by robin wieruch

The Road to React
Your journey to master plain yet pragmatic React

Robin Wieruch

This book is for sale at http://leanpub.com/the-road-to-learn-react

This version was published on 2020-04-20

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2020 Robin Wieruch

http://leanpub.com/the-road-to-learn-react
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!

Please help Robin Wieruch by spreading the word about this book on Twitter!
The suggested tweet for this book is:

[am going to learn #React]s with The Road to React by @rwieruch Join me on my journey
https://roadtoreact.com

The suggested hashtag for this book is #React]s.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#React]s

http://twitter.com
https://twitter.com/intent/tweet?text=I%20am%20going%20to%20learn%20%23ReactJs%20with%20The%20Road%20to%20React%20by%20@rwieruch%20Join%20me%20on%20my%20journey%20https://roadtoreact.com
https://twitter.com/intent/tweet?text=I%20am%20going%20to%20learn%20%23ReactJs%20with%20The%20Road%20to%20React%20by%20@rwieruch%20Join%20me%20on%20my%20journey%20https://roadtoreact.com
https://twitter.com/search?q=%23ReactJs
https://twitter.com/search?q=%23ReactJs

Contents

Foreword i
Aboutthe Author. ii
FAQ . o iii
Who is this book for? \

Fundamentalsof React 1
HelloReact. 2
Requirements 4
SettingupaReact Project 6
Meet the React Component 10
React JSX e 14
Listsin React 17
Meet another React Component 22
React Component Instantiation 24
React DOM e 26
React Component Definition (Advanced) 27
Handler Function in JSX e 31
React Props o e 34
React State o . 37
Callback Handlers in JSX e 41
Lifting Statein React. 44
React Controlled Components 48
Props Handling (Advanced) 51
React Side-Effects e 61
React Custom Hooks (Advanced) 64
React Fragments e 68
Reusable React Component 70
React Component Composition 73
Imperative React 76
Inline Handler in JSX e 80
React Asynchronous Data 86
React Conditional Rendering 88
React Advanced State 92

React Impossible States 96

CONTENTS

Data Fetching with React 101
Data Re-Fetchingin React 103
Memoized Handler in React (Advanced) 106
Explicit Data Fetching withReact 108
Third-Party Librariesin React 111
Async/Await in React (Advanced) 113
Formsin React e 115
React’sLegacy 118
React Class Componentst 119
React Class Components: State 121
Imperative React 123
Stylingin React 125
CSSinReact 126
CSSModulesinReact 132
Styled Componentsin React 138
SVGsinReact 144
React Maintenance e 147
Performance in React (Advanced) 148
TypeScriptin React. 156
Unit Testing to Integration Testing 166
React Project Structure 181
Real World React (Advanced) 186
Sorting 187
Reverse Sort L 193
Remember Last Searches 196
Paginated Fetch 205
Deploying a React Application 213
Build Process 214
Deploy to Firebase 215

Foreword

The Road to React teaches the fundamentals of React. You will build a real-world application in plain
React without complicated tooling. Everything from project setup to deployment on a server will be
explained for you. The book comes with additional referenced reading material and exercises with
each chapter. After reading the book, you will be able to build your own applications in React. The
material is kept up to date by myself and the community.

In the Road to React, I offer a foundation before you dive into the broader React ecosystem. The
concepts will have less tooling and less external state management, but a lot of information about
React. It explains general concepts, patterns, and best practices in a real world React application.

Essentially, you will learn to build your own React application from scratch, with features like
pagination, client-side and server-side searching, and advanced interactions like sorting. I hope this
book captures my enthusiasm for React and JavaScript, and that it helps you get started with it.

Foreword ii

About the Author

[am a German software and web engineer dedicated to learning and teaching programming in
JavaScript. After obtaining my Master’s Degree in computer science, I continued learning on my
own. I gained experience from the startup world, where I used JavaScript intensively during both
my professional life and spare time, which eventually led to a desire to teach others about these
topics.

For a few years, I worked closely with an exceptional team of engineers at a company called Small
Improvements, developing large scale applications. The company offered a SaaS product that enables
customers to give feedback to businesses. This application was developed using JavaScript on its
frontend, and Java as its backend. The first iteration of Small Improvements’ frontend was written
in Java with the Wicket Framework and jQuery. When the first generation of SPAs became popular,
the company migrated to Angular 1.x for its frontend application. After using Angular for over two
years, it became clear that Angular wasn’t the best solution to work with state intense applications,
so they made the jump to React and Redux. This enabled it to operate on a large scale successfully.

During my time in the company, I regularly wrote articles about web development on my website.
I received great feedback from people learning from my articles which allowed me to improve my
writing and teaching style. Article after article, I grew my ability to teach others. I felt that my first
articles were packed with too much information, quite overwhelming for students, but I improved
by focusing on one subject at a time.

Currently, I am a self-employed software engineer and educator. I find it a fulfilling pastime to
see students thrive by giving them clear objectives and short feedback loops. You can find more
information about me and ways to support and work with me on my website'.

'https://www.robinwieruch.de/about

https://www.robinwieruch.de/about
https://www.robinwieruch.de/about

Foreword iii

FAQ

How to get updates?

[have two channels where I share updates about my content. You can subscribe to updates by email®
or follow me on Twitter®. Regardless of the channel, my objective is to only share quality content.
Once you receive notification the book has changed, you can download a new version of it from my
website.

Is the learning material up-to-date?

Programming books are usually outdated soon after their release, but since this book is self-
published, I can update it as needed whenever a new version of something related to this book
gets released.

Can I get a digital copy of the book if I bought it on Amazon?

If you have bought the book on Amazon, you may have seen that the book is available on my website
too. Since I use Amazon as one way to monetize my often free content, I honestly thank you for
your support and invite you to sign up on my website*. After creating an account there, write me
an email about your purchase with a receipt from Amazon, so that I can unlock the content for you.
With an account on my platform, you always have access to the latest version of the book.

Also, if you have purchased a print book, make sure to take notes in the book. It was my intention
to keep the printed book extra large, for the sake of giving larger code snippets enough space, but
also for giving you enough space to work with it.

How can I get help while reading the book?

The book has a community of learners who help each other and for people who are reading along.
You can join the community to get help, or to help others, as helping others may help you internalize
your own understanding. Just follow the navigation to my courses on my website’, sign up there,
and navigate to joining the community.

Can I help to improve the content?

If you have feedback, shoot me an email and I will take your suggestions into consideration. Don’t
expect any replies for bug tracking or troubleshoots though, because that’s what’s the community
for.

What do I do if I encounter a bug?

If you encounter any bug in the code, you should find a URL to the current GitHub project at the
end of each section. Feel free to open a GitHub issue there. Your help is very much appreciated!

How to support the project?

*https://www.getrevue.co/profile/rwieruch
*https://twitter.com/rwieruch
“https://www.robinwieruch.de/
*https://www.robinwieruch.de/

https://www.getrevue.co/profile/rwieruch
https://twitter.com/rwieruch
https://www.robinwieruch.de/
https://www.robinwieruch.de/
https://www.getrevue.co/profile/rwieruch
https://twitter.com/rwieruch
https://www.robinwieruch.de/
https://www.robinwieruch.de/

Foreword iv

If you find my lessons useful and would like to contribute, seek my website’s about page® for
information about how to offer support. It is also very helpful for my readers spread the word about
how my books helped them, so others might discover ways to improve their web development skills.
Contributing through any of the provided channels gives me the freedom to create in-depth courses,
and to continue offering free material.

What’s your motivation behind the book?

[want to teach about this topic consistently. I often find materials online that don’t receive updates,
or only applies to a small part of a topic. Sometimes people struggle to find consistent and up-to-date
resources to learn from. I want to provide this consistent and up-to-date learning experience. Also,
I hope I can support the less fortunate with my projects by giving them the content for free or by
having other impacts’.

“https://www.robinwieruch.de/about/
"https://www.robinwieruch.de/giving-back-by-learning-react/

https://www.robinwieruch.de/about/
https://www.robinwieruch.de/giving-back-by-learning-react/
https://www.robinwieruch.de/about/
https://www.robinwieruch.de/giving-back-by-learning-react/

Foreword \%

Who is this book for?

JavaScript Beginners

JavaScript beginners with knowledge in fundamental JS, CSS, and HTML: If you just started out
with web development, and have a basic grasp about JS, CSS, and HTML, this book should give
you everything that’s needed to learn React. However, if you feel there is a gap in your JavaScript
knowledge, don’t hesitate to read up on this topic before continuing with the book. You will have
lots of references to this fundamental knowledge in the book though.

JavaScript Veterans

JavaScript veterans coming from jQuery: If you have used JavaScript with jQuery, MooTools, and
Dojo extensively back in the days, the new JavaScript era may seem overwhelming for someone
getting back on track with it. However, most of the fundamental knowledge didn’t change, it’s still
JavaScript and HTML under the hood, so this book should give you the right start into React.

JavaScript Enthusiasts

JavaScript enthusiasts with knowledge in other modern SPA frameworks: If you are coming from
Angular or Vue, there may be lots of differences in how to write applications with React, however,
all these frameworks share the same fundamentals of JavaScript and HTML. After a mindset shift
to get comfortable with React, you should be doing just fine adopting React.

Non JavaScript Developers

If you are coming from another programming language, you should be more familiar than others
about the different aspects of programming. After picking up the fundamentals about JavaScript and
HTML, you should have a good time learning React with me.

Designers and UI/UX Enthusiasts

If your main profession is in design, user interaction or user experience, don’t hesitate to pick up this
book. You may be already quite familiar with HTML and CSS which is a plus. After going through
some more JavaScript fundamentals, you should be good to get through this book. These days UI/UX
are moving closer to the implementation details which are often taken care of with React. It would
be your perfect asset to know how things work in code.

Team Leads, Product Owners, or Product Managers

If you are a team lead, product owner or product manager of your development department, this
book should give you a good breakdown of all the essential parts in a React application. Every
section explains one React concept/pattern/technique to add another feature or to improve the
overall architecture. It’s a well rounded reference guide for React.

Fundamentals of React

In the first part of this learning experience, we’ll cover the fundamentals of React, after which
we’ll create our first React project. Then we’ll explore new aspects of React by implementing real
features, the same as developing an actual web application. By the end we’ll have a working React
application with features like client and server-side searching, remote data fetching, and advanced
state management.

Fundamentals of React 2

Hello React

Single-page applications (SPA®) have become increasingly popular with first generation SPA frame-
works like Angular (by Google), Ember, Knockout, and Backbone. Using these frameworks made it
easier to build web applications which advanced beyond vanilla JavaScript and jQuery. React, yet
another solution for SPAs, was released by Facebook later in 2013. All of them are used to create
entire web applications in JavaScript.

For a moment, let’s go back in time before SPAs existed: In the past, websites and web applications
were rendered from the server. A user visits a URL in a browser and requests one HTML file and all
its associated HTML, CSS, and JavaScript files from a web server. After some network delay, the user
sees the rendered HTML in the browser (client) and starts to interact with it. Every additional page
transition (meaning: visiting another URL) would initiate this chain of events again. In this version
from the past, essentially everything crucial is done by the server, whereas the client plays a minimal
role by just rendering page by page. While barebones HTML and CSS was used to structure the
application, just a little bit of JavaScript was thrown into the mix to make interactions (e.g. toggling
a dropdown) or advanced styling (e.g. positioning a tooltip) possible. A popular JavaScript library
for this kind of work was jQuery.

In contrast, modern JavaScript shifted the focus from the server to the client. The most extreme
version of it: A user visits a URL and requests one minimal HTML file and one associated JavaScript
file. After some network delay, the user sees the by JavaScript rendered HTML in the browser and
starts to interact with it. Every additional page transition wouldn’t request more files from the web
server, but would use the initially requested JavaScript to render the new page. Also every additional
interaction by the user is handled on the client too. In this modern version, the server delivers
mainly JavaScript across the wire with one minimal HTML file. The HTML file then executes all the
linked JavaScript on the client-side to render the entire application with HTML and JavaScript for
its interactions.

React, among the other SPA solutions, makes this possible. Essentially a SPA is one bulk of JavaScript,
which is neatly organized in folders and files, to create a whole application whereas the SPA
framework gives you all the tools to architect it. This JavaScript focused application is delivered
once over the network to your browser when a user visits the URL for your web application. From
there, React, or any other SPA framework, takes over for rendering everything in the browser and
for dealing with user interactions.

With the rise of React, the concept of components became popular. Every component defines its
look and feel with HTML, CSS and JavaScript. Once a component is defined, it can be used in a
hierarchy of components for creating an entire application. Even though React has a strong focus
on components as a library, the surrounding ecosystem makes it a flexible framework. React has a
slim API, a stable yet thriving ecosystem, and a welcoming community. We are happy to welcome

you :-)
*https://en.wikipedia.org/wiki/Single-page_application

https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Single-page_application

Fundamentals of React 3

Exercises

Read more about why I moved from Angular to React’.

+ Read more about how to learn a framework™.

« Read more about how to learn React™'.

+ Read more about why frameworks matter”.

« Scan through JavaScript fundamentals needed for React'’> — without worrying too much about
the React - to test yourself about several JavaScript features used in React.

°https://www.robinwieruch.de/reasons-why-i-moved- from-angular-to-react/
°https://www.robinwieruch.de/how-to-learn-framework/
"https://www.robinwieruch.de/learn-react-js
*https://www.robinwieruch.de/why-frameworks-matter
Phttps://www.robinwieruch.de/javascript-fundamentals- react-requirements

https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/
https://www.robinwieruch.de/how-to-learn-framework/
https://www.robinwieruch.de/learn-react-js
https://www.robinwieruch.de/why-frameworks-matter
https://www.robinwieruch.de/javascript-fundamentals-react-requirements
https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/
https://www.robinwieruch.de/how-to-learn-framework/
https://www.robinwieruch.de/learn-react-js
https://www.robinwieruch.de/why-frameworks-matter
https://www.robinwieruch.de/javascript-fundamentals-react-requirements

Fundamentals of React 4

Requirements

To follow this book you’ll need to be familiar with the basics of web development, i.e how to use
HTML, CSS, and JavaScript. It also helps to understand APIs', as they will be covered thoroughly.

Editor and Terminal

I have provided a setup guide® to get you started with general web development. For this learning
experience, you will need a text editor (e.g. Sublime Text) and a command line tool (e.g. iTerm) or an
IDE (e.g. Visual Studio Code). I recommend Visual Studio Code (also called VS Code) for beginners,
as it’s an all-in-one solution that provides an advanced editor with an integrated command line tool,
and because it’s a popular choice among web developers.

Throughout this learning experience I will use the term command line, which will be used
synonymously for the terms command line tool, terminal, and integrated terminal. The same applies
for the terms editor, text editor, and IDE, depending on what you decided to use for your setup.

Optionally, I recommend managing projects in GitHub while we conduct the exercises in this book,
and I’ve provided a short guide' on how to use these tools. Github has excellent version control,
so you can see what changes were made if you make a mistake or just want a more direct way to
follow along. It’s also a great way to share your code later with other people.

If you don’t want to set up the editor/terminal combination or IDE on your local machine,
CodeSandbox"’, an online editor, is also a viable alternative. While CodeSandbox is a great tool
for sharing code online, a local machine setup is a better tool for learning the different ways to
create a web application. Also, if you want to develop applications professionally, a local setup will
be required.

Node and NPM

Before we can begin, we’ll need to have node and npm*® installed. Both are used to manage libraries
(node packages) you will need along the way. These node packages can be libraries or whole
frameworks. We’ll install external node packages via npm (node package manager).

You can verify node and npm versions in the command line using the node --version command.
If you don’t receive output in the terminal indicating which version is installed, you need to install
node and npm:

“https://www.robinwieruch.de/what-is-an-api-javascript/
“https://www.robinwieruch.de/developer-setup/
“https://www.robinwieruch.de/git-essential-commands/
https://codesandbox.io/

"®https://nodejs.org/en/

https://www.robinwieruch.de/what-is-an-api-javascript/
https://www.robinwieruch.de/developer-setup/
https://www.robinwieruch.de/git-essential-commands/
https://codesandbox.io/
https://nodejs.org/en/
https://www.robinwieruch.de/what-is-an-api-javascript/
https://www.robinwieruch.de/developer-setup/
https://www.robinwieruch.de/git-essential-commands/
https://codesandbox.io/
https://nodejs.org/en/

Fundamentals of React 5

Command Line

node --version
*vXX.YY.ZZ
npm --version
*vXX.YY.ZZ

If you have already installed Node and npm, make sure that your installation is the most recent
version. If you’re new to npm or need a refresher, this npm crash course™ I created will get you up
to speed.

"https://www.robinwieruch.de/npm-crash-course

https://www.robinwieruch.de/npm-crash-course
https://www.robinwieruch.de/npm-crash-course

Fundamentals of React 6

Setting up a React Project

In the Road to React, we’ll use create-react-app* to bootstrap your application. It’s an opinionated
yet zero-configuration starter kit for React introduced by Facebook in 2016, which is recommended
for beginners by 96% of React users?'. In create-react-app, the tools and configurations evolve in the
background, while the focus remains on the application’s implementation.

After installing Node and npm, use the command line to type the following command in a dedicated
folder for your project. We’ll refer to this project as hacker-stories, but you may choose any name
you like:

Command Line

npx create-react-app hacker-stories

Navigate into your new folder after the setup has finished:

Command Line

cd hacker-stories

Now we can open the application in an editor or IDE. For Visual Studio Code, you can simply type
code . on the command line. The following folder structure, or a variation of it depending on the
create-react-app version, should be presented:

Project Structure

hacker-stories/
--node_modules/
--public/
--src/
----App.css
----App.Jjs
----App.test. js
----index.css
----index. js
----logo.svg
--.gitignore
--package-lock. json
--package. json
- -README . md

This is a breakdown of the most important folders and files:

*https://github.com/facebook/create-react-app
**https://twitter.com/dan_abramov/status/806985854099062785

https://github.com/facebook/create-react-app
https://twitter.com/dan_abramov/status/806985854099062785
https://twitter.com/dan_abramov/status/806985854099062785
https://github.com/facebook/create-react-app
https://twitter.com/dan_abramov/status/806985854099062785

Fundamentals of React 7

« README.md: The .md extension indicates the file is a markdown file. Markdown is a
lightweight markup language with plain text formatting syntax. Many source code projects
come with a README.md file that gives instructions and useful information about the project.
When we push projects to platforms like GitHub, the README.md file usually displays
information about the content contained in its repositories. Because you used create-react-app,
your README.md should be the same as the official create-react-app GitHub repository?*.

« node_modules/: This folder contains all node packages that have been installed via npm. Since
we used create-react-app, a couple of node modules are already installed. We’ll not touch this
folder, since node packages are usually installed and uninstalled with npm via the command
line.

« package.json: This file shows you a list of node package dependencies and other project
configurations.

« package-lock.json: This file indicates npm how to break down all node package versions. We’ll
not touch this file.

. .gitignore: This file displays all files and folders that shouldn’t be added to your git repository
when using git, as such files and folders should be located only in your local project. The
node_modules/ folder is one example. It is enough to share the package.json file with others,
so they can install dependencies on their end with npm install without your entire dependency
folder.

« public/: This folder holds development files, such as public/index.html. The index file is
displayed on localhost:3000 when the app is in development or on a domain that is hosted
elsewhere. The default setup handles relating this index.html with all the JavaScript from src/.

In the beginning, everything you need is located in the sr¢/ folder. The main focus lies on the
src/App.js file which is used to implement React components. It will be used to implement your
application, but later you might want to split up your components into multiple files, where each
file maintains one or more components on its own.

Additionally, you will find a src/App.test.js file for your tests, and a src/index.js as an entry point
to the React world. You will get to know both files intimately in later sections. There is also a
src/index.css and a src/App.css file to style your general application and components, which comes
with the default style when you open them. You will modify them later as well.

After you have learned about the folder and file structure of your React project, let’s go through
the available commands to get it started. All your project specific commands can be found in your
package.json under the scripts property. They may look similar to these:

*https://github.com/facebook/create-react-app

https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app

Fundamentals of React 8

package.json
{
3,
"scripts": {
"start": "react-scripts start”,
"build": "react-scripts build",
"test": "react-scripts test”,
"eject": "react-scripts eject"”

These scripts are executed with the npm run <script> command in an IDE-integrated terminal or
command line tool. The run can be omitted for the start and test scripts. The commands are as
follows:

Command Line

Runs the application in http://localhost:3000
npm start

Runs the tests

npm test

Builds the application for production
npm run build

Another command from the previous npm scripts called e ject shouldn’t be used for this learning
experience. It’s a one way operation. Once you eject, you can’t go back. Essentially this command
is only there to make all the build tool and configuration from create-react-app accessible if you are
not satisfied with the choices or if you want to change something. Here we will keep all the defaults
though.

Exercises:

« Read a bit more through React’s create-react-app documentation® and getting started guide®.
— Read more about the supported JavaScript features in create-react-app®.
« Read more about the folder structure in create-react-app®.

*https://github.com/facebook/create-react-app
**https://create-react-app.dev/docs/getting-started
*https://create-react-app.dev/docs/supported-browsers-features
*https://create-react-app.dev/docs/folder-structure

https://github.com/facebook/create-react-app
https://create-react-app.dev/docs/getting-started
https://create-react-app.dev/docs/supported-browsers-features
https://create-react-app.dev/docs/folder-structure
https://github.com/facebook/create-react-app
https://create-react-app.dev/docs/getting-started
https://create-react-app.dev/docs/supported-browsers-features
https://create-react-app.dev/docs/folder-structure

Fundamentals of React 9

— Go through all of your React project’s folders and files one by one.
« Read more about the scripts in create-react-app®’.

— Start your React application with npm start on the command line and check it out in the
browser.
* Exit the command on the command line by pressing Control + C.
— Run the npm test script.

— Run the npm run build script and verify that a build/ folder was added to your project
(you can remove it afterward). Note that the build folder can be used later on to deploy
your application®.

« Every time we change something in our code throughout the coming learning experience, make
sure to check the output in your browser for getting visual feedback.

*"https://create-react-app.dev/docs/available-scripts
**https://www.robinwieruch.de/deploy-applications-digital-ocean/

https://create-react-app.dev/docs/available-scripts
https://www.robinwieruch.de/deploy-applications-digital-ocean/
https://www.robinwieruch.de/deploy-applications-digital-ocean/
https://create-react-app.dev/docs/available-scripts
https://www.robinwieruch.de/deploy-applications-digital-ocean/

Fundamentals of React 10

Meet the React Component

Our first React component is in the src/App.js file, which should look similar to the example
below. The file might differ slightly, because create-react-app will sometimes update the default
component’s structure.

src/App.js

import React from 'react';
import logo from './logo.svg';
import './App.css';

function App() {
return (
<div className="App">
<header className="App-header">

<p>
Edit <code>src/App.js</code> and save to reload.
</p>
<a
className="App-1link"
Href="https://reactjs.org"
target="_blank"

rel="noopener noreferrer"

Learn React

</header>
</div>

);

export default App;

This file will be our focus throughout this tutorial, unless otherwise specified. Let’s start by reducing
the component to a more lightweight version for getting you started without too much boilerplate
code from create-react-app.

Fundamentals of React 11

src/App.js

import React from 'react';

function App() {
return (
<div>
<h1>Hello World</hi>
</div>

);

export default App;

First, this React component, called App component, is just a JavaScript function. It’s commonly called
function component, because there are other variations of React components (see component
types later). Second, the App component doesn’t receive any parameters in its function signature
yet (see props later). And third, the App component returns code that resembles HTML which is
called JSX (see JSX later).

The function component possess implementation details like any other JavaScript function. You will
see this in practice in action throughout your React journey:

src/App.js

import React from 'react’;

function App() {
// do something in between

return (

<div>
<h1>Hello World</h1>

</div>

);

export default App;

Variables defined in the function’s body will be re-defined each time this function runs, like all
JavaScript functions:

Fundamentals of React 12

src/App.js

import React from 'react’';

function App() {

const title = 'React’;
return (
<div>
<h1>Hello World</h1>
</div>
)

export default App;

Since we don’t need anything from within the App component used for this variable - e.g.
parameters coming from the function signature — we can define the variable outside of the App
component as well:

src/App.js

import React from 'react’';

const title = 'React’;

function App() {
return (
<div>
<h1>Hello World</h1>
</div>

);

export default App;

Let’s use this variable in the next section.

Exercises:

« Confirm your source code for the last section®.

*https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Meet-the-React-Component

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Meet-the-React-Component
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Meet-the-React-Component

Fundamentals of React 13

« If you are unsure when to use const, let or var in JavaScript (or React) for variable declarations,
make sure to read more about their differences®.

— Read more about const®*.
— Read more about let*.

« Think about ways to display the title variable in your App component’s returned HTML. In
the next section, we’ll put this variable to use.

**https://www.robinwieruch.de/const-let-var
*https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
*?https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let

https://www.robinwieruch.de/const-let-var
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://www.robinwieruch.de/const-let-var
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let

Fundamentals of React 14

React JSX

Recall that I mentioned the returned output of the App component resembles HTML. This output is
called JSX, which mixes HTML and JavaScript. Let’s see how this works for displaying the variable:

src/App.js

import React from 'react';

const title = 'React’;

function App() {
return (
<div>
<h1>Hello {title}</h1>
</div>

);

export default App;

Start your application with npm start again, and look for the rendered variable in browser, which
should read: “Hello React”.

Let’s focus on the HTML, which is expressed almost the same in JSX. An input field with a label can
be defined as follows:

src/App.js

import React from 'react’;

const title = 'React’;

function App() {
return (
<div>
<h1>Hello {title}</h1>

<label htmlFor="search">Search: </label>
<input id="search" type="text" />
</div>

);

export default App;

Fundamentals of React 15

We specified three HTML attributes here: htmlFor, id, and type. Where id and type should be
familiar from native HTML, htm1For might be new. The htmlFor reflects the for attribute in HTML.
JSX replaces a handful of internal HTML attributes, but you can find all the supported HTML
attributes® in React’s documentation, which follow the camelCase naming convention. Expect to
come across more JSX-specific attributes like className and onClick instead of class and onclick,
as you learn more about React.

We will revisit the HTML input field for implementation details later; for now, let’s return to
JavaScript in JSX. We have defined a string primitive to be displayed in the App component, and
the same can be done with a JavaScript object:

src/App.js

import React from 'react’';

const welcome = {
greeting: 'Hey',
title: 'React’',
b

function App() {
return (
<div>
<h1>
{welcome.greeting} {welcome.title}
</h1>

<label htmlFor="search">Search: </label>
<input id="search" type="text" />
</div>

);

export default App;

Remember, everything in curly braces in JSX can be used for JavaScript expressions (e.g. function
execution):

>*https://reactjs.org/docs/dom-elements.html#all-supported- html-attributes

https://reactjs.org/docs/dom-elements.html#all-supported-html-attributes
https://reactjs.org/docs/dom-elements.html#all-supported-html-attributes
https://reactjs.org/docs/dom-elements.html#all-supported-html-attributes

Fundamentals of React

src/App.js

16

import React from 'react’';

function getTitle(title) {
return title;

function App() {
return (
<div>
<hi>Hello {getTitle('React')}</h1>

<label htmlFor="search">Search: </label>
<input id="search" type="text" />
</div>
)i

export default App;

JSX was initially invented for React, but it became useful for other modern libraries and frameworks
after it gained popularity. It is one of my favorite things about React. Without any extra templating

syntax (except for the curly braces), we are now able to use JavaScript in HTML.

Exercises:

« Confirm your source code for the last section®*.

— Confirm the changes from the last section®.

« Read more about React’s JSX*°.

« Define more primitive and complex JavaScript data types and render them in JSX.

« Try to render a JavaScript array in JSX. If it’s too complicated, don’t worry, because you will

learn more about this in the next section.

**https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-JSX
**https://github.com/the-road- to-learn-react/hacker- stories/compare/hs/Meet- the-React-Component...hs/React-JSX?expand=1

*https://reactjs.org/docs/introducing-jsx.html

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-JSX
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Meet-the-React-Component...hs/React-JSX?expand=1
https://reactjs.org/docs/introducing-jsx.html
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-JSX
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Meet-the-React-Component...hs/React-JSX?expand=1
https://reactjs.org/docs/introducing-jsx.html

Fundamentals of React 17

Lists in React

So far we've rendered a few primitive variables in JSX; next we’ll render a list of items. We’'ll
experiment with sample data at first, then we’ll apply that to fetch data from a remote APL. First, let’s
define the array as a variable. As before, we can define a variable outside or inside the component.
The following defines it outside:

src/App.js

import React from 'react’;

const list = [

{
title: 'React’,
url: 'https://reactjs.org/’',
author: 'Jordan Walke',
num_comments: 3,
points: 4,
objectID: 0,

},

{
title: 'Redux’,

url: 'https://redux. js.org/"',
author: 'Dan Abramov, Andrew Clark',
num_comments: 2,
points: 5,
objectID: 1,
}
1

function App() { ... }

export default App;

[used a ... here as a placeholder, to keep my code snippet small (without App component
implementation details) and focused on the essential parts (the 1ist variable outside of the App
component). I will use the ... throughout the rest of this learning experience as placeholder for
code blocks that I have established previous exercises. If you get lost, you can always verify your
code using the CodeSandbox links I provide at the end of most sections.

Each item in the list has a title, a url, an author, an identifier (objectID), points — which indicate
the popularity of an item — and a count of comments. Next, we’ll render the list within our JSX
dynamically:

Fundamentals of React 18

src/App.js

function App() {
return (
<div>
<h1>My Hacker Stories</h1>

<label htmlFor="search">Search: </label>
<input id="search" type="text" />

<hr />

{/* render the list here */}
</div>

);

You can use the built-in JavaScript map method for arrays® to iterate over each item of the list and
return a new version of each:

Code Playground

const numbers = [1, 4, 9, 16];

const newNumbers = numbers.map(function(number) {

return number * 2;

});

console. log(newNumbers);
/7 [2, 8, 18, 32]

We won’t map from one JavaScript data type to another in our case. Instead, we return a JSX
fragment that renders each item of the list:

*"https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

Fundamentals of React 19

src/App.js

function App() {
return (

<div>

<hr />

{list.map(function(item) {
return <div>{item.title}</div>;
i)
</div>

);

Actually, one of my first React “Aha” moments was using barebones JavaScript to map a list of
JavaScript objects to HTML elements without any other HTML templating syntax. It’s just JavaScript
in HTML.

React will display each item now, but you can still improve your code so React handles advanced
dynamic lists more gracefully. By assigning a key attribute to each list item’s element, React can
identify modified items if the list changes (e.g. re-ordering). Fortunately, our list items come with
an identifier:

src/App.js

function App() {
return (

<div>

<hr />

{list.map(function(item) ({
return (
<div key={item.objectID}>
{item.title}
</div>
)i
1}
</div>

);

Fundamentals of React 20

We avoid using the index of the item in the array to make sure the key attribute is a stable identifier.
If the list changes its order, for example, React will not be able to identify the items properly:

Code Playground

// don't do this
{list.map(function(item, index) {
return (

<div key={index}>

</div>
);
1}

So far, only the title is displayed for each item. Let’s experiment with displaying more of the item’s
properties:

src/App.js

function App() {
return (
<div>

<hr />

{list.map(function(item) {
return (
<div key={item.objectID}>

{item.title}

{item.author}
 {item.num_comments}
{item.points}
</div>
)
Hl

</div>

The map function is inlined concisely in your JSX. Within the map function, we have access to
each item and its properties. The url property of each item is used as dynamic href attribute for

Fundamentals of React 21

the anchor tag. Not only can JavaScript in JSX be used to display items, but also to assign HTML
attributes dynamically.

Exercises:

« Confirm your source code for the last section®®.
— Confirm the changes from the last section®.
« Read more about why React’s key attribute is needed (0*°, 1*, 2**). Don’t worry if you don’t
understand the implementation yet, just focus on what problem it causes for dynamic lists.
« Recap the standard built-in array methods*’ — especially map, filter, and reduce — which are
available in native JavaScript.
What happens if your return null instead of the JSX?
Extend the list with some more items to make the example more realistic.
Practice using different JavaScript expressions in JSX.

*https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Lists-in-React
**https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-JSX...hs/Lists-in-React?expand=1
“*https://dev.to/jtonzing/the-significance- of-react-keys---a-visual-explanation--5617
“‘https://www.robinwieruch.de/react-list-key

“*https://reactjs.org/docs/lists-and-keys.html
“*https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Lists-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-JSX...hs/Lists-in-React?expand=1
https://dev.to/jtonzing/the-significance-of-react-keys---a-visual-explanation--56l7
https://www.robinwieruch.de/react-list-key
https://reactjs.org/docs/lists-and-keys.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Lists-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-JSX...hs/Lists-in-React?expand=1
https://dev.to/jtonzing/the-significance-of-react-keys---a-visual-explanation--56l7
https://www.robinwieruch.de/react-list-key
https://reactjs.org/docs/lists-and-keys.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/

Fundamentals of React 22

Meet another React Component

So far we've only been using the App component to create our applications. We used the App
component in the last section to express everything needed to render our list in JSX, and it should
scale with your needs and eventually handle more complex tasks. To help with this, we’ll split some
of its responsibilities into a standalone List component:

src/App.js
const list = [...];
function App() { ... }

function List() {
return list.map(function(item) {
return (
<div key={item.objectID}>

{item.title}

{item.author}
 {item.num_comments}
{item.points}
</div>
);
1

Optional: If this component looks odd, because the outermost part of the returned JSX starts with
JavaScript. We could use it with a wrapping HTML element as well, but we’ll continue with the
previous version.

src/App.js
function List() {
return (
<div>

{list.map(function(item) {
return (...);
D}
</div>

);

Now the new List component can be used in the App component:

Fundamentals of React 23

src/App.js

function App() {
return (
<div>
<h1>My Hacker Stories</h1>

<label htmlFor="search">Search: </label>

<input id="search" type="text" />
<hr />
<List />

</div>

);

You’ve just created your first React component! With this example, we can see how components
that encapsulate meaningful tasks can work for larger React applications.

Larger React applications have component hierarchies (also called component trees). There is
usually one uppermost entry point component (e.g. App) that spans a tree of components below
it. The App is the parent component of the List, so the List is a child component of the App. In a
component tree, the App is the root component, and the components that don’t render any other
components are called leaf components (e.g. List). The App can have multiple children, as can the
List. If the App has another child component, the additional child component is called a sibling
component of the List.

Exercises:

« Confirm your source code for the last section**.
— Confirm the changes from the last section®.

« Draw your components — the App component and List component — as a component tree on
a sheet of paper. Extend this component tree with other possible components (e.g. extracted
Search component for the input field and label in the App component). Try to figure out which
other parts can be extracted as standalone components.

« If a Search component is used in the App component, would the Search component be a sibling,
parent, or child component for the List component?

« Ask yourself what problems could arise if we keep treating the 1ist variable as global variable.
We will cover how to handle these problems in the upcoming sections.

“*https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Meet-another- React-Component
“*https://github.com/the-road- to-learn-react/hacker- stories/compare/hs/Lists-in-React...hs/Meet-another-React- Component?expand=1

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Meet-another-React-Component
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Lists-in-React...hs/Meet-another-React-Component?expand=1
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Meet-another-React-Component
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Lists-in-React...hs/Meet-another-React-Component?expand=1

Fundamentals of React 24

React Component Instantiation

Next, I'll briefly explain JavaScript classes, to help clarify React components. Technically they are
not related, which is important to note, but it is a fitting analogy for you to understand the concept
of a component.

Classes are most often used in object-oriented programming languages. JavaScript, always flexible
in its programming paradigms, allows functional programming and object-oriented programming
to co-exist side-by-side. To recap JavaScript classes for object-oriented programming, consider the
following Developer class:

Code Playground

class Developer {
constructor(firstName, lastName) {
this.firstName = firstName;
this.lastName = lastName;

getName() {

return this.firstName + ' ' + this.lastName;

Each class has a constructor that takes arguments and assigns them to the class instance. A class
can also define functions that are associated with a subject (e.g. getName), called methods or class
methods.

Defining the Developer class once is just one part; instantiating it is the other. The class definition is
the blueprint of its capabilities, and usage occurs when an instance is created with the new statement.

Code Playground

// class definition
class Developer { ... }

// class instantiation

const robin = new Developer('Robin', 'Wieruch');

console.log(robin.getName());
// "Robin Wieruch"

// another class instantiation

const dennis = new Developer('Dennis', 'Wieruch');

Fundamentals of React 25

console. log(dennis.getName());

// "Dennis Wieruch"

If a JavaScript class definition exists, one can create multiple instances of it. It is similar to a React
component, which has only one component definition, but can have multiple component instances:

src/App.js

// definition of App component
function App() {
return (
<div>
<h1>My Hacker Stories</h1>

<label htmlFor="search">Search: </label>

<input id="search" type="text" />

<hr />

{/* creating an instance of List component */}
<List />
{/* creating another instance of List component */}
<List />

</div>

);

// definition of List component
function List() { ... }

Once we've defined a component, we can use it like an HTML element anywhere in our JSX. The
element produces an component instance of your component, or in other words, the component
gets instantiated. You can create as many component instances as you want. It’s not much different
from a JavaScript class definition and usage.

Exercises:

« Familiarize yourself with the terms component definition, component instance, and element.
« Experiment by creating multiple component instances of a List component.
« Think about how it could be possible to give each List component its own list.

Fundamentals of React 26

React DOM

Now that we've learned about component definitions and their instantiation, we can move to the
App component’s instantiation. It has been in our application from the start, in the src/index.js file:

src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import App from './App';

ReactDOM.render(

<App />,

document .getElementById('root")
);

Next to React, there is another imported library called react-dom, in which a ReactDOM.render ()
function uses an HTML node to replace it with JSX. The process integrates React into HTML.
ReactDOM.render() expects two arguments; the first is to render the JSX. It creates an instance of
your App component, though it can also pass simple JSX without any component instantiation.

Code Playground

ReactDOM.render(
<h1>Hello React World</h1>,
document .getElementById('root")

)

The second argument specifies where the React application enters your HTML. It expects an element
with an id="root "', found in the public/index.html file. This is a basic HTML file.

Exercises:

« Open the public/index.html to see where the React application enters your HTML.
« Consider how we can include a React application in an external web application that uses
HTML.

« Read more about rendering elements in React*.

““https://reactjs.org/docs/rendering-elements.html

https://reactjs.org/docs/rendering-elements.html
https://reactjs.org/docs/rendering-elements.html

Fundamentals of React 27

React Component Definition (Advanced)

The following refactorings are optional recommendations to explain the different JavaScript/React
patterns. You can build complete React applications without these advanced patterns, so don’t be
discouraged if they seem too complicated.

All components in the src/App.js file are function component. JavaScript has multiple ways to declare
functions. So far, we have used the function statement, though arrow functions can be used more
concisely:

Code Playground

// function declaration
function () { ... }

// arrow function declaration
const () => { ... }

You can remove the parentheses in an arrow function expression if it has only one argument, but
multiple arguments require parentheses:

Code Playground

// allowed
const item => { ... }

// allowed
const (item) => { ... }

// not allowed

const item, index => { ... }
// allowed
const (item, index) => { ... }

Defining React function components with arrow functions makes them more concise:

Fundamentals of React 28

src/App.js

const App = () => {
return (

<div>
</div>
);
};

const List = () => {
return list.map(function(item) {
return (
<div key={item.objectID}>

</div>
);

)
};

This holds also true for other functions, like the one we used in our JavaScript array’s map method:

src/App.js

const List = () => {
return list.map(item => {
return (
<div key={item.objectID}>

{item.title}

{item.author}
{item.num_comments}
{item.points}
</div>
);
1)
¥

If an arrow function doesn’t do anything in between, but only returns something, — in other words,
if an arrow function doesn’t perform any task, but only returns information —, you can remove
the block body (curly braces) of the function. In a concise body, an implicit return statement is
attached, so you can remove the return statement:

Fundamentals of React 29

Code Playground

// with block body
count => {
// perform any task in between

return count + 1;

// with concise body

count =>
count + 1;

This can be done for the App and List component as well, because they only return JSX and don’t
perform any task in between. Again it also applies for the arrow function that’s used in the map
function:

src/App.js

const App = () => (
<div>

</div>

);

const List = () =
list.map(item => (

<div key={item.objectID}>

{item.title}

{item.author}
{item.num_comments}
{item.points}

</div>

));

Our JSX is more concise now, as it omits the function statement, the curly braces, and the return
statement. However, remember this is an optional step, and that it’s acceptable to use normal
functions instead of arrow functions and block bodies with curly braces for arrow functions over
implicit returns. Sometimes block bodies will be necessary to introduce more business logic between
function signature and return statement:

Fundamentals of React 30

Code Playground

const App = () => {

// perform any task in between

return (
<div>

</div>
);
};

Be sure to understand this refactoring concept, because we’ll move quickly from arrow function
components with and without block bodies as we go. Which one we use will depend on the
requirements of the component.

Exercises:

« Confirm your source code for the last section®’.
— Confirm the changes from the last section*®.

« Read more about JavaScript arrow functions®.
« Familiarize yourself with arrow functions with block body and return, and concise body
without return.

“"https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Component-Definition

“*https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Meet-another-React-Component...hs/React-Component-
Definition?expand=1

“https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Component-Definition
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Meet-another-React-Component...hs/React-Component-Definition?expand=1
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Component-Definition
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Meet-another-React-Component...hs/React-Component-Definition?expand=1
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Meet-another-React-Component...hs/React-Component-Definition?expand=1
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

Fundamentals of React 31

Handler Function in JSX

The App component still has the input field and label, which we haven’t used. In HTML outside of
JSX, input fields have an onchange handler®. We’re going to discover how to use onchange handlers
with a React component’s JSX. First, refactor the App component from a concise body to a block
body so we can add implementation details.

src/App.js

const App = () => {
// do something in between

return (
<div>
<h1>My Hacker Stories</h1>

<label htmlFor="search">Search: </label>
<input id="search" type="text" />

<hr />

List />
</div>
);
};

Next, define a function — which can be normal or arrow - for the change event of the input field. In
React, this function is called an (event) handler. Now the function can be passed to the onChange
attribute (JSX named attribute) of the input field.

src/App.js

const App = () => {
const handleChange = event => {

console.log(event);

};

return (
<div>
<h1>My Hacker Stories</h1>

<label htmlFor="search">Search: </label>

<input id="search" type="text" onChange={handleChange} />

*°https://developer.mozilla.org/en-US/docs/Web/API/GlobalEventHandlers/onchange

https://developer.mozilla.org/en-US/docs/Web/API/GlobalEventHandlers/onchange
https://developer.mozilla.org/en-US/docs/Web/API/GlobalEventHandlers/onchange

Fundamentals of React 32

<hr />

<List />
</div>
)
1

After opening your application in a web browser, open the browser’s developer tools to see logging
occur after you type into the input field. This is called a synthetic event defined by a JavaScript
object. Through this object, we can access the emitted value of the input field:

src/App.js

const App = () => {
const handleChange = event => {
console.log(event.target.value);

};

return (...);

1

The synthetic event is essentially a wrapper around the browser’s native event®, with more functions
that are useful to prevent native browser behavior (e.g. refreshing a page after the user clicks a form’s
submit button). Sometimes you will use the event, sometimes you won’t need it.

This is how we give HTML elements in JSX handler functions to respond to user interaction. Always
pass functions to these handlers, not the return value of the function, except when the return value
is a function:

Code Playground

// don't do this
<input
id="search"
type="text"
onChange={handleChange()}
/>

// do this instead
<input
id="search"
type="text"

*https://developer.mozilla.org/en-US/docs/Web/Events

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events

Fundamentals of React 33

onChange={handleChange}
/>

HTML and JavaScript work well together in JSX. JavaScript in HTML can display objects, can pass
JavaScript primitives to HTML attributes (e.g. href to <a>), and can pass functions to an element’s
attributes for handling events.

I prefer using arrow functions because of their concision as event handlers, however, in a larger React
component I see myself using the function statements too, because it gives them more visibility in
contrast to other variable declarations within a component’s body.

Exercises:

« Confirm your source code for the last section®.
— Confirm the changes from the last section®.
« Read more about React’s events**.

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Handler- Function-in-JSX

>*https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Component-Definition...hs/Handler- Function-in-
JSX?expand=1

*>*https://reactjs.org/docs/events.html

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Handler-Function-in-JSX
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Component-Definition...hs/Handler-Function-in-JSX?expand=1
https://reactjs.org/docs/events.html
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Handler-Function-in-JSX
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Component-Definition...hs/Handler-Function-in-JSX?expand=1
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Component-Definition...hs/Handler-Function-in-JSX?expand=1
https://reactjs.org/docs/events.html

Fundamentals of React 34

React Props

We are currently using the list variable as a global variable in the current application. We used
it directly from the global scope in the App component, and again in the List component. This
could work if you only had one variable, but it doesn’t scale with multiple variables across multiple
components from many different files.

Using so called props, we can pass variables as information from one component to another
component. Before using props, we’ll move the list from the global scope into the App component
and rename it to its actual domain:

src/App.js

const App = () => {
const stories = [
{
title: 'React’',
url: 'https://reactjs.org/’',
author: 'Jordan Walke',
num_comments: 3,
points: 4,
objectID: 0,
}

{
title: 'Redux’',

url: 'https://redux. js.org/',
author: 'Dan Abramov, Andrew Clark',
num_comments: 2,
points: 5,
objectID: 1,
},
1;

const handleChange = event => { ... };

return (...);

};

Next, we’ll use React props to pass the array to the List component:

Fundamentals of React

src/App.js

35

const App = () => {
const stories = [...];

const handleChange = event => { ...

return (
<div>
<h1>My Hacker Stories</h1>

<label htmlFor="search">Search:

</label>

<input id="search" type="text" onChange={handleChange} />

<hr />

<List list={stories} />
</div>
);
¥

The variable is called stories in the App component, and we pass it under this name to the List
component. In the List component’s instantiation, however, it is assigned to the 1ist attribute. We
access it as list from the props object in the List component’s function signature:

src/App.js

const List = props =>
props.list.map(item => (
<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}
</div>

));

Using this operation, we’ve prevented the list/stories variable from polluting the global scope in the
App component. Since stories is not used in the App component directly, but in one of its child
components, we passed them as props to the List component. There, we can access it through the
first function signature’s argument, called props.

Fundamentals of React

Exercises:

« Confirm your source code for the last section®.
— Confirm the changes from the last section®.
« Read more about how to pass props to React components®’.

**https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Props
*https://github.com/the-road- to-learn-react/hacker- stories/compare/hs/Handler-Function-in-JSX...hs/React- Props?expand=1
*"https://www.robinwieruch.de/react-pass-props-to-component

36

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Props
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Handler-Function-in-JSX...hs/React-Props?expand=1
https://www.robinwieruch.de/react-pass-props-to-component
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Props
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Handler-Function-in-JSX...hs/React-Props?expand=1
https://www.robinwieruch.de/react-pass-props-to-component

Fundamentals of React 37

React State

React Props are used to pass information down the component tree; React state is used to make
applications interactive. We’ll be able to change the application’s appearance by interacting with it.

First, there is a utility function called useState that we take from React for managing state. The
useState function is called a hook. There is more than one React hook - related to state management
but also other things in React — and you will learn about them throughout the next sections. For
now, let’s focus on React’s useState hook:

src/App.js

const App = () => {
const stories = [...];

const [searchTerm, setSearchTerm] = React.useState('');

};

React’s useState hook takes an initial state as an argument. We’'ll use an empty string, and the
function will return an array with two values. The first value (searchTerm) represents the current
state; the second value is a function to update this state (setSearchTerm). I will sometimes refer to
this function as state updater function.

If you are not familiar with the syntax of the two values from the returned array, consider reading
about JavaScript array destructuring®®. It is used to read from an array more concisely. This is array
destructuring and its benefits visualized in a nutshell:

Code Playground

// basic array definition
const list = ['a', 'b'];

// no array destructuring
const itemOne = 1list[0];
const itemTwo = list[1];

// array destructuring

const [firstItem, secondItem] = list;

In the case of React, the React useState hook is a function which returns an array. Take again the
following JavaScript example as comparison:

**https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Array_destructuring

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Array_destructuring
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Array_destructuring

Fundamentals of React 38

Code Playground

function getAlphabet() {
return ['a', 'b'];

// no array destructuring
const itemOne = getAlphabet()[0];
const itemTwo = getAlphabet()[1];

// array destructuring
const [firstItem, secondItem] = getAlphabet();

Array destructuring is just a shorthand version of accessing each item one by one. If you express it
without the array destructuring in React, it becomes less readable:

src/App.js

const App = () => {
const stories = [...];

// less readable version without array destructuring
const searchTermState = React.useState('');
const searchTerm = searchTermState[Q];

const setSearchTerm = searchTermState[1];

};

The React team chose array destructuring because of its concise syntax and ability to name
destructured variables. The following code snippet is an example of array destructuring:

src/App.js

const App = () => {
const stories = [...];

const [searchTerm, setSearchTerm] = React.useState('');

1

After we initialize the state and have access to the current state and the state updater function, use
them to display the current state and update it within the App component’s event handler:

Fundamentals of React 39

src/App.js

const App = () => {
const stories = [...];

const [searchTerm, setSearchTerm] = React.useState('');

const handleChange = event => {
setSearchTerm(event.target.value);

b
return (
<div>
<h1>My Hacker Stories</h1>
<label htmlFor="search">Search: </label>
<input id="search" type="text" onChange={handleChange} />
<p>
Searching for {searchTerm}.
</p>
<hr />
<List list={stories} />
</div>
)
¥

When the user types into the input field, the input field’s change event is captured by the handler
with its current internal value. The handler’s logic uses the state updater function to set the
new state. After the new state is set in a component, the component renders again, meaning the
component function runs again. The new state becomes the current state and can be displayed in
the component’s JSX.

Exercises:

« Confirm your source code for the last section®”.
— Confirm the changes from the last section®.
« Read more about JavaScript array destructuring®'.

**https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-State
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Props...hs/React-State?expand=1
“'https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Array_destructuring

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-State
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Props...hs/React-State?expand=1
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Array_destructuring
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-State
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Props...hs/React-State?expand=1
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Array_destructuring

Fundamentals of React 40

+ Read more about React’s useState Hook (0%, 1%%), as it makes your React components interac-
tive.

“*https://www.robinwieruch.de/react-usestate-hook
“https://reactjs.org/docs/hooks- state.html

https://www.robinwieruch.de/react-usestate-hook
https://reactjs.org/docs/hooks-state.html
https://www.robinwieruch.de/react-usestate-hook
https://reactjs.org/docs/hooks-state.html

Fundamentals of React 41

Callback Handlers in JSX

Next we’ll focus on the input field and label, by separating a standalone Search component and
creating an component instance of it in the App component. Through this process, the Search
component becomes a sibling of the List component, and vice versa. We’ll also move the handler
and the state into the Search component to keep our functionality intact.

src/App.js

const App = () => {
const stories = [...];
return (
<div>
<h1>My Hacker Stories</h1>

<Search />
<hr />

<List list={stories} />
</div>
)
¥

const Search = () => {
const [searchTerm, setSearchTerm] = React.useState('');

const handleChange = event => {
setSearchTerm(event.target.value);

};

return (
<div>
<label htmlFor="search">Search: </label>

<input id="search" type="text" onChange={handleChange} />

<p>
Searching for {searchTerm}.
</p>
</div>
)i
};

Fundamentals of React 42

We have an extracted Search component that handles state and shows state without revealing its
content. The component displays the searchTerm as text but doesn’t share this information with
its parent or sibling components yet. Since Search component does nothing except show the search
term, it becomes useless for the other components.

There is no way to pass information as JavaScript data types up the component tree, since props
are naturally only passed downwards. However, we can introduce a callback handler as a function:
A callback function gets introduced (A), is used elsewhere (B), but “calls back” to the place it was
introduced (C).

src/App.js

const App = () => {
const stories = [...];

// A

const handleSearch = event => {

// C

console.log(event.target.value);

};

return (
<div>
<h1>My Hacker Stories</h1>

<Search onSearch={handleSearch} />
<hr />

<List list={stories} />
</div>
)
¥

const Search = props => {
const [searchTerm, setSearchTerm]| = React.useState('');

const handleChange = event => {

setSearchTerm(event.target.value);

// B

props.onSearch(event);

¥

Fundamentals of React 43

return (...);

1

Consider the concept of the callback handler: We pass a function from one component (App) to
another component (Search); we call it in the second component (Search); but have the actual
implementation of the function call in the first component (App). This way, we can communicate up
the component tree. A handler function used in one component becomes a callback handler, which
is passed down to components via React props. React props are always passed down as information
the component tree, and callback handlers passed as functions in props can be used to communicate
up the component hierarchy.

Exercises:

« Confirm your source code for the last section®.
— Confirm the changes from the last section®.
« Revisit the concepts of handler and callback handler as many times as you need.

®*https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Callback-Handler-in-JSX
“*https://github.com/the-road- to-learn-react/hacker- stories/compare/hs/React- State...hs/Callback-Handler-in-JSX?expand=1

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Callback-Handler-in-JSX
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-State...hs/Callback-Handler-in-JSX?expand=1
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Callback-Handler-in-JSX
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-State...hs/Callback-Handler-in-JSX?expand=1

Fundamentals of React 44

Lifting State in React

Currently, the Search component still has its internal state. While we established a callback handler
to pass information up to the App component, we are not using it yet. We need to figure out how to
share the Search component’s state across multiple components.

The search term is needed in the App to filter the list before passing it to the List component as props.
We’ll need to lift state up from Search to App component to share the state with more components.

src/App.js

const App = () => {
const stories = [...];
const [searchTerm, setSearchTerm] = React.useState('');

const handleSearch = event => {
setSearchTerm(event.target.value);

};

return (
<div>
<h1>My Hacker Stories</h1>

<Search onSearch={handleSearch} />
<hr />

<List list={stories} />
</div>
);
b

const Search = props => (
<div>
<label htmlFor="search">Search: </label>
<input id="search" type="text" onChange={props.onSearch} />
</div>
);

We learned about the callback handler previously, because it helps us to keep an open communication
channel from Search to App component. The Search component doesn’t manage the state anymore,
but only passes up the event to the App component after text is entered into the input field. You

Fundamentals of React 45

could also display the searchTerm again in the App component or Search component by passing it
down as prop.

Always manage the state at a component where every component that’s interested in it is one that
either manages the state (using information directly from state) or a component below the managing
component (using information from props). If a component below needs to update the state, pass
a callback handler down to it (see Search component). If a component needs to use the state (e.g.
displaying it), pass it down as props.

By managing the search feature state in the App component, we can finally filter the list with the
stateful searchTerm before passing the 1ist to the List component:

src/App.js

const App = () => {
const stories = [...];

const [searchTerm, setSearchTerm]| = React.useState('');

const handleSearch = event => {
setSearchTerm(event.target.value);

};

const searchedStories = stories.filter(function(story) {
return story.title.includes(searchTerm);

;

return (
<div>
<h1>My Hacker Stories</h1>

<Search onSearch={handleSearch} />

<hr />

<List list={searchedStories} />
</div>

);
};

Here, the JavaScript array’s built-in filter function® is used to create a new filtered array. The filter
function takes a function as an argument, which accesses each item in the array and returns true or
false. If the function returns true, meaning the condition is met, the item stays in the newly created
array; if the function returns false, it’s removed:

“https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

Fundamentals of React 46

Code Playground

const words = |
'spray’,
"limit',
'elite’,
"exuberant’',
"destruction’,

'present’

1;

const filteredWords = words.filter(function(word) {
return word.length > 6;

});

console.log(filteredWords);
// ["exuberant", "destruction", "present'"]

The filter function checks whether the searchTerm is present in our story item’s title, but it’s still too
opinionated about the letter case. If we search for “react”, there is no filtered “React” story in your
rendered list. To fix this problem, we have to lower case the story’s title and the searchTerm.

src/App.js

const App = () => {

const searchedStories = stories.filter(function(story) {
return story.title
.toLowerCase()
.includes(searchTerm.toLowerCase());

});

};

Now you should be able to search for “eact”, “React”, or “react” and see one of two displayed stories.
You have just added an interactive feature to your application.

The remaining section shows a couple of refactoring steps. We will be using the final refactored
version in the end, so it makes sense to understand these steps and keep them. As learned before,
we can make the function more concise using a JavaScript arrow function:

Fundamentals of React 47

src/App.js

const App = () => {

const searchedStories = stories.filter(story => {
return story.title
.toLowerCase()
.includes(searchTerm.toLowerCase());

});

};

In addition, we could turn the return statement into an immediate return, because no other task
(business logic) happens before the return:

src/App.js

const App = () => {

const searchedStories = stories.filter(story =>
story.title.tolLowerCase().includes(searchTerm.tolLowerCase())

);

};

That’s all to the refactoring steps of the inlined function for the filter function. There are many
variations to it — and it’s not always simple to keep a good balance between readable and conciseness
- however, I feel like keeping it concise whenever possible keeps it most of the time readable as well.

Now we can manipulate state in React, using the Search component’s callback handler in the App
component to update it. The current state is used as a filter for the list. With the callback handler,
we used information from the Search component in the App component to update the shared state
and indirectly in the List component for the filtered list.

Exercises:

« Confirm your source code for the last section®’.
— Confirm the changes from the last section®®.

*"https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Lifting- State-in-React
“®*https://github.com/the-road- to-learn-react/hacker- stories/compare/hs/Callback-Handler-in- JSX...hs/Lifting- State- in-React?expand=1

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Lifting-State-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Callback-Handler-in-JSX...hs/Lifting-State-in-React?expand=1
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Lifting-State-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Callback-Handler-in-JSX...hs/Lifting-State-in-React?expand=1

Fundamentals of React 48

React Controlled Components

Controlled components are not necessary React components, but HTML elements. Here, we’ll learn
how to turn the Search component and its input field into a controlled component.

Let’s go through a scenario that shows why we should follow the concept of controlled components
throughout our React application. After applying the following change - giving the searchTerm an
initial state — can you spot the mistake in your browser?

src/App.js

const App = () => {

const stories = [...];

const [searchTerm, setSearchTerm] = React.useState('React’');

1

While the list has been filtered according to the initial search, the input field doesn’t show the initial
searchTerm. We want the input field to reflect the actual searchTerm used from the initial state; but
it’s only reflected through the filtered list.

We need to convert the Search component with its input field into a controlled component. So far,
the input field doesn’t know anything about the searchTerm. It only uses the change event to inform
us of a change. Actually, the input field has a value attribute.

src/App.js

const App = () => {
const stories = [...];

const [searchTerm, setSearchTerm] = React.useState('React');

return (
<div>
<h1>My Hacker Stories</h1>

<Search search={searchTerm} onSearch={handleSearch} />

</div>

);

Fundamentals of React 49

¥
const Search = props => (
<div>
<label htmlFor="search">Search: </label>
<input

id="search"
type="text"
value={props.search}
onChange={props.onSearch}
/>
</div>

);

Now the input field starts with the correct initial value, using the searchTerm from the React state.
Also, when we change the searchTerm, we force the input field to use the value from React’s state
(via props). Before, the input field managed its own internal state natively with just HTML.

We learned about controlled components in this section, and, taking all the previous sections as
learning steps into consideration, discovered another concept called unidirectional data flow:

Visualization

UI -> Side-Effect -> State -> UI ->

A React application and its components start with an initial state, which may be passed down as
props to other components. It’s rendered for the first time as a UL Once a side-effect occurs, like
user input or data loading from a remote API, the change is captured in React’s state. Once state has
been changed, all the components affected by the modified state or the implicitly modified props
are re-rendered (the component functions runs again).

In the previous sections, we also learned about React’s component lifecycle. At first, all components
are instantiated from the top to the bottom of the component hierarchy. This includes all hooks (e.g.
useState) that are instantiated with their initial values (e.g. initial state). From there, the UI awaits
side-effects like user interactions. Once state is changed (e.g. current state changed via state updater
function from useState), all components affected by modified state/props render again.

Every run through a component’s function takes the recent value (e.g. current state) from the hooks
and doesn’t reinitialize them again (e.g. initial state). This might seem odd, as one could assume
the useState hooks function re-initializes again with its initial value, but it doesn’t. Hooks initialize
only once when the component renders for the first time, after which React tracks them internally
with their most recent values.

Fundamentals of React 50

Exercises:

« Confirm your source code for the last section®.
— Confirm the changes from the last section’.
« Read more about controlled components in React”".

« Experiment with console.log() in your React components and observe how your changes
render, both initially and after the input field changes.

*https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Controlled-Components

"https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Lifting-State-in-React...hs/React- Controlled- Components?
expand=1

"*https://www.robinwieruch.de/react-controlled-components/

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Controlled-Components
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Lifting-State-in-React...hs/React-Controlled-Components?expand=1
https://www.robinwieruch.de/react-controlled-components/
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Controlled-Components
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Lifting-State-in-React...hs/React-Controlled-Components?expand=1
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Lifting-State-in-React...hs/React-Controlled-Components?expand=1
https://www.robinwieruch.de/react-controlled-components/

Fundamentals of React 51

Props Handling (Advanced)

Props are passed from parent to child down the component tree. Since we use props to transport
information from component to component frequently, and sometimes via other components which
are in between, it is useful to know a few tricks to make passing props more convenient.

Note: The following refactorings are recommended for you to learn different JavaScript/React
patterns, though you can still build complete React applications without them. Consider this advanced
React techniques that will make your source code more concise.

React props are a JavaScript object, else we couldn’t access props.list or props.onSearch in
React components. Since props is an object which just passes information from one component to
another component, we can apply a couple JavaScript tricks to it. For example, accessing an object’s
properties with modern JavaScript object destructuring’:

Code Playground

const user = {
firstName: 'Robin',
lastName: 'Wieruch',

};

// without object destructuring
const firstName = user.firstName;
const lastName = user.lastName;

console.log(firstName + ' ' + lastName);
// "Robin Wieruch"

// with object destructuring
const { firstName, lastName } = user;

console.log(firstName + ' ' + lastName);
// "Robin Wieruch"

If we need to access multiple properties of an object, using one line of code instead of multiple
lines is often simpler and more elegant. That’s why object destructuring is already widely used in
JavaScript. Let’s transfer this knowledge to the React props in our Search component. First, we have
to refactor the Search component’s arrow function from concise body into block body:

"?https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

Fundamentals of React 52

src/App.js

const Search = props => {
return (
<div>
<label htmlFor="search">Search: </label>
<input
id="search"
type="text"
value={props.search}
onChange={props.onSearch}
/>
</div>
)
};

And second, we can apply the destructuring of the props object in the component’s function body:

src/App.js

const Search = props => {
const { search, onSearch } = props;

return (
<div>
<label htmlFor="search">Search: </label>
<input
id="search"
type="text"
value={search}
onChange={onSearch}
/>
</div>
)i
3

That’s a basic destructuring of the props object in a React component, so that the object’s
properties can be used conveniently in the component. However, we also had to refactor the Search
component’s arrow function from concise body into block body to access the properties of props
with the object destructuring in the function’s body. This would happen quite often if we followed
this pattern, and it wouldn’t make things easier for us, because we would constantly have to refactor
our components. We can take all this one step further by destructuring the props object right away
in the function signature of our component, omitting the function’s block body of the component
again:

Fundamentals of React 53

src/App.js

const Search = ({ search, onSearch }) => (
<div>
<label htmlFor="search">Search: </label>
<input
id="search"
type="text"
value={search}
onChange={onSearch}
/>
</div>

);

React’s props are rarely used in components by themselves; rather, all the information that is
contained in the props object is used. By destructuring the props object right away in the function
signature, we can conveniently access all information without dealing with its props container. This
should be the basic lesson learned from this section, however, we can take this one step further with
the following advanced lessons.

Let’s check out another scenario to dive deeper into advanced props handling in React: In order to
prepare for this scenario, we will extract a new Item component from the List component with the
previous lesson learned about object destructuring for React’s props object:

src/App.js

const List = ({ list }) =>
list.map(item => <Item key={item.objectID} item={item} />);

const Item = ({ item }) => (

<div>

<{span>
{item.title}

 {item.author}
 {item.num_comments}
{item.points}

</div>

);

Now, the incoming item in the Item component has something in common with the previously
discussed props: they are both JavaScript objects. Also, even though the item object has already been
destructured from the props in the Item component’s function signature, it isn’t directly used in the
Item component. The item object only passes its information (object properties) to the elements.

Fundamentals of React 54

The shown solution is fine as you will see in the ongoing discussion. However, I want to show you
two more variations of it, because there are many things to learn about JavaScript objects here. Let’s
get started with nested destructuring and how it works:

Code Playground

const user = {
firstName: 'Robin',
pet: {
name: 'Trixi',
},
¥

// without object destructuring
const firstName = user.firstName;
const name = user.pet.name;
console.log(firstName + ' has a pet called ' + name);
// "Robin has a pet called Trixi"

// with nested object destructuring
const {
firstName,
pet: {
name,

}I

} = user;

console.log(firstName + ' has a pet called ' + name);

// "Robin has a pet called Trixi"

Nested destructuring helps us to access properties from objects which are deeply nested (e.g. the
pet’s name of a user). Now, in our Item components, because the item object is never directly used
in the Item component’s JSX elements, we can perform a nested destructuring in the component’s
function signature too:

Fundamentals of React 55

src/App.js

// Variation 1: Nested Destructuring

const Item = ({
item: {
title,
url,
author,
num_comments,
points,
},
P = (
<div>

{title}

 {author}
{num_comments}
 {points}
</div>
);

The nested destructuring helps us to gather all the needed information of the item object in
the function signature for its immediate usage in the component’s elements. However, nested
destructuring introduces lots of clutter through indentations in the function signature. While it’s
here not the most readable option, it can be useful in other scenarios though.

Let’s take another approach with JavaScript’s spread and rest operators. In order to prepare for it,
we will refactor our List and Item components to the following implementation. Rather than passing
the item as object from List to ltem component, we are passing every property of the item object:

src/App.js

// Variation 2: Spread and Rest Operators
// 1. Iteration

const List = ({ list }) =>
list.map(item => (
<Item

key={item.objectID}
title={item.title}
url={item.url}
author={item.author}
num_comments={item.num_comments}

Fundamentals of React 56

points={item.points}

/>
));
const Item = ({ title, url, author, num_comments, points }) => (
<div>
<{span>
{title}

{author}
 {num_comments}
 {points}
</div>
);

Now, even though the Item component’s function signature is more concise, the clutter ended up in
the List component instead, because every property is passed to the Item component individually.
We can improve this approach using JavaScript’s spread operator’*:

Code Playground

const profile = {
firstName: 'Robin',
lastName: 'Wieruch',

¥

const address = {
country: 'Germany',
city: 'Berlin',
code: '10439',

};

const user = {
...profile,
gender: 'male',
...address,

};

console.log(user);

/7

// firstName: "Robin",
// lastName: "Wieruch",

"*https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax

Fundamentals of React 57

// gender: "male"

// country: "Germany,
// city: "Berlin",
// code: "10439"
/)

JavaScript’s spread operator allows us to literally spread all key/value pairs of an object to another
object. This can also be done in React’s JSX. Instead of passing each property one at a time via
props from List to Item component as before, we can use JavaScript’s spread operator to pass all the
object’s key/value pairs as attribute/value pairs to a JSX element:

src/App.js

// Variation 2: Spread and Rest Operators
// 2. Iteration

const List = ({ list }) =>
list.map(item => <Item key={item.objectID} {...item} />);

const Item = ({ title, url, author, num_comments, points }) => (
<div>

{title}

 {author}
 {num_comments}
{points}
</div>
),

This refactoring made the process of passing the information from List to Item component more
concise. Finally, we’ll use JavaScript’s rest parameters’ as the icing on the cake. The JavaScript rest
operator happens always as the last part of an object destructuring:

"*https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters

Fundamentals of React 58

Code Playground

const user = {
id: "1,
firstName: 'Robin',
lastName: 'Wieruch',
country: 'Germany',
city: 'Berlin',

4
const { id, country, city, ...userWithoutAddress } = user;

console. log(userWithoutAddress);
/7

// firstName: "Robin",

// lastName: "Wieruch"

/7 }

console.log(id);
/7 "

console.log(city);
// "Berlin"

Even though both have the same syntax (three dots), the rest operator shouldn’t be mistaken with
the spread operator. Whereas the rest operator happens on the right side of an assignment, the spread
operator happens on the left side. The rest operator is always used to separate an object from some
of its properties.

Now it can be used in our List component to separate the objectID from the item, because the
objectID is only used as key and isn’t used in the Item component. Only the remaining (rest) item
gets spread as attribute/value pairs into the Item component (as before):

src/App.js

// Variation 2: Spread and Rest Operators (final)

const List = ({ list }) =>
list.map(({ objectID, ...item }) => <Item key={objectID} {...item} />);

const Item = ({ title, url, author, num_comments, points }) => (
<div>
<{span>
{title}

Fundamentals of React 59

 {author}
 {num_comments}
{points}
</div>
);

In this final variation, the rest operator is used to destructure the ob jectID from the rest of the item
object. Afterward, the item is spread with its key/values pairs into the Item component. While this
final variation is very concise, it comes with advanced JavaScript features that may be unknown to
some.

In this section, we have learned about JavaScript object destructuring which can be used commonly
for the props object, but also for other objects like the item object. We have also seen how nested
destructuring can be used (Variation 1), but also how it didn’t add any benefits in our case, because
it just made the component bigger. In the future you will find more likely use cases for nested
destructuring which are beneficial. Last but not least, you have learned about JavaScript’s spread
and rest operators, which shouldn’t be confused with each other, to perform operations on JavaScript
objects and to pass the props object from one component to another component in the most concise
way. In the end, I want to point out the initial version again which we will keep over the next
chapters:

src/App.js

const List = ({ list }) =>
list.map(item => <Item key={item.objectID} item={item} />);

const Item = ({ item }) => (
<div>

{item.title}

{item.author}
 {item.num_comments}
{item.points}
</div>
);

It may not be the most concise, but it is the easiest to reason about. Variation 1 with its nested
destructuring didn’t add much benefit and variation 2 may add too many advanced JavaScript
features (spread operator, rest operator) which are not familiar to everyone. After all, all these
variations have their pros and cons. When refactoring a component, always aim for readability,
especially when working in a team of people, and make sure make sure they’re using a common
React code style.

Fundamentals of React 60

Exercises:

« Confirm your source code for the last section”.
— Confirm the changes from the last section’.

« Read more about JavaScript’s destructuring assignment””.

« Think about the difference between JavaScript array destructuring — which we used for React’s
useState hook — and object destructuring.

+ Read more about JavaScript’s spread operator’®.

« Read more about JavaScript’s rest parameters’.

« Get a good sense about JavaScript (e.g. spread operator, rest parameters, destructuring) and
what’s related to React (e.g. props) from the last lessons.

« Continue to use your favorite way to handle React’s props. If you’re still undecided, consider
the variation used in the previous section.

"*https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Props-Handling

"®https://github.com/the-road- to-learn-react/hacker- stories/compare/hs/React- Controlled-Components...hs/Props-Handling?expand=1
""https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
"®https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
"*https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Props-Handling
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Controlled-Components...hs/Props-Handling?expand=1
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Props-Handling
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Controlled-Components...hs/Props-Handling?expand=1
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters

Fundamentals of React 61

React Side-Effects

Next we’ll add a feature to our Search component in the form of another React hook. We’ll make
the Search component remember the most recent search interaction, so the application opens it in
the browser whenever it restarts.

First, use the local storage of the browser to store the searchTerm accompanied by an identifier. Next,
use the stored value, if there a value exists, to set the initial state of the searchTerm. Otherwise, the
initial state defaults to our initial state (here “React”) as before:

src/App.js

const App = () => {

const [searchTerm, setSearchTerm] = React.useState(
localStorage.getItem('search') || 'React'’

);

const handleSearch = event => {

setSearchTerm(event.target.value);

localStorage.setItem('search’', event.target.value);

};

)

When using the input field and refreshing the browser tab, the browser should remember the latest
search term. Using the local storage in React can be seen as a side-effect because we interact outside
of React’s domain by using the browser’s API.

There is one flaw, though. The handler function should mostly be concerned about updating the
state, but now it has a side-effect. If we use the setSearchTerm function elsewhere in our application,
we will break the feature we implemented because we can’t be sure the local storage will also get
updated. Let’s fix this by handling the side-effect at a dedicated place. We’ll use React’s useEffect
Hook to trigger the side-effect each time the searchTerm changes:

Fundamentals of React 62

src/App.js

const App = () => {

const [searchTerm, setSearchTerm] = React.useState(
localStorage.getItem('search') || 'React’

);

React.useEffect(() => {
localStorage.setltem('search', searchTerm);
}, [searchTerm]);

const handleSearch = event => {
setSearchTerm(event.target.value);

};

)

React’s useEffect Hook takes two arguments: The first argument is a function where the side-effect
occurs. In our case, the side-effect is when the user types the searchTerm into the browser’s local
storage. The optional second argument is a dependency array of variables. If one of theses variables
changes, the function for the side-effect is called. In our case, the function is called every time the
searchTerm changes; and it’s also called initially when the component renders for the first time.

Leaving out the second argument, to be specific the dependency array, would make the function
for the side-effect run on every render (initial render and update renders) of the component. If the
dependency array of React’s useEffect is an empty array, the function for the side-effect is only called
once, after the component renders for the first time. The hook lets us opt into React’s component
lifecycle. It can be triggered when the component is first mounted, but also one of its dependencies
are updated.

Using React useEffect instead of managing the side-effect in the handler has made the application
more robust. Whenever and wherever searchTerm is updated via setSearchTerm, local storage will
always be in sync with it.

Exercises:

« Confirm your source code for the last section®.

— Confirm the changes from the last section®'.

#https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React- Side- Effects
®thttps://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Props-Handling...hs/React-Side- Effects?expand=1

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Side-Effects
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Props-Handling...hs/React-Side-Effects?expand=1
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Side-Effects
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Props-Handling...hs/React-Side-Effects?expand=1

Fundamentals of React 63

» Read more about React’s useEffect Hook (0%?, 1%%).
« Give the first argument’s function a console.log() and experiment with React’s useEffect
Hook’s dependency array. Check the logs for an empty dependency array too.

#https://reactjs.org/docs/hooks-effect.html
®https://reactjs.org/docs/hooks-reference. html#useeffect

https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-reference.html#useeffect
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-reference.html#useeffect

Fundamentals of React 64

React Custom Hooks (Advanced)

Thus far we’ve covered the two most popular hooks in React: useState and useEffect. useState is used
to make your application interactive; useEffect is used to opt into the lifecycle of your components.

We’ll eventually cover more hooks that come with React — in this volume and in other resources —
though we won’t cover all of them here. Next we’ll tackle React custom Hooks; that is, building a
hook yourself.

We will use the two hooks we already possess to create a new custom hook called useSemiPersistentState,
named as such because it manages state yet synchronizes with the local storage. It’s not fully
persistent because clearing the local storage of the browser deletes relevant data for this application.
Start by extracting all relevant implementation details from the App component into this new custom

hook:

src/App.js

const useSemiPersistentState = () => {
const [searchTerm, setSearchTerm] = React.useState(
localStorage.getItem('search') || "'

);

React.useEffect(() => {
localStorage.setItem('search', searchTerm);
}, [searchTerm]);

};
const App = () => {

};

So far, it’s just a function around our previously in the App component used useState and useEffect
hooks. Before we can use it, let’s return the values that are needed in our App component from this
custom hook:

Fundamentals of React 65

src/App.js

const useSemiPersistentState = () => {

¥

const [searchTerm, setSearchTerm] = React.useState(
localStorage.getltem('search') || "'

)i
React.useEffect(() => {
localStorage.setItem('search', searchTerm);

}, [searchTerm]);

return [searchTerm, setSearchTerm];

We are following two conventions of React’s built-in hooks here. First, the naming convention which
puts the “use” prefix in front of every hook name; second, the returned values are returned as an
array. Now we can use the custom hook with its returned values in the App component with the
usual array destructuring:

src/App.js

const App = () => {

};

const stories = [...];
const [searchTerm, setSearchTerm] = useSemiPersistentState();

const handleSearch = event => {
setSearchTerm(event.target.value);

};

const searchedStories = stories.filter(story =>

story.title.tolLowerCase().includes(searchTerm.tolLowerCase())

)i
return (

);

Another goal of a custom hook should be reusability. All of this custom hook’s internals are about
the search domain, but the hook should be for a value that’s set in state and synchronized in local
storage. Let’s adjust the naming therefore:

Fundamentals of React 66

src/App.js

const useSemiPersistentState = () => {
const [value, setValue] = React.useState(

localStorage.getItem('value') ||
);

React.useEffect(() => {
localStorage.setItem('value', value);
}, [value]);

return [value, setValue];

};

We handle an abstracted “value” within the custom hook. Using it in the App component, we can
name the returned current state and state updater function anything domain-related (e.g. searchTerm
and setSearchTerm) with array destructuring.

There is still one problem with this custom hook. Using the custom hook more than once in a React
application leads to an overwrite of the “value”-allocated item in the local storage. To fix this, pass
in a key:

src/App.js

const useSemiPersistentState = key => {
const [value, setValue] = React.useState(

localStorage.getItem(key) ||
)i

React.useEffect(() => {
localStorage.setItem(key, value);
}, [value, key]);

return [value, setValue];

};

const App = () => {

const [searchTerm, setSearchTerm] = useSemiPersistentState(

'search’

);

Fundamentals of React 67

Since the key comes from outside, the custom hook assumes that it could change, so it needs to be
included in the dependency array of the useEffect hook. Without it, the side-effect may run with
an outdated key (also called stale) if the key changed between renders.

Another improvement is to give the custom hook the initial state we had from the outside:

src/App.js

const useSemiPersistentState = (key, initialState) => {
const [value, setValue] = React.useState(
localStorage.getItem(key) || initialState

);

};

const App = () => {

const [searchTerm, setSearchTerm] = useSemiPersistentState(
'search’,
'React’

);

};

You've just created your first custom hook. If you’re not comfortable with custom hooks, you can
revert the changes and use the useState and useEffect hook as before, in the App component.

However, knowing more about custom hooks gives you lots of new options. A custom hook can
encapsulate non-trivial implementation details that should be kept away from a component; can be
used in more than one React component; and can even be open-sourced as an external library. Using
your favorite search engine, you’ll notice there are hundreds of React hooks that could be used in
your application without worry over implementation details.

Exercises:

« Confirm your source code for the last section®.
— Confirm the changes from the last section®.
« Read more about React Hooks® to get a good understanding of them. They are the bread and

butter in React function components, so it’s important to really understand them (0%, 1*®).

8*https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Custom-Hooks
#https://github.com/the-road- to-learn-react/hacker- stories/compare/hs/React- Side- Effects...hs/React- Custom-Hooks?expand=1
®https://www.robinwieruch.de/react-hooks

¥ https://reactjs.org/docs/hooks-overview.html

#https://reactjs.org/docs/hooks-custom.html

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Custom-Hooks
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Side-Effects...hs/React-Custom-Hooks?expand=1
https://www.robinwieruch.de/react-hooks
https://reactjs.org/docs/hooks-overview.html
https://reactjs.org/docs/hooks-custom.html
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Custom-Hooks
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Side-Effects...hs/React-Custom-Hooks?expand=1
https://www.robinwieruch.de/react-hooks
https://reactjs.org/docs/hooks-overview.html
https://reactjs.org/docs/hooks-custom.html

Fundamentals of React 68

React Fragments

One caveat with JSX, especially when we create a dedicated Search component, is that we must
introduce a wrapping HTML element to render it:

src/App.js
const Search = ({ search, onSearch }) => (
<div>
<label htmlFor="search">Search: </label>
<input

id="search"
type="text"
value={search}
onChange={onSearch}
/>
</div>

)i

Normally the JSX returned by a React component needs only one wrapping top-level element. To
render multiple top-level elements side-by-side, we have to wrap them into an array instead. Since
we’re working with a list of elements, we have to give every sibling element React’s key attribute:

src/App.js

const Search = ({ search, onSearch }) => [
<label key="1" htmlFor="search">
Search:{' '}
</label>,
<input
key="2"
id="search"
type="text"
value={search}
onChange={onSearch}
/>,
1;

This is one way to have multiple top-level elements in your JSX. It doesn’t turn out very readable,
though, as it becomes verbose with the additional key attribute. Another solution is to use a React
fragment:

Fundamentals of React 69

src/App.js

const Search = ({ search, onSearch }) => (
<>
<label htmlFor="search">Search: </label>
<input
id="search"
type="text"
value={search}
onChange={onSearch}
/>
</>
),

A fragment wraps other elements into a single top-level element without adding to the rendered
output. Both Search elements should be visible in your browser now, with input field and label. So if
you prefer to omit the wrapping <div> or elements, substitute them with an empty tag that
is allowed in JSX, and doesn’t introduce intermediate elements in our rendered HTML.

Exercises:

« Confirm your source code for the last section®.
— Confirm the changes from the last section™.

« Read more about React fragments’".

#https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Fragments
**https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React- Custom-Hooks...hs/React-Fragments?expand=1
“'https://reactjs.org/docs/fragments.html

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Fragments
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Custom-Hooks...hs/React-Fragments?expand=1
https://reactjs.org/docs/fragments.html
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Fragments
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Custom-Hooks...hs/React-Fragments?expand=1
https://reactjs.org/docs/fragments.html

Fundamentals of React 70

Reusable React Component

Have a closer look at the Search component. The label element has the text “Search: “; the id/htmlFor
attributes have the search identifier; the value is called search; and the callback handler is called
onSearch. The component is very much tied to the search feature, which makes it less reusable for
the rest of the application and non search-related tasks. It also risks introducing bugs if two of these
Search components are rendered side by side, because the htmlFor/id combination is duplicated,
breaking the focus when one of the labels is clicked by the user.

Since the Search component doesn’t have any actual “search” functionality, it takes little effort
to generalize other search domain properties to make the component reusable for the rest of the
application. Let’s pass an additional id and 1abel prop to the Search component, rename the actual
value and callback handler to something more abstract, and rename the component accordingly:

src/App.js

const App = () => {

return (
<div>
<h1>My Hacker Stories</h1>

<InputWithLabel
id="search"
label="Search"
value={searchTerm}
onInputChange={handleSearch}
/>

const InputWithLabel = ({ id, label, value, onInputChange }) => (
<>

<label htmlFor={id}>{label}</label>

<input
id={id}
type="text"

value={value}
onChange={onInputChange}

Fundamentals of React 71

/>
</>
);

It’s not fully reusable yet. If we want an input field for data like a number (number) or phone number
(tel), the type attribute of the input field needs to be accessible from the outside too:

src/App.js

const InputWithLabel = ({
id,
label,
value,
type = "text',
onInputChange,
1) =
)
<label htmlFor={id}>{label}</label>

<input
id={id}
type={type}
value={value}
onChange={onInputChange}
/>
</>
),

From the App component, no type prop is passed to the InputWithLabel component, so it is not
specified from the outside. The default parameter®” from the function signature takes over for the
input field.

With just a few changes we turned a specialized Search component into a more reusable component.
We generalized the naming of the internal implementation details and gave the new component a
larger API surface to provide all the necessary information from the outside. We aren’t using the
component elsewhere, but we increased its ability to handle the task if we do.

Exercises:

« Confirm your source code for the last section.
— Confirm the changes from the last section.

*?https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Default_parameters
“*https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Reusable- React-Component
**https://github.com/the-road- to-learn-react/hacker- stories/compare/hs/React-Fragments...hs/Reusable- React-Component?expand=1

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Default_parameters
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Reusable-React-Component
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Fragments...hs/Reusable-React-Component?expand=1
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Default_parameters
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Reusable-React-Component
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Fragments...hs/Reusable-React-Component?expand=1

Fundamentals of React 72

+ Read more about Reusable React Components®”.

« Before we used the text “Search:” with a “:”. How would you deal with it now? Would you pass
it with label="Search:" as prop to the InputWithLabel component or hardcode it after the
<label htmlFor={id}>{label}:</label> usage in the InputWithLabel component? We will

see how to cope with this later.

**https://www.robinwieruch.de/react-reusable-components

https://www.robinwieruch.de/react-reusable-components
https://www.robinwieruch.de/react-reusable-components

73

Fundamentals of React

React Component Composition

Now we’ll discover how to use a React element in the same fashion as an HTML element, with an
opening and closing tag:

src/App.js

const App = () => {

return (
<div>
<h1>My Hacker Stories</h1>

<InputWithlLabel
id="search"
value={searchTerm}
onInputChange={handleSearch}

Search
</InputWithLabel>

Instead of using the 1abel prop from before, we inserted the text “Search:” between the component’s
element’s tags. In the InputWithLabel component, you have access to this information via React’s
children prop. Instead of using the 1abel prop, use the children prop to render everything that has
been passed down from above where you want it:

src/App.js

const InputWithLabel = ({
id,
value,
type = 'text',
onInputChange,
children,

=«
<>

<label htmlFor={id}>{children}</label>

74

Fundamentals of React

<input
id={id}
type={type}
value={value}
onChange={onInputChange}

/>

</>
),

Now the React component’s elements behave similar to native HTML. Everything that’s passed
between a component’s elements can be accessed as children in the component and be rendered
somewhere. Sometimes when using a React component, you want to have more freedom from the
outside what to render in the inside of a component:

src/App.js

const App = () => {

return (
<div>
<h1>My Hacker Stories</h1>

<InputWithLabel
id="search"
value={searchTerm}
onInputChange={handleSearch}

Search:
</InputWithLabel>

</div>
);
};

With this React feature, we can compose React components into each other. We’ve used it with a
JavaScript string and with a string wrapped in an HTML element, but it doesn’t end here.
You can pass components via React children as well.

Exercises:

« Confirm your source code for the last section”.

*https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Component-Composition

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Component-Composition
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Component-Composition

Fundamentals of React 75

— Confirm the changes from the last section”.
« Read more about React Component Composition (0°%, 1°°).
« Create a simple text component that renders a string and passes it as children to the
InputWithLabel component.

°"https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Reusable- React-Component...hs/React-Component-
Composition?expand=1

*®https://www.robinwieruch.de/react-component-composition

*https://reactjs.org/docs/composition-vs-inheritance.html

https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Reusable-React-Component...hs/React-Component-Composition?expand=1
https://www.robinwieruch.de/react-component-composition
https://reactjs.org/docs/composition-vs-inheritance.html
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Reusable-React-Component...hs/React-Component-Composition?expand=1
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Reusable-React-Component...hs/React-Component-Composition?expand=1
https://www.robinwieruch.de/react-component-composition
https://reactjs.org/docs/composition-vs-inheritance.html

Fundamentals of React 76

Imperative React

React is inherently declarative, starting with JSX and ending with hooks. In JSX, we tell React what
to render and not how to render it. In a React side-effect Hook (useEffect), we express when to
achieve what instead of how to achieve it. Sometimes, however, we’ll want to access the rendered
elements of JSX imperatively, in cases such as these:

- read/write access to elements via the DOM API:
— measure (read) an element’s width or height
— setting (write) an input field’s focus state

« implementation of more complex animations:
— setting transitions
— orchestrating transitions

« integration of third-party libraries:
- D3 is a popular imperative chart library

Because imperative programming in React is often verbose and counterintuitive, we’ll walk only
through a small example for setting the focus of an input field imperatively. For the declarative way,
simply set the input field’s autofocus attribute:

src/App.js

const InputWithLabel = ({ ... }) => (
<>
<label htmlFor={id}>{children}</label>

<input
id={id}
type={type}
value={value}
autoFocus
onChange={onInputChange}
/>
</>
)i

This works, but only if one of the reusable components is rendered once. For example, if the App
component renders two InputWithLabel components, only the last rendered component receives the
auto-focus on its render. However, since we have a reusable React component here, we can pass a
dedicated prop and let the developer decide whether its input field should have an autofocus or not:

1%https://d3js.org/

https://d3js.org/
https://d3js.org/

77

Fundamentals of React

src/App.js

const App = () => {

return (
<div>
<h1>My Hacker Stories</h1>

<InputWithlLabel
id="search"
value={searchTerm}
isFocused
onInputChange={handleSearch}

Search:
</InputWithLabel>

</div>
);
};

Using just isFocused as an attribute is equivalent to isFocused={true}. Within the component, use
the new prop for the input field’s autoFocus attribute:

src/App.js

const InputWithLabel = ({
id,
value,
type = 'text',
onInputChange,
isFocused,
children,
1) = (
<
<label htmlFor={id}>{children}</label>

<input
id={id}
type={type}
value={value}
autoFocus={isFocused}

Fundamentals of React 78

onChange={onInputChange}
/>
/>
);

The feature works, yet it’s still a declarative implementation. We are telling React what to do and
not how to do it. Even though it’s possible to do it with the declarative approach, let’s refactor this
scenario to an imperative approach. We want to execute the focus() method programmatically via
the input field’s DOM API once it has been rendered:

src/App.js
const InputWithLabel = ({
id,

value,

type = 'text’',

onInputChange,

isFocused,

children,
o= {

// A

const inputRef = React.useRef();

// C
React.useEffect(() => {
if (isFocused && inputRef.current) {
// D
inputRef.current. focus();

}

}, [isFocused]);

return (
<
<label htmlFor={id}>{children}</label>

{/* B */}
<input
ref={inputRef}
id={id}
type={type}
value={value}
onChange={onInputChange}
/>
</>

Fundamentals of React 79

);
b

All the essential steps are marked with comments that are explained step by step:

« (A) First, create a ref with React’s useRef hook. This ref object is a persistent value which
stays intact over the lifetime of a React component. It comes with a property called current,
which, in contrast to the ref object, can be changed.

+ (B) Second, the ref is passed to the input field’s JSX-reserved ref attribute and the element
instance is assigned to the changeable current property.

« (C) Third, opt into React’s lifecycle with React’s useEffect Hook, performing the focus on the
input field when the component renders (or its dependencies change).

« (D) And fourth, since the ref is passed to the input field’s ref attribute, its current property
gives access to the element. Execute its focus programmatically as a side-effect, but only if
isFocused is set and the current property is existent.

This was an example of how to move from declarative to imperative programming in React. It’s
not always possible to go the declarative way, so the imperative approach can be whenever it’s
necessary. This lesson is for the sake of learning about the DOM API in React.

Exercises:

« Confirm your source code for the last section'*".
— Confirm the changes from the last section'®*.
« Read more about React’s useRef Hook'*.

Thttps://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Imperative- React

19https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Component- Composition...hs/Imperative- React?expand=
1

19https://reactjs.org/docs/hooks-reference.html#useref

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Imperative-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Component-Composition...hs/Imperative-React?expand=1
https://reactjs.org/docs/hooks-reference.html#useref
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Imperative-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Component-Composition...hs/Imperative-React?expand=1
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Component-Composition...hs/Imperative-React?expand=1
https://reactjs.org/docs/hooks-reference.html#useref

Fundamentals of React 80

Inline Handler in JSX

The list of stories we have so far is only an unstateful variable. We can filter the rendered list with
the search feature, but the list itself stays intact if we remove the filter. The filter is just a temporary
change through a third party, but we can’t manipulate the real list yet.

To gain control over the list, make it stateful by using it as initial state in React’s useState Hook.
The returned values are the current state (stories) and the state updater function (setStories).
We aren’t using the custom useSemiPersistentState hook yet, because we don’t want to open the
browser with the cached list each time. Instead, we always want to start with the initial list.

src/App.js

const initialStories = [

{
title: 'React’,

},

{
title: 'Redux’',
},
1;
const useSemiPersistentState = (key, initialState) => { ... };

const App = () => {
const [searchTerm, setSearchTerm] = ...

const [stories, setStories] = React.useState(initialStories);

};

The application behaves the same because the stories, now returned from useState, are still filtered
into searchedstories and displayed in the List. Next we’ll manipulate the list by removing an item
from it:

Fundamentals of React 81

src/App.js

const App = () => {

const [stories, setStories] = React.useState(initialStories);

const handleRemoveStory = item => {
const newStories = stories.filter(

story => item.objectID !== story.objectID
);
setStories(newStories);
}
return (
<div>
<h1>My Hacker Stories</h1>
<hr />
<List list={searchedStories} onRemoveltem={handleRemoveStory} />
</div>
)

1

The callback handler in the App component receives an item to be removed as an argument, and
filters the current stories based on this information by removing all items that don’t meet its
condition(s). The returned stories are then set as new state, and the List component passes the
function to its child component. It’s not using this new information; it’s just passing it on:

Fundamentals of React 82

src/App.js

const List = ({ list, onRemoveltem }) =>
list.map(item => (
<Item
key={item.objectID}
item={item}
onRemoveItem={onRemoveIltem}
/>
));

Finally, we can use the incoming function in another handler in the Item component to pass the
item to it. A button element is used to trigger the actual event:

src/App.js

const Item = ({ item, onRemoveltem }) => {
const handleRemoveltem = () => {

onRemoveltem(item);

};

return (
<div>

{item.title}

{item.author}
{item.num_comments}
{item.points}

<button type="button" onClick={handleRemoveltem}>
Dismiss
</button>

</div>
);
¥

We could have passed only the item’s objectID, since that’s all we need in the App component’s
callback handler, but we aren’t sure what information the handler might need later. It may need
more than an identifier to remove an item. If we call the handler onRemoveItem, it should be the
item being passed, not just its identifier.

We have made the list of stories stateful with React’s useState Hook; passed the still searched stories
down as props to the List component; and implemented a callback handler (handleRemoveStory)

Fundamentals of React 83

and handler (handleRemoveItem) to be used in their respective components. Since a handler is just a
function, and in this case it doesn’t return anything, we could remove the block body for it for the
sake of completeness.

src/App.js

const Item = ({ item, onRemoveltem }) => {
const handleRemoveltem = () =>
onRemoveltem(item);

};

This change makes our source code less readable as we accumulate handlers in the function
component. Sometimes I refactor handlers in a function component from an arrow function back to
a normal function statement, just to make the component more explorable:

src/App.js

const Item = ({ item, onRemoveltem }) => {
function handleRemoveltem() {
onRemoveltem(item);

};

In this section we applied props, handlers, callback handlers, and state. That are all lessons learned
from before. Now we’ll tackle inline handlers, which allow us to execute the function right in the
JSX. There are two solutions using the incoming function in the Item component as an inline handler.
First, using JavaScript’s bind method:

src/App.js

const Item = ({ item, onRemoveltem }) => (
<div>

<{span>

{item.title}

{item.author}
{item.num_comments}
{item.points}

<button type="button" onClick={onRemoveltem.bind(null, item)}>

Dismiss

Fundamentals of React 84

</button>

</div>
);

Using JavaScript’s bind method** on a function allows us to bind arguments directly to that function
that should be used when executing it. The bind method returns a new function with the bound
argument attached.

The second and more popular solution is to use a wrapping arrow function, which allows us to sneak
in arguments like item:

src/App.js

const Item = ({ item, onRemoveltem }) => (
<div>
<{span>
{item.title}

{item.author}
{item.num_comments}
{item.points}

<button type="button" onClick={() => onRemoveltem(item)}>
Dismiss
</button>

</div>
);

This is a quick solution, because sometimes we don’t want to refactor a function component’s concise
function body back to a block body to define an appropriate handler between function signature
and return statement. While this way is more concise than the others, it can also be more difficult to
debug because JavaScript logic may be hidden in JSX. It becomes even more verbose if the wrapping
arrow function encapsulates more than one line of implementation logic, by using a block body
instead of a concise body. This should be avoided:

1%https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_objects/Function/bind

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_objects/Function/bind

Fundamentals of React 85

Code Playground

const Item = ({ item, onRemoveltem }) => (
<div>

<button
type="button"
onClick={() => {
// do something else

// note: avoid using complex logic in JSX

onRemovelItem(item);

3}

Dismiss
</button>

</div>

)

All three handler versions, two of which are inline and the normal handler, are acceptable. The non-
inlined handler moves the implementation details into the function component’s block body; the
inline handler move the implementation details into the JSX.

Exercises:

« Confirm your source code for the last section*.
— Confirm the changes from the last section'®.
« Review handlers, callback handlers, and inline handlers.

1%https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Inline- Handler-in-JSX
1%https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Imperative-React...hs/Inline-Handler-in- JSX ?expand=1

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Inline-Handler-in-JSX
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Imperative-React...hs/Inline-Handler-in-JSX?expand=1
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Inline-Handler-in-JSX
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Imperative-React...hs/Inline-Handler-in-JSX?expand=1

Fundamentals of React 86

React Asynchronous Data

We have two interactions in our application: searching the list, and removing items from the list.
The first interaction is a fluctuant interference through a third-party state (searchTerm) applied on
the list; the second interaction is a non-reversible deletion of an item from the list.

Sometimes we must render a component before we can fetch data from a third-party APl and display
it. In the following, we will simulate this kind of asynchronous data in the application. In a live
application, this asynchronous data gets fetched from a real remote API. We start off with a function
that returns a promise — data, once it resolves — in its shorthand version. The resolved object holds
the previous list of stories:

src/App.js

const initialStories = [...];

const getAsyncStories = () =>
Promise.resolve({ data: { stories: initialStories } });

In the App component, instead of using the initialStories, use an empty array for the initial state.
We want to start off with an empty list of stories, and simulate fetching these stories asynchronously.
In a new useEffect hook, call the function and resolve the returned promise. Due to the empty
dependency array, the side-effect only runs once the component renders for the first time:

src/App.js

const App = () => {

const [stories, setStories] = React.useState([]);

React.useEffect(() => {
getAsyncStories().then(result => {
setStories(result.data.stories);
1
oD

};

Even though the data should arrive asynchronously when we start the application, it appears to
arrive synchronously, because it’s rendered immediately. Let’s change this by giving it a bit of a
realistic delay, because every network request to an API would come with a delay. First, remove the
shorthand version for the promise:

Fundamentals of React 87

src/App.js

const getAsyncStories = () =>

new Promise(resolve =>

resolve({ data: { stories: initialStories } })

);

And second, when resolving the promise, delay it for a few seconds:

src/App.js

const getAsyncStories = () =>

new Promise(resolve =>
setTimeout(
() => resolve({ data: { stories: initialStories } }),
2000
)
)i

Once you start the application again, you should see a delayed rendering of the list. The initial state
for the stories is an empty array. After the App component rendered, the side-effect hook runs once
to fetch the asynchronous data. After resolving the promise and setting the data in the component’s
state, the component renders again and displays the list of asynchronously loaded stories.

Exercises:

« Confirm your source code for the last section”’.
— Confirm the changes from the last section'*®.
« Read more about JavaScript Promises'”.

197https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React- Asynchronous-Data

19%https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Inline- Handler-in-JSX...hs/React- Asynchronous-Data?expand=
1

1%https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Asynchronous-Data
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Inline-Handler-in-JSX...hs/React-Asynchronous-Data?expand=1
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Asynchronous-Data
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Inline-Handler-in-JSX...hs/React-Asynchronous-Data?expand=1
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Inline-Handler-in-JSX...hs/React-Asynchronous-Data?expand=1
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Fundamentals of React 88

React Conditional Rendering

Handling asynchronous data in React leaves us with conditional states: with data and without data.
This case is already covered, though, because our initial state is an empty list rather than null. If
it was null, we’d have to handle this issue in our JSX. However, since it’s [], we filter() over an
empty array for the search feature, which leaves us with an empty array. This leads to rendering
nothing in the List component’s map() function.

In a real world application, there are more than two conditional states for asynchronous data, though.
Consider showing users a loading indicator when data loading is delayed:

src/App.js

const App = () => {
const [stories, setStories] = React.useState([]);
const [isLoading, setlsLoading] = React.useState(false);

React.useEffect(() => {
setIsLoading(true);

getAsyncStories().then(result => {

setStories(result.data.stories);
setIslLoading(false);

¥

With JavaScript’s ternary operator''°, we can inline this conditional state as a conditional rendering
in JSX:

%https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator

Fundamentals of React 89

src/App.js

const App = () => {

return (
<div>

<hr />

{isLoading ? (
<p>Loading ...</p>
) = (
<List
list={searchedStories}
onRemoveltem={handleRemoveStory}
/>
)}
</div>
),
b

Asynchronous data comes with error handling, too. It doesn’t happen in our simulated environment,
but there could be errors if we start fetching data from another third-party API. Introduce another
state for error handling and solve it in the promise’s catch() block when resolving the promise:

src/App.js

const App = () => {

const [stories, setStories] = React.useState([]);
const [islLoading, setlslLoading] = React.useState(false);
const [isError, setlsError] = React.useState(false);

React.useEffect(() => {
setIsLoading(true);

getAsyncStories()
.then(result => {
setStories(result.data.stories);
setIslLoading(false);

1))

Fundamentals of React 90

.catch(() => setIsError(true));

oD

};

Next, give the user feedback in case something went wrong with another conditional rendering.
This time, it’s either rendering something or nothing. So instead of having a ternary operator where
one side returns null, use the logical && operator as shorthand:

src/App.js

const App = () => {

return (

<div>

<hr />
{isError && <p>Something went wrong ...</p>}

{isLoading ? (
<p>Loading ...</p>
) o (

)}
</div>
);
};

In JavaScript, atrue && 'Hello World' always evaluates to ‘Hello World’. A false && 'Hello World'
always evaluates to false. In React, we can use this behaviour to our advantage. If the condition is
true, the expression after the logical && operator will be the output. If the condition is false, React
ignores it and skips the expression.

Conditional rendering is not just for asynchronous data though. The simplest example of conditional
rendering is a boolean flag state that’s toggled with a button. If the boolean flag is true, render
something, if it is false, don’t render anything.

This feature can be quite powerful, because it gives you the ability to conditionally render JSX.
It’s yet another tool in React to make your UI more dynamic. And as we’ve discovered, it’s often
necessary for more complex control flows like asynchronous data.

Fundamentals of React

Exercises:

« Confirm your source code for the last section'.

— Confirm the changes from the last section'**.

« Read more about conditional rendering in React'".

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Conditional-Rendering

"?https://github.com/the-road- to-learn-react/hacker- stories/compare/hs/React- Asynchronous-Data...hs/React-Conditional-
Rendering?expand=1

https://www.robinwieruch.de/conditional-rendering-react/

91

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Conditional-Rendering
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Asynchronous-Data...hs/React-Conditional-Rendering?expand=1
https://www.robinwieruch.de/conditional-rendering-react/
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Conditional-Rendering
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Asynchronous-Data...hs/React-Conditional-Rendering?expand=1
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Asynchronous-Data...hs/React-Conditional-Rendering?expand=1
https://www.robinwieruch.de/conditional-rendering-react/

Fundamentals of React 92

React Advanced State

All state management in this application makes heavy use of React’s useState Hook. More sophisti-
cated state management gives you React’s useReducer Hook, though. Since the concept of reducers
in JavaScript splits the community in half, we won’t cover it extensively here, but the exercises at
the end of this section should give you plenty of practice.

We’ll move the stories state management from the useState hook to a new useReducer hook. First,
introduce a reducer function outside of your components. A reducer function always receives state
and action. Based on these two arguments, a reducer always returns a new state:

src/App.js
const storiesReducer = (state, action) => {
if (action.type === 'SET_STORIES') {
return action.payload;
} else {
throw new Error();
}

};

A reducer action is often associated with a type. If this type matches a condition in the reducer, do
something. If it isn’t covered by the reducer, throw an error to remind yourself the implementation
isn’t covered. The storiesReducer function covers one type, and then returns the payload of
the incoming action without using the current state to compute the new state. The new
state is simply the payload".

In the App component, exchange useState for useReducer for managing the stories. The new hook
receives a reducer function and an initial state as arguments and returns an array with two items.
The first item is the current state; the second item is the state updater function (also called dispatch
function):

src/App.js

const App = () => {

const [stories, dispatchStories] = React.useReducer(
storiesReducer,

[]
)

Fundamentals of React 93

The new dispatch function can be used instead of the setStories function, which was returned
from useState. Instead of setting state explicitly with the state updater function from useState, the
useReducer state updater function dispatches an action for the reducer. The action comes with a
type and an optional payload:

src/App.js

const App = () => {

React.useEffect(() => {
setIsLoading(true);

getAsyncStories()
.then(result => {
dispatchStories({
type: 'SET_STORIES',
payload: result.data.stories,

};
setlslLoading(false);
)
.catch(() => setlIsError(true));
o0

const handleRemoveStory = item => {
const newStories = stories.filter(
story => item.objectID !== story.objectID
);

dispatchStories({
type: 'SET_STORIES',
payload: newStories,
IDF
¥

};

The application appears the same in the browser, though a reducer and React’s useReducer hook are
managing the state for the stories now. Let’s bring the concept of a reducer to a minimal version by
handling more than one state transition.

Fundamentals of React 94

So far, the handleRemoveStory handler computes the new stories. It’s valid to move this logic into
the reducer function and manage the reducer with an action, which is another case for moving from
imperative to declarative programming. Instead of doing it ourselves by saying how it should be
done, we are telling the reducer what to do. Everything else is hidden in the reducer.

src/App.js

const App = () => {

const handleRemoveStory = item => {
dispatchStories({
type: 'REMOVE_STORY',
payload: item,
});
};

};

Now the reducer function has to cover this new case in a new conditional state transition. If the
condition for removing a story is met, the reducer has all the implementation details needed to
remove the story. The action gives all the necessary information, an item’s identifier’, to remove the
story from the current state and return a new list of filtered stories as state.

src/App.js
const storiesReducer = (state, action) => {
if (action.type === 'SET_STORIES') {
return action.payload;
} else if (action.type === 'REMOVE_STORY') {
return state.filter(
story => action.payload.objectID !== story.objectID
);
} else {
throw new Error();

}
1

All these if else statements will eventually clutter when adding more state transitions into one
reducer function. Refactoring it to a switch statement for all the state transitions makes it more
readable:

Fundamentals of React 95

src/App.js

const storiesReducer = (state, action) => {
switch (action.type) {
case 'SET_STORIES':
return action.payload;
case 'REMOVE_STORY':
return state.filter(
story => action.payload.objectID !== story.objectID
);
default:
throw new Error();
}
};

What we’ve covered is a minimal version of a reducer in JavaScript. It covers two state transitions,
shows how to compute current state and action into a new state, and uses some business logic
(removal of a story). Now we can set a list of stories as state for the asynchronously arriving data,
and remove a story from the list of stories, with just one state managing reducer and its associated
useReducer hook.

To fully grasp the concept of reducers in JavaScript and the usage of React’s useReducer Hook, visit
the linked resources in the exercises.

Exercises:

« Confirm your source code for the last section**.
— Confirm the changes from the last section'*”.

« Read more about reducers in JavaScript'*c.
« Read more about reducers and useReducer in React (07, 1'*%).

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React- Advanced- State

3https://github.com/the-road- to-learn-react/hacker- stories/compare/hs/React- Conditional-Rendering...hs/React- Advanced-
State?expand=1

https://www.robinwieruch.de/javascript-reducer

"https://www.robinwieruch.de/react-usereducer-hook

"8https://reactjs.org/docs/hooks-reference.html#usereducer

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Advanced-State
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Conditional-Rendering...hs/React-Advanced-State?expand=1
https://www.robinwieruch.de/javascript-reducer
https://www.robinwieruch.de/react-usereducer-hook
https://reactjs.org/docs/hooks-reference.html#usereducer
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Advanced-State
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Conditional-Rendering...hs/React-Advanced-State?expand=1
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Conditional-Rendering...hs/React-Advanced-State?expand=1
https://www.robinwieruch.de/javascript-reducer
https://www.robinwieruch.de/react-usereducer-hook
https://reactjs.org/docs/hooks-reference.html#usereducer

Fundamentals of React 96

React Impossible States

Perhaps you’ve noticed a disconnect between the single states in the App component, which seem to
belong together because of the useState hooks. Technically, all the states related to the asynchronous
data belong together, which doesn’t only include the stories as actual data, but also their loading
and error states.

There is nothing wrong with multiple useState hooks in one React component. Be wary once you see
multiple state updater functions in a row, however. These conditional states can lead to impossible
states, and undesired behavior in the Ul Try changing your pseudo data fetching function to the
following to simulate the error handling:

src/App.js

const getAsyncStories = () =>
new Promise((resolve, reject) => setTimeout(reject, 2000));

The impossible state happens when an error occurs for the asynchronous data. The state for the error
is set, but the state for the loading indicator isn’t revoked. In the UI, this would lead to an infinite
loading indicator and an error message, though it may be better to show the error message only and
hide the loading indicator. Impossible states are not easy to spot, which makes them infamous for
causing bugs in the UL

Fortunately, we can improve our chances by moving states that belong together from multiple
useState and useReducer hooks into a single useReducer hook. Take the following useState hooks:

src/App.js

const App = () => {

const [stories, dispatchStories] = React.useReducer(
storiesReducer,
[]
)i
const [isLoading, setlslLoading] = React.useState(false);
const [isError, setlsError] = React.useState(false);

};

Merge them into one useReducer hook for a unified state management and a more complex state
object:

97

Fundamentals of React

src/App.js

const App = () => {

const [stories, dispatchStories] = React.useReducer(
storiesReducer,
{ data: [], isLoading: false, isError: false }

);

};

Everything related to asynchronous data fetching must use the new dispatch function for state
transitions:

src/App.js

const App = () => {

const [stories, dispatchStories] = React.useReducer(
storiesReducer,
{ data: [], islLoading: false, isError: false }

)

React.useEffect(() => {
dispatchStories({ type: 'STORIES_FETCH_INIT' });

getAsyncStories()
.then(result => {
dispatchStories({
type: 'STORIES_FETCH_SUCCESS',
payload: result.data.stories,

1)
1)
.catch(() =>
dispatchStories({ type: 'STORIES_FETCH_FAILURE' })
);
o0

};

Fundamentals of React 98

Since we introduced new types for state transitions, we must handle them in the storiesReducer
reducer function:

src/App.js

const storiesReducer = (state, action) => {
switch (action.type) {
case 'STORIES_FETCH_INIT':
return {
...state,
isLoading: true,

isError: false,

};
case 'STORIES_FETCH_SUCCESS':
return {
...state,
isLoading: false,
isError: false,
data: action.payload,
b
case 'STORIES_FETCH_FAILURE':
return {
...state,
islLoading: false,
isError: true,
b
case 'REMOVE_STORY':
return {
...state,
data: state.data.filter(
story => action.payload.objectID !== story.objectID
),
};
default:

throw new Error();

}
¥

For every state transition, we return a new state object which contains all the key/value pairs from
the current state object (via JavaScript’s spread operator) and the new overwriting properties. For
example, STORIES_FETCH_FAILURE resets the isLoading, but sets the isError boolean flags yet keeps
all the other state intact (e.g. stories). That’s how we get around the bug introduced earlier, since
an error should remove the loading state.

Fundamentals of React 99

Observe how the REMOVE_STORY action changed as well. It operates on the state.data , not longer
just the plain state. The state is a complex object with data, loading and error states rather than
just a list of stories. This has to be solved in the remaining code too:

src/App.js

const App = () => {

const [stories, dispatchStories] = React.useReducer (
storiesReducer,
{ data: [], isLoading: false, isError: false }

);

const searchedStories = stories.data.filter(story =>
story.title.tolLowerCase().includes(searchTerm.tolLowerCase())

);

return (

<div>

{stories.isError && <p>Something went wrong ...</p>}

{stories.islLoading ? (
<p>Loading ...</p>
) o (
<List
list={searchedStories}
onRemoveltem={handleRemoveStory}
/>
)}
</div>
);
b

Try to use the erroneous data fetching function again and check whether everything works as
expected now:

Fundamentals of React 100

src/App.js

const getAsyncStories = () =>
new Promise((resolve, reject) => setTimeout(reject, 2000));

We moved from unreliable state transitions with multiple useState hooks to predictable state
transitions with React’s useReducer Hook. The state object managed by the reducer encapsulates
everything related to the stories, including loading and error state, but also implementation details
like removing a story from the list of stories. We didn’t get fully rid of impossible states, because it’s
still possible to leave out a crucial boolean flag like before, but we moved one step closer towards
more predictable state management.

Exercises:

« Confirm your source code for the last section'*’.
— Confirm the changes from the last section'*.

« Read over the previously linked tutorials about reducers in JavaScript and React.
+ Read more about when to use useState or useReducer in React'*'.

https://codesandbox.io/s/github/the-road-to-learn-react/hacker- stories/tree/hs/React-Impossible-States
2%https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React- Advanced-State...hs/React-Impossible-States?expand=1
*1https://www.robinwieruch.de/react-usereducer-vs-usestate

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Impossible-States
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Advanced-State...hs/React-Impossible-States?expand=1
https://www.robinwieruch.de/react-usereducer-vs-usestate
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Impossible-States
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Advanced-State...hs/React-Impossible-States?expand=1
https://www.robinwieruch.de/react-usereducer-vs-usestate

Fundamentals of React 101

Data Fetching with React

We are currently fetching data, but it’s still pseudo data coming from a promise we set up ourselves.
The lessons up to now about asynchronous React and advanced state management were preparing
us to fetch data from a real third-party API. We will use the reliable and informative Hacker News
API'* to request popular tech stories.

Instead of using the initialStories array and getAsyncStories function (you can remove these),
we will fetch the data directly from the API:
src/App.js

// A
const API_ENDPOINT = 'https://hn.algolia.com/api/vl/search?query=";

const App = () => {

React.useEffect(() => {
dispatchStories({ type: 'STORIES_FETCH_INIT' });

fetch(“${API_ENDPOINT}react") // B
.then(response => response. json()) // C
.then(result => {

dispatchStories({
type: 'STORIES_FETCH_SUCCESS',
payload: result.hits, // D

1)
1)
.catch(() =>
dispatchStories({ type: 'STORIES_FETCH_FAILURE' })
)i
o0

First, the API_ENDPOINT (A) is used to fetch popular tech stories for a certain query (a search topic). In
this case, we fetch stories about React (B). Second, the native browser’s fetch API'** is used to make
this request (B). For the fetch API, the response needs to be translated into JSON (C). Finally, the
returned result follows a different data structure (D), which we send as payload to our component’s
state.

2?https://hn.algolia.com/api
*https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

https://hn.algolia.com/api
https://hn.algolia.com/api
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://hn.algolia.com/api
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

Fundamentals of React 102

In the previous code example we used JavaScript’s Template Literals'** for a string interpolation.
When this feature wasn’t available in JavaScript, we’d have used the + operator on strings instead:

Code Playground

const greeting = 'Hello';

// + operator

const welcome = greeting + ' React';
console. log(welcome);

// Hello React

// template literals

const anotherWelcome = “${greeting} React";

console. log(anotherWelcome);
// Hello React

Check your browser to see stories related to the initial query fetched from the Hacker News APIL
Since we used the same data structure for a story for the sample stories, we didn’t need to change
anything, and it’s still possible to filter the stories after fetching them with the search feature. We
will change this behavior in one of the next sections. For the App component, there wasn’t much
data fetching to implement here, though it’s all part of learning how to manage asynchronous data
as state in React.

Exercises:

« Confirm your source code for the last section'*.
— Confirm the changes from the last section'*.
« Read through Hacker News'”” and its API'?*.
« Read more about the browser native fetch API'** for connecting to remote APIs.
« Read more about JavaScript’s Template Literals**°.

?*https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

*3https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Data-Fetching-with-React

26https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Impossible-States...hs/Data-Fetching-with-React?
expand=1

*"https://news.ycombinator.com/

?%https://hn.algolia.com/api

*https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

*%https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Data-Fetching-with-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Impossible-States...hs/Data-Fetching-with-React?expand=1
https://news.ycombinator.com/
https://hn.algolia.com/api
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Data-Fetching-with-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Impossible-States...hs/Data-Fetching-with-React?expand=1
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/React-Impossible-States...hs/Data-Fetching-with-React?expand=1
https://news.ycombinator.com/
https://hn.algolia.com/api
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

Fundamentals of React 103

Data Re-Fetching in React

So far, the App component fetches a list of stories once with a predefined query (react). After that,
users can search for stories on the client-side. Now we’ll move this feature from client-side to server-
side searching, using the actual searchTerm as a dynamic query for the API request.

First, remove searchedStories, because we will receive the stories searched from the API. Pass only
the regular stories to the List component:

src/App.js

const App = () => {

return (
<div>

{stories.islLoading ? (
<p>Loading ...</p>

) o (
<List list={stories.data} onRemoveltem={handleRemoveStory} />

)}

</div>
);
1

And second, instead of using a hardcoded search term like before, use the actual searchTerm from
the component’s state. If searchTerm is an empty string, do nothing:

src/App.js

const App = () => {

React.useEffect(() => {

if (searchTerm === '') return;

dispatchStories({ type: 'STORIES_FETCH_INIT' });

fetch(“${API_ENDPOINT}${searchTerm})
.then(response => response. json())
.then(result => {
dispatchStories({

Fundamentals of React 104

type: 'STORIES_FETCH_SUCCESS',
payload: result.hits,

1)
P
.catch(() =>
dispatchStories({ type: 'STORIES_FETCH_FAILURE' })
);
o0

The initial search respects the search term now, so we’ll implement data refetching. If the searchTerm
changes, run the side-effect for the data fetching again. If searchTerm is not present (e.g. null, empty
string, undefined), do nothing (as a more generalized condition):

src/App.js

const App = () => {

React.useEffect(() => {
if (!searchTerm) return;

dispatchStories({ type: 'STORIES_FETCH_INIT' });

fetch(“${API_ENDPOINT}${searchTerm} ")
.then(response => response. json())
.then(result => {
dispatchStories({
type: 'STORIES_FETCH_SUCCESS',
payload: result.hits,

1)
1}
.catch(() =>
dispatchStories({ type: 'STORIES_FETCH_FAILURE' })

);

}, [searchTerm]);

};

We changed the feature from a client-side to server-side search. Instead of filtering a predefined list
of stories on the client, the searchTerm is used to fetch a server-side filtered list. The server-side

Fundamentals of React 105

search happens for the initial data fetching, but also for data fetching if the searchTerm changes.
The feature is fully server-side now.

Re-fetching data each time someone types into the input field isn’t optimal, so we’ll correct that
soon. Because this implementation stresses the API, you might experience errors if you use requests
too often.

Exercises:

« Confirm your source code for the last section™".
— Confirm the changes from the last section'**.

Phttps://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Data-Re-Fetching-in-React
*?https://github.com/the-road- to-learn-react/hacker- stories/compare/hs/Data-Fetching-with-React...hs/Data-Re-Fetching-in-
React?expand=1

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Data-Re-Fetching-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Data-Fetching-with-React...hs/Data-Re-Fetching-in-React?expand=1
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Data-Re-Fetching-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Data-Fetching-with-React...hs/Data-Re-Fetching-in-React?expand=1
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Data-Fetching-with-React...hs/Data-Re-Fetching-in-React?expand=1

Fundamentals of React 106

Memoized Handler in React (Advanced)

The previous sections have taught you about handlers, callback handlers, and inline handlers. Now
we’ll introduce a memoized handler, which can be applied on top of handlers and callback handlers.
For the sake of learning, we will move all the data fetching logic into a standalone function outside
the side-effect (A); wrap it into a useCallback hook (B); and then invoke it in the useEffect hook

(©):

src/App.js

const App = () => {

// A
const handleFetchStories = React.useCallback(() => {
if (!searchTerm) return;

dispatchStories({ type: 'STORIES_FETCH_INIT' });

fetch(“${API_ENDPOINT}${searchTerm} ")
.then(response => response. json())
.then(result => {
dispatchStories({
type: 'STORIES_FETCH_SUCCESS',
payload: result.hits,
1)

1))
.cateh(() =>

dispatchStories({ type: 'STORIES_FETCH_FAILURE' })
)i
}, [searchTerm]); // E

React.useEffect(() => {

handleFetchStories(); // C
}, [handleFetchStories]); // D

};

The application behaves the same; only the implementation logic has been refactored. Instead of
using the data fetching logic anonymously in a side-effect, we made it available as a function for
the application.

Fundamentals of React 107

Let’s explore why React’s useCal 1back Hook is needed here. This hook creates a memoized function
every time its dependency array (E) changes. As a result, the useE ffect hook runs again (C) because
it depends on the new function (D):

Visualization

1. change: searchTerm
2. implicit change: handleFetchStories
3. run: side-effect

If we didn’t create a memoized function with React’s useCallback Hook, a new handleFetchStories
function would be created with each App component is rendered. The handleFetchStories function
would be created each time, and would be executed in the useE ffect hook to fetch data. The fetched
data is then stored as state in the component. Because the state of the component changed, the
component re-renders and creates a new handleFetchStories function. The side-effect would be
triggered to fetch data, and we’d be stuck in an endless loop:

Visualization

define: handleFetchStories
run: side-effect

update: state

re-render: component

re-define: handleFetchStories

O O b W N =~

run: side-effect

The useCallback hook changes the function only when the search term changes. That’s when we
want to trigger a re-fetch of the data, because the input field has new input and we want to see the
new data displayed in our list.

By moving the data fetching function outside the useE f fect hook, it becomes reusable for other parts
of the application. We won’t use it just yet, but it is a way to understand the useCallback hook. Now
the useE ffect hook runs implicitly when the searchTerm changes, because the handleFetchStories
is re-defined each time the searchTerm changes. Since the useEffect hook depends on the
handleFetchStories, the side-effect for data fetching runs again.

Exercises:

« Confirm your source code for the last section*’.
— Confirm the changes from the last section***.
« Read more about React’s useCallback Hook'*".

*https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Memoized- Handler-in-React

**https://github.com/the-road- to-learn-react/hacker- stories/compare/hs/Data- Re-Fetching-in-React...hs/Memoized-Handler- in-
React?expand=1

*3https://reactjs.org/docs/hooks- reference.html#usecallback

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Memoized-Handler-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Data-Re-Fetching-in-React...hs/Memoized-Handler-in-React?expand=1
https://reactjs.org/docs/hooks-reference.html#usecallback
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Memoized-Handler-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Data-Re-Fetching-in-React...hs/Memoized-Handler-in-React?expand=1
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Data-Re-Fetching-in-React...hs/Memoized-Handler-in-React?expand=1
https://reactjs.org/docs/hooks-reference.html#usecallback

Fundamentals of React 108

Explicit Data Fetching with React

Re-fetching all data each time someone types in the input field isn’t optimal. Since we’re using a
third-party API to fetch the data, its internals are out of our reach. Eventually, we will incur rate
limiting'*°, which returns an error instead of data.

To solve this problem, change the implementation details from implicit to explicit data (re-)fetching.
In other words, the application will refetch data only if someone clicks a confirmation button. First,
add a button element for the confirmation to the JSX:

src/App.js

const App = () => {

return (
<div>
<h1>My Hacker Stories</h1>

<InputWithlLabel
id="search"
value={searchTerm}
isFocused
onInputChange={handleSearchInput}

Search:
</InputWithLabel>

<button
type="button"
disabled={!searchTerm}
onClick={handleSearchSubmit}

Submit
</button>

</div>
);
};

Second, the handler, input, and button handler receive implementation logic to update the compo-
nent’s state. The input field handler still updates the searchTerm; the button handler sets the url

*%https://en.wikipedia.org/wiki/Rate_limiting

https://en.wikipedia.org/wiki/Rate_limiting
https://en.wikipedia.org/wiki/Rate_limiting
https://en.wikipedia.org/wiki/Rate_limiting

Fundamentals of React 109

derived from the current searchTerm and the static API URL as a new state:

src/App.js

const App = () => {
const [searchTerm, setSearchTerm] = useSemiPersistentState(
'search’',

'React’

);

const [url, setUrl] = React.useState(
“${API_ENDPOINT}${searchTerm}"

);

const handleSearchlnput = event => {
setSearchTerm(event.target.value);

};

const handleSearchSubmit = () => {
setUrl(“${API_ENDPOINT}${searchTerm}");
¥

};

Third, instead of running the data fetching side-effect on every searchTerm change — which would
happen each time the input field’s value changes — the url is used. The url is set explicitly by the
user when the search is confirmed via our new button:

src/App.js

const App = () => {

const handleFetchStories = React.useCallback(() => {
dispatchStories({ type: 'STORIES_FETCH_INIT' });

fetch(url)
.then(response => response. json())
.then(result => {
dispatchStories({
type: 'STORIES_FETCH_SUCCESS',
payload: result.hits,

Fundamentals of React 110

1)
P
.catch(() =>
dispatchStories({ type: 'STORIES_FETCH_FAILURE' })
);
}, [url]);

React.useEffect(() => {

handleFetchStories();
}, [handleFetchStories]);

b

Before the searchTerm was used for two cases: updating the input field’s state and activating the side-
effect for fetching data. Too many responsibilities one may would have said. Now it’s only used for
the former. A second state called url got introduced for triggering the side-effect for fetching data
which only happens when a user clicks the confirmation button.

Exercises:

« Confirm your source code for the last section*”’.
— Confirm the changes from the last section'*®.
« Why is useState instead of useSemiPersistentState used for the url state management?
« Why is there no check for an empty searchTerm in the handleFetchStories function anymore?

*"https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Explicit-Data- Fetching- with-React
*%https://github.com/the-road- to-learn-react/hacker- stories/compare/hs/Memoized- Handler-in-React...hs/Explicit- Data-Fetching- with-

React?expand=1

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Explicit-Data-Fetching-with-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Memoized-Handler-in-React...hs/Explicit-Data-Fetching-with-React?expand=1
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Explicit-Data-Fetching-with-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Memoized-Handler-in-React...hs/Explicit-Data-Fetching-with-React?expand=1
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Memoized-Handler-in-React...hs/Explicit-Data-Fetching-with-React?expand=1

Fundamentals of React 111

Third-Party Libraries in React

We previously introduced the native fetch API to complete requests to the Hacker News API, which
the browser provides. Not all browsers support this, however, especially the older ones. Also, once
you start testing your application in a headless browser environment'*, issues can arise with the
fetch API. There are a couple of ways to make fetch work in older browsers (polyfills**°) and in tests
(isomorphic fetch), but these concepts are a bit off-task for the purpose of this learning experience.

One alternative is to substitute the native fetch API with a stable library like axios'*!, which performs
asynchronous requests to remote APIs. In this section, we will discover how to substitute a library—a
native API of the browser in this case-with another library from the npm registry. First, install axios
on the command line:

Command Line

npm install axios

Second, import axios in your App component’s file:

src/App.js

import React from 'react'’;

import axios from 'axios';

You can use axios instead of fetch, and its usage looks almost identical to the native fetch APL
It takes the URL as an argument and returns a promise. You don’t have to transform the returned
response to JSON anymore, since axios wraps the result into a data object in JavaScript. Just make
sure to adapt your code to the returned data structure:

src/App.js

const App = () => {

const handleFetchStories = React.useCallback(() => {
dispatchStories({ type: 'STORIES_FETCH_INIT' });

axios
.get(url)
.then(result => {

*https://en.wikipedia.org/wiki/Headless_browser
“https://en.wikipedia.org/wiki/Polyfill_(programming)
*“https://github.com/axios/axios

https://en.wikipedia.org/wiki/Headless_browser
https://en.wikipedia.org/wiki/Polyfill_(programming)
https://github.com/axios/axios
https://en.wikipedia.org/wiki/Headless_browser
https://en.wikipedia.org/wiki/Polyfill_(programming)
https://github.com/axios/axios

Fundamentals of React 112

dispatchStories({
type: 'STORIES_FETCH_SUCCESS',
payload: result.data.hits,

1)
b
.catch(() =>
dispatchStories({ type: 'STORIES_FETCH_FAILURE' })
),
b, lurl]);

¥

In this code, we call axios axios.get () for an explicit HTTP GET request**?, which is the same HTTP
method we used by default with the browser’s native fetch APIL. You can use other HTTP methods
such as HTTP POST with axios.post()as well.

We can see with these examples that axios is a powerful library for performing requests to remote
APIs. I recommend over the native fetch API when requests become complex, working with older
browser, or for testing.

Exercises:

« Confirm your source code for the last section'*’.
— Confirm the changes from the last section'**.

« Read more about popular libraries in React™*’.

Read more about why frameworks matter'*°.

« Read more about axios'*.

“?https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/GET

“https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Third-Party-Libraries-in-React

“*https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Explicit- Data-Fetching-with-React...hs/Third-Party-Libraries-
in-React?expand=1

*Shttps://www.robinwieruch.de/react-libraries

““https://www.robinwieruch.de/why-frameworks-matter

“"https://github.com/axios/axios

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/GET
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Third-Party-Libraries-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Explicit-Data-Fetching-with-React...hs/Third-Party-Libraries-in-React?expand=1
https://www.robinwieruch.de/react-libraries
https://www.robinwieruch.de/why-frameworks-matter
https://github.com/axios/axios
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/GET
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Third-Party-Libraries-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Explicit-Data-Fetching-with-React...hs/Third-Party-Libraries-in-React?expand=1
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Explicit-Data-Fetching-with-React...hs/Third-Party-Libraries-in-React?expand=1
https://www.robinwieruch.de/react-libraries
https://www.robinwieruch.de/why-frameworks-matter
https://github.com/axios/axios

Fundamentals of React 113

Async/Await in React (Advanced)

You’ll work with asynchronous data often in React, so it’s good to know alternative syntax for
handling promises: async/await. The following refactoring of the handleFetchStories function
without error handling shows how:

src/App.js

const App = () => {

const handleFetchStories = React.useCallback(async () => {
dispatchStories({ type: 'STORIES_FETCH_INIT' });

const result = await axios.get(url);

dispatchStories({
type: 'STORIES_FETCH_SUCCESS',
payload: result.data.hits,
IDF
b, lurll]);

};

To use async/await, our function requires the async keyword. Once you start using the await
keyword, everything reads like synchronous code. Actions after the await keyword are not executed
until promise resolves, meaning the code will wait.

src/App.js

const App = () => {

const handleFetchStories = React.useCallback(async () => {
dispatchStories({ type: 'STORIES_FETCH_INIT' });

try {
const result = await axios.get(url);

dispatchStories({
type: 'STORIES_FETCH_SUCCESS',
payload: result.data.hits,

});

Fundamentals of React 114

} cateh {
dispatchStories({ type: 'STORIES_FETCH_FAILURE' });
}
b, furl]);

1

To include error handling as before, the try and catch blocks are there to help. If something goes
wrong in the try block, the code will jump into the catch block to handle the error. then/catch
blocks and async/await with try/catch blocks are both valid for handling asynchronous data in
JavaScript and React.

Exercises:

« Confirm your source code for the last section'*®.
— Confirm the changes from the last section'*’.

« Read more about data fetching in React'.

+ Read more about async/await in JavaScript'*'.

“$https://codesandbox.io/s/github/the-road-to-learn-react/hacker- stories/tree/hs/ Async- Await-in-React

“https://github.com/the-road- to-learn-react/hacker- stories/compare/hs/Third- Party-Libraries- in-React...hs/ Async- Await-in-
React?expand=1

https://www.robinwieruch.de/react-hooks-fetch-data
1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Async-Await-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Third-Party-Libraries-in-React...hs/Async-Await-in-React?expand=1
https://www.robinwieruch.de/react-hooks-fetch-data
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Async-Await-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Third-Party-Libraries-in-React...hs/Async-Await-in-React?expand=1
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Third-Party-Libraries-in-React...hs/Async-Await-in-React?expand=1
https://www.robinwieruch.de/react-hooks-fetch-data
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

Fundamentals of React 115

Forms in React

Earlier we introduced a new button to fetch data explicitly with a button click. We’ll advance its use
with a proper HTML form, which encapsulates the button and input field for the search term with
its label.

Forms aren’t much different in React’s JSX than in HTML. We’ll implement it in two refactoring steps
with some HTML/JavaScript. First, wrap the input field and button into an HTML form element:

src/App.js

const App = () => {

return (
<div>
<h1>My Hacker Stories</h1>

<form onSubmit={handleSearchSubmit}>
<InputWithlLabel
id="search"
value={searchTerm}
isFocused
onInputChange={handleSearchInput}

Search:
</InputWithLabel>

<button type="submit" disabled={!searchTerm}>
Submit
</button>
</form>

<hr />

Instead of passing the handleSearchsubmit handler to the button, it’s used in the new form element.
The button receives a new type attribute called submit, which indicates that the form element
handles the click and not the button.

Fundamentals of React 116

Since the handler is used for the form event, it executes preventDefault in React’s synthetic event.
This prevents the HTML form’s native behavior, which leads to a browser reload.

src/App.js

const App = () => {

const handleSearchSubmit = event => {
setUrl1(" ${API_ENDPOINT}${searchTerm}");

event.preventDefault();

};

};

Now we can execute the search feature with the keyboard’s Enter key. In the next two steps, we will
only separate the component into its standalone SearchForm component:

src/App.js

const SearchForm = ({
searchTerm,
onSearchInput,
onSearchSubmit,
P o= (
<form onSubmit={onSearchSubmit}>
<InputWithLabel
id="search"
value={searchTerm}
isFocused
onInputChange={onSearchInput}

Search:
</InputWithLabel>

<button type="submit" disabled={!searchTerm}>
Submit
</button>
</form>

);

The new component is used by the App component. The App component still manages the state for

Fundamentals of React 117

the form, because the state is used in the App component to fetch data passed as props (stories.data)
to the List component:

src/App.js

const App = () => {

return (
<div>
<h1>My Hacker Stories</h1>

<SearchForm
searchTerm={searchTerm}
onSearchInput={handleSearchInput}
onSearchSubmit={handleSearchSubmit}
/>

<hr />

{stories.isError & <p>Something went wrong ...</p>}

{stories.isLoading ? (
<p>Loading ...</p>

) (
<List list={stories.data} onRemoveltem={handleRemoveStory} />

)}

</div>
)i
};

Forms aren’t much different in React than HTML. When we have input fields and a button to submit
data from them, we can give our HTML more structure by wrapping it into a form element with a
onsubmit handler. The button that executes the submission needs only the “submit” type.

Exercises:

. Conflrm fyour source code for the last section®
irm the changes from the last sectlon
. Try the code without preventDefault.

Read more about preventDefault for Events in Reac
« Read more about React Component Composition**

t154

Zhttps://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Forms-in-React
33https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Async- Await-in-React...hs/Forms-in-React?expand=1
*https://www.robinwieruch.de/react-preventdefault

*https://www.robinwieruch.de/react-component-composition

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Forms-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Async-Await-in-React...hs/Forms-in-React?expand=1
https://www.robinwieruch.de/react-preventdefault
https://www.robinwieruch.de/react-component-composition
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Forms-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Async-Await-in-React...hs/Forms-in-React?expand=1
https://www.robinwieruch.de/react-preventdefault
https://www.robinwieruch.de/react-component-composition

React’s Legacy

React has changed a lot since 2013. The iterations of its library, how React applications are written,
and especially its components have all changed drastically. However, many React applications were
built over the last few years, so not everything was created with the current status quo in mind. This
section of the book covers React’s legacy.

[won’t cover all that’s considered legacy in React, because some features have been revamped more
than once. You may see the previous iteration of the feature in older React applications, but will
probably be different than the current.

Throughout this section we will compare a modern React application'*® to its legacy version'*’. We’ll
discover that most differences between modern and legacy React are due to class components versus
function components.

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/react-modern-final
P"https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/react-legacy

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/react-modern-final
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/react-legacy
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/react-modern-final
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/react-legacy

React’s Legacy 119

React Class Components

React components have undergone many changes, from createClass components over class
components, to function components. Going through a React application today, it’s likely that
we’ll see class components next to the modern function components.

Code Playground

class InputWithLabel extends React.Component {
render() {
const {

id

value,

7

type = 'text',
onInputChange,
children,

} = this.props;

return (
<>
<label htmlFor={id}>{children}</label>

<input
id={id}
type={type}
value={value}
onChange={onInputChange}
/>
</>
)i

A typical class component is a JavaScript class with a mandatory render method that returns the
JSX. The class extends from a React . Component to inherit (class inheritance'*®) all React’s component
features (e.g. state management for state, lifecycle methods for side-effects). React props are accessed
via the class instance (this).

For a while class components were the popular choice for writing React applications. Eventually,
function components were added, and both co-existed with their distinct purposes side by side:

%https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)

https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)

React’s Legacy 120

Code Playground
const InputWithLabel = ({
id,

value,

type = 'text',
onInputChange,
children,
1) =
<
<label htmlFor={id}>{children}</label>

<input
id={id}
type={type}
value={value}
onChange={onInputChange}
/>
</>
);

If no side-effects and no state were used in legacy apps, we’d use a function component instead of
a class component. Before 2018-before React Hooks were introduced-React’s function components
couldn’t handle side-effects (useE ffect hooks) or state (useState/useReducer hooks). As a result,
these components were known as functional stateless components, there only to input props and
output JSX. To use state or side-effects, it was necessary to refactor from a function component to
a class component. When neither state nor side-effects were used, we used class components or the
more lightweight function component.

With the addition of React Hooks, function components worked the same as class components, with
state and side-effects. And since there was no longer any practical difference between them, the
community chose function components since they are more lightweight.

Exercises:

« Read more about JavaScript Classes™”’.

« Read more about how to refactor from a class component to a function componen

« Learn more about a different class component syntax'®® which wasn’t popular but more
effective.

+ Read more about class components in depth'®.

« Read more about other legacy and modern component types in React®’.

t160

*°https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
**https://www.robinwieruch.de/react-hooks-migration
*Thttps://github.com/the-road-to-learn-react/react-alternative- class-component-syntax
*%https://reactjs.org/docs/react-component.html
%*https://www.robinwieruch.de/react-component-types

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://www.robinwieruch.de/react-hooks-migration
https://github.com/the-road-to-learn-react/react-alternative-class-component-syntax
https://reactjs.org/docs/react-component.html
https://www.robinwieruch.de/react-component-types
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://www.robinwieruch.de/react-hooks-migration
https://github.com/the-road-to-learn-react/react-alternative-class-component-syntax
https://reactjs.org/docs/react-component.html
https://www.robinwieruch.de/react-component-types

React’s Legacy 121

React Class Components: State

Before React Hooks, class components were superior to function components because they could be
stateful. With a class constructor, we can set an initial state for the component. Also, the component’s
instance (this) gives access to the current state (this.state) and the component’s state updater
method (this.setState):

Code Playground

class App extends React.Component {
constructor (props) {
super (props);

this.state = {
searchTerm: 'React’,

};

render() {
const { searchTerm } = this.state;

return (
<div>
<h1>My Hacker Stories</h1>

<SearchForm
searchTerm={searchTerm}
onSearchInput={() => this.setState({
searchTerm: event.target.value
bl
/>
</div>

);

If the state has more than one property in its state object, the setState method performs only a
shallow update. Only the properties passed to setState are overwritten, and all other properties in
the state object stay intact. Since state management is important for frontend applications, there was
no way around class components without hooks for function components.

In a React class component, there are two dedicated APIs (this.state and this.setState) to
manage a component’s state. In a function component, React’s useState and useReducer hooks

React’s Legacy 122

handle this. Related items are packed into one state hook, while a class component must use a
general state APIL. This was one of the major reasons to introduce React Hooks, and move away
from class components.

Exercises:

« Write a stateful class component (e.g. Input).

React’s Legacy 123

Imperative React

In a React function component, React’s useRef Hook is used mostly for imperative programming.
Throughout React’s history, the ref and its usage had a few versions:

« String Refs (deprecated)

« Callback Refs

« createRef Refs (exclusive for Class Components)

« useRef Hook Refs (exclusive for Function Components)

Recently, the React team introduced React’s createRef as the latest equivalent to a function
component’s useRef hook:

Code Playground

class InputWithLabel extends React.Component {
constructor (props) {
super (props);

this.inputRef = React.createRef();

componentDidMount () {
if (this.props.isFocused) {
this.inputRef.current. focus();

render() {

return (
<>

<input
ref={this.inputRef}
id={id}
type={type}
value={value}
onChange={onInputChange}

/>

</>

React’s Legacy 124

With the helper function, the ref is created in the class’ constructor, applied in the JSX for the ref
attributed, and here used in a lifecycle method. The ref can also be used elsewhere, like focusing the
input field on a button click.

Where createRef is used in React’s class components, React’s useRef Hook is used in React function
components. As React shifts towards function components, today its common practice to use the
useRef hook exclusively to manage refs and apply imperative programming principles.

Exercises:

« Read more about the different ref techniques in React'**.

**https://reactjs.org/docs/refs-and-the-dom.html

https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html

Styling in React

There are many ways to style a React application, and there are lengthy debates about the best
styling strategy and styling approach. We’ll go over a few of these approaches without giving
them too much weight. There will be some pro and con arguments, but it’s mostly a matter of what
fits best for developers and teams.

We will begin React styling with common CSS in React, but then explore two alternatives for more
advanced CSS-in-CSS (CSS Modules) and CSS-in-JS (Styled Components) strategies. CSS Modules
and Styled Components are only two approaches out of many in both groups of strategies. We’ll also
cover how to include scalable vector graphics (SVGs), such as a logo or icons, in our React application.

If you don’t want to build common UI components (e.g. button, dialog, dropdown) from scratch,
you can always pick a popular Ul library suited for React'®’, which provides these components by
default. However, it is better for learning React if you try building these components before using a
pre-built solution. As a result, we won’t use any of the Ul component libraries.

The following styling approaches and SVGs are pre-configured in create-react-app. If you're in
control of the build tools (e.g. Webpack), they might need to be configured to import CSS or SVG
files. Since we are using create-react-app, we can use these files as assets right away:.

%https://www.robinwieruch.de/react-libraries

https://www.robinwieruch.de/react-libraries
https://www.robinwieruch.de/react-libraries

Styling in React 126

CSS in React

Common CSS in React is similar to the standard CSS you may have already learned. Each web
application gives HTML elements a class (in React it’s className) attribute that is styled in a CSS
file later.

src/App.js

const App = () => {

return (
<div className="container">

<h1l className="headline-primary">My Hacker Stories</h1>

<SearchForm
searchTerm={searchTerm}
onSearchInput={handleSearchInput}
onSearchSubmit={handleSearchSubmit}
/>

{stories.isError && <p>Something went wrong ...</p>}

{stories.islLoading ? (
<p>Loading ...</p>

) o (
<List list={stories.data} onRemoveltem={handleRemoveStory} />

)}

</div>
)i
1

The <hr /> was removed because the CSS handles the border in the next steps. We’ll import the CSS
file, which is done with the help of the create-react-app configuration:

src/App.js

import React from 'react’';

import axios from 'axios';

import './App.css’';

This CSS file will define the two (and more) CSS classes we used in the App component. In your
src/App.css file, define them like the following:

Styling in React 127

src/App.css

.container {
height: 100vw;
padding: 20px;

background: #83a4d4; /* fallback for old browsers */
background: linear-gradient(to left, #b6fbff, #83a4d4);

color: #171212;

.headline-primary {
font-size: 48px;
font-weight: 300;
letter-spacing: 2px;

You should see the first stylings taking effect in your application when you start it again. Next, we
will head over to the Item component. Some of its elements receive the className attribute too,
however, we are also using a new styling technique here:

src/App.js

const Item = ({ item, onRemoveltem }) => (
<div className="item">

{item.title}

{item.author}
{item.num_comments}
{item.points}

<button
type="button"
onClick={() => onRemoveltem(item)}

className="button button_small"

Dismiss
</button>

</div>

)

Styling in React 128

As you can see, we can also use the native style attribute for HTML elements. In JSX, style can
be passed as an inline JavaScript object to these attributes. This way we can define dynamic style
properties in JavaScript files rather than mostly static CSS files. This approach is called inline style,
which is useful for quick prototyping and dynamic style definitions. Inline style should be used
sparingly, however, as a separate style definition keeps the JSX more concise.

In your src/App.css file, define the new CSS classes. Basic CSS features are used. Advanced CSS
features (e.g. nesting) from CSS extensions (e.g. Sass) are not included in this example, as they are
optional configurations'*.

src/App.css

Jitem {
display: flex;
align-items: center;

padding-bottom: 5px;

.item > span {
padding: © 5px;
white-space: nowrap;
overflow: hidden;
white-space: nowrap;
text-overflow: ellipsis;

.item > span > a {

color: inherit;

The button style from the previous component is still missing, so we’ll define a base button style
and two more specific specific button styles (small and large). One of the button specifications has
been used, the other will be used in the next steps.

1%%https://create-react-app.dev/docs/adding-a-sass-stylesheet/

https://create-react-app.dev/docs/adding-a-sass-stylesheet/
https://create-react-app.dev/docs/adding-a-sass-stylesheet/

Styling in React 129

src/App.css

.button {
background: transparent;
border: 1px solid #171212;
padding: 5px;

cursor: pointer;

transition: all 0.1s ease-in;

.button:hover ({

background: #171212;
color: #ffffff;

.button_small ({
padding: 5px;

.button_large {
padding: 10px;

Apart from styling approaches in React, naming conventions (CSS guidelines'®’) are a whole other
topic. The last CSS snippet followed BEM rules by defining modifications of a class with an
underscore (_). Choose whatever naming convention suits you and your team. Without further ado,
we will style the next React component:

src/App.js

const SearchForm = ({ ... }) => (
<form onSubmit={onSearchSubmit} className="search-form">
<InputWithLabel ... >
Search:
</InputWithLabel>

<button
type="submit"
disabled={!searchTerm}
className="button button_large"

Submit
"https://developer.mozilla.org/en-US/docs/MDN/Contribute/Guidelines/Code_guidelines/CSS

https://developer.mozilla.org/en-US/docs/MDN/Contribute/Guidelines/Code_guidelines/CSS
https://developer.mozilla.org/en-US/docs/MDN/Contribute/Guidelines/Code_guidelines/CSS

Styling in React 130

</button>
</form>

);

We can also pass the className attribute as a prop to React components. For example, we can use
this option to pass the SearchForm component a flexible style with a className prop from a range
of predefined classes from a CSS file. Lastly, style the InputWithLabel component:

src/App.js

const InputWithLabel = ({ ... }) => {

return (
<
<label htmlFor={id} className="label">
{children}
</label>

<input
ref={inputRef}
id={id}
type={type}
value={value}
onChange={onInputChange}
className="input"
/>
</>
),
};

In your src/App.css file, add the remaining classes:

src/App.css

.search-form {
padding: 10px O 20px O;
display: flex;
align-items: baseline;

.label {
border-top: 1px solid #171212;
border-left: 1px solid #171212;

Styling in React 131

padding-left: 5px;
font-size: 24px;

.input {
border: none;
border-bottom: 1px solid #171212;
background-color: transparent;

font-size: 24px;

For simplicity, we styled elements like label and input individually in the src/App.css file. However,
in a real application it may be better to define these elements once in the src/index.css file globally.
As React components are split into multiple files, sharing style becomes a necessity.

This is the basic CSS most of us have already learned, written with an inline style that is more
dynamic. Without CSS extensions like Sass (Syntactically Awesome Style Sheets) inline styles can
become burdensome, though, because features like CSS nesting are not available in native CSS.

Exercises:

« Confirm your source code for the last section*.
— Confirm the changes from the last section'®.

Read more about CSS stylesheets in create-react-app'”.

« Read more about Sass in create-react-app'’* for taking advantage of more advanced CSS
features like nesting.

« Try to passclassName prop from App to SearchForm component, either with the value button_-
small or button_large and use this as className for the button element.

*https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/CSS-in-React
1*https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/CSS-in-React?expand=1
"%https://create-react-app.dev/docs/adding-a-stylesheet

"https://create-react-app.dev/docs/adding-a-sass-stylesheet

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/CSS-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/CSS-in-React?expand=1
https://create-react-app.dev/docs/adding-a-stylesheet
https://create-react-app.dev/docs/adding-a-sass-stylesheet
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/CSS-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/CSS-in-React?expand=1
https://create-react-app.dev/docs/adding-a-stylesheet
https://create-react-app.dev/docs/adding-a-sass-stylesheet

Styling in React 132

CSS Modules in React

CSS Modules are an advanced CSS-in-CSS approach. The CSS file stays the same, where you could
apply CSS extensions like Sass, but its use in React components changes. To enable CSS modules in
create-react-app, rename the src/App.css file to src/App.module.css. This action is performed in the
command line from your project’s directory:

Command Line

mv src/App.css src/App.module.css

In the renamed src/App.module.css, start with the first CSS class definitions, as before:

src/App.module.css

.container {
height: 100vw;
padding: 20px;

background: #83a4d4; /* fallback for old browsers */
background: linear-gradient(to left, #b6fbff, #83a4d4);

color: #171212;

.headlinePrimary ({
font-size: 48px;
font-weight: 300;
letter-spacing: 2px;

Import the src/App.module.css file with a relative path again. This time, import it as a JavaScript
object where the name of the object (here styles) is up to you:

src/App.js

import React from 'react';

import axios from 'axios';

import styles from './App.module.css';

Instead of defining the className as a string mapped to a CSS file, access the CSS class directly from
the styles object, and assigns it with a JavaScript in JSX expression to your elements.

Styling in React 133

src/App.js

const App = () => {

return (
<div className={styles.container}>
<h1 className={styles.headlinePrimary}>My Hacker Stories</hi>

<SearchForm
searchTerm={searchTerm}
onSearchInput={handleSearchInput}
onSearchSubmit={handleSearchSubmit}
/>

{stories.isError & <p>Something went wrong ...</p>}

{stories.islLoading ? (
<p>Loading ...</p>

) o (
<List list={stories.data} onRemoveltem={handleRemoveStory} />

)}

</div>
);
};

There are various ways to add multiple CSS classes via the styles object to the element’s single
className attribute. Here, we use JavaScript template literals:

src/App.js

const Item = ({ item, onRemoveltem }) => (
<div className={styles.item}>
<span style={{ width: '40%' }}»
{item.title}

{item.author}
{item.num_comments}
{item.points}
<span style={{ width: '10%' }}»
<button
type="button"
onClick={() => onRemoveltem(item)}
className={"${styles.button} ${styles.buttonSmall}"}

Styling in React 134

Dismiss
</button>

</div>
);

We can also add inline styles as more dynamic styles in JSX again. It’s also possible to add a CSS
extension like Sass to enable advanced features like CSS nesting. We will stick to native CSS features

though:

src/App.module.css

Jitem {
display: flex;
align-items: center;
padding-bottom: 5px;

.item > span {
padding: © 5px;
white-space: nowrap;
overflow: hidden;
white-space: nowrap;
text-overflow: ellipsis;

.item > span > a {

color: inherit;

Then the button CSS classes in the src/App.module.css file:

src/App.module.css

.button {
background: transparent;
border: 1px solid #171212;
padding: 5px;
cursor: pointer;

transition: all 0.1s ease-in;

Styling in React 135

.button:hover ({
background: #171212;
color: #ffffff;

.buttonSmall {
padding: 5px;

.buttonLarge {
padding: 10px;

There is a shift toward pseudo BEM naming conventions here, in contrast to button_small and
button_large from the previous section. If the previous naming convention holds true, we can only
access the style with styles['button_small'] which makes it more verbose because of JavaScript’s
limitation with object underscores. The same shortcomings would apply for classes defined with a
dash (-). In contrast, now we can use styles.buttonSmall instead (see: ltem component):

src/App.js

const SearchForm = ({ ... }) => (
<form onSubmit={onSearchSubmit} className={styles.searchForm}>
<InputWithLabel ... >
Search:
</InputWithLabel>

<button
type="submit"
disabled={!searchTerm}
className={"${styles.button} ${styles.buttonLarge} "}

Submit
</button>
</form>

)

The SearchForm component receives the styles as well. It has to use string interpolation for using
two styles in one element via JavaScript’s template literals. One alternative way is the classnames'’*
library, which is installed via the command line as project dependency:

?https://github.com/JedWatson/classnames

https://github.com/JedWatson/classnames
https://github.com/JedWatson/classnames

Styling in React 136

src/App.js

import cs from 'classnames';

// somewhere in a className attribute

className={cs(styles.button, styles.buttonLarge)}

The library offers conditional stylings as well. Finally, continue with the InputWithLabel component:

src/App.js

const InputWithLabel = ({ ... }) => {

return (
<

<label htmlFor={id} className={styles.label}>
{children}

</label>

<input
ref={inputRef}
id={id}
type={type}
value={value}
onChange={onInputChange}
className={styles.input}

And finish up the remaining style in the src/App.module.css file:

Styling in React

src/App.module.css

137

.searchForm {
padding: 10px O 20px O;
display: flex;
align-items: baseline;

.label {
border-top: 1px solid #171212;
border-left: 1px solid #171212;
padding-left: 5px;
font-size: 24px;

.input {

border: none;

border-bottom: 1px solid #171212;

background-color: transparent;

font-size: 24px;

The same caution applies as the last section: some of these styles like input and 1abel might be more

efficient in a global src/index.css file without CSS modules.

Again, CSS Modules-like any other CSS-in-CSS approach—can use Sass for more advanced CSS
features like nesting. The advantage of CSS modules is that we receive an error in the JavaScript
each time a style isn’t defined. In the standard CSS approach, unmatched styles in the JavaScript

and CSS files might go unnoticed.

Exercises:

« Confirm your source code for the last section'””.
— Confirm the changes from the last section'’*.
« Read more about CSS Modules in create-react-app'”.

"https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/CSS-Modules-in-React
"*https://github.com/the-road- to-learn-react/hacker- stories/compare/hs/react-modern-final...hs/CSS-Modules- in-React?expand=1
">https://create-react-app.dev/docs/adding-a-css-modules-stylesheet

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/CSS-Modules-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/CSS-Modules-in-React?expand=1
https://create-react-app.dev/docs/adding-a-css-modules-stylesheet
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/CSS-Modules-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/CSS-Modules-in-React?expand=1
https://create-react-app.dev/docs/adding-a-css-modules-stylesheet

Styling in React 138

Styled Components in React

With the previous approaches from CSS-in-CSS, Styled Components is one of several approaches
for CSS-in-JS. I picked Styled Components because it’s the most popular. It comes as a JavaScript
dependency, so we must install it on the command line:

Command Line

npm install styled-components

Then import it in your src/App.js file:

src/App.js

import React from 'react’';
import axios from 'axios';

import styled from 'styled-components';

As the name suggests, CSS-in-JS happens in your JavaScript file. In your src/App.js file, define your
first styled components:

src/App.js

const StyledContainer = styled.div’
height: 100vw;
padding: 20px;

background: #83a4d4;
background: linear-gradient(to left, #b6fbff, #83a4d4);

color: #171212;

14

const StyledHeadlinePrimary = styled.h1”
font-size: 48px;
font-weight: 300;
letter-spacing: 2px;

When using Styled Components, you are using the JavaScript template literals the same way as
JavaScript functions. Everything between the backticks can be seen as an argument and the styled
object gives you access to all the necessary HTML elements (e.g. div, h1) as functions. Once a function
is called with the style, it returns a React component that can be used in your App component:

Styling in React

139

src/App.js
const App = () => {
return (
<StyledContainer>

<StyledHeadlinePrimary>My Hacker Stories</StyledHeadlinePrimary>

<SearchForm

searchTerm={searchTerm}

onSearchInput={handleSearchInput}
onSearchSubmit={handleSearchSubmit}

/>

{stories.isError & <p>Something went wrong ...</p>}

{stories.islLoading ? (

<p>Loading

) = (

L. <p>

<List list={stories.data} onRemoveltem={handleRemoveStory} />

)}

</StyledContainer>

);
};

This kind of React component follows the same rules as a common React component. Everything
passed between its element tags is passed automatically as React children prop. For the Item
component, we are not using inline styles this time, but defining a dedicated styled component
for it. StyledColumn receives its styles dynamically using a React prop:

src/App.js
const Item = ({ item, onRemoveltem }) => (
<StyledItem>
<StyledColumn width="40%">
{item.title}
</StyledColumn>
<StyledColumn width="30%">{item.author}</StyledColumn>

<StyledColumn
<StyledColumn
<StyledColumn

width="10%">{item.num_comments}</StyledColumn>
width="10%"> {item.points}</StyledColumn>
width="10%">

<StyledButtonSmall
type="button"

Styling in React 140

onClick={() => onRemoveltem(item)}

Dismiss
</StyledButtonSmall>
</StyledColumn>
</StyledItem>

)

The flexible width prop is accessible in the styled component’s template literal as an argument of
an inline function. The return value from the function is applied there as a string. Since we can use
immediate returns when omitting the arrow function’s body, it becomes a concise inline function:

src/App.js

const StyledItem = styled.div"
display: flex;
align-items: center;
padding-bottom: 5px;

const StyledColumn = styled.span’
padding: O 5px;
white-space: nowrap;
over flow: hidden;
white-space: nowrap;

text-overflow: ellipsis;

a {

color: inherit;

width: ${props => props.width};

Advanced features like CSS nesting are available in Styled Components by default. Nested elements
are accessible and the current element can be selected with the & CSS operator:

Styling in React 141

src/App.js

const StyledButton = styled.button”
background: transparent;
border: 1px solid #171212;
padding: 5px;

cursor: pointer;
transition: all 0.1s ease-in;
&:hover {

background: #171212;
color: #ffffff;

You can also create specialized versions of styled components by passing another component to the
library’s function. The specialized button receives all the base styles from the previously defined
StyledButton component:

src/App.js

const StyledButtonSmall = styled(StyledButton)®
padding: 5px;

const StyledButtonLarge = styled(StyledButton)®
padding: 10px;

const StyledSearchForm = styled. form"
padding: 10px O 20px ©;
display: flex;
align-items: baseline;

When we use a styled component like StyledSearchForm, its underlying elements (form, button) are
used in the real HTML output. We can continue using the native HTML attributes (onSubmit, type,
disabled) there:

142

Styling in React
src/App.js
const SearchForm = ({ ... }) => (
<StyledSearchForm onSubmit={onSearchSubmit}>
<InputWithLabel

id="search"
value={searchTerm}

isFocused
onInputChange={onSearchInput}

Search:
</InputWithLabel>

<StyledButtonLarge type="submit" disabled={!searchTerm}>
Submit
</StyledButtonLarge>
</StyledSearchForm>

)

Finally, the InputWithLabel decorated with its yet undefined styled components:

src/App.js

const InputWithLabel = ({ ... }) => {

return (
<

<StyledLabel htmlFor={id}>{children}</StyledLabel>

<StyledInput
ref={inputRef}
id={id}
type={type}
value={value}
onChange={onInputChange}

And its matching styled components are defined in the same file:

Styling in React 143

src/App.js

const StyledlLabel = styled.label"
border-top: 1px solid #171212;
border-left: 1px solid #171212;
padding-left: 5px;

font-size: 24px;

const StyledInput = styled.input”
border: none;
border-bottom: 1px solid #171212;

background-color: transparent;

font-size: 24px;

CSS-in-JS with styled components shifts the focus of defining styles to actual React components.
Styled Components are style defined as React components without the intermediate CSS file. If a
styled component isn’t used in a JavaScript, your IDE/editor will tell you. Styled Components are
bundled next to other JavaScript assets in JavaScript files for a production-ready application. There
are no extra CSS files, but only JavaScript when using the CSS-in-JS strategy. Both strategies, CSS-
in-JS and CSS-in-CSS, and their approaches (e.g. Styled Components and CSS Modules) are popular
among React developers. Use what suits you and your team best.

Exercises:

« Confirm your source code for the last section'’®.
— Confirm the changes from the last section'”.
« Read more about Styled Components in React'®.

— Usually there is no src/index.css file for global styles when using Styled Components. Find
out how to use global styles when using Styled Components.

"%https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Styled-Components-in-React
"https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/Styled-Components-in-React?expand=1
"®https://www.robinwieruch.de/react-styled-components

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Styled-Components-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/Styled-Components-in-React?expand=1
https://www.robinwieruch.de/react-styled-components
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Styled-Components-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/Styled-Components-in-React?expand=1
https://www.robinwieruch.de/react-styled-components

Styling in React 144

SVGs in React

To create a modern React application, we’ll likely need to use SVGs. Instead of giving every button
element text, for example, we might want to make it lightweight with an icon. In this section, we’ll
use a scalable vector graphic (SVG) as an icon in one of our React components.

This section builds on the “CSS in React” we covered earlier, to give the SVG icon a good look and
feel right away. It’s acceptable to use a different styling approach, or no styling at all, though the
SVG might look off without it.

This icon as SVG is taken from Flaticon’s Freepick'”*. Many of the SVGs on this website are free to
use, though they require you to mention the author. You can download the icon from here'** as SVG
and put it in your project as src/check.svg. Downloading the file is the recommended way, however,
for the sake of completion, this is the verbose SVG definition:

Code Playground

<?xml version="1.0" encoding="iso-8859-1"7>
<!-- Generator: Adobe Illustrator 18.0.09, SVG Export Plug-In . SVG Version: 6.00 Bui\
1d o) --»
<IDOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/D\
TD/svg11.dtd">
<svg version="1.1" id="Capa_1" xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http:\
//www.w3.0rg/1999/x1ink" x="@px" y="0px"
viewBox="0 @ 297 297" style="enable-background:new @ @ 297 297;" xml:space="prese\
rve">
<g>
<path d="M113.636,272.638c-2.689,0-5.267-1.067-7.168-2.97L2.967,166.123c-3.956-3\
.957-3.956-10.371-0.001-14.329154.673-54.703
c1.9-1.9,4.479-2.97,7.167-2.97¢c2.689,0,5.268,1.068,7.169,2.969141.661,41.676L2\
25.023,27.332¢1.9-1.901,4.48-2.97,7.168-2.9710,0
c2.688,0,5.268,1.068,7.167,2.97154.675,54.701c3.956,3.957,3.956,10.372,0,14.32\
8L120.803,269.668
C118.903,271.57,116.325,272.638,113.636,272.638z M24.463,158.958189.173,89.209\
1158.9-158.971-40.346-40.364L120.803,160.264
c-1.9,1.902-4.478,2.971-7.167,2.971c-2.688,0-5.267-1.068-7.168-2.971-41.66-41.\
674L24.463,158.958z" />
</g>
</svg>

Because we’re using create-react-app again , we can import SVGs (similar to CSS) as React
components right away. In src/App.js, use the following syntax for importing the SVG:

"®https://www.flaticon.com/authors/freepik
1*https://www.flaticon.com/free-icon/check_109748

https://www.flaticon.com/authors/freepik
https://www.flaticon.com/free-icon/check_109748
https://www.flaticon.com/authors/freepik
https://www.flaticon.com/free-icon/check_109748

Styling in React 145

src/App.js

import React from 'react’';

import axios from 'axios';

import './App.css';
import { ReactComponent as Check } from './check.svg';

We are importing an SVG, and this works for many different uses for SVGs (e.g. logo, background).
Instead of a button text, pass the SVG component as a height and width attribute:

src/App.js

const Item = ({ item, onRemoveltem }) => (
<div className="item">
<span style={{ width: '40%' }}»
{item.title}

{item.author}
{item.num_comments}
{item.points}
<span style={{ width: '10%' }}»
<button
type="button"
onClick={() => onRemoveltem(item)}
className="button button_small"

<Check height="18px" width="18px" />
</button>

</div>
);

Regardless of the styling approach you are using, you can give your SVG icon in the button a hover
effect too. In the basic CSS approach, it would look like the following in the src/App.css file:

src/App.css

.button:hover > svg > g {
fill: #ffffff;
stroke: #ffffff;

Styling in React 146

The create-react-app project makes using SVGs straightforward, with no extra configuration needed.
This is different if you create a React project from scratch with build tools like Webpack, because
you have to take care of it yourself. Anyway, SVGs make your application more approachable, so
use them whenever it suits you.

Exercises:

« Confirm your source code for the last section®".
— Confirm the changes from the last section'®.

« Read more about SVGs in create-react-app'®’.
Read more about SVG background patterns in React'®*.
« Add another SVG icon in your application.

®1https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/CSS-in-React-SVG
¥2https://github.com/the-road- to-learn-react/hacker- stories/compare/hs/CSS-in-React...hs/CSS-in-React-SVG?expand=1
®https://create-react-app.dev/docs/adding-images- fonts-and-files

¥*https://www.robinwieruch.de/react-svg-patterns

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/CSS-in-React-SVG
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/CSS-in-React...hs/CSS-in-React-SVG?expand=1
https://create-react-app.dev/docs/adding-images-fonts-and-files
https://www.robinwieruch.de/react-svg-patterns
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/CSS-in-React-SVG
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/CSS-in-React...hs/CSS-in-React-SVG?expand=1
https://create-react-app.dev/docs/adding-images-fonts-and-files
https://www.robinwieruch.de/react-svg-patterns

React Maintenance

Once a React application grows, maintenance becomes a priority. To prepare for this eventuality,
we’ll cover performance optimization, type safety, testing, and project structure. Each can strengthen
your app to take on more functionality without losing quality.

Performance optimization prevents applications from slowing down by assuring efficient use of
available resource. Typed programming languages like TypeScript detect bugs earlier in the feedback
loop. Testing gives us more explicit feedback than typed programming, and provides a way to
understand which actions can break the application. Lastly, project structure supports the organized
management of assets into folders and files, which is especially useful in scenarios where team
members work in different domains.

React Maintenance 148

Performance in React (Advanced)

This section is just here for the sake of learning about performance improvements in React. We
wouldn’t need optimizations in most React applications, as React is fast out of the box. While more
sophisticated tools exist for performance measurements in JavaScript and React, we will stick to a
simple console.log() and our browser’s developer tools for the logging output.

Don’t run on first render

Previously we covered React’s useEffect Hook, which is used for side-effects. It runs the first
time a component renders (mounting), and then every re-render (updating). By passing an empty
dependency array to it as a second argument, we can tell the hook to run on the first render only.
Out of the box, there is no way to tell the hook to run only on every re-render (update) and not on
the first render (mount). For example, examine this custom hook for state management with React’s
useState Hook and its semi persistent state with local storage using React’s useEffect Hook:

src/App.js

const useSemiPersistentState = (key, initialState) => {
const [value, setValue] = React.useState(
localStorage.getItem(key) || initialState

);

React.useEffect(() => {
console.log('A');
localStorage.setItem(key, value);

}, [value, key]);

return [value, setValue];

};

With a closer look at the developer’s tools, we can see the log for a first time render of the component
using this custom hook. It doesn’t make sense to run the side-effect for the initial rendering of
the component, because there is nothing to store in the local storage except the initial value.
It’s a redundant function invocation, and should only run for every update (re-rendering) of the
component.

As mentioned, there is no React Hook that runs on every re-render, and there is no way to tell the
useE ffect hook in a React idiomatic way to call its function only on every re-render. However, by
using React’s useRef Hook which keeps itsref. current property intact over re-renders, we can keep
a made up state (without re-rendering the component on state updates) of our component’s lifecycle:

React Maintenance 149

src/App.js

const useSemiPersistentState = (key, initialState) => {
const isMounted = React.useRef(false);

const [value, setValue] = React.useState(
localStorage.getItem(key) || initialState

);

React.useEffect(() => {
if (!'isMounted.current) {
isMounted.current = true;
} else {
console.log('A");
localStorage.setItem(key, value);

}
}, [value, key]);

return [value, setValue];

};

We are exploiting the ref and its mutable current property for imperative state management that
doesn’t trigger a re-render. Once the hook is called from its component for the first time (component
render), the ref’s current is initialized with a false boolean called isMounted. As a result, the side-
effect function in useEffect isn’t called; only the boolean flag for isMounted is toggled to true in
the side-effect. Whenever the hook runs again (component re-render), the boolean flag is evaluated
in the side-effect. Since it’s true, the side-effect function runs. Over the lifetime of the component,
the isMounted boolean will remaintrue. It was there to avoid calling the side-effect function for the
first time render that uses our custom hook.

The above was only about preventing the invocation of one simple function for a component
rendering for the first time. But imagine you have an expensive computation in your side-effect,
or the custom hook is used frequently in the application. It’s more practical to deploy this technique
to avoid unnecessary function invocations.

Note: This technique isn’t only used for performance optimizations, but for the sake of having a side-
effect run only when a component re-renders. I used it several times, and I suspect you’ll stumble on
one or the other use case for it eventually.

Don’'t re-render if not needed

Earlier, we explored React’s re-rendering mechanism. We’ll repeat this exercise for the App and List
components. For both components, add a logging statement.

React Maintenance 150

src/App.js

const App = () => {

console.log('B:App');

return (...);

};

const List = ({ list, onRemoveltem }) =>
console.log('B:List') ||
list.map(item => (
<Item
key={item.objectID}
item={item}
onRemoveltem={onRemoveltem}
/>
));

Because the List component has no function body, and developers are lazy folks who don’t want to
refactor the component for a simple logging statement, the List component uses the || operator
instead. This is a neat trick for adding a logging statement to a function component without a
function body. Since the console.log() on the left hand side of the operator always evaluates to
false, the right hand side of the operator gets always executed.

Code Playground

function getTheTruth() {
if (console.log('B:List")) {
return true;
} else {

return false;

console.log(getTheTruth());
// B:List
// false

Let’s focus on the actual logging in the browser’s developer tools. You should see a similar output.
First the App component renders, followed by its child components (e.g. List component).

React Maintenance 151

Visualization

B:App
B:List
B:App
B:App
B:List

Since a side-effect triggers data fetching after the first render, only the App component renders,
because the List component is replaced by a loading indicator in a conditional rendering. Once the
data arrives, both components render again.

Visualization

// initial render
B:App
B:List

// data fetching with loading
B:App

// re-rendering with data
B:App
B:List

So far, this behavior is acceptable, since everything renders on time. Now we’ll take this experiment
a step further, by typing into the SearchForm component’s input field. You should see the changes
with every character entered into the element:

Visualization

B:App
B:List

But the List component shouldn’t re-render. The search feature isn’t executed via its button, so the
list passed to the List component should remain the same. This is React’s default behavior, which
surprises many people.

If a parent component re-renders, its child components re-render as well. React does this by default,
because preventing a re-render of child components could lead to bugs, and the re-rendering
mechanism of React is still fast.

Sometimes we want to prevent re-rendering, however. For example, huge data sets displayed in a
table shouldn’t re-render if they are not affected by an update. It’s more efficient to perform an
equality check if something changed for the component. Therefore, we can use React’s memo API
to make this equality check for the props:

React Maintenance 152

src/App.js

const List = React.memo(

({ 1ist, onRemoveltem }) =>
console.log('B:List') ||
list.map(item => (

<Item
key={item.objectID}
item={item}
onRemoveItem={onRemoveltem}
/>
))
)i

However, the output stays the same when typing into the SearchForm’s input field:

Visualization

B:App
B:List

The list passed to the List component is the same, but the onRemoveItem callback handler isn’t. If
the App component re-renders, it always creates a new version of this callback handler. Earlier, we
used React’s useCallacbk Hook to prevent this behavior, by creating a function only on a re-render
(if one of its dependencies has changed).

src/App.js

const App = () => {

const handleRemoveStory = React.useCallback(item => {
dispatchStories({
type: 'REMOVE_STORY',
payload: item,
1)
o

console.log('B:App');

return (...);

React Maintenance 153

Since the callback handler gets the item passed as an argument in its function signature, it doesn’t
have any dependencies and is declared only once when the App component initially renders. None
of the props passed to the List component should change now. Try it with the combination of memo
and useCallback, to search via the SearchForm’s input field. The “B:List” output disappears, and
only the App component re-renders with its “B:App” output.

While all props passed to a component stay the same, the component renders again if its parent
component is forced to re-render. That’s React’s default behavior, which works most of the
time because the re-rendering mechanism is fast enough. However, if re-rendering decreases the
performance of a React application, memo helps prevent re-rendering.

Sometimes memo alone doesn’t help, though. Callback handlers are re-defined each time in the parent
component and passed as changed props to the component, which causes another re-render. In
that case, useCallback is used for making the callback handler only change when its dependencies
change.

Don’t rerun expensive computations

Sometimes we’ll have performance-intensive computations in our React components — between a
component’s function signature and return block — which run on every render. For this scenario, we
must create a use case in our current application first.

src/App.js

const getSumComments = stories => {
console.log('C');

return stories.data.reduce(
(result, value) => result + value.num_comments,
(]
)
};

const App = () => {

const sumComments = getSumComments(stories);
return (

<div>

<h1>My Hacker Stories with {sumComments} comments.</h1>

</div>

React Maintenance 154

);
b

If all arguments are passed to a function, it’s acceptable to have it outside the component. It prevents
creating the function on every render, so the useCallback hook becomes unnecessary. The function
still computes the value of summed comments on every render, which becomes a problem for more
expensive computations.

Each time text is typed in the input field of the SearchForm component, this computation runs again
with an output of “C”. This may be fine for a non-heavy computation like this one, but imagine this
computation would take more than 500ms. It would give the re-rendering a delay, because everything
in the component has to wait for this computation. We can tell React to only run a function if one of
its dependencies has changed. If no dependency changed, the result of the function stays the same.
React’s useMemo Hook helps us here:

src/App.js

const App = () => {

const sumComments = React.useMemo(() => getSumComments(stories), [
stories,

1);

return (...);

};

For every time someone types in the SearchForm, the computation shouldn’t run again. It only runs
if the dependency array, here stories, has changed. After all, this should only be used for cost
expensive computations which could lead to a delay of a (re-)rendering of a component.

Now, after we went through these scenarios for useMemo, useCallback, and memo, remember that
these shouldn’t necessarily be used by default. Apply these performance optimization only if you run
into a performance bottlenecks. Most of the time this shouldn’t happen, because React’s rendering
mechanism is pretty efficient by default. Sometimes the check for utilities like memo can be more
expensive than the re-rendering itself.

Exercises:

« Confirm your source code for the last section®’.
— Confirm the changes from the last section'®.

%3https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Performance-in-React
1#https://github.com/the-road- to-learn-react/hacker- stories/compare/hs/react-modern-final...hs/Performance-in-React?expand=1

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Performance-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/Performance-in-React?expand=1
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Performance-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/Performance-in-React?expand=1

React Maintenance 155

« Read more about React’s memo API'*.

+ Read more about React’s useCallback Hook'®.

« Download React Developer Tools as an extension for your browser. Open it for your application
in the browser via the browser’s developer tools and try its various features. For example, you
can use it to visualize React’s component tree and its updating components.

« Does the SearchForm re-render when removing an item from the List with the “Dismiss”
button? If it’s the case, apply performance optimization techniques to prevent re-rendering.

« Does each Item re-render when removing an item from the List with the “Dismiss” button? If
it’s the case, apply performance optimization techniques to prevent re-rendering.

« Remove all performance optimizations to keep the application simple. Our current application
doesn’t suffer from any performance bottlenecks. Try to avoid premature optimzations'®. Use
this section as reference, in case you run into performance problems.

*"https://reactjs.org/docs/react-api.html#reactmemo
88https://reactjs.org/docs/hooks-reference. html#usecallback
*https://en.wikipedia.org/wiki/Program_optimization

https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/hooks-reference.html#usecallback
https://en.wikipedia.org/wiki/Program_optimization
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/hooks-reference.html#usecallback
https://en.wikipedia.org/wiki/Program_optimization

React Maintenance 156

TypeScript in React

TypeScript for JavaScript and React have many benefits for developing robust applications. Instead
of getting type errors on runtime in the command line or browser, TypeScript integration presents
them during compile time inside the IDE. It shortens the feedback loop of JavaScript development.
While it improves the developer experience, the code also becomes more self-documenting and
readable, because every variable is defined with a type. Also moving code blocks or performing
a larger refactoring of a code base becomes much more efficient. Statically typed languages like
TypeScript are trending because of their benefits over dynamically typed languages like JavaScript.
It’s useful to learn more about Typescript'*® whenever possible.

To use TypeScript in React, install TypeScript and its dependencies into your application using the
command line. If you run into obstacles, follow the official TypeScript installation instructions for
create-react-app*’*:

Command Line

npm install --save typescript @types/node @types/react
npm install --save typescript @types/react-dom @types/jest

Next, rename all JavaScript files (.js) to TypeScript files (.¢sx).

Command Line

mv src/index.js src/index.tsx

mv src/App.Jjs src/App.tsx

Restart your development server in the command line. You may encounter compile errors in the
browser and IDE. If the latter doesn’t work, try installing a TypeScript plugin for your editor, or
extension for your IDE. After the initial TypeScript in React setup, we’ll add type safety for the
entire src/App.tsx file, starting with typing the arguments of the custom hook:

src/App.tsx

const useSemiPersistentState = (
key: string,
initialState: string
) = {
const [value, setValue] = React.useState(

localStorage.getItem(key) || initialState
);

React.useEffect(() => {

%https://www.typescriptlang.org/index.html
Thttps://create-react-app.dev/docs/adding-typescript/

https://www.typescriptlang.org/index.html
https://create-react-app.dev/docs/adding-typescript/
https://www.typescriptlang.org/index.html
https://create-react-app.dev/docs/adding-typescript/

React Maintenance 157

localStorage.setItem(key, value);
}, [value, key]);

return [value, setValue];

};

Adding types to the function’s arguments is more about Javascript than React. We are telling the
function to expect two arguments, which are JavaScript string primitives. Also, we can tell the
function to return an array ([]) with a string (state), and tell functions like state updater function
that take a value to return nothing (void):

src/App.tsx

const useSemiPersistentState = (
key: string,
initialState: string
): [string, (newValue: string) => void] => {
const [value, setValue] = React.useState(
localStorage.getItem(key) || initialState

);

React.useEffect(() => {
localStorage.setItem(key, value);
}, [value, key]);

return [value, setValue];

};

Related to React though, considering the previous type safety improvements for the custom hook, we
hadn’t to add types to the internal React hooks in the function’s body. That’s because type inference
works most of the time for React hooks out of the box. If the initial state of a React useState Hook
is a JavaScript string primitive, then the returned current state will be inferred as a string and the
returned state updater function will only take a string as argument and return nothing:

Code Playground

const [value, setValue] = React.useState('React');
// value is inferred to be a string

// setValue only takes a string as argument

If adding type safety becomes an aftermath for a React application and its components, there are
multiple ways on how to approach it. We will start with the props and state for the leaf components
of our application. For example, the Item component receives a story (here item) and a callback
handler function (here onRemoveItem). Starting out very verbose, we could add the inlined types for
both function arguments as we did before:

React Maintenance

src/App.tsx

158

const Item = ({

item,

onRemoveltem,
LR

item: {

objectID: string;
url: string;
title: string;
author: string;
num_comments: number;
points: number;

};

onRemoveltem: (item: {
objectID: string;
url: string;
title: string;
author: string;
num_comments: number;
points: number;

1) => void;

P = (

<diwv>
</div>

);

There are two problems: the code is verbose, and it has duplications. Let’s get rid of both problems

by defining a custom Story type outside the component, at the top of src/App.js:

src/App.tsx

type Story = {
objectID: string;
url: string;
title: string;
author: string;
num_comments: number;
points: number;

b

React Maintenance 159

const Item = ({

item,

onRemoveltem,
e {

item: Story;

onRemoveltem: (item: Story) => void;
P o= (

<div>
</div>

);

The item is of type Story; the onRemoveItem function takes an item of type Story as an argument
and returns nothing. Next, clean up the code by defining the props of Item component outside:

src/App.tsx

type ItemProps = {
item: Story;
onRemoveltem: (item: Story) => void;

};

const Item = ({ item, onRemoveltem }: ItemProps) => (
<div>
</div>

)

That’s the most popular way to type React component’s props with TypeScript. From here, we can
navigate up the component tree into the List component and apply the same type definitions for the

props:

src/App.tsx

type Story = {

};

type Stories = Array<Story>;

type ListProps = {
list: Stories;

React Maintenance 160

onRemoveltem: (item: Story) => void;

b

const List = ({ list, onRemoveltem }: ListProps) =>
list.map(item => (
<Item
key={item.objectID}
item={item}
onRemoveltem={onRemoveltem}
/>
));

The onRemoveItem function is typed twice for the ItemProps and ListProps. To be more accurate,
you could extract this to a standalone defined OnRemoveItem TypeScript type and reuse it for both
onRemoveItem prop type definitions. Note, however, that development becomes increasingly difficult
as components are split up into different files. That’s why we will keep the duplication here.

Since we already have the Story and Stories types, we can repurpose them for other components.
Add the Story type to the callback handler in the App component:

src/App.tsx

const App = () => {

const handleRemoveStory = (item: Story) => {
dispatchStories({
type: 'REMOVE_STORY',
payload: item,
1)
b

};

The reducer function manages the Story type as well, except without looking into the state and
action types. As the application’s developer, we know both objects and their shapes passed to this
reducer function:

React Maintenance 161

src/App.tsx

type StoriesState = {
data: Stories;
islLoading: boolean;

isError: boolean;

};

type StoriesAction = {
type: string;
payload: any;

b

const storiesReducer = (
state: StoriesState,

action: StoriesAction

) = {

};

The Action type with its string and any (TypeScript wildcard) type definitions are still too broad;
and we gain no real type safety through it, because actions are not distinguishable. We can do
better by specifying each action TypeScript type as an interface, and using a union type (here
StoriesAction) for the final type safety:

src/App.tsx

interface StoriesFetchInitAction {
type: 'STORIES_FETCH_INIT';

interface StoriesFetchSuccessAction {
type: 'STORIES_FETCH_SUCCESS';
payload: Stories;

interface StoriesFetchFailureAction {
type: 'STORIES_FETCH_FAILURE';

interface StoriesRemoveAction {
type: 'REMOVE_STORY';
payload: Story;

React Maintenance 162

type StoriesAction =
| StoriesFetchInitAction
| StoriesFetchSuccessAction
| StoriesFetchFailureAction
| StoriesRemoveAction;

const storiesReducer = (
state: StoriesState,
action: StoriesAction

) =

b

The stories state, the current state, and the action are types; the return new state (inferred) are type
safe now. For example, if you would dispatch an action to the reducer with an action type that’s not
defined, you would get an type error. Or if you would pass something else than a story to the action
which removes a story, you would get a type error as well.

There is still a type safety issue in the App component’s return statement for the returned List
component. It can be fixed by giving the List component a wrapping HTML div element or a React
fragment:

src/App.tsx

const List = ({ list, onRemoveltem }: ListProps) => (
<>
{list.map(item => (
<Item
key={item.objectID}
item={item}
onRemoveltem={onRemoveltem}
/>
N}
</>
);

According to a TypeScript with React issue on GitHub: “This is because due to limitations in the
compiler, function components cannot return anything other than a JSX expression or null, otherwise
it complains with a cryptic error message saying that the other type is not assignable to Element.”

Let’s shift our focus to the SearchForm component, which has callback handlers with events:

React Maintenance 163

src/App.tsx

type SearchFormProps = {
searchTerm: string;
onSearchInput: (event: React.ChangeEvent<HTMLInputElement>) => void;
onSearchSubmit: (event: React.FormEvent<HTMLFormElement>) => void;

b

const SearchForm = ({
searchTerm,
onSearchInput,
onSearchSubmit,

}: SearchFormProps) => (

)

Often using React.SyntheticEvent instead of React.ChangeEvent or React.FormEvent is usually
enough. Going up to the App component again, we apply the same type for the callback handler
there:

src/App.tsx

const App = () => {

const handleSearchInput = (

event: React.ChangeEvent<HTMLInputElement>
) = |

setSearchTerm(event.target.value);

};

const handleSearchSubmit = (
event: React.FormEvent<HTMLFormElement>

) = {
setUrl(${API_ENDPOINT}${searchTerm}");

event.preventDefault();

};

};

All that’s left is the InputWithLabel component. Before handling this component’s props, let’s take
a look at the ref from React’s useRef Hook. Unfortunately, the return value isn’t inferred:

React Maintenance 164

src/App.tsx

const InputWithLabel = ({ ... }) => {
const inputRef = React.useRef<HTMLInputElement>(nulll);

React.useEffect(() => {
if (isFocused && inputRef.current) {
inputRef.current. focus();

}

}, [isFocused]);

We made the returned ref type safe, and typed it as read-only because we only execute the focus
method on it (read). React takes over for us there, setting the DOM element to the current property.

Lastly, we will apply type safety checks for the InputWithLabel component’s props. Note the
children prop with its React specific type and the optional types signaled with a question mark:

src/App.tsx

type InputWithLabelProps = {
id: string;
value: string;
type?: string;
onInputChange: (event: React.ChangeEvent<HTMLInputElement>) => void;
isFocused?: boolean;
children: React.ReactNode;

};

const InputWithLabel = ({
id,
value,
type = 'text',
onInputChange,
isFocused,
children,

}: InputWithLabelProps) => {

1

Both the type and isFocused properties are optional. Using TypeScript, you can tell the compiler
these don’t need to be passed to the component as props. The children prop has a lot of
TypeScript type definitions that could be applicable to this concept, the most universal of which
is React .ReactNode from the React library.

React Maintenance 165

Our entire React application is finally typed by TypeScript, making it easy to spot type errors on
compile time. When adding TypeScript to your React application, start by adding type definitions
to your function’s arguments. These functions can be vanilla JavaScript functions, custom React
hooks, or React function components. Only when using React is it important to know specific types
for form elements, events, and JSX.

Exercises:

« Confirm your source code for the last section*?.
— Confirm the changes from the last section.

« Dig into the React + TypeScript Cheatsheet™*, because most common use cases we faced in
this section are covered there as well. There is no need to know everything from the top off
your head.

« While you continue with the learning experience in the following sections, remove or keep
your types with TypeScript. If you do the latter, add new types whenever you get a compile
error.

Zhttps://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/TypeScript-in-React
*https://github.com/the-road- to-learn-react/hacker- stories/compare/hs/react-modern-final...hs/TypeScript-in-React?expand=1
*https://github.com/typescript-cheatsheets/react-typescript-cheatsheet#reacttypescript-cheatsheets

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/TypeScript-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/TypeScript-in-React?expand=1
https://github.com/typescript-cheatsheets/react-typescript-cheatsheet#reacttypescript-cheatsheets
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/TypeScript-in-React
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/TypeScript-in-React?expand=1
https://github.com/typescript-cheatsheets/react-typescript-cheatsheet#reacttypescript-cheatsheets

React Maintenance 166

Unit Testing to Integration Testing

Testing source code is essential to programming, and should be seen as a mandatory exercise for
serious developers. We want to verify our source code’s quality and functionality before using it in
production. The testing pyramid**® will serve as our guide.

The testing pyramid includes end-to-end tests, integration tests, and unit tests. Unit tests are used
for small, isolated blocks of code, such as a single function or component. Integration tests help us
figure out if these units work well together. An end-to-end test simulates a real-life scenario, such as
the login flow in a web application. Unit tests are quick and easy to write and maintain; end-to-end
tests are the opposite.

We want to have many unit tests covering our functions and components. After that, we can use
several integration tests to make sure the most important functions and components work together
as expected. Finally, we may need a few end-to-end tests to simulate critical scenarios. In this
learning experience, we will cover unit and integration tests, along with a component specific
testing technique called snapshot tests. E2E tests will be part of the exercise.

Since there are many testing libraries™®, it can be challenging to choose one as a beginner to React.
We will use Jest'”” by Facebook as a testing framework to avoid making this tutorial too opinionated.
Most of the other testing libraries for React use Jest as foundation, so it’s a good introduction.

Unit to Integration Testing

Often the lines between unit and integration tests are unclear. Testing the List component with its
Item component could be considered an integration test, but it could also be a unit test for two tightly
coupled components. In this section, we start with unit testing and move towards integration testing.
Everything in between is a spectrum between both.

Let’s start with a pseudo test in your src/App.test.js file:

src/App.test.js

describe('something truthy', () => {
it('true to be true', () => {
expect(true).toBe(true);

1)

1)

Fortunately, create-react-app comes with Jest. You can run the test using the interactive create-react-
app test script on the command line. The output for all test cases will be presented in your command
line interface.

1%https://martinfowler.com/articles/practical-test-pyramid.html
%¢https://www.robinwieruch.de/react-testing-tutorial
7https://jestjs.io/

https://martinfowler.com/articles/practical-test-pyramid.html
https://www.robinwieruch.de/react-testing-tutorial
https://jestjs.io/
https://martinfowler.com/articles/practical-test-pyramid.html
https://www.robinwieruch.de/react-testing-tutorial
https://jestjs.io/

React Maintenance 167

Command Line

npm test

Jest matches all files with a test.js suffix in its filename when its command is run. Successful tests
are displayed in green; failed tests are displayed in red:

src/App.test.js

describe('something truthy', () => {
it('true to be true', () => {
expect(true).toBe(false);
1)
});

Tests in Jest consist of test suites (describe), which are comprised of test cases (it), which have
assertions (expect) that turn out green or red:

src/App.test.js

// test suite
describe('truthy and falsy', () => {
// test case
it('true to be true', () => {
// test assertion
expect(true).toBe(true);

});

// test case

it('false to be false', () => {
// test assertion
expect(false).toBe(false);

1)

1)

The “it”-block describes one test case. It comes with a test description that returns success or failure.
We can also wrap this block into a “describe”-block that defines our test suite with many “it”-blocks
for one specific component. Both blocks are used to organize your test cases. Note that the it function
is known in the JavaScript community as a single-test case function; in Jest, however, it is often used
as an alias test function.

React Maintenance 168

src/App.test.js

describe('something truthy', () => {
test('true to be true', () => {
expect(true).toBe(false);

1)

1)

To use React components in Jest, we require a utility library for rendering components in a test
environment:

Command Line

npm install react-test-renderer --save-dev

Also, before you can test your first components, you have to export them from your src/App.js file:

src/App.js

export default App;

export { SearchForm, InputWithLabel, List, Item };

Import them along with the previously installed utility library in the src/App.test.js file:

src/App.test.js

import React from 'react’;

import renderer from 'react-test-renderer’;

import App, { Item, List, SearchForm, InputWithLabel } from './App';

Write your first component test for the Item component. The test case renders the component with
a given item using the utility library:

React Maintenance 169

src/App.test.js

import React from 'react';
import renderer from 'react-test-renderer’;

import App, { Item, List, SearchForm, InputWithlLabel } from './App';

describe('Item', () => {

const item = {
title: 'React’,
url: 'https://reactjs.org/’',
author: 'Jordan Walke',
num_comments: 3,
points: 4,
objectID: O,

b

it('renders all properties', () => {
const component = renderer.create(<Item item={item} />);

expect(component.root. findByType('a').props.href).toEqual(
'https://reactjs.org/’
)i
1)
});

Information about a component’s or element’s attributes are available via the props property. In the
test assertion, we find the anchor tag (a) and its href attribute, and perform an equality check. If the
test turns out green, we can be sure the anchor tag’s href attribute is set to the correct url property
of the item. In the same test case, we can add more test assertions for the other item’s properties:

src/App.test.js

describe('Item', () => {

const item = {
title: 'React’',
url: 'https://reactjs.org/’',
author: 'Jordan Walke',
num_comments: 3,
points: 4,
objectID: @,

};

it('renders all properties', () => {

React Maintenance 170

const component = renderer.create(<Item item={item} />);

expect(component.root. findByType('a').props.href).toEqual(
"nttps://reactjs.org/’'
)i

expect(
component .root. findAl1ByType('span')[1].props.children
).toEqual('Jordan Walke');
1);
1);

Since there are multiple span elements, we find all of them and select the second one (index is 1 ,
because we count from 0) and compare its React children prop to the item’s author. This test isn’t
thorough enough, though. Once the order of span elements in the Item component changes, the test
fails. Avoid this flaw by changing the assertion to:

src/App.test.js

describe('Item', () => {
const item = { ... };

it('renders all properties', () => {

expect(
component .root. findAl1ByProps({ children: 'Jordan Walke' })
.length
).toEqual(1);
1)
1);

The test assertion isn’t as specific anymore. It just tests whether there is one element with the item’s
author property. You can apply this technique for all the other properties of the item yourself.
Otherwise, leave it for later as exercise.

We tested whether the Item component renders as text or HTML attributes (href), but we didn’t test
the callback handler. The following test case makes this assertion by simulating a click event via the
button element’s onClick attribute:

React Maintenance 171

src/App.test.js

describe('Item', () => {
const item = { ... };

it('renders all properties', () => {

});

it('calls onRemoveltem on button click', () => {
const handleRemoveltem = jest.fn();

const component = renderer.create(
<Item item={item} onRemoveItem={handleRemoveltem} />

)
component.root. findByType('button').props.onClick();

expect(handleRemoveltem).toHaveBeenCalledTimes(1);
expect(handleRemoveltem).toHaveBeenCalledWith(item);

expect(component.root. findA11ByType(Item).length).toEqual(1l);
};
1),

Jest lets us pass a test-specific function to the Item component as prop. These test specific functions
are called spy, stub, or mock; each is used for different test scenarios. The jest.fn() returns us
a mock for the actual function, which lets us capture when it’s called. As a result, we can use Jest
assertions like toHaveBeenCal ledTimes, which lets us assert a number of times the function has been
called; and toHaveBeenCalledWith, to verify arguments that are passed to it.

Item component’s unit test is complete, because we tested input (item) and output (onRemoveItem).
The two shouldn’t be confused with input (arguments) and output (JSX) of the function component,
which were also tested as. One last improvement makes the test suite for the Item component more
concise by giving it a shared setup function:

React Maintenance 172

src/App.test.js

describe('Item', () => {
const item ={ ... };

const handleRemoveltem = jest.fn();
let component;

beforeEach(() => {
component = renderer.create(
<Item item={item} onRemoveItem={handleRemoveltem} />
)
1)

it('renders all properties', () => {
expect(component.root. findByType('a').props.href).toEqual(
"https://reactjs.org/’'
);

});

it('calls onRemoveltem on button click', () => {
component .root . findByType('button').props.onClick();

});
});

A common setup (or teardown) function in tests removes duplicated code. Since the component
must be rendered for both test cases, and the props are the same for both renderings, we can share
this code in a common setup function. From there, we’ll move on to testing the List component:

src/App.test.js

describe('Item', () => {

});

describe('List', () => {
const list = [

{

React Maintenance 173

title: 'React',
url: 'https://reactjs.org/’',
author: 'Jordan Walke',
num_comments: 3,
points: 4,
objectID: 0,

},

title: 'Redux',
url: 'https://redux. js.org/',
author: 'Dan Abramov, Andrew Clark',
num_comments: 2,
points: 5,
objectID: 1,
},
1;

it('renders two items', () => {
const component = renderer.create(<List list={list} />);

expect(component.root. findA11ByType(Item).length).toEqual(2);

b
});

The test checks straightforward whether two Item components are rendered for the two items in
the list. You could continue testing the List component by checking whether each callback handler
(onRemovelItem) is called for each Item component, which would have a similar solution to the
previous Item component’s test. Is this test still a unit test or already an integration test?

Keeping this question in the room, we will move on to the SearchForm with InputWithLabel
component:

src/App.test.js

describe('SearchForm', () => {
const searchFormProps = {
searchTerm: 'React’,
onSearchInput: jest.fn(),
onSearchSubmit: jest.fn(),

}
let component;

beforeEach(() => {

React Maintenance 174

component = renderer.create(<SearchForm {...searchFormProps} />);

});

it('renders the input field with its value', () => {
const value = component.root.findByType(InputWithLabel).props

.value;

expect(value).toEqual('React');
};
});

In this test, we assert whether the InputWithLabel component receives the correct prop from the
SearchForm component. Essentially the test stops before the InputWithLabel component, because
it only tests the interface (props) of it. Arguably it’s still a unit test, because the underlying
implementation details of the InputWithLabel component could change without changing the
interface. You can change the test to make it work through to the InputWithLabel component’s
input field, because all child components and its elements are rendered too:

src/App.test.js

describe('SearchForm', () => {

it('renders the input field with its value', () => {

const value = component.root.findByType('input').props.value;

expect(value).toEqual('React');
1)
1)

This is our first integration test between the SearchForm and InputWithLabel components, which
aren’t as tightly coupled as the List and Item components. The InputWithLabel component can
be used in other components (highly reusable), whereas the Item component is essentially a non-
reusable part of the List component.

React Maintenance 175

src/App.test.js

describe('SearchForm', () => {
const searchFormProps = {
searchTerm: 'React’,
onSearchInput: jest.fn(),
onSearchSubmit: jest.fn(),

};

it('changes the input field',6 () => {
const pseudoEvent = { target: 'Redux' };

component .root. findByType('input').props.onChange(pseudoEvent);

expect(searchFormProps.onSearchlInput).toHaveBeenCalledTimes(1);
expect(searchFormProps.onSearchlInput).toHaveBeenCalledWith(
pseudoEvent
)i
1)

it('submits the form', () => {
const pseudoEvent = {};

component .root . findByType(' form').props.onSubmit(pseudoEvent);

expect(searchFormProps.onSearchSubmit).toHaveBeenCalledTimes(1);
expect(searchFormProps.onSearchSubmit).toHaveBeenCalledWith(
pseudoEvent
)
};
1)

Like the Item component, the last two tests asserted the component’s callback handler(s). All input
(non function props) and output (callback handler function) props are tested for the SearchForm
component’s interface and integration with the InputWithLabel component.

You can test edge cases like a disabled button as well. The update() method on the rendered test
component helps us provide new props to the component at stake:

React Maintenance 176

src/App.test.js

describe('SearchForm', () => {
const searchFormProps = {
searchTerm: 'React’,
onSearchInput: jest.fn(),
onSearchSubmit: jest.fn(),

b
let component;

beforeEach(() => {
component = renderer.create(<SearchForm {...searchFormProps} />);

});

it('disables the button and prevents submit', () => {
component . update(
<SearchForm {...searchFormProps} searchTerm="" />

);

expect(
component.root. findByType('button').props.disabled
).toBeTruthy();
};
1)

Now we’ll move one level higher in our application’s component hierarchy. The App component
fetches the list data, which is provided to the List component. After importing the App component,
a naive test would look like this:

src/App.test.js

describe('App', () => {
it('succeeds fetching data with a list', () => {
const list = [
{

title: 'React’',
url: 'https://reactjs.org/',
author: 'Jordan Walke',
num_comments: 3,
points: 4,
objectID: 0,

React Maintenance

1;

}I

title: 'Redux',

url:

"https://redux. js.org/’,

author: 'Dan Abramov, Andrew Clark',

num_comments: 2,

points: 5,
objectID: 1,

const component = renderer.create(<App />);

expect(component.root. findByType(List).props.list).toEqual(list);

});
});

177

In the actual App component, a third-party library (axios) is used to make a request to a remote
API. This API returns data we can’t foresee in the test, so we have to mock it instead. Jest provides
mechanisms that mock entire libraries and their methods. In this case, we want to mock the get()
method of axios to return our desired data:

src/App.test.js

import React from 'react';

import renderer from 'react-test-renderer';

import axios from 'axios';

jest.mock('axios');

describe('App', () => {
it('succeeds fetching data with a list', () =>

const list = [...];

const promise = Promise.resolve({

1)

axios.get.mockImplementationOnce(() => promise);

3

I

data: {
hits:

list,

React Maintenance 178

const component = renderer.create(<App />);

expect(component .root. findByType(List).props.list).toEqual(list);
1)
1)

The test reads synchronously, but we still have to deal with the asynchronous data. The compo-
nent should re-render when its state updates. We can perform this with our utility library and
async/await:

src/App.test.js

describe('App', () => {
it('succeeds fetching data with a list', async () => {
const list = [...];

const promise = Promise.resolve({
data: {
hits: list,
},
1)

axios.get.mockImplementationOnce(() => promise);

let component;

await renderer.act(asyne () => {
component = renderer.create(<App />);

});

expect(component.root. findByType(List).props.list).toEqual(list);
1)
1)

Instead of rendering the App component, we mocked the response from the remote API by mocking
the method that fetches the data. To stay on the happy path, we told the test to treat the component
as an asynchronously updating component. You can apply a similar strategy to the unhappy path:

React Maintenance 179

src/App.test.js

describe('App', () => {
it('succeeds fetching data with a list', async () => {

});

it('fails fetching data with a list', async () => {
const promise = Promise.reject();

axios.get.mockImplementationOnce(() => promise);
let component;

await renderer.act(asynec () => {
component = renderer.create(<App />);

1),

expect(component.root.findByType('p').props.children).toEqual(

'Something went wrong ...
)i
});
1);

The data fetching and integration with a remote API is tested now. We moved from focused unit tests
for single components to tests with multiple components and their integration with third-parties like
axios and remote APIs.

Snapshot Testing

Jest also lets you take a snapshot of your rendered component, run it against future captures, and
be notified of changes. Changes can then be accepted or denied depending on the desired outcome.
This mechanism complements unit and integration tests well, since it only tests the differences of the
rendered output without heavy maintenance costs. To see it in action, extend the Item component
test suite with your first snapshot test:

React Maintenance 180

src/App.test.js
describe('Item', () => {

beforeEach(() => {
component = renderer.create(
<Item item={item} onRemoveltem={handleRemoveltem} />
)i
1)

test('renders snapshot', () => {
let tree = component.toJSON();
expect(tree).toMatchSnapshot();

1)
});

Run your tests again and observe how they succeed or fail. Once we change the output of the render
block in Item component in the src/App.js file, by changing the structure of the returned HTML, the
snapshot test fails. We can then decide whether to update the snapshot or to investigate the Item
component.

Jest stores snapshots in a folder so it can validate the difference against future snapshot tests. Users
can share these snapshots across teams for version control (e.g. git). Running a snapshot test for the
first time creates the snapshot file in your project’s folder. When the test is run again, the snapshot
is expected to match the version from the latest test run. This is how we make sure the DOM stays
the same.

Exercises:

« Confirm your source code for the last section®.
— Contfirm the changes from the last section”’.
« Add one snapshot test for each of all the other components.

« Read more about testing React components®*.
— Read more about Jest*** and Jest for React®* for unit, integration and snapshot tests.
« Read more about E2E tests in React®®.

« While you continue with the learning experience in the upcoming sections, keep your tests
green and add new tests whenever you feel the need for it.

®https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/react-testing
°https://github.com/the-road- to-learn-react/hacker- stories/compare/hs/react-modern-final...hs/react-testing?expand=1
*%https://www.robinwieruch.de/react-testing-tutorial

*thttps://jestjs.io/

*%%https://www.robinwieruch.de/react-testing-jest/

%https://www.robinwieruch.de/react-testing-cypress

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/react-testing
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/react-testing?expand=1
https://www.robinwieruch.de/react-testing-tutorial
https://jestjs.io/
https://www.robinwieruch.de/react-testing-jest/
https://www.robinwieruch.de/react-testing-cypress
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/react-testing
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/react-testing?expand=1
https://www.robinwieruch.de/react-testing-tutorial
https://jestjs.io/
https://www.robinwieruch.de/react-testing-jest/
https://www.robinwieruch.de/react-testing-cypress

React Maintenance 181

React Project Structure

With multiple React components in one file, you might wonder why we didn’t put components into
different files for the src/App.js file from the start. We already have multiple components in the file
that can be defined in their own files/folders (also called modules). For learning, it’s more practical
to keep these components in one place. Once our application grows, we’ll consider splitting these
components into multiple modules so it scales properly.

Before we restructure our React project, recap JavaScript’s import and export statements®**. Import-
ing and exporting files are two fundamental concepts in JavaScript you must learn before React.
There’s no right way to structure a React application, as they evolve naturally along with the
project’s structure.

We'll complete a simple refactoring for the project’s folder/file structure for the sake of learning
about the process. Afterward, there will be a few additional options about restructuring this project
or React projects in general. You can continue with the restructured project, though we’ll continue
developing with the src/App.js file to keep things simple.

On the command line in your project’s folder, navigate into the src/ folder and create the following
component dedicated files:

Command Line

cd src

touch List. js InputWithLabel. js SearchForm. js

Move every component from the src/App.js file in its own file, except for the List component which
has to share its place with the Item component in the src/List.js file. Then in every file make sure
to import React and to export the component which needs to be used from the file. For example, in
src/List.js file:

src/List.js

import React from 'react'’;

const List = ({ list, onRemoveltem }) =>
list.map(item => (
<Item
key={item.objectID}
item={item}
onRemoveltem={onRemoveltem}
/>
));

*%*https://www.robinwieruch.de/javascript-import-export

https://www.robinwieruch.de/javascript-import-export
https://www.robinwieruch.de/javascript-import-export

React Maintenance 182

const Item = ({ item, onRemoveltem }) => (
<div>

{item.title}

{item.author}
 {item.num_comments}
{item.points}

<button type="button" onClick={() => onRemoveltem(item)}>
Dismiss
</button>

</div>
);

export default List;

Since only the List component uses the Item component, we can keep it in the same file. If this
changes because the Item component is used elsewhere, we can give the Item component its own
file. The SearchForm component in the src/SearchForm.js file must import the InputWithLabel
component. Like the Item component, we could have left the InputWithLabel component next to the
SearchForm; but our goal is to make InputWithLabel component reusable with other components.
We’ll probably import it eventually.

src/SearchForm.js

import React from 'react’;

import InputWithLabel from './InputWithLabel';

const SearchForm = ({
searchTerm,
onSearchInput,
onSearchSubmit,
1) = (
<form onSubmit={onSearchSubmit}>
<InputWithLabel
id="search"
value={searchTerm}
isFocused

onInputChange={onSearchInput}

Search:

React Maintenance 183

</InputWithLabel>

<button type="submit" disabled={!searchTerm}>
Submit
</button>
</form>

)

export default SearchForm;

The App component has to import all the components it needs to render. It doesn’t need to import
InputWithLabel, because it’s only used for the SearchForm component.

src/App.js

import React from 'react’;

import axios from 'axios';

import SearchForm from './SearchForm';
import List from './List';

const App = () => {

};

export default App;

Components that are used in other components now have their own file. Only if a component (e.g.
Item) is dedicated to another component (e.g. List) do we keep it in the same file. If a component
should be used as a reusable component (e.g. InputWithLabel), it also receives its own file. From
here, there are several strategies to structure your folder/file hierarchy. One scenario is to create a
folder for every component:

React Maintenance 184

Project Structure

- List/

-- index. js

- SearchForm/

-- index. js

- InputWithLabel/

-- index. js

The index.js file holds the implementation details for the component, while other files in the same
folder have different responsibilities like styling, testing, and types:

Project Structure

- List/

-- index. js
-- style.css
-- test.js
-- types. js

If using CSS-in-JS, where no CSS file is needed, one could still have a separate style.js file for all the
styled components:

Project Structure

- List/

-- index. js
-- style. js
-- test.js
-- types.js

Sometimes we’ll need to move from a technical-oriented folder structure to a domain-oriented
folder structure, especially once the project grows. Universal shared/ folder is shared across domain
specific components:

Project Structure

- Messages. js
- Users. js

- shared/

-- Button. js
-- Input.js

If you scale this to the deeper level folder structure, each component will have its own folder in a
domain-oriented project structure as well:

React Maintenance 185

Project Structure

- Messages/
-- index. js
-- style.css
-- test.js
-- types. js
- Users/

-- index. js
-- style.css
-- test.js
-- types. js
- shared/

-- Button/
--- index. js
--- style.css
--- test.js
--- types.js
-- Input/
--- index. js
--- style.css
--- test.js
--- types.js

There are many ways on how to structure your React project from small to large project: simple
to complex folder structure; one-level nested to two-level nested folder nesting; dedicated folders
for styling, types and testing next to implementation logic. There is no right way for folder/file
structures.

A project’s requirements evolve over time and so should its structure. If keeping all assets in one file
feels right, then there is no rule against it. Just try to keep the nesting level shallow, otherwise you
could get lost deep in folders.

Exercises:

« Confirm your source code for the last section®®.
— Contirm the changes from the last section®*.
« Read more about JavaScript’s import and export statements

« Read more about React Folder Structures®’®.
« Keep the current folder structure if you feel confident. The ongoing sections will omit it, only
using the src/App.js file.

207

*%https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Folder-Structure
*%https://github.com/the-road- to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/React-Folder- Structure?expand=1
**"https://www.robinwieruch.de/javascript-import-export

*%%https://www.robinwieruch.de/react-folder-structure

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Folder-Structure
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/React-Folder-Structure?expand=1
https://www.robinwieruch.de/javascript-import-export
https://www.robinwieruch.de/react-folder-structure
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/React-Folder-Structure
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/React-Folder-Structure?expand=1
https://www.robinwieruch.de/javascript-import-export
https://www.robinwieruch.de/react-folder-structure

Real World React (Advanced)

We’ve covered most of React’s fundamentals, its legacy features, and techniques for maintaining
applications. Now it’s time to dive into developing real-world React applications. Each of the
following sections will come with a task. Try to tackle these tasks without the optional hints first,

but be aware that these are going to be challenging on your first attempt. If you need help, use the
optional hints or follow the instructions from the section.

Real World React (Advanced) 187

Sorting

Task: Working with a list of items often includes interactions that make data more approachable by
users. So far, every item was listed with each of its properties. To make it explorable, the list should
enable sorting of each property by title, author, comments, and points in ascending or descending
order. Sorting in only one direction is fine, because sorting in the other direction will be part of the
next section.

Optional Hints:

« Introduce a new sort state in the App or List component.

« For each property (e.g. title, author, points, num_comments) implement an HTML button
which sets the sort state for this property.

« Use the sort state to apply an appropriate sort function on the 1ist.

« Using a utility library like Lodash** for its sortBy function is encouraged.

We will treat the list of data like a table. Each row represents an item of the list and each column
represents one property of the item. Headers provide the user more guidance about each column:

src/App.js

const List = ({ list, onRemoveltem }) => (
<div>

<div style={{ display: 'flex' }}>
Title
Author
Comments
Points
Actions

</div>

{list.map(item => (
<Item
key={item.objectID}
item={item}
onRemoveItem={onRemoveltem}
/>
N}
</div>

);

We are using inline style for the most basic layout. To match the layout of the header with the rows,
give the rows in the Item component a layout as well:

*%https://lodash.com/

https://lodash.com/
https://lodash.com/

Real World React (Advanced)

src/App.js

188

const Item = ({ item, onRemoveltem }) => (

<div style={{ display:

<span style={{ width:

"flex' }}>
'40%' 13>

{item.title}

<span style={{ width:
<span style={{ width:
<span style={{ width:
<span style={{ width:

'30%' }}>{item.author}

'10%' }}>{item.num_comments}
'10%' }}>{item.points}

'10%' 13>

<button type="button" onClick={() => onRemoveltem(item)}>

Dismiss
</button>

</div>
);

In the ongoing implementation, we will remove the style attributes, because it takes up lots of space
and clutters the actual implementation logic (hence extracting it into proper CSS). But I encourage

you to keep it for yourself.

The List component will handle the new sort state. This can also be done in the App component, but
only the List component is in play, so we can lift the state management directly to it. The sort state
initializes with a 'NONE' state, so the list items are displayed in the order they are fetched from the
API. Further, we added a new handler to set the sort state with a sort-specific key.

src/App.js

const List = ({ list, onRemoveltem }) => {

const [sort, setSort] =

React.useState('NONE');

const handleSort = sortKey => {

setSort(sortKey);
};

return (

);
};

In the List component’s header, buttons can help us to set the sort state for each column/property.
An inline handler is used to sneak in the sort-specific key (sortkey). When the button for the “Title”
column is clicked, 'TITLE' becomes the new sort state.

Real World React (Advanced) 189

src/App.js

const List = ({ list, onRemoveltem }) => {

return (
<div>
<div>

<button type="button" onClick={() => handleSort('TITLE')}>
Title
</button>

<button type="button" onClick={() => handleSort('AUTHOR')}>
Author
</button>

<button type="button" onClick={() => handleSort('COMMENT')}>
Comments
</button>

<button type="button" onClick={() => handleSort('POINT')}>
Points
</button>

Actions
</div>

{list.map(item => ...)}
</div>
),
¥

State management for the new feature is implemented, but we don’t see anything when our buttons
are clicked yet. This happens because the sorting mechanism hasn’t been applied to the actual 1ist.

Sorting an array with JavaScript isn’t trivial, because every JavaScript primitive (e.g. string, boolean,
number) comes with edge cases when an array is sorted by its properties. We will use a library called
Lodash?'’ to solve this, which comes with many JavaScript utility functions (e.g. sortBy). First, install
it via the command line:

*1https://lodash.com/

https://lodash.com/
https://lodash.com/

Real World React (Advanced) 190

Command Line

npm install lodash

Second, at the top of your file, import the utility function for sorting:

src/App.js

import React from 'react'’;
import axios from 'axios';

import { sortBy } from 'lodash';

Third, create a JavaScript object (also called dictionary) with all the possible sortkey and sort
function mappings. Each specific sort key is mapped to a function that sorts the incoming 1ist.
Sorting by 'NONE' returns the unsorted list; sorting by 'POINT' returns a list and its items sorted by
the points property.

src/App.js

const SORTS = {
NONE: list => list,
TITLE: list => sortBy(list, 'title'),
AUTHOR: list => sortBy(list, 'author'),
COMMENT: list => sortBy(list, 'num_comments').reverse(),
POINT: list => sortBy(list, 'points').reverse(),

};
const List = ({ list, onRemoveltem }) => {

¥

With the sort (sortKey) state and all possible sort variations with SORTS at our disposal, we can sort
the list before mapping it over each Item component:

Real World React (Advanced) 191

src/App.js

const List = ({ list, onRemoveltem }) => {
const [sort, setSort] = React.useState('NONE');

const handleSort = sortKey => {
setSort(sortKey);

};

const sortFunction = SORTS[sort];
const sortedlList = sortFunction(list);

return (

<div>

{sortedList.map(item => (
<Item
key={item.objectID}
item={item}
onRemoveltem={onRemoveltem}
/>
)}
</div>
)i
4

It’s done. First we extracted the sort function from the dictionary by its sortkey (state). Then, we
applied the function to the list, before mapping it to render each Item component. Again, the initial
sort state will be 'NONE', meaning it will sort nothing.

Second we rendered more HTML buttons to give our users interaction. Then, we added implemen-
tation details for each button by changing the sort state. Finally, we used the sort state to sort the
actual list.

Exercises:

« Confirm your source code for the last section®'".
— Confirm the changes from the last section®'*.
« Read more about Lodash®*.

*"https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Sort
*https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/Sort?expand=1
*Phttps://lodash.com/

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Sort
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/Sort?expand=1
https://lodash.com/
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Sort
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/react-modern-final...hs/Sort?expand=1
https://lodash.com/

Real World React (Advanced) 192

« Why did we use numeric properties like points and num_comments a reverse sort?
« Use your styling skills to give the user feedback about the current active sort. This mechanism
can be as straightforward as giving the active sort button a different color.

Real World React (Advanced) 193

Reverse Sort

Task: The sort feature works, but the ordering only includes one direction. Implement a reverse sort
when the button is clicked twice, so it becomes a toggle between normal (ascending) and reverse
(descending) sort.

Optional Hints:

« Consider that reverse or normal sort could be just another state (e.g. isReverse) next to the
sortKey.

« Set the new state in the handleSort handler based on the previous sort.

« Use the new isReverse state for sorting the list with the sort function from the dictionary with
the optionally applied reverse() function from JavaScript arrays.

The initial sort direction works for strings, as well as numeric sorts like the reverse sort for JavaScript
numbers that arranges them from high to low. Now we need another state to track whether the sort
is reversed or normal, to make it more complex:

src/App.js

const List = ({ list, onRemoveltem }) => {
const [sort, setSort] = React.useState({
sortKey: 'NONE',

isReverse: false,

1)

};

Next, give the sort handler logic to see if the incoming sortKey triggers are a normal or reverse sort.
If the sortKey is the same as the one in the state, it could be a reverse sort, but only if the sort state
wasn’t already reversed:

src/App.js

const List = ({ list, onRemoveltem }) => {

const [sort, setSort] = React.useState({
sortKey: 'NONE',
isReverse: false,

});

const handleSort = sortKey => {
const isReverse = sort.sortKey === sortKey && !sort.isReverse;

Real World React (Advanced) 194

setSort({ sortKey: sortKey, isReverse: isReverse });

};

const sortFunction = SORTS[sort.sortKey];
const sortedList = sortFunction(list);

return (

);
};

Lastly, depending on the new isReverse state, apply the sort function from the dictionary with or
without the built-in JavaScript reverse method for arrays:

src/App.js

const List = ({ list, onRemoveltem }) => {

const [sort, setSort] = React.useState({
sortKey: 'NONE',
isReverse: false,

});

const handleSort = sortKey => {
const isReverse = sort.sortKey === sortKey && !sort.isReverse;

setSort({ sortKey, isReverse });

¥
const sortFunction = SORTS[sort.sortKey];
const sortedList = sort.isReverse

? sortFunction(list).reverse()
: sortFunction(list);

return (

);
};

The reverse sort is now operational. For the object passed to the state updater function, we use what
is called a shorthand object initializer notation:

Real World React (Advanced) 195

src/App.js

const firstName = 'Robin';

const user = {
firstName: firstName,

};

console.log(user);
// { firstName: "Robin" }

When the property name in your object is the same as your variable name, you can omit the
key/value pair and just write the name:

src/App.js

const firstName = 'Robin’;

const user = {
firstName,

1

console.log(user);
// { firstName: "Robin" }

If necessary, read more about JavaScript Object Initializers®'*.

Exercises:

« Confirm your source code for the last section®**.
— Confirm the changes from the last section?*°.

« Consider the drawback of keeping the sort state in the List instead of the App component. If
you don’t know, sort the list by “Title” and search for other stories afterward. What would be
different if the sort state would be in the App component.

« Use your styling skills to give the user feedback about the current active sort and its reverse
state. It could be an arrow up or arrow down SVG*" next to each active sort button.

***https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
*https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Reverse-Sort
*1Shttps://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Sort...hs/Reverse-Sort?expand=1
*https://www flaticon.com/packs/arrow-set-2

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Reverse-Sort
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Sort...hs/Reverse-Sort?expand=1
https://www.flaticon.com/packs/arrow-set-2
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Reverse-Sort
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Sort...hs/Reverse-Sort?expand=1
https://www.flaticon.com/packs/arrow-set-2

Real World React (Advanced) 196

Remember Last Searches

Task: Remember the last five search terms to hit the API, and provide a button to move quickly
between searches. When the buttons are clicked, stories for the search term are fetched again.

Optional Hints:

« Don’t use a new state for this feature. Instead, reuse the url state and setUrl state updater
function to fetch stories from the API. Adapt them to multiple urls as state, and to set multiple
urls with setUrls. The last URL from urls can be used to fetch the data, and the last five URLSs
from urls can be used to display the buttons.

First, we will refactor all url to urls state and all setUr1 to setUrls state updater functions. Instead
of initializing the state with a url as a string, make it an array with the initial ur1 as its only entry:

src/App.js

const App = () => {

const [urls, setUrls] = React.useState([
“${API_ENDPOINT}${searchTerm}",

1);

};

Second, instead of using the current ur1 state for data fetching, use the last url entry from the urls
array. If another ur1 is added to the list of urls, it is used to fetch data instead:

src/App.js

const App = () => {

const handleFetchStories = React.useCallback(async () => {
dispatchStories({ type: 'STORIES_FETCH_INIT' });

try {
const lastUrl = urls[urls.length - 1];

const result = await axios.get(lastUrl);

dispatchStories({

Real World React (Advanced) 197

type: 'STORIES_FETCH_SUCCESS',
payload: result.data.hits,
1)
} catch {
dispatchStories({ type: 'STORIES_FETCH_FAILURE' });
}
}, [urls]);

};

And third, instead of storing ur1 string as state with the state updater function, concat the new ur1l
with the previous urls in an array for the new state:

src/App.js

const App = () => {

const handleSearchSubmit = event => {
const url = “${API_ENDPOINT}${searchTerm}";
setUrls(urls.concat(url));

event.preventDefault();

};

};

With each search, another URL is stored in our state of urls. Next, render a button for each of the
last five URLs. We'll include a new universal handler for these buttons, and each passes a specific
url with a more specific inline handler:

src/App.js

const getlLastSearches = urls => urls.slice(-5);

const App = () => {

const handlelLastSearch = url => {
// do something

Real World React (Advanced) 198

};
const lastSearches = getlLastSearches(urls);

return (
<div>
<h1>My Hacker Stories</h1>

<SearchForm ... />

{lastSearches.map(url => (
<button
key={url}
type="button"
onClick={() => handleLastSearch(url)}

{url}
</button>
)}

</div>
);
};

Next, instead of showing the whole URL of the last search in the button as button text, show only
the search term by replacing the API’s endpoint with an empty string:

src/App.js

const extractSearchTerm = url => url.replace(API_ENDPOINT, '');

const getlLastSearches = urls =>
urls.slice(-5).map(url => extractSearchTerm(url));

const App = () => {

const lastSearches = getlLastSearches(urls);

return (
<div>

Real World React (Advanced) 199

{lastSearches.map(searchTerm => (
<button
key={searchTerm}
type="button"
onClick={() => handleLastSearch(searchTerm)}

{searchTerm}
</button>
))}

The getlLastSearches function now returns search terms instead of URLs. The actual searchTermis
passed to the inline handler instead of the url. By mapping over the list of urls in getLastSearches,
we can extract the search term for each url within the array’s map method. Making it more concise,
it can also look like this:

src/App.js

const getlLastSearches = urls =>
urls.slice(-5).map(extractSearchTerm);

Now we’ll provide functionality for the new handler used by every button, since clicking one of
these buttons should trigger another search. Since we use the urls state for fetching data, and since
we know the last URL is always used for data fetching, concat a new ur1 to the list of urls to trigger
another search request:

src/App.js

const App = () => {

const handleLastSearch = searchTerm => {
const url = “${API_ENDPOINT}${searchTerm}";

setUrls(urls.concat(url));

};

Real World React (Advanced) 200

If you compare this new handler’s implementation logic to the handleSearchSubmit, you may
see some common functionality. Extract this common functionality to a new handler and a new
extracted utility function:

src/App.js

const getUrl = searchTerm => “${API_ENDPOINT}${searchTerm}";

const App = () => {

const handleSearchSubmit = event => {

handleSearch(searchTerm);

event.preventDefault();

};

const handlelLastSearch = searchTerm => {

handleSearch(searchTerm);

};

const handleSearch = searchTerm => {
const url = getUrl(searchTerm);
setUrls(urls.concat(url));

};

};

The new utility function can be used somewhere else in the App component. If you extract
functionality that can be used by two parties, always check to see if it can be used by a third party.

src/App.js

const App = () => {

// important: still wraps the returned value in []
const [urls, setUrls] = React.useState([getUrl(searchTerm)]);

b

Real World React (Advanced) 201

The functionality should work, but it complains or breaks if the same search term is used more
than once, because searchTernm is used for each button element as key attribute. Make the key more
specific by concatenating it with the index of the mapped array.

src/App.js

const App = () => {

return (
<div>

{lastSearches.map((searchTerm, index) => (
<button
key={searchTerm + index}
type="button"
onClick={() => handlelLastSearch(searchTerm)}

{searchTerm}
</button>

)}

It’s not the perfect solution, because the index isn’t a stable key (especially when adding items to
the list; however, it doesn’t break in this scenario. The feature works now, but you can add further
UX improvements by following the tasks below.

More Tasks:

+ (1) Do not show the current search as a button, only the five preceding searches. Hint: Adapt
the getlLastSearches function.

« (2) Don’t show duplicated searches. Searching twice for “React” shouldn’t create two different
buttons. Hint: Adapt the getLastSearches function.

+ (3) Set the SearchForm component’s input field value with the last search term if one of the
buttons is clicked.

The source of the five rendered buttons is the getLastSearches function. There, we take the array
of urls and return the last five entries from it. Now we’ll change this utility function to return the
last six entries instead of five, removing the last one. Afterward, only the five previous searches are
displayed as buttons.

Real World React (Advanced) 202

src/App.js

const getlLastSearches = urls =>
urls
.slice(-6)
.slice(0Q, -1)
.map(extractSearchTerm);

If the same search is executed twice or more times in a row, duplicate buttons appear, which is likely
not your desired behavior. It would be acceptable to group identical searches into one button if they
followed each other. We will solve this problem in the utility function as well. Before separating the
array into the five previous searches, group the identical searches:

src/App.js

const getlLastSearches = urls =>
urls
.reduce((result, url, index) => {
const searchTerm = extractSearchTerm(url);

if (index === 0) {
return result.concat(searchTerm);

const previousSearchTerm = result[result.length - 1];

if (searchTerm === previousSearchTerm) {
return result;
} else {
return result.concat(searchTerm);
}
oD
.slice(-6)
.slice(0, -1);

The reduce function starts with an empty array as its result. The first iteration concats the
searchTerm we extracted from the firsturl into the result. Every extracted searchTerm is compared
to the one before it. If the previous search term is different from the current, concat the searchTerm
to the result. If the search terms are identical, return the result without adding anything.

Lastly, the SearchForm’s input field should be set with the new searchTerm if one of the last search
buttons is clicked. We can solve this using the state updater function for the specific value used in
the SearchForm component.

Real World React (Advanced) 203

src/App.js

const App = () => {

const handleLastSearch = searchTerm => {
setSearchTerm(searchTerm);
handleSearch(searchTerm);

};

};

Last, extract the feature’s new rendered content from this section as a standalone component, to
keep the App component lightweight:

src/App.js

const App = () => {

const lastSearches = getlastSearches(urls);

return (

<div>

<LastSearches
lastSearches={lastSearches}
onLastSearch={handleLastSearch}

/>

</div>
);
};

const LastSearches = ({ lastSearches, onLastSearch }) => (
<>
{lastSearches.map((searchTerm, index) => (
<button
key={searchTerm + index}
type="button"

Real World React (Advanced) 204

onClick={() => onLastSearch(searchTerm)}

{searchTerm}
</button>
N}
</>
);

This feature wasn’t an easy one. Lots of fundamental React but also JavaScript knowledge was
needed to accomplish it. If you had no problems implementing it yourself or to follow the
instructions, you are very well set. If you had one or the other issue, don’t worry too much about
it. Maybe you even figured out another way to solve this task and it may have turned out simpler
than the one I showed here.

Exercises:

« Confirm your source code for the last section®*®.
— Confirm the changes from the last section®*.

*https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Remember-Last-Searches
*"https://github.com/the- road-to-learn-react/hacker-stories/compare/hs/Reverse- Sort...hs/Remember- Last- Searches?expand=1

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Remember-Last-Searches
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Reverse-Sort...hs/Remember-Last-Searches?expand=1
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Remember-Last-Searches
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Reverse-Sort...hs/Remember-Last-Searches?expand=1

Real World React (Advanced) 205

Paginated Fetch

Searching for popular stories via Hacker News API is only one step towards a fully-functional search
engine, and there are many ways to fine-tune the search. Take a closer look at the data structure
and observe how the Hacker News API** returns more than a list of hits.

Specifically, it returns a paginated list. The page property, which is @ in the first response, can be
used to fetch more paginated lists as results. You only need to pass the next page with the same
search term to the APL

The following shows how to implement a paginated fetch with the Hacker News data structure. If
you are used to pagination from other applications, you may have a row of buttons from 1-10 in
your mind — where the currently selected page is highlighted 1-[3]-10 and where clicking one of the
buttons leads to fetching and displaying this subset of data.

In contrast, we will implement the feature as infinite pagination. Instead of rendering a single
paginated list on a button click, we will render all paginated lists as one list with one button to fetch
the next page. Every additional paginated list is concatenated at the end of the one list.

Task: Rather than fetching only the first page of a list, extend the functionality for fetching
succeeding pages. Implement this as an infinite pagination on button click.

Optional Hints:

« Extend the API_ENDPOINT with the parameters needed for the paginated fetch.

« Store the page from the result as state after fetching the data.

« Fetch the first page (@) of data with every search.

« Fetch the succeeding page (page + 1) for every additional request triggered with a new HTML
button.

First, extend the API constant so it can deal with paginated data later. We will turn this one constant:

src/App.js

const API_ENDPOINT = 'https://hn.algolia.com/api/vl/search?query=";

const getUrl = searchTerm => ~${API_ENDPOINT}${searchTerm} " ;

Into a composable API constant with its parameters:

**%https://hn.algolia.com/api

https://hn.algolia.com/api
https://hn.algolia.com/api

Real World React (Advanced) 206

src/App.js

const API_BASE = 'https://hn.algolia.com/api/v1l’';
const API_SEARCH = '/search';
const PARAM_SEARCH = 'query=';

// careful: notice the ? in between
const getUrl = searchTerm =>
“${API_BASE}${API_SEARCH} ?${PARAM_SEARCH}${searchTerm} " ;

Fortunately, we don’t need to adjust the API endpoint, because we extracted a common getUrl
function for it. However, there is one spot where we must address this logic for the future:

src/App.js

const extractSearchTerm = url => url.replace(API_ENDPOINT, '');

In the next steps, it won’t be sufficient to replace the base of our API endpoint, which is no longer
in our code. With more parameters for the API endpoint, the URL becomes more complex. It will
change from X to Y:

src/App.js

/)X
https://hn.algolia.com/api/vl/search?query=react

/7Y
https://hn.algolia.com/api/v1l/search?query=react&page=0

It’s better to extract the search term by extracting everything between ? and &. Also consider that
the query parameter is directly after the ? and all other parameters like page follow it.

src/App.js

const extractSearchTerm = url =>
url
.substring(url.lastIndexOf('?') + 1, url.lastIndexOf('&'));

The key (query=) also needs to be replaced, leaving only the value (searchTerm):

Real World React (Advanced) 207

src/App.js

const extractSearchTerm = url =>
url
.substring(url.lastIndexOf('?') + 1, url.lastIndexOf('&'));
.replace(PARAM_SEARCH, '');

Essentially, we’ll trim the string until we leave only the search term:

src/App.js

// url
https://hn.algolia.com/api/v1l/search?query=react&page=0

// url after substring
query=react

// url after replace

react

The returned result from the Hacker News API delivers us the page data:

src/App.js

const App = () => {

const handleFetchStories = React.useCallback(async () => {
dispatchStories({ type: 'STORIES_FETCH_INIT' });

try {
const lastUrl = urls[urls.length - 1];
const result = await axios.get(lastUrl);

dispatchStories({
type: 'STORIES_FETCH_SUCCESS',
payload: {
list: result.data.hits,
page: result.data.page,
},

1);
} cateh {

dispatchStories({ type: 'STORIES_FETCH_FAILURE' });
}
b, [urls]);

Real World React (Advanced) 208

};

We need to store this data to make paginated fetches later:

src/App.js

const storiesReducer = (state, action) => {
switch (action.type) {
case 'STORIES_FETCH_INIT':

case 'STORIES_FETCH_SUCCESS':
return {
...state,
isLoading: false,
isError: false,
data: action.payload.list,
page: action.payload.page,
¥
case 'STORIES_FETCH_FAILURE':

case 'REMOVE_STORY':
default:
throw new Error();

}
};

const App = () => {

const [stories, dispatchStories] = React.useReducer(
storiesReducer,
{ data: [], page: @, isLoading: false, isError: false }
),

};

Extend the API endpoint with the new page parameter. This change was covered by our premature
optimizations earlier, when we extracted the search term from the URL.

Real World React (Advanced) 209

src/App.js

const API_BASE = 'https://hn.algolia.com/api/vl’;
const API_SEARCH = '/search';

const PARAM_SEARCH = 'query="';

const PARAM_PAGE = 'page=';

// careful: notice the ? and & in between
const getUrl = (searchTerm, page) =>
“${API_BASE}${API_SEARCH} ?${PARAM_SEARCH}${searchTerm}&${PARAM_PAGE}${page} ";

Next, we must adjust all getUr1 invocations by passing the page argument. Since the initial search
and last search always fetch the first page (0), we pass this page as an argument to the function for
retrieving the appropriate URL:

src/App.js

const App = () => {

const [urls, setUrls] = React.useState([getUrl(searchTerm, 0)]);

const handleSearchSubmit = event => {
handleSearch(searchTerm, 0);

event.preventDefault();

};

const handlelLastSearch = searchTerm => {
setSearchTerm(searchTerm);

handleSearch(searchTerm, 0);

};

const handleSearch = (searchTerm, page) => {
const url = getUrl(searchTerm, page);
setUrls(urls.concat(url));

};

Real World React (Advanced) 210

To fetch the next page when a button is clicked, we’ll need to increment the page argument in this
new handler:

src/App.js

const App = () => {

const handleMore = () => {
const lastUrl = urls[urls.length - 1];
const searchTerm = extractSearchTerm(lastUrl);
handleSearch(searchTerm, stories.page + 1);

}
return (
<div>
{stories.islLoading ? (
<p>Loading ...</p>
) o (
<List list={stories.data} onRemoveltem={handleRemoveStory} />
)}
<button type="button" onClick={handleMore}>
More
</button>
</div>
),
¥

We’ve implemented data fetching with the dynamic page argument. The initial and last searches
always use the first page, and every fetch with the new “More” button uses an incremented page.
There is one crucial bug when trying the feature, though: the new fetches don’t extend the previous
list, but completely replace it.

We solve this in the reducer by avoiding the replacement of current data with new data,
concatenating the paginated lists:

Real World React (Advanced) 211

src/App.js

const storiesReducer = (state, action) => {
switch (action.type) {
case 'STORIES_FETCH_INIT':

case 'STORIES_FETCH_SUCCESS':
return {
...state,
isLoading: false,
isError: false,
data:
action.payload.page ===
? action.payload.list
: state.data.concat(action.payload.list),
page: action.payload.page,
¥
case 'STORIES_FETCH_FAILURE':

case 'REMOVE_STORY':
default:
throw new Error();

}
¥

The displayed list grows after fetching more data with the new button. However, there is still a
flicker straining the UX. When fetching paginated data, the list disappears for a moment because
the loading indicator appears and reappears after the request resolves.

The desired behavior is to render the list-which is an empty list in the beginning—and replace the
“More” button with the loading indicator only for pending requests. This is a common Ul refactoring
for conditional rendering when the task evolves from a single list to paginated lists.

src/App.js

const App = () => {

return (
<div>

<List list={stories.data} onRemoveltem={handleRemoveStory} />

Real World React (Advanced) 212

{stories.islLoading ? (
<p>Loading ...</p>

) o (
<button type="button" onClick={handleMore}>

More

</button>

)}

</div>
),
¥

It’s possible to fetch ongoing data for popular stories now. When working with third-party APIs, it’s
always a good idea to explore its boundaries. Every remote API returns different data structures, so
its features may vary, and can be used in applications that consume the API.

Exercises:

« Confirm your source code for the last section**.
— Confirm the changes from the last section®**.

« Revisit the Hacker News API documentation®”*: Is there a way to fetch more items in a list for
a page by just adding further parameters to the API endpoint?

« Revisit the beginning of this section which speaks about pagination and infinite pagination.
How would you implement a normal pagination component with buttons from 1-[3]-10, where
each button fetches and displays only one page of the list.

« Instead of having one “More” button, how would you implement an infinite pagination with
an infinite scroll technique? Rather than clicking a button for fetching the next page explicitly,
the infinite scroll could fetch the next page once the viewport of the browser hits the bottom
of the displayed list.

*?Thttps://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Paginated-Fetch
*22https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Remember-Last-Searches...hs/Paginated- Fetch?expand=1
**https://hn.algolia.com/api

https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Paginated-Fetch
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Remember-Last-Searches...hs/Paginated-Fetch?expand=1
https://hn.algolia.com/api
https://codesandbox.io/s/github/the-road-to-learn-react/hacker-stories/tree/hs/Paginated-Fetch
https://github.com/the-road-to-learn-react/hacker-stories/compare/hs/Remember-Last-Searches...hs/Paginated-Fetch?expand=1
https://hn.algolia.com/api

Deploying a React Application

Now it’s time to get out into the world with your React application. There are many ways to deploy
a React application to production, and many competing providers that offer this service. We’ll keep
it simple here by narrowing it down on one provider, after which you’ll be equipped to check out
other hosting providers on your own.

Deploying a React Application 214

Build Process

So far, everything we've done has been the development stage of the application, when the
development server handles everything: packaging all files to one application and serving it on
localhost on your local machine. As a result, our code isn’t available for anyone else.

The next step is to take your application to the production stage by hosting it on a remote server,
called deployment, making it accessible for users of your application. Before an application can
go public, it needs to be packaged as one essential application. Redundant code, testing code, and
duplications are removed. There is also a process called minification at work which reduces the code
size once more.

Fortunately, optimizations and packaging, also called bundling, comes with the build tools in create-
react-app. First, build your application on the command line:

Command Line

npm run build

This creates a new build/ folder in your project with the bundled application. You could take this
folder and deploy it on a hosting provider now, but we’ll use a local server to mimic this process
before engaging in the real thing. First, install an HTTP server on your machine:

Command Line

npm install -g http-server

Next, serve your application with this local HTTP server:

Command Line

http-server build/

The process can also be done on demand with a single command:

Command Line

npx http-server build/

After entering one of the commands, a URL is presented that provides access to your optimized,
packaged and hosted application. It’s sent through a local IP address that can be made available
over your local network, meaning we’re hosting the application on our local machine.

Deploying a React Application 215

Deploy to Firebase

After we’ve built a full-fledged application in React, the final step is deployment. It is the tipping
point of getting your ideas into the world, from learning how to code to producing applications. We
will use Firebase Hosting for deployment.

Firebase works for create-react-app, as well as most libraries and frameworks like Angular and Vue.
First, install the Firebase CLI globally to the node modules:

Command Line

npm install -g firebase-tools

Using a global installation of the Firebase CLI lets us deploy applications without concern over
project dependency. For any globally-installed node package, remember to update it to a newer
version with the same command as often as you can:

Command Line

npm install -g firebase-tools

If you don’t have a Firebase project yet, sign up for a Firebase account®** and create a new project

there. Then you can associate the Firebase CLI with the Firebase account (Google account):

Command Line

firebase login

A URL will display in the command line that you can open in a browser, or the Firebase CLI opens
it. Choose a Google account to create a Firebase project, and give Google the necessary permissions.
Return to the command line to verify a successful login.

Next, move to the project’s folder and execute the following command, which initializes a Firebase
project for the Firebase hosting features:

Command Line

firebase init

Next, choose the Hosting option. If you’re interested in using another tool next to Firebase Hosting,
add other options:

***https://console.firebase.google.com/

https://console.firebase.google.com/
https://console.firebase.google.com/

Deploying a React Application 216

Command Line

? Which Firebase CLI features do you want to set up for this folder? Press Space to \
select features, then Enter to confirm your choices.

? Database: Deploy Firebase Realtime Database Rules

? Firestore: Deploy rules and create indexes for Firestore

? Functions: Configure and deploy Cloud Functions
-> Hosting: Configure and deploy Firebase Hosting sites

? Storage: Deploy Cloud Storage security rules

Google becomes aware of all Firebase projects associated with an account after login, and we can
select one from the Firebase platform:

Command Line

First, let's associate this project directory with a Firebase project.
You can create multiple project aliases by running firebase use --add,

but for now we'll just set up a default project.

? Select a default Firebase project for this directory:
-> my-react-project-abc123 (my-react-project)
i Using project my-react-project-abc123 (my-react-project)

There are a few other configuration steps to define. Instead of using the default public/ folder, we
want to use the build/ folder from create-react-app. If you set up the bundling with a tool like
Webpack yourself, you can choose the appropriate name for the build folder:

Command Line

7?7 What do you want to use as your public directory? build
? Configure as a single-page app (rewrite all urls to /index.html)? Yes
? File public/index.html already exists. Overwrite? No

The create-react-app application creates a build/ folder after we perform the npm run build for the
first time. The folder contains all the merged content from the public/ folder and the src/ folder.
Since it is a single page application, we want to redirect the user to the index.html file, so the React
router can handle client-side routing.

Now your Firebase initialization is complete. This step created a few configuration files for Firebase
Hosting in your project’s folder. You can read more about them in Firebase’s documentation®* for
configuring redirects, a 404 page, or headers. Finally, deploy your React application with Firebase in
the command line:

**https://firebase.google.com/docs/hosting/full-config

https://firebase.google.com/docs/hosting/full-config
https://firebase.google.com/docs/hosting/full-config

Deploying a React Application 217

Command Line

firebase deploy

After a successful deployment, you should see a similar output with your project’s identifier:

Command Line

Project Console: https://console. firebase.google.com/project/my-react-project-abc123\
/overview

Hosting URL: https://my-react-project-abc123. firebaseapp.com

Visit both pages to observe the results. The first link navigates to your Firebase project’s dashboard,
where you’ll see a new panel for the Firebase Hosting. The second link navigates to your deployed
React application.

If you see a blank page for your deployed React application, make sure the public key/value pair
in the firebase.json is set to build, or whichever name you chose for this folder. Second, verify
you’ve run the build script for your React app with npm run build. Finally, check out the official
troubleshoot area for deploying create-react-app applications to Firebase?*°. Try another deployment
with firebase deploy.

Exercises
+ Read more about Firebase Hosting®*".
« Connect your domain to your Firebase deployed application®*®.
« Optional: If you want to have a managed cloud server, check out DigitalOcean®”. It’s more
work, but it allows more control. I host all my websites, web applications, and backend APIs
there®*°.

*2%https://create-react-app.dev/docs/deployment
**"https://firebase.google.com/docs/hosting/
*2®https://firebase.google.com/docs/hosting/custom-domain
***https://m.do.co/c/fb27c90322f3
**%https://www.robinwieruch.de/deploy-applications-digital-ocean/

https://create-react-app.dev/docs/deployment
https://create-react-app.dev/docs/deployment
https://firebase.google.com/docs/hosting/
https://firebase.google.com/docs/hosting/custom-domain
https://m.do.co/c/fb27c90322f3
https://www.robinwieruch.de/deploy-applications-digital-ocean/
https://www.robinwieruch.de/deploy-applications-digital-ocean/
https://create-react-app.dev/docs/deployment
https://firebase.google.com/docs/hosting/
https://firebase.google.com/docs/hosting/custom-domain
https://m.do.co/c/fb27c90322f3
https://www.robinwieruch.de/deploy-applications-digital-ocean/

Outline

We’ve reached the end of the road to React, and I hope you enjoyed reading it, and that it helped
you gain some traction in React. If you liked the book, share it with your friends who are interested
in learning more about React. Also, a review on Amazon** or Goodreads®** would help me provide
better content in the future based on your feedback.

From here, I recommend you extend the application to create your own React projects before
engaging another book, course or tutorial. Try it for a week, take it to production by deploying
it, and reach out to me or others to showcase it. I am always interested in seeing what my readers
built, and learning how I can help them along.

If you’re looking for extensions for your application, I recommend several learning paths after you’ve
mastered the basics:

« Connecting to a Database and/or Authentication: Growing React applications will even-
tually require persistent data. The data should be stored in a database so that keeps it intact
after browser sessions, to be shared with different users. Firebase is one of the simplest ways
to introduce a database without writing a backend application. In my book titled “The Road
to Firebase™®*, you will find a step-by-step guide on how to use Firebase authentication and
database in React.

« Connecting to a Backend: React handles frontend applications, and we’ve only requested
data from a third-party backend’s API thus far. You can also introduce an API with a backend
application that connects to a database and manages authentication/authorization. In “The
Road to GraphQL”***, I teach you how to use GraphQL for client-server communication. You’ll
learn how to connect your backend to a database, how to manage user sessions, and how to
talk from a frontend to your backend application via a GraphQL APIL

« State Management: You have used React to manage local component state exclusively in this
learning experience. It’s a good start for most applications, but there are also external state
management solutions for React. I explore the most popular one in my book “The Road to
Redux”?*.

« Tooling with Webpack and Babel: We used create-react-app to set up the application in this
book. At some point you may want to learn the tooling around it, to create projects without
create-react-app. I recommend a minimal setup with Webpack?®*®, after which you can apply
additional tooling.

#3Thttps://amzn.to/2JHIP42
**?https://www.goodreads.com/book/show/37503118- the-road-to-learn-react
**https://www.roadtofirebase.com/

#**https://www.roadtographql.com/

***https://www.roadtoredux.com/
#Shttps://www.robinwieruch.de/minimal-react-webpack-babel-setup/

https://amzn.to/2JHlP42
https://www.goodreads.com/book/show/37503118-the-road-to-learn-react
https://www.roadtofirebase.com/
https://www.roadtofirebase.com/
https://www.roadtographql.com/
https://www.roadtographql.com/
https://www.roadtoredux.com/
https://www.roadtoredux.com/
https://www.robinwieruch.de/minimal-react-webpack-babel-setup/
https://amzn.to/2JHlP42
https://www.goodreads.com/book/show/37503118-the-road-to-learn-react
https://www.roadtofirebase.com/
https://www.roadtographql.com/
https://www.roadtoredux.com/
https://www.robinwieruch.de/minimal-react-webpack-babel-setup/

Outline 219

+ Code Organization: Recall the chapter about code organization and apply these changes, if
you haven’t already. It will help organize your components into structured files and folders,
and it will help you understand the principles of code splitting, reusability, maintainability,
and module API design. Your application will grow and need structured modules eventually;
so it’s better to start now.

« Testing: We only scratched the surface of testing. If you are unfamiliar with testing web
applications, dive deeper into unit testing and integration testing®’, especially with React
applications. Cypress®*® is a useful tool to explore for end-to-end testing in React.

« Type Checking: Earlier we used TypeScript in React, which is good practice to prevent
bugs and improve developer experience. Dive deeper into this topic to make your JavaScript
applications more robust. Maybe you end up using TypeScript instead of JavaScript all along.

« UI Components: Many beginners introduce UI component libraries like Bootstrap too early
in their projects. It is more practical to use a dropdown, checkbox, or dialog in React with
standard HTML elements. Most of these components will manage their own local state. A
checkbox has to know whether it is checked or unchecked, so you should implement them
as controlled components. After you cover the basic implementations of these crucial Ul
component, introducing a Ul component library should be easier.

« Routing: You can implement routing for your application with react-router®””. There is only one
page in the application we’ve created, but that will grow. React Router helps manage multiple
pages across multiple URLs. When you introduce routing to your application, no requests are
made to the web server for the next page. The router handles this client-side.

+ React Native: React Native®*® brings your application to mobile devices like iOS and Android.
Once you’ve mastered React, the learning curve for React Native shouldn’t be that steep, as they
share the same principles. The only difference with mobile devices are the layout components,
the build tools, and the APIs of your mobile device.

239

I invite you to visit my website’** to find more interesting topics about web development and
software engineering. You can also subscribe to my Newsletter®** or Twitter page*** to get updates
about articles, books, and courses.

Thank you for reading the Road to React.
Regards,
Robin Wieruch

*"https://www.robinwieruch.de/react-testing-tutorial
#*https://www.robinwieruch.de/react- testing-cypress
**https://github.com/ReactTraining/react-router
**%https://facebook.github.io/react-native/
**Thttps://www.robinwieruch.de
***https://www.getrevue.co/profile/rwieruch
*https://twitter.com/rwieruch

https://www.robinwieruch.de/react-testing-tutorial
https://www.robinwieruch.de/react-testing-cypress
https://github.com/ReactTraining/react-router
https://facebook.github.io/react-native/
https://www.robinwieruch.de/
https://www.getrevue.co/profile/rwieruch
https://twitter.com/rwieruch
https://www.robinwieruch.de/react-testing-tutorial
https://www.robinwieruch.de/react-testing-cypress
https://github.com/ReactTraining/react-router
https://facebook.github.io/react-native/
https://www.robinwieruch.de/
https://www.getrevue.co/profile/rwieruch
https://twitter.com/rwieruch

	Table of Contents
	Foreword
	About the Author
	FAQ
	Who is this book for?

	Fundamentals of React
	Hello React
	Requirements
	Setting up a React Project
	Meet the React Component
	React JSX
	Lists in React
	Meet another React Component
	React Component Instantiation
	React DOM
	React Component Definition (Advanced)
	Handler Function in JSX
	React Props
	React State
	Callback Handlers in JSX
	Lifting State in React
	React Controlled Components
	Props Handling (Advanced)
	React Side-Effects
	React Custom Hooks (Advanced)
	React Fragments
	Reusable React Component
	React Component Composition
	Imperative React
	Inline Handler in JSX
	React Asynchronous Data
	React Conditional Rendering
	React Advanced State
	React Impossible States
	Data Fetching with React
	Data Re-Fetching in React
	Memoized Handler in React (Advanced)
	Explicit Data Fetching with React
	Third-Party Libraries in React
	Async/Await in React (Advanced)
	Forms in React

	React's Legacy
	React Class Components
	React Class Components: State
	Imperative React

	Styling in React
	CSS in React
	CSS Modules in React
	Styled Components in React
	SVGs in React

	React Maintenance
	Performance in React (Advanced)
	TypeScript in React
	Unit Testing to Integration Testing
	React Project Structure

	Real World React (Advanced)
	Sorting
	Reverse Sort
	Remember Last Searches
	Paginated Fetch

	Deploying a React Application
	Build Process
	Deploy to Firebase

	Outline

