.org/10.1007/978-1-4842-9178-8_8#Sec2
https://doi.org/10.1007/978-1-4842-9178-8_8#Sec3
https://doi.org/10.1007/978-1-4842-9178-8_8#Sec4
https://doi.org/10.1007/978-1-4842-9178-8_8#Sec5
https://doi.org/10.1007/978-1-4842-9178-8_8#Sec6
https://doi.org/10.1007/978-1-4842-9178-8_8#Sec7
https://doi.org/10.1007/978-1-4842-9178-8_8#Sec8
https://doi.org/10.1007/978-1-4842-9178-8_8#Sec9
https://doi.org/10.1007/978-1-4842-9178-8_8#Sec10
https://doi.org/10.1007/978-1-4842-9178-8_8#Sec11
https://doi.org/10.1007/978-1-4842-9178-8_8#Sec12
https://doi.org/10.1007/978-1-4842-9178-8_8#Sec13
https://doi.org/10.1007/978-1-4842-9178-8_8#Sec14
https://doi.org/10.1007/978-1-4842-9178-8_8#Sec15
https://doi.org/10.1007/978-1-4842-9178-8_8#Sec16
https://doi.org/10.1007/978-1-4842-9178-8_8#Sec17
https://doi.org/10.1007/978-1-4842-9178-8_9
https://doi.org/10.1007/978-1-4842-9178-8_9#Sec1
https://doi.org/10.1007/978-1-4842-9178-8_9#Sec2
https://doi.org/10.1007/978-1-4842-9178-8_9#Sec3
https://doi.org/10.1007/978-1-4842-9178-8_9#Sec4
https://doi.org/10.1007/978-1-4842-9178-8_9#Sec5
https://doi.org/10.1007/978-1-4842-9178-8_9#Sec6

xi

Testing���260

Testing WebSocket���263

Testing Databases��265

AsyncClient��270

Summary���272

Chapter 10: �Deployment��273

Hypercorn��274

HTTPS���275

Daphne���277

Gunicorn���278

FastAPI on Render Cloud��279

Docker��282

Google Cloud Platform���285

Deta Cloud��289

Summary���293

��Index��295

Table of Contents

https://doi.org/10.1007/978-1-4842-9178-8_9#Sec7
https://doi.org/10.1007/978-1-4842-9178-8_9#Sec8
https://doi.org/10.1007/978-1-4842-9178-8_9#Sec9
https://doi.org/10.1007/978-1-4842-9178-8_9#Sec12
https://doi.org/10.1007/978-1-4842-9178-8_9#Sec13
https://doi.org/10.1007/978-1-4842-9178-8_10
https://doi.org/10.1007/978-1-4842-9178-8_10#Sec1
https://doi.org/10.1007/978-1-4842-9178-8_10#Sec2
https://doi.org/10.1007/978-1-4842-9178-8_10#Sec3
https://doi.org/10.1007/978-1-4842-9178-8_10#Sec4
https://doi.org/10.1007/978-1-4842-9178-8_10#Sec5
https://doi.org/10.1007/978-1-4842-9178-8_10#Sec6
https://doi.org/10.1007/978-1-4842-9178-8_10#Sec7
https://doi.org/10.1007/978-1-4842-9178-8_10#Sec8
https://doi.org/10.1007/978-1-4842-9178-8_10#Sec9

xiii

About the Author

Malhar Lathkar is an independent developer,

trainer, technical writer, and author with

over 30 years of experience. He holds a

postgraduate degree in electronics. After

a brief stint as a degree college lecturer,

he entered into the software training and

development field as an entrepreneur.

Malhar is mostly a self-taught professional.

Over the years, he has gained proficiency

in various programming technologies and

guided thousands of students and professionals from India and different

countries around the world. Malhar also offers software training services to

corporates.

He has been associated with many EdTech companies as a freelance

content developer and subject matter expert. He has also written a few

books that have been published by well-known publishing houses.

Malhar is frequently invited to conduct workshops, deliver technical

talks for the students in various engineering colleges, and work as a jury to

evaluate student projects for hackathon competitions.

He enjoys Indian classical music. Being an avid sportsman during

college days, he keeps a keen eye on all the sporting action around

the world.

xv

About the Technical Reviewer

Jeff Chiu is a senior software engineer with

over ten years of experience working on

Django, Python, and REST APIs. He has

worked as senior engineer at several major

Silicon Valley tech companies building

platform infrastructure. Jeff writes clean,

consistent code. Outside of work, he mentors

other aspiring engineers and early career

professionals through the online community.

He enjoys this so much that he has built multiple apps and created

discussion forums to help engineers receive constructive feedback.

His work portfolio can be found at https://jeffchiucp.github.io/

portfolio/.  

https://urldefense.com/v3/__https:/jeffchiucp.github.io/portfolio/__;!!NLFGqXoFfo8MMQ!vfdyTSASrfO7qWWvzXQwUu055zFJoGpOQuTPC1xwwQTFSvDKBbIOTpEQ7EORL8Lq_ZACYSMrczp9w70ZOG-ey7E$
https://urldefense.com/v3/__https:/jeffchiucp.github.io/portfolio/__;!!NLFGqXoFfo8MMQ!vfdyTSASrfO7qWWvzXQwUu055zFJoGpOQuTPC1xwwQTFSvDKBbIOTpEQ7EORL8Lq_ZACYSMrczp9w70ZOG-ey7E$

xvii

Acknowledgments

At the outset, I express my sincere gratitude toward Apress (Springer

Nature) Publications for giving me this opportunity to write this book and

be a part of the Apress family. I thank the editorial team and especially Jeff

Chiu – the technical reviewer – for his invaluable inputs while finalizing

the draft of this book.

I would also like to acknowledge the graphics designers who have

produced a splendid cover page for this book.

The unerring and unconditional support of my family (my wife

Jayashree, daughter Sukhada, and son-in-law Shripad) in my endeavors

has always been my biggest strength. They have stood by me in good and

bad times. A very dear friend Dr. Kishore Atnurkar and his wife Seema,

who are no less than a part of my family, have been appreciative of my

work and have always given me a lot of encouragement. It wouldn’t be out

of place to acknowledge their contribution.

Throughout my academic life, I have been blessed with guidance from

some highly inspiring teachers. Their profound influence has made me a

lifelong learner. I hereby pay my respectful regards to all my teachers.

You always learn more when you teach. I would like to thank

thousands of my students for being a part of my learning journey.

Finally, for all those who have been involved in bringing out this book,

a big thank you!

xix

Introduction

As a programming language, Python has been continuously evolving. New

features and capabilities are incorporated with each version of Python.

This has made Python the preferred choice of developers working in

different application domains such as machine learning, GUI construction,

API development, etc.

With the inclusion of support for asynchronous processing, using

Python in building high-performance web apps has become increasingly

prevalent. FastAPI is one of the fastest web application frameworks.

It implements the ASGI (Asynchronous Server Gateway Interface)

specification.

FastAPI is a relatively young framework. Yet it has become quite

popular with the developer community. This book aims to help the reader

get acquainted with its salient features. Experienced Python developers

looking to leverage the flexibility of Python and the powerful features

introduced in modern Python as well as computer science engineering

students at graduate and postgraduate levels will also benefit immensely

from the practical approach adapted in the book.

�How This Book Is Arranged
This book comprises ten chapters.

Chapter 1: To begin with, Python’s type hinting and its handling of

asynchronous process are the two aspects introduced. FastAPI is built on

top of Starlette and Pydantic. In this chapter, the reader is introduced to

these two libraries.

https://doi.org/10.1007/978-1-4842-9178-8_1

xx

Chapter 2: FastAPI follows OpenAPI standards and integrates

seamlessly with Swagger UI. In this chapter, the reader will learn how

FastAPI is able to autogenerate the documentation for the API endpoints.

Chapter 3: This chapter deals with Pydantic’s BaseModel and how it

populates the body of an HTTP request.

Chapter 4: Although FastAPI is primarily a tool for API development,

it can also be used to build web applications that render web pages and

serve static assets. This chapter covers how to use jinja2 templates and

include static files.

Chapter 5: This chapter explains how the FastAPI application inserts

cookies and headers in its response and how it is able to retrieve them.

Chapter 6: This chapter provides a comprehensive explanation of

using SQL and NoSQL databases as the back end for a FastAPI application.

Chapter 7: This chapter is the beginning of the advanced part of this

book. It introduces APIRouters with which bigger applications can be

modularly constructed.

Chapter 8: Apart from REST, FastAPI supports WebSocket and

GraphQL protocols. This chapter describes how to design apps that

implement WebSocket and GraphQL.

Chapter 9: This chapter explains how the reader can secure the API

with different provisions in FastAPI. The reader is also introduced to

FastAPI’s testing functionality.

Chapter 10: Deploying your API for public availability is very

important. This chapter discusses different deployment alternatives.

As mentioned earlier, this book is intended to be a hands-on guide to

learn FastAPI. Hence, it is replete with code listings and screenshots, which

should help the reader to learn the concepts by executing the code as they

read along. All the code snippets are thoroughly tested and are available in

the repository: https://github.com/Apress/Build-High-Performance-

Web-Apps-with-FastAPI-by-Malhar-Lathkar.

Developing the content of this book has been an extremely enjoyable

process. Hopefully, it will prove to be equally enjoyable for the reader.

Introduction

https://doi.org/10.1007/978-1-4842-9178-8_2
https://doi.org/10.1007/978-1-4842-9178-8_3
https://doi.org/10.1007/978-1-4842-9178-8_4
https://doi.org/10.1007/978-1-4842-9178-8_5
https://doi.org/10.1007/978-1-4842-9178-8_6
https://doi.org/10.1007/978-1-4842-9178-8_7
https://doi.org/10.1007/978-1-4842-9178-8_8
https://doi.org/10.1007/978-1-4842-9178-8_9
https://doi.org/10.1007/978-1-4842-9178-8_10
https://github.com/Apress/Build-High-Performance-Web-Apps-with-FastAPI-by-Malhar-Lathkar
https://github.com/Apress/Build-High-Performance-Web-Apps-with-FastAPI-by-Malhar-Lathkar

1

CHAPTER 1

Introduction
to FastAPI
The recent surge in the popularity of Python as a programming language

is mainly due to its libraries used in the field of data science applications.

However, Python is also extensively used for web application development,

thanks to the abundance of its web application frameworks.

FastAPI is the latest entrant in the long list of Python’s web application

frameworks. However, it’s not just another framework as it presents some

distinct advantages over the others. Considered to be one of the “fastest,”

FastAPI leverages the capabilities of modern Python. In this chapter,

we shall get acquainted with the important features on top of which the

FastAPI library is built.

This chapter covers the following topics:

•	 Type hints

•	 Asynchronous processing

•	 REST architecture

•	 HTTP verbs

•	 FastAPI dependencies

•	 FastAPI installation

© Malhar Lathkar 2023
M. Lathkar, High-Performance Web Apps with FastAPI,
https://doi.org/10.1007/978-1-4842-9178-8_1

https://doi.org/10.1007/978-1-4842-9178-8_1#DOI

2

�Type Hints
Python is a dynamically typed language. In contrast, the languages

C/C++ and Java are statically typed, wherein the type of the variable must

be declared before assigning a value to it. During the lifetime of a C/C++/

Java program, a variable can hold the data of its declared type only. In

Python, it is the other way round. The type of the variable is decided by

the value assigned to it. It may change dynamically on each assignment.

The interaction in the Python console in Listing 1-1 shows Python’s

dynamic typing.

Listing 1-1.  Dynamic typing

>>> x=10

>>> #x is an int variable

>>> x=(1,2,3)

>>> type(x)

<class 'tuple'>

>>> x=[1,2,3]

>>> #x is now a list

>>> type(x)

<class 'list'>

>>> x="Hello World"

>>> #x now becomes a str variable

>>> type(x)

<class 'str'>

Although this dynamic typing feature makes programming easier,

it also becomes prone to encountering runtime errors, as the Python

interpreter doesn’t enforce any type checking before executing. Take a look

at the example in Listing 1-2.

Chapter 1 Introduction to FastAPI

3

Listing 1-2.  Python function

#hint.py

def division(num, den):

 return num/den

Let us import this function and call it from the Python prompt as

shown in Listing 1-3.

Listing 1-3.  TypeError in the function

>>> from hint import division

>>> division(10,2)

5.0

>>> division(10,2.5)

4.0

>>> division("Python",2)

Traceback (most recent call last):

 File "<pyshell#13>", line 1, in <module>

 division("Python",2)

 File "F:\python36\hint.py", line 3, in division

 return num/den

TypeError: unsupported operand type(s) for /: 'str' and 'int'

The first two calls to the division() function are successful, but the

TypeError exception is thrown for the third case, because the division

operation of a numeric and a nonnumeric operand fails.

The default Python interpreter (Python shell) that comes with the

standard installation of Python is rather rudimentary in nature. The more

advanced Python runtimes such as IPython and Jupyter Notebook as well

as many Python IDEs like VS Code, PyCharm (including IDLE – a basic

IDE shipped with the standard library) are more intelligent, having useful

features such as autocompletion, syntax highlighting, and type ahead help.

Figure 1-1 shows the autocompletion feature of IPython.

Chapter 1 Introduction to FastAPI

4

Figure 1-1.  IPython shell

The type hinting feature was introduced in version 3.5 of Python.

When a variable is used, its expected type can now be mentioned after the

: (colon) symbol in front of it. The following definition of the division()

function indicates the data types of its parameters:

def division(num:int, den:int):

 return num/den

Although the Python interpreter still doesn’t enforce type checking, the

annotation of parameters with data types is picked by Python IDEs. The

IDE lets the user know what types of values are to be passed as arguments

to the function while calling.

Let us see how VS Code – a very popular IDE for program development

not only in Python but in many other languages too – reacts to the type

hints. In Figure 1-2, we find that the preceding function is defined and its

return value is displayed.

Chapter 1 Introduction to FastAPI

5

Figure 1-2.  Type hints in the VS Code editor

As soon as the left parenthesis key is entered while calling the

division() function, VS Code pops the signature of the function,

indicating (hinting) to the user that the function needs two arguments of

int type.

We can also provide the type hint for the return value of the function.

Put an (->) arrow symbol after the closing parenthesis of the definition and

mention the desired type after it before starting the function’s code block.

Let us add float as the type hint for the return type in the definition of the

division() function in the code snippet in Listing 1-4.

Listing 1-4.  Function with type hints

def division(num:int, den:int) -> float:

 return num/den

All the standard types, those defined in imported modules, and user-

defined types can be used as hints (Listing 1-5). Type hints can be used

for global variables, function and method parameters, as well as local

variables inside them.

Chapter 1 Introduction to FastAPI

6

Listing 1-5.  hintexample.py

#hintexample.py

arg1: int = int(input("Enter a number.."))

arg2: int = int(input("Enter a number.."))

def division(num:int, den:int) -> float:

 result:float = num/den

 return result

print (division(arg1, arg2))

As mentioned earlier, using type hints doesn’t cause the interpreter

to enforce type checking at runtime. We can, however, use a static type

checker utility like mypy to detect type mismatch errors before running.

�The typing Module
This module is a new addition to Python’s standard library. It enhances the

type hinting feature by introducing a special collection of data types – List,

Tuple, and Dict (note that first uppercase character of each type), each

corresponding to Python’s built-in types list, tuple, and dict. The built-

in collection objects can contain items of any Python type. On the other

hand, we can specify the type for the items in a collection in the form of a

hint. The difference can be seen in the statements in Listing 1-6.

Listing 1-6.  Difference between list and List

>>> l1:list = ["Python", 10, 1.5E2, True]

>>> import typing

>>> l2:typing.List[float]= [100, 25.50, 2.2E-2]

Chapter 1 Introduction to FastAPI

7

Here, l1 is a standard list and is a collection of items of different types.

On the other hand, l2 is of typing.List type expected to hold items of float

type only. Needless to say, this hint is disregarded by the Python runtime if

an object of nonfloat type is appended without error, as in Listing 1-7.

Listing 1-7.  Append operation of typing.List

>>> l2.append("hello")

>>> l2

[100, 25.5, 0.022, 'hello']

The typing module also defines Union, Any, and Optional types. The

Union type should be used as a hint to provide a list of possible data types

for an object. Consider the case in Listing 1-8 where each item in this list is

expected to be of either int or str type.

Listing 1-8.  Union type in the typing module

>>> from typing import Tuple, Union

>>> l3:Tuple[Union[int, str]]=[5, "Python", 100]

Use typing.Any to indicate that there’s no constraint on the type of

the variable. The Optional type means that the object can be either of the

specified type or it can be None as in Listing 1-9.

Listing 1-9.  Optional type in the typing module

>>> from typing import Optional

>>> obj=Optional[str]

>>> obj="Hello World"

>>> obj=None

You can of course assign any other value; the static type checker linters

will detect the mismatch.

Chapter 1 Introduction to FastAPI

8

We have discussed the type hint mechanism in brief here, mainly

because FastAPI uses this feature very extensively. You will find this

type hint syntax in the declaration of path and query parameters in

the definition of view functions. It is also used in Pydantic model

declarations. An important feature of FastAPI – the autogeneration of API

documentation – also depends on the type hinting feature of Python.

�Asynchronous Processing
Python supports concurrent processing by using a multithreading

approach ever since its earlier versions. The asynchronous processing

support has been added to Python from the Python 3.5 version onward.

In a multithreaded application, many individual threads of operation are

there in the program, and the CPU coordinates their concurrent execution.

On the other hand, in the asynchronous approach, only a single thread

runs, but it has the ability to switch between functions.

Whenever an asynchronous function reaches an event or condition,

it voluntarily yields to another function. By the time the result from the

other function is obtained, the original function can attend some other

operations. In this way, more than one process in an application can run

concurrently, without intervention from the operating system. Moreover,

as there’s a single running thread, it doesn’t involve heavy processor

resources. Asynchronous processing is also sometimes (and appropriately)

called cooperative multitasking.

�The asyncio Module
Python’s asynchronous capabilities come from the functionality defined

in the built-in asyncio module and the two newly added keywords – async

and await. The asyncio module serves as the foundation for Python’s

ASGI (Asynchronous Server Gateway Interface) compatible web

application frameworks like FastAPI.

Chapter 1 Introduction to FastAPI

9

In an asynchronous application, the processing logic is structured in

coroutines instead of the traditional functions. A coroutine is similar to a

function, but can yield to another coroutine and awaits its completion. A

coroutine is a function with an async keyword as a prefix in the definition.

The coroutine is not called like a normal Python function. If we try to

call, it just returns the coroutine object. To call a coroutine, use the run()

function in the asyncio module.

The code snippet in Listing 1-10 shows the difference between a

function and a coroutine.

Listing 1-10.  Difference between a function and a coroutine

>>> #This is a normal function

>>> def hello():

 print ("Hello World")

>>> #This is a coroutine

>>> async def sayhello():

 print ("Hello Python")

>>> hello()

Hello World

>>> sayhello()

<coroutine object sayhello at 0x0000015CC0295DB0>

>>> import asyncio

>>> asyncio.run(sayhello())

Hello Python

Cooperative multitasking comes into play when one coroutine “awaits”

another. When the await keyword is encountered in the path of execution of a

subroutine, its operation is suspended till the other coroutine is completed.

The example in Listing 1-11 demonstrates how the async/await

mechanism works. The coroutine named main() has a for loop. For each

iteration, it waits for another coroutine called myfunction(). The second

Chapter 1 Introduction to FastAPI

10

coroutine prints the iteration number, pauses for two seconds, and goes

back to main(). The outer coroutine then prints the number and goes for

the next iteration.

Listing 1-11.  coroutines.py

#coroutines.py

import asyncio

import time

async def main():

 for i in range(1,6):

 await myfunction(i)

 print ('In main', i)

async def myfunction(i):

 print ('In myfunction', i)

 time.sleep(2)

asyncio.run(main())

Go ahead and execute this Python script. The output shows how the

two coroutines take turns concurrently:

In myfunction 1

In main 1

In myfunction 2

In main 2

In myfunction 3

In main 3

In myfunction 4

In main 4

In myfunction 5

In main 5

Chapter 1 Introduction to FastAPI

11

�ASGI
Many of the well-known web application frameworks of Python

(like Django and Flask) were developed before the introduction of

asynchronous capabilities. These frameworks implement WSGI (Web
Server Gateway Interface) specifications. The request-response cycle

between the client and the server is synchronous in nature and hence not

particularly efficient.

To leverage the functionality of the asyncio module, new specifications

for web servers, frameworks, and applications have been devised in the

form of ASGI, which stands for Asynchronous Server Gateway Interface.

An ASGI callable object is in fact a coroutine having three parameters:

•	 scope: A dict containing details of a specific connection

provided by the server.

•	 send: An asynchronous callable, by which event

messages can be sent to the client.

•	 receive: Another asynchronous callable. The

application can receive event messages from the client.

Listing 1-12 shows a very simple ASGI callable coroutine. It calls the

send coroutine as an awaitable object to insert the HTTP headers and the

body in the client’s response. These calls are nonblocking in nature so that

the server can engage with many clients concurrently.

Listing 1-12.  ASGI application coroutine

async def app(scope, receive, send):

 await send({

 'type': 'http.response.start',

 'status': 200,

 'headers': [

 [b'content-type', b'text/plain'],

Chapter 1 Introduction to FastAPI

12

],

 })

 await send({

 'type': 'http.response.body',

 'body': b'Hello, world!',

 })

In order to serve this application, we need a web server having

asynchronous capabilities. Python’s wsgiref module does have a

built-in development server to launch a WSGI application. However, a

corresponding ASGI server is not shipped with Python’s standard library.

Hence, we need to use a third-party ASGI server called Uvicorn. With its

help, we can fire our ASGI application. Save the code in Listing 1-13 as

main.py.

Listing 1-13.  main.py

main.py

import uvicorn

async def app(scope, receive, send):

 await send({

 'type': 'http.response.start',

 'status': 200,

 'headers': [

 [b'content-type', b'text/plain'],

],

 })

 await send({

 'type': 'http.response.body',

 'body': b'Hello, world!',

 })

Chapter 1 Introduction to FastAPI

13

if __name__ == "__main__":

 uvicorn.run("main:app", port=5000, log_level="info")

Run this program from the command line (make sure that the Uvicorn

package is installed before running). The Uvicorn server starts serving

the applications and is waiting for incoming requests from a client at port

5000 of the localhost. Launch your favorite browser and visit the http://

localhost:5000 URL. The browser window shows (Figure 1-3) the Hello

World message as the response.

Figure 1-3.  ASGI application

The good thing about Python’s application frameworks is that they

make their own application function available, and one needn’t develop

it manually as in the preceding case. FastAPI is an ASGI-compliant

framework. An object of the FastAPI class itself is the ASGI callable and

hence is used as a parameter to the uvicorn.run() function call in the

preceding code.

�About REST Architecture
The FastAPI library, which we are going to learn about in detail in this

book, according to its official documentation, is a “modern, fast web

framework for building APIs.” It is therefore imperative that we understand

more about APIs and in particular the REST architecture.

Chapter 1 Introduction to FastAPI

14

�What Is an API?
The term API is very frequently used within the web developer

community. It is an acronym for Application Programming Interface. The

word interface generally refers to a common meeting ground between

two isolated and independent environments. The interaction between

them takes place as per a predefined set of rules and protocols. To give a

simplistic analogy, the waiter in a restaurant acts as an interface between

the customer and the kitchen, accepting the order for the items in the

menu, passing on the order to the kitchen staff for preparing the dish, and

in turn serving it to the customer. Figure 1-4 depicts the analogy between

the roles of a waiter and an API.

Figure 1-4.  Analogy between a waiter and an API

In a computer system, electromechanical peripheral devices, such as

a mouse, printer, etc., communicate with the CPU via interfaces (serial,

parallel, USB, etc.). A programming interface on the other hand is an

interface between two software applications. A stand-alone application is

designed to accept user input in a predefined format, perform database

read/write operations if needed, process the data at the back end, and

present the result on available output devices. But what if this application

is to be made available to other users not having access to the machine on

which it is installed?

Consider a fast food company (such as McDonald’s) which has

developed a web application for its customer to book orders. A customer

Chapter 1 Introduction to FastAPI

15

can of course visit the company’s website, go through the registration and

authentication process, and order the food of their choice. Now you have

a food delivery service (such as Grubhub in the United States, Swiggy in

India) that wants to enable its clients to use the order booking system.

Obviously, an access by an unauthorized user will be denied. (Or else, the

situation will be akin to each customer in the restaurant directly going to

the kitchen and ordering the chef to prepare a certain dish that is not even

on the menu!)

This is where the API comes into play. The company will deploy a

system wherein the delivery agency website will be authorized and asked

to place the order in a specified format. The request received will then be

processed appropriately by the company’s application, and the result will

also be sent to the agency in a predefined format for further consumption.

This mechanism that facilitates communication between two different

applications (here, the company’s order processing application and the

delivery agency’s application) by following certain streamlined formats

and protocols is what makes an API. Please refer to Figure 1-5 for better

understanding.

Figure 1-5.  Example of an API

Registration and authentication of a user with the APIs provided by

social platforms are being popularly employed by different web apps.

Instead of registering with an app directly with one’s email/password or

Chapter 1 Introduction to FastAPI

16

mobile number/OTP, it is convenient to use the OAuth API of social media

services like Facebook, Twitter, etc. Figure 1-6 shows the login page of the

New York Times website.

Figure 1-6.  Login screen of the New York Times portal

A web API is a web application that exposes its resources to be

accessed by other web/mobile applications through the Internet. It

defines one or more endpoints which the client apps can visit to perform

read/write operations on the host’s resources. Over the years, the REST

architecture has become the de facto standard for building APIs. Although

there are other approaches available for developing an API (such as RPC,

stands for Remote Procedure Call, and SOAP, stands for Simple Object

Access Protocol), REST is very flexible and thus gives a lot of freedom for

developers.

Chapter 1 Introduction to FastAPI

17

�REST
REST (short for REpresentational State Transfer) is a software

architectural style that defines how a web application should behave. The

term REST was first introduced by Roy Fielding in the year 2000. A web

API that follows this architectural style is often called the RESTful API.

Unlike RPC or SOAP, REST is not a protocol. Moreover, REST is a

resource-based architecture rather than action based as is the case in

RPC or SOAP. Everything on the REST server is a resource, may it be a

file, an image, or a row in a table of a database. The REST API provides

a controlled access to its resources so that the client can retrieve and

modify them.

�REST Constraints
A web API based on the REST architecture must follow certain design

principles, also called constraints, laid down by Roy Fielding in his

research paper. The following are the six REST constraints.

Uniform interface: This constraint essentially means that the request for

a certain resource on the server from any client must be the same. In other

words, a resource on the server must have a Uniform Resource Identifier

(URI), and the request for a resource should be complete in the sense it

should contain all the information required for retrieving and processing it.

Statelessness: When the server receives any request for a certain

resource from a client, it should be processed entirely in isolation

without any context of any previous transaction. Any change in the state

of the concerned resource is communicated back to the client. REST is

implemented over HTTP, and the HTTP server doesn’t retain the session

information, thereby increasing the performance by removing server load.

Client–server: The client-server model is also the backbone of HTTP. It

ensures that there is a separation of concerns, leading to the evolution of

server and client applications independent of each other. As long as the

Chapter 1 Introduction to FastAPI

18

interface between them is not altered, servers and clients may also be

replaced and developed independently. In fact, the client is expected to

know only the URIs of the resources on the client and nothing else.

Cacheability: The term caching refers to storing the transient data in a

high-speed buffer so that subsequent access to it is faster. By marking the

API response as cacheable, it improves the performance of the client, as

well as the scalability of the server.

Layered system: Just as the server and client components are isolated

from each other (thanks to the client-server constraint of REST), the server

functionality itself can be further composed into multiple hierarchical

layers, each independent of the other. A certain layer designed to perform

a specific task can interact with only the immediate layer and none other.

This approach improves system scalability and enables the load balancing

of services across multiple networks and processors.

Code on demand: On most occasions, the server’s response is in either

the HTML or XML representation of the resource. However, according

to this constraint (which by the way is the only optional feature among

the six), the response may return some front-end executable component

such as JavaScript. The client can download the same. Though this feature

improves the extensibility, it can also be a potential security issue, hence

rarely implemented.

In a nutshell, implementing the preceding principles (constraints) has

the following advantages:

•	 Scalability

•	 Simplicity

•	 Modifiability

•	 Reliability

•	 Portability

•	 Visibility

Chapter 1 Introduction to FastAPI

19

�HTTP Verbs
The principle of uniform interface says that the request message must

be self-sufficient and that it should contain everything that is required to

process the request. It should include the URI of the resource, the action

to be taken on it, and some additional data if required for the action to

be completed. The action part in the request is represented by HTTP

verbs or methods. The most used HTTP methods are POST, GET, PUT,

and DELETE. These methods correspond to CREATE, READ, UPDATE,

and DELETE operations on the server’s resource. These operations are

popularly known by the abbreviated form CRUD.

In addition to the abovementioned methods, the HTTP request

type can be of few other types (those being PATCH, HEAD, OPTIONS,

etc.). However, they are less prevalent, especially in the context of REST

architecture.

So, we can draw the inference that the client sends an HTTP request of

either POST, GET, PUT, or DELETE type to perform a CRUD operation on a

certain resource residing with the server. This request is intercepted by the

REST API designed as per the constraints explained earlier and forwarded

to the server for processing. In turn, the response is returned to the client

for its further consumption.

�POST Method
The POST verb in the HTTP request indicates that a new resource is

intended to be created on the server. It corresponds to the CREATE

operation in the CRUD term. Since the creation of a new resource needs

certain data, it is included in the request as a data header. If the request is

successful, the HTTP response returns a Location header with a link to the

newly created resource with the 201 HTTP status. In case the operation is

not successful, the status code is either 200 (OK) or 204 (No Content).

Chapter 1 Introduction to FastAPI

20

Since invoking two identical POST requests will result in two different

resources containing the same information, it is not considered as

idempotent.

Examples of a POST request:

HTTP POST http://example.com/users

HTTP POST http://example.com/users/123

�GET Method
The READ part in the CRUD operation is carried out by sending the HTTP

request with a GET method. The purpose of the GET operation is to retrieve

an existing resource on the server and return its XML/JSON representation

as the response. Success inserts the 200 (OK) status code in the response,

whereas its value is 404 (Not Found) or 400 (Bad Request) in case of failure.

The GET operation is risk-free in the sense that it only retrieves the

resource and doesn’t modify it. Furthermore, it is considered to be an

idempotent operation, as two identical GET requests return identical

responses.

Examples of a GET request:

HTTP GET http://example.com/users

HTTP GET http://example.com/users/123

�PUT Method
The PUT method is used mainly to update an existing resource

(corresponding to the UPDATE part in CRUD). Like the POST operation, the

data required for update should be included in the request. Success returns

a 200 (OK) status code, and failure returns a 404 (Not Found) status code.

In some cases, the PUT operation may create a new resource,

depending on how the business logic of the API is written. In such a case,

the response contains a 201 status code. The response of the PUT method

generally doesn’t contain the representation of the newly created resource.

Chapter 1 Introduction to FastAPI

21

The difference between the POST and PUT is that POST requests are

made on resource collections, whereas PUT requests are made on a single

resource.

Examples of a PUT request:

HTTP PUT http://example.com/users/123

HTTP PUT http://example.com/users/123/name/Jeevan

�DELETE Method
As the name suggests, the DELETE method is used to delete one or more

resources on the server. On successful execution, an HTTP response code

200 (OK) is sent. It may also be 202 (Accepted) if the action has been

queued or 204 (No Content) if the action has been performed but the

response does not include an entity.

DELETE operations are idempotent, like the GET method. If a resource

is deleted, it’s removed from the collection of resources. However, calling

DELETE on a resource a second time will return a 404 (Not Found) since it

was already removed.

Examples of a DELETE request:

HTTP DELETE http://example.com/users/123

HTTP DELETE http://example.com/users/123/name/Jeevan

�FastAPI Dependencies
FastAPI is an asynchronous web framework that incorporates Python’s

type annotation feature. It is built on top of Starlette – Python’s ASGI

toolkit. FastAPI also uses Pydantic as an important building block for

validating the data models. An ASGI application should be hosted on an

asynchronous server; the fastest one around is Uvicorn.

Chapter 1 Introduction to FastAPI

22

FastAPI also integrates seamlessly with OpenAPI (earlier known as

Swagger) for API creation. It also generates data model documentation

automatically, based on JSON Schema.

Figure 1-7 shows the relationship between various dependency

libraries.

Figure 1-7.  FastAPI dependencies

�Starlette
Starlette is a lightweight ASGI-compliant web framework, ideal for

leveraging the advantage of asyncio in building high-performance APIs

and web apps. Its simple and intuitive design makes it easily extensible.

Some of the important features of Starlette include the following.

WebSocket support: WebSocket is the extension of the HTTP protocol

to provide bidirectional, full-duplex communication between the client

and the server. WebSockets are used for building real-time applications.

Event handlers: Starlette supports intercepting and processing startup

and shutdown events in a web application. They can be effectively used

to handle certain initialization and mopping up tasks such as establishing

and closing the database connection as the application starts and closes.

Chapter 1 Introduction to FastAPI

23

The Starlette framework has all the essential functionality required to

build a web app. It includes routing, templating, serving static files, cookie

and session support, etc. FastAPI is built on top of Starlette. In addition,

FastAPI incorporates additional features such as the dependency injection

system, security utilities, OpenAPI schema generation, etc.

�Pydantic
Pydantic is another library that FastAPI uses as an important pillar. It is

an excellent Python library for data validation and parsing. FastAPI uses

it to describe the data part of a web application. It uses Python’s typing

annotation feature, enforcing type hints at runtime. Pydantic maps the

data to a Python class.

Using Pydantic data models makes it very easy to interact with

relational database ORMs (like SQLAlchemy) and ODMs (like Motor for

MongoDB); it takes care of the data validation aspect very efficiently.

Pydantic is capable of validating Python’s built-in types, user-defined

types, the types defined in the typing module (such as List and Dict), as

well as complex data types involving Pydantic’s recursive models.

We shall discuss Pydantic models in more detail in one of the

subsequent chapters.

�Uvicorn
As mentioned earlier, Uvicorn is an asynchronous web server with high

performance. It has been designed as per the ASGI specifications defined

in the asgiref package. This package has an asgiref.server class which

is used as the base.

To enable WebSocket support, a standard version of Uvicorn needs

to be installed. It brings in Cython-based dependencies – uvloop and

httptools. The uvloop library provides a more efficient replacement for

the event loop defined in the asyncio module. The httptools on the other

hand is used to handle the HTTP protocol.

Chapter 1 Introduction to FastAPI

24

By default, the Uvicorn server binds a TCP socket to the localhost

(127.0.0.1) and listens on port 8000; both can be customized at runtime if

so required.

Uvicorn supports the HTTP/1.1 version. For the HTTP/2 version, you

need to employ Daphne or Hypercorn web server software.

�Installation of FastAPI
Now that we have understood the important prerequisites, it is now time

to introduce the FastAPI web application framework. FastAPI is a web

application framework based on Python’s modern features such as type

hints and support for asynchronous processing. The async feature makes it

extremely “fast” as compared with the other Python web frameworks.

FastAPI was developed by Sebastian Ramirez in December 2018.

FastAPI 0.79.0 is the currently available version (released in July 2022). In

spite of being very young, it has very quickly climbed up on the popularity

charts and is one of the most loved web frameworks.

So, let’s go ahead and install FastAPI (preferably in a virtual

environment). It’s easy. Just use the PIP utility to get it from the PyPI

repository. Ensure that you are using Python’s 3.6 version or later:

pip3 install fastapi

Since FastAPI is built on top of two important libraries, Starlette and

Pydantic, they are also installed, along with some others.

You also need to install the Uvicorn package to serve the FastAPI app:

pip3 install uvicorn[standard]

The “standard” option installs the Cython-based dependencies,

uvloop, httptools, and websockets. If you don’t intend to use

WebSockets, this option may be omitted. Certain additional supporting

libraries are also installed.

Chapter 1 Introduction to FastAPI

25

To get the list of packages installed, use the freeze subcommand of the

PIP utility (Listing 1-14).

Listing 1-14.  Packages installed

pip3 freeze

anyio==3.6.1

click==8.1.3

colorama==0.4.5

fastapi==0.79.0

h11==0.13.0

httptools==0.4.0

idna==3.3

pydantic==1.9.1

python-dotenv==0.20.0

PyYAML==6.0

sniffio==1.2.0

starlette==0.19.1

typing_extensions==4.3.0

uvicorn==0.18.2

watchfiles==0.16.0

websockets==10.3

•	 anyio is an asynchronous networking and concurrency

library that implements a structured concurrency on

top of asyncio.

•	 click stands for Command Line Interface Creation
Kit. This package is required if you intend to use typer

for building a CLI instead of a web API.

•	 colorama is a cross-platform library to render colored

text in the Python terminal.

Chapter 1 Introduction to FastAPI

26

•	 The h11 package is used internally by the Uvicorn

server to implement the HTTP/1.1 protocol.

•	 The typing-extensions module acts as a backport for

Python 3.6–based applications. It may not be used if

you are using newer versions of Python (version 3.7+).

•	 The watchfiles package is a simple, modern, and

high-performance file watching and code reload in

Python. To autoreload the application code when it is

already running on the server, the watchfiles package

is needed.

•	 The sniffio package detects which async library is

being used by your code.

•	 Using python-dotenv is a convenient way to load the

environment variables from a .env file.

Let us conclude this chapter by writing a simple “Hello World” app

using FastAPI. Save the code in Listing 1-15 as main.py in the newly

created FastAPI environment.

Listing 1-15.  main.py (Hello World with FastAPI)

#main.py

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

async def index():

 return {"message": "Hello World"}

Chapter 1 Introduction to FastAPI

27

Without bothering to understand how this code works, execute the

following command in the terminal window of your OS:

uvicorn main:app –reload

The terminal shows the following log, effectively telling that the

application is being served at port 8000 of the localhost:

INFO: �Uvicorn running on http://127.0.0.1:8000 (Press

CTRL+C to quit)

INFO: Started reloader process [28720] using WatchFiles

INFO: Started server process [28722]

INFO: Waiting for application startup.

INFO: Application startup complete.

Open a browser window and enter http://localhost:8000/ in its address

bar to obtain the output as shown in Figure 1-8.

Figure 1-8.  Hello World with FastAPI

Your FastAPI app is up and running!

Chapter 1 Introduction to FastAPI

28

�Summary
This chapter set the ball rolling for our journey of learning how to build

APIs with the FastAPI framework. In this chapter, we learned about

the modern concepts of Python (typing and asyncio modules), which

are very crucial in using FastAPI. We also took a quick revision of the

principles of REST architecture. After introducing the dependency libraries

of FastAPI – namely, Starlette, Pydantic, and Uvicorn – we actually installed

it and successfully executed a Hello World application.

In the next chapter, we shall discuss in detail the elements of a FastAPI

application such as the path operations, decorators, and views. You will

also understand how interactive API docs are generated and how to pass

path and query parameters to the view function.

Chapter 1 Introduction to FastAPI

29

CHAPTER 2

Getting Started
with FastAPI
The previous chapter laid the groundwork for exploring the powerful

features of the FastAPI web framework. We now know enough about the

type hinting and asynchronous processing mechanism that is extensively

implemented in FastAPI. It is primarily a tool for developing web APIs.

Hence, a brief discussion on the principles of REST architecture was also

given in the previous chapter.

This chapter helps you take the first steps toward building APIs. We

shall also learn about the API docs and parameters.

We shall discuss the following topics:

•	 Hello World

•	 Interactive API docs

•	 Path parameters

•	 Query parameters

•	 Validation of parameters

© Malhar Lathkar 2023
M. Lathkar, High-Performance Web Apps with FastAPI,
https://doi.org/10.1007/978-1-4842-9178-8_2

https://doi.org/10.1007/978-1-4842-9178-8_2#DOI

30

�Hello World
Toward the end of the previous chapter, you saw a small FastAPI script that

renders a Hello World message in the browser. Let us revisit that script and

understand how it works in detail.

Conventionally, the first program written whenever you learn a new

programming language or a framework is the one that displays a “Hello

World” message. The objective is to verify that the respective environment

is correctly installed. It also helps in understanding the basic building

blocks of the application.

�Create an Application Object
First of all, we need an ASGI callable to be run by the server. The FastAPI

library itself provides the callable in the form of an object of the FastAPI

class. So, instantiate the object with the following statements (first two

lines in the main.py in the previous chapter; please refer to Listing 1-15):

from fastapi import FastAPI

app = FastAPI()

This app object is the main point of interaction between the ASGI

server and the client, as it is responsible for routing all the incoming

requests to the appropriate handlers and providing appropriate responses.

�Path Operation Decorator
In a classical web application, the URL requested by the client browser

refers to a server-side script stored as a file on the web server. For instance,

look at the URL http://mysite.com/hello.php, where the server runs the

script file and renders its output as the response to the client. Sometimes,

one or more parameters may be appended to the URL as a query string

and meant to be processed by the script – such as http://mysite.com/

hello.php?name=Rahul&marks=65.

Chapter 2 Getting Started with FastAPI

http://mysite.com/hello.php
http://mysite.com/hello.php?name=Rahul&marks=65
http://mysite.com/hello.php?name=Rahul&marks=65

31

Modern web application frameworks use a route-based approach

to form the URL rather than the file-based URL. It happens to be more

convenient and easier for the user. The application object maps a

predefined URL pattern with a certain function, whose return value in turn

becomes the server’s response.

The route-based version of the URL shown earlier becomes http://

mysite.com/Rahul/65. The URL has three distinct parts: the protocol

(such as http:// or https://) followed by the IP address or hostname. The

remaining part of the URL after the first / after the hostname is called the

path or endpoint.

In the previous chapter, to obtain the Hello World message as the

result, we used http://localhost:8000/ as the URL. Since there’s nothing

after the first /, it becomes the path or the endpoint.

The server also needs to know the HTTP method (either GET, POST,

PUT, or DELETE) used by the client to send the request. In FastAPI, as per

the OpenAPI standards, these methods are called operations. So, the GET

operation retrieves a resource, the POST operation creates a new resource,

and the PUT and DELETE operations modify and delete a resource,

respectively.

The FastAPI class defines path operation methods corresponding to

HTTP operations mentioned earlier. They are @app.get(), @app.post(),

@app.put(), and @app.delete(). These methods need a mandatory path

parameter – as in @app.get("/"). The @ symbol is prefixed to indicate that

they are decorators.

A function in Python can accept another function as an argument,

just as it can have other data types – int, str, list, or an object of another

class. Similarly, inside the definition of one function, another function’s

definition can be wrapped. Moreover, a function’s return value can also be

a function.

A decorator receives another function as its parameter and returns the

same by making certain modifications in its behavior.

Chapter 2 Getting Started with FastAPI

http://mysite.com/Rahul/65
http://mysite.com/Rahul/65

32

�Path Operation Function
The next three lines in our main.py code are shown in Listing 2-1.

Listing 2-1.  Path operation function

@app.get("/")

async def index():

 return {"message": "Hello World"}

What does the preceding code segment do? Whenever the application

object finds that the client has requested the “/” path with a GET request,

the index() function defined just below should be called. In other words,

the URL path “/” is mapped with the index() function, called the path

operation function. It usually returns a dict object. Its JSON form is

returned as the response to the client.

The Hello World application code is reproduced here for convenience

(Listing 2-2).

Listing 2-2.  Hello World

#main.py

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

async def index():

 return {"message": "Hello World"}

�Start Uvicorn
As mentioned before, throughout this book, we are going to use the Uvicorn

server to run a FastAPI application. It is an ASGI implementation for Python.

You can start the Uvicorn server either by using the command-line interface

of the Uvicorn library or programmatically by calling its run() function.

Chapter 2 Getting Started with FastAPI

33

To start the server from the command line, enter the following

statement in the command terminal of your OS:

uvicorn main:app --reload

By default, the Uvicorn server uses localhost (equivalent to the IP

address 127.0.0.1) and listens for the incoming requests at port number

8000. Both parameters can be changed if required.

To invoke the server programmatically, import uvicorn in the code

and call its run() function with the application object as a parameter. The

code in Listing 2-3 calls the run() function.

Listing 2-3.  Run Uvicorn programmatically

import uvicorn

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

async def index():

 return {"message": "Hello World"}

if __name__ == "__main__":

 �uvicorn.run("main:app", host="127.0.0.1", port=8000,

reload=True)

You now have to run the preceding program in the command terminal

as follows:

python main.py

In either case, the log in Listing 2-4 indicates that the application is

running at port 8000 of the localhost.

Chapter 2 Getting Started with FastAPI

34

Listing 2-4.  Uvicorn console log

INFO: �Uvicorn running on http://127.0.0.1:8000 (Press

CTRL+C to quit)

INFO: Started reloader process [28720] using WatchFiles

INFO: Started server process [28722]

INFO: Waiting for application startup.

INFO: Application startup complete.

Visit the URL http://localhost:8000/ using a browser. A GET request for

the “/” path is sent to the server. The index() function mapped to this URL

endpoint is executed. The Hello World message as its return value is sent

back as the response (Figure 2-1).

Figure 2-1.  Hello World message in a browser

�Externally Visible Server
As the host parameter is set to localhost (which is also its default value),

the application is accessible only from the same machine on which it

is running. To make it available for other devices, we need to take the

following steps:

Chapter 2 Getting Started with FastAPI

35

Either set the host parameter to 0.0.0.0 in the command line:

uvicorn main:app --host 0.0.0.0 –reload

or set the host parameter to this value in the call to the run() function in

the main.py code (Listing 2-5).

Listing 2-5.  Externally visible server

import uvicorn

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

async def index():

 return {"message": "Hello World"}

if __name__ == "__main__":

 �uvicorn.run("main:app", host="0.0.0.0", port=8000,

reload=True)

The application is now available to any other device on the same

network. However, to access it, first find out the IP address of the machine

on which the application is running. On Windows OS, it can be found by

running the ipconfig command in the terminal.

Wireless LAN adapter Wi-Fi:

 Connection-specific DNS Suffix . : ib-wrb304n.setup.in

 �Link-local IPv6 Address : fe80::dd10:6074:1eb3:a43a%77

 IPv4 Address. : 192.168.1.211

 Subnet Mask : 255.255.255.0

 Default Gateway : 192.168.1.1

Chapter 2 Getting Started with FastAPI

36

Open the browser on any other device on the same network, and enter

the IP address shown in bold letters earlier (keep the port as 8000 as it hasn’t

been changed). The URL to be used is http://192.168.1.211:8000. The

browser shows the same Hello World message as earlier.

�Interactive API Docs
One of the standout features of FastAPI is its ability to automatically

generate interactive API documentation. The Swagger UI tool integrates

seamlessly with FastAPI. It provides a user-friendly web interface to

visualize the documentation and exploration of the endpoints.

FastAPI’s design follows the OpenAPI Specification (OAS) for API

creation and declaration of path operations, parameters, etc. It also

autogenerates the documentation of data models with JSON Schema.

JSON Schema defines a JSON-based media type called “application/
schema+json”. It is a format for describing the structure of JSON data. It

specifies what a JSON document should be like, how to extract information

from it, and how to interact with it.

Swagger is a suite of API development utilities, of which the Swagger
UI is a part. It is a REST API development tool with a web interface. The

Swagger specification is now a part of the Linux Foundation and has been

renamed as OpenAPI. There are a number of such OpenAPI-compliant

utilities. By default, FastAPI includes support for Swagger UI and Redoc

(Figure 2-2).

Figure 2-2.  API documentation tools

Chapter 2 Getting Started with FastAPI

37

�Swagger UI
Swagger UI’s web interface is built with the help of HTML, JavaScript, and

CSS assets to autogenerate an interactive documentation based on the

API code. Here, we shall be using it along with the REST API written with

FastAPI.

To understand how Swagger UI documentation works, let us first add

one more path operation in our Hello World example. Update the main.py

to the code shown in Listing 2-6.

Listing 2-6.  Path operation with parameters

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

async def index():

 return {"message": "Hello World"}

@app.get("/{name}/{id}")

async def user(name:str, id:int):

 return {"name":name, "id":id}

The string path parameter of the second path operation decorator

@app.get() has two identifiers enclosed in curly brackets. These are called

path parameters. They are passed on to the operation function below it.

We shall learn more about the path parameters in the next section. For

now, go to the URL http://localhost:8000/docs after starting the Uvicorn

server (use the same command as before).

This starts the Swagger UI tool and generates the documentation for

the path operations from the application code. Figure 2-3 displays the

operation, its path, and the mapped function for each decorator.

Chapter 2 Getting Started with FastAPI

38

Figure 2-3.  Swagger UI

Out of the two, expand the first operation corresponding to the

index() function by clicking the arrow on the right-hand side. It reveals

a Try it out button (refer to Figure 2-4) and shows if there are any

parameters defined for the function. Since there aren’t any, the Parameters

list is empty.

Chapter 2 Getting Started with FastAPI

39

Figure 2-4.  Operation function without parameters

Click the Try it out button. If there are any parameters, you have

to provide their values (in the next section, we shall see how the path

parameters are passed). A button with the caption Execute appears

(Figure 2-5) in the window.

Chapter 2 Getting Started with FastAPI

40

Figure 2-5.  Test the function

As you click the Execute button, Swagger UI generates the

documentation of request and response objects, as shown in Figure 2-6.

Figure 2-6.  Server response

Chapter 2 Getting Started with FastAPI

41

It shows the Curl representation of the operation. Here, no parameters

have been passed. Hence, none are seen in the request URL. If indeed the

path operation has parameters, they will be reflected in the formation of

the URL, as well as in the Curl command.

Swagger also formulates the response body, and the headers included

in the response, as well as the status code.

Next, expand the user() function mapped to the other path operation.

This path operation function is defined to receive two parameters from the

URL path. These parameters are listed in the browser window as shown in

Figure 2-7. Enter their values and click the Execute button.

Figure 2-7.  API docs of the function with parameters

The parameter values are appended to the fixed portion of the path, as

shown in Figure 2-8.

Chapter 2 Getting Started with FastAPI

42

Figure 2-8.  Server response showing parameter values

The JSON response of the server also includes the parameter values in

the response body.

�Redoc
Redoc is another open source tool from Redocly that generates the API

documentation from the OpenAPI definitions. It has a responsive design,

having a search bar, a navigation menu, the documentation, and examples

of request and response.

Chapter 2 Getting Started with FastAPI

43

Enter the URL http://localhost:8000/redoc (after starting the Uvicorn

server) to display the Redoc documentation (refer to Figure 2-9). There

are two path operations and functions in our code. These are shown along

with the search bar at the beginning of the page.

Figure 2-9.  Redoc documentation showing a list of path operations

Click the User function to further explore the parameters of this

function and its response (Figure 2-10).

Chapter 2 Getting Started with FastAPI

44

Figure 2-10.  Parameters in Redoc docs

�JSON Schema
The Swagger and Redoc tools actually translate the JSON representation

of the API code. They use certain JavaScript and CSS code for an elegant

representation of the raw JSON format in which the API schema is present.

This representation is done in the “application/schema+json” media

type. If you want to find out how the raw OpenAPI schema appears, use the

URL http://localhost:8000/openapi.json in your browser. It displays the

JSON data in Listing 2-7.

Chapter 2 Getting Started with FastAPI

45

Listing 2-7.  JSON Schema

{

 "openapi": "3.0.2",

 "info": {

 "title": "FastAPI",

 "version": "0.1.0"

 },

 "paths": {

 "/": {

 "get": {

 "summary": "Index",

 "operationId": "index__get",

 "responses": {

 "200": {

 "description": "Successful Response",

 "content": {

 "application/json": {

 "schema": {}

 }

 }

 }

 }

 }

 }

 }

}

There are many API generation tools available, similar to Swagger and

Redoc. You can easily configure FastAPI to use any of these tools. However,

this is a slightly advanced maneuver and is beyond the scope of this book.

Chapter 2 Getting Started with FastAPI

46

�Path Parameters
In HTTP terminology, the path refers to the part of the URL that is trailing

after the server’s name or combination of (IP address:port). This path

can be a mixture of fixed part and a variable part. Generally, the fixed part

refers to a collection of resources available on the server, and the variable

part (which may have one or more values) is used to locate or retrieve a

specific resource from the collection.

Consider the request URL http://mysite.com/employee/Rahul/20.

The intention is to retrieve the details of an employee with the name

Rahul and having the age of 20. The /employee here is the fixed part, and

the latter is the variable part consisting of two values. Obviously, they are

likely to change for every request. How does FastAPI identify the variable

parameters in the path and pass them to the operation function?

As already stated, the FastAPI application object acts as a router,

directing the incoming request from the client to the appropriate handler

function. It checks the request URL matches with the pattern declared in

which operation decorator. Once the decorator is identified, its mapped

operation function is executed, and the response is returned to the client.

If the path string of an operation decorator is expected to include one

or more variable values, it has a placeholder for each. The placeholder is a

valid Python identifier put inside curly brackets.

In Figure 2-11, for the request URL under consideration – http://

mysite.com/employee/Rahul/20 – the path string argument of the

decorator has to be /employee/{name}/{age}. Whenever the client

URL matches with this pattern, the data part is parsed into its respective

variables and passed to the operation function below the decorator as path

parameters, as shown in Figure 2-11.

Chapter 2 Getting Started with FastAPI

http://mysite.com/employee/Rahul/20
http://mysite.com/employee/Rahul/20
http://mysite.com/employee/Rahul/20

47

Figure 2-11.  Parsing path parameters

�Using Type Hints
Python parses the variable data from the URL into path parameters

of string type by default. You can of course declare the type of a path

parameter using the type annotation feature. The get_employee()

coroutine in the preceding example is rewritten in Listing 2-8.

Listing 2-8.  Parameters with type hints

From fastapi import FastAPI

app = FastAPI()

@app.get("/employee/{name}/{age}")

async def user(name:str, age:int):

 return {"name":name, "age":age}

The Swagger documentation of this operation function (Figure 2-12)

shows the two path parameters name and age, respectively, of str and

int type.

Chapter 2 Getting Started with FastAPI

48

Figure 2-12.  Swagger documentation showing type hints

�Type Parsing
Since the parameters are defined with type hints, the values picked up

from the URL are parsed to the suggested types whenever possible. For

instance, in the preceding case, the trailing 20 in the URL is passed as an

integer parameter to the get_employee() function. However, try entering

the URL http://localhost:8000/employee/Rahul/Kumar in the browser’s

address bar, and you’ll get the response shown in Listing 2-9.

Listing 2-9.  JSON response with a conversion error message

{

 "detail": [

 {

 "loc": [

 "path",

 "age"

],

 "msg": "value is not a valid integer",

 "type": "type_error.integer"

 }

]

}

Chapter 2 Getting Started with FastAPI

49

Obviously, the error in this response is because the second parameter

is not an integer, as declared in the operation function’s definition.

�Query Parameters
If a certain operation function (also called a view function) below the path

decorator has some parameters in addition to the placeholders in the URL

pattern, FastAPI deems them to be query parameters.

To understand this, let us rewrite the @app.get() decorator in the

preceding example, as shown in Listing 2-10.

Listing 2-10.  Function with path and query parameters

from fastapi import FastAPI

app = FastAPI()

@app.get("/employee/{name}")

async def get_employee(name:str, age:int):

 return {"name":name, "age":age}

The decorator parses the value after /employee into a path parameter

called name. However, its mapped function declares one more parameter –

age. How does the router receive a value for this parameter?

Explore the Swagger documentation for the get_employee() function.

Look at Figure 2-13.

Chapter 2 Getting Started with FastAPI

50

Figure 2-13.  Required parameters

In the list of parameters, while name is a path parameter as before,

age is identified as a query parameter (note that both parameters are

marked as required). Click the Execute button. Figure 2-14 shows the

autogenerated request URL.

Figure 2-14.  URL with a query string

Chapter 2 Getting Started with FastAPI

51

The URL http://localhost:8000/employee/Rahul?age=20 shows the

query string appended after a ? symbol in front of the path parameter. If

there are more than one query parameter, the parameter=value pairs are

concatenated by the & symbol.

�Optional Parameters
While path parameters are always required (the request URL must

contain a value for each identifier in the URL pattern), query parameters

may be declared to have a default value or may be set to be optional. In

Listing 2-11, the query parameter age has a default value.

Listing 2-11.  Parameter with a default value

@app.get("/employee/{name}")

async def get_employee(name:str, age:int=20):

 return {"name":name, "age":age}

The Swagger docs of this function (Figure 2-15) reflects the fact that

the required mark on top of the age parameter is removed, and its default

value is 20 (you can of course assign any other value if so required).

Chapter 2 Getting Started with FastAPI

52

Figure 2-15.  Query parameter with a default value

As a result, even if the query string is not given in the request URL (as

in http://localhost:8000/employee/Rahul), FastAPI internally appends the

query parameter, and the response sends its default value:

{

 "name": "Rahul",

 "age": 20

}

To let the client choose to give or not to give a value to any query

parameter, use the Optional type from the typing module and set its

default to None. In Listing 2-12, age is an optional parameter.

Listing 2-12.  Optional parameter

From typing import Optional

@app.get("/employee/{name}")

async def get_employee(name:str, age:Optional[int]=None):

 return {"name":name, "age":age}

Chapter 2 Getting Started with FastAPI

53

In such a case, the URL without a query string (http://localhost:8000/

employee/Rahul) is perfectly acceptable, and the response shows a null

value for the optional parameter:

{

 "name": "Rahul",

 "age": null

}

�Order of Parameters
So, we can now say that the path or the endpoint of a URL comprises a

fixed part, one or more path parameters, and then followed by a query

string that may have one or more query parameters. While the query string

appears last in the path, the path parameters can be interspersed between

two fixed parts. Take a look at Figure 2-16, showing URL parts.

Figure 2-16.  Order of parameters

Even though the path parameters precede the query parameters in

the URL, it is not necessary to follow the order when declaring them in

the definition of the operation function. In the code in Listing 2-13, the

parameter declaration is quite random.

Chapter 2 Getting Started with FastAPI

54

Listing 2-13.  Order of parameters

from typing import Optional

@app.get("/employee/{name}/branch/{branch_id}")

async def get_employee(name:str, brname:str, branch_id:int,

 age:Optional[int]=None):

 employee={'name':name, 'Branch':brname,

 'Branch ID':branch_id, 'age':age}

 return employee

The API documentation (Figure 2-17) too underlines the fact that the

order of parameter declaration in the operation function need not be the

same as in the URL path.

Chapter 2 Getting Started with FastAPI

55

Figure 2-17.  Order in declaration not important

We see that irrespective of the declaration of parameters in the get_

employee() function, the URL shows the query string trailing the path

parameters.

�Validation of Parameters
The path and query parameter components of the URL are user inputs.

Hence, it is important that their values satisfy certain predefined criteria

before they are forwarded to the operation function, so that the server

doesn’t throw unwanted exceptions.

Chapter 2 Getting Started with FastAPI

56

In all the code examples used so far in this chapter, the path and

query parameters have been declared to be of standard Python types –

we have used int and str, but we can use float and bool as well. However,

the FastAPI operation function can have a path or query parameter as

an object of the Path or Query class, respectively. Both these classes are

available in the fastapi module. The advantage of using a Path or Query

instance as a parameter is that one or more validation constraints can

be applied and some additional metadata can be included so that the

documentation becomes more meaningful.

The Path and Query objects can be instantiated by passing certain

parameters to the corresponding constructors. Their first parameter is

the default value – generally set to None. The rest of the parameters are

all optional keyword parameters. They include numeric constraints, the

maximum and minimum length of string parameters, and the metadata of

path parameters to specify the title, description, alias, etc.

�Validating String Parameter
For the path or query parameters of string type, you can apply min_length

and/or max_length constraints to ensure that their character length is in

the desired range.

Let us modify the get_employee() function (from the previous

example) and apply length validation criteria on name and brname

parameters. Listing 2-14 gives the modified definition.

Listing 2-14.  Validation of length

from fastapi import FastAPI, Path, Query

from typing import Optional

app = FastAPI()

@app.get("/employee/{name}/branch/{branch_id}")

Chapter 2 Getting Started with FastAPI

57

async def get_employee(branch_id:int,name:str=Path(None,

min_length=10), brname:str=Query(None, min_length=5, max_

length=10), age:Optional[int]=None):

 �employee={'name':name, 'Branch':brname, 'Branch ID':branch_

id, 'age':age}

 return employee

The order of the parameters has been changed because the Python

function requires the nondefault arguments to be declared before those

with default value. The validation checks applied mean that the name (path

parameter) should not be smaller than ten characters, and the length of

brname (query parameter) should be between five and ten characters.

Figure 2-18 shows the Swagger documentation of this function. It

highlights these criteria.

Figure 2-18.  Validation criteria in API documentation

Chapter 2 Getting Started with FastAPI

58

Expect an erroneous response from the server if the validation fails, as in

the URL http://localhost:8000/employee/John/branch/101?brname=Secun

derabad&age=21. The name is less than ten characters long, and the number

of characters in the name of the branch is not between five and ten as desired.

Listing 2-15 shows the error response of failed validation.

Listing 2-15.  Length validation failed

{

 "detail": [

 {

 "loc": [

 "path",

 "name"

],

 "msg": "ensure this value has at least 10 characters",

 "type": "value_error.any_str.min_length",

 "ctx": {

 "limit_value": 10

 }

 },

 {

 "loc": [

 "query",

 "brname"

],

 "msg": "ensure this value has at most 10 characters",

 "type": "value_error.any_str.max_length",

 "ctx": {

 "limit_value": 10

 }

Chapter 2 Getting Started with FastAPI

59

 }

]

}

�Validation with RegEx
A regular expression (or RegEx) is a sequence of characters that specifies a

search pattern. These patterns are used by string-searching algorithms for

“find” or “find and replace” operations on strings or for input validation.

The re module bundled in Python’s standard library implements RegEx

functionality.

The Path() and Query() functions in FastAPI allow a RegEx parameter

to be defined for validation so that the string value of the path/query

parameter can be checked against the specified search pattern.

Let us include the RegEx parameter in the Path() function to constrain

the value of name to either begin with J or end with h (as in John, Javed,

or Prakash). The modified definition of the get_employee() operation

function is shown in Listing 2-16.

Listing 2-16.  Path validation with RegEx

@app.get("/employee/{name}/branch/{branch_id}")

async def get_employee(branch_id:int, brname:str, age:int,

 name:str=Path(None, regex="^[J]|[h]$")):

 �employee={'name':name, 'Branch':brname, 'Branch ID':branch_

id, 'age':age}

 return employee

After starting the application, open the browser and enter http://

localhost:8000/employee/Amar/branch/101?brname=London&age=21 as

the URL. Since the name neither starts from J nor does it end with h, then

you get the error response shown in Listing 2-17.

Chapter 2 Getting Started with FastAPI

60

Listing 2-17.  Response with failed RegEx validation

{

 "detail": [

 {

 "loc": [

 "path",

 "name"

],

 "msg": "string does not match regex \"^[J]|[h]$\"",

 "type": "value_error.str.regex",

 "ctx": {

 "pattern": "^[J]|[h]$"

 }

 }

]

}

�Validating Numeric Parameters
Validation checks can also be applied to path/query parameters with

numerical values.

The following types of validation criteria can be specified in the Path()

or Query() constructor:

•	 gt: Greater than

•	 ge: Greater than or equal

•	 lt: Less than

•	 le: Less than or equal

Chapter 2 Getting Started with FastAPI

61

Let us restrict the branch_id value to be between 1 and 100. Similarly,

the age of the employee is required to be in the range of 21–60. The get_

employee() function needs to be modified as shown in Listing 2-18.

Listing 2-18.  Numeric range validation

from fastapi import FastAPI, Path, Query

app = FastAPI()

@app.get("/employee/{name}/branch/{branch_id}")

async def get_employee(name:str, brname:str,

 branch_id:int=Path(1, gt=0, le=100),

 age:int=Query(None, ge=20, lt=61)):

 �employee={'name':name, 'Branch':brname, 'Branch ID':branch_

id, 'age':age}

 return employee

To test if the validations are applied correctly, use the URL

localhost:8000/employee/Rahul/branch/101?brname=Mumbai&age=15.

In Listing 2-19, the server’s response clearly shows that both the numeric

parameters fail to meet the criteria.

Listing 2-19.  Response with numeric validation failure

{

 "detail": [

 {

 "loc": [

 "path",

 "branch_id"

],

 "msg": "ensure this value is less than or equal to 100",

 "type": "value_error.number.not_le",

 "ctx": {

Chapter 2 Getting Started with FastAPI

62

 "limit_value": 100

 }

 },

 {

 "loc": [

 "query",

 "age"

],

 �"msg": "ensure this value is greater than or

equal to 20",

 "type": "value_error.number.not_ge",

 "ctx": {

 "limit_value": 20

 }

 }

]

}

�Adding Metadata
The metadata-related properties of Path() and Query() constructors allow

certain descriptive features to the API documentation. These properties

do not have any influence on the validation process. They just add some

additional details about the parameter – such as title, description, etc.

You can add a suitable title and some explanatory text as the

description for the parameter. The alias property can be used if the

placeholder identifier in the endpoint mentioned in the decorator is

different from the formal argument in the function. In the example in

Listing 2-20, the name as a path parameter is customized with these

metadata properties.

Chapter 2 Getting Started with FastAPI

63

Listing 2-20.  Parameter metadata

from fastapi import FastAPI, Path, Query

app = FastAPI()

@app.get("/employee/{EmpName}/branch/{branch_id}")

async def get_employee(branch_id:int, brname:str,

 name:str=Path(None,

 title='Name of Employee',

 �description='Length not

more than 10 chars',

 �alias='EmpName',max_

length=10),

 �age:int=Query(None,include_in_

schema=False)):

 �employee={'name':name, 'Branch':brname, 'Branch ID':branch_

id, 'age':age}

 return employee

The URL pattern in the @app.get() decorator has EmpName as the

placeholder to parse the value from the request URL. To match with it, the

name parameter is given an alias name.

These metadata properties are shown in the Swagger documentation

as in Figure 2-19.

Chapter 2 Getting Started with FastAPI

64

Figure 2-19.  Metadata in Swagger documentation

Note that we have set the include_in_schema property for age – the query

parameter – to False. As a result, it doesn’t appear in the docs of the function.

�Summary
This chapter has helped you take the first steps toward learning to build a

web app with FastAPI. We learned what its basic building blocks are. This

chapter has also made you familiar with the API documentation tools –

Swagger and Redoc.

In this chapter, the concept of path and query parameters has been

explained in detail with the help of useful examples and the Swagger tool.

In the end, we explored the provisions to perform parameter validation.

In the next chapter, we shall discuss another concept regarding

inclusion of parameters within the body of the client request with the use

of Pydantic models.

Chapter 2 Getting Started with FastAPI

65

CHAPTER 3

Request Body
In the previous chapter, you learned how FastAPI handles the processing

of path and query parameters included in the URL of the client’s GET

request. In this chapter, you will see how you can include required data as

the body part of the client’s HTTP request.

We shall cover the following topics in this chapter:

•	 POST method

•	 Body parameters

•	 Data model with Pydantic

•	 Model configuration

•	 Pydantic fields

•	 Validation

•	 Nested models

�POST Method
A web browser software can send the request only through the GET

method. We know that a GET request is used to retrieve one or more

resources on the HTTP server. The path and/or query parameters in the

request URL serve as a filter to fetch the data of specific resources.

© Malhar Lathkar 2023
M. Lathkar, High-Performance Web Apps with FastAPI,
https://doi.org/10.1007/978-1-4842-9178-8_3

https://doi.org/10.1007/978-1-4842-9178-8_3#DOI

66

Using the GET method for client-server interaction over HTTP has

certain drawbacks. First of all, it is not very secure as the URL along with

the parameter data is revealed in the address bar of the browser. Secondly,

there is a limit to how much data can be sent to the server along with the

GET request (and the limit is not very big either – in the range of a few

kilobytes only!). Moreover, the data to be sent must be representable in

ASCII characters only. That means any binary data such as an image can’t

be a part of the GET request.

To send a request for creating a new resource on the server, the HTTP

protocol requires that the POST method should be used. The data that

is required for a new resource is packed in the body of the POST request.

This serves two purposes. The body part is not displayed in the browser’s

address bar; hence, it is a more secure method. Secondly, there is no size

limit, and raw binary data can also be a part of the HTTP request body.

As a web browser cannot be used to raise a POST request directly, we

have to find other means. We can use an HTTP client such as the Curl
command-line tool to send a POST request. A typical example of Curl’s

POST command is shown in Listing 3-1.

Listing 3-1.  Curl command for the POST method

curl -i -H "Content-Type: application/json" -X POST -d "{\"pro

dId\":\"1\",\"prodName\":\"Ceiling Fan\", \"price\":\"2000\",

\"stock\":\"50\" }" http://localhost:8000/product

Note that we need to set the POST method explicitly with the -X

option (remember that the default HTTP method is GET). The -d option

is followed by the parameters and their values in JSON format. This data

populates the body of the HTTP request.

We can also use certain web-based tools such as the Postman app or

Swagger UI for this purpose or make an HTML form to send the request

submitting the data with the POST method.

Chapter 3 Request Body

67

We have now become fairly conversant with the Swagger UI. We shall

continue to use it in this chapter to understand how the data in the HTTP

body is processed by FastAPI. In a subsequent chapter, we shall deal with

the HTML form data.

�Body Parameters
In a FastAPI app, POST requests are handled by the @app.post() decorator. As

explained earlier, the path operation decorator needs a mandatory path string

argument. (If the URL has any path parameters, their placeholder identifiers

may appear in the path string as we learned in the previous chapter.)

The ASGI server passes the request’s context data to the coroutine

function (we call it an operation function) defined just below the

@app.post() decorator. It contains the request object and the body data.

The value of each parameter of the body data is passed to the

corresponding Body parameter declared in the operation function’s

definition. A Body parameter is an object of the Body class in FastAPI

(similar to Path and Query classes).

To process the POST request raised by the Curl command mentioned

earlier, let us define the addnew() operation function under the POST

decorator (Listing 3-2).

Listing 3-2.  POST operation function

from fastapi import FastAPI, Body, Request

app = FastAPI()

@app.post("/product")

async def addnew(request: Request, prodId:int = Body(),

prodName:str = Body(), price:float=Body(), stock:int = Body()):

 product={'Product ID':prodId, 'product name':prodName,

 'Price':price, 'Stock':stock}

 return product

Chapter 3 Request Body

68

The addnew() function is defined with the Body parameters – prodId,

prodName, price, and stock. They are in fact the objects of the Body class.

All the arguments to the Body class constructor are optional.

Run the preceding FastAPI code and launch the Uvicorn server on

the localhost. Then open a command terminal and issue the POST Curl

command mentioned earlier. As shown in Listing 3-3, the terminal returns

a JSON response of the addnew() function along with the HTTP headers.

Listing 3-3.  JSON response of the POST method

HTTP/1.1 200 OK

date: Fri, 26 Aug 2022 17:38:00 GMT

server: uvicorn

content-length: 71

content-type: application/json

{"Product ID":1,"product name":"Ceiling Fan","Price":2000.0,"

Stock":50}

The Swagger UI is more convenient to use rather than the Curl tool,

especially while testing the response of the routes of a FastAPI app

(Figure 3-1). So, while the server is running, visit the http://localhost:8000/

docs link with a web browser.

Chapter 3 Request Body

69

Figure 3-1.  Body parameters in Swagger UI

Since there are no path or query parameters in the definition of the

addnew() function, the parameter list is empty. But, the Request body

section below it does show the body parameters. Assign them the values

that we used in the Curl example and check the server’s response. The Curl

command construction, the headers, and the server’s response are exactly

the same as with the Curl command.

Parameters of the Body class constructor are similar to the ones we

used for Path and Query constructors. In the previous chapter, we used

the numeric and string validation criteria, as well as metadata parameters.

They can also be used with the Body parameters.

�Data Model with Pydantic
When a function definition has many parameters, it becomes very clumsy

to pass that many arguments while calling. In the previous section,

we defined the addnew() function with four Body parameters (prodID,

prodName, price, and stock). In some other scenario, it could be more.

Chapter 3 Request Body

70

A workaround could be to declare a class (say Product) having

properties as before and use its object as the parameter. However, it

gives rise to another problem of validating the parameter values before

processing them inside the function.

The Pydantic library addresses exactly the same problem. As we

mentioned previously in the first chapter, Pydantic is a data modeling,

validation, and parsing library. FastAPI makes extensive use of Pydantic,

such as declaring the data model for populating the HTTP request body

and efficiently performing CRUD operations on the databases (both SQL

and NoSQL types).

�dataclasses Module
At the center of the power of the Pydantic library is the BaseModel class.

In a way, it is similar to the dataclasses library introduced in Python’s

standard library from version 3.7 onward.

The object of a Python class becomes a data container when decorated

by the @dataclass decorator. It autogenerates the __init__() constructor

for the user’s class and also inserts the __repr__() method for the string

representation of the object.

The Product class decorated by the @dataclass is declared as in Listing 3-4.

Since there’s an autogenerated constructor and string representation method

in place, we can declare the object.

Listing 3-4.  dataclass decorator

from dataclasses import dataclass

@dataclass

class Product:

 prodId:int

 prodName:str

 price:float

Chapter 3 Request Body

71

 stock:int

p1=Product(1, "Ceiling Fan", 2000, 50)

print (p1)

The @dataclass decorator also generates the magic methods like

__eq__() for implementing Boolean operators and provides the dict as

well as tuple representation of the class properties with asdict() and

astuple() methods.

However, the dataclasses module doesn’t have the mechanism of

data validation. Hence, it is not possible to enforce schema constraints on

the object data during runtime.

This is where Pydantic’s BaseModel class comes into the picture.

�BaseModel
At the center of the Pydantic library’s functionality is the BaseModel class.

A class that uses BaseModel as its parent works as a data container, just

as a dataclass. Additionally, we can apply certain customized validation

criteria on the properties of the class.

Listing 3-5 shows the basic usage of BaseModel. Let's declare the

Product model, based on the BaseModel.

Listing 3-5.  Product model

from pydantic import BaseModel

class Product(BaseModel):

 prodId:int

 prodName:str

 price:float

 stock:int

This class inherits the schema_json() method from BaseModel that

renders its JSON representation, as shown in Listing 3-6.

Chapter 3 Request Body

72

Listing 3-6.  Product schema

{

 "title": "Product",

 "type": "object",

 "properties": {

 "prodId": {

 "title": "Prodid",

 "type": "integer"

 },

 "prodName": {

 "title": "Prodname",

 "type": "string"

 },

 "price": {

 "title": "Price",

 "type": "number"

 },

 "stock": {

 "title": "Stock",

 "type": "integer"

 }

 },

 "required": [

 "prodId",

 "prodName",

 "price",

 "stock"

]

}

Chapter 3 Request Body

73

Before we explore the validation feature of Pydantic, let us see how it

influences the FastAPI code.

�Pydantic Model As Parameter
Let us declare a parameter of Product type in the addnew() operation

function in the FastAPI code. Look at the script in Listing 3-7.

Listing 3-7.  Using a Pydantic model as a parameter

from fastapi import FastAPI

from pydantic import BaseModel

class Product(BaseModel):

 prodId:int

 prodName:str

 price:float

 stock:int

app = FastAPI()

@app.post("/product/")

async def addnew(product:Product):

 return product

The moment FastAPI finds that the operation function has a Pydantic

model parameter, the request body is populated by the properties in the

model class – in our case, the Product class. The class specifications also

help Swagger UI to generate the Product schema. Figure 3-2 shows the

schema part of the documentation.

Chapter 3 Request Body

74

Figure 3-2.  Product schema in Swagger

Typically, the POST method is used to add a new resource in the

collection. Let us therefore maintain a list (productlist) of all the Product

objects, as done in Listing 3-8. Every time the POST operation is done,

the object is appended in the list. Accordingly, we need to modify the

definition of the addnew() operation function.

Listing 3-8.  POST operation function

productlist=[]

@app.post("/product/")

async def addnew(product:Product):

 productlist.append(product)

 return productlist

Add a couple of Product objects using the web interface of Swagger UI

and check the server’s response which looks as in Figure 3-3.

Chapter 3 Request Body

75

Figure 3-3.  Server response with the Pydantic model

Once the model is passed, its attributes can be accessed and modified

inside the operation function. Here, we would like to apply a tax of 10%

on the price if it is greater than 5000. Listing 3-9 shows how the addnew()

function modifies the price attribute.

Listing 3-9.  Model attributes within a function

@app.post("/product/")

async def addnew(product:Product):

 dct=product.dict()

Chapter 3 Request Body

76

 price=dct['price']

 if price>5000:

 dct['price']=price+price*0.1

 product.price=dct['price']

 productlist.append(product)

 return productlist

�Model Configuration
The Config attribute of the BaseModel helps in controlling the behavior of

the model. It is in fact an object of the BaseConfig class. This configuration

feature can be used in many ways. For example, the max_anystr_length

decides what should be the maximum length for the model’s string

properties. You can also specify if you want the strings to always appear

in upper- or lowercase. Set anystr_upper and/or anystr_lower to True if

you want.

One of the cool Config settings is to include a schema_extra property

(Listing 3-10). Its value is a dict object giving a valid example of the model

object. This acts as additional information in the documentation of the

JSON Schema of the model.

The Product model with schema_extra defined in its Config is

rewritten in Listing 3-10.

Listing 3-10.  Config class

from pydantic import BaseModel

class Product(BaseModel):

 prodId:int

 prodName:str

 price:float

 stock:int

Chapter 3 Request Body

77

 class Config:

 schema_extra = {

 "example": {

 "prodId": 1,

 "prodName": "Ceiling Fan",

 "price": 2000,

 "stock": 50

 }

 }

When the Swagger interface generates the Product schema, this

example data appears in it, as in Figure 3-4.

Figure 3-4.  Example schema

�orm_mode
The Config class inside the Pydantic model has an important property

called orm_mode. If it is set to True, the Pydantic model can be created

from any ORM model instance.

The term ORM stands for object-relational mapper. It is used for the

programming technique of mapping a table structure in a SQL database

Chapter 3 Request Body

78

with a class declared in an object-oriented language such as Python.

SQLAlchemy is one of the most popular ORM libraries for Python. Its

main advantage is that we can programmatically interact with the database

and not by executing raw SQL queries.

If we set the orm_mode property to True, the model can be constructed

from the instance of an ORM class such as the one inherited from

SQLAlchemy’s declarative_base class.

In our Product model, let us include the orm_mode configuration

property (Listing 3-11).

Listing 3-11.  ORM mode enabled

from pydantic import BaseModel

class Product(BaseModel):

 prodId:int

 prodName:str

 price:float

 stock:int

 class Config:

 orm_mode=True

Next, we shall declare a SQLAlchemy model (Listing 3-12) to match

with the Pydantic model structure.

Listing 3-12.  SQLAlchemy model

from sqlalchemy import Column, Integer, Float, String

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class ProductORM(Base):

 __tablename__ = 'products'

 prodId = Column(Integer, primary_key=True, nullable=False)

Chapter 3 Request Body

79

 prodName = Column(String(63), unique=True)

 price = Column(Float)

 stock = Column(Integer)

The from_orm() method of Pydantic’s BaseModel allows a model

instance to be constructed from the ORM model object. Listing 3-13 shows

the usage of this method.

Listing 3-13.  Pydantic model from SQLAlchemy

prod_alchemy = ProductORM(

 prodId=1,

 prodName='Ceiling Fan',

 price=2000,

 stock=50

)

product = Product.from_orm(prod_alchemy)

Here, the prod_alchemy is initialized, and the same is used as an

argument to the from_orm() method to obtain product as the object of the

Pydantic model.

Conversely, the instance of the Product BaseModel can be parsed into

an instance of the ProductORM model. We have a dict() method with the

BaseModel that returns its dictionary representation. This dictionary is

unpacked into an ORM object as in Listing 3-14.

Listing 3-14.  SQLAlchemy model from Pydantic

product=Product(prodId=2, prodName='LED Bulb', price=250,

stock=50)

prod_alchemy=ProductORM(**product.dict())

We shall come back to this interfacing between the Pydantic and

SQLAlchemy models later in this book when we discuss how to use a SQL

database with the REST API.

Chapter 3 Request Body

80

�Pydantic Fields
A model in FastAPI is simply a Python class inherited from Pydantic’s

BaseModel. Its class attributes become the fields in the model. The Product

model used in the earlier section uses Python’s built-in data types as type

hints while declaring the fields in a model. The data types in the typing

module consisting of type hints for collection data types can also be used.

Hence, we can declare Pydantic fields to be of typing.List, typing.Tuple,

and typing.Dict.

Let us define a Student model. The fields StudentID and name are

of int and str types. In Listing 3-15, we have declared a marks field of

typing.Dict type to store subject-wise marks.

Listing 3-15.  Pydantic model with a Dict field

from pydantic import BaseModel

from typing import Dict

class Student(BaseModel):

 StudentID:int

 name:str

 subjects:Dict[str, int]

In the FastAPI code (Listing 3-16), the Student model is used as an

argument to the POST operation function.

Listing 3-16.  FastAPI app with the Student model

from fastapi import FastAPI

from pydantic import BaseModel

from typing import Dict

class Student(BaseModel):

 StudentID:int

 name:str

Chapter 3 Request Body

81

 subjects:Dict[str, int]

app=FastAPI()

@app.post("/student")

async def addnew(student:Student):

 return student

The URL http://localhost8000/student can be tested in the Swagger

tool’s interface by entering values for the request body as shown in

Figure 3-5.

Figure 3-5.  Student model in the request body

The behavior of the Pydantic field can be customized by using the

Field() function. It has the same properties as Path(), Query(), and

Body() functions. For numeric fields, you can apply gt, ge, lt, le

validation criteria. To restrict the length of a string field, there are min_

length and max_length properties. The string pattern can be validated by

Chapter 3 Request Body

82

the regex property. You can follow the examples in the path parameter

validation section to implement on Fields also.

In addition to Python’s standard data types and the one in the typing

module, the Pydantic library defines its own types.

HttpUrl: This field is essentially a string with built-in validation for

URL schemes applied. The HttpUrl type accepts HTTP as well as HTTPS

schemes. It requires a TLD (top-level domain) and host allowing a

maximum length of 2083 characters.

The AnyUrl type allows any scheme (TLD is not required, but

host required). The FileUrl field is for storing the file URL and doesn’t

require a host.

EmailStr: It is also a string and must be a valid email address. The

validation of email representation of a string requires the email-validator

module to be installed.

SecretStr: This data type is used mostly to store passwords or

any other sensitive information that should not appear in logging or

tracebacks. On conversion to JSON, it will be formatted as '**********'.

Json: Pydantic loads a raw JSON string, not the field of Json type. You

can also use it to parse the loaded object into another type, based on the

type Json is parameterized with.

�Validation
The single most important feature of Pydantic is its capability to validate

the input data before passing to the operation function. It has the built-in

validation rules for all data types – standard types, those from the typing

module, as well as Pydantic’s own data types.

In the example (Listing 3-17), the Employee model implements the

Pydantic data types explained earlier.

Chapter 3 Request Body

83

Listing 3-17.  Pydantic types in a model

from fastapi import FastAPI

from pydantic import BaseModel, SecretStr, HttpUrl, Json

from typing import Dict

class Employee(BaseModel):

 ID: str

 pwd: SecretStr

 salary: int

 details: Json

 FBProfile: HttpUrl

app=FastAPI()

@app.post("/employee")

async def addnew(emp:Employee):

 return emp

The addnew() function is executed in the Swagger interface, with the

request body populated with the data shown in Listing 3-18.

Listing 3-18.  Sample Employee data

{

 "ID": "A001",

 "pwd": "asdf",

 "salary": 25000,

 "details":"{\"Designation\": \"Manager\", \"Branch\":

\"Mumbai\"}",

 "FBProfile": "https://www.facebook.com/dummy.employee/"

}

The details property is assigned a string containing a JSON with

Designation and Branch as keys. Note that the internal quotation marks

within the string have been escaped with the backslash (\) character.

Chapter 3 Request Body

84

The server’s response, as in Listing 3-19, has the password field

masked with asterisks.

Listing 3-19.  Response after validation

{

 "ID": "A001",

 "pwd": "**********",

 "salary": 25000,

 "details": {

 "Designation": "Manager",

 "Branch": "Mumbai"

 },

 "FBProfile": "https://www.facebook.com/dummy.employee/"

}

If, however, the JSON value of the details field is erroneous, the server

response indicates the reason (Listing 3-20), owing to Pydantic’s built-in

validation.

Listing 3-20.  Error response of failed JSON validation

{

 "detail": [

 {

 "loc": [

 "body",

 "details"

],

 "msg": "JSON object must be str, bytes or bytearray",

 "type": "type_error.json"

 }

]

}

Chapter 3 Request Body

85

Similarly, if the URL validation fails, the server response is rendered

with the corresponding error message. Have a look at Listing 3-21.

Listing 3-21.  Response of failed URL validation

{

 "detail": [

 {

 "loc": [

 "body",

 "FBProfile"

],

 "msg": "invalid or missing URL scheme",

 "type": "value_error.url.scheme"

 }

]

}

�Custom Validation
In addition to the built-in validations, you can provide your own. We need

to use the @validator decorator in Pydantic.

In the Employee model used in the previous example, we have the

ID field of string type. Let us impose a condition on its allowed value. It

is desired that the string should have only the alphanumeric characters.

If any character is non-alphanumeric, the validation should fail, and an

appropriate error message should be generated (Listing 3-22).

Python’s string class has the isalnum() method which returns false if

any character in the string is non-alphanumeric. We use the same in the

static function defined inside the Employee class. The method is decorated

by the @validator decorator. Listing 3-22 shows the new version of the

Employee model.

Chapter 3 Request Body

86

Listing 3-22.  Using the @validator decorator

class Employee(BaseModel):

 ID: str

 pwd: SecretStr

 salary: int

 details: Json

 FBProfile: HttpUrl

 @validator('ID')

 def alphanum(cls, x):

 if x.isalnum()==False:

 raise (ValueError('Must be alphanumeric'))

To test the validation, give #001 as the value of the ID field. The

Uvicorn server’s response (Listing 3-23) throws the ValueError with the

error message as mentioned in the preceding code.

Listing 3-23.  Custom validation error message

{

 "detail": [

 {

 "loc": [

 "body",

 "ID"

],

 "msg": "Must be alphanumeric",

 "type": "value_error"

 }

]

}

Chapter 3 Request Body

87

�Nested Models
As Pydantic models are in fact Python classes, we can always build a

hierarchy of classes by defining a property (field) of a model as the object

of an already defined model class. Listing 3-24 schematically represents

the nesting of models.

Listing 3-24.  Nesting of Pydantic models

ModelA:

 ..

 ..

ModelB:

 ID:int

 a1=ModelA

 ..

The a1 field of the ModelB class is the object of the ModelA class,

which must be defined earlier.

Let us construct a more realistic nested structure of models. The

Products model, in addition to the ProductID, Name, and price, has a

supplier field. It is a list of objects of the Suppliers model (as more than

one supplier may be dealing in a product).

So, we define the Suppliers model first as in Listing 3-25.

Listing 3-25.  Suppliers model

from pydantic import BaseModel

class Suppliers(BaseModel):

 supplierID:int

 supplierName:str

Chapter 3 Request Body

88

One of the fields of the Products model is a list of Suppliers

(Listing 3-26).

Listing 3-26.  Products model

from typing import List

class Products(BaseModel):

 productID:int

 productName:str

 price:int

 suppler:List[Suppliers]

Further, we create a model for Customers (Listing 3-27). In addition

to the ID and name of the customer, the model defines a products field

which in turn is a list of objects of the Products model. Let us use the top-

level Customers model for populating the request body when the FastAPI

receives a POST request.

Listing 3-27.  Customers model

class Customers(BaseModel):

 custID:int

 custName:str

 products:List[Products]

from fastapi import FastAPI

app = FastAPI()

@app.post("/customer")

async def getcustomer(c1:Customers):

 return c1

Chapter 3 Request Body

89

The request body is filled with customer details. Let us say, two

products are purchased. Details of each product are obtained from the

Products model. Each product has a list of suppliers whose fields are

fetched from the Customers model.

Use the example data in Listing 3-28 to test the /customer route that

invokes the getcustomer() operation function.

Listing 3-28.  Example data for the customers model

{

 "custID": 1,

 "custName": "C1",

 "products": [

 {

 "productID": 1,

 "productName": "P1",

 "price": 100,

 "suppler": [

 {

 "supplierID": 1,

 "supplierName": "S1"

 },

 {

 "supplierID": 2,

 "supplierName": "S2"

 }

]

 },

 {

 "productID": 2,

 "productName": "P2",

 "price": 200,

Chapter 3 Request Body

90

 "suppler": [

 {

 "supplierID": 3,

 "supplierName": "S3"

 },

 {

 "supplierID": 4,

 "supplierName": "S4"

 }

]

 }

]

}

The OpenAPI schema based on all the models is autogenerated by

Swagger UI (Figure 3-6). If we expand the Customers schema, it shows the

nested relationship between the three models declared in this application.

Chapter 3 Request Body

91

Figure 3-6.  Customers schema

�Summary
This concludes our discussion of Pydantic models. We have learned how

FastAPI uses Pydantic to populate the request body. We also explored the

Pydantic field types and how to perform validations. An important feature

of model configuration to enable its ORM mode has been explained here.

Chapter 3 Request Body

92

It will be very important when we’ll extend our REST API application to

connect with a database.

In the next chapter, we are going to study how certain dynamic data

from the operation function is inserted into web templates, particularly the

Jinja templates.

Chapter 3 Request Body

93

CHAPTER 4

Templates
FastAPI, as its name suggests, is primarily intended to be a library for

API development. However, it can very well be used to build web apps

of traditional type, that is, the ones rendering web pages, images, and

other assets.

In this chapter, we shall learn how FastAPI renders web pages with the

help of templates.

This chapter consists of the following topics:

•	 HTML response

•	 Template engine

•	 Hello World template

•	 Template with path parameter

•	 Template variables

•	 Serving static assets

•	 HTML form template

•	 Retrieve form data

�HTML Response
By default, the response returned by the operation function is of JSON

type. To be precise, an object of JSONType class is returned. However,

© Malhar Lathkar 2023
M. Lathkar, High-Performance Web Apps with FastAPI,
https://doi.org/10.1007/978-1-4842-9178-8_4

https://doi.org/10.1007/978-1-4842-9178-8_4#DOI

94

it is possible to override it by responses of different types such as

HTMLResponse, PlainTextResponse, FileResponse, etc. All of them are

classes derived from the Response class. Their type depends upon the

media_type parameter in the constructor (Listing 4-1).

Listing 4-1.  Response object

from fastapi import Response

resp=Response(content, media_type)

For example, by setting media_type to “text/html”, the operation

function returns the content as the HTML response.

The index() function in the code in Listing 4-2 returns a string in

HTML form. The string itself contains hard-coded HTML.

Listing 4-2.  HTML response

from fastapi import FastAPI, Response

app = FastAPI()

@app.get("/")

async def index():

 ret='''

<html>

<body>

<h2>Hello World!</h2>

</body>

</html>

'''

 return Response(content=ret, media_type="text/html")

When the client browser visits the http://localhost:8000 URL, it

displays the Hello World string with HTML’s H2 style formatting.

Chapter 4 Templates

95

As mentioned earlier, HTMLResponse is a subclass of the Response class.

The content parameter in this case is a string (or byte string). This class

has to be imported from the fastapi.responses module. Furthermore, we

need to set it as the value of the response_class parameter of the

@app.get() decorator.

The usage of the HTMLResponse class is demonstrated in the example

in Listing 4-3. Here, we also define a path parameter – name – to the index()

function. The idea is to parse it from the URL path so that the function

renders the text Hello Rahul if http://localhost:8000/Rahul is the URL in

the browser.

Listing 4-3.  Parameter substitution in HTML response

from fastapi import FastAPI

from fastapi.responses import HTMLResponse

app = FastAPI()

@app.get("/{name}", response_class=HTMLResponse)

async def index(name):

 ret='''

<html>

<body>

<h2 style="text-align: center;">Hello {}!</h2>

</body>

</html>

'''.format(name)

 return HTMLResponse(content=ret)

The format() function of the str class inserts the value of the path

variable at the placeholder inside the string. The HTML parser engine of

the browser takes care of the tags and their attributes, thereby displaying

the result as in Figure 4-1.

Chapter 4 Templates

96

Figure 4-1.  HTML response in the browser

�Template Engine
HTML, the language used to construct web pages, is basically static in nature.

Though we managed to add a certain interactivity in the preceding example

by mixing the string representation of HTML code with a variable part, it is

indeed a very cumbersome approach. Imagine how difficult it will be if you

have to display a tabular data with some columns filled conditionally.

Most modern web application frameworks use a web template system

for such a purpose. It inserts dynamically changing data items at appropriate

places inside the well-designed static web pages. A web template system has

three parts: a template engine, a data source, and a web template.

A web template is essentially a web page with one or more blocks of

a certain template language code with the help of which the web page is

populated with certain dynamic data items. On the other hand, the data

to be interspersed in the web page is available in some data source in the

form of a database table, a memory array, or a CSV file.

The template engine (also called template processor) receives these

two parts. It fetches one set of data items at a time from the data source

(such as one row from a database table) and puts them at their respective

placeholders in the template to dynamically generate multiple web pages,

one for each row in the data source. The schematic diagram in Figure 4-2

explains the functioning of a template engine.

Chapter 4 Templates

97

Figure 4-2.  Template engine

Talking of templating in Python-based web apps, there are several

templating languages available. Some frameworks have their own

templating mechanism, while some others are bundled with a certain

library. FastAPI doesn’t have any such dependency on a particular

template engine. In other words, a developer is free to use the library of

their choice, although FastAPI recommends using the jinja2 package.

Since it is not installed by default, you need to do it explicitly, using the

pip3 install jinja2 command.

The jinja2 library is very popular. It is fast and lightweight. Because

of its sandboxed environment, use of any potentially unsafe data is

prohibited, and cross-site attacks are prevented. The template inheritance

is a powerful feature in jinja2. It helps in maintaining uniformity in the

web design.

Chapter 4 Templates

98

�Hello World Template
As mentioned earlier, a template is nothing but an HTML script. For the

FastAPI app object to find the template, it must be placed in a templates

folder, which should be in the same folder in which the FastAPI app object

is present.

Earlier in this chapter, a hard-coded HTML string was rendered as the

HTML response. Let us save the string contents as hello.html (Listing 4-4)

in the templates folder alongside the app.py script.

Listing 4-4.  Hello World template

<html>

 <body>

 <h2 style="text-align: center;">Hello World!</h2>

 </body>

</html>

FastAPI’s support for jinja2 is available in the form of the

Jinja2Templates function defined in the fastapi.templating module.

So, we need to import it in our application code. This function returns a

template object and needs the name of the directory in which the template

web pages are stored (Listing 4-5).

Listing 4-5.  Template object

from fastapi.templating import Jinja2Templates

template = Jinja2Templates(directory="templates")

As before, set the response_class attribute of the @app.get()

decorator to HTMLResponse. The operation function needs to receive the

request object parameter so that it can be passed to the template as a

request context.

Chapter 4 Templates

99

Call the TemplateResponse() method of the template object (refer to

Listing 4-6). Its first parameter is the template web page to be rendered –

hello.html in this case. The second parameter should be the request

context. For now, it is just the request object received from the server. It

returns the response to be sent to the client.

Listing 4-6.  TemplateResponse

@app.get("/", response_class=HTMLResponse)

async def index(request: Request):

 �return templates.TemplateResponse("hello.html", {"request":

request})

Ensure that the application folder structure is as follows:

app/

│ main.py
│
└───templates/
 hello.html

Save the code (Listing 4-7) as main.py.

Listing 4-7.  main.py

from fastapi import FastAPI, Request

from fastapi.responses import HTMLResponse

from fastapi.templating import Jinja2Templates

template = Jinja2Templates(directory="templates")

app = FastAPI()

@app.get("/", response_class=HTMLResponse)

async def index(request: Request):

 �return template.TemplateResponse("hello.html", {"request":

request})

Chapter 4 Templates

100

You should get the Hello World text rendered in the <h2> tag on the

browser page as you run this application.

�Template with Path Parameter
Although rendered as a template, the hello.html is really a static web page

in the preceding example. The real power of the templating mechanism is

to be able to render a dynamic content received from the renderer, that is,

the view function.

The TemplateResponse() method’s second argument is a dict object,

often called a template context. It is mandatory that the request object

is present in this context. In addition, the view function can include any

number of objects in it. The keys in the context dictionary become the

variables to be substituted in the HTML script.

The jinja2 is a server-side templating library. The template web page

uses various elements of the templating language as placeholders inside

the HTML script. The template code is put in prescribed symbols to escape

from the HTML content. (We shall come to know about the jinja2 language

syntax a little later.) The template engine reads the HTML script, inserts

the context data in the jinja2 placeholders, reassembles the HTML, and

renders it to the client.

Earlier, we have seen how the path parameter is substituted in

the string with HTML representation. Now, we shall include the path

parameter (name) in the context dictionary. Modify the index() view

function in the application code as in Listing 4-8.

Listing 4-8.  Parameter in the request context

@app.get("/{name}", response_class=HTMLResponse)

async def index(request: Request, name:str):

 �return template.TemplateResponse("hello.html", {"request":

request, "name":name})

Chapter 4 Templates

101

Use the context variable name and put it inside double curly brackets –

{{ name }} – as the jinja2 placeholder in place of World in hello.html

(Listing 4-9). The template engine substitutes it with the value of the name

path parameter received at runtime.

Listing 4-9.  Parameter substitution in the template

<html>

 <body>

 <h2 style="text-align: center;">Hello {{ name }}!</h2>

 </body>

</html>

As a result, after making these changes, running the Uvicorn server,

and using http://localhost:8000/Rahul as the URL, the browser should

show the Hello Rahul text as before.

�Template Variables
As stated earlier, the view function inserts the request object and, if

required, any other objects in the template context. The context itself is

a dict object. Hence, the data to be passed to the template must have a

string key.

The key in the context is treated as a template variable. In the

preceding example, the “name” key (with its value being the path

parameter name) is put in double curly brackets so that its runtime value is

substituted in the HTML script.

You can add any Python object in the template context. It may be

of standard data type (str, int, list, dict, etc.), an object of any other

Python class, or even a Pydantic model. Let us have a look at some

examples.

Chapter 4 Templates

102

�Passing dict in Template Context
You can assign a Python dictionary object as the value of a key in the

template context. Inside the template code, you can use the get() method

or the usual subscript ([]) syntax of the Python dict class to process the

data received from the view.

Let us define an operation function in our application code (Listing 4-10)

that receives two path parameters – name and salary. Instead of returning

them in a JSON response, let us extend it to put them in a dictionary and

pass it in the context of template. Add the code in main.py (it is currently

running in debug mode) as shown in Listing 4-10.

Listing 4-10.  dict as the template context

@app.get("/employee/{name}/{salary}",response_

class=HTMLResponse)

async def employee(request:Request, name:str, salary:int):

 data= {"name":name, "salary":salary}

 �return template.TemplateResponse("employee.html",

{"request": request, "data":data})

To display the values in the web page, obtain them with data.get('name')

and data.get('salary') and put them within double curly brackets. Save the

code (Listing 4-11) as employee.html in the templates folder.

Listing 4-11.  Accessing dict in the template

<html>

 <body>

 <h1>Employee Details</h1>

 �<h2>Name: {{ data.get('name') }} Salary: {{ data.

get('salary') }}</h2>

 </body>

</html>

Chapter 4 Templates

103

If the application is running with the debug mode on, change the URL

to http://localhost:8000/employee/Rahul/27. The application’s response

in the browser should be as in Figure 4-3.

Figure 4-3.  Web page with dictionary values

In addition to substituting template variables at runtime, you can

include jinja2 statement blocks in the template for conditional processing

as well as looping constructs.

Let us learn about the conditional statements of the jinja2 templating

language.

�Conditional Blocks in Template
In jinja2, there are three keywords to implement conditional logic inside

the template. They are if, elif, and else – very much similar to those

present in Python as well. We know that Python makes use of indentation

to mark the blocks. A set of uniformly indented statements after the

expressions involving if, elif, or else forms the conditional block.

However, jinja2 doesn’t use such indenting technique to mark the block.

Instead, it uses the endif keyword to indicate the end of the block.

Chapter 4 Templates

104

The conditional expressions are placed between {% %} symbols. They

act as the delimiters so that the template processor is able to differentiate

from the rest of HTML. The following schematic use of conditional

statements in the template will help in understanding its implementation:

{% if expr1==True %}

 HTML block 1

{% elif expr2==True %}

 HTML block 2

{% else %}

 HTML block 3

{% endif %}

The logical expressions use the template variables as the operand. Of

course, the HTML block may have one or more variable placeholders in

double curly brackets where the context data is substituted.

In Listing 4-12, we have a jinja2 template web page in which if –

else – endif statements are used.

Listing 4-12.  Conditionals in the jinja2 template

<html>

 <body>

 <h1>Employee Details</h1>

 <h2>Name: {{ data.get('name') }} </h2>

 <h2>Salary: {{ data.get('salary') }}</h2>

 {% if data.get('salary')>=25000 %}

 <h2>Income Tax : {{ data.get('salary')*0.10 }}</h2>

 {% else %}

 <h2>Income Tax : Not applicable</h2>

 {% endif %}

 </body>

</html>

Chapter 4 Templates

105

When rendered, the template shows the display (Figure 4-4) on the

browser’s page.

Figure 4-4.  Conditional output in the template

�Loop in Template
If any sequence object, that is, a list, tuple, or string, is passed as a context,

it can be traversed inside the template with a looping construct. You have

two keywords for and endfor for this purpose in jinja2. The syntax of the

for statement is similar to the one in Python. Both the keywords, for and

endfor, are put inside {% %} symbols. A typical for loop in jinja2 code

looks like this:

{% for item in sequence %}

HTML block

{% endfor %}

One can of course use a conditional block within the loop as well as

construct nested loops.

In the operation function, a list object langs is passed in the template

context. Save the code in Listing 4-13 as main.py.

Chapter 4 Templates

106

Listing 4-13.  List as the template context

@app.get("/profile/", response_class=HTMLResponse)

async def info(request:Request):

 �data={"name":"Ronie", "langs":["Python", "Java", "PHP",

"Swift", "Ruby"]}

 return template.TemplateResponse("profile.html",

 ��{"request":request,

"data":data})

The value returned by data.get('langs') in the template is a list.

A jinja2 for statement is used to traverse it, and its items (names of

programming languages) are rendered as HTML’s unordered list elements.

Save the snippet in Listing 4-14 as profile.html in the templates folder.

Listing 4-14.  Loop in the jinja2 template

<html>

 <body>

 <h2>Name: {{ data.get('name') }} </h2>

 <h3>Programming Proficiency</h3>

 {% for lang in data.get('langs') %}

 {{ lang }}

 {% endfor %}

 </body>

</html>

The http://localhost:8000/profile/ URL displays the output as shown

in Figure 4-5.

Chapter 4 Templates

107

Figure 4-5.  Browser output of the loop in the template

�Serving Static Assets
The jinja2 template engine substitutes variable data in the placeholder

tags to generate a web page dynamically. However, to display the content

uniformly, HTML uses stylesheets. Similarly, HTML displays certain image

files such as product images, logos, and icons. HTML also calls some

JavaScript code for client-side processing. These resources – images, CSS

stylesheets, and JavaScript files – don’t change irrespective of the variable

data. Hence, they are called static assets of a website.

FastAPI facilitates the use of such static files from a location configured

for the purpose. These files should be put in a folder named static. It

should be in the same folder where the application code script as well as

the templates folder resides.

The path pointing to this static folder is mounted as a subapplication.

The mount() method of the Application class defines a /static route

mapped to its path:

 app.mount("/static", StaticFiles(directory="static"),

name="static")

Chapter 4 Templates

108

The StaticFiles class (imported from the fastapi.staticfiles

module) maps the static directory to the /static route. By mounting a

static subapplication, the static content becomes easy to deliver, process,

and cache.

Whenever we want to use any of these static files, their path is obtained

with the url_for() function provided by the jinja2 template language.

�Using JavaScript in Template
Normally, we find a JavaScript file included in the HTML script with the

src tag:

<script src="path/to/myscript.js"></script>

However, referring to the file by its local path is a security concern.

Instead, we use the url_for() function that will fetch the path during

runtime. So we shall use the following syntax:

<script src="{{ url_for('static', path=myscript.js')

}}"></script>

On the server side, include the operation function in the FastAPI

application file (Listing 4-15).

Listing 4-15.  View for the template with JS

from fastapi.staticfiles import StaticFiles

app.mount("/static", StaticFiles(directory="static"),

name="static")

@app.get("/testjs/{name}", response_class=HTMLResponse)

async def jsdemo(request:Request, name:str):

 data={"name":name}

Chapter 4 Templates

109

 return template.TemplateResponse("static-js.html",

 �{"request":request,

"data":data})

As we know, the template web page (static-js.html) should be present

in the templates folder. Listing 4-16 provides the required HTML script.

Listing 4-16.  Calling JavaScript in the jinja2 template

<!DOCTYPE html>

<html>

<head>

 <title>My Website</title>

 �<script src="{{ url_for('static', path=myscript.js')

}}"></script>

</head>

<body>

 <h2>Using JavaScript in Template</h2>

 <h3> Welcome {{ data.get('name') }}</h3>

 <button onclick="myFunction()">Submit</button>

 <p id="response"></p>

</body>

</html>

This renders an HTML button, which when clicked calls a JavaScript

function.

The myscript.js file in Listing 4-17 contains the definition of

myFunction. Save the script in the static folder.

Chapter 4 Templates

110

Listing 4-17.  JavaScript function called by FastAPI

function myFunction() {

 let text;

 �if (confirm("Do You Want to Continue\nChoose Ok/Cancel")

== true) {

 text = "You pressed OK!";

 } else {

 text = "You pressed cancel";

 }

 document.getElementById("response").innerHTML = text;

}

This function pops up the Confirm box. The user’s response (Ok or

Cancel) is placed in the paragraph element with response as its ElementId.

Start the Uvicorn server and enter http://localhost:8000/testjs/Andy in

the browser, as shown in Figure 4-6. It displays the button.

Figure 4-6.  Confirm box

Assuming that the user clicks the OK button, the output is as shown in

Figure 4-7.

Chapter 4 Templates

111

Figure 4-7.  Result of the Confirm box

�Static Image
To display an image in a web page, we normally use the tag with its

usual syntax as follows:

However, as mentioned in the previous section, the local path to a

file on the server should never be used as it is potentially a security risk.

Instead, we use the url_for() function of jinja2 to let the server retrieve

the image path dynamically:

The FastAPI logo will be displayed on the web page. FastAPI expects

the static images to be made available in the static folder. We need to

add lines from Listing 4-18 as the operation function in our application

code file.

Chapter 4 Templates

112

Listing 4-18.  View rendering a static image

@app.get("/img/", response_class=HTMLResponse)

async def showimg(request:Request):

 return template.TemplateResponse("static-img.html",

 {"request":request})

Save the template script (Listing 4-19) as static-img.html in the

templates folder.

Listing 4-19.  jinja2 template for the static image

<!DOCTYPE html>

<html>

<head>

 <title>My Website</title>

</head>

<body>

 <h2 style="text-align: center;">Static image in

Template</h2>

</body>

</html>

The http://localhost:8000/img/ URL displays the logo in the browser,

as shown in Figure 4-8.

Chapter 4 Templates

113

Figure 4-8.  Static image

�CSS As a Static Asset
Stylesheets are used for uniform presentation of various HTML elements

across all the web pages in a website. For example, all paragraphs should

use a font with the same size, color, etc. Or, the page body should have

the same background color. Obviously, we are not going to discuss CSS

in more detail here because it is beyond the scope of this book. We shall

restrict ourselves to know how FastAPI serves the CSS files.

Again, in a normal HTML, a CSS file is linked with the following syntax:

<link href="mystyle.css" rel="stylesheet">

However, in a jinja2 template, we have to use the url_for() function to

fetch the path of the CSS file:

<link href="{{ url_for('static', path='mystyle.css') }}"

rel="stylesheet">

Chapter 4 Templates

114

We shall use the profile.html that we used to demonstrate the

jinja2 loop. The unordered list is displayed with the link style defined in

mystyle.css.

First, the updated profile.html is shown in Listing 4-20.

Listing 4-20.  Profile.html

<html>

<head>

<link href="{{ url_for('static', path='mystyle.css') }}"

rel="stylesheet">

</head>

 <body>

 <h2>Name: {{ data.get('name') }} </h2>

 <h3>Programming Proficiency</h3>

 <ul class="b">

 {% for lang in data.get('langs') %}

 {{ lang }}

 {% endfor %}

 </body>

</html>

The script in Listing 4-21 is saved as a mystyle.css file and is placed in

the static folder.

Listing 4-21.  mystyle.css

h2 {

text-align: center;

}

Chapter 4 Templates

115

ul.a {

 list-style-type: circle;

}

ul.b {

 list-style-type: square;

}

As shown in Figure 4-9, the bullet list of programming languages

appears with a square symbol instead of the default circle.

Figure 4-9.  Using CSS in the jinja2 template

�HTML Form Template
Often, a web application needs to present the user with a form to be

filled and submitted for processing at the server end, when a certain

URL is visited. Obviously, the template rendered by the corresponding

operation function (or view) has to be an HTML form. Further, as the form

is submitted, the data entered by the user should be retrieved by another

view and processed accordingly.

Chapter 4 Templates

116

To understand this workflow, let us use Listing 4-22 to design a simple

form template (form.html) with two input elements and a dropdown.

Listing 4-22.  form.html

<html>

<head>

<link href="{{ url_for('static', path='formstyle.css') }}"

rel="stylesheet">

</head>

<body>

<h3>Application Form</h3>

<div>

 <form action="/form/" method="POST">

 <label for="Name">Name of Applicant</label>

 <input type="text" id="name" name="name">

 <label for="Address">Address</label>

 <input type="text" id="add" name="add">

 <label for="Post">Post</label>

 <select id="Post" name="Post">

 <option value="Manager">Manager</option>

 <option value="Cashier">Cashier</option>

 <option value="Operator">Operator</option>

 </select>

 <input type="submit" value="Submit">

 </form>

</div>

</body>

</html>

Chapter 4 Templates

117

This template is served when the browser requests the root URL http://

localhost:8000/ (Figure 4-10).

Figure 4-10.  HTML form

�Retrieve Form Data
Note that this form is submitted to the /form URL path, with the POST

request. Now we have to provide a view function to process the data

submitted by the user. The view function receives the data in parameters

that are objects of the fastapi.Form class. Moreover, the parameter names

must match with the name attribute of each form element.

In the preceding HTML form, two text input elements have name

attributes as “name” and “add,” while the Select element’s name attribute

is “Post.” Hence, the view function mapped to the /form path (we shall

Chapter 4 Templates

118

define the getform() function) should have these parameters. They must

be objects of the Form class. Moreover, since the form’s method attribute is

POST, the operation decorator should be @app.post().

Before we add the post decorator and its function, we need to install

the python-multipart package. FastAPI needs it to process the forms:

pip3 install python-multipart

Import this package and add the getform() function in our application

code (Listing 4-23). It parses the user’s data in Form objects. The function

returns a JSON response of the values in the form of a dictionary.

Listing 4-23.  View with Form parameters

from fastapi import Form

@app.post("/form/")

async def getform(name:str=Form(...), add:str=Form(...),

Post:str=Form(...)):

 return {"Name":name, "Address":add, "Post Applied":Post}

You can test the POST operation with Swagger UI. Enter the test data as

shown in Figure 4-11.

Chapter 4 Templates

119

Figure 4-11.  Form parameters in Swagger UI

Click the Execute button and check the server’s response

(Figure 4-12).

Chapter 4 Templates

120

Figure 4-12.  Server response in Swagger

If you want to check it on a live server, visit http://localhost:8000/

to display the form. Enter the data and submit. Figure 4-13 shows the

browser output.

Figure 4-13.  Response with Form data

�Summary
We hereby conclude this chapter on templates in FastAPI. We have learned

how FastAPI renders the jinja2 template. Conditional and loop statements

in the jinja2 template language have also been explained with appropriate

examples. Lastly, we have discussed how to retrieve the data posted by an

HTML form in a view function.

Chapter 4 Templates

121

CHAPTER 5

Response
Any web application returns an HTTP response to the client. The operation

function in a FastAPI app returns a JSON response by default. In this

chapter, we shall learn how we can manipulate the response to handle

different requirements.

In this chapter, the following points will be discussed:

•	 Response model

•	 Cookies

•	 Headers

•	 Response status code

•	 Response types

The FastAPI operation function JSONifies Python’s primary types,

that is, numbers, string, list, dict, etc., as its response. It can also return an

object of a Pydantic model.

While the request object is passed to the operation function by

the server itself, you need to formulate the response as a result of the

function’s process. The response object can also have status_code,

headers, and media_type as additional parameters other than its content.

© Malhar Lathkar 2023
M. Lathkar, High-Performance Web Apps with FastAPI,
https://doi.org/10.1007/978-1-4842-9178-8_5

https://doi.org/10.1007/978-1-4842-9178-8_5#DOI

122

�Response Model
You can declare any operation decorator with an additional response_

model parameter so that the function adopts the response to the specified

Pydantic model.

With the help of response_model, FastAPI converts the output data to

a structure of a model class. It validates the data and adds a JSON Schema

for the response in the OpenAPI path operation.

Consider the case of a Pydantic model called Product (Listing 5-1)

having its field structure.

Listing 5-1.  Product model

class Product(BaseModel):

 prodId:int

 prodName:str

 price:float

 stock:int

 Inventory_val:float

The Inventory_val is a computed field in the preceding class. Hence,

its value will not come from the POST request. The FastAPI can return the

Product object, but let us say that we want to return only the Id, Name,

and computed value of the inventory value. For this output structure, we

declare another model as ProductVal (Listing 5-2).

Listing 5-2.  ProductVal model

class ProductVal(BaseModel):

 prodId:int

 prodName:str

 Inventory_val:float

Chapter 5 Response

123

We’ll ask FastAPI to use this ProductVal model as its response type.

To do this, use the response_model attribute as a parameter to the @app.

post() decorator, and set it to our required model.

The client request brings the attributes of the Product class as the

body parameters into the operation function. We’ll have to compute the

Inventory_val inside the function (Listing 5-3). As we return the Product

object, the response_model is used to formulate the response; as a result,

the price and stock attributes will not appear in it.

Listing 5-3.  Using response_model

@app.post("/product/", response_model=ProductVal)

async def addnew(product:Product):

 product.Inventory_val=product.price*product.stock

 return product

Let us check the behavior with the help of Swagger UI. Enter the body

parameters as shown in Figure 5-1.

Figure 5-1.  Product model

Chapter 5 Response

124

In Figure 5-2, we see that FastAPI formulates its response to the client

as per the response_model set in the operation decorator.

Figure 5-2.  Response model

The response_model parameter is thus effective in limiting the output

data to that of the model. You can further trim the response with the help

of the following additional parameters for the operation decorator.

response_model_exclude_unset: If set to True, attributes in the

input model with default values (to whom the client request doesn’t have

explicitly set values) will not appear in the response.

response_model_include: You can set this parameter to a list of only

those attributes that you want to appear in the response.

response_model_exclude: The attributes listed will be omitted,

including the rest in the response.

Chapter 5 Response

125

�Cookies
When the server receives a request for the first time from any client

browser, sometimes it may insert some additional data along with the

response. This small piece of data is called a cookie. It is stored as a text file

in the client’s machine.

With the help of cookies, the web application keeps track of the user’s

activities, preferences, etc. On every subsequent visit by the same client,

the cookie data already stored in its machine is also attached to the HTTP

request body and the parameters. The cookie mechanism is a reliable

method by which the web application can store and retrieve a stateful

information regarding the client’s usage, although HTTP is a stateless

protocol.

Let us see how to set and retrieve cookies in a FastAPI application.

�set_cookie() Method
The set_cookie() method of the Response object makes setting a cookie very

simple. Let us understand this with an example. Have a look at Listing 5-4.

Here’s a simple login form (form.html) that sends the User ID and password

to the server.

Listing 5-4.  form.html

<form action="/setcookie" method="POST">

<h3>User ID</h3>

<p><input type="text" name="user"></p>

<h3>Password</h3>

<p><input type="password" name="pwd"></p>

<h3><input type="submit" name="submit"></p>

</form>

Chapter 5 Response

126

We want to store the User ID in the form of a cookie on the client’s

filesystem. Note that the form is being posted to the /setcookie URL path. We

shall, therefore, provide an operation function for the @app.post() decorator.

This function reads the form data in two Form parameters – user and

pwd. As the function returns its JSON response, we attach a cookie with the

set_cookie() method of the Response object (Listing 5-5).

Listing 5-5.  set_cookie() function

from fastapi.responses import Response

Response.set_cookie(key, value)

The collection of cookies is a dict object with key-value pairs. The set_

cookie() method can also take max_age and expires as optional parameters.

The setcookie() function in Listing 5-6 sets a “user” cookie with the

Form parameter user as its value.

Listing 5-6.  Setting cookie

from fastapi import FastAPI, Request, Form

from fastapi.responses import Response

app = FastAPI()

@app.post("/setcookie/")

async def setcookie(request:Request, response: Response,

 user:str=Form(...), pwd:str=Form(...)):

 response.set_cookie(key="user", value=user)

 return {"message":"Hello World"}

�Cookie Parameter
How does the server read the cookies that come along with the client’s

request? The fastapi module defines the Cookie class. When its object is

declared as one of the parameters of an operation function, the retrieved

cookies are stored in it.

Chapter 5 Response

127

The index() function mapped to the “/” URL path has user as the

cookie parameter. (The name of the parameter must be the same as the

cookie previously set. If not, its value will be None.) This parameter is

passed as the context to the HTML template (Listing 5-7).

Listing 5-7.  Cookie parameter

from fastapi import Cookie

from fastapi.templating import Jinja2Templates

template = Jinja2Templates(directory="templates")

@app.get("/", response_class=HTMLResponse)

async def index(request: Request, user:str = Cookie(None)):

 return template.TemplateResponse("form.html",

 �{"request":

request,"user":user})

We need to add the template variable in the HTML script of our form.

html so that it reads as in Listing 5-8.

Listing 5-8.  Reading the cookie value

<html>

<body>

{% if user %}

<h3>You are logged in as {{ user }}</h3>

{% endif %}

<hr>

<form action="/setcookie" method="POST">

<h3>User ID</h3>

<p><input type="text" name="user"></p>

<h3>Password</h3>

<p><input type="password" name="pwd"></p>

Chapter 5 Response

128

<h3><input type="submit" name="submit"></p>

</form>

</body>

</html>

As a result, when the user visits “/” for the first time, the login form is

displayed as in Figure 5-3.

Figure 5-3.  Login template

Click the Submit button to post the form data to the /setcookie path.

The operation function sets the user cookie. When the client revisits the

“/” path, the form is rendered below the message showing the name of the

user who is currently logged in. Figure 5-4 shows how it appears.

Chapter 5 Response

129

Figure 5-4.  Login template showing the cookie value

�Headers
Just as cookies, a web application may push a certain metadata in the form

of HTTP headers into its response. In addition to the predefined HTTP

header types, the response may include custom headers. To set a custom

header, its name should be prefixed with “X”. In the example (Listing 5-9),

the operation function adds a custom header called “X-Web-Framework”

and a predefined header “Content-Language” along with the content to

its response.

Listing 5-9.  Setting a custom header

from fastapi.responses import JSONResponse

@app.get("/header/")

async def set_header():

 content = {"message": "Hello World"}

 �headers = {"X-Web-Framework": "FastAPI", "Content-

Language": "en-US"}

Chapter 5 Response

130

In response to the /header URL, the browser displays only the Hello
World message. To check if the headers are properly set, you need to check

the Swagger documentation of the set_header() function, as shown in

Figure 5-5.

Figure 5-5.  Response headers

The newly added headers will appear in the response headers section

of the documentation.

�Header Parameter
To read the values of an HTTP header from the client request, import the

Header class from the FastAPI library, and use its object as a parameter in

operation function definition. The name of the parameter should match

with the HTTP header converted in camel_case. If you try to retrieve the

“accept-language” header, “-” (dash) in the name of the identifier (since

Python doesn’t allow it) is replaced by “_” (underscore).

Chapter 5 Response

131

As shown in Listing 5-10, add the decorator and its function in the

application code.

Listing 5-10.  Header parameter

from typing import Optional

from fastapi import Header

@app.get("/read_header/")

async def read_header(accept_language: Optional[str] =

Header(None)):

 return {"Language": accept_language}

You receive the value of the accept-language header in the response

body (Figure 5-6).

Figure 5-6.  Header parameter

�Response Status Code
In HTTP-based client-server communication, the server’s response is

accompanied by a numeric status code. It indicates how the client’s

request has been handled – whether it was successfully completed or

whether the server encountered any problem.

Chapter 5 Response

132

The status code is a three-digit number. They have been categorized in

five classes:

•	 Informational responses: Status codes between 100

and 199 are for “Information.” Normally, they are

not set directly. Any response with 1XX status codes

doesn’t have a body.

•	 Successful responses: Status codes starting with

2 indicate that the request has been successfully

completed. 200 is the default status code. The code 201

is also common, usually after creating a new resource.

•	 Redirection messages: Status codes between 300 and

399 are used for redirection from one URL endpoint to

another. For example, 301 is included in the response

letting the user know that the URL of the requested

resource has been changed permanently. 307 indicates

temporary redirect.

•	 Client error responses: The 4XX codes imply client

error responses. The most common one is 404,

representing the page not found error.

•	 Server error responses: The codes starting with 5

represent the server errors. For example, 501 as the

status code in the response means the server has

encountered an internal error.

As mentioned earlier, the default status code is 200 OK. To include any

other code in the response, use the status_code parameter in FastAPI’s

operation decorator (Listing 5-11).

Chapter 5 Response

133

Listing 5-11.  Adding a status code to the response

@app.get("/hello/{name}", status_code=201)

async def sayhello(name: str):

 return {"message": "Hello "+name}

The browser displays only the content part of the response. To

verify the status code in the response, we need to check the Swagger

documentation. Figure 5-7 shows the server response with a 201

status code.

Figure 5-7.  Server response with a status code

FastAPI also defines status code constants corresponding to each

numeric status code. For example, status code 200 is equivalent to

status.HTTP_200_OK. In the code snippet (Listing 5-12), we use status.

HTTP_201_CREATED as the value of the status_code parameter of the

decorator.

Chapter 5 Response

134

Listing 5-12.  Status code constants

from fastapi import status

@app.get("/hello/{name}", status_code=status.HTTP_201_CREATED)

async def sayhello(name: str):

 return {"message": "Hello "+name}

�Response Types
As mentioned earlier, FastAPI returns its response in JSON form by default,

by automatically converting the return value of the operation function with

the help of json-encoder.

JSONResponse is a subclass of the Response class. You can directly

return the object of the Response class, specifying the media_type such as

media_type="application/xml", "text/html", etc.

For example, in Listing 5-13, the function renders the response with

the media type set as “text/html.”

Listing 5-13.  Using media_type

from fastapi.responses import Response

app = FastAPI()

@app.get("/html/")

def get_html():

 data = """

<html>

<body>

<h3>Hello World</h3>

</body>

</html>

 """

 return Response(content=data, media_type="text/html")

Chapter 5 Response

135

To handle various types of responses, FastAPI provides different other

subclasses of the Response class. We shall have a look at some of them.

�HTMLResponse
The HTMLResponse class is derived from the Response class, with media_

type set to “text/html.” So, in the preceding example, we can easily replace

the return statement with this:

return HTMLResponse(content=data)

You may also typecast the response by setting the response_class

parameter of the operation decorator. In Listing 5-14, response_class is

set to HTMLResponse.

Listing 5-14.  HTMLResponse

@app.get("/html/", response_class=HTMLResponse)

def get_html():

 data = """

<html>

<body>

<h3>Hello World</h3>

</body>

</html>

 """

 return Response(content=data)

We have already used HTMLResponse as the response_class attribute

very extensively for rendering the templates in the previous chapter.

Listing 5-15 is an example.

Chapter 5 Response

136

Listing 5-15.  HTMLResponse as response_class

@app.get("/", response_class=HTMLResponse)

async def index(request: Request):

 �return templates.TemplateResponse("hello.html", {"request":

request})

�JSONResponse
JSON is the default media type of FastAPI’s response. If you are certain

that data returned by the function is serializable with JSON, you can pass it

directly to the response class and avoid the extra overhead (Listing 5-16).

Listing 5-16.  JSONResponse

@app.get("/json", response_class=JSONResponse)

def get_html():

 data = "Hello World"

 return Response(content=data)

FastAPI also supports ORJSONResponse, a faster alternative JSON

response, and UJSONResponse types.

�StreamingResponse
This is a special type of Response object that takes either an async

generator or a normal generator and streams its yield as the response.

In Python, a generator is a function that produces an iterator, and every

time the yield statement is reached, the next value in the iterator is given out

to the calling environment. Thus, it streams the series of values in the iterator.

In the example (Listing 5-17), the generator() function is a coroutine

that yields a sequence of numbers, which are streamed as the application’s

response by the operation function.

Chapter 5 Response

137

Listing 5-17.  Generator’s StreamingResponse

async def generator():

 for i in range(1,11):

 yield "Line {}\n".format(i)

@app.get("/")

async def main():

 return StreamingResponse(generator())

On the client browser, you’ll get the streaming line numbers displayed.

A disk file acts as a stream. Python’s file object is an iterator. You can

create a generator function that returns an iterator out of the file object.

Every time the yield statement is executed, it streams the next line in

the file. This is especially useful for bigger files as it is not necessary to

read it all first in memory. Instead, pass the generator function to the

StreamingResponse, and return it.

The code in Listing 5-18 has a readfile() generator that yields lines

from the file. This generator is used by the StreamingResponse.

Listing 5-18.  StreamingResponse from a file

file="large_file.txt"

@app.get("/")

def index():

 def readfile():

 with open(file, mode="rb") as f:

 yield from f

 �return StreamingResponse(readfile(), media_

type="text/plain")

You can even return the stream of MP4 video bytes as the response.

Just change the media_type to video/mp4.

Chapter 5 Response

138

�FileResponse
Note that the open() function that returns the file object doesn’t support

async and await. Hence, the operation function in the preceding example

is not a coroutine but a normal function.

The FileResponse class is more suitable for streaming a file as the

application’s response. A few additional arguments may be given to

instantiate the FileResponse object:

•	 path: The path to the file to stream.

•	 headers: You may include any custom headers if

required.

•	 media_type: A string giving the media type. If not

given, the media type is determined from the filename.

•	 filename: If set, this will be included in the Content-

Disposition response.

In the example (Listing 5-19), the Uvicorn server streams the video

content on the client browser.

Listing 5-19.  FileResponse example

from fastapi.responses import FileResponse

file="wildlife.mp4"

@app.get("/", response_class=FileResponse)

async def index():

 return file

Start the server and visit the http://localhost:8000/ URL. The video

starts playing in the browser. A screengrab of the video is shown in

Figure 5-8.

Chapter 5 Response

139

Figure 5-8.  Streaming video with FileResponse

�RedirectResponse
The mechanism of redirection in HTTP (called HTTP redirect) is a

special kind of response. It is either used to redirect the user during site

maintenance or downtime (this is a temporary redirect), or for Permanent

redirect in situations like changing the site’s URLs.

Redirect responses have status codes that start with 3. In FastAPI, the

RedirectResponse class implements the HTTP redirect. By default, its

status code is 307 – indicating a temporary redirect.

Let us see the use of RedirectResponse with the example in

Listing 5-20.

Here, we have the index() function that renders a login form web page

template. However, the form script is being modified, and hence the user

needs to be prevented from accessing it and instead should be directed to

another URL indicating that the page is unavailable.

The index() operation function is shown in Listing 5-20.

Chapter 5 Response

140

Listing 5-20.  RedirectResponse example

from fastapi import FastAPI, Request

from fastapi.responses import HTMLResponse

from fastapi.responses import Response, RedirectResponse

from fastapi.templating import Jinja2Templates

template = Jinja2Templates(directory="templates")

app = FastAPI()

@app.get("/", response_class=HTMLResponse)

async def index(request: Request):

 return RedirectResponse("/redirect")

 return template.TemplateResponse("form.html",

 {"request": request})

Note the call to RedirectResponse (in bold) with the URL

(“/redirect”) to which the original request is to be diverted. Listing 5-21

has the redirected() operation function.

The “/redirect” is used inside the @app.get() decorator for the

redirected operation function.

Listing 5-21.  Redirect page

@app.get("/redirect")

def redirected(request:Request):

 �return "The page you are looking for is temporarily unavailable"

As a result, when the client visits http://localhost:8000/ with the

intention of getting the login form, the application redirects it to the page

showing the “temporarily unavailable” message.

You can create your own custom response class, as a subclass of the

Response class. The FastAPI object can be instantiated with default_

response_class to specify which type of response should be the default

for the application.

Chapter 5 Response

141

�Summary
In this chapter, you learned about the different types of responses that

can be returned by the FastAPI application. The mechanism of including

cookies and headers in the response was also explained in this chapter.

In the next chapter, you’ll learn how to use databases in a FastAPI

application.

Chapter 5 Response

143

CHAPTER 6

Using Databases
By now, you must have understood that the FastAPI application consists

of various operation functions. Each operation function is invoked by the

corresponding HTTP method decorator to which it is mapped. The HTTP

methods POST, GET, PUT, and DELETE respectively create a resource,

retrieve one or more resources available with the server, and update or

delete one or more resources.

To perform persistent CRUD operations, the application needs to

interact with a data storage and retrieval system. Applications generally

use relational databases as a back end. Modern web applications,

however, need databases capable of handling huge volume with dynamic

schema, often called NoSQL databases. In this chapter, our objective is to

understand how FastAPI interacts with relational and NoSQL databases.

The following topics are covered in this chapter:

•	 DB-API

•	 aiosqlite module

•	 SQLAlchemy

•	 async in SQLAlchemy

•	 PyMongo for MongoDB

•	 Motor for MongoDB

© Malhar Lathkar 2023
M. Lathkar, High-Performance Web Apps with FastAPI,
https://doi.org/10.1007/978-1-4842-9178-8_6

https://doi.org/10.1007/978-1-4842-9178-8_6#DOI

144

�DB-API
A Python code can communicate with almost any type of relational

database (such as SQLite, MySQL, PostgreSQL, Oracle, and many more).

It needs a database-specific driver interface that is compatible with the

DB-API standards. This ensures that the functionality of performing

database operations is uniform for any type of database. As a result, only

minimal changes will be required if the developer decides to change the

back-end database.

To understand how FastAPI handles the database, we shall use SQLite.

It is a lightweight and serverless database and has a built-in support in

Python’s standard library in the form of a sqlite3 module, the reference

implementation of DB-API. For the other relational databases though, you

need to install the corresponding database driver, such as mysqlclient for

MySQL or Psycopg for PostgreSQL.

In this section, we shall build a FastAPI app to perform CRUD

operations on the Books table in the SQLite database.

�Creating the Books Table
The first step in the process is to establish a connection with the database

and obtain the Connection object. Use the connect() function for this

purpose (Listing 6-1).

Listing 6-1.  Connect to SQLite

import sqlite3

conn=sqlite3.connect("mydata.sqlite3")

The string argument to the connect() function is the file representing

the database. If mydata.sqlite3 database doesn’t already exist, it will be

created.

Chapter 6 Using Databases

145

To perform the database operations, we need a database cursor that

handles all the query transactions (Listing 6-2).

Listing 6-2.  Cursor object

cur=conn.cursor()

Call the execute() method on this cursor object. Its string argument

holds the SQL query to be executed by the SQL engine. The Books table

needed for our example is created by the code in Listing 6-3.

Listing 6-3.  Creating the Books table

def init_db():

 conn=sqlite3.connect("mydata.sqlite3")

 cur=conn.cursor()

 qry='''

 SELECT count(name) FROM sqlite_master WHERE type='table'

 AND name='Books'

 '''

 cur.execute(qry)

 if cur.fetchone()[0]==0: #if the table doesn’t exist

 qry='''

 CREATE TABLE IF NOT EXISTS Books (

 id INTEGER (10) PRIMARY KEY,

 title STRING (50),

 author STRING (20),

 price INTEGER (10),

 publisher STRING (20)

);

 '''

Chapter 6 Using Databases

146

 cur.execute(qry)

 conn.close()

init_db()

The init_db() function creates the Books table if it doesn’t exist

already. We have defined the title, author, and publisher as string fields

and the price as an integer field.

How do you verify if the Books table is actually created? You can do

it by more than one way. You can use any of the many SQLite GUI tools

available (such as SQLite Studio). If you prefer to use VS Code for building

the application, it is a good idea to install the SQLite Viewer extension.

However, the easiest way is to open the SQLite shell (Listing 6-4), open the

database, and check the schema of the Books table.

Listing 6-4.  SQLite shell

sqlite> .open mydata.sqlite3

sqlite> .tables

Books

sqlite> .schema Books

CREATE TABLE Books (

 id INTEGER (10) PRIMARY KEY,

 title STRING (50),

 author STRING (20),

 price INTEGER (10),

 publisher STRING (20)

);

With the database now created, let us perform further operations on it.

Chapter 6 Using Databases

147

�Inserting a New Book
As mentioned earlier, the POST method is used to create a new resource, in

this case adding a new book data in the Books table. To include the data in

the request body, the Pydantic model is declared as in Listing 6-5.

Listing 6-5.  The Book class as the Pydantic model

from pydantic import BaseModel

class Book(BaseModel):

 id: int

 title: str

 author: str

 price: int

 publisher: str

The POST operation function uses an object of the Book model as

the parameter. In addition, this function will also need the database

contexts – connection and cursor objects – so that the INSERT operation

can be carried out. They can be seen as the dependencies of the operation

function.

Note that the operation function is not explicitly called, but gets

invoked when the matching URL is entered by the client. Hence, there

should be some mechanism to pass the parameters (other than path,

query, or body parameters) to be included into the operation function. The

Depends() function helps inject the desired dependencies. (We shall take a

detailed look at this concept later in the book.)

Let us define the get_cursor() function (Listing 6-6) that yields a tuple

of connection and cursor object of our database.

Chapter 6 Using Databases

148

Listing 6-6.  Dependency function

from fastapi import Depends

def get_cursor():

 conn=sqlite3.connect("mydata.db")

 conn.row_factory = sqlite3.Row

 cur=conn.cursor()

 yield (conn,cur)

Now we are in a position to define our POST operation function. It uses

the Pydantic model attributes and executes the INSERT query with the

help of the cursor object available to it through the injected dependencies.

Listing 6-7 has an add_book() function that receives the request body

as the Pydantic model object and uses its attributes in the parameterized

INSERT query, so that a new row is added in the Books table.

Listing 6-7.  POST operation – SQLite

from fastapi import FastAPI, Depends, Body

app=FastAPI()

@app.post("/books")

def add_book(book: Book, db=Depends(get_cursor)):

 id=book.id

 title=book.title

 author=book.author

 price=book.price

 publisher=book.publisher

 cur=db[1]

 conn=db[0]

 ins="INSERT INTO books VALUES (?,?,?,?,?)"

 cur.execute(ins,(id,title,author,price,publisher))

 conn.commit()

 return "Record successfully added"

Chapter 6 Using Databases

149

The request body can be populated either by an HTML form or with

any HTTP client. Let us test this route with Swagger UI as we have been

doing throughout the book. Start the Uvicorn server and expand the

add_book() function. Enter certain test data and execute the function

(Figure 6-1).

Figure 6-1.  Swagger UI for POST operation

Go ahead and insert a few more books. We can check the records in the

Books table in the SQLite terminal, as shown in Listing 6-8.

Chapter 6 Using Databases

150

Listing 6-8.  Sample Books data

sqlite> select * from Books;

id title author price publisher

------- ------------------ ------------- ------- ----------

1 Programming Basics Robert Ciesla 40 Apress

2 Decoupled Django Valentino Gag 30 Apress

3 Pro Python Marty Alchin 37 Apress

Note that the prices are in Euros!

�Selecting All Books
As we know, the @app.get() decorator mapped to an operation function

is employed to read all the records as well as fetch the details of a specific

record whose unique ID is passed to it as the path parameter.

First, let us develop a function decorated by @app.get("/books").

The get_books() function in Listing 6-9 is straightforward. It executes the

“select * from Books;” query and returns the queryset to the client.

Listing 6-9.  GET operation – SQLite: all books

@app.get("/books")

def get_books(db=Depends(get_cursor)):

 cur=db[1]

 conn=db[0]

 cur.execute("select * from Books;")

 books=cur.fetchall()

 return books

The http://localhost:8000/books URL shows the JSON response in

the form of a list of dictionary objects (Listing 6-10), each dictionary

corresponding to the details of a book.

Chapter 6 Using Databases

151

Listing 6-10.  List of books

[

 {

 "id": 1,

 "title": "Programming Basics",

 "author": "Robert Ciesla",

 "price": 40,

 "publisher": "Apress"

 },

 {

 "id": 2,

 "title": "Decoupled Django",

 "author": "Valentino Gagliardi",

 "price": 30,

 "publisher": "Apress"

 },

 {

 "id": 3,

 "title": "Pro Python",

 "author": "Marty Alchin",

 "price": 37,

 "publisher": "Apress"

 }

]

�Selecting a Single Book
The URL path “/books/1” implies that the client wants to obtain the

details of the book with ID=1. The path parameter is captured in the

@app.get() decorator and passed to the get_book() function, as in

Listing 6-11. It also needs the connection context that is made available as

the dependency.

Chapter 6 Using Databases

152

Listing 6-11.  GET operation – SQLite: single book

@app.get("/books/{id}")

def get_book(id: int, db=Depends(get_cursor)):

 cur=db[1]

 conn=db[0]

 cur.execute("select * from Books where id=?",(id,))

 book=cur.fetchone()

 return book

The function executes the parameterized SELECT query. The first

row in the queryset is obtained by calling the fetchone() method of

the cursor object and returned to the client as the response. Use http://

localhost:8000/books/1 and the browser displays the first row in the table.

�Updating a Book
Listing 6-12 describes the SQL syntax of the UPDATE query.

Listing 6-12.  SELECT query syntax

 UPDATE table_name SET col1=val1, col2=val2,.., colN=valN WHERE

[expression];

Let us define the update_book() function that internally invokes this

query (Listing 6-13). The ID of the book to be updated is passed as the

path parameter to the @app.put() decorator. The function uses a body

parameter to accept the new price of the book.

Chapter 6 Using Databases

153

Listing 6-13.  PUT operation – SQLite

@app.put("/books/{id}")

def update_book(id:int, price:str=Body(), db=Depends(get_

cursor)):

 cur=db[1]

 conn=db[0]

 qry="UPDATE Books set price=? where id=?"

 cur.execute(qry,(price, id))

 conn.commit()

 return "Book updated successfully"

Issue http://localhost:8000/books/1 as the URL and submit the new

price with the Swagger UI. The record will be updated accordingly. If you

run the SELECT query in the SQLite shell, it should show the book with the

updated price.

�Deleting a Book
Conventionally, the HTTP DELETE method is used to remove the

representation of a resource from the server. The URL path pattern for the

path decorator is "/books/{id}", as in Listing 6-14. The ID is passed to the

del_book() function. This function executes the DELETE query.

Listing 6-14.  DELETE operation – SQLite

@app.delete("/books/{id}")

def del_book(id:int, db=Depends(get_cursor)):

 cur=db[1]

 conn=db[0]

 cur.execute("delete from Books where id=?",(id,))

 conn.commit()

 return "Book deleted successfully"

Chapter 6 Using Databases

154

Enter http://localhost:8000/books/1 in the browser. Check the output

of the SELECT query in the SQLite shell (or visit the /books route) to check

the successful removal of the corresponding row from the table.

�aiosqlite Module
You may have noted that the operation functions in the preceding example

are not coroutines (coroutines are Python functions with the async

keyword in the beginning of the definition). The reason is that the sqlite3

module in Python’s standard library doesn’t support asyncio. Its async-

compatible alternative is the aiosqlite module. As it is not part of the

standard library, we need to install it with the PIP utility:

pip3 install aiosqlite

A detailed documentation of the aiosqlite module can be found at

https://aiosqlite.omnilib.dev/en/latest/. The functions and methods

in this module have the same nomenclature as that of the sqlite3 module.

However, they are asynchronously executed. As a result, the connection and

cursor objects are obtained with the statements in Listing 6-15.

Listing 6-15.  Connecting to SQLite with aiosqlite

conn=await aiosqlite.connect("mydata.sqlite3")

cur=await conn.cursor()

The execute() method and the methods to fetch rows from the

queryset are also awaitable (Listing 6-16).

Listing 6-16.  Asynchronous fetch methods

await conn.execute('SELECT * FROM books)

row = await cur.fetchone()

rows = await cur.fetchall()

Chapter 6 Using Databases

https://aiosqlite.omnilib.dev/en/latest/

155

Let us change all the functions in the example in the previous section

so that they can be called asynchronously.

Listing 6-17 gives the coroutine version of the get_cursor() function,

which injects the database context objects into the operation functions.

Listing 6-17.  Asynchronous dependency function

import aiosqlite

async def get_cursor():

 conn=await aiosqlite.connect("mydata.sqlite3")

 conn.row_factory = aiosqlite.Row

 cur=await conn.cursor()

 yield (conn,cur)

Add the async keyword to the definition of the POST operation

function add_book(), as in Listing 6-18. The statements to execute the

INSERT query and the call to commit() have an await prefix.

Listing 6-18.  POST operation – aiosqlite

@app.post("/books")

async def add_book(book: Book, db=Depends(get_cursor)):

 id=book.id

 title=book.title

 author=book.author

 price=book.price

 publisher=book.publisher

 cur=db[1]

 conn=db[0]

 ins="INSERT INTO books VALUES (?,?,?,?,?)"

 await cur.execute(ins,(id,title,author,price,publisher))

 await conn.commit()

 return "Record successfully added"

Chapter 6 Using Databases

156

Likewise, the coroutine versions of other operation functions – get_

books(), update_book(), and del_book() – can be easily constructed. The

entire code for the aiosqlite version of the application can be found in the

book’s code repository.

�SQLAlchemy
The CRUD operations in the examples in the previous sections are done

on the SQLite database with sqlite3 and aiosqlite modules. For other

databases, you’ll use respective DB-API-compatible modules (e.g., pymysql

for mysql and aiomysql as its asyncio-compatible version). Inside the path

operation functions, you basically use the request data to construct the

SQL query and then execute it. At times, this can be a tedious task. Various

ORMs (object-relational mappers) make life easy for the developer.

When you are required to work with a relational database from inside

a Python program, you are facing two challenges. Firstly, you must have a

good knowledge of the SQL syntax. Secondly, the conversion of data from a

Python environment to SQL data types is required. The SQL data types are

basically scalar in nature (number, string, etc.), while in Python, you have

objects that may comprise more than one primary data type.

The ORM technique helps in converting data between these

incompatible type systems. The word Object in ORM refers to the

object of a Python class. You may recall that, in the theory of relational

databases, a table is called a relation. A Python class is mapped to a table

of corresponding structure in the database. As a result, each object of the

mapped class reflects as a row in the database table.

The ORM library enables you to manipulate the object data as per the

OO principles. The corresponding SQL statements will be emitted by the

ORM, and the CRUD operations will be done behind the scenes. So, you,

as a Python developer, don’t have to write a single SQL query!

Chapter 6 Using Databases

157

SQLAlchemy is a very popular SQL toolkit and an object-relational

mapper API. In our example, we have been performing CRUD operations

on a Books table. Using SQLAlchemy, we’ll have a Books class and perform

CRUD operations through its object.

Before we proceed, it must be noted that SQLAlchemy internally

uses the DB-API driver module of the corresponding type of database. It

means SQLAlchemy for a SQLite database uses the sqlite3 module which

is already present. But SQLAlchemy for MySQL needs the pymysql or

mysqlclient module to be installed. The URI to be used for connecting

with the database refers to this module. For example, the URI for a SQLite

database is sqlite:///./mydata.sqlite3, whereas for a MySQL database, it is

mysql+pymysql://root: root@localhost/mydata. It may be recalled that

SQLite is a serverless database, so it doesn’t need the user credentials, but

for MySQL, the user credentials along with the server’s address have to be

specified.

A detailed discussion of SQLAlchemy is beyond the scope of this book.

The steps involved are briefly explained here:

	a.	 Connect to a database

The create_engine() establishes the connection with the

database. The database is referred to by the SQLALCHEMY_
DATABASE_URL constant (Listing 6-19). It is essentially

similar to the Connection object.

Listing 6-19.  SQLAlchemy engine object

from sqlalchemy import create_engine

from sqlalchemy.dialects.sqlite import *

SQLALCHEMY_DATABASE_URL = "sqlite:///./mydata.sqlite3"

engine = create_engine(

 �SQLALCHEMY_DATABASE_URL, connect_args={"check_same_

thread": False})

Chapter 6 Using Databases

158

	b.	 ORM model

Next, we declare a Books class that inherits the declarative_

base class (Listing 6-20). The class attributes of the Books

class correspond to the desired structure of a database table

mapped to it. The name of the table can be explicitly specified

as __tablename__.

Listing 6-20.  Books class as the ORM model

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

from sqlalchemy import Column, Integer, String

class Books(Base):

 __tablename__ = 'book'

 id = Column(Integer, primary_key=True, nullable=False)

 title = Column(String(50), unique=True)

 author = Column(String(50))

 price = Column(Integer)

 publisher = Column(String(50))

Base.metadata.create_all(bind=engine)

The create_all() function creates the tables corresponding

to all the classes declared. We have only one, Books class,

mapped to the book table.

	c.	 Session object

A session is similar to the cursor object. It is the handle to

the database in use. All the database manipulations are done

through this session object. The Sessionmaker() function

returns in Listing 6-21 the session class.

Chapter 6 Using Databases

159

Listing 6-21.  Session object

from sqlalchemy.orm import sessionmaker, Session

session = sessionmaker(autocommit=False, autoflush=False,

bind=engine)

You may recall that we need to inject the database context into the path

operation functions of a FastAPI application. We shall use the function in

Listing 6-22 to inject the session object to all the operation functions.

Listing 6-22.  Dependency function for SQLAlchemy

def get_db():

 db = session()

 try:

 yield db

 finally:

 db.close()

	d.	 Pydantic model

The SQLAlchemy part of the application is over with the

preceding three steps. For the FastAPI app, we need a Pydantic

model class with its structure matching with the ORM class.

Listing 6-23 provides the definition of the Book class.

Listing 6-23.  Book Pydantic model

from pydantic import BaseModel

class Book(BaseModel):

 id: int

 title: str

 author:str

Chapter 6 Using Databases

160

 price:int

 publisher: str

 class Config:

 orm_mode = True

The orm_mode=True setting in the BaseModel configuration

allows you to convert a Pydantic model object to a

SQLAlchemy object and vice versa.

Now, we shall develop the path operation functions for POST,

GET, PUT, and DELETE methods. We shall use the same URL

path endpoints as we have done in earlier examples:

•	 POST /books

•	 GET /books

•	 GET /books/{id}

•	 PUT /books/{id}

•	 DELETE /books/{id}

	e.	 @app.post()

You know that the INSERT operation is performed by the

HTTP POST method. Use the Book Pydantic model as

the response_model for this purpose and its object as the

response body parameter for the add_book() function, as in

Listing 6-24.

Chapter 6 Using Databases

161

Listing 6-24.  POST operation – SQLAlchemy

from fastapi import FastAPI, Depends

from typing import List

app=FastAPI()

@app.post('/books', response_model=Book)

def add_book(b1: Book, db: Session = Depends(get_db)):

 bkORM=Books(**b1.dict())

 db.add(bkORM)

 db.commit()

 db.refresh(bkORM)

 return "Book added successfully"

The Pydantic model object can be directly unpacked into

the SQLAlchemy object, whose add() method inserts a new

row in the database table. Use the same data to insert records

(Listing 6-8).

	 f.	 @app.get()

This decorator is associated with the get_books() function.

With the help of the database session object, query the model

and retrieve all the currently available objects. The collection

is returned as a list of Book – the Pydantic BaseModel.

Listing 6-25 also has the code for the get_book() function. The

path parameter in the URL parses the ID of the object to be

retrieved. The function fetches the object with the given ID

from the Books model and returns it as the response.

Chapter 6 Using Databases

162

Listing 6-25.  GET operation – SQLAlchemy

@app.get('/books', response_model=List[Book])

def get_books(db: Session = Depends(get_db)):

 recs = db.query(Books).all()

 return recs

@app.get('/books/{id}', response_model=Book)

def get_book(id:int, db: Session = Depends(get_db)):

 return db.query(Books).filter(Books.id == id).first()

	g.	 @app.put()

To perform the update operation, we pass the ID of the object

to be updated as the path parameter and the new price as the

body parameter. The update_book() function in Listing 6-26

fetches the object as done in the preceding step and updates

the price, simply by assigning it the new value from the

request body.

Listing 6-26.  PUT operation – SQLAlchemy

@app.put('/books/{id}', response_model=Book)

def update_book(id:int, price:int=Body(), db: Session =

Depends(get_db)):

 bkORM = db.query(Books).filter(Books.id == id).first()

 bkORM.price=price

 db.commit()

 return bkORM

Chapter 6 Using Databases

163

	h.	 @app.delete()

The DELETE operation is fairly straightforward (Listing 6-27).

The del_book() function receives the ID from the URL and

runs the delete() method on the retrieved object.

Listing 6-27.  GET operation – SQLAlchemy

@app.delete('/books/{id}')

def del_book(id:int, db: Session = Depends(get_db)):

 try:

 db.query(Books).filter(Books.id == id).delete()

 db.commit()

 except Exception as e:

 raise Exception(e)

 return "book deleted successfully"

You can obtain the complete code for the example explained in this

section from the code repository and try it out.

�async in SQLAlchemy
The SQLAlchemy ORM doesn’t yet completely support asynchronous

operations. The latest version of SQLAlchemy (ver. 1.4.40) does have

this feature, albeit on an experimental basis. Furthermore, it hasn’t been

extended to all types of databases.

However, the other branch of SQLAlchemy – called SQLAlchemy
Core – can be used for performing asynchronous database operations with

the help of the databases module.

The SQLAlchemy Core package uses a schema-centric SQL

Expression Language. In this section, we shall briefly explore how the

SQL queries are handled with the Expression Language.

Chapter 6 Using Databases

164

�databases Module
The databases module differs a little from the DB-API standard. It

provides functions for connecting to a database, executing queries, and

fetching table data. These functions support async/await. We need to

install the databases module with the PIP installer:

pip3 install databases

The databases module provides asyncio support for PostgreSQL,

MySQL, and SQLite. It uses the SQLAlchemy Core Expression Language to

construct SQL queries.

You also need to install the asyncio-compatible drivers – asyncpg and

aiopg for PostgreSQL, aiomysql and asyncmy for MySql, and aiosqlite for

SQLite databases. We have already used the aiosqlite module earlier in

this chapter.

To establish a connection with a SQLite database, import the databases

module, set the Database object, and call its connect() method from

inside a coroutine (Listing 6-28).

Listing 6-28.  Connecting using the databases module

import databases

DATABASE_URL = "sqlite:///./mydata.sqlite3"

db = databases.Database(DATABASE_URL)

async def connection():

 await db.connect()

Next, how do we create a table in this database? With SQLAlchemy’s

Expression Language, we can represent relational database structures and

expressions using Python code.

Chapter 6 Using Databases

165

�Core Expression Language
The Engine class provides a source of database connectivity and behavior.

An object of the Engine class is instantiated using the create_engine()

function (Listing 6-29).

Listing 6-29.  Engine object

import sqlalchemy

DATABASE_URL = "sqlite:///./mydata.sqlite3"

engine = sqlalchemy.create_engine(DATABASE_URL,

connect_args={"check_same_thread": False})

In SQLAlchemy Core, an object of the Metadata class is a collection of

Table objects and their associated schema constructs (Listing 6-30).

Listing 6-30.  MetaData object

metadata = sqlalchemy.MetaData()

Add the booklist table in the metadata object with the code in

Listing 6-31.

Listing 6-31.  Table object

booklist = sqlalchemy.Table(

 "booklist",

 metadata,

 �sqlalchemy.Column("id", sqlalchemy.Integer, primary_

key=True),

 sqlalchemy.Column("title", sqlalchemy.String),

 sqlalchemy.Column("author", sqlalchemy.String),

 sqlalchemy.Column("price", sqlalchemy.Integer),

 sqlalchemy.Column("publisher", sqlalchemy.String),

)

Chapter 6 Using Databases

166

metadata.create_all(engine)

The create_all() method creates all the tables available in the

metadata.

As we have done in previous sections, define a coroutine that injects

the Database object into the path operation functions. Listing 6-32 defines

get_db() coroutine.

Listing 6-32.  Asynchronous dependency function

async def get_db():

 db = databases.Database(DATABASE_URL)

 await db.connect()

 yield db

�Table Class Methods
Before we try to develop the FastAPI app and its path operations, we

need to know how the CRUD operations are performed with the Core

Expression Language.

The Table class in the sqlalchemy module has the corresponding

methods for performing insert, select, update, and delete operations.

The insert() method returns a string representation of the SQL

INSERT query which in turn is run with the execute() function

(Listing 6-33).

Listing 6-33.  Insert method of the Table class

query=table.insert().values(field1=value1, field2=value2, ...)

db.execute(query)

The select() method of the Table class constructs the SELECT query.

To retrieve one or all the records in the queryset, use the fetch_one() or

fetch_all() function as per the syntax in Listing 6-34.

Chapter 6 Using Databases

167

Listing 6-34.  Fetch methods of the Table class

query=table.select().where(condition)

rows=db.fetch_all(query)

row=db.fetch_one(query)

The update() method internally emits the UPDATE query as in SQL

(Listing 6-35).

Listing 6-35.  Update method of the Table class

query=table.update().where(condition).values(field1,value1, ..)

db.execute(query)

Lastly, the delete() method helps in forming the DELETE query

(Listing 6-36).

Listing 6-36.  Delete method of the Table class

query=table.delete().where(condition)

db.execute(query)

This gives a general syntax of how the database table operations are

done. We shall see these functions in action when we develop the path

operations of our FastAPI app.

�FastAPI Path Operations
The rest of the steps are the same as we did in the previous sections. Our

Pydantic model remains the same. Let us start with the POST operation.

The add_book() function is now a coroutine. (Note that we shall be using

the same URL endpoints and the operation functions as in the previous

sections.)

Chapter 6 Using Databases

168

As in the earlier sections, the post operation function (a coroutine

really) uses the response body parameters populated by the Pydantic

model object and uses its attributes as the values of the new row to be

inserted. Listing 6-37 contains the code for the add_book() coroutine.

Listing 6-37.  POST operation – SQLAlchemy Core

@app.post("/books", response_model=Book)

async def add_book(b1: Book, db=Depends(get_db)):

 query = booklist.insert().values(id=b1.id, title=b1.title,

 author=b1.author, price=b1.price, publisher=b1.publisher)

 await db.execute(query)

 return "Book added successfully"

Note that the call to the execute() is asynchronous, as it is prefixed by

the await keyword.

Insert the data in the table as per the previous sections.

The get_books() coroutine (Listing 6-38) is invoked when a GET

request for the /books URL is received. It simply returns the queryset

obtained with the select() method.

Listing 6-38.  GET operation – SQLAlchemy Core – all books

@app.get("/books", response_model=List[Book])

async def get_books(db=Depends(get_db)):

 query = booklist.select()

 return await db.fetch_all(query)

To retrieve a specific record from the table, the value of its id (it is the

table’s primary key) should be passed as the path parameter. Inside the

get_book() coroutine (in Listing 6-39), the id becomes the condition

for the where clause when the select() method is called. It fetches the

corresponding row, which is returned as the response.

Chapter 6 Using Databases

169

Listing 6-39.  GET operation – SQLAlchemy Core – single book

@app.get("/books/{id}")

async def get_book(id: int, db=Depends(get_db)):

 query=booklist.select().where(booklist.c.id==id)

 return await db.fetch_one(query)

The PUT operation is handled by the update_book() coroutine, as in

Listing 6-40. As we intend to update the price of a specific record, its id is

included in the URL as the path parameter and the new price as the body

parameter.

Listing 6-40.  PUT operation – SQLAlchemy Core

@app.put("/books/{id}")

async def update_book(id:int, new_price:int=Body(),

db=Depends(get_db)):

 �query=booklist.update().where(booklist.c.id==id).

values(price=new_price)

 await db.execute(query)

 return "Book updated successfully"

The update() method uses the path parameter – id – to apply the filter

in the where clause.

Finally, the del_book() coroutine is mapped to the DELETE operation

decorator (Listing 6-41). It parses the primary key from the path and

invokes the delete() method of the table class as in Listing 6-41.

Listing 6-41.  DELETE operation – SQLAlchemy Core

@app.delete("/books/{id}")

async def del_book(id:int, db=Depends(get_db)):

 query=booklist.delete().where(booklist.c.id==id)

Chapter 6 Using Databases

170

In this way, the asynchronous handling of the path operations is

done in a FastAPI application over a SQLite database, with the help of the

SQLAlchemy Core Expression Language.

All the code segments in this section are put together in a complete

Python source code, which is present in the book’s repository.

�PyMongo for MongoDB
So far in this chapter, we learned how to use a relational database (with

SQLite as an example) as a back end to a FastAPI app. In this section, we

shall learn to use a MongoDB database.

MongoDB is a schemaless, document-oriented, NoSQL database. It

stores semistructured documents in BSON format – a binary serialization

of JSON-like documents. A Document in a MongoDB database is a

collection of key-value pairs – similar to a Python dictionary object. One

or more such documents are stored in a Collection. For analogy, you can

think of a Collection in MongoDB as equivalent to a table in a relational

database, and a Document is similar to a single row in a table of a SQL-

based relational database.

The MongoDB community edition is available for download and

installation at www.mongodb.com/download-center/community. Assuming

that MongoDB is installed on Windows in the e:\mongodb folder, start

the MongoDB server from the command terminal using the command in

Listing 6-42.

Listing 6-42.  Starting the MongoDB server

E:\mongodb\bin>mongod

..

waiting for connections on port 27017

Chapter 6 Using Databases

http://www.mongodb.com/download-center/community

171

You can now interact with the MongoDB server by launching the

MongoDB shell with the Mongo command in another terminal:

E:\mongodb\bin>mongo

MongoDB shell version v4.0.6

connecting to: mongodb://127.0.0.1:27017/?gssapiServiceNa

me=mongodb

Implicit session: session { "id" : UUID("eda5ab88-8ee3-49dd-

8469-1545650f68b1") }

MongoDB server version: 4.0.6

Welcome to the MongoDB shell.

For interactive help, type "help".

..

..

>

The MongoDB Query Language is based on JavaScript. Database,

Collection, and Documents can be added using the MongoDB queries.

Instead of using the query syntax, you can also use a GUI tool called

MongoDB Compass. To start using it, first establish a connection with the

MongoDB server already running. Figure 6-2 shows the New Connection

dialog screen where you need to provide localhost as the hostname and

27017 as the port number.

Chapter 6 Using Databases

172

Figure 6-2.  MongoDB Compass

You will get to see the list of databases on the server once the

connection is successfully established (Figure 6-3).

Chapter 6 Using Databases

173

Figure 6-3.  Databases on the MongoDB server as shown in Compass

For relational databases, we need to use DB-API-compliant driver

modules. For SQLite, we used sqlite3 and aiosqlite modules for

asynchronous access. Similarly, we need to use an interface between the

Python application and MongoDB. PyMongo is the official Python driver for

MongoDB. It can be easily installed with the PIP utility:

pip3 install pymongo

An object of the MongoClient class in this module establishes the

connection with the MongoDB server. You can create a new database and

a collection in it with the function in Listing 6-43.

Chapter 6 Using Databases

174

Listing 6-43.  Function to inject Collection object context

def get_collection():

 client=MongoClient()

 DB = "mydata"

 coll = "books"

 bc=client[DB][coll]

 yield bc

We are, in fact, going to use this function to inject the Collection

object as the dependency for the application routes in the FastAPI app.

We shall be using the same Pydantic model, the same URL endpoints,

and the same path operation functions that we have used in all the

preceding sections.

The add_book() function (in Listing 6-44) reads the Pydantic model

object from the request body. The insert_one() method of the PyMongo

Collection object adds a new document to the collection. The dict

representation of the Pydantic object goes as an argument for the insert_

one() method.

Listing 6-44.  POST operation – PyMongo

@app.post("/books")

def add_book(b1: Book, bc=Depends(get_collection)):

 result = bc.insert_one(b1.dict())

 return "Book added successfully"

Perform the POST request operation to add three documents. (Please

refer to Listing 6-8.) The Compass GUI shows the JSON representation of

these documents as in Listing 6-45.

Chapter 6 Using Databases

175

Listing 6-45.  BSON representation of MongoDB Documents

{

 "_id": {

 "$oid": "63734d09d43843bf5a32f0ba"

 },

 "bookID": {

 "$numberInt": "1"

 },

 "title": "Programming Basics",

 "author": "Robert Ciesla",

 "price": {

 "$numberInt": "40"

 },

 "publisher": "Apress"

}

{

 "_id": {

 "$oid": "6373dd6376dbe609ce2a365c"

 },

 "bookID": {

 "$numberInt": "2"

 },

 "title": "Decoupled Django",

 "author": "Valentino Gag",

 "price": {

 "$numberInt": "30"

 },

 "publisher": "Apress"

}

Chapter 6 Using Databases

176

{

 "_id": {

 "$oid": "6373e3d49f5ae7216c810ca2"

 },

 "bookID": {"$numberInt": "3"},

 "title": "Pro Python",

 "author": "Marty Alchin",

 "price": {...},

 "publisher": "Apress"

}

Note that MongoDB automatically generates “_id” as the primary key

of the document.

The GET /books request is handled by the get_books() function

(Listing 6-46). It essentially returns the list of documents available in the

collection, fetched by the find() method.

Listing 6-46.  GET operation – PyMongo – all books

@app.get("/books", response_model=List[Book])

def get_books(bc=Depends(get_collection)):

 books=list(bc.find())

 return books

To retrieve a single document, we pass its BookID in the URL. The

@app.get() decorator captures it as a path parameter. Inside the get_

book() function, we retrieve the document by calling the find_one()

method (Listing 6-47), applying the path parameter as the filter.

Chapter 6 Using Databases

177

Listing 6-47.  GET operation – PyMongo – single book

@app.get("/books/{id}", response_model=Book)

def get_book(id: int, bc=Depends(get_collection)):

 """Get all messages for the specified channel."""

 b1=bc.find_one({"bookID": id})

 return b1

In this way, the path operations are implemented in a FastAPI

application.

�Motor for MongoDB
The PyMongo driver doesn’t support async/await. MongoDB itself

provides an asynchronous Python driver for MongoDB – called Motor. It is

a coroutine-based API for nonblocking access to MongoDB from asyncio.

To start with, install Motor in the current Python environment

with PIP:

pip3 install motor

The Motor package itself is structured on top of PyMongo. It can be

said that Motor is the asynchronous version of PyMongo. Hence, most

of the PyMongo API is refactored to handle the async/await feature of

modern Python.

The client class in Motor is now AsyncIOMotorClient in place of

MongoClient as in PyMongo. Motor’s client class does not connect to the

database as soon as it is instantiated (as in the case of PyMongo). Instead,

it connects on demand, when you first attempt an operation.

Hence, in Listing 6-48, we change our get_collection() function that

injects the collection object into the operation functions.

Chapter 6 Using Databases

178

Listing 6-48.  Connecting with Motor

import motor.motor_asyncio

def get_collection():

 client=motor.motor_asyncio.AsyncIOMotorClient()

 DB = "mydb"

 coll = "books"

 bc=client[DB][coll]

 yield bc

We need to effect two changes to the path operation functions. First,

make them coroutines by affixing the async keyword, and, second, add

await to the CRUD methods of the collection object.

Once again, we use the same URL path endpoints and the same path

operation functions (now they become coroutines) as we have been using

in the earlier sections.

The POST operation decorator and its path operation coroutine are

now as shown in Listing 6-49.

Listing 6-49.  POST operation – Motor

@app.post("/books")

async def add_book(b1: Book, bc=Depends(get_collection)):

 result = await bc.insert_one(b1.dict())

 return "Book added successfully"

Similarly, the asyncio-compatible version of get_books() is given in

Listing 6-50:

Listing 6-50.  GET operation – Motor

@app.get("/books", response_model=List[Book])

async def get_books(bc=Depends(get_collection)):

 books=await bc.find().to_list(1000)

 return books

Chapter 6 Using Databases

179

It is worth noting here that the queryset returned by the find()

method is synchronous, but add to_list() to it so that the await keyword

can be applied.

To retrieve a single book of the given ID, we write the get_book()

function as in Listing 6-51.

Listing 6-51.  GET operation – Motor – single book

@app.get("/books/{id}", response_model=Book)

async def get_book(id: int, bc=Depends(get_collection)):

 b1=await bc.find_one({"bookID": id})

 return b1

You can see that using Motor in place of PyMongo doesn’t need many

changes in the code.

�Summary
With this, we conclude an important discussion on how to use relational

databases and MongoDB as a back end to a FastAPI app. The classical way

of interacting with the relational databases is through DB-API drivers. For

asynchronous operations on an SQLite database, we learned how to use

the aiosqlite module.

We also learned how FastAPI handles a database with SQLAlchemy

ORM as well as SQLAlchemy Core (with the help of the databases module)

and interacts with Pydantic models.

In the end, we discussed the use of MongoDB in a FastAPI app, both

with PyMongo and Motor drivers.

Chapter 6 Using Databases

181

CHAPTER 7

Bigger Applications
So far in this book, we have seen that the FastAPI web app is contained

in a single Python script (conventionally main.py). All the path operation

routes, their respective operation functions, the models, all the required

imports, etc., are put in the same code file.

Things will become messier if the application involves handling of

more than one resources. Take the case of an ecommerce app where CRUD

operations on books as well as music albums are to be performed. Putting

all the HTTP operations for both the products along with their models is

not the ideal way to organize the application code.

In this chapter, we shall learn how to deal with the challenges of

handling bigger applications with more than one API. This chapter

explains the following topics:

•	 Single file app

•	 APIRouter

•	 Mounting applications

•	 Dependencies

•	 Middleware

•	 CORS

© Malhar Lathkar 2023
M. Lathkar, High-Performance Web Apps with FastAPI,
https://doi.org/10.1007/978-1-4842-9178-8_7

https://doi.org/10.1007/978-1-4842-9178-8_7#DOI

182

�Single File App
To begin, let us start by defining all the path operations for books and

albums in a single script. The structure of the app would appear as in

Listing 7-1.

Listing 7-1.  App with two APIs

from fastapi import FastAPI

from pydantic import BaseModel

class book(BaseModel):

 id:int

class album(BaseModel):

 id:int

app = FastAPI()

@app.get("/")

async def root():

 return {"message": "Home page"}

#routes for books API

@app.get("/books")

async def get_books():

 return "pass"

@app.get("/books/{id}")

async def get_book(id:int):

 return "pass"

@app.post("/books")

async def add_book(b1:book):

 return "pass"

@app.put("/books/{id}")

Chapter 7 Bigger Applications

183

async def update_book(id:int):

 return "pass"

@app.delete("books/{id}")

async def del_book(id:int):

 return "pass"

#routes for album API

@app.get("/albums")

async def get_album():

 return "pass"

@app.get("/albums/{id}")

async def get_album(id:int):

 return "pass"

@app.post("/albums")

async def add_album(a1:album):

 return "pass"

@app.put("/albums/{id}")

async def update_album(id:int):

 return "pass"

@app.delete("albums/{id}")

async def del_album(id:int):

 return "pass"

You can imagine how lengthy this code would become as you go on

expanding the models with their field structure and functions with their

respective processing logic. Obviously, it will be difficult to debug and

maintain such a lengthy code.

Even the Swagger UI docs page looks very ungainly (Figure 7-1).

Chapter 7 Bigger Applications

184

Figure 7-1.  Swagger UI for two APIs in a single app

Clearly, we need to organize the code in a more structured manner.

The APIRouter class in FastAPI is the tool for this purpose.

Chapter 7 Bigger Applications

185

�APIRouter
The use of APIRouter allows you to group your routes into different file

structures so that they are easily manageable. All the routes in a bigger

application, such as the preceding example, are clubbed into small units

of APIRouters. The individual APIRouters are then included in the main

application.

Note that these smaller units are not independent applications. They

can be considered to be mini FastAPI apps that are part of the bigger

application. All the routes from all the APIRouters will become a part of the

main application documentation.

Let us implement this concept and rearrange the code in the preceding

application. The routes related to the book resource and the book model

are stored in the books.py file. Similarly, the album routes and album

model go in the albums.py script.

First, declare an object of the APIRouter class (it is in the fastapi

module) instead of the FastAPI class as we normally do (Listing 7-2).

Set the prefix attribute to “/books” and define a tag that appears in the

documentation.

Listing 7-2.  APIRouter class

from fastapi import APIRouter

books = APIRouter(prefix="/books",

 tags=["books"])

As far as the REST operations on the book resource are concerned,

books - the APIRouter object itself is the application object. Hence, the

path operation decorators are @books.get(), @books.post(), etc.

Chapter 7 Bigger Applications

186

Save the script (Listing 7-3) as books.py.

Listing 7-3.  books router

from fastapi import APIRouter

from pydantic import BaseModel

books = APIRouter(prefix="/books",

 tags=["books"])

class book(BaseModel):

 id:int

#routes for books API

@books.get("/")

async def get_books():

 return "pass"

@books.get("/{id}")

async def get_book(id:int):

 return "pass"

@books.post("/")

async def add_book(b1:book):

 return "pass"

@books.put("/{id}")

async def update_book(id:int):

 return "pass"

@books.delete("/{id}")

async def del_book(id:int):

 return "pass"

Note that book – the Pydantic model – is also present in the code.

The albums.py script (Listing 7-4) is along the similar lines.

Chapter 7 Bigger Applications

187

Listing 7-4.  albums router

from fastapi import APIRouter

from pydantic import BaseModel

albums = APIRouter(prefix="/albums",

 tags=["albums"])

class album(BaseModel):

 id:int

#routes for albums API

@albums.get("/")

async def get_albums():

 return "pass"

@albums.get("/{id}")

async def get_album(id:int):

 return "pass"

@albums.post("/")

async def add_album(a1:album):

 return "pass"

@albums.put("/{id}")

async def update_album(id:int):

 return "pass"

@albums.delete("/{id}")

async def del_album(id:int):

 return "pass"

Now we come to the main FastAPI application code. The application

object is declared here. To include the mini applications, import the books

and albums modules. Use the APIRouter objects in these modules as the

argument to the include_router() method of the app object.

Listing 7-5 shows how the main.py script should be.

Chapter 7 Bigger Applications

188

Listing 7-5.  Main app with routers

from fastapi import FastAPI

import books, albums

app = FastAPI()

app.include_router(books.books)

app.include_router(albums.albums)

@app.get("/")

async def root():

 return {"message": "Home page"}

Run the server and open the Swagger documentation page. The path

operation functions are nicely grouped together with the prefix tag defined

in each APIRouter declaration.

The books API routes are as in Figure 7-2.

Figure 7-2.  Routes of the books subapp

Chapter 7 Bigger Applications

189

On the other hand, the albums routes appear in another group, as in

Figure 7-3.

Figure 7-3.  Routes of the albums subapp

�Router Package
To further refine the app structure, create two folders inside the

application folder. Name them albums and books. Move the APIRouter

code files albums.py and books.py in the albums and books folders.

Place an empty __init__.py file in both the subfolders so that Python

recognizes them as packages.

Remove the model declarations from the router code and put the same

in models.py in its respective folder. The file structure should be as shown

in Figure 7-4.

Chapter 7 Bigger Applications

190

Figure 7-4.  File structure for APIRouter packages

The code in the albums/albums.py file is changed to the one in

Listing 7-6.

Listing 7-6.  albums module

from fastapi import APIRouter

from .models import album

albums = APIRouter(prefix="/albums",

 tags=["albums"])

#routes for albums API

#keep the operation functions as it is

Note that the album Pydantic model has been moved to the albums/
models.py file, as in Listing 7-7.

Listing 7-7.  album model in the albums package

from pydantic import BaseModel

class album(BaseModel):

 id:int

Chapter 7 Bigger Applications

191

The books package contents follow the same approach.

The script for main.py (Listing 7-8) changes a bit, as the APIRouter

objects need to be imported from the packages.

Listing 7-8.  Main app code

from fastapi import FastAPI

from books import books

from albums import albums

app = FastAPI()

app.include_router(books.books)

app.include_router(albums.albums)

@app.get("/")

async def root():

 return {"message": "Home page"}

�Mounting Subapplications
The APIRouter class helps you to include a subapplication to the main

FastAPI object. If, on the other hand, you have two (or more) apps that

are independent of each other, having their own API and docs, you can

designate one of them as the main app and mount others.

Earlier in the book (Chapter 4, section “Serving Static Assets”), we

have used the mount() function to make the static assets available at the

“/static” route. The StaticFiles class is really a subapplication. We

mount this subapp on the main application object, so that the static files

are available for use, especially in the templates.

Let us extend this concept to mount the albums and books objects to

the main app. We shall keep the same file and folder structure, where the

albums and books packages are present in the main app folder.

Chapter 7 Bigger Applications

https://doi.org/10.1007/978-1-4842-9178-8_4

192

Inside the albums/albums.py module (Listing 7-9), change the books

object to a regular FastAPI object instead of the APIRouter object.

Listing 7-9.  albums subapp

from fastapi import FastAPI

albums=FastAPI()

#routes for albums API

@albums.get("/albums")

async def get_albums():

 return "pass"

#define rest of the path operation functions here

Do the same with the books/books.py file (Listing 7-10).

Listing 7-10.  books subapp

from fastapi import FastAPI

books=FastAPI()

#routes for books API

@books.get("/books")

async def get_books():

 return "pass"

#define rest of the path operation functions here

Note that both these apps are stand-alone and can be run

independently.

With the OS command terminal inside the albums folder, run the

following command to start the albums app:

uvicorn albums:albums --reload

Chapter 7 Bigger Applications

193

The http://localhost:8000/docs URL lets you inspect the docs of the

albums app.

Similarly, run the other independent app – books – from inside the

books folder:

uvicorn books:books –reload

The http://localhost:8000/docs URL now shows the Swagger UI of the

books app.

To mount these apps as subapps inside the main application code,

import the albums and books objects from their respective packages and

mount them on the main app object (Listing 7-11).

Listing 7-11.  Mounting subapps

from fastapi import FastAPI

from albums import albums

from books import books

app = FastAPI()

@app.get("/stores")

async def root():

 return {"message": "Home page"}

app.mount("/albumapi", albums.albums)

app.mount("/bookapi", books.books)

After running the server, the http://localhost:8000/docs URL displays

the routes of only the main app. The routes of the albums app are now

mounted on “/albumapi”; hence, the routes of this subapp (Figure 7-5)

are now available at http://localhost:8000/albumapi/docs.

Chapter 7 Bigger Applications

194

Figure 7-5.  Routes of the mounted albums app

Similarly, the documentation of the books app is now found

(Figure 7-6) at http://localhost:8000/bookapi/docs.

Figure 7-6.  Routes of the mounted books subapp

�Dependencies
A path operation function in a FastAPI app may need parameters in its

context for processing. The user passes path and query parameters in the

request URL itself. On the other hand, the body parameters are read from

the request body, usually POSTed by an HTML form.

Chapter 7 Bigger Applications

195

Sometimes, though, the path operation function depends upon certain

other factors. These are called the dependencies of the operation. We

need to inject these dependencies into the function’s context. FastAPI has

a Depends() function whose return value is injected as the dependency

parameter.

You may recall that we have used this Depends() parameter in the

previous chapter (Chapter 6 – Using Databases). Obviously, each

path function that performs CRUD operations on a database needs the

connection object. Instead of setting the connection object locally inside

each function, we used the get_db() function and injected its return value

in each operation function.

The mechanism of dependency injection is useful especially when the

same code logic needs to be used across multiple path operations. It also

helps in enforcing authentication checks and ensuring the requirements,

such as allowing access to users with specific roles, etc.

�Example of Dependency Injection
Let us try to understand how dependency in FastAPI works, with the

help of this simple example. Let us assume that the services of a web

application are not available to the users every Sunday. Naturally, when a

user hits any URL, its mapped function will be required to find out whether

it’s Sunday. Instead of putting the code for this purpose in every path

operation function, a more convenient approach is to write a function and

use it to inject the dependency.

Listing 7-12 shows a simple Python function that returns a number

corresponding to the weekday of the current date. For Monday, it returns 0;

for Sunday, it returns 6.

Chapter 7 Bigger Applications

https://doi.org/10.1007/978-1-4842-9178-8_6

196

Listing 7-12.  Dependency function

def dow():

 from datetime import datetime

 dow=datetime.now().weekday()

 return dow

Let us now use this function as an argument for Depends in the path

operation coroutine (Listing 7-13).

Listing 7-13.  Using Depends()

@app.get("/")

async def root(day=Depends(dow)):

 if day==6:

 return {"message": "Service not available on Sunday"}

 return {"message": "Home page"}

If the user enters the “/” route on Sunday, they get the “Service not

available” message; on other days, the JSON response of the app is a

"Home Page" message.

�Query Parameters As Dependencies
The dependency function can be a normal function or a coroutine defined

with async def. An async dependency can be called from within an async

path operation function or a normal path operation function as well. In the

same way, a normal dependency can also be called from async as well as

normal path operation function.

In the example (Listing 7-14), the FastAPI application has two routes

that fetch the list of persons and employees, respectively. The range of

the list is determined by a dependency function properties(), which is

defined with the async keyword.

Chapter 7 Bigger Applications

197

Listing 7-14.  Dependency function with parameters

async def properties(x: int, y: int):

 return {"from": x, "to": y}

The dictionary object returned by this coroutine injects the query

parameters into the get_persons() operation function (Listing 7-15).

Listing 7-15.  Parameterized dependency injection

from fastapi import Depends, FastAPI

app = FastAPI()

persons=[

 {"name": "Tom", "age": 20},

 {"name": "Mark", "age": 25},

 {"name": "Pam", "age": 27}

]

@app.get("/persons/")

async def get_persons(params: dict = Depends(properties)):

 return persons[params['from']:params['to']]

Upon receiving the client request for the “/persons/” URL path,

FastAPI solves the dependency to provide x and y as query parameters.

Check the documentation of the get_persons() function in Figure 7-7.

Chapter 7 Bigger Applications

198

Figure 7-7.  Query parameters as dependencies

FastAPI returns a sliced list of persons[x:y]. Assuming that we provide

the values x=1 and y=3, the request URL constructed by the Swagger UI will

be http://localhost:8000/persons/?x=1&y=3 (Figure 7-8).

Chapter 7 Bigger Applications

199

Figure 7-8.  Swagger UI with injected query parameters

The same dependency is also utilized to inject the list indices into the

get_employees() function, as shown in Listing 7-16.

Listing 7-16.  Depends() injecting query parameters

employees=[

 {"name": "Tom", "salary": 20000},

 {"name": "Mark", "salary": 25000},

 {"name": "Pam", "salary": 27000}

]

@app.get("/employees/")

async def get_employees(params: dict = Depends(properties)):

 return employees[params['from']:params['to']]

Chapter 7 Bigger Applications

200

This, in fact, demonstrates the primary purpose of using a dependency

function, as the same code logic is used for both the path operations.

�Parameterized Dependency Function
The dependency function, being just like any other normal Python

function, may have one or more parameters in its declaration. You may

even have a dependency function that itself depends on another function.

APIs are normally distributed to the user with an authorization key.

At the time of logging in, the user provides the key along with the identity

credentials such as ID and password. In the example (Listing 7-17), the “/”

route adds these values to the server’s response as the cookies.

Listing 7-17.  Path operation to insert cookies

from fastapi import FastAPI, Request, Depends

from fastapi.responses import Response

app = FastAPI()

@app.get("/")

async def index(request:Request, response: Response):

 response.set_cookie(key="user", value="admin")

 response.set_cookie(key="api_key", value="abcdef12345")

 return {"message":"Home Page"}

When the client requests a GET operation to fetch the list of objects,

the application verifies if the API key has been set or not. We define a

credentials() function in Listing 7-18 for this purpose.

Chapter 7 Bigger Applications

201

Listing 7-18.  Parameterized dependency function

def credentials(request):

 dct=request.cookies

 try:

 return dct['api_key']

 except:

 return None

Since this verification is necessary for every operation in the

application, the credentials() function becomes the dependency. Note

that this function requires the Request object as a parameter to fetch the

'api_key' cookie. This parameter is passed to it by the path operation

function, as in Listing 7-19.

Listing 7-19.  Cookies injected by Depends()

persons=[

 {"name": "Tom", "age": 20},

 {"name": "Mark", "age": 25},

 {"name": "Pam", "age": 27}

]

@app.get("/persons/")

async def get_persons(key=Depends(credentials(Request))):

 if key==None:

 return {"message":"API key not validated"}

 else:

 return persons

If the http://localhost:8000/persons URL is visited without registering

the api_key cookie, the browser shows the "API key not validated"

message. However, if the cookies are set, the list of persons will be

rendered (Listing 7-20).

Chapter 7 Bigger Applications

202

Listing 7-20.  Response after cookie validation

[

 {

 "name": "Tom",

 "age": 20

 },

 {

 "name": "Mark",

 "age": 25

 },

 {

 "name": "Pam",

 "age": 27

 }

]

�Using Class As Dependency
Instead of a function (normal or async), it is possible to use a class. Let

us turn the properties() function into a properties class and use it as a

dependency (Listing 7-21).

Listing 7-21.  Dependency class

class properties:

 def __init__(self, x:int, y:int):

 self.x=x

 self.y=y

To use it as a dependency, put the name of the class as an argument to

the Depends() function (Listing 7-22).

Chapter 7 Bigger Applications

203

Listing 7-22.  Using a class for dependency injection

@app.get("/persons/")

async def get_persons(params: properties =

Depends(properties)):

 return persons[params.x:params.y]

Note that the Depends() function now returns an object of the

properties class rather than a dict in the earlier example. The instance

variables x and y are used to slice the persons list.

You can also have a callable class as the dependency. In Python, a

callable class is the one that overrides the __call__() method, one of

Python’s magic methods. As a result, the object of such a class acts as a

callable, that is, a function.

Let us change the properties class as in Listing 7-23.

Listing 7-23.  Callable class as a dependency

class properties:

 def __call__(self, x:int, y:int):

 self.x=x

 self.y=y

 return self

Inside the operation function, the Depends() function in Listing 7-24

uses the object of this class as the argument.

Listing 7-24.  Using a callable object as a dependency

@app.get("/persons/")

async def get_persons(params: properties =

Depends(properties())):

 return persons[params.x:params.y]

Chapter 7 Bigger Applications

204

@app.get("/employees/")

async def get_employees(params: properties =

Depends(properties())):

 return employees[params.x:params.y]

�Database Session Dependency
In the previous chapter (Chapter 6 – Using Databases), we had used

the dependency injection to make the database context available to the

operation functions.

The code of the GET operation in the “SQLAlchemy” section of the

previous chapter is repeated here (Listing 7-25).

Listing 7-25.  Generator function as a dependency

def get_db():

 db = session()

 try:

 yield db

 finally:

 db.close()

@app.get('/books', response_model=List[Book])

def get_books(db: Session = Depends(get_db)):

 recs = db.query(Books).all()

 return recs

To fetch the records from a database table, the get_books() function

needs the database session object. It is injected by the get_db()

function here.

The get_db() dependency function appears to be a normal Python

function. However, instead of return, it uses a yield statement. Although

yield is similar to return in the sense that it also returns a value to the

Chapter 7 Bigger Applications

https://doi.org/10.1007/978-1-4842-9178-8_6

205

calling environment, there is a major difference between the two. The

yield statement returns a generator object, but doesn’t exit the function.

This allows a certain cleaning operation, such as closing the connection

after the path operation delivers its response.

A dependency function may also use yield inside Python’s context

manager syntax, as in Listing 7-26.

Listing 7-26.  Dependency using a context manager

def get_db():

 with session() as db:

 yield db

�Dependency in Decorator
Sometimes, the return value of the dependency function is not required

to be injected into the operation function. But still, you need that

dependency to be solved. In other words, the dependency functions must

be executed before the path operation.

To do so, declare the dependency in the path decorator.

For instance, you want to ensure that the client request contains a

specific custom header. The dependency function (Listing 7-27) raises an

exception if the required header is not detected.

Listing 7-27.  Path operation to insert Header

async def verify_header(X-Web-Framework: str = Header()):

 if X-Web-Framework != "FastAPI":

 �raise HTTPException(status_code=400, detail="Invalid

Header")

Chapter 7 Bigger Applications

206

Note that this function doesn’t return any value. Hence, it doesn’t

inject any parameter in the operation function. However, we can force

this dependency to be solved by defining the Depends() parameter in the

decorator itself, as in Listing 7-28.

Listing 7-28.  Decorator with a dependency

from fastapi import Depends, FastAPI, Header, HTTPException

app = FastAPI()

@app.get('/books', dependencies=[Depends(verify_header)])

def get_books(db: Session = Depends(get_db)):

 recs = db.query(Books).all()

 return recs

If there are more than one dependency, they can be put in a list.

While this applies to a given path operation, you can very well enforce a

global dependency across all the routes in an application. To do so, use

Depends() as an argument in the FastAPI object constructor (Listing 7-29).

Listing 7-29.  Global dependency

app = FastAPI(dependencies=[Depends(verify_header)])

@app.get('/books')

def get_books(db: Session = Depends(get_db)):

 recs = db.query(Books).all()

 return recs

In a subsequent chapter, we shall see how to apply dependencies to

enforce security requirements and authentication in a FastAPI app.

Chapter 7 Bigger Applications

207

�Middleware
A middleware is a function that intercepts every HTTP request before

being processed by the corresponding path operation function. If required,

the function can use the request to perform some process. The request

object is then handed over to the path operation function. The middleware

can also modify the response before it is rendered.

The middleware function is decorated by @app.middleware ("http").

It receives two arguments. The first one is the client request, and the

second is a call_next function.

The call_next function passes the request to the intended path

operation function. Its response may be manipulated by the middleware

before returning to the client.

The simple example (Listing 7-30) shows how the middleware works.

The code has a single route "/" that displays a Hello World message. The

add_header() function intercepts the request, prints a text message on

the console, and passes the request to the path operation function. Before

rendering the response, it adds an X-Framework response header.

Listing 7-30.  Custom middleware

from fastapi import FastAPI, Request, Header

from typing import Optional

app = FastAPI()

@app.middleware("http")

async def add_header(request: Request, call_next):

 print ("Message by Middleware before operation function")

 response = await call_next(request)

 response.headers["X-Framework"] = "FastAPI"

 return response

Chapter 7 Bigger Applications

208

@app.get("/")

async def index(X_Framework: Optional[str] = Header(None)):

 return {"message":"Hello World"}

If you check the documentation of the app, the server’s response

reveals the header inserted by the middleware (Figure 7-9).

Figure 7-9.  Header inserted by middleware

The following middleware are integrated into the FastAPI library:

HTTPSRedirectMiddleware: Enforces that all

incoming requests must either be https or wss. Any

incoming requests to http or ws will be redirected to

the secure scheme instead.

TrustedHostMiddleware: Ensures that all incoming

requests have a correctly set Host header to prevent

HTTP Host Header attacks.

GZipMiddleware: Handles GZip responses for

any request that includes "gzip" in the Accept-

Encoding header.

Chapter 7 Bigger Applications

209

�CORS
The term CORS stands for Cross-Origin Resource Sharing. Imagine a

situation where a certain front-end application running on www.xyz.com

is trying to communicate with a back-end application running on www.

abc.com. Here, the front-end and back-end applications are on different

“origins.” Browsers normally restrict such cross-origin requests.

FastAPI’s CORSMiddleware makes it possible to accept URL requests

from certain domains whitelisted in the application.

To configure the FastAPI app for CORS, import CORSMiddleware and

specify the allowed origins (Listing 7-31).

Listing 7-31.  Using CORSMiddleware

from fastapi.middleware.cors import CORSMiddleware

origins = [

 "http://localhost"

]

app.add_middleware(

 CORSMiddleware,

 allow_origins=origins,

 allow_credentials=True,

 allow_methods=["*"],

 allow_headers=["*"],

)

By default, the Uvicorn server accepts the incoming requests at port

8000 of the localhost. The allowed list of origins is localhost only (not

specifying the port means it is 80 by default).

The FastAPI app in Listing 7-32 has just a “/” route.

Chapter 7 Bigger Applications

http://www.xyz.com
http://www.abc.com
http://www.abc.com

210

Listing 7-32.  FastAPI app

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
async def main():
 return {"message": "Hello World"}

Of course, the application runs fine on the Uvicorn server at

localhost:8000. But we want to send a request to its “/” URL from the

localhost:80 domain.

To do so, create a simple HTML script (hello.html as in Listing 7-33) in

the web root location of the Apache server.

Listing 7-33.  Front end of the allowed origin

<html>
<body>
Click here
</body>
</html>

While your FastAPI app is running, launch the Apache server and

go to http://localhost:80/hello.html. Click the hyperlink. The browser is

redirected to http://localhost:8000/ which is the URL of your FastAPI app.

You will see the Hello World message displayed.

�Summary
Some very important features of FastAPI have been explained in this

chapter. We learned how to build large-scale applications with APIRouter.

We also dived deep into the concept of dependencies and middleware.

In the next chapter, some more advanced features of FastAPI are going

to be discussed. This includes WebSockets, GraphQL, and others.

Chapter 7 Bigger Applications

211

CHAPTER 8

Advanced Features
You now know enough about how to build REST APIs with FastAPI. In this

chapter, you will learn to use modern web applications with WebSocket

and GraphQL technology. We shall also explore the events in FastAPI and

how to include a Flask application.

This chapter is arranged in the following topics:

•	 WebSockets

•	 WebSockets module in FastAPI

•	 Test WebSockets with Insomnia

•	 Multiclient chat application

•	 GraphQL

•	 FastAPI events

•	 Mounting WSGI application

�WebSockets
The HTTP protocol is the backbone of the Internet. We know that HTTP

is a stateless protocol. After sending its response, the server doesn’t hold

back any details about the client. Hence, the client has to reestablish the

connection with the server for each subsequent interaction.

© Malhar Lathkar 2023
M. Lathkar, High-Performance Web Apps with FastAPI,
https://doi.org/10.1007/978-1-4842-9178-8_8

https://doi.org/10.1007/978-1-4842-9178-8_8#DOI

212

The WebSocket protocol, even though it works on top of HTTP,

provides a two-way communication channel (full duplex) over a single

TCP connection. Since the connection doesn’t get disconnected after

every transaction, the WebSocket protocol is ideally suited for real-time

applications.

The WebSocket protocol has introduced ws:// and wss:// as the new

URI schemes. In other words, instead of http:// (or https:// in the case

of secured HTTP), the WebSocket URL is prefixed by ws:// (or wss:// for

WebSocket Secure).

�How Do WebSockets Work?
As mentioned earlier, the WebSocket protocol establishes a persistent,

bidirectional TCP connection between the server and the client. As a

result, a real-time communication between the two becomes possible

(Figure 8-1).

Figure 8-1.  REST vs. WebSocket

Chapter 8 Advanced Features

213

To establish a WebSocket connection, the client browser sends a

WebSocket handshake request to a server to upgrade the connection,

along with a Sec-WebSocket-Key header. The server acknowledges the

handshake and inserts a hash of the key in a Sec-WebSocket-Auth header.

Once the connection is established, it doesn’t need to follow the HTTP

protocol. A server application communicates with each client individually.

Since WebSocket is a persistent connection, the server and the client can

continue to exchange messages for any length of time until one of them

chooses to close the session. In the WebSocket communication, event-

driven web programming is possible. The standard HTTP allows only

the clients to request new data. When using WebSocket though, two-way

communication is established.

A WebSocket server can be written in any server-side programming

language such as Python. To build a WebSocket server and client using

Python, you need to install the websockets library. Since it is built on top

of Python’s asyncio package, you should use Python’s 3.4 version or later.

You can install the websockets library with PIP. If you have installed

uvicorn with a standard option, the websockets library has already been

present in your working Python environment:

pip install uvicorn[standard]

�WebSocket Server
To start up a WebSocket server, call the serve() coroutine defined in the

websockets module and provide ws_handler, host, and port as arguments,

for example:

server = websockets.serve(hello, 'localhost', 8765)

Here, hello() is the WebSocket handler coroutine.

Run the server till the WebSocket handler coroutine is completed, with

the statements shown in Listing 8-1.

Chapter 8 Advanced Features

214

Listing 8-1.  asyncio loop

ws=asyncio.get_event_loop()

ws.run_until_complete(server)

ws.run_forever()

Now, the handler coroutine is given in Listing 8-2. It basically waits for

the client to request connection, consumes the data it receives, and then

sends back its response.

Listing 8-2.  Server-side code

import asyncio

import websockets

async def hello(websocket, path):

 name = await websocket.recv()

 print("< {}".format(name))

 greeting = "Hello {}!".format(name)

 await websocket.send(greeting)

 print("> {}".format(greeting))

�WebSocket Client
On the client side too, you need a coroutine that sends a connection

request to the WebSocket server and asynchronously sends certain

data. As the server responds after acknowledging the request, the client

processes the incoming data. Here’s the client-side coroutine (Listing 8-3).

Listing 8-3.  Client code

import asyncio

import websockets

async def hello():

Chapter 8 Advanced Features

215

 async with websockets.connect('ws://localhost:8765') as

websocket:

 name = input("What's your name? ")

 await websocket.send(name)

 print("> {}".format(name))

 greeting = await websocket.recv()

 print("< {}".format(greeting))

loop=asyncio.get_event_loop()

loop.run_until_complete(hello())

All you have to do on the client side is to run an asyncio loop till the

coroutine is complete.

Run the server and client code in two separate command terminals.

Input a string in the client window. There should be an immediate

response from the client:

python ws-client.py

What's your name? test

> test

< Hello test!

�WebSockets Module in FastAPI
FastAPI has an integrated support of the WebSocket protocol. This makes

it easy to develop real-time web applications that stream data to be

consumed by web, desktop, or mobile device clients.

Just as the HTTP path operations are handled by the path operation

decorators (such as @app.get(), @app.post(), etc.), the FastAPI app object

defines the @app.websocket() decorator. It starts a WebSocket server that

listens for incoming requests at the URL path given as a string parameter.

Chapter 8 Advanced Features

216

The coroutine defined below (in Listing 8-4) this decorator handles the

WebSocket protocol.

Listing 8-4.  WebSocket decorator

from fastapi import FastAPI, WebSocket

app = FastAPI()

@app.websocket("/test")

The fastapi.WebSocket module provides the necessary functionality

to send and receive data to and from the client. The WebSocket path

operation function, invoked whenever a client visits the URL with the

ws:// or wss:// protocol, accepts the incoming request and processes

the incoming data with the async receive() method (there are other

variations of the receive() method, such as receive_text() and

receive_json() methods). It may send the data back to the client with

async send() – there are send_text() and send_json() methods as well.

Let us define a simple async function to handle the WebSocket

connection request as in Listing 8-5.

Listing 8-5.  URL route for WebSocket

@app.websocket("/test")

async def test(websocket: WebSocket):

 await websocket.accept()

 while True:

 request = await websocket.receive_text()

 print(request)

 while True:

 i=random.randint(1,1000)

 await websocket.send_text(str(i))

 if i==100:

 break

Chapter 8 Advanced Features

217

After acknowledging the request, this function runs a loop and sends a

series of random numbers.

What happens on the client side? The client app may be a React or an

Angular application or a mobile app that communicates with the back end

in the native code.

For the sake of simplicity, we’ll use a simple web page as the client.

We also have some JavaScript code in it to handle the WebSocket

communication.

To open a new WebSocket connection within a JavaScript code, use the

special protocol ws in the URL:

var ws = new WebSocket("ws://localhost:8000/test")

Remember, our FastAPI app will run the WebSocket server at the /
test URL.

Once the socket is established, we need to listen to the following

events on it:

•	 open: Connection established on accepting the request

•	 message: Data received by either the server or

the client

•	 error: WebSocket error

•	 close: When the connection is closed by either the

client or the server

There is a button in the HTML page. Its onclick event calls the

handleOnClick() function to send a connection request to the WebSocket

set up by our FastAPI code. With every message sent by the server, the

client receives the random numbers, which are rendered on the page. Save

the HTML script (Listing 8-6) as test.html.

Chapter 8 Advanced Features

218

Listing 8-6.  WebSocket client in JavaScript

<script>

 var ws = new WebSocket("ws://localhost:8000/test")

 ws.onmessage = event => {

 var number = document.getElementById("number")

 number.innerHTML = event.data

 }

 handleOnClick = () => {

 ws.send("Hi WebSocket Server")

 }

</script>

<h3>Streaming numbers appear here</h3>

<div id="number"></div>

<button onclick="handleOnClick()">Click Me</button>

Run the Uvicorn server, and then open the test.html in a browser. As

you click the button in the browser, the test() function in FastAPI code

fires and starts sending random numbers. The numbers start appearing on

the web page until the number generated happens to be 100.

Let us look at a little more elaborate example in Listing 8-7.

The “/” route on the FastAPI server-side code reads a socket.html file

and renders a form.

Listing 8-7.  Rendering an HTML form

@app.get("/", response_class=HTMLResponse)async def

hello(request: Request):

 file=open("templates/socket.html")

 html=file.read()

On the HTML form (Listing 8-8), we have a textbox for sending a text

input to the WebSocket client.

Chapter 8 Advanced Features

219

Listing 8-8.  Client-side form

<h1>WebSocket Client</h1>

<form action="" onsubmit="sendMessage(event)">

 <input type="text" id="sendText"/>

 <input type="submit" name="send">

 <button onclick="handleOnClick()">Close</button>

</form>

<ul id='messages'>

Note that element with messages as its Element Id is used to echo

the sent messages.

The event handler the JavaScript function attached to the Send button

is given in Listing 8-9.

Listing 8-9.  JavaScript function to send messages

function sendMessage(event) {

 var input = document.getElementById("sendText")

 ws.send(input.value)

 input.value = ''

 event.preventDefault()

}

The server just echoes back the received text. Listing 8-10 has the code

for the WebSocket handler coroutine.

Listing 8-10.  WebSocket handler function

from fastapi import WebSocket

@app.websocket("/ws")

async def ws_handler(websocket: WebSocket):

 await websocket.accept()

Chapter 8 Advanced Features

220

 while True:

 data = await websocket.receive_text()

 await websocket.send_text(f"Message text was: {data}")

The JavaScript code on the client (Listing 8-11) is listening to the

incoming messages. They are appended to the element.

Listing 8-11.  Message listener in the JavaScript client

ws.onmessage = function(event) {

 var messages = document.getElementById('messages')

 var message = document.createElement('li')

 var content = document.createTextNode(event.data)

 message.appendChild(content)

 messages.appendChild(message)

};

Finally, the Close button is provided to disconnect the WebSocket

connection (Listing 8-12).

Listing 8-12.  Close WebSocket connection

handleOnClick = () => {

 ws.close();

 alert("Connection Closed");

}

While the FastAPI app is running, visit http://localhost:8000/ to open a

chat window. Figure 8-2 shows the alert box if the Close button is clicked.

Chapter 8 Advanced Features

221

Figure 8-2.  WebSocket client in action

�Test WebSockets with Insomnia
In addition to the use of a front-end application, such as the one used in

the preceding example, there are many utilities with which the WebSocket

server communication can be tested. Developers often use apps such as

Postman and Insomnia to test the WebSocket API endpoints.

Insomnia is a cross-platform desktop application to test REST,

WebSocket, and GraphQL APIs. It has an easy-to-use interface, and it’s free

for anyone to use. It is available for download at https://insomnia.rest/

download.

To test the /ws endpoint defined in the previous example, create a

new WebSocket request from the Insomnia GUI, enter the URL http://

localhost:8000/ws, and click the Connect button. You can then send

the messages and obtain the response. An example of the WebSocket

communication session is shown in Figure 8-3.

Chapter 8 Advanced Features

https://insomnia.rest/download
https://insomnia.rest/download

222

Figure 8-3.  Insomnia WebSocket request

�Multiclient Chat Application
The fact that WebSocket is a bidirectional communication protocol

makes it ideal for building real-time applications. In the example for this

section, we shall extend the preceding example and implement a chat with

Chapter 8 Advanced Features

223

multiple clients interacting simultaneously. The message submitted by one

client is broadcast to all the open connections. We shall also handle the

event of socket disconnection in this example.

The functionality of maintaining the list of currently live connections

and sending and broadcasting the message is handled by the Connection_

handler class in Listing 8-13.

Listing 8-13.  Connection_handler class

class Connection_handler:

 def __init__(self):

 self.connection_list: List[WebSocket] = []

 async def connect(self, websocket: WebSocket):

 await websocket.accept()

 self.connection_list.append(websocket)

 def disconnect(self, websocket: WebSocket):

 self.connection_list.remove(websocket)

 �async def send_message(self, message: str, websocket:

WebSocket):

 await websocket.send_text(message)

 async def broadcast(self, message: str):

 for connection in self.connection_list:

 await connection.send_text(message)

Further, the application code (Listing 8-14) uses connection_list

to maintain a list of all the WebSocket client objects. Every time the

connection request is accepted from a client object, it is appended to the

list. Similarly, as the client disconnects, it is removed from the list. The

broadcast() method sends the message to all the currently available

clients in the list.

Chapter 8 Advanced Features

224

The @app.websocket() decorator in the code parses the path

parameter from the request URL into the client_id and passes it to the

operation function beneath it.

Inside the function, the incoming connection request is accepted, and

the message is sent to all the active connections. The Connection_handler

also updates its list of active connections.

As and when the server detects that a client has disconnected, all the

other clients get notified accordingly. Listing 8-14 shows the code for the

WebSocket operation function.

Listing 8-14.  WebSocket handler coroutine

manager = Connection_handler()

@app.websocket("/ws/{client_id}")

async def websocket_endpoint(websocket: WebSocket, client_

id: int):

 await manager.connect(websocket)

 try:

 while True:

 data = await websocket.receive_text()

 �await manager.send_message(f"You wrote: {data}",

websocket)

 �await manager.broadcast(f"Client #{client_id} says:

{data}")

 except WebSocketDisconnect:

 manager.disconnect(websocket)

 �await manager.broadcast(f"Client #{client_id} left

the chat")

The hello() function in the FastAPI code for the "/" URL route is kept

as it was in the earlier example.

Chapter 8 Advanced Features

225

We need to modify the JavaScript code in our socket.html (Listing 8-15).

We need to generate a random client ID, display it on the chat page, and

include it as the parameter in the request URL.

Listing 8-15.  Obtaining a client ID

var client_id = Math.floor(Math.random() * 100);

document.querySelector("#wsID").textContent = client_id;

var ws = new WebSocket(`ws://localhost:8000/ws/${client_id}`);

The rest of the JavaScript functionality remains the same. In the HTML

body section, provide a span element with wsID as its ID, as in Listing 8-16.

Listing 8-16.  Modified client form

<h1>WebSocket Client</h1>

 <h2>Your ID: </h2>

 <form action="" onsubmit="sendMessage(event)">

 <input type="text" id="sendText"/>

 <input type="submit" name="send">

 <button onclick="handleOnClick()">Close</button>

 </form>

 <ul id='messages'>

Run Uvicorn to serve the FastAPI application. Open multiple browser

windows and enter the http://localhost:8000/ URL in each. Each window

shows a unique, random client ID (Figure 8-4). Try sending messages from

each window and observe them broadcast to all. From one of the browsers,

click the Close button (or close the window itself). The remaining open

windows will get the notification of a client having left.

Chapter 8 Advanced Features

226

Figure 8-4.  Multiclient chat with WebSockets

�GraphQL
Even though REST is widely regarded as the standard for designing web

APIs, the REST APIs tend to be too rigid and hence can’t handle the clients’

requirements that keep changing.

GraphQL was developed to address the shortcomings and

inefficiencies of the REST APIs and provide more flexible and efficient

alternative.

A major drawback of REST is that a client downloads more information

than is actually required for its consumption. The response from an API

endpoint might contain much more info that is superfluous for the client,

as it might need only some details of the resource.

Another issue with REST is that a specific endpoint doesn’t provide

enough information required by the client. Hence, the client might need to

make additional requests to fulfill the client’s requirements.

GraphQL has been developed and open-sourced by Facebook.

Because of its efficiency and flexibility, GraphQL is now recognized as a

new API alternative to REST architecture.

Chapter 8 Advanced Features

227

With its declarative data fetching, the GraphQL client is able to ask for

exactly what data it needs from an API. Another feature of GraphQL is that

a GraphQL server only exposes a single endpoint as against REST where

multiple endpoints are defined. Hence, instead of returning fixed data

structures, the GraphQL server responds with the data precisely as per

client request.

Contrary to a common misconception, GraphQL is not a database

technology. GraphQL is a query language for APIs and has nothing to do

with SQL which is used by databases. In that sense, it is independent of any

type of database. You can use it in any context where you need an API.

Figure 8-5 illustrates the GraphQL architecture.

Figure 8-5.  GraphQL architecture

�The Schema Definition Language
As a first step, you need to define the schema of an API you are going to

develop. GraphQL uses the Schema Definition Language (SDL) to write

the API schema.

The example in Listing 8-17 shows how to use the SDL to define the

Book type.

Chapter 8 Advanced Features

228

Listing 8-17.  Type definition in GraphQL

type Book {

 title: String!

 price: Int!

}

We have defined two fields in the Book type here; they’re called

title (which is a string field) and price (which is an int field). In SDL,

the ! symbol after the type indicates that this field is required and cannot

be null.

As mentioned earlier, a GraphQL API exposes only a single endpoint.

On the contrary, a REST API has multiple endpoints that return fixed data

structures. This works because the data structure returned is not fixed.

In fact, it is totally flexible in nature. Therefore, the client can determine

exactly what its requirements are.

However, to define its requirements precisely, the client has to provide

more information to the server in the form of a query.

�Queries
Here is an example of the query that can be sent by a client to a server

(Listing 8-18).

Listing 8-18.  GraphQL query

{

 books {

 title

 }

}

Chapter 8 Advanced Features

229

The books field in this query is called the root field of the query. The

title field in the root field is called the payload of the query. This query

would return a list of all books currently available.

Here, the response contains only the title of each book, but the price

is not included in the response returned by the server. That’s because

GraphQL allows you to specify exactly what is required. Here, title was

the only field that was included in the query.

You only have to include another field in the query’s payload whenever

needed (Listing 8-19).

Listing 8-19.  Query with payload

{

 books {

 title

 price

 }

}

�Mutations
Most applications invariably need to modify the data that’s currently

available with the back end. GraphQL uses mutations to make such

changes. There are three types of mutations:

•	 To create or add new data

•	 To update or modify data

•	 To delete data

Mutations appear similar in structure as queries, but you must use the

mutation keyword in the definition. To create a new Book, the mutation

can be as shown in Listing 8-20.

Chapter 8 Advanced Features

230

Listing 8-20.  GraphQL mutation

mutation {

 createBook(title: "Python Programming", price: 750) {

 title

 price

 }

}

Notice that the mutation type also has a root field – named

createBook. It takes two arguments that specify the title and price of the

new book.

Here is the server response for the preceding mutation:

"createBook": {

 "title": "Programming in Python",

 "price": 750,

}

�Subscriptions
In GraphQL terminology, there is the concept of subscriptions, so that a

real-time connection to the server is available, and the client immediately

gets information about important events.

If a client subscribes to an event, the server pushes the corresponding

data to it, whenever that particular event then actually happens.

Subscriptions don’t follow a typical “request-response-cycle” (as is done

by queries and mutations). They are a stream of data sent over to the client.

The subscription on events happening on the Book type is shown in

Listing 8-21.

Chapter 8 Advanced Features

231

Listing 8-21.  GraphQL subscription

subscription {

 newBook {

 title

 price

 }

}

�Schema
In GraphQL, the concept of schema is of much importance. How the

client requests the data depends on the definition of schema. It is sort of a

contract that both the server and the client abide by.

A GraphQL schema is a collection of GraphQL root types. The special

root types (those described earlier) are included in the definition of the

schema of an API:

type Query { ... }

type Mutation { ... }

type Subscription { ... }

The client requests use Query, Mutation, and Subscription types as the

entry points for communication with the server.

�Strawberry GraphQL
Many programming languages, including Python, support the

implementation of the GraphQL communication pattern. The declarative

nature of GraphQL’s Schema Definition Language suits Python nicely.

With newer Python versions providing the capability of asynchronous

processing in the form of asyncio, Python is now a natural choice for many

GraphQL developers.

Chapter 8 Advanced Features

232

There are quite a few Python libraries available for implementing the

GraphQL protocol. Here are some of them:

•	 Ariadne

•	 Strawberry

•	 Tartiflette

•	 Graphene

The latest releases of FastAPI recommend the Strawberry library

for working with GraphQL. Strawberry leverages Python’s dataclasses,

type hints, and ASGI standards, all of which also form the foundations for

FastAPI.

To start with, install the Strawberry package with the PIP command:

pip install strawberry-graphql[fastapi]

We now declare a Book class (Listing 8-22) with title, author, and price

fields and use the @strawberry.type decorator on top of it.

Listing 8-22.  Book type in Strawberry-GraphQL

import strawberry

@strawberry.type

class Book:

 title: str

 author: str

 price: int

Next, we need to add a Query type in our schema (Listing 8-23).

Chapter 8 Advanced Features

233

Listing 8-23.  Query Book type in Strawberry-GraphQL

@strawberry.type

class Query:

 @strawberry.field

 def book(self) -> Book:

 �return Book(title="The Godfather", author="Mario Puzo",

price=750)

The book() method in the Query class returns an instance of the

Book class.

As mentioned earlier, the GraphQL schema consists of Query,

Mutation, and Subscription. As of now, we have the Query class. Use

it as an argument in the Schema constructor, and obtain the GraphQL

application object from the schema (Listing 8-24).

Listing 8-24.  GraphQL object

from strawberry.asgi import GraphQL

schema = strawberry.Schema(query=Query)

graphql_app = GraphQL(schema)

Finally, declare the FastAPI object, and add the URL route "/book",

(as in Listing 8-25) that invokes the callable GraphQL object.

Listing 8-25.  FastAPI route for GraphQL

from fastapi import FastAPI

app = FastAPI()

app.add_route("/book", graphql_app)

Chapter 8 Advanced Features

234

Launch the FastAPI application on the Uvicorn server and visit the

http://localhost:8000/book URL in your favorite browser. An in-browser

tool called GraphiQL starts up (Figure 8-6). GraphiQL is a browser-based

user interface with which you can interactively execute queries against a

GraphQL API.

Figure 8-6.  GraphiQL IDE

Scroll down below the commented section and enter the query in

Listing 8-26 using the Explorer bar of the GraphiQL IDE.

Listing 8-26.  Query in the GraphiQL IDE

query MyQuery {

 book {

 title

Chapter 8 Advanced Features

235

 author

 price

 }

}

Run the query to display the result in the output pane of the IDE as

shown in Figure 8-7.

Figure 8-7.  Query result in GraphiQL

We have used earlier the Insomnia tool for testing WebSocket

communication. Insomnia also supports testing GraphQL endpoints

(Figure 8-8).

Chapter 8 Advanced Features

236

Figure 8-8.  Insomnia for GraphQL testing

To perform create, update, and delete operations, we should add

mutations to the GraphQL schema.

Add the Mutation class code in the FastAPI application, as in

Listing 8-27.

Listing 8-27.  Mutation class

@strawberry.type

class Mutation:

 @strawberry.mutation

 �def add_book(self, title: str, author: str, price:int)

-> Book:

 return Book(title=title, author=author, price=price)

When the browser is directed to the GraphQL endpoint /book, use the

snippet in Listing 8-28 to run the mutation inside the GraphiQL IDE.

Listing 8-28.  Parameters for the mutation function

mutation {

 addBook(

 title: "Harry Potter Collection",

Chapter 8 Advanced Features

237

 author: "J.K.Rowling",

 price:2500) {

 title

 author

 price

 }

}

The output of GraphiQL shows the result as in Figure 8-9.

Figure 8-9.  GraphiQL of mutation

You can always provide mutations for update and delete functionality.

In typical use cases of GraphQL APIs, of course there will be a back-end

database to perform these operations persistently. You can implement the

database operations discussed in the earlier chapter of this book.

Chapter 8 Advanced Features

238

�FastAPI Events
If you look carefully at the activities in the command terminal (in which

you start the Uvicorn server), you will find that the event of starting the

application as well as the shutting down is echoed there. You can attach a

handler function to each of these two events. FastAPI has two decorators –

@app.on_event("startup") and @app.on_event("shutdown") – for the

purpose.

The decorated functions will fire as and when these events occur.

Obviously, both events occur once during each run. This feature can be

effectively utilized to perform a mandatory activity as the application starts

and just before the server stops. A typical use case can be starting and

closing the database connection.

In the example in Listing 8-29, a text file is being used by the FastAPI

application to keep a log of the startup and shutdown time of the server.

As the application starts, the startup time is recorded in the file. Similarly,

when the user stops the server by pressing Ctrl+C, the shutdown time is

appended to the file.

Listing 8-29 shows the application code.

Listing 8-29.  FastAPI events

from fastapi import FastAPI

import datetime

app = FastAPI()

@app.on_event("startup")

def startup_event():

 print('Server started\n')

 log= open("log.txt", mode="a")

 �log.write("Application startup at {}\n".format(datetime.

datetime.now()))

Chapter 8 Advanced Features

239

 log.close()

@app.on_event("shutdown")

async def shutdown_event():

 print('server Shutdown :', datetime.datetime.now())

 log= open("log.txt", mode="a")

 �log.write("Application shutdown at {}\n".format(datetime.

datetime.now()))

 log.close()

There will of course be other path operations defined in the code.

However, every time the Uvicorn server starts, the startup_event()

function writes the time in the file. Again, whenever the server is stopped,

the timestamp is logged into the file:

Application startup at 2022-12-19 00:08:32.585333

Application shutdown at 2022-12-19 00:11:01.776408

Note that you should start the Uvicorn server in the production

environment and not in dubbed mode (without the --reload flag);

otherwise, the shutdown event will not be raised.

�Mounting WSGI Application
Python’s web application frameworks Flask, Django, etc., are widely used.

You can use an existing Flask/Django application as a subapplication

along with FastAPI. Flask and Django frameworks implement WSGI. To

mount a Flask application, it should be wrapped with WSGIMiddleware.

Let us look at a basic example to understand how WSGIMiddleware

works (Listing 8-30). Install flask and write a simple route that renders the

Hello World message.

Chapter 8 Advanced Features

240

Listing 8-30.  Flask subapplication

from flask import Flask

flask_app = Flask(__name__)

@flask_app.route("/")

def index_flask():

 return "Hello World from Flask!"

A similar path operation function for FastAPI is straightforward refer to

Listing 8-31.

Listing 8-31.  Main FastAPI application

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

def index():

 return {"message": "Hello World from FastAPI!"}

We now use the WSGIMiddleware class to wrap the Flask application

object and mount it as the subapplication at the /flask endpoint

(Listing 8-32).

Listing 8-32.  Mounting the Flask app

from fastapi.middleware.wsgi import WSGIMiddleware

app.mount("/flask", WSGIMiddleware(flask_app))

The response from the main FastAPI application is served at the

http://localhost:8000/ URL:

{"message":"Hello World from FastAPI!"}

Chapter 8 Advanced Features

241

Visit http://localhost:8000/flask to obtain the message rendered by the

Flask application:

Hello World from Flask!

�Summary
With this, we are concluding the discussion of some of the advanced

features of the FastAPI framework. We learned that FastAPI is not just

about REST, and it supports the latest API technologies – namely,

WebSockets and GraphQL. We now also know about the FastAPI events

and how to use the Flask app with FastAPI.

In the next chapter, we shall explore the techniques to make our

FastAPI code more robust and failproof, by learning about the security

measures and how to run tests.

Chapter 8 Advanced Features

243

CHAPTER 9

Security and Testing
Since an API exposes the endpoints of the server’s resources to be

consumed by other third-party apps, ensuring that access is only granted

to authorized users becomes the topmost priority for developers. Similarly,

it is also important that the code is subjected to proper testing before

releasing it to the users.

In this chapter, we are going to address these important topics:

•	 Exception handling

•	 Security

•	 Testing

•	 AsyncClient

�Exception Handling
The fact that, in any software, a proper exception handling mechanism

is of utmost importance cannot be overemphasized. An exception is a

runtime error situation often leading to an abnormal termination of the

process. Rather than leaving the user clueless about the reason of the

termination, a proper feedback to inform the user about the reason of the

exception is necessary.

In the case of an API, the exception may be caused by various reasons.

For instance, the resource that the client (for an API, the client could be

© Malhar Lathkar 2023
M. Lathkar, High-Performance Web Apps with FastAPI,
https://doi.org/10.1007/978-1-4842-9178-8_9

https://doi.org/10.1007/978-1-4842-9178-8_9#DOI

244

a web browser, a desktop, a mobile application, etc.) is trying to access

doesn’t exist. Often, even if the resource is present, the client doesn’t have

necessary credentials to access it.

The HTTP protocol has an elaborate system of including an

appropriate status code in the server’s response. Since these situations

(such as the resource doesn’t exist) are client induced, the response

includes a corresponding 4XX status code.

Whenever the FastAPI operation function encounters a runtime error,

it raises HTTPException. It inherits Python’s Exception class, with an

API-specific argument status_code that refers to the type of client error

response.

Listing 9-1 shows a simple example of raising HTTPException in a

FastAPI code.

Listing 9-1.  HTTPException

from fastapi import FastAPI, HTTPException

app = FastAPI()

names = [{"A01": "Alice"}, {"B01": "Bob"}, {"C01": "Christie"}]

@app.get("/names/{id}")

async def get_name(id: str):

 for name in names:

 if id in name.keys():

 return {"name": name[id]}

 else:

 �raise HTTPException(status_code=404, detail="Name

not found")

If the get_name() function finds that the id parameter obtained

from the URL is indeed present in the names database (as in http://

localhost:8000/names/B01), it renders a valid response to the client. If,

Chapter 9 Security and Testing

245

however, the id is not found, the HTTPException is raised. The string

value of the detail parameter is used in the JSON response, as shown in

Figure 9-1.

Figure 9-1.  HTTP error response

�User-Defined Exception
The Exception classes defined in FastAPI (in addition to the

HTTPException discussed earlier, the WebSocketException class is also

available) inherit Python’s Exception class. Hence, it is entirely possible to

define a custom exception class, subclassing the Exception.

First, define a simple MyException class (Listing 9-2).

Listing 9-2.  User-defined exception

class MyException(Exception):

 def __init__(self, msg:str):

 self.msg=msg

Now, we need to define an exception handler to process this type of

exception occurring while the FastAPI object interacts with the client. This

Chapter 9 Security and Testing

246

exception handler function is decorated by @app.exception_handler(). It

returns a JSON response with a status code of 406 (Not Acceptable) along

with an appropriate error message (Listing 9-3).

Listing 9-3.  Exception handler

@app.exception_handler(MyException)

async def myexceptionhanlder(request:Request, e:MyException):

 �return JSONResponse(status_code=406, content={"message":

"{} was encountered".format(e)})

Now we shall put this custom exception to use in our path operation

function get_name() from the previous example. If the function doesn’t

find the name with the given id path parameter, we first check if it equals

'end' and, if so, raise the newly defined MyException. If not, raise the

HTTPException as done previously. Listing 9-4 provides the modified

definition of get_name() function.

Listing 9-4.  Raise a user-defined exception

@app.get("/names/{id}")

async def get_name(id: str):

 for name in names:

 if id in name.keys():

 return {"name": name[id]}

 else:

 if id=='end':

 raise MyException(id)

 else:

 �raise HTTPException(status_code=404, detail="Name

not found")

There are three possible scenarios here. First, the path operation is

completed normally in response to the id parameter is present (Figure 9-2).

Chapter 9 Security and Testing

247

Figure 9-2.  Normal path operation

Second, the id is not found, and it equals end (Figure 9-3).

Figure 9-3.  Error with status code 406

And third, the id is not found, but it’s not end either, as in Figure 9-4.

Figure 9-4.  404 error code

Chapter 9 Security and Testing

248

�Security
We know that an API acts as the interface (API indeed is an acronym for

Application Programming Interface) used by two different applications

to transfer data. When an application grants access to the resources of its

server to the outside world, the end users are authenticated and have the

right kind of authorization. Securing an API is an important part of the

development process, equally important if not more than the development

of the application logic itself.

In this context, one often comes across two terms – authentication

and authorization. Seemingly similar, they perform different functions

and together provide a complete security system for an API. While

authentication refers to verification of the identity of the user,

authorization is the process that ascertains the permissions to the user.

�Basic Access Authentication
A very basic authentication mechanism is provided by the HTTP

protocol itself. First included in the HTTP 1.0 specification, it has since

been superseded by RFC 617 in 2015. The implementation of this

authentication scheme requires the browser to send the username and

password when it sends the request. Base64 encoding is used to formulate

the credentials. The request is packed with a header in the format

Authorization: Basic <credentials>.

The HTTPBasic class is at the core of FastAPI’s BA (Basic Access)

authentication support. Its object is used as a dependency in the path

operation function. An object of the class HTTPBasicCredentials contains

the username and password provided by the client.

Have a look at Listing 9-5, which shows a simple path operation

function with BA security dependency.

Chapter 9 Security and Testing

249

Listing 9-5.  Basic security dependency

from fastapi import Depends, FastAPI

from fastapi.security import HTTPBasic, HTTPBasicCredentials

app = FastAPI()

scheme = HTTPBasic()

@app.get("/")

def index(logininfo: HTTPBasicCredentials = Depends(scheme)):

 return {"message": "Hello {}".logininfo.username}

When a client browser goes to the “/” URL endpoint for the first time,

a dialog box pops up as in Figure 9-5, prompting the user to provide the

username and the password.

Figure 9-5.  Basic authentication with a username and password

Chapter 9 Security and Testing

250

Although the password authentication logic has not been

implemented here, you can always check it against a back-end database

before returning the response.

If the authentication fails, the function may be made to return an

HTTPException with the 401 status code.

�OAuth
FastAPI has an out-of-the-box support for OAuth2 security standard

specification. OAuth stands for Open Authorization. OAuth version 2.0

provides simple authorization flows for web applications, desktop and

mobile applications, etc.

One of the important features of OAuth is that it enables sharing

information with another service without exposing your password. OAuth

uses “access tokens.” An access token is a random string of alphanumeric

characters. A bearer token (Figure 9-6) is the most commonly used. Once

the OAuth client has the possession of the bearer token, it is able to make

request for the associated resources with the server.

Figure 9-6.  Bearer token

Chapter 9 Security and Testing

251

In the OAuth specification, the term “grant type” refers to the

mechanism by which the application gets the access token. A grant type

is also sometimes referred to as a flow. There are various grant types:

authorization code, client credentials, implicit, and password. In this

discussion, we shall discuss the password flow, which is the simplest way

of implementing token authentication.

Let us start by defining a user Pydantic model which is mapped to a

SQLAlchemy model named Users. In an earlier chapter, we have learned

how the SQLAlchemy model structure is translated into a database table.

The definition of the Pydantic model and the corresponding

SQLAlchemy model is shown in Listing 9-6.

Listing 9-6.  User class – Pydantic and SQLAlchemy models

class User(BaseModel):

 id: int

 username: str

 password: SecretStr

 token: str

 class Config:

 orm_mode = True

class Users(Base):

 __tablename__ = 'user'

 id = Column(Integer, primary_key=True, nullable=False)

 username = Column(String(50), unique=True)

 password = Column(String(200))

 token = Column(String(200))

Chapter 9 Security and Testing

252

It may be noted here that when using the password flow, the OAuth

standard requires that the client must send the user data for validation

as the values of username and password fields, without any other

variation (which means you cannot have the model attributes as anything

like userId or user-name, or the use of pwd instead of password is not

accepted).

�OAuth2PasswordBearer
Let us have a simple GET path operation that just renders a Hello

World message (Listing 9-7). To enforce authentication, apply the

OAuth2PasswordBearer() function as the dependency to the path

operation function.

The OAuth2PasswordBearer class is defined in the fastapi.security

module. Its constructor has a required argument in the form of tokenUrl,

set to a URL route that returns the bearer token.

Listing 9-7.  Enabling OAuth

from fastapi.security import OAuth2PasswordBearer

scheme = OAuth2PasswordBearer(tokenUrl='token')

@app.get('/hello')

async def index(token: str = Depends(scheme)):

 return {'message' : 'Hello World'}

With only this much of code in place, try to run the application. The

Swagger UI page already shows its effect, with the Authorize button

appearing prominently, as in Figure 9-7.

Chapter 9 Security and Testing

253

Figure 9-7.  OAuth enabled

You also get to see the lock icon in front of the index() function. If you

try to execute it, the server responds with a 401 status code, with a Not
Authenticated message, as in Figure 9-8.

Chapter 9 Security and Testing

254

Figure 9-8.  Server response with 401 code

The index() function (Listing 9-8) has a dependency as a callable

object of the OAuth2PasswordBearer class. In turn, it invokes the token()

function – a POST operation function associated with the tokenUrl.

Listing 9-8.  Function to invoke the password request form

@app.post('/token')

async def token(form_data: OAuth2PasswordRequestForm =

Depends()):

 token=hash(form_data.password)

 return {'Access Token' : token }

Chapter 9 Security and Testing

255

The preceding function also has OAuth2PasswordRequestForm as its

dependency. It renders a form with username and password attributes.

Taking these two body parameters, the token() function generates a token

and returns it as the response.

You can write your own logic to generate a token. Here, we provide

the password entered by the user to the hash() function. The hashed

password is returned.

While on the Swagger UI page, click the lock icon. As shown in

Figure 9-9, a form requesting the password pops up.

Figure 9-9.  OAuth2PasswordRequestForm

Chapter 9 Security and Testing

256

At this juncture, we are not applying any logic to authenticate the

username and password. We shall check them against the database a little

later. For now, the function just returns the hashed password when you

click the Authorize button.

This also means that the user is now authorized to access the protected

endpoints (Figure 9-10).

Figure 9-10.  Access authorized

Go ahead and test the /hello route. Since the client now has the

authorization token, you’ll now see the Hello World message as its

response.

Let us extend the example to provide the authentication of the

username and password against the user data in a database (Listing 9-9).

We have already defined the models. Using the declarative_base class

from SQLAlchemy, the User table is created in a SQLite database.

Chapter 9 Security and Testing

257

Listing 9-9.  SQLAlchemy setup

##SQLAlchemy Engine

from sqlalchemy import create_engine

from sqlalchemy.dialects.sqlite import *

SQLALCHEMY_DATABASE_URL = "sqlite:///./mydata.sqlite3"

engine = create_engine(

 �SQLALCHEMY_DATABASE_URL, connect_args={"check_same_

thread": False})

#Session object

from sqlalchemy.orm import sessionmaker, Session

session = sessionmaker(autocommit=False, autoflush=False,

bind=engine)

##Users model

from sqlalchemy import Column, Integer, String

class Users(Base):

 __tablename__ = 'user'

 id = Column(Integer, primary_key=True, nullable=False)

 username = Column(String(50), unique=True)

 password = Column(String(200))

 token = Column(String(200))

Base.metadata.create_all(bind=engine)

Note that the Users model has a token attribute that stores the

hashed value of password. Let us provide a POST operation function

add_user() to compute the token field and add a new user in the database

(Listing 9-10).

Chapter 9 Security and Testing

258

Listing 9-10.  POST operation function

@app.post('/users', response_model=User)

def add_user(u1: User, db: Session = Depends(get_db)):

 u1.token = hash(u1.password)

 u1.password=u1.password.get_secret_value()

 usrORM=Users(**u1.dict())

 db.add(usrORM)

 db.commit()

 db.refresh(usrORM)

 return u1

The preceding function has a database session dependency, which we

had discussed in Chapter 7. From within the Swagger UI page, add admin

as a new user.

We now have to include a GET operation on the /users route to

generate the list of users (Listing 9-11). Further, we shall secure the get_

users() operation function by injecting the authorization token in it.

Listing 9-11.  Secured GET operation function

@app.get('/users', response_model=List[User])

def get_users(db: Session = Depends(get_db), token: str =

Depends(scheme)):

 recs = db.query(Users).all()

 return recs

If the dependencies are solved, the list of users in the database will be

displayed. However, we need to modify the token() function (in Listing 9-12)

to check the username and password entered by the user in the Password

request form.

Chapter 9 Security and Testing

https://doi.org/10.1007/978-1-4842-9178-8_7

259

Listing 9-12.  Authentication function

@app.post('/token')

async def token(form_data: OAuth2PasswordRequestForm =

Depends(), db: Session = Depends(get_db)):

 �u1= db.query(Users).filter(Users.username == form_data.

username).first()

 if u1.password == form_data.password:

 return {'access_token' : u1.token }

Make sure that all the preceding changes are made, and the server is

running. From the Swagger UI page, authorize the get_users() function.

The server’s response will appear as in Figure 9-11.

Figure 9-11.  Access token in the response body

Note that the access token obtained is included as the Authorization

header in the HTTP request.

Chapter 9 Security and Testing

260

�Testing
FastAPI’s testing functionality is based on the HTTPX client library. The

TestClient object can issue requests to the ASGI application. You can

then write useful unit tests and verify their results with PyTest.

As a prerequisite to writing and running unit tests, you need to install

two libraries – HTTPX and PyTest – with the following commands:

pip3 install httpx

pip3 install pytest

Let us first have two path operations – a GET operation and a POST

operation in the main.py script (Listing 9-13). The list() function

retrieves an item from the Books list. The addnew() function is decorated

with @app.post() and adds a book in the list. The main.py script is fairly

straightforward.

Listing 9-13.  GET and POST operation functions for testing

from fastapi import FastAPI

from pydantic import BaseModel

class Book(BaseModel):

 title: str

 price: int

books=[{"title":"Python", "price":500}, {"title":"FastAPI",

"price":750}]

app=FastAPI()

@app.get("/list/{id}")

async def list(id:int):

 return books[id-1]

Chapter 9 Security and Testing

261

@app.post("/list", status_code=201)

async def add_new(b1:Book):

 books.append(b1.dict())

 return b1

One notable thing about the preceding code, especially the POST

decorator, is that a 201 status code is passed to it to imply that a successful

POST operation creates a new resource.

It may be remembered that tests are saved in Python scripts whose

name starts with test_. The test function should also be named as test_*.

We shall write the tests in a test_main.py file. It is placed in the same

folder in which the Python script with the FastAPI app object is declared.

The folder must have an empty __init__.py file for the folder to be

recognized as a package:

C:\fastapi\testing

│ main.py
│ test_main.py
│ __init__.py

To write a test, we should have a TestClient object and pass the

FastAPI app object to it as the parameter (Listing 9-14).

Listing 9-14.  TestClient

from fastapi.testclient import TestClient

from fastapi import status

from .main import app

client = TestClient(app)

In Listing 9-15, the test_list() function is intended to test the list()

function. First, obtain the response of the /list/1 URL with the client.get()

method. Use the assert keyword to check if the status code is 200, which

is what a successful response should normally have. We shall check if the

Chapter 9 Security and Testing

262

JSONized response equals the first item in the list (first because we are

passing 1 as the path parameter). Add the test_list() function as in

Listing 9-15.

Listing 9-15.  Test GET operation

def test_list():

 response = client.get("/list/1")

 assert response.status_code == status.HTTP_200_OK

 assert response.json() == {"title":"Python", "price":500}

Let us add another test function to check if the POST operation is

carried out correctly by the add_new() function. The code for the test_

add_new() function is given in Listing 9-16. For the POST call, we need to

provide the JSON data as one of the parameters. As before, check the status

code of the response, which is expected to be 201 (it stands for a new

resource created).

Listing 9-16.  Test POST operation

def test_add_new():

 response = client.post("/list", json={"title":"Learn

FastAPI", "price":1000})

 assert response.status_code == status.HTTP_201_CREATED

Run the tests from the command line. PyTest automatically discovers

the tests and tells if they pass or fail:

(fastenv) C:\fastenv\testing>pytest

================== test session starts ========================

platform win32 -- Python 3.10.7, pytest-7.2.0, pluggy-1.0.0

rootdir: C:\fastenv\testing

plugins: anyio-3.6.2

Chapter 9 Security and Testing

263

collected 2 items

test_main.

py.. [100%]

===================== 2 passed in 0.46s =======================

�Testing WebSocket
The TestClient object is also capable of sending a connection request to

a WebSocket set up by a FastAPI endpoint. On the server side, the request

is accepted, and a JSON message is sent to the client – in this case, the test

function. The FastAPI code is very simple (Listing 9-17) – just refer to our

earlier discussion about the WebSockets module in Chapter 8.

Listing 9-17.  WebSocket with FastAPI

from fastapi import FastAPI

from fastapi.websockets import WebSocket

app = FastAPI()

@app.websocket("/wstest")

async def wstest(websocket: WebSocket):

 await websocket.accept()

 await websocket.send_json({"msg": "From WebSocket Server"})

 await websocket.close()

As in the previous topic, create an empty __init__.py file, and save the

code shown in Listing 9-18 in test_main.py which should be alongside the

main.py script.

Chapter 9 Security and Testing

https://doi.org/10.1007/978-1-4842-9178-8_8

264

Listing 9-18.  WebSocket test function

from fastapi.testclient import TestClient

from .main import app

def test_wstest():

 client = TestClient(app)

 with client.websocket_connect("/wstest") as websocket:

 data = websocket.receive_json()

 assert data == {"msg": "WebSocket Server"}

As you can see, the TestClient object calls the websocket_connect()

method to send a connection request. The assert statement compares the

JSON data received from the server with the anticipated data. This time, we

expect the test to fail. Here is the console output of the PyTest command:

=========================== FAILURES ==========================

__________________________ test_wstest ________________________

 def test_wstest():

 client = TestClient(app)

 with client.websocket_connect("/wstest") as websocket:

 data = websocket.receive_json()

> assert data == {"msg": "WebSocket Server"}

E AssertionError: assert {'msg': 'From...ocket

Server'} == {'msg': 'WebSocket Server'}

E Differing items:

E �{'msg': 'From WebSocket Server'} != {'msg':

'WebSocket Server'}

E Use -v to get more diff

test_main.py:7: AssertionError

==================== short test summary info ==================

Chapter 9 Security and Testing

265

FAILED test_main.py::test_wstest - AssertionError: assert

{'msg': 'From...ocket Server'} == {'msg': 'WebSocket Server'}

========================== 1 failed in 0.48s ==================

�Testing Databases
The operation functions underneath the API endpoints primarily perform

CRUD operations on the back-end database. Hence, your tests should

assert their satisfactory execution.

Often, you would like to set up a different database for testing rather

than using the live database. For this purpose, you need to override the

dependency that injects the session object with which you carry out the

CRUD operations.

�Override Dependency

To understand what is overriding of dependency and how it works, let us

revisit the example in the section “Query Parameters As Dependencies”

in Chapter 7. Here, the query parameters are injected by the properties()

function. The relevant part of the code is reproduced here:

async def properties(x: int, y: int):

 return {"from": x, "to": y}

@app.get("/persons/")

async def get_persons(params: dict = Depends(properties)):

 return persons[params['from']:params['to']]

To write and run a unit test, we would rather like to define a new

dependency and override the application’s dependency. The dependency_

overrides property of the FastAPI application object allows you to do this.

Put the function in the test_main.py file (Listing 9-19).

Chapter 9 Security and Testing

https://doi.org/10.1007/978-1-4842-9178-8_7

266

Listing 9-19.  Overriding dependency

from fastapi import Depends

from fastapi.testclient import TestClient

from main import app, properties

async def new_properties(x: int=0, y: int=1):

 return {"from": x, "to": y}

app.dependency_overrides[properties] = new_properties

With this new dependency, you expect the persons list to contain

only the first entry. We can now assert if it really is the case, with the test

function in Listing 9-20.

Listing 9-20.  Testing dependency

client = TestClient(app)

def test_overridden_depends():

 response = client.get("/persons/")

 assert response.status_code == 200

 assert response.json() == [

 {

 "name": "Tom",

 "age": 20

 }

]

�Override get_db()

While discussing how FastAPI interacts with different databases (Chapter 6),

we have frequently used the get_db() function as dependency and inject

database session reference in the operation functions that perform CRUD

operations.

Chapter 9 Security and Testing

https://doi.org/10.1007/978-1-4842-9178-8_6

267

For convenience, some important parts of the code in the SQLAlchemy

topic are reproduced here. Listing 9-21 has Pydantic and SQLAlchemy

models for the Book table, a database dependency injection function, and

a POST operation function to add a new book.

Listing 9-21.  POST operation on the Book table

class Books(Base):

 __tablename__ = 'book'

 id = Column(Integer, primary_key=True, nullable=False)

 title = Column(String(50), unique=True)

 price = Column(Integer)

Base.metadata.create_all(bind=engine)

from pydantic import BaseModel

class Book(BaseModel):

 id: int

 title: str

 price:int

 class Config:

 orm_mode = True

app=FastAPI()

def get_db():

 db = session()

 try:

 yield db

 finally:

 db.close()

@app.post('/books', response_model=Book)

def add_book(b1: Book, db: Session = Depends(get_db)):

Chapter 9 Security and Testing

268

 bkORM=Books(**b1.dict())

 db.add(bkORM)

 db.commit()

 db.refresh(bkORM)

 return b1

Importing libraries, setting up the SQLite database mydata.sqlite3,

declaring the Session object and other operation functions can be found in

the source code repository of this book.

Let us concentrate on the get_db() function that injects the Session

object into the add_book() function. As mentioned earlier, we would not

be using this database (mydata.sqlite3) for running the tests. Instead,

we need to configure another database test.sqlite3 and inject its session

object. In the test_main.py file (Listing 9-22), the function that yields the

session object of the alternate database is defined.

Listing 9-22.  Setting up the test database

SQLALCHEMY_DATABASE_URL = "sqlite:///./test.sqlite3"

engine = create_engine(

 �SQLALCHEMY_DATABASE_URL, connect_args={"check_same_

thread": False}

)

TestingSession = sessionmaker(autocommit=False,

autoflush=False, bind=engine)

Base.metadata.create_all(bind=engine)

def test_get_db():

 try:

 db = TestingSession()

Chapter 9 Security and Testing

269

 yield db

 finally:

 db.close()

We now override the get_db dependency with this newly

defined dependency function – test_get_db(). It adds a test data

in this TestingSession object, which is pointing to the test database

(Listing 9-23).

Listing 9-23.  Testing the add_book() function

app.dependency_overrides[get_db] = test_get_db

client = TestClient(app)

def test_add_book():

 response = client.post(

 "/books/",

 json={"id":1,"title": "Jungle Book", "price": 500},

)

 assert response.status_code == 200

 data = response.json()

 assert data["title"] == "Jungle Book"

 assert "id" in data

 book_id = data["id"]

 response = client.get(f"/books/{book_id}")

 assert response.status_code == 200

 data = response.json()

 assert data["title"] == "Jungle Book"

 assert data["id"] == book_id

When you run this test, a POST request to the /books endpoint is

initiated with the given data and returns the result of assertion if the

retrieved instance equals the test data.

Chapter 9 Security and Testing

270

�AsyncClient
All the tests in this topic so far have been synchronous in nature as the

test functions are defined as normal Python functions and not coroutines

(having an async prefix). That’s because the fastapi.TestClient class

doesn’t support asynchronous calls. Thankfully, we have the HTTPX

library whose AsyncClient class allows us to write async tests.

Asynchronous tests become especially important in an application that

processes the back-end database asynchronously. Earlier in this book, we

have learned how FastAPI handles asynchronous database operations.

For this section, we shall be using the FastAPI code in Listing 9-24.

There is an in-memory database in the form of a list of books and

asynchronous POST and GET operation functions.

Listing 9-24.  FastAPI code with GET and POST operation functions

from fastapi import FastAPI

from pydantic import BaseModel

class Book(BaseModel):

 title: str

 price: int

books=[{"title":"Python", "price":500}, {"title":"FastAPI",

"price":750}]

app=FastAPI()

@app.get("/list/{id}")

async def list(id:int):

 return books[id-1]

Chapter 9 Security and Testing

271

@app.post("/list", status_code=201)

async def add_new(b1:Book):

 books.append(b1.dict())

 return b1

To communicate with the Uvicorn ASGI server, we’ll use the

AsyncClient object and then await the response from the API endpoint.

You also must decorate the async test function with the anio plugin of the

PyTest library.

In Listing 9-25, the AsyncClient constructor takes two parameters – an

app as the FastAPI application object and a base_url. We then assert if the

status code in the response equals 200.

Listing 9-25.  Testing with AsyncClient

import pytest

from httpx import AsyncClient

from .main import app

@pytest.mark.anyio

async def test_list():

 �async with AsyncClient(app=app, base_url="http://

localhost") as ac:

 response = await ac.get("/list/1")

 assert response.status_code == 200

 �assert response.json() == {"title":"Python",

"price":500}

On the similar lines, you may add an asynchronous coroutine to test

the POST operation. You can also try and write tests with AsyncClient for

the FastAPI applications performing asynchronous database operations

with aiosqlite (SQLite database) and the Motor driver (MongoDB

database).

Chapter 9 Security and Testing

272

�Summary
As mentioned in the beginning of this chapter, security and testing are

important steps in the API development process. In this chapter, we

learned a few techniques to provide a secure access to our API. We also

learned how to write and run unit tests with the help of PyTest and HTTPX

libraries.

In the next chapter, we’ll get to know about different ways to deploy a

FastAPI application.

Chapter 9 Security and Testing

273

CHAPTER 10

Deployment
The journey of web application development culminates when you

make it publicly available for users. Once you are confident that your

app is production-ready, it is time to explore the various options for its

deployment.

In this chapter, we shall discuss the following topics related to the

deployment of a FastAPI app:

•	 Hypercorn

•	 Daphne

•	 Gunicorn

•	 Render cloud

•	 Docker

•	 Google Cloud Platform

•	 Deta cloud

For any web application (or API) to be publicly accessible, it must be

put on a remote machine with a public IP address. A high-performance

HTTP server must be installed on it to serve the application. In the case

of FastAPI, you need an ASGI-compatible server program. We have been

using Uvicorn throughout this book. However, there are other alternatives

such as Hypercorn and Daphne.

© Malhar Lathkar 2023
M. Lathkar, High-Performance Web Apps with FastAPI,
https://doi.org/10.1007/978-1-4842-9178-8_10

https://doi.org/10.1007/978-1-4842-9178-8_10#DOI

274

�Hypercorn
Uvicorn, the ASGI server, doesn’t support the HTTP/2 protocol. On the

other hand, Hypercorn supports HTTP/2 and HTTP/1 specifications, in

addition to WebSocket (over both HTTP/1 and HTTP/2). With the use

of the aioquic library, there is also an experimental support for HTTP/3

specifications.

HTTP/2 offers better efficiency over HTTP/1 because of several

improvements. First, it uses the binary transfer protocol. Again, it

employs a multiplexing technique to send multiple streams of data at

once over a single TCP connection. For example, if the client requests

for an index.html file (which internally uses an image file, say logo.png,

and a stylesheet style.css), all the three resources are sent over a single

connection rather than three as is the case in HTTP/1.

Table 10-1 summarizes the difference between HTTP/1 and HTTP/2.

Table 10-1.  HTTP/1 vs. HTTP/2

-

HTTP/2 also uses a better header compression technique, and by the

server push mechanism, resources are sent to the client even before they

are requested.

To install Hypercorn, use the PIP installer as always:

pip3 install hypercorn

Chapter 10 Deployment

275

The usage of Hypercorn to serve a FastAPI app is the same as Uvicorn:

hypercorn main:app -–reload

The server response section of the Swagger UI docs page identifies

the server as hypercorn-h11, which indicates an HTTP/1.1 protocol

(Figure 10-1).

Figure 10-1.  Hypercorn server with an HTTP/1 protocol

�HTTPS
One of the important considerations while deploying an API is to ensure

that the server accepts only secure requests from the client. Although

HTTPS uses the same URI scheme as does HTTP, it indicates to the client

browser that it should use an added encryption layer to protect the traffic.

For HTTPS, the server needs to have a certificate. We can create a self-

signed certificate using the RSA cryptography algorithm.

Chapter 10 Deployment

276

Open the Git Bash terminal and enter the following command:

$ openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout

privatekey.key -out certificate.pem

Generating a RSA private key

....................+++++.................................+++++

writing new private key to 'privatekey.key'

You are about to be asked to enter information that will be

incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished

Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

This will generate two files – privatekey.key and certificate.pem. We

can now use these files as values for keyfile and certfile command-line

options with Uvicorn and Hypercorn.

Run the Uvicorn server with the following command:

uvicorn main:app --ssl-keyfile=./privatekey.key --ssl-

certfile=./certificate.pem --reload

INFO: �Will watch for changes in these directories:

['C:\\fastenv\\certificate']

INFO: �Uvicorn running on https://127.0.0.1:8000 (Press

CTRL+C to quit)

INFO: Started reloader process [4100] using WatchFiles

INFO: Started server process [13928]

INFO: Waiting for application startup.

INFO: Application startup complete.

Chapter 10 Deployment

277

Note that the URL where the app is running uses the HTTPS scheme.

Use the same key and certificate files with Hypercorn in the following

command line to enable the HTTPS scheme:

hypercorn --keyfile privatekey.key --certfile certificate.pem

main:app

Go back to the documentation page (https://localhost:8000/docs) and

check the response headers (Figure 10-2).

Figure 10-2.  Hypercorn server with an HTTP/2 protocol

The name of the server as hypercorn-h2 means that the HTTP/2

protocol is being implemented.

�Daphne
Another ASGI implementation used widely for deploying a FastAPI app

is Daphne. It was originally developed to power Django Channels – a

wrapper around the Django framework to enable ASGI support.

Chapter 10 Deployment

278

Daphne also supports HTTP/2 and WebSocket protocols. While

Uvicorn depends upon the uvloop library and Hypercorn on trio, Daphne

implements async loops with a twisted library.

To launch the FastAPI app on Daphne with the SSL certificate, use the

following syntax:

daphne -e ssl:8000:privateKey=privatekey.

key:certKey=certificate.pem main:app

2023-01-08 10:19:16,339 INFO Starting server at

ssl:8000:privateKey=privatekey.key:certKey=certificate.pem

2023-01-08 10:19:16,339 INFO HTTP/2 support enabled

2023-01-08 10:19:16,339 INFO Configuring endpoint

ssl:8000:privateKey=privatekey.key:certKey=certificate.pem

Note that the HTTP/2 support is automatically enabled.

�Gunicorn
With Uvicorn, the FastAPI app is run as a single process. However, in

the production environment, you would like to have some replication of

processes. If there are more clients, the single process can’t handle them

even if the server’s machine has multiple cores. It is possible to have

multiple processes running at the same time and distribute the incoming

requests among them. Such multiple processes of a single API are called

workers.

Gunicorn is another HTTP application server. Although it is a

WSGI-compliant server (which means, by itself, it is not compatible with

FastAPI), its process manager class allows the user to choose which worker

process class to use.

Chapter 10 Deployment

279

Uvicorn has a Gunicorn-compatible worker class. Gunicorn’s

process manager delegates the requests to the worker class for conversion

of incoming data to the ASGI standard and further consumption by the

FastAPI app.

First, install Gunicorn and then run the following command (note that

Gunicorn doesn’t support Windows OS):

gunicorn main:app --workers 4 --worker-class uvicorn.workers.

UvicornWorker --bind 0.0.0.0:8000

If you choose to use a cloud-based hosting service to deploy your API,

it will handle the replication even if there’s a single Uvicorn process.

�FastAPI on Render Cloud
One of the easiest ways to deploy your API for public consumption is

to use one of the many cloud-based services. Examples are Heroku,

Google Cloud Platform, and more. Such services can be availed with paid

subscription, although most of them do have a free tier.

In this section, we shall learn how to deploy a simple FastAPI app on

the Render cloud (https://render.com) within minutes.

One of the unique features of Render is its ability to autodeploy the

app from the GitHub repository. Hence, you need to create a repository on

https://github.com and place the source code of your app along with the

requirements.txt file in it, as in Figure 10-3.

Figure 10-3.  FastAPI app source code in the GitHub repository

Chapter 10 Deployment

https://render.com
https://github.com

280

The next step is to sign up with http://render.com using your GitHub

account (Figure 10-4).

Figure 10-4.  Sign up for Render

Next up, connect your GitHub repository so that Render fetches its

contents (Figure 10-5).

Figure 10-5.  Connect the GitHub repository to Render

Chapter 10 Deployment

http://render.com

281

You now need to tell Render the following details:

Environment:
The runtime environment for your web service

Python 3

Build command:
A script that installs the required libraries

pip install -r

requirements.txt

Start command: uvicorn main:app –host

0.0.0.0. –port 10000

After the deployment is complete, the Render dashboard shows the

public URL of your app (Figure 10-6).

Figure 10-6.  Render dashboard

The procedure of hosting an app on some of the other cloud platforms

such as Heroku (https://heroku.com) and Cyclic (https://cyclic.sh)

is more or less the same. (Heroku has since discontinued the free tier

option!)

Chapter 10 Deployment

https://heroku.com
https://cyclic.sh

282

�Docker
Instead of employing the preceding method for deployment, where the

code is put on the cloud platform, and invoking the application server

from there, developers prefer the approach of building a container image

consisting of all the dependencies of the app. The container image is then

deployed either on a server machine or on the cloud platform.

Containers are lightweight as compared to virtual machines (VMs).

They are easily portable. You can build a container on your local machine

and deploy it to any environment.

Docker is one of the most popular platforms for developing,

distributing, and running applications. Building containers with Docker

gives many advantages including security, replicability, simplicity, etc.

The Docker platform consists of Docker Engine that works on top of

the host operating system, and more than one container can be built with

it (Figure 10-7).

Figure 10-7.  Docker containers

Chapter 10 Deployment

283

Let us now build a Docker image for a simple FastAPI application.

Keep your main.py file along with the requirements.txt file in a folder.

Alongside it, save the following text as Dockerfile (this file doesn’t have

any extension):

FROM python:3.10

RUN pip3 install -r requirements.txt

copy ./app app

CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--

port", "80"]

We need to download and install the Docker Desktop application

from www.docker.com/products/docker-desktop/.

Docker Engine uses this Dockerfile to construct the image. It

basically tells the engine to use the official Python image as the base,

install the dependencies, copy files from the source folder, and launch the

application with Uvicorn.

Open the Git Bash terminal, navigate to the project directory where

you have stored the Dockerfile, and run the following command:

$ docker build -t image1 .

To start an instance of the image just built, use the following

command:

$ docker run -d --name mycontainer -p 80:80 image1

Your application is now running on the localhost.

Chapter 10 Deployment

http://www.docker.com/products/docker-desktop/

284

All the images built can be viewed in the Docker Desktop GUI

(Figure 10-8).

Figure 10-8.  Docker Desktop

The triangle icon under the Action column indicates that you can run

the image right from inside the application (Figure 10-9).

Chapter 10 Deployment

285

Figure 10-9.  Running the Docker image

You can now deploy the Docker image on various platforms such as

Heroku, AWS, Google Cloud, etc.

�Google Cloud Platform
The Internet giant Google offers cloud computing services in the name

Google Cloud Platform (GCP). Web applications in various language

technologies including Python can be deployed on Google Cloud.

A FastAPI app can be hosted on Google Cloud in either of two ways.

First is using the Docker image and deploying it. Second is to host the

application code on GCP along with its dependencies and serve the

application on the public IP address provided by Google Cloud. We shall

briefly discuss the second approach.

Chapter 10 Deployment

286

The first step is to put the FastAPI app code in a GitHub repository,

as we had done while deploying on Render. Be sure to include the

requirements.txt file in the repository.

Just as you need a Dockerfile to build the Docker image, GCP needs a

text file named app.yaml in the repository.

YAML is a human-readable data serialization language. Various

application settings such as runtime and version numbers are placed in it.

Save the following script as app.yaml and put it in the GitHub

repository:

runtime: python37

entrypoint: gunicorn -w 4 -k uvicorn.workers.UvicornWorker

main:app

To host your application on Google Cloud, obviously you need to sign

up and log in to https://console.cloud.google.com/. (Google Cloud

lets you host your app for free, but you should provide billing information

including bank details.)

After logging in, go to https://console.cloud.google.com/cloud-

resource-manager and create a new project (Figure 10-10). Choose the

name of the project and the project ID.

Chapter 10 Deployment

https://console.cloud.google.com/
https://console.cloud.google.com/cloud-resource-manager
https://console.cloud.google.com/cloud-resource-manager

287

Figure 10-10.  New project in GCP

To perform the rest of the activity, open the Cloud Shell by clicking the

 button, found toward the right side of the Google Cloud dashboard.

The next step is to clone the GitHub repository (in which you have put

the application code, requirements.txt and app.yaml files). Here is an

example (obviously, you will use the URL of your GitHub repository here):

git clone https://github.com/lathkar/fastapi.git

Initially, you run the application as if you have been running so far on

your local machine. To do so, create the virtual environment, install the

libraries from requirements.txt, and run the application.

Execute the following commands from within the Cloud Shell itself:

fastapi (fastapi-app-test)$ cd fastapi

fastapi (fastapi-app-test)$ virtualenv venv

Chapter 10 Deployment

288

fastapi (fastapi-app-test)$ source env/bin/activate

fastapi (fastapi-app-test)$ pip install -r requirements.txt

fastapi (fastapi-app-test)$ gunicorn -w 4 -k uvicorn.workers.

UvicornWorker main:app

The log emitted on the console should be familiar as you have seen it

while running the code examples in this book:

[2023-01-09 03:48:22 +0000] [587] [INFO] Starting

gunicorn 20.1.0

[2023-01-09 03:48:22 +0000] [587] [INFO] Listening at:

http://127.0.0.1:8000 (587)

[2023-01-09 03:48:22 +0000] [587] [INFO] Using worker: uvicorn.

workers.UvicornWorker

The application is now running on the localhost, which, if you wish,

you can verify by visiting the URL.

Now we have to deploy this application, so that it is publicly accessible.

To do that, first create the app:

$ gcloud config set project VALUE

$ gclud app create

Replace VALUE by the project ID generated at the time of creating the

project. You will be asked to choose the region code. The recommended

way is to choose the region closest to your geographical location, so that

the response time of the app is optimized:

Creating App Engine application in project [fastapi-app-test]

and region [asia-southeast2]....done.

Success! The app is now created. Please use `gcloud app deploy`

to deploy your first app.

Chapter 10 Deployment

289

The final step is to deploy the project. Google Cloud uses the YAML

file available in the project directory. It will display the target URL before

asking for confirmation:

Services to deploy:

descriptor: [/home/mlathkar/fastapi/app.yaml]

source: [/home/mlathkar/fastapi]

target project: [fastapi-app-test]

target service: [default]

target version: [20230109t041024]

target url: �[https://fastapi-app-test.et.r

.appspot.com]

target service account: [App Engine default service account]

Do you want to continue? (y/n)

The deployment procedure will take a while for completion. After

successful completion, visit the target URL to verify successful deployment.

�Deta Cloud
In the last section of this chapter, we shall introduce another cloud

hosting service, Deta (https://deta.sh). Importantly, hosting your app

on Deta is free (at least for now, although it claims that it will be forever!).

Incidentally, Deta is one of the sponsors of FastAPI.

Deta offers the following products:

Deta Base is a fast, scalable, and secure NoSQL database. It can be

used in serverless applications, while prototyping an application, in

stateful integrations, and more.

Deta Micros (short for microservers) are web apps running at a

specific HTTP endpoint. At the moment, you can build apps based on

Node JS and Python.

Chapter 10 Deployment

https://deta.sh

290

Deta Drive is a file hosting service, with 10GB storage limit per Deta

account. For instance, you may want to build an image server with the

FastAPI/Python app as the front end and Deta Drive to store the images.

As always, you must sign up on the Deta platform with a username and

password of your choice along with a user email which you need to verify

to use the services.

Make sure that you have an error-free code for a FastAPI app in a

folder which has the Python virtual environment installed. Also, save a

requirements.txt file in the same folder.

To work with the Deta products, you must install the Deta CLI

(command-line interface), as it is through this CLI that all the operations

are done.

You can install the Deta CLI on Mac, Linux, and Windows. For Linux/

Mac, execute the following command from the terminal:

$ curl -fsSL https://get.deta.dev/cli.sh | sh

For installation of the Deta CLI on Windows, open the PowerShell

terminal, and issue the following command from within the folder which

contains the main.py and requirements.txt files:

PS C:\fastapi-app>iwr https://get.deta.dev/cli.ps1 -useb | iex

This command downloads and installs the binary and adds deta in the

system path.

After successful installation, run the deta login command from the

PowerShell/Linux terminal. You will be redirected to the Deta sign-in page.

After your account credentials are verified, the control comes back to the

terminal.

PS C:\fastapi-app> deta login

Please, log in from the web page. Waiting...

https://web.deta.sh/cli/64048

Logged in successfully.

Chapter 10 Deployment

291

The deta new command builds the micro. Since ours is a Python app,

specify it in the command line along with the name of the app:

PS C:\fastapi-app> deta new fastapi-app --python

Successfully created a new micro

{

 "name": "fastapi-app",

 "id": "59a94e9b-ec10-47a3-8623-a78adeb1f291",

 "project": "d0cuictl",

 "runtime": "python3.9",

 "endpoint": "https://vprjh5.deta.dev",

 "region": "ap-south-1",

 "visor": "disabled",

 "http_auth": "disabled"

}

Adding dependencies...

Collecting fastapi

...

Successfully installed anyio-3.6.1 fastapi-0.85.0 idna-3.4

pydantic-1.10.2 sniffio-1.3.0 starlette-0.20.4 typing-

extensions-4.3.0

Your app is now available at the endpoint URL. Visit the same in your

browser to obtain a response from the app.

By default, the HTTP authentication is disabled. To enable it, generate

the access token from your account’s settings (Figure 10-11). The token is

valid for 365 days.

Chapter 10 Deployment

292

Figure 10-11.  Generate the access token

Export the value of the token as the ACCESS_TOKEN environment

variable. This enables sending authenticated requests from the Deta CLI so

that you don’t need to log in from the CLI every time.

Go to the Deta dashboard. You will see the details of your app that has

just been deployed, as in Figure 10-12.

Figure 10-12.  Deta dashboard

Chapter 10 Deployment

293

Several other cloud platforms can also be used to deploy a FastAPI

app. They follow more or less the same procedure as we have seen in this

chapter. Hence, to avoid repetition, they haven’t been explained.

�Summary
This is the last chapter of this book. In this chapter, you learned how to use

different tools to deploy your FastAPI app. Alternative ASGI servers have

been explained. The procedure of deploying the app on Render, GCP, and

the Deta cloud has been described in a simple and step-by-step manner.

Following these, you should be easily able to deploy your own app.

Chapter 10 Deployment

295

Index

A
Accept-language header, 130, 131
Access token, 250, 251, 259,

291, 292
add_book() function, 148, 155, 160,

167, 174, 269
add_header() function, 207
addnew() function, 67–69,

73–75, 83, 260
aiosqlite module, 154–156, 164,

173, 179
albums/albums.py module, 192
albums.py script, 186, 187
anyio, 25
AnyUrl type, 82
API documentation, 8, 36, 42,

54, 57, 62
API documentation tools, 36, 64
APIRouter

albums module, 190
albums.py script, 186, 187
albums routes, 189
books API routes, 188
books router, 186
fastapi module, 185
individual, 185
include_router() method, 187

main app code, 191
main.py script, 187, 188
REST operations, 185
router package, 189–191

@app.delete(), 31, 163
@app.get() decorator, 31, 63, 95, 98,

140, 161
Application object, 30–33, 46, 185,

187, 191, 233, 240, 265, 271
Application Programming Interface

(API), 248
analogy, 14
company’s application, 15
electromechanical peripheral

devices, 14
social media services, 16
stand-alone application, 14
user registration and

authentication, 15
“application/schema+json”, 36, 44
@app.post() decorator, 31, 67, 118,

126, 160
@app.put(), 31, 162
@app.websocket() decorator, 224
ASCII characters, 66
asdict() and astuple() methods, 71
asgiref package, 23

© Malhar Lathkar 2023
M. Lathkar, High-Performance Web Apps with FastAPI,
https://doi.org/10.1007/978-1-4842-9178-8

https://doi.org/10.1007/978-1-4842-9178-8#DOI

296

asgiref.server class, 23
async/await mechanism, 9
AsyncClient, 270, 271
Asynchronous capabilities, 8, 11, 12
Asynchronous dependency

function, 155, 166
Asynchronous fetch methods, 154
Asynchronous processing

ASGI, 11–13
asyncio module, 8–10
cooperative multitasking, 8
event/condition, 8
Python 3.5, 8

Asynchronous Server Gateway
Interface (ASGI), 8, 11

application, 13
application coroutine, 11
callable coroutine, 11
callable object, 11
server, 67

Asynchronous tests, 270
async in SQLAlchemy

asynchronous dependency
function, 166

Core Expression Language,
165, 166

databases module, 164
engine object, 165
FastAPI path

operations, 167–170
GET operation, 169
metadata object, 165
PUT operation, 169
SQLAlchemy Core, 163

table class methods, 166, 167
table object, 165

asyncio module, 23
async keyword, 9
await keyword, 9
coroutine, 9
Python’s ASGI, 8
Python script, 10
run() function, 9

Authentication function, 259
await keyword, 9, 168, 179

B
BaseConfig class, 76
BaseModel class, 70, 71, 73
Pydantic’s BaseModel class,

71, 79, 80
Bearer token, 250, 252
Body class constructor, 68, 69
Body() functions, 81
Body parameter, 67–69, 123, 147,

152, 160, 162, 168, 169,
194, 255

branch_id value, 61
broadcast() method, 223

C
Cacheability, 18
__call__() method, 203
call_next function, 207
Client-server model, 17
Code on demand, 18

INDEX

297

colorama, 25
Command Line Interface

Creation Kit, 25
Conditional expressions, 104
Config attribute, 76
connect() function, 144
Connection_handler class, 223, 224
Cookies

definition, 125
mechanism, 125
parameters, 126–128
set_cookie() method, 125, 126
tracking, 125

Core Expression Language,
165, 166

Coroutine, 9–11, 47, 136, 138,
154–156, 164, 166–169, 177,
178, 196, 197, 213–216, 219,
224, 270, 271

CORS, see Cross-Origin Resource
Sharing (CORS)

CORSMiddleware, 209
create_all() method, 166
create_engine() function, 165
CREATE, READ, UPDATE, and

DELETE operations, 19
credentials() function, 200, 201
Cross-Origin Resource Sharing

(CORS), 209, 210
CRUD operations, 19, 20, 70, 143,

144, 156, 157, 166, 181, 195,
265, 266

CSS files, 113
Curl command-line tool, 66

/customer route, 89
Customers model, 88
Custom middleware, 207
Custom validation, 85, 86
Cython-based

dependencies, 23, 24

D
-d option, 66
Daphne, 24, 273, 277, 278
Databases module, 163, 164, 179
Database session

dependency, 204, 205, 258
@dataclass decorator, 70, 71
dataclasses library, 70
Dataclasses module, 70–71
data.get(‘name’), 102
data.get(‘salary’), 102
Data model with pydantic, 69–75
DB-API

create books table, 144–146
cursor object, 145
database driver, 144
database operations, 144
delete book, 153, 154
insert new book, 147–150
List of books, 150, 151
POST operation–SQLite, 148
Python code, 144
sample books data, 150
select all books, 150
select single book, 151, 152
SQLite, 144, 146

INDEX

298

swagger UI, POST
operation, 149

update book, 152, 153
default_response_class, 140
del_book() function, 153, 156, 163
DELETE method, 21
DELETE request, 21
Dependencies

callable class, 203
callable object, 203
class, 202, 203
context manager, 205
database session, 204, 205
decorator, 205, 206
Depends(), 196
function, 148, 159, 196
generator function, 204
get_db() function, 195
global, 206
mechanism, 195
parameterized dependency

function, 200, 201
path operation function, 195
query parameters, 196–200

Depends() function, 147, 195,
202, 203

Deta Base, 289
Deta CLI, 290, 292
Deta Cloud

access token, 292
dashboard, 292
Deta Base, 289
Deta CLI, 290

Deta Drive, 290
deta login command, 290
Deta Micros, 289
deta new command, 291
FastAPI, 289

Deta Drive, 290
Deta Micros, 289
dict object, 32, 76, 100, 101, 126
dict() method, 79
division() function, 3–5
Docker

advantages, 282
container image, 282
containers, 282
desktop, 284
engine, 282, 283
run Docker image, 285
VMs, 282

Dynamic typing, 2

E
elete() method, 163, 167, 169
EmailStr, 82
email-validator module, 82
Employee model, 82, 85
__eq__() function, 71
Event handlers, 22, 219
Exception handling

get_name() function, 244
HTTP error response, 245
HTTPException, 244–246, 250
HTTP protocol, 244
runtime error, 243

DB-API (cont.)

INDEX

299

user-defined exception,
245, 246

execute() method, 145, 154

F
fastapi module, 126
FastAPI, 210

application, 28, 141
ASGI-compliant framework, 13
asynchronous processing, 8–13
asynchronous web

framework, 21
class, 31
capabilities, 1
dependency libraries, 28
events, 238, 239
file, 108
GitHub repository, 279
“Hello World” app, 26
Hello World message, 30–36
interactive API docs, 36–45
object, 98
operation function, 121
OpenAPI, 22
path operation function,

167–170, 194
PIP utility, 24
Render Cloud, 279–281
Sebastian Ramirez, 24
type hints, 2–6
web application

framework, 24, 29
WebSockets, 215, 216, 218, 220

FastAPI dependencies
libraries, 22
Pydantic, 23
Starlette, 22, 23
Uvicorn, 23, 24

fastapi.Form class, 117
fastapi.responses module, 95
fastapi.templating module, 98
fetchone() method, 152
Field() function, 81
FileResponse, 94, 138, 139
FileResponse object, 138
find() method, 176, 179
Flask subapplication, 240
/form URL path, 117
format() function, 95
freeze subcommand, 25
from_orm() method, 79
Function vs. coroutine, 9

G
get_book() coroutine, 168
get_book() function, 150, 156, 161,

176, 179, 204
get_collection() function, 177, 178
get_cursor() function, 147, 155
get_db() dependency function, 204
get_db() function, 195, 266, 268
get_employee() function, 47–49,

55, 56, 59, 61, 199
getform() function, 118
get() method, 102
GET method, 20, 66

INDEX

300

get_name() function, 244
GET operation, 20, 150, 152, 162,

163, 168, 169, 176–179, 200,
204, 258, 260, 262, 270

get_persons() operation
function, 197

GET request, 20, 32, 34, 65, 66, 168
get_users() function, 258, 259
GitHub repository, 279, 280,

286, 287
Global dependency, 206
Google Cloud Platform (GCP)

Cloud Shell, 287
Docker image, 285
FastAPI app, 285
FastAPI app code, GitHub

repository, 286
GitHub repository, 287
host application code, 285
new project, 287
YAML, 286, 289

Grant type, 251
GraphQL

architecture, 227
Facebook, 226
feature, 227
mutations, 229, 230
queries, 228, 229
query language, APIs, 227
REST APIs, 226
schema, 231
SDL, 227, 228
Strawberry, 232–238
subscriptions, 230, 231

type definition, 228
Gunicorn, 278–279

H
handleOnClick() function, 217
Hard-coded HTML string, 98
hash() function, 255
/header URL, 130
Header parameter, 130–131
Headers

“Content-Language”, 129
HTTP header types, 129
response headers section, 130
set_header() function, 130
“X-Web-Framework”, 129

hello() function, 224
hello.html, 98
Hello World application code, 32
Hello World message program

application object creation, 30
externally visible server, 34–36
objective, 30
path operation decorator, 30–31
path operation function, 32
Uvicorn server, 32–34

Hello world template, 98
Hello World text, 100
h11 package, 26
HTML response, 93–96, 98, 135
HTML’s H2 style, 94
HTTP-based client-server

communication, 131
HTTPBasic class, 248

INDEX

301

HTTP DELETE method, 153
HTTPException, 244–246, 250
HTTP method, 19, 31, 66, 143
HTTP protocol, 22, 23, 66, 211, 213,

244, 248
HTTPS, 275–278
HttpUrl, 82
HTTP verbs

DELETE method, 21
GET method, 20
POST verb, 19, 20
PUT method, 20, 21

Hypercorn, 24
HTTP/1, 274, 275
HTTP/1 vs. HTTP/2, 274
HTTP/2, 274, 277
HTTPS, 275–278
hypercorn-h11, 275
PIP installer, 274

I
Identical POST requests, 20
include_in_schema property, 64
include_router() method, 187
index() function, 32, 34, 94,

127, 254
index() operation function, 139
index() view function, 100
__init__() constructor, 70
init_db() function, 146
insert() method, 166
insert_one() method, 174
Insomnia, 221, 222, 235, 236

Interactive API docs
JSON schema, 44, 45
OAS, 36
path parameters, 46–49
query parameters, 49–55
Redoc, 42–44
Swagger UI, 36–42

Interface, 14
Inventory_val, 122
IP address, 36
ipconfig command, 35
IPython, 3, 4
isalnum() method, 85

J, K
JavaScript function, 109, 110
jinja2

conditional and loop
statements, 120

conditional logic, 103
CSS, 115
data.get(‘langs’), 106
endif keyword, 103
for and endfor keywords, 105
JavaScript, 109
language syntax, 100
library, 97
package, 97
placeholders, 100, 101
profile.html, 106, 114
server-side templating

library, 100
static image, 112

INDEX

302

template engine, 107, 108
template variables, 103
template web page, 104
url_for() function, 113

Jinja2Templates function, 98
JSON-based media, 36
JSON response, 102, 121, 136
JSON schema, 44, 45
JSONType class, 93
Jupyter Notebook, 3

L
Layered system, 18
list() function, 260
Logical expressions, 104

M
main(), 10
main.py, 12, 32, 187, 188

max_anystr_length, 76
media_type parameter, 94, 121,

134, 135, 137, 138
Metadata properties, 62, 63
Middleware

add_header() function, 207
@app.middleware (“http”), 207
call_next function, 207
custom, 207
GZipMiddleware, 208
Header insert, 208
HTTP, 207

HTTPSRedirectMiddleware, 208
TrustedHostMiddleware, 208

min_length, 81
ModelB class, 87
Modern web application

frameworks, 31, 96
MongoDB

Motor (see Motor)
PyMongo (see PyMongo)

MongoDB Compass, 171–173
MongoDB Query Language, 171
Motor

client class, 177
get_collection() function,

177, 178
GET operation, 178, 179
POST operation decorator, 178
PyMongo, 177

mount() function, 107, 191
Mounting Subapplications, 191,

193, 194
Mounting WSGI

application, 239–241
Multiclient Chat

Application, 222–226
Mutations, 229, 230, 237
myfunction(), 9
myFunction, 109
mystyle.css file, 114

N
name parameter, 63
Nested models, 87

jinja2 (cont.)

INDEX

303

Numeric parameters
validation, 60, 61

O
OAuth, 251–253

access token, 250
bearer token, 250
features, 250
grant type, 251
Open Authorization, 250
password flow, 252
Pydantic model, 251
SQLAlchemy model, 251

OAuth2PasswordBearer
access authorization, 256
access token, response

body, 259
authentication function, 259
fastapi.security module, 252
GET operation function, 258
index() function, 253
password request form, 254
POST operation function, 258
server response with 401

code, 254
SQLAlchemy setup, 257
token() function, 255, 258
Users model, 257

OAuth2PasswordRequestForm, 255
Object langs, 105
Object-relational mappers

(ORMs), 77, 156
object, 156

relation, 156
open() function, 138
OpenAPI

standards, 31
path operation, 122

OpenAPI Specification (OAS), 36
Operation function, 115
Optional parameters, 51–53
Order of parameter

declaration, 54, 55
ORJSONResponse, 136
orm_mode, 77–79

P
Parameterized dependency

function, 200, 201
Parameter substitution, 95, 101
Parameters validation

fastapi module, 56
metadata, 62–64
numeric parameters, 60, 61
optional keyword

parameters, 56
RegEx, 59
standard Python types, 56
string parameter, 56–58
user inputs, 55

Path and Query
constructors, 69

Path() function, 59, 81
Path/endpoint, 31
Path operation decorator, 30–31,

37, 67, 185

INDEX

304

Path operation function, 32, 41,
156, 159, 160, 166, 174, 178,
188, 194–196, 201, 207, 216,
240, 246, 248, 252

Path parameters
decorator, 46
employee, 46
handler function, 46
IP address:port, 46
operation decorator, 46
request URL, 46
type hints, 47
type parsing, 48, 49

pip3 install jinja2
command, 97

Placeholder identifier, 62, 67
PlainTextResponse, 94
POST Curl command, 68
Postman app, 66
POST method, 19, 20, 66, 68, 74
POST operation function, 31, 67,

74, 80, 147
POST request, 20, 21, 66, 67, 88,

117, 122, 269
prod_alchemy, 79
Product objects, 74
ProductORM model, 79
Products model, 87–89
ProductVal model, 122, 123
profile.html, 114
PUT method, 20, 21
PUT request, 21
Pydantic library, 70, 71, 82
Pydantic fields, 80, 81, 91

Pydantic models, 21, 23, 64, 87, 91,
101, 121, 122, 147, 148,
159–161, 174, 251

parameter, 73–75
structure, 78

Pydantic’s built-in validation, 84
Pydantic types, 83
PyMongo

add_book() function, 174
@app.get() decorator, 176
BSON representation, 175
Collection object, 174
document, 170
get_book() function, 176
GET /books request, 176
GET operation, 176, 177
insert_one() method, 174
localhost, 171
MongoClient class, 173
MongoDB Compass, 171–173
MongoDB Query Language, 171
MongoDB shell, 171
PIP utility, 173
POST operation, 174
Pydantic model, 174
schemaless, 170
start MongoDB server, 170

Python, 213, 231, 232
application frameworks, 13
built-in data types, 80
dictionary object, 102
dynamic typing, 2
function, 3
IDEs, 3, 4

INDEX

305

interaction, 2
interpreter, 3, 4
main.py, 33
modern features, 24
multithreading approach, 8
prompt, 3
standard library, 12
variable, 2
VS Code, 4
wsgiref module, 12

Python-based web apps, 97
python-dotenv, 26
python-multipart package, 118

Q
Queries, 228, 229
Query() functions, 81
Query parameters

@app.get() decorator, 49
get_employee() function, 49
optional parameters, 51–53
order of, 53–55
path decorator, 49
path parameter, 49
query string, 51

Query’s payload, 229

R
readfile() generator, 137
RedirectResponse class, 139, 140
Redoc, 42–44
Regular expression (RegEx), 59, 82

Remote Procedure Call (RPC), 16
Render Cloud

dashboard, 281
FastAPI app, 279
features, 279
GitHub repository, 280
sign up, 280

__repr__() method, 70
Representational State Transfer

(REST), 17, 91
architecture, 13, 16, 28
drawback, 226
vs. WebSocket, 212

response_model
@app.post() decorator, 123
attribute, 135
body parameters, 123
Inventory_val, 123
JSON Schema, 122
operation decorator, 124
output data, 124
parameter, 95, 122
POST request, 122

response_model_exclude, 124
response_model_exclude_unset, 124
response_model_include, 124
Response object, 121
Response status code

client error responses, 132
informational responses, 132
redirection messages, 132
server error responses, 132, 133
status_code parameter, 133
successful responses, 132

INDEX

306

Response types
FileResponse, 138
HTMLResponse, 135
json-encoder, 134
JSONResponse, 134, 136
media type, 134
RedirectResponse, 139, 140
StreamingResponse, 136, 137

REST constraints
cacheability, 18
client-server, 17
code on demand, 18
implementation

advantages, 18
layered system, 18
Roy Fielding, 17
statelessness, 17
uniform interface, 17

Route-based version, 31
Router package, 189–191
Roy Fielding, 17
run() function, 32, 33, 35

S
Schema, 231
Schema Definition Language

(SDL), 227, 228
schema_extra property, 76
schema_json() method, 71
SecretStr, 82
Security

authentication, 248
authorization, 248

basic access
authentication, 248–250

basic security dependency, 249
development process, 248
OAuth, 250–252
OAuth2PasswordBearer (see

OAuth2PasswordBearer)
select() method, 166, 168
Server-side script, 30
Session object, 158, 159
Sessionmaker() function, 158
set_cookie() method, 125, 126
/setcookie path, 126, 128
Simple Object Access Protocol

(SOAP), 16
Single file app, 182–184
sniffio package, 26
SQLAlchemy, 78, 251

@app.delete(), 163
@app.get(), 161
@app.post(), 160, 161
@app.put(), 162
async (see async in

SQLAlchemy)
connect to a database, 157
Core, 163
CRUD operations, 157
DB-API driver module, 157
declarative_base class, 78
dependency function, 159
engine object, 157
GET operation, 163
models, 78, 79
MySQL, 157

INDEX

307

object-relational mapper
API, 157

ORM model, 158
POST operation, 161
PUT operation, 162
pydantic model, 159, 160
session object, 158, 159
SQLite database, 157

SQL data types, 156
SQLite, 144, 146, 148–150, 152–154,

156, 157, 164, 170, 173, 179,
256, 268, 271

SQLite Viewer extension, 146
src tag, 108
Starlette, 22, 23
Starlette–Python’s ASGI toolkit, 21
startup_event() function, 239
Statelessness, 17
/static route, 107
Static assets, 107, 108
StaticFiles class, 108, 191
Static image, 111–113
static-img.html, 112
static-js.html, 109
status_code parameter, 132
Status code constants, 134
Strawberry GraphQL

Book class, 232
browser-based user

interface, 234
FastAPI, 232
FastAPI route, 233
GraphQL object, 233
IDE, 234

Insomnia, GraphQL test, 236
mutation class, 236, 237
parameters, mutation

function, 236
PIP command, 232
Query Book type, 233
query, GraphiQL IDE, 234
query result, 235

StreamingResponse, 136, 137
String-searching

algorithms, 59
Student model, 80, 81
Stylesheets, 107, 113
Subscriptions, 230, 231, 233
Suppliers model, 87
Swagger documentation, 47–49, 57,

63, 64, 130, 133, 188
Swagger interface, 77, 83
Swagger tool’s interface, 81
Swagger UI, 36, 66

Curl representation, 41
documentation works, 37
Execute button, 40
Form parameters, 119
index() function, 38
JSON response, 42
path operations, 37
path parameters, 37, 39
POST operation, 118, 149
query parameters, 199
Server response, 120
two APIs, single app, 184
user() function, 41
Uvicorn server, 37

INDEX

308

T
Table class methods, 166, 167
Template engine, 96–97, 101, 107
Template inheritance, 97
TemplateResponse()

method, 99, 100
TestClient object, 260, 261, 263, 264
Testing

AsyncClient, 271
databases

live database, 265
override dependency,

265, 266
override get_db(), 266,

268, 269
setting up, 268

GET operation function, 260
HTTPX client library, 260
__init__.py file, 261
POST operation function,

260, 262
PyTest, 260
run, 262
test_list() function, 261, 262
test_main.py file, 261
WebSocket, 263, 264

test_list() function, 261, 262
Top-level domain (TLD), 82
Traditional type, 93
TypeError exception, 3
Type hints, 4–6, 47
Type parsing, 48, 49
typing-extensions module, 26

U
UJSONResponse, 136
Unauthorized user, 15
Uniform interface, 17, 19
Uniform Resource Identifier (URI),

17, 19, 157, 212, 275
update_book() function, 152, 156,

162, 169
update() method, 167, 169
url_for() function, 108, 111, 113
URL validation, 85
User-defined exception, 246

@app.exception_handler(), 246
404 error code, 247
MyException class, 245
normal path operation, 247
status code 406, 247

Uvicorn, 12, 21, 23, 24, 274, 276, 279
package, 13, 24
server, 101, 110, 218

uvicorn.run() function, 13

V
Validation, 82–85
@validator decorator, 85, 86
Virtual machines (VMs), 282
VS Code editor, 5

W
watchfiles package, 26
Web API, 16, 17, 25, 29, 226

INDEX

309

Web Server Gateway Interface
(WSGI), 11

websocket_connect() method, 264
WebSockets

asyncio loop, 214
client, 214, 215

action, 221
JavaScript, 218

client-side form, 219
close WebSocket

connection, 220
connection, 213
event handler JavaScript

function, 219
FastAPI, 215, 216, 218, 220
handler coroutine, 224
handler function, 219
hello(), 213
Insomnia, 221, 222
multiclient chat

application, 222–226

protocol, 212
Python, 213
vs. REST, 212
serve() coroutine, 213
server-side code, 214
support, 22
URL route, 216
test function, 263, 264

Web template, 92, 96
WSGIMiddleware, 239, 240

X
-X option, 66
XML/JSON representation, 20
“X-Web-Framework”, 129

Y, Z
YAML, 286, 289
yield statement, 136, 137

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	How This Book Is Arranged

	Chapter 1: Introduction to FastAPI
	Type Hints
	The typing Module

	Asynchronous Processing
	The asyncio Module
	ASGI

	About REST Architecture
	What Is an API?
	REST
	REST Constraints

	HTTP Verbs
	POST Method
	GET Method
	PUT Method
	DELETE Method

	FastAPI Dependencies
	Starlette
	Pydantic
	Uvicorn

	Installation of FastAPI
	Summary

	Chapter 2: Getting Started with FastAPI
	Hello World
	Create an Application Object
	Path Operation Decorator
	Path Operation Function
	Start Uvicorn
	Externally Visible Server

	Interactive API Docs
	Swagger UI
	Redoc
	JSON Schema

	Path Parameters
	Using Type Hints
	Type Parsing

	Query Parameters
	Optional Parameters
	Order of Parameters

	Validation of Parameters
	Validating String Parameter
	Validation with RegEx
	Validating Numeric Parameters
	Adding Metadata

	Summary

	Chapter 3: Request Body
	POST Method
	Body Parameters
	Data Model with Pydantic
	dataclasses Module
	BaseModel
	Pydantic Model As Parameter

	Model Configuration
	orm_mode

	Pydantic Fields
	Validation
	Custom Validation

	Nested Models
	Summary

	Chapter 4: Templates
	HTML Response
	Template Engine
	Hello World Template
	Template with Path Parameter
	Template Variables
	Passing dict in Template Context
	Conditional Blocks in Template
	Loop in Template

	Serving Static Assets
	Using JavaScript in Template
	Static Image
	CSS As a Static Asset

	HTML Form Template
	Retrieve Form Data
	Summary

	Chapter 5: Response
	Response Model
	Cookies
	set_cookie() Method
	Cookie Parameter

	Headers
	Header Parameter

	Response Status Code
	Response Types
	HTMLResponse
	JSONResponse
	StreamingResponse
	FileResponse
	RedirectResponse

	Summary

	Chapter 6: Using Databases
	DB-API
	Creating the Books Table
	Inserting a New Book
	Selecting All Books
	Selecting a Single Book
	Updating a Book
	Deleting a Book

	aiosqlite Module
	SQLAlchemy
	async in SQLAlchemy
	databases Module
	Core Expression Language
	Table Class Methods
	FastAPI Path Operations

	PyMongo for MongoDB
	Motor for MongoDB
	Summary

	Chapter 7: Bigger Applications
	Single File App
	APIRouter
	Router Package

	Mounting Subapplications
	Dependencies
	Example of Dependency Injection
	Query Parameters As Dependencies
	Parameterized Dependency Function
	Using Class As Dependency
	Database Session Dependency
	Dependency in Decorator

	Middleware
	CORS
	Summary

	Chapter 8: Advanced Features
	WebSockets
	How Do WebSockets Work?
	WebSocket Server
	WebSocket Client

	WebSockets Module in FastAPI
	Test WebSockets with Insomnia
	Multiclient Chat Application
	GraphQL
	The Schema Definition Language
	Queries
	Mutations
	Subscriptions
	Schema
	Strawberry GraphQL

	FastAPI Events
	Mounting WSGI Application
	Summary

	Chapter 9: Security and Testing
	Exception Handling
	User-Defined Exception

	Security
	Basic Access Authentication
	OAuth
	OAuth2PasswordBearer

	Testing
	Testing WebSocket
	Testing Databases
	Override Dependency
	Override get_db()

	AsyncClient
	Summary

	Chapter 10: Deployment
	Hypercorn
	HTTPS
	Daphne

	Gunicorn
	FastAPI on Render Cloud
	Docker
	Google Cloud Platform
	Deta Cloud
	Summary

	Index

