
SOLID Principles

Single-Responsibility Principle

Open-Closed Principle

Liskov Substitution Principle

Interface Segregation Principle

Dependency Inversion Principle

Building a Dashboard

Data modeling

Gumroad Service

Get Products

Get Sales

Sync With Gumroad

Sync Gumroad Products

Sync Gumroad Sales

Dashboard

Handling Discounts and Coupons

Data Modeling

Expired Coupons

Inactive Coupons

Coupon Conditions

Coupon types

Working with 3rd Parties

One Service

Separate Requests

Transporter by JustSteveKing

Laravel Forge SDK

Custom Fields

Data Modeling

User API

User Field API

Final Words

Martin Joo - Laravel Concepts - Part I

1 / 146

SOLID Principles
First, let's discuss what SOLID stands for:

Single-responsibility principle
Open-closed principle
Liskov substitution principle
Interface segregation principle
Dependency inversion principle

Sounds scientific, isn't it? But it's all just marketing. In reality, this is the most simple thing
in the universe. It's a set of principles mainly focusing on object-oriented programming
made popular by Robert C. Martin. Now let's see what are these principles.

Martin Joo - Laravel Concepts - Part I

2 / 146

Single-Responsibility Principle

Each class should have only one reason to change.

It's kind of hard to define what a "reason" might be and it causes some confusion but
usually, it's related to roles. Users have different roles. For example, let's say we're working
on an app that is being used by financial experts. Users want reports. It's obvious that an
accountant wants to see completely different reports and charts than a CFO. Both of them
are reports, but they are being used in different roles. So it's probably a good idea not to
mix the code in one Report class. This one class will change for different reasons.

Another, maybe more obvious example is data and its representation. Usually, they change
for different reasons. Hence it's probably a safe bet to decouple the query layer from the
representation layer. Which is the defacto industry standard nowadays, and one of the
reasons why API+SPA is so popular. But it wasn't always the case. But we can take a step
back because there are still countless examples when developers mix these two things in
Laravel.

Consider this hypothetical (and oversimplified) example:

class UserResource extends JsonResource

{

 public function toArray($request)

 {

 $mostPopularPosts = $user"#posts()

 "#where('like_count', '>', 50)

 "#where('share_count', '>', 25)

 "#orderByDesc('visits')

 "#take(10)

 "#get();

Martin Joo - Laravel Concepts - Part I

3 / 146

I couldn't count how many times I see something like that. This is a modern example of
mixing the data and the representation layer in one class. When we see a legacy project
where there is a single PHP file with HTML, PHP, and MySQL in it, we cry in pain. Of course,
this resource is much better than that, but in fact, it has similar issues:

The array is similar to HTML. It's the representation of the data.
The Eloquent query is similar to MySQL. It's the query layer.
And the whole class is in PHP.

So after all, we're mixing a lot of things in just 20 lines of code.

"All right, but it's all theory. What's the big deal about this?" Here is some problems that
might occur:

The PM says: "can we please change the definition of 'most popular posts'?" After a
request like this, I'd not think that I need to go to the UserResource class. It's just not
logical. This class shouldn't be changed because of that request.
You probably need this resource in a lot of places all around your application. But
information such as most popular posts is typically shown on only a few pages. So it's
wasteful.
This simple query can be the origin of N+1 queries and other performance issues.

Fortunately, the fix is pretty easy:

 return [

 'id' "$ $this"#id,

 'full_name' "$ $this"#full_name,

 'most_popular_posts' "$ $mostPopularPosts,

];

 }

}

Martin Joo - Laravel Concepts - Part I

4 / 146

class UserResource extends JsonResource

{

 public function toArray($request)

 {

 return [

 'id' "$ $this"#id,

 'full_name' "$ $this"#full_name,

 'most_popular_posts' "$ $this"#when(

 $request"#most_popular_posts,

 $this"#mostPopularPosts,

),

];

 }

}

class User extends Posts

{

 /**

 * @return Collection<Post>

 "%

 public function mostPopularPosts(): Collection

 {

 return $this"#posts()

 "#where('like_count', '>', 50)

 "#where('share_count', '>', 25)

 "#orderByDesc('visits')

 "#take(10)

 "#get();

 }

}

Martin Joo - Laravel Concepts - Part I

5 / 146

Of course in this example, I don't assume anything about the overall architecture of the
project. You can write services, actions, query builders, scopes, repositories, or anything
you like. You can argue that this query should be in the Post model.

We can do something like that:

Or using a scope:

I also think that it's a better solution. If a PM says: "can we please change the definition of
'most popular posts'?" I know I need to go to the Post model. And of course, usually, the
User is the first one that is going into "legacy" mode. After six months. So you can see

that a simple query like this can cause some confusion and debate. Or even (often) religious
wars.

This is why I prefer using single-use-case actions. And I think this is why they are getting
more and more popular in the Laravel community. It looks like this:

Post"&mostPopularBy($user);

$user"#posts()"#mostPopularOnes();

Martin Joo - Laravel Concepts - Part I

6 / 146

class UserResource extends JsonResource

{

 public function toArray($request)

 {

 return [

 'id' "$ $this"#id,

 'full_name' "$ $this"#full_name,

 'most_popular_posts' "$ $this"#when(

 $request"#most_popular_posts,

 GetMostPopularPosts"&execute($user),

),

];

 }

}

class GetMostPopularPosts

{

 /**

 * @return Collection<Post>

 "%

 public static function execute(User $user): Collection

 {

 return $user"#posts()

 "#where('like_count', '>', 50)

 "#where('share_count', '>', 25)

 "#orderByDesc('visits')

 "#take(10)

 "#get();

 }

}

Martin Joo - Laravel Concepts - Part I

7 / 146

This class Depends on these

Model HTTP, Job, Command, Auth

Job HTTP

Command HTTP

Mail/Notification HTTP, Job, Command

Service HTTP

Repository HTTP, Job, Command

You can also use non-static functions, or invokable classes the choice is yours. All of them
are great and testable so I think it's just a matter of preference. But can you see how much
we improved the "architecture" from the single-responsibility point-of-view?

Now we have two well-defined classes:

UserResource is responsible only for the representation and it has one reason to
change.
GetMostPopularPosts is responsible only for the query and it has one reason to

change.

Here are some typical indicators that you're breaking SRP:

Database queries in simple "data" or representation classes such as requests,
responses, DTOs, value objects, mails, and notifications. Anytime you write business
logic into these classes it can be a bad practice.
Dispatching jobs or commands from models. Usually, you don't want to couple these
things together. It's better to use an event or dispatch the job from a controller or use
an action. Models should not be orchestrator classes that are starting long-running
processes.
Incorrect dependencies. It breaks a lot of other principles but is usually also a red flag
in terms of SRP. By incorrect dependency, I mean, when a Model uses an HTTP request
or response. In this case, you're coupling a transportation layer (HTTP) to a data layer
(model). These are some examples I consider "incorrect" dependencies:

Martin Joo - Laravel Concepts - Part I

8 / 146

Of course, these are just overgeneralized examples. Usually, it depends on your exact
project/class.

Martin Joo - Laravel Concepts - Part I

9 / 146

Open-Closed Principle

A class should be open for extension but closed for modification

It sounds weird, I know. Please don't check out the Wikipedia page because it gets even
weirder. So let me show you an example.

Let's say we're working on a social application. It has users, posts, comments, and likes.
Users can like posts, so you implement this feature in the Post model. Easy. But now,
users also want to like comments. You have two choices:

Copy the like-related features into the Comment model
You implement a generic trait that can be used in any model

Of course, we want the second option. It looks something like that:

trait Likeable

{

 public function like(): Like

 {

 "' ""(

 }

 public function dislike(): void

 {

 "' ""(

 }

 public function likes(): MorphMany

 {

 "' ""(

 }

Martin Joo - Laravel Concepts - Part I

10 / 146

Now let's say we need to add a chat to the app, and of course, users want to like
messages. So we do this:

This is pretty standard, right? But think about what happened here. We just added new
functionality to multiple classes without changing them! We extended our classes instead
of modifying them. And this is a huge win in the long term. This is why traits and
polymorphism in general are amazing tools.

 public function likeCount(): int

 {

 return $this"#likes()"#count();

 }

}

class Post extends Model

{

 use Likeable;

}

class Comment extends Model

{

 use Likeable;

}

class ChatMessage extends Model

{

 use Likeable;

}

Martin Joo - Laravel Concepts - Part I

11 / 146

id name price price_type

1 Chicken soup 7 has_batches

2 Margherita pizza 15 has_toppings

3 Cheeseburger 12 standard

id product_id name price

1 1 Large 2

id total_price created_at

1 38 2023-01-08 14:42

Let's look at another example that uses polymorphism and interfaces. Let's say we're
working on an app similar to DoorDash. It has different products and variations. For
example, users can order a small batch or large batch of chicken soup. Both have different
prices. They can also order pizza with different toppings that modify the price. But they can
also order a pretty standard food such as a Cheeseburger without any modification.

Here's an oversimplified database structure:

products:

product_batches: this table contains the price modification for different batch sizes

So a small batch of chicken soup costs $7 but a large one costs $12 because of the
product_batches.price column.

When customers order their food we need to create an Order and OrderItems for these
products:

orders : this table is not that important for our purpose so we leave it pretty simple

order_items

Martin Joo - Laravel Concepts - Part I

12 / 146

id order_id product_id product_batch_id price

1 1 1 1 9

2 1 2 17

3 1 3 12

id name price

1 Cheese 1

2 Mushroom 1

id order_item_id topping_id

1 2 1

2 2 2

toppings : this table contains every toppings users can add to their food:

order_item_topping : this is a pivot table that associates products with toppings:

So we can determine the prices using different calculations:

Chicken soup: products.price + product_batches.extra_price
Margherita pizza: products.price + sum of the toppings' prices based on the
order_item_topping table

Cheeseburger: products.price

Of course, this is just a hypothetical and oversimplified example, but the technical details
are not that important for now so it works for our purpose.

Now let's see how we can calculate prices:

Martin Joo - Laravel Concepts - Part I

13 / 146

class PriceCalculatorService

{

 public function calculatePrice(Order $order): float

 {

 return $order"#items()

 "#reduce((float $sum, OrderItem $item) {

 switch ($item"#product"#type) {

 case 'standard':

 return $item"#prouct"#price;

 case 'has_batches':

 return $item"#product"#price +

 $item"#product_batch"#price;

 case 'has_toppings':

 $toppingsSum = $item"#toppings

 "#reduce(function ($sum, Topping $topping) {

 return $sum + $topping"#price;

 }, 0);

 return $item"#product"#price + $toppingsSum;

 }

 }, 0);

 }

}

Martin Joo - Laravel Concepts - Part I

14 / 146

It's not so bad but it has two essential flaws:

If you're building a DoorDash-like app, just imagine how many times you need to repeat
this switch statement. If there are other things that depend on the product type (and
there are a dozen of them!) it gets even worse.
What happens when you need to handle a new type of product? Then you need to
modify all of those switch statements. And this is the bare minimum you need to do,
usually, it's a much bigger pain in a project that doesn't rely on polymorphism and the
open-closed principle.

Or put it in other words: this architecture violates the open-closed principle. It's absolutely
not extensible but requires changing existing (and probably nasty) classes every time a new
requirement comes in.

So let's refactor it using OCP and polymorphism. First, we need a class hierarchy that
represents the different price types:

abstract class PriceType

{

 public function ")construct(

 protected readonly OrderItem $orderItem

) {}

 abstract public function calculatePrice(): float;

}

class StandardPriceType extends PriceType

{

 public function calculatePrice(): float

 {

 return $this"#orderItem"#product"#price;

 }

}

Martin Joo - Laravel Concepts - Part I

15 / 146

These classes can calculate the price of a single OrderItem that has a Product . We need
a way to create these classes easily. This is where the factory "design pattern" can be
useful:

class HasBatchesPriceType extends PriceType

{

 public function calculatePrice(): float

 {

 return $this"#orderItem"#product"#price +

 $this"#orderItem"#product_batch"#price;

 }

}

class HasToppingsPriceType extends PriceType

{

 public function calculatePrice(): float

 {

 $toppingsSum = $this"#orderItem"#toppings

 "#reduce(function (float $sum, Topping $topping) {

 return $sum + $topping"#price;

 }, 0);

 return $this"#orderItem"#product"#price + $toppingsSum;

 }

}

Martin Joo - Laravel Concepts - Part I

16 / 146

And now we need a way to create these classes in a model. An attribute accessor is an
excellent choice to do so:

class PriceTypeFactory

{

 public function create(OrderItem $orderItem): PriceType

 {

 switch ($orderItem"#product"#type)

 {

 case 'standard':

 return new StandardPriceType($orderItem"#product);

 case 'has_batches':

 return new HasBatchesPriceType($orderItem"#product);

 case 'has_toppings':

 return new HasToppingsPriceType($orderItem"#product);

 }

 }

}

Martin Joo - Laravel Concepts - Part I

17 / 146

And finally, we can rewrite the PriceCalculator class:

Do you see what we did? We just eliminated every switch statement from the entire
application and switched them to separate classes and a simple factory. Now, what
happens when a new product type comes in?

We need to add a new class that extends the abstract PriceType class
We need to add a new case to the PriceTypeFactory class

class OrderItem extends Model

{

 public function priceType(): Attribute

 {

 return new Attribute(

 get: fn () "$ (new PriceTypeFactory())

 "#create($this),

);

 }

}

class PriceCalculatorService

{

 public function calculatePrice(Order $order): float

 {

 return $order"#items

 "#reduce(function (float $sum, OrderItem $item) {

 return $sum + $item"#price_type"#calculatePrice();

 }, 0);

 }

}

Martin Joo - Laravel Concepts - Part I

18 / 146

Or put in other words: instead of changing everything, we can extend our existing classes
with the new functionality

All we needed was a factory, some strategy classes, and a little bit of polymorphism. Of
course, now we're only talking about prices that depend on the product type, but usually,
there are other things as well. All we need to do is "repeat" this process and introduce
another class hierarchy.

Oh and of course, we are cool kids, so let's modernize the factory:

Or even better we can get rid of the whole thing with the magic strings and we can use an
enum that can behave like a factory:

class PriceTypeFactory

{

 public function create(OrderItem $item): PriceType

 {

 return match ($item"#product"#type) {

 'standard' "$ new StandardPriceType($item"#product),

 'has_batches' "$ new HasBatchesPriceType($item"#product),

 'has_toppings' "$ new HasToppingsPriceType($item-

>product),

 };

 }

}

Martin Joo - Laravel Concepts - Part I

19 / 146

The attribute accessor looks like this:

enum PriceTypes: string

{

 case Standard = 'standard';

 case HasBatches = 'has_batches';

 case HasToppings = 'has_toppings';

 public function create(OrderItem $item): PriceType

 {

 return match ($this) {

 self"&Standard "$ new StandardPriceType($item),

 self"&HasBatches "$ new HasBatchesPriceType($item),

 self"&HasToppings "$ new HasToppingsPriceType($item),

 };

 }

}

class OrderItem extends Model

{

 public function priceType(): Attribute

 {

 return new Attribute(

 get: fn () "$ PriceTypes"&from(

 $this"#product"#price_type

)"#create($this),

);

 }

}

Martin Joo - Laravel Concepts - Part I

20 / 146

Liskov Substitution Principle

Each base class can be replaced by its subclasses

It sounds obvious and I think this is the easiest principle to comply with. However, there are
some important things.

The principle says that if you have a base class and some subclasses, you should be able
to replace the base class with the subclasses anywhere inside your application without any
problem.

Consider this scenario:

abstract class EmailProvider

{

 abstract public function addSubscriber(User $user): array;

 /**

 * @throws Exception

 "%

 abstract public function sendEmail(User $user): void;

}

class MailChimp extends EmailProvider

{

 public function addSubscriber(User $user): array

 {

 "' Using MailChimp API

 }

Martin Joo - Laravel Concepts - Part I

21 / 146

We have an abstract EmailProvider and we use both MailChimp and ConvertKit for some
reason. These classes should behave exactly the same way, no matter what.

So if I have a controller that adds a new subscriber:

 public function sendEmail(User $user): void

 {

 "' Using MailChimp API

 }

}

class ConvertKit extends EmailProvider

{

 public function addSubscriber(User $user): array

 {

 "' Using ConvertKit API

 }

 public function sendEmail(User $user): void

 {

 "' Using ConvertKit API

 }

}

Martin Joo - Laravel Concepts - Part I

22 / 146

I should be able to use any of these classes without any problem. It should not matter if the
current EmailProvider is MailChimp or ConvertKit . I also should be able to switch the
argument:

This sounds obvious, however, there are some important thing that needs to be satisfied:

Same method signatures. In PHP we're not forced to use types so it can happen that
the addSubscriber method has different types in MailChimp compared to
ConvertKit .

It's also true for return types. Of course, we can type-hint these, but what about an
array or a Collection ? It's not guaranteed that an array contains the same types in

multiple classes, right? As you can see, the addSubscriber method returns an array
that contains the subscriber's data received from the APIs. Both MailChimp and
ConvertKit return a different shape. They are arrays, yes, but they are completely

class AuthController

{

 public function register(

 RegisterRequest $request,

 EmailProvider $emailProvider

) {

 $user = User"&create($request"#validated());

 $subscriber = $emailProvider"#addSubscriber($user);

 }

}

public function register(

 RegisterRequest $request,

 ConvertKit $emailProvider

) {}

Martin Joo - Laravel Concepts - Part I

23 / 146

different data structures. So I cannot be 100% sure that RegisterController works
correctly with any email provider implementation. This is why it's a good idea to have
DTOs when working with 3rd parties.
The same exceptions should be thrown from each method. Since exceptions cannot be
type-hinted in the signature it's also a source of difference between these classes.

As you can see the principle is quite simple but it's easy to make mistakes.

Martin Joo - Laravel Concepts - Part I

24 / 146

Interface Segregation Principle

You should have many small interfaces instead of a few huge ones

The original principle sounds like this: no code should be forced to depend on methods it
does not use but the practical implication is the definition I gave you. To be honest, this is
the easiest principle to follow. In the DashDoor example (see in the open-closed principle
chapter), products have a type, such as:

Standard
Has batches
Has toppings
etc

We had a separate class to handle price calculations for these types. In a real-world
application price is not the only thing that depends on the type. There are other things such
as:

Reports
Data representation
Inventory management
Tax and VAT calculations
Information on the receipt

In the original example, we had these classes:

ProductPriceType

StandardProductPrice

HasBatchesProductPrice

HasToppingsProductPrice

Each of them handles the price calculation for a certain type of product. Imagine if we write
some generic ProductType class, such as:

ProductType

StandardProduct

Martin Joo - Laravel Concepts - Part I

25 / 146

HasBatchesProduct

HasToppingsProductPrice

And we try to handle everything in these classes. So they have functions like this:

I guess you can see what's the problem. This interface is too big. It handles too many
things. Things that are independent of one another. So instead of writing one huge interface
to handle everything we separate these responsibilities into smaller ones:

interface ProductType

{

 public function calculatePrice(Product $product): float;

 public function decreaseInventory(Product $product): void;

 public function calculateTaxes(Product $product): TaxData;

 "' ""(

}

interface ProductPriceType

{

 public function calculatePrice(Product $product): float;

}

interface ProductInventoryHandler

{

 public function decreaseInventory(Product $product): void;

}

Martin Joo - Laravel Concepts - Part I

26 / 146

Another great example of this is PHP traits and how the framework itself, 1st and 3rd party
packages and the community uses them:

Each of those traits has a pretty small and well-defined interface and it adds a small chunk
of functionality to the class. The same goes for the Sendable interface.

interface ProductTaxType

{

 public function calculateTaxes(Product $product): TaxData;

}

class Broadcast extends Model implements Sendable

{

 use WithData;

 use HasUser;

 use HasAudience;

 use HasPerformance;

}

Martin Joo - Laravel Concepts - Part I

27 / 146

Dependency Inversion Principle

Depend upon abstraction, not concretions.

Whenever you have a parent class and one or more subclasses you should use the parent
class as a dependency. For example:

It should be quite straightforward at this point, that we want to do something like this:

interface class MarketDataProvider

{

 public function getPrice(string $ticker): float;

}

class IexCloud extends MarketDataProvider

{

 public function getPrice(string $ticker): float

 {

 "' Using IEX API

 }

}

class Finnhub extends MarketDataProvider

{

 public function getPrice(string $ticker): float

 {

 "' Using Finnhub API

 }

}

Martin Joo - Laravel Concepts - Part I

28 / 146

So every class should depend on the abstract MarketDataProvider not on the concrete
implementation.

In my opinion, it's important to have these abstractions even if you have only one
implementation when it comes to 3rd party providers. The reason is that these services
and providers change, and you never know what will happen in the future. Just to name a
few examples:

I was using IEX cloud in a financial app a long time ago. I thought that IEX API is the
only constant thing in that project. It was great, it was stable, etc. Until they switched
from a monthly subscription to usage-based pricing (if I remember correctly). They
essentially 3x our expenses. In a project that did not yet have income. So we switched
to Finnhub. But of course, we didn't have the correct abstractions so it was a pain in
the ass.
I've been using Gumroad since I began to publish content. I thought I'd never use any
other platform. Until this book. This is powered by Paddle. Gumroad 2x'd their prices
and Paddle 100% better from an accounting point-of-view.
I always thought Stripe was the best payment provider in the entire universe. Until I
tried Paddle. Now they are my go-to solution and I'm using them in multiple projects.
A long time ago MailChimp was the industry-standard mail service provider for me.
Now I'm using ConvertKit almost exclusively.

class CompanyController

{

 public function show(

 Company $company,

 MarketDataProvider $marketDataProvider

) {

 $price = $marketDataProvider"#getPrice();

 return view('company.show', compact('company', 'price'));

 }

}

Martin Joo - Laravel Concepts - Part I

29 / 146

We used Azure at my current workplace until we got free credits from Google that will
cover our expenses for the next two years.

Services and providers change and you should be able to handle these changes with
minimum effort. Minimum effort means an abstraction above the concrete classes that can
be switched without modifying your code.

Martin Joo - Laravel Concepts - Part I

30 / 146

Building a Dashboard
In this chapter, I'd like to discuss the design and development of a dashboard that shows
you sales and revenue information about products. In fact, this is a personal "product" of
mine. Earlier, I published a book and it has three different packages. Each package has a
different price. I use Gumroad as my e-commerce provider, but handling different packages
is not that optimal, so I created a separate Gumroad product for each one. This is not the
best solution either because I have three separate products with separate statistics and
reports. This is why I developed a small dashboard that shows me:

How many copies I sold overall

What was the overall revenue

A breakdown of the three packages:

Copies sold
Total revenue
Revenue %

If you take a look at this Figma design, you'll have a better idea:

Martin Joo - Laravel Concepts - Part I

31 / 146

This whole page is about one product and "Basic," "Plus," and "Premium" are the
packages. So let's design and implement this dashboard!

Martin Joo - Laravel Concepts - Part I

32 / 146

Data modeling

When integrating with 3rd party data providers (such as Gumroad in this case), you have at
least three different solutions about how to get and display the data:

Send API requests on the fly. So anytime someone opens this dashboard the app will
send HTTP requests to Gumroad, then aggregates and displays the important
information. This solution is fairly poor from a performance point of view, so it's not a
common use case.

Store 3rd party data in your own database. Instead of on-the-fly API requests you can
create your own database and store the important data from Gumroad. This can be
implemented in two different ways:

Scheduled. In this scenario, you can write a scheduled job that runs every day,
hour, or minute (depending on the use case) and sync data from Gumroad to your
local database.
Real-time. Most e-commerce (or other bigger 3rd parties) offer push (or ping)
services. This means whenever a new sale happens they "push" the data to you by
calling your API endpoint or using WebSocket.

What you choose depends heavily on the use case, for example:

If you have a dashboard that is used to gather monthly business information you don't
need real-time data.
On the other hand, if your dashboard is used by a marketing team on the weekend of
Black Friday to get sales data and adapt their strategy quickly if needed, then you
might need a real-time solution.

In this discussion, we're going with a scheduled solution. However, it'll be very easy to
refactor it to a push model, for example. The main difference is that the trigger of the main
action is not a scheduled command but an API endpoint.

To implement this dashboard and integration we need the following components:

Martin Joo - Laravel Concepts - Part I

33 / 146

This is what the whole flow looks like:

The SyncGumroadSalesCommand runs every X minutes.

It calls the SyncGumroadSalesAction class that does two things:

It calls the SyncGumroadProductsAction which will query all the products from
Gumroad and save it into the database.
It queries the sales from Gumroad and saves them into the database.

As you can see, we only need two tables, sales and products .

Martin Joo - Laravel Concepts - Part I

34 / 146

Gumroad Service

Let's start with integrating the external API. When working with 3rd party services it's a
good idea to store the access token and the base URL as an environment variable and a
config. In Laravel we have the services.php config which can be used for this purpose:

Now we can create the GumroadService class that accepts these values in the
constructor:

But now every time you want to instantiate this class you need to provide these values:

return [

 'gumroad' "$ [

 'uri' "$ env('GUMROAD_URI'),

 'access_token' "$ env('GUMROAD_ACCESS_TOKEN'),

],

];

namespace App\Services\Gumroad;

class GumroadService

{

 public function ")construct(

 private readonly string $accessToken,

 private readonly string $uri,

) {}

}

new GumroadService('my_token', 'https:"'api.gumroad.com/v2');

Martin Joo - Laravel Concepts - Part I

35 / 146

Of course, this is not what we want. Fortunately, the Laravel service container makes this
very easy:

Now, instead of manually taking care of these values, we can instantiate them like this:

class AppServiceProvider extends ServiceProvider

{

 public function boot()

 {

 $this"#app"#when(GumroadService"&class)

 "#needs('$accessToken')

 "#give(config('services.gumroad.access_token'));

 $this"#app"#when(GumroadService"&class)

 "#needs('$uri')

 "#give(config('services.gumroad.uri'));

 }

}

$gumroad = app(GumroadService"&class);

"' Or injecting it into a method

public function index(

 Request $request,

 GumroadService $gumroad

) {

 "'""(

}

Martin Joo - Laravel Concepts - Part I

36 / 146

Get Products

The first API we need to use is the GET /products :

As you can see, this method returns a collection of ProductData classes. This is a DTO or
DataTransferObject which is a class that holds data. There's nothing special about DTOs,
they just help us eliminate the big, unstructured, and random associative arrays from our
code. For example, the ProductData is really straightforward since we only need two
attributes:

/**

 * @return Collection<ProductData

 "%

public function products(): Collection

{

 $products = Http"&get("{$this"#uri}/products", [

 'access_token' "$ $this"#accessToken,

])"#json('products');

 return collect($products)

 "#map(fn (array $data) "$ ProductData"&fromArray($data));

}

Martin Joo - Laravel Concepts - Part I

37 / 146

By using a DTO such as this one, the only place where we interact with the array given by
Gumroad is the fromArray method. In every other place, we'll have a nice type-hinted
object with auto-completion.

namespace App\Services\Gumroad\DataTransferObjects;

class ProductData

{

 public function ")construct(

 public readonly string $id,

 public readonly string $name,

) {}

 public static function fromArray(array $data): self

 {

 return new self(

 id: $data['id'],

 name: $data['name'],

);

 }

}

Martin Joo - Laravel Concepts - Part I

38 / 146

Get Sales

The next API we need to interact with is the GET /sales . This is a bit trickier for two
reasons:

It's paginated. So every time you call the API you only get 20 sales and a URL to the
next page.
It requires a product_id parameter, so the method in GumroadService will accept a
collection of products.

/**

 * @param Collection<Product> $products

 * @param Carbon|null $after

 * @return Collection<SaleData>

 "%

public function sales(

 Collection $products,

 ?Carbon $after = null

): Collection {

 foreach ($products as $product) {

 for ($page = 1; ; $page"*) {

 $requestData = [

 'access_token' "$ $this"#accessToken,

 'product_id' "$ $product"#gumroad_id,

 'page' "$ $page

];

 if ($after) {

 $requestData['after'] = $after"#format('Y-m-d');

 }

Martin Joo - Laravel Concepts - Part I

39 / 146

A few important things:

It goes through every product.
It starts an infinite loop using the $page variable.
It uses the $page variable inside the $requestData array which is going to be used in
the HTTP request later.
It also accepts an optional $after variable, which is very important. Let's say you
have sales data from the last 6 months. You already synced everything except the last 4
hours, so you obviously don't want to sync everything every time. To avoid this
Gumroad accepts an after parameter in the request body. We discuss it in more
detail later.

The next part of the method:

We actually send the request, and if the next_page_url is null it means that there are no
more data so we can exit the infinite loop.

Since we need to deal with pagination and we have nested loops, we need to keep track of
the sales for a given product:

 "'""(

 }

 }

}

$response = Http"&get("{$this"#uri}/sales", $requestData);

if (!$response"#json('next_page_url')) {

 break;

}

Martin Joo - Laravel Concepts - Part I

40 / 146

So I introduced the $salesByProduct array which holds every sale made by a particular
product. After I send the request I merge the new sales with the old ones. New means the
current page, and old means the previous pages. So the $salesByProduct array contains
every sale made by one product. As you can guess, we need every sale made by every
product.

foreach ($products as $product) {

 $salesByProduct = []; "' "+ Important

 for ($page = 1; ; $page"*) {

 "'""(

 $response = Http"&get("{$this"#uri}/sales", $requestData);

 "' Important

 $salesByProduct = [

 ""($salesByProduct, "' Sales from previous pages

 ""($response"#json('sales'), "' Sales from the current

page

];

 }

}

Martin Joo - Laravel Concepts - Part I

41 / 146

So I essentially did the same thing with the $sales array as earlier with the
$salesByProduct .

The last thing we need to do is introduce a new DTO called SaleData so we can return a
collection of DTOs from this method as well:

$sales = []; "' "+ Important

foreach ($products as $product) {

 $salesByProduct = [];

 for ($page = 1; ; $page"*) {

 "'""(

 $salesByProduct = [

 ""($salesByProduct,

 ""($response"#json('sales'),

];

 }

 "' Important

 $sales = [

 ""($sales, "' Sales by previous products

 ""($salesByProduct, "' Sales by current product

];

}

return collect($sales)"#sortByDesc('date');

Martin Joo - Laravel Concepts - Part I

42 / 146

Since every sale has a product associated with it, we need to accept a Product instance.
As you can see, this DTO has a nested ProductData property. For this reason, the make
function accepts a $data array and the Product . This is why it's called make instead of
fromArray . This is a rule of thumb for me. DTOs usually have three kinds of factory

namespace App\Services\Gumroad\DataTransferObjects;

class SaleData

{

 public function ")construct(

 public readonly string $email,

 public readonly ?string $full_name,

 public readonly float $revenue,

 public readonly Carbon $date,

 public readonly ProductData $product,

) {}

 public static function make(

 array $data,

 Product $product

): self {

 return new self(

 email: $data['email'],

 full_name: Arr"&get($data, 'full_name'),

 revenue: $data['price'] / 100,

 date: Carbon"&parse($data['created_at']),

 product: ProductData"&fromModel($product),

);

 }

}

Martin Joo - Laravel Concepts - Part I

43 / 146

methods:

fromArray(array $data) We have seen this earlier in the ProductData class. This is
the most common one.
fromModel(Order $order) This one creates a DTO from a model instance. In this

example, it creates an OrderData from an Order model.
make(...) This one always accepts more than one argument.

Now that we have the SaleData class, this is what the sales method looks like:

/**

 * @param Collection<Product> $products

 * @param Carbon|null $after

 * @return Collection<SaleData>

 "%

public function sales(

 Collection $products,

 ?Carbon $after = null

): Collection {

 $sales = [];

 foreach ($products as $product) {

 $salesByProduct = [];

 for ($page = 1; ; $page"*) {

 $requestData = [

 'access_token' "$ $this"#accessToken,

 'product_id' "$ $product"#gumroad_id,

 'page' "$ $page

];

Martin Joo - Laravel Concepts - Part I

44 / 146

 if ($after) {

 $requestData['after'] = $after"#format('Y-m-d');

 }

 $response = Http"&get(

 "{$this"#uri}/sales",

 $requestData

);

 $salesByProduct = [

 ""($salesByProduct,

 ""($response"#json('sales'),

];

 if (!$response"#json('next_page_url')) {

 break;

 }

 }

 $dtos = collect($salesByProduct)

 "#map(fn (array $sale) "$

 SaleData"&make($sale, $product)

);

 $sales = [

 ""($sales,

 ""($dtos,

];

 }

Martin Joo - Laravel Concepts - Part I

45 / 146

It's a bit long and the body of the loop can clearly be a separate function. It makes sense, in
my opinion, to introduce a new method called salesByProduct() . So this is the final form
of our method:

Basically, I just moved the loop's body into a new function. Now that we have the
GumroadService we can implement the sync actions.

 return collect($sales)"#sortByDesc('date');

}

/**

 * @param Collection<Product> $products

 * @param Carbon|null $after

 * @return Collection<SaleData>

 "%

public function sales(

 Collection $products,

 ?Carbon $after = null

): Collection {

 $sales = [];

 foreach ($products as $product) {

 $sales = [

 ""($sales,

 ""($this"#salesByProduct($product, $after),

];

 }

 return collect($sales)"#sortByDesc('date');

}

Martin Joo - Laravel Concepts - Part I

46 / 146

Sync With Gumroad

Sync Gumroad Products

Syncing products is really straightforward:

namespace App\Actions;

class SyncGumroadProductsAction

{

 public function ")construct(

 private readonly GumroadService $gumroad

) {}

 public function execute(): void

 {

 foreach ($this"#gumroad"#products() as $product) {

 Product"&updateOrCreate(

 [

 'gumroad_id' "$ $product"#id,

],

 [

 'gumroad_id' "$ $product"#id,

 'title' "$ $product"#name,

]

);

 }

 }

}

Martin Joo - Laravel Concepts - Part I

47 / 146

id synced_at

1 2022-05-12 13:11:32

2 2022-05-13 14:54:01

3 2022-05-14 21:09:12

It couldn't be easier. It requests the products and then inserts or updated them in the
database. If you don't know updateOrCreate , here's how it works:

If it finds a row with the attributes given in the first array (gumroad_id in this case) it's
going to perform an update query. If there's no result, it1s going to perform an insert
query.
The update or insert will use the second array.

Sync Gumroad Sales

As I said earlier, the sales method in the GumroadService class accepts an optional
$after parameter. Since the sync command will run on a scheduled basis we only need to

query sales made in the last X hours. Or in other words: sales after the last sync. This is
why I introduced a new table, the gumroad_syncs . We will create a new row in this table
after a sync has been successfully finished. The table looks like this:

Of course, you don't need to store every occurrence, you can have only one row that stores
the last sync. However, having a detailed history sometimes makes the debugging process
easier.

That being said, here's what the SyncGumroadSalesAction looks like:

Martin Joo - Laravel Concepts - Part I

48 / 146

class SyncGumroadSalesAction

{

 public function ")construct(

 private readonly SyncGumroadProductsAction

$syncGumroadProducts,

 private readonly GumroadService $gumroad,

) {}

 public function execute(): void

 {

 $this"#syncGumroadProducts"#execute();

 $latestSync = GumroadSync"&latest('synced_at')"#first();

 $sales = $this"#gumroad"#sales(

 Product"&all(),

 $latestSync?"#synced_at,

);

 foreach ($sales as $sale) {

 /** @var SaleData $sale "%

 $product = Product"&where(

 'gumroad_id',

 $sale"#product"#gumroad_id

)"#first();

 Sale"&updateOrCreate(

 [

 'product_id' "$ $product"#id,

 'customer_email' "$ $sale"#email,

Martin Joo - Laravel Concepts - Part I

49 / 146

Step-by-step:

Every time this action is triggered it will sync the products first.
It requests the sales from Gumroad API using the last sync date.
For each sale, it creates a new record in the sales table.
It creates a new record into the gumroad_syncs table.

The last piece of the puzzle is the actual command that runs every X hours:

],

 [

 'product_id' "$ $product"#id,

 'customer_email' "$ $sale"#email,

 'customer_name' "$ $sale"#full_name,

 'revenue' "$ $sale"#revenue,

 'sold_at' "$ $sale"#date,

]

);

 }

 GumroadSync"&create([

 'synced_at' "$ Sale"&latest('sold_at')"#first()"#sold_at,

]);

 }

}

Martin Joo - Laravel Concepts - Part I

50 / 146

As you can see, it only calls the action. This command can be used from the terminal by
php artisan sync and it can be scheduled in the Console/Kernel :

namespace App\Console\Commands;

class SyncGumroadSalesCommand extends Command

{

 protected $signature = 'sync';

 protected $description = 'Sync sales and products from

Gumroad';

 public function handle(

 SyncGumroadSalesAction $syncGumroadSales

) {

 $syncGumroadSales"#execute();

 return self"&SUCCESS;

 }

}

namespace App\Console;

class Kernel extends ConsoleKernel

{

 protected function schedule(Schedule $schedule)

 {

 $schedule"#command('sync')"#hourly();

 }

}

Martin Joo - Laravel Concepts - Part I

51 / 146

Dashboard

Now we have every data needed to show the dashboard. If you take a look at the design
you see that it shows you more than one product. This means we need to accept product
IDs in the URL. This is the request:

I often write simple getters such as the products method. Some other examples:

namespace App\Http\Requests;

class GetDashboardRequest extends FormRequest

{

 /**

 * @return Collection<Product>

 "%

 public function products(): Collection

 {

 return Product"&whereIn('id', $this"#product_ids)"#get();

 }

 public function rules()

 {

 return [

 'product_ids' "$ ['required', 'array'],

 'product_ids.*' "$ ['exists:products,id'],

];

 }

}

Martin Joo - Laravel Concepts - Part I

52 / 146

class SomeRequest extends FromRequest

{

 public function startDate(): ?Carbon

 {

 if ($request"#start_date) {

 return Carbon"&parse($request"#start_date);

 }

 return now()"#startOfCentury();

 }

 public function filters(): PriceFilter

 {

 return PriceFilter"&make($request"#low, $request"#high);

 }

 /**

 * @return Collection<string>

 "%

 public function tags(): Collection

 {

 return collect($this"#tags);

 }

 public function order(): Order

 {

 return Order"&findOrFail($this"#order_id);

 }

}

Martin Joo - Laravel Concepts - Part I

53 / 146

So the main idea here:

Converting collections from arrays.
Dealing with null values.
Converting strings to Carbon.
Querying models. This means only simple where id = X queries. Nothing more
complicated!

So the important thing is: no business logic in requests. These getters and helpers will
make your controllers a little bit cleaner. In our example, there's no need to query products
by ids, since it's already done in the request.

Back to our dashboard. Now we have a request, so let's use it in the controller:

namespace App\Http\Controllers;

use App\Http\Requests\GetDashboardRequest;

use App\ViewModels\GetDashboardViewModel;

class GetDashboardController extends Controller

{

 public function ")invoke(GetDashboardRequest $request)

 {

 $viewModel = new GetDashboardViewModel(

 $request"#products()

);

 return view('dashboard', [

 'model' "$ $viewModel"#toArray(),

]);

 }

}

Martin Joo - Laravel Concepts - Part I

54 / 146

It's a very small application, but I almost always use view models by default. What is a view
model, you might ask? ViewModel is a very clever way to handle view-related data. I'm not
talking about Blade views exclusively. You can think of a view model as a data container
responding to a specific request such as the 'Get Dashboard' request. They can be used in
both SPAs (Inertiajs included) and full-stack MVC applications.

Let's think about what data we need on the dashboard:

Sales summary. This is the header with the following data:

Units sold
Total Revenue
Average Price

Products summary. The three cards that show:

The product's name
Total revenue
Units sold
Revenue contribution in percentage

List of the last 10 sales

This is our UI and we can express this in the view model by creating methods such as:

salesSummary

productsSummary

sales

For example:

Martin Joo - Laravel Concepts - Part I

55 / 146

The constructor accepts a collection of products. They come from the request discussed

class GetDashboardViewModel extends ViewModel

{

 /**

 * @var Collection<Sale>

 "%

 private Collection $sales;

 public function ")construct(

 private readonly Collection $products

) {}

 public function salesSummary(): SalesSummaryData

 {

 $sales = Sale"&latest('sold_at')

 "#whereIn('product_id', $this"#products"#pluck('id'))

 "#get();

 $totalRecvenue = $sales"#sum('revenue');

 $unitsSold = $sales"#count();

 return new SalesSummaryData(

 units_sold: $unitsSold,

 total_revenue: round($totalRevenue, 0),

 average_price: round($totalRevenue / $unitsSold, 1),

);

 }

}

Martin Joo - Laravel Concepts - Part I

56 / 146

earlier. The salesSummary method performs a query and runs some calculations. After
that, it returns a simple DTO:

As you can see, this class extends an abstract ViewModel class. This only provides a
toArray method which converts every public method into an array key. So by calling the
toArray on this class we get something like that:

Later, I'll show you how it's done, but now you can understand why the toArray is called
in the controller:

namespace App\DataTransferObject;

class SalesSummaryData

{

 public function ")construct(

 public readonly int $units_sold,

 public readonly float $total_revenue,

 public readonly float $average_price,

) {}

}

[

 'sales' "$ [

 'units_sold' "$ 10,

 'total_revenue' "$ 200,

 'average_price' "$ 20,

],

];

Martin Joo - Laravel Concepts - Part I

57 / 146

In this example, I use Blade so the data will be passed as an array. In the case of a JSON
API, Laravel will convert arrays into JSON, so this method works in both cases.

Now, let's see what else is in the view model. First of all, I need the sales in multiple places
and I don't want to query them multiple times, so I put the query in the constructor:

class GetDashboardController extends Controller

{

 public function ")invoke(GetDashboardRequest $request)

 {

 $viewModel = new GetDashboardViewModel(

 $request"#products()

);

 return view('dashboard', [

 'model' "$ $viewModel"#toArray(),

]);

 }

}

Martin Joo - Laravel Concepts - Part I

58 / 146

It's private property and it contains every sale. Private properties won't be included in the
resulting array, so it's just private data that can be used in this class. I also need the total
revenue in multiple places (in the sales summary, and in the product summary as well), so I
created a private method:

With these two functions we can refactor the salesSummary :

class GetDashboardViewModel extends ViewModel

{

 /**

 * @var Collection<Sale>

 "%

 private Collection $sales;

 public function ")construct(

 private readonly Collection $products

) {

 $this"#sales = Sale"&latest('sold_at')

 "#whereIn('product_id', $this"#products"#pluck('id'))

 "#get();

 }

}

private function totalRevenue(): float

{

 return $this"#sales"#sum('revenue');

}

Martin Joo - Laravel Concepts - Part I

59 / 146

We can also write the function that returns the 10 most recent sales:

It takes the last 10 sales and maps them into DTOs. The last method is the
productSummaries :

public function salesSummary(): SalesSummaryData

{

 $totalRevenue = $this"#totalRevenue();

 $unitsSold = $this"#sales"#count();

 return new SalesSummaryData(

 units_sold: $unitsSold,

 total_revenue: round($totalRevenue, 0),

 average_price: round($totalRevenue / $unitsSold, 1),

);

}

/**

 * @return Collection<SaleData>

 "%

public function sales(): Collection

{

 return $this"#sales

 "#take(10)

 "#map(fn (Sale $sale) "$ SaleData"&fromModel($sale));

}

Martin Joo - Laravel Concepts - Part I

60 / 146

It creates a ProductSaleSummaryData DTO for each product. The DTO is pretty simple:

/**

 * @return Collection<ProductSaleSummaryData>

 "%

public function productSummaries(): Collection

{

 $totalRevenue = $this"#totalRevenue();

 return $this"#products

 "#map(function (Product $product) use ($totalRevenue) {

 $productRevenue = $product"#sales"#sum('revenue');

 return new ProductSaleSummaryData(

 product: ProductData"&fromModel($product),

 total_revenue: $productRevenue,

 units_sold: $product"#sales"#count(),

 total_revenue_contribution: $productRevenue /

$totalRevenue,

);

 });

}

Martin Joo - Laravel Concepts - Part I

61 / 146

ViewModels can help your project in two ways:

Your code is one step closer to the domain language. So when a product manager says
"on the dashboard page," you immediately know that they talk about the
GetDashboardViewModel .

It can be an excellent addition to have the exact structure of your UI expressed as
classes.

As I promised earlier, here's the parent ViewModel class:

namespace App\DataTransferObject;

class ProductSaleSummaryData

{

 public function ")construct(

 public readonly ProductData $product,

 public readonly float $total_revenue,

 public readonly int $units_sold,

 public readonly float $total_revenue_contribution,

) {}

}

Martin Joo - Laravel Concepts - Part I

62 / 146

abstract class ViewModel implements Arrayable

{

 public function toArray(): array

 {

 return collect((new ReflectionClass($this))"#getMethods())

 "#reject(fn (ReflectionMethod $method) "$

 in_array(

 $method"#getName(),

 ['")construct', '")invoke', 'toArray']

)

)

 "#filter(fn (ReflectionMethod $method) "$

 in_array(

 'public',

 Reflection"&getModifierNames(

 $method"#getModifiers()

)

)

)

 "#mapWithKeys(fn (ReflectionMethod $method) "$ [

 Str"&snake($method"#getName()) "$ $this"#{$method-

>getName()}()

])

 "#toArray();

 }

}

Martin Joo - Laravel Concepts - Part I

63 / 146

This method is defined in the parent ViewModel class that every view model extends. We
only need to implement the Arrayable interface, and Laravel will take care of the rest. I
don't want to go into too many details about how the reflection API works, but the main
logic is this:

We want every method from the view model except __construct , __invoke ,

and toArray`.
We also want to reject every private or protected method. Only public methods
represent data properties.
We want the array keys to be in snake_case . So a method called salesSummary will
become sales_summary in the array and the view.

This is how the view model gets converted into an array and passed to the Blade (or Vue)
view as a property.

Martin Joo - Laravel Concepts - Part I

64 / 146

Handling Discounts and Coupons
In this chapter, I'd like to discuss a common scenario in e-commerce and enterprise
applications: applying discounts. In my experience, this is a feature that most of the time
starts simple but over time it gets very complicated. But the worst of it: it often results in
monstrous code.

In this article I'll talk about coupons with the following behaviors:

They have a type. It's either a fixed amount discount or a percentage-based.
They can have a condition. For example, you can only apply a particular coupon if the
order's total amount is bigger than $99.

These are pretty common use cases in real-world applications, so let's take a look at them!

Data Modeling

We're going to have the following tables:

Coupons can be applied to orders and each order has many order items, where each item
contains a product. This is a pretty common table structure when dealing with orders and
discounts.

Each coupon has one of the following types:

fix_amount : in this case, the discount attribute contains the dollar amount of the

Martin Joo - Laravel Concepts - Part I

65 / 146

actual discount.
percent : in this case, the discount attribute contains a percentage value.

When applying a fix_amount coupon to an order the orders.discounted_price
attribute will be: orders.total_price - coupons.discount .

When applying a percent coupon to an order the orders.discounted_price attribute
will be: orders.total_price * (1 - coupons.discount).

Coupons also have one condition associated with them. It's a JSON column in the following
format:

These are the two kinds of conditions the sample app will support:

order_total_price : this coupon can only be applied when the current order's
total_price attribute is greater than the value or $99 in this example.
lifetime_order_amount : this coupon can only be applied when the lifetime order

value of the current customer is greater than value or $990 in this case.

You can store these conditions in a separate table, but in this example, it's perfectly fine to
store them in the coupons table as a column.

{

 "type": "order_total_price",

 "value": 99

}

{

 "type": "lifetime_order_amount",

 "value": 990

}

Martin Joo - Laravel Concepts - Part I

66 / 146

Expired Coupons

There are two more rules I didn't mention earlier:

Each coupon has an expiration date.
And a state. It's either active or inactive. Right now, the business logic is this: each
coupon is for one-time use.

These are pretty easy business rules, but they give us a good opportunity to practice TDD.

So without any existing code, let's write a test that makes sure that an expired coupon
cannot be applied. First, we need some setup code, and data to use:

namespace Tests\Feature;

class ApplyCouponTest extends TestCase

{

 use RefreshDatabase;

 /** @test "%

 public function it_should_not_apply_an_expired_coupon()

 {

 $user = User"&factory()"#create();

 $token = $user

 "#createToken('test_token', ['*'])

 "#plainTextToken;

 "' Given

 $order = Order"&factory([

 'total_price' "$ 100,

 'discounted_price' "$ 100,

 'discount_value' "$ 0,

Martin Joo - Laravel Concepts - Part I

67 / 146

Each test needs a user and a token since they're going to call an API. After I have a token, I
create an Order and a Coupon . The important thing is that this coupon expired yesterday.

After that, everything is ready to call a non-existing API:

It's going to be a PATCH request since it does not create any new resources but modifies
an existing Order . The patchJson method comes from the parent TestCase class
provided by Laravel. It sends a PATCH request in JSON format. The arguments in order:

 'coupon_id' "$ null,

])"#create();

 $coupon = Coupon"&factory([

 'type' "$ CouponTypes"&Percentage,

 'discount' "$ 10,

 "' This is the important part. The coupon is already

expired.

 'expires_at' "$ now()"#subDay(),

])"#create();

 }

}

"' When

$this"#patchJson(

 route('coupons.apply', compact('order', 'coupon')),

 [],

 [

 'Authorization' "$ "Bearer {$token}",

]

)"#assertStatus(Response"&HTTP_UNPROCESSABLE_ENTITY);

Martin Joo - Laravel Concepts - Part I

68 / 146

The URL we want to call. I use the route helper, and I recommend you to do the
same. Our URL will look something like this: /orders/1/coupons/10/apply . This will
apply the coupon with the ID of 10 to the order with the ID of 1.
The second argument is the body of the request. We don't need it.
The third one is the headers array. This is where I use the $token created earlier.

If I call the API with an expired coupon, I expect a 422 Unprocessable Entity response.
This is done by the assertStatus helper method. As a sanity check, I also make sure that
the order's discounted_price attribute is unchanged:

The assertDatabaseHas method will run a select query with the attributes. If it finds a
record, the test will pass. If it does not find any record, the test will fail.

Applying a coupon means two things:

The discounted_price attribute will change.
The coupon_id is set to the coupon's ID.

In this assertion, we assume none of them happened. To make this test green, we need five
things:

$this"#assertDatabaseHas('orders', [

 'id' "$ $order"#id,

 'total_price' "$ 100,

 'discounted_price' "$ 100,

 'discount_value' "$ 0,

 'coupon_id' "$ null,

]);

Martin Joo - Laravel Concepts - Part I

69 / 146

A route
A controller
An action
An if statement
An exception

The route:

The controller:

Route"&middleware('auth:sanctum')"#group(function () {

 Route"&patch(

 '/orders/{order}/coupons/{coupon}/apply',

 ApplyCouponController"&class

)"#name('coupons.apply');

});

namespace App\Http\Controllers;

class ApplyCouponController extends Controller

{

 public function ")invoke(

 Order $order,

 Coupon $coupon,

 ApplyCouponAction $applyCoupon

) {

 try {

 $applyCoupon"#execute($coupon, $order);

 } catch (CannotApplyCouponException) {

 abort(Response"&HTTP_UNPROCESSABLE_ENTITY);

 }

Martin Joo - Laravel Concepts - Part I

70 / 146

This time, I'm using an invokable controller. Usually, this is how I approach controllers:

I put CRUD action inside a resource controller.
I create separate invokable controllers for other, non-crud actions.

The action and the if statement:

And finally, the exception:

 }

}

namespace App\Action;

class ApplyCouponAction

{

 public function execute(Coupon $coupon, Order $order)

 {

 if ($coupon"#expires_at"#isPast()) {

 throw CannotApplyCouponException"&because(

 'Coupon is expired'

);

 }

 }

}

Martin Joo - Laravel Concepts - Part I

71 / 146

I like to use one static factory function called because . Another excellent approach would
be:

namespace App\Exceptions;

class CannotApplyCouponException extends Exception

{

 public static function because(string $reason)

 {

 return new CannotApplyCouponException($reason);

 }

}

class CannotApplyCouponException extends Exception

{

 public static function couponExpired()

 {

 return new CannotApplyCouponException(

 'The coupon already expired'

);

 }

 public static function couponInactive()

 {

 return new CannotApplyCouponException(

 'The coupon is inactive'

);

 }

}

Martin Joo - Laravel Concepts - Part I

72 / 146

In this approach, every "reason" has a separate factory function. It results in longer
exception classes, but it's very easy to find where you use the separate "reasons,"

Martin Joo - Laravel Concepts - Part I

73 / 146

Inactive Coupons

The next thing we need to check is the status of the coupon. It's either active or inactive
and users cannot apply inactive coupons.

The test is very similar to the previous one:

/** @test "%

public function it_should_not_apply_an_inactive_coupon()

{

 $user = User"&factory()"#create();

 $token = $user

 "#createToken('test_token', ['*'])

 "#plainTextToken;

 "' Given

 $order = Order"&factory([

 'total_price' "$ 100,

 'discounted_price' "$ 100,

 'discount_value' "$ 0,

 'coupon_id' "$ null,

])"#create();

 $coupon = Coupon"&factory([

 'type' "$ CouponTypes"&Percentage,

 'discount' "$ 10,

 "' This is the important line

 'active' "$ false,

])"#create();

 "' When

Martin Joo - Laravel Concepts - Part I

74 / 146

These are the same steps as in the previous test:

Creating an order
Creating an inactive coupon
Calling the apply API
Asserting a 422 response code
Asserting that the order has not changed

Implementing the feature is even easier:

 $this"#patchJson(

 route('coupons.apply', compact('order', 'coupon')),

 [],

 [

 'Authorization' "$ "Bearer {$token}",

]

)"#assertStatus(Response"&HTTP_UNPROCESSABLE_ENTITY);

 "' Then

 $this"#assertDatabaseHas('orders', [

 'id' "$ $order"#id,

 'total_price' "$ 100,

 'discounted_price' "$ 100,

 'discount_value' "$ 0,

 'coupon_id' "$ null,

]);

}

Martin Joo - Laravel Concepts - Part I

75 / 146

As you can see, it's very easy to test and implement these edge-cases, but they are
crucial! This is why I usually start with these business rules.

namespace App\Action;

class ApplyCouponAction

{

 public function execute(Coupon $coupon, Order $order): Order

 {

 if ($coupon"#expires_at"#isPast()) {

 throw CannotApplyCouponException"&because(

 'Coupon is expired'

);

 }

 if (!$coupon"#active) {

 throw CannotApplyCouponException"&because(

 'Coupon is inactive'

);

 }

 }

}

Martin Joo - Laravel Concepts - Part I

76 / 146

Coupon Conditions

As I said earlier, there are kinds of conditions:

order_total_price : this coupon can only be applied when the current order's
total_price attribute is greater than the value or $99 in this example.
lifetime_order_amount : this coupon can only be applied when the lifetime order

value of the current customer is greater than value or $990 in this case.

I'm going to use an enum and the strategy pattern to handle these scenarios. This is how
things are going to work:

All right, I admit it looks a bit complicated, so let's break it down.

CouponCondition strategy

CouponCondition is an abstract base class with one method called check . This class
describes how you can interact with a condition. You can check if it passes or not given
the current order and coupon.
OrderTotalPrice is a concrete implementation of the CouponCondition . This class

will check if the current order's amount is big enough to apply a particular coupon.

Martin Joo - Laravel Concepts - Part I

77 / 146

LifetimeOrderAmount is also an implementation of the CouponCondition . This one
will check if the lifetime order value of the current customer is big enough to apply the
given coupon.

CouponConditions enum

This enum has two cases: order_total_price and lifetime_order_amount . So it
represents all of the possible conditions in our application. But more importantly, it can also
be used as a factory. So the enum will create instances of the OrderTotalPrice and the
LifetimeOrderAmount classes.

ApplyCouponAction

You've already seen this class. This is where the action happens. It will use the enum to
create the strategy then it calls the check method. The important thing is that it won't
depend on the concrete implementations but only on the abstract CouponCondition class.
So the action doesn't care about if the current condition is order_total_price or
lifetime_order_amount since both have the same interface. So this action can use any of

type conditions if they implement the CouponCondition base class. This is called
Dependency Inversion Principle and it is the letter D from SOLID.

Before we dive in, I'd like to show another thing related to coupon conditions. If you
remember they are stored as JSON in the database:

In situations like this, you should almost always cast them into objects so you don't have to
worry about arrays. To achieve this, I created a simple value object:

{

 "type": "order_total_price",

 "value": 99

}

Martin Joo - Laravel Concepts - Part I

78 / 146

This object doesn't do anything, it just replaces an unstructured array. But as you can see,
the $type property is not a string but an enum. This has two advantages:

Type-hints. You know exactly what the $type means in this context.
Discoverability. You just Cmd + Click on the word CouponConditions and you see
exactly what is it all about.
Easier to use. Later, in the action, you'll see what I mean.

namespace App\ValueObject;

class CouponCondition

{

 public function ")construct(

 public readonly CouponConditions $type,

 public readonly float $value,

) {}

 public static function fromArray(array $data): self

 {

 return new self(

 type: CouponConditions"&from($data['type']),

 value: $data['value'],

);

 }

 public function toArray(): array

 {

 return get_object_vars($this);

 }

}

Martin Joo - Laravel Concepts - Part I

79 / 146

By the way, what's the difference between value objects and data transfer objects? A value
object never has an ID. Two VOs equality is purely based on the value inside them. On the
other hand, a DTO should have an ID since most of the time it represents a model.

The next step is to cast the condition attribute in the Coupon into a CouponCondition
value object. To achieve this we can use a simple Eloquent cast:

There are only two methods in every Eloquent cast:

get is called when you access the property in the model. In this method, we're
creating a value object from a raw JSON string.
set is called when you set a property in the model. In this method, we're creating a

JSON string from a value object.

namespace App\Models\Casts;

use App\ValueObject\CouponCondition;

class CouponConditionCast implements CastsAttributes

{

 public function get($model, $key, $value, $attributes)

 {

 return CouponCondition"&fromArray(

 json_decode($value, true)

);

 }

 public function set($model, $key, $value, $attributes)

 {

 return json_encode($value"#toArray());

 }

}

Martin Joo - Laravel Concepts - Part I

80 / 146

The next step is to use it in the $casts property:

Now we can do things like these:

namespace App\Models;

use App\Models\Casts\CouponConditionCast;

class Coupon extends Model

{

 use HasFactory;

 protected $casts = [

 'type' "$ CouponTypes"&class,

 'expires_at' "$ 'datetime',

 'active' "$ 'bool',

 'condition' "$ CouponConditionCast"&class,

];

}

$coupon = Coupon"&first();

"' Get

$coupon"#condition"#value;

$coupon"#condition"#type;

"' Set

$coupon"#condition = CouponCondition"&fromArray($array);

Martin Joo - Laravel Concepts - Part I

81 / 146

Now, let's implement the whole workflow!

CouponCondition strategy

As discussed before, the base class only contains a constructor and a check method:

Why is the $coupon inside the constructor but the $order is in the check method? Right
now, there's no particular reason. This class is small so it doesn't matter that much.
However, it seemed a bit cleaner to me:

constructor : create a coupon condition for this coupon.
check : check this order against the condition.

It makes sense to me. One of the implementations of this abstract class is the
OrderTotalPrice :

namespace App\CouponConditions;

abstract class CouponCondition

{

 public function ")construct(public readonly Coupon $coupon)

 {

 }

 abstract public function check(Order $order): void;

}

Martin Joo - Laravel Concepts - Part I

82 / 146

It's that easy. We only need to compare the order's total price with the coupon condition's
value. Remember, the $this->coupon->condition will return a value object that has a
value property.

The other condition is the LifetimeOrderAmount :

namespace App\CouponConditions;

class OrderTotalPrice extends CouponCondition

{

 public function check(Order $order): void

 {

 if ($order"#total_price < $this"#coupon"#condition"#value)

{

 throw CannotApplyCouponException"&because(

 "This coupon can only be applied if the order

 amount is greater than

 {$this"#coupon"#condition"#value}"

);

 }

 }

}

namespace App\CouponConditions;

use App\Exceptions\CannotApplyCouponException;

use App\Models\Order;

class LifetimeOrderAmount extends CouponCondition

{

Martin Joo - Laravel Concepts - Part I

83 / 146

It's also pretty straightforward. It queries the sum of all orders associated with the user and
compares it with the condition's value.

The goal of this article is not to write some complicated business code and queries but to
give you a framework on how to structure a solution like this one. But I guess you can
already see the advantage of the strategy pattern: each implementation has a dedicated
class. It keeps your code so clean that it'll be a joy to work on.

CouponConditions enum

Now that we have the strategies we need a factory that can create them. An enum is a
perfect tool for this:

 public function check(Order $order): void

 {

 $lifetimeOrder = $order

 "#user

 "#orders

 "#sum('total_price');

 if ($lifetimeOrder < $this"#coupon"#condition"#value) {

 throw CannotApplyCouponException"&because(

 "This coupon can only be applied if you have already

 ordered at least

 {$this"#coupon"#condition"#value}"

);

 }

 }

}

Martin Joo - Laravel Concepts - Part I

84 / 146

It can be used such as:

namespace App\Enums;

enum CouponConditions: string

{

 case OrderTotalPrice = 'order_total_price';

 case LifetimeOrderAmount = 'lifetime_order_amount';

 public function createCouponCondition(

 Coupon $coupon

): CouponCondition {

 return match ($this) {

 self"&OrderTotalPrice "$ new OrderTotalPrice($coupon),

 self"&LifetimeOrderAmount "$ new

LifetimeOrderAmount($coupon),

 };

 }

}

$condition = CouponConditions"&from('order_total_price')

 "#createCouponCondition($coupon);

$condition"#check();

Martin Joo - Laravel Concepts - Part I

85 / 146

ApplyCouponAction

And finally, we can put everything together in the ApplyCouponAction :

namespace App\Action;

class ApplyCouponAction

{

 public function execute(Coupon $coupon, Order $order): Order

 {

 if ($coupon"#expires_at"#isPast()) {

 throw CannotApplyCouponException"&because(

 'Coupon is expired'

);

 }

 if (!$coupon"#active) {

 throw CannotApplyCouponException"&because(

 'Coupon is inactive'

);

 }

 $condition = $coupon

 "#condition

 "#type

 "#createCouponCondition($coupon);

 $condition"#check($order);

 }

}

Martin Joo - Laravel Concepts - Part I

86 / 146

Let's summarize everything:

The Coupon model uses the CouponConditionCast so the condition attribute is
cast to a CouponCondition value object
The CouponCondition value object has a $type property and is a
CouponConditions enum

The CouponConditions enum has a factory function that creates instances of the
CouponCondition strategy

The CouponCondition strategy has a check method that will throw an exception if the
given order does not pass the conditions

Now you can clearly see the advantages and disadvantages of this solution.

Advantages:

Everything is simple.

The action is probably one of the simplest classes you've ever seen, but it already takes
care of four edge-cases:

Coupon is expired
Coupon is inactive
Order's total price is too low
Customer's lifetime value is too low

Everything has its own place and we have a lot of small classes. It's very easy to work
with such classes.

Disadvantages:

Naming things is hard. At this point, we have:

CouponConditionCast
CouponConditions enum
CouponCondition strategy
CouponCondition value object

A lot of classes. I mean, I rather work with ten 100-line long classes than a huge one,
but it's a bit harder to navigate.

Martin Joo - Laravel Concepts - Part I

87 / 146

Coupon types

Now that we have handled every important edge-cases we can start actually applying
coupons. There are two kinds of coupons:

Percentage
Fix amount

Two types of coupons. Or in other words: two implementations of an abstraction. Does it
ring any bell to you? Yes! Enums and strategy!

At this point, you can see a pattern. Very often enums have some cases and a factory
method. This factory creates a CouponType instance:

namespace App\Enums;

enum CouponTypes: string

{

 case Percentage = 'percentage';

 case FixAmount = 'fix_amount';

 public function createCouponType(Coupon $coupon): CouponType

 {

 return match ($this) {

 self"&FixAmount "$ new FixAmount($coupon),

 self"&Percentage "$ new Percentage($coupon),

 };

 }

}

Martin Joo - Laravel Concepts - Part I

88 / 146

We'll use the coupon types to calculate the actual discount for a particular order. This class
follows the same pattern as earlier:

constructor : create a coupon type from this $coupon
getDiscount : get the discount for this $order

As you can see, the getDiscount method returns a value object:

namespace App\CouponType;

use App\ValueObject\Discount;

abstract class CouponType

{

 public function ")construct(

 protected readonly Coupon $coupon

) {}

 abstract public function getDiscount(Order $order): Discount;

}

namespace App\ValueObject;

class Discount

{

 public function ")construct(

 public readonly float $discountedPrice,

 public readonly float $discountValue,

) {}

}

Martin Joo - Laravel Concepts - Part I

89 / 146

The getDiscount method will return the new, discounted price for the order and the
discount value. An example:

Order total price: $100
Discount: 10%
Discounted price: $90
Discount value: $10

Now let's see the implementation of the percentage discount type:

It's not that complicated and the other one is also pretty simple:

namespace App\CouponType;

class Percentage extends CouponType

{

 public function getDiscount(Order $order): Discount

 {

 $discount = $order"#total_price * $this"#coupon"#discount;

 $discountedPrice = $order"#total_price - $discount;

 return new Discount($discountedPrice, $discount);

 }

}

Martin Joo - Laravel Concepts - Part I

90 / 146

However, there's one important thing. It's possible that a coupon has a bigger discount
amount than the order's total price itself. To avoid negative results I use the min function. It
always returns the minimum of the numbers. So if the coupon's discount is the bigger the
order's total price will be the discount value.

Before moving on to the action, let's cast the Coupon model's type attribute to the enum:

namespace App\CouponType;

class FixAmount extends CouponType

{

 public function getDiscount(Order $order): Discount

 {

 $discount = min(

 $this"#coupon"#discount,

 $order"#total_price

);

 $discountedPrice = $order"#total_price - $discount;

 return new Discount($discountedPrice, $discount);

 }

}

Martin Joo - Laravel Concepts - Part I

91 / 146

Now any time you access the $coupon->type you'll get an enum instance instead of a
string. These little tricks make the action pretty simple and easy to read:

namespace App\Models;

class Coupon extends Model

{

 use HasFactory;

 protected $casts = [

 'type' "$ CouponTypes"&class,

 'expires_at' "$ 'datetime',

 'active' "$ 'bool',

 'condition' "$ CouponConditionCast"&class,

];

}

namespace App\Action;

class ApplyCouponAction

{

 public function execute(Coupon $coupon, Order $order): Order

 {

 if ($coupon"#expires_at"#isPast()) {

 throw CannotApplyCouponException"&because(

 'Coupon is expired'

);

 }

Martin Joo - Laravel Concepts - Part I

92 / 146

This single line does all the calculations:

 if (!$coupon"#active) {

 throw CannotApplyCouponException"&because(

 'Coupon is inactive'

);

 }

 $condition = $coupon

 "#condition

 "#type

 "#createCouponCondition($coupon);

 $condition"#check($order);

 $discount = $coupon"#type

 "#createCouponType($coupon)

 "#getDiscount($order);

 $order"#updateDiscount($discount, $coupon);

 $coupon"#inactivate();

 return $order;

 }

}

Martin Joo - Laravel Concepts - Part I

93 / 146

And now we can finally update the order's discount-related attributes:

Here we make use of the Discount value object as well, so we don't have to fight with
arrays.

$discount = $coupon"#type

 "#createCouponType($coupon)

 "#getDiscount($order);

namespace App\Models;

use App\ValueObject\Discount;

class Order extends Model

{

 public function updateDiscount(

 Discount $discount,

 Coupon $coupon

): void {

 $this"#discounted_price = $discount"#discountedPrice;

 $this"#discount_value = $discount"#discountValue;

 $this"#coupon_id = $coupon"#id;

 $this"#save();

 }

}

Martin Joo - Laravel Concepts - Part I

94 / 146

Working with 3rd Parties
In this chapter, I'd like to focus on working with 3rd party services. In almost every project
we need to integrate our application with some external APIs. It has become so common,
but we often fail to come up with a standardized solution.

This is why I thought it'd be a fun project to show you. In this article, I'll write a Gumroad (e-
commerce) SDK in three different ways:

Using one service for the whole API. This is probably the common one.
Having separate requests for each API endpoint.
Using a package that solves some generic problems.

In a previous article, I already talked about APIs and used Gumroad API. However, this one
will focus more on the structure of your project rather than the implementation of the SDK.

Martin Joo - Laravel Concepts - Part I

95 / 146

One Service

If there's only one takeaway from this book, it has to be this one: treat your 3rd parties as
if they were mini-applications inside your application.

So each external API has its own namespace with DTOs, Value Objects, or Services if
needed. This is how I implement this idea:

Martin Joo - Laravel Concepts - Part I

96 / 146

In the Services folder, I create a new folder for each 3rd party and treat it like it was a
mini-application inside my app. In a minute, I'll show you what the GumroadService looks
like, but first, let's take care of the configuration. There's a config/services.php where
we can configure the 3rd parties:

Martin Joo - Laravel Concepts - Part I

97 / 146

Usually, each service has its own service provider:

return [

 'gumroad' "$ [

 'access_token' "$ env('GUMROAD_ACCESS_TOKEN'),

 'uri' "$ env('GUMROAD_URI'),

],

];

namespace App\Providers;

use App\Services\Gumroad\GumroadService;

use Illuminate\Support\ServiceProvider;

class GumroadServiceProvider extends ServiceProvider

{

 public function register()

 {

 $this"#app"#singleton(

 GumroadService"&class,

 fn () "$ new GumroadService(

 config('services.gumroad.access_token'),

 config('services.gumroad.uri'),

)

);

 }

}

Martin Joo - Laravel Concepts - Part I

98 / 146

In this example, I use the singleton binding. This means Laravel will create one instance of
the GumroadService class with the values in the config files and every time a developer
type-hints GumroadService somewhere, the same singleton will be resolved from the
container. It makes sense because there's no point in creating separate GumroadService
instances.

And finally, GumroadSerivce uses these config values:

Now, everything is ready to use this class:

As I said earlier, the main focus will be the overall structure of our project, but let's quickly
implement two endpoints.

namespace App\Services\Gumroad;

class GumroadService

{

 public function ")construct(

 private readonly string $accessToken,

 private readonly string $uri,

) {}

}

class ProductController

{

 public function index(GumroadService $gumroad)

 {

 $gumroad"#products();

 }

}

Martin Joo - Laravel Concepts - Part I

99 / 146

Get all products:

Get one product by ID:

namespace App\Services\Gumroad;

class GumroadService

{

 /**

 * @return Collection<ProductData>

 "%

 public function products(): Collection

 {

 $products = Http"&get(

 $this"#url('products'),

 $this"#query(),

)"#json('products');

 return collect($products)

 "#map(fn (array $data) "$ ProductData"&fromArray($data));

 }

}

namespace App\Services\Gumroad;

class GumroadService

{

 public function product(string $id): ProductData

 {

Martin Joo - Laravel Concepts - Part I

100 / 146

They are pretty simple. In almost all cases, I use a query and a url helper function to
make things a bit cleaner:

They are quite straightforward. The last interesting thing about the GumroadService is that
it uses a ProductData DTO:

 $product = Http"&get(

 $this"#url("products/$id"),

 $this"#query(),

)"#json('product');

 return ProductData"&fromArray($product);

 }

}

private function query(array $extra = []): array

{

 return [

 'access_token' "$ $this"#accessToken,

 ""($extra,

];

}

private function url(string $path): string

{

 return "{$this"#uri}/$path";

}

Martin Joo - Laravel Concepts - Part I

101 / 146

This is a plain PHP object, I don't use any packages. The interesting thing about Gumroad
API (and a lot of other APIs) is that it returns the prices in cent value instead of the dollar. So
if a product costs $19 it will be 1900. For that reason I use a value object called Price :

namespace App\Services\Gumroad\DataTransferObjects;

use App\Services\Gumroad\ValueObjects\Price;

class ProductData

{

 public function ")construct(

 public readonly string $name,

 public readonly Price $price,

 public readonly string $url,

) {}

 public static function fromArray(array $data): self

 {

 return new self(

 name: $data['name'],

 price: Price"&fromCents($data['price']),

 url: $data['short_url'],

);

 }

}

Martin Joo - Laravel Concepts - Part I

102 / 146

I can create a new Price object from the cent value and the result will be:

namespace App\Services\Gumroad\ValueObjects;

class Price

{

 public function ")construct(

 public readonly int $cents,

 public readonly float $dollars,

 public readonly string $formatted,

) {}

 public static function fromCents(int $cents): self

 {

 return new self(

 cents: $cents,

 dollars: $cents / 100,

 formatted: '$' . number_format($cents / 100, 2),

);

 }

}

Martin Joo - Laravel Concepts - Part I

103 / 146

I find this approach very clean and high-level. And more importantly, it helps you avoid
mistakes such as listing the cent value as it was in dollars, so a $19 product becomes
$1900 on the frontend.

As you can see, all of these classes live inside the Gumroad namespace. This is what I
meant by "mini-application":

$price = Price"&fromCents(1900);

"' Price object as an array

[

 'cents': 1900,

 'dollars': 19.00,

 'formatted': '$19.00',

]

Martin Joo - Laravel Concepts - Part I

104 / 146

Separate Requests

The first approach works very well in most situations. The only problem is when you need to
implement 20 API endpoints. in this scenario you can easily end up with 500+ lines long
class, overgeneralized functions, and nasty if-else statements to handle strange edge
cases. So it's easy to end up with a big, hard-to-maintain SDK class.

One approach to solve this problem is to treat 3rd party requests as if they were your own
FormRequests . When we are dealing with our own requests it's a standard to create a

separate class for each one:

Here's my question: why not do the same thing with 3rd party requests?

This is what the structure would look like:

class ProductController

{

 public function index(GetProductsRequest $request)

 {

 "' ""(

 }

}

class GetProductsRequest extends FormRequest

{

 "' ""(

}

Martin Joo - Laravel Concepts - Part I

105 / 146

In the Requests folder we have classes like:

GetProductRequest
GetProductsRequest
GetSalesRequest

Just as they were standard form requests. Let's take a look at one of these requests:

Martin Joo - Laravel Concepts - Part I

106 / 146

This looks almost the same as the products method earlier. The same is true for the
GetProductRequest :

namespace App\Services\Gumroad\Requests;

class GetProductsRequest extends Request

{

 public function send(): Collection

 {

 $data = Http"&get(

 $this"#url('products'),

 $this"#query(),

)"#throw();

 if (!$data['success']) {

 throw GumroadRequestException"&unknownError(

 Arr"&get($data, 'message', '')

);

 }

 return collect($data"#json('products'))

 "#map(fn (array $data) "$ ProductData"&fromArray($data));

 }

}

Martin Joo - Laravel Concepts - Part I

107 / 146

As you can see, I still use the url and query helpers, but now they are in the base
Request class:

namespace App\Services\Gumroad\Requests;

class GetProductRequest extends Request

{

 public function send(string $id): ProductData

 {

 $data = Http"&get(

 $this"#url("products/$id"),

 $this"#query(),

)"#throw();

 if (!$data['success']) {

 throw GumroadRequestException"&productNotFound($id);

 }

 return ProductData"&fromArray($data"#json('product'));

 }

}

Martin Joo - Laravel Concepts - Part I

108 / 146

Since Laravel already has more than one class called Request you can easily call this one
GumroadRequest so it's not confusing. These requests can be used in two ways.

The "stand-alone" version:

namespace App\Services\Gumroad\Requests;

abstract class Request

{

 public function ")construct(

 protected readonly string $accessToken,

 protected readonly string $uri,

) {}

 protected function query(array $extra = []): array

 {

 return [

 'access_token' "$ $this"#accessToken,

 ""($extra,

];

 }

 protected function url(string $path): string

 {

 return "{$this"#uri}/$path";

 }

}

$products = app(GetProductsRequest"&class)"#send();

Martin Joo - Laravel Concepts - Part I

109 / 146

The injected version:

However, the first one looks a bit weird to me, while the second one is just confusing. We
usually inject FormRequests in methods. Now we have two kinds of requests. It's not
optimal, in my opinion.

To solve these problems we can keep the GumroadService class as an entry point to
access these requests:

class ProductController

{

 public function index(GetProductsRequest $request)

 {

 $products = $request"#send();

 }

}

Martin Joo - Laravel Concepts - Part I

110 / 146

In this class, you can use either the app function to resolve the requests, or you can inject
them into the controller. I choose the first one because injecting 15 classes into the
constructor looks weird.

namespace App\Services\Gumroad;

class GumroadService

{

 /**

 * @return Collection<SaleData>

 "%

 public function sales(?Carbon $after = null): Collection

 {

 return app(GetSalesRequest"&class)"#send($after);

 }

 /**

 * @return Collection<ProductData>

 "%

 public function products(): Collection

 {

 return app(GetProductsRequest"&class)"#send();

 }

 public function product(string $id): ProductData

 {

 return app(GetProductRequest"&class)"#send($id);

 }

}

Martin Joo - Laravel Concepts - Part I

111 / 146

This class can be used as usual:

There's one drawback of this solution. We don't need to bind a GumroadService instance
anymore in the service provider. Now the config values are consumed by request classes. I
have a base Request class that accepts the access token and base URL in the
constructor. However, in GumroadService I type-hint and inject the subclasses. For that
reason, I need to bind these values for every subclass in the GumroadServiceProvider :

class ProductController

{

 public function index(GumroadService $gumroad)

 {

 $products = $gumroad"#products();

 }

}

Martin Joo - Laravel Concepts - Part I

112 / 146

So you need to add every request to the $requests array. You can make it dynamic with
some Reflection magic, but it's still extra work.

namespace App\Providers;

class GumroadServiceProvider extends ServiceProvider

{

 public function register()

 {

 $requests = [

 GetProductsRequest"&class,

 GetProductRequest"&class,

 GetSalesRequest"&class,

];

 foreach ($requests as $requestClass) {

 $this"#app"#singleton(

 $requestClass,

 fn () "$ new $requestClass(

 config('services.gumroad.access_token'),

 config('services.gumroad.uri')

)

);

 }

 }

}

Martin Joo - Laravel Concepts - Part I

113 / 146

Transporter by JustSteveKing

Using separate requests is a nice approach, in my opinion. However, there are some
problems we ran into:

Binding every request individually
Using the app method to resolve the requests
Having a base Request class with generic helpers
Repeating the same Http calls inside requests

Fortunately, @JustSteveKing also ran into these problems and solved them with a package
called laravel-transporter.

This is what a simple request looks like with transporter:

Much less noise, right? And this is how it can be used from GumroadService :

namespace App\Services\Gumroad\Requests;

class GetProductsRequest extends GumroadRequest

{

 protected string $method = 'GET';

 protected string $path = 'products';

}

class GumroadService

{

 /**

 * @return Collection<ProductData>

 "%

 public function products(): Collection

 {

Martin Joo - Laravel Concepts - Part I

114 / 146

https://twitter.com/JustSteveKing
https://github.com/JustSteveKing/laravel-transporter

The send method returns an Illuminate\Http\Client\Response so we can use every
Laravel helper, such as collect .

As you can see the GetProductsRequest extends the GumroadRequest class. This is
where I add the access token to every request:

 return GetProductsRequest"&build()

 "#send()

 "#throw()

 "#collect('products')

 "#map(fn (array $data) "$ ProductData"&fromArray($data));

 }

}

namespace App\Services\Gumroad\Requests;

class GumroadRequest extends Request

{

 public function ")construct(HttpFactory $http)

 {

 parent"&")construct($http);

 parent"&withQuery([

 'access_token' "$

config('services.gumroad.access_token'),

]);

 }

}

Martin Joo - Laravel Concepts - Part I

115 / 146

Earlier I used the query method in every request to do the same. Now, I don't need to
worry about it.

The only challenge with laravel-transporter is appending variables (such as an ID) to the
URL. As far as I know, this is how you can do it:

And this is how you can use the withProductId method when sending the request:

namespace App\Services\Gumroad\Requests;

class GetProductRequest extends GumroadRequest

{

 protected string $method = 'GET';

 protected string $path = 'products/%s';

 public function withProductId(string $productId): self

 {

 return $this"#setPath(sprintf($this"#path(), $productId));

 }

}

Martin Joo - Laravel Concepts - Part I

116 / 146

It could be a bit better, but this works just fine.

And the last piece of the puzzle is the configuration. Transporter only needs a base_uri in
order to know what URL to use when sending a request. We have a
config/transporter.php file:

By default, you can only have one base_uri so it assumes that you have only one 3rd
party in your application. However, it can be overwritten via the $baseUrl variable in the
base Request class. For example, if you have to write an SDK for MailChimp you can do
this:

class GumroadService

{

 public function product(string $id): ProductData

 {

 $data = GetProductRequest"&build()

 "#withProductId($id)

 "#send()

 "#throw()

 "#json('product');

 return ProductData"&fromArray($data);

 }

}

return [

 'base_uri' "$ env('GUMROAD_URI'),

];

Martin Joo - Laravel Concepts - Part I

117 / 146

class MailchimpRequest extends Request

{

 public function ")construct(HttpFactory $http)

 {

 parent"&")construct($http);

 $this"#baseUrl = config('services.mailchimp.url');

 }

}

Martin Joo - Laravel Concepts - Part I

118 / 146

Laravel Forge SDK

Another great example of separating your requests is Laravel Forge SDK. You can find the
repo here: https://github.com/laravel/forge-sdk

If you don't know, Forge is a web-based service to manage servers and deployments.
Forge SDK is a wrapper for the Forge API. If you take a look at the source code you'll find
something like this:

Martin Joo - Laravel Concepts - Part I

119 / 146

https://github.com/laravel/forge-sdk

It has 19 classes inside the Actions namespace. Each of them takes care of one type of
request, for example, ManagesServers has methods like:

servers returns all servers
server($serverId) returns one server

Martin Joo - Laravel Concepts - Part I

120 / 146

createServer creates a new server

So it's not really one class for every request, but rather one class for one resource. It's also
an excellent approach and you can handle big APIs with fewer classes, but still, your
classes remain small.

However, these "actions" are in fact, traits not classes. There's a simple class called Forge
that uses all of these traits:

Using this approach you still have a single entry-point class to access every request:

class Forge

{

 use MakesHttpRequests,

 Actions\ManagesJobs,

 Actions\ManagesSites,

 Actions\ManagesServers,

 Actions\ManagesDaemons,

 Actions\ManagesWorkers,

 Actions\ManagesSSHKeys,

 ""(;

}

$forge = new Forge();

$servers = $forge"#servers();

$server = $forge"#server('abc-123');

$forge"#createServer([""(]);

Martin Joo - Laravel Concepts - Part I

121 / 146

This is very similar to what we did earlier. In fact, it's almost an identical approach:

Each action is a request from the previous examples
The Forge class is the equivalent of the GumroadService

By the way, if you like the idea of traits, you can do the same in your own SDKs.

I think writing separate requests for each API endpoint is a great approach, especially if
you're writing an SDK that interacts with 10+ endpoints (or in general, it's big). By using a
package like laravel-transporter, you can eliminate a lot of boilerplate and generic code.

Martin Joo - Laravel Concepts - Part I

122 / 146

Custom Fields
I've been working on an application where we have custom fields for users. Here's the idea:

The users table has only a few columns. Things like: username, and password.
There's a fields table where there are additional custom fields, such as full_name,
company_email, personal_email, and so on.
Every client decides what fields they want to use and sets up the system accordingly.

This part of the project is legacy, and it has some flaws, so I thought it'd be a good idea to
write about this topic.

Martin Joo - Laravel Concepts - Part I

123 / 146

name type validation_rules

full_name string ["string"]

phone number ["numeric", "digits:11"]

join_date date ["date_format:Y-m-d"]

Data Modeling

The database is quite simple:

This is what the fields table looks like:

The type column describes the basic type of the field. It can be used by the frontend to
render the appropriate HTML element:

full_name will be a simple input element
phone will be an input with type="number"
join_date will use your favorite date picker plugin (it's just a date without time)

The validation_rules will be used by the backend. When creating a new user we're
going to validate the values against these rules. To have a better idea, this is what the POST
/users request looks like:

Martin Joo - Laravel Concepts - Part I

124 / 146

The first field is the full_name and the second one is the phone . The backend will
validate these values against the rules defined in the validation_rules column.

That being said, let's create the models and set up the relationships.

{

 "username": "martin.joo",

 "email": "martin@martinjoo.dev",

 "fields": [

 {

 "id": 1,

 "value": "Martin Joo"

 },

 {

 "id": 2,

 "value": "36301111111"

 }

]

}

Martin Joo - Laravel Concepts - Part I

125 / 146

The Field model doesn't have any method only a cast. Validation rules are stored as
JSON strings, so we can cast them to PHP arrays.

The User model:

namespace App\Models;

class Field extends Model

{

 use HasFactory;

 protected $casts = [

 'validation_rules' "$ 'array',

];

}

namespace App\Models;

class User extends Authenticatable

{

 use HasApiTokens, HasFactory, Notifiable;

 public function fields(): BelongsToMany

 {

 return $this"#belongsToMany(Field"&class, 'user_field')

 "#withPivot('value')

 "#withTimestamps();

 }

}

Martin Joo - Laravel Concepts - Part I

126 / 146

It's also pretty simple. It defines a fields method which is a many-to-many relationship. A
user can have many fields, but a field belongs to many users. Some notes:

The second parameter of the belongsToMany method is the table name. By default,
Laravel will look for a field_user table (alphabetical order), but I prefer the name
user_field .
withPivot means we want to see the value column from user_field whenever we

query the fields of a user.
withTimestamps means that Laravel will update the created_at and updated_at

columns' values in the user_field table.

This will result in the following:

Martin Joo - Laravel Concepts - Part I

127 / 146

Please note the value attribute inside the pivot . It's available because of the
withPivot .

Martin Joo - Laravel Concepts - Part I

128 / 146

User API

Let's start with creating and updating users. This is the request class:

There are three interesting things:

I always use the name upsert for requests, actions, and controller methods that take
care of both inserting and updating a model. You'll see more examples of this later.
The e-mail address must be unique but we have to ignore the current user's e-mail.
Otherwise, the update would fail, because the e-mail already exists in the database.

namespace App\Http\Requests;

class UpsertUserRequest extends FormRequest

{

 public function rules()

 {

 return [

 'username' "$ ['required'],

 'email' "$ [

 'required',

 'email',

 Rule"&unique('users', 'email')"#ignore($this"#user),

],

 'password' "$ ['required'],

 'fields' "$ ['nullable', 'sometimes', 'array'],

 'fields.*.id' "$ ['required', 'exists:fields,id'],

 'fields.*.value' "$ ['required'],

];

 }

}

Martin Joo - Laravel Concepts - Part I

129 / 146

fields is an array and every item contains the ID of the field and the value.

This is what the request looks like:

Since I'd like to use actions it's a good idea to create some DTOs.

We can create a DTO for the user:

{

 "username": "martin.joo",

 "email": "martin@martinjoo.dev",

 "password": "asdf1234",

 "fields": [

 {

 "id": 1,

 "value": "Martin Joo"

 },

 {

 "id": 2,

 "value": "36301111111"

 }

]

}

Martin Joo - Laravel Concepts - Part I

130 / 146

This is just a plain PHP object that contains the attributes of a user. In this tiny example,
there's not much benefit to using DTOs. However, in larger applications, it's a very good
idea, in my opinion. If you're not familiar with them, here's an article where you can read
more about them.

We can also create a DTO for the field values:

namespace App\DataTransferObjects;

class UserData

{

 public function ")construct(

 public readonly ?int $id,

 public readonly string $username,

 public readonly string $email,

 public readonly string $password,

) {}

 public static function fromRequest(

 UpsertUserRequest $request

): self {

 return new self(

 id: $request"#user?"#id,

 username: $request"#username,

 email: $request"#email,

 password: $request"#password,

);

 }

}

Martin Joo - Laravel Concepts - Part I

131 / 146

https://martinjoo.dev/domain-driven-design-with-laravel-data-transfer-objects

So in the request, we have an array like this:

namespace App\DataTransferObjects;

class FieldValueData

{

 public function ")construct(

 public readonly int $id,

 public readonly string $value,

) {}

 public static function fromArray(array $data): self

 {

 return new self(

 id: $data['id'],

 value: $data['value'],

);

 }

}

Martin Joo - Laravel Concepts - Part I

132 / 146

Each object will be a FieldValueData instance. So this class simply helps us avoid
working with random associative arrays later. Instead, we'll have some pretty simple objects
with type-hinted properties.

Now we can move on to the controller:

"fields": [

 {

 "id": 1,

 "value": "Martin Joo"

 },

 {

 "id": 2,

 "value": "36301111111"

 }

]

namespace App\Http\Controllers;

class UserController extends Controller

{

 public function store(UpsertUserRequest $request)

 {

 return $this"#upsert($request);

 }

 public function update(

 UpsertUserRequest $request,

 User $user

) {

Martin Joo - Laravel Concepts - Part I

133 / 146

Both store and update use a method called upsert :

This method creates DTOs from the request and calls the action (we'll see it in a minute).
Some important notes:

upsert is the only method I write inside controllers other than the basic CRUD
functions! And if you think about it, it's also a resource method.
The id property the UserData is nullable. This allows the UpsertUserAction to
easily handle both creating and updating users with the same code.

Here's the action:

 return $this"#upsert($request);

 }

}

private function upsert(

 UpsertUserRequest $request

): UserResource {

 $user = UpsertUserAction"&execute(

 UserData"&fromRequest($request),

 FieldValueData"&collect($request"#fields),

);

 return UserResource"&make($user);

}

Martin Joo - Laravel Concepts - Part I

134 / 146

class UpsertUserAction

{

 /**

 * @param Collection<FieldValueData> $fieldValues

 "%

 public static function execute(

 UserData $userData,

 Collection $fieldValues,

): User {

 "' This is where we're going to validate the fields later

 $user = User"&updateOrCreate(

 [

 "' It's either NULL or a valid ID

 'id' "$ $userData"#id,

],

 [

 'username' "$ $userData"#username,

 'email' "$ $userData"#email,

 'password' "$ bcrypt($userData"#password),

],

);

 $user"#fields()"#detach();

 foreach ($fieldValues as $fieldValue) {

 $user"#fields()"#attach($fieldValue"#id, [

 'value' "$ $fieldValue"#value,

]);

 }

Martin Joo - Laravel Concepts - Part I

135 / 146

As you can see, there are two parts to this function:

It saves the user using the updateOrCreate . This method accepts two arrays. The first
one will be used in a select query. If Eloquent finds a record based on this array it will
execute an update query. Otherwise, it'll run an insert . When creating a new user,
the ID is going to be NULL in the UserData class, so it'll run an insert query.
After the user is created it detaches every field and attaches the ones from the request.

There's another important part I left out from the action. We need to validate the fields using
the validation rules from the database. Since it's not really strongly related to creating users
and we will need it in another API later, we can create a separate action.

The ValidateFieldAction will validate one field:

 return $user;

 }

}

Martin Joo - Laravel Concepts - Part I

136 / 146

It accepts a string $value that comes from the request, and a Field instance that we
can query later in the UpsertUserAction . We need to create a validator object manually. It
accepts the following arrays:

class ValidateFieldAction

{

 /**

 * @throws ValidationException

 "%

 public static function execute(

 Field $field,

 string $value,

): void {

 $validator = Validator"&make(

 [

 $field"#name "$ $value,

],

 [

 $field"#name "$ $field"#validation_rules,

],

);

 if ($validator"#fails()) {

 throw ValidationException"&withMessages(

 $validator"#errors()"#toArray()

);

 }

 }

}

Martin Joo - Laravel Concepts - Part I

137 / 146

The first array contains the data, meanwhile, the second one contains the validation rules:

Since there's an array cast in the Field model, the validation_rules will be a valid
array instead of a string. If the validator fails, we simply throw a ValidationException .

The last piece of the puzzle is to use this action from the UpsertUserAction :

Validator"&make(

 [

 'phone' "$ '36301111111',

],

 [

 'phone' "$ ['numeric', 'digits:11'],

],

);

Validator"&make(

 [

 $field"#name "$ $value,

],

 [

 $field"#name "$ $field"#validation_rules,

],

);

Martin Joo - Laravel Concepts - Part I

138 / 146

As the first step, I query every field. I do this because it prevents us from running into N+1
query problems. This way the ValidateFieldAction doesn't need to query fields at all.
Other than that, it just iterates through the field values and calls the validate action for each
field.

namespace App\Action;

class UpsertUserAction

{

 /**

 * @param Collection<FieldValueData> $fieldValues

 "%

 public static function execute(

 UserData $userData,

 Collection $fieldValues,

): User {

 $fields = Field"&whereIn(

 'id',

 collect($fieldValues)"#pluck('id')

)"#get();

 foreach ($fieldValues as $fieldValue) {

 $field = $fields"#where('id', $fieldValue"#id)"#first();

 ValidateFieldAction"&execute($field, $fieldValue"#value);

 }

 }

}

Martin Joo - Laravel Concepts - Part I

139 / 146

Since a lot is happening inside the UpsertUserAction it's a good idea to use DB
transactions:

namespace App\Action;

class UpsertUserAction

{

 /**

 * @param Collection<FieldValueData> $fieldValues

 "%

 public static function execute(

 UserData $userData,

 Collection $fieldValues,

): User {

 return DB"&transaction(function () use (

 $userData,

 $fieldValues

) {

 $fields = Field"&whereIn(

 'id',

 collect($fieldValues)"#pluck('id')

)"#get();

 foreach ($fieldValues as $fieldValue) {

 $field = $fields

 "#where('id', $fieldValue"#id)

 "#first();

 ValidateFieldAction"&execute($field, $fieldValue-

>value);

Martin Joo - Laravel Concepts - Part I

140 / 146

 }

 $user = User"&updateOrCreate(

 [

 'id' "$ $userData"#id,

],

 [

 'username' "$ $userData"#username,

 'email' "$ $userData"#email,

 'password' "$ bcrypt($userData"#password),

],

);

 $user"#fields()"#detach();

 foreach ($fieldValues as $fieldValue) {

 $user"#fields()"#attach($fieldValue"#id, [

 'value' "$ $fieldValue"#value,

]);

 }

 return $user;

 });

 }

}

Martin Joo - Laravel Concepts - Part I

141 / 146

User Field API

We can also create a separate API for creating and updating individual fields for a user. The
endpoint for adding a field to a user is this:

The request looks like this:

This means we want to add a full_name field to this particular user with this value. Since
there's already a ValidateFieldAction we can simply reuse it:

POST /users/1/fields/1

{

 "value": "Martin Joo"

}

namespace App\Http\Controllers;

class UserFieldController extends Controller

{

 public function store(

 Request $request,

 User $user,

 Field $field

) {

 ValidateFieldAction"&execute(

 $field,

 $request"#value,

);

Martin Joo - Laravel Concepts - Part I

142 / 146

First, it validates the field's value then it attaches it to the user. The update looks pretty
similar to this one:

 $user"#fields()"#attach($request"#id, [

 'value' "$ $request"#value,

]);

 return UserResource"&make($user"#load('fields'));

 }

}

public function update(

 Request $request,

 User $user,

 Field $field

) {

 ValidateFieldAction"&execute(

 $field,

 $request"#value,

);

 $user"#fields()"#updateExistingPivot($field"#id, [

 'value' "$ $request"#value,

]);

 return UserResource"&make($user"#load('fields'));

}

Martin Joo - Laravel Concepts - Part I

143 / 146

The validation is exactly the same, but now, instead of attach I use the
updateExistingPivot . It will look for a record in the user_field table that matches the

ID given in the first parameter and updates it with the array in the second one.

Partly, this is why I extracted the ValidateFieldAction into a separate class. It's easy to
reuse now. However, if we don't need the user field API, it's still a good idea to have a
separate class, in my opinion.

As you can see, it's a bit weird that both the store and update methods have the same
arguments. It's because this controller is not a "classic" resource controller. It does not use
the IDs from the user_field table but the user.id and field.id . Another approach
would be to introduce a UserField model and then have two methods such as:

And then the API endpoints should look like this:

Where 113 refers to a record in the user_field pivot table. But in this particular case, I
went with this API:

public function store(Request $request, User $user);

public function update(Request $request, User $user, UserField

$userField);

POST /users/1/fields

PATCH /users/1/fields/113

POST /users/1/fields/2

PATCH /users/1/fields/2

Martin Joo - Laravel Concepts - Part I

144 / 146

The biggest downside of this is that I'm deviating from REST API standards. The
advantages:

It doesn't require a UserField model
The controller is pretty simple, we can easily reuse every class
And maybe in this case, it's a bit more understandable because, on the API level, we're
only talking about Field IDs but not UserField IDs. If we have both of them, it can
cause some confusion.

At the end of the day, it's a personal (or team) preference, so go with the one that works
best for you.

Martin Joo - Laravel Concepts - Part I

145 / 146

Final Words
Thank you very much for reading this book! I hope you liked it. If you have any question just
send me an e-mail and I try to reply as soon as possible.

If you want to learn more about Laravel and software engineering in general, check out my
blog. I also published other books:

Domain-Driven Design with Laravel
Microservices with Laravel
Test-Driven APIs with Laravel and Pest

Martin Joo - Laravel Concepts - Part I

146 / 146

https://martinjoo.dev/
https://domain-driven-design-laravel.com/
https://microservices-laravel.io/
https://test-driven-api-laravel.io/

	SOLID Principles
	Single-Responsibility Principle
	Open-Closed Principle
	Liskov Substitution Principle
	Interface Segregation Principle
	Dependency Inversion Principle

	Building a Dashboard
	Data modeling
	Gumroad Service
	Get Products
	Get Sales

	Sync With Gumroad
	Sync Gumroad Products
	Sync Gumroad Sales

	Dashboard

	Handling Discounts and Coupons
	Data Modeling
	Expired Coupons
	Inactive Coupons
	Coupon Conditions
	Coupon types

	Working with 3rd Parties
	One Service
	Separate Requests
	Transporter by JustSteveKing
	Laravel Forge SDK

	Custom Fields
	Data Modeling
	User API
	User Field API

	Final Words

