
OPEN
SOURCE
STARTE R
GUIDE
For IBM i Developers

PETE HELGREN

Open Source Starter Guide
for IBM i Developers

Pete Helgren

TVIC PRESS

MC Press Online, LLC
Boise. ID 83703 LISA

Open Source Starter Guide for IBM i Developers
Pete Helgren

First Edition
First Printing May 2017

© Copyright 2017 Pete Helgren. AH rights reserved.

Printed in USA. All rights reserved. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electromc, mechanical, photocopying, recording, or
likewise. For information regarding permissions, contact mcbooks@mcpressonHne.com.

Every attempt has been made to provide correct information. However, the publisher and the author
do not guarantee the accuracy of the book and do not assume responsibility for information included
in or omitted from it.

The follow.ng terms are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both: IBM, AIX, DB2, Integrated Language
Environment, Power, and POWERS. A current list of IBM trademarks is available on the Web at
http:/7www. ibm. com/legal/copytrade.shtml.

Java, JavaScript, and all Java-based trademarks and logos are trademarks or registered trademarks
of Oracle and/or its affiliates. jQuery is a registered trademark of the jQuery Foundation. Linux
is a registered trademark of Linus Torvalds. Microsoft, Internet Explorer, JScripl, and Windows
are registered trademarks of Microsoft. Node.js is a trademark of Joyent. Python is a registered
trademark of the Python Software Foundation. Sublime Text is a trademark of Sublime HQ Pty Ltd.
Apache and Tomcat are registered trademarks of The Apache Software Foundation. UltraEdit is a
trademark of IDM Computer Solutions. UNIX is a registered trademark of The Open Group. Zend
and Zend Server are registered trademarks of Zend Technologies.

All other product names are trademarked or copyrighted by their respective manufacturers.

MC Press offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include custom covers and content particular to your business, training
goals, marketing focus, and branding interest.

MC Press Online, LLC
Corporate Offices: 3695 W. Quail Heights Court, Boise, ID 83703-3861 USA

Sales and Customer Service: (208) 629-7275 ext. 500;
service(h)mcpressonline.com

Permissions and Bulk/Special Orders: mcbooks(a’mcpressonline.com
www.mcpressonline.com • www.mc-store.com

ISBN: 978-1-58347-495-2

mailto:mcbooks@mcpressonline.com
mailto:service@mcpressonline.com
mailto:mcbooks@mcpressonline.com
http://www.mcpressonline.com
http://www.mc-store.com

Acknowledgments

It is an African proverb that says “It takes a village to raise a child.” Although I had
nowhere near a “village” helping me, a “child” in programming, I have always felt the
presence of the IBM i/Midrange community for whom this book is written. What a
“village” it is! It is awesome to be a part of something like that community, and 1 thank
them for their encouragement. I also want to thank Tony Cairns and IBM, Aaron Bartell,
and Andrea Ribuoli for responding to my inane questions. I know them all well, and it is
always a pleasure to work with them.

On a personal note, I am very thankful for my long-suffering wife who over the years has
put up with “hang on, I almost have it working” delays. Every person should be blessed
with such patient love. Thanks, Debbie.

None of this is remotely possible without a Clod who animates and directs me. We are
made in His image, and I love it when His creativity breaks through my ignorance. “With
man this is impossible, but with God all things are possible” (Matt. 19:26). Yeah, it’s like
that. Thanks be to God!

Contents

Acknowledgments iii

Preface ix

1: IBM i and Open Source 1
Why Open Source on IBM i? 2
It’s All About the Community 2

2: The PASE Environment 5
PASE and ILE 6
Installing PASE 8
PASE Applications 8
Using PASE 10

3: The Integrated Language Environment (ILE) 13
ILE’s Origins 13
Modularity and Binding 14
The Benefits of ILE’s Integration 15

4: The Beast That Is XMLSERVICE 17
Installation 18
Next Steps 19
XMLSERVICE Examples 22

First Step: Prepare the Apache Server 22
Second Step: Serve the Weh Pages 25

vi • Contents

5: i Object! 33
Classes 34
Encapsulation 35
Inheritance 36
Interfaces 37
Polymorphism 37
Have Some Class 38

6: Ruby and IBM i 39
Installation 42
IDEs and irb 42
Language Basics 48

Variables 48
Scope 49
Built-in Functions 52
Containers 53
Hashes 5 7

Program Structure in Ruby 59
Modules 59

Control Flow in Ruby 64
Using Case 70
4 Brief Aside into Error Handling 71

File, I/O, and System Operations 72
A Brief Aside into I/O 7 3
Files 74

System Commands 79
The Ruby Toolkit 80
Alternatives 85
Using JRuby with ActiveXMLService and ActiveRecord 90
Something New 97

7: Rails and Ruby 99
Getting Started with Rails 99
Building a Rails Application 101

Rails and M VC] 05
Structure of a Rails Project | Q7
Database Access in Rails | Q8

Contents • vii

Accessing Resources with Routes 109
Summing It Up 110

8: PHPonIBMi 111
W here PHP Lives on IBM i 112
Installation 113
Running Scripts 114

Programming Basics 115
Va riables 116
Operators 11 8
Iteration 1 19
Strings 120

Accessing System Resources 122
Files 122

Running System Commands 123
Database Access 124
Accessing IBM i Commands and Programs 127

Simple Commands 127
Calling Programs and Procedures 1 33

PHP in the Web World 138

9: Python 145
Installation 146
Programming in Python 147

Numbers 148
Strings 148
Lists 148
Tuples 149
Dictionary 1 5 1

Functions 152
Modules 154
Classes in Python 159
File Access in Python 161
System Access 163

DB2 Access ‘ 164
Accessing RPG 165
Feel the Power 168

viii • Contents

10: Node.js on IBM i 169
Jiving with JavaScript 170
Classes and Objects 177
Arrays and Hashes 181
Functions 186
Node.js 190

Vexing Versions 192
System Access 203
DB2 Database Access 204

11: Apache and Tomcat on IBM i 213
Apache 214
Tomcat 218

12: The IBM i Open Source Garden 221
User Groups 222
Virtual Communities 223
Notable “Solos” 223

Index 225

Preface

I have worked for Bible Study Fellowship (BSF) for four years as of this writing, and I
look forward to coming to work every day! And it is not just because I get to work with
people I love, for a God I love, but also because I get to do a job I love.

1 love to write code, break code, learn new things about code, talk about code, debate
about code, everything! Every day I get to try something I have never tried before, and
1 have a computing system that makes it possible: IBM i on Power. It’s about as close to
^processing heaven” as you can get, IMHO. I do understand that not everybody sees it
that way. There arc folks who see their work as “just a job” and can’t wait to get home, or
for the lucky ones, push back from the desk at a home office, and they are done. It’s a job,
nothing more. There may have been a time when coding was new and exciting, but now,
after writing RPG for 20 years, the spark is gone. It’s just a job.

I think part of the reason we can fall into the “it’s just a job” trap is because we have
been doing the same thing for so long, and perhaps we don’t, or aren’t allowed to, learn
anything. And the Internet facilitates, in some ways, our lack of learning (yeah, you read
that right!).

Not long after I started working at BSF, I was sorting through the morning tech support
email and came across this:

Who ever devised these questions did not use a straight forward approach. We are
studying Matthew, who cares what Mark says or the old testament says.... 1 JiM look
up the verses to get the answers not to learn anything !l is a means to an end.

x • Open Source Starter Guide for IBM i Developers

Wow! I was stunned for a minute, not only because the tone was kind of negative (not
totally unusual, but we are a Christian organization), but because 1 had this epiphany
about learning and the Internet: we don’t learn anything; we just use it to get the answers'
When I took stock of my own behavior, yes, 1 used the Internet as an “answer machine,”

and I really wasn’t learning anything. Time to change.

So 1 used the usual tools I have to guide me: “Debugging is the beginning of wisdom”
and “It isn’t science; it’s technology.” Debugging is not just getting and finding a bug,
but learning something in the process, usually how the technology really works. And 1
see writing code as more art than science. You start with a blank screen, and by typing
stuff, you can create beautiful pictures, fun games, useful tools. What other job gives you
that level of creativity? I believe that we are created to flourish and grow as humans, and
learning—lifelong learning—is the key.

When I was asked to write this book, 1 said yes, even though I had never written a book
before (which may become painfully evident). On the face of it, it is a dumb idea in the
21st century to write something that will probably be out of date before it is published.
So 1 decided to put some fun into the effort and also to really walk through the details,
pointing out where I was confused after my first “get an answer” effort yielded a solution
that I didn’t understand. And man, I want you to have some fun! Life is way too short
to live only in the confines of a box of our own creating, limiting ourselves because we
arc doing what we always do. I hope I can add a little “flourish” to your life. This book
focuses on the “open source garden of goodness” that is available to developers who
arc creative and courageous enough to step outside the box, to look for more than just
answers, and to learn for the joy of it. I hope your journey is enjoyable.

I am a Christian, and I work for a Christian organization, so I have started each chapter
with a bit of “ancient wisdom” to start you thinking in each chapter. May you get as much
joy in learning as I did in writing'

“Gray hair is a crown of splendor; it is attained in the way of righteousness” (Prov.
16:31—love it!).

A bit of wisdom: “Give careful thought to the
paths for your feet and be steadfast in all your
ways.” (Prov. 4:26)

1
IBM i and Open Source

If you are new to IBM i, then welcome! i would guess though, that if you picked up
this book, you probably already have an IBM i, or access to one, and you are hoping to
leverage some of that IBM i goodness because ...

1. You want to have fun trying something new.

2. You have a project ano want to try something different (from a little different to
way different).

3. You’ve been given a mandate to learn something new.

4. You’re curious what all the “buzz” is about.

5. All of the above.

If you are new to open source software, frequently referred to as OSS, then welcome
again! In addition to the previous list, I would guess you might also have the following in
mind:

I. You want to add to your repertoire of skills with something more “cutting edge.”

2. You want to add to those skills with a low cost of entry.

3. You have a specific project in mind, and an open source solution has been proposed.

2 • Open Source Starter Guide for IBM i Developers

Why Open Source on IBM i?
You have come to the right place because, from my slightly skewed perspective, the IBM
i is a perfectly designed open source machine. Why do I think that? Here’s why:

• It’s running the POWERS chip. Best silicon in the universe!

• It has all the “legacy” (I really hate that word, but it fits) languages that solid
business logic can be written in: RPG, COBOL, C, C++ (even FORTRAN).

• The ILE and PASE environments are two environments that can share resources
seamlessly, which means AIX binaries can be leveraged with RPG business logic.

• Can you find a better database than DB2 on IBM i? I doubt it! And on IBM i, it’s
completely integrated into the OS. No database admin needed.

• Stable, secure OS. No patch Tuesdays. No classic buffer overflow exploits. You can
sleep at night (or at your desk during the day, like I do).

• There is a whole list of IBM-provided and supported OSS that will run on IBM i
“out of the box.”

Ask any IBM i programmers or any IT managers running IBM i in their shop, and they
can easily add to the list above. Then, on top of it all, you have a close-knit, vibrant
community that not only includes IBM i owners but IBMers themselves. How many
Microsoft executives have you spent time with at a user conference? Can you name
Microsoft’s current Windows Chief Architect? How often do you get a nearly immediate
email back from a Microsoft developer? How many Microsoft developers do you know
who lurk on popular mailing lists and pop in with answers? 1 really don’t have anything
against Microsoft. But the IBM i ecosystem is just awesome! Community members and
IBMers all love the same platform for the same reason. It just doesn’t get any better than
that! Yeah, I’m spoiled and I know it, but I’m still amazed by how engaged IBM as a
company is with the community.

It’s All About the Community
Flash back to 1995. I’m sitting in a big tent in Redmond, waiting for the Windows 95
Launch to start. As a Windows 95 beta tester, I have been fully involved with every step
of testing the operating system, loving the community effort. I even wore a vest made
of beta installation CDs. Folks took my picture. That was my “15 minutes of fame!”

Chapter 1: IBM i and Open Source • 3

Microsoft has long promised to get me the collateral that backs up my presence at the
launch ... but alas! They are too big to follow through (apparently).

At the time, I loved Microsoft for all the reasons I love IBM i and the community today:
engagement and connection with a community with purpose. Very cool. Well, Microsoft
got bigger and more distant and impersonal for me while the IBM i community got better
and more “communal.” IBM hasn’t yet lost its mojo when it comes to the IBM i platform
and the community. And for anything to retain a personal feel in this electronic, Internet-
connected world is an amazing feat. The IBM i community hasn’t succumbed to the siren
of “all virtual” yet. You can still rub shoulders with everyone from IBM executives to
propeller heads at conferences across the world. If you get the chance, do it!

I know what you’re thinking ... something like this: “Yeah, it’s cool, but any operating
system can run open source stuff, and there are still plenty of in-person events I can go
to. What’s the big deal about IBM i?” Well, OK, you can run PHP, Ruby/Rails, Python,
Node.js, and plenty of other stuff on LUW (Linux UNIX Windows). I do it all the time
while I am developing applications. But I would claim that you can’t do it with as much
security and scalability and with the performance the POWER chip brings to the table.
Having survived the Great Recession, I am as happy to have a job as anyone, and I am a
big fan of full employment, but I don’t see either the efficiency or economy of running
a server farm. Granted, with clustering, load balancing, failover, and other mitigation
techniques, runn;ng a farm of Linux or Windows servers can keep your uptime up\ But
who wants the aggravation? Not me! So IBM i has been a great timesaver. I bounce my
IBM i maybe twice a year, usually because there is some essential add-on I need, and in
order to get what I want, I have to apply a Technology Refresh, basically a version step
upgrade, and then bounce. But I can’t tell you the last time a “critical security update”
was issued for my IBM i. It’s just that good.

OK. You probably already have an IBM i. Weren’t those paragraphs above stoking your
fire about what a great platform we have? Get out there and tell folks. Not just because
you are an IBM i “bigot” (we may be opinionated but not bigoted) but because you want
people to have fun in their IT work! You aren’t?! Then read the rest of this book. There is
a boatload of goodness that is waiting for you in the IBM i open source garden. Jump in!

A bit of wisdom: “Two are better than one, because
they have a good return for their labor: if either
of them falls down, one can help the other up.”
(Eccles. 4:9-10)

2
The PASE Environment

PASE (pronouncedpaze) has been around since IBM i and its predecessors have been
running 64-bit architecture. Even before PowerPC! Officially, PASE is an acronym
for Portable Application Solutions Environment (after being initially called the
Private Address Space Environment). In my book, it’s the Pretty Awesome Software
Environment, where it seems like just about anything is possible.

PASE is important because it’s like ()z in The Wizard of Oz, where you suddenly leave
the black and white world of RPG and then land, sometimes with a thud, into the color-
filled world of open source. It is a beautiful garden of possibilities, and I am very thankful
the folks at IBM made the brilliant decision to include it as part of OS/400, i5/OS, and
now, IBM i.

But what the heck is it? It’s an integrated runtime environment that allows you to run
most AIX programs unaltered, right there on IBM i! It isn t an emulation environment,
nor is it interpreted. It is simply an AIX runtime with access to the full range of IBM i
resources. It’s designed for accommodation, particularly for C and Ct-F programs, but

6 • Open Source Starter Guide for IBM i Developers

also a full range of others. And it’s very cool! So I’ll take you on a journey through this

amazing “software garden,” and hopefully I’ll plant a few seeds along the way.

PASE and ILE
There are really worlds that live in complete harmony on IBM i (for example, the
ILE world and the PASE world). And the remarkable thing is that, rather than taking
the dueling-brothers approach (you know, Cain and Abel, Jacob and Esau ...), these
worlds peacefully coexist, sharing many resources across what would seem to be
an impenetrable wall. To get started, here is just some of what is shared in these

environments:

• User/group profiles

• Process structures

• Thread structures

• Database (DB2)

• Integrated File System (IFS)

• System Licensed Internal Code (SLIC) kernel, below Machine Interface (Ml)

• PowerPC machine instruction set (no emulation)

• Most everyth ng ... even “underwear”— -such as hardware resources (disk, memory,
CPU, and so on)

The IBM i really does have quite a unique architecture, and you are welcome to grub
around on the Internet for more information. However, 1 think the success of the
architecture and the reason that PASE and ILE live so comfortably together is that the
operating system lives well above the hardware; so much of what goes on with processor
changes has little to no effect on the existing running applications. Sure, they run faster,
but they also still run.

When was the last time you ran a DOS program from 1985 in Windows 10? OK, who
would want to? Sometimes I hear complaints that folks make lh™latest POWERS system

look like a dinosaur because they are still running apps written in 1990 (or earlier) on
IBM i. “Pshaw,” 1 say! Move some applications that run in PHP, or Ruby/Rails out of
the constantly patched environments of Windows and get settled in on PASE or ILE on
IBM i. Free up some admin time to have some fun, for goodness sakes. Life is too short

Chapter 2: The PASE Environment • 7

to spend it patching security holes but let’s not go there right now. Classic buffer
overflow exploits that fall over into some privilege-escalation bug just don’t happen in
the PASE Garden of Eden. You are safe and secure there.

The beauty of sharing in PASE and ILE makes it the perfect place to leverage rock­
solid business apps with nice, cutting-edge Web technologies like Node.js. What are the
differences between the two? Let’s look at 1'able 2.1 below.

Tab>e 2.1: Differences Between the PASE and ILE Environments
PASE ILE

/QOpenSys/IBM LIB/FILE.MBR

Debuggers “unlimited” Debuggers “very limited”

Allows code generation No code generation

Uses syscalls to kernel Uses Ml to kernel

ASCII EBCDIC

Float, double, int, char Adds packed, zoned

Main program (/PATH/mypgm) ILE *PGM

Shared objects (lib.a, lib.so) ILE *SRVPGM

Use env vars (PATH, LIBPATH) Use *LIBL

Shells (qp2term, ssh, bash...) QSH (*PGMs)

Call ILE (PGMCALL, ILECALL) Call PASE (Qp2RunPase, Qp2CallPase, QP2SHELL)

Even with these differences, there is much similarity. What I find in common particularly
within each environment is the way you can leverage programs to work together. ILE
allows for multiple languages and program objects to play well together. The same
applies to PASE. Combined, PASE and ILE take advantage of the power of IBM i and
maximize the flexibility in which you can approach building solutions. And, as much
as 1 love to play within that garden of flexibility, the real value is that when it comes
to running a business, you have a broad world of programming and solutions at your
fingertips.

Figure 2.1 illustrates what I have been talking about so far.

8 • Open Source Starter Guide for IBM i Developers

ONE IBM i job/process (no child)

PASE

>sha re
>sha re
>sha re

memo ry<
call <
slic <

0S/400

| PHP libc.a
| MYRPG
| *PGM

VPHP |
*SRVPGM |

AIX/PASE SYSCALL
privileged mode boundary

MI instructions
privileged mode boundary

for 05/400 + PASEIBM i SLIC kernel, same
(completely replaced AIX kernel /unix)

POWER PC hardware processor

Figure 2.1: PASE and ILE commonalities and differences

Installing PASF
No biggie here. You install using the Install Licensed Programs menu or command (you
choose). The product is 5770-SSI Option 33. It is a free licensed program. (In my humble
opinion, this thing should come installed with the base OS; it seems to be an increasingly
essential component of everything I run into.) Keep it current with PTFs. Actually, as a
runtime, I really never gave it a second thought after I installed it. Like the IBM i OS, it
just runs.

PASE Applications
Remember that 5733OPS ships with a bunch of PASE-ready applications. They are
already compiled for PASE, most likely for AIX version 5.1, which is the lowest common
denominator for all currently supported versions of IBM i. Table 2.2 shows the “matrix of
support” when it comes to AIX and IBM i.

Table 2.2: AIX Version Support on IBM i
AIX Release (32 or 64 bit) IBM i V5R3 IBM i V5R4 IBM i 6.1 IBM i 7.1 IBM i 7.2

5.1 X X X X X

5.2 X X X X

5.3 X X X X

6.1 X X
7.1 X

Chapter 2: The PASE Environment • 9

Theoretically (remember this is technology, not science), you can take binaries compiled
for the corresponding AIX release and drop them into PASE, and they might work. Several
websites have binaries ready for download and installation. The Young i Professionals
website (yips.idevcloud.com/wiki} is one, and the perzl.org website is another. Again,
for what this book addresses, there really isn’t a need to go anywhere else; you’ll get the
binaries when you install 5733OPS and corresponding PTFs. But if you have a favorite
AIX program or package you want to use, give it a try. You never know until you try.

You can also compile your own binaries if you have an adventurous spirit and a lack of
good common sense. I can’t remember exactly what year it was, maybe 2004 or so, that
I was compiling PHP in PASE during the Thanksgiving holiday. It was an excruciating
learning curve for a “seat of the pants” R.PG programmer like me, but the gleeful happy
dance that resulted from a clean compile was worth the effort. Nothing like trying
something new and finally getting it to work! I just love this stuff. So, if a hack like me
could figure it out from scratch over a decade ago, you certainly can do it today. There
is plenty of ielp from many very good minds that know the PASE environment and can
steer you through the ins and outs of compiling C code (it’s mostly C with some C++).
The GNU compiler is now included as part of the 5733OPS license code offering. It’s
practically begging you to try!

PASE apps can be written in C, C++, Fortran, or PowerPC assembler (!). PASE apps
use the same binary executable format as AIX PowerPC applications, which is cool and
very compatible. Those PASE binaries run in an IBM i job, and as I mentioned, PASE
programs use IBM i system functions, such as file systems, security, and sockets. So,
again, this is not an operating system within an operating system. The AIX runtime isn’t
emulated; it is running on top of SLIC, just like RPG or COBOL, so not only do you have
the full range of AIX APIs available, but they run fast. The best of both worlds. There is a
broad subset of AIX technology available in PASE, including:

• Standard C and C++ runtime (both threadsafe and non-threadsafe)

• Fortran runtime (both threadsafe and non-threadsafe)

• pthreads threading package

• iconv services for data conversion (handy and available in ILE)

• Berkeley Software Distributions (BSD) equivalent support

• X Window System client support with Motif widget set

yips.idevcloud.com/wiki
perzl.org

10 • Open Source Starter Guide for iBM i Developers

• Pseudo terminal (PTY) support

You have your choice of shells, so you can be opinionated about such things (I’m a
BASH guy myself). And if you happen to spend a bit of time in Linux distros, like I do,
it eventually becomes as comfortable as that overstuffed chair you lounge in. You can
enter the PASE world from the IBM i command line by calling QP2TERM, but why would
you want to run a terminal emulator from within a terminal emulator? And the shell is
terrible (OK, see, now I am opinionated about shells). Typically, you d have a happier
experience using SSH to access the PASE environment, and I highly recommend you do
so. The open source Secure Shell (SSH) and Telnet client PuTTY is what I use, but there
are several, and any of them will do the job.

Using PASE
You can call PASE programs from the ILE world, and vice versa. Table 2.3 shows a list
of the commands that take you from one world to another (although the jump really isn’t
that far).

Table 2.3: PASE to ILE and Vice Versa
PASE to ILE ILE to PASE

PGMCALL—Call *PGM Qp2RunPase—Run PASE program (main)

ILELOADX—Load *SRVPGM Qp2dlopen—Load PASE module (*.a, *.so)

ILESYMX—Find export symbol (proc) Qp2dlsym—Find export symbol (function)

ILECALLX—Call export procedure Qp2CallPase—Call PASE function

CVTSSP—Convert space pointer Qp2dlclose—Close load

CVTTS64—Convert teraspace addr Qp2dlerror—Get last error dl operation

GETTS64—Get teraspace addr Qp2malloc—Alloc PASE heap memory

GETTS64SPP—Get teraspace addr Qp2free—Free PASE heap memory

GETTS64M—Get multiple teraspace Qp2SignalPase—Post signal to PASE

SETSPP—Set space pointer Qp2EndPase—End PASE

SETSPPTS64—Set space pointer Qp2jobCCSID—Get PASE job CCSID (last)

SETSPPM—Set multiple space pointers Qp2paseCCSID—Get PASE CCSID (last)

systemCLO—Run CL command Qp2ptrsize—Get ptr size running PASE job

It’s actually pretty simple. Take a look at this CL program that runs the Is program in
PASE (Is is the “list files” command similar to dir). It’s the “cheater’s” way to do it
because I am just invoking the PASE shell and running the command within it.

Chapter 2: The PASE Environment • 11

PGM

DCL VARC&CMD) TYPE(*CHAR) LEN(20) VALUE(’/QOpenSys/bin/1s')

DCL VAR(&PARM1) TYPE(*CHAR) LEN(IO) VALUE('/')

DCL VARC&NULL) TYPE(*CHAR1 LEN(l) VALUE(X'OO')

CHGVAR VAR(&CMD) VALUE(&CMD *TCAT &NULL)

CHGVAR VARC&PARM1) VALUE(&PARM1 *TCAT &NULL)

CALL PGMCQP2SHELL) PARM(&CMD &PARM1)

ENDIT:

ENDPGM

The flip side is to invoke an ILE CL program from PASE. That takes a C language
program, compiled in PASE:

/* sampleCL.c

example to demonstrate use of sampleCL to run a CL command

Compile with a command similar to the fol Towing.

xlc -o sampleCL -I /whatever/pase -bI:/whatever/pase/as400_libc.exp
sampleCL.c

Example program using QP2SHELL0 follows.

call qp2shell ('sampleCL' 'wrkactjob') */

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <as400_types.h> /* PASE header */

#include <as400_protos.h> /* PASE header */

void main(int argc, char* argv[])

{

int rc;

if (argc!=2)

{

printf("usage: %s \"CL command\"\n", argv[O]);

exit(l);

}
Continued

12* Open Source Starter Guide for IBM i Developers

printf("running CL command: \"%s\"\n", argvfl]);

/* process the CL command */

rc = systemCL(argv[l], /* use first parameter for CL command */

SYSTEMCL_MSC_STDOUT

SYSTEMCL_MSG_STDERR); /* collect messages */

printf("systemCL returned %d. \n", rc);

if (rc != 0)

{

perror("systemCL");

exit(rc);

}

}

You may not be a C programmer, but 1 bet you can follow the coding here. You have a
standard set of C header files—such as stdio.h, stdlib.h, and errno.h—and then some
PASE-specific headers that reference the APIs and constants needed to make the CL call.
In this case, you aren’t “shelling into” the IBM i command line ana back out. The results
will be piped directly back to the C program and displayed on the command line.

These examples, and a host of others, can be found in the IBM Knowledge Center PDF,
IBM PASE for i (https://ww. ihm.com/stipport/knowledgecenter/ssyv_ibm_i _71/rzalf/
rzalfmstpdf.htm). It’s pretty readable and has enough examples to get you started. My
preference is for agonizing detail, explaining stuff that even the author thinks the audience
should know, but this document is a little light on details in some places. If you can get
the examples to compile, though, that learning curve alone should be a good grounding.

The great thing about PASE is that after a while, you forget that you are in foreign
territory. Quite a few of us grew up in a command-line world, whether it was IBM i or
DOS. It is now the cool place to be (a GUI is so 1990s!). My 29-year-old son talks about
how cool the “PowerShell” is in Windows. “It’s amazing what you can do with scripting!”
he says. 1 say, “Son, I used to write batch files and CL commands in my sleep!” What was
old is new again. The command line is dead! Long live the command line!

PASE is where all the action is in the IBM i open source software world. It’s a lush
garden of goodness! Enjoy!

https://wwyv.ibm.com/support/knowledgecenter/ssyv_ibm_i_71/rzalf/

A bit of wisdom: “They have all one language,
and this is only the beginning of what they will do.
And nothing that they propose to do will now be
impossible for them..’|(Gen. 11:6)

3
The Integrated Language Environment (ILE)

fhe audience for this book is RPG programmers, so what are you doing reading this
chapter? Move on! You know this stuff! For those who don’t, however, I am going to
briefly review some of the basic concepts of ILE. Why? Because you’ll get a glimpse,
jiust a small glimpse, of the power that has been beautifully designed into the IBM i
operating system.

We have an environment supporting multiple languages, yet, rather than falling into a
Tower of Babel rabble, ILE gets everyone talking to one another without any acrimony.
This is very cool stuff, and most of the key components have been around for decades. If
you want an exhaustive, deep dive into ILF. programming, or you just need help falling
asleep, pick up the ILE Concepts Redbook (SC41-5606-10).

ILE’s Origins
ILE, the environment we have known and loved for years, grew out of a need for a more
heterogeneous environment for programming on what was then the AS/400. The whole
goal was to improve upon the Original Program Model (OPM), where dynamic program
calls were made from one program to another. Each OPM program could be “modular”

14* Open Source Starter Guide for IBM i Developers

in the sense that it could perform a specific purpose, but the whole concept of binding
dependent programs together into a module or another program was just a pipe dream.
Building completely modular code with each module performing a single procedure or a

series of procedures just wasn’t possible.

Much of the code I worked with early on (late ’80s to early ’90s) was a “framework,” but
it was a framework of compile-time /copy directives that a pre-processor would build in
a temporary source file, compile, and then deploy. It was slick at the time, but debugging
was a bear (hang on to those temp source files!). If you wrote RPG, then the stack was
RPG (and maybe CL). If you wrote COBOL, then your stack was COBOL. It was, to say
the least, a bit constraining. OPM led to Extended Program Model (EPM), which ended
up being an interim solution as ILE was implemented soon after.

I can’t say exactly what the rationale was for heading in the heterogeneous direction
when so many platforms at the time were single language, single operating system, but
my guess is that the continuing popularity of languages like COBOL, BASIC, C, and
C++ alongside RPG and CL was the impetus for supporting compilers and runtimes
that supported them. Maybe people were saying something like this: “Dude! I want to
run my COBOL on a rippin’ fast machine like an AS/400!” I have no idea! I was an
RPG programmer with a dangerous bit of Fortran and BASIC programming in the bag,
and frankly, just learning RPG was enough. But the predecessors of the AS/400 had
multilingual capabilities, and I guess that the propeller heads in Toronto and the hardware
folks in Rochester just kept thinking up ways to leverage all the capabilities on the
AS/400, just like the open source efforts going on with IBM i today. Innovation has never
been an issue with the IBM i family. But the multiple languages and the capability led
naturally, I think, to figuring out how to make it all work together.

Modularity and Binding
The initial steps focused on allowing code to be more modular. So the module concept
came along, and those modules, while not runnable themselves, could be bound into
service programs or bound into programs that were runnable. This ILE concept shouldbe
part of an RPG programmer’s DNA, and my guess is that for large programs with many
moving parts, you are building your programs in a modular way.

Chapter3: The Integrated Language Environment (ILE) *15

Why would anyone want to break programs into service programs with procedures and
subprocedures when you could just knock out a single OPM program and be done with
it? The key is code reuse! In Ruby/Rails there is a concept called DRY, which stands for
“Don’t Repeat Yourself.” In the early days of ILE, RPG was just beginning to DRY out
versus the old WET (“Write, Experiment, and Tweak”) method that I used until I got
something to work ... the second time! We think in modular terms today, but it took the
implementation of ILE plus the ability to think differently to change programming, even
programming RPG, for the better.

Since you have all these disparate parts in programs, service programs, and modules,
there’s probably a bell ringing at the back of your head reminding you of something­
like, how' do I keep track of all this? How do I know which pieces, parts, and fused parts
fit together? Yikes! Well, there’s a binding language for that, and it defines how to pull
all the disparate pieces mto a functioning whole. It is yet another component called a
binding directory, which lists which parts go where. If you have a service program that
has 20 procedures but your program needs only one of them, that one procedure can be
bound into your program, making it more compact and efficient at run time. Yeah, each
component I have listed so far creates a bit more work and one more thing to attend
to, but the return is great. You just have to keep track of what procedures you have
in what service programs or modules, and basically you can have a Chinese buffet of
programming, picking and choosing, and then binding it into a whole.

The Benefits of ILE’s Integration
I LB is a tool that can help you organize your code, make you think more carefully about
actual program functionality, and give you some reusable components. Not bad, but
you could have been simulating that as best you could, even in an OPM program. But
what if your shop isn’t just an RPG shop? What if you have COBOL and C and C++
programmers, and they have all embraced II E concepts and write ILE code on your IBM
i? Or even if you don’t have other non-RPG ILE programmers, maybe you know other
programmers in other languages in other shops, and they’re willing to share their stuff
with you. There is a small but growing community of ILE programmers who do share
their code. What if you tripped across a very nice bit of code in ILE C that you wanted
to use? What then? Use it! Because ILE is ILE.is ILE, so you can bind and call C from
COBOL or RPG and vice versa.

16* Open Source Starter Guide for IBM i Developers

That is where ILE really shines! It’s a better, more efficient way of programming,
and even if you’re in a single-language track, you will benefit by getting on the ILE
bandwagon. Remember that lowercase “i” in IBM i? Remember what it stands for?
Integration! And what does the uppercase “I” in ILE stand for? Integrated! How many
more times do you need to hear that wonderful word in any form? It opens up a whole
new world.

I’m going to revisit the idea that the only reason for grabbing someone else’s code is to
save you some time or money on a project. Not so. You also learn quite a bit about your
own programming skills—and perhaps a better way to code—by looking at someone’s
COBOL or C code. And that is the best part about writing code and sharing code: you
learn more! I highly recommend you wade through some code in an ILE language where
RPG makes a call to C functions. Better yet, do it in free-format RPG. As languages
evolve and take on attributes of other languages, you would do well to spend some time
kicking the tires of another ILE language.

This discussion is just to whet your appetite for more “i”: integration! That’s what the
open source world is all about. This chapter hardly scratches the surface. We didn’t even
touch upon activation groups, teraspaces, debugging, shared memory storage, and so
much more. But you are an RPG programmer and probably have a list of things you’d
like to teach me.

A bit of wisdom: “The wise in heart are
called discerning, and gracious words promote
instruction.” (Prov. 16:21)

4
The Beast That Is XMLSERVICE

Perhaps not quite like the Watcher in the Water in The Lord of the Rings but equally
mysterious is XMLSERVICE: the program framework that provides “glue” between the
PASE world and the OSS world. XMLSERVICE has been around since the early days of
PUP on i to make PHP truly useful on IBM i. I say to make it useful because although
there are plenty of off-the-shelf PHP applications that you can install on IBM i and
immediately make use of (e.g., Joomla, WordPress, osCommerce, Drupal), none of them
take advantage of the main reason you’d want to run open source on IBM i: your business
logic and database. You’re leveraging the security of IBM i as well, but let’s face it: you
can always run that stuff on something like Ubuntu, Red Hat, or Suse, and it will rock
on the Power platform. You want access to the investment you made in writing RPG
logic using the DB2 lor i database. XMLSERVICE will get you there because it is written
specifically to access to resources in the “native” space of IBM i. But it isn’t ail that easy
to wrap your head around. You’ll be communicating with that native side using XME
as your lingua franca, and frankly, XMI isn’t all that easy to deal with. The really good
news is that JSON will be supported soon (October 2016?), so it may be much easier at
that point to see and understand the interchange between the two worlds because JSON is
easier to “read,” in my humble opinion.

18* Open Source Starter Guide for IBM i Developers

Installation
If you do an Internet search on “XMLSERVICE”, you’ll probably end up at the YiPs

website (yips.idevcloud.com) because that is where XMLSERVICE began its open source
life. Although bits and pieces of it are now beginning to migrate to other websites, YiPs
is still a good starting place. Installation is pretty straightforward and trouble-free; I had it
downloaded and installed in less than 15 minutes. The straight-up installation is easy. Of all
OSS products, this one is pretty simple. You can download the zip file, which contains the
XMLSERVICE library and source, from either the YiPs or Bitbucket websites. Download the
file, and unzip the contents. Create a save file called XMLSERVICE on your IBM i in QGPL,
and then FTP the file from your PC to the IBM i. Use RSTLIB (Restore I ibrary) to restore
the XMLSERVICE library. Once you add XMLSERVICE to your library list, you can run:

CRTCLPGM PGMfXMLSERVICF/CRTXML) SRCFILE(XMLSERVICE/QCLSRC)

call crtxml — XMLSERVICE library only

And then run:

CRTCLPGM PGMCXMLSERVICE/CRTTESD SRCFILE(XMLSERVICE/QCLSRC)

call crttest

And if you are on an IBM i release of V6R0 or greater, run

CRTCLPGM PGM(XMLSLRVICE/CRTTEST6) SRCFILE(XMLSERVICE/QCLSRC)

call crttest6

This will create the test programs you can call to get familiar with XMLSERVICE. For
REST, you’ll need to make sure that the HTTP users can access the programs, so you run
the following commands to grant object authority to the library and programs:

CHGAUT OBJ('/qsys.1ib/XMLSEKVICE.1ib') USER(QTMHHTTP) DTAAUT(*RWX)
OBJAUT(-ALL) SUBTREE(*ALL)

CHGAUT OBJ('/qsys.lib/XMLSERVICE.lib') USFR(QTMHHTPl) DTAAUT(*RWX)
OBJAUT(-ALL) SUBTREE('-ALL)

yips.idevcloud.com

Chapter 4: The Beast That Is XMLSERVICE • 19

The installation instructions also list some ‘'Alternative compiles.” Basically, there are
other providers ot XMLSERVICE that have the library included with their deliverables. So
PHP, with its multiple versions from Zend, PowerRuby, and even IBM directly through
PTF can supply the library. In my opinion, the best place to go for the latest and greatest
would be either the YiDs site or the Bitbucket site.

Note: I can pretty much guarantee you that the installation instructions will change over
time, and probably the location of the open source projects will change as well. Check for
the latest changes on either the common.org website or my website (www.petesworkshop.
com).

The installation instructions then go on to give you Apache directives for using XMLSERVICE
with a R^STful interface. The Apache directives for a “vanilla” install look like this:

ScriptAlias /cgi-b’.n/ /QSYS.LIB/XMLSFRVICF.LIB/

<Di rectory /QSYS.LIB/XMLSERVICE.LIB/>

AliowOverride None

order allow,deny

allow from all

SetHandler cgi-scrlpt

Options +ExecCGI

</Directory>

if you are not familiar with Apache directives, this can look a little cryptic. CGI is an
acronym for the Common Gateway Interface, which was designed as a standard very
early on in the World Wide Web (WWW) life cycle (1993) and provided a standardized
way that a command could be processed through an h 1 TP server. Basically the directive
above examines a URL passed to the server that contains /cgi bin/ and will map that
program call to the XMLSERVICE library for processing. The RPG-based CGIDEV2 library
uses the same mechanism to process H3 ML in an RPG program.

Next Steps
Figuring out what to do next is a bigger challctlgc. But let’s start with some of the
conceptual stuff that we’ll need to make a reasonable go at successfully using what we

just installed.

common.org
http://www.petesworkshop

20 • Open Source Starter Guide for IBM i Developers

You’ll probably see the diagram in Figure 4.1 if you go to the YiPs site and navigate to

the XMLSFRVICE page.

XML input
4 Windows / Linux

Mac / IBM i
Cloud <myscript>

<pgm>...</pgm>

<cmd>...</cmd>

_ IBMi
XMLSERVICE

PHP. Ruby. RPG,
Java, Javascript,

HTML form, ...

DB2
connection

<sh>...</sh>

<sql>...</sql>

DS 2
PGM

SRVPGM
PASE

System API
User Space

WRKACTJOB
(mast anything)

REST
GET/POST </myscr ipt>

XML XML Output

Figure 4.1: XMLSFRVICE data interchange layer

This is a nice little graphic, but what exactly is it trying to tell you? Basically it illustrates
that the open source world (all the stuff on the left) can communicate with and execute
code and commands in the IBM i world (all the stuff on the right) and use XML to
pass the data to and from those worlds. Also, encapsulated in the little blue “pill”-
shaped boxes {obviously created by a guy over 50) are the methods that can be used to
communicate to the IBM i.

It makes good sense when you think about it: the two most “open” methods for accessing
system resources are through Web servers and database servers. Actually, those are also
two vectors for security exploits, so we arc just leveraging the “information pipelines”
that most servers have. I am not saying that XMLSERVICE is inherently insecure; it isn’t
when used wisely. What I am saying is that if you were going to build a connection into
system resources, why not use connection methods that already exist? So the REST
interface uses the HTTP server, and the other method will use the DB2 for i server. Sweet!

Tony Cairns of IBM posted this to the Bitbucket project issues (re JSON). It is
instructive, I think, about what is going on in XMLSERVICE:

Chapter 4: The Beast That Is XMLSERVICE • 21

"Essentially XMLSERVICE is a compiler, where in the ‘user ’ feeds XML (or J SON),
which is just a big string, that needs to be ‘marshalled' into real nested data structures
with real values and real pointers, then, load/activates a PGM/SRVPGM (other),
and calls [it], followed by a reverse of process back into string again (out pops
XML/JSON). ”

If you know Tony, he is incredibly terse in his posts, but the basic unpacking of his posts
reflects what’s in the diagram: the XML with the call parameters and data is passed to
XMLSERVICE that marshals it to the environment in which it will be executed.

In order to communicate, XMLSERVICE expects a particular format for the data being sent
to the IBM i and will return the response in a particular format as well.

The following code includes a subset of data types supported in XMLSERVICE, but they
are probably the most familiar to RPG programmers. You can see how a data type is
represented in the XML element:

C types RPG types XMLSFRVICE types SQL types

packed D mydec 12p 2 <data type-'12p2'/> DECIMAL(12,2)

zoned D myzone 12s 2 <data type='12s2'/> NUMERIC(12,2)

fl oat D myfloat 4f <data type='4f2/> FLOAT

real/double D myreal 8f <data type='8f4'/> REAL

bi nary D mybi n (any) <data type='9b1>F1F2 F3</data>
BINARY

hole (no out) D myhole Cany) <data type='40h'/>

boolean D mybool In <data type=r4a’/> CHAR(4)

time D mytime T ^data type=’8A1>09.45.29</data>
TIME timfmt(*iso)

timestamp D mystamp Z <data t.ype='26A'>2011-12-29-12.45.29
.000000</data> TIMESTAMP

date D mydate D <data type='10A'>2009-05-ll</data>
DATE datfmt(*iso)

22 • Open Source Starter Guide for IBM i Developers

A typical call to a program or a command on IBM i is pretty simple, and I have sorted
out the stuff that tends to repeat for each call from the stuff that changes most every time.
Let’s start with something simple. (By the way, these examples are from the YiPs site

and, frankly, can be a bit challenging.)

XMLSERVICE Examples
We are going to stick with the easiest examples to start. There arc some very good

examples all around the Web, but let me show you what I did to start.

First Step: Prepare the Apache Server
Going back to the installation steps in the previous section, there is an example of the
Apache directive you need to have in order for the CGI interface to find and execute the
XMLSERVICE programs. Using the HTTP Administrator Web page on your IBM i—which
is typically living at http://YourlBMUP:2001, create a new Apache server instance:
from the All Servers tab, choose Create HTTP Server. Give it a name and description,
then click Next. Use the default Server root, or point it to somewhere in your IFS you
want the files to reside, and click Next. Use the default document root, or again, point it
somewhere you want it to reside, and click Next.

On the IP and port selections, you may want to give it some careful thought. You can only
have a single port lister, ng on an IP address on your IBM i. By default, you are given
the option to listen on all IPs, which is fine as long as you don’t have any conflicting
ports on all your IPs. By default, HTTP traffic is directed to port 80, but for internal
testing you can use any non-allocated port you want. Typically, it will be a port above
1024 and maybe much higher, depending upon the TCP/IP services your IBM i supports.
Ports go all the way up to 65535, and the range from 49152-65535 is specifically
designated as private/ephemeral ports. If you run the command NETSTAT *CNN and use
F14 to see the list of actively used ports on your IBM i, you can choose something that is
non-conflicting. I chose 7070 in my case because it is easy to remember and unused on
my box.

You can click Next and make choices about logging, but eventually you’ll see the Finish
button, and you can be done with it. A “pristine” newly created file will look like this:

http://YourIBMHP:2001

Chapter 4: The Beast That Is XMLSERVICE • 23

Configuration originally created by Create HTTP Server wizard on Wed
Aug 17 18:43:54 CDT 2016

Listen *:7070

DocumentRoot /www/xmlserver/htdocs

TraceEnable Off

Options -Fol 1owSymLinks

LogFormat "%h %T %1 %u %t \"%r\” %>s %b \"%{Referer}i\" \"%{User-Agent}
i\"" combined

LogFormat "%{Cookie}n \"%r\" %t" cookie

LogFormat ”%{User-agent}i" agent

LogFormat "%{Referer}i -> %U" referer

LogFormat "%h %1 %u %t \"%r\" %>s %b" common

LogMaint logs/error_log 7 0

SetEnvIf "User-Agent" "Mozilla/2" nokeepalive

SetEnvIf "User-Agent" "JDK/1\.O" force-response-1.0

SetEnvIf "User-Agent” "Java/l\.O" force-response-1.0

SetEnvIf "User-Agent" "RealPlayer 4\.O" force-response-1.0

SetEnvIf "User-Agent” "MSIE 4\.0b2;" nokeepalive

SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0

<Directory />

Require all denied

</Di rectory>

5birectory /www/xmlserver/htdocs>

Require all granted

</Di rectory>

You really don’t have to understand all that in order to use the configuration, but you will
have to modify it. Remember those essential directives we needed, which I mentioned in
the installation step? Well, it’s time to use them. After you’ve modified the file, it should
look like this:

Configuration originally created by Create HTTP Server wizard on Wed
Aug 10 18:25:22 CDT 2016

Continued

24 • Open Source Starter Guide for IBM i Developers

Listen *:7070

DocumentRoot /www/xmlserver/htdocs

TraceEnable Off

Options -FollowSymLinks

LogFormat "%h %T %1 %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}
i\"" combined

LogFormat "%{Cookie}n \"%r\" %t" cookie

LogFormat "%{User-agent}i" agent

LogFormat "%{Referer}i -> %U" referer

LogFormat ”%h %1 %u %t \”%r\” %>s %b" common

CustomLog logs/access_log combined

LogMaint logs/access_log 7 0

LogMaint logs/error_log 7 0

SetEnvIf "User-Agent" "Mozilla/2" nokeepalive

SetEnvIf "User-Agent" "JDK/1\.O" force-response-1.0

SetEnvIf "User-Agent" "Java/l\.O" force-response-1.0

SetEnvIf "User-Agent" "RealPlayer 4\.O” force-response-1.0

SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive

SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0

ScriptAlias /cgi-bin/ /QSYS.LIB/XMLSERVICE.LIB/

<Di rectory /QSYS.LIB/XMLSERVICE.LIB/>

AllowOverride None

order allow,deny

allow from all

SetHandler cgi-script

Options +ExecCGI

</Di rectory>

<Directory /www/xmlserver/htdocs>

Requi re all granted

</Di rectory>

Not much to it.

Chapter 4: The Beast That Is XMLSERVICE • 25

Second Step: Serve the Web Pages
So, at this point we have a server configured, but we don’t have any content. We are
going to serve up plain HTML and use XML to POST information to the server and
receive some information back. We’ll dump the files we need into the /www/xmlserver/
htdocs folder (our document root). Here is where to get the files:

The H fML page with the submit forms for testing came from here: http://65.183.160.36/
Samples,rfips_util/dspfoil.php?afile=/yvx\’w/zendsvr/htdocs/Samples/Toolkit_HTML/index.html

The XSL came from here: http://65.183.!60.36/Samples/Yips_util/dspfoil.php?afile=^

www'zendsvr/htdocs/Samples/Toolkit JITML/DemoXslt.xsl

I put both into the htdocs root, so in order to properly use them, you’ll need a tweak or
two. In index.html, find the lines (there is one referenced on each <form>) with:

<?xml-stylesheet type=’text/xsl' href='/Samples/Toolkit_HTML/DemoXslt.xsl'?>

and change them to:

<?xml-stylesheet type='text/xsl' href='/DemoXslt.xsl'?>

And put the DemoXsIt.xsl file in the /htdocs folder as well. Remember: all this stuff is
case sensitive!

Believe it or not, that is all you need to do. If you walk through the HTML, even if you
aren’t familiar with HTML, you will see some repeating patterns. So lei’s analyze them a
bit before we run the code on the server.

First, scan down to where the first <form> tag is, and you’ll see something like this:

<form name="input" act!on='7cgi-bin/xmlcgi.pgm" method='pcsl">

That part of the HTML tag tells the HTML how to send the data to the server. Basically
it will be using an HTTP POST (versus GET), and the server “action” that is requested is

http://65.183.160.36/
http://65.183.!60.36/Samples/Yips_iitil/dspfoil.php?afle=/

26 • Open Source Starter Guide for IBM i Developers

/cgi-bin/xmlcgi.pgm. This is where your Apache directives come into play. Go back up
and take a quick look at the SeriptAlias directive in the configuration file. You see this:

ScriptAl". as /cgi-bin/ /QSYS.LIB/XMLSERVICE.LIB/

This is the magic! That directive will look for a URL that contains /cgi-bin/ and will take
the remaining URL string and pass it to /QSYS.LIB/XMLSERVICE.LIB/. What remained in
our POST action after /cgi-bin/? xmlcgi.pgm! So, when the form submits to the server,
the server will process the content using program XMLCGI in library XMLSERVICE. Nice!
The heavy lifting is done there. What is the content we are passing? That is next.

Without doing a “deep dive” in HTML, I am going to give the simplistic analysis of the
remaining content. Now, I know some dedicated Web monkeys are going to roll their
eyes as they read this explanation, but we don’t need to know the full story on HTML in
order to use it. POST is different from GET in that if you analyzed a URL that used GET,
you might see something like:

http://mydomai n.com/myacti on?parml='mydatal'&parm2='mydata2'

With a POST, you might see just http://mydomaiM.com/myactiori, so you’d be thinking:
how do you pass parameters in a post? Well, in 99 percent of the simple cases, the “input”
HTML elements are the parameters, so as long as you had two input parameters called
parml and parm2, the server would evaluate them just like it would “explicit” parameters
sent in a GET. So, the remaining HTML elements in our POST will be evaluated as
parameters in xmlcgi.pgm and used accordingly. What are those parms? Take a look:

The first five are pretty self-explanatory:

<input type="hidden" name=”db2" value="*LOCAL">

<input type="hidden" name="uid" vaIue="MYUID">

<input type="hidden" name=”pwd" value="MYPWD">

<"iput type-"hidden" name="ipc" value="/tmp/rangerhtmlonly">

<input type="hidden" name="ctl" value="*sbmjob"> db2 - Needed (see note)

http://mydomain.com/myacti
http://mydomain.com/myaction

Chapter 4: The Beast That Is XMLSERVICE • 27

uid is the user iD for user authentication, and pwd is the user’s password.

Note: At this point, I inquired about the DB2 versus REST and why DB2 seems to be
required. Again, Tony Cairns from IBM comes to the rescue:

‘XMI.SERVICE uses stored procedures in both REST and DB2 drivers. That
is, EVERYTHING goes through DB2 including xmlcgi.rpgle (RESTRPG CGI).
Essentially XMLSERVICE is really just a very, very, very sophisticated store [d]
procedure. ”

ipc. This will take a bit of explanation. There are two “modes” of access: 1) private
and 2) public. Private is pretty much what we experience in the 5250 world and in the
Web world when a “session” is used, but the HTTP protocol is stateless: each call to
the server is clueless about the previous call unless some method of preserving the
“state” of the previous call is used (like a session variable that keeps track of what is
going on with the connection to a user). 5250 is stateful: you connect uniquely to the
IBM i, and that session/job is yours and only yours, until you sign off. In order to make
a REST connection type stateful, a folder is created to store the data. That is why the
ipc parameter looks like a path, because it is. A “public” connection is assumed to be
a one-off connection to retrieve data, so it makes no attempt to keep track of what the
last call was all about. Think of it this way: you are at a bar and ask for a beer, and the
bartender slides a beer to you, and you are the only one drinking it until you are done (a
“private” beer). A “public” beer... well, let’s not go there. If your connection is public,
ipc should be set to "NA. If you want support for public-type connections, then you will
need to compile CL program CRTXML3 and use it to create the objects in the XMLSERVICE
library. However, that means you will be able to process requests on IBM i with no
authentication, which may cause your security folks a lot of angst in dealing with what
could be unhappy side-effects of knowing your IBM i is unprotected.

ctl. This is yet another value ‘hat is affected by your choice to be public or private. If you
are using a private connection, then *sbmjob is what you should use. If the connection is
public, then *here is the value to use.

From here on out, you define the payload and the response you anticipate. There arc two
remaining parameters that will be passed to xmlcgi.pqm:

28 • Open Source Starter Guide for IBM i Developers

xmlin. this will contain the XML needed by the service program to “figure out’-' what you

are asking for. Here is an example:

<input type="hidden" name="xmlin" value="<?xml version=’1.0'?>

<?xml-stylesheet type='text/xsl' href='/Samples/Tooll<it_HTML/
DemoXsIt.xsl'?>

<script>

<cmd>CHGLIBL LIBLCQTEMP XMLSERVTST) CURLIB(XMLSERVTST)</cmd>

</script>"

>

The parameter that is passed is called xmlin. You see it defined as a hidden input element
in the form. But it is the “value” passed in that parameter that does the heavy lifting. That
value is:

"<?xml version='1.0'?>

<?xml-stylesheet type='text/xsl' href='/DemoXsIt.xsl'?>

<script>

<cmd>CHGLIBL LIBL(QTEMP XMLSERVTST) CURL IB(XMLSERVTST)</cmd>

</script>"

The .xsl file referenced is the file that describes how to display an XML document of a
given type. It has the “rules” for unpacking the contents of our payload. That file will be
passed with every call. But the interesting thing is the stuff between <scriptx/script>
tags. You should immediately recognize what this particular call will do: it will call the
CHGLIBL (Change Library List) command. Very simple.

The stuff between the script tags can get pretty gnarly, though. What is above is a simple
call to run a command. Imagine a call to an RPG program that is passing parameters,
lots of them. Things get murky pretty quickly. Here is an example of /list the value of the
xml in parameter on one such call:

Chapter 4: The Beast That Is XMLSERVICE • 29

<script>

<pgm name='ZZSRV’ lib='XMLSERVICE' func='ZZARRAY’>

<parm comment='search this name’>

<data var='myName' type='10A'>Ranger</data>

</parm>

<parm comment='max allowed return'>

<data var='myMax' type='10i0'>22</data>

</parm>

<parm comment='actual count returned’>

<data var='myCcunt' type='10i0' enddo=’mycount'>0</data>

</parm>

<return>

<ds var='dcRec_t' dim='999' dou^'mycount’>

<data var='dcMyName' type='10A'>na</data>

<data var='dcMylob' type='4096A'>na</data>

<data var='dcMyRank' type='1010'>0</data>

<data var='dcMyPay' type='12p2'>0.0</data>

</ds>

</return>

</pgm>

</scri pt>">

The program to run is defined along with the library where it is found and, in this
particular example, a sub-procedure that [s to be run. You can add comments for clarity,
and then you define not only the data types but also the data that is passed. As you can
sec, there is quite a bit of detail to attend to. The really good news here is that the format
is more or less a “template” for each call to your program, so you can probably create this
content on the fly, programmatically. The RPG that will be called looks like this:

D zzarray PR 1ikeds(dcRec_t) dim(ARRAYMAX)

D myName 10A

D myMax lOi 0 *

D myCount lOi 0
Continued

30 • Open Source Starter Guide for IBM i Developers

*+++•++++++++

* zzarray: check return array aggregate

''‘++++++++++++++++++++++++++++++++4-++++++++++++++++++++++++++++++

P zzarray B export

D zzarray PI 1ikeds(dcRec.t) dim(ARRAYMAX)

D myName 10A

D myMax lOi 0

D myCount lOi 0

* vars

Di S lOi 0 inz(0)

D max S lOi 0 inz(ARRAYMAX)

D findMe DS 1ikeds(dcRec_t) dim(ARRAYMAX)

/free

if myMax <= max;

max = myMax;

endif;

for i = 1 to max;

findMe(i).dcMyName = %trim(myName) + %char(i);

if myMax > 10;

memset(%ADDR(findMefi).dcMylob):193:4095); // 'A'

else;

findMe(i).dcMyJob = 'Test 10' + %char(i);

endif;

findMe(i).dcMyRank = 10 + i;

findMeCi).dcMyPay = 13.42 * i;

myCount = i;

endfor;

return findMe;

/end-free

P E

Inbound parameters passed in and an outbound parameter of a data structure!

Chapter 4: The Beast That Is XMLSERVICE • 31

Here is one more example, with an SQL call this time:

<scri pt>

<sql>

<options options='noauto1 autocommit='off'/>

</sql>

<sql>

<connect conn='myconn' options='noauto'/>

</sql>

<sql>

<query conn='myconn'>select * from xmlservtst/animal</query>

</sql>

<sql>

<describe desc='col'/>

</sql>

<sql>

<fetch block='all' desc='on'/>

</sql>

<sql>

<free/>

</sql>

</scri pt>

The code returns the whole record set. Done!

The last parameter is the xmlout parameter, which defines the size of the data being
retrieved, (io big if you are unsure.

So a complete example would be (for a simple command call):

<!-- XMLSERVICE call a *CMD CHCLIBL -->

<form name="input" act!on="/cqi-bin/xmlcgi.pgm" method="post">

<input type="hidden" name="db2" value="*L0CAL">

Continued

32 • Open Source Starter Guide for IBM i Developers

<input type=”hidden" name=“uid” value="*NONE">

<input type=”hidden” name="pwd" value="*NONE”>

<input type=”hidden" name=”ipc" value="/tmp/rangerhtnilonly">

cinput type=”hi dden” name=,,ctl" val ue="*sbmjob”>

<input type=”hidden” name="xmlin"

value="<?xnil version=' 1.0' ?>

<?xml-stylesheet type='text/xsl' href='/Samples/Toolkit_HTML/
DemoXslt.xsl'?>

<scri pt>

<cmd>CHGLIBL LIBL(QTEMP XMLSERVTST) CURLIB(XMLSERVTST)</cmd>

</scri pt>”>

<input type=”hidden” name=,,xml out" value=”32768">

<input type=”submit" value="call *CMD (CHGLIBL)” />

</form>

The <input type="submit"> on an HTML form displays a Submit button that will submit
the form to the server.

There are XMLSERVICE implementations (aka Toolkits) for PHP, Ruby (PowerRuby),
Microsoft .NET, Python, and Node.js. Once you understand the basics, though, you could
write an XMLSERVICE implementation for just about any language. Each language chapter
of this book deals with the implementation-specific details of the XMLSERVICE toolkit for
each language.

A bit of wisdom: “How much better to get wisdom
than gold, to get insight rather than silver!” (Prov.
16:16)

5
i Object!

We’re all famiiiar with the concept of an object-based operating system like IBM i, but
an object-oriented (OO) programming language is foreign to some. Oh, you might have
tripped across it in some generic computer science class, but perhaps it was too long ago
or you were groggy enough in class that that particular chapter has been forgotten. If so,
we are going to take a very brief trip down the orientation road (don’t worry, we aren’t
talking about that kind of orientation).

It’s probably been a while since you played with Play-Doh unless you have kids or
grandkids. Remember how you’d take a chunk of that stuff flatten it, take a cookie cutter
or some kind of mold, and stamp out a Play-Doh object? If so, you were dealing with
an OO metaphor. Sure, you could work that stuff with your hands and try to make a flat
tree, or person, or dog “freestyle,” but being able to grab a mold and stamp out an object
shaped like a tree, person, or dog made it that much easier and consistent. Well, in OO
programming, that’s just what we want to do: crank out consistent objects easily and
quickly without cranking out unstable code (or, in some cases, we create consistently
unstable code!).

34 • Open Source Starter Guide for IBM i Developers

Objects typically have these characteristics:

1. Contain data (sometimes called fields)

a. Class variables

b. Instance variables

2. Contain code (called methods or procedures)

a. Class methods

b. Instances

The astute reader would recognize that if there are class things and instance things (aka
instantiation), then there must be some connection between the two. Right you are!
Objects typically rely on a property called inheritance. Before you get excited about
collecting on your inheritance, what we mean in the case of objects is that instances of the
class inherit the characteristics of the class, a copy in other words. So unless you want a
copy of your aunt’s money, inheritance in an object world won’t be fungible. It’ll get you
just a few years in an orange jumpsuit for counterfeiting. The class becomes a “cookie
cutter” to stamp out similarly shaped objects.

My first foray into the OO programming world was SmallTalk. I don’t know why
I chose SmallTalk except it sounded cool, and the quick overviews I read made it
sound drop-dead simple to use. Instead of simple, I thought I was experiencing some
’70s-style flashbacks with mind-bending concepts like polymorphism (illegal in Texas),
encapsulation, reflection, abstraction, constructors, and on and on. Everything in
SmallTalk was an object. Everything! I immediately wrote a couple of RPG programs just
to restore my sanity. But the light bulb had turned on, and although I could have turned to
LISP (the granddaddy of OO programming), or Python, or C++, or Ruby, I turned instead
to Java. 1 had the good fortune of taking a beginning Java programming class with an
instructor who was not only an excellent Java programmer, but someone who could also
communicate in real English that I could understand. So here, as I can best describe them,
are the necessary basics as 1 see them.

Classes
These are representations of (usually) real-life objects. Take a bank account, for example.
It would typically have an account number, a balance, and some methods for adding
money to and removing money from the account. So we could create one of these things,

Chapter 5: i Object! • 35

and typically when you create a bank account, you are issued a number and a beginning
balance.

Account (class)
variable: Account Number
variable: balance
constructor: Account number, beginning balance
method: deposit (money)
method: withdraw (money)
method: display balance (money)

We are working with pseudo-code at th.s point, so the basic description of this class is
that it has two properties (data fields). One contains the account number, and one contains
the current balance. It also has four methods:

• A constructor—This takes an account number and a beginning balance as
parameters. A constructor is a “built-in” method that most objects will have.
Basically, it allows for certain values to be passed in and may even trigger other
methods during the creation of an instance of the class. You determine what the
constructor may do when an instance is created, it may do nothing.

• Deposit—This method adds money to the balance.

• Withdraw—This method removes money from the balance.

• Display balance- This method simply outputs the balance for display.

These types of transactions would be common to any instance of the class Account. When
you create a new account for Pete, you might do it by passing in 1234 as the account
number and $5 as the beginning balance in the constructor of the new account. If you
were to invoke the display balance method on the Pete account, it would return $5.00.

Encapsulation
There are a couple of things to learn about classes. 1 rst is encapsulation. As you create
a class definition, you try to encapsulate the functional pieces into methods rather than
update data values directly. Sure, you might be able to update the account balance by
just adding the money directly to the balance (balance = balance + money), but for many
reasons that I won’t go into, it is better to create a method that encapsulates the logic. So

36 • Open Source Starter Guide for IBM i Developers

yes, when you invoke the “deposit’’ method in your Account object, the code may well
work (balance =■ balance + money), but you are indirectly accessing the balance rather
than directly updating it. Yes, you could walk into the bank, open your wallet, take out the
cash, and then have a guard accompany you to the accountant, who would make a note
of the amount and then walk outside, take the armored car to the Federal Reserve bank,
and stuff it into the giant bank vault directly. Or you could just make a deposit and let the
internals of the system handle the rest.

The second thing, of course, is that you created an instance of the original class rather
than using the class directly. Certainly, if you wanted to, you could create a brand-new
class and store everything in it, but since you’ll create millions of these things, why not
do that with an Account (new!) command?

Inheritance
So, with encapsulation and instantiation through creating an instance taken care of (more
or less), what about inheritance? Inheritance is really a process of saying that you have
a model that’s close, but it’s not exactly what you want. In fact, you have several of
these “oh so close!” models that are similar to one another but different from the original
model. This is where subclassing comes into play. Subclassing means taking an original
class and then extending it to include other characteristics.

For example, if you need a credit type of account, it ccrtainiy would have an account
number and a balance, but it also might have a service charge data field and an interest
data field. Since you already have an account with everything you need with the
exception of service charges and interest rates, you could say something like: Credit
Account is an extension of Account. Inherit everything that Account class has, but add:

variable: Service charge
variable: Interest rate
method: Add service charge
method: calculate interest

So your class for Credit Account would have this if you could examine it:

variable: Account Number
variable: balance

Chapter 5: i Object! • 37

variable: Service charge
variable: Interest rate
constructor: Account number, beginning balance
method: deposit (money)
method: withdraw (money)
method: display balance (money)
method: Add service charge
method: calculate interest

Java uses extend: class CreditAccount extends Account. Ruby uses the < operator:
class CreditAccount > Account. Python uses parentheses to denote the base class: class
CreditAccount(Account). Get the picture? One class based on another.

Interfaces
With inheritance, you can subclass only one class. But what if you had more than one
“template” class that you wanted to inherit? You could create a template that is “less”
than a class in that it has no functional methods but basically says you must have this
function and that function and this function without really defining what the function
must do. Then the class would “implement” those functions with specific code.

Going back to our Account example: you might require that any Account created have
an account number as a string value and also have a “deposit” method for getting money
into the account, but exactly how the deposit is made is left up to the programmer
to determine. But you do require that the Account class implements the needed
methods. This type of class is typically called an “interface” in that it provides only the
barest description of what is needed and leaves die implementation details up to the
programmer.

That leads us to the last concept I want to tepidly step into ...

Polymorphism
At the casicst-to-undcrstand level, you can reflect on what adding a “print” method might
mean in a few different contexts. Your printO method in an analog world might trigger a
line-by-line text output in one environment; a glossy, color page in another environment;
a 3D image in another environment; and a Web page in yet another environment. The

38 • Open Source Starter Guide for IBM i Developers

print() method is polymorphic, outputting completely different things with completely
different programming yet invoked with the same call.

Classes can be polymorphic as well. The point is that the class/object/method is
manipulated in different ways even though the original call or reference looks nearly
identical. That is a very simplistic and incomplete description of polymorphism. Even if
you don’t understand it, no doubt you’ll use it without thinking about it at some point in
00 programming.

Have Some Class
Finally ...

As we go through each chapter, I’ll attempt to point out which of the concepts above we
might be dealing with. I say might because there arc some cases where it just isn’t 100
percent clear what concept is being applied.

Generally, seeing this stuff in action is more helpful than just talking about it, and if 1
were writing about only one language, then 1 could give you comprehensive examples in
that language. But since I am writing a multilingual book, I’ll give examples m upcoming
chapters.

Well, the programming context is multilingual; I can speak and write only English, with
the exception of una cerveza por favor or Ein bier hitte or Hlq qlj vltlhurlh vlneHor
(Klingon).

A bit of wisdom: “Blessed are those who find
wisdom, those who gain understanding She is
more precious than rubies” (Prov. 3:13, 15)

6
Ruby and IBM i

I remember when I first tripped across Ruby. I was looking for an open source report­
writing tool and discovered DataVision (datavision.sourceforge.net). It was pretty cool
for its time (I was using it in early 2003), but my stumbling block was the need to use
Ruby to script some of the output. At the time, I thought I was a pretty hot programmer,
but my background in RPG III, RPG/400, and BASIC left me ill-prepared for an object-
oriented (OO) scripting language like Ruby. I set DataVision aside, and it seems to
have faded into the open source diaspora, collecting dust in the vast wasteland that is
Sourceforge.

But like your Uncle Fred, Ruby has been around a lot longer than you think (some think
maybe Fred has been around too long), and it has continued to grow and mature. Ruby
got its start in 1993 in response to Yukihiro Matsumoto’s need for a “better” scripting
language. We’re always looking for better, aren’t we? And we can always do better!
So more power to Matz (as he is called) for stepping out into the great unknown of
programming language development. His goal for that “better” language was to keep
it simple and easy (yeah, right,,^very language seeks that holy grail), so he threw Lisp,
SmallTalk, Python, and a bit of Perl into the pot, and the result was Ruby. Lisp brings the
simplicity, SmallTalk provides the object-oricntcd-ncss, and Python and Perl sharpen the

datavision.sourceforge.net

40 • Open Source Starter Guide for IBM i Developers

focus of the language on utility. Matz described Ruby as “a scripting language that was
more powerful than Perl, and more object-oriented than Python.” He achieved his goal,
and eventually the language made its way out of Japan and into the big, wide world of
open source around the turn of the century.

The goal of this chapter on Ruby and IBM i is to first ground you in the Ruby language.
That won’t be easy because Ruby is probably about as different from RPG as an apple is
from an orange. They are both fruits, but one must be peeled before eating and they taste
very different. We are going to first “peel” Ruby so you can understand how it works.
That means a grounding in 00 principles. Then we can move on to basic language
syntax, access to PASE resources, DB2 for IBM i database access, and then calling RPG
programs from Ruby. That’s quite a bit to cover. Ready? Let’s go!

Every programmer wants to achieve the greatest amount of work in the least amount time
and have fun doing it. At least, I hope that’s what you’re after. The programming world
rotates on productivity, and that’s what Ruby is designed for. It frees you to produce
useful solutions that are easy to write and maintain. Give that some thought for a minute,
and then let’s take a common construct like a collection of “stuff.” An array is basically
a listing or grouping of separate but similar things. Very often, you want to access those
items individually, and usually you want to do it sequentially. So iterating through these
items is something you often do. It would seem logical that a container of these items
would “know” what is in “itself’ and be able to list those items. Being able to tell the
container “list these items” would be a handy feature of the container. Something like
this:

My tool bench has these items: hammer, saw, old underwear (yeah—rags), screwdriver,
empty cans, vise, pliers. What if the tool bench itself could enumerate and access those
items? Maybe something like an each function? So, for each item on the bench, what
exactly would the function do? Whatever you told it to do! So we’d end up with a
few functions that we often do for the tool bench “collection.” Enumerate each item
and maybe use a find function (useful for my tool bench). Functions built around that
container would maybe look like bench.each and bench.find, where you’d have an
operator on the object itself. Ruby ends up looking just like that in many cases because it
operates on the principle of least surprise (or astonishment, in this case), which results in
a tidy acronym of POLA. In a POLA world, what you expect to see is what you do see.

Chapter 6: Ruby and IBM i • 41

In the IBM i world, that is not always the way languages and/or commands work.
Sometimes it is a POL A opposite. Anyone who made the transition from the S/38 to the
AS/400 had to rethink some commands. In many cases, AS/400 commands operated
on POLA principles, but not always. And then, once you were in RPG, things were not
always so predictable. Take a look at a bit of fun RPG II code:

c RCODE COMP ’0’ 20

c *IN2O IFEQ ’I1

c EXFMTSCREEN2

c AGAIN COMP ' Y' 22

c 22 GOTO BEGIN

c 20N22 GOTO END

It isn’t immediately apparent just what this code does, and it’s probably unfair to compare
a procedural language to an 00 one. I will say that free-format RPG is much more
coherent to me, and is easier to transition to, than the RPG 11 above.u^hen again, RPG
II is more readable than assembly language (which I was completely spared from ever
having to learn). Bottom line: the principle behind Ruby is POLA, and it does a pretty
good job. In fact, it does such a good job that initial forays into the language can be
disorienting.

Moving to a predictable environment from an unpredictable one can be just as
disorienting as the opposite approach. When i moved to Salt Lake City from Chicago,
the grid-style layout of the streets in Salt I ake left me dumbfounded until I adapted to
the Sait Lake way of navigating. After 20 years, you could plop me down anywhere in
the Salt Lake valley and I could find my way home. Moving from that rigid structure to
the rambling roads of San Antonio, I had to turn on my GPS to find my way to the next
block. Plop me down a few miles from home in San Antonio, and I’d be lost without a
GPS. But I have learned new rules and now regularly ignore my GPS and I am fine (“Oh,
look, what is an ocean doing so close to San Antonio?”). Bottom line: you can learn this
stuff. Ruby operates on POLA. POLA is good!

So, with that brief primer and the established principle of POLA, let’s take a look at some
Ruby basics just to get started.

42 • Open Source Starter Guide for IBM i Developers

Installation
You will most likely want to have some kind of command line into the world of Ruby, so
we have a couple of ways we can go. If you arc a Windows, Linux, or Mac person, you
can find pretty much all you need at the https://www.ruby-lang.org site. Even if you plan
to install PowerRuby on IBM i (which you will find here: https://powerruby.com), you’ll
probably still want to have something local so you don’t have to lug that Power Systems
box around with you. One of the cool features of open source on IBM i is that, except
for RPG-based projects, you can write, compile, test, and deploy projects wherever
you want initially. When you’re ready, you can deploy to IBM i and test again in that
environment. Basically, you can write code whenever and wherever you want. I find that
very productive (and a little invasive in my life).

I won’t go into details on how to install Ruby. There are plenty of tutorials on how to
do that (and they are simple), so go ahead and install Ruby on both your development
workstation and IBM i (if you have that freedom). The following examples will run
anywhere.

IDEs and irb
We haven’t talked about IDEs for Ruby. Frankly, an IDE for Ruby would be like an IDE
for CL: I guess it would be cool for syntax checking, but it’s overkill for basically a text
editor. In fact, that’s really all you need: a text editor. Notepad, Notepad+~ffi WordPad,
LaunchPad (I just made that up)—any kind of pad will do (like back in the 1960s). 1 use
the Sublime Text editor for a couple of reasons: it’s cheap, and I can run the code directly
within the editor. There are others, so find one that fits like that comfy 10-ycar-old shirt
you keep in the back of your closet and keep it easy. No reason to get hung up on text
editor versus IDE wars.

You have another option for testing small snippets of code or just trying a few lines
to get the hang of something: a REPL. Rather than some alter-ego clone, a REPL is a
read-eval-print loop terminal, and it can really come in handy when you arc just getting
started. You usually get a REPL by just invoking the executable. In Ruby, you use the irb
(Interactive RuBy) command. It will look like Figure 6.1 if you are a Windows user and
have installed Ruby.

https://www.ruby-lang.org
https://powerruby.com

Chapter 6: Ruby and IBM i • 43

Figure 6.1: The Ruby irb command

I here isn't any console support in the CMD window in Windows, so you’ll see that
message on the startup of irb.

Here’s a really simple “Hello World” example (dang, 1 really didn’t want to go there, but
we always start with a “Hello World” example), as shown in Figure 6.2.

E:\>irb
no/console not supported; tty will not be manipulated
irb(main):001:0> puts "Hello world"
Hello, world
«=> nil
irb(main):002:0>

Figure 6.2: Hello World example

I he command entry point here is after the line number 001:() and the greater-than sign
(>). And what’s with the =>nil? Well, we asked Ruby to output the string “1 lei Io World”
(that is what puts does), and the puts command returns nothing, nada, zilch. Hence, to be
different and a little British, it returns “nil.” Nothing to worry about.

We could just keep slamming out commands in irb, but it can get a bit tedious if we are
trying to write a complete script. You can end a line with a semicolon (;) to indicate that
there is more to come, or if you are in a do block, you can code your little heart out until
you end it. But a text editor will make things easier in the long run.

A REPL is cool because you can immediately see the results of your programming, but if
you have several lines of code, it can get a little tedious, as you can see in Figure 6.3.

44 • Open Source Starter Guide for IBM i Developers

rD(main):015:0> puts rHello you":
1rb(main):016:0* puts "Hello me";
-irb(main) lOlZi.O* puts Te’lo everybody";
nrb(main):018:0* puts 'Hello work’d"
Hello you
Hello me
Hello everybody
Hello Vvorld
=> nil
1rb(main):019:0>______________________

Figure 6.3: Code in a REPL

It might just be easier to stuff the whole thing into a text file. That way, if you fat-finger
a couple of lines, you won’t have to laboriously retrieve and edit each line at a time. You
can hack the file and be done with it.

Figure 6.4 shows a snippet of code I knocked out in UltraEdit (I could have used any
other editor). It does what I just tediously typed out in irb (except you didn’t see all the
correcting going on).

UftraEdit-32 - [E:\PROJECTS\rufrJAheilo.rb]

■jfl File Edit Search Project View Format Column Macro Advanced

-yipTello.rb

I] ♦ agaaj & a ai aj ai bi bi * s
_____ Q । । । । । । । । 1-U । । । । । । । । । । । > i । । । । । । । । । । । ।

1 puts "Hello you"
2 puts "Hello me"
3 puts "Hello everybody"
4 puts "Hello world’

Figure 6.4 : The same code in an editor

Going to the command line and typing ruby and the filename will run the script:

bash-4.2$ ruby sayhello.rb

Hello you

Hello me

Hello everybody

Hello world

Chapter 6: Ruby and IBM i • 45

But, Ruby really doesn’t give a rip about the .rb file extension. You can run Ruby against
any file that has valid Ruby commands in it, like this:

bash-4.2$ ruby hello.pete

Hello you

Hello me

Hello everybody

Hello world!

The convention is to use .rb at the end because, in most cases, you have associated the .rb
extension with the Ruby binary (in Windows) and a shebang (#1) directive to point to the
correct executable (in PASE), and that combination will “know” how to run the script:

#!/usr/bin/env ruby

puts "Hello you"

puts "Hello me"

puts Hello everybody"

puts "Hello world"

But really, as long as you point Ruby to a file with valid syntax, no problcmo! Ruby will
parse and execute the script.

What if your syntax is problematic? Then what? Let’s make a very subtle (and common)
mistake and sec what happens. First, the file contents:

puts "Hello you"

puts "Hello me"

Puts "Hello everybody"

puts "Hello world'

Then run it:

46 • Open Source Starter Guide for IBM i Developers

bash-4.2$ ruby sayhello.rb

Hello you

Hello me

sayhello.rb:3:1 n '<main>': undefined method 'Puts' for main:Object (No­
MethodError)

What the heck? Undefined method 'Puts'? We have been “putting” all day. What’s up?
Well, Ruby is case-sensitive. Welcome to that world! A host of languages are sensitive to
case, and Ruby is one of them. In this case, our script happily executed each line until it
got to line three, which had 'Puts' instead of'puts', and Ruby barfed. Some text editors that
have syntax checking can catch this kind of thing (which is a good thing). Distinguishing
between 'Puts' and 'puts' is pretty easy, but most text editors, even with highlighting and
syntax checking, won’t always give you the correct feedback all the time.

Getting tired of that Windows command window? Well, on the IBM i, we can do
something pretty similar. You could start by going to the 5250 command line and starting
QSH or QSHELL, but STRQSH, QSH, and QSHELL start a PASE (UNlX)-like environment
shell that really wasn’t designed to run AIX programs (so don’t bother). You could also run
QP2TERM, which is a shell that is a more AIX (PASE)-friendly environment. Figures 6.5
and 6.6 offer a quick look at some of the results of using the two shells and invoking Ruby.

QSH Command Entry

S ’
> ruby -v

[FATAL] Failed to create timer thread: Resource temporarily unavailable
J .

Figure 6.5 : QSHELL invoking Ruby

Yikes! Probably not a good idea to continue.

/QOpenSys/usr/bin/-sh

J
> ruby -v

ruby 2.1.9p490 (2016-03-30 revision 54437] [powerpe-ai.1]
$ • _

Figure 6.6 : QP2TERM invoking Ruby

Chapter 6: Ruby and IBM i • 47

That’s more like it!

If we copy a Ruby script file over to rhe IFS and run it, we get the same results as we did
in Windows, as shown in Figure 6.7.

/QOpenSys/usr/bin/-sh

$
>■ruby he 1lo,pete .

Hello you .
Hello me
Hello, everybody
Hello world!

Figure 6.7 : Running Ruby from the IFS

An easier way, IMHO, is to use a TTY terminal emulator like PuTTY and use Secure
Shell (SSI I) to connect to your IBM i. You”ll have all of the functionality of QP2TERM
without the overhead of also running a 5250 emulator (although TTY is basically a
terminal emulator).

I use PuTTY for my access to PASE, but there are plenty of free alternatives. Figure 6.8
shows what the script in Figure 6.7 looks like in PuTTY (and BASH).

Figure 6.8: Using PuTTy and BASH

Boringly similar to all the other scripts and REPL examples we have looked at, isn’t if?

So that’s a very basic first step toward using a REPL like irb and executing scripts at the
command line. So far, it’s pretty easy.

48 • Open Source Starter Guide for IBM i Developers

Next, we need to take a look at a few more programming constructs before stepping back
to examine classes and modules.

Most of the Ruby language constructs follow a predictable pattern that we, as
programmers, are familiar with. It is the implementation of those constructs that can
make the “getting started” step a bumpy ride. So let’s get on the horse and ride!

Language Basics
I don’t plan to spend a lot of time in the minutiae of the Ruby language. The goal of this
book is to give you enough to go on to get started. Proficiency won’t be the end result.
And although Ruby is based on POLA, there is enough “surprise!” in the way things work
that it is worthwhile to go over some of the basic things and at least point out where 1 got
either derailed or stumped. Sometimes, Grasshopper, all you need is a little enlightenment!

Variables
Unlike RPG and more like JavaScript (if you are familiar with it), Ruby is a dynamically
typed language. That is, you don’t have to declare a type when you declare a variable.

You could assign a variable this way:

the_meaninq_of_life = 42

If you do, Ruby will see the variable as a number (Fixnum class, actually). Later, you
could assign the same variable to a different type:

the_meaning_of_life = 'Money, fame and fortune'

Ruby won’t even blink. If you happened to capitalize the first character of the variable,
Ruby will define it as a constant. And, although you can change the value of a constant,
Ruby will complain about it with a warning about the change.

bash-4.2$ irb

irbfmain):001:0> thejneaning_of_life = 42
Continued

Chapter 6: Ruby and IBM i • 49

=> 42

irbfmain):002:0> the._meaning_of_life = 'Money, fame and fortune'

=> "Money, fame and fortune"

Note no complaint about the change.........

irb(main):003:0> The_mearing_of_life = 42

=> 42

irb(main):004:0> The_meaning_of_1ife = 'Money, fame and fortune'

(irb):4: warning: already initialized constant The_meaning_of_life

(irb):3: warning: previous definition of The_meaning_of_life was here

=> "Money, fame and fortune"

Scope
We also have variables that can be of local, global, class, or instance scope.

Local scope is pretty much what you would expect, and global variables are pretty much
the same in Ruby as in other languages. Each variable will have a scope that it is declared
in based on its location in the code.

You probably have not come across class and instance variables either because, well,
RPG isn’t object-oriented, so the concepts of classes and instances of classes are not part
of your nomenclature in RPG. From chapter 5, you should have a rough idea of what a
class and an instance of a class would be. Very quickly, in most cases a class represents
a template or a “mold” of what an object should look like Irom the standpoint of the
design of variables and function. It’s a prototype of what the object would look like if
you created one. So a class variable would be a variable that would hold a value across
instances of that class. 1 his could come in handy if you are creating many instances of a
class and want an aggregate count or total across all instances of that class. An instance
variable would be, ahem, a variable that is unique to only that instance of the class. No
mystery. But the declaration of each of the variables has some convention to it:

• Local variables: start with a lowercase letter or an underscore

• Global variables: start with a $ sign

• Class variables: start with a double “at” sign: (a'(a>

• instance variables: start with a single “at” sign: («’

50 • Open Source Starter Guide for IBM i Developers

The best way to demonstrate how each of these works is to demonstrate them (!).

Start with a global that will persist for the session

SaGlobalVariable = 5

Then create a class to demonstrate class and instance differences

class Demo

class Variable

@@classVariable = 0

We need to initialize the variable or else it will be nil when

we add it to itself in the add_me method. Initialization will

happen when we invoke "New" on the class to create the

instance

def initializeO

©instancevariable = 0

end

a simple function to output these variables

def add_me()

©©classvariable += 1 # increment the class variable

©instancevariable += 1 # increment the instance variable

output_class_varO

puts "Global total is now #$aGlobalVariable"

puts "My instance variable is now #@instanceVariable"

puts " "

end

def add_me_twice()

Run this guy to see what happens to a global variable

$aGlobalVari able+=l

add.me

end

Continued

Chapter 6: Ruby and IBM i • 51

def output_class_var

puts "Class total is now #@@classVariable"

end

end

Create the class instances (objects), which will initialize

the instance variable

i1 = Demo.new

12 = Demo.new

invoke the methods

il.add_me()

i 2.add_me()

i 2.add_me_twi ce()

i 3 = Demo.new

i 3.output_class_var()

The output will be this:

Class total is now 1
Global total is now 5
My instance variable is now 1

Class total is now 2
Global total is now 5
My instance variable is now 1

Class total is now 3
Global total is now 6
My instance variable is now 2

Class total is now 3

The first invocation is predictable. Those values were set in the instance. But in the next
invocation of add_me in a different instance of the class, we see the magic start to happen.

52 • Open Source Starter Guide for IBM i Developers

Even though i2 knows nothing about il and what it is doing, it is affected by the method
that updates the global variable. And if we create a new object instance after the class
variable has been updated, we get the new total along with it, as you can see when i3
invokes the output_class_var method.

Trying to keep track of the variables and their scope can be a challenge, but what I like
here is that we can use the underscore (_), dollar sign ($), at sign (@), and double at signs
(@@) as part of the variable name to help us keep track of what is what. Normally, I
would have to resort to using special flaming conventions to remind me of the scope. This
way, I can know exactly what the scope is by the name used.

Built-in Functions
At the simplest level, there are math functions:

irb(main):005:0> 1+1

=> 2

Fortunately, it can also do math correctly: 1 + 1 is 2.

Ruby math follows the correct order of precedence rule rather than the “calculator”
(sequence) rules.

irb(main):006:0> 20 10*10

=> -80

Multiplication has a higher order of precedence than subtraction. And you can “force”
calculations into a higher precedence by using parentheses:

Irb(main):007:0> (20-10)*10

=> 100

Beyond the “primitive” math functions of add, subtract, multiply, and divide are a whole
host of math functions found in the Math module, such as square root (sqrt).

Chapter 6: Ruby and IBM i • 53

irb(main):008:0> Math.sqrt(25)

=> 5.0

Or you could just include the Math module and then execute the functions directly:

irb(main):009:0> include Math

=> Object

irb(main):010:0> sqrt(25)

=>5.0

OK. We have seen a couple of things here. We’ve seen the native arithmetic functions
and those contributed by the Math modules (we’ll be jumping into modules and classes
shortly). We still have a few more commonly used features of the Ruby language that are
worth exploring.

Containers
Back to the workbench that contained many items, including my underwear.

Arrays and hashes are typical containers. The RPG language has arrays, but hashes are a
bit different. Let’s start with arrays. You can define them with literals using brackets ([])
or by declaring an object type: Array.

The elements do not have to all be the same type. You can mix and match:

irb(main):011:0> a = [123,'cat','bi rd',6,'dog']

=> [123, "cat", "bird", 6, "dog"]

irb(main):012:0> puts a[3]

6

So we have an array of four items, strings, and numbers and have assigned them to the
variable a. From that context, we know we have* an array type. Let’s check that:

54 • Open Source Starter Guide for IBM i Developers

irb(main):013:0> a.cl ass

=> Array

It confirms what we already know.

We can also create a new array object:

irb(main):014:0> b = Array.new()

=> □

You can assign values:

irbfmain):015:0> b[O]=123

=> 123

irb(main):016:0> b[l]='cat'

=> "cat"

irbfmain):017:0> b[2]='bird'

=> "bird"

irb(main):018:0> b[3]=6

=> 6

irb(main):019:0> b[4]='dog'

=> "dog"

And you can output those arrays. More importantly, you can iterate through them, which
is what you commonly do with arrays. Here is an example of iterating through an array:

irb(main):020:0> b.each{|i| puts i}

123

cat

bi rd

6

dog

=> [123, "cat", "bird", 6, "dog"]

Chapter 6: Rub/ and IBM i • 55

What might blow your mind a bit is the {|i| puts i} part. I know it did for me the first
time I saw the syntax. What you are seeing is a “block,” which is a way of defining an
anonymous function or closure. In RPG, we generally define each of the functions we’ll
call in the RPG program. In Ruby (and not just Ruby, but several other languages, such
as JavaScript and Python), you can execute a function without naming it. So, in the
example above, b, an array, has an each method that, when invoked, iterates through the
array passing “each” element. Passing “each” to what? Passing to a block function, in this
case. The function takes a parameter (| |), and then the rest of the function block defines
what to do with that parameter puts i. A single-line function is easily represented with the
{ I I } syntax. But if you have a complex block, you can use the do ... end syntax, which
basically defines what to “do” between do and end.

On the face of it, it’s pretty simple, but you don’t often see a simple block like this. Very
often, blocks are passed to methods, and then things get a little more wiggy.

Take a look at something like this:

def say_stuff

yield ("Pete", "ruby")

end

say_stuff do I name, langl

puts "#{name} loves to program #{lang}"

end

We have a method called say_stuff, which takes no parameters and has a yield method
that is passing two parameters.

Below that, we have a call to the say_stuff method, which is passing a block. So
what is going on here? Let’s start with yield. Yield basically says, “Stop here and call
whatever was passed in as a block.” Frankly, at this point, the POLA (Principle of Least
Astonishment) is completely broken IMHO because my head exploded the first time I

56 • Open Source Starter Guide for IBM i Developers

tried to puzzle out the code. Ruby allows a block to be passed to any method, even if
it isn’t used. But, if there is a yield, then you have to pass it a block or it will raise an
exception. (Well, almost. You can use the block_given? method to test to see whether a
block was passed and then act accordingly.)

The other thing that strikes me as bass-ackwards in this approach is that most of the
magic is in the block that is called rather than the method. So things take a while to sink
in. And here is the result:

bash-4.2$ ruby block_stuff.rb

Pete loves to program ruby

So, we invoke the say_stuff method, passing in our block (the stuff between the do and
end). We run line number 2, which yields to the block passed in, passing in the two
parameters that the block uses. The function in the block runs, and then the function
returns, and then the method returns. Done.

You see plenty of this in Ruby, so get used to it. The Internet has many examples of
blocks and methods. This example barely scrapes the surface. But my goal is to get you
familiar with the language and expose you to Ruby stuff so your head stays intact, not
teach you everything you need to know.

Hashes
Our little trip down the array path got us diverted on to blocks. But blocks are used
extensively with arrays because normally you arc iterating through the array to do
something with each value in the array or at least examine each value. Hashes arc similar
to arrays. There really isn’t an equivalent data type in RPG that I can think of (a data
structure, maybe). But, in principle, hashes are arrays of name-value or key-value pairs,
and sometimes keywalue or name:value. And the advantage to the hash design is that
basically anything can be the key, so it becomes a great way to store stuff with arbitrary
keys and values. In an array, your values are stored in sequential buckets. In a hash,
they could be stored anywhere; you have to find it by key. That is also a disadvantage of
hashes: they have no order like an array would have, so finding the value by key can be
slow.

Chapter 6: Ruby and IBM i • 57

But a key-value pair is highly flexible. In fact, when we look at Rails and a few other
Web technologies later on, the key-value pair will raise its head in the form of JSON. So,
this isn’t just an intellectual exercise; there is some goodness here!

To create a hash, you can do it two ways (just like arrays). You can use literals or use
Object, new to create a “new” object of “type.” Option #1 will let us use symbols and
“rocket” nomenclature to assign key-value pairs:

h = {'cat'=>'unlikeable','dog'=>'best friend','horse'=>'giddy
up','pi g'=>'sgueal!'}

And as a side note, you can use symbols for keys as well:

h = {:cat=>'unfriendly',:dog=>'best friend',:horse=>'giddy
up',:pig=> squeal'}

Option 2 is to invoke the new method on a hash object:

creatures = Hash.new

And then assign the key-va!ue pairs:

creatures['cat']='uniikeable'

creatures['dog']='best friend'

creatures['horse']=’giddy up'

creatures['pig']='squeal!'

How to access the values? Refer to the key, and the value will be returned. This is how to
iterate though the hashes:

creatures = Hash.new

creatures['cat'J ='uniikeable'

Continued

58 • Open Source Starter Guide for IBM i Developers

creatures['dog']='best friend'

creatures['horse']='giddy up'

creatures['pig']='squeal !'

creatures.each {I creature,appeal| puts ”#{creature} is #{appeal}" }

The result of the above code would be this:

cat is unlikeable

dog is best friend

horse is giddy up

pig is squeal!

Really it just comes down to referencing the key to return the value:

puts creatures['cat'] would output "unlikeable".

When it comes to hashes, if you can keep the concept of key-value pair in your head,
you’ll do fine.

With simple syntax, working with hashes is a breeze, and in Ruby (and Rails in
particular), you’ll use a lot of them.

Program Structure in Ruby
l got us started right away in using irb and writing and testing code because, well, we are
programmers and that is what we like to do (well, that and watch old Star Trek episodes).
But I didn’t really spend much time talking about how best to structure and use your Ruby
code. In some respects, there isn’t a whole lot that is new here if you have been writing
modular code and perhaps using free-formal RPG. 1 mention that not because this book
is written only for cool programmers who write in a modular way and use RPG /free but
because if you are already in that mode of writing code, your thinking about program
structure has probably changed. Originally, RPG was pretty linear, so we thought in a
linear way, and our code followed. My first exposure to a mcga-monolithic RPG program
(pushing that 10,000-line limit) was a payroll-processing routine. It was a monster! One

Chapter 6: Ruby and IBM i • 59

record in, and 9,999 lines later, one record out. In order to work around the limit on the
number of lines, we wrote a bunch a pre-processing routines that output to temporary files
so the next process could take over. Debugging a problem with a payroll check was killer.

If you are writing service programs now, using a more modular design, those kinds of
barriers and bottlenecks aren’t as challenging, and you probably have already started
thinking about breaking your code into logically functional units. Nice! This should be
an easy section for you to handle! The beauty of 00 programming is that you can think
more logically about structure. Think in terms of objects communicating by passing
around “messages” and data: run this, use that, send me this—all things that you do in
your daily life and that you can use conceptually to structure your code. That is where we
are heading. It’s a new, modular way of structuring your code (or maybe not so new if
you already “think modular”).

Modules
I have already mentioned classes, and we can see the value of classes in that entire realms
of behavior can be encapsulated in a class, and then any other class can inherit from that
class, or we can create instances of the class and even modify those instances to fine
tune and add behaviors. But what if we had functionality that we needed across different
classes? For example, maybe several of our classes need to connect to a database, and
each class needs the same set of database connection functions. We could just write the
same code over and over in each class. Or we could try to identify the common functions
in each class, build a class based on that common set of functions, and then modify the
instances of the classes.

There are probably many ways to approach a solution, but I think a solid approach would
be to create classes when a “standard” object is needed. That object will have several
instances, and each instance, although sharing similar behaviors, may have unique
characteristics that will create a unique instance. If you need an identical set of functions
that could be applied to many classes, then a “module” will be your friend.

Modules are units of code that provide a standard set of functionality when implemented.
Unlike classes, you cannot create an instance of a module. Modules are included by using
a highly complex directive called include. (OK, not that complex; POLA lives [as docs

60 • Open Source Starter Guide for IBM i Developers

Frodo]!) By “including” a module in a class, the class as well as the instances of the class
have access to the functions in the module. Let’s take a look:

module Say_hi

def speak_en

sayit = "Hi!"

#puts sayit

end

end

class Talker

include Say_hi ## Include the above module

def speak.es

sayit = "Hola!"

#puts sayit

end

end

speak = Talker.new ## create instance

puts speak.speak_en

puts speak.speak_es

yell = Talker.new ## create instance

puts yel1.speak_en.upcase

puts yel1.speak_es.upcase

whisper = Talker.new ## create instance

puts whisper.speak„en.downcase

puts whisper.speak_es.downcase

A few cool things are going on here. First, our module has a method called speak_en,
and when we include that module that has that method in our class, we can see that an

speak.es

Chapter 6: Ruby and IBM i • 61

instance ot the class will also include that module. This is a powerful concept that, if you
can keep it front and center as you develop a solution, will help you modularize your
code. The biggest advantage is that if you have to change the code across classes and the
code resides in a module, you can tweak the module so that all the classes that contain
the module will execute the new code in the module. Trying to figure out when to create
a module and when to encapsulate code in a class is the tricky part. No hard and fast rules
apply. Just common sense and experience. But, if you find yourself repeating the same
code snippet over and over, you might just have a good candidate for a module.

You may also notice that nothing in either of the two functions was told to “return”
anything, yet we still got output. How’s that? In Ruby, a function will return the value
the last executed expression evaluates. You can explicitly code a return statement if you
need to return earlier in the function, but in most cases just coding for the last executed
statement, wherever it appears in your code, early or late, is all you need to do.

Sc here is the output of our Talker class and Say_hi module:

Hi!

Hola’

HI!

HOLA!

hi !

hola!

Modules arc also known as “mix-ins” because they mix code into your classes. The best
way to “mix ;n” module code is to store it in a file and then reference it in your class
using the filename. And the best way to utilize classes is to store them in a file and then
reference them when you need them. And then, if you want to run some Ruby code on a
regular basis, it is best to store that in a file as well.

If we were to take the code above and break it into its logically separate parts, we’d end
up with three files: one that contains our module, one that contains our class, and one that
contains our Ruby script to run all that code. So let’s do that.

62 • Open Source Starter Guide for IBM i Developers

Start with the module:

say_hi.rb

module Say_hi

def speak_en

sayit = "Hi!"

#puts sayit

end

end

taiker.rb

require "./say_hi" # Include our file which contains our Module

class Talker

include Say_hi # Include the Module from the file

def speak_es

sayit = "Hol a!"

#puts sayit

end

end

taiker_demo.rb

require "./talker.rb"

speak = Talker.new

puts speak.speak_en

puts speak.speak_es

yell = Taiker.new

puts yell.speak_en.upcase

puts yell.speak_es.upcase

whisper = Talker.new

puts whisper.speak_en.downcase

puts whisper.speak_es.downcase

Chapter 6: Ruby and IBM i • 63

Again, wc had our module containing the functions in one file. Then we created a class
that used the module, so we referenced it by both “requiring” the file containing it and
then “including” the module by name. You will also see load used in the same way
require is used. Load will load the file every time the module is referenced. Require loads
the file only once, when instantiated. When we then use the class in our Ruby script, we
again use the require option (or we could use load). Filenames are given in quotes, and an
interesting side note is that Ruby doesn’t have to use only Ruby files in require or load.
Depending upon your solution, you may be using an .so file or a .dll file to take advantage
of native functionality. So Ruby will search for a file that matches your “bare” filename
and attempt to load it. Just FYI: occasionally, there can be a surprise in referencing a file
and getting some weird error in return, so check the path. There might be a file with the
same name FUBARing your code.

With our code nicely modularized, wc can just run the Ruby script file (talker_demo.rb)
directly:

E:\examples>talker_demo.rb

Hi !

Hoi a!

HI!

HOLA!

hi !

hola!

Again, in this particular situation, the .rb extension was associated with the Ruby
executable in Windows. Back over on IBM i (doncha love how you can move between
Windows, Linux, and IBM i for testing and development?), you need to add one
additional line to your Ruby script in order to run it by just typing in the filename. Add
this as the very first line at the top of the script:

#!/usr/bin/env ruby

Shebang! The #! with the /usr/bin/env reference followed by ruby tells our scripting
shell (Bash, in this case) to run tbJs file in a Ruby environment. So, if the file is marked

64 • Open Source Starter Guide for IBM i Developers

as “executable” (and if you copy it from Windows to the IFS, it probably will be marked
that way), then when you type in the filename at the command line in Bash, it already
knows it is an executable file and just needs to be told “how” to execute it. If you leave
out the shebang directive at the top of the file, Bash will do its best to execute the file as a
Bash script, and the results ..., well, they ain’t pretty!

Control Flow in Ruby
We already charged down this path before with iterating through an array and a hash
using the each method, but we need to take a quick look at how code can be conditionally
executed. The if conditional is a familiar place to start since just about every programmer
and language use it.

Start simply:

if condition

code here, executed if condition is true

end

As with any program, the conditional blocks can be any size and can include any number
of instructions. It can include other if... end blocks. We can also go the one-liner route:

if x > y then puts x end

Slightly more compact is using the semicolon (;) to mimic line endings:

if x > y; puts x; end

GAI1HI1! Sometimes terseness isn’t helpful. I am a traditional sort of geek and would
probably write it this way:

if x > y

puts x

end

Chapter 6: Ruby and IBM• 65

Whatever floats your boat.

Sometimes you need additional branching options, and although you could do a long
nested mess of if ... ends, you could also use else and elsif (yeah, that missing “e” in elsif
is going to drive you nuts).

You can provide an else branch in your if statement:

if condition

code executed if condition is true

el se

code executed if condition is false

end

You can also use an elsif keyword, elsif lets you “cascade” your conditional logic to more
levels than you can using just if and else:

if conditionl

code executed if conditionl is true

elsif condition?

code executed if conditionl is false

and condition? is true

elsif condition!

code executed if neither conditionl

nor condition? is true, but condition! is true

end

You can have as many elsif clauses in a given if statement as you want. The code segment
corresponding to the first successful if or elsif is executed, and the rest of the statement is

ignored:

print "Enter an integer: "

n - gets.to_i
Continued

66 • Open Source Starter Guide for IBM i Developers

if n > 0

puts "Your number is positive."

el si f n < 0

puts "Your number is negative."

el se

puts "Your number is zero."

end

Hmm. I introduced a couple of new concepts here as well. Note the following:

print "Enter an integer:

n = gets.to_i

We use print rather than puts because puts (put string) adds a new line after the output,
print does not. Where that comes in handy is in a command “prompt” line like above,
where waiting for some input just logically follows the prompt. So, up above, the "Enter
an integer:" is immediately followed by a gets (yeah, that is “get string”), which is what
terminals typically capture when you are typing stuff into a shell: it’s text! You need to
take that string and convert it to an integer with the to_i method. If you had an integer and
wanted to make it into a string, you would use ... you guessed it: the to _s method, as in
lOl.to.s => "101".

So far we have looked at positive conditionals (“if true then do ...”), but there are also
negative conditionals, such as “if !(true) then ...” and “unless true then ...”. That is a little
different. If you have written JavaScript code, then the negation symbol (!) might be
familiar to you. But the unless keyword is pretty foreign and, thankfully, not often used.
However, unless can make things more readable. Take a look at the following examples.

One way is to use the not keyword:

if not (x == y)

Chapter 6: Ruby and IBM i • 67

You can also use the negating ! (exclamation point, or bang) operator:

if I(X == y)

Both of these examples use parentheses to set apart the expression being tested. In the
first example, you can do this:

if not x == y

However, you can’t omit parentheses in the second example because the negating !
operator binds more tightly (precedence) than the not keyword. In other words, consider
what happens if you do this:

if ।x == y

You’re really, in effect, comparing the negation of x with y:

if (ix) == y

So now to an example that uses unless:

unless x == y

It’s not immediately evidenl, but it is the same as this:

if not x == y

The if, else, elsif, unless, and end conditionals can get pretty messy, so I highly
recommend that you use indentation to make the code more readable. The nested code
can be pretty hard to read:

68 • Open Source Starter Guide for IBM i Developers

if x > 50

if x > 100

puts "Big number"

el se

puts "Medium number"

end

end

The code below looks “more better” to me.

if x > 50

if x > 100

puts "Big number"

else

puts "Medium number"

end

end

My guess is that you are hanging in there with these concepts because, well, you probably
use them in RPG every day. The unless keyword and the negation symbol (!), to some
extent, are probably new to you.

Assignments and conditionals and get a little hard to track if you are not familiar with the
equality symbol (==). In RPG, we might evaluate and branch conditionally on something
like this:

x=2

if x = 1

puts "Made it through"

puts x

end

Chapter 6: Ruby and IBM i • 69

Logically, you would think that this code would output nothing, nada, zilch because x was
assigned a value of 2 and we only execute the code if the value of x is 1. Right? Wrong!
What we did in actuality is revealed when we run the code:

irb(main):031:C> if x=l

irb(main)-032:1> puts "Made it through"

irb(main):O33:l> puts x

irb(main):034:l> end

(irb):31: warning: found = in conditional, should be ==

Made it through

1

=> nil

Our nifty program generated the output Made it through, and the value of x is 1!

Looking at the output and reading the warning message, you do a quick dope slap on
the forehead: “1 assigned the value 1 to x rather than evaluated the value of x!” Aye, yi,
yi! My forehead has a well-defined handprint because of just this error. Repeat after me:
“Assign with '=' and evaluate with ’==' ”.

With that slight tweak and a bit more code to clearly cxpicss the issue:

irb(main):O36:O> if x==l

irb(mai n):037:1> puts "Dope slap!"

irb(main):038:1> el se

irb(main):039:1* puts "The value is #{x}"

irb(mai n):040:1> end

The value is 2

Whew! One less dent in the head.

Moving on, let’s “case” the joint.

70 • Open Source Starter Guide for IBM i Developers

Using Case
Case is a helpful keyword because it can reduce the complexity when multiple
evaluations will be happening in a block of code but only a single result will be returned.
This would be similar to the Select- EndSL in RPG. Basically, the code looks for a
matching condition when like this:

print "Enter your name and I’ll guess ";

answer = gets.chomp;

print "Is it Pete? <press enter>";

gets;

case answer

when ’’Pete"

puts "See, I was right"

exit

when "Bob"

puts "Well, Bob is an OK name"

el se

puts "Hmmm...I wouldn't have guessed your name was #{answer}"

end

This is a simple program with a couple of new things. First, you’ll notice that we are
using the chomp method on gets. What chomp does is remove the newline character from
the end of the string that is entered. Although not always necessary, chomp can ensure
that all you are getting from the “prompt” is the string of characters you are expecting.
Second, you can see the case syntax used here. Basically, it evaluates the variable and
looks for a match in each when statement. This can be very flexible because, as you might
remember, Ruby is an untyped language. So you could write something like this:

print "Enter something ’’;

a = gets.chomp;

a = Float(a) rescue a;

case a

when 1..5
Continued

Chapter 6: Ruby and IBM i • 71

"It's between 1 and 5"

when 42

"It's the meaning of life!"

when String

"You passed a string"

el se

"You gave me #{a} -- I have no idea what to do with that."

end

There’s something new here as well: rescue. We have spent no time looking at error
handling, so there you go! Rescue is basically a way of catching errors. We’ll do no deep
dive here; I’ll just give a quick and dirty explanation of error handling in Ruby.

A Brief Aside into Error Handling
In our example above, we really don’t know what the user will enter. If we expect a
number, inevitably the user will enter a string and vice versa. Since everything entered
at the command line and returned by gets will be a string, we may need a way to
intelligently convert one data type to another. So, in this example, I attempt to convert
the string returned from gets to a Float (floating point decimal). That will work great if a
number is entered, but it will raise an error and fall over if it is anything else.

We can actually sec what the exception is if wc capture it and examine a couple of
properties. Let’s rework the example and sec what wc get:

print "Enter something ";

a = gets.chomp;

begi n;

a = Float(a);

rescue Exception => e;

puts e.message;

end;

case a

when 1..5
Continued

72 • Open Source Starter Guide for IBM i Developers

"It's between 1 and 5"

when 42

"It's the meaning of life!"

when String

"You passed a string"

el se

"You gave me #{a} — I have no idea what to do with that."

end

This is a wee bit more verbose because now we need to catch and process the error that
is raised, if any. In this case, if we entered two as the value, then we would see both the
exception and the output “You passed a string”, like this:

Enter something two

invalid value for FloatO: "two"

=> "You passed a string"

So with that brief primer on case statements and error handling, let’s move on to some
other stuff that I think you’ll run into early on in your Ruby programming foray: file, I/O,
and system operations.

File, I/O, and System Operations
My guess is that, at some point in time, you’ll have to interact with more than just
variables and parameters. You’ll need to store, retrieve, and update data, which is typically
called a CRUD operation (Create, Read, Update, and Delete) when accessing a database,
or you might just need to read the contents of a text file. CRUD typically has a database
I/O focus, whereas accessing a text file is more along the lines of system operations.

We’ll look at both, but I am going to start with accessing a file from the IFS (or
something similar), and we may wait for database I/O until we jump into the Rails
portion of the book.

Chapter 6: Ruby and IBM / • 73

Ruby would have knowledge of local file system files, but we’ll need something beefier
in order to open up files and data in the IBM i native world. So let’s first look at just
accessing a file in the IFS, which Ruby has no problem with.

A Brief Aside into I/O
We have actually already been in the I/O arena because we have been using a REPL (irb)
as well as some Ruby files. In each case, the data and the execution of the program had to
come from somewhere.

In a command-line (REPL) program, two things exist in the environment that help with
I/O. First, three constants give us access to I/O: STDIN, STDOUT, and STDERR. These are
I/O objects dedicated to the proposition that all data should read and write (good skills to
have if you want a job). The job is to take input (read through STDIN) and produce output
(write—either to STDOUT or to STDERR if there is an error). Simple! In addition to the
three constants, Ruby also gives you three global variables: Sstdin, Sstdout, and Sstderr.
Why would we want these? Well, we probably wouldn’t want to reassign a constant to a
new I ZO method, but if we had a variable, we could point the constants to new methods
through the variable. It’s easier just to look at an example:

record = File, open C/tmp/demo”, "w")

$hold_.stdout = Sstdout

Sstdout = record

Sstderr = Sstdout

puts "We wrote to a file with Ruby!"

divzero = 10/0

record.close

The “good stuff’ happening here is that first we open a file with write (“w”) capabilities.
Then, we reassign the current global variable for Sstdout to Shold.stdout and assign the
current Sstdout to the record variable, which is pointing to the file. Just to make sure all
of our I/O is covered, we also assign Sstderr to Sstdout so that any errors are caught and
written to our file. We also made sure we had an error by dividing 10 by zero. That ought

to do it!

74 • Open Source Starter Guide for IBM i Developers

Our output is as expected when we open the file:

We wrote to a file with Ruby!
file_demo . rb: 8 : in ' / ' :
divided by 0 (ZeroDivisionError)

from file _demo . rb: 8 : in '<main>'

We captured the output we specifically wanted to write, and STDERR helped us out by also
writing any errors to the file as well.

With that brief aside into the STDs IN, OUT, and ERR, we can move on to the actual file
object itself.

Files
We already saw how to access a file. In the example above, we created and opened for
writing a file called demo in a folder called tmp. Let’s take a closer look at the options.

A file object represents a physical file somewhere in the system. Thus, you need to define
where, exactly, you are planning on creating or finding the file. So creating a file object
means pointing it to a file:

mode = "r"

file_name = "sample.txt"

f = File.open(file_name, mode)

Easy example! The open method will expect to find a file in the current folder named
sample.txt. The common “open” modes are:

• "r": read-only

• "w": write-only (overwrites anything in the file, if the file exists)

• "w+": read and write (overwrites anything in the file, if the file exists)

• "a": write-only (append—starts at the end of the file, if the file exists)

Of course, file permissions will play into the access of the files as well, but in most cases
you’ll be using one of the modes listed. We have already seen writing to files. Reading is
just as easy, but a little more background might be helpful before jumping in.

Chapter 6: Ruby and IBM / • 75

I/O objects are enumerable. That means that the .each method can be used to retrieve
one item at a time from the collection. We have already seen this in use with arrays and
hashes, but what “items” are in an I/O object? Basically, the items are strings that are
terminated with a newline character. If you were to open a standard file and read through
it, each “line” would be a string terminated by a newline character. You also saw that in
our “console” application. A gets method assumes a newline character as a terminator
primarily because you press Enter (return) to enter the data. That convention is pretty
standard, although there are ways to circumvent it.

The doilar-slash ($/) variable can be used to change what STDIN and STDOUT consider
an item. If you used $/ = "DING!" as the end-of-record indicator, you could continue to
enter data at the command line until “DING!” was entered, at which time STDIN would
consider the record entry done. The most important thing to remember here is that the
newline character will be the record terminator unless you define it otherwise. So now it’s
“I/O, I/O, it’s off to work we go.”

So now we know that a file object points to an actual file in the system, and that the file
will be enumerable so we can iterate through it. What’s next? Well, a demo or two might
cement this for you.

record = File.open(' /tmp/demo.txt", "w");

p "Enter your text and press <enter>";

print "Enter 'done' when you are done";

$hold_stdout = Sstdout;

Sstdout = record;

mytext =

while (mytext != "done”) do

mytext = gets.chomp

puts mytext

end

record.close;

This is very similar to what we looked at before but with a few embellishments. We
opened a text file in the tmp folder for writing. We then added a couple of prompts,

76 • Open Source Starter Guide for IBM i Developers

telling the user to enter text and press Enter and to use the word “done” as the indication
that they are finished entering data. We then assigned the record (file) to Sstdout so that
anything we enter is written to the file. We loop until we see “done” as the only thing
entered on a line and then close the file. Since we chomp the input and puts the text into
the file, we should end up with only a single newline at the end of each line of text. If we
didn’t chomp (I’m getting hungry!), then we’d have two new lines from gets/puts and
we’d have to modify the comparison to “done” to be “done\n” because gets would pick
up the record each time.

How about reading the file? It’s pretty straightforward although there are, again, a couple
of things to keep in your mind as you develop code to read the file. Time for another
demo.

record = File.open("/tmp/demo.txt", "w") ;

p "Enter your text and press <enter>";

print "Enter 'done' when you are done";

$hold_stdout = Sstdout;

Sstdout = record;

mytext =

while (mytext != "done") do

mytext = gets.chomp

puts mytext

end

record.close;

Turn off writing to file

Sstdout = $hold_stdout

now open it for reading

record = File.open("/tmp/demo.txt", "r");

puts "Reading the file";

record.each {|1| print 1};

record.close;

Chapter 6: Ruby and IBM i • 77

Not a whole lot added. The first thing to attend to is to get our output pointing back to
the console, so we take the $ stdout object that was on “hold” and reassign the current
Sstdout to our saved $hold_stdout. If we hadn’t done that, then as we read through the
file, it would attempt to output to the file, which was opened as read-only anyway but
would have caused quite a ruckus. Next, we opened the file as read-only and just added
a line to the output to indicate we were now reading through the file. We have a file I/O
object, and we know that I/O objects are enumerables, and thus we can use .each, so we
do! Using .each passes the enumerated item to the block, which just prints the output.
Voila! We have output!

As an alternative to using the .each method on the file object, you might ask, “Why don’t
you use read as the method for reading through the file?” Ah! Good question! Read will
read the entire file, newlines and all, into memory. Yes, you could do that and print the
whole thing in one action, but there aren’t many instances where that would make sense.
Maybe read a whole file and then write the whole thing out to a screen or page. But in
many cases, you’ll want something that delivers data in more bite-sized pieces. For that,
you can use .each, or you can use the readline method, which will read the data until it
gets to the “record separator” character (newline \n in our case). Here is what our code
would look like using readline.

record = File.open("/tmp/demo.txt", "w");

p "Enter your text and press <enter>";

print "Enter 'done' when you are dore";

$hold_stdout = Sstdout;

Sstdout = record;

mytext =

while (mytext != "done") do

mytext = gets.chomp

puts mytext

end

record.close;

Turn off writing to file .

Sstdout = $hold_stdout
Continued

78 • Open Source Starter Guide for IBM i Developers

now open it for reading

record = File.open("/tmp/demo.txt", "r");

puts "Reading the file";

while (!record.eof) do

mytext = record.readline;

print mytext

end

record.close;

I/O is not the only thing you may want from a file object. Sometimes, you may just
want to know if it exists, or is a file or a directory, or is writable. There is a collccuon of
commands that can help here. These don’t apply only to files, but also to I/O objects in
general.

Does a file exist?

Fi1 eTest.exi st?("/tmp/demo.txt")

Is the file a directory? A regular file? A symbolic link?

FileTest.di rectory?("/tmp")

Fi1 eTest.fi1e?("/tmp/demo")

Fi1 eTest.symli nk?("/tmp/demo.txt")

Is the file readable? Writable? Executable?

FileTest.readable?("/tmp")

FileTest.writable?("/tmp")

FileTest.executable?("/tmp/demo.txt")

Chapter 6: Ruby and IBM i • 79

These methods will return a true/false response. Hopefully, you can see the utility here.
Rather than open a file for reading, you may want to use FileTest.exist? and test first,
before reading or writing.

System Commands
This section is particularly challenging because we have two systems we are dealing
with. Ruby really only understands PASE because Ruby is running in PASE (A1X), and
that’s the world in which it lives. But there is a bigger, more robust universe that the
PASE world spins in, and that is IBM i. We dealt with this a bit in the introduction and
chapter 2. So let’s first deal with the standard, off-the-shelf kind of command that gives
us information about PASE. That would be the system command.

On the face of it, you’d think that execfls -') would shell out and return the list of files
in your home directory. It does return the list, but it exits the current process. So if you
are in irb and run execfls -'), then you’ll sec a list of files, but you’ll have exited the irb
process. Anything run with exec will do this. Not very handy. A better approach is to
use the system command, systemf'ls ~") will do what you expect: shell out to the system
(PASE in our case) and then run the command and return the data. You can also use
backticks (') around the command as a shortcut, but the results will be a bit different:
the values are escaped so that you’ll see the '\n' after each entry, rather than a line-by-line
list. %x is also shorthand for system and returns results identical to the backtick method.
Basically, system will shell out and run the command you requested, returning the data (if
there is any) as well as “true” or “false,” indicating that it completed without error or not.
An example would be something like this:

irb(main):009:0> system("which ruby")

/PowerRuby/prV2Rl/bi n/ruby

=> true

With backticks

’which ruby’

Or %x •

%x(which ruby)

80 • Open Source Starter Guide for IBM i Developers

*NIX geeks love this stuff, so it is no surprise that support for system commands is there,
out of the box. But what about IBM i commands? Well, that takes a bit more effort.

The Ruby Toolkit
Here, we have to cross “the great divide” from one OS into another. Right now,
depending upon the Matz’s Ruby Interpreter (MRI) you are using, you are either living
in a non-IBM world or you are in the PASE world. Running the system commands above
could be done in Windows, Linux, AIX, Mac, or PASE. The syntax would be similar
(though the commands would be executed a bit differently) but pretty much consistent
across OSes. That is equally true for access to IBM i commands and programs.

If you read through chapter 4 (and I hope 1 did a good enough job to leave you with some
understanding of how XMLSERVICE works), then you already know that we have two entry
points into the IBM i world: REST (HTTP) or DB2. The good news is that regardless
of what OS you are accessing the IBM i from, the method and approach will be pretty
much the same. The best part is that you can build your examples from an OS you feel
comfortable with, then move them to PASE pretty much trouble-free.

Although we have both REST and DB2 methods of connecting to IBM i with the toolkit,
the preferred method will most often be DB2. If we are dealing with Ruby, which we are,
then ActiveRecord will be the means to our ends. There is an ActiveXMLService class that
wrappers the ActiveRecord class.

In chapter 4, we talked about the different toolkits and how each of the IBM i open source
software (OSS) products already ships with its own. Of course, you can always download
the XMLSERVICE library and install and use it as well, but having the toolkit hi the product
makes life simpler. If you are using PowerRuby, you have what you need. If you are
using either LUW MRI or JRuby, you can use the XMLSERVICE library or, with J Ruby, you
could use the JTOpen tools (are those enough options for you?).

Let’s start simply, by looking at a standalone Ruby script using ActiveRecord to connect to
IBM i and run a command. Here is the code:

requi re 'xmlservice'

require 'yaml'
Continued

Chapter 6: Ruby and IBM i • 81

data=YAML::1oad(File.read("credent!als.yml"));

user = data["user"]

password = data["password"]

Act’veXMLServi ce::Base.establ1sh_connecti on(

connection: 'ActiveRecord', adapter: 'ibm_db', database: ’'LOCAL',

username: "#{user}", password: "#{password}"

)

wrksysval = XMLService::I_SH.new("system -i 'WRKSYSVAL SYSVAL(QTIME)
OUTPUT(-PRINT)

wrksysval.xml service

puts wrksysval.out_xml

You know this stuff, but let’s walk though it anyway. The first require brings in the
resources for XMLSERVICE. There is an xmlservice gem file that is a wrapper for the
XMLSERVICE library that ultimately is called. The second require brings in resources
to read the YAML file. YAML (Yet Another Markup Language) is used quite a bit for
setting configuration options for Ruby apps. In this case, I used a YAML file to store the
credentials, so we don’t have hard-coded credentials in our code, and if we need to, we
can change the credentials in the file for all the scripts that might use it. Immediately
below the YAML require is the reference to the YAML file itself being loaded into a
variable called data. Then we assign the values from the data object into variables for
user ID and password, which we in turn use to connect to IBM i.

Next comes the real meat of the script, calling the command on IBM i. Wc do that in a bit
of a sneaky way by invoking a shell script in PASH.

wrksysval = XMLService::I_SH.new("system -i 'WRKSYSVAL SYSVAL(QTIME)
OUTPUT(*PRINT)'")

The call to LSH.new (“I” being IBM i and “SH” being a shell invocation) builds a PASE
system call, which, in turn, calls a “native” IBM command and outputs to a PRINT job,

82 • Open Source Starter Guide for IBM i Developers

which is piped back to the XMLSERVICE call and is returned to the WRKSYSVAL object.
The wrkactjob.xmlservice is the call to run the script. The puts statement outputs the text,
which is basically the printed output from the call. Pretty straightforward.

We can also take the REST approach and use the REST interface to make the call. That
script looks slightly different:

require 'xmlservice'

require ’yaml’

data=--YAML: :load(File. read ("credent! al s .yml ")) ;

user = data["user"]

password = data["password"]

Acti veXMLServi ce::Base.estab Ii sh_connection(

connection: "http://10.0.10.205:7070/cgi-bin/xmlcgi.pgm",

username: "#{user}",

password: "#{password}“

)

wrksysval = XMLService::I_SH.new("system -i 'WRKSYSVAL SYSVAL(QIIME)
0UTPUT("PRINT)'")

wrksysval.xmlservi ce

puts wrksysval.out_xml #nice

In this slightly different script, our ActiveXMLService class method that makes the
connection uses a REST (HTTP) connection type rather than an ActiveRecord type of
connection. Unknown to you, but known to me because o! the IP address listed, is the fact
that the REST call is being made to a different partition (it could have been across the

world). So REST can be a handy way to grab data from a remote system.

The result is the same: a text file containing the *PRINT output from the WRKSYSVAL
(Work with System Value) command is returned and displayed in the puts statement.

http://10.0.10.205:7070/cgi-bin/xmlcgi.pgm

Chapter 6: Ruby and IBM i • 83

<?xml version='1.0’?>
<myscript>
<sh error='fast'>
<![CDATA[
5770SS1 V7R1M0

Name
QTIME
Note: > means

* *
</sh>
</myscript>

100423
Current
value
09:21:14
current value
★ * * END

System Values
VAS2 09/18/16

Shipped
value

is different from
OF LISTIN

Page 1
09:21:14 MDT

Description
Time of day

the shipped value
G *****]!>

No surprises! Calling a program takes a little more work, just like it does when you
invoke XMLSERVICE from a POST. With program calls, you have parameters to pass
and data, perhaps, to return, so there is more involved. Let’s begin by looking at the
incredibly complex program we are going to call. RPG, of course:

dcl-pr demol extpgm;

chad char(l) ;

decl packed(7:4);

end-pr;

del-pi demol;

charl char(1);

decl packed(7:4);

end-pi;

charl = 'C ;

decl = 321.1234;

return;

Doncha just love free-format RPG? We have a simple RPG program with a single
procedure that basically sets two variables and returns. How would we call that program?
Well, here’s how:

84 • Open Source Starter Guide for IBM i Developers

require 'xmlservice'

require 'yaml'

data=YAML::load(Fi1e.read("credentials.yml"));

user = data["user"J

password = data["password"]

ActiveXMLServi ce::Base.establi sh_connection(

connection: 'ActiveRecord', adapter: 'ibm_db', database: '*LOCAL',

username: "#{user}", password: ”#{password}"

)

pgm = XMLService::I_PGM.new('DEM01', 'RUBYDEMO') «

XMLService::I_a.new('inchara',1,'Z') «

XMLService: :I_p.new('indecl' ,7,4,11.1111)

pgm.xmlservice

puts pgm.to_xml

puts "input parmO: #{pgm.input.PARMO.inchara}"

puts "input parml: #{pgm.input.PARM1.indecl}"

puts "--"

puts "output parmO: #{pgm.response.PARMO.inchara}"

puts "output parml: #{pgm.response.PARM1.indecl}"

The first 14 or so lines arc familiar. They just set up the connection stuff. Starting with
the pgm variable, things get more interesting. Now we have an I.PCM.new method to
create a call to an RPG program (as opposed to the LSH.new method that set up the shell
script call). In our XMLService call, we define two parameters: an La type and an l_p type,
both of which arc defined as “io” parms so they can be used for both input and output.
We RPGers know what data types “a” and “p” mean (“alphabetic” and “packed”), so we
know we are passing a character and a number. We pass in a Z and the number 11.1111.

Chapter 6: Ruby and IBM i • 85

Looking at the program, we know that what will be returned is a “C” and a 321.1234—at
least, we hope rhat is what we get back. Let’s call it!

<pgm name='DEMOr lib='RUBYDEMO' error='fast’>

<parm var='PARM0' io='io'>

<data var='inchara' type='la'>Z</data>

</parm>

<parm var='PARMl' io='io'>

<data var='indecl' type='7p4'>ll.llll</data>

</parm>

</pgm>

input parmO: Z

iDDut parml: 11.1111

output parmO: C

output parml: 321.1234

Nice! The object returned by the XMLService call contains the in and out parameters, as
you can see from the puts statements: puts "input parmO: #{pgm.input.PARMO.inchara}".
Here, pgm contains an input object that contains a PARMO object named 'inchara', which
contains the value of the parameter.

Your challenge in calling an RPG program wil! probably be in defining the parameters
and types. There is a listing here: http://yips.idevcloud.com/wiki/index.php/XMLService/
DutaTypes. But as 1 said before, these URLs can move, so check my website
\petesworkshop.com) or common.orp or, well, you know how to use Google. Try that!

Alternatives
We still have a couple of other ways to skin this cat. You can, and will with Rails, use the
ActiveRecord gem to directly I/O to a DB2 database. You’ll probably head this direction
with Rails, but you might have some need to read and/or write directly to DB2 on IBM
i without the overhead of Rails. Let’s take a look at an example that would run an SQL
statement directly and return the data.

http://yips.idevcloud.com/wiki/index.php/XMLService/
/petesworkshop.com
common.org

86 • Open Source Starter Guide for IBM i Developers

This example is a bit long, but it will show you the process of creating a table, populating
it with data, and then reading though that data. Some of it should be familiar territory.

#!/usr/bin/env ruby

require 'active_record'

require 'yaml'

data=YAML: : loadfFil e. read("credent! al s. yml

user = data["user"]

password = data["password"]

Acti veRecord::Base.establ i sh_connecti on(

:adapter => 'ibm_db',

:username=> "#{user}",

:password => ”#{password}",

:database => '’•LOCAL',

: schema => 'empDemo'

)

Create a table in the schema

ActiveRecord::Schema.define do

create_table :employees do |table]

table.column :emp_id, :integer

table.column :firstname, :string, limit: 30

table.column :lastname, :string, limit: 50

table.column :address, :string, limit: 60

table.column :city, :string, limit: 40

table.column :st, :string, limit: 10

table.column :zip, :string, limit: 9

end

end

class Employee < ActiveRecord::Base
Continued

Chapter 6: Ruby and IBM i • 87

end

emp = Employee.create(:emp_id => 22,:firstname => 'Chester1, :lastname=>
'BesterTester',:address=>'123 East Main Street:city=>'San Antoniost
=>'Texas',:zip=>'78258')

emp = Employee.create(:emp„id => 44firstname => 'Mister', :lastname=>'
Master',:address=>*222 East Oak Street:city=>'San Antonio’st=>'Texas
',:zip=>’78255')

emp = Employee.create(:emp_id => 62firstname => 'Peekup', :1astname=>'
Andropov',:address=>'321 West Streetcity=>'San Antonio',:st=>'Texas',
:zip=>'/8253')

Alternate method

emp = Employee.new

emp.emp_id = 64

emp.firstname = ’Peekup'

emp.1astname='AndPeekupAgai n'

emp.address = '999 Baltimore Street'

emp.city='San Antonio'

emp.st='Texas'

emp.zip='78251’

emp.save

puts '--- '

puts Employee.find_by_id(1).lastname

puts Employee.fi nd_by_emp_i d(62).1astname

puts Employee.find_by_fi rstname('Peekup').lastname

puts Employee.find_by_lastname(1 Master').fi rstname

puts '--- ’

Employee.find„each do Iempl|

puts empl. fi rstname « ' ' « empl . 1 astrjame

end

Continued

Employee.fi
Employee.fi

88 • Open Source Starter Guide for IBM i Developers

puts '--- '

Employee.where("firstname = 'Peekup'").find..each do |empl|

puts empl.firstname « ' ' « empl.lastname

end

puts '--- '

#Acti veRecord:: Mi g rati on.d rop_table(:employees)

The first 17 lines should be familiar. We require 'active_record' and 'yaml' gems and set up
the connection. The only things that are different in the connection are that we are using
ActiveRecord instead of ActiveXML or REST, and also we reference a schema (library)
where the table will be stored (empDemo).

With the connection established, we then create a new definition in the schema, which
turns out to be a “table” definition where a table called employees is defined:

ActiveRecord::Schema.defi ne do

create_table .-employees do I table |

table.column :emp_id, :integer

table.column ifirstname, :string, limit: 30

table.column zlastname, zstring, limit: 50

table.column :address, :string, limit: 60

table.column :city, :string, limit: 40

table.column :st, :string, limit: 10

table.column :zip, :string, limit: 9

end

end

So far so good. Next, we subclass the ActiveRecord::Base class, so we inherit the
ActiveRecord Base class methods:

class Employee < ActiveRecord::Base

end

Chapter 6: Ruby and IBM i • 89

Next, we create new records by using the Base class create method:

emp = Employee.create(:emp_id => 22,:firstname => Chester', :lastname=>
'BesterTester',:address=>'123 East Main Street',:city=>'San Antonio',:st
=>'Texas',:zip=>'78258')

Lather, rinse, and repeat.

We can also create new database records by first instantiating a new object, populating
the properties, and then saving it to the database. To wit:

Alternate method

emp = Employee.new

emp.emp_id = 64

emp.firstname = 'Peekup'

emp.1astname='AndPeekupAgai n'

emp.address = '999 Baltimore Street'

emp.city='San Antonio'

emp.st='Texas'

emp.zip='78251'

emp.save

Finally, here are a couple of ways to retrieve and display the records:

puts '--- '

puts Employee.find_by_‘ d(l).lastname

puts Employee.find_by_emp_id(62).lastname

puts Employee.find_by._fi rstnameC Peekup') .lastname

puts Employee.find_by_lastname('Master').fi rstname

puts '--- ' ,

Employee.find_each do |empl|
Continued

90 • Open Source Starter Guide for IBM i Developers

puts empl.firstname « ' ' « empl.lastname

end

puts '--- '

Employee.where("firstname = 'Peekup"') find_each do Iempl|

puts empl.firstname « ' ' « empl.lastname

end

puts '--- '

#Acti veRecord::Mi gration.drop_table(:employees)

The code below the first puts line outputs a property of a record found by using the
find method. The “finds” are generated based on the columns created in the table. So,
without having to create the methods, you immediately have a find_by method for each
column. The puts simply outputs a property of the “found” record.

The code below the second putsline simply iterates through the records returned by
find_each, which returns a collection of Employee records. In this particular example, we
just output the firstname and lastname properties.

The code below the third puts line simply iterates through the records returned by
a where clause followed by a find.each, which returns a collection of Employee records
with a firstname property of'Peekup'. In this example, we again just output the firstname
and lastname properties even though all columns of data are available in the object
returned.

Using J Ruby with ActiveXMLService and ActiveRecord
We haven’t touched on how to approach accessing IBM i resources from Ruby if we
choose to use the JRuby MRI. JRuby offers another option that we can explore, which is
connecting through JDBC using the JTOpen driver. JTOpen opens a whole other world to
JRuby because JTOpen has many API entry points to allow us to access IBM i resources.
I created a class that implemented a few of these APIs, so let’s take a look.

The first part of the file conta;,is a “preamble” that explains how the class works and how
to load it (mostly to assist my failing memory)

Chapter 6: Ruby and IBM i • 91

class Jtol

to use this class, you will need to be in the same folder as

jt400.jar or have it on your classpath

Load the file: load "drive_and_pathname/JtoI.rb"

Create an instance of it: rdemo = JtoI.newQ

establish a connection: rdemo.connect('IP','USER','PASSWORD')

run the listspoolfiles method: rdemo.1istspoolfiles('LIB','OUTQ')

that's it

Class variables

©©system = nil

@@sysIP=ni1

©@user=ni1

@@pass=ni1

the necessary requires - lava and the Jtopen (jt400) jar

require 'java'

require 'jt400.jar'

This is a little different from the usual Ruby directives.

This actually tells JRuby which Java classes to load based

on package names

include_packaqe 'com.ibm.as400.access'

include_package 'com.ibm.as400.access.AS400Message'

i ncIude_package 'com.i bm.as400.access.CommandCal1'

This pulls in classes from the Java language that will be used

by JRuby

In this particular case, I am using these system classes to load

the properties file.

Could I do this in Ruby? Yes! They are here as examples

java_import 'java.uti1.Properties'

java_import 'java.io.FilelnputStream' .

java_import 'java.io.InputStreamReader'

java_import 'java.lang.StringBuffer'

92 • Open Source Starter Guide for IBM i Developers

With the setup out of the way, we can take a look at implementation.

this loads the properties file:

def get_properties_from_file

props = Properties.new

fileinput = Fileinputstream.new("ibmi.properties")

props.load(fi1 eInput)

fileinput.close

props

end

This simply lets us know that we have successfully initialized

the class

def initialize

puts "Ready"

end

We need to connect to the IBM i, so we have what we need in

the properties file

Yeah, we could also use a YAML file

def connectQ

props = get_properties_from .file

@@sysIP=props['ip']

@@user=props['user']

@@pass=props['password']

©©system = AS400.new(@@sysIP,@@user,©@pass)

if ©©system != nil

puts 'Connected'

end

end

Chapter 6: Ruby and IBM i • 93

Once we call the connect method on the instance, we can do something useful. In this
case, we will list some spool files.

def 'listspool files (lib, outq)

puts "Now receiving all spooled files synchronously"

splfList = SpooledFileList.new(@@system)

splfLi st.setUserFiIter("*ALL")

splfLi st.setQueueFi1ter("/QSYS.LIB/"+li b+".LIB/"+outq+".OUTQ")

open list, openSynchronouslyO returns when the list is completed,

spl fLi st. openSynchronouslyO

Get a map containing the spool file objects

splobjs = splfList.getObjectsf)

Interate through the objects

splobjs.map do IsplfI

splfName = spl f. getNameO # SpooledFile.ATTR_SPOOLFILE = 104

splfNum = spl f. getNumberO

jobName = splf,getStringAttribute(PrintObject::ATTR_JOBNAME)

jobUser = splf.getStringAttributefPrintObject::ATTR„SPLF_CREATOR)

jobNum = splf.getJobNumber()

Output some info

puts splfName «" " « jobName «" "« jobUser «" "« jobNum

Output the text of the spooled file

getSpoolFile(splf)

end

clean up after we are done with the list

splfList.close

end
Continued

94 • Open Source Starter Guide for IBM i Developers

def getSpoolFile(splf)

#

pl = PrintParameterList.new()

pl.setParameter(SpooledFile::ATTR_MFGTYPE, ”*WSCST")

pl.setParameter(SpooledFile::ATFR_WORKSTATION_CUST_OBJECT, "/QSYS.LIB/
QWPDEFAULT.WSCST")

inpStream = splf.getTransformedlnputStream(pl)

isr = java.io.InputStreamReader.new(inpStream)

Read the input stream buffer and create a string buffer

buf = Java::char[32767].new

buffer = java.lang.StringBuffer.new

if isr.ready

bytesRead = 0

bytesRead = isr.read(buf, 0, buf.length)

while (bytesRead != -1)

#puts bytesRead

if bytesRead > 0

#buffe r.append(j ava.1ang.St ri ng.new
(buf,0,bytesRead))

puts java.lang.String.new(buf,0,bytesRead)

end

bytesRead = isr.read(buf, 0, buf.length)

end

end

end

An example of a script that uses this class would be:

#IBM i jruby demo

Change this path to your OWN

load ''/home/pete/demos/j ruby/JtoI. rb"
Continued

Chapter 6: Ruby and IBM i • 95

rdemc = JtoI.newQ

rdemo. connO

rdemo.listspoolfiles('QGPL' , 'QPRINT2')

The thing that blows the minds of some folks who work with Java and Ruby in this
environment is the interspersing of both the Ruby and Java code. For someone who
works in Java most of the time, it is sometimes easier just to call the Java APIs that you
need rather than use Ruby. In some cases, where there isn’t an equivalent, you just call
the Java classes directly.

What I like about this approach is that you don’t have to have all the Java stuff (JI Open,
in this case) wrappered in Ruby methods. You can use what you want. 1 can see an
advantage, though, to wrappering the JTOpen APIs so that it is possible to call all the
IBM i commands and APIs from Ruby. At some point, I’d love to create a new project
that either does wrapper this stuff or aliows me to just tweak the Ruby toolkit to use
JDBC for connecting. With a little time, maybe I will.

There is a simpler example to look at, and that would be creating an interactive SQL
command process (a very basic one). It looks like this:

def runSQLCmd

va = E"jdbc:as400://#{@@sysIPj-", "#{@@user}" , "#{@@pass}"J

com.ibm.as400.access.jdbcClient.Main .main va

end

Ridiculously simple. Especially when you invoke it with a snippet of script:

#IBM i SQL demo

Change this line to your OWN path in the IFS

load "/home/pete/demos/jruby/ltol.rb"

Continued

96 • Open Source Starter Guide for IBM i Deve‘opers

rdemo = JtoI.newQ

rdemo. connectQ

puts 'Run an SQL command:'

rdemo.runSQLCmd()

You’ll be prompted for an SQL command. I just ran this simple Select:

Ready

Connected

Run an SQL command:

>select * from employee.employee

EMPID, LMPFNAME, EMPLNAME, EMPADDRESS, EMPCITY, EMPST.ATE, EMPZIP,
EMPEMAIL,PASS_WORD

1,Admin,Administrator,12345 Mainly Street,Anytown2,UT,84111,
cbestertester@gmai1.com,PASSWORD

2,Chariie,BesterTester,1234 Ash,Anytown,UT,84999,
tester@gmail.com,PASSWORD

3,Seeme,Going,12 East Oak,Anytown,UT,84117,yettanutha@gmai1.com.PASSWORD

4,Nuthi n,Doi ng,156 Mai n,MyTwon,TN,43221,bubba@gmai1.com,PASSWORD

5,Peekop,Andropoff,444 East St,MyTown,TN,0000,demo@gmai1.com,PASSWORD

6,Andy,Rooney,111 Si n Street,Reno,NV,77711,petereno@reno.com,PASSWORD

7,Maybe,Later,123 East Main,SLC,UT,99999,
someth!ng@somethi ng.com,PASSWORD

It isn’t pretty, but it’s serviceable. Note that the script instantiates the class (rdemo =
Jtol.newO), and the initialization routine responds with “Ready.” Then we connect with
rdemo.connectO, and the method responds with “Connected.” Then our puts statement
prompts us for the command, which 1 entered as select * from employee.employee.
Bingo! We got our output! Simple. Powerful.

You could also build a simple command processor:

Chapter 6: Ruby and IBM i • 97

def runCommand(cmdText)

cmd = CommandCal1.new(@@system)

cmd.run("#{cmdText}")

Print out the messages that came back

messageList = cmd.getMessageList() # ArrayList?

rnessageList.each { |msg| puts "Message "« msg.getfext }

end

Nothing fancy, but it gets the job done.

This is exactly why I love open source on IBM i! There are so many different yet very
powerful ways to get the job done.

Something New
The whole purpose of this chapter was to whet your appetite for trying something new
and innovative. Try to solve a difficult problem as cleverly as you can. These tools are
fun to use and have wonderful capabilities. Go for it!

A bit of wisdom: “As iron sharpens iron, so one
person sharpens another.” (Prov 27:17)

Rails and Ruby

Originally 1 was going to include the Rails chapter in the Ruby chapter, because,
well, most folks who are interested in Ruby are going to use Rails for creating Web
applications. You don’t have to use Rails for Web development in the Ruby language;
there are other Web frameworks out there that are written in Ruby: Sinatra, Padrino
(based on Sinatra), Cuba (aiy!), Cramp, Hanami, and a bunch of others. But Rails is the
800-pound gorilla, so we are going to check it out. I didn’t include it in the Ruby chapter
because, well, remember what happened to the alien heads in the movie Mars Attacks'.
when the yodcling started ... OK, you get the picture. You may need a minute or two to
decompress from all the new stuff thrown at you in the Ruby chapter. We’ll take a look
at the structure and components of a Rails app, and we’ll get you started in the Rails-
buildmg business, but that is about it. The Ruby chapter introduced you to the “getting
to IBM i” parts, and there is certainly much on the Internet on how to create Rails
applications. The good news here is that PowerRuby makes building Rails apps on IBM i
drop-dead simple. With that foundation, you can build with confidence!

Getting Started with Rails
Rails has been around since 2005, which makes it a “mature” product. In fact, it has been
around so long that you’ll need to be careful about which version of Ruby you are running
and what version of Rails is supported on that version of Ruby. Most of the time, you

100 • Open Source Starter Guide for IBM i Developers

won’t have to give it a second thought because the version of Rails that you download
and the version of Ruby that you download will usually be compatible. But in the case of
IBM i-specific implementations, you might find yourself running a slightly older version
of Ruby and thus might need to be aware of that version when installing other gems that
may be needed. The good news with an IBM i-specific implementation like PowerRuby
is that the gems you will need should already be installed for Rails, so you won’t have to
go through the convoluted steps to get the gem versions aligned with Ruby and Rails.

So what is a gem? Well, in keeping with the “jewelry” motif of the Ruby name, a gem is
a package manager that can install components of a Ruby program. Gems encapsulate
functionality into a downloadable module that can be installed automatically. There
are tens of thousands, maybe hundreds of thousands, of gems at https://rubygems.org.
They have been contributed by the Ruby community and cover a wide variety of needs
and functions. Rails itself is a gem (a big one), and Rails has, at last count... well, it’s
really hard to count because some gems have dependencies on other gems that may
depend on other gems and ... you get the picture. The best part about gems is that they
are pretty much self-managing, so you won’t have to install things individually or
check dependencies. If your IBM i has access to an Internet connection, the gem install
command will pretty much handle everything.

The basics of a Rails installation are pretty easy, then. After you have successfully
installed Ruby (PowerRuby or JRuby on IBM i), you just run gem install rails if you are
running Ruby on Windows or Linux, or JRuby on IBM i. If you arc running PowerRuby
on IBM i, you don’t have to do anything. Rails comes “bundled” with PowerRuby, so
you’ll already have a compatible version after you finish installing PowerRuby. And,
speaking of “bundled,” in most cases, when you do run a gem install ..., you’ll see
Bundler running last as “bundle install.” Bundler really does all the heavy lifting. You’ll
find more information about Bundler at http://bundler.io/.

If you were to create a new gem that had dependencies on other gems, you would create
a Gemfile in your gem. Then, once your gem was installed, you’d run a bundle install
command, and the Gemfile would tell Bundler what other gems to install so your gem
will work. The Gcmfilc specifics minimum (and sometimes maximum) gem versions
that your gem needs. But, it’s pretty cool, all in all. I find the process of installing Rails
very similar to downloading and installing P fFs on IBM i, although Bundler is much

https://rubygems.org
http://bundler.io/

Chapter 7: Rails and Ruby *101

more automated. Bundler pretty much ensures that all the correct components are in
place after going through the process of installing a gem. Anyone who has slid down
into “dependency hell” with a Linux installation (or AIX/PASE, for that matter) will
appreciate the simplicity that Bundler brings to the Ruby/Rails table.

Building a Rails Application
Once Rails is installed, you begin to build your Rails app through a series of commands
that create specific components of the Rails app. You start with the command rails new
and give the application a name that becomes the base folder of the application. The
classic Rails tutorial will walk you through building a blogging application—so you
might see a command like this:

rails new myblog

A boatload of folders and files will follow:

E:\RailsApps>rails new myblog
create
create README.rdoc
create Rakefile
create config.ru
create .gitignore
create Gemfile
create app
create app/assets/javascripts/application.js
create app/assets/stylesheets/application.css
create app/controllers/application_controller.rb
create app/helpers/application_helper.rb
create app/views/layouts/application.html.erb
create app/assets/images/.keep
create app/mailers/.keep
create app/models/.keep
create app/controllers/concerns/.keep
create app/models/concerns/.keep
create bin
create bin/bundle

config.ru

102 • Open Source Starter Guide for IBM i Developers

create bin/rails
create bin/rake
create bin/setup
create config
create config/routes . rb
create config/application . rb
create config/environment. rb
create config/secrets . yml
create config/environments
create config/environments/development. rb
create config/environments/production . rb
create config/environments/test . rb
create config/ini-tializers
create config/initializers/as sets . rb
create config / initial izers/backt race s i lencers . rb
create config / in itiali zers /cookies_seria lizer . rb
create config / initial! zers /filter_parameter_l egging
create config/initialisers/inflect ions . rb
create config/initralizers/mime types.rb
create config/ ini tializers/session_store . rb
create config/ initializers/wrap paramet ers . rb
create config/loca les
create config/locales/en . yml
create config/boot . rb
create config/database. yml
create db
create db/seeds.rb
create lib
create lib/.tasks
create lib/tasks/.keep
create Irb/assets
create lib/assets/.keep
create log
create log/.keep
create public
create publicZ404.html
create public/422.html

Chapter 7: Rails and Ruby • 103

create public/500.html
create public/favicon.ico
create public/robots.txt
create test/fixtures
create test/fixtures/. keep
create test/controllers
create test/controllers/.keep
create test/mailers
create test/mailers/.keep
create test/modeIs
create test/models/.keep
create test/helpers
create test/helpers/.keep
create test/integration
create test/integration/.keep
create test/test_helper.rb
create tmp/cache
create tmp/cache/assets
create vendor/assets/j avascripts
create vendor/assets/javascripts/.keep
create vendor/assets/stylesheets
create vendor/assets/stylesheets/.keep

run bundle install
Fetching gem metadata from https://rubygems.org/
Fetching version metadata from https://rubygems.org/
Fetching dependency metadata from https://rubygems.org/
Resolving dependencies....................................

So you can sec that the final command was bundle install, and then there was a
LOOONNGG pause (at least for me), and then the output:

Using rake 11.2.2
Using i 18n 0.7.0
Using j son 1.8.3
Using minitest 5.9.0
Using thread_safe 0.3.5
Using builder 3.2.2

https://rubygems.org/
https://rubygems.org/
https://rubygems.org/

104 • Open Source Starter Guide for IBM i Developers

Using erubis 2.7.0
Using nokogiri 1.6.8
Using rack 1.6.4
Using mime-types 2.99.2
Using arel 6.0.3
Using jdbc-sqlite3 3.8.11.2
Using bundler 1.12.5
Using coffee-script-source 1.10.0
Using execjs 2.7.0
Using thor 0.19.1
Using concurrent-ruby 1.0.2
Using multi_json 1.12.1
Using sass 3.4.22
Using tilt 2.0.5
Using therubyrhino_jar 1.7.6
Using turbolinks-source 5.0.0
Using rdoc 4.2.2
Using tzinfo 1.2.2
Using loofah 2.0.3
Using rack-test 0.6.3
Using mail 2.6.4
Installing coffee-script 2.4.1
Installing uglifier 3.0.0
Using sprockets 3.7.0
Installing therubyrhino 2.0.4
Installing turbolinks 5.0.0
Installing sdoc 0.4.1
Using activesupport 4.2.5
Installing tzinfo-data 1.2016.6
Using rails-html-sanitizer 1.0.3
Using rails-deprecated_sanitizer 1.0.3
Using globalid 0.3.6
Using activemodel 4.2.5
Installing jbuilder 2.6.0
Using rails-dom-testing 1.0.7
Using activejob 4.2.5
Using activerecord 4.2.5

Chapter 7: Rails and Ruby *105

Using actionview 4.2.5
Installing activerecord-jdbc-adapter 1.3.20
Using actionpack 4.2.5
Installing activerecord-jdbcsqlite3-adapter 1.3.20
Using actionmailer 4.2.5
Using railties 4.2.5
Using sprock&s-raiIs 3.1.1
Installing coffee-rails 4.1.1
Installing jquery-rails 4.1.1
Using rails 4.2.5
Installing sass-rails 5.0.6
Bundle complete! 11 Gemlile dependencies, 54 gems now installed.
Use 'bundle show [gemname]' to see where a bundled gem is installed.

The using/installing pattern will be long or short, depending upon how many gems were
already installed at the proper level. In this case, 11 new gems were installed. Again, the
PowerRuby installation installs most of the required Gems initially for you.

At this point, reviewing the long listing on the last few pages, you might come to the
conclusion that Rails is pretty structured. In fact, it is highly opinionated (like that long-
winded brother-in-law). The oft-quoted “We can do this the hard way or the easy way”
phrase comes to mind. Rails stresses convention over configuration, so if you play by the
Rails rules, things will go easy for you. If not, youTl be spending a “night in the box”
(for you Cool Hand Luke fans). So let’s explore those rules a bit. If you really want a
full-blown Rails experience, there arc many tutorials out there, not the least of which are
those at https://guictesrubyonrails.org or https:fawww.rarstutorial.org/. The goal here
is to ground you in the basics of Rails development and, in the process, maybe give you
some ideas of how you could structure your code even if you are not running Rails.

Rails and MVC
The first thing to tackle is the basic, overall structure of the framework. Rails is a Modcl-
View-Controller, or MVC framework. You may have heard the term “MVC” before,
but life most TLAs (thrcc-lcttcr acronyms), you probably just nodded your head with a

glazed look in your eyes and sa'd, “yeah, got it.”

https://guides.ruhyonrails.org
https://www.railstutorial.org/

106* Open Source Starter Guide for IBM i Developers

The part of MVC that is easiest to understand is the view part, which in the Web world
is probably some kind of HTML output. Most often, the HTML file that is output isn’t
completely created on the fly: a template is used to format the page with “placeholders”
that indicate where dynamic data will go. Templates in the Rails world, by convention, are
.erb files (.erb stands for embedded Ruby file). In many ways, an .erb file is like the DDS
for a display file. You lay out where text and dynamic content reside, and, going one better

than a display file, indicate where pictures, other images, links, and other content go.
Unlike a “pure” HTML page, the .erb file can conta..', Ruby scripting directives as well, so
then it begins to look like a PHP, JSP, or .aspx page. Rails also takes advantage of partials,
which are segments of a page that can be included when an emire page is rendered. So a
common segment of HTML can be encapsulated in a partial, and that partial can then be
included, rather than recreating or copying the same segment over and over again.

With the easy part of MVC out of the way, the last two parts, model and controller,
have to be dealt with, and we already muddied the waters for view. Stepping back for a
moment, remember how I said that an .erb file can contain some Ruby scripting? Well,
that breaks the purist version of view. View should be view, period, but these days it is
rare to have a pure view; often the view will contain scripting that moves or manipulates
data independently of the model or controller. The model is typically where data for
the application is managed. You could call it the “business logic” of the application.
It operates on data, applies rules, and responds to requests. The controller handles the
“operational logic.” This could be something like handling data input and output, or it
may be dispatching requests to the model or interacting with a service. But as much as
MVC is supposed to represent a “separation of concerns” (a good thing), in most cases it
is about as easy to separate each concern as separating conjoined triplets. Nevertheless,
it is good practice to keep the M and the V and the C separate in your head as you write
code. Doing so can help you build more modular, maintainable code, and if you do it
right, you can DRY out your code so each piece is reusable in your app. (DRY stands for
Don’t Repeat Yourself, a familiar precept in the Ruby world.)

The reason I bring up the MVC pattern is that you’ll see it in Rails, in spades. When you
ran the rails new myblog command or the RAILSNEW command in PowerRuby and built
that initial framework, it structured the components in an MVC way. So, thinking in terms
of MVC structure, MVC will also help you find stuff (usually) in your Rails project.

Chapter 7: Rails and Ruby • 107

Structure of a Rails Project
Figure 7.1 shows the beast you create with rails new:

▼ DmyHog E’ Wortepaces-jails'myblog

► f app

bin

config

db

D lib

> O fog

r tU public

> ri test

D tmp

► L vendor

H .gitignore

config.ru

hl Gemfile

R Gemfile.lock

Rakefile

8 README, rdoc

Figure 7.1: Sample Rails project components

The app folder is where most of the code for your app lives. We’ll circle back to it in a
second,'The bin folder is where the gem wrappers (binsinhs) live. These were introduced in
Rails version 4 and provide a way for multiple Rails and Ruby cnviionmcnts to coexist. The
config folder is where the configuration scripts and properties live, so that you can configure
database connections, routes for your application, and a bunch of other options. The db
folder is where your database schemas will live along with migratiOns, a cool feature of
Rails that we’ll explore momentarily. The lib folder will contain extended modules for your
application. The log folder will contain (right you are!) logs generated by your application.
The public folder will contain static content that your base app will serve. The test folder
will contain your unit tests if you decide to create them. The tmp folder will contain
temporary files that your application might generate, such as cache files and PID references.

We already covered the Gemfile, but the Rakefile is something worth noting here. Rake
is a task-oriented script file that will execute a series of rake commands. Rake is similar

config.ru

108* Open Source Starter Guide for IBM i Developers

to the makefile in C in that you can set configuration options and run steps in sequence to
build or modify your application. It is basically a task-automation tool.

So, back to the app folder. This folder contains subfolders for the application structure.
You should immediately see the model, view, and controller folders and get a sense
of what they do. model will be empty for now because we really don't have an app
designed, so no logic for it has been written, view has a layout folder in it, and that is
where your .erb templates will live that apply to the entire app. This structure can get
quite complex over time as partials are added for other controllers that might be created.
But, generally, your templates live here. The controller folder will house the classes that
control input from your users and access to your Web pages.

There are a couple of other folders in the app folder that fall outside the MVC
convention. The assets folder has images, JavaScript, and CSS content that is served
by your app. The helpers folder contains small sections of code that usually render a
component of a page (view) so you aren’t cluttering up your controller folder. The mailers
folder will contain code for your email functions should your application need them.
Rails’Action Mailer is your friend here.

Database Access in Rails
Database access in Rails is one of the cool features that you’ll soon wish was present
in every application on all the platforms and frameworks you work with. To my
knowledge, Rails is the only place where this feature is so nicely implemented. Before
you start thinking that all applications have database access, so what is so “cool” about
Rails, let me tell you how it works, it starts with a “generate” statement. Rails uses the
generate command to create different components, so that you don’t have to hand tool
each component and thus possibly introduce something that unintentionally breaks the
“convention” rule. We are going to start with the model in our Rails app, so we use this
command to create a model for our blog:

rails generate model Article titleistring textitext

We are starting out very slowly, but there is quite a bit of magic in that one statement
The response to the command is that Rails spews out quite a few files. We have
articles.rb suddenly appearing in app/models and we have something called

Chapter 7: Rails and Ruby • 109

rmgrate/201 60728231 232_create_articles.rb in the db folder. “What is that?” you ask.
That, my friend, is magic\ What Rails did was create a script to create a database table.
The reason for the funky name and the reason it lurks in the migrate folder is because it
will track every change to the database we make and allow us to roll back stuff if we need
to. The “going forward” is probably a logical step for you to think about. Yeah, it would
be nice to know what each change was to the schema in a database. But, going back, that
seems pretty weird.

There is another rabbit hole we could go down but won’t, but the reason that tracking
forward changes and rolling them back in development is so important is because of
agile development techniques. Like I said, we are not going down that rabbit hole—but
basically agile focuses on rapid prototyping, iterative development, evolving design, and
rapid coding. Essentially it means the app can change drastically through the development
lifecycle by working closely with the target customer, constantly checking to see if you
were on the right track versus taking the spec (which is usually terrible) and writing the
code and then showing it to tne customer, who will probably say: “No, that isn’t what I
wanted.” So, if you are in an agile world, your code, and therefore your database, will
change. Being able to roll back database changes quickly and easily is a real plus.

When you run the migration, the table will be created. With each subsequent change
to the model, a migration will be created, which will modify the model and the table
structure and migrate the data to the new table structure. Pretty cool, huh?

Accessing Resources with Routes
Rails is also a REST ful framework, so you will see references to things called routes. Very
simply, routes arc a way for the framework to evaluate a request for a resource and map it
to a function or a page. In RPG 5250 programming, you point directly to the resources and
program your overall application will use, either by invoking them directly with a “call
pgmB” kind of syntax or indirectly through a menu that performs those calls for you. In the
Web world, the Uniform Resource Identifier (LTRJ) is the pointer to a resource somewhere
in the va^t expanse that is the Internet. A typical URI might be something like this:

https://developer.mozilla.or g/en-US/docdWeb/JavaS crip t/Reference/
Classes

https://developer.mozilia.%25d0%25be%25d0%25b3%25d0%25b4/en-US/docs/Web/JavaScript/Reference/

110* Open Source Starter Guide for IBM i Developers

This is a RESTful URL The actual resource type isn’t known or referenced. It could be
a PDF, an HTML page, or an MP4 video You can’t tell even whether the HTTP method
used is a GET, PUT, POST, or DELETE. But your application will know by reading the
request and the route, which will be some part or parts of the LTRI that are separated by

the slash (/). Rails evaluates the route automatically and will search for the correct route
in your config/routes.rb script that you defined and point it to your controller.

For example, let’s say that your nifty blog application resides at 10.0.10.205. Your user,
either directly or through a link, requests http://1 0.0.1 0.205/articles/42. In your config/
routes.rb script, you might have something like this:

Rai 1 s.application.routes.draw do

get 'articles/:id'

root 'articles#show'

end

Of course this also assumes that you have created the controller for articles and have a
show method defined. But this means that your http://l 0.0.1 0.205/articles/42 renders to,
perhaps, an HTML page. Or, if you wanted to change the output, you could maybe have it
return a PDF and make that change with very little effort.

Summing It Up
The remainder of coding your Rails app is really outside the scope of this book. There are
plenty of very good tutorials on building a Rails app, which will get even the most de­
Railed person up to speed quickly. But, here arc the takeaways:

I. Rails development can be rapid because it follows the “convention over
configuration” mantra. You play by the rules, you get an app, fast!

2. Rails accommodates agile development techniques that allow you to rapidly change
your app during and after development

3. Rails is RESTful, which can contribute to more modular and readable code.

Take some time to a create a new Ra Is app and walk through some tutorials you’ll find
on the Web. Aaron Bartell has done several of these, as have others. 1 believe you will
find, as I have, that Rails is a cool and productive way to build a Web app on IBM i.

http://l
http://l

A bit of wisdom; “The simple believe anything,
but the prudent give thought to their steps.” (Prov.
14:15)

8
PHP on IBM i

Not necessary the “granddaddy” of open source frameworks on IBM i but certainly the
most prevalent is PHP. PHP is actually the very first *NIX program I compiled on IBM i.
I can’t remember the year, it might have been 2004, but 1 do remember the time of year:
it was Thanksgiving, and I was hacking away at PHP and trying to learn how to get stuff
to compile in PASE whde the turkey was cooking and the family was gathering (pathetic,
huh?). Well, you’ll be glad to hear that your holidays are safe because PHP has been
fully supported on IBM i since around 2006. MySQL was part of the bargain as well, and
today the database and PI IP live happy lives together in IBM i land. What more could
you ask for?

You can dig up the history of PHP on the Internet (you can read Wikipedia as well
as I can), but the short story on PHP is that it came into being about the same time as
“WWW” was entering the mainstream as a well-known three-letter acronym (TLA).
PHP originally was an acronym for Personal Home Page, but better street cred has
been gained by using the term: PHP: Hypertext Preprocessor. This is one of the few
languages, along with JavaScript, whose original purpose was for the Web. Period. Ruby
and Python are scripting languages that have been applied to the Web world, but PHP,
along with JavaScript, cut their teeth on the Web. So you’ll find a scripting language that

112 • Open Source Starter Guide for IBM i Developers

is very tightly coupled to HTML. In fact, some of the very early code, and some code
you’ll find today, has both PHP syntax and HTML in the same file. PHP has matured
well past its original HTML and scripting roots to become a stable and well-established
object-oriented programming language. You will see all flavors of PHP out there in the
wild: from tightly bound script with HTML to MVC implementations with classes and

templates. It is a very versatile language.

PHP’s organic growth, without benefit of a specification, has led to fits and starts and
some naming issues in underlying code. Most of the cruft of evolution has been sorted
out. With Unicode support coming as late as 2005, there is still much to do, and PHP
is currently at version 7.1 and going strong. Not bad for a language whose author said
“I have absolutely no idea how to write a programming language.” (Gee, those words
could have come from me) So let’s take a look at this evolving amalgam of scripting
language and HTML. We will “take the PHP tour” with a basic grounding in PHP
concepts, and then look at how PHP can be used for what it was originally intended:
building Web applications.

Where PHP Lives on IBM i
Where does PHP live on IBM i? In PASE, of course! As we discussed in the PASE and
ILE chapters, PASE represents an operating system within an operating system: AIX
running along and inside of IBM i. Understanding this from a technical standpoint isn’t
really necessary unless you are a full-fledged propeller-head type, but understanding it
from an infrastructure standpoint will help in deployment and configuration.

As you can see from the design in Figure 8.1, Zend Server nestles comfortably within the
confines of PASE. It provides the basic infrastructure that retrieves a file from the IFS (a
.php file) and processes it with the Zend Server engine—and in this particular case, we
have the fastCGI process handling the I/O. fastCGI accelerates the processing of the .php
scripts by persisting the application between calls, much like an activation group is used
in ILE RPG. Subsequent calls for .php script processing run much more efficiently. Zend
Server on IBM i also supports multiple database connectivity options, leveraging much
of the Linux, UNIX, and Windows (LUW) world it comes from. Zend (now owned by
Rogue Wave Software) has done a great job of bringing the flexibility of the PHP world
into the stable world of IBM i, while maintaining great performance.

Chapter 8: PHP on IBM i -113

ILE Apache:10080
• Defauit

configuration
FastCG:

Figure 8.1: Zend Server infrastructure

Installation
I may have had to hack my way through configure scripts in order to get my original
install going on my i5 back in 2003, but these days it is so much easier. To start with,
there isn’t anything you have to download because your new IBM i will come with a PHP
installation available in that vast set of CDs that you regularly ignore as you excitedly
unpack the hardware. But rather than rummage for what will probably be a slightly out-
of-date copy of PHP, you might as well download the latest and greatest from the Zend
website (www.zend.com). Look for downloads, and find the download option for IBM i.

As with most things open source on IBM i, you’ll need what you probably will see to be
the “standard” base licensed programs, shown in Figure 8.2.

Figure 8.2: Base licensed programs for IBM i PHP installation

1. Portable App Solutions Environment(PASE) Opt ion 33 Licensed Program 5770SS1
2 . Qshel1 Option 30 Licensed Program 5770SS1
3 . IBM HTTP Server for i5/OS *BASE Licensed Program S770DG1
4 . IBM Portable Utilities For I5/OS *BASE Licensed Program 5733SC1
5 . OpensSH, OpenSST, 7, lift Option 1 Licensed Program 5733SCI

http://www.zend.com

114 • Open Source Starter Guide for IBM i Developers

You probably have these installed. In any case, they are pretty essential to most open
source components, but now is a good time to make sure that you are current on Group
PTFs. It is always prudent to stay current.

After verifying the existence of your prerequisites, the next step is to unzip and install Zend
Server. The instructions at the Zend website should easily get you through the process.
It basically bods down to unzipping the file. FTP the file to your IBM, and then run the
RSTLICPGM (Restore Licensed Program) command from the save file you FTP’d to the IBM
i. Stick it in your library list, and fire it up! Follow the instructions (RTFM is a good step).

Once you have Zend Server installed, you have the power of PHP at your disposal!

Running Scripts
In the short tutorial on PASE in chapter 2, we talked about the *NIX world that PASE
lives in, so I am hopeful that you did two things: I) installed a real shell like BASH so
you can experience less heartache at the command line and 2) spent some time try .ng out
some of the basic commands to get comfortable with them. For us folks who Eve on i or
.n the *NlX world, the command line is where the “coolness” is: “GUI!? We don’t need
no stinking GUI!” So here is a quick primer on running scripts from the command line.

Don’t sweat the difference between using php and php-cli at the command line. Both
basically operate the same when invoked in a shell. PHP should already be in your path.
You can check that by typing php -v at the command line. I see this:

bash-3.00$ php -v
PHP 5.5.20 (cli) (built: Dec 22 2014 17:17:17)
Copyright (c) 1997-2014 The PHP Group
Zend Engine v2.5.0, Copyright (c) 1998-2014 Zend Technologies

An additional “smoke test” is to run the which command, which will tell you where the
executable lives. My system returns this:

bash-3.00$ which php
/usr/local/zendsvr6/bin/php

Cool! Ready to go!

Chapter 8: PHP on IBM i • 115

For your own sanity, you will need to locate your command-line scripts in a place that
makes some logical sense, so you can find them and run them. My IFS is littered with the
flotsam of “good ideas” of where to put stuff—I should have just deleted them because
I can no longer find them anyway. More recently, I just started stuffing them into my
home folder which, for most user profiles created on IBM i, should be living in the
/home folder under the username. So my “home” folder in the IFS is /home/pete, and I
automatically end up there when i shell into the IBM i using puTTY. I created a demos
folder in that folder, and then I created subfolders in that folder for each language. So
I have my PHP scripts hanging out in /home/pete/demos/php. When I sign in using
puTTY, I end up in /home/pete, so I just cd into the folder I want: cd ~/demos/php (note
the tilde is the *NIX shortcut for the home folder). Once I am there, I know that PHP
is just waiting for me to run something, so when I want to invoke a script, I simply enter
php myscript.php. The output is sent to the terminal.

Programming Basics
At the scripting level, you get just about what you expect. PHP is uses dynamic, untyped
variables much like JavaScript, and like JavaScript, you have to indicate when you are
using scripting in an HTML page. In JavaScript, you’ll have script tags like this: <script>
</script>. PHP also has a script tag that begins with <?php and ends with ?>. So in
JavaScript, you might see something like this in an HTML page:

<script>

console.log "Hello World";

</scri pt>

PI IP would have something like:

<?php

echo "Hello World!

?>

The two scripts differ in several ways. JavaScript is essentially a client-side script that is
interpreted at the browser when included in H'^ML. PHP scripting is nterpreted at the
server. This is an important distinction. If it is interpreted at the server, then there must be

116* Open Source Starter Guide for IBM i Developers

something at the server that can interpret it, and that is usually the PHP binary that runs as
a CGI program. So, the two examples show that difference. The JavaScript script outputs
to the console; it really has no direct way to write output directly to the browser without
manipulating the Document Object Model (DOM). PHP can write directly to H PML, and
that is handled by the server.

Your PHP scripts will run server-side, and whatever needs to be rendered by tne script
into HTML is done on the server; then it is all sent to the browser. So, you’ll never see
the <?php ?> tags in your browser. Those are handled at the server and rendered into
HTML, unlike JavaScript, which you can view in the browser since it is the browser
that interprets the JavaScript. In fact, your PHP code will contain both PHP scripting
directives as well as JavaScript, in most cases. That is just fine: two different scripting
languages for two different purposes.

The basics of PHP scripting are unsurprising. Outside of getting used to the method for
declaring variables, the learning curve should be pretty gentle. Of course, PHP is way
different from RPG, but some of the language constructs should be relatively easy to
wrap your head around.

Variables
The dollar sign ($) indicates the beginning of a variable name in PHP. Beyond that there
are some “rules” you’ll need to pay attention to.

• A variable name must start with a letter or the underscore character.

• A variable name cannot start with a number.

• A variable name can contain only alphanumeric characters;and underscores (A-z,
0-9, and).

• Variable names are case-sensitive (Syeehaw and $YeeHaw are two different
variables—yeah, that will come back to haunt you at some point).

• Variables declared outside of a function are global.

• Variables declared inside a function are local. You make the local variable “global”
by adding the static keyword to the variable declaration. You can access a global
variable by using the global keyword within a local function.

• Speaking of “global” variables: those global variables are also accessible in a
variable called SGLOBALS, so you can access the values in multiple ways.

Chapter 8: PHP on IBM i *117

Let’s put those rules to work, by using a few examples:

<?php

// Comments can be started this way

Or that way.

//Variables start with $ sign - show me the money!

//Statements end with a semicolon

Sgreeting = "I'm global";

$x = 5;

Sy = 10;

function addmeO {

global $x, $y, $me, $Me;

$me = "I’m global because I'm declared that way";

SN’e = "I'm different than 'me'";

$y = $x + $y;

}

function iSayCSwhatiSay) {

echo "SwhatiSay\r\n";

}

addmeO ;

i Say($greeti ng);

iSay(Sy);

i Say($me);

i Say(SMe);

?>

That is all pretty straightforward. The ability to declare a global variable from within
a function is fairly unique and is a good ncws/bad news kind of thing. Let’s say you
typically expect your global variables at the top of your script and are reviewing some

118 • Open Source Starter Guide for IBM i Developers

code where you see what seems to be a global variable further on down the script. Where
did it come from? You’ll have to search the entire script to determine where it was created.
If you are using “include” or “require” to include one .php file in another, it will get even
more dicey. If you have many/large scripts in your application, soon it could be out of
control. You’ll need to be a bit of a “Sherlock” to find it. Thank goodness for search tools!
A sane approach would be to design your application up front so that your base globals
and functions are located in identifiable files. A little organization goes a long way!

Operators
When it comes to operating on those variables, there isn’t much surprising about the ways
that you can add, subtract, multiply, and divide in PHP. There are some nice “shortcuts”
that you probably recognize, as shown in Table 8.1:

Table 8.1: Math Shortcuts in PHP
Operation Expression Example Shortcut

Assignment x = y

Addition x = x + y x += y

Subtraction x = x - y x-= y

Multiplication x = x * y x*= y

Division x = x/y x/=y

Modulus X = x % y x %= y

Comparison Operators
Again, nothing unusual, especially if you are familiar with JavaScript. The “triple equal”
usually throws people for a loop because there really isn’t anything like it in RPG. The
equal sign (=) is assignment. The double equal sign (==) is a comparison of values. The
triple equal sign (==) not only compares the values but also the type of variable. So 1 == 1
is true, and "1" == 1 is true (the character "1" is coerced mto an integer). But although 1 ===1
is true, "1" === 1 is false because the types are different (integer vs. string or character).
You typically see the triple equal in dynamically typed languages because the values can
be coerced to match in some cases, so a “tie-breaf mg” equal sign needs to be added.

Logical Operators
And and Or are probably second nature to you, but PHP uses double ampersands (&&)
and double pipes (||) for “and” and “or,” much like JavaScript does. PHP also has an xor

Chapter 8: PHP on IBM i • 119

operator, which you can use as $x xor $y where either $x or $y can be true, but not both.
And, don’t forget “not”: an exclamation point (!). Forget me not!

Iteration
Yep, PHP has arrays and hashes (associative arrays), just as you would expect. Indexed
arrays are pretty much what you’d see declared in other languages. You’d create an array
like this:

Slanguages = array("RPG", "Cobol", "Java","PHP","Ruby","Python") ;

To iterate through the array, you might use code like this:

<?php

Slanguages = arrayC’RPG", "Cobol", "Java","PHP","Ruby","Python");

Sac = count(Slanguages);

for($x =0; $x < Sac ; $x++) {

echo "$1anguages[$x] is cool\n\r";

}

Which would generate:

RPG is cool

Cobol is cool

Java is cool

PHP is cool

Ruby is cool

Python is cool

120* Open Source Starter Guide for IBM i Developers

Note: The mysterious \n\r at the end of the echo statement is used to add a carriage return
\r and line feed \n to each statement, so that it outputs line by line. The teletype still

lives!

Associative arrays (hashes) take a slightly different form, using the “hash rocket”
notation style seen in other languages

Scharacters = array("Gandalf"=>"Wizard","Frodo"=>"Hobbit",

"Gimli"=>"Dwarf","Legolas"->"Elf");

You could iterate through the array with a foreach function:

foreach($characters as $x => $x_value) {

// Name = key and role = value

echo "Name=" . $x . role=" . $x_value;

echo "\n\r";

The output would be:

Name=Gandalf, role=Wizard

Name=Frodo, role=Hobbit

Name-Gimli, role=Dwarf

Name-Legolas, role-Elf

Strings
I am going to mention strings here separately and as a transition to a discussion about
procedural PHP vs. object-oriented PHP. First things first: strings in PHP can be
concatenated easily with a period (.). Typically, in most languages you’d see a plus sign
(+) as a concatenation operator when it came to strings, but PHP shows its difference

Chapter 8: PHP on IBM i *121

here. So if you had two string variables and wanted to concatenate them, you’d take this
approach:

$string3 = Sstringl . $string2;

If you wanted to just append one string to another, you could do it this way:

Jstringl .= $string2

It’s one of those “hmmmmm” things that make you wonder why it is defined that way.
It’s a little more interesting for other string functions, and here is where the difference
between a procedural approach and an object-oriented one becomes apparent. There are
multiple functions built into PHP for strings. Things like:

strlen Get the length of a string: $x = strlen("Me") would return 2.

strpos Get the position in a string: $x = strposf'World", "Hello World") would return 6.

str_replace Find a string and replace it: str_replace("dollar", "cracker", "Polly want a
dollar") would result in “Polly want a cracker”.

Strings are important in PHP and just about any other language that generates HTML
because, well, it’s all just text sent out to the browser. You’d expect a text manipulation­
intensive language to have some pretty strong string-manipulating capabilities. I barely
scratched the surface here. There is much, much more that PHP can do with text data. But
PHP can be used procedurally as well as m an object-oriented way. Before you get too
excited, though, strings aren’t objects in PHP. You can’t do this, for example:

$myname = "Thorin Oakenshield";

$myname->length

and get 18 returned. You’d still have to use strlen(Smyname). Even if you built an object

like this:

122 • Open Source Starter Guide for IBM i Developers

<?php

class Person{

public Smyname = "Thorin Oakenshield";

}

$me = new PersonO;

echo "$me->myname\r\n";

$me->myname = "Gandalf Greyhame";

echo $me->myname;

?>

With output of:

Thorin Oakenshield
Gandalf Greyhame

there wouldn’t be a length property unless you specifically added it. You’d still have to
use the strlen($me->myname) syntax to get the length of the string. There are libraries
you can download that will add more object-oriented capabilities to strings, but out of
the box, you are still going to use the “old” procedural built-in functions to manipulate
strings. It’s not a huge deal, but if you come from an object-oriented world, your
expectations might be a bit different from reality.

Accessing System Resources

Files
File access, such as creating, deleting, reading, and writing to the IFS, can be done
directly from a PHP script using the native file system APIs. We arc in *NlX land, so
we’ll be using very *NIX-likc API calls to get there. Here’s a simple example:

Chapter 8: PHP on IBM i • 123

Wc open the file for writing and then, line by line, write to it. Then we close it and reopen
it, and then output the contents. Pretty straightforward.

Running System Commands
As in the other chapters, we really are looking at a couple of different angles on the
“system resources” puzzle. The most obvious is getting to the hosting OS, which will
be PASE because, as wc quickly reviewed at the beginning of this chapter, PHP runs in
PASE. There are three options, which are all very similar but have different use cases:

exec This wiil run the command in PASE and then return. If the command returns
output, you will need to access the output and do whatever it is you need to do yourself.
Nothing will be “automatically” returned to the PI IP script, whether or not output is
generated.

124* Open Source Starter Guide for IBM i Developers

system—This will run the command, and if there is output to be returned, it will return it.

So, for example, if you ran this script:

The script would list the files in your home directory and return the list back to the calling
script. Run from the command line, I get my list of files returned to the command line.

passthru—Nearly identical to “system” when run in PASE, it can also return raw, binary
data.

Note also that the previous example that used the fiie APIs accessed files from the hosting
OS level, which is PASE, so all “system” file access in PASE is getting to the IFS.

This is all fine and dandy, but in most cases, you’ll want to go deeper, lower, and access
IBM i resources. Let’s take a look at how to do that.

Database Access
Accessing a database takes a little more work than just accessing the IFS because
database access isn’t a trivial matter. In DB2 for i, we have all manner of tables and files,
so you may need to do some research if you arc still running multi-mcmbcred files. The
examples here are geared toward SQL access rather than RLA, which may throw you as
well. (Get used to it! SQL is cool.) Comments arc in the code.

<?php

// Since we are connecting to IBM i (running the script from PASE),

// there is already a “connection” that IBM i will recognize.

// It will use the user profile that your PASE connection uses.

// Override it if need be.

$conn_resource = db2_connect("*LOCAL." , , "");

Continued

Chapter 8: PHP on IBM i • 125

// display the error if something falls over

if (!$conn_resource) {

echo "Connection failed. SQL Err:";

echo db2_conn_errorO ;

echo " \n\r”;

echo db2_conn_errormsg();

exi t();

}

/* Construct the SQL statement */

// There is a simple employee table I created that I use for demos.

// No REAL data here

Ssql = "SELECT * FROM EMPLOYEE.EMPLOYEE ORDER BY EMPLNAME,EMPFNAME FOR

FETCH ONLY";

/* Prepare and execute the DB2 SQL statement */

$stmt= db2_prepare($conn_resource, $sql);

// Run the statement

Sresult = db2_execute($stmt);

if (ISresult) { /* again, check for errors */

echo 'The db2 execute failed. ';

echo 'SQLSTATE value: ' . db2_stmt_errorO;

echo ' Message: ' . db2_stmt_errormsgO;

}

el se

{

// Statement must have been OK. Iterate through the results

// Each Scow that is fetched is an array of columns from

// your select statement

while ($row = db2_fetch_array($stmt))

{

echo ”$row[l] $row[2] $row[3] \n\r";
Continued

126* Open Source Starter Guide for IBM i Developers

}
// The connection automagically closes when the script completes

Whether the SQL is used to read or write, the steps are basically the same. We could
insert records using syntax similar to this:

$sql = "INSERT INTO Employee.employee (empfname, emplname, empe.nail)
VALUES (?, ?, ?)";

$stmt= db2_prepare($conn_resource, $sql);

db2_bind_param($prepare, 1, "firstname", DB2_PARAM_IN);

db2_bind_param($prepare, 2, "lastname", DB2_PARAM_IN);

db2_bind_param($prepare, 3, "email", DB?_PARAM_IN);

And then we would set our parameters and update:

$fi rstname = "Joe";

Slastname = "Zablotnick";

Semail = "joe_z@example.com";

db2_execute($stmt);

Pretty simple. The one thing to pay attention to, and what trioped me up, is that when I
explicitly bound the parameters, I used the variable names without the leading $ in the
bind statements but still used the variable names with the $ when I assigned values to
them before execution.

Running the code in the example that uses the SELECT statement after I inserted the
“Zablotnick” record, renders this:

Admin Administrator 12345 Mainly Street
Peekop Andropoff 444 East St

mailto:joe_z@example.com

Chapter 8: PHP on IBM / • 127

Charlie BesterTester 1234 Ash
Nuthin Doing 156 Main
Seeme Going 12 East Oak
Maybe Later 123 East Main
Andy Rooney 111 Sin Street
Joe Zablotnick

I’ll never make a living as a DBA.

Accessing IBM : Commands and Programs
In addition to database access, you’ll perhaps want to access commands or programs in
the IBM “native” world. Whenever you think about crossing the PASE/IBM i boundary,
your first thought should be XMLSERVICE, the “Swiss Army Knife” of crossing the PASE
border. PHP is no different when it comes to using XMLSERVICE resources, but there
have been a few iterations on the PHP side of the house when it comes to the “toolkit.”
Initially there was the Easycom toolkit from Aura, which came to end of life at the end
of 2011. In order to preserve some of the code that leveraged the “old” toolkit, there
was a “compatibility wrapper” that used the clever acronym of CW. These days it is just
the PHP toolkit. You’ll find it in the ToolkitAPI folder of your zendsvr installation. My
recommendation is that you avoid any examples that contain the old “i5_” functions (and
there are a lot of them). The new API is more object-oriented and more compact and, I
think, easier to understand. 1 guess you’ll be the judge.

The PHP toolkit is really just making calls to XMLSERVICL using PHP scripting. That is the
cool thing about XMLSERVICE. So, if you have dragged yourself through other examples I
provided in other languages, then you’ll be in familiar territory here.

Simple Commands
Here is an example of just running a simple command using the toolkit:

<?php

include_once 'authorization.php';

include_once 'ToolkitService.php';
Continued

128* Open Source Starter Guide for IBM i Developers

try {

$obj = ToolkitService::getlnstance($db, Suser, Spass);

}

catch (Exception $e) {

echo $e->getMessage(), "\n";

exi t()J

}

Sobj->setToolki tServi ceParams(array('Internal Key'=>"/tmp/$user" ,

'debug’=>true,

'plug' => "iPLUG32K"));

$cmd = "addlible ZENDSVR6";

$obj->CLCommand($cmd) ;

$Rows = $obj->CLInteractiveCommand("DSPLIBL");

/*$Rows = $obj->CLInteractiveCommand("WRKSYS\/AL
OUTPUT(4PRINT)");*/

if(!$Rows)

echo Sobj->getLastError();

el se

foreach($Rows as $row) {

echo $row."\r\n";

}
Continued

Chapter 8: PHP on IBM i • 129

//var_dump($Rows);

/* Do not use the disconnectG function for "stateful" connection
*/

$obj->disconnectO ;

?>

So we start with a couple of includes. The first, and for me the most mysterious, was
the authorization.php file. Although I saw this file referenced in many demos, there was
no mention of what it contained or where it was found. So let me tell you what I did: I
created the file in the same directory as my demo files, and it contains the $db, Suser, and
Spass variable values. My authorization.php file ended up looking like this:

<?php
$db = "*LOCAL";
$use r = "";
$pass = ;
$internalKey = "/tmp/$user";
$1ibxmlservice = "XMLSERVICE”;
?>

(More about the last two variables later.)

The other include file, ToolkitService.php, lives in the /usr/local/zendsvr6/share/
ToolkitAPI folder—-at least it does on my 7.2 partition. It contains the “wrapper” code that
marshals the data into and out from the XMLSERVICE library on IBM i.

The next section of code:

try {

$obj = ToolkitService::getlnstance($db, Suser, $pass);

Continued

130* Open Source Starter Guide for IBM i Developers

}

catch (Exception $e) {

echo $e->getMessage(), "\n";

exitO;

}

is that cooler, more object-oriented stuff I talked about. The getlnstance method, which
is called statically from the Toolkitservice class, is passed a database reference along with
the user and password for the connection. In this case, I used *LOCAL as the database
because the connection was local: I was connecting through the PASE world into the IBM
i world, and I was using my IBM i user profile to do so. You could easily override the
database, user, and password values if you needed to (hence the beauty of having it in a
separate file). That getlnstance method returns a Toolkitservice object, which has a bunch
of useful methods (functions) that can be invoked.

The try/catch method is a common error-handling approach that also applies to PHP If
the call to getlnstance fails for some reason, then the catch block is used to process the
failure. In this case, a failure leads to a “blarg and bail,” which in my vernacular is dump
out the error message and exit the program.

The next section does the “heavy lifting”:

$obj->setToolkitServi ceParairs(array ('Internal Key'=>"/tmp/$user" ,

'debug'=>true,

'plug' => "1PLUG32K"));

$cmd = "addlible ZENDSVR6";

$obj->CLCommand($cmd);

SRows = $obj->CLInteracti veCommand("DSPl.lBL") ;

Chapter 8: PHP on IBM i • 131

XMLSERVICE needs some parameters, so we stuff them into an array and call the
setToolkitServiceParams method to set them. Next, we see a couple of different
implementations of CL invocation. The first one, which is the add I ible command,
adds the ZENDSVR library to the library list. That’s it. Nothing is returned. The second
invocation, the DISPLIBL, is invoked using the “interactive” option, and it assumes that
something will be returned —in this case, the listing of DISPLIBL. That content is returned
to another variable called SRows, which, if you know what a DISPLIBL to *PRINT—DSPLIBL
OUTPUTbPRINT)—does, you probably guessed that SRows is an array of print lines from
the output of the command. Right you are!

What do you do with an array of data? You iterate through it! (Almost sounds illegal.)
Let’s do it:

if(!SRows)

echo Sobj->getLastError() ;

else

foreach($Rows as Srow) {

echo $row."\r\n";

}

//var_dump($Rows);

/* Do not use the disconnectO function for "stateful" connect.m

V

$obj->disconnectO ;

If we didn’t end up with any SRows, we do a quick reality check Io see if there is an error
lurking. If we have more than 0 rows, then we do a foreach iteration through the array,
grabbing a row of output at a time. Then we disconnect ($obj->disconnect();) from the
IBM i to release resources. On my system, the results looked like this:

132* Open Source Starter Guide for IBM i Developers

5770SSfij V7R2M0 140418 Library List
9/10/16 10:56:21 Page 1

ASP
Library Type Device Text Description
QSYS SYS System Library
QSYS2 SYS System Library for CPI's
QHLPSYS SYS
QUSRSYS SYS System Library for Users
ZENDSVR USR
QGPL USR General Purpose Library
QTEMP USR

* * * * * END OF LISTING *****

Clearly it is a *PRINT of output from a spooled file.

I normally would remove // comments from a demo unless I had a reason to leave them
in. In this case, I do have a reason. Uncomment the line that has:

/-$Rows = $obj->CLInteractiveCommand("WRKSYSVAL OUTPUT(*PRINT)");*/

by removing the /* and the closing */, and just comment out the SRows = $obj->
CLInteractiveCommandf'DSPLIBL"); with a double forward slash:

//SRows = $obj->CLInteractiveCommand("DSPLIBL");

Save and rerun your code, and you’ll get a boatload of output (if you have access to the
command). You may want to output the contents to a file instead of terminal, so we can
combine the earlier demo on IFS file access with this one and dump the contents to a file
in the IFS. That “combo” would look like this small modification.

// Open the file

Smyfile = fopen("demofile.txt", "w") or die("Unable to open
file!");

Continued

Chapter 8: PHP on IBM i • 133

ifQSRows)

echo $obj->getLastError();

el se

foreach($Rows as $row) {

// write to the file

fwrite($myfile, Srow."\r\n");

}

// close the file

fclose($myfile);

It’s just drop-dead simple to change to file output.

1 he other item that was commented out was the var_dump (not a very attractive method).
var_dump can be used to get the data from a variable delivered in “raw” form. You’ll see it
sometimes for debugging and sometimes for just a quick and dirty (Q&D) display of data.
In our case, foreach is the perfect way to get the data returned from the calling method.

Calling Programs and Procedures
Yeah, you can do calls to programs and procedures as well; it is just, ahem, a little more
involved. Let’s think about it for a second: you are in the PHP environment that really
doesn’t give a rip about what you have cleverly stuffed into your variables, and you are
going to call an RPG program or procedure that is very picky about what you pass to it.
This is the “Odd Couple” sitcom of programming: a very messy PHP living side by side
with an anal retentive, neat freak RPG.

The differences are arbitrated by specifying exactly what goes in and what comes out.
The section on XMLSERVICE covered this, and there is plenty of documentation on how
to specify data types in XMLSERViCE. The PHP toolkit has to play by these rules. So, you
can imagine that all of this detail is going to add some verbosity to our call to RPG. Your
imagination is correct. Hang on to your coffee cup, here is an example:

134* Open Source Starter Guide for IBM i Developers

<?php

include_once 'authorization.php';

include_once 'ToolkitService.php';

//The ToolkitService connection method/function uses either IBM_
//DB2 (default) or ODBC extensions to connect

//to IBM i server. In order to switch to an ODBC connection, assign an
//"odbc" value to the $extension variable

//and make sure that the ODBC extension is enabled in the PHP.INI file.

//The ODBC extension usage in ToolkitService is preferable in 2-tier
//environment: Zend Server running in Windows/Linux

//and accessing database and/or programs in IBM i server

$extension='ibm_db2';

try { SToolkitServiceObJ = ToolkitService::getlnstance($db, Suser,
Spass, Sextension); }

catch (Exception $e) { die($e->getMessage()); }

SToolkitServi ceObj->setToolkitServi ceParams(

array('InternalKey'=>$internalKey, // route to same XMLSERVICE job
// /tmp/myjobl

'subsystem’=>"QGPL/QDFTJOBD", // subsystem/jobd to start XMLSERVICE
// (if not running)

'plug'=>"iPLUG32K")); // max size data i/o (1PLUG4K,
// 32K,65K,512K,IM,5M,10M,15M)

// D INCHARA S la

// D INCHARB s la

// D INDEC1 s 7p 4

// D INDEC2 s 12p 2

// D INDS1 DS

// D DSCHARA la

// D DSCHARB la

// D DSDEC1 7p 4
Continued

Chapter 8: PHP on IBM i • 135

// D DSDEC2 12p 2

// "+++

// * main(): Control flow

// "+++

// c '-Entry PLIST

// c PARM INCHARA

// c PARM INCHARB

// c PARM INDEC1

// c PARM INDEC2

// c PARM INDS1

$param[] = SToolkitServiceObj->AddParameterChar ('both', 1, 'INCHARA',
'varl', 'Y');

$param[] = SToolkitServiceObj->AddParameterChar ('both', 1, 'INCHARB',
'var2', ' Z') ;

$param[] = $ToolkitServiceObj->AddParameterPackDec('both', 7,4,'INDEC1',
'var3', '001.0001');

$param[] = $ToolkitServiceObj->AddParameterPackDec('both' , 12,2,
'INDEC2', 'var4', '0000000003.04');

$ds[] = SToolkitServiceObj->AddParameterChar ('both', 1, 'DSCHA-
RA', 'dsl', 'A');

$ds[] = $ToolkitServiceObj->AddParameterChar ('both', 1,
'DSCHARB', 'ds2', 'B');

$ds[] = SToolkitServiceObj->AddParameterPackDec('both', 7,4,'DSDEC1',
'ds3', '005.0007');

$ds[] = SToolkitServiceObj->AddParameterPackDec('both', 12,2,
'DSDEC1', 'ds4', '0000000006.08');

$param[] = SToolkitServiceObj >AddDataStruct($ds);

Sresult = SToolkitServiceObj->PgmCall('ZZCALL', Slibxmlservice, Sparam,
nul1, null) ;

// simple dump output

var_dump($result) ;

// Do not use the disconnect^) function for "state full” connection

STool ki tServi ceObj->di sconnectQ ;

136* Open Source Starter Guide for IBM i Developers

COWABUNGA! This example from the Young i Professionals (YiPs) website (yips
.idevcloud.com/wiki) is busy because we also included a snippet from the RPG program
being called, so we can see what is being passed and why. If you downloaded and installed
XMLSERVICE from GitHub or the YiPs website, you’ll have all the RPG code that is being
called by the examples. It can help you understand things a bit more completely. In this case,
the RPG code that isn’t displayed as part of the documentation in the PHP script is this:

/free

Step +=1;

INCHARA = 'C ;

INCHARB = 'D';

INDEC1 = 321.1234;

INDEC2 = 1234567890.12;

DSCHARA = 'E';

DSCHARB = ’ F';

DSDEC1 = 333.333;

DSDEC2 = 4444444444.44;

return;

// *inlr = *on;

/end-free

OK, that isn’t the most elegant code, but it demonstrates the essentials of this example,
and that is that there are values passed in and values passed out that can be handled by the
toolkit, regardless of what they are. We have individual values and a data structure passed
in and returned. Most of your programs will have some variation of that. And if your code
is currently in a more modular form, that code is ready to be used by PHP! Simple! You
can also sec in the example how values are passed from PHP to RPG. The line

"$pardm[] = $ToolkitServiceObj->AddParameterChar ('both', 1,
'INCHARA', 'varl', 'Y');"

shows you what is needed: 'both' defining the parameter as both input and output,
1 defining the length of the parameter, 'INCHARA' as the RPG variable name, 'varl'
as the PHP variable name, and 'Y' as the actual value of the variable that is passed.

idevcloud.com/wiki

Chapter 8: PHP on IBM i • 137

Each parameter that is passed needs to be defined in that way. Again, check the YiPs
website and look for “data types” in the XMLSERVICE section.

Here is the (somewhat predicable) output:

array(2) {
[”io_param”]=>
array(5) {

["varl”]=>
string(l) ”C"
[”var2"]=>
string(1) "D"
[”var3"]=>
string (8) ”321.1234”
["var4"]=>
string (13) ”1234567890.12”
[”struct_name"]=>
array(4) {

[”dsl"]=>
string (1) "E”
[”ds2"]=>
string (1) "F”
[”ds3"]=>
string(8) "333.3330"
["ds4"]=>
string(13) ”4444444444.44”

}
}
["retvals"]=>
array(O) {
}

}

Your thought is probably “Dude! That is, like, the UGLIEST thing I have ever seen!” I
agree. But I also “dumped” (if you’ll pardon the expression), which is why you arc seeing
stuff in the output that is equally verbose as to what went in. var„dump just dumps the
structure and data in raw form as output. So we are seeing the nested structure and types
of the parameters along with the data. Again, for Q&D output and debugging, var_dump

138* Open Source Starter Guide for IBM i Developers

can be useful, but in most cases you’ll use either iteration to walk the output or directly
reference it with something like this:

echo $result["io_param"]["struct_name"]["ds4"] ;

Which would output 4444444444.44.

PHP in the Web World
The command-line stuff is cool, but PHP was built for the Web, so how do we make this
stuff “webby”? HTML is just text, folks, so we are almost there because these examples
output text. But, in order to get there, we need to take a step back and reorient ourselves
to the way a Web server works. As the illustration at the beginning of this chapter showed,
a request from a browser comes in to the Apache server, and the content is evaluated to
determine how it should be handled. A request for an HTML page will directly return the
HTML because a browser knows what to do with it. But if the request is for a PHP file,
then the contents of the PHP file need to be processed into HTML first, then returned.
That is where the PHP-CGI module comes into play. Apache basically hands off the file to
PHP-CG1 and says “Hey,you handle this and return me HTML.” We actually have already
seen this in action in a limited way from the command line. Basically when we run php
myfile.php, we tell the PHP binary to process the PHP file and do whatever it is supposed
to. The examples we have run so far have mostly returned text to the command shell.

The PHP-CGI magic happens in the Apache (HTTP) Web server on IBM i. We use
unique directives to tell Apache how to handle a PHP file like so:

Load up the Zend PHP server programs:

loadModule proxyjnodule /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LI3/QZSRCORE.SRVPGM

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_balancer_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

1oadModule zend_enabler jnodule /QSYS.LIB/QHTTPSVR.LIB/QZFAST.SRVPGM

Chapter 8: PHP on IBM i • 139

Invoke the fastcgi method when processing a file with a .php extension, and recognize the
php MIME type:

AddType application/x-httpd-php .php ,php5

AddHandler fastcgi-script .php ,php5

These are the only directives you need to add when you create a new configuration file in
Apache. The Create HTTP Server wizard in the HTTP admin console will create the base
file, then go ahead and add the directives above. The whole tamale will look like this:

Configuration originally created by Create HTTP Server wizard on Sat
Sep 10 14:15:46 CDT 2016

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy._balancer„module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule zend_enabler_module /QSYS.LIB/QHTTPSVR.LIB/QZFAST.SRVPGM

Listen 10.0.10.205:5555

DocumentRoot /www/phpdemo/htdocs

TraceEnable Off

Options -FollowSymLinks

LogFormat "%h %T %1 %u %t \"%r\" %>s %b \"%{Referer}i\" \”%{User-Agent}
i\"" combined

LogFormat "%{Cookie}n \"%r\" %t" cookie

LogFormat "%{User-agent}i” agent

LogFormat "%{Referer}i -> %U" referer

LogFormat "%h %1 %u %t \"%r\" %>s %b" common

CustomLog logs/access_log combined

LogMaint logs/access_log 7 0

LogMaint logs/error_log 7 0

Continued

140* Open Source Starter Guide for IBM i Developers

SetEnvIf "User-Agent" "Mozilla/?" nokeepalive

SetEnvIf "User-Agent" "JDK/1\.O" force-response-1.0

SetEnvIf "User-Agent" "Java/l\.O force-response-1.0

SetEnvIf "User-Agent" "RealPlayer 4\.O" force-response-1.0

SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive

SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0

zend fastcgi

AddType applicat'ion/x-httpd-php .php .php5

AddHandler fastcgi-script .php .php5

<Di rectory />

Requi re all denied

</Di rectory>

<Directory /www/phpdemo/htdocs>

Require all granted

</Di rectory>

If you are going to use fastcgi, then make sure you have a copy of the fastcgi.conf file in
the conf folder of your app that the Create HT1 P Server wizard creates. You should have
a fastcgi.conf file in your /www/zendsvr6/conf folder in the IFS. Just copy that over to
your app folder.

You drop your .php files into the document root (/www/phpdemo/htdocs in this
example). So, let’s circle back around to our command-line demos and make them more
“webby.” The things that most of the command-line examples arc missing arc the HTML
directives and tags that will make the output look less text-ty and more sexy in a browser.
Standard HTML usually has this:

<!DOCTYPE html>

<html>

<head>

<title>My web page</title>

Continued

Chapter 8: PHP on IBM i • 141

<meta name="content-type" content="text/html; charsel-ISO-8859-l">

<!--The file may or may not have stylesheets to format the html-->

<!--<link rel="stylesheet” type="text/css" href="./styles.c3s">-->

<!--The file may or may not have javascript to manipulate the DOM and
the output—>

<!--<script src="./somescript.js">-->

</head>

<body>

This is my HTML page.

</body>

</html>

You’ll put your PHP stuff in between the <bodyx/body> tags in your HTML document.
Let’s go back to our simple file I/O example and put that into our handy-dandy H TML
document and run it. Simply copying and pasting it into the H TML is enough, really! The
resulting file would look like this:

<!DOCTYPE html>

<html>

<head>

<title>Demo of simple file I/O - web version</title>

<meta name="content type” content="text/html; charset=ISO-8859-l">

<!--The file may or may not have stylesheets to format the html-->

<!--<link rel="stylesheet" type="text/css" href-"./styles.css">-->

<!--The file may or may not have javascript to manipulate the DOM and
the output-->

<!--<script src="./somescript.js">-->

</head>

<body>

<hl>Demo of simple file I/O - web version</hl>

<?php

Smyfile = fopen("demofile.txt", "w") or diet Unable to open file
for writing!");

Continued

142* Open Source Starter Guide for IBM i Developers

$txt = "I love PHP! \n";

fwrite($myfile, $txt);

$txt = "I love PASE!\n";

fwrite($myfile, Stxt) ;

Stxt = "I love IBM i!\n";

fwrite($myfile, Stxt);

fclose($myfile);

Smyfile = fopen("demofile.txt", "r") or die("Unable to open file
for reading!");

// Output one line until end-of-file

while(!feof($myfile)) {

echo fgets($myfile)."
";

}

fclose($myfile);

?>

</body>

</html>

Hopefully you recognize the code between the <?php?> markers as the code we ran
before. Disclosure'. Normally you wouldn’t be able to run code like this because it
requires WRITE permission in the htdocs folder which, if granted, should make anyone
squeamish about security. So //you decide to give this a whirl on your server and you do
grant WRITE permission to the htdocs folder (as I have for this demo), then either keep
that server instance off the Internet (as I have) or remove the WRITE permissions once you
have played with it.

My only modification to the original PHP code was to add the
 to the output
statement.
 is equivalent to the “newline” characters we used before. That’s it! Again,
this is a “dangerous” example because of the write permissions needed, but if you were
just reading a file in the IFS and outputting the contents to the browser, standard read
permissions will work just fine.

Chapter 8: PHP on IBM i • 143

The SQL I/O would look like this:

<!DOCTYPE html>

<html>

<head>

<title>SQL access demo web</title>

<meta name="content-type" content=”text/html; charset=ISO-8859-l">

<!--The file may or may not have stylesheets to format the html-->

<!--<link rel="stylesheet" type="text/css" href="./styles.css">—>

<!--The file may or may not have javascript to manipulate the DOM and
the output-->

<!--<script src=”./somescript.js">-->

</head>

<body>

<hl>SQL access demo web</hl>

<?php

$conn_resource = db2_connectC'*LOCAL",

if (!$conn_resource) {

echo "Connection failed. SQL Err:";

echo db2_conn_error();

echo "
";

echo db2_conn_errormsgC);

exi t() J

}

/* Construct the SQL statement */

$sql = "SELECT * FROM EMPLOYEE.EMPLOYEE ORDER BY EMPLNAME,EMPFNAME FOR
FETCH ONLY";

/* Prepare and execute the DB2 SQL statement */

$stmt= db2_prepare($conn_resource, Ssql);
Continued

144 • Open Source Starter Guide for IBM i Developers

Sresult = db2_execute($stmt);

if (!$result) {

echo 'The db2 execute failed.

echo 'SQLSTATE value: ' . db2_stmt_error();

echo ' Message: ' . db2_stmt_errormsgO;

}

el se

{

while ($row = db2_fetch_array($stmt))

{

echo "$row[l] $row[2] $row[3]
";

}

}

?>

</body>

</html>

And again, the only tweak to the whole process was adding the
 tag for each line.

I bet you can figure out how to include the code for the simple command call wc made
in an earlier example. You can copy and paste stuff as easily as I can. Just remember to
replace the \n\r with
 so you get line-by-line access.

I hope this chapter helped you see how easy and versatile PHP is. Of all the languages
discussed in this book, PHP may well be the easiest to get started with if your focus is the
Web.

A bit of wisdom: “Now the serpent was more
crafty than any of the wild animals the LORD God
had made/’ (Gen. 3:1)

9
Python

Finally, a language name that you can love! Although a snake is the logo for Python, it
should really be a “flying circus” logo since the origin of the name is rumored to be based
on Monty Python s Flying Circus, the awesome, irreverent British comedy of the early
1970s. “And now for something completely different.”

Python began as a scripting language developed by Guido van Rossum. In its current
form, it has both procedural and object-oriented (OO) capabilities. Its procedural bent
should make it easy for RPG programmers to transition to the language.

The focus of the language is to provide simple syntax, performance, and extensibility, and
it delivers on all three. Although not as well-known as Ruby or PI IP, it has been around
since 1989, so it could be considered the mature older brother of many popular scripting
languages today. Guido (love the name) continues to oversee the language, as he has been
designated as the BDFL (benevolent dictator for life).

Even though Python is a “scripting” language, it is usually compiled down to bytecode
to increase execution speed, and often the extensions arc native to the OS it is running
on. Since it has been around a while, is easy to comprehend, and is a versatile scripting
language, you’ll find Python everywhere. It is literally “out of this world” in that NAS A

146* Open Source Starter Guide for IBM i Developers

uses Python extensively in its systems (along with C) because of the lightweight,
performant, and easy-to-!earn nature of the language. So how easy is it? And now for
something completely different.

It’s “Hello World” again.

print "Hello World

Simple. Nice. We know what print does.

The purpose of this chapter is to get you grounded in Python. We take a tour of
installation, invocation, language syntax details, objects, methods, functions, and a whole
lot more. There is much to like in the Python world.

Installation
Before we jump headlong into writing code, we should probably get Python installed!
Like most open source languages, Python has a few “flavors” out there, and the folks on
IBM i will appreciate the fact that one version has maintained some extensive backward
compatibility (not quite like IBM i but not bad), and the “latest” version hasn’t. Sc you’ll
need to decide if you want to install version 2 of Python or version 3.

Version 2 was delivered in October 2000, and Version 3 was delivered in December 2008.
Version 3, despite much gnashing of teeth, is not backward compatible. The code base
for version 2 is quite extensive and in most cases will not run with version 3. The biggest
change from version 2 to version 3 was the cleanup of redundant code and functions,
the implementing of print as function, and the use of Unicode for strings. There is a tool
2to3 that can convert most of the Python 2 code to Python 3 code. I’d recommend you
install both versions so that you can run code from either version if needed. The code
bases didn’t stagnate, by the way. There has been plenty of activity in the Python 2 track
and the Python 3 track. Python 2 is at version 2.7, and Python 3 is at version 3.5, and of
course there are incremental updates as well. IBM i currently installs version 2.7.11 and/
or version 3.4.4.

How to install? Python has long been a staple on IBM i in an incarnation called
iSeriesPython that currently supports Python version 2.7. But as part of IBM’s Open

Chapter 9: Python *147

Source Initiative, there is now a licensed product that installs pretty much all the currently
supported open source programs on IBM i. You install it by installing licensed program
5733OPS using the Install Licensed Program option on the Licensed Program menu
(option 11).

Install Licensed Programs will take care of the install if you don’t have the IBM i Open
Source product installed. If you do already have the licensed program installed, then
ordering the Group PTF for 5733OPS will get the latest and greatest version of code
installed. If all goes well, you should be able to start a terminal session in the PASE
environment, type python2 V and python3 -V, and see the following:

bash-3.00$ python2 -V

Python 2.7.11

bash-3.00$ python3 -V

Python 3.4.4

Of course, your versions may well be different than those listed above because the
“march of the open source versions” will continue unabated for the foreseeable future.

I made the installation a little bit easier than it often is in reality. There are a few
good resources available. Your first stop should be the IBM developerWorks website,
specifically (as of this writing) https://www.ihm.com/developerworks/community/wikis/
home?lang=en#!/wiki/IBWo2()i%2()Technology%2()lJpdates. You can check the open
source pages at common.org or the mailing list at midrange.com. And you can always
check my blog {www.petesworkshop.com/hlog_wp) since I try to keep up with the latest
in the IBM i arena.

Programming in Python
Python pretty much follows the usual programming paradigms that we are all familiar
with. It has all the variable assignment stuff you would expect, and it has five very basic

data types.

https://www.ibm.com/developerworks/community/wikis/
common.org
midrange.com
http://www.petesworkshop.com/blog_wp

148 • Open Source Starter Guide for IBM i Developers

Numbers
No big surprises here except for “complex” numbers that, frankly, I don’t understand.
You math geeks may be encouraged by the presence of a complex number, but, well, I
haven’t used them. But integers, longs, and floats I understand.

Strings
A string is, well, a string of characters enclosed by single or double quotes. As in other
object-oriented languages, a string is an object and will have several useful methods
already defined for it. Things like find, upper, and lower do what you think they do:

myName= "Pete HelgreN"

offset = myName.find('gr')

print offset

print myName.upperf)

print myName.lower()

print myName.titlef)

The output would be:

8
PETE HELGREN
pete helgren
Pete Helgren

Lists
This is much like an array: just a list of items in what J would call a traditional array
syntax. It looks like this:

languages = ['Python','Ruby','JavaScript',42, 77.5]

OK, the last two entries weren’t programming languages, but what I wanted to
demonstrate was that the values can be basically anything. And, since the list data type
is an object, you can expect that there would be useful built-in functions. And there arc!
Like these:

Chapter 9: Python *149

languages = ['Python'RubyJavaScript',42, 77.5]

print languages[2]

print languages

languages.insert(3,'PHP')

print languages

1anguages.remove(42)

print languages

languages. reverseO

print languages

The output wou!d be:

JavaScript
['Python', 'Ruby', 'JavaScript', 42, 77.5]
['Python', 'Ruby', 'JavaScript', 'PHP', 42, 77.5]
['Python', 'Ruby', 'JavaScript', 'PHP', 77.5]
[77.5, 'PHP', 'JavaScript', 'Ruby', 'Python']

Tuples
Math geeks will already know what a “tuple” is, but for the benefit of those of us who
live on p'anet Earth and will be writing Python code, a tuple is a series of immutable
Python objects. Much like traditional arrays and lists in Python, tuples are sequences.
The difference between tuples and lists is the tuples cannot be changed (immutable,
remember?). Also unlike lists, tuples use parentheses instead of the square brackets. One
other thing: if you bu:ld a list of items without putting parentheses or square brackets
around them, the assumption is that they are a tuple. So this:

languages = ('PythonRubyJavaScript42, 77.5)

would be the same as this:

languages = 'PythonRuby1JavaScript',42, 77.5

150* Open Source Starter Guide for IBM i Developers

Let’s try some things on for size because tuples are also objects and will have some built-

in methods:

Will this work?

languages = ('Python','RubyJavaScript',42, 77.5)

print languages

languages[3]= "PHP"

Nope!

line 3, in <module>

'Python', 'Ruby', 'JavaScript', 42, 77.5)

languages[3]= "PHP"

TypeError: 'tuple' object does not support item assignment

Maybe a slightly different assignment?

languages = 'Python','Ruby','JavaScript',42, 77.5

print languages

languages[3]= "PHP"

Nope! It’s a tuple by default:

line 3, in <module>

languages[3]= "PHP"

TypeError: 'tuple' object does not support item assignment

There are plenty of nice functions available to us.

languages = 'Python','Ruby','JavaScript',42, 77.5

print languages
Continued

Chapter 9: Python *151

print languages[2]

print languages[-2]

for x in languages: print x

The last example is useful because it can be used with lists as well. We haven’t jumped
into full programming in Python yet, but like many other languages, iteration is a
foundational building block.

Dictionary
A dictionary is a sequence of name-value pairs. Similar to hashes in other languages, a
dictionary can be used to “look up” one value with another. Anyone who has worked
with JavaScript objects, particularly with JSON strings, would be comfortable with
the concept of a dictionary. However, you can use both numbers and strings or really
any valid data type for “name.” Any object can be used as a value. Take a look at the
following:

diet = {}

dict['one'] = "The loneliest number"

dict[42] = "This is the meaning of life"

print diet

The output would be:

(42: 'This is the meaning of life', 'one': 'The loneliest number'}

print dict[42] would output “This is the meaning of life”, and if we accidentally used the
same name to assign a value later, we would basically be reassigning the value:

diet[42] = "This is NOT the meaning of life"
print dict[42]

This would output “This is NOT the meaning of life”.

152* Open Source Starter Guide for IBM i Developers

Functions
Python has a bunch of built-in functions, and it also comes with a whole list of modules
and classes that can be used to construct your programs. In most cases, you will start by
building functions, and those functions may, or may not, be combined into modules at
some point. We’ll take it a step at a time.

For RPG programmers, at least the more “modern” ones (whoever they are), monolithic
code is an anathema. It’s hard to read, hard to debug, and hard to share. And if you
do decide to share or copy it, then if you tweak the “mother” of the others, you need
to update the others as well. Most RPG and COBOL programmers I know abandoned
that technique about the time that Prince changed his name to ... well, whatever it was
changed to. What replaced the monolithic coding style? Well, subroutines were the first
step, and then subprocedures, and then those were gathered into service programs, which
made for nice, neat bundles of goodness in the ILE world. Leveraging those service
programs across multiple applications made for nice, easy-to-maintain code. I am not
going to make you relive that process; we’ll just start at the service program equivalent:
functions with modules.

Modules are just groups of functions gathered into a source file that can be included in
other source files. There isn’t much magic to modules; you just need to “import” them
when you need the functions within them, kind of like using a BNDDIR in your H-specs to
reference a procedure in a service module.

Functions come in all shapes and sizes. Functions begin with a def and finish with a
return (in most cases). Between the def and return would be I) a function name followed
by parentheses, 2) input parameters to go within the parentheses if needed, 3) a colon (:),
4) an optional string that describes what the function is (docstring), 5) a block of code,
and 6) a return statement that could return a value to the caller or can just be left blank.

A prototype would be like this;

def myfunctionname(parameters):

"Function description (docstring)"

a_bunch_of_code

return [expression]

Chapter 9: Python *153

Let’s continue the example by going back to some of the code above and
“functionalizing” it. Remember that we tiptoed through the tuples like so:

languages = 'Python','Ruby','JavaScript',42, 77.5

print languages

print languages[2]

print 1angaages[-2]

for x in languages: print x

We can create a function that would handle just that bit of code:

def tttt(languages) :

"Tiptoeing through the tuples"

print languages

print languages[2]

print languages[-2]

for x in languages: print x

return

Create a tuple variable

mytuple = 'Python*,1 Ruby','JavaScript',42, 77.5

Run our code

tttt(mytuple)

The output is just the same as before:

('Python', 'Ruby', 'JavaScript', 42, 77.5)

JavaScri pt

42

Python

Conti nued

154» Open Source Starter Guide for IBM i Developers

Ruby

JavaScript

42

77.5

I need to mention something that is unique to Python, and that is indentation matters.
This will probably come back to you time and time again, since I often get it wrong
myself. It doesn't matter if you indent using tabs or spaces; just be consistent and make
sure your indentations are properly relative to each other. This is where a good text editor
that can syntax-check your Python will be very helpful.

Modules
If you took the function and stuffed it inside a file called myMod.py, you could then use
that function by issuing the following:

import myMod

Create a tuple variable

mytuple = ’Python1, ’Ruby1JavaScript42, 77.5

Run our code

myMod.tttt(mytuple)

You’d get the same output with the added advantage that you can use the tttt function in
other programs with just one line of code: import myMod.

That is about all the complexity that a module has: it is a file containing one or more
functions, and usually those functions are in the module because the functionality they
bring to the party is broad-based. Outside of easing maintenance by locating similar
functions in a single file, the utility of a module is that typically the functions they
encapsulate can be used in multiple programs.

I didn’t mention scope, but since the parameters are passed by reference, you need to
remember that variables declared local to the function are private to that function. For
example, suppose you have a function like this:

Chapter 9: Python *155

def sayit(phrase):

"This demonstrates scope"

print phrase

phrase = "Inside the function "

print phrase

return

myphrase = "Outside the function"

sayi t(myphrase)

print myphrase

Part of me expects that the phrase varable would be changed because it was changed
inside the function. But I’d be disappointed. Here is what we get:

Outside the function
Inside the function
Outside the function

We get that result because the phrase variable declared inside the function is “local” to
the function, even though i,t may be the same name as the parameter passed in.

When declared as above, the parameters are required. If we ran the same code as above
but, instead of calling sayit(phrase), we forgot and called sayitO, we would see this:

sayitQ

TypeError: sayitQ takes exactly 1 argument (0 given)

So, if you need three parameters, then you have to have three parameters passed to it, and
they all need to be in the correct order that the function expects them in.

Another possible way to pass parameters would be to use keywords when the parameters
are passed to the function. Suppose you had a function like this:

156* Open Source Starter Guide for IBM / Developers

def printit(name, address):

“Doesn't matter what order!"

print "Name: ", name

print "Address:", address

return

myname = "Joe Zablotnik"

myaddress = "123 Main Street"

pri nti t(name=myname, address=myaddress)

Order doesn’t matter

printit(address=myaddress, name=myname)

The output is:

Name: Joe Zablotnik
Address: 123 Main Street
Name: Joe Zablotnik
Address: 123 Main Street

Remove the keywords, and you’ll get this:

Name: Joe Zablotnik
Address: 123 Main Street
Name: 123 Main Street
Address: Joe Zablotnik

If you are not sure how many parameters you’ll be passing, you can always allow any
number of arguments to be passed in, like so:

def printit(*stuffin):

"Number of parms in doesn't matter!”

if(len(stuffin)>=l):

print "Name: ", stuffin[0]

i fClen(stuffi n)==2):

Continued

Chapter 9: Python • 157

print "Address:", stuffing]

return

myname = "Joe Zablotnik"

myaddress = "123 Main Street"

printit(myname, myaddress)

one or two, it doesn't matter to the function

pri ntit(myaddress)

The function doesn’t really care, but we need to at least figure out how many parms were
passed in because we need to deal with them in the code. That means we evaluate how
many were passed in and handle them individually. Note also that the passed parameters
are tuples.

Perhaps a clearer way to handle a variable number of variables would be to use keyword
variables so we know what we are looking for, and when we find it, we use it, like this:

def printit(**stuffin):

"Number of parms doesn't matter!"

if 'name' in stuffin:

print "Name: ", stuffin['name']

if 'address' in stuffin:

print "Address:", stuffin['address']

return

myname = "Joe Zablotnik"

myaddress = "123 Main Street"

printit(name = myname, address = myaddress)

one or two, it doesn't matter to the function

printitfaddress = myaddress)

So far, so good, and no convolutions like “blocks” in Ruby.

158* Open Source Starter Guide for IBM i Developers

But if we stray into the realm of anonymous functions in Python, then things get a .ttle
“out there.” Anonymous functions are relatively unknown to IBM i programmers unless
they are JavaScript developers, Ruby developers, or Java developers using Java 8.
Basically, an anonymous function allows you to declare a function without needing a de+
and a return. In Python, they are known as lambda functions (JavaScript and Ruby have
them as well). They sound a bit freakish, and in some respects they are, but they can be
pretty useful in some situations. The best example I could assemble looks like this (and
now for something completely different):

def increment_it (n) : return lambda x: x + n

fii = increment_it(2)

gii = increment_it(6)

print fii(42), gii(42)

print increment_it(22)(33)

Let’s take it a step at a time.

In the example above, we are declaring a “regular” function (incrementJt), but we return
the value to a lambda, along with a parameter, and the lambda function then returns a
value, incrementjt as a function takes a single value and returns. But that return then
passes it to a lambda function, which has one parameter that takes the return value and
adds whatever was passed to it to the value passed to incrementjt. So that is a killer
first line. The second and third lines could appear equally cryptic, but remember that
variables in Python are dynamic and can hold any object, and in this case fii and gii are
lambda functions themselves that will be initialized with the increments of 2 and 6,
respectively. Let me say that again: fii and gii are variables holding lambda functions with
slightly different values for incrementjt. The very last line shows how the whole thing is
invoked, passing 22 as the increment to incrementjt, and 33 will be passed to the lambda
function. Here are the results:

44 48
55

Chapter 9: Python *159

Pretty nice. Lambda become helpful in just these kinds of situations where an output
from a named function needs to be further processed without the overhead of writing a
traditional function. You probably won’t be writing a lambda right out of the blocks, but
you am bound to run into them at some point. Might as well familiarize you with them
now rather than have you run out of the room screaming hysterically later.

Classes in Python
Before we move on to a more complete code example, we have to embrace the object-
oriented nature of Python by reviewing classes. As mentioned in other chapters of this
book, a class is really a template of how an object should look and act. It defines the
object’s properties, data, and functions and provides a method for initializing and creating
objects based on the class.

A simple example is this:

class Talker:

'The talker class'

talkerCount = 0

def__init__ (self, greeting):

seif.greet!ng=greeti ng

Taiker.taikerCount+=l

def speak_klingon(self):

print "nuqneH"

return

def speakfself):

print seif.greet!ng

return

talkerl = Tai kerC'Hol a")

talker2 ■■= Taiker("Bonjour")

talkerl.speak_klingon()
Continued

160* Open Source Starter Guide for IBM i Developers

taiker2.speak klingonQ

talked.speakQ

tai ker2. speakQ

print Taiker.taikerCount

This is simple and contrived, but it demonstrates a few things. First, you can have an
initialization routine that takes the initial value and stores it in an instance variable in
the object when created. Second, you have a class variable that will be shared across all
instances of the class (that is the Talker.talkerCount as opposed to using something like
self.talkerCount). Third, Klingon is the universal language spoken by all Talkers.

The output would be:

nuqneH
nuqneH
Hola
Bonj our
2

If you included a module for speaking Klingon, klingon.py, you could just include the
module in your Talker class so that all talkers would speak Klingon. Take a look.

Our klingon.py has this:

def speak_kl ingonQ :

print "nuqneH"

return

And our Talker class now looks like this:

class Talker:

import klingon

Continued

Chapter 9: Python *161

'The talker class'

talkerCount = 0

def__init__ (self, greeting):

seIf.greet!ng=greeti ng

Talker.taikerCount+=l

def speak(self):

print self.greeting

return

Invoke the code:

talkerl = Tai kerC'Hola")

talker2 = Taiker("Bonjour")

taikerl.kli ngon.speak_kli ngon()

tai ker2 . kl ingon. speak_kl i ngonQ

talkerl.speak()

taiker2.speak()

print Taiker.taikerCount

The output:

nuqneH
nuqneH
Hol a
Bonj our
2

File Access in Python
How about a simpic example with a little more oomph and less mystery? File access is
something you’ll probably be doing on a regular basis, and Python has no problems with
file access. Let’s build a file and read through it. Here is the whole tamale:

162* Open Source Starter Guide for IBM i Developers

import csv

write inventory data as comma-separated values

writer = csv.writer(open('inventory.csv' , 'wb', buffer!ng=0))

writer.write rows([

('WIG', "Colorful widgets', 'Blue', 300, 1.99),

('FOOBARS', 'Tasty Foo bars', 'Chocolate', 125, 1.75),

('GAG', 'Various Gadgets', 'N/A', 500, 2.29),

('DOODADS','Marvelous doodads','Green',1000,19.99),

('THINGAMABOBS','What ARE these things?','Unknown',750,4.95)

])

read inventory data, print status messages

inventory = csv.reader(open('inventory.csv', 'rb'))

status_.labels = {-1: 'low', 0: 'adequate', 1: 'over stocked'}

for stock_ID, title, description, qty, price in inventory:

status = status_labels[cmp(int(qty), 500)]

print '%s is %s (%s)' % (title, status, qty)

Don’t ya just love it? With very little code, you can get a boatload of work done.

Most of the magic is in that first line: import csv. That module provides quite a bit of
functionality, and we get all of it on that one line. The first line is a comment (the # sign
denotes comments). The second line may look a little foreign to someone who hasn't
spent time in the object-oriented world, but there is real beauty in the second line. We
have a variable that we are calling writer (good name, since it will be writ.ng our data),
and we assign that variable the result of a call to the writer function in the csv module.
That writer takes an object returned from the open function, and the open function, which
is a built-in function in Python, so it isn't qualified by a csv, takes a filename, a mode
string, which identifies how the file should be created and used, and a third optional
parameter that determines how the file I/O will be buffered. Open will return a handle to
the file, which the writer object will reference to write to the file. I say “write” because
the string 'wb' that was passed to open means that the file will be created if it doesn’t
exist; it will be open for writing, and it will contain binary data 'b'. We won’t deep dive
into file I/O, but there are plenty of options and methods at your disposal.

Chapter 9: Python *163

So, out of the wonderful second line of code, we get an object called writer (we could
have called it anything). That object has functions that can be used to write to the file.
The function we leverage immediately is writerows. Now, we could have used writerow
(singular) and written the rows one at a time, but writerows allows us to push it all in in
"one swell foop.” Note that the parameter passed in is a sequence (array) of tuple objects.
Yeah, you know this stuff!

Reading the file is just as easy. Again, the csv module has a reader function that returns a
reader object we called inventoryk®he csv.reader function is passed a file object, which is

returned from the built-in file open function that is passed the filename and the “mode,”
which is the string 'rb', which means the file is opened read-only for binary data.

The interesting part here is the status_labels variable, which has a dictionary object in
it with three name-value pairs. Jump down a couple of lines to where the variable is
actually used. You’ll see that the status variable is populated by three functions rather
tersely combined on the line. The emp function compares two values and returns one of
three results: It returns - I if the left comparator is less than the right; it returns 0 if they
are equal; and it returns I if the left comparator is greater than the right. We cast the qty
parameter to an int so that the comparison is performed “apples to apples” (remember
that our variables can be dynamically typed). Our comparison is to the integer 500, so
our quantities in each inventory record arc compared to 500 each time. The cool part is
that the return value (-I, 0, or I) is then used to retrieve a value from our statusjabels
dictionary -for example, status_labels[]. And that value is used as the value for the
status variable. Nice!

System Access
In every chapter of this book, we have covered access to the system- the immediate
system (PASE) and the IBM i system. Python is no slouch when it comes to capabilities.
So we’ll do “ice cream before spinach” and take a look at PASE access first. It is
probably better thought of as “host” system access since calling (shelling) out to the
system can be done in LUW as well as PASIj£,

In Python, here is how we begin the “Journey to the Center of the i”: We use subprocess
... call to get there.

164* Open Source Starter Guide for IBM i Developers

from subprocess import call

call(["Is", "/home/pete","-1"])

Basically, the script spawns a new process, executes the command, and then returns the
output. Nothing fancy here. It is very similar to many other scripting languages. Where
things get interesting is when you access IBM i resources. We can pretty much get to
whatever we want on IBM i by using the XMLSERVICE library. Fortunately, Python also
has a wrapper module in the iToolkit for Python. Let’s take a look at this particular
implementai on of the Python client of XMI SERVICE.

DB2 Access
Again, we are fortunate to have the pioneers of open source doing all the heavy lifting for
us on IBM i. There is already a Python module called ibm_db that handles all the I/O to
DB2 on i and back again. All we need to do is use it.

Just an aside on getting the functionality. 1 went the PTF route in order to get the ibm_db
and the iToolkit installed for Python. I also chose to install it for Python 3. I hate to give
you links to the site because they get outdated so quickly, but I pulled the instructions
from the IBM developerWorks site, which used pip3 to install the wheel (.whl) file.
It seems that is the currently supported method. So plan on installing the correct PTF
for your level of the operating system as well as installing using pi p 3. That sounds
redundant, but it is not. pip3 installs from the 1FS, but there isn’t anything there unless
you install the PTF first! So find the PTF, install the PTF, and then install the .whl using
pip3. That worked for me.

Once you have the ibm_db module installed, you can use it. Let’s look at an example in
Python 3. (How do you know it is Python 3? The print() statements.)

import ibm_db

conn = ibm_db.connect("*l OCAL","myuserid","mypassword")

sql = "select * from employee.employee"

result_set = ibm_db.exec_immediate(conn,sql)

printC'opening connection")

Continued

Chapter 9: Python *165

if conn:

dictionary = ibm_db.fetch_both(result_set)

while dictionary != False:

printf'Row is : ",dictionary("EMPID"] + " " +

dictionaryfl] + " " +dictionary[2])

dictionary = ibm_db.fetch_both(result_set)

printC'closing connection")

i bm_db.close(conn)

Note that in the dictionary that is returned, I can reference the columns by name or by
ordinai position (dictionaryf'EMPID"] or dictionaryfl....]). Plenty of I/O methods are
available, so we are looking at only one here. But we used the “generic” ibm_db.exec_
immediate, which we could use for any SQL statements: SELECT, INSERT, DELETE, and so
on. And, of course, there are methods that will allow us to bind parameters and execute
prepared statements. The whole panoply of SQL goodness is available to you here. I
encourage you to experiment (with a test database, of course).

Accessing RPG
Once again, we have “one call, that’s all” for calling RPG from OSS, and that is:
XMLSERVICE! Of course, you know this stuff! You’ll need to make sure that the toolkit is
properly installed using the same procedure as with the ibm_db module. But once you
have the toolkit installed, there is just one thing to remember: require toolkit! Here is an
example (similar to the others if you have read the other chapters):

from itoolkit.lib.ilibcall import *

itransport = iLibCallQ

from itool kit import *

XMLSERVICE/ZZCALL:

D INCHARA s la

D INCHARB s la

D INDEC1 s 7p 4

D INDEC2 s 12p 2
Continued

166* Open Source Starter Guide for IBM i Developers

D INDS1 DS

D DSCHARA la

D DSCHARB la

D DSDEC1 7p 4

D DSDEC2 12p 2

*++++++++++++++++++++++ ++ +++ +-+++++++++++++++++++++•+ +++++++++++++

* mainO: Control flow

T<+++

C *Entry PLIST

C PARM INCHARA

C PARM INCHARB

C PARM INDEC1

c PARM INDEC2

c PARM INDS1

itool = iToolKitO

itool.add(iCmd('chglibl ' , 'CHGLIBL LIBL(XMLSERVICE)'))

itool.add(

iPgm('zzcal1','ZZCALL1)

.addParm(iData('INCHARA','la','a'))

.addParm(iData('INCHARB','la','b'))

.addParm(iData('INDEC1','7p4','32.1234'))

.addParmfiData('INDEC2','12p2','33.33'))

.addParmf

iDS('INDSl')

.addData(iData('DSCHARA','la','a'))

.addData(iData('DSCHARB','la','b’))

.addData(iData('DSDEC1','7p4','32.1234'))

.addDatafiData('DSDEC2','12p2','33.33 ’))

)

)

xmlservice

i tool.cal 1(i transport)

Continued

Chapter 9: Python • 167

output

chglibl = itoo I.dict_out('chglibl')

if 'success' in chglibl:

print (chglibl['success'])

else:

print (chglibl[’error'])

exi t()

zzcall = itool.dict„out('zzcall')

i f 'success' i n zzcal1:

pri nt (zzcall['success'])

pri nt (" INCHARA o + zzcall['INCHARA'])

pri nt (" INCHARB ” + zzcall['INCHARB'])

pri nt (" INDEC1 " + zzcall['INDEC1'])

pri nt (" INDEC2 " + zzcal1['INDEC2'])

pri nt (" INDSl.DSCHARA " + zzcall['INDSl']['DSCHARA'])

pri nt (" INDSl.DSCHARB " + zzcal1['INDS1']['DSCHARB'])

pri nt (" INDSl.DSDEC1 " + zzcall['INDSl']['DSDEC1'])

pri nt (" INDSl.DSDEC2 ” + zzcall['INDSl']['DSDEC2'])

el se:

print (zzcal1['error'])

exi t()

TMI! Let’s unpack it because there is a bunch of scripting that adds to the verbosity
when the actual action in the example is pretty simple. Import commands. We have two.
The first pulls in the iLibCall method from the package itoolkit.lib.ilibcall. We then assign
iLibCall to a variable (object) called itransport. iLibCall will use the XMLSERVICE library to
make the direct call using the current connection (in my case, made using a shell in SSH).
We can also use a DB2 stored procedure or a REST call using HTTP if we need to call
into a remote system The second import pulls in all methods from the itoolkit package. It
isn’t redundant because we won’t get every method from every package with from itoolkit
import *. We only get the methods and ob|ccts from the package. Import pulls in what we
need from the itoolkit module.

168 • Open Source Starter Guide for IBM i Developers

The endless comments are just to show you the code that will be executed by the call. It

will give you the program structure so you will know how to structure your own program

call. It is just comments. Don’t sweat the verbosity, OK?

Next, we create an itool object that contains most of the code to do the heavy lifting for
us. Once we have that object, we immediately use it to add a command (an iCmd object
cleverly called chglibl) to add XMLSERVICE to the library list. Then we add an iPgm object
called zzcall to the itool object. The definition of that iPgm object has multiple parameters
called iData objects that define the single-variable parameters and parameters called IDS
objects that are data structures. But rather than adding parameters to the iDS object, you
add data objects to the data structure. Logical, right?

Once you define the objects, adding them to your itool object, then you make your call
using whatever transport you defined (direct, DB2, or REST). All the magic happens
there. Now you just have to query the itool object to see if your call was successful.
We actually had two things that ran: The CHGLIBL command, and the call to the ZZCALL
program in XMLSERVICE.

Now we retrieve the results, storing the results in a dictionary (hash). We know the
command was successful if the “success” key is in the dictionary. If we didn’t find
“success,” then an “error” key would be available, and we could examine that value to
see what went wrong. The same routine applies for our call to ZZCALL (why do I think of
bearded guys when I see ZZCALL?). We check to see if our dictionary contains a “success”
key, and if so, we retrieve the value, which is the name of the program we called, and then
we walk the rest of the dictionary to retrieve the values associated with each parameter.
Our print statements dutifully print out the contents of each parameter returned. Lather,
rinse, and repeat with your stuff. It is tedious but eminently functional. No pain, no gain.

Feel the Power
What I have been trying to demonstrate in this chapter is the strength of Python: its
terseness without being mystifying and its utility and flexibility. For IBM i folks, that
should be familiar territory. Our command-line commands are very terse yet, arguably,
about as descriptive as a three-letter command can be. The object-oriented nature of
Python also appeals to the Java programmer in me. Yes, I see the same kind of power in
JavaScript and PHP and Ruby, but it nicely comes together in Python.

A bit of wisdom: “Plans fail for lack of counsel,
but with many advisers they succeed.” (Prov.
15:22)

10
Node.js on IBM i

This will be the first “bait and switch” chapter (maybe not). You know, like that $50
mobile phone plan that gives you “unlimited” calling, data, and texting, as long as you
are on a public Wi-Fi? Doh! Well, in this case, the “bait” was dangling “Node.js” in front
of you, and the switch is jumping right into ... JavaScript. The reason for the switch is
that there is no “Node.js” language. Here is the definition of Node.js from Wikipedia:

“In software development, Node.js is an open-source, cross-platform runtime
environment for developing server-side applications. Although Node.js is not a JavaScript
framework, many of its basic modules are written in JavaScript, and developers can
wri<e new modules in JavaScript. The runtime environment interprets JavaScript using
Google’s V8 JavaScript engine.”

So. let’s unpack that. Open source: check! Cross-platform: Yep! Otherwise we’d be
talking about 1LE RPG as the language. And then the mouthful: “runtime environment for
developing server side applications.”

So the first thing to pay attention to is the mention of “server.” Node.js is a server just like
your IBM i is an application server. If you happen to use Tomcat or PHP on your IBM i,
those are application servers as well. It gets to be a little like those Russian matryoshka

170* Open Source Starter Guide for IBM i Developers

dolls that are nested inside of each other: you have an IBM i (server) running Node
.js (server), which may be running the plug-in called http-server (server). The operative
words to pay attention to are “server” and “Web” and “JavaScript.” I personally think
that is where the great utility comes into play. In Node.js, you have a server platform that
can serve Web content, and it is a server that uses JavaScript as the base language. As a
Web developer, you’ll be bumping into JavaScript basically everywhere, so being able to
leverage a language like JavaScript in your “regular” development is a plus in my opinion.

So because Node.js is a server that runs JavaScript, we are going to I) go through the
basics of the JavaScript language and 2) talk about “plugging in” modules in Node.js and
how to maintain and write modules for Node.js. Then once we have background on the
language, we will walk through our “usual” routine of accessing “local” system commands
(PASE in our case), accessing database resources in DB2 for IBM i land, accessing the
IBM i command line, and finally making calls to the big wide world of RPG!

Jiving with JavaScript
JavaScript in the Web world has had, and some say still has, a checkered past. Reviled in
the late ! 990s because of the ease with which it could be exploited for malicious purposes
on the Web, it is now, remarkably, the core language for a Web server (Node.js!). The
“exploit” side of things is still a risk, primarily in the browser, but the ease with which
you can grasp the basics of the language, the plethora of examples and tutorials that exist
for free on the Web, and the current romance that the bleeding-edge Web developers have
with Node.js make it a great choice for developers looking to add some “dev cred” to
their resumes.

JavaScript’s most well-known characteristics are that it is a high-level language (which
makes it almost self-documenting), is untyped (which we will talk about), interpreted
(which is changing), and is object-oriented (where the power resides!). It is easy to learn,
requires no real IDE to use in development (a text editor is enough), and can be run from
an HTME form in almost any browser.

Although scripting languages have been around for ages (BASIC and BasicScript come
to mind), the rise of using a scripting language in a Web environment coincided with
the rise of the Web. For those who are old enough to remember those early days, the
800-pound gorilla of browsers was from Netscape, and those folks developed the first

Chapter 10: Node.js on IBM i • 171

versions of what we call JavaScript today. Microsoft developed VBScript and JScript for
the Internet Explorer browser, but Netscape submitted the specification of JavaScript to
ECMA, which established an ECMAScript (ES) standard that lives on today. So as of this
writing, ES6 is the nascent version now being adopted, ES7 has been released (aka ES
2016), and ES 2017 is in the pipeline. In 2016, the naming and versioning plan changed,
and the plan now is to release versions more quickly, perhaps annually, so I wonder, what
is the version you will use in 2025?

If you want to “run” a JavaScript script, you have a few choices. A browser can be used
if you embed the JavaScript in an HTML form and then use the debugging or developer
tools to monitor output. Of course, an easy solution is to run Node.js. For the more
adventuresome, you can compile or find a binary for the Google V8 engine and run it in the
command window or terminal. For the examples we’ll be running, I am using the Sublime
Text text editor, which uses my installed version of Node.js for the runtime environment.
There are also other scripting shells available that you can find on the Internet. A scripting
shell is also known as a RFPL: Read, Evaluate, Print, Loop. In any case, I highly
recommend finding something to run the examples with. Trial and error is a great teacher.

JavaScript is both an object-oriented (00) and a procedural language. You can
structure your code however you want (similar to PHP). So, the good news for an RPG
programmer is that you don’t have to fully embrace OO techniques in order to make use
of the language. But, we are going to go there anyway because it’s cool and productive,
and even more so, most code you will come across in the Node.js world will be 00. So
put on your “big kid” pants, and let’s start!

Take a look at this example:

var namel = "Joe Zablotnik";

var agel = 40;

var addressl = "123 main street";

var name2 = "Pikofp Andropoff";

var age2 = 30;

var address2 = "444 Gorby street";

Continued

172 • Open Source Starter Guide for IBM i Developers

console.logfnamel +

console.log(namel + " age is " + agel);

console. logC'and " + namel + " lives at " + addressl);

console.log("");

console.Iog(name2

console.Iog(name2 + " age is " + age2);

console.logC'and " + namel + "lives at " + address2);

The output would be:

Joe Zablotnik:
Joe Zablotnik age is 40
and Joe Zablotnik lives at 123 main street

Pxkofp Andropoff:
Pikofp Andropoff age is 30
and Pikofp Andropoff lives at 444 Gorby street

If you wanted to retrieve and print 100 names and addresses in this way, it would be
pretty tedious.

Take a look at this alternative:

var personl = new Object;

var person2 = {}; // another way of declaring an object

personl.name = "Joe Zablotnik";

personl.age = 40;

personl.address = "123 main street";

person2.name = "Pikofp Andropoff";

person2.age = 30;

person?.address = "444 Gorby street";

Continued

Chapter 10: Node.js on IBM i *173

function spi11thebeans(p){

console.log(p.name+

console.log(p.name + " age is " + p.age);

console.logC’and " + p.name + " lives at " + p.address);

console.log("");

}

spillthebeansCpersonl);

spillthebeans(person2);

You say to y ourself, “Pete is a genius! He went from 15 lines of code to 21. He must be
paid by the line!” Well, that isn’t true, but you still might be scratching your head about
how the alternative presented here is “better.” The “better” part is revealed as the number
of “persons” increases. The function that outputs the information will always stay at
six lines while in the original, more procedural approach you will add the four lines of
code to output for each new “person” added. Thinking in 00 terms, as was described in
chapter 5, is what is needed here. The point is to attempt to encapsulate the object concept
into your designs.

So, with that brief introduction to the rationale behind 00 design, let’s back up a bit and
deal with some basic programming concepts in JavaScript: variables (dynamic typing),
scope, objects and classes, arrays and hashes, and functions. The other nuts and bolts of
programming m JavaScript will be well known to any experienced programmer, so we
won’t be jumping in too deeply on either the well-known concepts or the arcana of the
language.

JavaScript is a dynamically typed language, so you could do something like this:

var meaningof11 fe = "He who dies with the most toys wins";

console.log(meaningoflife);

meaningof1ife = 42;

console.log(meaningoflife);

Continued

174* Open Source Starter Guide for IBM i Developers

function mylife(){

stuff = 5;

while(stuff>=0){

console. logC'Keep using stuff until it is all gone. Stuff is now "

+stuff);

stuff--;

}

console.log("My stuff is all gone!");

}

meaningoflife = mylife;

meaningoflifeO;

The output would be:

He who dies with the most toy? wins
42

My stuff is all gone!

Keep using stuff until it is all gone. Stuff is now 5
Keep using stuff until it is all gone . Stuff is now 4

Keep us i ng stuff until it is all gone . Stuff is now 3
Keep using stuff until it is all gone . Stuff is now 2
Keep using stuff until it is all gone . Stuff is now 1
Keep using stuff uni.il it is all gone. Stuff i s now 0

The thing that is most notable here is that we see a declared variable assigned not
only to different values but different types. JavaScript won’t complain about it. I don’t
recommend that you take such a cavalier attitude to variable type assignment. I note it
because since an error is not thrown when such reassignment takes place, you could end
up stomping on a variable, which may come back to haunt you. Like this:

var meaningoflife = 42;

console.log(parselnt(meaningoflife));

meaningoflife = "He who dies with the most toys wins";

console.log(parselnt(meaningoflife));

Chapter 10: Node.js on IBM i *175

Rarely would you do such a quick reassignment of a variable type, but imagine if you
defined a variable called account and assigned it a string account number, but later on in
your code you regan to use the same variable as an account balance. JavaScript wouldn’t
complain, but your users would. It would also be devilishly difficult to debug (take my
word for it!). So I do see variable names like str_name and int_balance where the type is
part of the variable name. It can be useful.

Scope plays into the whole untyped variable scenario as well. Take this example, for
instance:

var x = 42;

function addandoutput(inx){

x="the number is

y = x + i nx;

console.log(y);

}

console.log(x);

addandoutput(x);

console.log(x);

The output will be:

42
the number is 42
the number is

You start with a variable that has a value of 42. You inadvertently assign it to a string, so
you end up with a string, stomping on the original value. That is why you want to do two
things on a regular basis: I) use a variable name that indicates its type (if possible) and
2) always use “var” when defining the variable for thc/z'r.s7 time. If something weird is

176 • Open Source Starter Guide for IBM i Developers

happening in your code that seems drop-dead simple, check for scope issues as well. We

could rewrite the code above like so:

var x = 42;

function addandoutput(.inx){

var x="the number is

var y = x + inx;

console.log(y);

}

console.log(x);

addandoutput(x);

console.log(x);

The output will be:

42
the number is 42
42

That’s better!

So what kind of dynamic data types are most common? Td say the follow ing are the ones
you are most likely to encounter:

• var int length = 42; // Number

• var str_number = "Forty two"; // String

• var aryjang = ["RPG", "Ruby", "Python”]; // Array (

• var person = {firstName:"John", lastName:"Doe"}; // Object (more about this syntax
[JSONJ later)

• var bool_true_false = true; // boolean true/false

Chapter 10: Node.js on IBM i *177

There are also a couple of constants that you will get familiar with, even though you may
not fully understand them at first:

• undefined—The variable has no type and no value. Most variables are in this state
until assigned a value.

• null—No value and type is object. A null value is always an object. For example:

var x = 42;

console.logC typeof x); // ==> number

x = nulf;

console.log(typeof x); // ==> object

JavaScript also has plenty of built-in functions, typeof is one built-in function that
retrieves the type of variable you are dealing with. There are built-in math methods you
can access from the Math object, like Math.randomO, Math.minO, Math.maxO, and many
more. There are String methods like substring!), indexOf(), slice!), and a host of others. All
of this is well documented on the Web. Google is my programming “pair” when I am in
development mode.

There are a few things beyond the basics of variable types and methods that you’ll need
to wrap your head around. These are pretty common to most OO languages. As I had
reviewed in chapter 5, the cool thing about objects in the OO world is that they contain
data and methods. They are like mini-programs in themselves, and leveraging the
concepts of inheritance and polymorphism can really improve your productivity. Just like
modular programming and the concept of code reuse in Don’t Repeat Yourself (DRY)
development (covered in chapter 7), leveraging OO concepts can let you focus on writing
new code and new routines while leveraging your prior work.

Classes and Objects
Let’s go back to the very first example that demonstrated the advantage of using less
procedural and more OO techniques. Remember building that "person” object?

var personl - new Object;

Continued

178 • Open Source Starter Guide for IBM i Developers

personl.name - "Joe Zablotnik";

personl.age = 40;

personl.address = ”123 main street";

Turns out that is a very ES5 way of doing things. If you are using the latest version of
Node.js and using a Web browser that actually works, like Chrome or Firefox, you can
use some of the “class” concepts 1 talked about in chapter 5. Imagine building a Person
class that defines a constructor to create a person object as well as a method to output the

person information. That class might look like this:

'use strict';

class Person {

constructor(fName, age, address) {

// Properties

this.full Name = fName;

this.age = age;

this.address = address;

}

// Methods

talkAboutMeO {

return 'My name is ${this.fullName} I am a ${this.age}-yr. old
programmer that lives on ${this.address}';

}

}

Again, this is a wee bit more code than before, but the goal here is that in the long term
we’ll make up for slightly longer code that defines the class with less code to implement
the class. What is really nice about this *s the constructor and the method. It is all self­
contained, so when we build a person we already have an object that can talk about itself
(maybe the class should be “Politician”). So this is how we would then construct one of
these persons and get it to talk:

Chapter 10: Node.js on IBM i *179

var me = new PersonC'Pete Helgren", "33", "19001 Huebner road");

console, log (me. tai kAboutMeO) ;

Output:

My name is Pete Helgren I am a 33-yr. old programmer that lives on
19001 Huebner road

(Apparently this person also lies about their age ... they are a politician!)

The ES5 aficionado will say “I can do that with an object by passing parameters to a
function to set all the properties as well.” Well, yeah, that is the way most folks used to
do it, but now' we can also use inheritance with the “extend” keyword, so that if we have
a class that we want to extend with another class’s function, we can do that!

Let’s say this Person class extends the Employee class. The Employee class has the
following:

class Employee {

constructorfhireDate, monthlyPay) {

this.hi reDate = hi reDate;

this.monthlyPay = monthlyPay;

}

getMonthlySalaryO {

return 'Killer! I make ${this.month!ySalary} each month.'

}

}

Note that the Employee class has a constructor as well, so we’ll need to accommodate that
when we construct the Person class that extends Employee. So our complete class would

look like this:

180* Open Source Starter Guide for IBM i Developers

' use strict';

class Employee {

constructor(hireDate, monthlyPay) {

this.hi reDate = hi reDate;

this.monthlyPay = monthlyPay;

}

getMonthlySalaryO {

return 'Killer! I make ${this.monthlySalary} each month.'

}

}

class Person extends Employee{

constructor(fName, aye , address, hi reDate, monthlysalary) {

// Call the contractor for Employee

super(hi reDate, month!ySalary);

// Person Properties

this.full Name = fName;

this.age = age;

this.address = address;

}

// Methods

taikAboutMeQ {

return 'My name is ${this.fullName} I am a ${this.age}-yr. old
programmer that lives on ${this.address}';

}

}

var me = new Person("Pete Helgren", "33", "19001 Huebner road",
"09/01/2012", 1.99);

console, log (me. tai kAboutMeQ) ;

console, log (me. getMonthlySalaryO) ;

Chapter 10: Node.js on IBM i *181

Then the output would be:

My name is Pete Helgren I am a 33-yr. old programmer that lives on
19001 Huebner road
Killer! I make 1.99 each month.

How sweet is that? By just extending the class with another class, I inherit the data storage
and the methods of that class. Hopefully, you are beginning to get the big picture here. In
many cases, we build programs that use and reuse code, not only within the same program
but across programs as well. By creating classes, we can reuse common functions just
by extending the class with another class. Very often, you will develop qu'te a few utility
programs that handle I/O, or validation or, in the cases of security, encoding/decoding and
verifying information. Classes allow us to reuse use our commonly used stuff.

Arrays and Hashes
We have already traveled a little way down this path. We have walked through basic
variable types, and an array was mentioned as a type. Hashes are really just objects that
have name/value pairs (key/value pairs) that on the face of it, don’t have much utility. But
as we stray into the Web world and use JSON as a way of representing/moving data, the
whole name/value pairing becomes pretty powerful.

Let’s first take a look at arrays because I think they will be pretty familiar to RPG
programmers and programmers in general. In JavaScript we can construct an array in one
of a couple of ways:

var myarray = [42, 'life', 1984, 1492, 'zebra'];

Like most things in JavaScript, we are dealing with dynamically typed data, so we can
have any kind of stuff stuffed into an array. To retrieve data from an array, you just
reference the cell the data is stored in:

console.log(myarray[2]);

which would return 1984.

182 • Open Source Starter Guide for IBM i Developers

We could also create an array like this:

var mynewarray = new Array(42, 'life', 1984, 1492, 'zebra');

console.log(mynewarray [3]);

which would return 1 492.

The new ArrayO syntax should ring a few bells, and at least one light bulb should go on.
You should be thinking to yourself, “Wait a minute, if it has a constructor, it must be an
object!” Right you are! So what else does an array object have that we might make use
of? Take a look at the following example:

fLen = myarray.length;

for (i =0; i < fLen; i++) {

console. logC'Item at " + i + " is " + myarray[i]);

}

Using the data from above, the output would be:

Item at 0 is 42
Item at 1 is life
Item at 2 is 1984
Item at 3 is 1492
Item at 4 is zebra

So the array will have a length object that is a count of the items in the array. We can also
“push” things onto the array and “pop” things off:

myarray.pop(); // removes the last element

myarray.push('antelope'); // adds 'antelope' to the end of the array

Then iterate through them again:

Chapter 10: Node.js on IBM i • 183

Item at 0 i s 42

Item at 1 i s life

Item at 2 1 s 1984

Item at 3 is 1492

Item at 4 i s antelope

Hashes have a similar “feel,” but because they are basically arrays without the index, you
can access the contents differently. Rather than referencing their position in the stack, you
reference the location by the “name” or “key” of the name/value pair. So let’s recreate the
array as a hash making up keys to reference each value.

One way we could create our hash is like so:

var myhash = {'mol':42, 'love':'life', 'bb':1984, 'columbus1492,
'animal':'zebra'};

And if we wanted to get a single value, we could reference its location using the name/
key:

console.log(myhash['bb']) ; // returns 1984

We can get an array of keys in the hash/objcct by using the Object.keys method. It will
return the following for the myhash object:

console.log(Object.keys(myhash));

['mol', 'love', 'bb', 'columbus', 'animal']

OK. Cool enough, but what use is it? In the command-line environment, iterating through
key/value pairs may not be all that helpful. Certainly it has some utility, but how often
will 1 be constructing and iterating though objects at the command line? Probably not
very often. But hook this up to something with large amounts of I/O, like a database or
a Web page, or both, and suddenly sorting through arrays of data or extracting data from

184* Open Source Starter Guide for IBM i Developers

objects becomes pretty important. Put the data and program that iterates through in on two
different servers, and, man, most of your time could oe spent parsing and sorting through
data, l hat is where the concept of a “hash” becomes very useful! I briefly mentioned
JSON, and it has become the “lingua franca” of the data-cxchange world. The reason that
the JSON format is so useful is ... well, let me show you an example, and you can tell me.

Let’s say we have an array of objects, and each of those objects represents a person. Take

a look at this:

var myjsondata = [

{"firstname": "John","lastname": "Doe","age": 50,"eyecolor": "blue"},

{"fi rstname": "Pete","lastname": "Helgren","age": 56,"eyecolor":
"green"},

{"fi rstname": "Bubba","lastname": "Gump","age": 32,"eyecolor": "brown"},

{"fi rstname": "Frank","lastname": "Zappa","age": 56,"eyecolor": "gray"},

{"fi rstname": "Ima","1astname": "Minion","age": 18,"eyecolor": "black"},

{"fi rstname”: "Ima","1astname": "Hacker","age": 15,"eyecolor":
"crossed"}

]

Classic JSON format! The only difference here is that with JSON all of the keys/names
arc in double quotes. That’s it! The utility comes in that as we evaluate each “record”
in the array. Each array element contains an object {}. Those objects all have the same
properties: firstname,lastname, age, and eyecolor. They don’t have to have the same
properties—this looks more like an array of database records, but in any case, we can
walk through the array and interrogate each object in the array pretty simply:

van myjsondata = [

{"firstname": "John","1astname": "Doe","age": 50,"eyecolor": "blue"},

{"firstname": "Pete","1astname": "Helgren","age": 56,"eyecolor":
"green"},

{"firstname": "Bubba","lastname": "Gump","age": 32,"eyecolor": "brown”},

{"firstname": "Frank","lastname": "Zappa","age": 56,"eyecolor": "gray"},

{"firstname": "Ima","lastname": "Minion","age": 18,"eyecolor": "black"},

Continued

Chapter 10: Node.js on IBM / • 185

{"firstname": "Ima”,”1astname": "Hacker",”age": 15,"eyecolor":
"crossed”}

];

fLen = myjsondata.length;

for (i = 0; i < fLen; i++) {

// we know, just by looking at the data, that we have object

// properties to iterate through as well

// so get the object and walk the properties

var myhash = myjsondata[i] ;

Object.keys(myhash).forEach(function (key) {

var value = myhash[key];

// iteration code

console. logC’Item " + i + " with " + key + " is " +value);

});

}

I he output looks like this:

Item 0 with firstname is John
Item 0 with lastname is Doe
Item 0 with age is 50
Item 0 with eyecolor is blue
Item 1 with firstname is Pete
Item 1 with lastname is Helgren
Item 1 with age is 56
Item 1 with eyecolor is green
Item 2 with firstname is Bubba
Item 2 with lastname is Gump
Item 2 with age is 32
Item 2 with eyecolor is brown
Item 3 with firstname is Frank
Item 3 with lastname is Zappa
Item 3 with age is 56
Item 3 with eyecolor is gray

186 • Open Source Starter Guide for IBM i Developers

Item 4 with firstname is Ima
Item 4 with lastname is Minion
I tern 4 with age is 18
I tern 4 with eyecolor is black
I tern 5 with firstname is Ima
Item 5 with lastname is Hacker
Item 5 with age is 15
Item 5 with eyecolor is crossed

Basically we iterated through the array and the properties of each object in the array.
You’ll find yourself doing this quite a bit when you are working with HTML perhaps
when you build a drop-down list of values, formatted as a select option, or when you
create a report in HTML. We basically have five lines of code1 Not bad (unless we are

paid by the line).

Functions
We have been writing and using functions all along without much commentary, so it’s
time to back up and deal with them. You know what functions are, so I don’t really
need to explain what they are. You have been writing subroutines and subprocedures for
years and, basically, those would be the equivalent of what a function is in JavaScript.
Sometimes they are called functions when they stand alone, and sometimes they are
called methods when encapsulated in a class or object. Basically it is a chunk of code
you reference by a name and pass it parameters, except when you don’t. Functions can
be named in JavaScript or anonymous. Anonymous functions have no name and are
usually assigned to a variable. You see anonymous functions quite a bit in asynchronous
^unctions like ajax (xhr) calls because the asynchronous methods usually return data or
pass a callback; in those cases, naming the function would be superfluous. Let’s take a
quick tour of functions in JavaScript and sec what they can bring to the party.

At its simplest, a JavaScript named function will have a name, a function body, and
probably a few statements to be run. A simple example would be:

function sayHello(pName){

console.log("HeTlo ”+pName);
Continued

Chapter 10: Node.js on IBM i • 187

//In HTML this would pop up an alert box:

//alert("Hello ”+pName);

}

You could also assign a function to a variable. When you do that, you are actually
creating an anonymous function and then assigning it to the variable.

var bl arg = funcf:ori(pName){ console, log ("Hello " + pName) };

Then you could nvoke it:

blarg("Pete");

It would output “Hello Pete”.

We didn’t talk about “hoisting” before because it is a little weird and is probably less
obvious with variables. Hoisting is JavaScript’s default behavior of moving variable (and
function) declarations to the top of the script. You won’t see them move; the JavaScript
runtime will “hoist” those suckers to the top. So you might see something like this in a
script:

x=l;

z=10;

var y = x + z;

I = rocknrol1(y);

And you’d be wondering where the heck those variables are declared. Where is the
rocknroll function? Well, it could be way down in the script body. I tend to be a bit more
tidy than that and naturally declare my stuff that will be global or used throughout a script
at the top of the script, but that doesn’t always happen. JavaScript “helps” you out by
automagically moving declarations to the top. Beware the initialization weirdness that
can happen! You might have code like this:

188 • Open Source Starter Guide for IBM i Developers

var x = 5; // Initialize x

console.log (x + y) ;

var y = 7; // Initialize y

And the log statement displays “NaN” (not a number). What!? Both 5 and 7 are numbers,
so why is the product of them not a number? It’s because the declaration ofy is hoisted.

In reality, here is what JavaScript did to “help” you:

var x = 5;

var y;

console.log (x + y) ;

y=7;

Isn’t that helpful? That kind of stuff can drive you nuts. So, if you think you have all
of your declarations correct and are seeing weird errors, take a careful look at w hat
“hoisting” might have done to you.

So you can create functions and name them or assign them to variables. You can also
have the function return some data as well, and you use a return statement to do that. We
could write our sayHello function like this:

function sayHello(pName){

return "Hello " + pname;

J

console.log(sayHello("Pete"));

We can create an object and put a function into it:

class Person {

constructorCfName, age , occupation, address) {

// Properties
Continued

Chapter 10: Node.js on IBM i *189

this.full Name = fName;

this.age = age;

this.address = address;

this.occupation = occupation;

}

// Methods

talkAboutMeO {

return 'My name is ${this.full Name} I am a ${this.age}-yr. old
${occupation} that lives on ${this.address}';

}

}

// Create one

var me = new Person("Pete Helgren", ”33", "Developer", "19001 Huebner
road");

console. log (me. tai kAboutMeO) ;

This is a pretty good overall demonstration of a function called from an object. Once we
have created the Person, we can invoke the talkAboutMe method with dotted notation
from the object. Nice.

Just a few more caveats. Occasionally you might forget to indicate that you are calling
a function and simply call the function without the parentheses. Doing this will get you
the function definition rather than the function. Every once in a while, you’ll see a self­
invoking function (illegal in three states!) that may look a little strange:

(function sayHola(){

var pName = "Pete";

console.logC'Hola " + pName);

})O;

190* Open Source Starter Guide for IBM i Developers

Note the parentheses () at the end invoke the function directly. Again, this is a fairly rare
use case, but it is something you may trip against, nonetheless. We will see an example of

this as we visit Node.js.

Are we there yet? Can we get to know Node.js a little now? Yes, now would be a good

time.

Node.js
Sure, the chapter was supposed to be on Node.js, but we have spent all of our time in
JavaScript. You have to remember that Node.js is (as we mentioned at the beginning
of the chapter) “an open-source, cross-platform runtime environment for developing
server-side applications.’1 Node.js is a server that is written in JavaScript with the V8
engine at its core, running modules that are, by and large, written in JavaScript. So a good
grounding in JavaScript is necessary to wrap your head around the code. The really good
news here is that there is much, much of the heavy lifting done for you because there is a
plethora of modules that will do already what you want to do. So, we’ll be leveraging a
lot of the available modules in our examples because writing them from scratch would be
a waste of time. We will spend some time talking about npm, the node package manager,
and then we’ll look at examples of how to implement our brilliant ideas in Node.js.

The node package manager was a necessary first step because it was quickly realized, as
it was with Ruby/Rails, that integrating functional components from other sources would
be a highly efficient way to build applications. The great thing about open source is that
the community is always learning from the past, taking the best practices, properties, and
attributes of other languages and projects and integrating them into the cun-ent languages
and projects. Thus, when it came to creating a package manager for Node.js as it rapidly
grew, the developers leveraged the things like wget, gem, rpm, PEAR, CPAN, and a
host of others, no doubt. The concept of getting a package from a remote repository and
installing it isn’t new. How it is done is the key, and npm does it well.

There are a few caveats to using npm. Recently the interdependent nature of npm
modules was exposed when a developer of a set of base modules, used practically
everywhere, decided to yank his npm modules due to a dispute over naming conventions
and trademark infringement. The removal of this module from the repository caused the
other modules that depended on the module to not install (missing dependency!) and

Chapter 10: Node.js on IBM i • 191

brought no end of woe to users of Node.js and npm for a few anxious days. The folks
at npm restored the missing modules, but the problem has led to some changes on how
the modules are managed and how they can be removed from the repository. In addition,
modules are given a cursory vetting for security issues, coding practices, or malicious
intent—so, as always, caveat emptor, even if it is free.

npm is included with Node.js, so there isn’t anything you need to install to use it. You just
run npm install <package names. There are a couple of different ways that you can install
packages. You can install them locally, as a folder off of your current project folder, or
globally, so that the same package is available to all of your applications, regardless of
where you located the project folder. There are many configuration options on how to
override default locations and behavior, which we won’t deep dive into now. In most
cases, you’ll install packages locally. There isn’t much of a downside. If you are like me,
you’ll work on a project and get it working just fine and then want it to stay that way.
If you install locally, you can have a pretty good feeling that your app won’t get jacked
up by you, or someone else, updating your packages to something incompatible. With
a global install, you might end up shooting yourself in the foot by updating a global
package you need for another project, thus breaking another project that is unrelated but
uses that globally installed package. So, even though you might find yourself installing
the same packages in several project folders, at least they can live independent of any
other updates.

There is a way to save your bacon on your project dependencies: use a package.json file
to list your project’s dependencies, so that you get the correct packages and versions you
need. There are a boatload of options available for a package.json, and we aren’t going to
explore them here. But this can give you an idea, at least, of what it would take:

{ "name": "IBM-i-socket-chat-example", "version": "0.0.1",
"description": "Interactive chat app with IBM ।", "dependencies": {
"body-parser": "Al.11.0", "express": "A4.10.2",
"socket.io": "Al.2.0" } }

This is a package.json file from a project I have at GitHub (https://githuh.com/phelgren/
rpg-nocle). You can see how the project is defined. I gave it a name, version, and a clever
description, and then I identified the versions of packages needed to run the code. The

https://githuh.com/phelgren/

192* Open Source Starter Guide for IBM i Developers

caret symbol (A) basically “locks down” the package version to the major/minor version
stated. So in the example above, "body-parser" has to be at least version 1. 11.0 but cannot
go above a version 1.99.99. That is a way to keep from accommodating a version change
that could have breaking changes. You can see the app also uses express and socket.io.
So, package.json is a way to try to keep your projects stable in a very volatile, package­

crazy world.

Yes, now we can take a look at some Node.js application building!

Just like any of the open source software we have looked at so far, Node.js can be
installed on just about any platform. So if you are a Windows user, you can install there.
If you arc a Mac user, you can install there, and for you Linux folks, go ahead, make
my day, and install it there. Node was originally part of the PowerRuby project (still is)
but grew longer legs and is now a standalone product on IBM i. Python was originally
needed as a scripting tool in order to install and compile other stuff, so we have a pretty
robust, happy ecosystem in the IBM i world. I recommend that you install Node.js on
whatever your “local” machine is because it is pretty convenient and is just drop-dead
simple to deploy to IBM i whenever you need to “smoke test” an app in the IBM i world.

Installing Node.js is as “easy” as installing licensed program 5733OPS Option I on your
IBM i. Easy as in “seems easy,” and, as I mentioned elsewhere, installing the IBM i OSS
product is a little different than normal. The first install of the product is a bit of a head
scratchcr because even though you may want to install only Node.js, the most humane
approach is to add all 15 options at the time you install 5733OPS—in the future, you
will thank me, even if six of the 15 options arc currently placeholders. It’s a good time
to put on the latest PTFs as well, and it may take a bit of time because the IBM i OSS
ecosystem is pretty diverse, and the prerequisite and co- requisite PTFs may hit quite a
few other products.

Vexing Versions
The only thing you might run into as you move from one node environment to another
is that the IBM i world isn’t quite as progressive as the run of the mill Node.js world,
so the version on IBM i might be slightly older than what you would find “in the wild.”
That is OK. Unless you are really pushing something to the bleeding edge, some version
mismatching won’t kill you. Node changed the version system it was using in late 2015.

Chapter 10: Node.js on IBM i *193

There was a “fork” of Node.js into a new project called io.js in January 2015, and the
two, though similar, headed in slightly different directions. The pre-fork Node.js was
hovering around version 0.11.15, which my head says, “Wow! Long way to go to V
1.0!” My IBM i is running 0.12.13, and the current Node.js release is version 4.5.0.
(onfused yet? The IBM i version was a Node version released in ... March 2016, so it
ain’t all that old. What gives? Well, the fork of Node.js and Node.js itself “kissed and
made up,” and they combined the fork (io.js) back into the Node.js version. So, Node.js,
a combination of the “old” Node.js and io.js, version 4.5.0, was released in August 2016.
My guess is my IBM i version will soon be at 4.5.0 or greater (as I download PTFs in the
background).

My Windows version of Node is 4.4.7, which is plenty compatible with what I am
running on IBM i, so I build on Windows, deploy on i. I use the Sublime Text text editor
as well, and IT uses Node to run JavaScript from the command line, so all is well and
nicely unified. No worries!

Code! Let’s take a look:

var httpsvr = requi refhttp") ;

httpsvr.cieateServer(function(request, response) {

response.writeHead(200, {"Content-Type': "text/plain"});

response.write("Hello World”);

response.end();

}) . 1isten(8888);

Our excellent JavaScript walk-through comes in handy here. First step in our Node script
is to “require” http. The http module is included in the Node install; all you need to do is
require the module, which is sort of like an ()O version of a /copy in RPG. Require loads
the module into the httpsvr variable, which is an object. In fact, wc immediately make
use of the methods present in the httpsvr object by invoking the createServer method!
One line and voila: we have an HTTP server!

createServer is passed an anonymous function, which has two parameters (objects),
request and response. Then within that function, we invoke the writeHead on the
response object, passing the value of 200 and yet another object, a name-value pair,

194* Open Source Starter Guide for IBM i Developers

{"Content-Type": "text/plain"}. Without doing a deep dive on the HTTP protocol, an http
response header must contain a status and a content type in order to be valid, so that is

what we are going to give it, at minimum, at this point.

Wait a second: why are we dealing with a “response” when we haven’t even sent
anything to the server? Well, in this minimalist, scaled-down example, we are just
going to have our server belch out some text as it starts up and receives anything on the
listening port. What will we send? Ah, the requisite “Hello World” just to prove that it
works. We follow that with a response.end method that basically flushes out the text.
Notice the . I isten(8888); at the end? That is an example of method “chaining” where
multiple methods can be invoked on an object. In the case of the httpsvr object that we
instantiated, it has many methods that could be invoked; we just took advantage of the
chaining option.

We could have also done this, with the same results:

var httpsvr = require("http");

httpsvr.createServer(function(request, response) {

response.writeHead(200, {"Content-Type": "text/plain"});

response.write("Hello World");

response.end();

}):

httpsvr.listen(8888);

Some folks like the compactness of method chaining, and some like to indicate the
invocation of each method explicitly.

If you were to save the script nto a file called server.js, you could invoke it by typing
node server.js at the command line (presuming the node binary is in your path), and ...
nothing happens at the command line! That is because now the server you created is
waiting for anything to hit that port. So head to your browser and type in localhost:8888,
and magically, “Hello world” will appear. Drop ... dead ... simple.

Chapter 10: Node.js on IBM i • 195

The challenge, of course, is to move on to something a wee bit more involved. In my
case, I already have something: the “chat” app I created a couple of years ago. Actually
the “chat” app is to Node.js as the “blog” app is to Ruby/Rails. It is kind of the de facto
standard of demo apps. So let’s take a look at chat because it really does point out some
of the features and concepts you would encounter in a more real-world setting. We’ll
start with the simple ‘Hello World,” but you’ll notice that it is slightly different from the
“plain” node app:

var app = require('express')();

var http - require('http')■Server Capp);

app.get('/', function(req, res){

res.send('<hl>Hel1o IBM i Node world!</hl>');

});

http.1isten(3888, function(){

console. logC listening on *:3888');

});

The obvious difference is the use of'express'. Unlike http, express is not included with
the base Node.js modules, so you’ll need to use npm to install it. Again, I recommend
that you do it locally to your project for now: nnm install express@4.10.2. (I chose this
version because I knew it worked.)

What express brings to the party is a bit more of a “framework” feel to the app. express
is a Web framework, so wc can use the methods it exposes to build our app. Could wc
have used a different framework? Sure! But express will meet our needs for this example.
Let’s get grounded in the example:

var app = require('express')();

var http = require('http').Server(app);

We are requiring express, and see that little () at the end? That is the weird self-invoking
function, which in this case initializes the app variable. That second line is very familiar

196* Open Source Starter Guide for IBM i Developers

because we saw it in our “Helio World” Nodc.js demo script. In that case, we passed
an anonymous function to the http module. In this case, we pass it the function handler
Server(app), which will process the request and response parameters needed by the Hl I P

protocol. So far, so good. The next line is completely new:

app.get('/', function(req, res){

res.send('<hl>Hello IBM 1 Node world !</hl>') ;

});

This is actually a “route,” which basically says anything that is requested ('/') will get the
following response sent back to the browser: “Hello IBM i Node world!” Later on, you
will see the effects of routes more directly, but the route is part of a RESTful application.
Finally, the last line:

hltp.listen(3888, functionO{

console.log('listen!ng on *:3888');

});

just starts the app listening on port 3888 and also outputs 'listening on *:3888' to the
console, so you know there is life there! So far, nothing radically different from our
original “Hello world.” Let’s move on. We’ll need a little more infrastructure for this
step. Since we are creating a Web application, we’ll need some IITML to frame and tart
up the look and feel. Here is what we will use:

<!doctype html>

<html>

<head>

<title>IBM i chat demo</title>

</head>

<body>

<ul id="messages">

<form action="”>

Continued

Chapter 10: Node.js on IBM i • 197

cinput id="m" autocomplete="off" /><button>Send</button>

</form>

</body>

</html>

Most of you folks are not Web monkeys, so the bits here may not mean much to you. But
the short story is that we have an unordered list with an ID of "messages", which is just
a placeholder for the list we’ll be creating later. We have a form field with no action, and
we have a sing'e field for entering some value and a button.

I left out the CSS, but it will be used to decorate the HTML. I’ll put it in a separate file
and reference it in the HTML. We make the following change from a res.send method,
which outputs an HTML string, and instead replace it with sendfile and point to our
index.html file, like this:

app.getC/', function(req, res){

res.sendFile(__ dirname + '/index.html');

});

You can verify that it works by running localhost:3888 in your browser (or use the IP
address of your IBM i; 10.0.10.205:3888 is the internal address for my i). So we have
basically created a very fancy “Hello World” app so far. It really doesn’t do much, but it
looks pretty good. A chat app typically connects and communicates over a socket because
there can be multiple folks chatting at a t:me, so we’ll need some socket infrastructure
in order to get the chat app built. Fortunately, there is a module for that: socket.io. npm
install is our friend again here. Run this command:

npm install —save socket.io

Then we need to make a few modifications to our code. We’ll add a bit of code
that basically will be a “smoke test” on our socket connection and will emit “a user
connected” to the console whenever we have a new connection, just like we sec “listening
on *:3888” after the server starts. Like so:

198* Open Source Starter Guide for IBM i Developers

io.on('connection', function(socket){

console.log('a user connected');

});

We also need to tart up our HTML and add a JavaScript reference to implement the client
side of the socket. Our io object on the server implements the server side. Include this

before the closing </head> tag:

<scri pt src-"/socket. i o/socket.io. j s"x/scri pt>

<scri pt>

var socket = io();

</script>

Now the server console will indicate when a user connects. We probably also want to
have some indication when a user disconnects, so let’s monitor for that and output to the
console when that event occurs.

io.on('connection', function(socket){

console.log('a user connected');

socket.on('disconnect', function(){

console.log('user disconnected');

});

I);

Still nothing real special here. All we see is connect and disconnect events. Nothing the
least bit chatty going on at all. So let’s add another incremental step. Let’s take what is
submitted in our message input element and output that into the console (baby steps!).
I have added a little more infrastructure as well. I added the jQuery JavaScript library
to add some more terse methods to keep the code compact. So we now have a bit more
JavaScript in the HTML and a bit more JavaScript code on the server:

Chapter 10: Node.js on IBM i *199

Server—io.on('connection'....):

io.on('connection’, function(socket){

console.log('a user connected');

socket.on('chat message', function(msg){

console.logf'message: ' + msg);

});

socket.on('disconnect', function(){

console.log('user disconnected');

});

});

HTML <script>:

var socket = io();

$('form').submi t(function(){

socket.emit('chat message', $('#m').val());

$('#m').val(’');

return false;

});

$("#send").click(function() {

$("#txtmsg").submit();

});

Note: The $("#...") references are the same as using the document.getElementByld("...")
methods in the DOM.

So what we have is a chat demo that only chats out to the console. Let's fix that!

The io.emit method is what we call when we want to send data out. If we don’t qualify who
the “emit” is for, it goes to everyone. All it takes is one more line of code on the server:

200 • Open Source Starter Guide for IBM i Developers

io.emit('chat message', msg);

HTML <script>:

socket.on('chat message', function(msg){

$('#i,iessages ') .append($('') .text(msg)) ;

});

Compare that to the similar socket.emit method. In the example we are using, we “target”
the 'chat message' client and send the data contained in the message input element. In the
io.emit method (on the server), we send the data to everyone who is connected, and on
the 'socket.on' method (on the client), we capture what was sent and use jQuery’s append
method to add it to the 'messages' (unordered) list element.

We have been walking through this piecemeal, so let’s take a look at the whole tamale.
First the HTML:

<!doctype html>

<html>

<head>

ctitle>IBM i chat demo step 6</title>

clink rel="stylesheet" type="text/css" href="chat.css">

cscript src=”/socket. io/socket.io. j s"x/scri pt>

cscr.pt src="jquery-3.1.0.js"x/script>

</head>

<body>

<ul id="messages"x/ul>

cform id=txtmsg action="">

cinput id=”m" autocompl ete="off" /xbuttort id=send>Send</button>

</form>

</body>

Continued

cscr.pt

Chapter 10: Node.js on IBM i • 201

<script>

var socket = io();

S('form').submit(function(){

socket.emit('chat message’, $('#m').val());

$('#m').val('');// clears the input element

return false;

});

socket.onf'chat message', function(msg){

$('#messages'). append($('').text(msg)) ;

});

$("#send”) . cli ckCfunctionO {

$(”#txtmsg").submit();

});

</scri pt>

</html>

And then the 'server' JavaScript:

var express = require('express');

var app = expressQ;

var http = require('http').Server(app);

var io = require('socket.io')(http);

app.use(express.stati c('publi c'));

app.get('/', function(req, res){

res.sendFile(__dirname + '/index_6.html');

});

io.on('connection', function(socket){

console.log('a user connected');

Continued

202 • Open Source Starter Guide for IBM i Developers

socket.on('chat message', fund ion(msg){

io.emit('chat message', msg);

console.logC'message: ' + msg);// still outputting to console

});

socket.onf'disconnect', function(){

console.log(’user disconnected') ;

});

J);

And a wee bit more stuff that makes the HTML look a little better in the chat.css file:

* { margin: 0; padding: 0; box-sizing: borderbox; }

body { font: 13px Helvetica, Arial; }

form { background: #000; padding: 3px; position: fixed; bottom: 0;
width: 100%; }

form input { border: 0; padding: lOpx; width: 90%; margin-right:
■ 5%; }

form button { width: 9%; background: rgb(130, 224, 255); border:
none; padding: lOpx; }

#messages { list-style-type: none; margin: 0; padding: 0; }

#messages li { padding: 5px lOpx; }

#messages li:nth-child(odd) { background: #eee; }

I also did something tricky along the way that we haven’t talked about but is reflected
in the code above. In the original version of this example, the CSS was included in the
HTML. That is not an accepted practice except in the case that just a very few tweaks arc
needed. In this case, the CSS used is not extensive, but very often your CSS, JavaScript,
and HTML reside in separate files so they can be individually maintained. So I put the
CSS in a separate file, just as you would expect in a larger project. But that takes a bit of
trickiness, as I said. You need to add the line:

app.usefexpress.static('public'));

Chapter 10: Node.js on IBM i • 203

So you can serve up your "static ’ files. Basically the code is saying that all of the static
stuff will be found in the public folder, relative to the project folder you are running in.
So the chat.css is living in there along with the jquery-3.1.0.js file. The <script src="/
socket.io/socket.io.js' ></script> reference is something different, though. The socket,
io.js file lives in the node_modules/socket.io/node_modules/socket.io-client folder, but
the initialization of the module “exposes1’ the file as though it were off the root of socket,
io. Thus, it doesn’t live in the 'public' folder like other non-module js files do.

System Access
So this is all very awesome IMHO, and actually any programmer would love this stuff.
Easy, fast, flexible. But we IBM i folks have a bunch of stuff already written and living in
the “alternate universe” of IBM i (OS/400)—so, how do we get to that stuff? If you read
the chapter on XMLSERVICE, you should have an inkling of where we are going. There’s
a toolkit for that! But first, let’s access the environment that Node.js lives in, and that
is PASE. Getting to PASE is easy because it is the ocean we are swimming in. It is this
easy:

const execSync = require('child_process').execSync;

var code = execSync('ls -1');

console.log(code.toStringO) ;

Much of what Node.js docs is asynchronous, so in this case we arc running a synchronous
process—we will wait, thank you very much, for the output rather than including a
callback to return the output when it completes. So that is what require('child_process').
execSync is going to do: run a synchronous child process and return the output. That
output comes in the form of a buffer of raw data, so we use the toStringfi method to get
a string from the contents. Voila! Our Is -I command returns the list of the files in the
directory it is executed in. Easy.

Access to the IBM layer is a little more involved, but not much, because we already
have libraries that wrap the XMLSERVICE routines, and if we need direct access to IBM
i databases, we have libraries that can do that as well. The database access is a fairly
straightforward process, one that may be familiar to you, so we’ll start there.

204 • Open Source Starter Guide for IBM i Developers

DB2 Database Access
As 1 mentioned before, you don’t have to slog through much here because the pioneers of
Node.js and DB2 have gone before you. There is a library on your system (after installing

5733OPS) that is just waiting for you to use it. So let’s do it!

var db = require('/Q0penSys/QIBM/ProdData/Node/os400/db2i/lio/db2');

var conf = require('./config.json');

try{

db.debug(true); // Enable Debug Mode if needed.

db.init(function(){ // Initialize the environment for database
// connections.

db.serverMode(true); // Enable Server Mode if needed

});

do.conn("*iOCAL", conf.username, conf.password, function(){
// Connect to a database

db.autoCommit(true); // Enable the Auto Commit feature
//if needed.

});

db.execfSELECT * FROM EMPLOYEE.EMPLOYEE ORDER RY EMPLNAME,EMPFNAME
FOR FETCH ONLY", // Query

functionCjsonObj) { // Print the output in a readable way.

// If you want to see the RAW JSON, get it this way

//console.log("ResuIt: %s", JSON.stringify(jsonObjj);

// Walk, the array and object properties

fLen = jsonObj.length;

Continued

Chapter 10: Node.js on IBM i • 205

var createFirstRow = true;

var header = ""

var rowdata =

var comma =

for (i =0; i < fLen; i++) {

var jhash = jsonObj[i];

Object.keys(jhash).forEach(function (key) {

if(createFirstRow) // accumulate keys

header = header + comma + key;

var value = jhash[keyl; // accumulate row data

rowdata = rowdata + comma + value;

comma = ",";

});

// once a row is done output

if(createFi rstRow)

console.log(header); // first line only

console.log(rowdata);

// clean out the row

rowdata = ' ';

// Turn off the header build routine

createFirstRow = false;

// clear out the comma

comma = '’;

}

}

);

} catch(e) { // Exception handler

console.log(e);

}

206 • Open Source Starter Guide for IBM i Developers

I tried to write this in a way that was generic and would output whatever table you
decided to use in your SELECT statement. An additional idea that you could also

implement here would be to output to a .csv file. But since we are, in most cases,
going to be writing a Web app or something along those lines, the fact that the content
is automagically formatted in JSON means that you’ll get back an object from your
database call, which is actually perfect for the Web environment.

A quick walk through the code shows you how simple it all is. Our first require line pulls
in everything we need for dataoase access into an object called db. So that is a pretty
sweet start. The next require line I threw together because you probably don’t want to
hard-code credentials in your app. So I created a config.json file in the application’s
folder where you can stuff the username and password for connections. But don’t stop
there. The config.json file (it can be any name) can contain whatever you want: system
name, database name, SQL settings, and so on.

The require!',/config.json'); returns an object with the properties you defined in the
file. (Hey! You are in objectland now, so a .json file is coming back as an object.) You
reference the properties you defined using variable.property syntax. In my case, it is conf
.password and conf.username. That file looks like this:

{

"username" : "me",

"password" : "secret_password"

}

All standard JSON stuff! Next we start a try block, so that if we have any errors we can
catch and display them. Within the try, we set a couple of properties and initialize the db
object. Next we use the conn method, passing in connection parameters. Then we run
the exec method, passing in the SELECT statement. We could have just as easily issued a

CREATE TABLE, INSERT INTO, DROP TABLE, or any other SQL executable statement within
that exec method. In that same method, we also are passing in an anonymous function
that will handle the results. It is actually within that function that we do the work of
formatting the output.

Chapter 10: Node.js on IBM i • 207

I he output comes back as an object, which is an array of objects. Each row returned is
an object, and since those are all collected into a result set, an array is used to hold the
objects. You can see the returned JSON by uncommenting the line that contains this:

console.qog('Result: %s", JSON.stringify(jscnObj));

JSON.stringify renders the JSON object back into a string. I recommend that you also copy
the output of that string, paste it into the text box found at jsonlint.com, and check it. It
will “prettify” the output and validate that it is properly constructed JSON. Since we have
an array of objects, our job is to iterate! So we grab each element in the array, using the
key values the first time through to build a row “header,” and then we get the properties
of each object and concatenate all the values into a comma-separated row. Then we output
the whole thing. All of it, except for the database I/O, is pretty standard JavaScript fare.

So, database access looks pretty simple. How about calling a program? Once again, I
am thankful that the heavy lifting here was done by folks with spinning propellers on
beanie hats that know a lot more about this stuff than I do. Most of that heavy lifting is
encapsulated in a module, and it is using the XMLSERVICE library on IBM i to send and
return the data needed for each call Here is what I mean:

var xt = require("/Q0penSys/QIBM/ProdData/Node/os400/xstoolkit/lib/
i tool kit");

var conf = require('./config.json') ;

var conn = new xt.iConn("*LOCAL", conf.username, conf.password);

conn.add(xt.iCmd("RTVJOBA USRLIB1(?) SYSLIBL(?)"));

function cbJson(str) {

console. logC'The raw XML output — ");

console.log(str); // Print the raw XML output

console.logC'The formatted ISON output — ");

Continued

jsonlint.com

208 • Open Source Starter Guide for IBM i Developers

console.log(JS0N.stringify(xt.xmlToJson(str), null, 4));
// Print the formatted ISON output

}

conn.run(cbJson);

What I like about this example, which is found on the IBM developerWorks website, is
that the output is displayed in XML as well as JSON format. But, look how little it took
to get the command run and returned! Four lines of code, not including comments and
formatting. Not much effort. The JSON magic is provided, right now, by the xmlToJson
method in the iToolkit. That little ditty is needed because XMLSERVICE uses—well, XML!

to communicate. There is a “pure” JSON version of XMLSERVICE, which 1 hope goes
through a name change before delivery (an XMLSERVICE library that used JSON would be
... weird). But perhaps, someday soon, you’ll just be able to specify the language in your
call, and it will “speak” whatever you tell it to, XML or JSON. The command call is very
similar to other XMLSERVICE examples we have seen in Ruby, Python, and PHP. The RPG
program calls should be just as familiar:

var xt = require(/Q0penSys/QIBM/ProdData/Node/cs400/xstoolkit/1ib/
itoolkit");

var conn = new xt.iConn("*LOCAL");

var pgm = new xt.iPgmC'NODEDEMOl", {"1ib":"OSSDEMOS”});

pgm.addParam("","1A");

pgm.addParam(O, "7p4");

console.log(pgm.toXMLO) ;

function cb (str) {

// Print the raw XML output

console.log(str);

Continued

Chapter 10: Node.js on IBM i • 209

console.log(" ");

// Convert the XML to an object

var jsonback = xt.xmlTolson(str);

// Print the raw ISON

console.logC'ISON: %s", JSON.stringify(jsonback));

console.log(" ");

var jsonback = xt.xmlTolson(str);

jsonback.forEach(function(results,index){

results.data.forEach(function(data,idx){

console.logC'Object type:" + data.
type + " value:" + data.value);

});

});

}

conn.add(pgm);

conn.run(cb);

I am going to post the output as well because it will help you to understand the structure
of the objects above. Remember, we arc “bound” by the way the XMLSERVICE creates the
XML output, and all we do is convert the XML to J SON to make for a happy transition to
the JavaScript world where objects arc king! Here is the output:

<pqm name- ' NODEDEMO 1 ' 1ib='OSSDEMOS ' error= ' fast' xparmxdata
type= ' 1A ’ x/data-x/parmxparmxdata type= ' 7p4 ' >0</dataX/parmX/pgm>
<?xml version-' 1 . 0 ' ?Xmyscr iptxpgm name='N0DEDEM01' lib= ' OSSDEMOS '
error=1 fast1>
<parm>
<data type:’’ 1A ’ >C</data>
</parm>
<parm>
<data type-*7p4'>321.1234</data>

210 • Open Source Starter Guide for IBM i Developers

</parm>
<success><![CDATA[+++ success OSSDEMOS NODEDEMO1]]></success>
</pgm>
</myscript>
JSON: [{"type":"pgm" , "succajs":true,"pgm":"NODEDEMO1","lib" :
"OSSDEMOS", "data": [{"type":"1A","value":"C"}, {"type":"7p4",
"value":"321.1234"}] }]
Object type:lA value:C
Object type:7p4 value:321.1234

The call to the RPG program using XMLSERVICE is pretty standard. The first three lines
load the module, connect to IBM i, and then create a reference to the program to be run
on IBM i. The next two lines seem kind of weird because you’d think the program would
know what the variables are. But, if you have grappled with the XMi SERVICE library and
constructs, you know that it is pretty opinionated. In fact, it has to be opinionated to
transition between the unstructured (in some cases) world of open source languages and
highly structured world of RPG.

So we have to define the type of parameters passed as well as the values. In Java we
would probably use Reflection to find out what the program object needed, but this is
RPG, not Java, so we don’t have an RPG program object that can tell us about itself. Wc
define it. And. this is probably the most tedious and error-prone part of using XMLSERVICE.
Fortunately, in this example we don’t have many complexities, but some program or API
calls can get pretty intense.

I created a callback function to be run when the data returns from the IBM i. This
function handles the data coming back, the conversion of that XML into JSON, and then
iterating through the objects created except for the conversion to JSON. But, the mystery
may be in the code that iterates through the objects. Here is what the JSON looks like:

Continued

{

"type": "pgm",

"success": true,

"pgm": "N0DEDEM01",

Chapter 10: Node.js on IBM i • 211

"lib": "OSSDEMOS",

"data": [{

"type": "1A",

"value": "C"

}, {

"type": "7p4",

"value": "321.1234"

}]

}

We have an object {} that has five properties: type, success, pgm, lib, and data. The
data property is an array [], and that array has two objects. Those two objects have two
properties: a type and a value. So if you were going to “draw” the structure of the object,
it would look something like this:

returnedObj
> data

==>obj ect
==> type
==> value

or in “dotted” notation: retObj.data.object.type.

The kicker here is the data property. Remember that it is property of the object and an
object itself. That is why when we iterate through the object array, the array is named
data, and we have to use that name to get to the array. Hence the line that says: results
.data.forEach(function(data,idx){.... The reference to data seems to appear out of nowhere.
In fact, results, which we named, has a properly called data that we cannot change
because it is a property of the object, data.type is the same way because both type and
value are properties of the data object. Yeah, it can get a little hard to unpack sometimes,
butjsonlint.com is your friend. When you paste your JSON into that validation window
and hit validate, it will check your data and format it nicely. My original output becomes
very readable afterjsonlint.com gets through with it.

butjsonlint.com
afterjsonlint.com

212 • Open Source Starter Guide for IBM i Developers

So, that should get you started in Node.js. We saw “bare bones” Node and a Node app
that leveraged socket.io and express.js. We looked at calling PASE commands. We
looked at database I/O, running IBM i commands, and calling IBM i programs. There is
so much more I could walk through with you, but it’s time for you to useycwr skills and
imagination. There are tons of examples out there. Go explore and make them yours!

A bit of wisdom: “Walk with the wise and become
wise, for a companion of fools suffers harm. ’
(Prov. 13:20)

Apache and Tomcat on IBM i

This short chapter is here to get you grounded in using the Apache HTTP server in its
particular implementation on IBM i and give you a bit of background and wisdom on that
implementation. We II also look at Tomcat, which is an application server that is written
in Java and runs very nicely, thank you, on IBM i. 1 also thought about writing a chapter
on Java for IBM developers. I decided against doing that, though, because there is a solid
book, Java for RPG Programmers (MC Press, 2006), which covers much of what I would
say. That won’t stop me from talking about Java or even throwing you a Java example or
two, but we won’t go quite as deep into Java as I have into other open source languages
because Java has been on IBM i for, well, it seems I ike forever. Java also happens to
easily span the IBM i, PASE, and other worlds because you can run Java natively on
IBM i or in PASE. My first foray into Java was, in fact, written using SEU (1 think) and
compiled using CRTJVAPGM. Oh, how far we have come!

So, just to draw the distinction more clearly for you: Apache, as an 1 IT'TP server, can
serve up static resources such as HTML pages and can invoke programs to create HTML
using Common Gateway Interface (CGI) standard programs like PHP and CGIDEV2. It
serves up HTML and other Web resources very well, but it isn’t serving up applications.
In order to do that, you’ll need an application server. I am partial to Tomcat because it has

214* Open Source Starter Guide for IBM i Developers

been around for quite a while, but there are other Java-based application servers out there.
You get a tiny scaled-down version of WebSphere with your IBM i installation, and you
certainly can install the full-blown WebSphere Application Server on your IBM i, but out

of the box, you get Apache and not much more.

Apache is the latest incarnation of HTTP server on IBM i. Back in the early days when
websites were run by hamster wheels and hand cranks, IBM’s first foray into HTTP
serving was a relatively clunky, native implementation based on the CERN HTTP server.
I think this was available as far back as V3R2 and was called the “original” server when
the HTTP Server (Powered by Apache) was introduced. The two servers maintained an
arms-length relationship for a while, and eventually the CERN (original) implementation
was retired. But, HTTP serving has been around on AS/400/iSeries/lBM i for a long time.
Early on, most folks had no idea what to do with it.

Apache
What can you do with Apache? Well, since Apache is so efficient in serving up static
resources and resources passed to it from CGI programs, you can leverage it for many
things. I use it primarily as a reverse proxy for the plethora of programs, pages, and other
plumbing in my Web apps (nice alliteration, eh?). What is a reverse proxy! A very handy
little tool, in my humble opinion. If you arc constrained on external IPs like I am (I get
Two!), then the ability to run multiple websites and yet pipe them to a single IP address
is quite handy. My public-facing websites all share the same public IP, but behind the
scenes, Apache directs them to their correct internal server instances—and I have a bunch
of them running on my IBM i.

Here is an example of what my main Apache configuration file looks like:

Conf guration originally created by Create HTTP Server wizard on Mon
Oct 22 13:16:16 MOT 2012

LoadModule proxy_moduIe /QSYS LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_connect_module /QSYS.LIB/QH1TPSVR.LIB/QZSRCORF.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_balancer_.module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Continued

Chapter 11: Apache and Tomcat on IBM i *215

LoadModu1e zend_enabler_module /QSYS.LIB/QHTTPSVR.LIB/QZFAST.SRVPGM

Listen 10.0.10.210:80

AddType application/x-httpd-php .php .php5

AddHandler fastcgi-script .php .php5

AddType video/ogg .ogm

AddType video/ogg .ogv

AddType video/ogg .ogg

AddType video/webm .webm

AddType audio/webm .weba

AddType image/jpeg .jpg

AddType image/jpeg .jpeg

AddType image/png .png

AddType image/svg+xml .svg

AddType application/x-shockwave-flash .swf

AddType video/mp4 .mp4

AddType video/x-m4v .m4v

<VirtualHost *:80>

ServerName www.asaap.com

ServerAlias *.asaap.com

DocumentRoot /www/asaap

AddCharset UTF-8 .htm .html

Di rectoryindex index.php index.html

ProxyPreserveHost On

ProxyPass /asaap3 http://10.0.10.206:6080/asaap3

ProxyPassReverse /asaap3 http://10.0.10.206:6080/asaap3

ProxyPass /asaapwm http://10.0.10.206:6080/asaapwm

ProxyPassReverse /asaapwm http://10.0.10.206:6080/asaapwm

Continued

http://www.asaap.com
asaap.com
http://10.0.10.206:6080/asaap3
http://10.0.10.206:6080/asaap3
http://10.0.10.206:6080/asaapwm
http://10.0.10.206:6080/asaapwm

216* Open Source Starter Guide for IBM i Developers

<Directory /www/asaap>

Order Allow,Deny

Allow From all

</Di rectory>

</Vi rtualHost>

<VirtualHost *:80>

ServerName www.valadd.com

DocumentRoot /www/valadd

Directoryindex default.html

<Directory /www/valadd>

Order Al low,Deny

Allow From all

</Di rectory>

</Vi rtualHost>

<VirtualHost 80>

ServerName www.jrubyoni.com

ServerAlias *.jrubyoni.com

ServerAlias *.roroni.com

ProxyPass / http://10.0.10.205:3030/

ProxyPassReverse / http://10.0.10.205:3030/

</Vi rtualHosts

As you can see, or maybe you can’t, 1 have several different server instances referenced
here. Way at the top, the initial LoadModule directives are creating an environment where
PHP apps could live, if needed. They load service programs from the ZendSvr library. I
don’t have any CGIDEV2 CGI pages that live in the main configuration, but I certainly
do pass the traffic back to some CGIDEV2 sites. The next thing to pay attention to is
the Listen directive, which is basically saying that this server instance is running on an
internal address of 10.0.10.200 on port 80, standard for HT1 P.

http://www.valadd.com
http://www.jrubyoni.com
jrubyoni.com
roroni.com
http://10.0.10.205:3030/
http://10.0.10.205:3030/

Chapter 11: Apache and Tomcat on IBM i *217

So, you might be thinking, if this is an internal address, how does the outside traffic
get in? That takes a firewall, and I have one that is out there listening with an Internet-
addressable IP on port 80. The firewall then maps that traffic back to my internal
address (Network Address Translation- NAT—is the process). At that point, Apache
is examining headers to see which Web address is being requested, so that it can figure
which host to map the traffic to internally. I skipped over all the MIME types that Apache
will allow in, but those are listed (mostly video and media files)—and the first virtual host
is the asaap.com site. Note that www.asaap.com will be directed to the virtual host, but
also any (*) host on the asaap.com domain will also end up here (for example, mobile
.asaap.com, demo.asaap.com).

Finally, we see two reverse proxy paths that point to different subdomains. This happens
to be a Tomcat server instance, so the two subdomains are actually pointing to two
different applications running on Tomcat. Sc basically, if you typed in the URL of www
.asaap.com/asaap3, it would be mapped to the asaap3 application running on Tomcat on
port 6080 at the internal address on 10.0.10.206.

The beauty of the reverse proxy is that you can have all sorts of servers supplying
resources to the same Web domain without anyone being the wiser. So I could also have
a Web server running PHP but referenced in the asaap.com URL as www.asaap.com/blog
and actually have it point to a Wordpress instance running elsewhere on my network. Yet
even though someone navigated from www.asaap.com/asaap3 to www.asaap.com/blog,
they never knew that they were changing servers. Very cool and flexible!

The other thing I have found helpful with using Apache for a reverse proxy is that by
having a single “main” instance that receives all the traffic, it allows me to bounce
a particular instance or change a configuration of that instance without losing all
my websites. In addition, if all the servers serve sites that share the same domain,
your configuration of SSL can reside on the “main” Apache instance with a wildcard
certificate, encrypting all of your external traffic without the hassle of configuring SSL for
every server instance you have. If you have PHP, Nodc.js, Tomcat, C(ilDEV2, Rails, and
some static resources as well, then a reverse proxy will just make file much simpler. And,

in this business, simple is good!

asaap.com
http://www.asaap.com
asaap.com
asaap.com
demo.asaap.com
asaap.com/asaap3
asaap.com
http://www.asaap.com/blog
http://www.asaap.com/asaap3
http://www.asaap.com/blog

218 • Open Source Starter Guide for IBM i Developers

What do CGI apps look like? Well, we can take a quick look at some CGIDEV2

configuration directives. You might see something like this:

MobileREM directives

ScriptAliasMatch /mobilerem/(.*) /qsys.lib/mobilerem.lib/$l

Alias /mobileremjs /www/mobileapps/htdocs/mobilerem/js

Alias /mobileremcss /www/mobileapps/htdocs/mobilerem/css

<Di rectory /qsys.1i b/mobilerem.1ib>

order allow,deny

allow from all

Options -ExecCCI

CGIConvMode %%EBCDIC/EBCDIC%%

</Di rectory>

In this case, the URL is mapping anything that follows the /mobilerem/ subdomain to the
mobilerem library. So if I had aCGIDEV2 RPG program in the mobilerem library called
mypgm.pgm, and the URL parsed looked like this: www.mysite.com/mobilerem/mypgm
.pgm, then the directive above would execute the CGI program in the mobilerem library.
Nice and flexible!

Tomcat
Apache Tomcat has been around for years. It was one of the very first open source
programs I ever installed on my iSeries. I marveled that 1 could “install” something on
that iSeries by just unzipping a file into the IFS. Fifteen years later, nothing has changed.
I can get a Tomcat server instance going in less than five minutes. Here’s how to do it.

Download Tomcat from the Apache Software Foundation website. Yes, Tomcat is an
Apache product, which confuses the heck out of people because if you call it “Apache
Tomcat” (which it is), they think you are talking about some derivative of the HTTP
server. Nah! The Apache Software Foundation has a ton of projects, most of which go by
the name “Apache (insert name here).” So, just go ahead and download the zip instance
of Tomcat (or the tar..any archive) and unzip it into the IFS. 1 have an “Apache” folder in

http://www.mysite.com/mobilerem/mypgm

Chapter 11: Apache and Tomcat on IBM i *219

the root of the IFS, which currently has Tomcat 5.5.27, 6.0.33, 7.0.26, and 8.5.4 sitting in
their own folders.

Once you’ve downloaded and unzipped Tomcat, you will need to make sure that the Java
version you are running on your IBM i is compatible with the version of Tomcat you
just downloaded. (Sorry, I guess you should have checked that first.) We’ll make a brief
detour now into Java-land:

There are two main versions of IBM’s wonderful J9 JVM on IBM i: a 64-bit and a 32-bit
version. Of course, you are thinking: 64 is better than 32, so let’s go with 64! Not so fast,
cowboy! In many cases, the 32-bit will outperform the 64-bit version. Unless you need
to use a lot of memory for your apps, start with the 32-bit JVM. If it doesn’t meet your
expectations, switch to the 64-bit version. It is drop-dead simple to do so. And, don’t rely
on the IBM i environment to choose your JVM version for you. You never know when
some nimrod will decide to change a systemwide value that points to a different JVM,
and it will break your Tomcat instance.

Here is what I do: after unzipping the file into the IFS, I navigate down to the /bin folder
and open the catalina.sh shell script. Then I add the following lines to the script (again
this is Tomcat 8 running with version 8 of the JVM):

Java 8 settings if needed export -s JAVA_HOME=/QOppnSys/QIBM/ProdData/
JavaWjdk8O/32bit/jre export -s CAJALINA_HOME=/Apache/Tomcat/apache-
tomcat 8.5.4 export -s JAVA_0PTS="-Dos400.awt.nailve=true -Djava.awt.
headless=true -Djava.version=1.8 -Xms256m -Xmx512m"

These directives arc added at the very beginning of the shell script, just after the .
comments about all the options in the head of the script. They have never let me down.
Then i launch this guy in a CL program like so:

SBMJOB CMD(QSH CMD('/Apache/Tomcat/apache-tomcat 8.5.4/bin/catalina.sh
start')) J0B(T0MCAT8) JOBQ(QSYSNOMAX)

Couldn’t be easier.

220 • Open Source Starter Guide for IBM i Developers

Tomcat is an application server, so the next step is to deploy your applications by
dropping the .war files (Web Archive file) into the webapps folder. They automatically
deploy. You are done.

So, that is the briefest of tours in the Apache HTTP and Apache Tomcat world on IBM i.
I’ll bet that most of your Web applications, whether they be PHP, Node.js, Rails, Python,-
RPG CGIDEV2, or even Java applications will probably sit in, or behind, the Apache
HTTP server. At your service!

“As long as the roots are not severed, all is well.
And all will be well in the garden.”
—Chance the Gardener in Being There

The IBM i Open Source Garden

If you have a garden, you might assume that there are gardeners about. When it comes to
IBM i, we have plenty of resources to continue to till that fertile ground. Our community
“gardeners” have established deep roots, so this chapter will just review what resources
were available as of the time of this writing (2016). The “were” is because the open
source world is not stationary. In fact, it seems, at times, frighteningly churning. Open
source is not new, but open source on IBM i, as a supported product, is quite new, and
the community has been playing catch-up. So I don’t expect that any of this information
will remain fixed. There arc a few websites, mailing lists, and organizations dedicated
to open source on IBM i, which have been around for decades and evolved nicely as the
industry and our “midrange” platform continued to change. But, the past doesn’t always
predict the future, so take all of this information with a grain of salt. Missing websites
and broken links are the bane and standard of the Internet.

I list these resources in no particular order. They arc just what came to mind as I mulled
over what is out there in IBM i OSS land.

222 • Open Source Starter Guide for IBM i Developers

User Groups
Alas! The whole concept of the “user group” has gone out of fashion, just like bell
bottom pants. But although the Internet has displaced the “user group” as the place to
get information and answers to questions, the “user group” is neither gone nor forgotten.
Meet-ups have replaced the traditional user group, but some well-established groups
continue to live on:

COMMON—This is a professional association that has been at the center of the
midrange world, almost since it was established. Disclaimer: I was a COMMON board
member for six years and continue to participate in and speak at COMMON events. This
group is my idea of a solid leader among technical professional organizations. COMMON
continues to hold live conference events as well as webinars, chats, roundtables, and
virtual conferences, and the organization also offers professional certifications. The whole
tamale!

OCEAN—The Orange County Educational Advancement Network, or OCEAN, is a
great group in southern California. OCEAN holds many in-person events and has an
active Web presence.

OMNI—Based in Chicago, these folks also have live events, a great Web presence, and a
vibrant user community.

WMCPA—The Wisconsin Midrange Computer Professional Association, or WMCPA,
includes two great user communities within 100 miles of each other. The heartland has
heart!

LISUG—This is the Long Island System User’s Group—see, we have coast to coast
coverage! I haven’t had the opportunity to speak to this group, but I know several of its
members. It’s another solid IBM i community.

Yes, there are many, many others. Do look for a group near you. The COMMON website
tries to do its best in keeping its user group list up to date.

Chapter 12: The IBM i Open Source Garden • 223

Virtual Communities
There are virtual communities (websites and lists) as well:

Midrange.com—This is the 800-pound gorilla of mailing lists for IBM i developers,
admins, and hardware hackers (“Dr. Franken, I presume ...”). David Gates has nurtured
this list along for many years (since it was a BBS). It has great posts and great
moderators. This is really the place to stay in touch and be helped and informed. IBMers
are known to lurk, too.

Club Seiden--Alan Seiden has a group that interacts at club.alanseiden.com. There are
projects, chats, and lots to learn here.

Linkedln—Of course! You know what Linkedln is. Here is the link to the IBM i OSS
group on Linkedln: wyvw.linkedin.com/groups/8531863.

Ryver iBMiOSS Group—More code, more chats, and more posts. This new group is
found here: ibmioss.ryver.com. (This is a closed group, so you will need to create an
account and then request permission to join the group.)

Litmis—Litmis (www.krengeltech.com/litmis) is a “side” business of Krengel Technology
that Aaron Bartell, an active open source community member, is deeply involved with.
Litmis is pushing the envelope of providing virtual IBM i OSS workspaces so that
businesses can embrace OSS on IBM i. And he is sharing, too: code, code snippets, some
documentation, tips, and some repositories for open source projects.

Notable “Solos”
There are some IBM i open source “rock stars” who have been contributing OSS to the
midrange for a decade or more.

Scott Klement—Scott worked for his family business, which runs on IBM i, for years.
While he was busy giving the business his best, he also shared his solutions with the
community. Scott also wrote a prodigious number of articles and spoke at user groups and
COMMON conferences. He currently works for Profound Logic (lucky outfit!). This guy
is a machine! Check out his website: www.scottklement.com.

club.alanseiden.com
wyvw.linkedin.com/groups/8531863
ibmioss.ryver.com
http://www.krengeltech.com/litmis
http://www.scottklement.com

224 • Open Source Starter Guide for IBM i Developers

Aaron Bartell—When I grow up, I want to be just like Aaron! A younger mover and
shaker in the community, Aaron seems to have been .nvolvcd in just about every major
endeavor in open source on IBM i for the past few years. Check out the whimsical Mow
Your Lawn website, mowy our lawn, com, which has RPG OSS code and more.

Dr. Franken—is Larry Bolhuis. The good Doctor does unnatural things with iSeries/lBM
i hardware (and who knows how far back). Well known for his IBM hardware exploits
and the Frankeni website, www.frankeni.com, he has also teamed up with Pete Massiello
and created the IBM i cloud hosting service: iinthecloud.com/idev-cloud. Nice!

There is a long list of other IBM i notables, speakers, writers, and hardware destroyers
who are too numerous to mention. But, get out there and get involved, OK? I don’t care
how you do it. In person (the best IMHO) or online, it doesn’t matter. But the IBM i
community needs your input and participation. Not because it is dying, but because it
is thriving and needs volunteers who can bring new ideas, new skills, and new ways
of doing things. Boldly go where no developer has gone before, because you have the
system to get it done. Use it!

mowyourlawn.com
http://www.frankeni.com
iinthecloud.com/idev-cloud

Index

Boldface numbers indicate illustrations, code listings, and tables.

A
ActiveRecord, class in Ruby, 80-82,

84, 86, 88, 90

ActiveXMLService, class in Ruby,
80-82, 84, 90

Agile development, 109-110

AIX, 8
PASE and, 2, 5, 9, 46, 79-80,

101,112
Anonymous function, 55, 158, 186­

187, 196,206

Apache
PHPand, 138-139
Tomcat and, 213-220
using with XMLSERVICE, 19,

22-24, 26

App folder
PHPand, 140
Rails and, 107-108

Arrays, 40
hashes and, in JavaScript,

181-186
hashes and, in PI IP, 119
hashes and, in Ruby, 53, 56-58,

64, 75
in JavaScript (Nodc.js), 173, 181

186, 207, 21 1

in PHP, 119-120
in Python (lists and tuples), 148­

149, 163
in Ruby, 40, 53-56, 64, 75

B
Bartell, Aaron, 110,223-224
BASH, 7, 10, 44,47,63-64, 114
Bin folder, 219

in Rails, 107
Binding (in II E), 14-15
Block, 55

catch, in PHP, 130
in Python, 152, 157, 159
in Ruby, 43, 55-56, 64, 70, 77,

159
try, in JavaScript (Nodc.js), 206

Blog, Pete llelgren's, 147
Bolhuis, Larry, 224
Built-in functions

in JavaScript (Nodc.js), 177
in PHP, 122
in Python, 148, 152-154, 162
in Ruby, 52-53

Bundler, 100-101

c
C programming language, 2, 5, 9,

11-12, 14-15

Cairns, Tony, 20, 27
Calling a program

in JavaScript (Nodc.js), 207-211
in PHP, 133-138
in Python, 165-168
in Ruby, 83-85

Case keyword, in Ruby, 70-72
Case-sensitivity, in programming

language, 25, 46, 116

CG1DEV2, 19,213,216-218, 220
Class, 34-38

in JavaScript (Nodc.js), 173, 177­
181, 186, 188

in PHP, 112, 122, 130
in Python, 152, 159-161
in Rails, 108-109
in Ruby, 49, 59-61,62, 80, 82,

88-90,91,94-96
variables, in Ruby, 49, 50-52

COBOL, 2,9, 14-16, 152

Code reuse, 15, 106, 177, 181
COMMON user group, 19, 85, 147,

222-223

226 • Open Source Starter Guide for IBM i Developers

Common Gateway Interface (CGI),
19, 22,27, 116, 138,213-214,
216, 218

Community
IBM i, 2-3, 15, 221-224
open source, 100, 190

Config folder, in Rails, 107

Constants
in JavaScript (Nodc.js) 177
in PASE, 12
in Ruby, 48-49, 73

Container, in Ruby, 40, 53-56

Controller (MVC), in Rails, 105-106,
108, 110

Creating a table, in Ruby, 86-90

CRUD (Create, Read, Update, and
Delete) operation, 72

Ctl value (in XMLSERVICE), 27

D
Data types

in JavaScript (Nodc.js), 176, 209-
210,211

in PHP, 133-134, 137
in Python, 147-151
in Ruby, 56, 71, 84
in XMLSERVICE, 21,29, 134,

137

Database access
in Nodc.js, 204-211
in PHP, 124-127
in Python, 164-165
in Ruby/Rails, 108-110

Data Vision, 39

db folder, in Rails, 107, 109

DB2 for i, 6, 40, 80, 85, 124, 164,
167, 170, 204

XMLSERVICE and, 17,20, 27

developerWorks (IBM), 147, 164,
208

Dictionary, in Python, 151, 163, 168

Differences between PASE and ILL
environments, 7

Dollar-slash ($/) variable, in Ruby,
75

DRY (Don’t Repeal Yourself), 15,
106, 177

Dynamic typing
in JavaScript (Nodc.js), 173, 176,

181
in PHP, 115, 118
in Python, 158, 163
in Ruby/Rails, 48, 106

E
each method, in Ruby, 55, 64, 75, 77

ECM A, 171

ECMAScript (ES), 171

else statement, in Ruby, 65, 66, 67,
68

elsif statement, in Ruby, 65, 67

Encapsulation, 34-36

.erbfile, in Rails, 106, 108

Error handling
in JavaScript (Nodc.js), 206
in PHP, 130
in Ruby, 71-74

express, in Nodc.js, 192, 195, 201,
212

extend keyword, in JavaScript, 179,
180, 181

F
Eastcgi, 112, 139-140, 215

Eile access
in PHP, 122-123
in Python, 161-163
in Ruby, 74-79

[breach function
in JSON, 185,21 I
in PHP, 120, 128. 131, 133

Fortran, 2, 9, 14

Free-format RPG, 16, 41,58, 83
function

anonymous, 55, 158, 186-187,
196, 206

built-in, 52-53, 122, 148-149,
162, 177

forcach, 120, 128, 131, 133, 185,
211

in JavaScript (Nodc.js), 173-176,
179, 181. 186-190, 193,
195-211

lambda, 1 58-159
GO programming and, 37
in PHP, 116-117, 121, 130
in Python, 148-149, 152-155, 157-

159, 162-163
in Rails/Ruby, 100, 108-109
in Ruby, 40, 49-50, 55-56. 61, 63

G
Gem, 81.85, 88, 100-101, 107, 190

Gemfilc. 100, 107

GET, 25, 26, 110

GitHub, 136, 191

Global variable
in PHP, 116, 117, 118
in Ruby, 49, 50, 52, 73

GNU compiler, for PASE, 9

Hash
in JavaScript, 181-186
in PHP, 119-120
in Python, 151, 168
in Ruby, 53, 56-58, 64, 75

“Hello World" program example
in PHP, 115
in Python, 146
in Ruby, 43-46

Hoisting, in JavaScript, 187-188

HTML, 19-20, 106, 110
Apache and, 213,215-216
JavaScript and, 170-171, 186,

196 197, 199 202
PI IP and, 112, 115-116, 121, 138,

140-141
XMLSERVICE and, 25-26, 32

Index • 227

IBM i
Apache and, 213
architecture, 6-7
command line, 10, 12
community, 2-3, 15,221-224
ILE and, 13-16
Open Source for IBM i product

(5733OPS), 8-9, 147, 192
Node js and, 169-170, 192-193,

196-197, 203,207,210,
212

performance, 3
PHP and, 111-115, 124, 127, 129­

131, 138
Python and, 146-147, 163-165
Rails and, 99-100
reasons to use open source on,

2, 97
Ruby and, 39-42, 46-47, 63, 73,

79-81,85,90,95
Tomcat and, 219-220
user groups, 222
virtual communities, 223
XMI SERVICE and, 17-18, 20­

22, 27, 129
if statement, in Ruby, 64-65, 68
ILE, 13-16 J 52

binding in, 14-15
and PASE, 6, 7, 8. 10. II
origins, 13

Indentation, in code, 67, 154

Inheritance, 34, 36-37, 59, 88, 177,
179, 181

Instantiation, 34, 36, 63, 89, 96, 194
Integration, IBM i and, 2, 16, 103
ipc value (in XMI SERVICE), 27
irb (interactive Ruby) command, 42­

48, 58, 73, 79

iToolkil, 164, 167, 208

J
Java, 34, 37, 91,95, 168,210,213,

214,219, 220

JavaScript, 48, 55, 66, 108, 111, 115,
116, 118, 151, 158, 169-209

arrays in, 173, 181-186,207,211
built-in functions in, 177
calling a program in, 207-211
class in, 173, 177-181, 186, 188
constants, 177
data types in, 176, 209-210, 211
dynamic typing in. 173, 176, 181
error handling in, 206
extend keyword, 179, 180, 181
hash in, 181-186
history, 170
hoisting in, 187-188
module in, 169-170, 190-191,

193, 195-197, 203,207,
210

Nodc.js and, 169-190
programming concepts, 173
scope in, 175-176
scripting and, 170-171, 192
strings in, 175, 197, 203-204, 207
syntax, 176, 182, 206
try block in, 177

JDBC', 90, 95
J Ruby, 80,90-97, 100

JSON, 17, 20-21,57, 151. 176, 181,
184, 191,206-21 I

fo reach function in, 185, 21 1
jsonlint.com, 207, 21 I

JI Open, 80, 90, 95
JVM, 219

K
Key, 56-58, 168, 183, 190,207
Key-value pair, 56-58, 181, 183
Klcment, Scott, 223

L
Lambda function, 158-159

Linux, 3, 10, 42, 63, 80, 100 101,
112, 192

Lists in Python, 148

LISUG (Long Island System User’s
Group), 222

Is “list files” comand, 10

M
Matsumoto, Yukihiro (Matz), creator

of Ruby, 39-40
Method, 35-38

in JavaScript (Nodc.js), 178, 183,
189, 193-194, 197, 199­
200, 203, 206, 208

in PHP, 130-131, 133-134, 139
in Python, I 59, 167
in Ruby, 46, 52, 55-57, 60, 64, 66,

70, 73-75, 77, 79, 82, 84,
89, 90, 93,96, 110

Model, in MVC, 36, 105-106, 108­
109

Modular code, 13-15, 58-59, 61,63,
106, 110, 136, 177

Module, 14-15
in JavaScript (Nodc.js), 169-170,

190-191, 193, 195-197,
203,207,210

in PHP, 138-139
in Python, 152, 154-165, 167
in Rails, 100, 107
in Ruby, 48, 52-53, 59-64

MVC (Model-View-Controller),
105-106, 108, 112

MySQL, 111

N
Node package manager. See npm

Nodc.js, 169-212
chat demo program. 195, 197,

199, 200-203
database access in, 204-21 I
dynamic typing in, 173, 176, 181
error handling in, 206
express in, 192, 195, 201, 212
JavaScript and, 169-190
PASE and, 170, 203,212
route in, 196

jsonlint.com

228 • Open Source Starter Guide for IBM i Developers

system access in, 203
versions, 192

npm, 190-191, 195, 197

Object-oriented (OO) programming,
33-34, 38-41,49, 59, 112,
120-122, 127, 130, 145, 148,
162, 168, 170-171, 173, 177,
193

Object, characteristics of, 34

OCEAN (Orange County
Educational Advancement
Network), 222

OMNI, 222

Original Program Model (OPM),
13-15

Open source
community7, 100, 190,223-224
IBM iand, 5, 12, 14, 16-17, 20,

42, 80,97, 113-114, 147,
164, 221

languages. See JavaScript, Node,
js, PHP, Python, Rails,
Ruby

reasons for using, 1-3, 97
tools, 10, 12, 18-19, 39,218. See

also PASE, XMLSERVICE

Open Source for IBM i product
(5733OPS), 8-9, 147, 192

p
packagc.json file, 191-192

Parentheses, in code, 37, 52, 67, 149,
152, 189-190

Partials, in Rails, 106, 108

PASE, 2,5-12,213
A1X technology available in, 9
applications, 8
ILEand, 6-7, 10
constants in, 12
installing, 8
Node.jsand, 170, 203,212
PHPand, 111-112, 114, 123-124,

127, 130

Python and, 147, 163
Ruby and, 45-47, 79-81
using, 10
XMLSERVICE and, 14

PHP, 3, 6, 9, 17, 19, 106, 111-144,
145, 168-169, 171, 208, 213,
216-217, 220

accessing system resources in,
122

app folder and, 140
arrays in, 119-120
built-in functions in, 122
calling a program in, 133-138
catch block, 1 30
class in, 112, 122, 130
datatypes in, 133-134, 137
database access in, 124-127
dynamic typing in, 115. 118
error handling in, 130
file access in, 122-123
foreach function in, 120, 128,

131, 133
global variable in, 116, 117, 118
hash in, 119-120
“Hello World” program, 115
installation, 113
iteration, 119
module in, 138-139
operators, 118
PASE and, 111-112, 114, 123-124,

127, 130
programming, 115
running system commands in. 123
scripting and, 111-112, 115-116,

127
strings in, 118, 120-122, 137
syntax, 112, 122, 126
toolkit, 127
using in a Web app, 138
var dump in. 129, 131, 133, 135,

137
variables in, 116
XMLSERVICE toolkit for, 32

POLA, 40-41,48, 55, 59

Polymorphism, 34, 37-38, 177

Portable Application Solutions
Environment. See PA SI

POST, 25-26, 83, 110

POWER chip, 2-3

POWER8, 2, 6

PowerRuby, 19, 32, 42, 80, 99-100,
105-106, 192

puts, 43, 45-46, 50, 55, 58, 60, 62,
66, 76, 82, 85, 87, 90, 92, 96

PuTTY, 10, 47, 115

Python, 2-3, 32, 34, 37, 39-40, 55,
111, 145-168, 192,208,220

2to3 conversion tool, 146
accessing RPG in, 165
anonymous functions in, 158
arrays (lists and tuples) in, 148-

149, 163
block in, 152, 157, 159
built-in functions in, 148, 152-

154,162
calling a program in, 165-168
class in, 152, 159-161

data types in, 147-151
database access in, 164-165
dictionary in, 151, 163, 168
dynamic typing in, 158, 163
file access in, 161-163
hash in, 151, 168
“Hello World" program, 146
installation, 146
lambda function in, 158-159
module in, 152, 154-165, 167
numbers in, 148, 151
PASE and, 147, 163
scope in, 154-157
scripting and. 111, 145, 164, 167
strings in, 146, 148, 151-152,

162-163
syntax, 145-146, 148, 154
system access in, 163
tuples in, 149-151, 153-154, 157,

163
variables in, 157

Q
QP2TIRM, 10,46-47

QSHELL. 46

Index • 229

R
Rails, 3, 6, 15,57-58, 72, 85,99,

190, 195,217, 220
app folder and, 107-108
bin folder in, 107
building an application in, 101­

110
class in, 108-109
controller, 105-106, 108, 110
database access in, 108-110
dynamic typing in, 106
generate command in, 108
module in, 100. 107
MVC and, 105
project, 107-108
routes in, 102, 107, 109-110, 196
Ruby and, 99-110

Rakcfilc. 107
Read-eval-print loop (REPL), 42-44,

47, 73, 171
Reasons for using open source, 1-3,

97
Reflection, 2 10

REST, 18, 20,27, 80, 82, 88, 167­
168

RESTful, 19, 109-110. 196
Reuse of code. See Code reuse
Reverse proxy, 214, 217

Routes
in Nodc.js, 196
in Rails, 102, 107, 109-110, 196

RPG, 2, 5, 9, 34, 39, 41-42, 48-49,
53, 55-56, 58, 68, 70, 109,
145, 170-171, 181, 193,213,
224

Apache and, 21 8, 220
free-format, 16, 41, 58, 83
ILE, 13-16, 112, 169
JavaScript (JSON) and, 208-210
PI IP and, 1 16, 1 18, 133, 136
Python and, 151-152, 165-168
Ruby and, 40, 83-85
XMLSERVICE and, 17, 19, 21,

27-29, 208-210

R STL IC PGM (Restore Licensed
Program) command, 1 14

Ruby, 3,6, 15, 19, 32, 34,37, 39-97,
111, 145, 157-158, 168, 190,
195,208

ActiveRecord class in, 80-82, 84,
86, 88, 90

AcliveXMLService class in, 80­
82, 84, 90

arrays in, 40, 53-56, 64, 75
block in, 43, 55-56, 64, 70, 77,

159
built-in functions in, 52-53
calling a program in, 83-85
case keyword in, 70-72
case-sensitivity, 46
class in, 49, 59-61,62, 80, 82,

88-90,91,94-96
class variable in, 49, 50-52
constants in, 48-49, 73
container, 40, 53-56
control flow in, 64
creating a table in, 86-90
data types in, 56, 7 L 84
database access in, 108-110
dynamic typing in, 48, 106
each method in, 55, 64, 75, 77
else statement in, 65, 66, 67, 68
elsif statement in, 65, 67
error handling in, 71
file access in, 74-79
gem in, 81, 85, 88, 100-101, 107,

190
Gcmfilc in, 100, 107
global variable in, 49, 50, 52, 73
hash in, 53, 56-58, 64, 75
“I lello World" program, 43-46
I/O in, 73
installing, 42
language basics, 48
module in, 48, 52-53, 59-64
PASI and, 45-47, 79-81
program structure in, 58
Railsand, 99-110
scope in, 49-53
scripting and, 39, 47, 63, 106, I I 1
strings in, 43, 53, 66, 70-72, 71,

72, 75, 86. 88, 94

syntax, 45-46, 55, 69-70, 80, 109
system commands and, 79
unless keyword, 66, 68
variables in, 48-49

Ruby Toolkit, 80-85

Scripting language, 12, 39-40, 111,
164, 170

JavaScript, 170-171, 192
PHP, 111-112, 115-116, 127
Python, 111, 145, 164, 167
Ruby, 39, 47, 63, 106, 111

Secure Shell (SSH), 10,47, 167
Service program, 14-15, 28, 59, 1 52,

216
Shebang, 45, 63-64
SmallTalk, 34, 39

OO programming and, 34

SQL, 21,31,85, 95-96, 124-126,
143-144. 165,206

STDERR, 12, 73-74
Sstderr, 73

STDIN, 73, 75
Sstdin, 73

STDOUT, 12, 73, 75
Sstdout, 73, 75-77

String, 37, 163,203,207
in JavaScript, 175, 197, 203-204,

207
in PHP, 118, 120-122, 137
in Python, 146, 148, 151-152,

162-163
in Rails/Ruby, 100
in Ruby, 43, 53, 66, 70-72, 71,72,

75, 86. 88, 94
XMI SERVICE and, 21,26

Syntax
JavaScript, 176, 182, 206
PHP, 112, 122, 126
Python, 145-146, 148, 154
Ruby, 45-46, 55, 69-70, 80, 109

Subclass, 36-37, 88

Sublime Text, 42, 171, 193

230 • Open Source Starter Guide for IBM i Developers

T
Tomcat, 169,213,218-220

Tuple, 149-151, 153-154, 157, 163

u
UltraEdit, 44

Uniform Resource Identifier (URI),
109-110

UNIX, 3,46, 112
*NIX, 80, 111, 114-115, 122

unless keyword, 66, 68

Untyped, 70, 115, 170, 175

User groups, IBM i, 222

V
var dump, 129, 131, 133, 135, 137

Variable
global, 49, 50, 52, 73, 116, 117,

118

in JavaScript, 173
in PHP, 116
in Python, 157
in Ruby, 48-49

View, in MVC, 105-106, 108

Virtual communities, IBM i, 223

w
WMCPA (Wisconsin Midrange

Computer Professional
Association), 222

WRKSYSVAL command, 81, 82.
128, 132

X
XML, 17,20-21,25,28, 208-210
xmlin, 28, 32

xmlout, 31-32

XMLSERVICE, 17-32
ct! value, 27

data interchange layer, 20
data types in, 21, 29, 134, I 37
examples, 22-32
installing, 18
ipc value, 27
PASE and, 14
strings and, 21,26

XSL, 25, 28

YAML (Yet Another Markup
Language), 80-82, 84, 86,
88, 92

Young i Professionals (YiPs), 9, 18­
20,22, 136-137

z

Zend. 113

Zend Server (zendsvr). 114, 127,
129, 134, 140

OPEN SOURCE
STARTER GUIDE
For IBM i Developers

Open source on the IBM i has come a long way since the days of Perl on the
AS/400. Today, tne “garden” of open source application development tools is
diverse and thriving, thanks to an active community and the growing popularity
of solutions like XMLSERVICE, Ruby/Rails, PHP, Python, Node.js, and Apache
Tomcat. If you’ve wanted to explore any of these technologies, to see how open
source might expand your application possibilities—or your development skill
set, Open Source Starter Guide for IBM I Developers is for you.

In this book, Pete Helgren, a veteran i and open source developer, provides a
friendly, practical introduction to open source development options for IBM i
programmers. Pete dispenses guidance to help developers get into open source
in a well-informed way, as well as plenty of code examples to give readers a
feel for working with the tools. Readers will take away a clear understanding
of popular open source platforms and tools, how these tools fit in with IBM
i app development, and how to start building applications with open source
technologies.

Upon reading this book, you will:
■ Understand how to install and use PASE and how it supports open

source on i

■ Know how to use XMLSERVICE to enable communication between open
source applications and the IBM i database

■ Be familiar with object-oriented (00) programming and how it applies to
different open source solutions

■ Know the basics of 6 popular open source technologies for IBM i: Ruby,
Rails, PHP, Python, Node.js, and Apache Tomcat

■ Know the resources available to help you further explore open source
development

About the Author

Pete Helgren is a Java/
Web developer at Bible Study
Fellowship International. Pete is
an experienced programmer in
the ILE RPG, PHP, Java, Ruby/
Rails, C++, and C# languages

with over 25 years of experience. He spent six
years nurturing the IBM i community on the
COMMON Board of Directors and actively blogs at

petesworkshop. com.

LEVEL: Novice to Intermediate

CAI EGORY: Computer: Programming &

Software Engineering

PRICE: $59.95 US $80.95 CAN

MC Press Online, LLC
_ 3695 W Quail Heights Court

EQBUS Boise, ID 83703-3861

	Acknowledgments

	Contents

	Preface

	1

	IBM i and Open Source

	Why Open Source on IBM i?

	It’s All About the Community

	2

	The PASE Environment

	PASE and ILE

	Installing PASF

	PASE Applications

	Using PASE

	The flip side is to invoke an ILE CL program from PASE. That takes a C language program, compiled in PASE:

	3

	The Integrated Language Environment (ILE)

	ILE’s Origins

	Modularity and Binding

	The Benefits of ILE’s Integration

	4

	The Beast That Is XMLSERVICE

	Installation

	Next Steps

	XMLSERVICE Examples

	First Step: Prepare the Apache Server

	Second Step: Serve the Web Pages

	Here is one more example, with an SQL call this time:

	So a complete example would be (for a simple command call):

	5

	i Object!

	Classes

	Encapsulation

	Inheritance

	Interfaces

	Polymorphism

	Have Some Class

	6

	Ruby and IBM i

	Installation

	IDEs and irb

	Language Basics

	Variables

	Scope

	The best way to demonstrate how each of these works is to demonstrate them (!).

	The output will be this:

	Built-in Functions

	Containers

	It confirms what we already know.

	We can also create a new array object:

	You can assign values:

	And you can output those arrays. More importantly, you can iterate through them, which is what you commonly do with arrays. Here is an example of iterating through an array:

	Hashes

	Program Structure in Ruby

	Modules

	Frodo]!) By “including” a module in a class, the class as well as the instances of the class have access to the functions in the module. Let’s take a look:

	Start with the module:

	Control Flow in Ruby

	Using Case

	A Brief Aside into Error Handling

	File, I/O, and System Operations

	A Brief Aside into I/O

	Files

	System Commands

	The Ruby Toolkit

	Alternatives

	This example is a bit long, but it will show you the process of creating a table, populating it with data, and then reading though that data. Some of it should be familiar territory.

	Next, we create new records by using the Base class create method:

	We can also create new database records by first instantiating a new object, populating the properties, and then saving it to the database. To wit:

	Finally, here are a couple of ways to retrieve and display the records:

	Using J Ruby with ActiveXMLService and ActiveRecord

	With the setup out of the way, we can take a look at implementation.

	Once we call the connect method on the instance, we can do something useful. In this case, we will list some spool files.

	You’ll be prompted for an SQL command. I just ran this simple Select:

	Something New

	Rails and Ruby

	Getting Started with Rails

	Building a Rails Application

	So you can sec that the final command was bundle install, and then there was a LOOONNGG pause (at least for me), and then the output:

	Rails and MVC

	Structure of a Rails Project

	Database Access in Rails

	Accessing Resources with Routes

	Summing It Up

	8

	PHP on IBM i

	Where PHP Lives on IBM i

	Installation

	Running Scripts

	Programming Basics

	Variables

	Let’s put those rules to work, by using a few examples:

	Operators

	Iteration

	Strings

	Accessing System Resources

	Files

	Running System Commands

	Database Access

	Accessing IBM : Commands and Programs

	Simple Commands

	Calling Programs and Procedures

	PHP in the Web World

	The SQL I/O would look like this:

	9

	Python

	Installation

	Programming in Python

	Numbers

	Strings

	Lists

	Tuples

	Will this work?

	Nope!

	Maybe a slightly different assignment?

	Nope! It’s a tuple by default:

	There are plenty of nice functions available to us.

	Dictionary

	Functions

	Let’s continue the example by going back to some of the code above and “functionalizing” it. Remember that we tiptoed through the tuples like so:

	We can create a function that would handle just that bit of code:

	The output is just the same as before:

	Modules

	The output is:

	Remove the keywords, and you’ll get this:

	If you are not sure how many parameters you’ll be passing, you can always allow any number of arguments to be passed in, like so:

	Perhaps a clearer way to handle a variable number of variables would be to use keyword variables so we know what we are looking for, and when we find it, we use it, like this:

	Classes in Python

	Invoke the code:

	The output:

	File Access in Python

	System Access

	DB2 Access

	Accessing RPG

	Feel the Power

	10

	Node.js on IBM i

	Jiving with JavaScript

	The output would be:

	Take a look at this alternative:

	The output would be:

	Classes and Objects

	Arrays and Hashes

	I he output looks like this:

	Functions

	Node.js

	Vexing Versions

	And a wee bit more stuff that makes the HTML look a little better in the chat.css file:

	System Access

	DB2 Database Access

	Apache and Tomcat on IBM i

	Apache

	Tomcat

	The IBM i Open Source Garden

	User Groups

	Virtual Communities

	Notable “Solos”

	Index

