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To Mary, from the title of the song this is “Dedicated to the One
I Love.”

What a fabulous ride you have taken me on!
With all my love and admiration.

–Danny

To the shining stars in my life, Aruna, Rishma, and Aria Nina,
and my constant 4-legged companions Chikki and Heera.

Without you there would only be darkness.
–Anurag



We ran into each other on Friday, the 13th of April, 2018, at the over-
crowded, official opening of the Luddy School of Informatics,
Computing, and Engineering and we decided to write a book on
machine learning based on this very deep conversation directly
following the close of the event.

Anurag: I want to write a little book with you.
Dan: Let's do it!
 ⋮
a few seconds later
 ⋮
Dan: What's the topic?
Anurag: Machine learning
Dan: Now, that will be a worthy challenge!

And the rest of the time we reminisced …
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Foreword
by Guy L. Steele Jr.

This book is exactly right.

Dan Friedman, with his able and expert co-authors, has been writing
books in his unique “Little” style for over four decades. Every one is a
gem, explaining deep and important ideas in computer science in
bite-sized chunks. Dan and his co-authors have raised the
“programmed learning” question-and-answer format to an art form,
to a conversational style that seems almost breezy. This very volume
introduces two innovations, nuggets and revision charts, that
further streamline the presentation of chunks of program code and
their behavior.

Regarding the fundamental ideas behind machine learning

This book presents exactly the right ideas
 in exactly the right format
and
 in exactly the right order
All you need to do is read the book in order (don't skip ahead!)

The authors themselves remark:

“Little” books are all about packaging ideas neatly into little
boxes.

What ideas are in this book? The mathematics and computational
techniques of machine learning, of course: you'll learn about
successive approximation, stochastic gradient descent, neural
networks, and automatic back-propagation. However, as a
programming languages guy, I am also interested in how the authors
use language to frame the mathematics. To me, a big overarching
idea here is how the authors use higher-order functions—that is,
functions that take other functions as arguments and/or return other



functions as results—to explain the data structures and computations
of machine learning.

The fundamental data structure is the tensor, which at first glance
looks like an ordinary array or matrix; but the authors explain that
tensor operations have the additional property of automatically using
a higher-order mapping function when appropriate, and this—almost
magically, it seems to me—enables a function apparently written for
scalars (single numbers), or a tensor of a specific dimension, to be
applied generally to all kinds and sizes of arrays, vectors, and
matrices with no additional effort.

Another application of higher-order functions is currying, which
allows you to give a function some of its arguments now and others
later—when you give it some of its arguments now, it returns another
function that can be applied to the other arguments later to get the
final answer. The presentation in this book uses currying in a clear—
and, to me, pleasantly surprising—way to explain the difference
between arguments and parameters in machine learning, and why
they need to be presented in a specific order, some now and some
later. (A third sort of argument, hyperparameters, is also explained
using yet another programming-language mechanism. If you're
familiar with the buzzphrase “dynamic scoping” you are in for a
treat; if you are not, no worries—hyperparameters and their behavior
are clearly explained by example.)

The third use of higher-order functions in this book is to structure
the composition of large neural networks from smaller building
blocks, and to explain the behavior and training of these networks.

A fourth use of higher-order functions is to provide for data
abstraction. At first, parameters are always simple numbers, but the
code for processing them is so deftly defined using just a few
interface functions—exactly the right ones—that the higher-order
code does not need to be changed when the representation of
parameters is extended. (A key idea is projection: provide two
functions, one that projects data into an alternate representation that
is easier to compute on, and another that pulls a computed result
back into the original representation. Then a function that accepts
two such functions as arguments can be used in a very general way.)



Similarly, scalars are simple numbers throughout most of the book,
but when it becomes necessary to generalize them to duals in
appendix A, higher-order functions make the task simple.

So if you are interested in big-picture programming-language
ideas
 Keep these applications of higher-order functions in mind as
you read
 You may enjoy spotting them as they go by
but if you don't care about higher-order functions
 Please ignore everything I have just said
 Immerse yourself in the story of machine learning
This book needs no introduction; it is exactly right for its
purpose.

I have read all the books in the “Little” series; each time I have said
to myself, “This is the best one ever!” This time, Dan and Anurag
have done it again—this is the best. It stands on its own; you don't
need to have read earlier “Little” books to understand this one, and
you don't need to understand Scheme or any other programming
language ahead of time. The dozen or so programming-language
ideas you need are explained along the way, each exactly when you
need it, and with plenty of examples. Give it time and enjoy the
journey.

Guy L. Steele Jr. 
Lexington, Massachusetts 

August 2022



Foreword
by Peter Norvig



Hi, I'm Peter Norvig, a long-time
researcher and practitioner of
machine learning.

I've had the pleasure of reading this
book, and was asked to make some
comments on it. I'm going to do that
in the form of a dialog with my
esteemed colleague, Typical Reader.

Welcome to this foreword Mx.
Reader, how are you?

1 Thanks, I'm happy to
be here, even if I am
imaginary.

And please, call me
Tipi.

Okay, Tipi.

I can say that I thoroughly enjoyed
the book and appreciated the way it
carefully developed the key concepts.

How did you find the book?

2 To be honest, I haven't
read it all yet. So far
I've only skimmed it. It
looks interesting, but
I'm trying to decide if it
is worth the time and
effort to work through
the whole book.

You have a good point.

This book is more interactive than
most, and asks more of the reader.

I can't tell you whether the book is
right for you, but I can say that the
best way to achieve expertise in any
area is with deliberate practice, not
just passive listening or reading.

3 It does seem to demand
more effort than a
typical book, because
you have to work
through the examples.



Working through the examples really
helps the material stick with you!

I remember one time I was
discussing a machine learning
technique with a colleague, and they
said they didn't see how a particular
tricky part worked. I said that it
seems tricky, but it is actually easy.

I remembered that Andrew Ng had a
great video that was perfectly elegant
in explaining how it worked. I then
tried to duplicate what I learned
from the video and—I couldn't do it.

Andrew's explanation was so clear
when I watched it that I didn't bother
actually learning it. My colleague did
a quick search and said ‘‘This must
be the video; let's watch it again,’’ but
I said no; this time I'm going to work
the answer for myself, and then I'll
remember it.

And I do remember it to this day.

4 Okay, you convinced
me that practice makes
improvement.

When I look around,
however, I see machine
learning tools mainly in
Python, or maybe Java
or R, but not so much
in Scheme.

This book isn't about programming
languages, and it isn't about machine
learning toolkits.

It is about explaining the
fundamental concepts of machine
learning, and implementing them in
the simplest possible way.

5 Is Scheme a good
choice for that?



I think it is.

It is one of the simplest possible
programming languages. Working
with it is like sticking with basic
mathematical notation, but it
happens to be executable code, so
there's no ambiguity about how it all
works.

6 But will this book have
me practicing the right
things?

After you finish this book, are you
going to take the Scheme code and
run it in your next machine learning
project?

Maybe, maybe not. But even if you
use a machine learning toolkit like
TensorFlow or PyTorch, what you
will take away from this book is an
appreciation for how the
fundamentals work.

That appreciation will help you
understand what to try next when
TensorFlow or PyTorch is not
behaving the way you thought it
should.

7 Okay, I'm all for
understanding the
fundamentals. But is
this book all
theoretical? All mathy?
I want a good
understanding of the
fundamentals, but I
want that
understanding to be
useful in practice.



This book will give you that. It takes
you through the key ideas of machine
learning.

It is definitely not “mathy’’; it has the
minimum amount of math notation,
and most topics are described with
code and prose, not equations.

Personally, I'm the kind of person
who is always more comfortable
reading code than math, so this book
filled me with cozy feelings, not with
dread.

8 That sounds good.
What are some of the
key topics I will learn
about? And how long
does it take to get to
them?



I think the topics are presented at
just the right pace. It starts off
introducing the absolute basics of
Scheme and of lines and linear
equations. By page 63 we get to L2
loss, learning rate, and gradient
descent.

Often the topics are covered in a
simple way first, and then in a full-
blown practical way later; we come
back to gradient descent on page 141
and get to Adam optimization (a
state-of-the-art version of gradient
descent) by page 173.

By the time we get to page 201, The
Rule of Artificial Neurons, “An
artificial neuron is a parameterized
linear function composed with a
nonlinear decider function’’ makes
perfect sense, putting together the
pieces that have been built up in the
preceding pages.

We learn about the most commonly-
used decider functions, like the
“relu,’’ and on page 209 there's a
simple but deeply satisfying
description of how any function can
be approximated with the tools we
have at hand.

The book continually builds on solid
foundations like this to explore the
issues that come up in practice; for
example in the discussion of
vanishing and exploding gradients
on page 260.

9 Okay, you've convinced
me; skimming wasn't
enough, I'm going to
work through the
whole book.

By the way, was there
anything in the book
you disagree with?



I whole-heartedly agree with the
pedagogical style of working through
an issue, seeing the finished results
that you have accomplished, and
then enjoying a break.

I've used the Pomodoro Technique to
help keep me focused on work
intervals; this book is perfectly suited
for such an approach.

I think, however, if you strictly
followed the book's advice for the
number of desserts to eat, you'd be
overdoing it.

Take the functions, leave the cannoli!

10 As a typical reader, I
consume 77 grams of
sugar per day.

I'll heed your warning
and try to get closer to
the daily recommended
level of 24 grams per
day.

Peter Norvig 
Palo Alto, California 

August 2022



Preface

You can't skip chapters, that's not how life works. You
have to read every line, meet every character. You won't
enjoy all of it. Hell, some chapters will make you cry for
weeks. You will read things you don't want to read, you
will have moments when you don't want the pages to end.
But you have to keep going. Stories keep the world
revolving. Live yours, don't miss out.

– Courtney Peppernell, a poem from Pillow Thoughts II,
published by Andrews McMeel Publishing, © 2018.

Deep learning, an emerging area of artificial intelligence, has
revolutionized the way problems are solved, be it winning at Go,
recognizing cats in pictures, or asking a smart speaker to order pizza.
The most beautiful thing about deep learning is how simple pieces
come together to solve large, complex problems. How can we
understand what makes these deep learning tools work? Our
approach is to build them, a little bit at a time, and watch them work.

The ability to grapple with noisy data is what makes deep learning,
which is a type of machine learning, tantalizing. Consequently, being
100% correct is no longer attainable. Our sense of exactness of
solutions, which is common to many problems for which we write
programs, disappears. While much of this lies with the problem
domain itself, we can, and should, maintain a sense of exactness in
the functions we define—to keep true to our intuition so we can be
assured that these functions meet our expectations.

To learn these tools, we require only basic high-school mathematics
along with some programming experience. The functions we define
are intended to be run and experimented with. It is, of course,
possible to read this book without running them, but each definition
must be carefully understood.



How to read this book
Because you may find that either this topic or our exposition method
is new, you should read each chapter until you fully understand it.
This might lead to reading some chapters more than once. Do not
move forward until the chapter being read is completely clear. Be
determined. Work with others and discuss with them what has been
unclear until each little piece falls into place.

It is futile to read ahead in a “Little” book because everything is
structured in exactly the right order as a sequence of numbered
frames separated by horizontal lines. Each chapter is fairly short and
has lots of white space, so rereading an entire chapter carefully to
regain a lost thread is not unreasonable.

We also have two appendices in exactly the right order. They explain
how to build the underlying tools that help us with deep learning.
These appendices also assume very little by way of the background
knowledge necessary, but are a wee bit more demanding of the
reader than the rest of the book.

How our programs are written
We package our ideas as little Scheme programs. Scheme allows our
thoughts to be expressed clearly and directly, and with minimal fuss.
It is a language that assumes very little and gets out of the way
quickly, so that the code speaks for itself.

We use a very small subset of Scheme: define (or let) allows a
global (or local) name to be given to a value, lambda creates a
function as a value, and cond dispatches over a sequence of (test
value) pairs. There are also primitive functions such as +,−, and *
that operate over numbers. This is explained in Are you Schemish?.

We use little boxes to hold the code and we explain how the
programs in these boxes work. Once Are you Schemish? is
understood, each subsequent frame, when read in order, is easily
digestable. This book builds up a collection of concepts, with nearly
all of them being functions. If we request a function definition (in the
left part of a frame), take some time and produce a plausible one



•

before looking at our answer (in the right part of the frame). Here is
a simple example of a frame with little boxes:

This is a little box

(define a-function
 … that fits nicely in a little
box …)

1 This is a red box

They don't get wider than this
The first memorable one is
frame 26:25

and

that means frame 25 on page
26

(define another-function 
 … remember this one! …)

We also categorize key properties as either rules or laws. Our rules
are about the structure of entities, like their sizes. Our laws, on the
other hand, are about the behavior of entities, like their equalities
and invariants.

How to run the code
We have collected the functions and syntactic extensions necessary
for the code in this book into a MAchine Learning Toolkit package,
called Malt. Malt is a package in Racket, which is a superset of our
small subset of Scheme. The package includes our code and examples
as well as the tools necessary to experiment with them. Advice for its
use is available at www.thelittlelearner.com.

How to eat desserts
Those familiar with “Little” books may miss the funny Scheme
symbols that have been an opportunity to inject humor into the data.
It is very difficult to find humor in numbers, though occasionally we
find some elsewhere. So, we have included a cornucopia of desserts

http://www.thelittlelearner.com/


for consumption at a nearby outdoor café. Don't skip them! But don't
overdo them either, and remember to eat your “peas and carrots”
first.

We hope this little foray into deep learning will be fun for you, and
we hope that it's as interesting to read as we have found it to write.

Bon appétit!

Daniel P. Friedman 
Bloomington, Indiana

Anurag Mendhekar 
Los Altos, California



Transcribing to Scheme

We write some of our functions using a more compact notation so
that they are easier to read and to fit snugly in the little boxes. Before
running a program, be sure to transcribe our notation into Scheme
code. The table below shows how to write these directly in Scheme.

The first column in the table below refers to the earliest occurrence
in the book of the notation shown in the second column. The third
column shows how to transcribe our programs, (e.g. [ 5 (+ 10 2) 28 ]
is transcribed as (tensor 5 (+ 10 2) 28)).

Page:Frame Notation Transcription

24:17 [ t ts …] (tensor t ts …)
26:24 li (ref l i)
27:27 (list m …) (list m …)
33:17 (tlen t)
36:24 t|i (tref t i)
41:42 |l| (len l)
52:22 (⟨op⟩⟨rank⟩ t) (⟨op⟩-⟨rank⟩ t)
77:15 (∇ f θ) (gradient-of f θ)
106:25 (• t u) (dot-product t u)
106:26 (⟨op⟩⟨rank1⟩,⟨rank2⟩ t) (⟨op⟩-⟨rank1⟩-⟨rank2⟩ t)
124:27 t||b (trefs t b)
226:49 li↓ (refr l i)

For example, on page 52, frame 22, we introduce a hyphen between
sum and 1 to transcribe sum1 to sum-1 and on page 106, frame 26,
we introduce a second hyphen to transcribe •1,1 to dot-product-1-1.



Greek letters and notational variants of variable names like â, α, ,
an-α, β, ĉ, ϵ, θ, Θ, λ, μ, and π are written, respectively, as a-hat,
alpha, alpha-hat, an-alpha, beta, c-hat, epsilon, theta, big-theta,
lambda, mu, and pi. Unicode can be used in names of formals,
functions, and keywords.

The successful running of the code requires the installation of the
Malt package for Racket v8.0 or later. Details on downloading and
running the code can be found on www.thelittlelearner.com.

http://www.thelittlelearner.com/


The Little Learner







Psst. Psst. Psst! 1 Toto, I have a
feeling we're not
in Kansas
anymore.†

 
†Thanks, Lyman Frank
Baum (1856–1919)
and thanks, Edgar
Allan Woolf (1881–
1943).

How about a quick review? 2 Of what?

Of the programming language we're using
here.

3 Oh, that would
be great.

Did you read the three-page preface? 4 Of course, no one
should skip the
preface

it has a little
poem for
learning

and

the desserts
sound enticing

So, off to reread
the preface.†

 
†Text laid out in this
style, where
punctuation is
replaced by
indentation, is a
nugget.



Those who already know Scheme† can zip
through this to the next chapter, The Lines
Sleep Tonight, after briefly glancing at the
table on page xxiii for perhaps a few
familiar names.

5 Thanks.
 

†Thanks, John
McCarthy (1927–
2011), Gerald Jay
Sussman (1947–), and
Guy L. Steele Jr.
(1954–).

Let's first learn how to give names to
values

(define pie† 3.14)
 

†It's not the tastiest pie we could find; it's missing the
meringue topping (i.e., more digits after the 4).

6 Does that give
the name pie to
the number 3.14?

Yes, it does.

Here are some more definitions

(define a-radius 8.4)
 
(define an-area
 (* pie
  (* a-radius a-radius)))

7 Assuming * the
multiplication
function, does
this mean an-
area is

221.5584

Correct.

Functions are invoked with zero or more
arguments

(⟨function⟩ ⟨argument⟩ . . .)

Since all mathematical operations (such as
*, +, etc.) are functions, they are also
written in this way.

8 How can we
make new
functions?



Let's make a function of one formal

r

Formals are the names given to arguments
that are passed in when the function is
invoked

(λ (r)
  (* pie
   (* r r)))

In this expression, λ (also written lambda)
marks the beginning of a new function.
Then we have the formals. Here we have a
single formal r. And then we have the body
of the function, which is the expression for
the value of the function.

What does this function produce?

9 It squares the
argument r and
multiplies it with
pie. That looks
like the area of a
circle with radius
r.

Does this
function have a
name?

No, it doesn't.

But we can give it one using define

(define area-of-circle
 (λ (r)
  (* pie
   (* r r))))

10 Aha.

λ is used to
create a function
and define is
used to give it a
name.

So, are functions
also values?

Yes.

Functions are also values and they can be
used like other values.

11 Does that mean
that functions
can result in
other functions?



Yes, it does.

Here is an example

(define area-of-rectangle
 (λ (width)
  (λ (height)
   (* width height))))

What is

(area-of-rectangle 3.0)?

12 The function
area-of-
rectangle is a
function with one
formal. But it
results in a
function

(λ (height)
  (* width
height))

Does it not?

Very close.

The extra bit of information we need to
remember is that width inside this
function already has a value of 3.0.

This is how to think about it

(λ (height)
  (* 3.0 height))

13 That is a neat
trick.

The inner
function
remembers the
argument passed
in for the formal
of the outer
function.

Can we also pass
functions in as
arguments to
other functions?



Indeed, we can.

Here is an example

(define double-result-of-f
 (λ (f )
  (λ (z)
   (* 2 (f z)))))

Explain how f is being used here.

14 Here f is a formal
of double-result-
of-f, and then f is
later invoked on
z.

This means f
must be a
function.

Correct.

Here's a function that adds 3 to its formal

(define add3
 (λ (x)
  (+ 3 x)))

What happens when we invoke

double-result-of-f on the add3 function?

(double-result-of-f add3)

15 When we invoke
double-result-of-
f on add3, we get
the inner
function.

We remember
the argument
passed in for the
formal f from the
outer function,
which means that
we remember
that f must have
been add3.



Very good.

We write it this way

(λ (z)
  (* 2 (add3 z)))

What happens when we invoke this
function on the argument 4?

((λ (z)
  (* 2 (add3 z)))
  4)

16 The value of z
inside this
function is now
4, so we get

(* 2 (add3 4))

Great.

What about the rest of it?

17 The expression

(add3 4)

is the same as

((λ (x)
  (+ 3 x))
  4)

which gets us 7.
Substituting this
into our previous
expression, we
get

(* 2 7)

giving us 14.



Correct.

This way of remembering arguments
passed in for formals of outer functions
inside inner functions is known as β-
substitution.†

This is a useful tool for understanding
function invocation. Scheme, in reality, has
better ways of doing β-substitution.

 
†Thanks, Alonzo Church (1903–1995).
Care also must be taken when doing β-substitution so
that all the names in the definition are unique at every
step. If not, formals of functions can be given new names
to make sure they are always unique.

18 Is define also a
function?

No, it is not.

It is a keyword. Expressions that begin
with keywords are known as special forms.
They are different from function
invocations.

19 Is λ also a
keyword?

Yes. Here is an example of another special
form

(cond
  ((= pie 4) 28)
  ((< pie 4) 33)
  (else 17))

This expression results in 33.

Explain why.

20 The keyword
here is cond†.

Is cond short for
conditional?

 
†Also known as
McCarthy's cond.



Yes, it is. 21 So then

(= pie 4)

and

(< pie 4)

must be tests.

Yes, they are. 22 Since pie is not
equal to 4, the
first test fails†

but the second
test succeeds.‡

 
†It results in false,
written in Scheme as
#f.

‡It results in true,
written in Scheme as
#t.

Correct.

Each combination of test and value is
known as a clause, where else is treated as
true. The value of the cond expression is
the value of the first clause with a true test,
checking them from the top to the bottom.

23 The cond
expression
results in 33,
because its
associated test is
the first one that
is true.



Very good.

Let's combine these three special forms we
have just learned

(define abs
 (λ (x)
  (cond
   ((< x 0) (− 0 x))
   (else x))))

Explain what abs does.

24 It is the absolute
value function!

It takes a single
number x and if
the number is
less than 0, it
subtracts this
negative number
from 0, and it
results in a
positive number.

Else, it results in
the nonnegative
number

x

We also need a way to define local names
inside our functions, where these names
are not visible outside those functions.

25 Yes, that should
be useful for
defining readable
functions.

We do that using a special form known as a
let-expression. For example

(define silly-abs
 (λ (x)
  (let ((x-is-negative (< x 0)))
   (cond
    (x-is-negative (− 0 x))
    (else x)))))

26 It looks as if we
are giving

(< x 0)

the local name

x-is-negative



Yes, we are.

The last expression of the let (in this
example the cond) is known as the body of
the let. Of course, it does not always have
to be a cond. It can be any expression. The
name x-is-negative can be used anywhere
inside the body of the let-expression, but it
has no value outside of it.

27 That's
convenient.

Perfect.

We have everything we need.

28 No we don't. We
still haven't seen
loops.

Our language does not have loops. 29 What?

How can we
define interesting
functions
without loops?

We use recursive functions. 30 Is that where the
body of a
function refers to
the name given
to the function
itself?



Precisely.

Let's define a simple version of the
remainder function.†

Here's an example of how it would work.
Suppose we want to find the remainder
where the two numbers are 13 and 4. The
remainder is what's left over after
removing as many 4s from 13 as possible.

What is the result here?
 

†It's simple because we assume its first argument to be a
nonnegative number and its second argument to be
positive.

31 The remainder is
1, since we can
remove 4 three
times from 13, to
get 1.

Correct.

Let's do it step by step. Since 13 is larger
than 4, we can remove 4 to get 9.

What is the next step?

32 The number 9 is
also larger than
4, so we can
remove it one
more time to get
5.

Good.

The number 5 is still larger than 4, so we
can remove it one last time to get 1.

33 Now it is smaller
than 4, and we
can no longer
remove 4 from it.

So the remainder
is 1.



Excellent.

Here is a skeleton for remainder, our
simple remainder function

Find expressions that go inside the boxes
labelled X and R.

34 To find the
remainder, we
must first check
if we can remove
y from x. This is
possible only
when x is greater
than or equal to
y.

If, however, x is
less than y, then
x must be the
remainder. So,
when

(< x y)

this function
results in x. So, X
is x.

What happens if
x is not less than
y?

Then, we can remove y from x once, and
continue by finding the remainder of the
result.

35 Ah, so we must
find the
remainder of (− x
y) and y

Correct.

We do this by recursively invoking
i d

36 This means R is

(remainder (−
) )



remainder. x y) y)

Excellent.

Here, then, is remainder

(define remainder
 (λ (x y)
  (cond
   ((< x y) x)
   (else (remainder (− x y) y)))))

37 Is there a
common pattern
to help us define
recursive
functions?

Yes, there is.

Each recursive function tests its arguments
to see if they meet a base test requirement.
We refer to this test as the base test. We
refer to the resultant value as the base
value.

What are the base test and base value
here?

38 The first clause
in the cond is

(< x y), the
base test

and

x, the base
value

Is there a name
for the second
clause?

Yes.

It is known as the recursive case.

39 Could we see
another
example?



Sure.

Here is a skeleton for another recursive
function add that without using +, adds
two natural numbers†

The argument n is the first number and the
argument m is the second one.

We must find T, V, and R, but first describe
what the base test of such a function would
be.

 
†Another name for nonnegative integers, defined as
having a 0 and add1 defined on them.

40 The base test
would be if one
of the numbers is
zero, since we're
looking only at
natural numbers.

Does this mean
we have two base
tests?

It could, but it is not necessary.

Since the order of the arguments to
addition does not matter, we can, with no
loss of generality, restrict our base test to
just the second number.

What would the base value be?

41 The base value
would be the first
number, since
adding any
number to 0
gives us back that
number.

That's a good start.

We can now fill in T and V.

42 Here it is



Show the revised skeleton. Use the
function zero?, which tests whether its
argument is zero.

Correct.

Now let us look at R. If m is not zero, we
can say that it is some number

(k + 1)

where k is a natural number.

What results when we add k + 1 and n?

43 We get

(k + 1) + n

Good.

We can rewrite this as

(k + n) + 1

44 How can that
insight help us?

For natural numbers, we can always
assume that a function add1 exists that
results in k + 1 when given k.

And similarly, a function sub1 exists that
results in k when given k + 1.

45 Where does that
lead us?

R must, as in frame 44, result in

(k + n) + 1

We already have n, so how do we get k
from m?

46 Since m is k + 1,
we can get k
using (sub1 m)

Perfect.

And R must add 1 to the addition of k

47 So should R have
this form?



(which is (sub1 m)) and n. (add1 …
addition of n
and (sub1 m)
…)

Absolutely.

Now we have this insight.

Since n and (sub1 m) are also natural
numbers, we can get their addition by
invoking add on them!

48 Amazing!

So R must be

(add1 (add n
(sub1 m)))

Right!

Show the final add.

49 Here it is

(define add
 (λ (n m)
  (cond
   ((zero?
m) n)
   (else
(add1 (add n
(sub1 m)))))))

Great.

Let's look at our example with 7 and 2

(add 7 2)

What happens next?

50 Since 2 is not
zero?, we are in
the recursive
case. So, our
result should be

(add1 (add 7
(sub1 2)))

which is the
same as the
result of

(add1 (add 7



(add (add 7
1))

Correct.

Since the second argument to add in this
recursive invocation is 1 (i.e., not zero), we
can further rewrite this as

(add1 (add1 (add 7 (sub1 1))))

which is the same as

(add1 (add1 (add 7 0)))

51 Now our second
argument is zero,
so

(add 7 0)

gives us

7

Correct.

Now we can invoke the two wrapped add1s
on 7

(add1 (add1 7))

to get

(add1 8)

which is

9

52 And that is our
result!



More succintly, we can describe this
behavior in a same-as chart†

1.  (add 7 2)

2.  (add1 (add 7 (sub1 2)))

3.  (add1 (add 7 1))

4.  (add1 (add1 (add 7 (sub1 1))))

5.  (add1 (add1 (add 7 0)))

6.  (add1 (add1 7))

7.  (add1 8)

8.  9

So, there are seven steps besides the one
that is the original problem

(add 7 2)

and by carefully going from one expression
to the next, which always has the same
value, we simplify the result to

9

Now try

(remainder 13 4)
 

†The same-as chart, introduced in The Little Typer
(2018) p. 69, uses a solid vertical line on the left and
shows expressions that are the same as one another.

53 These are fun,
but not as much
as a chocolate
fudge banana
split, right?

1.  
(remainde
r 13 4)

2.  
(remainde
r (− 13 4)
4)

3.  
(remainde
r 9 4)

4.  
(remainde
r (− 9 4) 4)

5.  
(remainde
r 5 4)

6.  
(remainde
r (− 5 4) 4)

7.  
(remainde
r 1 4)

8.  1



Debatable!

In both our examples, we have at least one
argument shrinking and heading towards
the base test.

54 Is this true of all
recursive
functions?

Yes, if we expect the recursive function to
result in a value.

In general, when we're defining a recursive
function, we should follow this sequence of
steps

Figure out the base test
figure out the base value
find out how the arguments to the
recursive invocation change, especially
those that shrink

and

use the recursive invocation as part of a
larger expression to obtain the overall
result of the function.

We refer to the portion of the expression
excluding the recursive invocation as its
wrapper.†

 
†In the definition of add, this is the portion between
“(add1” and the “)” that matches it.

55 Still, just a bit
squeamish.

d h d h



Did you meet every character? 56 Yes, and the ones
in the
framenotes.

Okay, then.

We have everything we need to get started.

The rest we'll learn along the way.

57 Exciting!





 
†With apologies and thanks to Solomon Ntsele (1909–1962).



Welcome back! 1 It's good to be here!

Indeed.

Remember this?

2 Yes.

That looks like a line in
plane (2-dimensional)
geometry along with
two additional lines, the
x-axis and the y-axis.†

 
†Thanks, René Descartes
(1596–1650).

There is an equation that relates x
with y for every point (x, y) on a line

3 Does using arrows at
both ends of the line
mean that it extends
indefinitely in both
directions and does it
follow that there is a
corresponding y for
every x?

Yes.

Our line passes through the origin.

4 What is the origin?



The point at which the x-axis and
the y-axis meet is known as the
origin and is the point (0, 0). The
dark line in the picture passes
through the origin.

5 So what is the equation
of this line?

Because this line passes through the
origin, y is a multiple of x by a
constant factor w, which is known
as the slope of the line

6 Does that mean y = wx?

Yes, it does. 7 What if the line does
not go through the
origin?



Good question. This is what it would
look like

How can we determine y?

8 It appears that the
whole line is lifted by b
now.

We can determine y for
any x using

y = wx + b†

 
†y = mx + b might be more
familiar.

Here is our first attempt at line†

(define line
 (λ (x)
  (λ (w b)
   (let ((y (+ (* w x) b)))
     y))))

 
†The dashes on the left indicate that this dashed
definition of line is not yet final. As attempts are
made, these dashes may never disappear or
they may eventually turn into a final box, black
or red.

9 This is a function of one
argument that results in
a function of two
arguments?‡

This dashed definition
of line seems
backwards. Why don't
we require w and b
before x?

 
‡If this is confusing, consider
rereading the chapter Are You
Schemish?.



Great question!

That kind of definition assumes that
w and b are known prior to the
argument x.

Here, though, we deal with a
different kind of problem, where x is
known, but w and b must be figured
out from a bunch of given values of x
and y.

10 Why isn't line final?

That's because our next attempt can
simplify line a little more. Since the
body of the let, y, is only the name
given to

(+ (* w x) b)

by the let, we get this same-as chart†

1.  (let ((y (+ (* w x) b)))

     y)

2.  (+ (* w x) b)

Even though there is no longer a y
here, we sometimes refer to this
value as the y associated with a
given x.

11 So, this dashed
definition should be our
next attempt to finalize
line

(define line
 (λ (x)
  (λ (w b)
   (+ (* w x) b))))

It looks correct, so why
is line still dashed?

 
†Introduced in frame 16:53.



Good question.

This line is still dashed because we
are going to make another attempt
soon. But for now, it suffices.

Because w and b are used to
determine the y corresponding to a
given x, they are considered to be a
special kind of formal. We name
them parameters of line, and we use
bold letters for them, whereas x is
the argument of line.

12 How is the function line
used?

Let's see an example.

What is

(line 8)?

13 (line 8) is a function
that remembers that x
is 8, and is waiting to
accept arguments for its
parameters w and b

(λ (w b)
 (+ (* w 8) b))



That is correct.

When (line 8) is invoked on w and
b, we can determine y.

What is

((line 8) 4 6)?

14 Here are the steps with
w being 4 and b being
6

1.  ((line 8) 4 6)

2.  ((λ (w b)

     (+ (* w 8) b))

    4 6)

3.  (+ (* 4 8) 6)

4.  (+ 32 6)

5.  38

This means that when x
is 8, y is 38.

Excellent.

Functions that accept parameters
after the arguments are known as

parameterized functions

Is line a parameterized function?

18 Yes.

It takes w and b as its
parameters after it
takes the argument x.

Why are parameterized
functions special?

Good question.

Parameterized functions are used
where we must figure out the right
values for the parameters (here, w
and b) from given values of x and
the corresponding values of y.

19 Could we see an
example?



Sure.

Here line-xs are the x-coordinates
and line-ys are the y-coordinates

(define line-xs
 [2.0 1.0 4.0 3.0])
 
(define line-ys
 [1.8 1.2 4.2 3.3])

For each x-coordinate in line-xs,
there is a corresponding y-
coordinate in line-ys and vice versa.

17 Do line-xs and line-ys,
when taken together,
give us these four
points?

(2.0, 1.8)

(1.0, 1.2)

(4.0, 4.2)

(3.0, 3.3)

Yes.

Together, they form a data set.

18 Okay.



Here is how the data set

(line-xs, line-ys)

looks as points on a graph

19 Those points look like
they are almost on a
straight line.

For good reason.

Draw a line that is close enough to
these four points.

20 How about this?



Yes, that is close enough.

Lines, as in frame 11, have two
parameters, w and b.

What are w and b for this line?

21 Since this line passes
through the origin, b is
0.0.

And, the x and y
coordinates of every
point on this line are
always equal. For
example, (0.0, 0.0),
(1.2, 1.2), etc. The
points on this line look
like (a, a), for any x-
coordinate a.

So, w must be 1.0.

That is correct.

This function is simply a line with
parameters

w = 1.0

and

b = 0.0

How can we use this information?

22 If we are given a new x-
coordinate, we can
predict the
corresponding y-
coordinate from this
line.

For example, if x = 3.79,
then

y = 1.0 × 3.79 + 0.0 =
3.79

The Rule of Parameters
(Initial Version)

Every parameter is a number.





•

Correct.

We refer to this as the predicted y for
a given x.

Finding the parameters of a function
from a data set is known as learning.

23 So we have learned a
function that behaves
approximately like the
points given by the
data set

(line-xs, line-ys)

The parameters w and b here are
collectively known as the parameter
set, which we refer to as θ.†

So, our θ has two parameters. They
are referred to as members of θ.

Then w is the first member of θ,
which we write as θ0.‡

 
†Pronounced “little theta.”
‡Members are indexed beginning at 0.

24 Is b then θ1?

It is.

Let's rewrite line to reflect this

(define line 
 (λ (x)
  (λ (θ)
   (+ (* θ0 x) θ1))))

25 Why is this line in a
red-colored box with a
red-colored circle?



Good question.

We have chosen red boxes and
circles to highlight final definitions
that are important as well as
sometimes being primitive.†

 
†The circle is for those who might have trouble
distinguishing red lines from black lines.

26 Red is such a vibrant
color for a toy. How do
we construct a θ for w
and b?

Great question.

Here's an example. If w is 1.0 and b
is 0.0, we construct it this way

(list 1.0 0.0)

27 So θ is a list of
members such that

θ0

which is the same as w
is

1.0

and

θ1

which is the same as b
is

0.0

Here's an example of how line is
invoked with this θ

1.  ((line 7.3) (list 1.0 0.0))

2.  ((λ (θ)

     (+ (* θ0 7.3) θ1))

    (list 1.0 0.0))

Complete this same-as chart.

28 Sure

3.  (+ (* (list 1.0
0.0)0 7.3) (list
1.0 0.0)1)

4.  (+ (* 1.0 7.3)
0.0)

5.  7.3



Correct.

So far, we have examined our data
set on a graph and estimated a θ.

29 And we used it to
predict a

y-coordinate

for an

x-coordinate

that may not be in our
data set.

In other words, we have learned
from an existing data set how to
make y-coordinate predictions for x-
coordinates.

30 Yes, we have learned
something!

Still, we have accomplished this by
visually inspecting only the points on
the graph.

31 Can we define a
function that
determines θ for any
data set?

An excellent question.

Yes, we can, and such a function is
an example of what is known as
machine learning.† But that's what
the rest of the book is about!

 
†There are many forms of machine learning. Here
we cover only one form.

32 It's a good time to take
a break.

Toy Chest



(line-xs, line-ys) 24
line, 26

li (where l is a list and i is a zero-based index) 26
(list m …) (where m … are its members) 26

Let’s take that break!
How about some butterscotch ice

cream?







We can still taste the luxurious
creamy butterscotch.

1 Mmm . . . fantastic!

Is 5 a natural number? 2 Yes.

It is a nonnegative
integer.

What about 0? 3 Yes.

It is a natural number.

Is −5 a natural number? 4 No.

Natural numbers cannot
be negative.

What is 7.18? 5 That's a real number.

Is −13.713 also real? 6 Yes, it is.

Are all natural numbers
also real numbers?

Yes, we consider them to be.

There is another name we use for
all real numbers here. We refer to
them as

scalars

7 Is 7.18 a scalar?



Yes.

What is π†?
 

†This π is much tastier than the pie from
frame 3:6 because π has lots of meringue on
it!

8 Like 3.141592653589793
. . .? Then, π is also a
scalar.

Correct.

The predicate scalar? tests
whether something is a scalar and
like all predicates is a function that
always results in a Boolean—
either false #f or true #t.†

 
†Thanks, George Boole (1815–1864).

9 Okay.

Here is a tensor1.† A tensor1 has
only scalars

[5.0 7.18 π]
 

†Pronounced “tensor one.”

10 Is that a superscript on
the word tensor‡?

 
‡Thanks, Woldemar Voigt (1850–
1919), Gregorio Ricci-Curbastro
(1853–1925), Tullio Levi-Civita
(1873–1941), and for
popularizing, thanks, Albert
Einstein (1879–1955).



Yes, it is.

A tensor1 groups one or more
scalars together†

[2.0 1.0 4.0 3.0]
 

†A tensor1 can be thought of as a “vector” or a
“one-dimensional ” array.
Here, the empty tensor does not exist.

11 These bracketed scalars
seem familiar!

They should be, that's line-xs from
frame 24:17.

Here is another example

[8]

12 This tensor1 contains the
scalar 8.

Is there a tensor2†?
 

†Pronounced “tensor two.”

Yes, the elements of a tensor2 are
tensors1.†

 
†A tensor2 can be thought of as a “matrix” or a
“two-dimensional” array.

13 What is an element?

For example

[[7 6 2 5] [3 8 6 9] [9 4 8 5]]

has 3 elements

[7 6 2 5]
[3 8 6 9]

and

[9 4 8 5]

14 Then if we have a tensor
whose elements are
tensorsm, does that make
it a tensorm+1?



Yes, but there's a condition.

All the tensorsm must have the
same number of elements.

15 That seems reasonable.

What can we say about the 3
tensors1 in frame 14?

16 Each has 4 elements and
each of those elements is
a scalar.

The number of elements in a
tensor t can be found by invoking
(from page xxiii)

For example

1.  

2.  4

How about

17 This is it

1.  

2.  2

Yes, it is. 18 Is this

[[[[8]]]]

also a tensor?



Yes, the tensor

[[[[8]]]]

is a tensor4 of an element

[[[8]]]

which is a tensor3 of an element

[[8]]

which is a tensor2 of an element

[8]

which is a tensor1 of an element

8

which is a scalar.

What is

[[5 6 4] [9 1 1] [0 6 2]]?

19 It looks like a tensor2

whose three elements are
tensors1.

Is this

[[[5] [6] [7]] [[8] [9]
[0]]]

possible?

Yes, the tensor

[[[5] [6] [7]] [[8] [9] [0]]]

is a tensor3 of

2 tensor2 elements

each of those 2 elements has

3 tensor1 elements

each of those 3 elements has

1 single element

a scalar.

20 Since a tensorm+1 must
have only tensorsm

elements, a tensor1

should be made up of
tensor0 elements.

Does that mean a scalar
is a tensor0?



Great question.

Yes, a scalar like 9 is a tensor0.†
 

†But, “zero-dimensional ” arrays are rarely, if
ever, mentioned.

21 Does the superscript have
a name?

Yes, it does.

It is known as the rank of the
tensor.

22 What does the rank of a
tensor mean?

The rank of a tensor tells us how
deeply nested its elements are.

Here is a tensor3 because it has 1
tensor2 element that has 2 tensor1

elements of two scalars each

[[[8 9] [4 7]]]†

 
†We can determine the rank of a tensor by
counting the number of left square brackets
before the leftmost scalar (here 8).

23 It appears we can define a
function to determine the
rank of a tensor.

The Rule of Rank
A tensor's rank is the number of left square brackets

before its leftmost scalar.



Indeed, we can.

Before that, though, let's look at how to reach
into a tensor to look at its elements. The
operation†

t|i

picks out the ith element of the tensor.

So, for example, t|0 gets the 0th (first) element
of the tensor.

 
†Pronounced “tensor-ref t i.”

24 How do we
use this to
find the rank
of a tensor?

Here is a function that finds the rank of a
tensor

(define rank
 (λ (t)
  (cond
   ((scalar? t) 0)
   (else (add1 (rank t|0))†))))

Here, t|0 is the 0th element of t, which always
exists because we have already determined that
t is not a scalar, and furthermore the 0th
element is itself a tensor.

Now explain rank.
 

†The “(add1” and its matching “)” is a wrapper of the recursive
invocation (rank t|0).

This form of recursive function, where we follow the structure
of its argument, is known as a naturally recursive function.
See The Little LISPer (1974) p. 21 or The Little Schemer
(1996) p. 45.

See frame 13:42 for zero?, and frame 14:45 for add1 and sub1.

25 If the base
test,‡
(scalar? t),
succeeds
then we
know the
rank of the
tensor is 0.

In general, if
the elements
of a tensor
are tensorsm,
then the
tensor has
rank

m + 1

So, in the
recursive
case, we find

m



which is the
rank of the
0th element
of t

(rank t|0)

and then
add1 to the
result to get
the rank of t.

Could we see
how rank is
3 with the
tensor in
frame 23
using a
same-as
chart?

 
‡If this term is
unfamiliar, see
chapter 0.



Sure.

Given the same tensor from frame 23 [[[8] [9]]
[[4] [7]]] here is a same-as chart that shows
how its rank is 3

1.  (rank [[[8] [9]] [[4] [7]]])

2.  (add1 (rank [[8] [9]]))

3.  (add1 (add1 (rank [8])))

4.  (add1 (add1 (add1 (rank 8))))

5.  (add1 (add1 (add1 0)))

6.  (add1 (add1 1))

7.  (add1 2)

8.  3

26 That is so
elegant and
natural.

There's another observation here. We need
look only at

t|0

i.e., only the first element of the tensor.

27 Yes, why is
that?

That is because in any given tensor, the nested
tensors have the same number of elements. For
example, the nested tensors of tensors2 are all
tensors1, and each of those tensors1 has the
same number of tensors0.

28 That's the
requirement
from frame
15.

Correct.

This means that the tensorsm that are elements
of a tensorm+1 have the same shape.

29 What is the
shape of a
tensor?



The shape of

[[5.2 6.3 8.0] [6.9 7.1 0.5]]

is this list of positive natural numbers

(list 2 3)†

Where do those natural numbers come from?
 

†We sometimes underline portions of an expression to draw
attention to them.

30 This tensor is
a tensor2 of 2
tensors1,
each of
which has 3
tensor0

elements.

Exactly.

What is the shape of

[[[5] [6] [8]] [[7] [9] [5]]]?

31 The shape of

[[[5] [6]
[8]] [[7] [9]
[5]]]

is

(list 2 3 1)



Right again.

[[[5] [6] [8]] [[7] [9] [5]]]

is a tensor3 of

2 tensor2 elements

Each of those has

3 tensor1 elements

Each of those has

1 tensor0 element

which is a scalar.

What is the shape of

[9 4 7 8 0 1]?

32 [9 4 7 8 0 1]
is a tensor1 of
6 scalars.

So, is

(list 6)

the shape of

[9 4 7 8 0
1]?

That is correct. 33 Do scalars
have a
shape?

They do.

Since scalars have no parts, their shape is the
empty list.

34 How do we
write empty
lists?

Like this

(list)

35 So the shape
of the scalar
9 is

(list)?



•

Correct.

To find the shape of a tensor t, we need to
know the number of elements it has.

36 So we use 
for it?

We do!

Here is the function shape that finds the shape
of a given tensor t

(define shape 
 (λ (t)
  (cond
   ((scalar? t) (list))
   (else (cons  (shape t|0))†))))

Explain this shape.
 

†The “(cons ” and its matching “)” is a wrapper of (shape
t|0). Compare rank's wrapper in frame 25.

37 But wait,
what is cons?
‡

 
‡Some might
remember
“CONS The
Magnificent” on
p. 17 of The Little
LISPer.

The Rule of Members and Elements
Non-empty lists have members and non-scalar tensors

have elements.



The function cons takes
two arguments, a value v
and a list l, and produces a
new list by adding

v

to the front of

l

For example

1.  (cons 3 (list 7 9))

2.  (list 3 7 9)

Now, please explain shape.

38 When the argument to shape, t,
is a scalar, its shape is simply the
empty list.

Otherwise, it is a non-scalar
tensor, so we find the 0th
element's shape, which is a list,
by recursively invoking shape
thusly

(shape t|0)

The shape of t is then  consed
to the front of the resultant list.

Correct.

What is

(shape 9)?

39 (shape 9) is the empty list
because 9 is a scalar.

What is

(shape [9 4 7 8 0 1])?

40 (shape [9 4 7 8 0 1]) is

(cons 6 (shape 9))

which is

(list 6)

The Rule of Uniform Shape
All elements of a tensor must have the same shape.



Using a same-as chart,
determine (shape t)
where t is

[[[5] [6] [8]] [[7] [9]
[5]]]

from frame 31.

41 Here it is

1.  (shape [[[5] [6] [8]] [[7] [9]
[5]]])

2.  (cons 2 (shape [[5] [6] [8]]))

3.  (cons 2 (cons 3 (shape [5])))

4.  (cons 2 (cons 3 (cons 1 (shape
5))))

5.  (cons 2 (cons 3 (cons 1 (list))))

6.  (cons 2 (cons 3 (list 1)))

7.  (cons 2 (list 3 1))

8.  (list 2 3 1)

The number of
members in a list ls is

|ls|

How are rank and
shape related?

42 Aha!

The number of members in the shape
of a tensor† is also the rank of the
tensor

(= |(shape t)| (rank t))
 

†We can also use a tensor's shape to determine its
total number of scalars by taking the product of
its shape's members.

The Law of Rank and Shape
The rank of a tensor is equal to the length of its shape.



•

There's one more definition we
need to look at.

43 Can't wait.

Here's our final way to define rank,
but this one is already unwrapped,
i.e., no recursive invocation is
wrapped!

(define rank 
 (λ (t)
  (ranked t 0)))
(define ranked
 (λ (t a)
  (cond
   ((scalar? t) a)
   (else (ranked t|0 (add1
a))))))

This rank definition uses a support
function ranked that includes an
additional formal a as an
accumulator.

To see how it works, repeat the
example in frame 26 but using this
final rank.

44 Here it is

1.  (rank [[[8] [9]]
[[4] [7]]])

2.  (ranked [[[8] [9]]
[[4] [7]]] 0)

3.  (ranked [[8] [9]]
(add1 0))

4.  (ranked [[8] [9]]
1)

5.  (ranked [8] (add1
1))

6.  (ranked [8] 2)

7.  (ranked 8 (add1
2))

8.  (ranked 8 3)

9.  3

Instead of a wrapper
around the recursive
invocation of

rank

we

add1

to the accumulator

a



as we are going down
into

t|0

That is correct. 45 Thanks!

Seeing this way of using
t|0 as an argument in an
unwrapped recursive
invocation helps.

Unlike the dashed rank in frame
25, this new recursive function
definition does not use a wrapper.

In fact, this matters so much that
we have a law about it.

46 Let's see it.

The Law of Simple Accumulator
Passing

In a simple accumulator passing function definition every
recursive function invocation is unwrapped, and the
definition has at most one argument that does not

change; an argument that changes towards a true
base test; and another that accumulates a result.



This Law of Simple Accumulator
Passing is important.

47 Why?

This law enables us to handle very large
tensors and lists.

48 How?

When combining simple accumulator
passing function definitions, they could
be thought of as one very big loop.

49 How is that
possible?

Every Scheme system is required to
support tail call optimization which
makes each unwrapped recursive
invocation behave the same as a loop.

50 How do the other
requirements in the
law help?

The other requirements ensure that we
use a uniform pattern for our function
definitions so that they are easy to read
and understand.

51 These simple
accumulator passing
function definitions
seem to offer great
possibilities!

Now it is time for a break! 52 It is just what is
needed. Things were
getting intense.

Tensor Toys
scalar? 32

[e es …] (where e es … are its elements) 33
 33



t|i 36
shape 39
scons 40

|ls| 41
rank 42

Let's line up for something delicious.
How about some boba tea?







The tea? 1 Boba with mango jelly,
scrumptious!

How about an interlude? 2 What's an interlude?

It's where we temporarily shift
our focus.

3 To what?

To have more fun with +. 4 That's addition, right?

Yes.

What is (+ 1 1)?

5 That's easy

(+ 1 1)

is

2†

 
†Thanks, Alfred North Whitehead
(1861–1947) and Bertrand Arthur
William Russell (1872–1970).

Thank goodness.

What is

(+ [2] [7])?

6 That's tricky. The
arguments are tensors1.

Is

(+ [2] [7])

the same as

[9]?



Yes, but why is that?

Here is a same-as chart to
discover how the chart results in
[9]

1.  (+ [2] [7])

2.  [(+ 2 7)]

3.  [9]

7 Why are those brackets
turquoise?

When there is a function
invocation like + on tensors, we
use turquoise brackets to
emphasize that we're going to
look inside those tensors to help
determine the invocation's final
value.

What is

(+ [5 6 7] [2 0 1])?

8 Is

(+ [5 6 7] [2 0 1])

the same as

[7 6 8]?

Here is the same-as chart that
shows how to get that result

1.  (+ [5 6 7] [2 0 1])

2.  [(+ 5 2) (+ 6 0) (+ 7 1)]

3.  [7 6 8]

9 It appears that + descends
into its

tensor1 arguments

to result in another
tensor1.

The last step results in the
tensor1 of the values of the
three sums.



Yes.

What is

10 We're adding two tensors2

of the same shape. It is

Must we have tensors of
the same shape before we
can add them?

Yes, we must.

Getting + to work on tensors of
arbitrary rank is known as

the extension† of +.

Functions built using extension
are known as extended functions.
Can other functions that work on
scalars be extended similarly?

 
†Also known as pointwise extension.

11 It would appear so.

There is nothing special
about +. Other extended
scalar functions should
work in the same way.

Here's another way extension
works.

What is

(+ 4 [3 6 5])?

12 But these two tensors
don't have the same shape!



Correct.

When that happens, we do this

1.  (+ 4 [3 6 5])

2.  [(+ 4 3) (+ 4 6) (+ 4 5)]

Finish this same-as chart.

13 Oh, we look inside the
tensor1 argument and
repeatedly add 4 to each
element.

The final answer is

3.  [7 10 9]

Very good.

How about this?

1.  (+ [6 9 1] [[4 3 8] [7 4 7]])

14 We can look inside the
tensor2 argument and add
the tensor1 argument to
each element, just as we
did in frame 13



Excellent.

Let us now take an

extended version of *

This is The Hadamard †
multiplication.

Now this one

1.  (* [[4 6 5] [6 9 7]] 3)
 

†Thanks, Jacques Salomon Hadamard
(1865–1963).

15 Here are the steps

The first two steps use
turquoise brackets because
we are descending into
those tensors1. The last
two steps don't have
turquoise brackets because
we have only scalars
remaining, so we just
multiply them without
descending.

Let's look at another extended
function

sqrt†

1.  (sqrt 9)

2.  3
 

†The function sqrt must always result in a
nonnegative square root.

16 Applying sqrt to the scalar
9 gets its square root,
which is 3.



Now let's invoke sqrt on

[9 16 25]

This time the rank of the
argument is 1. So sqrt descends
into the tensor1

1.  (sqrt [9 16 25])

2.  [(sqrt 9) (sqrt 16) (sqrt
25)]

3.  [3 4 5]

17 The sqrt function has been
invoked on each scalar in
the tensor1.

In these same-as charts, again,
the tensor that is to be descended
into is marked with turquoise
brackets.

18 Could we see another
example?

Sure.

Here is an example of how sqrt
behaves on a tensor2

19 It seems as if sqrt
descends into each tensor1

of the argument until it
finds the tensors0 and gets
their square roots.



Yes, descending into a tensor is a
trick we use often.

With a higher-rank tensor, the
process would repeat itself until
we encounter scalars and get
their square roots.

20 That makes sense.

Can we treat functions of
two arguments in a similar
way?

Yes, we can.

We now know how extended
functions of two arguments can
be made to work when the two
arguments have different ranks
by descending into the higher-
ranked tensor.

21 Do extended functions
always descend until they
find scalars?

Some don't.

To see that, let's look at a new
function

sum1

And this is how we expect it to
behave

1.  (sum1 [10.0 12.0 14.0])

2.  36.0

22 It looks as if it is summing
the scalars in a tensor1.

But why do we have a
superscript 1 on sum?



The superscript is a reminder
that sum1 expects a tensor1.†

Now that we know that sum1

always takes a tensor1, let's
define it.

 
†We use this superscript convention for
other functions, too.

23 That sounds interesting.



•

Here is sum1

(define sum1 
 (λ (t)
  (summed t (sub1 ) 0.0)))
(define summed
 (λ (t i a)†

  (cond
   ((zero? i) (+ t|0 a))
   (else
    (summed t (sub1 i) (+
t|i a))))))

Explain sum1.
 

†Here is how we place our formals for a
simple accumulator passing function
definition. If there is one that does not
change, like t, it is the first formal; the one
that accumulates, like a, is the last
formal; and the one that changes towards
a true base test, like i, is to the
accumulator's left. See, for example, rank
on page 42.

24 We invoke the support
function summed with the
tensor

t

the last index in t

(sub1 )

and an accumulator
starting at

0.0

The function summed
counts the index i down to
zero. At each step it adds
the ith element in the
tensor t to the
accumulator, and
recursively invokes
summed.

And finally, when we reach
the 0th element in the
tensor, we add that
element to the
accumulator which results
in the sum of the entire
tensor.

We refer to the extended version
of sum1 as sum, which descends
into its argument until it finds a
tensor1 instead of a tensor0.

25 How does sum work?



Here is sum working on a tensor3

What can we say about the rank
of this result?

26 This is a tensor2, so its
rank is 2, which means
that the rank is 1 less than
the rank of the input,
which is also true for sum1.

The Law of Sum
For a tensor t with rank r > 0, the rank of (sum t) is r − 1.



Yes.

This is a useful property of sum that
we rely on later.

27 What about functions
that are constructed
from these extended
functions?

A great question.

If we use extended functions to form
new functions, then the new
functions also automatically work in
an extended fashion.

28 Could we see an
example of this?

Sure.

Here is such an example.

What is

((line [2 7 5 11]) (list 4 6))?

29 We're invoking line on
a tensor1 argument.

Does that mean the
functions + and * in
line are extended
functions?

It does!

Here, we want to find y values for
many (here, four) x values on the
line with θ0 being 4 and θ1 being 6.

30 Magnificent!



Finish the same-as chart to
determine the corresponding four
predicted ys

1.  ((line [2 7 5 11]) (list 4 6))

31 Here goes

2.  ((λ (θ)

      (+ (* θ0 [2 7 5
11]) θ1))

     (list 4 6))

3.  (+ (* 4 [2 7 5 11])
6)

4.  (+ [(* 4 2) (* 4 7)
(* 4 5) (* 4 11)]
6)

5.  (+ [8 28 20 44]
6)

6.  [(+ 8 6) (+ 28 6)
(+ 20 6) (+ 44
6)]

7.  [14 34 26 50]

This interlude is about how it is
possible to extend functions that
operate on fixed ranks of tensors
into functions that also accept
tensors of different ranks. We use
the concept of descending into the
higher-ranked tensors to accomplish
this.

32 And we have learned
that by doing this, we
descend into the
higher-ranked tensor
while repeating the
lower-ranked tensor
until the one- or two-
argument operation
can proceed.

Extendy Toys



sum 53

How about some cappuccino?
With some beignets?







How was the cappuccino? 1 The beignets went great
with it.†

 
†Thanks, Café du Monde (1862–),
New Orleans.

Let us now return to defining a
function to automatically find
the θ that best fits (from frame
27:29) the given data set in
24:17. We refer to this θ as well
fitted.

2 Just as we visually fit a line
to match our points from
frame 25:20?

Exactly.

Here we introduce

successive approximations†

 
†Thanks, Joseph Raphson (c.1648–c.1715).

3 Are successive
approximations a way to
find a well-fitted θ?

Yes.

We determine θ0 and θ1 by
arbitrarily starting them at 0.0.
We then repeatedly revise θ to
bring it as close as we wish to
what it must finally be.†

 
†Successive approximation is a family of
methods in mathematics, another one of
which may be familiar to some as being a
method to determine the roots of a
polynomial such as a square root. Thanks,
Sir Isaac Newton (1643–1727) and Joseph
Raphson.

4 An example, please.



Sure.

Here is the data set from frame
24:17

line-xs is [2.0 1.0 4.0 3.0]

and

line-ys is [1.8 1.2 4.2 3.3]

5 So then do we start with

θ0 = 0.0

and

θ1 = 0.0?



That is a fine place to start.

What line does this θ give us?

6 We can find out by using
(list 0.0 0.0) as θ

1.  ((line line-xs) θ)

2.  ((line [2.0 1.0 4.0
3.0]) (list 0.0 0.0))

3.  (+ (* 0.0 [2.0 1.0 4.0
3.0]) 0.0)

4.  [0.0 0.0 0.0 0.0]

The y-coordinates
produced for the x-
coordinates in line-xs are
all 0.0. So this θ represents
the x-axis!

Indeed it does.

Those values, which we refer to
as the predicted ys from frame
26:23, are very different from
the given line-ys!

7 What does this mean?

It means that θ0 and θ1 do not
yet fit our data set.

8 Do we have to revise θ0 and
θ1 to bring the predicted ys
closer to the given line-ys?



Yes, we do.

But, in order to do that, we need
to know how far away we are
from the well-fitted θ.

We need a single scalar that tells
us how close or how far away we
are. This scalar is known as the
loss.† The well-fitted θ would be
the one where this loss is as
close to 0.0 as possible.

When the loss is 0.0, it is ideal.
 

†This is also known as cost.

9 Why can't it be a tensor1?

With a scalar, it is simpler to
decide how to revise θ.

10 How is this scalar used?

We determine this scalar, or
loss, every time we revise θ.
Since the loss shows us how far
away we are from the well-fitted
θ, we use it as a guide for
revising θ.

11 How do we find the loss for
a given θ ?



We'll define a function for it, of
course!

But we'll do it in two steps. First
we determine a tensor
representing how far away we
are and then reduce this tensor
down to a scalar.

The simplest way to determine
how far away we are is to find
the difference between the given
line-ys and the predicted ys as
we see in this skeleton

Find P.

12 P must be the predicted ys.
So, P must be

((line line-xs) (list θ0 θ1))

Correct.

This gives us

(− line-ys ((line line-xs) (list
θ0 θ1)))

It, however, is not yet a scalar. It
is still a tensor1, so we must turn
it into a scalar.

What function, which we have
already defined, derives a scalar
from a tensor1?

13 That function is sum from
frame 53:25.

Is this

(sum
  (− line-ys ((line line-
xs) (list θ0 θ1))))

how we find the scalar?



Almost, but it is not good
enough.

Here's why. Suppose we had
another data set and another θ
that would have given us a
difference of

[4.0 −3.0 0.0 −4.0 3.0]

What would be the result of

(sum
  [4.0 −3.0 0.0 −4.0 3.0])?

14 It would be 0.0, the ideal
loss, which it clearly is not!

So, even though the
individual differences are
very high, the sum of 0.0
suggests that the θ is a
perfect fit.

Aha! This problem arises
from having negative values
in the argument to sum.

So what should we do?

We solve this by squaring each
element.† This turns the negative
elements of the difference to
positive, and the positive
elements stay positive

(sum
  (sqr
   (− line-ys ((line line-xs)
(list θ0 θ1)))))

Here, the (extended −) descends
into the two tensors1 resulting in
a tensor1 of differences, then sqr
squares the resultant tensor1 of
differences, yielding a tensor1 for
sum to produce a scalar.

Now the sum of the squares is
positive if at least one of the
elements in the difference is
non-zero.

15 That's a promising strategy.

How should we define our
loss function?

 
†Other functions, such as abs (i.e.,
absolute value) from frame 9:24
work, but we use only squaring here
because it works better in most
situations.



Here is a function that does this

(define l2-loss
 (λ (xs ys)
  (λ (θ)
   (let ((pred-ys† ((line xs)
θ)))
    (sum
     (sqr
      (− ys pred-
ys)))))))

 
†The predicted ys is named pred-ys.

16 Why is this function named
l2-loss?

It is an instance of a family of
functions that use exponents to
find the loss. Here, since we use
sqr (i.e., raised to the power of
2), this loss function is l2-loss.†

 
†In mathematics, the square root of the sum
of the squares of a tensor1 is known as L2-
norm. The L2-norm is also known as
Euclidean distance. Thanks, Euclid of
Alexandria (325���–270���).

17 Why is this definition
dashed?

 
When used as a loss function,
however, the square root is typically
left out. Another variant of this loss
function divides the sum of the
squares by the number of elements
in the tensor to produce a mean
squared error (or MSE) loss
function.

Because we're going to
generalize l2-loss.

This l2-loss relies on line. But, as
far as this l2-loss is concerned,
line is just some function that
results in a predicted ys, pred-
ys, when given xs and θ.

18 How can we use this
observation?



We can make l2-loss less specific
to line, so we can use it with
other functions as well. We
redefine l2-loss to take line as an
argument

(define l2-loss
 (λ (line)
  (λ (xs ys)
   (λ (θ)
    (let ((pred-ys ((line
xs) θ)))
     (sum
      (sqr
       (− ys pred-
ys))))))))

19 Why is this l2-loss dashed?

This l2-loss is dashed because
the name line is too specific.

Since we have made line into a
formal, the name no longer
represents the original line
function. So, we should rename
the formal line to something
more meaningful.

20 So what name should we
pick?

Here, the function line is
referred to as a target function
because that is the function
whose θ we are trying to find for
a given data set.

So, instead of the name line, let's
use the name target.†

21 Sounds better.
 

†This process, briefly touched upon
in frame 7:18, is known as α-
substitution and dictates how the
formals of a λ-expression may be
properly renamed. Thanks, Alonzo
Church.



•

Here is how we define the final
l2-loss to use the name target
instead of line

 (define l2-loss 
  (λ (target)
   (λ (xs ys)
    (λ (θ)
     (let ((pred-ys
((target xs) θ)))
      (sum
       (sqr
        (− ys pred-
ys))))))))

22 Aha!

The dashed l2-loss in frame 19
before we generalized it is
specific to the function line. If
we want to use it for the function
line again, how can we use this
generalized form of l2-loss?

23 We should invoke l2-loss
with line

(l2-loss line)



Correct.

Here's the same-as chart for this

1.  (l2-loss line)

2.  (λ (xs ys)

     (λ (θ)

      (let ((pred-ys ((line
xs) θ))

        (sum

        (sqr

         (− ys pred-
ys))))))

This function, which is produced
when l2-loss is invoked with a
target function, is referred to as
an expectant function.

24 Why do we refer to

(λ (xs ys) . . .)

as an

expectant function?

That's because it is expecting a
data set as arguments.

25 That makes sense.

What does an expectant
function produce when it
receives a data set?



Let's find out

1.  ((l2-loss line) line-xs line-
ys)

    (λ (θ)

     (let ((pred-ys ((line
line-xs) θ)))

      (sum

       (sqr

        (− line-ys pred-
ys)))))

This function, which awaits a θ
as its argument, is known as an

objective function

26 What does the objective
function do?

When provided with a θ, the
objective function produces a
scalar representing the loss,
which is a measure of how far
away we are from the well-fitted
θ.

27 So, it is going to help us
achieve our objective of
finding a well-fitted θ!



Let's try it with our current θ0
and θ1 which are still 0.0

(((l2-loss line) line-xs line-ys)
  (list 0.0 0.0))

Looking at the final l2-loss in
frame 22, we must first
determine pred-ys, which is

((target xs) θ)

Use the ideas in the same-as
chart from frame 55:31 to help
find pred-ys for line-xs and our
θ.

28 Since the value of target
here is the function line,
pred-ys is determined by

Great.

Keeping this value of pred-ys in
mind, we find the loss for this θ

Complete this same-as chart.

29 Here it is

The loss tells us how far
away we are and 33.21 tells
us we are quite far away.

How do we revise our θ to
get the scalar loss 33.21
closer to the ideal loss, 0.0?



We begin by testing the behavior
of θ0 to see how we should
revise it; we'll worry about θ1
later.

We change θ0 by increasing it by
a small amount, for testing
purposes, so that

θ0 = 0.0099

Find the new pred-ys for this
new θ.

30 Okay

 
†Scheme systems sometimes produce
answers like
0.029700000000000004 due to
limitations in the implementation of
floating-point numbers. While using
same-as charts, we shall round
these numbers appropriately.

Perfect.

Here is the same-as chart to find
the new loss for this new θ0

Now, complete this same-as
chart.

31 Here it is

The loss has gone down.



In other words, we are slightly
closer to the ideal loss!

We changed the loss by

(32.59 − 33.21) = −0.62

by revising θ0 from 0.0 to
0.0099.

Our test has succeeded.

32 So should we continue to
revise θ0 in increments of
0.0099 until we come as
close as possible to the
ideal loss?

It could mean that.

Revising θ0 every time by
0.0099 may require too many
revisions to get to the well-fitted
θ.

There is a way, however, that
takes fewer revisions.

33 Show us the way!

Remember that increasing θ0 by
0.0099 has changed our loss by
−0.62. So our rate of change† is

34 How do we use this rate of
change?

 
†Thanks, Gottfried Wilhelm Leibniz
(1646–1716) and thanks, Sir Isaac
Newton.

The rate of change is also known as
the derivative.



The rate of change of a function
(here, of the objective function),
determines how its result
changes when its argument (i.e.,
θ) is revised.

By using the rate of change
cautiously, we can get to the
well-fitted θ with fewer
revisions.

35 What does using it
cautiously mean?

This rate of change has a large
absolute value.† This means that
a small increase in θ0 causes a
relatively large decrease in its
loss.

We can use this idea to
determine how much to further
revise θ0 so that we can make an
even bigger reduction in loss.
But, we must be careful.

36 What should we be wary
of?

 
†The absolute value of a scalar,
defined as a function in frame 9:24,
is its value without its sign. For
example, here the absolute value of
both −62.63 and 62.63 is 62.63.



We have to be wary that our
revision of θ0 always moves us
closer to, but does not
overshoot, the ideal loss.

One choice, for example, is to
revise θ0 by 62.63, which is the
absolute value of the whole rate
of change. When we do this,
however, we end up with a

loss of 113763.027

This is far bigger than 32.59,
which is our previous loss, and
much greater than the ideal loss.

37 That is something to be
wary of indeed.

How do we solve this
problem?

We take a small scalar (like
0.01), and multiply the rate of
change by it, and revise θ0 by
that amount.

38 So we get

0.01 × −62.63 = −0.6263

Is this a small enough
revision that won't
overshoot the ideal loss?



Yes, it should be.

This small scalar is known as the

learning rate

Since we use this scalar often,
we have a special symbol for it

α†

We rewrite our example thusly

α × −62.63 = −0.6263
 

†The learning rate (usually a very small
number between 0.0 and 0.01) is also
known as the step size. We'll see more of
how to find an appropriate learning rate in
later chapters.

The step size is sometimes written as λ, but
because we already have a meaning for λ,
we prefer to use a different Greek letter.

39 Okay.

Since we need to increase θ0 to
reduce the loss, we must
subtract this negative value
from our current θ0. So the new
θ0 is

0.0 − −0.6263 = 0.6263.

40 But, didn't we set θ0 to
0.0099?



That was just to find the rate of
change.

Once we find the rate of change,
we forget about 0.0099.

41 Okay.

So we revise by multiplying
the learning rate and the
rate of change and then
subtracting the result from
our current

θ0?

The Law of Revision
(Initial Version)

new θ0 = θ0 − (α × rate of change of loss with respect to
θ0)



Exactly!

We proceed, as before,
by finding the new pred-
ys for the new θ0

Now find the loss.

42 We use this new pred-ys to find the
loss

We have gone from a loss of 33.21
to a loss of 5.52. That is so much
better than just increasing θ0 by
0.0099 as we did in frame 30!

Amazing. We've taken a
big step closer to the
ideal loss now.

We repeat this process
to get our next revision.

43 Can we subtract −0.6263 from θ0
again?



No, we cannot!

Let's find out what the
rate of change of loss is
with θ0 at 0.6263. Let us
give

((l2-loss line) line-xs
line-ys)

the temporary name obj.
Then the rate of change
is

44 It's different from the rate of
change we found in frame 34.

Does this mean that the rate of
change depends on the current θ0?

That is exactly what it
means.

45 So do we determine the rate of
change again using θ0 + 0.0099?

We could.

But there is a much
better way—one that is
simpler and more
precise.

46 That sounds exciting.

What is this new way?

That's what we'll
discover in the next
chapter, where we also
find out how to revise
θ1!

47 What's the best snack to help
prepare for that next chapter?



Lossy Toys
l2-loss 63

How about a chocolate chip cookie?
Be sure to cautiously dust the crumbs

away!





 
†Thanks, Paul Frederic Simon (1941–).



And the cookie?

Ready?

1 That's the way it
crumbles.

Let's roll!

We start with a picture 2 This graph looks
different, what is it?

It is a graph of the loss in our
example against θ0 while keeping θ1
at 0.0. The y-axis here represents
the loss, and the x-axis represents
θ0, which we also refer to as weight.

3 So, for any possible
value of the weight, this
graph shows the
corresponding value of
the loss.

What are the big orange
dots?



To draw this picture, we choose five
weights −1.0, 0.0, 1.0, 2.0, and 3.0.

For each weight, we determine its
corresponding loss, while keeping θ1
at and using the data set

(line-xs, line-ys)

The orange dots represent the losses
at each of these weights.

4 How can we find these
five losses?

First, let's take a deeper look at our
objective function

((l2-loss line) line-xs line-ys)

Show a same-as chart that expands
it.

5 Here it is



Great.

Let us name this λ-expression obj,
for objective function, from frame
64:26.

Explain how we can use obj to
determine the losses.

6 The λ-expression obj
takes the parameters of
a line as its argument
and results in a scalar
representing how
closely that line fits the
data set (i.e., the loss).

So we must construct a
θ with each of those
five weights as θ0 and
0.0 as θ1. The
corresponding losses
would be

(obj (list −1.0 0.0)),
which is 126.21

(obj (list 0.0 0.0)),
which is 33.21

(obj (list 1.0 0.0)),
which is 0.21

(obj (list 2.0 0.0)),
which is 27.21

(obj (list 3.0 0.0)),
which is 114.21

Correct.

We use this orange style of graph to
show quantities that are not part of
our data set.

What is our initial estimate for θ0?

7 It is 0.0.



The loss when θ0 is 0.0 (and
keeping θ1 at 0.0) is 33.21 from
frame 65:29.

The point (0.0, 33.21) is circled in
this graph

8 Aha!

So the loss seems to be
the lowest at the
bottom of this curve.†

 
†The bottom of this curve in this
graph visually appears to be at
0.0 of the y-axis, but this
rarely happens. Depending
upon the data set, the bottom
is usually higher than 0.0.

Correct.

We need to “roll” down this incline
to get to its bottom, and from frame
67:37, we have discovered that we
can use the rate of change to roll
down faster than we could before
without overshooting.

9 How can we represent
rates of change on this
graph?



Here is how we do it for our initial
estimate with θ0 being 0.0

10 What is the turquoise
colored line?

That turquoise line is different from
the line for which we are trying to
find θ0 and θ1. This line is known as
a tangent.

A tangent touches the loss curve at
exactly one point.

11 Is that point (0.0,
33.21)?

Yes, it is.

The rate of change that we have
determined is the

slope of the tangent

This slope has a different name so
we don't confuse it with θ0. It is
known as the

gradient

12 Could we see the
tangent for our next θ0
at 0.6623?



gradient

Here are the tangents for our first
two estimates of θ0

Describe what's interesting about
this graph.

13 We see that the tangent
for our second θ0 is less
steep than the tangent
for our first θ0. Thus,
the gradient of the
second is lower than
the gradient of the first.

These are only for θ0,
but we must also have
them for θ1.

Is there something
similar for θ1?

Well done.

A gradient is a general way of
understanding the rate of change of
a parameterized function with
respect to all its parameters.

14 How can we find this
gradient?

To find the gradient of a function at
given values of its arguments, we
need to use a new function ∇. The
first argument to ∇ is a function f
that takes a list of tensors, including
θs. The second argument to ∇ is the
list for which we need gradients of f.

15 Does this function then
result in the gradients?



Yes.†

The result of ∇ is a list of gradients
of f with respect to each parameter
in θ, and is referred to as the
gradient list.

So, for example, if we want the
gradient of f with respect to
parameters u and v, we write it

(∇ f (list u v))

16 How about an example?
 

†Those familiar with automatic
differentiation may recognize
that the (partial) derivatives of
the function with respect to a
given set of arguments are
automatically determined.

Thanks, William Kingdon
Clifford (1845–1879), thanks,
Robert Edwin Wengert (1922–
2001), and thanks, Lev
Nikolayevich Korolev (1926–
2016), L. M. Beda, T. S.
Frolova, and N. V. Sukhikh.

That's a great idea.

Let's find the gradient of sqr with
respect to its argument at 27.0

1.  (∇ (λ (θ) (sqr θ0)) (list 27.0))

2.  (list 54.0)

The first argument to ∇ is a function
that expects a θ containing a single
parameter, and it squares that single
tensor using sqr. The second
argument is the θ containing the
parameter 27.0. This expresses the
gradient of sqr at the scalar 27.0.†

17 Instead of these lists,
couldn't we directly use
scalars here?

 
†Those familiar with gradients
should recognize that the
gradient of x2 at any value x, is
2x.

The inner workings of ∇ can be
found in the appendix Ghost in
the Machine on page 351.

Some may observe that if ∇
were to take arguments one at
a time (in other words, were
we to Curry it), then (∇ f )
would be equivalent to the
mathematical definition of the
gradient of f. Here, however,
we define it with two
arguments for simplicity.

Thanks, Moses Schönfinkel
(1889–1942) and Haskell
Brooks Curry (1900–1982)



A great question.

While using scalars directly without
packaging them in a list would make
sense for simple examples, more
complex learning problems require a
very large collection of parameters.

It is easiest to package them in a list,
so we have designed ∇ to work
exclusively with lists.

18 So, does ∇ always
accept a function and a
list of parameters and
result in a list of
gradients, one for each
parameter?

Yes, that is correct.

∇ always results in a list of gradients
—one for each parameter provided
in θ.

19 How can we use ∇ to
determine the gradient
of l2-loss with respect
to

θ0 and θ1

where each parameter
starts out as

0.0?



Here is the gradient of obj, which is
the objective function

((l2-loss line) line-xs line-ys)

at θ0 and θ1 equal to 0.0

20 So the gradient of obj

with respect to θ0 is
−63.0

and the gradient of obj

with respect to θ1 is
−21.0

But why is this value

−63.0

different from the rate
of change

−62.63

of

θ0

from frame 66:34?

An excellent question.

Our way of finding the rate of
change in frame 66:34 is an
approximation.

∇ yields more precise results and
also yields the gradient with respect
to θ1 at the same time.

21 Now that we have a way
to find the rate of
change, should we use
it repeatedly as we did
in frame 69:43 to find
the well-fitted θ for
obj?



Indeed! We revise our θ using ∇ a
little bit at a time, over many
revisions.

To do that, let's define an iteration
function that makes things easier for
us.

22 Does an iteration
function help us repeat
a function invocation
over and over again?

It does.

Here is a skeleton of a function
revise that takes a revision function
f, which does not change, a natural
number revs, and an accumulator θ.
It revises θ revs times, each time
yielding a new value for θ by
invoking f on the current value of θ

Here, revs is the number of
revisions of θ remaining and θ is the
value accumulated so far. When revs
reaches 0, it results in the
accumulated θ. When revs has not
counted down to 0, we have R,
which must revise θ once.

Find R.

23 R should recursively
invoke revise with the
new values of revs and
θ. We need to provide a
new θ by invoking the
revision function f on θ

(f θ)

Similarly, since we have
finished a revision, the
new value of revs must
be

(sub1 revs)

Thus, R must be

(revise f (sub1 revs) (f
θ))



•

Here's revise

(define revise 
 (λ (f revs θ)
  (cond
   ((zero? revs) θ)
   (else
    (revise f (sub1 revs) (f
θ))))))

24 Can we try it out?

Sure.

Using revise, write a same-as chart
with this revision function f

(λ (θ)
  (map (λ (p)
    (− p 3))
   θ))

this starting revs

5

and this initial θ

(list 1 2 3)

The final θ is

(list −14 −13 −12)

25 What is map?



Well-timed question!

In its most specific form map
accepts a function and a list, and it
invokes the function on every
member of that list, to produce a
new list that is the result of map.
For example

1.  (map (λ (x)

       (add1 x))

      (list 5 7 3))

2.  (list (add1 5) (add1 7) (add1
3))

3.  (list 6 8 4)

26 If this is the most
specific form, is there a
more general form of
map?

In the more general form map
accepts more than one list and
invokes its function on
corresponding members of each list

1.  (map (λ (x y)

       (+ x y))

      (list 12 17 32)

      (list 8 3 11))

2.  (list (+ 12 8) (+ 17 3) (+ 32
11))

3.  (list 20 20 43)

27 So, in frame 25,
invoking map on the
revision function f and
θ produces a new list
where every member is
3 less than the
corresponding member
of the θ.



Here's the start of the same-as chart

1.  (revise f 5 (list 1 2 3))

2.  (revise f 4 (f (list 1 2 3)))

3.  (revise f 4 (list −2 −1 0))

4.  (revise f 3 (f (list −2 −1 0)))

5.  (revise f 3 (list −5 −4 −3))

Now complete the same-as chart.

28 Thanks for the hint

 6.  (revise f 2 (f
(list −5 −4 −3)))

 7.  (revise f 2 (list
−8 −7 −6))

 8.  (revise f 1 (f (list
−8 −7 −6)))

 9.  (revise f 1 (list
−11 −10 −9))

10.  (revise f 0 (list
−14 −13 −12))

11.  (list −14 −13
−12)

Now let's get back to defining a
function that guides us from one θ
to the next.

The third argument to revise must
be a list containing the initial values
of θ0 and θ1, in that order.

What would this initial θ look like?

29 Since we're initializing
θ0 and θ1 at 0.0, the
initial θ should be

(list 0.0 0.0)

Could we see what f ,
this revision function,
looks like?



Sure.

Here is a skeleton for this, where
revs is 1000 and the learning rate α
is 0.01

Explain how the invocation of revise
in this example works.

30 We carry out 1000
revisions, starting with
(list 0.0 0.0) and
invoking f for each
revision.

The revision function
accepts an initial θ and
then produces a
different θ, and repeats
this for 1000 revisions.

Very good.

In the revision function, we
determine the gradient of the
objective function with respect to θ0
and θ1, which are packaged into a θ.

We use ∇ to get the gradient list gs,
which is a list of two scalars.

The first is the

gradient of the loss with respect to
θ0

and the second is the

gradient of the loss with respect to
θ1

31 Since the revision
function must produce
a new θ

W should be the new
θ0

and

B should be the new
θ1



Now find the expressions for W and
B.

Correct.

And how do we determine these new
members of θ i.e., the new
parameters?

32 We multiply the
gradient for a given
parameter by the
learning rate α and
subtract it from that
parameter.

The gradient with
respect to θ0 is given by
the 0th member of the
gradient list gs, which
is gs0. So the
expression W is

(− θ0 (* α gs0))

Similarly, because the
gradient with respect to
θ1 is given by gs1, the
expression B is

(− θ1 (* α gs1))



Yes, well done.

Here is the completed revision
function f with W and B filled in. We
show the invocation of revise using
this new f in a revision chart.

We use revision charts to show the
results after multiple revisions

 
†In Scheme, 1.87e−06 is 1.87 × 10−6, which we
consider small enough to be practically 0.0.

33 So, this means that
after 1000 revisions, we
get a reasonably well-
fitted θ.

What does this line

(list 1.05 1.87e−06)

look like?

The Law of Revision
(Final Version)

new θi = θi − (α × rate of change of loss w.r.t. θi)



Here's the line fitted to our original points 34 That's exciting! It
is almost
identical to the
visually
estimated line
from frame
25:20.

Another
question, though.
Why do we have
revs at 1000? Are
we certain we'll
reach a well-
fitted θ by then?

A very good question.

We pick a high enough number for revs
that we know gets us close enough to the
well-fitted θ.

Depending upon the kind of function we
are optimizing, we can pick an appropriate
revs (usually through a combination of the
size of the data set and experimentation).

35 That sounds a
little ad hoc. Is
there a better
approach?

Yes, but for only certain kinds of problems.

As we encounter problems with θs that
have much larger tensors and target
functions that do much more interesting
things, a fixed number for revs is usually a
good approach.

36 Does this way of
finding θ0 and θ1
have a name?



Yes, it does.

This algorithm is known as

optimization by gradient descent †
 

†Thanks, Augustin-Louis Cauchy (1789–1857).

37 Who knew
sliding down a
slippery slope
would be this
much fun!

It sure is!

There is one more simplification we can
make to our revision function

f

Let's look at the expression in our revision
function that produces a new θ

(list
  (− θ0 (* α gs0))
  (− θ1 (* α gs1)))

38 What about it?

This expression is specific to a θ that
contains exactly two parameters.

39 Oh, so it works
for target
functions (like
line) that need
exactly two
parameters in
their θs.

Exactly.

In general, we must produce a new θ
independent of the length of θ, and
correspondingly of the length of gs.

40 Can we use map
here?



Yes, we can.

At each member of θ and gs, we have to
subtract α times that member of gs from a
member of θ. We can write this as a
function of two arguments where p is a
member in θ and g is the corresponding
member in gs

(λ (p g)
  (− p (* α g)))

41 Oh, now we map
this function over

θ

and

gs

Correct.

We now rewrite the invocation of revise

(let ((f (λ (θ)
     (let ((gs (∇ obj θ)))
      (map (λ (p g)
         (− p (* α g)))
       θ
       gs)))))
  (revise f 1000 (list 0.0 0.0)))

42 So we have
replaced the lines

(list
  (− θ0 (* α
gs0))
  (− θ1 (* α
gs1)))

with a similar
invocation using
map from frame
25

(map (λ (p g)
   (− p (* α
g)))
  θ
  gs)



Yes, correct.

The parameterized function given by

((l2-loss line) line-xs line-ys)

is the objective function from frame 64:26
because our objective is to find the θ that
minimizes this function, i.e., that rolls us
down the incline to the lowest point,
representing the lowest loss.

We now express the complete gradient
descent for our data set

(let ((α 0.01)
   (obj ((l2-loss line) line-xs line-ys)))
  (let ((f (λ (θ)
     (map (λ (p g)
       (− p (* α g)))
      θ
      (∇ obj θ)))))
   (revise f 1000 (list 0.0 0.0))))

43 Okay.



We are going to make a temporary
adjustment. Except for the initial value of
θ, we have two “constant scalars” in this
expression

The number of revisions revs

and

the learning rate α

For now, let's define these names

(define revs 1000)
 
(define α 0.01)

How should we now express gradient
descent?

44 Like this?

(let ((obj ((l2-
loss line) line-
xs line-ys)))

  (let ((f (λ (θ)
   (map (λ (p
g)
     (− p
(* α g)))
    θ
    (∇ obj
θ)))))
  (revise f revs
(list 0.0 0.0))))

Excellent!

In this expression, the value of obj

((l2-loss line) line-xs line-ys)

and the initial value of θ

(list 0.0 0.0)

become arguments to a function named

gradient-descent

45 Okay.



We now define this algorithm as the
function gradient-descent. The Θ† is a
renaming of the formal of f from page xxiii

(define gradient-descent
 (λ (obj θ)
  (let ((f (λ (Θ)
     (map (λ (p g)
        (− p (* α g)))
      Θ
      (∇ obj Θ)))))
   (revise f revs θ))))

This function gradient-descent gives us
the ability to find the well-fitted θs of
many different objective functions with
their own θs.

 
†Prounounced “big theta.”

46 And it is what we
started out
looking for!

What is Θ here?

The Θ is a formal of f , the revision
function.†

 
†Again, we have consistently renamed θ to Θ, as in frame
62:21.

47 Why have we
introduced Θ?



Now it seems frivolous, but in fact we have

grate expectations†

for

Θ

But for now, Θ is simply a name we use for
the formal of the revision function.

 
†Thanks, Charles Dickens (1812–1870) for your Great
Expectations.

48 Okay, for now.

Where can the initial θ and Θ be found? 49 θ appears only
where we invoke
revise.

Θ appears only in
the revision
function.

Here is how we use a revision chart with
gradient-descent to learn θ0 and θ1 with
their initial estimates at 0.0

50 It's the same as
the result in
frame 33.

We now have a
new learning toy!

Yes, we do!

We'll play with it in the upcoming
interlude.

51 Whew! That's a
relief.



Slippery Toys
∇ 78

revise 80
map 81

gradient-descent (dashed version) 89

That was quite a slippery slide.
Pull yourself up with a tiramisu!







How was the tiramisu? 1 Could not get enough of it.

This interlude is about
hyperparameters.

2 What are hyperparameters?

The temporarily-defined
names like revs and α that
control the behavior of
gradient-descent are known as
hyperparameters.

Hyperparameters are always
names associated with scalars
like these.

3 Why are they important?

These scalars vary by the
problem under consideration
and must be selected after
some thought and
experimentation.

4 So the scalars that we have
picked for α and revs in
gradient-descent from
chapter 4 may not necessarily
work in other situations?

That is correct.

There are other
hyperparameters we encounter
later.

To make our lives easier when
using them, we introduce a
new construct.

5 Interesting.

Can we pack them all up into a
list as we did for θ?

No, a better way would be to
treat them as a special kind of
name.

6 What makes them special?



Once these names are declared
as hyperparameters, they are
available to be used in any
function.

7 Okay.

Here is a nonsensical example

(declare-hyper smaller)
 
(declare-hyper larger)

Now, what is

(+ smaller larger)?

8 Because neither smaller nor
larger is associated with a
scalar, it has no value.

The Rule of Hyperparameters
Every hyperparameter either is a scalar or has no value.



Yes, that is correct.

What is the value of this
expression?

(with-hypers
  ((smaller 1)
   (larger 2000))
  (+ smaller larger))

9 That should be 2001.†

Will either smaller or
larger still be a scalar
outside with-hypers?

 
†Thanks, Arthur C. Clarke (1917–
2008).

No, they won't.

These hyperparameters have
scalars associated with them only
during with-hypers expressions.

10 Is with-hypers similar to
let?

No, it is not.

A let-expression creates a new local
name for a value, but a with-
hypers provides a new value for a
pre-existing name that has been
declared as a hyperparameter.

11 That clarifies it!



Once these hyperparameters have
scalars associated with them by
with-hypers, those scalars are
available to all functions using
them.

After the body

(+ smaller larger)

if with-hypers has yielded a result,
the hyperparameters would no
longer have values.†

 
†This does not show the generality of with-
hypers. In fact, with-hypers can be nested, so
that coming out of the inner with-hypers still
maintains the scalars associated with
hyperparameters in the outer with-hypers.

12 So the hyperparameters
are like our defined
names, but they can be
associated with scalars
only when set up using
with-hypers?

Yes, correct.

Now it gets more interesting.
Suppose we define nonsense?, this
mostly useless function

(define nonsense?
 (λ (x)
  (= (sub1 x) smaller)))

What is (nonsense? 6)?

13 Again, it has no value for
the very same reason as
before. The
hyperparameter smaller
has not yet been
provided a scalar.



We discover, by providing a scalar
for the hyperparameters in use

(with-hypers
  ((smaller 5))
  (nonsense? 6))

that the result is #t. To see how this
works, imagine that the definition
of nonsense? is also inside the with-
hypers, and work it out from there.

14 Is (nonsense? 6) the
body of this with-
hypers?

Yes!

Explain how we get this result.

15 When nonsense? is
invoked within with-
hypers, the scalar
smaller is 5, so
(nonsense? 6) results in
#t.

So why is nonsense?
dashed?

That's because it is silly to use the
name

nonsense?

16 Are we going to use
hyperparameters in a
new

gradient-descent?

Indeed, but that is for the next
chapter.

17 Can't wait!

Hyperactive Toys



declare-hyper 94
with-hypers 94

This diversion was too short for a
break!

Grab another piece of tiramisu!







•

Are we all set to resume? 1 Can't wait!

It's time to generalize what we
have learned so far.

2 Is this where we find out
how Θ meets our grate
expectations?

No, we are not there yet, but we
are getting closer.

3 Where should we start?

Now, we declare two sensible
hyperparameters

(declare-hyper revs) 
 
(declare-hyper α)

We have seen revs and α before,
but not as hyperparameters.

4 How do we use these
hyperparameters for
gradient-descent?



Here's the dashed gradient-
descent from frame 89:46. It
repeats a single revision revs
number of times, and for each
revision it refines the result of
the previous revision

(define gradient-descent
 (λ (obj θ)
  (let ((f (λ (Θ)
     (map (λ (p g)
        (− p (* α g)))
      Θ
      (∇ obj Θ)))))
   (revise f revs θ))))

Now, remember l2-loss?

5 Here is l2-loss from frame
63:22

(define l2-loss
  (λ (target)
   (λ (xs ys)
    (λ (θ)
     (let ((pred-ys
((target xs) θ)))
      (sum
       (sqr
        (− ys
pred-ys))))))))

This definition of gradient-
descent uses the two
hyperparameters

revs

and

α

Using l2-loss and with-hypers
from frame 94:9, provide a
scalar for each hyperparameter
and show how to invoke
gradient-descent in a revision
chart.

6 Here is the revision chart

We have gotten the same
result from frame 90:49,
and we have cleanly
separated out our
hyperparameters.



The definitions of gradient-
descent and l2-loss in frame 5
take functions as arguments
and are not tied to a particular
target function (like line).

7 This means that we can use
these two functions for
learning the θ for arbitrary
target functions.

That is liberating!

Here is a new data set

(define quad-xs
 [−1.0 0.0 1.0 2.0 3.0])
 
(define quad-ys
 [2.55 2.1 4.35 10.2 18.25])

Draw its corresponding graph.

8 These points are not on a
line

Indeed, they are not. So, we
must learn the θ of a different
target function.

For this example, we use a
simple nonlinear function.

9 What is a nonlinear
function?

A nonlinear function is not
linear in its arguments.

10 And …

A linear function is one that
uses only addition and scaling
to find its result.

11 What is scaling?



Scaling multiplies its argument
by a fixed value or by a
parameter. For example

(* 5.0 x)

scales the value of x by 5.0.

And if we have a parameter

θ0

then

(* θ0 x)

scales the value of x by θ0.

12 So, this is why line is a
linear function. It scales its
argument x with θ0 and
adds θ1 to it.

What nonlinear function
does the data set in frame 8
represent?

A very good question.

Let's make the assumption that
this data set is quadratic.

13 What does quadratic mean?

It means that it can be predicted
by a quadratic function.

14 What is a quadratic
function?



•

Here is a general definition of a
quadratic function†

(define quad 
 (λ (t)
  (λ (θ)
   (+ (* θ0 (sqr t))
    (+ (* θ1 t) θ2)))))

The function quad has three
scalar parameters provided in a
θ.

 
†This might look more familiar as the
quadratic equation with t replaced by x

ax2 + bx + c = 0

15 Could we see an example of
how quad works?

Sure.

Let's take

t to be 3.0

and

θ to be (list 4.5 2.1 7.8)

Show a same-as chart for this
example.

16 Here it is

Does the use of sqr make
quad nonlinear?



Indeed it does.

Now we use gradient-descent
with l2-loss as the loss function
to learn the θ for this data set
with quad as the target
function.

And what is the new expectant
function from frame 63:24?

17 The expectant function is
the loss function invoked on
the target

(l2-loss quad)

And what is the objective
function?

18 The objective function from
frame 64:26 is the function
obtained by invoking the
expectant function on the
new data set

((l2-loss quad) quad-xs
quad-ys)

Great.

We invoke gradient-descent on
this objective function and an
initial θ.

What should this initial θ be?

19 Can we use 0.0's

(list 0.0 0.0 0.0)

as we did before?

Yes, we can.

Now let's consider the
hyperparameters.

20 That's right.

We are now finding the θ
for a different target
function.

What scalars should we
provide for the
hyperparameters revs and



yp p
α?

Since our target is a quadratic
function that squares its
argument, which here is quad-
xs, it is likely that our gradients
could get really large.

To avoid overshooting with
large jumps between revisions,
we guess a lower learning rate.

Experience tells us that 0.001
should be reasonable.

21 What about the scalar for
revs?

For now, let's keep it at 1000, so
our invocation of gradient-
descent should be the body of
the with-hypers in this revision
chart

22 So, the result of gradient-
descent with these
hyperparameters and its
target is

(list 1.48 0.99 2.05)

We have learned that the
three values of the
parameters for quad are
1.48, 0.99, and 2.05. This is
similar to how we
previously learned the
values of θ0 and θ1 for line!

We have used gradient-
descent with a target
function other than line!



Indeed!

Now we let go of some more
assumptions in how we use
gradient-descent and l2-loss.

Here's a new data set

23 This data set is different
since plane-xs is a tensor2

made up of

6 2-element tensors1

whereas plane-ys is a
tensor1 made up of

6 scalars



Yes, that is correct.†

In the data sets

(line-xs, line-ys)

and

(quad-xs, quad-ys)

the xs and ys have always been
tensors1 of the same shape.

Now we expand this. We allow
the xs and ys to be of different
shapes, but both must have the
same number of nested tensors.
In other words, we would
require that

and

be the same.

To refresh our understanding of
how  and  would behave,
see frame 33:17.

 
†Just as a line is a linear relationship
between the two coordinates of a point in
2 dimensions, a plane is a linear
relationship between the coordinates of a
point in 3 dimensions.

24 How does this
generalization impact
gradient-descent and l2-
loss?



•

•

Great question.

Here is a target function similar
to line

(define plane 
 (λ (t)
  (λ (θ)
   (+ (• θ0 t) θ1))))

Here t, the argument to plane,
is a tensor1. This is different
from line, which expects a scalar
instead.

25 And what is •†?
 

†Pronounced “dot product.”

Thanks, Josiah Willard Gibbs (1839–
1903) and Edwin Bidwell Wilson
(1879–1964).

The function •1,1 is defined

(define •1,1 
 (λ (w t)
   (sum1

    (* w t))))

where w and t are tensors of
rank 1, and both must have the
same shape.

26 Could we see an example of
what it does?



Sure.

Here, for example, •1,1 takes two
tensors1

1.  (•1,1 [2.0 1.0 7.0] [8.0 4.0
3.0])

2.  (sum1

     (* [2.0 1.0 7.0] [8.0 4.0
3.0]))

Complete the same-as chart.

27 Here it is

3.  (sum1

     [(* 2.0 8.0) (* 1.0
4.0) (* 7.0 3.0)])

4.  (sum1

     [16.0 4.0 21.0])

5.  41.0

We multiply the scalars
pairwise yielding a new
tensor1 and then finally we
produce the sum of the new
tensor.

Using the •1,1 function is a way
of multiplying two tensors1 and
producing a single scalar.

We get the extended function •
by extending this definition of
•1,1 to include tensors of rank
higher than 1.

28 Okay.

The rank of the resulting tensor
is then one lower than its
arguments.

29 Isn't this because of the law
from page 54?



The Rule of Data Sets
In a data set (xs, ys)

both xs and ys must have the same number of elements.
The elements of xs, however, can have a different shape

from the elements of ys.



Indeed.

Now we learn the well-fitted θ for
plane from this data set using

l2-loss

and

gradient-descent

We begin by trying to find the initial
estimate for θ.

What should it be?

30 But to do that we need
to know the shapes of θ0
and θ1 in frame 25.

How do we find them?

We determine them using the shape
of the tensors from our data set

(plane-xs, plane-ys)

knowing that they will be used as
arguments to plane.

We know that each element in
plane-xs is a tensor1, and that each
element in plane-ys is a scalar.

31 Aha!

So when we invoke
plane on an element
from plane-xs, a well
fitted θ must produce a
result that is the same
shape as an element of
plane-ys.



Correct.

Since • behaves exactly like sum,
and produces a result that is one
rank lower than its arguments, in
order to produce a scalar, its
arguments must both be tensors1 of
the same length.

So, what should the shape of θ0 be?

32 The first argument to •
is

θ0

The second argument,
in frame 26, is a tensor1

from

plane-xs

So, the shape of θ0 must
be the same shape as a
tensor1 from plane-xs,
which is

(list 2)

Correct.

And what about the shape of θ1?

33 The tensor

θ1

should have the same
shape as the result of
the function

plane

from frame 25, which
must be the shape of
every scalar drawn from

plane-ys

and so θ1 must be a
scalar, thus its shape is

(list)
In other words, θ1 is a
scalar.



Correct, again.

Now determine the initial list of
parameters θ, using shapes that are
based on how they are used inside
the target function, for example, in
frames 25 and 26:25.

34 How about this

(list [0.0 0.0] 0.0)

where

θ0 is initialized to a
tensor1 [0.0 0.0]

and

θ1 is initialized to the
scalar 0.0

The Rule of Parameters
(Final Version)

Every parameter is a tensor.

Perfect.

Here, θ0 and θ1 have different shapes.
Because θ is a list, its members, unlike
the elements of a tensor, can have
different shapes.

35 Does having
different shapes
mean we have to
rewrite some of our
functions?

No, not at all. 36 That's a relief.



The Rule of θ
θ is a list of parameters that can have different shapes.



We need just one more thing!

We need to decide what scalars to provide
for hyperparameters revs and α.

For a first guess, let's keep the same scalars
as for quad in frame 22.

37 Okay.

Now show the revision chart using with-
hypers for the data set in frame 23.

38 Here it is

Excellent.

We have found the

well-fitted θ

39 How do we
know it is the
correct one?

We'll test it on one of the points from the
data set given in frame 23.

Let's pick

plane-xs|3

1.  ((plane [2.0 3.91])

     (list [3.98 2.04] 5.78))

2.  (+ (• [3.98 2.04] [2.0 3.91])

     5.78)

3.  21.71

40 That's
reasonably
close to plane-
ys|3, the given
value 22.4.

Why aren't they
exactly the
same?



Because data sets are often noisy and target
functions usually don't fit them exactly. A
close enough match is typically all we can
expect.

41 Now it's time
for a break!

Toys for Target Practice
gradient-descent (with hyperparameters revs and α) 99

(quad-xs, quad-ys) 100
quad 102

(plane-xs, plane-ys) 104
plane 105

• 106

That was some heavy lifting!

Time for a besan laddoo !





 
†Thanks, Herbert George Wells (1866–1946).



Target practice is over. 1 Whew!

At least we got to enjoy some
laddoos.

What is the shape of this
tensor2

[[2 4 5]
  [6 7 9]]?

2 It is

(list 2 3)

Let's annotate this tensor2 with
its shape

[[2 4 5]
 [6 7 9]](2 3)

3 That makes it a little easier to
understand its shape.

We now drop the nested
square brackets and write it†

 
†We write tensors2 the same way that
matrices are normally written.
Furthermore, we annotate the tensor
with a shape.

This is a less cluttered notation, but
when defining functions we assume that
these tensors are written in their nested
form as in frame 2.

4 It appears that each inner
tensor1 is written as a separate
row, without the enclosing
brackets.



Yes, that is correct.

An important instance of this
is a tensor2 where every row is
a tensor1 of exactly one scalar.

5 Could we see an example?

Here is a tensor2

[[5] [7] [8]]

which is written like this†

 
†This is known as a column matrix.

6 So, we can understand the
rank and shape of the tensor
without counting brackets as
in the law on page 35.

How can we write the tensor2

[[5 7 8]]?

Tricky question!

The tensor2

[[5 7 8]]

has the shape

(list 1 3)

So we write it†

[5 7 8](1 3)
 

†This is known as a row matrix.

7 This looks troublingly similar
to

[5 7 8]

But that is a different tensor
since its shape is

(list 3)



Indeed

[5 7 8]

is a tensor1 that has the shape

(list 3)

so we could have written it

[5 7 8](3)

To keep things simple,
however, we'll drop the shape
annotation for all tensors1.

8 So

[5 7 8]

is simply a tensor1 with 3
scalars, whereas

[5 7 8](1 3)

is a tensor2 with 1 tensor1.

It's time for some apples!
Honey Crisp?







Are we ready for some apples? 1 Yes, we are! Do
apples have
anything to do
with our burning
desire to learn
how Θ meets our
grate
expectations?

No, but we are at the penultimate
moment. Just wait a little longer. We've
been setting the table a little bit at a time.

2 Waiting with
bated breath.

Good.

Let's move on to them apples!

The data sets so far contain very few
points. Real data sets, however, have
thousands, millions, or even billions of
points.

3 Why is that a
problem?



Here, again, is l2-loss from frame 63:22

(define l2-loss
 (λ (target)
  (λ (xs ys)
   (λ (θ)
    (let ((pred-ys ((target xs) θ)))
     (sum
      (sqr
       (− ys pred-ys))))))))

This l2-loss uses the entire data set (i.e.,
the tensors xs and ys) each time it is
invoked. That's because it is finding the
difference between the ys in the data set
and the corresponding pred-ys, those
predicted by the target.

4 So, gradient-
descent invokes
l2-loss, this loss
function, revs
times and at each
revision it uses
the entire data set.

Is that a problem?

It is, but more importantly, it is
unnecessary.

There's a better way that does not require
traversing the entire data set thousands of
times.

5 What is this better
way?

We'll get to that very soon.

We first need to understand sampling.

6 What is sampling?

Imagine an apple-grower, say Maria,† who
has picked 1000 apples to sell at a market.

 
†Thanks, Maria “Granny” Ann Smith née Sherwood
(1799–1870) for first cultivating the Granny Smith
variety from a chance seedling.

7 What do apples
have to do with
anything?



They're delicious, and they keep the
doctor away.

Actually, they may not be delicious, unless
Maria has made sure they are of high
quality.

8 So what is she to
do?

A very good question, indeed.

Maria can't take a bite of every apple!
That would make every apple completely
worthless.

9 What can she do
to avoid tasting
every apple?

Maria randomly picks a small number of
apples to taste.

10 Aha!

She samples a few
apples.

That is correct.

By tasting enough apples, Maria gets a
very good approximation of how delicious
all the apples are and how much they can
sell for at the market.

What is Maria's problem similar to?

11 It is similar to
what's happening
in frame 4. If we
visit every point
with each
revision, it is a lot
like tasting every
apple.

Can we use
sampling to solve
this problem?



Yes, we can!

Using a small random sample of a few
points from the data set produces a good
enough approximation of loss, which can
be used to revise θ. We refer to this
sample as a batch and its generation as
sampling a batch from the data set.

12 So each revision
examines only a
small fraction of
the whole data
set.

Yes, and we repeat this over many
revisions, with new samples for each
revision, to get as close to the ideal loss as
possible.

13 How do we
accomplish this?



We start with our still-dashed gradient-
descent from frame 99:5

(define gradient-descent
 (λ (obj θ)
  (let ((f (λ (Θ)
     (map (λ (p g)
        (− p (* α g)))
      Θ
      (∇ obj Θ)))))
   (revise f revs θ))))

What can we say about the objective
function obj, and the xs and ys from a data
set?

14 We get an
objective function
when an
expectant
function is
invoked with xs
and ys.

For example, for
the expectant
function

(l2-loss line)

and the data set
from frame 24:17,
the objective
function is

((l2-loss line)
line-xs line-ys)

The objective
function produces
the loss for a
given θ and our
objective is to
make this loss as
close to the ideal
as possible.



Yes.

In general terms, we can write

((l2-loss target) xs ys)

where

target is the target function

and

(xs, ys) is a given data set

15 And l2-loss is a
loss function.

If we want to invoke the expectant
function

(l2-loss target)

with batches sampled only from xs and ys,
we must randomly sample paired tensors
from xs and ys at each revision, and pass
those sampled tensors to the expectant
function.

16 That suggests we
need to create a
support function!

It does, indeed! But we need some basics
first.

If i is a natural number less than ,
which is the same as , what is the ith
point in the data set?

17 The ith point is
made up of

the ith element
from xs

and

the ith element
from ys



Correct. We use i as an index as we did in
frame 53:24.

So, to sample a batch, we generate a few
random indices, and then select the
corresponding elements from xs and ys.
We refer to these random indices as

a batch of indices

18 How do we
generate a batch
of indices?

The Rule of Batches
A batch of indices consists of random indices that are

natural numbers smaller than .



We use the function samples. It takes
two arguments. The first, n, is the
number of points in the data set. The
second, s, is the size of the sample set.
Both are natural numbers greater
than one, and s is less than or equal to
n.

19 Why do we name the
function samples?

That's because it picks a batch of
indices in the same way that Maria
picks random apples to taste.

20 Okay.

Invoking samples results in a list with
s members, each being a randomly
chosen index less than n. Here, we
find a batch of 3 indices from a data
set of length 20

(samples 20 3)

And here is an example of what it
might return, since the indices are
random

(list 18 2 11)

21 How is samples
defined?



To define samples, we first need to
learn how to randomly generate
natural numbers for indices.

We do that using random, which
accepts one argument, n, a positive
natural number, and generates a
randomly selected index from 0 to n −
1. For example

(random† 45)

might produce

31

or any other index from 0 to 44.
 

†Every time random is invoked, it probably
generates a different random natural number
from its previous invocation.

22 Okay.

How do we use
random to generate a
list of indices?



Here is a skeleton for samples

Here we use the support function
sampled, where we are counting
down from s to 0, and at each step we
accumulate a randomly generated
index.

Find R.

23 Since we are
accumulating
randomly generated
indices, R must be

(random n)



•

Great.

This is the final version of samples

(define samples 
 (λ (n s)
  (sampled n s (list))))
 
(define sampled
 (λ (n i a)
  (cond
   ((zero? i) a)
   (else
    (sampled n (sub1 i)
     (cons (random n) a))))))

Does sampled meet the requirements
of simple accumulator passing on
page 43?

24 Indeed it does.

The invocation of
sampled is not
wrapped, so we need
look at only the
formals of sampled

n does not change
i changes towards
passing a base test

and

a accumulates a
result†

 
†Since each number in a is
chosen randomly, their order
in the batch of indices does
not matter.

Perfect.

Since samples picks indices
randomly, does

(samples 20 3)

give the same answer at each
revision?

25 It shouldn't.



That's correct, most of the time.†

At each revision, samples results in a
new batch of indices. So, provided the
size of the data set n is large enough,
the chances of it producing the same s
indices at every revision are very
small.

 
†A single invocation of samples might also have
repeated indices since each index is picked
independently of the others.

26 So, now that we know
how to randomly
sample indices, how
do we use these
indices to get a batch
from the data set?

We need a new toy for this!

Once again, t|i selects the ith element
from a tensor t where i is the index.

Now we show how to select more than
one element from the tensor t. Here,
the elements to select are given by a
batch b, of indices. We pick these
elements from t

t||b

This results in a tensor of the same
rank as t, but containing only those
elements in t that correspond to the
batch b of indices.

27 Could we see an
example?



Sure.

Let's take t to be a tensor1 with 7
elements

[5.0 2.8 4.2 2.3 7.4 1.7 8.1]

Here is a list b of 4 indices

(list 6 0 3 1)

28 How do we use this
list of indices?

This way

1.  t||b

2.  [5.0 2.8 4.2 2.3 7.4 1.7 8.1]||(list

6 0 3 1)

3.  [8.1 5.0 2.3 2.8]

29 Can t have a rank
higher than 1?

Yes, t's rank can be higher than 1.

Here's an example where t is a
tensor2, and b is the list from the
previous example

30 This looks like a useful
toy.

Are we now ready to
define the support
function we suggested
in frame 16?



We are, indeed!

Here is a skeleton of a function

sampling-obj that takes three
arguments. The first, expectant, is an
expectant function and the other two,
xs and ys, form a data set

31 This function seems to
be returning another
function

(λ (θ) …)

Correct.

It returns an objective function that
samples the data set instead of using
the entire data set.

Find the expressions for B, X, and Y.

32 In this skeleton, b
should be a batch of
indices (which is a
list), and X and Y
must correspond to
the samples extracted
from the data set
using those indices.

So, B should result in
a list of sampled
indices. But we're
missing some
information.

How large should our
batch of indices be?



•

A very good question.

The batch size usually varies
depending upon the data set and the
kind of target function we are dealing
with.

33 So should we just
declare it as a
hyperparameter?

Yes

(declare-hyper batch-size) 

Now, what is B in frame 31?

34 B should generate a
batch of indices using

samples

with the number of
points we have in the
data set

as the first argument,
and

batch-size

as the second
argument. But in the
body of the let-
expression,  is
associated with n. So,
B should be

(samples n batch-
size)



•

Perfect.

What about X and Y ?

35 Those expressions
should use b to select
the corresponding
tensor from the
formals xs and ys.

So X should be

xs||b

and Y should be

ys||b

Correct.

Here's sampling-obj

(define sampling-obj 
 (λ (expectant xs ys)
  (let ((n ))
   (λ (θ)
    (let ((b (samples n batch-
size)))
     ((expectant xs||b ys||b)
θ))))))

36 How do we use
sampling-obj?



When we invoke gradient-descent, we
now give it a sampling-obj.

For example

(with-hypers
  ((revs 1000)
   (α 0.01)
   (batch-size 4))
  (gradient-descent
    (sampling-obj
     (l2-loss line) line-xs line-
ys)
    (list 0.0 0.0)))

Here our new hyperparameter batch-
size is given the scalar 4.

37 This means that at
each revision, we use
only a batch of size 4
from the data set to
measure the loss. So,
we examine a mere

(* 4 1000)

points in total, instead
of running through
the entire data set at
each revision.

And even if our data
set has billions of
points, each revision
looks at only 4, right?

100% correct!

At each revision a new batch with
only batch-size points is selected.

This kind of gradient descent where
the objective function uses sampling
is known as

stochastic gradient descent

38 What does stochastic
mean?

The Law of Batch Sizes
Each revision in stochastic gradient descent uses only a

batch of size batch-size from the data set and the ranks of



the tensors in the batch are the same as the ranks of the
tensors in the data set.



An excellent question.

Stochastic is another way of saying we use
random numbers to determine our results.
Using samples as part of our objective
function is what makes it stochastic.

39 Does stochastic
gradient descent
work for
different targets?

It does! Let's return to our example from
frame 105:25 using plane as our target
function.

What does our expectant function look
like?

40 Since our target
function is
plane, the
expectant
function must be

(l2-loss plane)

Correct.

Let us take

revs to be 15000
α to be 0.001

and

batch-size to be 4

41 Then our
hyperparameters
should look like

(with-hypers
  ((revs
15000)
   (α 0.001)
   (batch-
size 4))
  …)

From frame 108:34, the initial θ is

(list [0.0 0.0] 0.0)

How is gradient-descent invoked?

42 Using this
revision chart



Great. That's enough for now. 43 Good! A break
would be
wonderful.

Random Toys
samples 123

t||b 124
batch-size 126

sampling-obj 127

Go have a slice of apple pie!
Preferably à la mode!







How was the pie? 1 Warm and
smothered with a
dollop of vanilla
ice cream.

Mmm. Delicious.

Here we teach our new toy

gradient-descent

some new tricks.

2 What kinds of
tricks?

Tricks that make it more flexible, so we
can change its behavior.

3 Why would we
want to change its
behavior?

So that it gets to its well-fitted θ with
fewer revisions (i.e., a smaller value for
revs).

4 That's a good
reason.

So how do we
make it more
flexible?

One of the reasons why gradient-descent
from frame 99:5 is unable to get to its
well-fitted θ with fewer revisions is
because it has very little information to
work from.

5 What other
information does
it need?



Before we get to the details of that, what
matters here is that we must find a way to
hold this information and bring it up to
date as the parameter is revised.

The first thing to remember is that this
extra information is associated with each
parameter in θ.

We'll build up to this one step at a time.

6 Okay.

We start with our most recent and still
dashed gradient-descent

(define gradient-descent
 (λ (obj θ)
  (let ((f (λ (Θ)
     (map (λ (p g)
        (− p (* α g)))
      Θ
      (∇ obj Θ)))))
   (revise f revs θ))))

7 Are we finally
going to reveal
how Θ meets our
grate expectations
from frame 90:48?



Indeed, this is the ultimate moment!

What does map do in this function?

8 It invokes this
function

(λ (p g)
 (− p (* α g)))

on every member
of

Θ

and

(∇ obj Θ)

in a pairwise
fashion.

Correct.

In this dashed gradient-descent, we use
revise to repeatedly revise a list of
parameters.

Much like map, the function revise is a
general-purpose function. We can use it to
revise any kind of value.

As long as we're careful to make sure that
gradient-descent accepts a θ and
ultimately results in a well-fitted θ, it
doesn't matter how we transform θ along
the way.

9 Could we see an
example revising a
different kind of
value?

The Law of Revisions



As long as we make sure that gradient-descent accepts an
initial θ and results in a well-fitted θ, any reasonable way

of revising it from the first to the last revision is okay.



Sure, here is a mostly
useless example but it
serves to illustrate a trick
for transforming our
parameters by first
wrapping them up and then
unwrapping them later.†

What is the value of this
expression?

(map (λ (p)
   (list p))
  θ)

 
†This use of the terms wrapping (ed )
and unwrapping (ed ) for
parameters is different from their
use describing recursive definitions
in chapter 2.

10 It wraps each parameter p in θ
into a singleton‡ and therefore
produces a list of singletons.

 
‡A list with one member.

Yes.

Whenever a parameter is
wrapped in a list, we refer
to it as

an accompanied
parameter†

 
†From 1964, The Miles Davis Quintet
would have been The Miles Davis
Singleton were it not for his
accompaniments of
Tony Williams (1945–1997).
Wayne Shorter (1933–),
Ron Carter (1937–), and
Herbie Hancock (1940–),
Its parameter, however, would have
been Miles Davis (1926–1991).
Thanks to all.

11 But here nothing is
accompanying the parameter in
this list, correct?



That's correct. The
parameter is keeping itself
company.

This is our lonely
representation.†

Θ is a list of accompanied
parameters, but in this
lonely representation, there
are no accompaniments.

12 How do we use this lonely
representation?

 
†The lonely representation simply shows an
example where the list has no
accompaniments. We'll be adding
information to accompany parameters to
get more meaningful representations.

We are going to use it for
revisions within gradient-
descent.

But first, we make sure we
can convert back and forth
between Θ and θ. So we
need two support functions.
Here's the first one. It takes
a θ and converts it to a Θ.

We refer to it as lonely-i,
with i for

inflate

(define lonely-i
 (λ (θ)
  (map (λ (p)
    (list p))
   θ)))

Explain lonely-i.

13 It takes a θ and it wraps each
parameter in θ in a list, giving
us a Θ.



Correct.

Now define lonely-d, with d
for deflate, that does the
opposite. It takes a Θ and
results in a θ.

14 So, we can map over Θ and pick
the revised parameter out of
each accompanied parameter

(define lonely-d
 (λ (Θ)
  (map (λ (�)
    �0)
   Θ)))

Here � is an accompanied
parameter, correct?

Yes. 15 How can we tell P from p?

Θ is a list of � and θ is a list
of p!

16 Oh! It's pretty obvious now!



Since we are now revising Θ
and not θ, we define a
function that does the
revision for us

(define lonely-u
 (λ (Θ gs)
  (map (λ (� g)
    (list (− �0 (* α
g))))
   Θ
   gs)))

The u in lonely-u stands for
update, because this
function is an instance of
what are referred to as
update functions.

Explain lonely-u.

17 This function maps over Θ and
the gradients gs in a pairwise
fashion. Since each member of
Θ is a singleton, we extract the
parameter from the
accompanied parameter and use
the gradient and the learning
rate to produce the revised
parameter.

But why does it wrap the result
in a list?

That's because lonely-u
must result in a revised Θ
rather than a revised θ.

18 Ah!

Wrapping the result in a list
ensures that the well-fitted Θ is
still a list of singletons.



We use these three
functions

 lonely-i

lonely-d

and

lonely-u

to generalize gradient-
descent.

19 How can we do that?

Rather than scattering the
three “ates” throughout the
gradient-descent, we pass
them to a more general
gradient-descent

(define gradient-descent
 (λ (inflate deflate
update)
  (λ (obj θ)
   …)))

Now define lonely-
gradient-descent using this
new

gradient-descent

20 Here it is!

(define lonely-gradient-
descent
 (gradient-descent
  lonely-i lonely-d lonely-u))

And we see that those “ates”
rhyme!



Interesting, right.

Let's now use this more
general skeleton of
gradient-descent

Find I, D, U, and R.

21 Since we are revising a list of
singletons, that means we must
invoke revise with an initial Θ.
So, I must be

(inflate θ)

D is the second argument to ∇,
so it has to be a list of
parameters. This means we
must convert the Θ back to a θ.
So, D must be

(deflate Θ)

U must be invoked to update Θ,
so U must be

update

Finally, gradient-descent must
result in a θ. The invocation of
revise, however, results in a Θ.
So when we're done, we must
convert the well-fitted Θ back to
the well-fitted θ. So R must be

deflate



Excellent.

Here is our penultimate
gradient-descent

(define gradient-descent
 (λ (inflate deflate
update)
  (λ (obj θ)
   (let ((f (λ (Θ)
       (update
        Θ
        (∇ obj
         
(deflate Θ))))))
    (deflate
     (revise f revs
      (inflate
θ)))))))

22 And it is still dashed!

Yes, it is.

But we should test it before
we go ahead. And we're
going to do this a lot with
different values of inflate,
deflate, and update, so let's
make things a little easier
for ourselves.

Define a function try-plane
that takes a function
argument a-gradient-
descent, which can be
invoked within the with-
hypers-expression in frame
129:42.

23 Here is this new dashed
definition

(define try-plane
 (λ (a-gradient-descent)
  (with-hypers
   ((revs 15000)
    (α 0.001)
    (batch-size 4))
   (a-gradient-descent
     (sampling-obj
      (l2-loss plane)
plane-xs plane-ys)
     (list [0.0 0.0]
0.0)))))



We use try-plane with a
specific gradient-descent
function, for example

lonely-gradient-descent

24 This definition is very
convenient!

Here is the revision chart

It is perfect!

Even though there's a lot of
wrapping and unwrapping
along the way, it still arrives
at the same result as before
in frame 129:42.

25 It is a useful function to try the
same test repeatedly.

Let's look at another
representation, where Θ is
identical to θ. We refer to
this as the naked
representation.

Here, p, which must be
deflated, and �, which is
inflated, are identical.

Define the inflate function.

26 Even though θ is identical to Θ,
we should stick with the pattern,
so naked-i maps the identity
function over θ

(define naked-i
 (λ (θ)
  (map (λ (p)
    (let ((� p))
      �))
    θ)))

Similarly, naked-d takes a
�, which must be inflated,
and yields a deflated p that
is identical.

Now define the deflate
function for this
representation.

27 Using the same pattern we have

(define naked-d
 (λ (Θ)
  (map (λ (�)
    (let ((p �))
      p))
   Θ)))



)))

Exactly!

Knowing that θ and Θ are
the same, define naked-u.

28 θ and Θ are the same, so here is
naked-u

(define naked-u
 (λ (Θ gs)
  (map (λ (� g)
    (− � (* α g)))
   Θ
   gs)))

Couldn't we have used �0
instead of �?

No, using �0 would have
assumed that � is
accompanied.

29 So, � is not accompanied
because naked-i merely maps
the identity function.

Now define naked-
gradient-descent.

30 Here it is

(define naked-gradient-
descent
 (gradient-descent
   naked-i naked-d naked-
u))

Excellent.

Rewrite the example from
frame 24, this time using
the naked representation.

31 And here's its revision chart

But the definitions for the lonely
and naked representations are
still dashed!



They are. We're going to
simplify them.

To do that, let's consider
something

crazy

Each definition of inflate
and deflate, respectively,
looks like this!

(define inflate
  (λ (θ)
   (map (λ (p)
     …)
    θ)))

(define deflate
  (λ (Θ)
   (map (λ (�)
     …)
    Θ)))

And what about update?

32 Here it is

(define update
  (λ (Θ gs)
   (map (λ (� g)
     …)
    Θ
    gs)))

Why does this matter?

Great question!

And here's what's crazy
about the “ates” from frame
20. If we make a consistent
change to the dashed
gradient-descent, we can
simplify each of these
definitions.

33 How is that possible?



Observe that we pass
arguments into each “ate”
function and then invoke
map over them.

34 That is true.

We can use this observation
to move the maps about so
our “ates” can be simplified.

Any thoughts lurking
about?

35 Nothing at all.

Let's take inflate.

Our current gradient-
descent invokes inflate on θ
like this

(inflate θ)

Since the inflate functions
we have seen so far rely on
knowing that θ is a list and
each of them maps some λ-
expression over this list, we
can rewrite this invocation
of inflate temporarily like
this

(map (λ (p) …) θ)

36 Oh, so regardless of what kind of
inflate function we encounter, it
always starts with invoking
map.



•

Correct!

So, we can simplify inflate
functions by moving the
map to gradient-descent,
and letting the inflate be
simply the λ-expression.

37 Shouldn't that also work for the

deflate

and the

update?

Yes, and here's the crazy
answer.

For uses of an “ate” in
gradient-descent

(ate θ) becomes (map ate
θ)
(ate Θ) becomes (map ate
Θ)

and

(ate Θ gs) becomes (map
ate Θ gs)

Refine the dashed gradient-
descent one last time, but
this time, the crazy way to
get the final gradient-
descent.

38 Here is the ultimate gradient-
descent

(define gradient-descent 
 (λ (inflate deflate update)
  (λ (obj θ)
   (let ((f (λ (Θ)
       (map update
        Θ
        (∇ obj
         (map
deflate Θ))))))
    (map deflate
     (revise f revs
      (map inflate
θ)))))))



With this final gradient-
descent, we must remove
the maps from the
definition of each “ate”.

Let us start with lonely-i in
frame 13

(define lonely-i
 (λ (θ)
  (map (λ (p)
    (list p))
    θ)))

How should we refine this
to go with our final
gradient-descent?

39 Since gradient-descent is now
responsible for mapping the
inflate function over θ, lonely-i
should be this

(define lonely-i
 (λ (p)
  (list p)))

And what about lonely-d
and lonely-u?

40 Here they are

(define lonely-d
 (λ (�)
  �0))
 
(define lonely-u
 (λ (� g)
  (list (− �0 (* α g)))))

The Law of the Crazy “ates”



For any representation, the three “ates” are concerned
with only one parameter and its accompaniments, and are

not directly concerned with either θ or Θ.



Correct.

Here is the new lonely-gradient-descent

(define lonely-gradient-descent
 (gradient-descent
  lonely-i lonely-d lonely-u))

Where is the revision chart in frame 24?

41 Here it is

Now we have the same experience with the naked
representation. First, refine

naked-i
naked-d

and

naked-u

42 How are
these
“ates”?

(define
naked-i
 (λ (p)
  (let
((� p))
   �)))
 
(define
naked-d
 (λ (�)
  (let
((p �))
   p)))
 
(define
naked-u
 (λ (� g)
  (− �
(* α g))))



•

Grate!

Now we need the naked-gradient-descent

(define naked-gradient-descent 
 (gradient-descent
  naked-i naked-d naked-u))

And where is the revision chart, again?

43 Here it is

Wonderful!

That wraps up this chapter. In the next one, we'll
use our new approach with gradient-descent to
change its behavior for the better!

44 Yes, we
must teach
it to
behave!

Crazy Toys
gradient-descent 140

naked-gradient-descent 143

How about a properly inflated souffié?
We want to deflate it tout de suite!





 
†With apologies and thanks, Paul Frederic Simon.



Was the souffié delicious? 1 We “ate” it and it was grate!

Here we learn some new
tricks with our new toy, the
crazy

gradient-descent

2 What kinds of tricks?

We'll learn tricks to make us
reach the well-fitted θ with
fewer revisions.

3 That sounds promising!

Should we begin?

We are off to the races!

Relay races, to be precise.

4 Intriguing.

What about relay races?

Groucho is training a relay
team with Chico, Harpo,
Gummo, and Zeppo.†

 
†Thanks Marx Brothers:
Leonard Joseph “Chico” (1887–1961),
Arthur “Harpo” (1888–1964),
Julius Henry “Groucho” (1890–1977),
Milton “Gummo” (1892–1977),
and Herbert Manfred “Zeppo” (1901–
1979).

5 That's one funny team.



Indeed.

Chico is many times faster
than Harpo, who is many
times faster than Gummo,
who is many times faster
than Zeppo.

They run in that order; each
person runs around the track
once and passes the baton on
to the next.

6 Zeppo must be a really slow
runner.

Yes.

For the team to be well-
prepared, Groucho must get
the slower runners to run
faster.

7 That seems like quite a
challenge.



Groucho has come up with a
clever, perhaps
unscrupulous, coaching
strategy.

Instead of letting go of the
baton when passing it to
Harpo, Chico holds on to the
baton awhile as Harpo grabs
it. This forces Harpo to try to
run as fast as Chico for as
long as they're both holding
on to the baton.

Chico drags Harpo along
with him for part of the
track, making Harpo's
velocity much higher.

8 Ah!

Harpo absorbs a little bit of
Chico's velocity.

Correct.

And then Harpo does the
same to Gummo.

9 Gummo absorbs a little bit of
Harpo's velocity.

And also some from Chico! 10 Oh yes.

Because Harpo has a little bit
of Chico's velocity.

Does Gummo do the same to
Zeppo?

Yes, he does. 11 Now the slow runners are all
faster because the faster
runners that came before have
transferred some of their speed
to them.



to them.

Yes.

Groucho has managed to
raise the slower velocities by
spreading the velocities
across the runners.

They can now complete their
race much faster.

12 How does this relate to
gradient-descent?

Here, again, is the function
naked-u from frame 142:42

(define naked-u
  (λ (� g)
   (− � (* α g))))

13 Yes.

It's the update part of the
naked representation for
gradient-descent.

Explain how this function
updates parameters.

14 This function multiplies the
gradient g by the learning rate
α, and subtracts the result
from the parameter P to yield
the next P, so that ultimately
we get closer to a well-fitted θ.

Correct.

Recall the loss graph from
frame 77:13.

15 Yes, the one that had the two
tangents in it.

The very same.

What do we know about each
tangent as it approaches the
lowest point on the graph?

16 Each tangent gets less steep as
it approaches the bottom of the
curve.



Indeed.

The slope of the tangent,
(i.e., the gradient) gets
smaller. In fact, as the curve's
bottom is approached, the
gradient gets closer and
closer to 0.0. Furthermore,
at the very bottom of the
curve, the gradient is exactly
0.0.

What happens when we
multiply a really small
gradient with a really small
learning rate as we do

(* α g)

in update functions?

17 Oh, we get something even
smaller!

So, at each revision closer to
the bottom, the amount of
change to each parameter gets
smaller and smaller, correct?

Yes, it does.

The change that we make to a
given parameter at each
revision is known as the
velocity of descent.

So what can we say about the
velocity of descent as it
approaches the bottom of the
curve?

18 The velocity slows down!

Wait a minute! That's exactly
like our relay racing team!

And we can speed up the
whole process by using
Groucho's clever strategy!

19 How do we do that?



Here, once more, is naked-u
from frame 142:42

(define naked-u
  (λ (� g)
   (− � (* α g))))

What is the velocity in this λ-
expression?

20 Since we subtract (* α g), the
change to �, (i.e., the velocity)
is

(− (* α g))

Correct.

Groucho's strategy implies
that we should boost our
velocity by adding some
fraction μ of the velocity v, of
the previous revision, to the
change we expect to make in
the current revision.

21 What does this mean for our
velocity?

Our new velocity expression
then becomes

(+ (* μ v) (− (* α g)))

which is better written

(− (* μ v) (* α g))

22 Is μ a hyperparameter?



•

It is.

We declare it

(declare-hyper μ) 

The hyperparameter μ is
between 0.0 and 1.0 and
represents the decimal
fraction of the previous
velocity we want to retain for
the next velocity.†

 
†The recommended scalar for μ is
usually about 0.9.

23 Where does v come from?

Here, v represents the
velocity of the most recent
revision (i.e., the speed of the
runner handing off the
baton).

24 Is the velocity an
accompaniment of its
corresponding parameter?

Yes, it is.

What can we say about the
shape of v?

25 Since v is the change that is
made to its parameter, it
should have the same shape as
its parameter.



Correct!

Here is velocity-i, the inflate
function

(define velocity-i
 (λ (p)
  (list p (zeroes p))))

The function velocity-i adds
an initial accompaniment to
the parameter p.

26 What is zeroes?

The function zeroes produces
a tensor with the same shape
as its argument, but made up
entirely of 0.0s.

Here's a same-as chart for it

Now explain how the
function velocity-i works.

27 It produces a zeroed tensor in
the shape of p.

Why do we let the velocity be a
zeroed tensor?



That's because at the first
revision, there really hasn't
been any change to any
parameter†. So using a
zeroed tensor is a reasonable
choice for the initial velocity.

 
†Following from the law on page 142,
we can stop thinking about θ and Θ
and focus only on parameters.

28 Okay.

Now define the
corresponding deflate
function velocity-d.

29 This deflate function should
result in the parameter, which
is at index 0 in the inflated
representation

(define velocity-d
 (λ (�)
  �0))



•

Excellent.

We can now define velocity-
u. It expects an accompanied
parameter P where the
parameter P0 is
accompanied by its velocity
P1 from the last revision. As
with all update functions, the
gradient g is its second
argument.

Here is a skeleton for
velocity-u

Find V.

30 We give the name v to the
expression V. The body of the
let-expression is the updated
accompanied parameter, which
is returned from the function.
The accompaniment there is v.
Therefore, V must be the
velocity, which is the change
we must make to �0.

From frame 22, this velocity is

(− (* μ P1) (* α g))

Correct.

Here is velocity-u

(define velocity-u
 (λ (� g)
  (let ((v (− (* μ �1) (* α
g))))
   (list (+ �0 v) v))))

Now define velocity-
gradient-descent.

31 Sure, we provide velocity-i,
velocity-d, and velocity-u to
gradient-descent

 (define velocity-gradient-
descent 
 (gradient-descent
  velocity-i velocity-d
velocity-u))



We now make try-plane
more general, but still
dashed, by adding an
additional argument, a-revs.
This allows us to more easily
experiment with different
scalars for the revs
hyperparameter

Using these modifications,
here is the corresponding
revision chart that shows
how to invoke a-gradient-
descent for our plane
example from frame 137:23

32 Wow.

We have once again found the
same answer but with revs
being 5000 instead of 15000,
by using velocity along with the
gradient to help us decide the
revisions we make to θ every
time.

Is this form of gradient descent
known as

velocity gradient descent?



Actually, no.

It is known as

momentum gradient
descent†

 
†Thanks, David Everett Rumelhart
(1942–2011), Geoffrey Everest Hinton
(1947–), and Ronald James Williams
(1944–).

33 That's an odd name.

Why momentum?

Good question.

That's because we multiply
the velocity v by a constant μ.
The resulting expression is
analogous to the formula of
momentum in physics.†

 
†p = mv, where p is the momentum, m
is the mass of an object, and v is its
velocity.

34 Are there other ways to
improve the velocity of
descent?

Yes, there are, but that's for
the next interlude!

Remember to transfer some
velocity from this chapter to
the interlude.

35 But what about a snack?



Fast Toys
μ 149

velocity-gradient-descent 151

How about a slice of date-and-pecan
pie?

It is Groucho's favorite!





 
†Thanks, Lily Tomlin (1939–) for Ernestine and Edith Ann; and Sade: Sade Adu (1959–),
Dave Early (1957–1996), Paul Spencer Dunman (1957–), Stuart Colin Matthewman
(1960–), and Andrew Hale (1962–).



Groucho's “date-and-
pecan pie”?†

 
†Thanks, Rosemary Wilson
(1910–1986) and Ruth Pool
(1934–).

1 Now we know why it is Groucho's
favorite dessert!

Good.

Before we look at other
update algorithms, we
must understand

smoothing

2 What is smoothing?



•

Here is a function
smooth

(define smooth 
 (λ (decay-rate
average g)
  (+ (* decay-rate
average)
   (* (− 1.0 decay-
rate) g))))

where decay-rate must
always be a scalar
between 0.0 and 1.0,
average is a
historically-
accumulated average†,
and g is a gradient. Both
average and g must be
tensors of the same
shape.

What does smooth do?
 

†Shortened to “historical
average.”

3 Since decay-rate is a scalar between
0.0 and 1.0, it seems to be blending
two tensors using

decay-rate

and

(− 1.0 decay-rate)

as weights.



That's correct.

Let's see an extended
example of how it is
used over time. Here
are seven scalars

50.3 22.7 4.3 2.7 1.8
2.2 0.6

Find

(smooth 0.9 0.0 50.3)

4 The result of this smooth invocation
is the scalar 5.03

1.  (smooth 0.9 0.0 50.3)

2.  (+ (* 0.9 0.0) (* 0.1 50.3))

3.  (+ 0.0 5.03)

4.  5.03

Correct.

Now, how about this?

(smooth 0.9 5.03
22.7)

5 We are blending the scalar 5.03 with
the next scalar 22.7 in our sequence.

Here is the same-as chart

1.  (smooth 0.9 5.03 22.7)

2.  (+ (* 0.9 5.03) (* 0.1 22.7))

3.  (+ 4.53 2.27)

4.  6.8

That is right.

Let's repeat this one
more time.

Find

(smooth 0.9 6.8 4.3)

6 Here goes

1.  (smooth 0.9 6.8 4.3)

2.  (+ (* 0.9 6.8) (* 0.1 4.3))

3.  6.55



Excellent.

Here are the original
seven scalars from
frame 4

50.3 22.7 4.3 2.7 1.8
2.2 0.6

and the historical
averages after they have
all been smoothed

5.03 6.8 6.55 6.16
6.07 5.64 5.14†

Compare the smoothed
seven scalars to the
original seven scalars.

 
†The underlined scalars are the
results of the first three
invocations of smooth,
excluding the starting value of
0.0.

7 The smoothed are much smoother
than the original scalars. In other
words, the smoothed scalars don't
vary as much as the original scalars
and the variations between them are
much gentler.



Yes, the seven scalars in
the smoothed historical
averages are much
closer to each other
than the corresponding
seven original scalars
are to each other.

Repeatedly invoking
smooth over these
scalars “averages” out
variations by blending
historical scalars with
newer ones.

What's the importance
of 0.9 that we pass for
decay-rate?

8 It means that in order to find the
new historical average, we use only
90% of the prior historical average,
and every new scalar encountered is
diminished to 10% of its value. Thus
new scalars that vary wildly from the
historical average contribute only a
small fraction to the new historical
average.

Does decay-rate always have to be
0.9?

Oh no, that's just for
this example.

In general, the decay-
rate can be any number
between 0.0 and 1.0.

9 Sure.



Now let's consider the
first scalar 50.3. The
first time we invoke
smooth, we multiply it
by 0.1 and get 5.03.

The next time we invoke
smooth, this scalar is
multiplied by 0.9. This
means the contribution
of the first scalar to the
next smoothed result
(rounded to two
decimal places) is

0.9 × 0.1 × 50.3 =
4.53

10 Aha!

It contributes less and less to the
historical average as newer data are
encountered.

Yes, it does.

We refer to decay-rate
as the rate of
contribution. The
contribution of earlier
items decays as more
items are incorporated.

Find the formula for the
contribution of the
scalar 50.3 after n
invocations of smooth.

11 After the nth invocation of smooth,
the contribution is

0.9n−1 × 0.1 × 50.3



Correct.

In general, this is true of
any scalar encountered.
The contribution of that
scalar decays over time
according to this
formula.

12 So, smooth seems to be a way of
incorporating historical information
that is less relevant as we move
forward.

Yes, but this is also true
for tensors of any rank!

Since smooth is defined
using extended
functions, the
arguments average and
g can be tensors with
compatible shapes. In
most instances, the two
have the same shape.

And if so, the smoothed
result has the same
shape as the arguments.

13 How about an example?



Suppose, after a time,
we have a historical
average of

[0.8 3.1 2.2]

and now we encounter
the following three
tensors

[1.0 1.1 3.0]
 [13.4 18.2 41.4]
 [1.1 0.3 67.3]

How should we blend in
these new tensors into
our historical average?

14 Using smooth, of course!

Should we use 0.9 as the decay-rate?

Good idea.

Let's start with the first
tensor

1.  (smooth 0.9 [0.8
3.1 2.2] [1.0 1.1
3.0])

2.  (+ (* 0.9 [0.8 3.1
2.2])

     (* 0.1 [1.0 1.1
3.0]))

Complete this same-as
chart.

15 Here it is

3.  (+ [0.72 2.79 1.98] [0.1 0.11
0.3])

4.  [0.82 2.9 2.28]



Correct.

Blending this new
historical average

[0.82 2.9 2.28]

with the second tensor1

[13.4 18.2 41.4]

we get

Now blend in the third
tensor

[1.1 0.3 67.3]

16 Sure

Very good.

Compare the original
three tensors1

[1.0 1.1 3.0]
 [13.4 18.2 41.4]
 [1.1 0.3 67.3]

to the three smoothed
tensors1

[0.82 2.9 2.28]
 [2.08 4.43 6.19]
 [1.98 4.02 12.3]

17 It is as if we have smoothed the
individual scalars corresponding to
the elements of those tensors.

How do we use smooth with

gradient-descent?



[ .98 4.0 .3]

That's a topic for the
next chapter!

18 All right.

Smooth Toys
smooth 155

To break or not to break?
That is the question.†

 
†With apologies to William Shakespeare (1564–1616).







Onwards, then!

The velocity-based update algorithm
from frame 149:21 improves the
velocity of a revision by borrowing
some velocity from the preceding
revision.

1 That seems like a
useful trick.

It is.

But there are other ways to improve the
velocity of a revision. These algorithms
work by modifying the fraction of the
gradient used at each revision.

2 That's an interesting
approach.

We know from frame 148:17 that the
gradient approaches 0.0 as we roll
down to the bottom of the incline.

What can we say about the velocity of
the gradient?

3 Since our α so far
has been a constant,
we know that it
causes the velocity of
the gradient descent
to slow down in a
similar way.

Indeed.

Because α represents the fraction of the
gradient we're going to use as our
velocity, another approach to
addressing this problem is to make this
fraction adaptive.

4 What does adaptive
mean?

Adaptive here means that the fraction
is decided based on the gradient and its
historical values.

5 Does that mean we
revise α at every
revision as well?



Good question.

Not directly. Instead, we multiply α
with a factor D that reacts to the
current gradient and its historical
values.

6 How does D behave
as our gradient
slows down?

The fraction of the gradient we use as
our velocity at every revision should
reduce more slowly than the rate at
which the gradient reduces.

7 This means that D
must get larger as
the gradient gets
smaller, since α itself
is constant.

Correct.

We say that D varies inversely as the
gradient.

8 How do we find this
mysterious D?

A simple way to make something vary
inversely is to divide 1.0 by it. So, D
looks something like

Here we refer to G as a modifier.

9 And now our task is
to find G, which we
know must depend
on the gradient and
its history.

Exactly.

Another thing to remember is that
when we multiply α by D, we're doing
this

10 Oh, so we must
divide α by the
modifier to change
the fraction of the
gradient we must
use.



Correct.

How can we achieve this?

11 Could we simply say
that G is the
gradient itself? For
example like in this
update function
where g is the
gradient

(define naked-u-
with-divide
 (λ (� g)
  (− � (* (÷ α g)
g))))

No, we can't.

If we were to simplify the arithmetic,
we would get

In other words, the effect of g would
have been nullified.

12 Oh, right.

Then our velocity of
descent would
become the constant
α and it would not
depend upon the
gradient, which
would not be at all
what we've intended.

We need something that takes the
history of g into account but is not
susceptible to all the variations in g, so
that the effect of g is not nullified.

13 It sounds as if we
could use our new
toy smooth here!

Correct!

The solution is to use smooth to
historically accumulate a modifier that
is based on g.

14 Could we see this
new update
function?



Sure.

We need a representation with an
accompaniment based on our
smoothed gradients.

Here's a skeleton for rms-u† that
defines a new update algorithm to be
used with gradient-descent

Like other update functions, rms-u
takes an accompanied parameter and a
gradient and revises the accompanied
parameter. The accompaniment P1 is
the smoothed value derived from the
gradient g.

Here r is the value we determine as the
new accompaniment. It is part of the
returned accompanied parameter. It
also, however, is used inside G.

Find R.

15 R has to be an
invocation of smooth
because it has to be
historically
averaged.

We'll need a decay
rate for it.

 
†rms is pronounced “R-M-
S.”

‡We use the convention
with carets or “hats” over
names, for example , to
denote that it has been
derived from another
similarly named value
(here α), and its intention
is the same (here as a
learning rate).

For readers who may wish
to do so, lexical scope
allows for all the hats to be
dropped, so to speak.

We will!

It is provided with a hyperparameter

(declare-hyper β) •

16 Great, so now R
looks something like
this

because �1 is the
historically averaged

l



value.

Correct.

Now our task is to find S.

17 Isn't S just g?

Not quite.

The gradient g can be negative, and if
we get too many consecutive negative
gradients, then our historical averages
can themselves become negative.

18 Why is becoming
negative a problem?

This is a problem because r gets used
by G and its being negative can make 
negative.

When that happens, we end up
ascending the gradient instead of
descending it.

19 Does that mean we
would move our θ in
a direction that

increases the loss

instead of in a
direction that

decreases the loss?

Yes, that is correct.

So, we should make sure r is always
nonnegative.

We recognize this problem from frame
60:14, where we could have negative
values but we needed them to be
nonnegative.

20 Yes.

We fixed the
problem by squaring
the value.

Should S be (sqr g)?



Correct.

So this is what R looks like

(smooth β �1 (sqr g))

Now let's move on to finding G.

21 Why isn't G just r?

Good question.

The problem with squares is that they
grow much faster than the scalar that is
being squared.

If we were to use r for G, the modified
learning rate would increase at a faster
rate than the rate at which the gradient
reduces.

22 Why is that a
problem?

From way back in frame 67:37, we
know that this could cause the descent
to overshoot the lowest point in the loss
curve.

So, how do we modify r so that it tracks
the gradient more closely, and not the
square of the gradient?

23 Aha!

We can take its
square root using
the function sqrt.

Then, should G be
this

(sqrt r)?

Yes, that is almost correct.

We need to account for the unlikely
possibility that r would be 0.0.

24 Oh, that would cause
the division of α to
be undefined.



Correct.

This problem, however, is easily solved
by adding a tiny constant ϵ known as
the stabilizer, to (sqrt r).

25 What should ϵ be?

We define ϵ

(define ϵ 1e−08)

Now find G.

26 G must be

(+ (sqrt r) ϵ)

What does the final
version of rms-u
look like?

Here it is

Let's now define rms-gradient-descent.

27 We need to first
define the
corresponding
inflate and deflate
functions, don't we?



•

Oops, thanks! Indeed we do.

They look similar to velocity-i from
frame 150:26 and velocity-d from
frame 151:29, since we set the initial
value of each r accompaniment to a
zeroed tensor of the same shape as the
parameter.

Define rms-i and rms-d.

28 Here is rms-i. We
accompany p with r,
a zeroed tensor

(define rms-i
 (λ (p)
  (list p (zeroes
p))))

Similarly, rms-d
simply extracts the
parameter p from
the accompanied
parameter

(define rms-d
 (λ (�)
  �0))

So now define

rms-gradient-descent

29 Here it is

(define rms-
gradient-descent 
 (gradient-
descent
  rms-i rms-d
rms-u))

Could we see an
example of its use?



We'll take the same example from
frame 152:32. But first, we must
determine each hyperparameter.

What should our learning rate be?

30 Since rms-u uses a
continuously
modified learning
rate, should we start
with a higher
learning rate and
expect it to be
adapted as rms-
gradient-descent
proceeds?

Good guess.

Let's start with

α at 0.01

31 What about revs?

In general, rms-u tends to reduce revs
necessary to reach the well-fitted θ. For
now, let

revs be 3000

instead of the 5000 from frame 152:32.

32 Okay.



Here's a slightly extended try-plane,
which now also accepts an-α, a starting
value for α

(define try-plane
(λ (a-gradient-descent a-revs an-α)
 (with-hypers
  ((revs a-revs)
   (α an-α)
   (batch-size 4))
  (a-gradient-descent
    (sampling-obj
     (l2-loss plane) plane-xs
plane-ys)
    (list [0.0 0.0] 0.0)))))

How do we invoke this function for our
example?

33 We must provide a
scalar for β, and
then invoke try-
plane

We get the well-
fitted θ with 2000
fewer revisions than
before!

Yes indeed.

This version of gradient-descent has
the somewhat cryptic name RMSProp.†

The term RMS stands for root mean
square, which reflects the fact that we
use the mean (i.e., the smoothed
historical average) of the squares and
then take its square root. The suffix
Prop is a contraction of the term back
propagation.

 
†Thanks, Geoffrey Everest Hinton.

34 We have two
different algorithms
for speeding up the
gradient descent,
velocity-u from
frame 151:31 and
rms-u in frame 27.

Could we do better if
we combined them?



An excellent observation!

The last update algorithm, adam-u,
uses smooth for two historical averages
—one for the gradient and one for its
square.

For the gradient, we use the
hyperparameter μ from velocity-u in
frame 152:32 so we benefit from
Groucho's clever strategy.

For the square of the gradient, we
continue to use β as we did in rms-u so
that we can modify the learning rate.

35 These
hyperparameters are
very handy.

Yes, indeed.

Here's adam-u†

Its parameter has two
accompaniments.

Here r and  are used identically to
rms-u in frame 27. The historical
average of v, however, is slightly
different from frame 151:31.

36 How is it different?
 

†This algorithm, known as
Adam, improves gradient
descent for stochastic
objective functions.
Thanks, Diederik Pieter
Kingma (1983–) and
Jimmy Lei Ba.

For those who might have
encountered this update
algorithm elsewhere, we
have simplified it by
dropping the bias
correction for v and r.



The first difference is that we use
smooth for the accumulation. This
causes the gradient to be multiplied by
(− 1.0 μ). Since μ is typically around
0.9, only a small fraction of the
gradient g is used for the next θ. The
rest is made up of the historical average
of v.

So, the historical average of v is much
smoother than in the version from
frame 151:31 in velocity-u.

37 Oh yes. In velocity-u
from that frame the
gradient g is
multiplied by the
learning rate, and
that is added to v.

Is there another
difference?

Yes, there is.

The second difference is that to find our
well-fitted parameter �0, we don't use g
directly. Instead we use the historical
averages v.

Why is that?

38 It is another way of
using the velocity of
prior revisions to
inform the velocity
of the current
revision.

Correct.

We must also remember to define an
adam-i and an adam-d.

Each parameter p in θ is now
accompanied by two additional tensors
v and r, each with the same shape as p.

Define adam-i.

39 Here it is

(define adam-i
 (λ (p)
  (let ((v (zeroes
p)))
   (let ((r v))
    (list p v
r)))))



•

Define adam-d. 40 The deflate function
again extracts the
0th member from
the accompanied
parameter, �, to get
the next p

 (define adam-d
 (λ (�)
  �0))

All our deflate
functions (except for
naked-d) so far are
the same. Why don't
we use the same
name for all of
them?

A great question.

We could. We're setting up a pattern
that leaves room for representations
other than lists for accompanied
parameters.

41 Good idea.

And now define adam-gradient-
descent.

42 Here it is

(define adam-
gradient-descent 
 (gradient-
descent



  adam-i adam-
d adam-u))

Excellent!

The name of this algorithm, Adam, is
short for adaptive moment estimation.
It is adaptive because it uses an
adaptive learning rate.†

 
†The accompaniment v is known as the gradient's 1st
moment and r is its 2nd moment.

43 How about an
example of how to
invoke

adam-gradient-
descent

Here we learn the same result once
again using try-plane from frame
152:32 but with fewer revisions

44 So now we need only
1500 revisions to get
the well-fitted θ.
This is far fewer
than the 15000 that
we started with in
the original from
frame 129:42.

How did we decide
the appropriate
scalars for μ and β?

These scalars have been experimentally
determined by trying out different
combinations to get a lower revs.

45 Okay.

We now have different kinds of
gradient-descent toys that we can use
to learn θ for various kinds of target
functions.

46 So what is next?



The Law of Gradient Descent
The θ for a target function is learned by using one of the

gradient descent functions.

Now we move on to understanding how
extended functions work.

But before that, let's take a smoothie
break!

47 Yes, a break is
much appreciated.

Faster Toys
β 167

rms-gradient-descent 169
adam-gradient-descent 173

How about a chocolate
and almond butter smoothie?







How was the smoothie? 1 It was real smooth.

We've been assuming that
function extension just works for
functions like + and *.

Unlike The Berglas Effect,† we
reveal our function-extension
trick.

 
†Thanks, David Berglas (1926–).

2 Oh, so this interlude is an
extension of Interlude I?

It is!

We start with a frequently used
function on tensors.

This function invokes a given
function argument on each
element of a tensor.

For example, we might want to
add1 to every element of

[3 5 4]

to get

[4 6 5]

3 This seems similar to
map from frame 81:25.



Yes, the two functions are similar.

The function tmap takes a
function f and a tensor t as
arguments, and invokes f on every
element of t and assembles the
results into a tensor as in this
same-as chart

1.  (tmap add1 [3 5 4])

2.  [(add1 3) (add1 5) (add1 4)]

3.  [4 6 5]

4 It looks as if the add1
replicated itself and
sneaked into the tensor!

This is similar to
descending into a tensor
from frame 51:19.

It is!

Descending into a tensor is
another way of looking at tmap. It
descends into a tensor to invoke
its function argument on each
element it finds.

5 But what if we have more
than one tensor and we
want to invoke a function
on elements from each of
the tensors?

The function tmap is designed to
work with multiple tensors,
provided the tensors are all of
equal length.

For example, here we use two
tensors

1.  (tmap + [3 4 6 1] [1 3 5 5])

2.  [(+ 3 1) (+ 4 3) (+ 6 5) (+ 1
5)]

3.  [4 7 11 6]

6 Okay.



Now let us see how we can use
tmap for extending functions.

We start with the extended
function sqrt. Assume that sqrt0 is
the (unextended) primitive
function that finds the positive
square root of a scalar.

Here is a skeleton of the extended
function sqrt

When t is a scalar, we find the
square root using sqrt0.

What should A be?

7 For the extension
behavior, A must descend
into the tensor until it
finds a scalar and invokes
sqrt0 on it.

Excellent.

What function do we know that
allows us to descend into tensors?

8 It is tmap!

So A must look like

Correct.

Now to find S. This function is
invoked on each element of t, and
it should produce its square root.
If each element of t is a scalar, it
should invoke sqrt0 on it, but if
each element is a tensor of rank 1
or higher, it must descend into it.

9 That sounds familiar.

This must mean that S is

sqrt



Perfect.

In the definition in frame 7, our
base test uses scalar?. Let's
replace it with a different function

of-rank?

which accepts a rank and a tensor
and checks if that tensor has the
given rank.

Here, we'll check for 0

(define sqrt
 (λ (t)
  (cond
   ((of-rank? 0 t) (sqrt0 t))
   (else (tmap sqrt t)))))

10 This is it, right?

(define of-rank?
 (λ (n t)
  (= (rank t) n)))



That definition is correct, but
here's a more fun one. Let's start
with its skeleton

Find S, B, and R.

11 Let's begin with S, which
is true only if S is (scalar?
t). So, S is

(scalar? t)

For B, since the first
cond-clause test failed,
we know that n is greater
than 0, so if t is a scalar,
then B is

#f

Finally, for R, t has the
rank n only if t|0 has the
rank n − 1. We can verify
this recursively. So, R is

(of-rank? (sub1 n) t|0)

changing both n and t to
eventually pass either the
first or second base test.



Excellent.

Here is the final of-rank?

(define of-rank?
 (λ (n t)
  (cond
   ((zero? n) (scalar? t))
   ((scalar? t) #f)
   (else (of-rank? (sub1 n)
t|0)))))

Using the same tensor t as before
in frame 42:44, show a same-as
chart for

(of-rank? 3 t)

12 Here it is

1.  (of-rank? 3 [[[8]
[9]] [[4] [7]]])

2.  (of-rank? 2 [[8]
[9]])

3.  (of-rank? 1 [8])

4.  (of-rank? 0 8)

5.  #t

Great.

What if 3 were replaced by any
other natural number?

13 Then the result would be

#f

Returning to sqrt, why is
it dashed in frame 10?



As usual, we're going to reconsider
it.

This function is specific to square
roots, because we invoke sqrt0

only on scalars. Let's refer to this
as the

base function

Instead of having a fixed value of
the base function of one
argument, here sqrt0, we accept it
as an additional argument.

14 Does that allow us to
extend any base function
of one argument?

Yes.

Let's name this generalized
function ext1 because it extends
functions of one argument. Here is
a skeleton for it

Invoking ext1 with a base function
f results in a function that either
invokes f on t if t's rank is 0, or
descends into t otherwise.

What is E?

15 E must also be the
function that invokes the
base function f on scalars,
or descends into tensors
of higher rank. This must
mean E is

(ext1 f )



Excellent.

Here is a dashed ext1

(define ext1
 (λ (f )
  (λ (t)
   (cond
    ((of-rank? 0 t) (f t))
    (else (tmap (ext1 f )
t))))))

Using ext1, define sqrt.

16 Here it is

(define sqrt
 (ext1 sqrt0))

How about another
example?

A good idea.

How can we define the function
zeroes from frame 150:27 using
ext1?

17 Oh, we can think of
zeroes as extending a
function that results in
0.0 for every scalar!

Here is how we define
zeroes

(define zeroes
 (ext1 (λ (x) 0.0)))

Perfect. 18 But why are the
definitions of ext1, sqrt,
and zeroes dashed?

This ext1 so far works on
extending functions that operate
only on scalars.

Sometimes, however, we need to
extend functions like sum1 in
frame 53:24 that only operate on

19 Oh, so instead of checking

(of-rank? 0 t)

as we see in ext1, we'll
have to look for a rank of
1 when extending sum1.



tensors1.

That is correct.

We refer to this as the

base rank

20 So the base rank for

sum1

is 1?

Good guess!

What is the base rank for sqrt0?

21 It is 0.

Right.

So when extending a function f ,
we must also accept its base rank
n as an argument.

Here's a skeleton of our updated
ext1

Find N.

22 Here we must check for a
rank of n. So, N is

(of-rank? n t)



•

•

•

Correct.

Here, then, is the final ext1

(define ext1 •
 (λ (f n)
  (λ (t)
   (cond
    ((of-rank? n t) (f t))
    (else (tmap (ext1 f n)
t))))))

How about sqrt and zeroes using
this function?

23 We must now also
provide the base rank for
sqrt0 when we invoke
ext1.

Here sqrt's base rank is 0

(define sqrt 
 (ext1 sqrt0 0))

Similarly, for zeroes, the
base function also has the
base rank 0

(define zeroes 
 (ext1 (λ (x) 0.0) 0))

Perfect.

Now define sum, which extends
sum1.

24 We invoke ext1 with a
base rank of 1

(define sum 
 (ext1 sum1 1))

Can we see an example
where the base rank is 2?

Sure.

Consider the function flatten2 that
flattens a tensor2 into a tensor1. It
does this by concatenating
together each of the nested
tensors1.

25 Example, please?



•

With the notation from pages 113–
114

26 Is this a function we are
going to extend?

We are!

(define flatten 
 (ext1 flatten2 2))

27 Could we see how it
works?

Sure.

This is the extended version of
flatten2 that works on tensors of
arbitrary rank, but flattens only
the innermost tensors2.

For example

Complete this same-as chart.

28 Now, we descend into the
tensors



Correct.

The function ext1 is useful for
extending functions of one
argument.

Now let's see how we extend
functions of two arguments.

29 So now do we define a
function ext2?

We do!

Before we do that, however, we
need a couple of other
comparision functions on ranks.

30 Sort of like

of-rank?

and more interesting?

Yes, indeed!

Sometimes we need to know if the
rank of one tensor is higher than
another. Here is a function rank>
that is true if the rank of its first
tensor argument is higher than the
rank of its second tensor
argument.

Here is its quick version

(define rank>
 (λ (t u)
  (> (rank t) (rank u))))

31 Could we write a
recursive version of this
as well?



We should!

(define rank>
 (λ (t u)
  (cond
   ((scalar? t) #f)
   ((scalar? u) #t)
   (else (rank> t|0 u|0)))))

Explain how this function works.

32 If t is a scalar, its rank is
0. Since 0 is not higher
than any other rank, then
the answer is

#f

On the other hand, if u is
a scalar, and we already
know that t is not a scalar,
then the rank of t is
higher than that of u, so
the answer is

#t

And finally, if neither are
scalars, we recursively
compare the ranks of the
0th element of both t and
u.

What else do we need?

Now define a function of-ranks?
that takes arguments n, t, m, and
u, where n is the rank we're
checking for tensor t, and m is the
rank we're checking for tensor u.

33 Here it is

(define of-ranks?
 (λ (n t m u)
  (cond
   ((of-rank? n t)
(of-rank? m u))
   (else #f))))

That was fun!



Great.

Here is an example

1.  (of-ranks?

     3 [[[8] [9]] [[2] [1]]] 2
[5])

2.  (of-rank? 2 [5])

3.  #f

Explain this same-as chart.

34 Since

(of-rank? 3 [[[8] [9]]
[[2] [1]]])

is #t, the base test of the
cond clause succeeds, so
we must check if

(rank [5]) is 2

which it isn't. Hence we
return #f.



•

Very good.

Now, we're ready to define ext2.

It is similar in its basic structure
to ext1, but because the base
function that is being extended
has two arguments instead of one,
we need two base ranks

(define ext2 
 (λ (f n m)
  (λ (t u)
   (cond
    ((of-ranks? n t m u) (f t
u))
    (else
     (desc (ext2 f n m) n t m
u))))))

We make use of two support
functions

of-ranks?

and

desc

Since we have two base ranks and
two tensor arguments, deciding
when we must descend and when
we must not requires a little more
thought.

35 We know that

of-ranks?

checks whether

t has rank n

and

u has rank m

This means that in the
first clause of the cond
expression, we check if t
and u have reached their
base ranks. If they have,
we invoke the base
function f on them.

Otherwise, it is time to
descend into the tensors,
and we use desc to do
that. The first argument
to desc is very similar to
the first argument to
tmap in ext1 when it is
used to descend into the
tensor.

So, desc is invoked with

(ext2 f n m)

which is similar to

(ext1 f n)

which is in the definition
of ext1



of ext1.

Correct.

The recursive invocation of ext2
produces a function that either
invokes f on the two argument
tensors if they each have their
respective base rank, or descends
into one or both of the tensors.
This is the first argument to desc.

36 How do we decide which
tensor, or tensors, we
should descend into?



An excellent question.

To see that, let's look at desc

Here, g is the extended function

(ext2 f n m)

because of the way

desc

is invoked from within

ext2

The first couple of clauses address
what happens when one of the two
tensor arguments has reached its
base rank. For example, if we have
reached the base rank for u, then
we need to descend only into t,
and vice versa.

Define desc-t, which descends into
t, and desc-u, which descends into
u.

37 For desc-t, since we are
descending into only one
tensor, we use tmap to
invoke g over each
element of t (named et)
and u

(define desc-t
 (λ (g t u)
  (tmap (λ (et) (g et
u)) t)))

For desc-u, we similarly
use tmap to invoke g on t
and each element of u
(named eu)

(define desc-u
 (λ (g t u)
  (tmap (λ (eu) (g t
eu)) u)))



•

Excellent.

Our next clause deals with when t
and u have the same number of
elements, which we determine
using  and  from frame 33:17.
This means we descend into both
simultaneously.

38 What happens if none of
these clauses are
relevant?

If the rank of t is higher than the
rank of u, then we use desc-t,
otherwise, we use desc-u.

39 And we decide this by
using

rank>

from frame 32!

Could we see an example
of how ext2 is used?

Sure.

Let +0,0 be a function that adds
two scalars.

Define an extended version + of
this base function.

40 We must invoke ext2,
since the base function is
a function of two
arguments. The base rank
for both arguments is 0

(define + 
 (ext2 +0,0 0 0))

How about another
example?



•

•

•

•

Let *0,0 be a function that
multiplies two scalars.

Define an extended version * of
this base function.

41 As before, we must invoke
ext2, since the base
function is a function of
two arguments. The base
rank for both arguments
here is also 0

(define * 
 (ext2 *0,0 0 0))

Now, any function that uses * gets
automatically extended. For
example, define a function sqr
that squares its tensor argument t.

42 Here it is

(define sqr 
 (λ (t)
  (* t t)))

We also have everything we need
for defining • from frame 106:26.

Define •.

43 We can do this by
extending •1,1 with base
ranks of 1 and 1

(define • 
 (ext2 •1,1 1 1))

Excellent.

We can use ext2 in other ways. For
example, we can define a function
*2,1

(define *2,1 
(ext2 * 2 1))

44 Here the base function is

*

which we defined in
frame 41 and

*'s definition relies on
*0,0



 (ext2  2 1))

Explain what this function does.

0,0

Why does it need to be
extended?

We're using different base ranks.
This means that *2,1 descends into
both its arguments until it has
reached a tensor2 in its first
argument, and a tensor1 in its
second argument, and then
invokes * only on them. Let's see
an example.

Let the tensor2 p be

[[3 4 5]
[7 8 9]]

and the tensor1 t be

[2 4 3]

Now complete this same-as chart,
keeping in mind that we are first
using *, each of whose arguments
is at base rank 0

1.  (* p t)

2.  (* [[3 4 5] [7 8 9]] [2 4 3])

45 Here, we first descend
into t because it has a
higher than 0 rank

Indeed.

Here's a same-as chart showing
how *2,1 behaves on these same
two arguments. Because p is at
base rank 2 and t is at base rank 1,
*2,1 invokes * on them

(*2 1 t)

46 It produces the same
result that we see in
frame 45.



1.  (*2,1 p t)

2.  (* p t)

What happens next?

Correct.

Now let's look at a different pair of
tensors, and see how * behaves
with them.

Let q be a tensor2

[[8 1] [7 3] [5 4]]

and let r be another tensor2

[[6 2] [4 9] [3 8]]

Now complete this same-as chart

1.  (* q r)

47 Here, * immediately
tackles the two tensors of
the same length 3, so it
descends into both
simultaneously

What happens with *2,1?

Let's find out!

Instead of descending into both
tensors simultaneously, it
recognizes that q is already at the
base rank, and descends into only
r

Now finish this same-as chart.

48 The invocations of *2,1 are
at their base ranks of 2
and 1, respectively, so we
invoke * on the tensor
arguments of *2,1



Is this different from the result for
* in frame 47?

49 Indeed, so we can use the
base ranks to change the
behavior of extended
functions.

Is there a use for that?

There is!†

But that's for a later chapter.
 

50 Time for a break now.



†This may be familiar to some as a precursor
to matrix-vector multiplication.

More Extendy Toys
ext1 183

sqrt0 183, sqrt 183
zeroes0 183, zeroes 183

sum1 184, sum 184
flatten2 184, flatten 184

ext2 187
+0,0 189, + 189
*0,0 189, * 189

sqr 189
*2,1 190

How about some maple walnut chiffon
pie?

Nutty and smooth at the same time!





 
†With apologies and thanks, The Pointer Sisters: June (1953–2006), Ruth (1946–), and
Anita (1948–); and also music arrangers Alta Sherral Willis (1947–2019) and Daniel
Sembello (1963–2015).



Wasn't the maple walnut
chiffon pie heavenly?

1 It was maybe the best slice of
pie, ever!

Onwards, then!

So far, our target functions
have been very limited.

2 How so?

Functions like line, quad,
and plane use only a small
number of parameters, and
are suitable for only certain
kinds of data sets that can be
modeled by these simple
functions.

3 Why is that a problem?

We cannot recognize irises. 4 Irises? What do irises have to
do with anything?



We'll get to that.

If we have more complex
target functions, we could
teach them to recognize
irises and other things using
data sets that consist of
appropriately labeled
images.

Or, we could teach them to
recognize objects, faces, and
other interesting features in
images. Or, understand
speech, or written language,
or do many other things that
are otherwise difficult for
machines to do.

5 How do we teach them?

We define these target
functions to have a θ and
then we use one of our
gradient-descent functions
to find the well-fitted θ that
allows us to perform the task
we are interested in.

6 How do we find these larger
and more complex target
functions?

Like all other functions, we
construct them from simpler
units.

7 Aha!

That sounds familiar. We
always design functions by
dividing larger functions up
into smaller ones.

Is this similar?



•

In some ways, yes.

But these smaller functions
must also be parameterized,
because we still want to use
gradient descent
optimization to learn the
parameters of all of these
smaller functions working
together.

8 That sounds exciting.

What do these simpler
parameterized functions look
like?

Let's find out.

Here is a function rectify0

(define rectify0 
 (λ (s)
  (cond
   ((< s 0.0) 0.0)
   (else s))))

Explain what this function
does.

9 The function rectify0 expects a
scalar argument and it results
in 0.0 if its argument is
negative. Otherwise it is like
the identity function.

Correct.

Is rectify0 a linear function?

10 rectify0 relies on a cond-
expression, and from frame
101:11, a linear function may
use only addition and scaling,
but cond is different from
either of them.



•

Good.

The extended version of
rectify0 is named rectify

(define rectify 
 (ext1 rectify0 0))

11 Oh, so it works on a tensor,
invoking the same behavior on
each of its scalars as is familiar
from frames 49:11 and 183:23.

So, by extension, is rectify also
nonlinear?

Yes, it is.

Nonlinear functions like
rectify are referred to as
deciders.† They make a small
decision about their
arguments and transfer the
decision to their result.

 
†Otherwise known as activation
functions. We use the term deciders
here to emphasize their intent.

12 Is a decider one of the simpler
functions we use?

Yes.

Using a decider as one of the
smaller functions in our
collection of functions allows
us to make tiny decisions
involving just a few
parameters that assimilate
into a final decision such as
what kinds of irises we have.

13 But rectify has no parameters.

How can we use it to learn
anything?



•

That is a great question!

We combine it with another
simple function, but this one
is parameterized.

Here's a familiar function. It
is similar to plane from
frame 105:25

(define linear1,1 
 (λ (t)
  (λ (θ)
   (+ (• θ0 t) θ1))))

14 Why does this function have a
“1,1” superscript?

The “1,1” superscript
reminds us that it expects
both θ0 and t to be tensors1

and will take on the usual
extended function behavior
if either of the tensors are of
higher rank. And, unlike
rectify, this function is
linear.

Explain why.

15 This function uses addition (+)
and dot product (•) from frame
106:26, which itself uses only
addition and scaling.†

This makes linear1,1 a linear
function and deserving of its
name.

 
†To make a fine point of this, • in this
definition uses one tensor from
parameters and one from the argument,
which makes the resulting scalar
multiplications between a parameter and
an argument. Hence we say that • uses
scaling. We use addition when all those
scalar products are summed. This makes
• in this context a linear operation.



•

Excellent.

Now explain linear1,1.

16 The function linear1,1 combines
its tensor1 argument t with the
parameter θ0, which is also a
tensor1, into a scalar. It then
adds the resultant scalar to θ1.

Correct.

We compose the non-
parameterized, nonlinear
decider rectify with linear1,1

to get this parameterized
nonlinear function, relu1,1

(define relu1,1 
 (λ (t)
  (λ (θ)
   (rectify ((linear1,1 t)
θ)))))

17 That's an odd name, relu1,1,
isn't it?

The name relu is short for
rectifying linear unit.

Again, the “1,1” superscript
is a reminder that we're
dealing with tensors1 for
both t and θ0.

18 Oh, because it combines rectify
and linear1,1.

Now it becomes obvious,
doesn't it?

Explain the function relu1,1.

19 It rectifies the scalar result of
linear1,1.



That is right.

The function relu1,1 makes a
weighted decision about its
argument tensor t.

20 What is a weighted decision?

Each element of the tensor
θ0 is known as a weight.
Each weight decides how
much the corresponding
element in the argument
matters in the final decision.

The closer a weight is to 0.0,
the less that element in the
argument matters.

21 So, this looks similar to w from
frame 22:11.

What about θ1?

Good question.

It is known as a bias. It is
similar to b also from frame
22:11.

The bias parameter shifts the
point at which rectify makes
its decision to result in 0.0.

22 How does bias do that?



If the bias is positive, it
increases the result
produced by •, raising the
chances that the result will
pass through rectify
unchanged.

Similarly, if it is negative, it
decreases the result
produced by •, lowering the
chances that the result will
pass through rectify
unchanged and therefore
more likely to become 0.0.

23 Ah, so when that result is
rectify'd, the bias determines
whether the final result is 0.0.

Correct.

If the argument were a
zeroed tensor, the bias alone
would determine if relu1,1

should result in a 0.0 or not.

24 Could we see an example of
relu1,1 in action?



Here is a same-as chart

with weights
 θ0 being [7.1 4.3 −6.4]

with bias
 θ1 being 0.6

and

with the argument tensor
 t being [2.0 1.0 3.0]

Complete this same-as chart.

25 Here goes

Perfect.

Now explain why we get 0.0?

26 We get 0.0 because the linear
combination of θ0, θ1, and t
gives us −0.1, which is less than
0.0.

This is why rectify does not
pass it through, and instead
produces 0.0.

Good.

Functions like relu1,1 are
known as artificial neurons.
Each neuron has a linear
part, like linear1,1, and a

27 Neurons sound like they come
from biology.



part, like linear , and a
nonlinear decider like
rectify.

The Rule of Artificial Neurons
An artificial neuron is a parameterized linear function

composed with a nonlinear decider function.



They do.

The function relu1,1 is a simplified
model of how real neurons in the
brain work.

This is also why our
compositionally constructed target
functions are known as neural
networks, or neural nets for
short.†

 
†Thanks, Warren Sturgis McCulloch (1898–
1968) and Walter Harry Pitts, Jr. (1923–
1969).

28 The function relu1,1

seems pretty simple.

Can it really help identify
irises?

Great question.

With a sufficiently large number of
these units, we can model very
complex functions.

29 That seems very hard to
believe.

It does indeed.

Let's see an illustration of how
multiple uses of relu1,1s can be
combined to do more interesting
things.

30 Exciting!



We start by drawing the graph of
relu1,1 with θ0 as [1.0] and θ1 as
−1.0.

For this graph, we assume that for
any given x, we find the y by
invoking

((relu1,1 [x]) θ)

As an example, find the result of

y for x = 0.5

31 Here it is

This gives us a point (0.5,
0.0) on the graph.

Correct.

Here is the graph

32 That looks like a line with
slope 1.0 that is cut off
below the x-axis.



Yes.

It has a sharp bend at the point it
hits the x-axis.

Explain why this is so.

33 This is because rectify
does not let any y less
than 0.0 pass through.

Excellent.

Let's assume that θ0 is a tensor1

with exactly one element, and let's
name that element p. In other
words, θ0 is

[p]

Similar to line, p determines the
slope of the slanted portion of the
graph, and θ1 is where the line cuts
the y-axis (or would cut it if rectify
didn't stop it).

Find the point where the graph of
relu1,1 meets the x-axis and has a
bend in it.

34 The equation of the line
is

y = px + θ1

At the point it crosses the
x-axis, y is 0.0. Solving
for x



That's right.

In this equation, when p is
positive, x and θ1 move in opposite
directions because of the negative
sign

When θ1 is increased, x
decreases

and

when θ1 is decreased, x increases

35 Does this mean that the
graph would shift to the
right when θ1 is
decreased, and it would
shift to the left when θ1 is
increased?

Here's what it looks like when θ1
increases from −1.0 to +0.5

Here, the shifted graph (i.e., when
θ1 is +0.5) is solid. The graph has
shifted to the left as we have
increased θ1.

Draw the graph when we reduce θ1
instead from −1.0 to −1.5.

36 The dark line now moves
to the right while the
dotted line stays the same

But, how does this allow
us to build interesting
functions?



Patience! It is a virtue, after all.

Explain this function half-strip

37 For a given x, this
function determines
relu1,1 results, once for θ0
and θ1 and then once for
θ0 and θ2. Finally, it
subtracts the second
result from the first.



Yes, that is correct.

Let's look at the graph for a half-
strip where θ0 is as before (i.e.,
[1.0]) and

θ1 is −1.0

Let's take

θ2 to be −1.5

Here, the two relu1,1s are the same
as in the graph in frame 36

Why does this graph look this
way?

38 For all x less than 1.0,
both relu1,1s are 0.0, so
the dark line lies on the
x-axis. Between x = 1.0
and x = 1.5, the first
relu1,1 starts to become
positive, but the second
relu1,1 is still 0.0.

This causes their
difference to rise until x =
1.5, but then both relu1,1s
start rising at the same
rate, so the difference
between them stays the
same, at 0.5.

Why is it named as a
half-strip? And, what is
that orange circle at one
end of it?

The space between the x-axis and
the dark line looks like a strip that
begins where the line meets the x-
axis. We refer to this as the left end
of the strip. We highlight ends
with orange circles.

39 This strip seems to have
only one end.



Indeed.

Since the strip has only one end
(and not two), it is named a half -
strip.

40 So can we get a function
full-strip that has both
ends of the strip?

Yes, we can, by subtracting two
half-strips.

Here's another graph which shows
two half-strips with different
values for θ1 and θ2. Let's choose
θ1 to be −3.0 and θ2 to be −3.5

The dark half-strip here is the first
half-strip in frame 38, and the
turquoise one is the second half-
strip.

41 Okay.

The second half-strip
shifted to the right here
because p in frame 34 is a
positive number, lower
values of θ1, −3.0, and
θ2, −3.5, in the turqoise
half-strip cause it to lie to
the right of the dark half-
strip that has values of −1
and −1.5.



Correct.

We now combine two half-strips to
define a full strip

42 It seems as if we are
subtracting the second
half-strip from the first.

Could we see what the
graph looks like?

Sure.

Let's take our parameters from the
two half-strips in frame 41.

We invoke full-strip with θ0 and
θ3 both being [1.0]. We let θ1 be
−1.0 and θ2 be −1.5. And finally,
we let θ4 be −3.0 and θ5 be −3.5.

Here's the graph for it

Why does this graph look this
way?

43 Our two half-strips have
a y-value of 0.0 for all x-
values less than 1.0.

Between x = 1.0 and x =
1.5, the first half-strip
rises to 0.5, but the
second one is still 0.0. So
the dark line, which
represents the difference,
rises to 0.5 as well and
stays at 0.5 until x = 3.0.

At x = 3.0, the value of
the second half-strip
starts to rise towards 0.5
so the difference starts to
fall until x = 3.5 at which
point it becomes 0.0
again and stays that way
for every remaining value
of x.

Why do we have 6
different parameters for
full-strip?



Good observation.

This allows us to have different
slopes at the two ends of the strip,
and it allows us to control how
wide and tall we would like our
strip to be.

44 Why is this named a full-
strip?

This is a full-strip because the
space between the dark line and
the x-axis now has a left end (at x
= 1.0) and also a right end (at x =
3.5) where the dark line meets the
x-axis for a second time.

By appropriately manipulating θ0,
θ3, θ1, θ4, θ2, and θ5, we get strips
of any size and any slopes at the
two ends.

45 What good are these full-
strips and half-strips?

Full and half strips can be
combined using addition and
subtraction.

For example

46 Adding the full and half
strips together has given
us a nonlinear function.

Could we see its graph?



Here is its graph 47 We have two orange
circles here for the ends
of the strips, and a more
interesting graph.

Yes.

Just how interesting a function we
can come up with is usually
estimated by the number of
parameters available for us to
update and the number of
invocations of relu1,1 we rely on.

How many parameters and relu1,1

invocations do we have here?

48 The function half-strip
needs 3 parameters and
has 2 relu1,1 invocations.

The function full-strip
needs 6 parameters and
has 4 relu1,1 invocations.

So, the function in frame
46 has 9 parameters and
6 relu1,1 invocations.

Since relu1,1 is an artificial neuron,
this is an example of how to
combine simple artificial neurons
to get a more complex function.

49 How can we get even
more interesting
functions using neurons?



To get yet more interesting
functions, we break them down
into full and half strips† and
combine them using addition and
subtraction.

Here's a very interesting function
broken up into strips (shown with
dotted turquoise lines)

 
†Thanks, Henri Léon Lebesgue (1875–1941).

50 Can the strips in this
graph be constructed
using full-strip and then
added together?

Yes, they can.

We say that these strips together
approximate the original graph.

51 What does approximate
here mean?



The edges of the strips are straight
lines, but the graph of the function
itself may not follow those straight
lines exactly. For example, see the
top strip in the graph in frame 50.

This means our strips get us close
to the graph, but there are always
going to be differences when the
graph is curved.†

This is why we say that the strips
approximate the function.‡

52 Okay.
 

†The strips give us what is known
as a piecewise-linear
approximation.

‡We can increase the number of
strips by decreasing the height of
each of the strips, and this allows
us to get arbitrarily close to the
actual curve of the function.

While ours has been merely a
simple demonstration with only
tensors1 whose length is always 1,
the general principles have been
proven for a tensor1 of any length,
and for many different kinds of
deciders. The results are known as
the theorems of universal
approximation.†

53 Wow. This way of
constructing target
functions with strips
seems quite burdensome.

 
†Thanks, Halbert Lynn White Jr.
(1950–2012), George Cybenko
(1952–),
Maxwell Stinchcombe (1957–),
and
Kurt Hornik (1963–).

The idea of using strips is to
illustrate only that artificial
neurons can be used as building
blocks for very complex functions.
We don't use it in practice.

54 How do we build neural
networks in practice?



We build them in a more elegant
fashion so that they are easier to
design and build.

But that can wait until the next
chapter.

55 Excellent.

What's for dessert?

Neural Toys
rectify 197

linear1,1 197
relu1,1 198

A medovik (медовик) is required.
All eleven layers of it!





 
†With apologies and thanks to Ed Sheeran (1991–).



How was the medovik?†

 
†Thanks, 20th Century Cafe (2013–2021) and
especially Michelle Polzine.

1 Gooey and yummy.

The medovik is appropriate because
now we're going to learn about
layers.

2 What kinds of layers?

Chapter 10 is about individual
neurons.

Here, we put individual neurons
together into layers in order to build
bigger neural networks.

3 What are layers?

We can think of a layer as a group of
neurons (like relu1,1) that all operate
on the same tensor.

More technically, a layer is made up
of a layer function and a θ that
contains parameters for the layer
function.

4 What is a layer
function?

A layer function is a function of the
form

(λ (t)
  (λ (θ)
   … tensor producing body …))

5 That looks like a target
function.



It is, and all layer functions can be
target functions.

The tensor argument t to the layer
function is known as the input to the
layer.

6 The layer function also
needs a θ before it can
produce a tensor.

Correct.

We provide the layer function with
an input and a θ, and the results of
each of its neurons are gathered into
a tensor, which is the result
produced by the layer function.

7 Is this result the output
of the layer?

But of course! 8 It's time for an
example, isn't it?

It definitely is.

Let's begin with an example of a

layer

that has, say,

4 neurons

As we have just stated above, this
layer takes in a tensor and results in
a tensor. For now, let's imagine that
it takes a tensor1 t of length 7.

9 The only kind of
neuron we know of
right now is

relu1,1



That is correct.

This layer function then invokes each
of those 4 relu1,1s on t, this length 7
tensor1.

10 Won't it also need to
send some weights
(from frame 199:21)
and biases (from frame
199:22) in a θ for these
invocations?

A very good observation.

Let's suppose that we have 4 weights,
which are tensors1

w|0, w|1, w|2, and w|3

11 And what about the
biases?

Let's refer to the biases for each of
those 4 relu1,1s as

b|0, b|1, b|2, and b|3

12 Okay.

What is the shape of each of these
weights?

w|0, w|1, w|2, and w|3

13 Since we're sending
them to relu1,1, they
should each have the
same shape as t, which
is

(list 7)

With that information, what can we
say about the shape of w?

14 We can say that w has
the shape

(list 4 7)!



And how about the shape of b? 15 Since the biases to any
relu1,1 must be a scalar,
b is a tensor of shape

(list 4)

Excellent.

Now w and b become the first two
members of the θ with which we'll
invoke the relu1,1s.

What do each of those 4 relu1,1s
produce?

16 They produce 4 scalars.

Should we put these 4
scalars into a tensor1?

Very perceptive.

Here's a way to write this layer
function

Here we invoke relu1,1 4 times, with t
as the input tensor and we build 4
separate θs from the elements of w
and b.

17 That seems a little
clumsy.



It is, and we'll clean it up shortly.

What is important is that each relu1,1

produces a scalar, which means that
the result of this layer is a tensor1 of
shape

(list 4)

18 So this layer function
accepts an input t of
shape

(list 7)

and a θ

with weights of shape
 (list 4 7)

and biases of shape

 (list 4)

to produce a result of
shape

(list 4)

Can we generalize this?

Indeed, we can.

Layers with this structure are known
as dense layers.†

 
†Also known as fully-connected layers.

19 There seems to be a
special relationship
between the shapes of
the tensors in this
layer.



There is!

In general, the layer function of a
dense layer with m neurons takes
one argument t which is a tensor1 of
shape

(list n)

It then accepts a suitable θ

with weights of shape
 (list m n)
and biases of shape
 (list m)

and invokes each of those m neurons
on t, to produce

m

scalars, which form a tensor1.

We say that the width of this layer is
m.

20 In our example, m is 4
and n is 7.

Since a dense layer of
width m produces a
tensor of the shape

(list m)

in our example, the
tensor will have the
shape

(list 4)

There ought to be a law
for this!

The Law of Dense Layers
(Initial Version)

A dense layer function invokes m neurons on an n
element input tensor1 and produces an m element output

tensor1.



As frame 17 points out, the
expression for the result tensor
is somewhat clumsy.

21 Is there a clearer way to
write it?

There is!

The function *2,1 in frame
192:48 is a good place to start.
It is a function of two
arguments. The first is a
tensor2 and the second is a
tensor1.

22 It multiplies each tensor1

element of its first argument
with its second argument, a
tensor1.

So, in our example layer
function in frame 17, could
we use *2,1 and achieve the
same result instead of using
4 separate invocations of
relu1,1?

An insightful observation.

Since w is a tensor2, it becomes
the first argument to *2,1, and
the input tensor t becomes the
second argument.

If w has the shape

(list m n)

and t has the shape

(list n)

the result of the invocation

(*2,1 w t)

also has the shape

(list m n)

23 But relu1,1 does more than
just the multiplication.

Don't we need more?



The Law of Dense Layers
(Final Version)

A dense layer function invokes m neurons on an n-
element input tensor1 that produces an m-element output

tensor1 in a single invocation of *2,1.



•

We do!

The function relu1,1 uses • and rectify
in order to produce its final scalar
result. In order to reproduce the same
behavior as m relu1,1s, we also need to
write •2,1 that uses *2,1 to produce m
scalars

(define •2,1 
 (λ (w t)
  (sum
   (*2,1 w t))))†

 
†Some may recognize this as matrix-vector
multiplication.

24 This definition is the
same as •, except that
it uses *2,1 instead of
*.



That is correct.

If

w's shape is (list m n)

and

t's shape is (list n)

derive the shape of (•2,1 w t).

25 In frame 23, (*2,1 w t)
produces a result of
shape (list m n). Then
sum is invoked on
this result.

The function sum
reduces each of the m
nested tensors1 to a
single scalar, which
results in a tensor1 of
shape (list m).

So the result of a •2,1

between a tensor2 of
shape

(list m n)

and a tensor1 of shape

(list n)

must be a tensor1 of
shape

(list m)



•

Yes, that is correct.

Show a same-as chart for

(•2,1 w t)

where w is

and where t is

[1 3 0 4 3 3]†

Here is the start of a same-as chart

1.  (•2,1 w t)

Complete it very carefully.
 

†In this example and some of the following ones, m
is smaller than n. In general, however, m and n are
independent and are not constrained by each
other.

26 Since we use
extended operators,
we must descend into
tensors until their
base ranks are met

Great.

Here is linear, which is similar to
linear1,1 from frame 197:14, except
that it uses •2,1 instead of •

(define linear 
 (λ (t)
  (λ (θ)
   (+ (•2,1 θ0 t) θ1))))

27 Okay.

What should the
shape of θ1 be?



Let's now assume that

t

has the shape

(list n)

and

θ0

has the shape

(list m n)

28 As in frame 25, the
shape of

(•2,1 θ0 t)

is

(list m)

Since θ1 is the bias to
be added to the
outputs of •2,1, and
because we want each
neuron to have its
own bias, it must also
have the shape

(list m)

What does this tell us about the shape
of

((linear t) θ)

29 Its shape is

(list m)

which means it is a

tensor1

of the same length as
the number of
neurons in the layer.



•

Exactly!

We now define the layer function relu,
which is similar to relu1,1 from frame
198:17, except that it uses linear
instead of linear1,1

(define relu 
 (λ (t)
  (λ (θ)
   (rectify ((linear t) θ)))))

30 How would we use
this with our example
from frame 9?



We would invoke it with a

t

that has the shape

(list 7)

and a

θ

made up of

(list w b)

where

w

has the shape

(list 4 7)

and

b

has the shape

(list 4)

What is the shape of the output
tensor1?

31 Since we have relu as
the layer function, the
number of neurons is
determined by how
our θ is shaped.

Since rectify does not
affect the shape of

(linear t)

it has the same shape,
which is a tensor1 of
the same length as the
number of neurons in
the layer.

In this example, it is

(list 4)



Absolutely right.

A layer of m neurons with an input of
length n should be provided a θ where
θ0 has the shape

(list m n)

and θ1 has the shape

(list m)

What is the shape of the output tensor
of this layer?

32 It is the same as the
number of neurons in
the layer

(list m)

Very good.

We use this relationship between the
shapes of t, θ0, and θ1 of relu to
design our networks.

33 Could we see another
example of these
shapes?

Sure.

Suppose we have an input tensor1 of
shape

(list 4)

and we want to pass it to a layer of 3
neurons so that we get a tensor of
shape

(list 3)

what should the shape of θ0 be?

34 Based on frame 32, n
is 4, m is 3, so the
shape of θ0 should be

(list 3 4)



And what should the shape of θ1 be? 35 It should be the same
as

(list m)

which here is

(list 3)

The list of shapes of the tensor2 and
tensor1 parameters necessary for a
layer is known as the shape list of the
layer.

What is the shape list for our example
layer above?

36 It is

(list
  (list 3 4)
  (list 3))

And, in general, for a dense layer of m
neurons and an input length of n?

37 It is

(list
  (list m n)
  (list m))

Perfect.

Let's start, as hinted in frame 3,
putting together simple networks
using our only known layer function
relu.

38 Will we see more
layer functions?



There are more coming up, but for
now we restrict ourselves to relu.

Here is a simple network function

(define 1-relu
 (λ (t)
  (λ (θ)
   ((relu t) θ))))†

Here we have 1 layer, since there is
only one invocation of the layer
function relu.

 
†Feel free to skip this framenote.
This 1-relu's body in two η-reductions simplifies to

 relu

Thanks, Alonzo Church.

39 What is a network
function?

A network function assembles layer
functions together so that the output
of one layer becomes the input to the
next layer.

40 But that also looks
like a target function?

It does. 41 If they are so similar,
why do we have
different names for
them?



Their ultimate purposes are different.

Network functions are intended to be
target functions for a gradient descent
optimization process where a θ will be
learned.

Layer functions, on the other hand,
are used to build network functions.

42 So 1-relu is a 1-layer
network function,
built using the layer
function relu.

Can we see network
functions with more
than one layer?

Here is a skeleton of a 2-layer network
function

43 How is this a 2-layer
network function?

The result tensor of the first, inner
invocation of relu is passed on to the
second, outer invocation of relu.

44 Ah, so the output of
the first layer,
becomes the input to
the second layer.

Aren't we supposed to
find R?



In a minute.

Let us understand the skeleton a little
more. Each of those

relus

requires

two tensor parameters in θ

How many tensor parameters should
θ have?

45 Because we have two
layers in this network
function, and we need
two tensor
parameters for each
layer. The θ then
must have four tensor
parameters.

Correct.

The first two parameters, θ0 and θ1,
are meant for the first layer (i.e., the
inner relu).

This inner relu can simply access
them directly from θ.†

Does it matter that when the first
layer function is invoked with θ, it has
4 members in it?

 
†A slightly more persnickety version of this would
be to construct a new list from θ0 and θ1 and pass
that to the innermost relu instead. Here, however,
we use the simpler alternative.

46 In frame 27, we see
that relu contains a
linear where only θ0
and θ1 are used.

So, it doesn't matter
that the θ for the first
layer has more than
two members in it
because the
remaining members
are not used by that
layer function.

Good.

The last two parameters, θ2 and θ3,
are arguments to the outer relu.

Now find R.

47 R must be the θ
argument of the outer
relu, which must be a
list consisting of θ2
and θ3. So is this



(list θ2 θ3)?

Correct.

But there's another function that can
be used here and is more general.

48 What function is that?

It is a function that gives us the rest of
the list starting at the ith member of a
non-empty list l, where i is positive.

We write it†

li↓
 

†Thanks, Kenneth Eugene Iverson (1920–2004).

49 An example?

For example

1.  (list 2 4 8 9 6 3 7)4↓

2.  (list 6 3 7)

50 Ah!

This example gives us
the rest of the list
starting at index 4.

So instead of

(list θ2 θ3)

we can use

θ2↓



Perfect.

Here's 2-relu

(define 2-relu
 (λ (t)
  (λ (θ)
   ((relu
    ((relu t) θ))
    θ2↓))))

We use θ2↓ to get the rest of θ starting
at index 2. Now let's define a 3-layer
network function, 3-relu.

51 Can we use 2-relu to
define 3-relu?

Yes we can!†

Define a function 3-relu which is a 3-
layer network function, with three
relus. And do it using 2-relu.

 
†Thanks, Keith Chapman (1959–) for the creation
of Bob the Builder (1997–).

52 How about this?

(define 3-relu
 (λ (t)
  (λ (θ)
    ((2-relu
    ((relu t) θ))
    θ2↓))))

Very good.

We first invoke relu on the input t,
and let it use up the first two members
of θ. This is the output of the first
layer.

So, θ must have two tensor
parameters for each of those

relus

53 We pass the output of
the first layer to 2-
relu, which is a 2-
layer network
function, and provide
it with all but the first
two members of θ.

Can we generalize
these functions for
any given natural



Now explain the rest of it.
any given natural
number k of layers?

Yes, indeed!

But we'll get there in a couple of steps.
Let us begin with a simple recursive
function that can do this

(define k-relu
 (λ (k t θ)
  (cond
   ((zero? k) t)
   (else (k-relu (sub1 k)
      ((relu t) θ)
      θ2↓)))))

We start with a tensor t and run it
through k invocations of relu, at each
invocation using up two members of θ
to produce a final output tensor.

54 It is defined so that at
least one of the
expression's values
shrinks. Here k
shrinks because of
(sub1 k) and θ shrinks
because of θ2↓.

But this isn't quite
correct, is it?

It is not!

The problem is that network
functions, as in 1-relu, 2-relu, and 3-
relu above, must take their arguments
t and θ one at a time. So k-relu needs
nested λ-expressions. And, the else-
clause would have to include more
parentheses.

55 Could we do this
slowly?



Yes, indeed.

In the dashed version above, there are
three arguments. In the next dashed
version, we take the first argument
and separate it out into a λ of its own

(define k-relu
 (λ (k)
  (λ (t θ)
   (cond
    ((zero? k) t)
    (else ((k-relu (sub1 k))
       ((relu t) θ)
        θ2↓))))))

The only implication of this is that
when we invoke k-relu, we must first
provide the argument for k, and then
provide the other two

((relu t) θ)

and

θ2↓

56 In other words,
instead of invoking

(k-relu (sub1 k) 
((relu t) θ) θ2↓)

we invoke

((k-relu (sub1 k))
((relu t) θ) θ2↓)

And we can repeat
that for

(λ (t θ) …)

as well.



•

Correct.

Here is the final k-relu

(define k-relu 
 (λ (k)
  (λ (t)
   (λ (θ)
    (cond
     ((zero? k) t)
     (else (((k-relu (sub1 k))
       ((relu t) θ)
       θ2↓))))))))†

57 This definition seems
quite complex.

 
†Each step from frame 54 is
known as “Currying.”
Thanks, Moses Schönfinkel
and Haskell Brooks Curry.

Let's analyze it case-by-case.

When k is 0, we have no layers. So the
result is the input, t.

When k is positive, we find the result
of the first layer

((relu t) θ)

invoking relu on the input t, and then
taking that result, and invoking it on
θ. This uses up the first two members
of θ.

What happens next?

58 The expression (k-
relu (sub1 k)) gives us
a neural network
consisting of k − 1
layers. We invoke this
slightly smaller
network on the result
of the first layer

((relu t) θ)

and provide it the
remaining members
of

θ

Could we see an
example?



Here is an example where k is 4, with t
and θ as the remaining arguments

Complete the rest of this same-as
chart.

59 Here it is

So (k-relu 4) gives us
4 invocations of relu!

Great.

Now let us look more carefully at a θ
that goes with a network function
created using k-relu.

What should θ look like for any given
k?

60 In the definition of k-
relu, we see that every
recursive invocation
of k-relu is
accompanied by a θ2↓,
which peels off 2
tensor parameters
from θ.



Since this happens k
times for k layers, the
length of θ is 2k.

In this θ, which members are weights
and which ones are biases?

61 From the definition of
relu, we know that its
θ0 is a weight, and its
θ1 is a bias.

This means that in a θ
for k layers, every
member at an even
index† is a weight
tensor, and every
member at an odd
index is a bias tensor.

 
†Since lists are indexed
starting at 0, we consider 0
to be even.

For the ith layer, at which index would
we find its weight tensor?

62 We would find it at 2i.

And the bias tensor? 63 We would find it at 2i
+ 1.



Excellent.

So, if the width of the ith layer of the
neural network is

m

and the length of its input is

n

What are the shapes of the tensors at

2i

and

2i + 1

64 The tensor at 2i is the
weight tensor and it
has the shape

(list m n)

The tensor at 2i + 1 is
the bias tensor and it
has the shape

(list m)

Great.

It's time for a slightly bigger example.
Let's take a 3-layer network where the
input is a tensor1 of shape

(list 32)

and the width of

the first dense layer is 64
the second dense layer is 45
the third dense layer is 26

What is the network function for this
network?

65 It is

(k-relu 3)

And, what is the length of 66 It is twice the number



θ? of layers

6

Correct.

The first layer is 64 neurons wide,
with the input of shape

(list 32)

So, θ0 must be of shape

(list 64 32)

and the shape of θ1 must be

(list 64)

What about the second layer?

67 The second layer
receives its input
from the first layer, so
its input has the
shape

(list 64)

The width of this
layer is 45 so θ2 must
have the shape

(list 45 64)

and the shape of θ3
must be

(list 45)

The third layer receives its input from
the second layer, so its input has the
shape

(list 45)

68 What are θ4 and θ5?

The width of this layer is

26

so

θ4

must have the shape

(list 26 45)

69 The shape of

θ5

comes directly from
the width of the layer

(list 26)



( 45)

What about θ5?

Correct.

If we combine all these shapes into a
single list, we get a shape list for the
network.

What is the shape list for this
network?

70 It is

(list
  (list 64 32)
  (list 64)

 (list 45 64)
  (list 45)

 (list 26 45)
  (list 26))

Excellent.

Together (k-relu 3) and this list of
shapes fully describe our example
neural network.

71 How do we go from
this description of a
neural network to a
fully working one?

Step-by-step!

We'll learn the next step in the next
chapter.

72 Ooh … time for
another snack!

Shapey Toys
•2,1 219

linear 220
relu 221

li↓ (where l is nonempty and i is positive) 226
k-relu 229



How about a triple berry trifle?
With some whipped cream, of course!





 
†With apologies and thanks to William John Clifton Haley (1925–1981), Bill Haley and His
Comets of the 1954 recording for Decca records, Marshall Edward Lytle (1923–2013),
Francis Eugene Beecher (1921–2014), William Famous Williamson (1925–1996), John
Andrew Grande (1930–2006), William Gussak (1920–1994), Donato Joseph Cedrone
(1920–1954), Joseph D’Ambrosio (1934–2021), Producer Milton Gabler (1911–2001), and
song writers Max Charles Freedman (1893–1962) and James Edward Myers (1919–2001).



Refreshed? 1 The triple berry trifle hit
the spot.

Let's go back to our 3-layer
network from frame 232:65
where the input is a tensor1 of
shape

(list 32)

and the width of

the first dense layer is 64
the second dense layer is 45
the third dense layer is 26

2 Yes, where our network
function is

(k-relu 3)

And what about its shape list? 3 Interesting.

It is in frame 233:70

(list
  (list 64 32)
  (list 64)
  (list 45 64)
  (list 45)
  (list 26 45)
  (list 26))

Correct.

Here, we have constructed our
network function separately from
its shape list and we built the
shape list by considering only the
widths of each layer.

4 Is there a problem with
doing things that way?



While this separation is
sometimes useful, it is more
convenient when defining large
and complex networks, to

define the layer functions and
shapes together for each layer

and then

stack the layers to combine
them into a single network
function and a single list of
shapes

5 Hmm, that sounds a little
abstract.

Let's make it real, then.

We begin by introducing blocks.†
 

†A block is short for network building block.

6 What is a block?

A block associates a layer
function with its shape list.

7 Could we see an example?



Certainly!

Here is a block for the first layer
in our example network

(define layer1
 (block relu
  (list
   (list 64 32)
   (list 64))))

Now we invoke the function block
on two arguments.

Explain these two arguments.

8 The first argument is the
layer function relu and the
second argument is the
shape list for 64 neurons,
and an input tensor1 of
length 32 with shapes in
frame 232:67.

Should we define the
second layer similarly?

We should.

Show a block for the second layer,
layer2 from that frame, with 45
neurons in it.

9 The shapes for the second
layer are also in frame
232:67. Here is how we
define the block layer2

(define layer2
 (block relu
  (list
   (list 45 64)
   (list 45))))

And what about the third layer? 10 It is defined like this

(define layer3
 (block relu
  (list
   (list 26 45)
   (list 26))))

But we still haven't seen
what block does!



•

•

An excellent point.

Here's how we define block

(define block 
 (λ (fn shape-lst)
  (list fn shape-lst)))

We refer to

fn

here as the

block function

and the

shape-lst

here as the

block list

11 So it just puts them
together in a list?

Simple, isn't it?

Define block-fn, which takes a
block and returns its function,
and block-ls, which takes a block
and returns its shape list.

12 Here they are

(define block-fn 
 (λ (ba)
  ba0))
 
(define block-ls
 (λ (ba)
  ba1))



Now let's see the real magic in
these blocks.

As frame 233:71 shows, a neural
network is fully described by a
network function and a shape list.

13 Oh, that means a neural
network can also be a
block!

So stacking blocks
together also produces
another block.

Let's define the neural network in
the example from frame 232:65

(define 3-layer-network
 (stack-blocks
  (list
   layer1
   layer2
   layer3)))

14 What is stack-blocks?

Here, stack-blocks is a function
that takes a list of blocks and
produces a new block whose
function

is a combination of the
individual block functions

and whose shape list

is made up by joining the
individual block lists

15 That needs some breaking
down, doesn't it?



Let's break that down a little by
way of our example, then.

We want our network to first
invoke the relu from layer1 on
the input tensor1 of length 32
using the first two parameters of
θ whose shapes are given by the
shape list of layer1.

What happens to the output of
that invocation?

16 The output of the
invocation of that relu will
be a tensor1 of length 64.

We invoke the relu from
layer2 on it, using the next
two parameters of θ whose
shapes are given by the
shape list of layer2.

Then we do the same thing
with the output of this
invocation but for layer3.

Precisely.

So, in the network, the three
relus from each of the layer
blocks are composed together
and this composite function
consumes 6 parameters from a
given θ.

What about the shapes of these 6
parameters?

17 The shapes of these 6
parameters are given by
joining together the shape
lists of each of the three
layer blocks.

The first two from layer1,
the third and fourth from
layer2, and the fifth and
sixth from layer3.

Can we now define stack-
blocks?



Yes, but in little pieces.

Here's a function block-compose.
It expects two block functions f
and g as its first two arguments.
Its third argument, j is the
number of parameters from θ
that f will consume

(define block-compose
 (λ (f g j)
  (λ (t)
   (λ (θ)
    ((g
     ((f t) θ))
     θj↓)))))

Explain what this function does.

18 It returns a block function
that expects a tensor t
followed by θ, and then
first invokes f on t and
then θ.

The result of this
invocation is sent as an
argument to the
invocation of g, along with
a θ from which the first j
parameters have been
removed, because those j
parameters are intended
for f.

Could we see an example
of how this function
works?

Sure.

Let us compose two relus
together. We know that a relu
expects two parameters, so j will
be 2

1.  (block-compose relu relu
2)

2.  (λ (t)

     (λ (θ)

      ((relu

       ((relu t) θ))

       θ2↓)))

19 This is the same function
as 2-relu, isn't it?



It is!

We could also define 2-relu this
way

(define 2-relu
 (block-compose relu relu 2))

20 This doesn't seem like
enough to define stack-
blocks.

No, it isn't.

We must also find a method to
join the two block lists.

21 There must be a function
for that.

There is, and it is called append.
Here is how it works

1.  (append (list 3 6 1) (list 7
2))

2.  (list 3 6 1 7 2)

22 How does it behave on the
block lists of layer1 and
layer2?

Let us find out

Finish this same-as chart.

23 Here it is

So append preserves the
shapes, but joins the lists
of shapes in the order of
the arguments.



Correct.

We can use block-compose in
frame 18 and append in frame 22
to define a function stack2 that
stacks two blocks ba and bb. Here
is its skeleton

Find B, C and D.

24 B is the third argument to
block-compose so it must
be the number of
parameters consumed by
the block function

(block-fn ba)

which is

|(block-ls ba)|

C and D are shape lists
that must be appended to
get the final shape list for
the block. Therefore

C is (block-ls ba)

and

D is (block-ls bb)

Great.

Here is stack2

(define stack2
 (λ (ba bb)
  (block
   (block-compose
    (block-fn ba)
    (block-fn bb)
    |(block-ls ba)|)
   (append
    (block-ls ba)
    (block-ls bb)))))

25 Are we now ready to
define stack-blocks?



We are!

The function stack-blocks takes
one argument bls, which is a list
of blocks that we must stack

Here, the predicate null? checks
whether a list has any members.
The stacking is done by stacked-
blocks whose first argument is a
list of blocks, and whose second
argument is a block that starts off
the stacking.

26 It seems that these
definitions follow the law
of simple accumulator
passing.

We're invoking stacked-
blocks with the second
argument as the first block
in bls, and the first
argument as the remaining
blocks in bls.

We must find A, mustn't
we?



We must!

The function stacked-blocks
accepts two arguments, the first
being a

list of blocks rbls

and the second

a block ba

onto which the blocks from rbls
will be stacked.

The second argument ba can be
thought of as an accumulator that
holds a partially-combined block.

Now find A.

27 Here, if rbls is empty, then
we don't need to do any
further stacking and, we
return the partially-
combined block ba.

Otherwise, we must
combine the accumulator
block

ba

with the first block

rbls0

and use it as the new value
of the accumulator as we
traverse down the rest of
the blocks using stacked-
blocks.

So, A is

(stack2 ba rbls0)



•

Excellent.

Here's the complete definition

(define stack-blocks 
 (λ (bls)
  (stacked-blocks bls1↓ bls0)))
 
(define stacked-blocks
 (λ (rbls ba)
  (cond
   ((null? rbls) ba)
   (else
    (stacked-blocks rbls1↓
     (stack2 ba rbls0))))))

28 How about an example of
how it works?

Sure. 29 Here we go



Now finish this same-as chart.

The Law of Blocks



Blocks can be stacked to form bigger blocks and complete
networks.



•

Excellent.

We can also define functions that
produce specific kinds of blocks.
Here's a useful one

(define dense-block 
 (λ (n m)
  (block relu
   (list
    (list m n)
    (list m)))))

Here n is the length of the input
tensor and m is the number of
neurons. Explain what dense-block
does.

30 It produces a dense
layer block with relu as
the block function and
the corresponding
dense layer shape list
for m neurons working
on a tensor1 of length n.

Great.

Using dense-block, rewrite our
definitions of layer1, layer2, and
layer3.

31 Here they are

(define layer1
 (dense-block 32 64))
 
(define layer2
 (dense-block 64 45))
 
(define layer3
 (dense-block 45 26))



Once we have a network defined like
this, and we have a data set, we can
find a well-fitted θ for the network
function such that the members of θ
have exactly the shapes dictated by
the shape list of the network.

But we'll learn how to do that in the
next chapter.

32 What's our next
dessert?

Blocky Toys
block 239

block-fn 240
block-ls 240

stack-blocks 245
dense-block 247

How about a stack of crêpes suzette?
Flambéed!

This space reserved for caramel stains







How was that stack of crêpes suzette?†

 
†Thanks, Henri Charpentier (1880–1961) and thanks,
Julia Child (1912–2004) for popularizing.

1 Orangey!

Up and away, then!

Here we introduce Uncle Edgar. He loves
growing irises.

2 First apples and
now irises!

Uncle Edgar has 150 iris plants in his
garden from 3 different species

Iris Setosa
Iris Versicolor
Iris Virginica

He has 50 plants of each species.

3 That's a lot of
plants!

Uncle Edgar is obsessed with data about
his irises.

4 What kind of
data?



He takes a flower from each plant, and
measures

the width and length of the sepals
the width and length of the petals

and he records the species of the plant
from which the flower has grown.†

Uncle Edgar believes that these four
scalars are enough to correctly classify an
iris according to its species.

 
†Thanks, Edgar Shannon Anderson (1897–1969) for the
original iris data set.

5 What's a sepal?

A sepal is one of the divisions of the
calyx. The calyx connects the flower to its
stem.

6 What does Uncle
Edgar's data set
look like?

Here is an entry in Uncle Edgar's data set

Petal Length: 5.1 cm.
Petal Width: 3.5 cm.
Sepal Length: 1.4 cm.
Sepal Width: 0.2 cm.
Species: Setosa

7 Those four
numbers can be
put into a tensor1

of length 4.

Correct.

We rewrite this entry in our iris data set
as

x: [5.1 3.5 1.4 0.2]
y: Setosa

8 But y is not a
tensor here!



That is correct.

We cannot use this data set directly with
our functions yet. We must encode a set
of discrete species as a tensor.

9 How can we do
that?

Since we have 3 species, we use a tensor1

of length 3, assigning an index to each
species.†

So, for example, we say that

index 0 corresponds to Setosa
index 1 corresponds to Versicolor
index 2 corresponds to Virginica

10 How would we
encode, say,
Versicolor?

 
†These indices are
generally assigned
arbitrarily, but we
choose to assign them
alphabetically.

Since the index of Versicolor is 1, we
make the element of the tensor at index 1
be 1.0 and the elements at the other two
indices be 0.0. The resulting tensor would
look like

[0.0 1.0 0.0]

What would the tensors for Setosa and
Virginica be?

11 The index for
Setosa is 0; the
tensor would look
like

[1.0 0.0 0.0]

The index for
Virginica is 2; the
tensor would look
like

[0.0 0.0 1.0]



Correct.

This way of assigning outputs is an
encoding known as

one-hot†

It is a common way of assigning input
tensors to classes. Here we have three
classes, one for each species.

 
†Thanks, Leopold Kronecker (1823–1891).

12 Why do we use
1.0?

Why not some
other scalar like
328.9?

A very good question.

It has to do with degrees of belief.

13 What is a degree
of belief?

It is the confidence we have about a
certain statement.

Suppose we know for certain that we have
an iris of the species Versicolor. Then we
say with 100% confidence that the iris
belongs to that class

100% = 100/100 = 1.0

14 Oh, so that is why
we say that the
different indices
representing each
species should be
1.0, since it
represents a 100%
confidence.



Correct.

At the same time, if an iris belongs to one
species, we have 0% confidence that the
iris belongs to either of the other species.

15 That is why the
scalars at indices
other than the one
for a given species
are 0.0.

So the output
tensor reflects our
confidence that a
certain iris
belongs to a
particular species.

Yes, that is exactly the interpretation of
our output tensor.

So what should Uncle Edgar's entry in
frame 8 look like as tensors?

16 Since this entry
corresponds to
Setosa, and our
index for that is 0,
so the entry looks
like

x: [5.1 3.5 1.4
0.2]
y: [1.0 0.0 0.0]

Excellent.

We rewrite all the remaining points, so
that our iris data set consists entirely of
tensors.

How can we define a function to
automatically classify a new iris if we
know only its measurements?

17 Should we use the
toys we have in
our toy chest?



Yes, we should!

We must find a target function whose θ
can be learned using gradient descent on
Uncle Edgar's data set.

18 Great.

How do we get
started?

We begin by designing a network made
from dense layers like in chapter 12.

19 Exciting!

Our first decision is how many layers we
want, and how wide to make each layer.

20 How do we decide
that?

Let's start with the output layer, which is
the last layer in our network.

We know that each y in our data is a one-
hot encoding of size 3, so, in order to
compare a predicted y with an actual y,
each predicted y must also be a tensor1 of
shape

(list 3)

Based on what we know of dense layers,
how wide should the output layer be?

21 It should have a
width of 3.

Correct.

The network we're building assigns each
input x a class y by producing a one-hot-
like tensor.

22 What is a one-hot-
like tensor?



It is like a one-hot tensor, but here the
degrees of belief for the individual classes
may be any number between 0.0 and 1.0.
We refer to this encoding as

one-hot-like

23 Does this mean
that our degree of
belief for a given
class is neither 0%
nor 100%?

That is exactly what it means. 24 How do we then
decide what class
that tensor
represents?

In a one-hot-like encoding, the class with
the highest degree of belief is the one we
deem to be predicted. For example, a
predicted y could be something like

[0.2 0.7 0.1]

What class does this represent?

25 Here the highest
degree of belief is
at

index 1

which stands for
the class

Versicolor

We need more
layers in our
network, don't
we?

For Uncle Edgar's data set, we add just
one more layer.

26 Is it still a deep
network?

Yes, indeed!

Let's make the width of this layer 6.

27 Why 6? Why not 8
or 2?



In general, the layers closer to the input
are wider than the layers closer to the
output.

28 Why is that?

The layers closer to the input are
responsible for learning some of the more
primitive characteristics of the data set,
and the layers closer to the output learn
more advanced characteristics based on
the output produced by the earlier layers.

Here we pick the width 6 because it is
reasonably larger than 3. The actual
choice of the widths is done somewhat
empirically.

29 Does that mean
we establish it
through
experiments?

That is correct.

The design of the network and the choices
of scalars for the hyperparameters are
often determined by experimenting on
the whole data set, or smaller subsets of
it, although the statistics of the data set
can help with some design decisions.

30 Okay.

Back to our problem of irises.

We have now established a design for our
deep neural network.

31 Yes.

It has two layers,
the first one being
6 neurons wide
and the second
one being 3
neurons wide.



Using dense-block from frame 247:30,
define this network.

32 Here it is

(define iris-
network
 (stack-blocks
  (list
   (dense-
block 4 6)
   (dense-
block 6 3))))

What next?

Now we train the network. 33 What does
training the
network mean?

Training is the process of learning a well-
fitted θ for the network function using a
data set.

34 So to train iris-
network, we must
find a well-fitted θ
for its network
function using
Uncle Edgar's data
set.

We must, but there is one more thing we
need first.

We need an initial estimate of θ to start
the process.

35 Why can't we use
zeros as we did
before?



We do use zeros for all the bias
parameters in a θ.

36 Okay. That means
that all the
tensors1 in our θ
are initialized with
0.0.

What about the
weights, which are
the tensors2 in our
θ?

The story is different for the weights,
because it leads to a big problem.

When all the scalars in a tensor2 are the
same (in this case 0.0), all the tensor1

elements of that tensor2 are also identical.

What does that mean for the result of *2,1

that is part of relu?

37 All the tensors1 in
the output of the
*2,1 will be
identical, and
consequently, the
result produced by
relu will contain
identical scalars.

Correct.

So rather than each neuron making a
different small decision about its input,
all the neurons in the layer end up
learning to make the same decision over
and over again.

38 So it seems as if
we need to have
non-identical
scalars in the
tensors2 in θ.

The best thing to do for a network made
up of relus is to initialize the weights in θ
with random scalars.

39 How does having
randomly
initialized weights



help?

Since randomly initializing weights
generally ensures that each weight has a
different value most of the time, every
neuron in the network will behave
differently.

40 So each neuron
will learn to make
different
decisions.

Correct.

It makes the network more effective at
what we're trying to make it do. This is
known as breaking the symmetry
between neurons.

41 Okay, let's go with
that then.

We can't as yet.

We encounter a second problem when we
use random weights in networks with lots
of layers.

42 What problem is
that?

Imagine a single scalar in an input tensor.
As it makes its way through each layer, it
is multiplied by a weight scalar, and
added to a sum, and when there are many
layers, each of those layers indirectly
multiplies that input scalar.

43 So in the output of
the network, the
effect of a scalar in
the input is felt
through the
multiplication of a
number of
weights.



That is correct.

What would happen if all those weights
were large numbers?

44 Ah, the outputs
could become very
large due to the
presence of so
many large
weights.

What does it mean
for our network?

It means the numbers are too large to
give us meaningful results, and will often
give rise to numerical errors in the
program. We refer to this as

exploding

45 What if we made
those weights
really tiny
fractions?

Conversely, if those weights are tiny
fractions, multiplying them together with
a scalar in the input is likely to yield a
number that is really close to zero. We
call this

vanishing

46 Oh, that's not
really good either,
is it?

A related problem with having weights
too large or too small is that the gradients
that we calculate for them when using
gradient descent can also become very
large or very small. This is known as the
exploding or vanishing gradient problem.

Together these problems make it difficult

47 So, we need our
weights to be

random
not too large
not too small

That's a tall order!



Together these problems make it difficult
to train the network.

That s a tall order!

Actually, it isn't.

Let us begin by addressing the first
requirement. Here is a function

random-tensor

that takes three arguments

c a central value
v a variance
s a shape

48 Does this function
produce a tensor
of shape s with
random scalars?

It does!

The arguments c and v control the nature
of these randomly generated scalars.

49 How do they do
that?

The central value argument c dictates that
the average of all the random numbers in
the tensor should be as close to c as
possible.

In other words, the random numbers are
sprinkled somewhat evenly around the
value of c.

50 Okay.

What does
variance mean?

The variance argument v determines how
far away from c a given random number
is likely to be.

For example, a smaller value of v will
mean that most of the random numbers

51 How does all this
help in initializing
our network?



mean that most of the random numbers
are closely clustered around c whereas a
larger value of v will mean that some
random numbers are more likely to be
farther away from c.

In order to avoid the instability and
vanishing problems, we should always
initialize our weights to a central value of

0.0

52 What about the
variance?

Without getting into the mathematical
proof of it, the best value for variance is
given by

where n is the length of the input of the
layer.†

 
†This result is specific to networks that use rectify and
is known as He initialization (see Epilogue).

53 So each layer has a
different variance
based on the
length of its input.

That's a curious
formula.

Yes, that formula makes sure that in deep
networks, the weights stay in a very tight
cluster around 0.0 so that when a scalar
from the input tensor is multiplied with
weights in each layer, the result neither
explodes nor vanishes.

54 Okay.

So we must now
use the shape list
of iris-network
and apply these
initialization rules
to it.



The Rule of Layer Initialization
(Initial Version)

The bias tensor1 of a layer is initialized to contain only 0.0
The weight tensor2 of a layer is initialized to random

scalars with a central value of 0.0 and a variance of 2/n
where n is the length of the input to the layer.



Yes, and we can bake that into a
function.

Here is a function init-θ that accepts
a single argument shapes, which is a
shape list corresponding to a θ

(define init-θ
 (λ (shapes)
  (map init-shape shapes)))

Its task is to produce a randomly
initialized θ based on the shapes
found in the shape list.

55 It maps the function
init-shape over each
shape in shapes.

This means that init-
shape must generate
the tensor we need
from its argument
shape.

Correct.

When that shape is of the form

(list m)

we know that it corresponds to a bias
tensor. This means we have to
construct a tensor with 0.0's in that
shape.

56 Is there a function for
that?

There is!

It is called zero-tensor and it takes a
shape as its argument and produces a
tensor with that shape, but every
scalar in that tensor is 0.0.

For example

1.  (zero-tensor (list 5))

2.  [0.0 0.0 0.0 0.0 0.0]

57 Seems like exactly
what the doctor
ordered.

What if our shape
corresponds to a
weight tensor?



In the case of dense layers, the shape
corresponding to a weight tensor is of
the form

(list m n)

where m is the number of neurons in
the layer and n is the length of the
input of the layer.

How should we initialize a tensor with
this shape?

58 As per our rule, it
must be randomly
initialized with a
central value of 0.0
and a variance as
given in frame 53.

Correct.

Here's a skeleton for init-shape

Find V.

59 V is the variance of the
weights, which is 2
divided by the length
of input. In the case of
the shape of weight
tensors, this is given
by the second member
of the shape

s1

Therefore, V is

(÷ 2 s1)

Here is init-shape

(define init-shape
 (λ (s)
  (cond
   ((= |s| 1) (zero-tensor s))
   ((= |s| 2)
    (random-tensor 0.0 (÷ 2 s1)
s)))))

60 Are we now ready to
train our neural
network?



Yes, we are!

Let's pick a data set to train it with.

61 Are we going to pick
Uncle Edgar's data set
of 150 plants?

Yes, but we won't use all of them.

We'll save some of those points for
testing our network.

62 Why haven't we done
this for our previous
data sets?

Great question.

Our previous data sets have been used
to illustrate only the process of
gradient descent and how to improve
it.

In practice, once a θ has been
learned, we must test it on points not
seen before in order to assess the
performance of the network.

63 How many points
should we set aside
from the data set?

We'll reserve 10%, or 15 points, of the
data set, with 5 picked randomly from
each of the three classes. We'll refer to
this as our test set.

64 Is that enough?

On larger data sets, the general
guideline is to use 20% of the data set
for testing. Since our data set here is
quite small, we limit the test set to
10%.

65 Okay.



We'll refer to the xs and ys for this
test set as

(iris-test-xs, iris-test-ys)

The remaining 135 points form the
training set. Let's refer to the xs and
ys for this as

(iris-train-xs, iris-train-ys)

66 Those names sound
reasonable.

Should we train our
network now?

Yes, we should!

What is the target function we need?

67 It is the network
function of iris-
network

which is

(block-fn iris-
network)

Great.

Let us give it a name

(define iris-classifier
 (block-fn iris-network))

68 Should we also name
the shape list?

That's a good idea!

(define iris-θ-shapes
 (block-ls iris-network))

69 Now could we please
train the network?



Here's the skeleton for finding θ
using stochastic gradient descent with
naked-gradient-descent and
sampling-obj

Find L and I.

70 L is an expectant
function. It is the
invocation of l2-loss
on a target function,
which here is iris-
classfier. So, L is

(l2-loss iris-
classifier)

I must be an initial θ,
initialized with
random values but
with the shapes given
by iris-θ-shapes. We
find it using

(init-θ iris-θ-
shapes)



Good answer.

Here's how we train our network to
obtain iris-θ, which is the well-fitted
θ for our training set

(define iris-θ
 (with-hypers
  ((revs 2000)
   (α 0.0002)
   (batch-size 8))
  (naked-gradient-descent
    (sampling-obj
     (l2-loss iris-classifier)
     iris-train-xs iris-train-ys)
    (init-θ iris-θ-shapes))))

The function iris-classifier, together
with

iris-θ, form a model.

71 What is a model?

A model is an approximation of an
idealized function represented by the
data set. This idealized function
yields, for every x in the xs of the data
set, the corresponding y from ys, but
also produces a y for any given x,
even if it is not in xs.

72 Why is this function
idealized?



•

We refer to it as idealized because we
assume its existence, but the evidence
we have of this is only the data set
itself. In other words, we don't have a

(λ (x) . . . some y . . .)

that defines this function.

For our irises, we define iris-model

(define iris-model
 (λ (t)
  ((iris-classifier t) iris-θ)))

Explain how this function behaves.

73 This function first
invokes iris-classifier
with the input tensor t
and then iris-θ. Its
result is the output
tensor produced by
iris-classifier.

We can generalize iris-model into a
function model that constructs a
model out of its two arguments, a
target function and a θ

(define model 
 (λ (target θ)
  (λ (t)
   ((target t) θ))))

Explain how this function works.

74 It accepts a target and
a θ and results in a
function that expects
an argument, and
invokes target on that
argument and the
given θ.

In other words, it
produces a model
derived from target
and θ.

Excellent.

Now define iris-model using model.

75 Here it is

(define iris-model
 (model iris-
classifier iris-θ))



Perfect.

If our model is trained properly, it
should produce results as close to the
idealized function as possible.

For example, if iris-model is given a
new set of measurements that are not
present in the training set, it still
correctly classifies most of the time.

76 How do we know that
the θ in this model is
well fitted?

That is an excellent question, but we'll
discover the answer to that in the next
interlude!

77 Oh, and we need a
snack, too, don't we?

Classy Toys
init-θ 262

zero-tensor 263
random-tensor 264

(iris-test-xs, iris-test-ys) 265
(iris-train-xs, iris-train-ys) 265

iris-classifier 265
iris-θ-shapes 265

iris-θ 266
model 267

iris-model 267



How about an exquisite mille-feuille?
Layers upon layers of deliciousness!





 
†Thanks, Sir Henry Joseph Wood (1869–1944).



The mille-feuille was wonderful. 1 The layers were
delightful!

In this interlude, we learn how to
determine if a given model is good
enough.

2 So then we can
determine if

iris-model

is good enough.

Correct.

So, let's quantify what “good
enough” means.

3 That would be helpful.

For a given input, classifiers
produce a one-hot-like encoding, as
in frame 255:23. This output
tensor1 encodes a class that the
input belongs to.

4 Yes.

The index with the
highest degree of belief
gives us the class.

To determine if iris-model is good
enough, we run iris-model on the xs
of a test data set.

In frame 265:66, we have saved a
few points in the form of iris-test-xs
and iris-test-ys for testing. Here's
where they come into play.

Write an expression for how we can
invoke iris-model on this test set.

5 We can invoke iris-
model directly on iris-
test-xs

(iris-model iris-test-
xs)



Perfect.

Let's name the result of this
expression iris-pred-ys. Then, we
compare the classes represented by
iris-pred-ys with the known classes
represented by iris-test-ys from
Uncle Edgar's Iris's data set.

We say that the model is accurate
for those inputs where the two
classes are the same.

6 What about when the
classes are not the
same?

Those are known as classification
errors.

The ratio of the number of accurate
classifications to the total number
of test inputs we have is known as
the accuracy of the model.

7 Ah, so we can measure
the accuracy of iris-
model to decide if iris-θ
is good enough.

Correct. 8 What's a good accuracy
score? Is it 1.0 (i.e., the
model is accurate on all
the test inputs)?

That usually depends upon the
problem we're dealing with, but
when problems are sufficiently
complex, no model is accurate on
all inputs. Not even homo sapiens.

For this problem, we'll consider 0.9
to be a good enough accuracy score.

9 So if 9 out of 10 inputs
are correctly classified,
we'll consider iris-θ to
be good enough.



Yes, that's right.

This way of judging models is quite
general, and we can use it for other
classifiers as well.

10 Aha!

Does that mean we can
define functions to
measure the accuracy of
classifiers in general?

It does.

And we can use those functions to
determine if any given model is
good enough for the problem we are
dealing with.

11 Exciting.

Can we start defining
these functions?

Absolutely.

Here is a function argmax1 that
finds the index in a tensor1 with the
highest degree of belief. It accepts a
one-hot-like tensor1 and determines
the index of its highest scalar. For
example

(argmax1 [0.1 0.3 0.6])

Write a same-as chart for this
expression.

12 The highest value in this
tensor1 is 0.6, which is
at index 2

1.  (argmax1 [0.1 0.3
0.6])

2.  2

How do we define this
function?

Here is the start of argmax1

(define argmax1

 (λ (t)
  (let ((i (sub1 )))
   (argmaxed t i i))))

13 It invokes a helper
function argmaxed with
a simple accumulator
passing of arguments.

How is argmaxed
defined?



Here's a skeleton for argmaxed. It
takes a tensor1 t, a count-down
index i, and a, which holds the
index of the highest element seen in
the tensor1 so far

Define next-a, which is used to find
â, the next a.

14 We must find whether a
must change to i or stay
the same. If i, has a
higher scalar at it in t
than the one at it in a,
then we use i as the next
a. Otherwise, we leave a
alone

(define next-a
 (λ (t i a)
  (cond
   ((> t|i t|a) i)
   (else a))))

Perfect.

Now find M.

15 When the count-down
index is greater than 0,
we continue with the
next lower index, but
now using â as the new
a. So M is

(argmaxed t (sub1 i)
â)



Excellent.

Here is the completed argmaxed

(define argmaxed
 (λ (t i a)
  (let ((â (next-a t i a)))
   (cond
    ((zero? i) â)
    (else
     (argmaxed t (sub1 i)
â))))))

Does this satisfy the law on page
43?

16 Indeed it does.

Since next-a and
argmax1 are not
recursive, we can ignore
them when determining
if argmaxed follows the
law of simple
accumulator passing.
The invocation within
argmaxed is not
wrapped, so we need to
look at only the formals
of argmaxed

t does not change
i changes towards
passing a base test

and

a accumulates a result

How do we use
argmax1?

When we have two one-hot-like
tensors1, say t and u, that represent
the same class, what can we say
about

(argmax1 t)

and

(argmax1 u)

17 We would expect them
to be equal. In other
words

(= (argmax1 t)
(argmax1 u))

would be true.



Correct.

We can use this property to begin
counting the number of tests that
succeed.

Here's a function

class=1

that expects

two one-hot-like tensors1

and

checks if they represent the same
class

(define class=1

 (λ (t u)
  (cond
   ((= (argmax1 t) (argmax1

u)) 1.0)
   (else 0.0))))

Explain what this function does.

18 It returns 1.0 if the two
tensors1 represent the
same class, and returns
0.0 otherwise.

What is the purpose of
such a function?

We'll see shortly.

Let us extend this function

(define class=
 (ext2 class=1 1 1))

19 Ah, so we can compare
iris-pred-ys with iris-
test-ys with a single
invocation of class=

(class= iris-pred-ys
iris-test-ys)

But this just gives us a
tensor1 of 1.0's and
0.0's.



And that is exactly what we want,
because then we can sum this
tensor1 to count the number of
inputs where iris-model is accurate

(sum
 (class= iris-pred-ys iris-test-
ys))

How do we find the accuracy from
this?

20 We must divide it by the
number of test inputs

(÷ (sum
  (class= iris-pred-
ys iris-test-ys))
 )

Excellent.

We can generalize this into an
accuracy checker for any given
model, a test xs and a test ys

Find C and D.

21 We can find the
predicted ys

(a-model xs)

and compare it with ys

(class= (a-model xs)
ys)

and then sum the result
to get C

(sum (class= (a-model
xs) ys))

D is the number of
inputs, which is



•

Perfect.

Here is the completed accuracy

(define accuracy 
 (λ (a-model xs ys)
  (÷ (sum (class= (a-model xs)
ys))
   )))

How can we use this function to
measure the accuracy of iris-model?

22 We can invoke the
accuracy function

Wow. Does that mean
our model is 100%
accurate?

It does happen to be 100% accurate
on our small test set of 15 points.
This is not so unusual because our
data set is simple.

In larger, real-world data sets,
accuracies rarely reach such high
levels.

23 How have we arrived at
those hyperparameter
scalars that were chosen
to train iris-classifier?

Those hyperparameter scalars are
derived empirically, but there is a
more systematic way to determine
them.

24 That's exciting!

What is the way?



When trying to determine these
scalars empirically, we try different
combinations for them.

If we know the sequence of scalars
that we want to test for each
hyperparameter, we can
systematically “loop” through each
of those scalars for each
hyperparameter until we get a
satisfactory θ.

25 Do we use accuracy to
determine if a θ is
satisfactory?

Yes.

We can do that if our target
function is a classifier. There are
other tests for other kinds of target
functions.

This way of testing different
combinations for the best one is
known as

grid search

26 Do we need something
to help us perform a grid
search?

We do!

Here's how we do grid searches

27 This is similar to with-
hypers, but it seems as
if there could be more
than one scalar for each

hyperparameter



Indeed.

These are the sequences containing
at least one scalar (and typically
more) that grid-search tries for
each

hyperparameter

28 How are these
sequences used in grid-
search?

In this example, grid-search first
starts with

revs is 500
α is 0.0001

and

batch-size is 4

It then finds a θ using the body

(naked-gradient-descent
 (sampling-obj
  (l2-loss iris-classifier)
  iris-train-xs iris-train-ys)
 (init-θ iris-θ-shapes))

29 This body is similar to
what we would use with
with-hypers.

Correct.

Once it has this θ, it tests it with the
function accurate-enough-iris-θ?,
which yields #t if this θ is accurate
enough.

30 How is accurate-
enough-iris-θ? defined?



Here we define accurate-enough-
iris-θ? that checks whether the
accuracy of a given θ when used
with iris-classifier and the test set

(iris-test-xs, iris-test-ys)

is high enough

(define accurate-enough-iris-θ?
 (λ (θ)
  (⩾ (accuracy
    (model iris-classifier θ)
    iris-test-xs iris-test-ys)
   0.9)))

31 This function yields #t if
the accuracy is greater
than or equal to 0.9.

What happens when a θ
is not accurate enough?

A great question.

If accurate-enough-iris-θ? for a θ
is #t, then grid-search yields that
θ.

If however, accurate-enough-iris-
θ? for a θ is #f, then grid-search
tries another combination.

Then, it keeps the scalars for revs
and α the same as before, but it
goes on to the next scalar for batch-
size, which is 8.

32 So the new combination
to try

revs would be 500
α would be 0.0001

and

batch-size would be 8



Excellent.

After it reaches the final scalar in
the batch-size sequence and the θ is
still not accurate enough, it starts
batch-size again at the beginning of
the sequence, i.e., at 4.

For α, however, it continues with
the next scalar in the sequence
0.0002, and then tries all the
scalars of batch-size again.

33 And when it runs out of
α and batch-size
scalars?

It does the same thing: starts with α
and batch-size back at the
beginning, but chooses revs's next
scalar, and it continues to test
whether the θ from the body is
good enough.

34 What happens if we
don't find any θ that is
good enough and we run
out of scalars for revs as
well?

Then grid-search itself gives us #f. 35 This means that the grid
search failed.

Correct.

When that happens, we have to try
different sequences of scalars for
hyperparameters in the grid-
search, or possibly try a different
target function (e.g. a network with
a different number of layers or
different layer widths) to use as a
classifier Or in some situations we

36 Okay.



classifier. Or, in some situations, we
might have to settle for lower
accuracy.

Here is the general form of grid-
search

(grid-search good-enough?
 ((hyperparameter scalar
scalar . . .)
 . . .)
 body)

where body produces a θ, good-
enough? tests whether that θ is
good enough, and the scalar
sequences define all the different
combinations that we would like to
try for each

hyperparameter

37 This grid-search is a
systematic way to
determine
hyperparameter scalars.

It is!

For now, another snack!

38 Something delicious
again?

Training Toys
accuracy 276

grid-search 278



How about some Belgian waffies?
Swimming in maple syrup!







The Belgian waffies† also taste delicious
dripping in strawberries and whipped cream.

 
†Thanks, Maurice Remi Pierre Vermersch (1914–2021).

1 A tasty
delight!

Let's learn about signals. 2 What are
signals?

They are best learned through an example.

A pair of loquacious learners, Alice and Bob, are
close friends and even closer neighbors, but they
are forbidden from using their phones at night.

3 So what do
these
loquacious
learners do?

They decide to use flashlights† to communicate.
 

†Thanks, David Misell (1846–1948).

4 How do
they do
that?

They use the International Morse Code.†
 

†Thanks, Alfred Lewis Vail (1807–1859), thanks, Samuel Finley
Breese Morse (1791–1872) and thanks, Friedrich Clemens
Gerke (1801–1888).

5 You mean
the one with
dots and
dashes?

Exactly!

A dot ( ) is a short flash and a dash ( ) is a long
flash. Each letter of the English alphabet is
encoded as a series of dots and dashes separated
from each other by a short space.

For example, the letter a is

6 What about
the letter �?



The letter b has the code 7 So the
letters can
be of
different
lengths?

Yes.

The International Morse Code has many
different symbols, but here we restrict our
attention to exactly 26 symbols: one for each
letter of the alphabet.

8 Does that
mean we
can
transmit
any
message
using only
dots and
dashes for
each letter?

Indeed!

That way, Alice and Bob can talk all night using
their flashlights.

Alice and Bob decide to build a machine to
decode these flashlight messages.

9 They have
to make one
machine for
Alice and
another one
for Bob!

Yes, they do.

The machine uses an optical sensor on the
window to detect flashes of light from the other
learner's flashlight.

10 What's an
optical
sensor?



An optical sensor converts light that falls on it to
an electrical output.

The machine then measures the voltage of that
electrical output.

11 What's
voltage?

It is a measure of the strength of the electrical
output of the optical sensor.

When there is no light falling on the sensor, the
voltage is

0.0 volts†

When light from a flashlight falls on the sensor,
the voltage is

proportional to the light's strength

For this example, we'll take the sensor's voltage
to be between

0.0 (when the flashlight is off)

and

1.0 (when the flashlight is on)
 

†Thanks, Alessandro Volta (1745–1827).

12 How does
the optical
sensor
behave
when it is
receiving a
message?



Let's assume Bob is sending

which is the letter �.

Initially, Bob's flashlight is dark. It is turned on
for a short period for the dot ( ) and then turned
off for a short period. Then it is turned back on
for a longer period for the dash ( ) and finally it
is turned off.

13 How does
the output
of the
optical
sensor
change over
these
events?

Initially, when the flashlight is dark, Alice's
optical sensor has an output of 0.0 volts. Then,
when it is turned on for the dot, the output of
the optical sensor rises to 1.0 volts and it stays
at 1.0 volts as long as the flashlight is on.

When Bob turns off the flashlight after the dot,
the output of the optical sensor drops to 0.0
again for a short while.

Then, when Bob turns on the flashlight again for
the dash, the output of the optical sensor rises
again to 1.0 volts, and stays there for a longer
period, since the dash requires more time, and
then drops back to 0.0 volts.

14 Is there a
visual way
to
understand
these
events?



There is.

Let's assume that Bob is able to send one letter
in the duration of a second.† Then, we can draw
a graph of the voltage on Alice's optical sensor
with respect to time over exactly one second.

Here's the graph of the letter a. We refer to it as
a signal graph

Here V is the abbreviation for volts.
 

†This may be very fast, but we assume Bob is lightning fast.

15 Oh, this
graph
shows how
the voltage
goes up and
goes down
for each dot
and dash.

That is correct. 16 Could we
see another
example?



Sure.

Here is the letter �

17 So this
graph
shows how
the voltage
coming out
of the
optical
sensor
varies over
one second.

Correct.

A signal is the variation of a physical quantity
(here, its voltage) over time.

18 So the
output of
the optical
sensor is a
signal?

It is an example of what is known as an analog
signal.†

 
†This is also known as a continuous signal.

19 What is
Alice going
to do with
this analog
signal?

Since Alice wants to use neural networks to
decode these signals, they must be converted to
tensors1.

Alice uses an analog-to-digital converter to
convert these electrical signals to tensors1.†

 
†For those familiar with signal processing, we have skipped
some details in the description of converting analog signals to
tensors since we are primarily concerned with the tensors

20 What do
these
tensors look
like?



p y
themselves.

Let's first make some simplifying assumptions.

In frame 15, Bob sends flashes at 1 letter per
second. We can break up Bob's stream of flashes
at 1 second intervals, so that each interval
contains one letter.

21 So a
message
containing
10 letters
takes 10
seconds?

Correct.

We break up a 1-second period into 16 segments
and then assign a scalar to each of those 16
segments, to obtain a tensor1 corresponding to a
single letter in the message.

22 What
scalars are
assigned to
each tensor
element?

We use the voltage of the signal in the middle of
the ith segment as the ith scalar in the tensor1.

23 Could we
see this on
the graph?

Of course.

Here again is the letter �

In this graph, we use an orange circle to mark
the scalar picked for each segment

24 Each of
those
orange dots
represents a
scalar
element in
the tensor1.



Here is the whole tensor1

[0.0 1.0 1.0 1.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0
1.0 1.0 0.0 0.0]

Quick! How many 1.0's and 0.0's are here, and
where?

25 Ooh! That's
a ton of
1.0's and
0.0's!

There are, indeed!

Thankfully, we can abbreviate signals like these.
We use ellipses to make our signals easier to
read. Here's how we abbreviate the signal above

The signal here has 16 segments, as before, but
contiguous repeated values are denoted by
ellipses. The segments represented by the
ellipsis get their values from the segment just
before the ellipsis, and the count above the
ellipsis represents how many more consecutive
segments we have with that same value.†

 
†We adopt the convention that an abbreviated tensor never ends
in an ellipsis. We see this in the example above which ends in
0.0 instead of an ellipsis.

26 Very
convenient.

Could we
see some
more
examples?



Sure.

Let's play with this abbreviation a little.
Consider this signal where there are

4 off, 4 on, 4 off, and 4 on

Design two similar signals where in the first
signal, there are

3 off, 3 on, 3 off, 3 on, 3 off, and 1 on

and in the second signal, there are

5 off, 5 on, 5 off, and 1 on

27 Here they
are

and

The digital signals we have so far are tensors1

where we have a scalar at each time segment.†

We refer to these as

signals1

 
†We refer to time segments simply as segments.

28 Oh, so we
use the
same
superscript
as we do for
tensors.

Correct.

We refer to these as

1-dimensional signals1

29 What does
1-
dimensional
mean?

It means that the signal consists of values that
vary along only one axis, or dimension. And that
dimension is time.

30 Okay.



So, when we refer to a signal1, it stands for a 1-
dimensional signal represented by a tensor1.

31 Are there
signals2?

An excellent question!

Yes, a signal2 is a 1-dimensional signal that
contains a tensor1 in each segment. So, it is
actually a tensor2.

32 Could we
see an
example of
a signal2?

Sure.

Here is a signal1 s

Here is another signal1 t

33 Do we
derive a
signal2 from
these two
signals1?

We “zip” a signal2 from these two signals s and t
by picking one scalar each from s and t in lock-
step and putting them into a tensor1. The
resulting signal2 has 16 segments, each with a 2-
element tensor1.

34 An example,
please.



Sure.

The scalar at index 0 of s is

0.0

The scalar at index 0 of t is

1.0

So the resulting tensor1 at index 0 of the signal2
is

[0.0 1.0]

Find the tensor1 at index 1 of the signal2.

35 Sounds
reasonable.

The scalar
at index 1 of
s is

0.0

The scalar
at index 1 of
t is

0.0

So the
resulting
tensor1 at
index 1 of
the signal2
is

[0.0 0.0]

Excellent.

We repeat this for all the segments to get this
signal2

36 What if we
need to zip
more than
two signals?



A great question.

In general, when we zip d signals, each of shape

(list n)

we get a signal2 of shape†

(list n d)

Here, d is referred to as the

depth of the signal2
 

†This zipping of signals1 into a signal2 may be familiar to some as
being analogous to transposing a matrix.

37 The depth
of the
signal2 is
the number
of signals1

that are
used to
construct it.

How about
an
example?

The Law of Zipped Signals
A signal2 is formed by zipping signals1, and the signal2 as
well as its constituent signals1 all have the same number

of segments.



Sure.

Let's take the two signals s and t in frame 33
and zip them along with the signal u

Here is what it looks like

What is the depth of the signal2 here?

38 It is 3, since we
have built this
signal2 from 3
signals1.

Perfect!

In the signals we have seen so far, the signal
begins at 0.0 and changes to 1.0 in the
following segment. We refer to the first time
we see this change in the signal as its start.

Now we relax this assumption to make things
more interesting. We'll assume that the start
of the signal can occur anywhere in the
tensor, as long as the complete signal is
present within the 16-segment tensor.

39 Could we see
an example?



Sure.

Here again, is the signal graph of the letter a,
but with a later start

What is the tensor corresponding to this?

40 It is

Excellent.

This shifting the “start” of the signal is
known as translation.

41 So should our
locquacious
learners build
their machines
to take
translation into
account?

Yes, they absolutely should!

Now let's learn about noise.

42 What is noise?

The signal graphs that we have seen so far
are ideal. In reality, physical signals are
never so well-behaved. They have random
variations.

43 Could we see
how these
signal graphs
look?



As an example, the signal graph for � would
more likely resemble this

But, because of randomness, the variations
would be different each time the signal is
sent or received.

44 Oh, so the
elements in the
signal are
rarely, if ever,
exactly 0.0 or
1.0.

Correct.

For example, our signal1 for the letter �
would probably resemble this

[0.05 1.2 0.96 −0.03 1.1 0.09 1.0 0.9
−0.02 1.1 1.2 0.2 −0.01 −0.04 0.1 0.08]

45 That signal1
definitely looks
noisy!

How are we to
use these
signals?

Our loquacious learners’ receivers can
decode messages by running these signals
through a neural network.

And this neural network must decode these
signals even in the presence of noise and
translation.

46 That's exciting.

Are we going to
learn how to
write such a
neural
network?

We are, but that is for later! 47 Can't wait to
get started!



Zippy Toys
zipping signals 292

How about a profiterole?
With some crunchy choux!







Wasn't the profiterole beyond
belief?

1 Yes, and it was crunchy!

Here we learn about a new kind of
layer.

2 Is this layer going to
help Alice and Bob
decode flashlight
messages?

Indeed.

To decode their messages, we need
to now learn about correlation
between two 1-dimensional signals.

3 What is correlation?

Correlation is a way to detect the
occurrence of a pattern anywhere
within a signal.

4 Why do we need to
detect patterns within a
signal?

Detecting patterns within a signal
helps us to determine which letter
that signal represents.

We detect a pattern by scanning the
signal from beginning to end and
measuring the similarity between a
portion of the source signal and the
pattern.

5 What is scanning?

Scanning is the process of
examining every segment of the
signal starting at its beginning and
going to its end, one segment at a
time.

6 Could we see an
example?



Sure.

Here is s, a signal1 of 16 segments
that contains a single dot ( ) and
happens to encode the letter �, but
translated by 3 segments

This is the source for this example.
For now, we're going to consider
only ideal signals, but the same
principles work for noisy signals.

7 Could we also see its
graph?

Here is the letter �

Here is its graph

What is its abbreviated signal1?

8 Here it is, again

Here's another signal1, but it is
much shorter than s

[0.0 1.0 0.0]

9 This signal1 seems very
similar to the
interesting part of s, the
longer signal1.



This signal1 is a pattern that we use
to match against the source. We
refer to this shorter signal1 as a
filter1.†

 
†Filters are also known as kernels.

10 This filter has length 3.

All filters are shorter
than the source, but are
they all of length 3?

They don't have to be. We usually
pick them to be a small odd number.
We use small numbers because
small patterns are easier to match.
More complex patterns are matched
by using many small filters.

11 How do we match this
filter?

This is where correlation comes in.

We first align the filter and the
source at index 0 of the source

12 The filter here aligns
with the first three
elements of the source.

The three elements in the source
where the filter and the source
overlap determine a tensor1 for
example

[0.0 0.0 0.0]

We refer to this as the

overlap at position 0

13 The overlap determines
the elements from the
source that overlap with
the filter when it is
aligned with the source
at position 0.



Correct.

Now, let's take the dot product (•) of
the filter with this overlap†

1.  (• [0.0 1.0 0.0] [0.0 0.0 0.0])

2.  (sum

     (* [0.0 1.0 0.0] [0.0 0.0
0.0]))

3.  (sum

     [0.0 0.0 0.0])

4.  0.0
 

†As a convention here, the first argument to • is
always the filter.

14 But, what does that
mean?

This dot product provides a scalar
measure of how similar the overlap
is to the filter.

15 Is it important that this
be a scalar?

Yes.

Scalars provide a simple measure of
how good a match is.

16 What does the measure
of 0.0 mean?

It means that the filter is not similar
to the overlap at all.

17 What should we do
now?



Now we slide the filter one element
to the right, to overlap position 1

What is the overlap now?

18 It is

 [0.0 0.0 1.0]

Correct.

What should we do next?

19 We must find the dot
product between the
overlap and the filter

1.  (• [0.0 1.0 0.0]
[0.0 0.0 1.0])

2.  (sum

     (* [0.0 1.0 0.0]
[0.0 0.0 1.0]))

3.  (sum

     [0.0 0.0 0.0])

4.  0.0

The dot product is 0.0
again.

Correct.

There is no match at overlap
position 0 or overlap position 1.

20 So should we slide the
filter another position
to the right?



Exactly.

We slide to the new overlap position
2

What is the dot product now?

21 We can find out

1.  (• [0.0 1.0 0.0]
[0.0 1.0 0.0])

2.  (sum

     (* [0.0 1.0 0.0]
[0.0 1.0 0.0]))

3.  (sum

     [0.0 1.0 0.0])

4.  1.0

It is 1.0 this time!

That is correct.

We have a positive (i.e., not a 0.0)
value here. This suggests that there
is a match between the source and
the filter at overlap position 2.

22 What about the
remaining overlap
positions?

All the remaining overlap positions
up to 13 give us 0.0.

23 Why do we stop at
overlap position 13?

That is because beyond position 13,
the last element of the filter would
extend beyond the last element of
the source.

24 What do we do next?



We collect the scalars from the dot
products at each overlap position
from 0 to 13 into a 14 segment
signal1

This signal1 is the result of
correlation between the source s
and the filter.

25 So, correlation
determines the dot
product of the filter and
the overlap at each of
the positions from 0 to
13, and builds a signal1
from these dot
products!

Correct.

In general, if our source has n
segments, and the filter has m
segments, the correlation has the
length

n − m + 1

26 So that is why the signal
in frame 25 has

16 − 3 + 1 = 14

elements.

Precisely.

The result of the correlation
function has “peaks” where the filter
resembles, i.e., correlates with, the
source.

27 Like the 1.0 at overlap
position 2 in frame 21?



Yes.

The way we have so far defined our
overlap positions from 0 to n − m +
1 is inconvenient for two reasons.
The first is that a shorter correlation
result implies that some information
has been lost.

In order to prevent this loss of
information, it would be good to
have the source signal and the result
signal be the same length.

28 What is the second
reason?

The second reason is that partial
matches between the source and the
filter at the boundaries of the source
cannot be detected.

29 Why can't they be
detected?

That is because we started our
overlap positions at 0, and we end
when the last element of the filter
aligns with the last element of the
source.

30 Could we see an
example?



Sure.

As an example, if our source, say t, is
this

then here is its graph

31 Oh, then our overlaps
miss the partial
matches between the
source and filter at the
beginning of the source
and at the end of the
source.

Right.

To fix both of these problems, we
begin by overlapping at the position
−1

32 But there is no element
at index −1 in any
tensor!

A good observation!

For this, we pretend that the source
is “padded” with enough 0.0s on
both sides

33 This allows us to
consider an overlap at
position −1 of the
source.

Why both sides?



So that we also consider an overlap
position 14 where the filter extends
beyond the last element of the
source

34 By adding these two
overlap positions −1
and 14 to the 14 other
overlap positions we
already have, we get a
total of 16 overlap
positions.

This means the result of correlation
is a signal whose length is the same
as its source.

35 Could we see an
example of how
padding works?

Sure.

Let's find the correlation between
the filter

[0.0 1.0 0.0]

and the source

What does the overlap look like at
position −1?

36 It should include a
padded 0.0 at the
beginning so that the
middle element of the
filter is aligned with the
0th element of the
source

[0.0 1.0 0.0]



Let's now take the dot product with
the filter and the overlap

1.  (• [0.0 1.0 0.0] [0.0 1.0 0.0])

2.  (sum

     (* [0.0 1.0 0.0] [0.0 1.0
0.0]))

3.  (sum

     [0.0 1.0 0.0])

4.  1.0

What would the dot product become
at overlap position 14?

37 Here it is

1.  (• [0.0 1.0 0.0]
[0.0 1.0 0.0])

2.  (sum

     (* [0.0 1.0 0.0]
[0.0 1.0 0.0]))

3.  (sum

     [0.0 1.0 0.0])

4.  1.0

What about the rest of
the overlap positions?

They are all 0.0, giving us the
correlation

We refer to this as the result signal.

38 Why do we refer to it as
a signal?

We refer to it as a signal because it
now can be a source for more filters,
allowing us to cascade correlations
on a series of different filters.

39 What does it mean to
cascade correlations?

It means that we perform
correlations in a sequence such that
the result of one correlation
operation is provided as input to the

40 Why is this important?



operation is provided as input to the
next correlation operation using a
different filter.

The Law of Correlation
(Single Filter Version)

The correlation of a filter of length m with a source
signal1 of length n, where m is odd (given by 2p + 1), is a

signal1 of length n obtained by sliding the filter from
overlap position −p to overlap position n − p − 1, where
each segment of the result signal1 is obtained by taking

the dot product of the filter and the overlap in the source
at each overlap position.



This is useful in detecting complex patterns,
i.e., patterns built from other patterns as in
frame 11.

41 Ah! That
definitely
would be
useful.

But, our result
looks the same
as our source.

This is because of the filter we have chosen.
It has the unique property that it copies
features that it finds in the source to the
output of the correlation.† This, in general, is
not true. Other filters can be more selective
in identifying other features, leading to
different looking result signals.

 
†This filter is also known as the Kronecker delta. Named
after Leopold Kronecker.

42 What are
features?

Features are specific kinds of patterns that
we look for in the source.

For example, a transition from a lower value
(closer to 0.0) in one segment to a higher
value (closer to 1.0) in the next is a “rising
edge” feature. Similarly we could have a
“falling edge” feature.

43 Do different
features
require
different
filters?



Yes, they do. 44 For decoding
our loquacious
learners’
messages, do
we have to
define these
different
features and
their
corresponding
filters?

Yes, but rather than define the filters
ourselves, we use neural networks to learn
the filters for us.

45 Does that mean
filters are part
of the θ for a
neural network
that uses
correlation?

The Rule of Filters
Filters are tensor parameters in a θ.



Exactly.

We consider filters to be parameters† to a
correlation layer (i.e., a layer of neurons
that uses the correlation operation) in the
network, and we learn these filters by
training the network on a data set where
the xs are signals1.‡

 
†These parameters are also known as filter weights.
‡For now. Later, we shall see how xs is transformed.

46 Just as with our
loquacious
learners’ signals1.

But what about
the ys?

The ys are the corresponding letters
encoded in a one-hot-like fashion from
frame 253:12.

For example, the one-hot tensor1 for the
letter � is

We refer to the two tensors in this data set
as

morse-xs

and

morse-ys

So our neural network classifies each
signal1 in a message into one of 26 classes,
one corresponding to each of the 26 letters
in our alphabet.

47 Does that mean
this neural
network uses
correlation
functions to learn
the different
filters necessary
to identify each
letter?



Correct.

But we need to evolve our correlation
function a little before we can use it in
layered neural networks.

48 Why do we need
to do that?

In a typical neural network classifier, we're
simultaneously trying to detect multiple
features in a single source.

49 Is there a way to
do that in a
single invocation
as we did with
*2,1 from frame
218:22?

Yes, there is.

To do that, we need an analogous
operation that correlates against multiple
filters in a single function invocation.

50 So, how do we
handle that?

Let's imagine we have b different filters.
Each of these filters is a signal1 and they
are all of length m.

What can we say about these b different
filters?

51 Together, these b
filters can be
formed into a
tensor2 of shape

(list b m)

Yes, indeed.

We refer to this tensor2 as a filter bank (or
just bank).

52 How do we
correlate a source
with a whole
bank of filters?



We take each filter in the bank and
correlate it with the single source of length
n, thus giving us b different results, where
each result is a tensor1 of the same length
as the source.

53 Does that mean
the output can be
packaged into a
tensor2 of shape

(list b n)?

That is tempting, but then our result would
not be a signal1, as we expect at the output
of a correlation step. Nor would it be a
signal2 because it wouldn't have the same
number of segments as the source signal,
which is n. It would instead have b signals1

in it.

54 Is this a
problem?

Yes, it is.

It prevents us from cascading the result of
this correlation into another correlation
layer of the network.

55 Oh, that means it
gets in the way of
detecting more
complex features
(patterns built
from other
patterns) as
hinted at in
frame 41.

So how do we
make the output
of our correlation
on a filter bank
look like a
signal2?



We zip those b results, one from each of
the b filters in the bank, into a signal2 of

(list n b)

56 How about an
example?

Let us again take a bank of two filters

and the source signal

What is the correlation of each of the filters
in this bank with the source signal?

57 Correlating the
source signal
with the bank's
first filter

[0.0 2.0 1.0]

we get

and correlating
the source signal
with the bank's
second filter

[1.0 2.0 −1.0]

we get



We now zip, as in frame 292:37, both of
those signals into a signal2

58 Okay.

But if we want to
cascade
correlations
using signals2,
shouldn't
correlation work
on signals2 as
well?

An excellent question.

Let's see how correlation works on
signals2.

Say our signals2 have n segments (in our
examples, n is 16), each being a tensor1 of
length d.

59 So it is a signal2
of length n and
depth d.

In order to correlate with signals2 our
filters must themselves be signals2, hence
now called filters2, and they must have the
same depth as the source.

What should the depth of our filters be?

60 They must also
be of depth d.



Correct.

Also, like before, we have a bank of b
filters2, where each filter2 has m segments.

The correlations produce a result signal2 of
depth b.

61 So in this general
form, the source,
the filter, and the
result are all
signals2.

They are, indeed.

Let us summarize the shapes of our
signals. The source has the shape

(list n d)

and we have a bank of b filters of shape

(list b m d)

where m is the width of each filter.

62 Could we see an
example?



Yes.

Here is the signal2 from frame 292:36
made by zipping

the signal1 s from frame 291:33

with

the signal1 t also from frame 291:33

Let's name this signal2 st

What are n and d for st?

63 For st, n is 16 and
d is 2.

Since the depth of our source is 2, the
depth of our filters should also be 2.

Here is a bank of 4 filters2

What are b, m, and d here?

64 Since we have 4
filters2, b is 4.
Each filter2 has 3
segments, so m is
3, and the depth
d is 2 like before.



Very good.

Let's start with our bank's first filter2

[[0.0 0.0] [0.0 1.0] [0.0 0.0]]

at overlap position −1.

65 If we start at
overlap position
−1, how do we
pad a signal2?

We assume that the padded elements are
shaped like the other elements, and filled
with 0.0s. We pad st like this

66 So, instead of
using the scalar
0.0 at overlap
position −1, we
pad the source
with a tensor1

made up of 0.0s.

What is the overlap at position −1? 67 It is

[[0.0 0.0] [0.0
1.0] [0.0 0.0]]



Correct.

Now we take the dot product of the filter
and the overlap

What can we say about the result?

68 Our result is a
tensor1 with 3
elements in it,
which is the
same as the
width of our
filters.

Oh, but that
means the result
is not a scalar as
we claim it
should be in
frame 16.

Correct.

How do we turn this tensor1 into a scalar?

69 From the law on
page 54, we know
that sum reduces
the rank of a
tensor (of rank 1
or higher) by 1.

Excellent.

When correlating signals2, we additionally
sum the result of the dot product at each
overlap position

70 Now we have a
scalar!



The rest of the correlation of this filter is
similar. We slide the filter one position
down and repeat until we reach overlap
position 14, where we pretend the source is
padded with

[0.0 0.0]

This ultimately gives us the result signal

of shape

(list 16)

71 We have to
repeat this
correlation for all
the remaining
filters, don't we?

Yes, we must.

This gives us a total of 4 result signals1

Find the final signal2.

72 To get a signal2
from these 4
signals1, we zip
them together to
get

Now we have a way of accepting a signal2

and producing a signal2, and cascading this
signal2 within a layered neural network!

73 So is this our
final version of
the correlation
function?



It is!

In a neural network, what we learn are the
filters (i.e., the filters are parameters inside
θ.) The neural network learns to recognize
patterns in the input that can then be
classified when the filter bank associated
with each correlation layer is trained.

In our example, our loquacious learners
use correlation to classify each signal as
the corresponding letter.

74 In our example
so far

n is 16
m is 3

and

b is the number
of filters in the
bank

But, what is d ?

A good question.

In a layered neural network, d is the depth
of the signal produced by the previous
layer. We'll see exactly how correlation
works within a neural network later.

75 Does correlation
have a name we
can use in our
functions?

The Law of Correlation
(Filter Bank Version)

The correlation of a filter bank of shape (list b m d) with
a source signal2 of shape (list n d) is a signal2 of shape
(list n b) resulting from zipping the b signals1 resulting

from correlating the b filters2 in the bank with the source.



Yes!

We name it

correlate

It is an extended function similar to •2,1

from frame 219:24.

In the next chapter, we'll learn how to
use correlate.

76 Whew! That was a
dizzy ride.

Maybe a light
snack this time?

Slidy Toys
(morse-xs, morse-ys) 309

correlate 318

How about a piece of funnel cake?
Funnel cakes are convoluted!







•

Are we satiated from the funnel cake? 1 It was sweet and
hearty, and hardly
light!

Now that we have correlation, let's use it
inside neural networks!

2 We have to make a
layer function out of
it as we did with •2,1,
don't we?

Yes, we do!

Is correlation a linear function like in
frame 101:11?

3 An interesting
question.

It is primarily lots of
dot products, so it
certainly feels as if it
should be linear.

Is it?

It is!

While we won't go into the whole proof
here, correlation can be fully described
by linear functions. We think of it as an
enthusiastic • between tensors.

Here's a function corr that combines a
tensor t with two tensors, θ0 and θ1
from θ

(define corr 
 (λ (t)
  (λ (θ)
   (+ (correlate θ0 t) θ1))))

4 So θ0 is a filter
bank, since we
expect t to be a
signal2.

What is θ1?



•

θ1 is known as the bias parameter,
which is a tensor1 that contains one
scalar for each filter in the bank.

5 Why do we need the
bias parameter in
corr?

Just as in linear from frame 199:22, the
bias parameter controls the point at
which a subsequent invocation of rectify
makes its decision to result in 0.0.

6 Do we combine corr
and rectify similarly
to how we
combined linear
and rectify to get
the function relu in
frame 198:17?

Yes, exactly!

We are now ready to define a
correlation unit recu† like relu that we
use for dense layers.

 
†This function is also known as conv, or conv1D, in
other neural network systems. Here, however, we
use the name recu to emphasize its similarity with
relu.

7 What is recu short
for?

Great question.

It stands for rectifying correlational
unit

(define recu 
 (λ (t)
  (λ (θ)
   (rectify ((corr t) θ)))))

8 It is indeed a small
variation on relu.

Do we use recu as
we use relu?



Almost.

The primary difference lies in the
shapes of the parameters in the
corresponding θ. For recu, θ0 must be a
filter bank, which is a tensor3, whereas
θ0 for relu is a tensor2.

Define the shape list for recu where

b is the number of filters
m is the width of each filter

and

d is the depth of the incoming signal

9 The shape list of a
recu consists of one
shape for the filter
bank and one shape
for the bias tensor.

The filter bank has
the shape

(list b m d)

and the bias tensor
has the shape

(list b)

So the shape list
would be

(list
 (list b m d)
 (list b))



Let's look at the shapes of the inputs
and outputs to a recu.

If the shape of the input signal2 t is

(list n d)

where θ0 has the shape

(list b m d)

and where θ1 has the shape

(list b)

What is the shape of the output of the
recu layer?

10 Since rectify does
not change the
shape of its
argument, the shape
of the output is the
same as the shape of

((corr t) θ)

which is the shape
of

(+ (correlate θ0 t)
θ1)

The shape of the
result of + is driven
by the shape of

(correlate θ0 t)

which, from the
Law of Correlation
on page 317 is

(list n b)

Perfect.

Now define recu-block, which defines a
single recu layer, given b, m, and d as
arguments.

11 Okay

(define recu-block
 (λ (b m d)
  (block recu
   (list
    (list b m
d)
    (list b)))))



Great.

Networks that use correlation have a
special name. They are known as
Convolutional Neural Networks or
CNNs.†

 
†Thanks, David H. Hubel (1926–2013), Torsten
Wiesel (1924–), and Kunihiko Fukushima (1936–).

12 Why aren't they
named
Correlational
neural networks?

Convolution is a function that is like
correlation, except the filters are
mirrored (i.e., reversed) before invoking
the correlation. CNNs were first
characterized using this function.

Since filters are learned during training
of the network, it does not matter if we
mirror them or not—they are learned in
the appropriate direction. So we can
avoid the mirroring, leaving just the
correlation.

13 So, even though the
network is named a
convolutional
neural network, we
restrict ourselves to
correlations.

The good thing is
we can still
abbreviate them as
CNNs.

Is it time to define
our CNN?

Let's jump right into it.

Just as we did for iris-network in frame
255:21, let us start with the output side
of things.

What does our network need to produce
as an output?

14 It needs to produce
a one-hot-like
vector of length 26.
This means our
output layer must
produce a tensor1 of
shape

(list 26)



Correct.

Let us use that as a design guideline,
and propose that our output recu layer
should have 26 filters, one for each
letter we want to detect.

15 That sounds like a
great idea.

But that doesn't
sound quite right.
From frame 10, we
know that this recu
layer will produce a
signal2 of shape

(list 16 26)

An excellent observation.

We must now convert this signal2 to a
tensor1.

16 How can we do
that?

Let's consider an example.

Suppose that our input signal
represents the letter �. Assuming our
network is trained well, one of the 26
filters in that recu layer will produce a
strong output (i.e, a peak) in some
segment, while other filters will have a
very weak output.

For example, one of the segments will
have a tensor1 of length 26 that might
look like this

[0.1 0.0 0.2 0.0 0.1 0.0 0.1 0.0
0.2 0.0 0.1 0.0 0.1 0.0 0.2 0.0
0.8 0.0 0.1 0.0 0.2 0.0 0.1 0.0
0.1 0.0]

17 We can see a peak
of 0.8 at the
position
corresponding to �.

What about the
other segments?



They will likely have tensors1 that don't
have peaks that stand out.

For example

[0.2 0.1 0.2 0.0 0.1 0.0 0.1 0.0
0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0
0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0
0.2 0.0]

18 So how do we
generate a tensor1

out of this signal2?

We add all these segments together.

Adding them together will produce a
tensor1 where we'll still have a peak at
�'s position.

19 That's an easy
solution.

How do we add
them?

Let's define sum2, which adds all the
tensors1 in a tensor2 together

(define sum2

 (λ (t)
  (summed 2 t (sub1  0.0)))
 
(define summed2

 (λ (t i a)
  (cond
   ((zero? i) (+ t|0 a))
   (else
    (summed2 t (sub1 i) (+ t|i
a))))))

20 This looks exactly
like sum1.



•

It is, in fact, identical.

Except, that in the expression

t|0

the result is a tensor1, not a scalar.

Because + is an extended operator,
summed2 accumulates a tensor1, which
becomes the result of sum2.

21 So could we just do
this?

(define sum2

sum1) 

Awesome, isn't it?

Now we extend this function

(define sum-cols
 (ext1 sum2 2))

22 It is magnifico!

We can use this at
our output to
convert a signal2

into a tensor1.

Almost.

We convert the sum to an average first,
by dividing it with the number of
segments. This is known as global
average pooling.

23 Why do we need to
do this?

With sum-cols alone, the sum of small
partial matches could end up exceeding
the actual peak, leading to poor network
performance.

24 Okay.

Should we extract
the number of
segments in t like
this

(shape t)0?



There is one more factor to consider.

Since sum-cols is extended, it may
receive a batch of signals2, making the
rank of t greater than 2. So, we must
extract the shape of the nested signals2

like this

(shape t)(- (rank t) 2)↓

25 Oh, and then its
first member is the
number of segments
in the signal

(shape t)(- (rank t)

2)↓ 0

So if t has the shape
(list 8 16 4), we get

1.  (list 8 16 4)(- 3

2)↓ 0

2.  (list 8 16 4)1↓

0

3.  (list 16 4)0

4.  16

Correct, so here is the layer function
signal-avg

(define signal-avg
 (λ (t)
  (λ (θ)
   (÷ (sum-cols t)
    (shape t)(- (rank t) 2)↓0))))

What would the shape list of this layer
look like?

26 Since it does not use
any parameters
from θ, its shape list
is

(list)



Excellent.

Now define a block for this layer.

27 Here it is.

(define signal-avg-
block
 (block signal-
avg
  (list)))

Will this be the
output layer in our
network?

Yes, it will.

Let's start building the other layers,
which will all be recu layers.

28 How many such
layers would we
need?

Let's go with 8 layers. 29 Did we find that
empirically as well?

We did, but there's method to our
madness.

We expect the earlier layers in the
network to detect patterns that are
simple. For example, these could be
features like rising edges and falling
edges of the signal.

30 How many layers
should we dedicate
to that?

Let's give those simple patterns two
layers.

The next two layers would match groups

31 This is what we
mean by more
complex features in
f



The next two layers would match groups
of these features into features like dots,
dashes and spaces.

frame 307:41.

Exactly.

The following four layers then detect
various groups of those features.

32 So will the filters for
these layers learn to
detect combinations
of dots and dashes?

It is hard to say exactly what patterns
the filters will learn, since that happens
in training.

The idea of a hierarchy of features helps
with the initial design, which we then
refine through experimentation.

33 Okay.

The design of our network in frame 30
is described two layers at a time.

We can conveniently define a block of
two layers, and use this block over and
over again.

Here is the skeleton for fcn-block

This function defines a block of two recu
layers, each of which has b filters, the
width m, and the first layer accepts a
signal2 of depth d.

Find B.

34 The output of the
first recu layer will
be a signal of depth
b. Since the output
of the first recu
layer becomes the
input to the next
recu layer, B
becomes

b

because the third
argument to recu-
block is the depth of
its input signal.

Why is this block
called fcn-block?



Here, fcn stands for fully convolutional
network, because the layers we use are
only recu with the exception of the
output signal-avg layer and there are
no dense layers.

Here is the completed definition of fcn-
block

(define fcn-block
 (λ (b m d)
  (stack-blocks
   (recu-block b m d)
   (recu-block b m b))))

35 So many names . . .

Could we please
define our network
now?

Here it is

(define morse-fcn
 (stack-blocks
  (list
   (fcn-block 4 3 1)
   (fcn-block 8 3 4)
   (fcn-block 16 3 8)
   (fcn-block 26 3 16)
   signal-avg-block)))

36 How did we arrive
at those arguments
to the 4 invocations
of fcn-block?

For our filters, we choose a width of 3,
which is sufficient for our network.

The last invocation of fcn-block requires
26 filters, as in frame 15.

The first invocation is given 4 filters, to
match 4 different features in the input

37 So that is why the
next block has the d
argument as 4.



atc 4 d e e t eatu es t e put
signal. It produces an output signal of
depth 4.

Correct.

And we can see that in every other call
to fcn-block, the depth of the signal is
equal to the number of filters in the
previous block.

We use 8 and 16 filters, respectively, for
the other two blocks to allow for a
sufficient capacity to match the
requisite patterns of features matched
by earlier blocks.

38 And how are we
going to train this
network?

We have to start by initializing a θ for it. 39 We can use init-θ!

We should, but it doesn't yet know how
to handle filter banks with shapes of
length 3.

40 So should we
update init-shape?

We should. Here's init-shape from
frame 264:60.

(define init-shape
 (λ (s)
  (cond
   ((= |s| 1) (zero-tensor s))
   ((= |s| 2)
    (random-tensor 0.0 (÷ 2 s1)
s)))))

41 It does not have a
cond-clause for
shapes of length 3.



Let's add it 42 Aren't we supposed
to find A?

Soon, but we've yet to determine a rule
for initializing filter banks.

According to the Rule of Layer
Initialization on page 262, the variance
argument to random-tensor is given by
the formula

43 Yes, n is the length
of the input tensor1

of that layer.

It is.

The real intent behind it, though, is that
n is the number of scalars from the
input that are multiplied by weights in
the layer to produce a single scalar. This
is known as

fan-in

Dense layers are built using *2,1 and
sum so the fan-in is the length of the

44 How is it different
for recu layers?



sum, so the fan-in is the length of the
input tensor1.

We use correlate for recu layers.

In order to produce a single scalar in the
output, correlate uses only

m × d

scalars, because the overlap with any
given filter is m segments long, and we
sum the dot products at each of those
segments in the overlap. Each of those
dot products uses d scalars from the
input.

45 Ah, so for a filter
bank, the fan-in is
always

(* m d)

Correct.

If s describes the shape of a filter bank,
how do we find m and d?

46 The shape of a filter
bank is

(list b m d)

so m is

s1

and d is

s2

Perfect.

Now find A.

47 A is the fan-in for a
recu layer which is

(* s1 s2)



Excellent.

This is the completed definition of init-
shape

48 And now we train
the network?

Sometimes it helps the training process
if the data set is transformed so that it
makes the design of our network easier.
We call this preprocessing.

49 What
transformations do
we need for our data
set?



First, our data set in frame 309:47
introduces morse-xs as a signal1. As
later frames show us, correlate, and
hence recu layers work with signals2.
So, we must transform morse-xs into a
signal2 by wrapping each scalar in an
element of morse-xs into a tensor1.

So, for example, here is a signal1

Show the transformation of this signal1

into a signal2.

50 Here it is

Excellent.

Now for another transformation. The
signal data we have varies between a
low of approximately 0.0 to a high of
approximately 1.0.

Having values very close to 0.0 in the
input is always problematic since those
values diminish the effect of any weight
in a layer.

51 How is this problem
handled?

We make the signal data swing between
a low of approximately 0 5 and a high

52 Ah, we can achieve
that by subtracting



a low of approximately −0.5 and a high
of approximately 0.5.

That way we avoid having values close
to 0.0 in the input.

that by subtracting
0.5 from the signal!

Correct.

We assume that morse-xs is
preprocessed in this way. To continue
our example, the preprocessed tensor
looks like this

53 Don't we need to
preprocess the
morse-ys?

No, that is not necessary, since we only
use morse-ys to produce the loss.

54 Okay.

Now can we train
the network?



Let us define a training function to train
a network for classifying Morse code
signals

Here we provide the values for the
hyperparameters and then use a helper
function trained-morse to produce a
model from a given network.

Now let us define trained-morse.

55 Okay.

We'll be using
stochastic gradient
for it, correct?

Yes.

Let us use adam-gradient-descent.

To make it stochastic, we'll have to use
sampling-obj with l2-loss as the loss
function, and the data set

(morse-train-xs, morse-train-ys)

56 And we'll have to
initialize a θ using
init-θ.



Here is the definition of trained-morse.
It accepts a network function classifier
and a shape list θ-shapes and produces
a model using classifier and a trained θ

(define trained-morse
 (λ (classifier θ-shapes)
  (model classifier
   (adam-gradient-descent
    (sampling-obj
     (l2-loss classifier)
     morse-train-xs
     morse-train-ys)
    (init-θ θ-shapes)))))

57 How did we arrive
at those
hyperparameters?

Through a grid search, of course. 58 And what is the
accuracy of this
network?

Let's see 59 A 94% accuracy.

Is that good?

It's pretty good.

But we can do better.

60 Interesting.

How?



By using skip connections. 61 What are skip
connections?

Skip connections add the input signal of
a block to the output of the block itself.

62 What is the purpose
of that?

As described in frame 259:43, in very
deep networks, as a scalar from the
input of a network moves through
layers, each layer affects the influence of
that scalar on the output.

63 Yes, it leads to
exploding or
vanishing problems
that cause difficulty
in training
networks, which is
why we have to
carefully initialize
our network.

Correct.

Even when the network is carefully
initialized, and training proceeds as
expected, some weights still become
very small and suppress the scalars in
the input.

Adding the input back to the output
restores the effect of those scalars,
allowing those scalars to have more of
an effect on the layers that come after.

This improves the training of the
network and makes it more effective at
what it is supposed to do.

64 That sounds great.

How can we add
skip connections to
morse-fcn?



Let's begin by defining a function skip
which accepts a block function f, and
adds its input to its output

(define skip
 (λ (f)
  (λ (t)
   (λ (θ)
    (+ ((f t) θ)
     t)))))

Explain this function.

65 When skip is
provided a block
function f, it returns
a new block
function that adds
to the output of f

((f t) θ)

the input to the
block function

t

Why is this
definition dashed?

It is dashed because this addition
between the input and the output does
not work when the respective depths of
the input and output are different. For
example, the input has the shape

(list n d)

and the output has the shape

(list n b)

and d and b are different.

66 How do we solve
this problem?

We have to convert the input signal
f i h

67 We can do this by
i i lf b



from its shape

(list n d)

to the shape

(list n b)

using recu itself, by
using b filters, can
we not?

The definition of recu in frame 8
contains a rectify. We don't want to use
recu directly because this rectify might
suppress some scalars from the input.

We can, however, use correlate, which
does not suppress any scalars in the
input.

68 Okay.

What would its
filter bank look like
then?

We already know that it needs b filters
and the depth of the input signal is d.

We use the value of 1 for m, so that the
filters don't merge neighboring values
into each other.

What is the shape of this filter bank?

69 Ah, using filters of
width 1 ensures that
the overlap is
exactly one segment
long, so neighboring
segments don't
affect the output for
that particular
segment.

The shape of the
filter bank is

(list b 1 d)

Correct.

This filter bank, obviously, adds an
additional parameter in the θ for every
skip connection.

70 It's time to see some
serious magic!



•

It's coming. Here is the definition of
skip, which now accepts a second
argument j, the number of parameters
from θ consumed by f

(define skip 
 (λ (f j)
  (λ (t)
   (λ (θ)
    (+ ((f t) θ)
     ((correlate θj) t))))))

How many parameters does the
resulting block function consume from
θ?

71 It consumes

j + 1

parameters because
f consumes j, and
correlate consumes
an additional one.

The Law of Skip Connections
A skip connection for a block with an input of depth d and
an output of depth b requires a bank of shape (list b 1 d)

in θ.



•

Correct.

Here is skip-block, that accepts a
block ba, the depth of the input d
and the depth of the output b. It
returns a new block with a skip
connection around block

(define skip-block 
 (λ (ba d b)
  (let ((shape-list (block-ls ba)))
   (block
    (skip (block-fn ba)
|shape-list|)
    (append
     shape-list
     (list
      (list b 1 d)))))))

Explain how the skip function is
used here.

72 We first give the shape
list of ba the name
shape-list.

The function of the
returned block uses skip
to create a skip
connection. The first
argument to skip is the
block function

(block-fn ba)

and the second
argument is the number
of arguments consumed
by it, which is

|shape-list|

Great.

Now explain how shapes of the
returned block are determined.

73 We add a new shape for
a filter bank for the skip
connection

(list b 1 d)

at the end of the shape
list of block

shape-list



Perfect.

We now define residual-block

(define residual-block
 (λ (b m d)
  (skip-block
   (fcn-block b m d)
   d b)))

Skip connections are sometimes
known as residual connections.

74 That explains the name.

How do we define our
network with residual-
block?

It is identical to morse-fcn except
we use residual-block instead of
fcn-block

(define morse-residual
 (stack-blocks
  (list
   (residual-block 4 3 1)
   (residual-block 8 3 4)
   (residual-block 16 3 8)
   (residual-block 26 3 16)
   signal-avg-block)))

75 And that is worth
waiting for—pure,
unadulterated, beautiful
magic.

It also has a much
improved accuracy!

That little piece of magic brings us
to the end of our straight line to
deep learning.

76 But lines have no ends!

Indeed, the learning must never
end.

But the rest of this learning journey
best begins at the Epilogue.

77 To the Epilogue, then!

What dessert are we
leaving with?



Correlated Toys
corr 321
recu 322
skip 339

skip-block 340

How about some jalebis (जलेबी)?
With a side of clotted cream!





 
†Thanks, Karen Anne Carpenter (1950–1983), Richard Lynn Carpenter (1946–), and also
music arrangers Roger Nichols (1940–) and Paul Williams (1940–).

Any straight path through complex terrain necessarily leaves out the
eddies, rivulets and diversions that make the terrain rich and
fascinating. Our journey into neural networks has also been such a
straight line, and we've deliberately elided many of the features of
the terrain that add texture and complexity to the subject. In this
epilogue we present a set of destinations that are worth visiting for
those interested in exploring further, because in reality, we've only
just begun.

1 Mathematical foundations
Our presentation of deep learning in previous chapters has used a
minimal amount of mathematics necessary, but serious studies of
existing machine learning literature requires an understanding of the
mathematical foundations of the field. The two most relevant fields
are Linear Algebra, and Probability and Statistics. These are often
accompanied by a healthy dose of Vector Calculus.

Books like Deep Learning [1] provide a very condensed presentation
of the necessary mathematics, but assume a certain level of
mathematical maturity. To develop this maturity, books such as
Coding the Matrix [2] (for Linear Algebra) and Bayesian Statistics
the Fun Way [3] (for Probability Theory) are good for learning these
subjects from first principles.

2 Data-generating distributions
Data sets are a curious entity. They appear like there's nothing
particularly interesting about them. They just contain a large number
of points. But in reality, data sets provide us with a sampling of the
outputs of a data-generating process. For example, in the Morse
code example from chapter 14, we describe how the tensors we use
are derived from a physical process of pressing a button on a
flashlight.



These data-generating processes can be understood in probabilistic
terms. We associate them with an ideal probability distribution,
which maps each point being generated by the process to the
probability of its occurrence. We call this the data generating
distribution.

The process of learning the θ of a neural network constructs an
internal approximation of this data generating distribution, and
applies it to the specific task at hand.

3 Tasks
Deep learning is all about doing interesting things. The cognoscenti
have given a somewhat boring name to these interesting things. They
call them tasks.

One interesting objective in many applications is predicting prices of
things (like stocks, commodities, real-estate) based on a data set
collected from prior transactions. In these applications, the task is to
predict a single scalar. These types of tasks are known as regression
tasks.

Chapter 3 shows an instance of regression based on a linear model,
i.e., a linear function and its corresponding θ. This kind of model
merely implements a mathematical function, but in reality the
mathematical function is modeling some aspect of the real world,
like a price of some asset.

Another set of interesting things to do with neural networks is to
identify objects and faces in pictures, identify words in speech or
make medical diagnoses from X-ray pictures. These are examples of
a task known as classification. We encountered classification in
chapters 13 and 15.

If we find ourselves in need of language translation services, neural
networks can step in and provide such translations. Neural networks
have been designed to translate written text from one language to
another. Some neural networks additionally can recognize words
embedded in pictures and translate them, an application particularly



useful in reading signs using the camera on a phone. These kinds of
tasks are known as translation tasks.

Translation tasks can be applied to pictures too. A particularly
fascinating example of such a translation is style transfer, where the
visual style of an artist is transferred to an input image to produce
that same image in the style of that artist.

Another class of applications concerns the generation of new points
by sampling the data generating distribution the neural network has
learned from a data set. For example, we can generate original
artistic images or musical compositions that have never been seen
before by using specially designed neural networks that have been
trained on those types of data sets.

Neural networks are always designed for a specific task that drives
the choice of underlying functions and structures. Here we discuss
some of the ideas that influence the design space.

4 Other loss functions
One of the critical decisions while designing a neural network for a
specific task is the choice of the loss function. While l2-loss is a
broadly applicable loss function [4], other loss functions are also
used in different types of applications and tasks. Here we explore
some of them.

One popular loss function for classification tasks is cross-entropy
loss. This loss function has two interesting properties. The first is
that each tensor1 argument must sum up to 1.0, and the second is
that each element in the tensors1 represents probabilities for the
corresponding class and thus must lie between 0.0 and 1.0. This loss
is defined as follows

(define cross-entropy
 (λ (target num-classes)
  (λ (xs ys)
   (λ (θ)
    (let ((pred-ys ((target xs) θ)))
     (* −1



      (÷ (• ys (log pred-ys))
       num-classes)))))))

When ys is a one-hot vector, cross-entropy selects the highest class
predicted. The multiplication by −1 is because probabilities are
always between 0.0 and 1.0, and their log is always negative, giving
rise to a negative dot product. Since our convention is to have a
positive loss, we multiply it by −1.

Cross-entropy loss is usually used in conjunction with a softmax
decider (we'll see this one soon). In combination, these two functions
enable training a network with more accuracy and using fewer
revisions.

Here is a loss function that is similar to l2-loss, except it uses the
absolute value function instead of squaring in order to get rid of
negative differences

(define l1-loss
 (λ (target)
  (λ (xs ys)
   (λ (θ)
    (let ((pred-ys ((target xs) θ)))
     (sum (abs (− ys pred-ys))))))))

This loss function can be used when we don't want outliers in the
dataset to disproportionately influence the loss.

5 More deciders
The only decider in previous chapters is rectify. While it has a
number of very useful properties and is extremely simple, rectify is a
rather recent development. Earlier neural networks relied on
nonlinear functions, for example, the logistic sigmoid ‡  and the
hyperbolic tanh

(define logistic-sigmoid
 (λ (x)
  (let ((ex (exp x)))
   (÷ ex (+ 1 ex)))))



 
(define tanh
 (λ (x)
  (let ((e2x (exp (* 2 x))))
   (÷ (− e2x 1) (+ e2x 1)))))

These are still applicable in some special cases, but their usage has
dropped significantly in favor of rectify and its variants.

Variations on rectify include a leaky rectify [5] that uses a small non-
zero slope for inputs that are less than 0.0. We can define it like this

(define leaky-rectify
 (λ (m)
  (λ (x)
   (cond
    ((< x 0) (* m x))
    (else x)))))

The main benefit of a leaky rectify is that it allows for a small amount
of negative gradient to pass through when gradients are calculated.
This is useful in deep networks as it speeds up training, and avoids
some pathological conditions that rectify can sometimes cause in
large networks. In this definition, the value for m must be provided
as an argument, but other variations exist where m becomes part of
the θ and thus can be learned [6].

Here is another example of a decider that is somewhat limited in
where it can be used, but is used widely in those situations. This is
the softmax function

(define softmax
 (λ (x)
  (let ((expd (− (exp x) (max x))))
   (÷ expd (sum expd)))))

This function always produces a tensor1 that meets the criterion of a
probability distribution—each element in it is between 0.0 and 1.0,
and the elements sum to 1.0. Because of this property, a softmax
decider is used in conjunction with the cross-entropy loss function



(which expects a probability distribution), making it ideal for the last
layer of a classifier neural network. As an aside, the subtraction of
max x is necessary to numerically stabilize the sum so it is never 0.0,
but it does not alter the final value of the function.

 
‡Thank you, Pierre-Francois Verhulst (1804–1849).

6 Higher-dimensional signals
In order to deal with more complex applications that have to do with
images and videos, we need to expand our notion of signals. So far
we have only dealt with signals that have samples in one dimension
(these were our Morse code signals from frame 290:29). Physical
quantities like sounds, seismic vibrations, and variability of
temperature often give rise to these types of signals, which are useful
in many different applications.

Higher-dimensional signals include images, videos, and others,
which arise in a very large number of visual applications such as the
classification of pictures, transformation of photos, and others. The
principles of convolutional neural networks such as correlation are
analogous in higher dimensions, except they deal with correlating in
more than one dimension instead of one. The function correlate is
then extended correspondingly to more dimensions.

Higher-dimensional signals give rise to networks that have much
larger θs since we're now dealing with a much larger amount of data.
It is not uncommon to see θs containing hundreds of millions of
scalar parameters in them. Examples of these networks, like AlexNet
[7], ResNet [8], and VGG [9], make for extremely interesting
architectural explorations.

7 Natural language systems
Text-based tasks such as translation and text classification require
the processing of natural languages. A neural network designed for
natural language processing usually relies on very specific layer
structures that allow the network to learn the relationship between
words in different parts of a piece of text.



These networks can learn how ideas are threaded through a sequence
of sentences and reproduce them as necessary in tasks like
translation and summarization. Networks such as GPT-3 [10] carry
billions of scalars in their θs and are able to handle very complex
tasks.

Sentences in a text processing system are represented by a sequence
of tokens. Text processing neural networks work by building models
of the probabilities of one word following another one in a sequence.
This is then used for tasks like answering questions, machine-
generated conversation (known as chatbots), text generation, etc.
Text processing neural networks can be combined with speech
processing neural networks to enable increasingly common
applications like voice assistants.

There are two main kinds of architectures used for text processing.
There is a recurrent neural network architecture that uses an output
associated with a prior token for processing a future token. This
allows the network to develop information about the context in
which a given token appears.

Recurrent networks are rapidly being replaced by a newer form of
network based on the idea of attention [11]. The difference in
attention-based networks is that they work on whole sequences
rather than one token at a time. They include a processing block
known as a transformer that uses attention to provide a mechanism
with which the network can learn how each token in the input
sequence influences other tokens.

8 Generative networks
For applications that require generation, there are two primary types
of neural network architectures in use.

The first is known as a variational autoencoder. To understand what
this does, it is first important to understand what an autoencoder is.

An autoencoder is a neural network that consists of two parts that
are trained together, but can be used separately. The two parts are
known as the encoder and the decoder.



The encoder maps every input into a more compact form of the same
input. Usually the inputs are tensors consisting of a very large
number of scalars. The compact form of the output is usually a
tensor1 consisting of a very small number of scalars. For example, it
is possible to have an encoder that can take an image of the letters of
an alphabet in a specific font and represent it as a tensor1 made up of
12 scalars, known as a code. By training this encoder on images of
different fonts, we can have it produce different codes for each font.

The decoder performs the inverse transformation. It takes the
compact form as an input and produces an output that is as close to
the original input as possible.

A variational autoencoder [12] makes certain that the codes that are
produced by an encoder have unique mathematical properties so that
they can be treated as samples from a random number generator.
Then, by providing new random numbers to the corresponding
decoder, new points can be generated that will be similar in
characteristics to the original set of inputs the network was trained
on.

For example, by providing new random 12-scalar codes to our font
decoder, we can produce images of entirely new fonts. The same
principles can be used to generate outputs of many different kinds.

The other type of architecture used in generational applications is
known as a generative adversarial network, or GAN [13]. This type
of neural network also consists of two parts.

The first is a generator, which is responsible for converting a random
number into an output with the desired characteristics, such as the
image of a font. The second is a discriminator, which is responsible
for deciding whether the output generated by the generator passes
muster. In our example, the discriminator will decide whether or not
the image generator is that of a font.

The clever bit about GANs is that their training is designed in a way
that both penalizes the discriminator if it is wrong in making a
judgment and penalizes the generator if it generates the wrong kind
of output.



Training the discriminator and generator together ensures that the
generator learns how to produce samples that the discriminator will
accept and the discriminator learns to accept only samples that
satisfy the application requirements.

9 Practical things
One of the most important elements of the design of a neural
network is its capacity, which can roughly be thought of as the
number of scalars in its θ. If the network has too few, then it won't
learn enough about the training set, a condition known as
underfitting. If it has too many, then it will learn to be very specific
to the training set, a condition known as overfitting.

Even if a network has the appropriate capacity, training it with too
few revs can lead to underfitting, while training it with too many can
lead to overfitting.

Either underfitting or overfitting or both might cause the network to
not perform optimally. The network will fail to generalize to points
that lie outside the training set. Selecting networks with the right
capacity and choosing the hyperparameters carefully is a very critical
part of the network training process.

The concept of the right capacity is difficult to define precisely,
because design of the network itself influences what “right” means.
For example, skip connections can dramatically improve the
performance of the network without greatly affecting the number of
scalars in θ.

Like many things we have seen here, experimentation leads to the
development of heuristics and design rules that help build networks
of adequate capacity.

A number of practical tricks are necessary in order to train a network
properly for given tasks.

First, it always helps to properly track the metrics of a network as it
trains. Tracking the training loss, i.e., the value produced by the loss



function at each of the revs, helps follow how well the network is
training.

Second, using a proper validation set to track the relevant
performance metric associated with the network (such as accuracy of
predictions) helps determine if the training is proceeding correctly.

Third, techniques like regularization are used to manage the
effectiveness of training. Regularization is the name given to a
technique of adding an additional term to the loss function that
influences the direction the gradient descent takes. See Good-fellow
et al. [1] for examples of regularization. This helps train the network
without under- or over-training it, which improves the overall
performance of the network for its designated task.

Fourth, initialization of weights is a significant part of training. He et
al. [6] proposed the initialization scheme used in this book. This
scheme is useful with rectifier-based networks. Other schemes such
as the one proposed by Glorot et al. [14] help with other types of
networks.

10 Onwards, little learners!
This epilogue is a whirlwind tour of the topics and sources for
curious readers to pursue. With the understanding of neural
networks gained from this book, we hope these topics are less
formidable than they would otherwise have been.

À bientôt





 
†Thanks, Gilbert Ryle (1900–1976) and The Police: Andrew James Summers (1942–), Sting
(1951–), and Stewart Armstrong Copeland (1952–).

Starting in chapter 4, almost everything relies on the availability of
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∇

This appendix and the next, meant for those who are curious about
how it is built, present a full explanation. These definitions provide
for complete automatic differentiation that provides a semantic
foundation for all the programs demonstrated in the core of this
book, which is chapters 1 through 15.

This is a superset of what is traditionally known in the history of
neural networks as back propagation. The back propagation
algorithm is an instance of reverse mode automatic differentiation,
which is what we describe here.

The definitions in the core are written in a consciously functional
state of mind, carefully avoiding parts of Scheme that can disrupt
this state of mind. The generality of automatic differentiation,
however, as well as our desire to keep the definitions easy to
understand, requires some of the parts of Scheme we have avoided.

Even though these definitions are written in the metalanguage, we
have attempted to preserve some of the notation from page xxiii,
particularly for list members and vector elements. For readers who
are attempting to define these functions as they read along, the
notations are as follows.



Frame Metalanguage
Notation

Transcription as
Scheme

31 [e es . . . ] (vector e es . . .)
32 v|i (vector-ref v i)

51 (vector-length v)
51 l0 (list-ref l 0) or (car l)
51 l1↓ (drop l 1) or (cdr l)

72 (let2 (⟨a b⟩ E) B) (let-values (((a b) E)) B)
75 ⟨e1 e2⟩ (values e1 e2)

Symbols like ∇, σ, ρ, κ can be typed in directly as unicode symbols, or
they can be spelled out with English letters (e.g. nabla, sigma, rho,
kappa).

The rest of this appendix is in the frame format, but the style is not
the same. Instead of the familiar question/answer style, it is more a
comic-book style. It should be read one frame at a time, from left to
right within a frame.



1 Prologue

This is the
definition of ∇

(define ∇
 (λ (f θ)
  (let ((wrt
(map* dual* θ)))
   (∇once (f
wrt) wrt))))

1 Flummoxed? Fear not.

The goal of this appendix is to fully explain
what this definition is about.

2 Of gradients and things



Gradients are rates of change of
the result of a function with
respect to the arguments of the
function.

2 Given a function f that
accepts one scalar
argument, let's invoke it on
a scalar a like this

(f a)

To understand what the gradient
of f is, we begin with the method
we used in frame 65:30.† We
invoke f on an argument just a
little different from a, adjusted by
a value Δa‡ that can be made
arbitrarily small

(f (+ a Δa))
 

†Except, here we use a more abstract value,
instead of the specific 0.0099 in frame
65:30.

‡Pronounced “delta a.”

3 We expect the result to
change by a certain amount
as well.§ We refer to the
amount it has changed
using

Δfa

Here, the subscript
represents the argument(s)
on which f is invoked.

 
§We assume that f returns a value for
this adjusted argument.

The gradient of f with respect to a
is the rate of change in the result
of (f a) with respect to the change
in a. This makes it the ratio

4  



This ratio† can be extended to
functions of more than one
argument such that each
argument is treated
independently. Let's say g takes
two scalar arguments, and we
invoke it on a and b.

 
†For those who are familiar with differential
calculus: the limits are implicit and
expressions using Δa should be implicitly
understood to be in the limit as Δa
approaches 0.0. For functions that are
defined but discontinuous at a, the results
of our automatic differentiation are not
defined and may be provided with the limit
approaching from either the left or the right.

5 We find the rates of change
with respect to a and b
independently like this

and

where Δga (and
respectively Δgb) is the
change in

(g a b)

when a (respectively b) is
changed by Δa (respectively
Δb).

The gradient of g with
respect to a and b is the
list‡

 
‡There is an example of this in frame
79:20.



Any function that accepts tensors
and returns a scalar (such as a
loss function) is treated in the
same way as a multi-argument
function.

Each scalar s within the argument
tensors is adjusted by Δs, and the
change in the result scalar is
observed.

6 Instead of packing the
gradients into a list as we
did for g in frame 5, we
define the gradient to be a
tensor of the same shape as
the argument, but with the
gradient values
substituting the scalars in
that argument.

For example, we let h be a
function that accepts a tensor of
shape (list 2 3) and we invoke it
on this tensor.

7  

We find the gradients of h with
respect to each scalar ax, ay, az,
bx, by, and bz, and put them
together like this.

8  

A function that accepts lists (of
tensors, or of nested lists) is
treated similarly, so that the
gradient with respect to the list
argument is a list with the same
structure, but with scalar
gradients in the places where the
list argument has scalars.

9 In other words, for a
function that produces a
scalar, its gradient with
respect to a list or tensor
argument has the same
structure as that argument,
but any scalar in the
argument is substituted by
the corresponding gradient
with respect to that scalar.



3 Primitives, compositions, and chains



We have been abstract
about gradients, writing
them simply as a ratio of
two abstract quantities.
For primitives like addition
and multiplication of
scalars (and many others),
however, the ratios can be
reduced to a fixed
formula.†

As an example, consider
the gradients of + with
respect to two scalars a
and b.

 
†This is what differential calculus is
all about.

10 For +, if we change a
(respectively b) by Δa
(respectively Δb), the result also
changes by Δa (respectively Δb).
So we get the gradients of +

The gradients are 1.0 and 1.0
regardless of what a and b are.

We determine the formulas
similarly (although the
others are much more
involved than this) for all
of the primitives we use, so
that each gradient is
determined by a simple
formula based on the
arguments to the primitive.

11 For example, the gradient of *
with respect to two scalars a and
b is

(list b a)

In other words, we never
really need to explicitly
find the ratios of the
change in results to the
change in arguments.

12 With these formulas for
gradients of primitives, we use a
fixed rule to find the gradients of
functions that are built from
primitives.



When the result of the
invocation of one function,
say g, is an argument to
another function, say f,
then the result of f is said
to arise from the

composition

of f and g.

13 As an example, let f and g be two
functions that each take one
scalar argument and produce a
scalar result. Applying the
composition of f and g to a scalar
a is the same as doing this

(f (g a))

We write this in a more
explicit way

(let ((b (g a)))
 (f b))

Let us say that a itself is
generated from the
application of another
function, say h, to another
scalar, say 3.72.

14 We can then “unroll” this
invocation of h and add it to our
let-expression

(let ((a (h 3.72)))
 (let ((b (g a)))
  (f b)))



This let-expression is
equivalent to

(f (g (h 3.72)))

Here, we say that f, g, and
h form a

chain of invocations

where the invocation of h
is the

innermost

and the invocation of f is
the

outermost

15 We can repeat this process of
unrolling the component
functions all the way until the
only functions in the chain are
primitive functions.

The scalar provided as an
argument (here, 3.72) to
the innermost function is
referred to as

the argument to the
chain

16 And the value produced by the
outermost function of the chain
is referred to as

the result of the chain

The simplest possible
composition† of two
primitives f and g can be
written with this let-
expression, where the
scalar a is a constant

(let ((b (g a)))
 (f b))
 

†Also in frame 14.

17 To find the gradient of the
composition of f and g, let's
adjust a by Δa.



The result of (g a) changes
by Δga. Since (g a) is the
scalar b, let us give Δga
another name, Δb. The
result of the whole
expression now changes by
Δfb.

18 The gradient of the expression
with respect to a is the ratio

Let us rewrite this ratio
like this

which is the same as

19 We recognize a pattern here. The
right-hand term is the gradient of
g with respect to a, and the left-
hand term is the gradient of f
with respect to b.

So, the gradient of the
composition of f and g with
respect to the argument to
the chain is

(gradient of f w.r.t.† its
argument)

 ×

(gradient of g w.r.t. its
argument)

 
†Short for with respect to.

20 This is known as the

chain rule

It gives us a way of getting the
gradient of a composition of
functions using the individual
gradients of each of the
component functions.



Now consider a chain with
more than two primitives
in a composition

(f0 (f1 . . . (fn a)))

21 The gradient is found in a similar
fashion

(gradient of f0 w.r.t. its
argument)

 ×

(gradient of f1 w.r.t. its
argument)

 ×

 . . .

 ×

(gradient of fn w.r.t. its
argument)

This can be thought of as
walking down the chain
while accumulating, using
multiplication, the
gradient of each primitive
with respect to its
argument. We refer to the
accumulator we use as the

multiplicative
accumulator

22 The starting value of the
multiplicative accumulator is 1.0,
and we multiply it with one
gradient at each step in the
chain.

When we're done with the chain,
the multiplicative accumulator is
the gradient of the result of the
chain with respect to the
argument of the chain.



As before, we can
generalize this process to
include the primitives that
accept more than one
argument.

For this, we individually
accumulate gradients with
respect to each scalar
argument. Since there are
now many scalars with
respect to which we find
gradients, there are also as
many different
multiplicative
accumulators with each
participating only in the
chain associated with its
scalar.

23 The definitions in this appendix
deal with this full generality, but
for this section, we consider only
single-argument chains.

Because multiplication is
associative, there are two ways to
walk this chain. For example, if
we have a chain

(f (g (h a)))

The gradient of this composition
with respect to a can be found in
two ways.

For the first way, we start
with

the multiplicative
accumulator at 1.0

and multiply it with

the gradient of h w.r.t. a

then multiply it with

the gradient of g w.r.t. (h
a)

finally multiply it with

the gradient of f w.r.t. (g
(h a))

24 In this second way, we start with

the multiplicative accumulator
at 1.0

and multiply it with

the gradient of f w.r.t. (g (h a))

then multiply it with

the gradient of g w.r.t. (h a)

finally multiply it with

the gradient of h w.r.t. a



The first way, starting at h
and going to f, is known as

forward mode

automatic differentiation.

In this mode, we start with
a multiplicative
accumulator with the value
of 1.0.

25 We then take the innermost
primitive in the chain, and
multiply its gradient with the
initial multiplicative accumulator
and continue to process the chain
from right to left, carrying the
result of the primitive itself, as
well as the multiplicative
accumulator.

In forward mode, we don't
need to explicitly construct
chains—gradients are
found as we determine the
results of the primitives.

This works well when the
gradients we seek come
from functions that have
very few scalars in their
arguments.

26 When the arguments to these
functions consist of a very large
number of scalars, such as those
found in tensors and θs we
encounter in neural networks, we
have to keep track of a very large
number of accumulators. When
our chains include binary
primitives (and they always do),
this causes an unreasonable
increase in the number of
multiplicative accumulators we
must manage.



The second way, the
alternative to forward
mode, is

reverse mode

automatic differentiation.

Here, we walk our chains
from left to right, i.e., from
the outermost primitive
invocation all the way
down to the innermost
one.

27 In our example with f, g, and h,
this would be how it works in
frame 24.

Unlike forward mode, however,
this makes us explicitly construct
a chain of primitives. We
construct this chain while we're
computing the result scalar, but
start walking the chain only
when we actually require the
gradient.

Reverse mode automatic
differentiation has the
benefit that there is no
disproportionate increase
in the number of
multiplicative
accumulators for functions
that produce a scalar from
compound arguments.

28 This allows us to maintain a fixed
number of multiplicative
accumulators, one for each scalar
in the argument to the chain, and
update those as we walk the
chains.

The rest of this appendix
lays out in detail how
reverse mode automatic
differentiation is achieved.

29 It starts with the representation
of scalars so that chains of
primitives are explicitly
constructed, and then describes
how compound data structures
are handled, and finally how
chains are constructed and
gradients extracted.



4 The representation of scalars



Our automatic differentiation
happens at run time. We do not
attempt to translate functions
into their equivalent
differentiated forms. Instead,
we evaluate the result of a
function for given arguments,
and then determine the gradient
of that result with respect to
those arguments.

30 This means that numerical
primitives, such as addition
and multiplication, not only
determine their numerical
results, they also organize
the chain so that gradients
can be determined
whenever asked for.

In order to do this, we need a
way to represent scalars that
consist of two parts. The first, its

real

part, known as its r, is the
numerical value of the scalar.
The second, its

link†

known as its k, is a function that
manages the chain that
produced this scalar and is
invoked for walking the chain.
We refer to this representation
as

a dual‡
 

†The name link arises because it is one
piece in the chain of primitives that may
have produced this scalar.

‡Thanks, William Kingdon Clifford. Here,
our notion of dual is a little different from
that introduced by Clifford, but the spirit
is similar, so we use the same name.

31 Each dual is represented by
a vector. The function dual
builds a vector of 3
elements. The 0th element
is a tag that is used to
distinguish duals from
other vectors, the 1st
element is the r, and the
2nd element is the k

(define dual
 (λ (r k)
  [dual r k ]))

To provide a unique tag, we
use the function dual itself
as its tag.

In the following, the
variable name d and
variable names beginning
with d all stand for duals.



The predicate dual? uses this
unique tag to test whether a
given value is a dual

(define dual?
 (λ (d)
  (cond
   ((vector? d) (eq?† d|0
dual))
   (else #f))))

 
†This predicate is true if its arguments
reside at the same location in memory.
Here, it is true when two functions are the
same.

32 The expressions used in the
core often include literal
constants, for example for
hyperparameters or when
data sets are read from files.
These constants are
represented as real
numbers. For reverse mode
automatic differentiation
purposes, however, we treat
them as duals.

 
For an interesting look at eq?, see
chapter 18, “We Change Therefore
We Are the Same!” in The Seasoned
Schemer, MIT Press, 1996.

We now refer to both real
numbers and duals as

scalars

These are exactly the scalars
from the core, as in frame 31:7.

33 We thus define scalar?

(define scalar?
 (λ (d)
  (cond
   ((number? d) #t)
   (else (dual? d)))))



Consequently, we define
accessor functions that return
the real-part and link from a
scalar, regardless of whether it
is a real number or a dual.

The function ρ returns the real
part of a scalar. It begins by
testing if the scalar is a dual. If it
is, its real part is returned by
reaching into the vector that
represents the dual.

34 If d is not a dual, we assume
that d is a real number

(define ρ
 (λ (d)
  (cond
   ((dual? d) d|1)
   (else d))))

Similarly, κ returns the link of a
scalar. If d is a dual, its link is
returned by reaching into the
vector that represents the dual

(define κ
 (λ (d)
  (cond
   ((dual? d) d|2)
   (else end-of-chain))))

35 If the scalar is not a dual,
there is no chain that
produced it. In that case the
link should be a function
that ends the chain. We
refer to this as the

end-of-chain

function and we'll define it
shortly.

5 Differentiable functions



The functions that we're interested in
finding gradients for usually produce a
scalar loss as in frame 59:9. We find the
gradients of this loss with respect to the
θ argument of those functions.

For our purposes, we refer to such
functions as

differentiable functions

36 When presented
with a batch as in
frame 119:12, our
differentiable
functions produce a
tensor1 of scalars,
with one scalar for
each element of the
batch.

In its full generality,
automatic
differentiation
produces a θ-
shaped gradient for
each scalar in the
result.

Here we don't require this generality.
So, we make a simplifying optimization.
We produce, directly, a single θ-shaped
gradient that is the sum of all the
individual θ-shaped gradients, without
actually producing those individual θ-
shaped gradients.†

 
†For those who know what these words mean: we
produce a row-wise sum of the Jacobian.

37 The benefit of this
optimization is that
it makes it simpler
for gradient descent
by avoiding the
need to keep all the
individual θ-shaped
gradients.

6 Differentiables



Based on how we construct duals, we
should re-emphasize here that it is the
dual itself that carries the chain that
has produced it.

38 Because of this, we
are more concerned
with the results that
are produced by
differentiable
functions than we are
with the functions
themselves.

Duals, however, get embedded within
other structures like lists and vectors
(for example, in a θ). These lists and
vectors are, in turn, passed in as
arguments to differentiable functions
and are produced as results of these
functions.

39 We refer to scalars,
lists, and vectors as

differentiables

Differentiables are
defined as

scalars
lists of
differentiables

or

vectors of
differentiables

We can think of differentiables as
tree-shaped† structures that have
scalars at their leaves. The nodes in
this structure are lists and vectors.
Further, the scalars at the leaves carry
the chains that produced them.

 
†Actually, directed-acyclic-graph–shaped.

40 We often find the
need to traverse the
structure of
differentiables to
reach scalars at the
leaves.



One useful function for the traversal
of a differentiable is map*. This
function produces a new differentiable
with the same structure as the
argument, but the leaves have other
scalars instead.

41 The first argument to
map* is a function f
that accepts a single
scalar to produce
another scalar. The
second argument to
map* is a
differentiable y.

Then map* produces
a new differentiable
where every scalar,
say d, in y is replaced
by (f d).

We define it like this

 
†list member.
‡vector element.

42 This function
recursively traverses
the structure of y. In
the base test, where y
is a scalar, we invoke f
on y, thus producing
its new scalar.

For lists (vectors), we
traverse the
individual members
(elements)
recursively.§

 
§This definition includes the
possibility that vectors may
contain lists, even though we
don't use vectors like that in
the core.



This function dual* converts any
scalar to a truncated dual. A truncated
dual is a dual whose link is always the
function end-of-chain

(define dual*
 (λ (d)
  (dual (ρ d)
   end-of-chain)))

43 Here is an example of
how to use map*. If y
is a differentiable

(map* dual* y)

produces a
differentiable that
contains only
truncated duals at its
leaves. We refer to
this kind of
differentiable as a

truncated
differentiable

Now we have some of the machinery
to begin understanding ∇

(define ∇
 (λ (f θ)
  (let ((wrt (map* dual* θ)))
   (∇once (f wrt) wrt))))

44 The argument f is the
function for which the
gradient is being
sought, and θ is the
argument to f with
respect to which we're
seeking the gradient.

Since θ is a list of
tensors and since
tensors are either
scalars or possibly
nested vectors, θ is
itself a differentiable.



First, we convert θ to a truncated
differentiable

(map* dual* θ)

45 This abandons any
prior links that the
scalars in θ might
contain. The effect of
this is that it restricts
the gradient to be
determined
exclusively on what f
performs, and not on
the history of θ prior
to the invocation of f
on it.

This truncated differentiable is named
wrt to remind us that this is the θ
argument to f

with respect to

which we are determining gradients.

46 It is worth re-
emphasizing that wrt
is identical in
structure to θ, but
each scalar from θ in
wrt now has become
a truncated dual.

Thus, it is also worth
pointing out that
unlike θ, wrt always
contains truncated
duals at leaf positions.



We are now ready to invoke f on its
argument, wrt, which is really a
dressed-down θ. The truncated duals
at the leaves of wrt become the
arguments to chains that get
constructed in the invocation of f . In
other words, all the gradients of the
result of this invocation are
determined with respect to these
truncated duals in wrt.

47 We invoke the
function f on wrt.
Assuming that this
invocation
terminates, it
produces a
differentiable and we
then determine
gradients for this
differentiable with
respect to wrt.

The actual
determination of the
gradient is carried out
by the function ∇once,
which we now
describe.

7 Gradient states and ∇once



When we're walking
down chains of
primitives, we need a
structure that keeps
track of gradients.

48 Moreover, this structure needs to
remember one gradient for each
scalar in the argument.†

 
†These scalars are a subset of those in wrt.

We use a gradient state
to do this. A gradient
state associates each
scalar d in wrt with an
accumulator that
represents the current
gradient of the result of
the chain with respect
to d.

49 Technically, it represents the sum of
all the gradients of every scalar in
the result with respect to d as we
note in frame 37, but here we ignore
that distinction.



Gradient states are
easily represented as
hash tables.

Now we define ∇once

(define ∇once
 (λ (y wrt)
  (let ((σ (∇σ y
(hasheq))))
   (map* (λ (d)
      (hash-ref
σ d 0.0))
    wrt))))

Here, we determine a
gradient state σ,† by
invoking ∇σ on y and an
empty gradient state,
created with (hasheq).
Now σ contains the
gradients of y with
respect to each scalar in
wrt.

50 As defined in frame 6, the gradient
of y with respect to wrt should have
the same structure as wrt, but with
gradients instead of the scalars at
the leaves.

So, we use map* to substitute all the
scalars in wrt with the
corresponding gradient. We invoke
map* on a function that looks up the
gradient of a scalar in σ. Here, we
use the default value 0.0 when the
scalar is not yet present in σ. This
produces the gradient of y in exactly
the structure we need.

 
†Thanks, Hans Peter Luhn (1886–1964) for the
idea of hashtables. This use of σ is the first
occurrence of a hashtable.



Now we define ∇σ
51 Here, we traverse the structure of

the differentiable y recursively and
accumulate gradients in σ.

For lists, we accumulate the
gradients from each member by
recursively invoking ∇σ as we
traverse the list, using the support
function ∇σ-list.

For vectors, we accumulate the
gradients from each element by
recursively invoking ∇σ as we
traverse the vector, using the
support function ∇σ-vec.

This brings us to the
base test, when y is a
scalar. This is where we
start walking the chain
that produced this
scalar.

52 We first determine the link k of the
scalar y

(κ y)

The link k takes three
arguments. The first is
the scalar whose chain
we're interested in
walking. In this case,
this scalar is y.

53 The second argument is the starting
value of the multiplicative
accumulator as we begin walking
down the chain.



Since we're just starting
the walk down the
chain of y, we provide
1.0, the multiplicative
identity, as the starting
value for this
multiplicative
accumulator.

54 The third argument is the gradient
state we'll be updating with
gradients.

This invocation returns a gradient
state containing the gradients that
are obtained from walking the chain.

Here is how we traverse
lists, one member at a
time

 
†This use of ∇σ is the first
occurrence of a mutually
recursive invocation, which is a
part of Scheme we have not
used in the core, as we
remarked on page 351.

55 For vectors we traverse the vector
starting at the last element and
counting down to the 0th element

(define ∇σ-vec
 (λ (y i σ)
  (let ((  (∇σ y|i σ)))
   (cond
    ((zero? i) )
    (else (∇σ-vec y (sub1 i) 
))))))

8 Links



We now turn to links. Links, again,
are functions that help in the
walking of chains of a scalar.

56 Let's start with the
simplest case, when a
scalar has the end-of-
chain link for real
numbers and truncated
duals.

The link end-of-chain is always
invoked at the end of the chain. By
the time we're done walking the
chain and reach the end-of-chain,
we have the gradient associated
with this chain in the
multiplicative accumulator, which
we always refer to as z.

57 The end of the chain is
associated with a scalar,
d, which is the argument
to the chain. So, our task
at the end of the chain is
to remember the gradient
z for the scalar d in the
gradient state σ.

We thus define end-of-chain

(define end-of-chain
 (λ (d z σ)
  (let ((g (hash-ref σ d 0.0)))
   (hash-set σ d (+ z g)))))

58 In general, a single scalar
d from wrt might actually
appear at the end of
multiple chains that
contribute to a single
result, y. This can
happen, for example,
when the argument to a
function is used more
than once.

In that case, each occurrence of d
at the end of a chain makes its own
contribution to the gradient of y
with respect to d. The final
gradient here is the sum of all
these contributions.

59 So, for example, let us say
we have a function f

(λ (x)
 (+ x x))



The result of

(f d)

is

2 × d

60 Because x is used twice in
the body of f, this counts
as two occurrences of d.

The gradient of the result
of +, from frame 10, is 1.0
with respect to each
argument.

Thus, the gradient of the addition
with respect to d is

61 1.0 + 1.0 = 2.0

This requirement is incorporated
within end-of-chain. We first look
up the current gradient g for d in σ
using hash-ref, with a default of
0.0 if d is not present in σ.

62 We then add the
multiplicative
accumulator z to the
current gradient g, and
remember this sum as
the gradient for d using
hash-set.



Let's look at the link of a primitive
operation. The addition of two
scalars, +0,0 from frame 189:40, is
defined like this. It accepts two
scalar arguments and returns a
dual where the real part is the sum
of the real parts of its two
arguments.

Since +0,0 is primitive, its
gradients with respect to the
arguments da and db are
determined by a formula.

63 Here, + and * are the
native arithmetic
operations on real
numbers

(define +0,0

 (λ (da db)
  (dual (+ (ρ da) (ρ
db))
   (λ (d z σ)
    (let ((  ((κ da)
da (* 1.0 z) σ)))
     ((κ db) db (*
1.0 z) ))))))

Let us now understand
what happens when the
link here is invoked.



We first invoke the link for da, (κ
da), on the scalar

da

the multiplicative accumulator

(* 1.0 z)

which we explain below, and the
gradient state

σ

to obtain

the new gradient state 

64 We next invoke the link
for db, (κ db), on the
scalar

db

the multiplicative
accumulator

(* 1.0 z)

which we also explain
below, and the gradient
state

finally

the resultant gradient
state is returned from
the link

Now let's look at the multiplicative
accumulators. When we walk
down the links of da and db, the
multiplicative accumulator is the
product of the current
accumulator z and the gradient of
the primitive.

65 The gradients of addition,
with respect to the
argument whose chain
we are walking down, as
in frame 10, are both

1.0

So, this link begins the walk down
the chains for da and for db with
multiplicative accumulators

(* 1.0 z) for da

and

(* 1.0 z) for db

66 Also, since this link does
not end a chain, we do
not need to keep track of
any gradients for d.
Hence, we ignore d.



We recognize that

(* 1.0 z)

can be rewritten as z to get

67 (define +0,0

(λ (da db)
 (dual (+ (ρ da) (ρ db))
  (λ (d z σ)
   (let ((  ((κ da) da
z σ)))
    ((κ db) db z 
))))))

We use a similar pattern for exp0,
which is e(ρ da) where e is the
transcendental constant and da a
scalar. Its gradient is also e(ρ da)

(define exp0

 (λ (da)
  (dual (exp (ρ da))
   (λ (d z σ)
    ((κ da) da (* (exp (ρ da))
z) σ)))))

68 Similarly, we define *0,0

in frame 189:41, which is
the multiplication of two
scalars

(define *0,0

 (λ (da db)
  (dual (* (ρ da) (ρ
db))
   (λ (d z σ)
    (let ((  ((κ da)
da (* (ρ db) z) σ)))
     ((κ db) db (*
(ρ da) z) ))))))

The patterns for defining
primitives are very similar, and
can be generalized for the
definitions of all our primitives.

Let us start with a one-argument
primitive. We propose a function
prim1 that can be used to define,
for example, exp0.

69 (define exp0

 (prim1 exp
  (λ (ra z)
   (* (exp ra) z))))

Here, exp is the function
that will accept one real
number argument and
produce the real part of
the answer, which will be
a dual.



In this definition, prim1 accepts
two function arguments. The first
is the function that defines the real
part of the dual. Hence we refer to
this as the ρ-function of the
primitive.

70 The second function
defines how the body of
the link should behave.
In other words, it
incorporates the formula
for the gradient. Hence
we refer to this as the ∇-
function of the primitive.

The second function expects two
arguments and is responsible for
computing the gradient. The first,
ra, is the same real argument that
is passed when calculating the real
part. The second is the
multiplicative accumulator that
will be passed into the link.

71 An invocation of prim1
returns a function that
accepts a dual argument
and returns a
corresponding dual with
a properly constructed
link.

Here's the definition of prim1

(define prim1
 (λ (ρ-fn ∇-fn)
  (λ (da)
   (let ((ra (ρ da)))
    (dual (ρ-fn ra)
     (λ (d z σ)
      (let ((ga (∇-fn ra
z)))
       ((κ da) da ga
σ))))))))

72 The two arguments ρ-fn
(for ρ-function), and ∇-fn
(for ∇-function) are used
to produce the real part
and the gradient,
respectively. It returns a
function that accepts one
dual argument da and
produces a dual.



The real part of the produced dual
is determined by invoking ρ-fn on
the real part of da.

73 The link of the dual has a
body that invokes ∇-fn
with the real part of da
and z, and passes the
result down the link of
da.

And similarly, here is prim2. The
biggest difference, aside from the
additional argument to ρ-fn and ∇-
fn, is that we use Scheme's
multiple-value return feature to
receive two gradients from ∇-fn,
one each for da and db.†

These are then passed down the
links for da and db using  as in
frame 63.

 
†See the notation for let-values on page 351.

74  

We redefine +0,0 and *0,0 with
prim2†

(define +0,0

 (prim2 +
  (λ (ra rb z)
   ⟨z z⟩)))

 
†Each of +0,0 and *0,0 invokes prim2, whose
second argument is a function that when
invoked, returns two values. See the notation
for values on page 351.

75 (define *0,0

 (prim2 *
  (λ (ra rb z)
   ⟨(* rb z) (* ra
z)⟩)))



To define comparison operations,
we use a support function

(define comparator
 (λ (f )
  (λ (da db)
   (f (ρ da) (ρ db)))))

76 And then define these

(define <0,0

(comparator <))
(define >0,0

(comparator >))
(define ⩽0,0

(comparator ⩽))
(define ⩾0,0

(comparator ⩾))
(define =0,0

(comparator =))

9 Some common numerical primitives

 77



We refer to this first version of automatic differentiation as System
A. In appendix B, we show how to improve System A by redefining
some of the functions here.





 
†With apologies and thanks, Alan Jay Lerner (1918–1986).

“Little” books are all about packaging ideas neatly into little boxes.
The automatic differentiation described in appendix A (referred to as
System A) is a semantically correct package of ideas for all the
programs in the core. Sometimes, however, neat little packages run
into trouble with the messy realities of the world outside.

With System A, for example, training networks like morse-fcn and
morse-residual can become prohibitively time consuming. As we try
running and training even larger models, it becomes necessary to
vanquish these messy realities.

We sometimes like to imagine what Augustin-Louis Cauchy may
have mused in 1847, “When my ideas, in the distant future, become
well understood, the world will not believe what they can do with my
very clever algorithms.” Well, that distant future is now.

Functions that operate on very large tensors can be a lot more time-
efficient by using hardware that executes them “in parallel.” These
massively parallel machines, as they are known, need a little bit of
assistance in how our definitions and our data structures are
organized, so that they can extract the necessary efficiencies.

In this appendix, we chart a course in our own “Little” style, to meet
these demands. We go from the simple package in System A to an
evolved package that deftly handles messy realities just as neatly.
We'll continue to use the comic-book style and the by now familiar
notations from appendix A.

1 Tensors and their bottlenecks



System A implicitly assumes
that tensors of rank higher
than 0 are represented with
nested vectors. Let's clarify
this assumption further.

1 Here's the collection of functions
that allows us to manipulate
tensors of rank higher than 0.

(define tref
 (λ (t i)
  (vector-ref t (ρ i))))
 
(define tlen
 (λ (t)
  (vector-length t)))

2 (define tensor
 vector)
 
(define tensor?
 (λ (t)
  (cond
   ((scalar? t) #t)
   ((vector? t) #t)
   (else #f))))

In addition, we have ext1
and ext2, whose definitions
are exactly those given in
frames 182:16 and 187:35.
Together, these functions
form the abstract interface
to our tensors.

3 In general, all the scalars in our
tensors in System A are duals.
Each dual has a real part, which
is the value of the scalar, and a
link, which contains the
necessary information to extract
the gradient out of that scalar.

When our tensors are large,
and our networks are also
large (with many layers), the
total number of duals and
their links that we encounter
also becomes large.

4 Moreover, many of these duals
have very long chains, which
makes traversal of those chains
very time consuming. Having a
large number of them slows
down System A even more.

2 Reducing the number of links



Let's resolve this bottleneck first and
find a way to reduce the number of
duals and links in the system. The key
observation here is that almost every
scalar produced inside System A
resides in a tensor.

5 All of those scalars in
that tensor are
produced in exactly
the same way, usually
through an invocation
of an extended
function.

This means that their links are identical
in structure. For example, here is how
*2,1 behaves

6 All the scalars in this
result tensor will
contain the link
produced by *0,0

which looks like

 (λ (d z σ)
  (let ((  ((κ da)
da (* (ρ db) z) σ)))
   ((κ db) db (*
(ρ da) z) )))

The differences between the links are
the specific values of da and db. For
example, the underlined scalar 0.3 will
have in its link the value of (ρ da) as

3.0

7 And the value of (ρ
db) as

0.1

The other duals in the
tensor will have the
corresponding scalars
for da and db in their
links.



By recognizing this, we can have a
representation where the link is
associated with the whole result tensor,
and the equivalent values of a and b in
this link would be the whole argument
tensors.

8 So, instead of
following individual
links in scalars, we
could follow a single
link for the entire
tensor.

3 Modifying System A



This requires us to extend our
definition of duals to include
tensors in their real part, not just
scalars. We refer to duals that are
not scalars as tensor duals. We
refer to the real part of a tensor
dual as a tensor or sometimes a
non-dual tensor, to emphasize that
it is not a dual.

Our definitions of duals from
System A remain the same, but we
change some of the other
definitions.

9 We begin with the new
definition of scalar?—
when we have a dual, we
check whether its real
part is a number

(define scalar?
 (λ (d)
  (cond
   ((number? d) #t)
   ((dual? d)
(number? (ρ d)))
   (else #f))))

We define dual-like?, which is a
predicate that includes checking for
vectors, which now allow ρ and κ
invocations on them

(define dual-like?
 (λ (d)
  (cond
   ((scalar? d) #t)
   ((dual? d) #t)
   (else (vector? d)))))

10 The else clause (vector?
d) allows for the
possibility of
encountering constant
vectors, similar to how
we handle constant
scalars in frame 361:33.

We now modify ∇σ to also allow for
this same possibility of finding
constant tensors in the base case by
using dual-like?. We no longer
recursively descend into a vector.
We simply expect vectors (i.e., as
tensors) to carry their own links,
and start traversing the link.

11  



Unlike our previous definition of
∇σ, here y can be a tensor dual. So
when invoking the link, we pass, for
the accumulator, a tensor with the
same shape as

(ρ y)

but with 1.0s in it.

12 And we generate this
tensor using one-like
whose definition we'll
see soon.

The other big difference that we
encounter once we allow for tensors
inside duals is that a gradient state
σ no longer maps duals only to
scalars.

13 The purpose of σ is to
map a dual to its
gradient. When our
duals contain tensors,
the gradients
corresponding to those
duals will also be tensors
of the same shape.

This means we need a slightly
modified definition of end-of-chain

(define end-of-chain
 (λ (d z σ)
  (let ((g (hash-ref σ d 0.0)))
   (hash-set σ d (+ρ g z)))))

14 In this definition, +ρ is
an extended function
that simply adds two
(non-dual) tensors
together, similar to the
extended version of +
described in frame 49:11,
but with a few
differences. We'll look at
its definition shortly.



We similarly update map* 15 That was the easy part.

Now, we consider the
implications for
extended functions of
wrapping tensors inside
duals.

4 Extension functions with tensor duals



Our definitions of ext1 and ext2
in Interlude V expect tensors in
which each nested scalar is a
dual. This is what allows us to
find the gradients of extended
functions easily.

16 Now, however, since these
tensors are wrapped inside
duals; both ext1 and ext2 are
updated to produce a tensor
dual where the link has a
well-defined way to walk
down the chain of tensor
duals.

Let's handle this problem first.
We begin with renaming our
existing definition of ext1 to
ext1ρ and of ext2 to ext2ρ. The ρ
superscript reminds us that
this extension will be used to
produce the real part of a
tensor dual.

17 As this suggests, ext1ρ and
ext2ρ are the real paths of
ext1 and ext2, respectively,
where the real part of a dual
is determined. Here are the
redefinitions.

(define ext1ρ

 (λ (f n)
  (λ (t)
   (cond
    ((of-rank? n t) (f t))
    (else (tmap (ext1ρ f
n) t))))))

18 (define ext2ρ

 (λ (f n m)
  (λ (t u)
   (cond
    ((of-ranks? n t m
u) (f t u))
    (else
    (desc (ext2ρ f n m)
     n t m u))))))



The rest of the definitions of
the support functions remain
identical to those in Interlude
V.

19 In the definitions of these
functions, t and u are non-
dual tensors, i.e., they are
the real part of tensor duals,
and they produce tensors
that are non-dual as well,
i.e., they produce only the
real part of a resultant
tensor dual.

Let's tie up a couple of loose
ends now. We define one-like
using ext1ρ

(define one-like
 (ext1ρ (λ (s) 1.0) 0))

20 And +ρ using ext2ρ

(define +ρ

 (ext2ρ + 0 0))

5 Modifying extension functions



Let us now look at what ext1 and ext2 turn
into, and beginning with ext1.

21 The function
ext1 expects, as
before, a
function f to
extend, and the
base rank n.
Here, we expect
f to accept a dual
and return a
dual.

Then, ext1 returns a function that accepts
one tensor dual argument da (of rank n or
greater) and returns a dual whose real part
is determined by using ext1ρ.

22 Here is its
skeleton

The link of this returned dual is responsible
for determining the extended gradient of f .
We do that using N, which returns a
function that will determine gradient ga
using da and the multiplicative accumulator
z. We pass along ga to the link of da to
continue walking the chain.

We'll explain what an extended gradient of
a function means soon.

23 The interesting
part here is that
this function is
structurally
similar to
invoking prim1
on R and N! We
can now define
ext1

6 Primitives come to play



Our task now is to determine R
and N. When using System A,
the argument f of ext1 could be
any function that takes a single
tensor of rank n as an argument
and returns a single tensor of
any rank as a result.

24 In the tensor dual system,
however, we make an
additional restriction. This
restriction is that we can
extend only primitives, i.e.,
we can extend functions that
are produced using either
only prim1 or prim2.

This is not overly restrictive
since most of our extensions
have been only of primitive
functions so far.

25 Secondly, since our
definition of ext1 is an
invocation of prim1,
functions extended with ext1
automatically comply with
this restriction.

A primitive can be considered
to have two sub-functions: its ρ-
function, which is the first
argument to prim1, and its ∇-
function, which is the second
argument to prim1.†

 
†This also applies to primitives of two
arguments and prim2.

26 For extended functions,
each of these sub-functions
is extended separately.

The extension of the ρ-function
is invoked for the real part of a
tensor dual. We see a glimpse of
this when we invoke ext1ρ to get
the ρ-function of ext1.

27 The extended gradient from
frame 23 is determined by
extending the ∇-function
and invoking it on da and z.



We stipulate the existence of
two accessor functions ρ-
function and ∇-function, which
extract the ρ- and ∇-functions,
respectively, from any given
primitive. We'll define them
shortly.

Now, we can see that R is

(ρ-function f )

28 So we can fill in some of
ext1's skeleton

Just as we have ext1ρ for the ρ-
function extensions, we assume
a function ext1∇ for ∇-function
extensions.

29 So, N looks something like

Since ext1∇ extends the ∇-
function of f, we have

G

is

(∇-function f )

30 We can now complete ext1

(define ext1
 (λ (f n)
  (prim1 (ext1ρ (ρ-
function f ) n)
   (ext1∇ (∇-function f )
n))))

7 Adding accessors to primitives



We now have our work cut out for
ext1.

We need to define the accessors

ρ-function and ∇-function

and the extender

ext1∇

31 Let's begin with ρ-function
and ∇-function. The
arguments to these two
functions are always a
primitive function
generated using prim1.

Since a primitive created using
prim1 is a function, the only
operation possible on it is
invocation.

Here is ρ-function

(define ρ-function
 (λ (prim)
  (prim ρ-function)))

32 And here is ∇-function

(define ∇-function
 (λ (prim)
  (prim ∇-function)))

But wait, primitives are not
defined to accept functions as
arguments.

They expect only tensor duals.

33 So, let us fix that by
redefining prim1 so that
primitives can also accept
the functions ρ-function or
∇-function as an
argument.



Here is a revised definition of
prim1

34 When invoked with ρ- and
∇-function arguments,
prim1 returns a function
that tests its only
argument.†

 
†The design of this function is
intended to build what might be
recognized as a funcallable
instance which can also be written
in some languages as a record that
can be invoked or an object that
inherits from a function class.

If daf is the function

ρ-function

it returns

ρ-fn

35 If daf is the function

∇-function

it returns

∇-fn



If the argument is neither, it
performs what the original prim1
function does, which is to
produce a dual that invokes the
necessary sub-function as
needed. We capture that as an
invocation of the function prim1-
dual.

36 Here is the definition of
prim1-dual

(define prim1-dual
 (λ (ρ-fn ∇-fn da)
  (let ((ra (ρ da)))
   (dual (ρ-fn ra)
    (λ (d z σ)
     (let ((ga (∇-fn
ra z)))
      ((κ da) da
ga σ)))))))

This definition behaves
identically to prim1 from
frame 371:72 once it has
received its arguments ρ-
fn, ∇-fn, and da.

We give the real part of da
the name ra and use it in
both the real part of the
dual and its link.

Now we define ext1∇ 37 It accepts two arguments
∇-fn, which is the ∇-
function of a primitive,
and n, the required base
rank of ∇-fn.



It returns a function that accepts
t, a non-dual tensor, and z, and
results in a tensor that represents
the gradient of the extended
version of f.

38 This definition is similar
to ext1ρ, but the main
difference here is that ∇-fn
expects two arguments to
produce a gradient: an
element of t at a given
index, and the element
from z at the same index.

Similar to ext1ρ, if the rank of t
has met its base rank n we invoke

∇-fn on t and z

This produces a gradient value of
f at t.

39 The recursive case is
analogous to ext1ρ where
we invoke tmap using

(ext1∇ ∇-fn n)

on every element of t and
z, and assemble their
results into the new
gradient vector.

The definition of ext2 is
analogous to that of ext1

(define ext2
 (λ (f n m)
  (prim2 (ext2ρ (ρ-function f )
n m)
   (ext2∇ (∇-function f ) n
m))))

40 We need, however, the
definitions for prim2 and
ext2∇ to complete this
definition.



For our next definition, we need
variable-arity functions.† Such a
function can be invoked with any
number of arguments, which are
collected into a list and passed
into the function.

Here is an example.

(define bizarre

(λ xs
 |xs|))

The xs after λ has no parentheses.
 

†This is another part of Scheme that does not
occur in the core that we alluded to on page
351.

41 Here we invoke bizarre
with 3 arguments and then
5 arguments

1.  (bizarre 17 45 81)

2.  3

 

1.  (bizarre 83 22 16 41
94)

2.  5

We can start with prim2 42 And prim2's support,
prim2-dual



The function returned from
prim2 is a variable-arity function
because it would get only a single
argument if it were invoked from
ρ-function or ∇-function, but
would get two arguments if it
were invoked as a primitive.

43 The function prim2-dual
also behaves identically to
prim2 from frame 372:74
once it has its 4
arguments.

8 Extending gradients of binary primitives



That brings us to the
definition of ext2∇. We
can see by analogy to the
similarity of ext1∇ to ext1ρ,
that ext2∇ should be
similar to ext2 ρ, but will
need to allow for the
additional z argument.

44 Here is how we define ext2∇

(define ext2∇

 (λ (∇-fn n m)
  (λ (t u z)
   (cond
    ((of-ranks? n t m u) (∇-
fn t u z))
    (else
     (desc∇ (ext2∇ ∇-fn n m)
     n t m u z))))))

When the rank of t meets
n and the rank of u meets
m, we produce a pair of
gradients by invoking

(∇-fn t u z)

Otherwise, we descend
into one or both tensors.
We do this by invoking
desc∇, which is
structurally very similar
to desc from frame
188:37. The main
difference here is that
desc∇ additionally accepts
a multiplicative
accumulator z.

45 Here is how we define desc∇

(define desc∇
 (λ (g n t m u z)
  (cond
   ((of-rank? n t) (desc-u∇ g t
u z))
   ((of-rank? m u) (desc-t∇ g
t u z))
   ((=   ) (tmap2 g t u
z))
   ((rank> t u) (desc-t∇ g t u
z))
   (else (desc-u∇ g t u z)))))



There are three support
functions here that we
haven't seen

desc-t∇

desc-u∇

and

tmap2

Let's look at tmap2 first.

46 It maps g over t, u, and z

(define tmap2
 (λ (g t u z)
  (build-gt-gu 
   (λ (i)
    (g t|i u|i z|i)))))

Here g produces two
gradients at each
invocation. These
gradients are assembled
into two separate vectors
to produce two gradient
tensors, one with respect
to each of t and u.

47 This is handled by build-gt-gu,
which is invoked with the size of
the gradient vectors needed (here
the length of t) and an
initialization function that
produces two values for each
index i.



We define build-gt-gu

Here we first create two
vectors gt and gu each of
length tn where each
element has some default
value (usually 0).

Then, fill-gt-gu invokes
the function init with the
index i to get the value for
gt|i and gu|i and replaces
the default values there. It
finally returns gt and gu.

48 (define fill-gt-gu
 (λ (gt gu init i)
  (let2 (⟨gti gui⟩ (init i))
   (vector-set! gt i gti)†

   (vector-set! gu i gui)
   (cond
    ((zero? i) ⟨gt gu⟩)
    (else
     (fill-gt-gu gt gu g
(sub1 i)))))))

 
†We use the side-effecting vector-set!, and the
body of the let2 is evaluated in sequence.
Some may find this shocking, but it is
justified here as a onetime initialization of
previously uninitialized vectors. We are
satisfied that build-gt-gu presents an
abstraction that is free of side effects, even
though its implementation might not be. A
side-effect-free version can be defined using
list → vector, at the expense of more memory
allocation.

Let us now define desc-t∇

(define desc-t∇
 (λ (g t u z)
  (build-gt-acc-gu 
   (λ (i)
    (g t|i u z|i)))))

49 When descending into t, but not u,
we handle the gradients returned
by g differently. We do this by
invoking the support function
build-gt-acc-gu which, again, is
invoked with the length of the
vector we need to build, and an
initialization function that
produces two values when given
an index i.



The whole of u is used
with each element of t
when we descend into t
but not u. This means u is
repeated for each element
of t.

50 Because of this repeated use, we
add the gus produced at each i
together, similar to frame 368:60.

In other words, we
accumulate the gus. This
is why our support
function here is called
build-gt-acc-gu.

51 And here is its definition

It takes two arguments,
tn, the length of the
vector being built, and the
initialization function
init. It then creates a
vector gt of length tn
where each element,
again, has some default
value.

52 For the purposes of accumulation,
we begin with gu being set to 0.0.
We then invoke fill-gt-acc-gu,
which repeatedly invokes init for
each index i and sets each element
of gt while accumulating gu.

Here is how fill-gt-acc-gu
is defined

53 It is similar in structure to fill-gt-
gu, but we accumulate gu with +ρ

instead of setting the values in a
vector.

 
†The framenote in frame 48 applies here as
well.



The remaining function,
desc-u∇, is very similar to
desc-t∇, but the support
function accumulates gt
instead of gu

54 Here is the definition of fill-gu-
acc-gt

 
†. . . and here.

With these changes, our
definitions for scalar
primitives and their
extensions remain
identical to those seen in
the core and in appendix
A.

55 Non-scalar primitives, or
primitives accepting tensors of
rank higher than 0, e.g. sum1 and
argmax1, are redefined to respect
the restriction in frame 24.

9 Non-scalar primitives



We begin by redefining sum1 as the ρ-
function sum1ρ

(define sum1ρ

 (λ (t)
  (summedρ t (sub1 ) 0.0)))

56 Here is summedρ

There is a corresponding ∇-function
sum1∇

(define sum1∇

 (λ (t z)
  (tmap (λ (t) z) t)))

57 This function is the
predetermined
formula for the
gradient of a sum
of scalars within a
tensor1.

We can now define sum1†

(define sum1

 (prim1 sum1ρ sum1∇))
 

†Other vector operations are defined similarly, with
their predetermined formulas for the ∇-functions
determined individually. We refer the reader to

 www.thelittlelearner.com

58 and extend it as
usual, since it is
now a primitive.
We get both sum
and sum-cols from
it

(define sum
 (ext1 sum1 1))
 
(define sum-cols
 (ext1 sum1 2))

These new definitions for ext1 and ext2
are fully capable of handling tensors
inside duals so as to reduce bottlenecks
by many orders of magnitude for
programs like morse.

59 We now look at
another
optimization that
further improves
the performance of
our models.

http://www.thelittlelearner.com/


10 Flat tensor representation



The layout of the tensors in
memory is a crucial factor in
determining how quickly the
scalars in these tensors can be
retrieved for operating on them.

60 In most cases, the hardware
favors tensors that are
“contiguous” when laid out
in memory, meaning that
all the scalars in the tensor
appear in contiguously
placed memory locations.

In most real-world problems for
deep learning, we work with
very large tensors.

61 In such cases, it pays to
organize our tensors for
contiguous representation
in memory, including for
massively parallel
hardware.

The tensors we have here, using
the vector representation, are
not contiguous.

62 Since we use a nested
representation, different
parts of the same tensor
(when higher than rank 1),
could be found in various
non-contiguous locations
within memory.



Here, we provide an overview of
a different representation of
tensors that skirts nesting
altogether, and relies on a
single, fully contiguous section
of memory to represent the
whole tensor.

63 We call this a flat tensor
representation. Here we
provide insight into this
representation and refer the
reader to the definitions
that can be found at

www.thelittlelearner.com

Hybrid representations that
combine flat and nested
tensor representations are
possible, of course, and
sometimes make sense on
certain kinds of massively
parallel hardware. Here,
however, we limit ourselves
to completely flat tensor
representations.

A flat tensor has three parts that
define it. The first is its shape,
which is a list, identical to the
shape of any given tensor seen
in the core.

64 Unlike the naturally
recursive definition of
shape in frame 39:37,
which traverses the nesting
of a tensor, here we provide
the shape of the tensor
when it is constructed.

The second part is a store, which
is a contiguous section of
memory for all elements of the
tensor.

65 All the scalars in the tensor
(which are now just real
numbers) are kept
contiguously in this store.†

 
†This is similar to arrays found in
languages like Fortran and C.

http://www.thelittlelearner.com/


The third is an offset, which is a
natural number indicating how
many locations into the store
this tensor begins.

66 This is necessary to be able
to select sub-tensors out of
a given flat tensor without
having to copy elements of
the original store into a new
store.

As an example, here is a tensor3 67 In a nested representation,
this is how this tensor is
constructed

(vector
 (vector
  (vector 1 2 3 4)
  (vector 5 6 7 8)
  (vector 9 10 11 12))
 (vector
  (vector 13 14 15 16)
  (vector 17 18 19 20)
  (vector 21 22 23 24)))

Its flat representation is

(flat (list 2 3 4)
 (store 1 2 . . . 24)
 0)

68 Here, the function store
allocates a contiguous
memory segment and fills it
with the values provided.



Let us temporarily give a name
to this store

(define t-store
 (store 1 2 . . . 24))

69 And now we define t as the
tensor3 from frame 68
using t-store

(define t
 (flat (list 2 3 4)
  t-store
  0))

How can we represent the
various sub-tensors of this
tensor? For example, say we
want the sub-tensor given by

t|1

This would be the tensor

70 With the flat tensor
representation we can reuse
t-store for this purpose

(flat (list 3 4)
 t-store
 12)

The offset argument 12
indicates that this tensor
begins at the 12th position
in t-store. We refer to the
portion of the store that is
occupied by the scalars in a
tensor as its extent.

Here, the extent of this
tensor begins at the 12th
position and goes up to the
23rd position (we assume,
of course, that the
numbering of positions
begins at 0).



The function shape now simply
returns the shape associated
with the flat tensor.

71 Here, then, is this familiar
definition of rank from
frame 41:42

(define rank
 (λ (t)
  |(shape t)|))

Extension operations ext1 and
ext2 over flat representations
are also simpler, because no
descending into sub-tensors is
necessary.

72 For example, take a scalar
extension, such as log. The
function ext1ρ now allocates
a new store and fills it by
traversing the extent of the
tensor and invoking the ρ-
function of log0 on the
corresponding input
element.

We refer to this type of traversal
as looping. The number of
elements processed at each step
is known as a stride of the loop.
For scalar operations the
looping occurs with a stride of
one element. This looping is
used primarily to fill in the right
values for pre-allocated tensor
stores.

73 For extended functions,
such as sum, ext1ρ will need
to invoke the ρ-function of
sum1 with a stride of the
length of the tensor1 that
needs summing.

It is this simplified traversal that
gives us the speed advantages
for massively parallel machines.

74 We need to, of course, have
a corresponding ext1∇,
which is the mirror
operation of ext1ρ, but it
invokes the ∇ function



invokes the ∇-function.

For ext2ρ and ext2∇, the shapes
of the argument tensors
determine the pattern of looping
and the strides necessary for
each argument, as well as the
shape of the output tensor being
filled.

75 For example, when one of
the argument tensors, say t,
is repeated because it has
met its base rank, but the
other tensor, say u, hasn't,
then the looping pattern
continues to traverse u, but
starts again for t everytime
the end of t has been
reached.

11 Shape functions



Because extensions in the flat
tensor representation need to
pre-allocate stores, it becomes
necessary for primitives to be
able to report the shapes their
outputs will require.

76 For example, sum1 produces
only one scalar everytime it
is invoked but requires a
tensor1 to produce that
scalar. Similarly +0,0

produces one scalar for one
scalar in each of its inputs,
but one of the inputs may be
used repeatedly.

In order to support this pre-
allocation of stores, we now
require primitives to also have a
shape function. A shape
function for unary operations
takes an input shape (of its base
rank) and produces an output
shape.

77 For example the shape
function of sum1 is

(define shape-sum1

 (λ (st)
  (list)))

which says the shape of the
output of sum1 for any given
input shape of rank 1, is the
empty list, which means the
output is a scalar.

Similarly, the shape function
for all scalar primitives of two
arguments is

(define shape0,0

 (λ (st su)
  (list)))

78 The shape function for *2,1 is

(define shape*2,1

 (λ (st su)
  st))

This definition says that the
output produced by *2,1 has
the same shape as its rank 2
argument, st.



Primitives are now defined with
their shape functions. For
example

(define sum1

 (prim1 sum1ρ sum1∇ shape-
sum1))
 
(define +0,0

 (prim2 +
  (λ (ra rb z)
   ⟨z z⟩)
  shape 0,0))

79 Both prim1 and prim2 will
correspondingly require a
test for the argument shape-
fn, defined thusly

(define shape-fn
 (λ (prim)
  (prim shape-fn)))

Since ext1 and ext2 are also
defined as primitives, we need
to provide shape functions for
these as well. These, however,
can use the shape functions of
their primitives and
automatically derive a shape
function for the extension.

80 The definitions of shape
functions for ext1 and ext2
both mirror the structure of
ext1ρ and ext2ρ but instead
of producing tensors, they
produce only shapes.

12 And lastly



We have purposely
been abstract about
how stores are
represented. A simple
way to represent them
in Scheme is to use
vector

(define store
 vector)

81 Some languages allow for native
libraries, usually known as foreign
function interfaces, that enable
stores to be represented in operating
system native representations that
are much friendlier to the underlying
hardware.

Many massively
parallel machines
provide such native
libraries which can be
used for the benefit of
efficient parallelized
execution.

82 This path to massively parallel
machines also requires careful
reconstruction of ext1, ext2, and all
the primitives to take advantage of
the parallelism, but we leave that as
homework for you!

Well, that's that, then.

Now that we've met
every character
without skipping
chapters, it is time to
end our little journey
here. We leave with
another poem.

83 You will see light in the darkness

You will make some sense of this

And when you've made your little
journey

You will find the fun you've missed.†
 

†With apologies and thanks, Sting.
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