

Full Stack Development with JHipster

Second Edition

Build full stack applications and microservices with Spring Boot and modern JavaScript frameworks

Deepu K Sasidharan

Sendil Kumar N

BIRMINGHAM - MUMBAI

Full Stack Development with JHipster Second Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor:
 Kunal Chaudhari

Acquisition Editor:
 Alok Dhuri

Content Development Editor:
 Pathikrit Roy

Senior Editor:
 Afshaan Khan

Technical Editor:
 Gaurav Gala

Copy Editor:
 Safis Editing

Project Coordinator:
 Francy Puthiry

Proofreader:
 Safis Editing

Indexer:
 Tejal Daruwale Soni

Production Designer:
 Arvindkumar Gupta

First published: March 2018

Second edition: January 2020

Production reference: 1220120

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83882-498-3

www.packt.com

To my mother, Latha Kumari, and my father, K Sasidharan, for making me who I am.

To my loving wife, Sabitha, for being supportive and patient throughout our journey together. To my family, friends, colleagues, and the JHipster community.

– Deepu K Sasidharan

To Nellaiyapen, Amutha, Sakthi, and Sahana for their advice, patience, and faith.

To my amigos and all the awesome full stack developers out there.

– Sendil Kumar N

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

Why subscribe?

	
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

	

Improve your learning with Skill Plans built especially for you

	

Get a free eBook or video every month

	
Fully searchable for easy access to vital information

	

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at
www.packt.com

 and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com
 for more details.

At
www.packt.com

 , you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Foreword

The first time I used JHipster was in 2013. I was an independent consultant at the time, and I used JHipster to demonstrate to my client how it could quickly generate an AngularJS and Spring Boot application. I liked the project so much that I decided to write a mini-book about JHipster for InfoQ. As part of the writing process, I developed a sample application and found bugs in JHipster. I reported these bugs to the project, sometimes with fixes.

JHipster is an incredible project. It gives Java developers the opportunity to generate applications that use modern JavaScript frameworks for their UI, while also using the Spring frameworks they know and love in the backend. The project started as an application generator and has gradually morphed into a development platform that makes it possible to create, build, and deploy both monoliths and microservices. Not only that, it follows many of its dependent project's best practices. Simply put, it creates code for you, allowing you to concentrate on your business logic, and gives you a fantastic development experience.

Deepu has been a joy to work with ever since I started reporting issues to JHipster. Not only does he know Angular and React exceptionally well, he also knows the internals of Yeoman and Node, which helps the project maintain momentum. Whenever there's a new major version of JHipster, Deepu is the one who seems to work the hardest and commit the most code.

I met Sendil Kumar N through the JHipster project as well. Sendil was an instrumental figure in migrating from AngularJS to Angular (initially called Angular 2) in 2016 and optimizing our webpack configuration. He also created JHipster's Kotlin support and continues to amaze me with his coding skills.

Deepu and Sendil are staples in the JHipster community, and this book is an in-depth guide to all things JHipster. They have gone the extra mile to deliver an exceptional book, and I think you’ll enjoy learning from them.

I hope you have fun becoming a hip Java developer and building awesome apps with JHipster!

Matt Raible

Web Developer, Java Champion, and Developer Advocate at Okta

Denver, Colorado, USA

Contributors

About the authors

Deepu K Sasidharan
 is the co-lead of JHipster. He has been part of the core JHipster team since its inception and is an active contributor to the project. He currently works for XebiaLabs, a DevOps software company, as a senior polyglot product developer. Prior to that, he worked at TCS as a technical consultant focusing on innovative solutions for airlines. He has over 10 years of experience in the architecture, design, and implementation of enterprise web applications, and
 pre-sales. He is also a Java, JavaScript, web technology, and DevOps expert. When not coding, he likes to read about astronomy and science.

First and foremost, I would like to thank my wife, Sabitha, for her patience and support. I would also like to thank Sendil Kumar, Julien Dubois, Antonio Goncalves, and the JHipster team for their support. Last but not least, I would like to thank the entire Packt editorial team for supporting me in this endeavor.

Sendil Kumar
 N
 is part of the JHipster and Webpack team. He is an avid open source enthusiast and a contributor to many open source projects. He likes to explore and experiment with newer technologies and programming languages. He is passionate about (re)learning. He currently works at Uber as a senior software engineer, where he enhances the payment experience for Uber on the web. Before that, he designed, developed, and maintained enterprise products and DevOps tools that design and orchestrate releases for enterprises.

Thanks to my wife, Sakthi, and daughter, Sahana, for their love and support. I would also like to thank Deepu K Sasidharan, Julien Dubois, Antonio Goncalves, and the entire JHipster team for their support and this awesome product. Finally, thanks to the Packt team, who were helpful and encouraging.

About the reviewer

Julien Dubois
 is the creator and lead developer of JHipster. He is also a Java Champion, with more than 20 years of experience in Java and web technologies.

Julien works as a Cloud Developer Advocate at Microsoft, focusing on improving Java and Spring support on Microsoft Azure.

I would like to thank my wife, Aurélie, and my children, Gabrielle, Adrien, Alice, and Benjamin, for their patience while I was reviewing this book and developing JHipster.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
 and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Table of Contents

	
Title Page

	
Copyright and Credits

	
Full Stack Development with JHipster Second Edition

	
Dedication

	
About Packt

	
Why subscribe?

	
Foreword

	
Contributors

	
About the authors

	
About the reviewer

	
Packt is searching for authors like you

	
Preface

	
Who this book is for

	
What this book covers

	
To get the most out of this book

	
Download the example code files

	
Download the color images

	
Conventions used

	
Get in touch

	
Reviews

	
Section 1: Getting Started with the JHipster Platform

	
Introduction to Modern Web Application Development

	
Modern full stack web development

	
Web architecture patterns

	
Monolithic web architecture

	
Microservice architecture

	
Choosing the right pattern

	
When to choose a monolithic architecture

	
When to choose a microservice architecture

	
Summary

	
Getting Started with JHipster

	
Why JHipster?

	
Goal and adoption of JHipster

	
Introduction to available technologies

	
Client-side technologies

	
HTML5 and CSS3

	
SASS

	
Bootstrap

	
MVVM framework

	
Angular

	
React

	
Vue.js

	
Build tools – webpack and BrowserSync

	
Testing tools – Jest and Protractor

	
Internationalization

	
Server-side technologies

	
Spring Framework

	
Spring Boot

	
Spring Security

	
Spring MVC

	
Spring Data

	
Security

	
JWT

	
Session

	
OAuth2/OIDC

	
Build tools – Maven and Gradle

	
Hibernate

	
Liquibase

	
Caching

	
Ehcache

	
Hazelcast

	
Infinispan

	
Memcached

	
Redis

	
Swagger

	
Thymeleaf

	
Micrometer

	
WebSocket

	
Kafka

	
Testing frameworks – JUnit, Gatling, and Cucumber

	
Introduction to database options

	
SQL databases

	
H2

	
MySQL

	
MariaDB

	
PostgreSQL

	
MS SQL

	
Oracle

	
NoSQL databases

	
MongoDB

	
Cassandra

	
Couchbase

	
Elasticsearch

	
Installing and setting up JHipster

	
Prerequisites

	
Tools required

	
Java

	
Git

	
Node.js

	
Docker

	
IDE configuration

	
System setup

	
Installation of JHipster

	
Summary

	
Section 2: Building and Customizing Web Applications with JHipster

	
Building Monolithic Web Applications with JHipster

	
Application generation

	
Step 1 – preparing the workspace

	
Step 2 – generating code using JHipster

	
Server-side options

	
Client-side options

	
Internationalization options

	
Testing

	
Modules

	
Code walkthrough

	
File structure

	
Server-side source code

	
Java source

	
Resources

	
Client-side source code

	
Starting the application

	
Application modules

	
Home and login modules

	
Account modules

	
Settings

	
Password

	
Registration

	
Admin module

	
User management

	
Metrics

	
Health

	
Configuration

	
Audits

	
Logs

	
API

	
Running generated tests

	
Server-side tests

	
Client-side tests

	
Summary

	
Entity Modeling with JHipster Domain Language

	
Introduction to JDL

	
DSL grammar for JDL

	
Entity modeling with JDL

	
Relationship management

	
DTO, service, and pagination options

	
JDL-Studio

	
Use case entity model

	
Entities

	
Relationships

	
Options for entities

	
Entity generation with JHipster

	
Generated code walkthrough

	
Server-side source code

	
Domain class for the entity

	
Repository interface for the entity

	
Service class for the entity

	
Resource class for the entity

	
Client-side

	
TypeScript model class for the entity

	
Angular services for the entity

	
Angular components of the entity

	
Angular route for the entity

	
Angular module for the entity

	
Generated pages

	
Running the generated tests

	
Summary

	
Customization and Further Development

	
Live reload for development

	
Spring Boot DevTools

	
Webpack dev server and BrowserSync

	
Setting up live reloads for an application

	
Customizing the Angular frontend for an entity

	
Bringing back the sorting functionality

	
Adding a filtering functionality

	
Editing an entity using the JHipster entity sub-generator

	
Changing the look and feel of the application

	
Adding a new i18n language

	
Authorization with Spring Security

	
Limiting access to entities

	
Limiting access to create/edit/delete entities

	
Limiting access to the data of other users

	
Summary

	
Section 3: Continuous Integration and Testing

	
Testing and Continuous Integration

	
Fixing and running tests

	
Briefing on CI

	
CI/CD tools

	
Jenkins

	
Azure Pipelines

	
Travis CI

	
GitLab CI

	
GitHub Actions

	
Setting up Jenkins

	
Creating a Jenkins pipeline using JHipster

	
The Jenkinsfile and its stages

	
Setting up the Jenkinsfile in a Jenkins server

	
Summary

	
Going into Production

	
Introduction to Docker

	
Docker containers

	
Dockerfiles

	
Docker Hub

	
Docker Compose

	
Starting the production database with Docker

	
Introducing Spring profiles

	
Packaging the application for local deployment

	
Building and deploying using Docker

	
Building and deploying an executable archive

	
Upgrading to the newest version of JHipster

	
Deployment options supported by JHipster

	
Heroku

	
Cloud Foundry

	
Amazon Web Services

	
Google App Engine

	
Azure Spring Cloud

	
Azure App Service

	
Production deployment to the Heroku Cloud

	
Summary

	
Section 4: Converting Monoliths to Microservice Architecture

	
Microservice Server-Side Technologies

	
Microservice applications versus monoliths

	
Scalability

	
Efficiency

	
Time constraint

	
Building blocks of a microservices architecture

	
Service registry

	
Service discovery

	
Client-side discovery pattern

	
Server-side discovery pattern

	
Health check

	
Dynamic routing and resiliency

	
Security

	
Fault tolerance and failover

	
Options supported by JHipster

	
JHipster Registry

	
Netflix Eureka

	
Spring Cloud Config Server

	
HashiCorp Consul

	
Service discovery

	
Health discovery

	
Key/Value store

	
Multiple data centers

	
JHipster gateway

	
Netflix Zuul

	
Hystrix

	
JHipster Console

	
Elasticsearch

	
Logstash

	
Kibana

	
Zipkin

	
Prometheus

	
JWT authentication

	
How JWT works

	
JHipster UAA server

	
Summary

	
Building Microservices with JHipster

	
Application architecture

	
Generating a microservice stack using JDL

	
Application modeling using JDL

	
Gateway application

	
JDL specification for the gateway application

	
Microservice invoice application

	
JDL specification for the invoice application

	
Microservice notification application

	
JDL specification for the notification application

	
Modeling microservice entities in JDL

	
Application generation with import-jdl

	
Gateway application

	
Gateway application entities

	
Invoice microservice configuration

	
Notification microservice configuration

	
Summary

	
Working with Microservices

	
Setting up JHipster Registry locally

	
Using a pre-packaged JAR file

	
Docker mode

	
Running a generated application locally

	
Gateway application pages

	
JHipster Registry pages

	
Dashboard

	
System status

	
Instances registered

	
General info and health

	
Application listing page

	
Metrics page

	
Health page

	
Configuration page

	
Logs page

	
Loggers

	
Swagger API endpoints

	
Running invoice and notification applications locally

	
Explaining the generated entity pages

	
Summary

	
Section 5: Deployment of Microservices

	
Deploying with Docker Compose

	
Introducing microservice deployment options

	
A short introduction to Docker Compose

	
Introduction to Kubernetes

	
Introduction to OpenShift

	
Generated Docker Compose files

	
Walking through the generated files

	
Building and deploying everything to Docker locally

	
Generating Docker Compose files for microservices

	
Features of the deployed application

	
JHipster Console demo

	
Scaling up with Docker

	
Summary

	
Deploying to the Cloud with Kubernetes

	
Generating Kubernetes configuration files with JHipster

	
Generating the Kubernetes manifests

	
Walking through the generated files

	
Deploying the application to Google Cloud with Kubernetes

	
Using Istio service mesh

	
What is Istio?

	
Microservice with Istio service mesh

	
Deploying Istio to a Kubernetes cluster

	
Generating the application

	
Deploying to Google Cloud

	
Summary

	
Section 6: React and Vue.js for the Client Side

	
Using React for the Client-Side

	
Generating an application with React client-side

	
Technical stack and source code

	
Technical stacks

	
Using TypeScript

	
State management with Redux and friends

	
Routing with React Router

	
HTTP requests using Axios

	
Bootstrap components using reactstrap

	
Unit testing setup

	
Generated source code

	
Generating an entity with React client-side

	
Summary

	
Using Vue.js for the Client-Side

	
Generating an application with Vue.js client-side

	
Technical stack and source code

	
Technical stack

	
Using TypeScript

	
State management with Vuex

	
Routing with Vue Router

	
HTTP requests using Axios

	
Bootstrap components using BootstrapVue

	
Unit testing setup

	
Generated source code

	
Generating an entity with VueJS client-side

	
Summary

	
Best Practices with JHipster

	
The next steps to take

	
Adding a shopping cart for the application

	
Improving end-to-end tests

	
Improving the CI/CD pipeline

	
Create an e-commerce application with React or Vue.js

	
Building a JHipster module

	
The best practices to keep in mind

	
Choosing a client-side framework

	
Choosing a database option

	
Architecture considerations

	
Security considerations

	
Deployment and maintenance

	
General best practices

	
Using JHipster modules

	
Contributing to JHipster

	
Summary

	
Other Books You May Enjoy

	
Leave a review - let other readers know what you think

Preface

This book, Full Stack Development with JHipster
 , aims to address the following challenges faced by full stack developers today:

	
There is a multitude of technologies and options out there to learn.

	Customer demands have increased, and hence time to market has become more stringent.

	Client-side frameworks have become complicated and difficult to integrate.

	There is so much integration between technologies and concepts that it overwhelms most novice and even proficient developers.

JHipster provides a platform for developers to easily create web applications and microservices from scratch, without having to spend a lot of time wiring everything together and integrating technologies. This frees up time immensely
 for developers to actually focus on their solution rather than spending time learning and writing boilerplate code. JHipster will help novice and experienced developers to be more productive from day one. It's like pair programming with an entire community.

This book will take you on a journey from zero to hero in full stack development. You will learn to create complex production-ready Spring Boot and Angular web applications from scratch using JHipster, and you will go on to develop features and business logic and deploy it
 on cloud services. You will also learn about microservices and how to convert a monolithic application in the microservice architecture as it evolves using JHipster. Finally, you will deploy microservices to a cloud provider using Kubernetes. Additionally, you will learn how to make use of the React and Vue.js support in JHipster and about various best practices and suggestions from the JHipster community and the core development team.

Who this book is for

Anyone with a basic understanding of building Java web applications and basic exposure to Spring and Angular/React/Vue.js will benefit from using this book to learn how to use JHipster for cutting-edge full stack development or to improve their productivity by cutting down boilerplate and learning new techniques. The audience can be broadly classified as follows:

	Full stack web app developers who want to reduce the amount of boilerplate they write and save time, especially for greenfield projects

	Backend developers who want to learn full stack development with Angular, React, or Vue.js

	Full stack developers who want to learn microservice development

	Developers who want to jump-start their full stack web application or microservice development

	Developers who want to quickly prototype web applications or microservices

	Developers who want to learn about Java microservices and their deployment with Kubernetes

What this book covers

Chapter 1
 ,
Introduction to Modern Web Application Development

 , introduces two widely used full stack web application development architectures. It also lays out commonly faced challenges
 in full stack web application development.

Chapter 2
 ,
Getting Started with JHipster

 , introduces the JHipster platform. It will also give the reader a brief overview of different server-side, client-side, and database technology options offered by JHipster. This chapter will also provide instructions to i
 nstall and use JHipster, and the various tools and options it supports.

Chapter 3
 , Building Monolithic Web Applications with JHipster
 , guides the user through the creation of production-ready Spring Boot and Angular web applications from scratch using JHipster
 and will take the reader through the generated code, screens, and concepts.

Chapter 4
 ,
Entity Modeling with JHipster Domain Language

 , introduces the reader to JHipster Domain Language
 (JDL
) and will teach you about building business logic with
 entity modeling and entity creation using JDL and JDL-Studio.

Chapter 5
 ,
Customization and Further Development

 , guides the reader through further development of the generated application. It will also teach the reader more about using technologies such as Angular, Bootstrap, Spring Security, Spring MVC REST, and Spring Data.

Chapter 6
 ,
Testing and Continuous Integration

 , guides the reader through testing and setting up a continuous integration pipeline using Jenkins.

Chapter 7
 , Going into Production
 , shows the reader how to use Docker and how to build and package the app for production. It will also introduce the reader to some of the production cloud deployment options supported by JHipster.

Chapter 8
 ,
Microservice Server-Side Technologies

 , gives an overview of different options available in the JHipster microservice stack.

Chapter 9

 ,
Building Microservices with JHipster

 , guides the reader through converting a JHipster monolith web application into a full-fledged microservice architecture with a gateway, registry, monitoring console, and multiple microservices. It will also guide the reader through creating domain entities for the microservice architecture using JDL. It will also guide the reader through the generated code.

Chapter 10
 , Working with Microservices
 , guides the reader through running the generated applications locally. It will also guide the reader through the generated components, such as
 the JHipster Registry, JHipster Console, and API gateways.

 Chapter 11
 , Deploying with Docker Compose
 , introduces the reader to advanced local and cloud deployment options for microservices. It will also guide the user through local deployment and testing of the generated microservice stack using Docker Compose and JHipster.

Chapter 12
 , Deploying to the Cloud with Kubernetes
 , guides the user through the Google Cloud deployment of the generated microservice stack using Kubernetes and JHipster. It will also introduce Istio and guide the reader through creating and deploying microservices with Istio on Kubernetes.

Chapter 13
 , Using React for the Client-Side
 , takes the user through generating an application with React on the client-side instead of Angular using JHipster.

Chapter 14
 ,
 Using Vue.js for the Client-Side
 , takes the user through generating an application with Vue.js on the client-side instead of Angular using JHipster.

Chapter 15
 , Best Practices with JHipster
 , summarizes what the reader has learned so far and will suggest best practices and
 next steps to utilize the skills learned.

To get the most out of this book

To get the most out of this book, you will need to know the basics of the following technologies:

	Web technologies (HTML, JavaScript, and CSS)

	Java 8

	The Spring Framework

	SQL databases

	Build tools (Maven or Gradle)

	npm

It will also be helpful if you are familiar with using technologies such as Docker and Kubernetes, as it will help you make sense of some of the chapters.

You will also need JDK 11, Git, Docker, and Node.js installed; your favorite web browser; a terminal application; and your favorite code editor/IDE.

Download the example code files

You can download the example code files for this book from your account at www.packtpub.com
 . If you purchased this book elsewhere, you can visit https://www.packtpub.com/support
 and register to have the files emailed directly to you.

You can download the code files by following these steps:

	Log in or register at www.packtpub.com
 .

	Select the Support
 tab.

	Click on Code Downloads
 .

	Enter the name of the book in the Search
 box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR/7-Zip for Windows

	Zipeg/iZip/UnRarX for Mac

	7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at

https://github.com/PacktPublishing/Full-Stack-Development-with-JHipster-Second-Edition

 .
 In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at

https://github.com/PacktPublishing/

 . Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781838824983_ColorImages.pdf
 .

Conventions used

There are a number of text conventions used throughout this book.

CodeInText
 : Indicates c
 ode words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example:
 "In the backend, modify the save
 method of
 ProductOrderService.java
 to create an invoice and shipment for the
 ProductOrder
 and save them all
 ."

A block of code is set as follows:

entity Product {

 name String required

 description String

 price BigDecimal required min(0)

 size Size required

 image ImageBlob

}

enum Size {

 S, M, L, XL, XXL

}

entity ProductCategory {

 name String required

 description String

}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

entity ProductOrder {

 placedDate Instant required

 status OrderStatus required

 invoiceId Long

 code String required

}

Any command-line input or output is written as follows:

> cd invoice

> ./gradlew

Bold
 : Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "You can alternatively test this via your Gateway
 application. Log in to our Gateway
 application and then navigate to Administration
 | Gateway
 .
 "

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback
 : Email feedback@packtpub.com
 and mention the book title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com
 .

Errata
 : Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit https://www.packtpub.com/support/errata
 , selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy
 : If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com
 with a link to the material.

If you are interested in becoming an author
 : If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com
 .

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com
 .

Section 1: Getting Started with the JHipster Platform

In this section, you will be introduced to the modern web application development architecture and the JHipster platform. Here, you will learn about the two widely used full stack web application development architectures and have a brief overview of different server-side, client-side, and database technology options.

This section comprises the following chapters:

	

Chapter 1
 , Introduction to Modern Web Application Development

	

Chapter 2
 , Getting Started with JHipster

Introduction to Modern Web Application Development

According to the Stack Overflow developer survey 2019 (https://insights.stackoverflow.com/survey/2019#developer-roles
), full stack developer
 is the most popular developer title. The software industry defines a full stack developer as someone who can work on different areas of an application stack. The term stack
 refers to the different components and tools that make up an application.

In terms of web application development, the stack can be broadly classified into two areas—frontend
 and backend
 stack, also known as the client-side
 and server-side
 stack. The term frontend
 generally refers to the part of the code that is responsible for the user interface, and the term backend
 refers to the part that is responsible for the business logic, database interactions, user authentication, server configuration, and so on. There is also the DevOps
 part of the application, which includes continuous integration, production deployment, and so on.
 A full stack Java web application developer is expected to work on both frontend and backend technologies, ranging from writing HTML/JavaScript for the user interface to writing Java class files for business logic and SQL queries for database operations. They are also expected to work on DevOps, ranging from production deployments to setting up continuous integration and continuous
 delive
 ry
 (CI/CD
) as required.

With an ever-evolving software architecture landscape, the scope of technologies that a full stack web developer is expected to work with has increased dramatically. It is no longer enough that we can write HTML and JavaScript to build a user interface—we are expected to know client-side frameworks, such as Angular, React, and Vue.js. It is also not enough that we are proficient in enterprise Java and SQL—we are expected to know server-side frameworks, such as Spring, Hibernate, Play, and Quarkus.

In this chapter, we will introduce the following topics:

	Modern full stack web development

	Web architecture patterns

	Choosing the right pattern

Modern full stack web development

The life of a full stack developer would be worthy of a whole book by itself, so let's leave that topic for another day.

Instead, let's look at a user story from a full stack Java web application and see what is involved.

Let's use an example of developing a user management module for a typical Java web application. Let's assume that you would be writing unit test cases for all of the code, and so we won't look at it in detail here:

	You would start by designing the architecture for the feature. You would decide on the plugins and frameworks to use, patterns to follow, and so on.

	You will be modeling the domain model for the feature depending on the database technology used.

	Then, you would create server-side code and database queries to persist and fetch data from the database.

	Once the data is ready, you would implement server-side code for any business logic.

	Then, you would implement an API that can be used to provide data for the presentation over an HTTP connection.

	You would write integration tests for the API.

	Since the backend is ready, you would start writing frontend code in JavaScript or similar technology.

	You would write client-side services to fetch data from the backend API.

	You would write client-side components to display the data on a web page.

	You would build the page and style it as per the design provided.

	You would write
 some automated end-to-end tests for the web page.

	You are not done yet. Once you have tested whether everything works locally, you would create pull requests or check the code into the version control system used.

	You would wait for the continuous integration process to verify everything and fix anything that is broken.

	Once everything is green and the code is accepted, you would typically start the deployment of this feature to a staging or acceptance environment, either on-premises or to a cloud provider using technologies like Docker and Kubernetes. If you choose the latter, you would be expected to be familiar with the cloud technologies used as well. You would also be upgrading the database schema as necessary and writing migration scripts when required.

	Once the feature is accepted, you might be responsible for deploying it into the production environment in a similar way, troubleshooting issues where necessary. In some teams, you might swap the steps with other team members so that you would be deploying a feature developed by your coworker while they deploy yours.

	You might also be responsible, along with your coworkers, for making sure that the production environment is up and running, including the database, virtual machines, and so on.

As you can see, it is no easy task. The range of responsibilities spans from making stylesheet updates on the client-side to running database migration scripts on a virtual machine in the production cloud service. If you are not familiar enough with the setup, then this would be a herculean task, and you would soon be lost in the vast ocean of frameworks, technologies, and design patterns out there.

Full stack development is not for the faint-hearted. It takes a lot of time and effort to keep yourself up to date with the various technologies and patterns in multiple disciplines of software development. The following are some of the common problems you might face as a full stack Java developer:

	Client-side development is not just about writing plain HTML and JavaScript anymore. It is becoming as complex as server-side development, with build tools, transpilers, frameworks, and patterns.

	
There is a new framework almost every week in the JavaScript world, and if you are coming from a Java background, it could be very overwhelming for you.

	
Container technologies such as Docker revolutionized the software industry, but they also introduced a lot of new stuff to learn and keep track of, such as orchestration tools and container management tools.

	
Cloud services are growing day by day. To stay on track, you would have to familiarize yourself with their APIs and related orchestration tools.

	Java server-side technologies have also undergone a major shift in recent times with the introduction of JVM languages, such as Scala, Groovy, and Kotlin, forcing you to keep yourself up to date with them. On the other side, server-side frameworks are becoming more feature-rich, and therefore more complex.

The most important thing of all is to make sure that all of these work well
 together when required. This task will need a lot of configuration, some glue code, and endless cups of coffee.

Transpilers
 are source-to-source compilers. Whereas a traditional compiler compiles from source to binary, a transpiler compiles from one type of source code to another type of source code. TypeScript and CoffeeScript are excellent examples of this; both compile down to JavaScript.

It's very easy to get lost here, and t
 his is where technologies such as JHipster and Spring Boot step in to help. We will look at the details of these technologies in later chapters, but in short, they help by providing the wiring between moving parts so that you only need to concentrate on writing business code. JHipster also helps by providing the abstractions to deploy and manage the application to various cloud providers.

Web architecture patterns

The full stack landscape is further complicated by the different web architecture patterns commonly used these days. The widely used web application architecture patterns today can be broadly classified into two patterns—monolithic architecture
 and microservice architecture
 , the latter of which has become mainstream (fashionable) in recent years.

Monolithic web architecture

A monolithic architecture is the most widely used pattern for web applications because of its simplicity to develop and deploy. Though the actual moving parts will differ from application to application, the general pattern remains the same. In general, a monolithic web application can do the following:

	It can support different clients, such as desktop/mobile browsers and native desktop/mobile applications.

	It can expose APIs for third-party consumption.

	It can integrate with other applications over REST/SOAP web services or message queues.

	It can handle HTTP requests, execute business logic, access databases, and exchange data with other systems.

	It can run on web application containers, such as Tomcat and JBoss.

	It can be scaled vertically by increasing the power of the machines it runs on or scaled horizontally by adding additional instances behind load balancers.

REST
 (short for REpresentational State Transfer
) relies on a stateless, client–server, cacheable communications protocol. HTTP is the most commonly used protocol for REST. It is a lightweight architectural style in which RESTful HTTP communication is used to transfer data between a client and a server, or between two systems.

SOAP
 (short for Simple Object Access Protocol
) is a messaging protocol using HTTP and XML. It is widely used in SOAP web services to transfer data between two different systems.

An example of a typical monolithic web application architecture would be as follows: Let's imagine an online hotel reservation system that takes online
 reservation orders from customers, verifies the room availability, verifies the payment option, makes the reservation, and notifies the hotel. The application consists of several layers and components, including a client-side app—which builds a nice, rich user interface—and several other backend components responsible for managing the reservations, verifying the payment, notifying customers/hotels, and so on.

The application will be deployed as a sing
 le monolithic web application archive

 (WAR
) file that runs on a web application container such as Tomcat, and will be scaled horizontally by adding multiple instances behind an Apache web server acting as a load
 balancer. Take a look at the following diagram:

The advantages of a monolithic web application architecture are as follows:

	It is simpler to develop, as the technology stack is uniform throughout all layers.

	It is simpler to test, as the entire application is bundled in a single package, making it easier to run integration and end-to-end tests.

	It is simpler and faster to deploy, as you only have one package to worry about.

	It is simpler to scale, as you can multiply the number of instances behind a load balancer to scale it out.

	It requires a smaller team to maintain the application.

	The team members share more or less the same skill set.

	The technical stack is simpler and, most of the time, is easier to learn.

	Initial development is faster, thereby making the time to market shorter.

	It requires a simpler infrastructure. Even a simple application container or JVM will be sufficient to run the application.

The disadvantages of a monolithic web application architecture are as follows:

	Components are tightly coupled together, resulting in unwanted side effects, such as changes to one component causing a regression in another.

	It becomes complex and huge as time passes, resulting in slow development turnaround. New features will take more time to develop and refactoring existing features will be more difficult because of tight coupling.

	The entire application needs to be redeployed whenever any change is made.

	It is less reliable because of tightly coupled modules. A small issue with any service might break the entire application.

	Newer technology adoption is difficult as the entire application needs to be migrated. Incremental migration is not possible most of the time, which means that many monolithic applications end up having an outdated technology stack after some years.

	Critical services cannot be scaled individually, resulting in increased resource usage. As a result, the entire application will need to be scaled.

	Huge monolith applications will have a higher start up time and higher resource usage in terms of CPU and memory.

	Teams will be more interdependent and it will be challenging to scale the teams.

Microservice architecture

The microservice architecture has gained momentum in recent years and is gaining popularity in large-scale web application development because of its modularity and scalability. Microservice architecture can offer almost all the features of a monolith that we saw in the previous section. Additionally, it offers many more features and flexibility and so is often considered a superior choice for complex, large-scale applications. Unlike the monolithic architecture, it's quite difficult to generalize the microservice architecture as it could vary heavily depending on the use case and implementation. But they do (generally) share some common traits, which are as follows:

	Microservice components are loosely coupled. Components can be developed, tested, deployed, and scaled independently without disrupting other components.

	Components need not be developed using the same technology stack. This means that a single component can choose its own technology stack and programming language.

	They often utilize advanced features such as service discovery, circuit breaking, and load balancing.

	Microservice components are mostly lightweight and perform a specific functionality. For example, an authentication service will only care about authenticating a user into the system.

	It often has an extensive monitoring and troubleshooting setup.

An example of a microservice web application architecture would be as follows: Let's imagine a huge online e-commerce system where customers can go through categories of merchandise, list their favorites, add items to a shopping cart, make and track orders, and so on. The system has inventory management, customer management, multiple payment modes, order management, and so on. The application consists of several modules and components, including a UI gateway application, which builds a nice, rich user interface and also handles user authentication and load balancing, and several other backend applications responsible for managing the inventory, verifying the payment, and managing orders. It also has performance monitoring and automatic failover for services.

The application will be deployed as multiple executable WAR files in Docker containers hosted by a cloud provider. Take a look at the following diagram:

The advantages of a microservice web application architecture are as follows:

	Loosely coupled components resulting in better isolation, which means that they are easier to test and faster to start up.

	Faster development turnaround and better time to market for new features, and existing features can be easily refactored.

	Services can be deployed independently, making the application more reliable and making patching easier.

	Issues, such as a memory leak in one of the services, are isolated and will not bring down the entire application.

	Technology adoption is easier, as components can be independently upgraded with incremental migration, making it possible to have a different stack for each component.

	More complex and efficient scaling models can be established. Critical services can be scaled more effectively. Infrastructure is used more efficiently.

	Individual components will start up faster, making it possible to parallelize and improve overall startup for large systems.

	Teams will be less dependent on each other. This is best suited for agile teams.

The disadvantages of a microservice web application architecture are as follows:

	It is more complex in terms of the overall stack as different components might have different technology stacks, forcing the team to invest more time in keeping up with them.

	It is difficult to perform end-to-end tests and integration tests as there are more moving parts in the stack.

	The entire application is more complex to deploy as there are complexities with containers, orchestration, and virtualization involved.

	Scaling is more efficient, but it is also more complex, as it would require advanced features, such as service discovery and DNS routing.

	It requires a larger team to maintain the application, as there are more components and more technologies involved.

	Team members share varying skill sets based on the component they work on, making replacements and knowledge sharing harder.

	Applications with many microservices and different teams managing different services creates more organizational challenges.

	The technical stack is complex and, most of the time, it is harder to learn.

	Initial development time will be higher, making the time to market longer.

	It requires a complex infrastructure. Most often, it will require containers (Docker), orchestration (Kubernetes), and multiple JVM or app containers to run on.

	To effectively manage distributed systems, you need to set up monitoring, distributed tracing, service discovery, and so on. These are not easy to set up and require additional components to be run which will
 produce overhead and additional costs.

Choosing the right pattern

When starting a new project these days
 , it is always
 difficult to choose an architecture pattern. There are so many factors to take into account, and it is easy to get confused with all the
 hype surrounding different patterns and technologies (see the blog post on H

 ype Driven Development
 (HDD
)) at
 https://blog.daftcode.pl/hype-driven-development-3469fc2e9b22
). The following are some general guidelines on when to
 choose a monolithic web application architecture over a microservice architecture and vice versa.

When to choose a monolithic architecture

The following list can be used as a general guide when choosing a monolithic architecture. This is not a definitive list, but it gives you an idea of when to go with a monolithic architecture over a microservice architecture:

	When the application
 scope
 is small and well defined, and you are sure that the application will not grow tremendously in terms of features—for example, a blog, a simple online shopping website, or a simple CRUD application

	When the team size
 is small, say fewer than eight people (this isn't a hard limit, but one that's based on the practicality of the team size)

	When the average skill set
 of the team is either novice or intermediate

	When the initial time to market
 is critical

	When you do not want to spend too much on infrastructure
 , monitoring, and so on

	When your user base
 is rather small and you do not expect it to grow—for example, an enterprise app targeting a specific set of users

In most practical use cases, a monolithic architecture would suffice. Read the next section to see when you should consider a microservice architecture over a monolithic architecture.

When to choose a microservice architecture

The following list can be used as a general guide to choosing a microservice architecture. This is not a definitive list, but gives you an idea of when to go with a microservice architecture over a monolithic architecture. Note that, unlike choosing a monolithic architecture, the decision here is more complex and may involve consideration of many of the following points:

	When the application
 scope
 is large and well defined and you are sure that the application will grow tremendously in terms of features—for example, an online e-commerce store, a social media service, a video streaming service with a large user base (yes, I'm thinking of Netflix), or an API provider

	When the team size
 is large and there are enough members to effectively develop individual components independently

	When the average skill set
 of the team is good and team members are confident about advanced microservice patterns

	When the initial time to market
 is not critical as the microservice architecture will take more time to get going initially

	When you are ready to spend more on infrastructure
 , monitoring
 , and so on, in order to improve the product quality

	When your user base
 is huge and you expect it to grow—for example, a social media application targeting users all over the world

Though a monolithic architecture would suffice in most cases, and you should choose it for simpler use cases, investing upfront in a microservice architecture will reap long-term benefits when the application scope is large and you know it will grow further. There is no silver bullet and there are always trade-offs.

For more on these architecture patterns, you can refer to a nice blog post at https://articles.microservices.com/monolithic-vs-microservices-architecture-5c4848858f59
 .

Summary

So far, we've learned what full stack development is and compared two of the most prominent architecture patterns. We also learned about the advantages and disadvantages of monolithic and microservice architecture, which helps us to choose the right pattern for our use case.

In the next chapter, we will take a deep dive into the JHipster platform and look at all the options it provides. We will also learn how to install JHipster and set up our tools and development environment.

Getting Started with JHipster

JHipster is a development platform that helps you go from zero to hero! JHipster can help you to create beautiful web applications and complex microservices architectures in a jiffy. JHipster also offers various tools to develop the applications further using business entities, and deploy them to various cloud services and platforms. At its core, JHipster is a Yeoman code generator that creates Spring Boot and Angular/React/Vue.js-based applications. It can create monolithic architectures as well as microservices architectures with every feature working out of the box.

In this chapter, we will cover the following topics:

	Why you should use JHipster and how it helps compared to traditional development approaches

	The goal of JHipster

	The various server-side and client-side technology options available in JHipster

	Preparation of a development environment

	Installation of JHipster and required dependencies

Yeoman (http://yeoman.io
) is a scaffolding tool that helps you to create code generators. You can use it to create any kind of application generator with the help of the built-in template engine and tools.

Why JHipster?

If you are wondering why you should be using JHipster, then just imagine the following scenario. You are tasked to build a web application, let's say a blog with an Angular frontend and a Java backend, with features for users to create blog posts and be able to display blog posts based on user permissions. You are also asked to build administrative modules such as user management and monitoring. Finally, you have to test and deploy the application to a cloud service using Docker.

If you are approaching this challenge the traditional way, you will most probably be performing the following steps. Let's skip the details for simplicity. So, the steps are as follows:

	Design an architecture stack and decide on various libraries to use (let's say you choose Spring Framework for the backend, with Spring Security and Spring MVC).

	Create an application base with all the technologies wired together (for example, you will have to make sure the authentication flow between the Angular client-side and Spring Security is wired properly).

	Write a build system for the application (let's say you used webpack to build the Angular client-side and Gradle to build the server-side).

	Write integration tests and unit tests for the base.

	Create administrative modules.

	Design business entities and create them with the Angular client-side and Java server-side with test coverage.

	Write all the business logic.

	Build Docker images, test the application, and deploy it.

While this approach definitely works, for this simple application you would have spent anywhere between 4 to 6 weeks depending on the team size. Now, more than 70% of the effort would have been spent on writing boilerplate code and making sure all the libraries work well together. Now, would you believe me if I say that you could develop, test, and deploy this application in less than 30 minutes using JHipster? Yes, you can, while still getting high-quality, production-grade code with lots of extra bells and whistles. We will see this in action in our next chapter, where we will build a real-world application using JHipster.

Let's take a look at the goal and adoption of JHipster.

Goal and adoption of JHipster

The goal of JHipster is to provide developers with a platform where you can focus on your business logic rather than worrying about wiring different technologies together, and also one that provides a great developer experience. Of course, you can use available boilerplate within your organization or from the internet and try to wire it up together, but then you will be wasting a lot of time reinventing the wheel. With JHipster, you will create a modern web application or microservices architecture with all the required technologies wired together and working out of the box, such as the following:

	A robust and high-performance Spring Framework-based Java stack on the backend

	A rich mobile-first frontend with Angular, React, or Vue.js supported by Bootstrap

	A battle-tested microservices architecture unifying Netflix OSS, Elastic Stack, Docker, and Kubernetes

	A great tooling and development workflow using Maven/Gradle, webpack, and npm

	Out-of-the-box continuous integration using Jenkins, Travis, Azure DevOps, or GitLab

	Excellent Docker support and support for orchestration tools such as Kubernetes and OpenShift out of the box

	Out-of-the-box support for deployment of the application with major cloud providers

	Above all, great code with lots of best practices and industry standards at your fingertips

Netflix OSS (https://netflix.github.io
) is a collection of open source tools and software produced by the Netflix, Inc. team geared toward microservices architecture. In the current cloud-native world, these libraries and tools are being replaced by tools from the Kubernetes ecosystem.

JHipster has been steadily increasing in popularity as Spring Boot and Angular/React/Vue.js have gained momentum, and lots of developers have started to adopt them as the de facto frameworks for web development. As per official statistics at the time of writing (end of 2019), there are more than 20,000 applications generated per month and JHipster has been installed around 2.5 million times. It has more than 500 contributors, with official contributions from Google, Microsoft, RedHat, Heroku, and so on.

Elastic Stack
 (https://www.elastic.co/products
), formerly known as ELK Stack
 , is a collection of software tools that help in the monitoring and analytics of microservices developed by the Elasticsearch team.

In the next section, we'll learn about the different technologies supported by JHipster.

Introduction to available technologies

JHipster supports an incredible number of modern web application technologies out of the box. Some of them are used as the base or core of the generated application, while some technologies are opt-in via choices made during application generation. Let's see the different technologies supported mainly for monolithic applications in brief:

	Client-side technologies

	Server-side technologies

	Database options

There are many more technologies supported, and we will look at them in later chapters when we touch upon microservices.

Client-side technologies are explained in the following sections.

Client-side technologies

The role of client-side technologies in full stack development has grown from just using JavaScript for client-side validations to writing full-blown, single-page applications using client-side MVVM frameworks. The frameworks and toolchains used have become complex and overwhelming for developers who are new to the client-side landscape. Fortunately for us, JHipster provides support for most of the following widely used client-side technologies. Let us take a brief look and get familiar with the important tools and technologies that we will use. No need to worry if it is overwhelming; we will take a deeper look at some of the more important ones during the course of the book.

In the next section, we'll learn about the different client-side technologies.

HTML5 and CSS3

Web technologies, especially HTML and CSS, have undergone major updates and are becoming better day by day due to excellent support in modern browsers.

HTML5 (https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
) is the latest of the HyperText
 Markup Language
 (HTML
) standard, which introduces new elements, attributes, and behaviors. The term is used to collectively refer to all the HTML technologies used to build modern web applications. This iteration introduced support for features such as offline storage, WebSockets, web workers and WebGL. JHipster also uses best practices from HTML5 Boilerplate (https://html5boilerplate.com
).

HTML5 Boilerplate
 is a collection of modern technologies, default settings, and best practices that kick-start modern web development faster.

CSS3 (https://developer.mozilla.org/en-US/docs/Web/CSS/CSS3
) is the latest of the Cascading Style Sheets
 (CSS
) specification. It adds support for media query, animations, flexbox, round corners, and a lot more. CSS3 makes it possible to natively animate elements, apply special effects, apply filters, and so on to get rid of the many JavaScript hacks that were used earlier.

Flexible box, or flexbox, is a layout mode (https://developer.mozilla.org/en-US/docs/Web/CSS/Layout_mode
) that can be used instead of the box model used traditionally. This allows you to have a flexible box model, making responsive layouts easier to handle without floats and margin collapse issues.

SASS

Syntactically Awesome Style Sheets
 (SASS
 ; http://sass-lang.com
) is a CSS extension language. It is preprocessed and converted to CSS during compile time. It has similar semantics to CSS and is 100% compatible with all versions of CSS. It additionally supports advanced features such as nested syntax, variables, mixins, inheritance, partials, and so on. SASS makes it possible to reuse CSS and to write maintainable style sheets. JHipster uses SASS by default for its CSS3.

Bootstrap

Bootstrap (https://getbootstrap.com
) is a responsive UI framework for modern web development. It offers a mobile-first approach for web development with utilities and UI components that are fully responsive. Bootstrap 4 is the latest version, uses flexbox for layout, and is completely written in SASS, which makes it easy to customize. Bootstrap supports a 12-column grid framework, which lets you build responsive web pages with ease. JHipster uses ng-bootstrap (https://ng-bootstrap.github.io
) for Angular and reactstrap (https://reactstrap.github.io/
) for React so that pure Angular/React components are used instead of the ones provided by Bootstrap, which are built using jQuery, and Bootstrap is used only for styling.

Mobile-first web development
 is an approach where the UX/UI is designed for smaller screen sizes first, thus forcing you to focus on the most important data/elements to be presented. This design is then gradually enhanced for bigger screen sizes making the end result responsive and efficient.

JHipster also supports Bootswatch (https://bootswatch.com/
) themes for Bootstrap. You can choose a theme from the supported Bootswatch themes while generating the application.

MVVM framework

Model-View-View-Model
 (MVVM
) is an architectural pattern originally developed by Microsoft. It helps to abstract or separate the client-side (GUI) development from the server-side (data model). The view model is an abstraction of the View
 and represents the state of data in the Model
 . With JHipster, you can choose between Angular, React, and Vue.js as the client-side framework.

There is also an official JHipster Vue.js blueprint (https://github.com/jhipster/jhipster-vuejs
) if you would like to use Vue.js as the client-side framework. We will have a dedicated section regarding this later in the book.

We'll take a look at Angular, React, and Vue.js in the next sections.

Angular

Angular (https://angular.io
 ; version 2 and above is a complete backward-incompatible rewrite of the original AngularJS framework) is a client-side MVVM framework, maintained by Google, which helps to develop single-page applications
 (SPAs
). It is based on a declarative programming model and it extends standard HTML with the ability to add additional behavior, elements, and attributes through components.

Angular is written in TypeScript and recommends the use of TypeScript to write Angular applications as well. Angular removed some of the concepts that were used in AngularJS, such as scope, controller, and factory. It also has a different syntax for binding attributes and events. Another major difference is that the Angular library is modular and hence you can choose the modules that you need, to reduce bundle size. Angular also introduced advanced concepts such as Ahead-of-Time
 (AOT
) compilation, lazy loading and Reactive Programming.

TypeScript is a superset of ECMAScript 6 (ES6 – version 6 of JavaScript) and is backward-compatible with ES5. It has additional features such as static typing, generics, and class attribute visibility modifiers. Since TypeScript is a superset of ES6, we can also use ES6+ features (http://es6-features.org
) such as modules, lambdas (arrow functions), generators, iterators, string templates, reflection, and spread operators.

React

React (https://reactjs.org
) is not a full-fledged MVVM framework. It is a JavaScript library for building client-side views or user interfaces. It is developed and backed by Facebook and has a vibrant community and ecosystem behind it. React follows an HTML in JavaScript approach and has a special format called JSX to help us write React components. Unlike Angular, React doesn't have too many concepts or APIs to learn and hence is easier to start with, but React only cares about rendering the UI and hence to get similar functionality offered by Angular, we would have to pair React with other libraries such as React Router (https://reacttraining.com/react-router
), Redux (https://redux.js.org
), and MobX (https://mobx.js.org
). JHipster uses React along with Redux and React Router and similar to Angular, JHipster uses TypeScript to write React as well. But this is optional as React can be written using JavaScript as well, preferably ES6 (http://es6-features.org
). React is fast to render due to its use of a virtual DOM (https://reactjs.org/docs/faq-internals.html
) to manipulate a view instead of using the actual browser DOM.

Vue.js

Vue.js (https://vuejs.org
) is a progressive JavaScript framework. It is open source and completely community-driven. Vue.js is what a marriage between AngularJS and React would look like. It has a similar syntax to AngularJS but has the speed and performance of React. Like React, Vue.js is also a UI framework that can be combined with other libraries to build SPAs. Vue.js can be written in JavaScript or TypeScript and can be used to write small web components or full-fledged SPAs. JHipster has an official blueprint to provide Vue.js support.

Build tools – webpack and BrowserSync

The client-side has evolved a lot and become as complex as the server-side, hence it requires a lot more tools in your toolbelt to produce optimized results. You need a build tool to transpile, minimize, and optimize your HTML, JavaScript, and CSS code. One of the most popular is webpack. JHipster uses webpack for Angular, React, and Vue.js.

Webpack (https://webpack.js.org
) is a module bundler with a very flexible loader/plugin system. Webpack walks through the dependency graph and passes it through the configured loaders and plugins. With webpack, you can transpile TypeScript to JavaScript, minimize, and optimize CSS and JavaScript, compile SASS, revision, hash your assets, and so on. Webpack can remove dead code in a process called tree shaking
 , thus reducing bundle size. Webpack is configured using a configuration file and can be run from the command line or via NPM/Yarn scripts.

Then we have BrowserSync (https://browsersync.io
), which is a Node.js tool that helps with browser testing by synchronizing file changes and interactions of the web page across multiple browsers and devices. It provides features such as auto-reload on file changes, synchronized UI interactions, synchronized scrolling, and so on. It integrates with webpack to provide a productive development setup. It makes testing a web page on multiple browsers and devices super easy.

Testing tools – Jest and Protractor

Gone are the days when the client-side code didn't require unit testing. With the evolution of client-side frameworks, the testing possibilities also improved. There are many frameworks and tools available for unit testing, end-to-end testing, and more. JHipster creates unit tests for client-side code using Jest out of the box and also supports creating end-to-end tests using Protractor.

Jest (https://jestjs.io/
) is a JavaScript testing framework. It can work with TypeScript, Angular, React, and Vue.js. It has a simple API and great features and integrates well with continuous integration tools.

Protractor (http://www.protractortest.org
) is an end-to-end testing framework developed by the Angular team. It was originally intended for Angular and AngularJS applications but it is flexible enough to be used with any framework, such as React, jQuery, and Vue.js. Protractor runs end-to-end tests against real browsers using the Selenium web driver API.

Internationalization

Internationalization
 (i18n
) is a very important feature these days and JHipster supports this out of the box. Multiple languages can be chosen during application creation. On the client-side, this is achieved by storing GUI text in JSON files per language and using an Angular/React library to dynamically load this based on the language selected at runtime.

Do you know why internationalization is abbreviated as i18n? Because there are 18 characters between i and n. There are other similarly named abbreviations in web technology, for example, accessibility
 (a11y
), localization
 (l10n
), globalization
 (g11n
), and localizability
 (l12y
).

Server-side technologies are explained in the following sections.

Server-side technologies

Server-side technologies in web development have evolved a lot, and with the rise of frameworks such as Spring and Play, the need for Java EE has reduced and opened doors for more feature-rich alternatives, such as Spring Boot. Some of the core technologies such as Hibernate are here to stay, while newer concepts such as JWT, Liquibase, Swagger, Kafka, and WebSockets bring a lot of additional opportunities. Let us take a quick look at some of the important technologies supported by JHipster; we will encounter these later on in the book and will take a deeper look at some of these technologies.

In the next section, we'll learn about different server-side technologies.

Spring Framework

Spring Framework (https://spring.io
) might be the best thing since sliced bread in the Java world. It changed the Java Web application landscape for the good. The landscape was monopolized by Java EE vendors before the rise of Spring and soon after Spring, it became the number one choice for Java Web developers, giving Java EE a run for its money. At its core, Spring is an Inversion of Control
 (IoC
 ; https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans
) container providing dependency injection and application context. The main features of Spring or the Spring triangle, combine IoC, Aspect-Oriented Programming
 (AOP
 ; https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#aop
), and technology abstractions in a consistent way. The framework has numerous modules aimed at different tasks, such as data management, security, REST, and web services. Spring Framework and its modules are free and open source. Let us see some of the important modules in a bit more detail.

IoC is a software design pattern where custom or task-specific code is invoked by a library, rather than the traditional procedural programming approach where custom code calls libraries when required. IoC helps to make the code more modular and extendable. AOP provides another way of thinking about program structure. The unit of modularity is the aspect that enables the modularization of concerns such as transaction management that cut across multiple types and objects.

We'll take a look at Spring Boot, Spring Security, Spring MVC, and Spring Data in the next sections.

Spring Boot

Spring Boot (https://spring.io/projects/spring-boot
) is a widely used solution these days for Java web application development. It has an opinionated convention over configuration approach. It is completely configuration driven and makes using Spring Framework and many other third-party libraries a pleasure. Spring Boot applications are production-grade and can just run in any environment that has a JVM installed. It uses an embedded servlet container such as Tomcat, Jetty, or Undertow to run the application. It autoconfigures Spring wherever possible with sensible defaults and has starter POM for many modules and third-party libraries. It does not require any XML configuration and lets you customize autoconfigured beans using Java configuration.

JHipster, by default, uses Undertow as the embedded server in the applications generated. Undertow is very lightweight and faster to start and is ideal for the development and production of lightweight applications.

Spring Security

Spring Security (https://spring.io/projects/spring-security
)
 is the de facto solution for security in a Spring Framework-based application. It provides an API and utilities to manage all aspects of security, such as authentication and authorization. It supports a wide range of authentication mechanisms, such as OAuth2, JWT, Session (web form), LDAP, SSO
 (short for single sign-on
) servers, JAAS
 (short for Java Authentication and Authorization Service
), and Kerberos. It also has features such as remember me and concurrent sessions.

Spring MVC

Spring MVC (https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html
) is the default solution to work with the servlet API within Spring applications. It is a request-based system and abstracts the servlet API to make it easier to design controllers to serve HTTP requests. REST is the de facto standard for designing API endpoints these days, and Spring MVC REST is a specific subset that makes it easier to design and implement RESTful services.

Spring Data

Spring Data (https://spring.io/projects/spring-data
) is a module that abstracts data access operations for many different data access technologies and databases. It provides a consistent API to work seamlessly with different underlying implementations. This frees us from worrying about the underlying database and data access technology. It has powerful features such as dynamic query generation from method names and custom object mapping abstractions. Spring data supports working with JPA, MongoDB, Redis, and Elasticsearch, to name a few. It also lets you export Spring Data repositories as RESTful resources.

Security

In modern web applications, there are multiple ways to implement authentication and authorization. Spring Security supports a wide range of mechanisms, as we saw earlier, and JHipster provides support for the following standards.

We'll take a look at JWT, Session, and OAuth2/OIDC in the next sections.

JWT

JSON Web Token
 (JWT
 ; https://jwt.io
) is an open industry standard for security tokens. JWT authentication works by a server and client passing and verifying claims. A server generates a JWT token and passes it back to the client when user credentials are successfully validated. The client will store this token locally and use it to request protected resources from the server later by passing the token in the request header. This is a stateless authentication mechanism. This is explained in detail in Chapter 8
 , Microservice Server-Side Technologies
 .

Session

Session-based authentication is the traditional web form-based authentication mechanism where the server creates and maintains a session for the validated user credentials. This is stateful and normally is not very scalable unless you use a distributed HTTP session, which is possible using a distributed cache such as Hazelcast or using the session replication features of a dedicated web server or load balancer. JHipster adds a lot of features on top of the standard mechanism, such as secured tokens that are stored in the database, sessions can be invalidated, remember me mechanisms, and so on.

OAuth2/OIDC

OAuth2 (https://developer.okta.com/blog/2017/06/21/what-the-heck-is-oauth
) is a protocol for stateless authentication and authorization. The protocol allows applications to obtain limited access to user accounts on services. User authentication is delegated to service, typically, an OAuth2 server. OAuth2 is more complicated to set up when compared to the previously mentioned mechanisms.

OpenID Connect
 (https://openid.net/connect/
) is an identity layer on top of the OAuth 2.0 protocol. It is governed by the OpenID foundation and has a specification of the implementation and hence allows for implementation by different vendors.

JHipster supports setting up OAuth2 with OpenID Connect
 (OIDC
) and can use Keycloak (https://keycloak.org
) or Okta (https://developer.okta.com/blog/2017/10/20/oidc-with-jhipster
) out of the box.

Build tools – Maven and Gradle

JHipster supports using either Maven or Gradle as the build tool for the server-side code. Both are free and open source.

Maven
 (https://maven.apache.org
) is a build automation tool that uses an XML document called pom.xml
 to specify how an application is built and its dependencies. Plugins and dependencies are downloaded from a central server and cached locally. The Maven build file is called a Project Object Model
 (POM
) and it describes the build process. Maven has a long history and is much more stable and reliable than Gradle. It also has a huge ecosystem of plugins. JHipster provides its own BOM
 (short for Bill Of Materials
 ; https://github.com/jhipster/jhipster
) to make dependency management easier.

Gradle
 (https://gradle.org
) is a build automation tool that uses a Groovy DSL to specify the build plan and dependencies. Gradle is much more flexible and feature-rich than Maven, making it an ideal choice for very complex build setups. The latest version of Gradle easily surpasses Maven in terms of speed and features. Another unique advantage of Gradle is the ability to write standard Groovy code in the build script, making it possible to do pretty much everything programmatically. It has great plugin support as well. Gradle also provides a Kotlin DSL (https://gradle.org/kotlin/
).

Hibernate

Hibernate (http://hibernate.org
) is the most popular ORM
 (short for object-relational mapping
) tool for Java. It helps to map an object-oriented domain model to a relational database scheme using Java annotations. It implements JPA
 (short for Java Persistence API
) and is the go-to provider for a JPA implementation. Hibernate also offers many additional features, such as entity auditing and bean validation. Hibernate automatically generates SQL queries depending on the underlying database semantics and makes it possible to switch the databases of an application very easily. It also makes the application database independent without any vendor lock-in. Hibernate is free and open source software.

Liquibase

Liquibase (http://www.liquibase.org
) is a free and open source version control tool for the database. It lets you track, manage, and apply database schema changes using configuration files without having to fiddle with SQL. It is database-independent and goes well with JPA, making the application database independent. Liquibase can be run from within the application, making database setup and management seamless. Liquibase can also add/remove data to/from a database, making it good for migrations as well.

Caching

Caching is a good practice in software development, and it improves the performance of read operations considerably. Caching can be enabled for Hibernate second level cache, and also with Spring Cache abstraction, to enable caching at the method level.

Spring Cache abstraction (https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache
) lets us easily add caching at different layers of the application. For example, with this, we can enable caching of a pure function (which doesn't involve any side effects) so that for the same set of inputs, the outputs are produced from the cache instead of executing the method.

JHipster supports JCache-compatible Hibernate second level cache provided by Ehcache, Hazelcast, Redis, and Infinispan.

We'll take a look at Ehcache, Hazelcast, Infinispan, Memcached, and Redis in the next sections.

Ehcache

Ehcache (http://www.ehcache.org
) is an open source JCache provider and is one of the most widely used Java caching solutions. It is JCache compatible and is a good choice for applications that are not clustered. For clustered environments, additional Terracotta servers (this is an in-memory data platform providing both caching and operational storage) are required. It is stable, fast, and simple to set up.

Hazelcast

Hazelcast (https://hazelcast.org
) is an open source distributed in-memory data grid solution. It has excellent support for clustered applications and distributed environments and hence is a good choice for caching. While Hazelcast has numerous other features and use cases, caching remains one of the important ones. It is highly scalable and a good option for microservices due to its distributed nature.

Infinispan

Infinispan (http://infinispan.org
) is a distributed cache and key-value store from Red Hat. It is free and open source. It supports clustered environments and is hence a good choice for microservices. It has features such as in-memory data grids and MapReduce support.

Memcached

Memcached (https://memcached.org/
) is a high-performance distributed in-memory object cache system. It's a simple but effective cache solution. It can be used with Spring cache abstraction at the moment in JHipster but not as a second level Hibernate cache.

Redis

Redis (https://redis.io/
) is an open source in-memory data store. It has features such as replication, Lua scripting, LRU eviction, transactions, and different levels of on-disk persistence. High availability can be configured using Redis Sentinel and automatic partitioning can be done with Redis Cluster. It can be used as a database, cache, and message broker. It can be used in a JHipster application via the Spring Cache Abstraction and as Hibernate second level cache.

Swagger

The OpenAPI specification
 (previously known as the Swagger specification
) is an open standard for designing and consuming RESTful web services and API. The OpenAPI specification is a standard founded by a variety of companies, including Google, Microsoft, and IBM. The Swagger (https://swagger.io
) name is now used for the associated tooling. JHipster supports the API-first development model with Swagger code-gen and also supports API visualization with Swagger UI.

Thymeleaf

Thymeleaf (http://www.thymeleaf.org
) is an open source Java server-side templating engine with very good integration with Spring. Thymeleaf can be used to generate web pages on the server-side, for templating email messages, and more. Although server-side web page templates are slowly losing out to client-side MVVM frameworks, it is still a useful tool if you want to have something more than a SPA using Angular.

Micrometer

Micrometer metrics (https://micrometer.io/
) is an open source vendor-neutral facade for application metrics on JVM. Paired with Spring Boot, this can
provide

 a lot of value by measuring the performance of the REST API, measuring the performance of the cache layer and database, and more. Micrometer provides a handy list of annotations to mark methods to be monitored. It integrates with popular monitoring solutions.

WebSocket

WebSocket (https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
) is a communication protocol that works on top of TCP. It provides a full-duplex communication channel over a single TCP connection. It was standardized by W3C (https://www.w3.org
). It is lightweight and enables real-time communication between a client and a server. In terms of web applications, this enables the server to communicate with the client app in the browser without a request from the client. This opens the door to push data from server to client in real time and for implementations such as real-time chat and notifications. On the server-side, JHipster relies on Spring, which provides the necessary support (https://spring.io/guides/gs/messaging-stomp-websocket/
) to work with WebSocket.

Kafka

Kafka (https://kafka.apache.org
) is an open source stream processing system. It has a distributed pub/sub-based message queue for storage. Its fault tolerance and scaling capabilities have helped it to replace JMS and AMQP as the preferred messaging queue. Spring provides an abstraction on top of Kafka to make it easier to configure and work with Kafka.

JMS
 (short for Java Message Service
) is a messaging standard developed for Java EE and enables sending and receiving asynchronous messages between components using topics and queues. AMQP
 (short for Advanced Message Queuing Protocol
 ; https://www.amqp.org/
) is an open standard protocol for message-oriented middleware, providing features such as queuing, routing, and publish-subscribe mechanisms.

Testing frameworks – JUnit, Gatling, and Cucumber

Server-side testing can be mainly categorized into unit testing, integration testing, performance testing, and behavior testing. JHipster supports all of these with JUnit, Gatling, and Cucumber, out of which JUnit comes out of the box, while the others are opt-in.

JUnit
 (https://junit.org/junit5/
) is the most widely used Java testing framework. It is free and open source software. It was originally intended for unit testing but combined with Spring Test Framework (https://docs.spring.io/spring/docs/current/spring-framework-reference/testing.html#testing-introduction
), it can also be used for integration testing. JHipster creates unit tests and REST API integration tests using JUnit and Spring Test Framework.

Gatling
 (https://gatling.io/
) is a free and open source performance and load testing tool. It is based on Scala and uses a Scala DSL to write test specs. It creates detailed reports of the load testing and it can be used to simulate all kinds of load on a system. It is a required tool for performance-critical applications.

Cucumber
 (https://cucumber.io/
) is a behavior-driven development
 (BDD
) testing framework used mainly for acceptance testing. It uses a language parser called Gherkin, which is very human-readable as it looks similar to plain English.

With this, we have covered both the client- and server-side technologies currently supported by JHipster. Now let's discuss the available database options.

Introduction to database options

Today, there are a wide variety of database options out there. These can be broadly classified into the following:

	SQL databases

	NoSQL databases

You can visit https://db-engines.com/en/ranking
 to see the popularity of different databases.

JHipster supports some of the most widely used databases, as detailed here.

SQL databases

SQL databases or relational database management systems
 (RDBMSes
) are those that support a relational table-oriented data model. They support table schema defined by the fixed name and number of columns/attributes with a fixed data type. Each row in a table contains a value for every column. Tables can be related to each other.

We'll take a look at H2, MySQL, MariaDB, PostgreSQL, MS SQL, and Oracle in the next sections.

H2

H2 (http://www.h2database.com/html/main.html
) is a free embedded RDBMS that's commonly used for development and testing. It can normally run in filesystem mode for persistence or in-memory mode. It has a very small footprint and is extremely easy to configure and use. It doesn't have many of the enterprise features offered by other mainstream database engines and hence is normally not preferred for production usage.

MySQL

MySQL (https://www.mysql.com/
) is one of the most popular database engines and is free and open source software. It is from Oracle but also has a very vibrant community. It has enterprise-ready features such as sharding, replication, and partitioning. It is one of the most popular SQL databases these days.

MariaDB

MariaDB (https://mariadb.org/
) is a MySQL-compliant database engine with an additional focus on security, performance, and high availability. It is gaining popularity and is sought after as a good alternative for MySQL. It is free and open source software.

PostgreSQL

PostgreSQL (https://www.postgresql.org/
) is another free and open source database system that is very much in demand. It is actively maintained by a community. One of the unique features of PostgreSQL is the advanced JSON object storage with the capability to index and query within the JSON. This makes it possible to also use it as a NoSQL database or in Hybrid mode. It also has enterprise-ready features such as replication and high availability.

MS SQL

MS SQL Server (https://www.microsoft.com/en-us/sql-server/default.aspx
) is an enterprise database system developed and supported by Microsoft. It is commercial software and requires a paid license to use. It has enterprise-ready features and premium support from Microsoft. It is one of the popular choices for mission-critical systems.

Oracle

Oracle (https://www.oracle.com/database/index.html
) is the most widely used database due to its legacy and enterprise features. It is a commercial software and requires a paid license to use. It has enterprise-ready features such as sharding, replication, and high availability.

NoSQL databases

This is a wide umbrella that encompasses any database that is not an RDBMS. This includes document stores, wide column stores, search engines, key-value stores, graph DBMS, and content stores. A general trait of such databases is that they can be schema-less and do not rely on relational data.

MongoDB

MongoDB (https://www.mongodb.com/
) is a cross-platform document store and is one of the most popular choices for NoSQL databases. It has a proprietary JSON-based API and query language. It supports MapReduce and enterprise features such as sharding and replication. It is a free and an open source software.

MapReduce
 is a data processing paradigm where a job is split into multiple parallel map tasks, with the produced output sorted and reduced into the result. This makes processing large datasets efficient and fast.

Cassandra

Apache Cassandra (http://cassandra.apache.org/
) is a distributed column store with a focus on high availability, scalability, and performance. Due to its distributed nature, it doesn't have a single point of failure, making it the most popular choice for critical high-availability systems. It was originally developed and open sourced by Facebook.

Did you know? Cassandra can have up to 2 billion columns per row!

Couchbase

Couchbase (https://www.couchbase.com/
) is a commercially supported NoSQL database. It is a distributed document-oriented database and has enterprise-grade features and support.

Elasticsearch

Elasticsearch (https://www.elastic.co/products/elasticsearch
) is a search and analytics engine based on Apache Lucene (http://lucene.apache.org/
). It is technically a NoSQL database, but it is primarily used as a search engine due to its indexing capability and high performance. It can be distributed and multi-tenant with full-text search capability. It has a web interface and JSON documents. It is one of the most widely used search engines.

Now we're ready to install and set up JHipster on your system.

Installing and setting up JHipster

To get started with JHipster, you will have to install the JHipster CLI tool. The JHipster CLI comes with commands required to use all of the features offered by the platform.

JHipster Online
 : If you would like to create an application without installing anything, you can do so by visiting https://start.jhipster.tech
 . You can authorize the application to generate a project directly in your GitHub account or you can download the source as a ZIP file.

Before we install the JHipster CLI, let's take a look at the prerequisites.

Prerequisites

We will need to install some dependencies and configure our favorite IDE to work best with the generated code. You can visit http://www.jhipster.tech/installation/
 to get up-to-date information about this.

Tools required

The following are the tools required to install JHipster and to work with the generated applications. If you do not have them installed already, perform the following steps and install them.

You will need to use a command-line interface (Command Prompt or Terminal application) throughout this section, and hence it is better to have one open. Since the installation of some of the following tools will alter the environment variables, you might have to close and reopen the Terminal after the installation of a tool:

	On Windows, use the default Command Prompt (cmd) or PowerShell.

	On Linux, use Bash or your favorite Terminal emulator.

	On macOS, use iTerm or your favorite Terminal application.

Java

JHipster supports the latest LTS version of Java (Java 11). While JHipster applications will work with Java versions 8 to 13, it is recommended to stick to the latest stable LTS release (Java 11).

The generated applications use Java 8 features to be backward compatible, and hence Java 8 is the minimum required version to compile the applications:

	Check for your installed Java version by running the java -version
 command in the Terminal. It should display Java version x.x.x
 , where x.x.x
 could be any version between 1.8 and 12.0.

	If you do not have the correct version installed, you can visit the Oracle website (http://www.oracle.com/technetwork/java/javase/downloads/index.html
) and follow the instructions to install the JDK for Java 11.

	Once the JDK is installed, check the command in step 1
 again to make sure. As the JDK alters the environment variable to set JAVA_HOME,
 you will have to open a new Terminal here.

Alternatively, you can also use SDKMAN (https://sdkman.io/
) to manage multiple Java versions from different vendors. Follow the installation (https://sdkman.io/install
) and usage instructions (https://sdkman.io/usage
) from the website.

Git

Git is the most widely used version control system for source code management. It promotes distributed revision control and is an integral part of development these days.

JHipster uses Git for upgrading applications, and Git is also recommended for the smooth working of Node.js and npm
 ecosystems:

	Check for Git by running git --version
 in the Terminal. It should display Git version x.x.x
 ; the version number could be anything.

	If the command is not found, you can visit git-scm
 (https://git-scm.com/downloads
) and follow the instructions to install Git on your operating system.

	Once installed, run the command in step 1
 again to make sure.

Node.js

Node.js is a JavaScript runtime environment. It revolutionized the JavaScript world and made JavaScript the most popular development language among developers today (according to https://insights.stackoverflow.com/survey/2019#most-popular-technologies
). The Node ecosystem is the largest in the world, with over 800,000 packages (http://www.modulecounts.com/
), and is managed by npm
 , the default package manager.

The JHipster CLI is a Node.js application and hence requires Node.js, to run, and many of the tools used in the generated application will also require Node.js:

	Check for Node.js by typing node -v
 in the Terminal. It should display a version number. Make sure that the version number is greater than 8.10 and corresponds to the latest LTS version of Node.js.

	If the command is not found or if you have a lower version of Node.js then you can visit the Node.js website (https://nodejs.org/en/download/
) and follow the instructions to install the latest LTS version. Please note that non-LTS versions (current) might not be stable, and it is advised not to use them.

	Once installed, check the command in step 1
 again to make sure. As Node.js alters the environment variables, you will have to open a new Terminal here.

	
npm
 is automatically installed when you install Node.js. You can check this by running npm -v
 in the Terminal.

JHipster uses NPM by default, but if you prefer to use Yarn, that is possible as well. You can visit the Yarn website (https://yarnpkg.com/en/docs/install
) and follow the instructions to install Yarn.

Docker

Docker
 is the de facto standard for container management, and it makes using containers a breeze. It provides tools to create, share, and deploy containers.

You will need Docker and docker-compose
 to run the generated database images and for the development of microservices:

	Check for Docker by running docker -v
 in a Terminal. It should display a version number.

	Check for Docker Compose by running docker-compose -v
 in a Terminal. It should display a version number. If you are on Mac or Linux, you could just run docker -v && docker-compose -v
 together.

	If the command is not found, you can visit the Docker website (https://docs.docker.com/install/
) and follow the instructions to install it. Also, install Docker Compose (https://docs.docker.com/compose/install/
) by following the instructions.

	Once installed, check the command in step 1
 again to make sure.

Optionally, install a Java build tool. Normally, JHipster will automatically install the Maven Wrapper (https://github.com/takari/maven-wrapper
) or the Gradle Wrapper (https://docs.gradle.org/current/userguide/gradle_wrapper.html
) for you, based on your choice of the build tool. If you don't want to use those wrappers, go to the official Maven website (http://maven.apache.org/
) or the Gradle website (https://gradle.org/
) to do your own installation.

IDE configuration

JHipster applications can be created by using a command-line interface and JHipster CLI. Technically speaking, an IDE is not a requirement, but when you continue the development of a generated application, it is highly recommended that you use a proper Java IDE such as IntelliJ, Eclipse, or NetBeans. Sometimes you can also use advanced text editors such as Visual Studio Code or Atom with appropriate plugins to get the work done. Depending on the IDE/text editor you choose, it is recommended to use the following plugins to make development more productive:

	
Angular/React
 : TSLint, TypeScript, editor config

	
Java
 : Spring, Gradle/Maven, Java language support (VS Code)

Regardless of IDE/text editor, always exclude the node_modules
 , git
 , build
 , and target
 folders to speed up indexing. Some IDEs will do this automatically based on the .gitignore
 file.

Visit http://www.jhipster.tech/configuring-ide/
 in your favorite browser to read more about this.

System setup

Before installing and diving into JHipster, here are a few pointers to prepare you for some of the common issues that you might encounter:

	If you are using Yarn on macOS or Linux, you need to have $HOME/.config/yarn/global/node_modules/.bin
 in the path. This will normally be automatically done when you install Yarn, but if not, you can run the export PATH="$PATH:`yarn global bin`:$HOME/.config/yarn/global/node_modules/.bin"
 command in a Terminal to do this.

	If you are behind a corporate proxy, you will have to bypass it for npm
 , Git, and Maven/Gradle to work properly. Visit http://www.jhipster.tech/configuring-a-corporate-proxy/
 to see what proxy options can be set for different tools used.

If you are on Mac or Linux and if you are using Oh My Zsh or the Fisherman shell, then you could use the specific plugins from JHipster for that. Visit http://www.jhipster.tech/shell-plugins/
 for details.

OK, now let's get started for real. The next section explains the installation of JHipster.

Installation of JHipster

JHipster can be used from a local installation with npm
 or Yarn or using a Docker image. Alternatively, there is also the JHipster online application we saw earlier.

Among all the options, the best way to utilize the full power of JHipster is by installing the JHipster CLI using NPM. Open a Terminal and run the following:

> npm install -g generator-jhipster

Wait for the installation to finish and, in the Terminal, run jhipster --version
 . You should see the version info, as shown here:

That's it; we are ready to roll.

If you are someone who cannot wait for new versions to arrive, you can always use the current development code by following these steps after installing the JHipster CLI:

	In a Terminal, navigate to a directory you would like to use. For example, if you have a folder called project
 in your home directory, run cd ~/projects/
 and for Windows, run cd c:\Users\<username>\Desktop\projects
 .

	Run git clone https://github.com/jhipster/generator-jhipster.git
 .

	Now, navigate to the folder by running cd generator-jhipster
 .

	Run npm link
 to create a symbolic link from this folder into the globally installed application in global node_modules
 .

	Now when you run the JHipster commands, you will be using the version you cloned instead of the version you installed.

	Once you generate an application, run npm link generator-jhipster
 in the application folder as well to get the global version we have linked.

Please note that you should be doing this only if you are absolutely sure of what you are doing. Also please note that development versions of the software will always be unstable and might contain bugs.

If you prefer to isolate the installation in a virtual environment, then you can use the Docker image from the JHipster team. Visit http://www.jhipster.tech/installation
 and scroll down to the Docker installation (for advanced users only)
 section for instructions on how to use a Docker image.

You can install multiple npm
 packages by running the npm -g install webpack generator-jhipster CLI
 command.

At the time of writing, the latest JHipster version is 6.5, and this will be used to build applications throughout the book.

Summary

In this chapter, we discovered JHipster and the different technology options provided by it. We had a brief introduction to the important pieces of the client-side and server-side stack. We had a quick overview of Spring technologies, Angular, and Bootstrap. We also had an overview of different database options supported by JHipster. We learned about the tools required to work with JHipster, we successfully set up our environment to work with JHipster, and we installed JHipster CLI.

In the next chapter, we will see how JHipster can be used to build a production-grade monolithic web application.

Section 2: Building and Customizing Web Applications with JHipster

In this section, we will add to what we learned from the previous section on JHipster and build monolithic web applications. You will also model and create entities using
JHipster Domain Language
 (JDL
) and JDL-Studio
 . In the last chapter of this section, you will learn how to develop further the applications generated using Angular, Bootstrap, Spring Security, Spring MVC REST, and Spring Data.

This section comprises the following chapters
 :

	

Chapter 3
 , Building Monolithic Web Applications with JHipster

	
Chapter 4
 , Entity Modeling with JHipster Domain Language

	
Chapter 5
 , Customization and Further Development

Building Monolithic Web Applications with JHipster

Let's get into action and build a production-grade web application using JHipster. Before we start, we need a use case. We will be building an e-commerce web application that manages products, customers, and their orders and invoices.
 The web application will use a MySQL database for production and will have an Angular frontend.
 The UI for the actual shopping website will be different from the back office features, which will only be available for employees who have an administrator role. In this exercise, we will only be building a simple UI for the client-facing part.

In this chapter, we will cover the following topics:

	How to create a monolithic web application using JHipster

	Important aspects of the code we've generated

	Security aspects of the application we've generated

	Run applications and tests

	Frontend screens we've generated

	Included tools that will ease further development

This chapter will require the use of a T
 erminal (Command Prompt on Windows) app throughout. Please read the previous chapter for more information about that.

Application generation

Before we start generating our application, we need to prepare our workspace as this workspace will be used throughout this book; you will be creating many Git branches on this workspace as we proceed.

Visit http://rogerdudler.github.io/git-guide/
 for a quick reference guide on Git commands.

Step 1 – preparing the workspace

Let's create a new folder for the workspace. Create a folder called e-commerce-app
 and, from the Terminal, navigate to the folder:

> mkdir e-commerce-app

> cd e-commerce-app

Now, create a new folder for our application; let's call it online-store
 and navigate to it:

> mkdir online-store

> cd online-store

Now, we are ready to invoke JHipster. First, we need to make sure everything is ready by running the
 jhipster --version
 command. It should print a globally installed JHipster version; otherwise, you'll need to follow the instructions from the previous chapter to set it up.

It is always better to use the latest versions of any tools as they might include important bug fixes. You can upgrade JHipster anytime using the npm install -g generator-jhipster
 or yarn global upgrade generator-jhipster
 commands.

Step 2 – generating code using JHipster

Initialize JHipster by running the jhipster
 command in the Terminal, which will produce the following output:

JHipster will ask a number of questions to get input about different options that are required. The first question is about the application type that we want. Here, we are presented with the following options:

	
Monolithic application
 : As the name suggests, it creates a monolithic web application with a Spring Boot-based backend and a SPA frontend.

	
Microservice application
 : This creates a Spring Boot microservice without any frontend and is designed to work with a JHipster microservice architecture.

	
Microservice gateway
 : This creates a Spring Boot application very similar to the monolithic application but geared toward a microservice architecture with additional configurations. It features a SPA frontend.

	
JHipster UAA server
 : This creates an OAuth2 user authentication and authorization service. This will not feature any frontend code and is designed to be used in a JHipster microservice architecture.

	
[Alpha] Reactive monolithic application
 : As the name suggests, it creates a reactive monolithic web application with a Spring Boot-based backend and a SPA frontend. Please note that this is currently an alpha feature.

	
[Alpha] Reactive microservice application
 : This creates a Spring Boot reactive microservice without any frontend and is designed to work with a JHipster microservice architecture. Please note that this is currently an alpha feature.

We will choose the Monolithic application
 option for our use case. We will discuss microservice options in detail in Chapter 8
 , Microservice Server-Side Technologies
 .

Run jhipster --help
 to see all the available commands. Run jhipster <command> --help
 to see help information for a specific command; for example, jhipster app --help
 will display help information for the main app generation process.

In the following sections, we'll learn about server-side options.

Server-side options

The generator will now start asking us about the server-side options that we need. Let's go through them one by one:

	

Question 1
 : This prompt asks for a base name for the application, which is used to create the main class filenames, database names, and so on. By default, JHipster will suggest the current directory name if it doesn't contain any special characters. Let's name our application
 store
 .
 Please note that the files will be created in the directory you are currently in:

	
Question 2
 : This prompt asks for a Java package name. Let's choose com.mycompany.store
 :

	
Question 3
 . This prompt asks whether we need to configure the JHipster Registry for this instance. The JHipster registry provides service discovery and config server implementation, which is very useful for centralized configuration management and scaling the application. For this use case, we won't need it, so let's choose No
 . We will learn more about the JHipster Registry in Chapter 8
 , Microservice Server-Side Technologies
 :

	
Question 4
 : This prompt asks us to select an authentication mechanism. Here, we are presented with three options:
	
JWT authentication

	
HTTP Session Authentication

	
OAuth 2.0 / OIDC Authentication

We already saw how these differ in the previous chapter. For our use case, let's choose JWT authentication
 :

	
Question 5
 : This prompt asks us to select a database type; the options that are provided are SQL
 , MongoDB
 , Couchbase
 , and Cassandra
 . You can also choose to have no database. We learned about various database options in the previous chapter. For our application, we'll choose a SQL
 database:

	
Question 6
 : This prompt asks us to choose a specific SQL database that we would like to use in production; the available options are MySQL
 , MariaDB
 , PostgreSQL
 , Oracle
 , and Microsoft SQL Server
 . Let's choose MySQL
 :

	
Question 7
 : This prompt asks us
 to choose between our chosen SQL database and the H2 embedded database for development. The H2 embedded DB is especially useful as it makes development faster and self-contained, without the need to have a MySQL instance running. Let's choose the H2 with disk-based persistence
 option here since it's lightweight and easier to use in development compared to having a full-fledged DB service running:

If your use case requires working with persisted data in development and if the model isn't going to change often, then you could also choose MySQL
 for development as it would give you a faster startup time. This is because the embedded H2 DB doesn't need to be initialized. However, the downside is that each time you make schema changes or recreate entities, you would have to update the DB using generated Liquibase diff changelogs manually or wipe the DB manually and start over again. With an embedded H2 DB, you could run ./gradlew clean
 to wipe it.

	
Question 8
 : This prompt asks us
 to choose a Spring cache implementation. We can choose between no-cache
 , Ehcache
 , Caffeine
 , Hazelcast
 , Infinispan
 , Redis
 , and Memcached
 . Since we learned about these in the previous chapter, let's go ahead and choose Hazelcast
 here:

	
Question 9
 :
 This prompt asks us
 to choose if we need a second
 level cache for Hibernate. Let's choose
 Yes
 . It will use the same cache implementation we chose for the previous question:

	
Question 10
 : This prompt
 let's us choose a build tool to use for the project; the options are Maven
 and Gradle
 . Let's choose Gradle
 here since it is more modern and powerful:

	
Question 11
 : This prompt
 is interesting as it presents various additional options supported by JHipster. The options are as follows:
	
Elasticsearch
 : Adds Elasticsearch support for the generated entities

	
WebSockets
 : Adds WebSocket support using Spring WebSocket, SocketJS, and the Stomp protocol

	
API first development with OpenAPI-generator
 : Adds OpenAPI generator support for API first development

	
Apache
 Kafka
 : Adds support for an asynchronous queue using Kafka

Let's keep it simple and choose WebSockets using Spring Websocket
 :

Now, we'll learn about client-side options.

Client-side options

Now the generator will ask us about client-side options, including the client-side framework we wish to use:

	
Question 1
 : This prompt asks us
 to select a client-side MVVM framework; the options include Angular
 and React
 . You can also choose to skip the client-side by selecting No client
 . Let's choose Angular
 :

	
Question 2
 . This prompt
 lets us choose a Bootswatch (https://bootswatch.com/
) theme for our application. Let's choose the default theme:

We'll learn about internationalization options in the next section.

Internationalization options

Now we have the opportunity to enable internationalization and select the languages we would like to use:

	
Question 1
 . This prompt
 lets us enable internationalization
 (i18n
). Let's choose yes:

	
Question 2
 : Since we enabled i18n, we will be given the option to choose a primary language and additional i18n languages. At the time of writing, there are 44 supported languages, including 2 Right to Left
 (RTL
) languages. Let's choose English
 as the primary language and Chinese (Simplified)
 as an additional language:

In the next section, we'll learn about testing options.

Testing

Now we can choose testing options for our application.

This prompt
 lets us choose testing frameworks for our application, which will also create sample tests for the application and entities. The options are Gatling
 , Cucumber
 , and Protractor
 . Let's choose Protractor
 :

We'll learn about available modules in the next section.

Modules

This prompt
 lets us choose additional third-party modules from the JHipster Marketplace (https://www.jhipster.tech/modules/marketplace
). This can be helpful if we want to use additional features that aren't supported directly by JHipster. We will look at this in later chapters. For now, let's choose no. Don't worry about this; these modules can also be added to the application later when required:

Once all the questions have been answered, the code generation process will start and you will see an output, listing the files that were created and then running the NPM installation to get all the frontend dependencies installed. The generator might present additional prompts, where the Angular team asks you to approve the process of collecting usage statistics. This is up to you.

If you do not want the NPM install and webpack build steps to run, you could use the --skip-install
 flag while running JHipster to skip these. Just run jhipster --skip-install
 .

The installation process could take up to a few minutes, depending on your network speed and system configuration.

JHipster will check your environment to see if all the required dependencies, such as Java 8, NodeJS, Git, and NPM/Yarn, are installed. If not, it will show friendly warning messages before code generation starts.

Once the process is complete, you will see messages indicating it's been successful and instructions to start the application:

There are also command-line flags that can be passed while executing the jhipster
 command. Running jhipster app --help
 will list all available command-line flags. One interesting flag, for example, is yarn
 , which lets you use Yarn instead of NPM for dependency management.

JHipster will automatically initialize a Git repository for the folder and commit the generated files. If you wish to do this step yourself, you can do so by providing the skip-git
 flag during execution. Run jhipster --skip-git
 and execute these steps manually as follows:

> git init

> git add --all

> git commit -am "generated online store application"

You could also use a GUI tool such as Sourcetree (https://www.sourcetreeapp.com/
) or GitKraken (https://www.gitkraken.com/
) if you wish to do so to work with Git.

Now, let's take a look at our application code and explore the important parts to understand the application better.

Code walkthrough

Now that we have generated our application with JHipster, let's go through some important pieces of the source code that has been created. Let's open our application in our favorite IDE or Editor.

If you are using IntelliJ IDEA, you can execute idea .
 in a Terminal from the application folder to launch it. Otherwise, you can import the application as a new Gradle project using the File
 | New
 | Project
 menu option from existing sources; select the project folder before selecting Gradle
 from the options, clicking Next
 , and then clicking Finish
 . If you are using Eclipse, open the File
 | Import...
 dialog, select Gradle Project
 from the list, and follow the instructions shown. If you prefer to use VSCode, you can run code .
 from the application folder to launch it.

Let's start off by taking a look at the file structure of the application we created.

File structure

Once created, the application will have the following file structure:

As you can see, the root folder is quite busy since it contains a few folders but a lot of configuration files. The most interesting among them are as follows:

	
src
 : This is the source folder which holds the main application source and the test source files.

	
webpack
 : This folder holds all the webpack client-side build configurations for development, production, and testing.

	
gradle
 : This folder contains a Gradle wrapper and additional Gradle build scripts that will be used by the main Gradle build file (JHipster provides a similar wrapper if Maven is chosen as well).

	
build.gradle
 : This is our Gradle build file and specifies our application's build life cycle. It also has specifies server-side dependencies. The build uses the properties defined in the gradle.properties
 file alongside it. You'll also find an executable named gradlew
 (gradlew.bat
 for Windows), which lets you use Gradle without having to install it.

	
.yo-rc.json
 : This is the configuration file for JHipster. This file stores the options we selected during app creation, and it is used for app regeneration and upgrades.

	
package.json
 : This NPM configuration file specifies all your client-side dependencies, client-side build dependencies, and tasks.

	
tsconfig.json
 : This is the configuration for Typescript. There is also tsconfig-aot.json
 for Angular ahead-of-time
 (AOT
) compilation.

	
.eslintrc.json
 : This is the lint configuration for the application.

Install and configure Typescript and the ESLint plugin for your IDE or editor to make the most of Typescript.

Now, let's take a look at the source folder. The main
 folder will hold the main app source code and the test
 folder will test
 the source code. The folder structure is as follows:

	
main
 :
	
docker
 : Holds the Dockerfile for the application and the Docker compose configurations for selected options

	
java
 : Holds the main Java source code for the application

	
resources
 : Holds Spring Boot configuration files, Liquibase changelogs, and static resources such as server-side i18n files and email templates that are used by the application

	
webapp
 : Holds the Angular application source code and the client-side static content such as images, stylesheets, i18n files, and so on

	
test
 :
	
java
 : Holds the unit and integration test source for the server-side

	
javascript
 : Holds the Karma unit test specs and Protractor end-to-end specs for the client-side application

	
resources
 : Holds Spring configuration files and static resources such as server-side i18n files and email templates that are used by the application to perform tests

We'll take a look at the server-side source code in the next section.

Server-side source code

The server-side code is situated in the java
 and resources
 folder under src/main
 , as
shown

 in the preceding screenshot. The folder's structure is as follows:

You may notice that Spring components do not use the traditional @Autowired
 or @Inject
 annotations for dependency injection in generated code. This is because we use constructor injection instead of field injection, and Spring Boot doesn't need explicit annotations for constructor injection. Constructor injection is considered better as it enables us to write better unit tests and avoids design issues, whereas field injection is more elegant but easily makes a class monolithic. The Spring team recommends constructor injection as a best practice. Constructor injection also makes unit-testing components easier.

We'll take a look at the Java source code that's generated in the next section.

Java source

The important parts of the Java source code are as follows:

	
StoreApp.java
 : This is the main entry class for the application. Since this is a Spring Boot application, the main class is executable and you can start the application by running this class from an IDE. Let's take a look at this class:
	

The class is annotated with a bunch of Spring JavaConfig annotations:

@SpringBootApplication

@EnableConfigurationProperties

({LiquibaseProperties.class, ApplicationProperties.class})

	

	The first one, @SpringBootApplication
 , allows the required configurations for Spring to scan the source files and auto-detects Spring components (services, repository, resource, configuration classes that define Spring beans, and so on). It also tries to guess and auto-configure beans that the application might need based on classes that are found on the classpath and the configurations we have provided.

	The second one, @EnableConfigurationProperties
 , helps us register additional configurations for the application via property files.

	The main
 method of the class bootstraps the Spring Boot application and runs it:

 public static void main(String[] args) {

 SpringApplication app = new

 SpringApplication(StoreApp.class)

;

 DefaultProfileUtil.addDefaultProfile(app);

 Environment env = app.run(args)

.getEnvironment();

 logApplicationStartup(env);

 }

	
config
 : This package contains Spring bean configurations for the database, cache, WebSocket, and so on. This is where we will configure various options for the application. Some important ones include:

	
CacheConfiguration.java
 : This class configures the Hazelcast
 cache for the application.

	
DatabaseConfiguration.java
 : This class configures the database for the application and enables transaction management, JPA auditing, and JPA repositories for application.SecurityConfiguration.java
 : This is a very important part of the application as it configures security for it. Let's take a look at the important parts of the class:

	Following annotations enable web security and method-level security so that we can use the @Secured
 and @Pre/PostAuthorize
 annotations on individual methods:

@EnableWebSecurity

@EnableGlobalMethodSecurity

(

prePostEnabled

=

true

,

 securedEnabled

=

true

)

	The following configuration tells the application to ignore static content and certain APIs from the Spring Security configuration:

 public void configure(WebSecurity web) {

 web.ignoring()

 .antMatchers(HttpMethod.OPTIONS,

 "/**")

 .antMatchers("/app/*/

.{js,html}")

 .antMatchers("/i18n/**")

 .antMatchers("/content/**")

 .antMatchers("/h2-console/**")

 .antMatchers("/swagger-ui

 /index.html")

 .antMatchers("/test/**");

 }

	The following configuration tells Spring Security which endpoints are permitted for all users, which endpoints
 should be authenticated, and which endpoints require a specific role (ADMIN
 , in this case):

public void configure(HttpSecurity http) throws Exception {

 // @formatter:off

 http

 .csrf()

 .disable()

 .addFilterBefore(corsFilter,

 UsernamePasswordAuthentication

 Filter.class)

 .exceptionHandling()

 .authenticationEntryPoint

 (problemSupport)

 .accessDeniedHandler(problem

 Support)

 .and()

 .headers()

 .contentSecurityPolicy("...")

 .and()

 .referrerPolicy(...)

 .and()

 .featurePolicy("...")

 .and()

 .frameOptions()

 .deny()

 .and()

 .sessionManagement()

 .sessionCreationPolicy(Session

 CreationPolicy.STATELESS)

 .and()

 .authorizeRequests()

 .antMatchers("/api/authenticate")

 .permitAll()

 .antMatchers("/api/register").

 permitAll()

 .antMatchers("/api/activate").

 permitAll()

 .antMatchers("/api/account/reset-

 password/init").permitAll()

 .antMatchers("/api/account/reset-

 password/finish").permitAll()

 .antMatchers("/api/**").

 authenticated()

 .antMatchers("/websocket/tracker")

 .hasAuthority(Authorities

 Constants.ADMIN)

 .antMatchers("/websocket/**").

 permitAll()

 .antMatchers("/management

 /health").permitAll()

 .antMatchers("/management

 /info").permitAll()

 .antMatchers("/management

 /prometheus").permitAll()

 .antMatchers("/management/**").

 hasAuthority(Authorities

 Constants.ADMIN)

 .and()

 .httpBasic()

 .and()

 .apply(securityConfigurer

 Adapter());

 // @formatter:on

 }

	
WebConfigurer.java
 : This is where we set up HTTP cache headers, MIME mappings, static asset locations, and Cross-Origin Resource Sharing
 (CORS
).

JHipster provides great CORS support out of the box:
	CORS can be configured using the
jhipster.cors

 property, as defined in the JHipster common application properties (http://www.jhipster.tech/common-application-properties/
).

	CORS support is enabled by default in dev
 mode
 for monoliths and gateways. It is disabled by default for microservices as you are supposed to access them through a gateway.

	CORS support is disabled by default in prod
 mode for both monoliths and microservices, for security reasons.

	
domain
 : Domain model classes for the application are in this package. These are simple POJOs
 (short for Plain Old Java Objects
) which have JPA annotations mapping it to a Hibernate entity. When the Elasticsearch
 option is selected, these also act as Document objects. Let's take a look at the User.java
 class:
	An entity class is characterized by the following annotations. The @Entity
 annotation marks the class as a JPA entity. The @Table
 annotation maps the entity to a database table. The @Cache
 annotation enables second-level caching of the entity, and it also specifies a caching strategy:

@Entity

@Table

(

name

=

"jhi_user"

)

@Cache

(

usage

=

CacheConcurrencyStrategy

.

NONSTRICT_READ_WRITE

)

	There are various annotations that are used at the field level in these classes. @Id
 marks the primary key for the entity. @Column
 maps a field to a database table column by the same name when no override is provided. @NotNull
 , @Pattern
 , and @Size
 are annotations that are used for validation. @JsonIgnore
 is used by Jackson to ignore fields when converting objects that are to be returned in REST API requests into JSON. This is especially useful with Hibernate as it avoids circular references between relationships, which create tons of SQL DB requests and failures:

@Id

@GeneratedValue(strategy = GenerationType.IDENTITY)

private Long id;

@NotNull

@Pattern(regexp = Constants.LOGIN_REGEX)

@Size(min = 1, max = 50)

@Column(length = 50, unique = true, nullable = false)

private String login;

@JsonIgnore

@NotNull

@Size(min = 60, max = 60)

@Column(name = "password_hash", length = 60, nullable

 = false)

private String password;

	

	Relationships between database tables are also mapped to entities using JPA annotations. In the following, for example, it maps a many-to-many relationship between a user and user authorities. It also specifies a join table to be used for the mapping:

@JsonIgnore

@ManyToMany

@JoinTable

(

name

=

"jhi_user_authority"

,

joinColumns

= {

@JoinColumn

(

name

=

"user_id"

,

referencedColumnName

=

"id"

)},

inverseJoinColumns

= {

@JoinColumn

(

name

=

"authority_name"

,

referencedColumnName

=

"name"

)})

@Cache

(

usage

=

CacheConcurrencyStrategy

.

NONSTRICT_READ_WRITE

)

@BatchSize

(

size

=

20

)

private

Set

<

Authority

>

authorities

=

new

HashSet<>();

	
repository
 : This package holds Spring Data repositories for entities. These are typically interface definitions that are automatically implemented by Spring Data. This removes the need for us to write any boilerplate implementations for the data access layer. Let's look at the UserRepository.java
 example:

@Repository

public interface UserRepository extends JpaRepository

<User, Long> {

 ...

 Optional<User> findOneByActivationKey(String activationKey);

 List<User> findAllByActivatedIsFalseAndActivationKey

 IsNotNullAndCreatedDateBefore(Instant dateTime);

 Optional<User> findOneByResetKey(String resetKey);

 Optional<User> findOneByEmailIgnoreCase

(String email);

 Optional<User> findOneByLogin(String login);

 @EntityGraph(attributePaths = "authorities")

 Optional<User> findOneWithAuthoritiesById(Long id);

 @EntityGraph(attributePaths = "authorities")

 @Cacheable(cacheNames = USERS_BY_LOGIN_CACHE)

 Optional<User> findOneWithAuthoritiesByLogin(String login);

 @EntityGraph(attributePaths = "authorities")

 @Cacheable(cacheNames = USERS_BY_EMAIL_CACHE)

 Optional<User> findOneWithAuthoritiesByEmail(String email);

 Page<User> findAllByLoginNot(Pageable pageable, String login);

}

From the preceding code block, we can notice the following:

	

	The @Repository
 annotation marks this as a Spring Data repository component.

	The interface extends JpaRepository
 , which lets it inherit all default CRUD operations, such as findOne
 , findAll
 , save
 , count
 , and delete
 .

	

	Custom methods are written as simple method definitions that follow Spring Data naming conventions so that the method name specifies the query to be generated. For example, findOneByEmailIgnoreCase
 generates a query equivalent of SELECT * FROM user WHERE LOWER(email) = LOWER(:email)
 .

	
security
 : This package holds Spring Security-related components and utilities. Since we chose JWT as our authentication mechanism, it holds JWT-related classes such as TokenProvider
 , JWTFilter
 , and JWTConfigurer
 as well.

	
service
 : This package holds the service layer, which consists of Spring service beans, DTOs,
MapStruct DTO mappers, and service utilities.

	
web
 : This package holds web resource classes, view models classes, and utility classes:
	
rest
 : This package holds Spring resource classes for the REST API. It also holds view model objects and utilities. Let's take a look at UserResource.java
 :
	Resource classes are marked with the @RestController
 and @RequestMapping("/api")
 annotations from Spring. The latter specifies the base URL path for the controller so that all <applicationContext>/api/*
 requests are forwarded to this class.

	Request methods are annotated with annotations according to their purpose. For example, the following marks the createUser
 method as a PostMapping
 for "/users"
 , which means all POST
 requests to <applicationContext>/api/users
 will be served by this method. The @PreAuthorize
 annotation restricts the method's access
 to the specified role:

@PostMapping

("/users")

@PreAuthorize

("hasRole(\"" +

 AuthoritiesConstants.ADMIN + "\")")

public ResponseEntity<User> createUser(@Valid

 @RequestBody UserDTO userDTO) throws

 URISyntaxException {

 ...

}

	

	
WebSocket
 : This package holds WebSocket controllers and view models.

JHipster uses Data Transfer Objects
 (DTOs
) and View Models
 (VMs
) on the server-side. DTOs are used to transfer data from the service layer to and from the resource layer. They break
 Hibernate transactions and avoid further lazy loading from being triggered by the resource layer since all the mapping is done without any references to the entity objects being held. VMs are only used to display data on the web frontend and don't interact with the service layer.

We'll look at configurations that are used for the application in the next section.

Resources

The important parts of resources are as follows:

	
config
 : This holds application property YAML files, Liquibase changelogs, and the default key store that's used for the
 tls
 profile.
 The application.yml
 file holds configurable Spring Boot, JHipster, and application-specific properties, while application.(dev|prod).yml
 files hold properties that should be applied when the specific dev or prod profile is active. The test configurations are under src/test/resource/application.yml

.

	
i18n
 : This holds server-side i18n resource files.

	
templates
 : This holds Thymeleaf templates for the client-side and emails.

We'll take a look at the client-side source code in the next section.

Client-side source code

The client-side source code is in the src/main/webapp
 folder, as we saw earlier. The structure is as follows:

The most noteworthy pieces of information are as follows:

	
app
 : This folder holds the Angular application's Typescript source code, which is organized with a folder per feature:
	
app.main.ts
 : This is the main file for the Angular app. This bootstraps the Angular application. Notice that it uses platformBrowserDynamic
 , which lets the application work with Just-in-Time
 (JIT
) compilation in the browser. This is ideal for development:

platformBrowserDynamic()

 .bootstrapModule(StoreAppModule, { preserveWhitespaces:

 true })

 .then(success => console.log(`Application started`))

 .catch(err => console.error(err));

	
app.module.ts
 : This is the main module for the Angular app. It declares app-level components and imports other modules for the application. It also bootstraps the main application component:

@NgModule({

 imports: [

 BrowserModule,

 StoreSharedModule,

 StoreCoreModule,

 StoreHomeModule,

 // jhipster-needle-angular-add-module JHipster will

 // add new module here

 StoreEntityModule,

 StoreAppRoutingModule

],

 declarations: [JhiMainComponent, ..., FooterComponent],

 bootstrap: [JhiMainComponent]

})

export class StoreAppModule {}

	
account
 : This module consists of account-related features such as activate,
 password, password-reset, register, and settings.
 Each typical component consists of component.html
 , component.ts
 , route.ts
 , and service.ts
 files.

	
admin
 :
 This module consists of admin-related features such as
 audits,
 configuration,
 docs, health, logs, metrics, tracker, and user-management.
 Each typical component consists of
 component.html
 ,
 component.ts
 ,
 route.ts
 , and
 service.ts
 files.

	
core
 : This module contains all core services (auth, tracker, user, login, language) and configures shared providers for the application.

	
blocks
 : This folder consists of HTTP interceptors and other configs that are used by the application.

	
entities
 : This is where entity modules will be created.

	
home
 : The home page module.

	
layouts
 : This folder has layout components such as the navbar, footer, error pages, and so on.

	
shared
 : This module contains all shared components (login, auth, alert), entity models required for the application,
 and utilities required for the application.

	
content
 : This folder contains static content such as images, CSS, and SASS files.

	
i18n
 : This is where i18n JSON files live. Each language has a folder with numerous JSON files organized by modules.

	
swagger-ui
 : This folder contains the Swagger UI client that's used in developing API documentation.

	
index.html
 : This is the web application's index file. This contains very minimal code for loading the Angular application's main component. It is a single-page Angular application. You will also find a simple loading page and some commented out utility code such as a Google analytics script and service worker scripts on this file. These can be enabled if required:

<!doctype

html

>

<

html

class=

"no-js"

lang=

"en"

dir=

"ltr"

>

<

head

>

 ...

</

head

>

<

body

>

 ...

<jhi-main>

 ...

 </jhi-main

>

 <

noscript

>

 <

h1

>

You must enable javascript to view this page.

</

h1

>

 </

noscript

>

 ...

</

body

>

</

html

>

To enable PWA mode using service workers, just
uncomment the corresponding code in

 src/main/webapp/index.html

to register the service worker. JHipster uses Workbox (https://developers.google.com/web/tools/workbox/
), which

 creates the respective service worker and dynamically generates
 service-worker.js
 .

Now that we have learned everything about the application code let's start the application.

Starting the application

Now let's start the application and view the output. There are multiple ways to run the application:

	By using the Spring Boot Gradle task from the Terminal/command line

	By executing the main Java class, src/main/java/com/mycompany/store/StoreApp.java
 , from an IDE

	By executing the packaged application file using the java -jar
 command

Let's start the application using the Gradle task. If you want to run the application directly in the IDE, just open the main app file that we mentioned earlier (StoreApp.java
), right-click it, and choose Run 'StoreApp'
 .

To start the application via Gradle, open a Terminal/command line and navigate to the application folder. Then, execute the Gradle command as follows (if you are on Windows, execute gradlew.bat
). This will trigger the default task, that is, bootRun
 :

> cd online-store

> ./gradlew

Running ./gradlew
 is equivalent to running ./gradlew bootRun -Pdev
 . For the client-side, the webpack build task is run automatically, but if it fails for some reason, it can be triggered manually by running npm run webpack:build
 . This task can be triggered directly by the Gradle command as well by running ./gradlew webpack bootRun -Pdev
 .

Gradle will start downloading the wrapper and dependencies. After a while, you should see console output somewhat similar to the following (in anywhere from a few seconds to a few minutes, depending on your network speed):

The app has started successfully and is available on http://localhost:8080
 . Open your favorite browser and navigate to the URL.

Note that the preceding build will stay at 90% since the process is running continuously.

We'll learn about application modules in the next section.

Application modules

Let's look at the different modules that are available out of the box. These modules can be grouped as follows:

	Home and login

	Account

	Admin

We'll take a look at the different modules in the following sections.

Home and login modules

Once you open the URL, you will see a cool-looking hipster on the home page, as follows:

This is the home page. Let's log in to the application using the default credentials:

	Click on the S

ign in

 link on the page, or
Account
 | Sign
 in

 . You will see the following login screen. Enter the default credentials, that is, Username

 —admin
 and Password
 —admin
 , and click

Sign
 in

 :

Once you've signed in, you will see the authenticated home page with all authenticated menu items in the navbar:

	Since we enabled internationalization, we get a Language
 menu. Let's try to switch to a different language. Click on the Language

menu and choose the next available language:

We'll learn about account modules in the next section.

Account modules

Now, let's look at the account modules that are created out of the box. Under the Account
 menu, you will see a Sign out
 option and the following modules:

	Settings

	Password

	Registration

We'll take a look at the Settings
 module in the next section.

Settings

This module lets you change user settings such as name, email, and language:

We'll take a look at the Password
 module in the next section.

Password

This module lets you change the password for the current user. There is also a forgot password flow with email verification out of the box:

To use the email features, you will have to configure an SMTP server in the application properties. We will look at this
 in Chapter 15
 , Best Practices with JHipster

 .

We'll take a look at the Registration
 module in the next section.

Registration

This module is only available when you are not logged in. This lets you sign up/register as a new user for the application. This will trigger a user activation flow with an activation email and verification process. This module will not be available if you choose OAuth2
 as your authentication method:

We'll learn about the admin module in the next section.

Admin module

Now, let's look at the

A

 dmin
 module screens that are generated. These are very useful for monitoring and developing the application. Under the Admin
 menu, you will find the following modules:

	User management

	Metrics

	Health

	Configuration

	Audits

	Logs

	API

We'll learn about the different admin modules in the following sections.

User management

This module provides you with CRUD functionality so that you can manage users. The results are paginated by default. By default, users who register using the registration module will be deactivated unless they complete the registration process:

We'll take a look at the Metrics
 module in the next section.

Metrics

This module visualizes data provided by the Spring Boot actuator and Dropwizard metrics. This is very useful for monitoring application performance as it gives method-level performance information along with JVM, HTTP, database, and cache metrics. The E
 xpand
 button near Threads
 will let you see the thread dump as well:

We'll take a look at the Health
 module in the next section.

Health

This module provides the health status of application components such as Database
 and other information such as Disk space
 :

Let's take a look at the Configuration
 module in the next section.

Configuration

This module helps us visualize the current application configuration. This is very useful for troubleshooting configuration issues:

We'll take a look at the Audits
 module in the next section.

Audits

This module lists all user authentication audit logs since JHipster enables audits for Spring Security, which means all security events are captured. There is a special Spring Data repository that writes audit events to the database. This is very useful from a security standpoint:

We'll take a look at the Logs
 module in the next section.

Logs

This module helps us view and update application log levels at runtime. This is very useful for troubleshooting:

We'll take a look at the API module in the next section.

API

This module provides Swagger API documentation for the application's REST API. It also provides a Try it out
 editor for endpoints:

In the next section, we'll run some tests on the application we just created.

Running generated tests

Good software development is never complete without good testing. JHipster generates quite a lot of automated tests out of the box, and there are options available so that we can choose even more. Let's run generated server-side and client-side tests for the application to make sure everything is working as expected.

First, open a Terminal/command line and navigate to the project folder.

We'll take a look at server-side tests in the next section.

Server-side tests

Server-side integration tests and unit tests are present in the src/test/java
 folder.

These can be run directly from the IDE by choosing a package or individual test and running it, or via the command line by running the Gradle test
 and integrationTest
 tasks. Let's run it using the command line. In a new Terminal, navigate to the application source folder and execute the following command. It should finish with a success message, as follows:

> ./gradlew test integrationTest

...

BUILD SUCCESSFUL in 36s

10 actionable tasks: 3 executed, 7 up-to-date

We'll take a look at client-side tests in the next section.

Client-side tests

Client-side unit tests and end-to-end tests are available under src/test/javascript
 .

These tests can be run using the available npm scripts or Gradle tasks.

You can see all available Gradle tasks by running ./gradlew tasks
 .

Let's run tests using npm scripts. First, let's run Jest unit tests. In the Terminal, execute the following command. You can also use yarn instead of npm if you choose that during generation:

> npm test

This should produce a detailed coverage report, followed by output similar to the following:

Test Suites: 24 passed, 24 total

Tests: 95 passed, 95 total

Snapshots: 0 total

Time: 19.303s

Ran all test suites.

Now, let's run Protractor end-to-end tests using the npm script. To run e2e
 tests, we need to make sure that the server is running. If you have shut down the server that we started earlier, make sure that you start it again by running ./gradlew
 in a Terminal. Now, open a new Terminal, navigate to the application folder, and execute the following command:

> npm run e2e

This will start the Protractor tests, which will open a new Chrome browser instance and execute tests there. When they've finished, you should see something similar to the following in the console:

11 passing (19s)

[00:32:53] I/launcher - 0 instance(s) of WebDriver still running

[00:32:53] I/launcher - chrome #01 passed

Summary

In this chapter, we learned how to create a monolithic web application using JHipster. We also walked through important aspects of the source code we created and learned how to run our application and automated tests. We also browsed the modules that were created and saw them in action.

In the next chapter, we will learn how to utilize JHipster so that it models our business use case and generates entities for it. We will also learn about the JHipster Domain Language
 (JDL
).

Entity Modeling with JHipster Domain Language

In the previous chapter, we saw how we can use JHipster to generate a production-grade web application with a lot of awesome features, such as i18n, administration modules, account management, and so on.

In this chapter, we will see how we can enrich that application with business entities and a model. With this, you will be able to design and generate JPA-style entities for your use case, and once you have completed this chapter, you will have added an e-commerce domain model to the application we created earlier, making it a more realistic CRUD application.

We will learn about the following in this chapter:

	JHipster Domain Language (JDL)

	JDL-Studio

	Entity and relationship modeling with JDL

	Entity generation

Introduction to JDL

JDL (http://www.jhipster.tech/jdl/
) is used to create the domain model for a JHipster application. It provides a simple and user-friendly domain-specific language
 (DSL
) to describe the entities and their relationships.

JDL is the recommended way to create entities for an application and can replace the entity generator provided by JHipster, which can be difficult to use when creating a lot of entities. The JDL is normally written in one or more files with a .jdl
 extension.

Visit https://www.jhipster.tech/jdl/getting-started
 for the complete documentation on JDL.

If you prefer to work with UML and UML modeling tools, then check out JHipster-UML (http://www.jhipster.tech/jhipster-uml/
), a tool that can create entities from popular UML tools.

Let's learn about the DSL grammar in the next section.

DSL grammar for JDL

Now, let's look at the JDL grammar. At the time of writing, JDL supports application
 development, deployment configurations, and complete entity models with relationships and options
 such as data transfer objects
 (DTO
)
 , service layers, and so on. The grammar can be broken down into the following:

	Application declaration

	Entity declaration

	Relationship declaration

	Option declaration

	Deployment declaration

In the following syntax, []
 indicates that something is optional and *
 indicates that more than one can be specified.

JavaDocs can be added to entity declarations and /** */
 Java comments can be added to fields and relationship declarations. JDL-only comments can be added using the //
 syntax.

It is also possible to define numerical constants in JDL—for example, DEFAULT_MIN_LENGTH = 1
 .

We will learn about application declaration using JDL later on. For now, let's learn how to declare entities.

Entity modeling with JDL

Entity declaration is done using the following syntax:

[<entity javadoc>]

[<entity annotation>*]

entity <entity name> [(<table name>)] {

 [<field javadoc>]

 [<field annotation>*]

 <field name> <field type> [<validation>*]

}

The <entity name>
 phrase is the name of the entity and will be used for class names and table names. Table names can be overridden using the optional <table name>
 parameter.

The <field name>
 phrase is the name of the fields (attributes) you want for the entity and <field type>
 is the field type, such as string, integer, and so on. Refer to https://www.jhipster.tech/jdl/entities-fields#field-types-and-validations
 for all supported field types. The ID field will be automatically created and so does not need
 to
 be specified in JDL.

The

<validation>

 phrase is optional and
 one or more <validation>
 phrases for the fields can be specified depending on the validation supported by the field type. For validations such as
 max length and pattern, values can be specified in braces.

The <entity javadoc>
 and <field javadoc>
 phrases are places where you can add documentation using /** */
 syntax to be added to generated Java domain classes.

Multiple annotations can be added to the entity or field using <entity annotation>
 and <field annotation>
 . Refer to https://www.jhipster.tech/jdl/options
 for all available annotations.

An example entity declaration would look like the following:

/**

 * This is customer entity Javadoc comment

 * @author Foo

 */

@dto(mapstruct)

entity Customer {

 /** Name field */

 name String required,

 age Integer,

 address String maxlength(100) pattern(/[a-Z0-9]+/)

}

Enumerations can also be declared using the following syntax:

enum [<enum name>] {

 <ENUM KEY> ([<enum value>])

}

Here is an example:

enum Language {

 ENGLISH, DUTCH, FRENCH

}

The <enum value>
 phrase is optional.

Let's learn about relationship management in the next section.

Relationship management

The relationship between entities can be declared using the following syntax:

relationship <type> {

 <from entity>[{<relationship name>[(<display field>)] <validation>*}]

 to

 <to entity>[{<relationship name>[(<display field>)] <validation>*}]

}

The <type>
 can be OneToMany
 , ManyToOne
 , OneToOne
 , or ManyToMany
 , and as the name suggests, declares the relationship type between <from entity>
 and <to entity>
 .

The <from entity>
 phrase is the name of the owner entity of the relationship or the source. The <to entity>
 phrase is the destination of the relationship.

The <relationship name>
 phrase is optional and can be used to specify the field names to be created for the relationship in the domain object. The <display field>
 phrase can be specified in braces to control the field of the entity to be shown in the drop-down menu on the generated web page; the ID field will be used by default
 . The
 <validation>
 phrase
 can be specified on the
 <from entity>
 or
 <to entity>
 and is optional. Currently, the only supported validation is
 required
 .

Relationships that are labelled as OneToMany
 and ManyToMany
 are always bidirectional in JHipster. In the case of ManyToOne
 and OneToOne
 relationships, it is possible to create both bidirectional and unidirectional relationships. For unidirectional relationships, just don't enter a
<relationship name>
 on the destination/to entity.

Multiple relationships of the same type can be declared within the same block, separated by a comma.

An example relationship declaration would look like the following:

entity Book

entity Author

entity Tag

relationship OneToMany {

 Author{book} to Book{writer(name) required},

 Book{tag} to Tag

}

The user is an existing entity in JHipster, and it is possible to have certain relationships with the user. Many-to-many and one-to-one relations can be declared, but the other entity must be the source or owner. Many-to-one relationships are also possible with a user entity.

Let's learn about Data Transfer Objects
 (DTO
), service, and pagination options in the next section.

DTO, service, and pagination options

JDL also allows us to declare entity-related options easily. Refer to https://www.jhipster.tech/jdl/options
 for more details. The options that are currently supported are as follows:

	
service
 : By default, JHipster generates REST resource classes that call the entity repositories directly. This is the simplest option, but in real-world scenarios, we might need a service layer to handle business logic. This option lets us create a service layer with a simple Spring service bean class or with a traditional interface and implementation for the service bean. Possible values are serviceClass
 and serviceImpl
 . Choosing the latter will create an interface and implementation, which is preferred by some people.

	
dto
 : By default, domain objects are directly used in the REST endpoints that are created, which may not be desirable in some situations, and you might want to use an intermediary DTO to have more control. JHipster lets us generate the DTO layer using Mapstruct (http://mapstruct.org/
), an annotation preprocessor library that automatically generates the DTO classes. It is advisable for you to use a service layer when using DTO. A possible value is mapstruct
 . For more information, visit http://www.jhipster.tech/using-dtos/
 .

	
filter
 : This option lets us enable JPA-based filtering capabilities for the entity. This works only when a service layer is used. For more details, visit http://www.jhipster.tech/entities-filtering/
 .

	
paginate
 : This option lets us enable pagination for an entity. This enables pagination on the resource layer and also implements a paging option on the client-side. Possible values are no
 , pagination
 , and infinite-scroll
 .

	
noFluentMethod
 : This lets us disable Fluent-API-styled setters for the generated entity domain objects.

	
skipClient
 /skipServer
 : These options let us either skip the client-side or server-side code during generation.

	
angularSuffix
 : This option lets us specify a suffix for the folder and class names in the frontend code.

	

readOnly
 : This creates a read-only entity.

The general syntax for option declaration is <OPTION> <ENTITIES | * | all> [with <VALUE>]
 [except <ENTITIES>]
 . All of the options can also be used as annotations on the entities.

The following code shows some possible options and the different syntaxes in which they can be declared:

@service(serviceImpl)

entity A

entity B

...

entity Z

dto * with mapstruct

service B with serviceClass

paginate * with pagination except B, C

paginate B, C with infinite-scroll

filter A, B

Let's take a look at the JDL-Studio in the next section.

JDL-Studio

We will be using JDL-Studio (https://start.jhipster.tech/jdl-studio/
) to create our JDL file. It
 is an online web application built by the JHipster team for creating JDL files in a visual editor. The tool shows a visual representation of the created entity model and also lets you import/export JDL and capture
 image snapshots.

You can create an account to save your models under, as well:

The tool also provides features such as
 syntax highlighting, autocompletion, error reporting, and Sublime Text-style keyboard shortcuts.

Go to https://start.jhipster.tech/jdl-studio/
 to open the application.

Please note that by default, this application stores the JDL in your browser's local storage. You can create an account with JHipster online if you want to save your JDL files to the cloud.

Let's take a look at our use case and the entity model in the next section.

Use case entity model

Now, let's look at our use case and the entity model. Before that, clear the default JDL in the JDL-Studio editor.

Entities

Let's start by defining our entities:

	Copy the following snippet for Product
 and ProductCategory
 into the JDL-Studio editor:

/** Product sold by the Online store */

entity Product {

 name String required

 description String

 price BigDecimal required min(0)

 size Size required

 image ImageBlob

}

enum Size {

 S, M, L, XL, XXL

}

entity ProductCategory {

 name String required

 description String

}

The Product
 entity is the core of the domain model; it holds product information such as the
 name
 , description
 ,
 price
 , size
 , and image
 , which is a blob. The name
 , price
 , and size
 are required fields. The price
 also has a minimum value validation. The size
 field is an enum
 with defined values.

The ProductCategory
 entity is used to group products together. It has the name
 and description
 fields, where name
 is a required field.

	
Add the following snippet for
 Customer
 into the JDL-Studio editor:

entity Customer {

 firstName String required

 lastName String required

 gender Gender required

 email String required pattern(/^[^@\s]+@[^@\s]+\.[^@\s]+$/)

 phone String required

 addressLine1 String required

 addressLine2 String

 city String required

 country String required

}

enum Gender {

 MALE, FEMALE, OTHER

}

The Customer
 entity holds details of the customers using the online shopping portal. Most of the fields are marked as required, and the email
 field has regex pattern validation. The gender
 field is an enum
 . This entity is related to the system user, which we will see in more detail soon.

	Add the following snippet for ProductOrder
 and OrderItem
 into the JDL-Studio editor:

entity ProductOrder {

 placedDate Instant required

 status OrderStatus required

 code String required

}

enum OrderStatus {

 COMPLETED, PENDING, CANCELLED

}

entity OrderItem {

 quantity Integer required min(0)

 totalPrice BigDecimal required min(0)

 status OrderItemStatus required

}

enum OrderItemStatus {

 AVAILABLE, OUT_OF_STOCK, BACK_ORDER

}

The ProductOrder
 and OrderItem
 entities are used to track product orders made by customers. The ProductOrder
 entity holds the placedDate
 , status
 , and code
 of the order, which are all required fields, while OrderItem
 holds information about the quantity
 , totalPrice
 , and status
 of individual items. All fields are required and the quantity
 and totalPrice
 fields have a minimum value validation. The OrderStatus
 and OrderItemStatus
 fields are enum
 fields.

	Add the following snippet for Invoice
 and Shipment
 into the JDL-Studio editor:

entity Invoice {

 date Instant required

 details String

 status InvoiceStatus required

 paymentMethod PaymentMethod required

 paymentDate Instant required

 paymentAmount BigDecimal required

}

enum InvoiceStatus {

 PAID, ISSUED, CANCELLED

}

enum PaymentMethod {

 CREDIT_CARD, CASH_ON_DELIVERY, PAYPAL

}

entity Shipment {

 trackingCode String

 date Instant required

 details String

}

The Invoice
 and Shipment
 entities are used to track the invoice and shipping for the product orders, respectively. Most of the fields in Invoice
 are required and the status
 and paymentMethod
 fields are enums.

The enumerations are used to contain the scope of certain fields, which gives more granular control over those fields.

Relationships

Now that we have defined our entities, let's add relationships between them:

	
Add the following snippet for relationships into the JDL-Studio editor:

relationship OneToOne {

 Customer{user} to User

}

The first relationship declared is a unidirectional OneToOne
 between a Customer
 entity and the inbuilt User
 entity:

Customer (1) -----> (1) User

It means that the Customer
 entity knows about the User
 and is the owner of the relationship, but the User
 doesn't know about the Customer
 , and so we will not be able to obtain customers from a User
 . This lets us map customers to the User
 entity and use it for authorization purposes later, ensuring that one customer can be mapped to
 only
 one system user.

	Add the following snippet for relationships into the JDL-Studio editor:

relationship ManyToOne {

 OrderItem{product} to Product

}

This one declares a unidirectional ManyToOne
 relationship from OrderItem
 to Product
 :

OrderItem (*) -----> (1) Product

This means that the OrderItem
 knows their Product
 , but the Product
 does not know about the OrderItem
 . This keeps the design clean as we don't want to know about orders from products for this use case. In the future, if we want to know the orders that have been made for a product, then we could make this bidirectional.

	Add the following snippet for a relationship into the JDL-Studio editor:

relationship OneToMany {

 Customer{order} to ProductOrder{customer},

 ProductOrder{orderItem} to OrderItem{order},

 ProductOrder{invoice} to Invoice{order},

 Invoice{shipment} to Shipment{invoice},

 ProductCategory{product} to Product{productCategory}

}

This declaration is interesting, as we have multiple OneToMany
 declarations:

Customer (1) <-----> (*) ProductOrder

ProductOrder (1) <-----> (*) OrderItem

ProductOrder (1) <-----> (*) Invoice

Invoice (1) <-----> (*) Shipment

ProductCategory (1) <-----> (*) Product

They are all bidirectional, meaning that both
 the source entity and the destination entity know about each other.

We declare that a Customer
 can have multiple instances of ProductOrder
 , ProductOrder
 can have multiple OrderItem
 and invoices, Invoice
 can have many instances of Shipment
 , and ProductCategory
 can have many products. From the destination entity, the source entities are mapped as ManyToOne
 .

Options for entities

Add the following snippet for options into the JDL-Studio editor:

service * with serviceClass

paginate Product, Customer, ProductOrder, Invoice, Shipment, OrderItem with pagination

In the options, we keep it simple and declare that we want a service class for all entities. We also enable pagination for some of the entities that may get a lot of entries over time.

The following diagram shows the complete model, with all the entities and their relationships as shown in JDL-Studio:

Now, let's download this JDL file to our file system:

	Click on the Download
 button in the upper-right corner of the JDL-Studio application.

	Save the file with the name online-store.jdl
 inside the online-store
 directory where we created our application in the previous chapter.

In the next section, we'll learn about entity generation with JHipster.

Entity generation with JHipster

Now it's time to generate the domain model with our JDL. We will use the import-jdl
 command from JHipster for this.

Open your favorite Terminal application and navigate to the online-store
 folder where we created the application earlier. Then, execute the
import-jdl

 command:

> cd online-store

> jhipster import-jdl online-store.jdl

This will trigger the entity creation process, and you will be asked to confirm that the system should overwrite existing files with changes. Take a look at the following screenshot:

Enter a
 to confirm the overwriting of all files with changes. Once the files are generated, JHipster will trigger an npm run webpack:build
 step to rebuild the client-side code. Once this is done, you will see a success message like the following:

Running
 git status
 on the Terminal shows us that five files were modified and a lot of new files were added. Let's commit the changes to Git. Execute the commands shown in the following code:

> git add --all

> git commit -am "generated online store entity model"

In the next section, we'll take a look at the code that was generated.

Generated code walkthrough

Now let's take a look at what has been generated. Let's open the application code in our favorite IDE/editor and look at what has been generated for the Product
 entity.

You might have noticed that there is a .jhipster
 folder at the root of the project, and if you look inside it, you will see a bunch of JSON files. Let's look at Product.json
 ; it holds metadata about the generated entity and is used by JHipster to regenerate and edit an entity when needed:

{

 "name": "Product",

 "fields": [

 {

 "fieldName": "name",

 "fieldType": "String",

 "fieldValidateRules": [

 "required"

]

 },

 {

 ...

 },

 {

 "fieldName": "price",

 "fieldType": "BigDecimal",

 "fieldValidateRules": [

 "required",

 "min"

],

 "fieldValidateRulesMin": 0

 },

 {

 "fieldName": "size",

 "fieldType": "Size",

 "fieldValues": "S,M,L,XL,XXL",

 "fieldValidateRules": [

 "required"

]

 },

 {

 "fieldName": "image",

 "fieldType": "byte[]",

 "fieldTypeBlobContent": "image"

 }

],

 "relationships": [

 {

 "relationshipType": "many-to-one",

 "otherEntityName": "productCategory",

 "otherEntityRelationshipName": "product",

 "relationshipName": "productCategory",

 "otherEntityField": "id"

 }

],

 "changelogDate": "20191207131119",

 "javadoc": "Product sold by the Online store",

 "entityTableName": "product",

 "dto": "no",

 "pagination": "pagination",

 "service": "serviceClass",

 "jpaMetamodelFiltering": false,

 "fluentMethods": true,

 "readOnly": false,

 "clientRootFolder": "",

 "applications": "*"

}

Server-side source code

Now let's look at the server-side code that was generated.

Domain class for the entity

In the src/main/java/com/mycompany/store/domain
 folder, you will find the entity domain object. Open Product.java
 :

@ApiModel(description = "Product sold by the Online store")

@Entity

@Table(name = "product")

@Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)

public class Product implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 @NotNull

 @Column(name = "name", nullable = false)

 private String name;

 @Column(name = "description")

 private String description;

 @NotNull

 @DecimalMin(value = "0")

 @Column(name = "price", precision = 21, scale = 2, nullable =

 false)

 private BigDecimal price;

 @NotNull

 @Enumerated(EnumType.STRING)

 @Column(name = "size", nullable = false)

 private Size size;

 @Lob

 @Column(name = "image")

 private byte[] image;

 @Column(name = "image_content_type")

 private String imageContentType;

 @ManyToOne

 @JsonIgnoreProperties("products")

 private ProductCategory productCategory;

 // jhipster-needle-entity-add-field - JHipster will add fields

 // here, do not remove

 ... // getters

 public Product name(String name) {

 this.name = name;

 return this;

 }

 ... // setters

 // jhipster-needle-entity-add-getters-setters - JHipster will add

 // getters and setters here, do not remove

 ... // equals, hashcode and toString methods

}

The entity class defines the fields and relationships. The ApiModel
 annotation is used by Swagger to show useful documentation when the entity is used in an endpoint:

@ApiModel(description = "Product sold by the Online store")

The following code phrases are JPA annotations declaring the Plain Old Java Object
 (POJO
) as an entity and mapping it to an SQL table:

@Entity

@Table(name = "product")

The following is a Hibernate annotation, which lets us enable a level 2 cache for this entity. In our case, we will be using Hazelcast:

@Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)

The id
 field is special and is mapped as a generated value field. Depending on the database
 (DB
), this field will use a native generation technique or a sequence provided by Hibernate. Since we are using MySQL, it will use the native DB primary key generation technique:

@Id

@GeneratedValue(strategy = GenerationType.IDENTITY)

private Long id;

The following JPA annotation is used to map columns to fields, and it can also be used to declare properties
 such as
 nullable
 ,
 precision
 ,
 scale
 ,
 unique
 , and so on for the field:

@Column(name = "name", nullable = false)

The following are bean validation annotations that enable validation for the fields:

@NotNull

@DecimalMin(value = "0")

The image field is a blob and it is marked by the
 Lob
 type since we are using MySQL. It also has an additional field to hold the content type information:

@Lob

@Column(name = "image")

private byte[] image;

@Column(name = "image_content_type")

private String imageContentType;

The
 Enumerated
 annotation is used to map
 enum
 fields. These are stored as simple

varchar
 fields in the DB:

@Enumerated(EnumType.STRING)

The relationships are mapped using annotations
 such as
 @ManyToOne
 ,
 @OneToMany
 ,
 @OneToOne
 , and
 @ManyToMany
 :

@ManyToOne

private ProductCategory productCategory;

Here, ProductCategory
 is mapped as ManyToOne
 ; on the other side of the relationship, Product
 is mapped as OneToMany
 , as shown here:

@OneToMany(mappedBy = "productCategory")

@Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)

private Set<Product> products = new HashSet<>();

As you can see, the relationship also specifies a cache for it. The following is a fluent setter generated by default, along with the standard setter:

public Product name(String name) {

 this.name = name;

 return this;

}

Fluent methods can be turned off by specifying noFluentMethod
 for the entity in JDL. Fluent methods are handy as they let us use chain setters for more concise code, such as new Product().name("myProduct").price(10);
 .

The corresponding table definitions and constraints are created using Liquibase and can be found in src/main/resources/config/liquibase/changelog
 with the filenames <timestamp>_added_entity_Product
 and <timestamp>_added_entity_constraints_Product.xml
 , which automatically get applied to the database when we reload or start the application again.

Repository interface for the entity

In the
 src/main/java/com/mycompany/store/repository
 folder, you will find the entity repository service. Open
 ProductRepository.java
 :

@Repository

public interface ProductRepository extends JpaRepository<Product, Long> {

}

The repository service is just an empty interface that extends the JpaRepository
 class. Since it is a Spring Data repository, the implementation is automatically created, allowing us to perform all CRUD actions using this simple interface declaration. Additional repository methods can be added here easily. We will learn more about this in the next chapter.

Service class for the entity

Since we opted to generate service classes for our entities, let's look at one. In the
 src/main/java/com/mycompany/store/service
 folder, you will find the entity repository service. Open
 ProductService.java
 :

@Service

@Transactional

public class ProductService {

 private final Logger log = LoggerFactory.getLogger(ProductService.class);

 private final ProductRepository productRepository;

 public ProductService(ProductRepository productRepository) {

 this.productRepository = productRepository;

 }

 ...

}

The service uses constructor injection to get its dependencies, which are automatically injected by Spring during bean instantiation. The service is also marked as @Transactional
 to enable transaction management for data access. The service defines CRUD action methods—for example, the findAll
 method calls the equivalent repository method while adding a read-only transaction rule to it. You can see that the method already supports pagination and returns the results as Page
 . The Page
 and Pageable
 objects are provided by Spring and let us easily control pagination:

 @Transactional(readOnly = true)

 public Page<Product> findAll(Pageable pageable) {

 log.debug("Request to get all Products");

 return productRepository.findAll(pageable);

 }

Resource class for the entity

In the
 src/main/java/com/mycompany/store/web/rest
 folder, you will find the entity resource service. Open
 ProductResource.java
 :

@RestController

@RequestMapping("/api")

public class ProductResource {

 ...

}

The resource acts as the controller layer, and in our case, it serves the REST endpoints to be used by our client-side code. The endpoint has a base mapping to "/api"
 :

 @GetMapping("/products")

 public ResponseEntity<List<Product>> getAllProducts(Pageable

 pageable) {

 log.debug("REST request to get a page of Products");

 Page<Product> page = productService.findAll(pageable);

 HttpHeaders headers = PaginationUtil.

 generatePaginationHttpHeaders(

 ServletUriComponentsBuilder.fromCurrentRequest(),

 page);

 return ResponseEntity.ok().headers(headers).

 body(page.getContent());

 }

All the CRUD actions have equivalent mapping methods here—for example, the getAllProducts
 maps to findAll
 from our service. The resource also handles pagination by adding appropriate headers for pagination.

Let's take a look at the client-side code in the next section.

Client-side

The client-side resources for the entity are created in the src/main/webapp/app/entities
 folder. Let's take a look at the code created for the Product
 entity in the product
 folder.

TypeScript model class for the entity

Let's look at the TypeScript model generated in src/main/webapp/app/shared/model/product.model.ts
 . This maps directly to the domain object:

export interface IProduct {

 id?: number;

 name?: string;

 description?: string;

 price?: number;

 size?: Size;

 imageContentType?: string;

 image?: any;

 productCategory?: IProductCategory;

}

export class Product implements IProduct {

 constructor(

 public id?: number,

 public name?: string,

 public description?: string,

 public price?: number,

 public size?: Size,

 public imageContentType?: string,

 public image?: any,

 public productCategory?: IProductCategory

) {}

}

The fields are all optional, making it possible to create an object instance without any values. You will also see that the enums are generated alongside the model in the file.

Angular services for the entity

The ProductService
 is an Angular service that interacts with our REST endpoints, and is created in product.service.ts
 :

@Injectable({ providedIn: 'root' })

export class ProductService {

 private resourceUrl = SERVER_API_URL + 'api/products';

 constructor(private http: HttpClient) { }

 ...

 query(req?: any): Observable<EntityArrayResponseType> {

 const options = createRequestOption(req);

 return this.http.get<IProduct[]>(

 this.resourceUrl,

 { params: options, observe: 'response' }

);

 }

 ...

}

As you can see, the service has a constructor with dependencies that are injected following a similar pattern as our server-side code. There are methods mapping all the CRUD actions to the backend REST resource.
 The HTTP calls make use of RxJS observables to provide an asynchronous streaming API, which is much better than a p
 romise-based API.

Angular components of the entity

For an entity, there are four component classes generated in four files and four HTML files that are used in the components.

The ProductComponent
 , defined in
 product.component.ts
 , handles the main listing screen. It uses
 product.component.html
 as the template. The component manages the view and their actions. It also calls multiple services to fetch data and perform other actions, such as alerts and event broadcasts:

@Component({

 selector: 'jhi-product',

 templateUrl: './product.component.html'

})

export class ProductComponent implements OnInit, OnDestroy {

 ...

}

The ProductDetailComponent
 handles the detail view screen using
 product-detail.component.html
 as the template and is defined in
 product-detail.component.ts
 .

The ProductDeleteDialogComponent
 , defined in
 product-delete-dialog.component.ts
 , manages the delete pop-up dialog using
 product-delete-dialog.component.html
 as the template.

Angular route for the entity

We need a route declaration so that we can access the entity pages. This is declared in product.route.ts
 .

For example, this declares the detail view of the entity:

 {

 path: ':id/view',

 component: ProductDetailComponent,

 resolve: {

 product: ProductResolve

 },

 data: {

 authorities: ['ROLE_USER'],

 pageTitle: 'storeApp.product.home.title'

 },

 canActivate: [UserRouteAccessService]

 },

The data attribute is used to pass metadata, such as
 allowed roles and page titles, to the component. UserRouteAccessService
 , defined in the canActivate
 attribute, decides whether a user has the authorization to view the page and uses the authorities' metadata and authentication details to verify the user's authorization. ProductResolve
 is used to determine the function to be used for resolving the route.

Angular module for the entity

Lastly, we have a module for the entity. Angular modules can be used to consolidate all components, directives, pipes, and services of an entity so that they can be imported into other modules easily. The StoreProductModule
 module is defined in product.module.ts
 :

@NgModule({

 imports: [StoreSharedModule, RouterModule.forChild(productRoute)],

 declarations: [

 ProductComponent,

 ProductDetailComponent,

 ProductUpdateComponent,

 ProductDeleteDialogComponent

],

 entryComponents: [ProductDeleteDialogComponent]

})

export class StoreProductModule {}

The module declares the components that are used by it. The module also imports shared modules so that it can access shared services and components. The module is lazily loaded by the StoreEntityModule
 defined in entity.module.ts
 under src/main/webapp/app/entities
 .

In the next section, we'll take a look at the pages that will be generated.

Generated pages

Let's start the application to view the generated pages. In the Terminal, execute the Gradle command, as follows:

> ./gradlew

This will start the server in development mode locally. Since the import-jdl
 step already compiled the frontend code, we don't have to run npm start
 just to see the new pages, but please note that for further development, it is better to use npm start
 along with the preceding command. If you had the server already running while generating the entities, then there is no need to run this command; instead, just compile the source again using the ./gradlew compileJava
 command or using your IDE and Spring DevTools will hot reload the application for you. If you had npm start
 running, then a hot reload will take place on the client-side as well; otherwise, just refresh the page. We will learn more about hot reloading in the next chapter.

Once you see the following message, the server is ready and we can navigate to the URL http://localhost:8080
 in our favorite browser:

--

 Application 'store' is running! Access URLs:

 Local: http://localhost:8080

 External: http://192.168.2.7:8080

 Profile(s): [swagger, dev]

--

If you are not already logged in, then do so using the default admin user with the password
admin

 by clicking on the Sign in
 link on the home page. Once logged in, click on the Entities
 link in the menu and you will see all our entities listed there:

Click on the Product
 and you will see the
Products

 listing screen. It has some fake data autogenerated for development purposes, which is loaded only for the dev
 profile:

The loading of the fake data can be disabled by removing the
 faker
 profile in the
 spring.liquibase.contexts
 property in the application configuration file at
 src/main/resources/config/application-dev.yml
 . You can also disable the loading of fake data during the initial app creation by passing the
 --skip-fake-data
 flag to the
 jhipster
 command.

Let's create an entity. Click on the Create a new Product
 button on the screen and you will see the following Create or edit a Product
 page:

Enter the Name
 , Description
 , Price
 , and Size
 . Select an image by clicking on the Choose file
 button and choosing a Product Category
 . Now click on Save
 and the listing screen will be refreshed with the following success message:

The Products
 screen now shows our new entity with buttons for View
 , Edit
 , and Delete
 . There are also pagination links on the bottom. Explore the View
 ,
 Edit
 , and
 Delete
 buttons by clicking on each of them.

In the next section, we'll run the test code that we generated.

Running the generated tests

Let's run all the tests to make sure that the generated test code works fine.

Let's run the server-side unit/integration tests, client-side Jest unit tests, and Protractor e2e tests using the command line. In a new Terminal, navigate to the application source folder and execute these commands. They should finish with a success message:

> ./gradlew test integrationTest && npm test && npm run e2e

Make sure you have the application running, as e2e tests will need it. If the application is not running, then first start it by running
 ./gradlew
 in a Terminal.

Summary

In this chapter, we learned how to model and create entities using JDL. We also walked through some important features of the created source code and then browsed through the created entity modules and saw them in action.

In the next chapter, we will learn how we can utilize JHipster to further develop the application and include specific business logic and tweaks. We will also look more deeply into some of the technologies that we have used.

Customization and Further Development

In the previous chapter, we saw how to use the JHipster Domain Language
 (JDL
) to model and generate our domain model. We also learned about entity relationships and the import-jdl
 sub-generator. In this chapter, we will see how we can further customize and add business logic to the generated online-store application to suit our needs. We will learn about the following:

	Live reload with Spring DevTools and BrowserSync

	
Customizing the Angular frontend for an entity

	
Editing an entity that was created using the
 JHipster entity generator

	
Changing the look and feel of the application using a Bootstrap theme

	
Adding a new i18n language using the
 JHipster language generator

	Customizing the generated REST API to add additional role-based authorization with Spring Security

	Creating new Spring Data JPA queries and methods

Live reload for development

One of the most
 annoying and time-consuming aspects of
 developing an application is recompiling the code and restarting the servers to see the code changes that we have made. Traditionally, JavaScript code used to be easier, as it didn't need any compilation and you could just refresh the browser and see the changes; however, even though current MVVM stacks make the client-side more important than before, they also introduce side effects, such as the transpiling of client-side code, and more. So, if you were refactoring a field for an entity, you would traditionally need to perform the following tasks to see the changes in your
 browser:

	Compile the server-side Java code.

	Apply the table changes to the database.

	Recompile the client-side code.

	Restart the application server.

	Refresh the browser.

This takes a lot of time, is frustrating to do for every small change, and results in you making more changes before checking the previous change, thereby affecting productivity.

But what if I told you that you don't have to do any of these and that all of this could happen automatically as you save your changes while using your IDE? That would be awesome, wouldn't it?

With JHipster, you get exactly that. JHipster uses Spring Boot DevTools, the webpack dev server, and BrowserSync to enable a nice, live reload feature for the end-to-end code.

Let's take a quick look at the technologies used.

Spring Boot DevTools

Spring Boot DevTools (https://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-devtools.html
) enables Spring Boot applications to reload the embedded server when there is a change in the classpath. It states the following:

The aim of this module is to try and improve the development-time experience when working on Spring Boot applications.

And it does exactly that. It uses a custom classloader to restart the application when a class is updated and recompiled, and since the server is hot reloaded, it is much faster than a cold restart.

It isn't as cool as JRebel or similar technologies, which perform instant reloads, but it beats doing it manually, and doesn't require any extra configuration to work.

JHipster automatically enables DevTools in the dev
 profile and using an IDE that can automatically recompile classes on save, DevTools will ensure that the application is

reloaded and is up to date. Since Liquibase is used, any schema updates using proper changelogs will also get updated. Make sure that you do not change existing changelogs, as this will cause a checksum error. Application reloads can also be triggered by simply using the
 mvnw compile
 or
 gradlew compileJava
 commands
 depending on the build tool used.

If you choose a NoSQL DB, such as MongoDB, Cassandra, or Couchbase, then bear in mind that JHipster provides database migration tools for these as well.

Webpack dev server and BrowserSync

Webpack dev server (https://github.com/webpack/webpack-dev-server
) provides a simple express server using webpack
 dev middleware and supports live reloads when assets change. Webpack dev middleware supports features such as hot module replacement and in-memory file access.

In Webpack version 4 and above, a new alternative called webpack-serve
 (https://github.com/webpack-contrib/webpack-serve
) is used instead of Webpack dev server. It uses native WebSocket support in newer browsers.

BrowserSync (https://browsersync.io/
) is a Node.js tool that helps with browser testing by synchronizing the file changes and interactions of the web page across multiple browsers and devices. It provides features such as
 auto-reloads on file changes, synchronized UI interactions, scrolling, and so on. JHipster integrates BrowserSync with Webpack dev server to provide a productive development setup. It makes testing a web page on different browsers and devices super easy. Changes to CSS are loaded without a browser refresh.

To use live reloads on the client-side, you need to run npm start
 , which will start the development server and open up a browser pointing to http://localhost:9000
 . Note port 9000
 in the URL. BrowserSync will be using this port, while the application backend will be served at 8080
 , and all requests will be proxied through webpack
 dev middleware.

Open another browser—for example, Firefox—if BrowserSync has opened Chrome already or vice versa. Now place them side by side and play around with the application. You will see that your actions are replicated, thanks to BrowserSync. Try changing some code and save the file to see the live reload in action. Note that you need to be authenticated in both of the browsers, and if you perform a POST
 request, it will be done twice as there are two browsers performing the action.

Setting up live reloads for an application

Let's start the perfect development setup for the application we created. In a Terminal, start the server in dev mode by running ./gradlew
 , and in another Terminal, start the client-side development server by running npm start
 .

Now, when you make any changes on the server-side, simply run ./gradlew compileJava
 , or if you are using an IDE, click on the Compile
 button.

With IntelliJ IDEA, files are automatically saved, and so you can press Ctrl
 + S
 to compile the classes, giving you a nice workflow. In Eclipse, saving a class automatically compiles it.

When you make changes on the client-side, simply save the file and webpack dev server and BrowserSync will do the rest. Now let's see how we can customize an entity.

Customizing the Angular frontend for an entity

Now that we have our entity domain model created and working, let's make it more usable. The product
 listing screen has a table view generated by JHipster; it is sufficient for simple CRUD operations, but isn't the best-suited user experience for end users who want to browse our product listing. Let's see how we can easily change this to something more appealing. We will also add a nice client-side filter option to filter the listing. We will be using both Angular and Bootstrap features for this:

	First, let's find the source code that we would need to edit. In your favorite editor/IDE, navigate to src/main/webapp/app/entities/product
 :

Let's start by customizing the product.component.html
 file to update the UI view of the product listing.

The HTML code currently renders a table view and uses some Angular directives to enhance the view with sorting and pagination. Let's change the view from a table into a list, but first, if it's not already open, then
 open the development web server from BrowserSync by navigating to
 http://localhost:9000
 .

	If you disabled fake data during code generation, then log in and navigate to Entities
 | Product Category
 , and create a category. Then navigate to
Entities

 |
Product

 and create a few new products so that we have something to list:

	We can use the Bootstrap list group (https://getbootstrap.com/docs/4.0/components/list-group/
) component for this purpose.

Let's use the following snippet and change the view. Replace the div
 tag with class="table-responsive"
 with the following code:

<div *ngIf="products"

>

 <div class="list-group">

 <a class="list-group-item list-group-item-action flex-column

 align-

 items-start"

 *ngFor="let product of products; trackBy: trackId"

>

 <div class="d-flex w-100 justify-content-between">

 <a [routerLink]="['/product', product.id, 'view']"

>

 <h5 class="mb-1">{{ product.name }}

</h5>

 <small *ngIf="product.productCategory">

 <a [routerLink]="['/product-category', product

 .productCategory?.id, 'view']"

>

 {{ product.productCategory?.id }}

 </small>

 </div>

 <small class="mb-1">{{ product.description }}</small>

 <p class="mb-1">Price: {{ product.price }}</p>

 <small>

 Size:

 <span jhiTranslate="{{ 'storeApp.Size.' + product.size

 }}">

 {{ product.size }}

 </small>

 </div>

 </div>

As you can see, we are iterating the products using the Angular directive, *ngFor="let product of products; trackBy: trackId"
 , on the anchor element so that the element is created for each product in the list. We wrap this in a *ngIf="products"
 directive so that the view is rendered only when the product's object is defined. The [routerLink]="['/product', product.id, 'view']"
 directive will create a href
 tag for the anchor using the Angular router so that we can navigate to the particular product route. We then use properties from the product in template strings to be rendered using the {{product.name}}
 syntax. As you save the code, you might notice that the view refreshes automatically, thanks to BrowserSync.

The trackBy
 function used in ngFor
 lets Angular decide which items are added or removed from a collection. This improves rendering performance as Angular can now figure out which items need to be added or removed from the Document Object Model
 (DOM
) exactly, without having to recreate the entire collection. Here, we provide trackId
 as the function to uniquely identify an item in the collection.

This will produce the following:

While it's a good start, it's not enough. So, let's go in and make it better.

	Let's add the image to the listing first. Modify the code to add Bootstrap rows and columns, as shown in the following code. The original code that renders the content is moved into the second column and remains unchanged:

<div *ngIf="products">

 <div class="list-group">

 <a class="list-group-item list-group-item-action flex-column

 align-

 items-start"

 *ngFor="let product of products; trackBy: trackId">

 <div class="row">

 <div class="col-2 col-xs-12 justify-content-center">

 <img [src]="'data:' + product.imageContentType +

 ';base64,' +

 product.image" style="max-height:150px;"

 alt="product image" />

 </div>

 <div class="col col-xs-12">

 <div class="d-flex w-100 justify-content-between">

 ...

 </div>

 ...

 <small>

 ...

 </small>

 </div>

 </div>

 </div>

 </div>

Take a look at the code highlighted in bold. We added a Bootstrap row (https://getbootstrap.com/docs/4.0/layout/grid/
) with two-column div
 tags. The first div
 tag takes up 2 columns in a 12-column grid specified by col-2
 , while we also say that when the display is xs
 (extra small
), the div
 tag should take 12 columns using col-xs-12
 .

The second div
 tag is kept responsive by specifying col
 so that it takes the remaining available columns after the first div
 tag, and when the display is extra small, it takes up to 12 columns as well. The image inside the first column div
 tag uses a data URL as src
 tag to render the image. Now we have an even better view:

	We can polish it further. We can use the Angular currency pipe (https://angular.io/api/common/CurrencyPipe
) for the price and remove the redundant label for it by changing it to {{product.price | currency:'USD'}}
 . We can add a label for the category shown on the right-hand side of the list as well.

	Finally, we can add the Edit
 and Delete
 buttons back, but we need to show them only for users who have the ADMIN
 role so that normal users will only be able to view the product listing. We can copy the HTML code for the edit
 and delete
 buttons from the original table. The final code will have the following structure:

<div *ngIf="products">

 <div class="list-group">

 <a ...>

 <div class="row">

 ...

 <div class="col col-xs-12">

 <div class="d-flex w-100 justify-content-between">

 ...

 <small *ngIf="product.productCategory">

 <a [routerLink]="['/product-category',

 product.productCategory?.id, 'view']">

 Category:

 {{ product.productCategory?.id }}

 </small>

 </div>

 <small class="mb-1">{{ product.description }}</small>

 <p class="mb-1">{{ product.price | currency: 'USD' }}

 </p>

 <small>

 ...

 </small>

 <div *jhiHasAnyAuthority="'ROLE_ADMIN'"

>

 <button

 type="submit" [routerLink]="['/product',

 product.id,

 'edit']" class="btn btn-primary btn-sm">

 <fa-icon [icon]="'pencil-alt'"></fa-icon>

 <span class="d-none d-md-inline"

 jhiTranslate="entity.action.edit">Edit

 </button>

 <button

 type="submit" (click)="delete(product)"

 class="btn btn-

 danger btn-sm">

 <fa-icon [icon]="'times'"></fa-icon>

 <span class="d-none d-md-inline"

 jhiTranslate="entity.action.delete">Delete

 </button>

 </div>

 </div>

 </div>

 </div>

 </div>

The *jhiHasAnyAuthority="'ROLE_ADMIN'"
 directive is provided by JHipster and can be used to control the presentation based on user roles. By default, JHipster provides ROLE_ADMIN
 and ROLE_USER
 , but controlling this only on the client-side is not secure as it can be easily bypassed, so we should secure this on the server-side as well. We will look at this later in the chapter. Log out and log in again using the user account to see the directive in action:

Now, let's also add the *jhiHasAnyAuthority="'ROLE_ADMIN'"
 directive to the Create
 button element.

Bringing back the sorting functionality

Now that our view is much better, let's bring back the sorting functionality that we originally had. Since we do not have table headers anymore, we can use some buttons to sort the information based on certain fields that are important.

Let's use the Bootstrap button group (https://getbootstrap.com/docs/4.0/components/button-group/
) for this. Place the following snippet over the <div class="list-group">
 element that we created earlier:

<div class="mb-2 d-flex justify-content-end align-items-center"

>

 Sort by

 <div class="btn-group" role="group" jhiSort [(predicate)]="predicate"

 [(ascending)]="reverse" [callback]="transition.bind(this)"

>

 <button type="button" class="btn btn-light" jhiSortBy="name"

>

 Name

 <fa-icon [icon]="'sort'"></fa-icon>

 </button>

 <button type="button" class="btn btn-light" jhiSortBy="price"

>

 Price

 <fa-icon [icon]="'sort'"></fa-icon>

 </button>

 <button type="button" class="btn btn-light" jhiSortBy="size"

>

 Size

 <fa-icon [icon]="'sort'"></fa-icon>

 </button>

 <button type="button" class="btn btn-light"

 jhiSortBy="productCategory.id"

>

 Product

 Category

 <fa-icon [icon]="'sort'"></fa-icon>

 </button>

 </div>

</div>

We can use the Bootstrap margin and flexbox utility classes, such as mb-2 d-flex justify-content-end align-items-center
 , to position and align the item properly. We use the btn-group
 class on a div
 element to group our button
 elements together, on which we have placed the jhiSort
 directive and its bound properties, such as predicate
 , ascending
 , and callback
 . On the buttons themselves, we use the jhiSortBy
 directive to specify which field they would use to sort. Now our page looks as follows, where products are sorted by price:

Adding a filtering functionality

Finally, let's add some good old client-side filtering to the page:

	First, let's add a new instance variable called filter
 of the string
 type to the ProductComponent
 class in the product.component.ts
 file:

export class ProductComponent implements OnInit, OnDestroy {

 ...

 filter: string;

 constructor(

 ...

) {

 ...

 }

 ...

}

JHipster provides an option to enable server-side filtering using the JPA metamodel. Another option is to enable Elasticsearch, for which JHipster will automatically create full-text search fields for every entity. You should use these for any serious filtering requirements you might have.

	Now let's use this variable in the product.component.html
 file. Add the highlighted snippet from the following code to the div
 tag we created for the Sort by
 buttons.

<div class="mb-2 d-flex justify-content-end align-items-center">

 Filter by name

 <input type="search" class="form-control" [(ngModel)]="filter">

 Sort by

 <div class="btn-group" role="group"

 ...

 </div>

</div>

We bound the filter
 variabl
 e to an input eleme
 nt using the
 ngModel
 directive, and using
 [()]
 ensures two-way binding on the variable.

The [(ngModel)]="filter"
 phrase creates a two-way binding, [ngModel]="filter"
 creates a one-way binding from the model to the view, and (ngModel)="filter"
 creates a one-way binding from the view to the model.

	Finally, update the ngFor
 directive on our list's group item element as follows. We use a pipe provided by JHipster to filter the list using the name
 field of the product:

*ngFor="let product of (products | pureFilter:filter:'name')

; trackBy:

 trackId"

That's it. We should get a shiny filter option on our screen:

The UX is much better than before, but for a real-world use case, you could build a much better UI for the client-facing website, with features to add items to a cart, pay for items online, and so on,
 and leave this part for the back office to use. Let's commit this to Git.

This is very important for managing changes to the project later. Run the following commands:

> git add --all

> git commit -am "update product listing page UI"

Our code is now committed to git
 . Let's now see how we can edit an entity using JHipster.

Editing an entity using the JHipster entity sub-generator

While looking through the generated entity screens, we might realize that there are some minor issues that affect the user experience. For example, on the product screens, we have a relationship with a product category, but when choosing the product category from the drop-down menu during creation or when showing the category in the list, we show the category by its ID, which is not user-friendly.

It would be nice if we could show the product category name instead. This is the default JHipster behavior, but it can be customized while defining the relationships. Let's see how we can make our generated screens more user-friendly by editing the JDL model. This will overwrite existing files, but since we are using git
 , we can easily cherry-pick the changes we made. We will see how this is done in a moment:

	In our JDL, we defined relationships between the entities using the following code:

relationship OneToOne {

 Customer{user} to User

}

relationship ManyToOne {

 OrderItem{product} to Product

}

relationship OneToMany {

 Customer{order} to ProductOrder{customer},

 ProductOrder{orderItem} to OrderItem{order},

 ProductOrder{invoice} to Invoice{order},

 Invoice{shipment} to Shipment{invoice},

 ProductCategory{product} to Product{productCategory}

}

By specifying the field to use for displaying the relationship in JDL using the (<field name>)

 syntax, we can change how the client-side code displays relationships:

relationship OneToOne {

 Customer{user(login)

} to User

}

relationship ManyToOne {

 OrderItem{product(name)

} to Product

}

relationship OneToMany {

 Customer{order} to ProductOrder{customer(email)

},

 ProductOrder{orderItem} to OrderItem{order(code)

},

 ProductOrder{invoice} to Invoice{order(code)

},

 Invoice{shipment} to Shipment{invoice(code)

},

 ProductCategory{product} to Product{productCategory(name)

}

}

	Let's run this using the import-jdl
 command. The command only generates entities that underwent changes from the last run. But before we run, let's also switch to a new branch, because it's good practice to make major changes on a separate branch and merge them back so you have more control:

> git checkout -b entity-update-display-name

> jhipster import-jdl online-store.jdl

Accept the changes to the files and wait for the build to finish.

Read more about Git flow at
 https://guides.github.com/introduction/flow/
 .

	Now let's look at the entity pages to verify that the display names are being used properly and create some entities to try it out. Now we realize that the Invoice
 entity has empty drop-down menus when used in other entities, and that is because the Invoice
 entity does not have a field called code
 . Since we use {{invoice.order?.code}}
 in the template, the ?
 symbol makes Angular skip undefined values, preventing errors in rendering.

This is easy to fix.
 Sometimes, we might want to make a small change to an entity after we have created it using JDL and the import-jdl
 command. The best way would be to make the change in JDL and regenerate it using the import JDL command, as we saw in the previous code. There is also another option: the entity sub-generator can yield the same result. For the sake of familiarizing yourself with this option, let's use the entity sub-generator to add the field to our Invoice
 entity:

	Run the following command:

> jhipster entity Invoice

	From the options, select Yes, add more fields and relationships
 :

Using JHipster version installed globally

Executing jhipster:entity Invoice

Options:

Found the .jhipster/Invoice.json configuration file, entity can be automatically generated!

The entity Invoice is being updated.

? Do you want to update the entity? This will replace the existing files for this entity, all your custom code will be overwritten

 Yes, re generate the entity

❯ Yes, add more fields and relationships

 Yes, remove fields and relationships

 No, exit

	Select Yes
 for the next question and provide the field name, type, and validation in the questions that follow:

Generating field #7

? Do you want to add a field to your entity? Yes

? What is the name of your field? code

? What is the type of your field? String

? Do you want to add validation rules to your field? Yes

? Which validation rules do you want to add? Required

================= Invoice =================

Fields

date (Instant) required

details (String)

status (InvoiceStatus) required

paymentMethod (PaymentMethod) required

paymentDate (Instant) required

paymentAmount (BigDecimal) required

code (String) required

Relationships

shipment (Shipment) one-to-many

order (ProductOrder) many-to-one

Generating field #8

? Do you want to add a field to your entity? (Y/n)

	Select n
 for the prompts that follow to add more fields and relationships. Accept the proposed file changes, and that's it—we are done.

	Now, just make sure that you update the JDL so that the Invoice
 entity has code String required

as a field.

You could also run jhipster export-jdl online-store.jdl
 to export the current model back to the JDL. The export-jdl
 command creates a JDL file with all the information about current entities, relationships, and the application you have.

Now that we have displayed entity relationships properly, we also need to make sure certain entities have mandatory
 relationship values. For example, consider the following:

	For customers, it should be mandatory to have a user.

	
ProductOrder
 should have a customer.

	Order items should have an order.

	An invoice should have an order.

	The shipment should have an invoice.

Since JHipster supports making relationships that are required, we can make these changes using JDL. Update the relationships to the following snippet in online-store.jdl
 :

relationship OneToOne {

 Customer{user(login) required

} to User

}

relationship ManyToOne {

 OrderItem{product(name) required

} to Product

}

relationship OneToMany {

 Customer{order} to ProductOrder{customer(email) required

},

 ProductOrder{orderItem} to OrderItem{order(code) required

},

 ProductOrder{invoice} to Invoice{order(code) required

},

 Invoice{shipment} to Shipment{invoice(code) required

},

 ProductCategory{product} to Product{productCategory(name)}

}

Now, run
jhipster import-jdl online-store.jdl
 and accept the proposed updates. Make sure that you check what has changed using the git diff
 command or your Git UI tool.

Let's commit this step so that it can be rolled back if required:

> git add --all

> git commit -am "entity relationships display names and required update"

Now we have a problem: regenerating the entities overwrote all the files, and that means we lost all the changes we made for the product listing page, but since we are using Git, it's easy to get it back. So far, our project has only a few commits, so it will be easy to cherry-pick the commit we made for the product listing UI change and apply it back on top of the current code base; however, in real-world scenarios, there could be a lot of changes before you can regenerate the JDL, and so it will require some effort to verify and merge the required changes back. Always rely on pull requests so that you can see what has changed and others can review and find any issues.

Let's cherry-pick the changes that we need.

Refer to the documentation for cherry-picking advanced options at https://git-scm.com/docs/git-cherry-pick
 .

Since the commit we need is the last one on the master, we can simply use
git cherry-pick master
 . We could also switch to the master and use the git log
 command to list the commits, then copy the commit hash of the required commit and use that with git cherry-pick <commit-sha>

 .

This results in merge conflicts, as the product.component.html
 file was updated in the commit that we picked on our current branch tip. We need the incoming change from the commit, but we also need to update the product category display name from ID to code, so let's accept the incoming change and make a manual update from
{{product.productCategory?.id}}
 to

{{product.productCategory?.name}}

 .

Resolve the conflict by staging the file and commit. Now we can merge the branch into the master:

> git cherry-pick master

// Fix merge conflict

> git add src/main/webapp/app/entities/product/product.component.html

> git commit -am "cherrypick: update product listing page UI"

> git checkout master

> git merge --no-ff entity-update-display-name

And now everything is merged.

If you are new to Git, it is advisable to use a UI tool such as SourceTree or GitKraken to cherry-pick and resolve merge conflicts. IDEs such as IntelliJ and editors such as VS Code also provide good options for these.

Now our page view should be good:

Of course, we could also make it more user-friendly by making the product listing our home page. But for now, let's skip that.

Adding validations to the relationships might cause issues with fake data being generated, and so at this point, you might have to fix the unique constraint violations in the generated fake data CSV files under src/main/resources/config/liquibase/fake-data/
 or disable the ability to load fake data by removing the faker
 profile in the spring.liquibase.contexts
 property in the application configuration, src/main/resources/config/application-dev.yml
 .

Since we were working on the client-side code, we didn't pay attention to the server-side code that was changed while we were doing this. We need to compile the Java code to reload our server. Let's run ./gradlew compileJava
 .

Unfortunately, we receive an error during the reload regarding a failure to update the database changelogs by Liquibase due to a checksum error:

liquibase.AsyncSpringLiquibase : Liquibase could not start correctly, your database is NOT ready: Validation Failed:

 5 change sets check sum

 config/liquibase/changelog/20180114123500_added_entity_Customer.xml::20180114123500-1::jhipster was: 7:3e0637bae010a31ecb3416d07e41b621 but is now: 7:01f8e1965f0f48d255f613e7fb977628

 config/liquibase/changelog/20180114123501_added_entity_ProductOrder.xml::20180114123501-1::jhipster was: 7:0ff4ce77d65d6ab36f27b229b28e0cda but is now: 7:e5093e300c347aacf09284b817dc31f1

 config/liquibase/changelog/20180114123502_added_entity_OrderItem.xml::20180114123502-1::jhipster was: 7:2b3d9492d127add80003e2f7723903bf but is now: 7:4beb407d4411d250da2cc2f1d84dc025

 config/liquibase/changelog/20180114123503_added_entity_Invoice.xml::20180114123503-1::jhipster was: 7:5afaca031815e037cad23f0a0f5515d6 but is now: 7:fadec7bfabcd82dfc1ed22c0ba6c6406

 config/liquibase/changelog/20180114123504_added_entity_Shipment.xml::20180114123504-1::jhipster was: 7:74d9167f5da06d3dc072954b1487e11d but is now: 7:0b1b20dd4e3a38f7410b6b3c81e224fd

This is because of the changes that were made to the original changelog by JHipster. In an ideal world, new schema changes should be made in new changelogs so that Liquibase can apply them, but JHipster doesn't generate this by default yet. For local development using an H2 DB, we can run ./gradlew clean
 to clear the DB and start the application again. But in real use cases, you might be using an actual DB, and you would want to retain the data, so we would have to handle this manually here using the diff
 features provided by Liquibase.

JHipster provides integration for Liquibase in both Gradle and Maven builds. You can make use of it to create new changelogs and to create diff changelogs. In cases like these, when we would like to resolve conflicts while retaining data, the Liquibase diff feature is our friend. With Gradle, you could run the ./gradlew liquibaseDiffChangeLog
 command to create a diff changelog of your changesets and the database. You can add this changeset to the src/main/resources/config/liquibase/master.xml
 file and it will be applied the next time you restart your server.

By default, the command is configured to run against your development database. If you would like to do this against your production database, then just update the liquibase
 command definition in the build.gradle
 file with the details of the production DB. Refer to http://www.jhipster.tech/development/#using-a-database
 for more details.

If you want to clear checksums in your DB, use the ./gradlew liquibaseClearChecksums
 task.

Changing the look and feel of the application

The good thing about using Bootstrap is that it lets us easily change the look and feel of the application using any available Bootstrap themes. Let's see how we can install a cool theme for our application, and then fine-tune the styles to fit our needs using SASS variables provided by Bootstrap.

There are hundreds of Bootstrap themes out there. Since we are using Bootstrap 4, it is important to pick a theme that is made for Bootstrap 4.

Bootswatch is a nice collection of themes for Bootstrap. JHipster has an option to select a Bootswatch theme during application generation. You can
 see all the available themes at https://bootswatch.com/
 .

Let's use a Bootswatch theme called materia
 . You can skip adding the dependencies using the following steps if you
 choose materia as the default theme during application generation:

	In your Terminal, run npm install --save bootswatch
 to install all the themes. Don't worry; we will only import the theme that we want to use, so you do not have to worry about installing all of the themes.

	Now, let's import this using SASS. Open src/main/webapp/content/scss/vendor.scss
 , find the line
 @import '~bootstrap/scss/bootstrap';
 , and add the following code highlighted in bold:

// Override Boostrap variables

@import "bootstrap-variables";

@import '~bootswatch/dist/materia/variables';

// Import Bootstrap source files from node_modules

@import '~bootstrap/scss/bootstrap';

@import "~bootswatch/dist/materia/bootswatch";

The name of the theme here is materia, but you can use any theme available in Bootswatch here. Make sure that the name is all in
 lowercase. Also, note the order of the imports. It is important that we import the theme variables after importing the Bootstrap variables and that we import the themes after importing the Bootstrap theme so that the SASS variables and styles are overridden properly.

We can customize the theme further by overriding the Bootstrap variables defined in src/main/webapp/content/scss/_bootstrap-variables.scss
 .

You can override any variable supported by Bootstrap. The full list of supported variables can be found in node_modules/bootstrap/scss/_variables.scss
 .

For example, let's change some colors in
 _bootstrap-variables.scss
 , as follows
 :

$primary: #032b4e;

$success: #1df54f;

$info: #17a2b8;

$warning: #ffc107;

$danger: #fa1a30;

There might be some UI glitches when you apply a new theme; you could solve them by updating the generated SASS files.

For example, you can add custom CSS/SASS to src/main/webapp/content/scss/global.scss
 to fix UI glitches in themes or to add new global UI styles.

We now have a cool new theme:

More information can be found at https://getbootstrap.com/docs/4.0/getting-started/theming/
 .

	Let's commit this:

> git add --all

> git commit -am "update bootstrap theme using bootswatch"

Let's now learn how to add additional languages.

Adding a new i18n language

Since we enabled i18n support for our application, we can add new i18n languages easily at any time using the JHipster language generator. Let's add a new language to our application:

	In the Terminal, switch to a new branch and run the following command:

> git checkout -b add-tamil-language

> jhipster languages

	You will now see a prompt like the following, where you can choose any available language listed:

Using JHipster version installed locally in current project's node_modules

Executing jhipster:languages

Options:

Languages configuration is starting

? Please choose additional languages to install (Press <space> to select, <a> to toggle all, <i> to inverse selection)

>

◯ Arabic (Libya)

 ◯ Armenian

 ◯ Catalan

 ◯ Chinese (Simplified)

 ◯ Chinese (Traditional)

 ◯ Czech

 ◯ Danish

(Move up and down to reveal more choices)

	Let's select Tamil
 here for now. Accept the proposed file changes and you are good to go. You will have to restart the npm start
 command. Once the application refreshes, you can see the new language in the language drop-down menu in the application menu. Now, wasn't that easy? Have a look at the following screenshot:

But there is a problem. Since we have some entities and we added a new language, we will need to get i18n Tamil files for entities as well. We can do this easily by running the jhipster --with-entities
 command, which will regenerate the application along with the entities. Make sure that you carefully stage only the changes that you need (i18n-related JSON files) from the diff and discard the remaining changes. The following are the files and folders that need to be staged:

.yo-rc.json

src/main/resources/i18n/messages_ta.properties

src/test/resources/i18n/messages_ta.properties

src/test/java/com/mycompany/store/service/MailServiceIT.java

src/main/webapp/app/shared/language/find-language-from-key.pipe.ts

src/main/webapp/app/shared/language/language.constants.ts

webpack/webpack.common.js

webpack/webpack.prod.js

src/main/webapp/i18n/ta/*

Now, let's commit this and merge it back to the master. If we have picked only i18n-related changes, then we shouldn't have any merge conflicts:

> git add --all

> git commit -am "add Tamil as additional language"

> git checkout master

> git merge --no-ff add-tamil-language

Now, let's see how to set up authorization for the application.

Authorization with Spring Security

As you may have noticed, when it comes to generated code, JHipster doesn't provide much in terms of role-based security, authorization management, and so on. This is intentional, as these heavily depend on the use case and are most often associated with the business logic of the application. So, it would be better if these features were hand-coded by the developers as part of the business code.

Normal users have ROLE_USER
 and admin users have ROLE_ADMIN
 assigned in their user management. For our use
 case, there are a few security holes that we need to take care of:

	Normal users should only have access to view the product listing, product orders, order items, invoices, and shipments.

	Normal users should not have access to create/edit/delete entities via the CRUD API.

	Normal users should not be able to access the product orders, order items, invoices, and shipments of other users.

We could overcome these issues using features provided by Spring Security.

Limiting access to entities

First, let's limit the access for normal users. This can be done easily at the API level using Spring Security. Add the following snippet to the configure
 method of src/main/java/com/mycompany/store/config/SecurityConfiguration.java
 .

Add it right before the line .antMatchers("/api/**").authenticated()
 . The position is very important:

.antMatchers("/api/customers").hasAuthority(AuthoritiesConstants.ADMIN)

.antMatchers("/api/product-categories").hasAuthority(AuthoritiesConstants.ADMIN)

We specify that when the request path matches api/customers
 or api/product-categories
 , the user should have ROLE_ADMIN
 to access them. Now recompile with ./gradlew compileJava
 , then sign out and log in as user
 and try to access the customer entity page. Look at the console in your browser's development tools and you should see a 403 Forbidden
 error for calls made to GET http://localhost:9000/api/customers
 .

Now that our backend handles this properly, let's hide these entries in the menu for normal users. Let's add a *jhiHasAnyAuthority="'ROLE_ADMIN'"
 directive to the list elements for the customer and product categories in src/main/webapp/app/layouts/navbar/navbar.component.html
 .

Now only admin users will see these items on the menu.

Limiting access to create/edit/delete entities

Now we need to ensure that only admin users can edit entities; normal users should only be able to view entities authorized to them. For this, it would be better to handle it at the API level using the Spring Security
PreAuthorize

 annotation. Let's start with the OrderItem
 entity. Go to src/main/java/com/mycompany/store/web/rest/OrderItemResource.java
 and add @PreAuthorize("hasAuthority('ROLE_ADMIN')")
 to the createOrderItem
 , updateOrderItem
 , and deleteOrderItem
 methods
 :

 @DeleteMapping("/order-items/{id}")

 @PreAuthorize("hasAuthority('ROLE_ADMIN')")

 public ResponseEntity<Void> deleteOrderItem(@PathVariable Long id) {

 ...

 }

We are asking Spring Security interceptors to provide access to these methods only when the user has ROLE_ADMIN
 . The PreAuthorize
 annotation stops access before executing the method. Spring Security also provides PostAuthorize
 and more general Secured
 annotations. More information about these can be found in the Spring Security documentation at https://projects.spring.io/spring-security/
 .

Compile the backend using ./gradlew compileJava
 or the IDE. Now go to the order items page and try to create an order item. You will get a POST http://localhost:9000/api/order-items 403 (Forbidden)
 error from the API call on the web console. Now, let's add the annotation to all the entity Resource
 class's create, update, and delete methods. You could skip customer and product category entities, as they are entirely forbidden to ROLE_USER
 already.

Let's also hide the create, edit, and delete buttons from the Angular views using the
*jhiHasAnyAuthority="'ROLE_ADMIN'"
 directive.

Limiting access to the data of other users

Now, this is a little more tricky, as this requires us to change code at the service layer on the backend, but it is not hard. Let's get right to it.

Let's start with the product order entity. Modify the findAll
 method in src/main/java/com/mycompany/store/service/ProductOrderService.java
 as follows:

 @Transactional(readOnly = true)

 public Page<ProductOrder> findAll(Pageable pageable) {

 log.debug("Request to get all ProductOrders");

 if (SecurityUtils.isCurrentUserInRole

 (AuthoritiesConstants.ADMIN)) {

 return productOrderRepository.findAll(pageable);

 } else

 return productOrderRepository.findAllByCustomerUserLogin(

 SecurityUtils.getCurrentUserLogin().get(),

 pageable

);

 }

As you can see, we modified the original call to productOrderRepository.findAll(pageable)
 so that we call it only when the current user has the Admin
 role; otherwise, we call findAllByCustomerUserLogin
 , but our generated ProductOrderRepository
 interface does not have this method yet, so let's add that. In src/main/java/com/mycompany/store/repository/ProductOrderRepository.java
 , let's add a new method as follows. Currently, the interface doesn't have any methods and only uses methods inherited from JpaRepository
 :

Page<ProductOrder> findAllByCustomerUserLogin

(String login, Pageable pageable);

There is a lot of magic going on here. This is a Spring Data interface, and so we can simply write a new method and expect Spring Data to create an implementation for this automatically; we just need to follow the naming conventions. In our use case, we need to find all product orders where the user relationship for the customer has the same login as our current logged in user. In SQL, this would be as follows:

select * from product_order po cross join customer c cross join jhi_user u where po.customer_id=c.id and c.user_id=u.id and u.login=:login

In simple terms, we could say find all product orders where
 customer.user.login
 equals
 login
 , and that is exactly what we have written as the findAllByCustomerUserLogin
 method. The entity under operation is implicit, and so the product order is omitted. By providing the Pageable
 parameter, we tell Spring Data to provide us a page from the paginated list of entities. You can refer to the Spring Data documentation at https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
 for more information.

While calling the productOrderRepository.findAllByCustomerUserLogin
 method, we can pass the current user login using the SecurityUtils.getCurrentUserLogin()
 method. The SecurityUtils
 class is generated by JHipster as well, as it has useful methods such as getCurrentUserLogin
 , getCurrentUserJWT
 , isAuthenticated
 , and isCurrentUserInRole
 .

That's it. Now log in as admin
 and create two new users and two customers, and create product orders for each of them. Then log out and log in again as the default user and see whether you can see the product order for one of the newly created users.

Now let's make similar updates for the other services. Note that each method is slightly different based on the relationships between the entities. The repository methods for these would be as follows:

For src/main/java/com/mycompany/store/repository/InvoiceRepository
 :

Page<Invoice> findAllByOrderCustomerUserLogin

(String login, Pageable pageable);

For src/main/java/com/mycompany/store/repository/OrderItemRepository
 :

Page<OrderItem> findAllByOrderCustomerUserLogin

(String login, Pageable pageable);

For src/main/java/com/mycompany/store/repository/ShipmentRepository
 :

Page<Shipment> findAllByInvoiceOrderCustomerUserLogin

(String login, Pageable pageable);

Now we need to make similar changes to the findOne
 method on the services.

For ProductOrderService
 , these would be as follows:

 @Transactional(readOnly = true)

 public ProductOrder findOne(Long id) {

 log.debug("Request to get ProductOrder : {}", id);

 if (SecurityUtils.isCurrentUserInRole

 (AuthoritiesConstants.ADMIN)) {

 return productOrderRepository.findById(id);

 } else

 return productOrderRepository.

 findOneByIdAndCustomerUserLogin(

 id,

 SecurityUtils.getCurrentUserLogin().get()

);

 }

As you can see, we changed the methods to find one by its ID and customer user login. The repository method for this would be as follows:

Optional<ProductOrder> findOneByIdAndCustomerUserLogin

(Long id, String login);

For
 src/main/java/com/mycompany/store/repository/InvoiceRepository
 :

Optional<Invoice>

findOneByIdAndOrderCustomerUserLogin

(Long

id

, String

login

);

For
 src/main/java/com/mycompany/store/repository/OrderItemRepository
 :

Optional<OrderItem>

findOneByIdAndOrderCustomerUserLogin

(Long

id

, String

login

);

For
 src/main/java/com/mycompany/store/repository/ShipmentRepository
 :

Optional<Shipment>

findOneByIdAndInvoiceOrderCustomerUserLogin

(Long

id

, String

login

);

The same queries can also be written using the @Query
 annotation provided by Spring Data.

Now change the findOne
 method for other entities as well, and that's it. We have implemented a good role-based authorization logic for the application.

Let's commit this checkpoint:

> git add --all

> git commit -am "update role based authorization logic"

In a real-world scenario, the changes we have made so far will not be enough for an e-commerce website. But since our aim is to learn JHipster and its supported tools rather than to create a feature-perfect application, consider this a minimum-viable product. To make this e-commerce application usable, we would need to build more features, such as a shopping cart, invoice generation, customer registration, and so on. Why don't you take these exercises up as assignments and see whether you can build more features for this application? This would be part of the next steps to take once you finish the book. The use case and instructions will be described in Chapter 15
 , Best Practices with JHipster
 .

Summary

In this chapter, we saw how we can easily customize a web application created using JHipster. We also learned about Angular and Bootstrap when we customized our product listing page. In addition to this, we saw
 how to secure our application with role-based authorization using Spring Security. We also learned about Spring Data and used Git to manage our source code properly. We saw our application evolving with business logic and becoming more user-friendly. In the next chapter, we will see how we can integrate continuous integration with our application using Jenkins.

Section 3: Continuous Integration and Testing

This section begins by using Jenkins to test and set up a continuous integration pipeline and also build and package apps using Docker. By the end of this section, you will be introduced to cloud deployment options that are supported by JHipster.

This section comprises the following chapters
 :

	

Chapter 6
 , Testing and Continuous Integration

	

Chapter 7
 , Going into Production

Testing and Continuous Integration

Now that we have scaffolded and developed our e-commerce application, it's time to make it ready for deployment to our production environment. Before that, there are two important aspects of software engineering that we need to look at, quality
 and stability
 . In this chapter, we will see how this can be achieved using modern DevOps practices, such as CI and automated testing. With this, you will be able to set up your own Jenkins CI pipeline and will get a basic introduction to continuous integration/continuous deployment
 (CI/CD
).

We will also explore the following:

	Fixing and running tests

	CI/CD tools

	
Setting up CI with Jenkins using the JHipster CI-CD sub-generator

DevOps
 is a software engineering practice that unifies software development
 (Dev
) and software operations
 (Ops
). The main focus of DevOps is automation and monitoring at all stages of software engineering, such as development, integration, testing, deployment, and infrastructure management. DevOps is one of the most trending engineering practices of this decade, and CI and CD are two of its core aspects.

First, let's see how to fix our tests that would have been broken when we updated the code in the previous chapter.

Fixing and running tests

JHipster generates different types of tests for an application; some are optional and can be enabled while creating a new application, while some are always generated. The following are the different types of tests supported by JHipster and that we already talked about in Chapter 2
 , Getting Started with JHipster
 :

	
Server-side unit tests
 : These are test cases for individual classes and methods and are done using JUnit.

	
Server-side integration tests
 : These perform tests on the Spring components (REST controllers and services) making use of all of the layers behind them. It is done with Spring Test Framework and JUnit.

	
Client-side unit tests
 : These are test cases for the client-side components and services and are done using the Jest framework.

	
Client-side end-to-end tests
 : The end-to-end tests are written using the Protractor framework and they perform user behavior simulation on the GUI in a real browser. This is optional and can be enabled if required.

	
Performance tests
 : JHipster can generate performance and load test specifications for the APIs using Gatling. This is optional and can be enabled if required.

	
Behavior-driven development
 (BDD
) tests
 : JHipster can generate BDD tests specifications
 using Cucumber. This is optional and can be enabled if required.

Before we dive into CI tools, let's first make sure that our tests are working, and there are no failed tests after the changes we made in the previous chapter. In an ideal world, where software development is done using practices such as TDD
 (short for test-driven development
), writing and fixing tests is done along with the development of the code, and specifications
 are written before you develop the actual code.

You should try to follow this practice so that you write failing tests
 first for an expected result, and then develop code that will make the tests pass. Since our tests were autogenerated by JHipster, we can at least make sure that they are working when we make changes to the generated code.

JHipster can also generate performance tests using Gatling for the entities. It is very useful, and a must if you are developing a high-availability and high-volume website. This can be enabled when creating the application. See http://www.jhipster.tech/running-tests/
 for more details.

Let's run our unit and integration tests to see whether any of them fail:

	Head over to your Terminal and navigate to the online-store
 folder first.

	Let's first run the server-side tests using Gradle:

> ./gradlew test integrationTest

Note that JHipster generates both unit tests and integration tests for the server-side and these are located in the same package. The unit tests, files named *Test.java
 , are simple JUnit tests intended for unit testing functions and these can be run using the ./gradlew test
 command. The integration tests, files named *IT.java
 , are intended for testing a Spring component using the entire Spring environment. They are run with the SpringBootTest
 class and they normally start up the Spring environment, configure all of the required beans, and run the test. These can be run using the ./gradlew integrationTest
 command.

Some of our tests failed with the following error trace:

com.mycompany.store.web.rest.OrderItemResourceIT > getAllOrderItems() FAILED

 java.lang.AssertionError at OrderItemResourceIT.java:261

com.mycompany.store.web.rest.OrderItemResourceIT > getOrderItem() FAILED

 java.lang.AssertionError at OrderItemResourceIT.java:277

com.mycompany.store.web.rest.InvoiceResourceIT > getInvoice() FAILED

 java.lang.AssertionError at InvoiceResourceIT.java:341

com.mycompany.store.web.rest.InvoiceResourceIT > getAllInvoices() FAILED

 java.lang.AssertionError at InvoiceResourceIT.java:321

com.mycompany.store.web.rest.ProductOrderResourceIT > getProductOrder() FAILED

 java.lang.AssertionError at ProductOrderResourceIT.java:257

com.mycompany.store.web.rest.ProductOrderResourceIT > getAllProductOrders() FAILED

 java.lang.AssertionError at ProductOrderResourceIT.java:241

com.mycompany.store.web.rest.ShipmentResourceIT > getAllShipments() FAILED

 java.lang.AssertionError at ShipmentResourceIT.java:204

com.mycompany.store.web.rest.ShipmentResourceIT > getShipment() FAILED

 java.lang.AssertionError at ShipmentResourceIT.java:220

194 tests completed, 8 failed

You could also run the tests from your IDE so that you have a better error message and failure report. Select the entire src/test
 folder, right-click, and select Run all tests
 .

	These are expected to fail as we changed the Resource
 classes for these entities in the previous chapter to handle authorizations, and the failure means that it's working perfectly. Fortunately, it's not difficult to fix the tests using Spring. We can use the @WithMockUser
 annotation provided by the Spring test context to provide a mock user for our tests. Add the annotation with user details, as highlighted in the following code, to all of the failing test classes:

@SpringBootTest(classes = StoreApp.class)

@WithMockUser(username="admin", authorities={"ROLE_ADMIN"},

 password = "admin")

public class InvoiceResourceIT {

...

}

	We are providing a mock user with the ADMIN
 role here. Add it to OrderItemResourceIT
 , ProductOrderResourceIT
 , and ShipmentResourceIT
 . Run the tests again and they should pass.

	
Commit the changes made by running
 git commit -am "fix server-side tests with mockUser"
 .

	Now, let's make sure our client-side Jest unit tests are working. Since we didn't make any logic changes on the client-side there shouldn't be any failures. Run the following command:

> npm test

	
All tests should pass. Let's head over to
 src/test/
 javascript/
 spec/
 app/
 entities/
 product/
 product.component.spec.ts
 . We use the Jest framework for our tests. The existing test has the following structure. The beforeEach
 block sets up the Angular TestBed
 interface:

...

describe('Component Tests', () => {

 describe('Product Management Component', () => {

 ...

 beforeEach(() => {

 TestBed.configureTestingModule({

 ...

 })

 .overrideTemplate(ProductComponent, '')

 .compileComponents();

 ...

 });

 it('Should call load all on init', () => {

 ...

 });

 ...

 });

});

	Now, let's make sure our Protractor e2e
 tests are working. Run the following commands in two separate Terminals. Start the server first. Let's clear the database as well by running a clean task so that tests run on a fresh setup:

> ./gradlew clean bootRun

	Now, run the e2e
 tests:

> npm run e2e

If you prefer not to run scripts via npm or Yarn
 , you could also run them via Gradle using the node integration provided by JHipster. For example, instead of npm run e2e
 , you could run ./gradlew npm_run_e2e
 , and instead of npm test
 , you could run ./gradlew npm_test
 . This is useful if you do not want to install Node.js and npm and want everything to be managed for you by Gradle. If you choose Maven instead of Gradle, the same feature is available for that as well.

	

We have two failed tests in the Product
 entity pages as we made changes there. Let's see how we can fix them:

	Let's open src/test/javascript/e2e/entities/product/product.spec.ts
 .

	The first failure is with the should create and save Products
 spec; if you look at the code, there is a call to a
 productComponentsPage.countDeleteButtons()
 method, and, if you inspect the method, it uses a query selector to find the delete buttons on the page. We need to update the query to match the new HTML structure.
 Find the following line:

deleteButtons = element.all(by.css('jhi-product div table .btn-danger'));

Change it to this:

deleteButtons = element.all(by.css('jhi-product div.list-group a .btn-danger'));

	

	The next failure is also due to the same reason an
 d the preceding fix should be enough.

	If you look at the generated e2e
 tests, for example,
 src/test/javascript/e2e/entities/customer.spec.ts
 , you will see that some tests are commented out. These tests are commented out during generation if an entity has a required relationship field, as we would have to create a relationship first and set its value for the test to work, or if there are validations that JHipster cannot work out.
 Let's focus on only the Customer
 page test. Uncomment the test named should create and save Customers
 and change the describe
 function to describe.only
 on the file so that only this test file is executed:

describe.only('Customer e2e test', () => {

 ...

});

	First, uncomment the commented out imports. Now, execute npm run e2e
 and we should see one failing test. First, let's fix the email field by providing a valid email format:

 it('should create and save Customers', () => {

 ...

 customerUpdatePage.setEmailInput('email@email.com');

 ...

 expect(customerUpdatePage.getEmailInput()).

 toMatch('email@email.com');

 ...

 });

	Run npm run e2e
 again and this time it should pass. But since we have a one-to-one relationship between the user and customer, the test will fail if we run it again; hence, we need to delete the row created after it. Let's uncomment the test case for the delete action. Uncomment the customerDeleteDialog
 variable at the beginning of the spec as well. Before running the tests again, we would have to manually clear the last entry created by the failed test to avoid unique constraint violations.

	Now, run npm run e2e
 twice to confirm this works. Do not forget to change describe.only
 to describe
 on the file so that all tests get executed. Congratulations! You have updated your first Protractor e2e
 tests.

	Similarly, fix the commented out e2e
 tests in other files under src/test/javascript/e2e/entities
 as well. This is a part of the next step's assignment. In some test cases, you would have to create an entity in another module to provide relationships.

Don't forget to commit your changes with git commit -am "fix client-side e2e tests"
 .

Now, let's see what CI is all about.

Briefing on CI

Having automated testing ensures that we are creating bug-free code and that there are no regressions introduced from the new code. JHipster helps, to an extent, by creating unit and integration tests for the generated code, but, in real use cases, it won't be sufficient. We would have to add server-side unit tests for the business logic that we introduce and integration tests for new APIs we add. You will also have to add more unit tests for business logic handled on the client-side and e2e
 tests, as JHipster only generates a few sample tests for you and doesn't know anything about your business logic.

The more tests you have, the more confident you will be in changing code, with fewer chances of regression.

Testing and CI is an integral part of full stack development and is an important aspect of DevOps. Testing should be considered as important as developing features to build a quality product. CI is nothing more than continuously merging and testing your new code changes in an isolated environment against your master/main/stable code base to identify potential bugs and regression. It is achieved by running automated unit, integration, end-to-end, and other test suites against the code. For example, if you are working with Git, these are typically run for every commit you make to your master branch and/or for every pull request you create.

Once we have automated tests, we can make use of CI practices to make sure that any new code we introduce doesn't cause any regression in our stable code base. This will give us the confidence to merge new code and deploy that to production.

Modern DevOps teams often go a step further and do continuous delivery (continuous integration and continuous deployment). They often define CI/CD pipelines, which continuously integrate, test, and deploy code to production in a fully automated way.

Teams with good CI and CD setup can deliver more features more frequently with fewer bugs.

Have I stressed the importance of CI enough?

Now, let's take a look at the different CI/CD tools supported by JHipster.

CI/CD tools

JHipster provides excellent support for the well-known CI/CD tools. Let's take a look at the options available first.

Jenkins

Jenkins (https://jenkins.io/
) is one of the leading CI/CD tools out there. It is free and open source. It is an automation server written in Java and supports integration with various version control tools, such as Git, CVS, and SVN. Jenkins has a huge plugin ecosystem and this makes it one of the most flexible platforms. Jenkins can be used for building projects, running automated tests, automating deployment, and so on. It is available as an executable binary for various platforms and as Docker images. Blue Ocean is the latest UI interface for Jenkins, giving it a much-needed breath of fresh air. Jenkins has the concept of a pipeline, achieved by using multiple plugins and a Groovy DSL to define the CI/CD pipeline.
 Jenkins pipeline plugins provide a comprehensive DSL-based configuration that can be defined in a file called
 Jenkinsfile
 .

Azure Pipelines

Azure DevOps Pipelines (https://azure.microsoft.com/en-us/services/devops/pipelines/
) is a hosted PaaS
 (short for Platform as a Service
) solution for CI/CD from Microsoft. It is free for public/OSS projects and needs a subscription for use by private/enterprise projects. It is integrated well with GitHub and provides a nice intuitive GUI to work with. It supports applications written in a variety of languages and platforms and is heavily used by open source projects, including JHipster, for their CI needs. It is very easy to set up
and

 use and has a simple YAML-based configuration. Advanced setups are typically done using shell scripts that can be triggered by the YAML configuration using hooks.

Travis CI

Travis CI (https://travis-ci.org/
) is an open source hosted PaaS
 solution for CI/CD. It is free for public/OSS projects and needs a subscription for use by private/enterprise projects. It supports applications written in a variety of languages and platforms and is heavily used by open source projects, including JHipster, for their CI needs. It has excellent integration with version control tools and offers an enterprise version as well. It is very easy to set up
and

 use and has a simple YAML-based configuration. Advanced setups are typically done using shell scripts that can be triggered by the YAML configuration using hooks.

GitLab CI

GitLab CI (https://about.gitlab.com/features/gitlab-ci-cd/
) is a CI/CD solution available as part of GitLab, a web UI on top of Git. It is well integrated into the platform and is an excellent choice when using GitLab. It is free and open source for use by public projects and has an enterprise version as well. It has both a hosted solution and binaries to be used on-premises.

GitHub Actions

GitHub Actions
 (https://github.com/features/actions
) is the CI/CD solution provided by GitHub, a web UI on top of Git. It is well integrated into the GitHub
 platform and is a great choice when using GitHub as your source code management solution. It is free for public repositories on GitHub and has a free usage tier for private repositories as well. It supports configuration by YAML like many of the other solutions on the market.

Setting up Jenkins

Let's use Jenkins as the CI tool for our application.

If you are already familiar with Docker, you can use the official Docker image provided by Jenkins and skip the following steps. The Docker image will be automatically generated by JHipster when creating the CD/CI pipeline in the following section. Visit http://www.jhipster.tech/setting-up-ci-jenkins2/
 for more details.

We first need to set up a local
 Jenkins instance:

	Let's download the latest binary from http://mirrors.jenkins.io/war-stable/latest/jenkins.war
 .

	Now, open a Terminal and navigate to the folder where the file was downloaded.

	Execute java -jar jenkins.war --httpPort=8989
 from the Terminal to start a Jenkins server. The port should not conflict with our application port. The default password will be printed on the console. Make a copy of it.

	Navigate to https://localhost:8989
 and paste the password copied before.

	Click on the Install suggested plugins
 button on the next page and wait for the plugin installation to complete.

	Create an admin user on the next page and complete the setup.

Now that our Jenkins server is ready, let's go ahead and create a Jenkins pipeline for our project.

Creating a Jenkins pipeline using JHipster

We can create Jenkinsfile
 for our project using the ci-cd sub-generator
 from JHipster:

	In a Terminal, navigate to the online-store
 folder first. Now run the following command:

> jhipster ci-cd

	You will be asked to select from a list of options, as follows:

Welcome to the JHipster CI/CD Sub-Generator

? What CI/CD pipeline do you want to generate? (Press <space> to select, <a> to toggle all, <i> to inverse selection)

>

◯

Jenkins pipeline

 ◯ Azure Pipelines

 ◯ Travis CI

 ◯ GitHub CI

 ◯ GitLab CI

	Let's select Jenkins pipeline
 from it. Next, we can choose to run the build inside a Docker container. Let's choose No
 here:

Welcome to the JHipster CI/CD Sub-Generator

? What CI/CD pipeline do you want to generate? Jenkins pipeline

? Would you like to perform the build in a Docker container ? (y/N)

	The next question will be about sending build status to GitLab—choose No
 for that as well:

? What CI/CD pipeline do you want to generate? Jenkins pipeline

? Would you like to perform the build in a Docker container ? No

? Would you like to send build status to GitLab ? No

	Next, we will have an option to choose additional stages. Let's choose the Deploy to *Heroku*
 option here to automatically deploy to Heroku from our CI/CD pipeline:

? What CI/CD pipeline do you want to generate? Jenkins pipeline

? Would you like to perform the build in a Docker container ? No

? Would you like to send build status to GitLab ? No

? What tasks/integrations do you want to include ? (Press <space> to select, <a> to

toggle all, <i> to invert selection)

>◯ Deploy your application to an *Artifactory*

 ◯ Analyze your code with *Sonar*

 ◯ Build and publish a *Docker* image

 ◯ Deploy to *Heroku* (requires HEROKU_API_KEY set on CI service)

	Let's provide a name to deploy; we can change it later if required:

? What CI/CD pipeline do you want to generate? Jenkins pipeline

? Would you like to perform the build in a Docker container ? No

? Would you like to send build status to GitLab ? No

? What tasks/integrations do you want to include ? Deploy to

 Heroku

? *Heroku*: name of your Heroku Application ? store

Once the options are selected, JHipster will generate the files and log the following output on the console:

 create Jenkinsfile

 create src/main/docker/jenkins.yml

 create src/main/resources/idea.gdsl

Congratulations, JHipster execution is complete!

If you want to use Travis instead of Jenkins, you can do so by choosing the
 Travis
 option and then publishing the repository to GitHub as a public repository. Once published, go to
 https://github.com/<username>/<repoName>/settings/installations
 , add Travis CI as a service, and follow the instructions. You can now see automated builds when you make commits. Refer to https://docs.travis-ci.com/user/getting-started/
 for details.

As you can see, we got Jenkinsfile
 generated at the root and a Docker image for Jenkins created in the src/main/docker
 directory. We also got an idea.gdsl
 file, which is used by IntelliJ IDEA for autocompletion.

The Jenkinsfile and its stages

Let's take a look at the generated Jenkinsfile
 , which has our pipeline definitions, using the Groovy DSL:

#!/usr/bin/env groovy

node {

 stage('checkout

') {

 checkout scm

 }

 stage('check java

') {

 sh "java -version"

 }

 stage('clean

') {

 sh "chmod +x gradlew"

 sh "./gradlew clean --no-daemon"

 }

 stage('nohttp

') {

 sh "./gradlew checkstyleNohttp --no-daemon"

 }

 stage('npm install

') {

 sh "./gradlew npm_install -PnodeInstall --no-daemon"

 }

 stage('backend tests

') {

 try {

 sh "./gradlew test integrationTest -PnodeInstall

 --no-daemon"

 } catch(err) {

 throw err

 } finally {

 junit '**/build/**/TEST-*.xml'

 }

 }

 stage('frontend tests

') {

 try {

 sh "./gradlew npm_run_test -PnodeInstall --no-daemon"

 } catch(err) {

 throw err

 } finally {

 junit '**/build/test-results/TESTS-*.xml'

 }

 }

 stage('packaging

') {

 sh "./gradlew bootJar -x test -Pprod -PnodeInstall

 --no-daemon"

 archiveArtifacts artifacts: '**/build/libs/*.jar',

 fingerprint: true

 }

 stage('deployment

') {

 sh "./gradlew deployHeroku --no-daemon"

 }

}

We have multiple stages defined running in a sequence, highlighted in bold; there are nine to be exact. It starts with a checkout of the branch from version control ending with deployment to Heroku (we will learn more about this in the following chapter).

The steps are quite straightforward as most of it is just triggering a Gradle task. Let's look at some of them:

 stage('checkout

') {

 checkout scm

 }

The checkout
 stage does a local checkout of the source code revision that triggered the build:

 stage('check java

') {

 sh "java -version"

 }

This check java
 stage just prints the Java version installed on the Jenkins environment:

 stage('clean

') {

 sh "chmod +x gradlew"

 sh "./gradlew clean --no-daemon"

 }

The clean
 stage first grants execution permission for the Gradle wrapper on a Unix-like OS and then executes the Gradle clean
 task. The --no-daemon
 flag disables the Gradle daemon feature, which is not required in a CI environment:

 stage('npm

 install

') {

 sh "./gradlew npm_install -PnodeInstall --no-daemon"

 }

The npm install
 stage makes sure that Node.js and all of the NPM modules are installed by running npm install
 via Gradle.

The -PnodeInstall
 flag ensures that Node.js is installed first if not done already:

 stage('backend tests

') {

 try {

 sh "./gradlew test integrationTest -PnodeInstall

 --no-daemon"

 } catch(err) {

 throw err

 } finally {

 junit '**/build/**/TEST-*.xml'

 }

 }

The backend tests
 stage runs all of the server-side integration and unit tests by triggering the Gradle test task. It will fail the Jenkins pipeline when there is an error and register the test reports on the Jenkins web UI using the JUnit plugin after the test run is complete:

 stage('frontend tests

') {

 try {

 sh "./gradlew npm_run_test -PnodeInstall --no-daemon"

 } catch(err) {

 throw err

 } finally {

 junit '**/build/test-results/TESTS-*.xml'

 }

 }

Similar to the previous task, the frontend tests
 stage runs the client-side unit tests by triggering the NPM test command via a Gradle task. It will also fail the pipeline on an error and register the test reports on the Jenkins web UI:

 stage('packaging

') {

 sh "./gradlew bootJar -x test -Pprod -PnodeInstall --no-daemon"

 archiveArtifacts artifacts: '**/build/libs/*.jar',

 fingerprint: true

 }

The packaging
 stage triggers the Gradle bootJar
 task with the prod
 profile and archives the created JAR files with a unique fingerprint:

 stage('deployment

') {

 sh "./gradlew deployHeroku --no-daemon"

 }

The final stage is for deployment
 and it uses a Gradle task for this. We will see this in detail in the following chapter. For now, let's comment out this stage. We will re-enable it later.

Now, let's commit everything to git
 by running these commands. Make sure you are on the master branch; if not, commit and merge the branch with the master:

> git add --all

> git commit -am "add Jenkins pipeline for ci/cd"

Let's see how we can use the pipeline with the Jenkins server we set up earlier.

Setting up the Jenkinsfile in a Jenkins server

Now that Jenkinsfile
 is ready, let's set up CI/CD for our application. First, we need to upload our application to a Git server, such as GitHub, GitLab, or Bitbucket. Let's use GitHub (https://github.com/
) for this. Make sure you have an account created in GitHub first:

	In GitHub, create a new repository (https://github.com/new
); let's call it online-store
 . Do not
 check the Initialize this repository with a README
 option. Once created, you will see instructions to add code. Let's go with the option of push an existing repository from the command line
 by running the following commands inside our online-store
 application folder. Do not forget to replace <username>
 with your actual GitHub username:

> cd online-store

> git remote add origin https://github.com/<username>/online-store.git

> git push -u origin master

	Now, go to the Jenkins server web UI by visiting http://localhost:8989/
 and create a new job using the
create new jobs

 link.

	Enter a name, select Pipeline
 from the list, and click OK
 :

	

	Scroll down or click on the Build Triggers
 section.

	Select the Poll SCM
 checkbox.

	Enter H/01 * * * *
 as the cron schedule value so that Jenkins polls our repository every minute and builds the code if there are new commits:

	Next, do the following on the same page:
	Scroll down or click on the Pipeline
 section.

	Select Pipeline script from SCM
 for the Definition
 field from the drop-down menu.

	Select Git
 for the SCM
 field from the drop-down menu.

	Add the Repository URL
 that we created in GitHub for the application.

	Finally, click S

ave

 :

	Click on Build Now
 to trigger a new build to test our pipeline:

We should now see a build has started and its progress on the web UI, as shown in the following screenshot:

Congratulations! We have successfully set up CI/CD for our application. The builds will get triggered when you make new commits as well.

You can also view the pipeline status using the new UI from the Jenkins Blue Ocean plugin. Install the plugin from the Plugin Manager (click on Jenkins
 in the top menu and go to Manage Jenkins
 | Manage Plugins
 | Available
 and search for Blue Ocean
 and install it). The Open Blue Ocean
 link is available on the left-hand side menu. The builds will look as follows:

Click on a build to view the pipeline. You can click on each stage of the progress indicator to list the steps from that stage, and then expand the list items to view the logs from that step:

Congratulations. You have successfully set up a CI/CD pipeline using Jenkins.

Summary

In this chapter, we looked at what CI/CD is and the tools supported by JHipster. We also learned how to set up Jenkins and created our CI/CD pipeline using JHipster and Jenkins. We also fixed our automated tests and made them run on the CI server.

In the next chapter, we will see how to deploy our application to production
 using a cloud-hosting provider such as Heroku.

Going into Production

Our application is almost ready and it's time to go into production. Since this is the age of cloud computing, we will be deploying our application to a cloud provider—Heroku, to be specific. Before we go on and deploy our application into production, we need to make sure our application is production-ready in our local environment. It would also be beneficial to make ourselves familiar with technologies and tools that will be useful at this stage.

In this chapter, we will learn about the following:

	
Introduction to Docker

	Starting the production database with Docker

	Introducing Spring profiles

	Packaging the application for local deployment

	Upgrading to the newest version of JHipster

	Introducing the deployment options supported by JHipster

	Production deployment to the Heroku Cloud

Introduction to Docker

Docker is one of the most disruptive technologies to have taken center stage in the world of DevOps in recent times. Docker is a technology that enables operating system-level virtualization or containerization, and is also open source and free to use. Docker is intended for Linux, but it is possible to use it with Mac and Windows using tools such as Docker for Mac and Docker for Windows.

Docker containers

When we talk about containers in the Docker world, we are technically talking about Linux containers. As stated by Red Hat on its website (https://www.redhat.com/en/topics/containers/whats-a-linux-container
):

"A Linux container is a set of processes that are isolated from the rest of the system, running from a distinct image that provides all files necessary to support the processes. By providing an image that contains all of an application's dependencies, it is portable and consistent as it moves from development to testing, and finally to production."

Though the concept is not new, Docker makes it possible to create containers that are easy to build, deploy, version, and share. A Docker container only contains dependencies that are required for the application to run on the host OS; it shares the OS and other dependencies for the host system hardware. This makes a Docker container lighter than a virtual machine
 (VM
) in terms of size and resource usage as it doesn't have to ship an entire OS and emulate virtual hardware. Hence,
 Docker made virtual machines obsolete in many of the traditional use cases that were handled using VM technologies. This also means that, with Docker, we will be able to run more applications on the same hardware compared to running with VMs. Docker containers are immutable instances of a docker image, which is a set of layers that describes the application that is being containerized. They contain the code, runtime, libraries, environment variables, and configuration files needed to run the application.

Dockerfiles

A Dockerfile is a set of instructions that tells Docker how to build a Docker image. By running the docker build
 command on a specific Dockerfile, we will produce a Docker image that can be used to create Docker containers. Existing Docker images can be used as a base for new Dockerfiles, hence letting you reuse and extend existing images.

The following is what a Dockerfile of our application would look like:

FROM openjdk:8-jre-alpine

ENV SPRING_OUTPUT_ANSI_ENABLED=ALWAYS \

 JHIPSTER_SLEEP=0 \

 JAVA_OPTS=""

CMD echo "The application will start in ${JHIPSTER_SLEEP}s..." && \

 sleep ${JHIPSTER_SLEEP} && \

 java ${JAVA_OPTS} -Djava.security.egd=file:/dev/./urandom -jar /app.war

EXPOSE 8080 5701/udp

ADD *.war /app.war

The FROM
 instruction specifies the base image to use while initializing the build. Here, we specify OpenJDK 8 as our Java runtime.

The ENV
 instruction is used to set environment variables, and the CMD
 instruction is used to specify commands to be executed.

The EXPOSE
 instruction is used to specify the port that the container listens to during runtime.

Visit https://docs.docker.com/engine/reference/builder/
 for a complete reference.

Please note that we will not be using a Dockerfile directly, but instead we use JIB (https://github.com/GoogleContainerTools/jib
), which is a tool that integrates with Gradle or Maven to build and push Docker images without needing a Docker daemon. This means you can build Docker images of our application in a computer that has JVM without needing Docker installed.

Docker Hub

Docker Hub (https://hub.docker.com/
) is the online registry provided by Docker. It can be used to publish public and private Docker images. This makes sharing and reusing Docker images extremely easy.

To get a Docker image from the registry, we just need to run docker pull <image-name>
 .

This makes it easy to use third-party tools without having to install them locally by just pulling and running the container from the registry. For example, if you want to run the Ubuntu OS via Docker, you can run the following command and it will provide you with a bash Terminal running on Ubuntu:

> docker run

 -e LANG=C.UTF-8 -e LC_ALL=C.UTF-8 -e TERM=$TERM -it --rm

 ubuntu

 bash

Docker Compose

Docker Compose is a tool in the Docker platform that is used to define and run multi-container applications. It lets us define how a container will behave when it is run in production, and also lets us define other services that it depends on and how services work with each other. Each application is a service as it defines the behavior of the container, for example, what port it runs on, what environment variables it uses, and so on. A YAML file is used for this. A single docker-compose.yml
 file can define all the services that are required for a multi-container application and can then be started with a single command. We will learn more about Docker and Docker Compose in Chapter 11
 , Deploying with Docker Compose
 .

Visit https://docs.docker.com/get-started/
 to learn more about Docker.

The following table contains a list of useful commands for Docker and Docker Compose:

	
docker build -t myapp:1.0.

	Build an image from the Dockerfile in the current directory and tag the image

	

docker images

	
List all images that are locally stored with the Docker
 engine

	

docker pull alpine:3.4

	
Pull an image from a registry

	

docker push myrepo/myalpine:3.4

	
Push an image to a registry

	

docker login

	Log in to a registry (Docker Hub, by default)

	
docker run --rm -it -p 5000:80 -v /dev/code alpine:3.4 /bin/sh

	Run a Docker container:

--rm
 : Remove container automatically after it exits

-it
 : Connect the container to the Terminal

-p
 : Expose port 5000
 externally and map to port 80

-v
 : Create a host-mapped volume inside the container

alpine:3.4
 : The image from which the container is instantiated

/bin/sh
 : The command to run inside the container

	
docker stop myApp

	Stop a running container

	
docker ps

	List the running containers

	
docker rm -f $(docker ps -aq)

	Delete all running and stopped containers

	
docker exec -it web bash

	Create a new bash process inside the container and connect it to the Terminal

	
docker logs --tail 100 web

	Print the last 100 lines of a container's logs

	
docker-compose up

	Start the services defined in the docker-compose.yml
 file in the current folder

	

docker-compose down

	

Stop the services defined in the docker-compose.yml
 file in the
 current
 folder

In the next section, we'll learn how to run containers using Docker.

Starting the production database with Docker

JHipster creates a Dockerfile for the application and provides docker-compose
 files for all the technologies we choose, such as the database, search engine, Jenkins, and so on, under src/main/docker
 :

├── app.yml

 - Main compose file for the application

├── hazelcast-management-center.yml

 - Compose file hazelcast management center

├── jenkins.yml

 - Compose file for Jenkins

├── monitoring.yml

 - Compose file for monitoring with Prometheus and Grafana

├── mysql.yml

 - Compose file for the database that we choose

└── sonar.yml

 - Compose file for SonarQube

Let's look at how we can start our production database using Docker from the compose
 file provided under src/main/docker/mysql.yml
 . You will need to use a Terminal for the following instructions:

	Run docker --version
 and docker-compose --version
 to ensure these are installed.

	Run docker ps
 to list the running containers. If you are not running any containers, you should see an empty list.

	Let's start the DB by running docker-compose -f src/main/docker/mysql.yml up
 .

You will see the following console output:

If you want to run the service in the background, pass the -d
 flag to the command. docker-compose -f src/main/docker/mysql.yml up -d
 will let you continue using the same Terminal without having to switch to another.

Now, if you run docker ps
 again, it should list the database service that we started:

Before we prepare our application
 for production, let's talk a little bit about Spring profiles.

Introducing Spring profiles

Spring profiles (https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-definition-profiles-java
) let you change the way your application behaves based on environments. This is achieved using the @Profile
 annotations and profile-specific configuration files, which can be activated by specifying the spring.profiles.active
 property. Based on the profile that we set here, Spring will choose the appropriate application.properties|application.yml
 files and will include/exclude components that are included/excluded for the specific profile using the @Profile
 annotation in the Java source code.

For example, if we set spring.profiles.active=prod
 , all the Spring components that have @Profile("prod")
 will be instantiated and any component that has @Profile("!prod")
 will be excluded. Similarly, Spring will load and use the application-prod.yml
 or application-prod.properties
 file if it is available on the classpath.

JHipster configures a dev
 and prod
 profile by default, and includes the application-dev.yml
 and application-prod.yml
 files in the src/main/resources/config
 folder, along with the base application.yml
 file. JHipster goes a step further and provides a dev
 and a prod
 profile for the Gradle build as well (also available for Maven) so that we can build/run the application for a particular profile, which is very handy. Here are the profile and database configurations defined in the application-dev.yml
 file:

...

spring

:

 profiles

:

 active

: dev

 include:

 - swagger

 # Uncomment to activate TLS for the dev profile

 #- tls

 ...

 datasource:

 type: com.zaxxer.hikari.HikariDataSource

 url: jdbc:h2:file:./build/h2db/db/store;DB_CLOSE_DELAY=-1

 username: store

 password:

 hikari:

 poolName: Hikari

 auto-commit: fals

 ...

The following profiles are available in a JHipster application
 :

	

dev

	
Tuned for development and productivity, it enables Spring dev tools, in-memory databases, and so on

	

prod

	
Tuned for production, it focuses on performance and stability

	

swagger

	
Enables Swagger documentation for the API

	

no-liquibase

	
Disables Liquibase and is useful in production environments where you don't want Liquibase to run

	

tls

	
Runs the application in TLS mode for security

Now, let's look at how we can package our application with the production profile.

Packaging the application for local deployment

Now, let's build our application and deploy it locally. This can be done in two ways, either using Docker or by building and executing a WAR file.

Building and deploying using Docker

JHipster uses JIB (https://github.com/GoogleContainerTools/jib
) to build Docker images. JIB can build and push Docker images without the need of a Docker daemon and, hence, is an ideal choice for CI environments as well. The JIB plugin is integrated with our Gradle build. The configuration that's used is defined in
gradle/docker.gradle
 and is as
 follows:

jib {

 from {

 image = "adoptopenjdk:11-jre-hotspot

"

 }

 to {

 image = "store:latest

"

 }

 container {

 entrypoint = ["bash", "-c", "chmod +x /entrypoint.sh && sync &&

 /entrypoint.sh

"]

 ports = ["8080", "5701/udp"

]

 environment = [

 SPRING_OUTPUT_ANSI_ENABLED: "ALWAYS",

 JHIPSTER_SLEEP: "0"

]

 creationTime = "USE_CURRENT_TIMESTAMP"

 }

}

This configuration is quite straightforward. The base image that's used is specified, which is adoptopenjdk:11-jre-hotspot
 in this case. The output image name is specified, followed by container-related options such as entry point scripts, exposed ports, and environment variables.

Let's use the JIB Gradle task to build our Docker image:

Use the ./gradlew tasks
 command to list all available tasks.

	In your Terminal, go to the project root folder and execute ./gradlew clean bootJar -Pprod jibDockerBuild
 :
	
bootJar
 : This builds an executable archive (JAR) file for the application.

	
-Pprod
 : This specifies the profile to use.

	
jibDockerBuild
 : This builds a Docker image based on the configuration present in the
 gradle/docker.gradle

file.

If you want to build a WAR file instead of a JAR file, use
 ./gradlew -Pprod -Pwar clean bootWar
 instead of the previous
 command.

2. Once the task has completed successfully, we can deploy our app by running the following command:

> docker-compose -f src/main/docker/app.yml up

This will also start the MySQL DB, if you haven't started it already. If you already have it running from the previous step, then docker-compose
 will just skip it.

Our application will be ready once we see the following output in the console. As you can see, it's running with the prod
 and swagger
 profiles:

Visit http://localhost:8080
 in your favorite browser to see the application in action.

Building and deploying an executable archive

If you prefer not to use Docker, then you could deploy the app with a production profile locally by completing the following steps:

	
First, make sure that MySQL DB is running from the previous step; otherwise, start it using
 docker-compose -f src/main/docker/mysql.yml up -d
 .

	Now, let's create an executable archive for the prod profile by running ./gradlew clean bootJar -Pprod
 .

	Once the build is successful, there will be an archive (JAR) created under build/libs
 . The store-0.0.1-SNAPSHOT.jar
 file is an executable archive that can be run directly on a JVM.

	Let's use the executable archive. Just run java -jar build/libs/store-0.0.1-SNAPSHOT.jar
 .

Once the application starts up, you will see the URL printed on the console. Visit
 http://localhost:8080
 in your favorite browser to see the application in action.

Upgrading to the newest version of JHipster

JHipster provides an "
 upgrade" sub-generator (http://www.jhipster.tech/upgrading-an-application/
) to help you upgrade an application with a new JHipster version. It is quite useful as it automates a lot of manual steps for you and the only thing you need to do is resolve merge conflicts, if there are any, after the upgrade is complete. Let's upgrade our application.

In your Terminal, execute the jhipster upgrade
 command. The upgrade process will start if there is a new version of JHipster available; otherwise, the process will exit with an error message.

Once the process starts, you will see a detailed console log of what is going on. As you can see, this sub-generator uses the global JHipster version instead of the local one, unlike other sub-generators:

INFO! Using JHipster version installed globally

INFO! Executing jhipster:upgrade

INFO! Options: from-cli: true

Welcome to the JHipster Upgrade Sub-Generator

This will upgrade your current application codebase to the latest JHipster version

 Checking for new blueprint versions

 Done checking for new version of blueprints

Looking for latest generator-jhipster version...

Looking for latest generator-jhipster version...

6.3.1

 New generator-jhipster version found: 6.3.1

 info git rev-parse -q --is-inside-work-tree

true

 Git repository detected

 ...

Switched to a new branch 'jhipster_upgrade'

 Created branch jhipster_upgrade

 ...

 Cleaned up project directory

Installing generator-jhipster 6.2.0 locally

 ...

+ generator-jhipster@6.2.0

added 417 packages from 159 contributors and audited 2754226 packages in 39.961s

found 9 vulnerabilities (3 moderate, 6 high)

 run `npm audit fix` to fix them, or `npm audit` for details

 Installed generator-jhipster@6.2.0

...

 Committed with message "Generated with JHipster 6.2.0"

 info git checkout -q master

 Checked out branch "master"

 info git --version

git version 2.21.0

 info git merge --strategy=ours -q --no-edit --allow-unrelated-histories jhipster_upgrade

 Current code has been generated with version 6.2.0

 info git checkout -q jhipster_upgrade

 Checked out branch "jhipster_upgrade"

...

 Installed generator-jhipster@6.3.1

...

 Successfully regenerated application with JHipster 6.3.1 and

 info Removing src/main/resources/config/tls/keystore.p12

 info git add -A

warning: LF will be replaced by CRLF in gradlew.bat.

The file will have its original line endings in your working directory

 info git commit -q -m "Generated with JHipster 6.3.1 and " -a --allow-empty --no-verify

 Committed with message "Generated with JHipster 6.3.1 and "

 info git checkout -q master

 Checked out branch "master"

...

 Merge done!

...

 Upgraded successfully.

...

INFO! Congratulations, JHipster execution is complete!

The sub-generator does the following, in order:

	Checks whether there is a new version of JHipster available (not applicable if you are using --force
).

	Checks whether the application is already initialized as a Git repository; otherwise, JHipster will initialize one for you and commit the current code base to the master branch.

	Checks to ensure that there are no uncommitted local changes in the repository. The process will exit if it finds any uncommitted changes.

	Checks whether a jhipster_upgrade
 branch exists. If not, a branch is created.

	Checks out the jhipster_upgrade
 branch.

	Upgrades JHipster to the latest available version globally.

	Cleans the current project directory.

	Regenerates the application using the jhipster --force --with-entities
 command.

	Commits the generated code to the jhipster_upgrade
 branch.

	Merges the jhipster_upgrade
 branch back to the original branch from where the jhipster upgrade
 command was launched.

Let's see what has changed before we resolve the merge conflicts. Check the changes that have been staged. Carefully check the changes to make sure everything is in order, especially in the files where we made customizations earlier. My changelog looks like this; note that I truncated the bottom as there were 147 updated files:

Thankfully, I only have three conflicts, so they should be easy to resolve. The conflict in package.json
 arises from the change we made to integrate Bootswatch. Carefully resolve the conflict stage in the file and move on to the next file.

The result of the upgrade process depends on when the command is run, the version that was used to generate the application, and the latest JHipster release version available. Hence, the number of files that have changed and conflicts arising will vary greatly, depending on these variables. The conflict resolution needs to be carefully done while keeping this in mind. What I have shown here is just a sample.

Once all the conflicts have been resolved, stage the files and commit them, as shown here:

> git add --all

> git commit -am "update to latest JHipster version"

Ensure that everything works. Run the server-side and client-side tests using ./gradlew test integrationTest npm_test
 and start the application to verify this by running the ./gradlew clean bootRun
 command.

In the next section, we'll look at what deployment options are available for us.

Deployment options supported by JHipster

Now that we have verified our production build by deploying it locally, let's see how we can take it to actual production by using a cloud service. JHipster supports most of the cloud platforms out of the box and provides special sub-generator commands for popular ones such as Heroku, Azure, Google App Engine, Cloud Foundry, and AWS.

JHipster also supports platforms such as OpenShift and Kubernetes, but we will look at them in upcoming chapters as they are more geared toward microservices. In theory, though, you could use them for Monolith deployments as well.

Heroku

Heroku (https://www.heroku.com/
) is the cloud platform from Salesforce. It lets you deploy, manage, and monitor your applications on the cloud. Heroku has a focus on applications rather than on containers, and supports languages ranging from Node.js, to Java, to Golang. JHipster provides the Heroku sub-generator, which was built and is maintained by Heroku, making it easy to deploy JHipster apps to the Heroku Cloud. It makes use of the Heroku CLI and you need a Heroku account to use it. The sub-generator can be used to deploy and update your application to Heroku.

Visit http://www.jhipster.tech/heroku/
 for more information.

Cloud Foundry

Cloud Foundry is a multi-cloud computing platform governed by the Cloud Foundry Foundation. It was originally created by VMWare and is now under Pivotal, the company behind the Spring Framework. It offers a multi-cloud solution that is currently supported by Pivotal Cloud Foundry
 (PCF
), Pivotal Web Services
 (PWS
), Atos Canary, SAP Cloud Platform, and IBM Bluemix, among others. The platform is open source, so it can be used to set up your own private instance. JHipster provides a sub-generator so that you can deploy JHipster applications to any Cloud Foundry provider easily. It makes use of the Cloud Foundry command-line tool.

Visit http://www.jhipster.tech/cloudfoundry/
 for more information.

Amazon Web Services

Amazon Web Services
 (AWS
) is the leading cloud-computing platform that offers Platform, Software, and Infrastructure as a Service. AWS offers Elastic Beanstalk as a simple platform that you can use to deploy and manage your applications on the cloud. JHipster provides a sub-generator so that you can deploy JHipster applications to AWS or Boxfuse (http://www.jhipster.tech/boxfuse
 /), an alternative service.

Visit http://www.jhipster.tech/aws/
 for more information.

Google App Engine

Google App Engine
 (GAE
) is a fully managed serverless application platform from Google Cloud Platform that can be used for deploying simple applications. The platform supports various languages, including Java. JHipster provides a sub-generator, which is built and maintained by the Google Cloud team, to deploy to the App Engine easily. It makes use of the gcloud
 CLI and you need a Google Cloud account to use it.

Visit https://cloud.google.com/appengine/
 for more information.

Azure Spring Cloud

Azure Spring Cloud (https://azure.microsoft.com/en-us/services/spring-cloud/
) is a fully managed platform from Microsoft Azure tailored for Spring Boot applications. It is jointly built and managed by Microsoft and Pivotal, the company behind the Spring Framework.

As a result, it is well-integrated into the Azure Cloud, with out-of-the-box security and monitoring from Azure, and it also benefits from Pivotal's cloud-native solutions such as the Spring Cloud Config Server and the Spring Cloud Discovery Server (based on Netflix Eureka).

The platform is particularly well suited to run Spring Boot microservices as it provides all the necessary services, such as configuration, service discovery, scalability, and monitoring. It can also run monoliths, although Azure App Service (see next section) might be a better option for those.

As JHipster generates standard Spring Boot applications, its monoliths, microservices, and gateways all run on Azure Spring Cloud. As both the Spring Cloud Discovery Server (provided and managed by Azure Spring Cloud) and the JHipster Registry (provided, by default, by JHipster) are built on top of Netflix Eureka, it is possible to swap both solutions: you can generate a microservice using the JHipster Registry and run it on Azure Spring Cloud without any code change.

In order to ease deployment on Azure Spring Cloud, JHipster provides a dedicated sub-generator. It makes use of the Azure CLI and will require that you have an Azure account in order to create a Spring Cloud cluster and deploy your application.

Visit https://www.jhipster.tech/azure/
 for more information on this sub-generator.

Azure App Service

Azure App Service (https://azure.microsoft.com/en-us/services/app-service/
) is a Platform as a Service
 (PaaS
) provided by Microsoft Azure. It supports a wide variety of languages and frameworks, including Java.

This is a more generic solution than Azure Spring Cloud (see the previous section), but it is also more mature and less expensive (as it does not provide Spring Cloud services such as the configuration server or the discovery server). As a result, it is a good option for deploying Spring Boot monoliths, including those generated with JHipster.

There are two ways to deploy a JHipster application on Azure App Service:

	Bundle the application as a Docker image. As JHipster has great Docker support, it is easy to publish that image and use it on Azure App Service.

	Provide an executable JAR file and run it on Azure App Service. The second option is the one we recommend since it is faster and easier to build an executable JAR file, and also because that will let Azure manage the operating system, Java versions, and upgrades, resulting in lower security risks.

As with Azure Spring Cloud, JHipster provides a sub-generator so that you can deploy your application to Azure App Service as well. You will also need the Azure CLI and an Azure account. At the moment, it also requires the use of Maven as it uses an Azure Maven plugin to do this deployment, but please note that this might change in the future (Azure is working on a Gradle plugin, and the JHipster team is working to deploy using only the Azure CLI and no plugin).

Visit https://www.jhipster.tech/azure/
 for more information on this sub-generator.

Production deployment to the Heroku Cloud

We need to choose a cloud provider. For this demo, we'll choose Heroku.

Though the Heroku account is free and you get free credits, you will have to provide your credit card information to use MySQL and other add-ons. You will only be charged if you exceed the free quota.

Let's deploy our application to Heroku by completing the following steps:

	First, you need to create an account on Heroku (https://signup.heroku.com/
). It is free and you get free credits as well.

	Install the Heroku CLI tool by following the instructions at https://devcenter.heroku.com/articles/heroku-cli
 .

	Verify that the Heroku CLI is installed by running heroku --version
 .

	Log in to Heroku by running heroku login
 . When prompted, enter your Heroku email and password.

	Now, run the jhipster heroku
 command. You will start seeing questions.

	Choose a name you like when asked Name to deploy as: (store)
 . By default, it will use the application name. Try to choose a unique name since the Heroku namespace is shared.

	Next, you will be asked to choose a region—?

 On which region do you want to deploy ?
 Choose between the US and EU, and proceed.

	Next, you will be asked to choose a deployment type—?

 Which type of deployment do you want
 ?
 Choose JAR, and proceed.

	The generator will create the required files and you need to accept changes on the Gradle build files.

The console output will look like this:

The generated .yml
 files add Heroku-specific configurations for the application. The Procfile
 contains the specific command that will be executed on Heroku for the application. The Gradle build is also modified to include dependencies required by Heroku.

After generating the files, it will build the application and start uploading artifacts. This may take several minutes based on your network latency. Once this has been successfully completed, you should see the following screen:

Now, run the heroku open -a jhbook-online-store
 command to open the deployed application in a browser. That's it—you have successfully deployed your application to Heroku with a few commands.

When you update the application further, you can run the jhipster heroku
 command again to redeploy, or you can rebuild the package using ./gradlew -Pprod bootJar
 and then redeploy it using the heroku deploy:jar --jar build/libs/*.jar
 command.

Don't forget to commit the changes that you've made to git
 by executing the following command:

> git add --all

> git commit -am "add heroku configuration"

That is it—we have created and deployed a monolithic, full stack application to the cloud.

Summary

Deployment to production is one of the most important phases of application development and is the most crucial one as well. With the help of JHipster, we deployed our application to a cloud provider with ease. We also learned about Docker and the various other deployment options available. We also made use of the upgrade sub-generator to keep our application up to date with JHipster.

So far, we've seen how we can develop and deploy a monolithic e-commerce application using JHipster. We started with a monolith and, in the upcoming chapters, we will see how we can scale our application into a microservice architecture with the help of JHipster. In the next chapter, we will learn about different microservice technologies and tools. So, stay tuned!

Section 4: Converting Monoliths to Microservice Architecture

In this section, you will first be introduced to the different options available in the JHipster microservice stack. Moving on, you will see how a JHipster monolith web application is converted into a full-fledged microservice architecture with a gateway, registry, monitoring console, and multiple microservices. You will also examine the generated code and components, such as the JHipster Registry, JHipster Console, API gateways, and JWTs.

In the last chapter of this section, you will see how to run the generated applications in a
 local environment.

This section comprises the following chapters
 :

	

Chapter 8
 , Introduction to Microservice Server-Side Technologies

	
Chapter 9
 , Building Microservices with JHipster

	
Chapter 10
 , Working with Microservices

Microservice Server-Side Technologies

Wasn't it easy to develop a production-ready monolithic application with JHipster? So far, we have created an application from scratch, added a few entities with JDL Studio, and then deployed it to the production environment along with tests. We have also added a continuous integration and continuous delivery pipeline. Wasn't the experience faster, easier, and better than coding everything from scratch?

So what's next? Yes, you guessed it right – microservices
 !

Microservices is the buzzword everywhere these days. Many companies out there are trying to solve their problems with microservices. We already saw an overview of the benefits of microservices in Chapter 1
 , Introduction to Modern Web Application Development
 .

In this chapter, we will learn about the following:

	Benefits of microservices over monoliths

	Components that we need to build a complete microservices architecture

After that, we will see how easy it is to create a microservices architecture using the options JHipster provides.

Microservice applications versus monoliths

The benefits of microservices architectures can be better understood by comparing them with monolithic architectures.

The benefits of microservices over monoliths are phenomenal when they are designed and deployed correctly for the appropriate use case. Microservices are not a silver bullet; in many use cases, they might actually bring more issues than benefits. So choosing microservices should be done with great care and based on use cases.

It is not as simple as splitting a monolithic application based on structure, component, or functionality and then deploying them as individual services. This will not work out. Converting a monolithic application or even a monolithic design into microservices needs a clear vision of the product. It includes knowledge of what part of the project will change and what part will be consistent. We must have low-level details, such as which entities we should group together and those that can be separated.

This clearly illustrates the need for an ever-evolving model. It is much easier to split the technologies used in the application, but not the interdependent models or the business logic of the application. So it is essential to place the project's primary focus on the core domain and its logic.

Microservices should be independent. They will fail when one component is tightly coupled with another. The trickiest part is identifying and segregating the components.

When we have done that, it offers the following benefits over monolithic applications.

Scalability

The monolithic code is a single unit. Thus, all parts of the application share the same memory. For a bigger system, we need to have a bigger infrastructure. When the application grows, we need to scale the infrastructure as needed. The scaling of an already bigger infrastructure is always a difficult and costlier task for operations.

Even though they have all the necessary code to handle anything in the product at a single place (no need to worry about latency or availability), it is difficult to handle the resources that it consumes to run and it is definitely not scalable. If one part of the application fails, then the whole product will be impacted. When one thread or query of the product clings on to the memory, then the impact will be seen by millions of our customers.

Microservices, on the other hand, require less memory per service to run since we are splitting the application into smaller components, which, in turn, could reduce the infrastructure's cost for high-bandwidth applications. For example, it is cheaper to run ten 2 GB instances (costs ~$
 170 per month on AWS) than running a single 16 GB instance (costs ~$
 570 per month on AWS). Each component runs in its own environment, which makes microservices much more developer-friendly (if you are a large team) and cloud-native. Similarly, microservices also increase the throughput across services. A memory-intensive operation on one service will not affect any other service as the load is distributed.

Efficiency

Monolithic architecture, over a period of time, will remove the agility of a team, which will delay the application rollout. This means people will tend to invest more time in finding a workaround to fix a problem when a new feature is added or something in the existing feature breaks. The monolithic architecture will bring a greater amount of inefficiency for larger projects, which in turn, increases the technical debt.

Microservices, on the other hand, reduce the technical debt in terms of architecture since everything is reduced to individual components. Teams tend to be more agile and they will find handling changes easier.

The less code there is, the fewer bugs there are, meaning less pain and a shorter time to fix.

Time constraint

Monolithic applications are more time consuming to work with. Imagine there is a big monolithic application and you have to reverse an if
 condition
 in your service layer. After changing the code, it has to be built, which usually takes a few minutes, and then you must test the entire application, which will reduce the team's performance.

You can reboot or reload an application in seconds for a microservices architecture. When you have to reverse an if
 condition
 , you need not wait for minutes to build and deploy the application to test; you can do it in seconds. This will decrease the time it takes to do mundane tasks.

Faster iterations/releases and decreased downtime are the key things to increase user engagement and user retention, which, in turn, results in better revenue.

A human mind (unless you are superhuman) can handle only a limited amount of information. So cognitively, microservices help people to reduce the clutter and focus on the functionality. This enables better productivity and faster rollouts.

To sum up, embracing microservices for an appropriate use case will do the following:

	Maximize productivity

	Improve agility

	Improve the customer experience

	Speed up development/unit testing (if designed properly)

	Improve revenue

Building blocks of a microservices architecture

Running a microservices architecture requires a lot of components/features and involves a lot of advanced concepts. For the sake of understanding these concepts, imagine we have a microservice-based application for our e-commerce shopping website. This includes the following services:

	
Pricing services
 : Responsible for giving us the price of the product based on demand

	
Demand services
 : Responsible for calculating the demand for the product based on sales and remaining stock

	
Inventory services
 : Responsible for tracking the quantity left in the inventory, and many other services

Some of the concepts we will see in this section are the following:

	Service registry

	Service discovery

	Health check

	Dynamic routing and resiliency

	Security (authentication and authorization)

	Fault tolerance and failover

Service registry

Microservices are independent, but many use cases will need them to be interdependent. This means that for some services to work properly, they need data from another service, which, in turn, may or may not depend on other services or sources.

For example, our pricing service will directly depend on the demand service, which, in turn, depends on the inventory service. But these three services are completely independent, that is, they can be deployed on any host, port, or location and scaled at will.

If the pricing service wants to communicate with the demand service, it has to know the exact location to which it can send requests to get the required information. Similarly, the demand service should know about the inventory service's details in order to communicate. We will not know the details of the location beforehand as the services can be scaled independently.

So we need a service registry that registers all the services and their locations and configuration. All services should register themselves with this registry service when the service is started and deregister themselves when the service goes down.

The service registry should act as a database of services, recording all the available instances and their details.

Service discovery

The service registry has details of the services available and acts as the database. But in order to find out where the required service is and which services to connect, we need to have service discovery. So, service discovery is the end-to-end process and the service registry is the data store used by that process. They both work hand in hand.

When the pricing service wants to communicate with the demand service, it needs to know the network location of the demand service. In the case of traditional architecture, this is a fixed physical address, but in the microservices world, this is a dynamic address that is assigned and updated dynamically.

The pricing service (client) will have to locate the demand service in the service registry and determine the location and then load balance the request of the available demand service. The demand service, in turn, will respond to the request of the requested client (pricing service).

Service discovery is used to discover the exact service to which the client should connect to, in order to get the necessary details.

Service discovery helps the API gateway to discover the right endpoint for a request.

They will also have a load balancer, which regulates the traffic and ensures the high availability of the services.

Based on the location where load balancing happens, the service discovery is classified into:

	A client-side discovery pattern

	A server-side discovery pattern

Client-side discovery pattern

Load balancing will happen on the client service side. The client service will determine where to send the request and the logic of load balancing will be in the client service. For example, Netflix Eureka (https://github.com/Netflix/eureka
) is a service registry. It provides endpoints to register and discover the services.

When the pricing service wants to invoke the demand service, it will connect to the service registry and then find the available services. Then, based on the load balancing logic configured, the pricing service (client) will determine which demand service to request.

The services will then do an intelligent and application-specific load balancing. On the downside, this adds an extra layer of load balancing to every service, which is an overhead.

Server-side discovery pattern

The pricing service will request the load balancer to connect to the demand service. Then, the load balancer will connect to the service registry to determine the available instance, and then route the request based on the load balancing configured.

For example, in Kubernetes, each pod will have its own server or proxy. All the requests are sent through this proxy (which has a dedicated IP and port associated with it).

The load balancing logic is moved away from the service and isolated into a separate service. On the downside, it requires yet another highly available service to handle the requests.

Health check

In the microservices world, instances can start, change, update, and stop at random. They can also scale up and down based on their traffic and other settings. This requires a health check service that will constantly monitor the availability of the services.

Services can send their status periodically to this health check service, and this keeps a track of the health of the services. When a service goes down, the health check service will stop getting the heartbeat from the service. Then, the health check service will mark the service down and cascade the information to the service registry. Similarly, when the service resumes, the heartbeat is sent to the health check service. Upon receiving a few positive heartbeats, the service is marked UP
 and then the information is sent to the service registry.

The health check service can check for health in two ways:

	
Push configuration
 : All the services will send their heartbeat periodically to the health check service.

	
Pull configuration
 : A single health check service instance will query for the availability of the systems periodically.

This also requires a high availability system
 . All the services should connect to this service to share their heartbeat and this has to connect to the service registry to tell them whether a service is available. This normally is part of the service discovery system.

Dynamic routing and resiliency

The health check services will track the health of available services and send details to the service registry regarding the health of services.

Based on the health of the services, the service discovery process should intelligently route requests to healthy instances and shut down the traffic to unhealthy instances.

Since the services dynamically change their location (address/port) every time a client wants to connect to the service, it should first check for the availability of the services from the service registry. Every connection to the client will also need to have a timeout added to it, beyond which the request has to be served or it has to be retried (if configured) to another instance. This way, we can minimize the cascading failure
 .

Security

When a client invokes an available service, we need to validate the request. In order to prevent unwanted requests from piling up, we should have an additional layer of security
 . The requests from the client should be authenticated and authorized to call the other service, to prevent unauthorized calls to the service. The service should, in turn, decrypt the request, understand whether it is valid or invalid, and do the rest.

In order to provide secure microservices, it should have the following characteristics:

	
Confidentiality
 : Allow only authorized clients to access and consume the information.

	
Integrity
 : Can guarantee the integrity of the information that it receives from the client and ensure that it is not modified by a third party (for example, when a gateway and a service is talking to each other, no party can tamper with, or alter, the messages that are sent between them; this a classic man-in-the-middle attack)

	
Availability
 : A secure API service should be readily available.

	
Reliability
 : Should handle the requests and process them reliably.

For more information on MITM, or man-in-the-middle, attacks, check out the following link: https://www.owasp.org/index.php/Man-in-the-middle_attack
 .

Fault tolerance and failover

In a microservices architecture, there might be many reasons for a fault. It is important to handle faults or failovers gracefully, as follows:

	When the request takes a long time to complete, have a predetermined timeout instead of waiting for the service to respond.

	When the request fails, identify the server, notify the service registry, and stop connecting to the server. This way, we can prevent other requests from going to that server.

	Shut down the service when it is not responding and start a new service to make sure services are working as expected.

This can be achieved using the following:

	
Fault tolerance
 libraries, which prevent cascading failures by isolating the remote instance and services that are not responding or taking a longer time than in the SLA to respond. This prevents other services from calling the failed or unhealthy instances.

	
Distributed tracing system
 libraries help to trace the timing and latency of the service or system, and highlight any discrepancies with the agreed SLA. They also help you to understand where the performance bottleneck is so that you can act on this.

Options supported by JHipster

JHipster provides options to fulfill many of the preceding concepts. The most important of them are as follows:

	JHipster Registry

	HashiCorp Consul

	JHipster gateway

	JHipster Console

	Prometheus

	JWT authentication

	JHipster UAA server

JHipster Registry

JHipster provides JHipster
 Registry
 (http://www.jhipster.tech/jhipster-registry/
) as the default service registry
 . JHipster Registry is a runtime application that all microservice applications register with and get their configuration from. It also provides additional features, such as monitoring and health check dashboards.

JHipster Registry is made up of the following:

	Netflix Eureka

	Spring Cloud Config Server

Netflix Eureka

Eureka (https://github.com/Netflix/eureka
) consists of the following:

	
The Eureka server
 :

	The Eureka server is a REST-based service. It is used for locating services for load balancing and failover middle tiers.

	The Eureka server helps to load balance among the instances. They are more useful in a cloud-based environment where the availability is intermittent. On the other hand, traditional load balancers help in load balancing the traffic between known and fixed instances.

	
The Eureka client
 :

	Eureka provides a Eureka client, which makes the interaction between servers seamless. It is a Java-based client.

Eureka acts as a middle-tier
 load balancer that helps to load balance the host of middle-tier services. They provide a simple round-robin-based load balancing by default. The load balancing algorithm can be customized as needed with a wrapper.

They cannot provide sticky sessions. They also fit perfectly for client-based load balancing scenarios (as seen earlier).

Eureka has no restriction on communication technology. We can use anything, such as Thrift, HTTP, or any RPC mechanisms, for communication.

Imagine our application is in different AWS Availability Zones. We register a Eureka cluster in each of the zones that hold information about available services in that region only and start the Eureka server in each zone to handle zone failures.

All the services will register themselves to the Eureka server and send their heartbeats. When the client no longer sends a heartbeat, the service is taken out of the registry itself and the information is passed across the Eureka nodes in the cluster. Then, any client from any zone will look up the registry information to locate it and then make any remote calls. Also, we need to ensure that Eureka clusters between regions do not communicate with each other.

Eureka prefers availability over consistency. That is when the services are connected to the Eureka server and it shares the complete configuration between the services. This enables services to run even when the Eureka server goes down. In production, we have to run Eureka in a high-availability cluster for better consistency.

Eureka also has the ability to add or remove servers on the fly. This makes it the right choice for a service registry and service discovery.

Spring Cloud Config Server

In a microservices architecture, the services are dynamic in nature. They will go down and come up based on traffic or any other configuration. Due to this dynamic nature, there should be a separate, highly available server that holds the essential configuration details that all the servers need to know.

For example, our pricing service will need to know where the registry service is and how it has to communicate with the registry service. The registry service, on the other hand, should be highly available. If, for any reason, the registry
 service has to go down, we will spin up a new server. The pricing service needs to communicate with the config service in order to find out about the registry service
 . On the other hand, when the registry service is changed, it has to communicate the changes to the config server, which will then cascade the information to all the necessary services.

Spring Cloud Config Server (https://github.com/spring-cloud/spring-cloud-config
) provides the server- and client-side support for external configuration.

With the Spring Cloud Config Server
 , we have a central place to manage all our external properties across all environments. The concept is similar to Spring-based environment property source abstractions on both the client and server. They fit any application running in any language.

They are also helpful for carrying the configuration data between various (development/test/production) environments and can also help to migrate applications.

Spring Cloud Config Server has an HTTP, resource-based API for external configuration. They will encrypt and decrypt property values. They bind to the config server and initialize a Spring environment with remote property sources. The configuration can be stored in a Git repository or in a filesystem.

HashiCorp Consul

Consul
 (https://www.consul.io/
) is primarily a service discovery client from HashiCorp. It focuses on consistency. Consul is entirely written in Golang.

This means it will have a lower memory footprint. Added to that, we can also use Consul with services written in any programming language.

The main advantages of using Consul are as follows:

	It has a lower memory footprint.

	It can be used with services that are written in any programming language.

	It focuses on consistency rather than availability.

Consul also provides service discovery, failure detection, multi-datacenter configuration, and key-value storage.

This is an alternative option to JHipster Registry. There is an option to choose between JHipster Registry and Consul during application creation.

Eureka (JHipster Registry) requires each application to use its APIs for registering and discovering themselves. It focuses on availability over consistency. It supports only applications or services written in Spring Boot.

On the other hand, Consul runs as an agent in the services and checks the health information and a few other extra operations listed previously.

Service discovery

Consul can attach to a service and other clients can use Consul to discover the providers of a given service. Using either DNS or HTTP, applications can easily find the services that they depend on.

Health discovery

Consul clients can provide any number of health checks, either associated with a given service or with the local node. This information can be used by a health check service to monitor services' health, and is, in turn, used to discover the service components and route traffic away from unhealthy hosts and toward healthy hosts.

Key/Value store

Consul has an easy-to-use HTTP API that makes it simple for a
 pplications to use Consul's Key/Value store for dynamically configuring services, electing the leader when the current leader goes down, and segregating containers based on features.

Multiple data centers

Consul supports multiple data centers out of the box. This means you do not have to worry about building additional layers of abstraction to grow to multiple regions.

Consul should be a distributed and highly available service. Every node that provides services to Consul runs a consul agent, which is mainly responsible for health checking. These agents will then talk with one or more Consul servers, which collect and add this information. These servers will also elect a leader among themselves.

Thus, Consul serves as a service registry, service discovery, health check, and K/V store.

JHipster gateway

In a gateway-driven microservices architecture, we need an entry point to access all the running services. So we need a service that acts as a gateway or edge service. This will proxy or route clients' requests to the respective services. In JHipster, we provide JHipster gateway for that.

JHipster gateway is a microservice application that can be generated. It integrates Netflix Zuul and Hystrix in order to provide routing, filtering, security, circuit breaking, and so on.

Netflix Zuul

In a microservices architecture, Zuul is a front door for all the requests (gatekeeper). It acts as an edge service application. Zuul is built to enable dynamic routing, monitoring, resiliency, and security
 among the services. It also has the ability to dynamically route requests as needed.

Trivia: In
 Ghostbusters
 , Zuul is the gatekeeper.

Zuul works based on different types of filters that enable us to quickly and nimbly apply functionality to our edge service.

These filters help us to perform the following functions:

	
Authentication and security
 : To identify each resource's authentication requirements and to reject requests that do not satisfy the requirements

	
Insights and monitoring
 : To track data and statistics at the edge and to give an insight into the production application

	
Dynamic routing
 : To dynamically route requests to different backend clusters as needed, based on health and other factors

	
Multi-regional resiliency (AWS)
 : To route requests across AWS regions in order to diversify our Elastic Load Balancer usage and move our edge closer to our members

For more information on Zuul, please check out https://github.com/Netflix/zuul/wiki
 .

Hystrix

Hystrix (https://github.com/Netflix/Hystrix
) is a latency and fault tolerance library designed to isolate points of access to remote systems, services, and third-party libraries. It can stop cascading failures and enable resilience in complex distributed systems where failure is inevitable.

Hystrix is designed to do the following:

	Stop cascading failures in a complex distributed system

	Protect the system from the failures of dependencies over the network

	Control the latency of the system

	Recover rapidly and fail faster to prevent cascading

	Fall back and gracefully degrade when possible

	Enable near-real-time monitoring, alerting, and operational control

When you have an application in a complex distributed architecture with a lot of dependencies, some of these dependencies will inevitably fail at some point. If your application is not isolated from these external failures, there is the risk of the application going down along with the dependency.

Hystrix is currently in maintenance mode and future versions of JHipster might migrate to a different library for fault-tolerance and circuit-breaking.

JHipster Console

JHipster Console (https://github.com/jhipster/jhipster-console
) is a monitoring solution for microservices built using the Elastic (ELK) Stack and Zipkin. It comes bundled with preset dashboards and configurations. It is provided as a runtime component in the form of a Docker image.

The Elastic
 Stack is made up of Elasticsearch, Logstash, and Kibana.

Logstash can be used to normalize the data (usually from logs), and then Elasticsearch is used to process the same data faster. Finally, Kibana is used to visualize the data.

Elasticsearch

Elasticsearch is a widely used search engine in data analytics. It helps you to extract data really fast from data haystacks. It also helps to provide real-time analytics and data extraction. It is highly scalable, available, and multi-tenanted.

It also provides full text-based searches saved as a document. These documents, in turn, will be updated and modified based on any changes to the data. This, in turn, will provide a faster search and analysis of the data.

Logstash

Logstash (https://www.elastic.co/products/logstash
) will take the logs, process them, and convert them into data points. They can read any type of logs, such as system logs, error logs, and app logs. They are the heavy working
 component of this stack, which helps to store, query, and analyze the logs.

They act as a pipeline for event processing and are capable of processing huge amounts of data with the filters and, along with Elasticsearch, deliver results really fast. JHipster makes sure that the logs are in the correct format so that they can be grouped and visualized in the correct way.

Kibana

Kibana (https://www.elastic.co/products/kibana
) forms the frontend of the ELK Stack. It is used for data visualization. It is merely a log data dashboard. It is helpful in visualizing the trends and patterns in data that are otherwise tedious to read and interpret. It also provides an option to share/save, which makes visualization of the data more useful.

Zipkin

Zipkin (https://zipkin.io/
) is a distributed tracing system. Microservices architecture always has latency problems, and a system is needed to troubleshoot the latency problem. Zipkin helps to solve the problem by collecting timing data. Zipkin also helps to search the data.

All registered services will report timing data to Zipkin. Zipkin creates a dependency diagram based on the received traced requests for each of the applications or services. Then, it can be used to analyze, spot an application that takes a long time to resolve, and fix it as needed.

When a request is made, the trace instrumentation will record tags, add the trace headers to the request, and finally record the timestamp. Then, the request is sent to the original destination and the response is sent back to the trace instrumentation, which then records the duration and shares the result with the Zipkin collector, which is responsible for storing the information.

By default, JHipster will generate the application with Zipkin disabled, but this can be enabled in the application-<env>.yml
 file.

Prometheus

In a microservices architecture, we need to monitor our services continuously and any issues should cause alerts immediately. We need a separate service that will continuously monitor and alert us whenever something weird happens. Prometheus is an alternative monitoring solution we can use.

Prometheus, along with Grafana, can be an alternative to JHipster Console. It provides monitoring and alerting support. This requires running a Prometheus server and Grafana separately. Visit https://www.jhipster.tech/monitoring/#configuring-metrics-forwarding
 to learn about using Prometheus with JHipster. To get started with Prometheus, visit
 https://prometheus.io/.

Prometheus consists of the following:

	Prometheus server, which is responsible for scraping and storing the time series data

	Libraries to instrument the application code

	A push gateway for supporting short-lived jobs

	An exporter to Grafana to visualize data

	An alert manager

	Other support tools

Let's now look at the benefits of Prometheus:

	It provides multi-dimensional data models, which are time series and are identified by metric names and key-value pairs.

	It has a flexible dynamic query language. It supports pulling time series out of the box and pushing time series via an intermediary gateway.

	It has multiple modes of graphing and dashboard support.

	It is helpful in identifying problems when there is an outage. Since it is autonomous and does not depend on any remote services, the data is sufficient for finding where the infrastructure is broken.

	It is helpful in recording the time series data and monitoring either via machine or highly dynamic service-oriented architecture.

Some things to consider when choosing Prometheus over JHipster Console are as follows:

	
Prometheus is very good at exploiting the metrics of your application and will not monitor logs or traces. JHipster Console, on the other hand, uses the Elastic Stack and monitors the logs, traces, and metrics of your application.

	
Prometheus can be used to query a huge amount of
 time series data. ELK on JHipster Console is much more versatile in terms of tracking and searching the metrics and logs.

	JHipster Console uses Kibana to visualize the data, while Prometheus uses Grafana (https://grafana.com/
) to visualize the metrics.

JWT authentication

We need to transfer information between microservices securely. The requests must be verified and signed digitally, where the applications verify the authenticity of the requests and respond to them.

We need to have a compact way to handle this information in the REST or HTTP world since the information is required to be sent with each request. JWT is one of the options here. JWT (JSON web tokens) is an open web standard that helps to securely transfer information between parties (applications). JWT will be signed using a secret, based on the HMAC algorithm, or with a public/private key. They are compact and self-contained:

	
Compact
 : They are small and can be sent in each request.

	
Self-contained
 : The payload contains all the necessary details about the user, which prevents us from querying the database for user authentication.

For advanced use cases, we can add Bouncy Castle (
 librarieshttps://en.wikipedia.org/wiki/Bouncy_Castle_(cryptography)
)-based encryption.

JWT consists of the header, payload, and signature. They are Base64-encoded strings, separated by a
 .
 (a period):

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IlNlbmRpbCBLdW1hciBOIiwiYWRtaW4iOnRydWV9.ILwKeJ128TwDZmLGAeeY7qiROxA3kXiXOG4MxTQVk_I

#Algorithm for JWT generation

HMACSHA256(
 base64UrlEncode(header) + "." +
 base64UrlEncode(payload),

)

Here, the HMAC SHA256 (https://en.wikipedia.org/wiki/HMAC
) algorithm is used to encode the header and payload of the JWT.

How JWT works

When a user logs in to the system, a token is generated based on the payload (that is, the user information and secret key). The generated token is stored locally. For all future requests, this token is added to the request and the application will validate the token before responding to the request:

The token will be in this format:

Authorization: Bearer <token>

In JHipster, we use JJWT
 (short for Java-based JSON Web Tokens
) from Okta. This is a simplified builder pattern-based library used to generate and sign the token as a producer and parse and validate the token as a consumer.

JHipster UAA server

JHipster user accounting and authorizing
 (UAA
) server is merely an OAuth2 server that can be used for centralized identity management
 . In order to access the protected resource and also to avoid unwanted access to the APIs, there has to be an authorization server that authorizes the request and provides access to the resource.

OAuth2 is an authorization framework that provides access to the request based on tokens. Clients request access to a service; if the user is authorized, the application receives an authorization grant. After receiving the grant, the client requests a token from the authorization server. Once the token is received, the client will then request that the resource server gets the necessary information.

JHipster supports both standard LDAP protocols and is invoked via JSON APIs.

JHipster UAA is a centralized server for
 user accounting and authorizing service for securing JHipster microservices using the OAuth2 authorization protocol. They also have session-related information and role-based access control with the help of a user and role management that is available inside the system.

JHipster UAA is a JHipster-generated application consisting of user and role management. It also has a full-fledged OAuth2 authorization server. This is flexible and completely customizable.

Security is essential in a microservices architecture. The following are the basic requirements for securing microservices:

	They should be authenticated in one place. Users should experience the entire experience as a single unit. Once the end user logs in to the application, they should be able to access whatever they have access to. They should hold session-related information throughout the time they are logged in to the system.

	The security service should be stateless. Irrespective of the service, the security service should be capable of providing authentication for requests.

	They also need to have the ability to provide authentication to machines and users. They should be able to distinguish between them and trace them. Their function should be authorizing the incoming request rather than identifying the end user.

	Since the underlying services are scalable, security services should also have the ability to scale up and down based on requirements.

	They should, of course, be safe from attacks. Any known vulnerability should be fixed and updated as and when required.

The previous requirements can be met by using the OAuth2 protocol. The OAuth2 protocol, in general, provides the token for authenticating based on the details provided, which makes them stateless and able to authenticate a request from any source.

Summary

So far, we have seen the benefits of a microservices architecture over monolithic applications. We also learned about the components that we need to run a microservice application such as JHipster Registry, Consul, Zuul, Zipkin, the Elastic Stack, Hystrix, Prometheus, JWT, and the JHipster UAA server.

In our next chapter, we will see how to build microservices using JHipster. We will also learn how we can choose the previous components and how easy it is to set them up with JHipster.

Building Microservices with JHipster

So far in this book, we have generated, developed, and deployed a monolithic application using JHipster. Now it's time to build a full-fledged microservices stack. I
 n the previous chapter, we saw the benefits that are offered by a microservice stack. In this chapter, we will look at how to build microservices with JHipster.

We will start by converting our monolithic store application into a microservice gateway application. Next, we will add new functionality to our e-commerce shop as separate microservice applications. By doing this, we can develop our microservices further so that we can include our domain model and additional business logic.

Since we are converting our online shop monolith into a microservice architecture, we will also learn how the domain model we created using JHipster Domain Language
 (JDL
) can be converted into a microservice domain model.

We will then see how these applications communicate with each other and work as a single application for our end users.

In this chapter, we will cover the following topics:

	A brief introduction to application generation with JDL

	Modeling a gateway application

	Modeling the microservice applications

	Creating the domain model using JDL

	Running through the generated code

Application architecture

We built an online e-commerce shop using JHipster in Chapter 3
 , Building Monolithic Web Applications with JHipster
 . It was built as a monolith since the scope was small and it was an easier choice to start with. Let's say that our e-commerce store has grown tremendously in terms of users and scope, resulting in a more demanding situation. The team is finding it difficult to roll out features faster with the monolithic architecture and would like to have more control over individual parts of the application.

One of the solutions to this problem would be to adopt a microservice architecture. The application was created using JHipster; the option to move to microservices is much easier to accomplish. JHipster follows the proxy microservice pattern
 in which there is an aggregator/proxy in front of the services, that acts as the gateway for the end users. In much simpler terms, JHipster creates a gateway (an edge service that handles all the user requests) and the individual services that talk via the gateway to the users.

This being said, we need to have a gateway service, along with one or a few microservice applications that can run independently.

Our customers are facing some issues regarding invoicing since it is taking longer for the system to respond. Customers are also complaining that they are not receiving notifications so that they can track their orders. To solve this, we will remove the invoice service from our monolithic application and make it a separate service, and then create a separate notification service
 that will take care of the notifications. For the former, we will stick with the same SQL database. For the latter, we will use the NoSQL database.

Let's have a look at the application architecture that we are going to generate:

As you can see, we have a gateway application running on port 8080
 , which will be the user-facing application. Then, we have two microservice applications with their own databases. The gateway will route requests to these services via ports 8081
 and 8082
 . There is also JHipster Registry
 running on port 8761
 providing service discovery and config management.

In the next section, we'll learn how to create this architecture using JHipster.

Generating a microservice stack using JDL

We will be using the JDL to generate our microservice applications. Before we prepare the JDL, let's take a quick look at the language definition for creating applications. The official documentation for JDL can be found at
 https://www.jhipster.tech/jdl/
 .

Application modeling using JDL

In Chapter 4
 , Entity Modeling with the JHipster Domain Language
 ,
 we learned how to define entities and relationships using JDL. Now, let's learn how to define applications.

In the following syntax, take note of the following:

	
[]
 denotes optional
 .

	
*
 denotes more than one can be specified
 .

JavaDocs can be added to entity declarations, while /** */
 Java comments can be added to fields and relationship declarations. JDL-specific comments can only be added using the
 //
 syntax.

It is also possible to define numerical constants in JDL, for example, DEFAULT_MIN_LENGTH = 1
 .

The application declaration is created using the following syntax:

application {

 config {

 <option> <value>

 }

 [entities <entity names(comma seperated)>* [except] [<entity

 names(comma seperated)>*]]

}

<option>
 is one of the supported application options, followed by <value>
 , which is supported by the option. If an option is not declared, a default value will be used instead. Refer to the table at https://www.jhipster.tech/jdl/applications#available-application-options
 for all the supported options and defaults.

The entities
 keyword
 is used to associate the entities applicable to a particular application. entities *
 will denote that all the entities declared in the file are associated with an application. Fine-grained declarations are possible using the given syntax; for example, entities * except C, D
 or entities A, B
 .

An example of an application declaration is as follows:

application {

 config {

 baseName myapp

 applicationType microservice

 prodDatabaseType postgresql

 buildTool gradle

 }

}

With entities, it would look as follows:

application {

 config {

 baseName myMonolith

 applicationType monolith

 }

 entities * except C, D

}

entity A

entity B

entity C

entity D

Let's proceed and design our JDL.

Gateway application

Even though microservices are made up of different services, for end users, they should be a single, unified product. There are a lot of services that are designed to work in a lot of different ways, but there should be a single entry point for users. Thus, we need a gateway application since they form the frontend of your application. This is called the proxy pattern or gateway pattern.

They segregate internal contracts and services from external users. We may have application-level internal services that we shouldn't expose to external users, so these can be masked away. This also adds another level of security to the application.

We can use JDL to convert an existing monolithic application into a microservice gateway. If you want to create everything from scratch, skip the following note and just follow along.

If you want to use the existing monolith application we created in the previous chapters and convert that, then make sure the application was created inside a folder such as
 e-commerce-app
 . Rename the online-store
 application folder to
 store
 . Then, navigate to the store
 folder and commit the changes. Now, create a new Git branch with git checkout -b microservice-conversion
 so that we can do a clean merge back to the master once we are done.

We will start by converting the monolithic application configuration
 that we have generated into a microservice gateway application with JDL.

JDL specification for the gateway application

We have already generated our monolithic application, as well as our entities. As a part of the monolithic application's generation, we have selected some options via JHipster CLI. We will stick to the same options (the database, authentication type, package name, i18n, and so on) when we design the microservice gateway application using JDL.

We will learn how the customizations that we applied in the monolithic application can be applied to the gateway later.

It's coding time now, so let's start building a gateway application using JDL.

The first step is to convert the monolithic application into a microservice gateway application with almost the same configuration that we used when we created a monolithic application.

You can also get the JDL of the existing application to start with by running jhipster export-jdl app.jdl
 , which will include the application JDL.

Open your favorite IDE, text editor, or JDL-Studio (https://start.jhipster.tech/jdl-studio/
) and start with a file –
 let's call it app.jdl
 . We will save this file in the e-commerce-app
 folder, alongside our store app.

The JDL will look as follows:

application {

 config {

 baseName store

 applicationType gateway

 packageName com.mycompany.store

 serviceDiscoveryType eureka

 authenticationType jwt

 prodDatabaseType mysql

 cacheProvider hazelcast

 buildTool gradle

 clientFramework angularX

 useSass true

 languages [en, zh-cn, ta]

 websocket spring-websocket

 testFrameworks [protractor]

 }

}

Since we are working with microservices, there is a high risk of having port conflicts. In order to avoid them, we need to select a port for each microservice application (the gateway and the application). By default, we will have 8080
 as the port, but we can change the port as necessary. For now, we will use the default port since the gateway will run on 8080
 , similar to what our monolithic application had.

We will try not to declare the default options in the JDL to keep it simple.

In order to make the monolith into a microservice gateway application, th
 e only things we need to change are serviceDiscoveryType
 to
 eureka
 since, for monolithic applications, it is not mandatory to have service discovery, and applicationType
 to
 gateway
 .

When you select No service discovery
 , the microservice URLs are hardcoded in the property files.

For the authentication type, JHipster provides three options for the authentication type: JWT, OAuth2, and UAA server-based types. JWT is stateless, while the UAA runs on a different server (and application altogether). OAuth2, on the other hand, will provide authorization tokens, while the authorization is done on the third-party system. We will stick with JWT here.

JHipster allows you to create a UAA server application.

We will stick to the MySQL
 database for production,
Hazelcast
 for cacheProvider
 , Gradle
 for buildTool
 , and Angular X
 for clientFramework
 , the same as in the monolithic store.

Then, we can set any other additional technologies that we need to use. JHipster provides us with the option to select Elasticsearch, using Hazelcast for clustered applications, WebSockets, and OpenAPI Generator for API-based development and Kafka-based asynchronous messaging. We will set WebSockets
 here, similar to what we used in our monolithic store.

Everything else remains in their default states since this is what we used in our monolith as well.

Microservice invoice application

If we look at the invoice domain from our monolithic application, it can be easily separated into a separate microservice application. Let's name it Invoice Service
 . This service is responsible for creating and tracking invoices.

JDL specification for the invoice application

For the invoice application, our JDL will look as follows. Add it after the gateway application declaration:

application {

 config {

 baseName invoice

,

 applicationType microservice

,

 packageName com.mycompany.store,

 serviceDiscoveryType eureka,

 authenticationType jwt,

 prodDatabaseType mysql,

 buildTool gradle,

 serverPort 8081,

 languages [en, zh-cn, ta]

 }

}

We will set applicationType
 to microservice
 and, similar to our gateway, select jwt
 for authenticationType
 , eureka
 for serviceDiscoveryType
 , and so on. Since we don't want any port conflicts, we will also set serverPort
 to 8081
 .

Microservice notification application

For an e-commerce website, it is essential that orders are tracked and users are notified at the right moment. In this section, we will create a notification service that will notify users whenever their order status changes.

JDL specification for the notification application

For the notification application, our JDL will look as follows. Add it after the invoice application declaration:

application {

 config {

 baseName notification,

 applicationType microservice

,

 packageName com.mycompany.store,

 serviceDiscoveryType eureka,

 authenticationType jwt,

 databaseType mongodb

,

 cacheProvider no

,

 enableHibernateCache false

,

 buildTool gradle,

 serverPort 8082,

 languages [en, zh-cn, ta]

 }

}

We will set applicationType
 to microservice
 and, similar to our gateway, select jwt
 for authenticationType
 and eureka
 for serviceDiscoveryType
 .

Since we have selected 8080
 for the monolithic application and 8081
 for the invoice service, we will use port 8082
 for the notification service.

Here, we set MongoDB
 as the database, unlike our other applications. Since this option doesn't support using a level 2 cache, we will disable it by setting cacheProvider
 and enableHibernateCache
 to negative values.

Modeling microservice entities in JDL

Since we already created a JDL for our entities when we set up our monolithic application, it's time to update and use it here.

As we discussed in the previous chapter, we will move the entities from a monolithic application to a gateway application. Then, we'll remove the invoice-related entities from the monolithic application, use them in our invoice microservice, and update the related invoice references in that. Finally, we'll create entities for the notification microservice.

The following diagram shows our JDL entity model:

As you can see, the invoice is a perfect candidate to move out into a separate service. We can completely decouple the invoice and its dependencies, but this will cause one problem in our current application –
 the ProductOrder
 entity is related to the Invoice
 table and we have to remove this dependency while keeping the relationship (but not as a foreign key) as an indirect key in
Invoice

 that connects to the ProductOrder
 entity.

This can be achieved in two ways. We can change the foreign key into just another column in the Invoice
 entity, or we can create another entity called InvoiceOrder
 that just holds Invoice
 IDs and ProductOrder
 IDs and map it to the Invoice
 entity.

The former keeps the table structure more or less the same and allows for easier migration. The latter will increase isolation at the cost of normalization, and they are heavily used in high-performance applications. As you can see, both have their own merits and demerits. The approach you should take depends purely on your requirements.

We will consider the first approach:

	As a first step, copy the JDL defined in online-store.jdl
 in the store application to the new app.jdl
 file that we are working with.

	Now, we will remove the relationship from the ProductOrder
 entity, like so:

relationship OneToMany {

 ...

 ProductOrder{invoice} to Invoice{order(code) required},

 ...

}

	Remove the highlighted line.

	Then, go to the Invoice
 entity, add a productOrderId
 field, and mark it as the Long
 type. It is a required
 field, so it needs the required
 keyword:

entity Invoice

 {

 code String required

 date Instant required

 details String

 status InvoiceStatus required

 paymentMethod PaymentMethod required

 paymentDate Instant required

 paymentAmount BigDecimal required

 productOrderId Long required

}

Entities for microservices can be tagged using the
microservice
 keyword supported by JDL. This helps JHipster to identify entities that belong to a specific microservice. It follows the same JDL options syntax that we saw earlier:

<OPTION> <ENTITIES | * | all> [with <VALUE>] [except <ENTITIES>]

Using the preceding syntax, we need to write the following:

	The microservice
 keyword.

	Followed by the names of the entity; these have to be comma-separated if multiple entities are used.

	Followed by the with
 keyword.

	Followed by the name of the microservice; for example, Invoice
 .

An example of this is microservice Invoice, Shipment with invoice
 .

You can use different files for the microservice entities if you like so that we create two files, invoice-jdl.jh
 and notification-jdl.jh
 , that contain the entities related to invoice and notification, respectively, along with the original. When importing, we can import multiple files.

	Then, we map the existing Invoice
 entity to the microservice in our JDL:

/* Entities for Invoice microservice */

entity Invoice {

 code String required

 date Instant required

 details String

 status InvoiceStatus required

 paymentMethod PaymentMethod required

 paymentDate Instant required

 paymentAmount BigDecimal required

}

enum InvoiceStatus {

 PAID, ISSUED, CANCELLED

}

entity Shipment {

 trackingCode String

 date Instant required

 details String

}

enum PaymentMethod {

 CREDIT_CARD, CASH_ON_DELIVERY, PAYPAL

}

relationship OneToMany {

 Invoice{shipment} to Shipment{invoice(code) required}

}

service Invoice, Shipment with serviceClass

paginate Invoice, Shipment with pagination

microservice Invoice, Shipment with invoice

	Now, it is time to create notification service entities. Add the entities for the
 notifications, as follows:

/* Entities for notification microservice */

entity Notification {

 date Instant required

 details String

 sentDate Instant required

 format NotificationType required

 userId Long required

 productId Long required

}

enum NotificationType {

 EMAIL, SMS, PARCEL

}

microservice Notification with notification

We have bound these entities to the Notification
 microservice.

Now, we need to let the applications know which entities to include, as follows:

application {

 config {

 baseName store

 ...

 }

 entities *

}

application {

 config {

 baseName invoice,

 ...

 }

 entities Invoice, Shipment

}

application {

 config {

 baseName notification,

 ...

 }

 entities Notification

}

We have declared

entities *
 for the gateway as it will need to generate the frontends for all our entities.

	Finally, retain the general options as well:

service * with serviceClass

paginate Product, Customer, ProductOrder, Invoice, Shipment, OrderItem with pagination

Save this file as
 app.jdl
 in the
 e-commerce-app
 folder we created and commit it to Git.

That's it. We have defined the domain model for our microservices. The final JDL can be found at http://bit.ly/jh-book-jdl
 .

Application generation with import-jdl

In this section, we'll generate our applications using the JDL we just created.

Run the following command in the e-commerce-app
 folder:

> cd e-commerce-app

// delete the store folder so that we have better diff when

// new app is generated

> rm -rf store

> jhipster import-jdl app.jdl --skip-git

The --skip-ui-grouping
 flag can be used to disable the client-side entity-component grouping behavior for microservices that were introduced in JHipster 5.x. This grouping behavior is useful when you have entities with the same name in different services.

JHipster will start creating applications and entities in a parallel process to speed things up. If you would like the process to be more interactive so that JHipster will ask about overwriting the modified files, pass the --interactive
 flag to the preceding command. JHipster then asks whether you want to overwrite the conflicting files or use your existing ones, as well as a few other options. Users can use any one of the desired options.
 We will use "a"
 , which means that it will overwrite everything.

This prompt is extremely useful if you have a lot of custom code written on your application. You can choose the appropriate option to get the desired result. You can also use Git for the same purpose.

If you had the monolithic application in the e-commerce-app
 folder, this will overwrite all the customizations we made in our monolithic application. We can easily bring them back into this branch by cherry-picking the required changes from our master branch using Git. You can follow a similar approach to the one we looked at in Chapter 5
 ,
Customization and Further Development

 , for that. Once all the changes have been applied, we can merge this branch back into the master. You will have to do the same for any entity files that have been modified as well:

Entity Product generated successfully.

Entity ProductCategory generated successfully.

Entity Customer generated successfully.

Entity ProductOrder generated successfully.

Entity OrderItem generated successfully.

Entity Invoice generated successfully.

Entity Shipment generated successfully.

Entity Notification generated successfully.

INFO! Congratulations, JHipster execution is complete!

INFO! App: child process exited with code 0

You will see the preceding output when our microservice application is generated. JHipster will automatically commit the generated files to Git. If you wish to do this step yourself, you can do so by providing the
 skip-git
 flag during execution, for example, with the help of the jhipster import-jdl app.jdl --skip-git

 command, like we've done here, and executing the steps manually.

Don't forget to commit the changes in each of the services and gateways. You could also init
 the entire e-commerce-app
 folder as a git
 source if you like by running git init
 :

> cd e-commerce-app

> git init

> git add invoice/

> git commit -m "invoice application generated using JDL"

> git add notification/

> git commit -m "notification application generated using JDL"

// Manually compare and unstage files from store that you do not want

// overridden

// Cherry-pick required changes done earlier

> git add --all

> git commit -m "store application converted to gateway using JDL"

If something goes wrong during cherry-picking, don't worry –
 you can always copy the app.jdl
 file to a new folder and run the jhipster import-jdl
 command to generate fresh applications and compare them to see what went wrong.

We won't need the code changes we made for Heroku deployment anymore so we can safely override them. The security changes we made for the Invoice
 entities will also need to be refactored a bit since the relationships have changed now. This will be one of your tasks for the next steps to pursue after finishing the book

Next, we will take a look at the generated code.

Gateway application

The gateway application is generated in a similar fashion to the monolithic application, except for configurations related to Zuul proxy, Eureka Client, and Hystrix:

@SpringBootApplication

@EnableConfigurationProperties({LiquibaseProperties.class, ApplicationProperties.class})

@EnableDiscoveryClient

@EnableZuulProxy

public class StoreApp implements InitializingBean {

 ...

}

We have selected the JHipster registry for our registry service. This will be a standalone registry server that other microservice applications and gateways will register:

	
@EnableDiscoveryClient
 is added to Spring Boot's main
 class, which will enable Netflix Discovery Client. The microservice applications and gateways need to register themselves to the registry service. It uses Spring Cloud's discovery client abstraction to interrogate its own host and port and then adds them to the registry server.

	
Zuul, on the other hand, is the gatekeeper. This helps route the authorized requests to the respective endpoints, limits the requests per route, and relays the necessary tokens to the microservice application.

	
@EnableZuulProxy
 helps the microservice gateway application route the requests to the applicable microservice application based on the configurations provided in the application.yml
 file:

zuul: # those values must be configured depending on the application specific needs

 sensitive-headers: Cookie,Set-Cookie

 host:

 max-total-connections: 1000

 max-per-route-connections: 100

 prefix: /services

 semaphore:

 max-semaphores: 500

In the gateway app, we have specified the aforementioned settings for the Zuul configuration. The maximum number of total connections that a proxy can hold open is kept at 1000
 . The maximum number of route connections that a proxy can hold open is kept at 100
 . The semaphore is kept to a maximum of 500
 . (Semaphore is like a counter that is used for synchronization between threads and processes.)

Zuul filters are defined under
store/src/main/java/com/mycompany/store/gateway/
 and include access control, rate limit, token relay, and a response rewriting filter.

Access to the backend microservice endpoint is controlled by AccessControlFilter.java
 , which will check whether the request is authorized and is allowed to request the endpoint:

public class AccessControlFilter extends ZuulFilter {

 ...

 public boolean shouldFilter() {

 ...

 for (Route route : routeLocator.getRoutes()) {

 ...

 if (requestUri.startsWith(serviceUrl.substring(0,

 serviceUrl.length() - 2))) {

 return !isAuthorizedRequest(serviceUrl, serviceName,

 requestUri);

 }

 }

 return true;

 }

 ...

}

A rate-limiting filter is added to the generated application, which is defined in RateLimitingFilter.java
 , and limits the number of HTTP calls that are made per client. This is enabled conditionally with the following:

public class RateLimitingFilter extends ZuulFilter {

 ...

}

SwaggerBasePathRewritingFilter.java
 is also used, which will help us rewrite the microservice Swagger URL base path:

public

class

SwaggerBasePathRewritingFilter

extends

SendResponseFilter

 {

 ...

 public

Object

run

() {

 RequestContext

ctx

=

RequestContext

.

getCurrentContext

();

 ...

 if (context.getResponseGZipped()) {

 try {

 context.setResponseDataStream(new

 ByteArrayInputStream(...);

 } catch (IOException e) {

 log.error("Swagger-docs filter error", e);

 }

 } else {

 context.setResponseBody(rewrittenResponse);

 }

 }

...

}

TokenRelayFilter.java
 is added to remove the authorization from Zuul's ignored headers list. This will help us propagate the generated authorization token:

public

class

TokenRelayFilter

extends

ZuulFilter

 {

 ...

 public

Object

run

() {

 RequestContext

ctx

=

RequestContext

.

getCurrentContext

();

 Set

<

String

>

headers

=

 (

Set

<

String

>

)

ctx

.

get

(

"ignoredHeaders"

);

 // JWT tokens should be relayed to the resource servers

 headers

.

remove

(

"authorization"

);

 return

null

;

 }

...

}

Each application should have a Eureka client that helps load balance the requests among the services, as well as send health information to the Eureka Server or registries. The Eureka client is configured in application.yml
 as follows:

eureka:

 client:

 enabled: true

 healthcheck:

 enabled: true

 fetch-registry: true

 register-with-eureka: true

 instance-info-replication-interval-seconds: 10

 registry-fetch-interval-seconds: 10

 instance:

 appname: store

 instanceId: store:${spring.application.instance-id:${random.value}}

 lease-renewal-interval-in-seconds: 5

 lease-expiration-duration-in-seconds: 10

 status-page-url-path: ${management.endpoints.web.base-path}/info

 health-check-url-path: ${management.endpoints.web.base-path}/health

 metadata-map:

 zone: primary # This is needed for the load balancer

 profile: ${spring.profiles.active}

 version: #project.version#

 git-version: ${git.commit.id.describe:}

 git-commit: ${git.commit.id.abbrev:}

 git-branch: ${git.branch:}

We have chosen to enable health checks and have set the interval within which to register and replicate services to 10
 seconds, as well as instances where we define the lease renewal interval and expiration duration.

We will configure a timeout in Hystrix, beyond which the server is considered to be closed:

hystrix:

 command:

 default:

 execution:

 isolation:

 thread:

 timeoutInMilliseconds: 10000

If the server does not respond within 10
 seconds, then the server is considered dead and is unregistered from the registry service.

With JHipster, you can also build microservice applications that serve REST endpoints without any GUI.

This ensures no subsequent requests are sent to that server until the server is made active.

Gateway application entities

In the gateway application, the entire frontend (including the entities in the microservices) will be generated. Since JHipster produces proxy-based microservices, all the frontend code will live in the gateway application:

ProductOrder.Java
 will remove Invoice
 as a foreign key as well in comparison to our monolithic application.

Let's run all the tests to ensure we haven't broken anything from the cherry-picking we have done.

Navigate to the store
 application folder and run ./gradlew test integrationTest npm_test
 ; it should pass.

Next, we will look at the invoice microservice configurations.

Invoice microservice configuration

The application that is generated will not contain any frontend code. Again, the invoice service is a Spring Boot-based application. The security features are configured in SecurityConfiguration.java
 .

It ignores all the H2 Database-related requests:

 public void configure(WebSecurity web) {

 web.ignoring()

 .antMatchers("/h2-console/**");

 }

Since the services are independent, they can be deployed and run on another server with a different IP address. This requires us to disable Cross-Site Request Forgery
 (CSRF
) by default.

We will also use the STATELESS
 session policy in session management. This is the strictest session policy available. This will not allow our application to generate a session, so our requests have to have the (time-bound) tokens attached to each and every request. This enhances the security of our services. Their stateless constraint is another advantage of using REST APIs.

For more options and information on session policies, please look at the following documentation: https://docs.spring.io/autorepo/docs/spring-security/4.2.3.RELEASE/apidocs/org/springframework/security/config/http/SessionCreationPolicy.html
 .

All the API-related requests and Swagger resources should be allowed once the request has been authorized (based on the JWT token):

public void configure(HttpSecurity http) throws Exception {

 // @formatter:off

 http

 .csrf()

 .disable()

 .exceptionHandling()

 .authenticationEntryPoint(problemSupport)

 .accessDeniedHandler(problemSupport)

 .and()

 .headers()

 .contentSecurityPolicy(...)

 .and()

 .referrerPolicy(...)

 .and()

 .featurePolicy(...)

 .and()

 .frameOptions()

 .deny()

 .and()

 .sessionManagement()

 .sessionCreationPolicy(SessionCreationPolicy.STATELESS

)

 .and()

 .authorizeRequests()

 .antMatchers("/api/authenticate").permitAll()

 .antMatchers("/api/**").authenticated()

 .antMatchers("/management/health").permitAll()

 .antMatchers("/management/info").permitAll()

 .antMatchers("/management/prometheus").permitAll()

 .antMatchers("/management/**").hasAuthority

 (AuthoritiesConstants.ADMIN)

 .and()

 .apply(securityConfigurerAdapter());

 // @formatter:on

 }

On the resource side, we have a new bootstrap.yml
 file that overrides the application.yml
 files. We have also defined the registry-related information and some Spring properties here.

Our current microservice application uses the JHipster registry as the registry service in order to register and deregister their existence with a heartbeat signal. We need to provide the password of our registry service so that the application can connect to the registry service:

jhipster:

 registry:

 password:

admin

Also, the name of the Spring Boot service and the default Spring Cloud Config parameters are specified in the bootstrap.yml
 file. We have also added the URI that we have to connect in order to fetch the configuration of the registry service:

spring:

 application:

 name:

invoice

 ...

cloud:

 config:

 # if not in "prod" profile, do not force to use Spring

 Cloud Config

 fail-fast:

false

uri:

http://admin:${jhipster.registry.password

}

 @localhost:8761/config

 # name of the config server's property

 source (file.yml) that we want to use

name:

invoice

 ...

The
bootstrap.yml
 file is used in the development process, while, for production, there is a bootstrap-prod.yml
 file.
 Similar to the gateway, the rest of the service-related configurations are done in the application-*.yml
 files.

The Eureka configuration is exactly the same as it was in the gateway application. All the generated applications will have a similar Eureka configuration:

eureka:

 client:

 enabled: true

 healthcheck:

 enabled: true

 fetch-registry: true

 register-with-eureka: true

 instance-info-replication-interval-seconds: 10

 registry-fetch-interval-seconds: 10

 instance:

 appname: invoice

 instanceId: invoice:${spring.application.instance-

 id:${random.value}}

 lease-renewal-interval-in-seconds: 5

 lease-expiration-duration-in-seconds: 10

 status-page-url-path: ${management.endpoints.web.base-path}/info

 health-check-url-path: ${management.endpoints.web.base-path}/health

 metadata-map:

 zone: primary # This is needed for the load balancer

 profile: ${spring.profiles.active}

 version: #project.version#

 git-version: ${git.commit.id.describe:}

 git-commit: ${git.commit.id.abbrev:}

 git-branch: ${git.branch:}

The database and JPA configurations are present in the application-[dev|prod].yml
 files:

spring:

 profiles:

 active: dev

 ...

 datasource

:

 type: com.zaxxer.hikari.HikariDataSource

 url: jdbc:h2:file:./build/h2db/db/invoice;DB_CLOSE_DELAY=-1

 username: invoice

 password:

 hikari:

 poolName: Hikari

 auto-commit: false

 ...

 jpa

:

 database-platform: io.github.jhipster.domain.util.FixedH2Dialect

 database: H2

 show-sql: true

 properties:

 ...

 liquibase:

 # Remove 'faker' if you do not want the sample data to be loaded

 automatically

 contexts: dev, faker

The rest of the configurations remain similar to what was generated in the gateway application, and they can be tweaked or customized based on your requirements.

Let's run all the tests to ensure we haven't broken anything from the cherry-picking we have done.

Navigate to the invoice
 application folder and run ./gradlew test integrationTest
 ; it should pass.

Now, we can boot up the application alongside the gateway application and registry service if required. Since the application tries to connect to the registry service first, if there is no registry service available at the specified location, then the application will not know where to connect and whom to respond to, and hence will fail.

Before we spin up the applications, let's look at the notification service with NoSQL as the backend database.

Notification microservice configuration

We have selected similar options for both microservices. The code that will be generated will be very similar, except for the database configuration and absence of any cache configuration:

spring:

 profiles:

 active: dev

 ...

 data:

 mongodb:

 uri: mongodb://localhost:27017

 database: notification

 ...

As you can see, this service only contains the backend files and not the frontend files for the microservices since they are already generated in the gateway service.

Let's run all the tests to ensure everything works.

Navigate to the notification
 application folder and run ./gradlew test integrationTest
 ; it should pass.

Summary

In this chapter, we generated a gateway application and two microservice applications using JDL. We have shown you how easy it is to generate a microservice architecture with JHipster. We also learned how to design JHipster applications using JDL.

Before we run our application, we need to kick-start our registry server.

In the next chapter, we will learn how to run the registry server, and we will also take a look at the newly added screens.

Working with Microservices

In the previous chapter, we created a gateway and two microservices using JHipster. Now, we'll learn how to run the stack locally for testing and further development. But before we can start, we need to set up some tools in order to work with microservices. These tools provide some of the basic necessities, such as service discovery and configuration management, that we learned about in the previous chapters. Once we set up the required tools, we can see the applications in action.

In this chapter, we will cover the following topics:

	Setting up JHipster Registry locally

	Running a generated application locally

Let's get started!

Setting up JHipster Registry locally

We have created our gateway and two microservice applications. These microservices have two different databases. So far, it has been easy and simple to create these with JHipster. We also enabled service discovery with Eureka for the applications. This means we would have to run a service registry in order to deploy the applications.

JHipster provides two different options we have previously seen, Consul and JHipster Registry. For our use case, since we have chosen Eureka, we need to go with JHipster Registry. We learned about JHipster Registry in Chapter 8
 , Microservice Server-Side Technologies.
 Now, we will learn how to set up and start it in our local development environment.

These three services basically act as Eureka clients. We need a service registry that registers and deregisters the application as and when the application is started and stopped, respectively; this is JHipster Registry.
 The Eureka server (JHipster Registry server) acts as a master to all the Eureka clients.

All the microservice applications and the gateway will register/deregister themselves with/from JHipster Registry when
 the applications start and stop.

Let's recap a little bit of what we've learned already. The JHipster Registry is made up of a Eureka server and Spring Cloud Config Server and they help in doing the following:

	
The Eureka server
 helps with service discovery and load balancing the requests.

	
The Spring Cloud Config server
 acts as a single place where we will manage the external properties of applications across environments.

	It also provides a dashboard for users. With this, users can manage and monitor the application.

This makes JHipster Registry an ideal choice for both monolithic and microservice architectures.

If you are developing microservice applications where different services are written in different languages, and if you prefer consistency over availability of services, then you can choose Consul as a service discovery engine.

There are two ways in which we can set up JHipster Registry to run locally: we can either download the JAR file (pre-packaged) and run it directly, or we can use a Docker container to run it. We will learn how to do each of these now.

You can choose to use JHipster Registry while generating monolithic applications as well. Just select yes for the question Do you want to use the JHipster Registry to configure, monitor, and scale your application?
 during generation.

Using a pre-packaged JAR file

Let's learn how to use a pre-packaged binary:

	
Download the latest version of the pre-packaged executable JAR file from the
 registry releases page (https://github.com/jhipster/jhipster-registry/releases
). At the time of writing, the released version is 5.0.2.

	Once downloaded, we can run JHipster Registry using the following command:

> java -jar jhipster-registry-<version>.jar \

 --spring.security.user.password=admin \

 --jhipster.security.authentication.jwt.secret=<your-base64-

 encoded-secret-key> \

 --spring.cloud.config.server.composite.0.type=native \

 --spring.cloud.config.server.composite.0.search-

 locations=file:./central-config

Note that we pass a few values to our registry server; these are as follows:

--security.user.password=admin

Since JHipster Registry is built on top of the JHipster application, it will have the default admin user. For that admin user, we provide the password with the Spring security.user.password
 property:

--jhipster.security.authentication.jwt.secret=<your-base64-encoded-

 secret-key>

Then, we define the JWT secret for the application in one of two ways: we can either set the information in the environment variable and use that, or we can add this key value when we define the secret. Make sure your secret is Base64-encoded and is at least
 256 bits in length. For development, you can use the key we generated in the
 .yo-rc.json
 files:

--spring.cloud.config.server.composite.0.type=native

--spring.cloud.config.server.native.search.locations=file:./central-

 config

Finally, we tell the JHipster Registry where to find the central configurations that are available for the Spring Cloud Config Server by using the preceding spring.cloud.config
 properties
 .

Before we look at what value to pass in here, we need to know about the Spring profiles in the context of spring-cloud-config
 . Spring Cloud Config supports native
 and git
 profiles by default.

In a native
 profile, the Cloud Config server expects its properties to be defined in a file, and we have to pass in the file location to the JHipster Registry. On the other hand, the git
 profile will expect --spring.cloud.config.server.git.uri
 to be set.

For example, the sample JHipster config file for the registry is as follows:

configserver:

 name: JHipster Registry config server

 status: Connected to the JHipster Registry config server using ...

jhipster:

 security:

 authentication:

 jwt:

 secret: my-secret-key-which-should-be-changed

 -in-production-and-be-base64-encoded

This can also be seen in the Spring Cloud Configuration page of the registry if the file is loaded:

Just like the JHipster app provides the
 dev
 and
 prod
 profiles, JHipster Registry also supports
 the dev
 and prod
 profiles. By default, it will run in the
 dev
 profile when started, but we can make it run in a
 prod
 profile by providing
 the --spring.profiles.active=prod,git
 flag to the java -jar
 command. We also need to pass the
 git
 URL using the --spring.cloud.config.server.git.uri
 flag. For production mode,
 git
 is the preferred profile to use on a Spring Cloud Config Server.

Docker mode

You can also start JHipster Registry from the Docker image provided by JHipster. This is the easiest way to run the application. The application that we generated already has the docker-compose
 file that's required.

For example, in the gateway application we created, look for the docker-compose
 file under src/main/docker/jhipster-registry.yml
 .

We can start the JHipster Registry by typing the following command in the Terminal:

> docker-compose -f store/src/main/docker/jhipster-registry.yml up

The docker-compose
 file (src/main/docker/jhipster-registry.yml
) contains the following code:

version: '2'

services:

 jhipster-registry:

 image: jhipster/jhipster-registry:v5.0.2

 volumes:

 - ./central-server-config:/central-config

 environment:

 - _JAVA_OPTIONS=-Xmx512m -Xms256m

 - SPRING_PROFILES_ACTIVE=dev,swagger

 - SPRING_SECURITY_USER_PASSWORD=admin

 - JHIPSTER_REGISTRY_PASSWORD=admin

 - SPRING_CLOUD_CONFIG_SERVER_COMPOSITE_0_TYPE=native

 - SPRING_CLOUD_CONFIG_SERVER_COMPOSITE_0_SEARCH_LOCATIONS=file:./central-config/localhost-config/

 ports:

 - 8761:8761

This defines the image as jhipster-registry
 with a version (the latest). It also defines a volume that's used to mount central-config
 , which is required by the Spring Cloud Config Server to define the application properties for the microservice application and gateway. The environment variables, such as the Spring profile, password for the admin, and cloud-config search location, are also defined
 here. The port in which it is exposed (8761
) is also specified. The config for production is also present in the same file but commented out.

To do this, you need Docker installed and running on your machine.

In all the preceding cases (when they are successful), it boots up JHipster Registry on port 8761
 and uses native mode by default (unless otherwise changed explicitly). You can navigate to http://localhost:8761
 to access JHipster Registry and then log in to the application with the password that we used when we started the application.

Now, let's learn how we can run our microservice stack locally.

Running a generated application locally

Now we are all set. We have a gateway application, we have a microservice with a SQL DB that runs with H2 in a dev
 profile and MySQL in a prod
 profile (invoice application), we have a microservice with MongoDB (notification application), and we just finished setting up our JHipster Registry locally. Now, it is time to start everything locally and see how seamless our microservice setup works. Make sure the registry is still running.

Gateway application pages

Head over to the Terminal and go to the e-commerce-app
 folder. Navigate to the store
 folder and start the gateway application in dev
 mode:

> cd store

> ./gradlew

This will start our gateway application on port 8080
 . Let's open http://localhost:8080
 in our favorite browser:

Now, we can click on the S
 ign in
 button on the home page or Account
 |
Si
 gn in
 from the top menu and enter the username and password as admin
 and admin
 , respectively.

Once you've logged in as an admin user, you will see the Administration
 menu:

In the Administration
 menu, you can find the following pages:

This includes the following:

Gateway
 : The Gateway

 page will show the list of microservice applications for which this application acts as a gateway. It will also show the routes and the services that handle the route, as well as the available servers for the route:

Currently, no microservice application has been booted up, so the page is empty. We will see how this page is changed once we start our notification and invoice services soon.

User management
 : This is similar to monolithic user management and holds the basic user information and management options.

Metrics
 : The metrics page holds information about JVM metrics and service/DB statistics. This is, again, similar to the monolithic application. Added to that, this also shows the metric statistics for the microservice applications that have been registered.

Health
 : The health page shows the basic health information of the various services that we have in our application:

Similar to the monolithic application, it shows Disk space
 and Database
 . However, it also shows the health of the Discovery network (that is, the Discovery client and the Eureka server). It also shows the microservice config server's health, which is spring-cloud-config-server
 , and then shows the health of the circuit breaker we're using (Hystrix).

The Configuration
 , Audits
 , Logs
 , and API
 pages are similar to the ones that we saw for the monolithic application.

JHipster Registry pages

Since we have started the registry server on port
8761

 , we can visit http://localhost:8761
 and log in with admin
 as the username and admin
 (the password that we provided when we started the application) as the password.

Dashboard

Upon logging in, JHipster Registry shows the following information in the
 form of a dashboard:

These are grouped into sections, as follows.

System status

This panel will show the environment in which the application is running and how long the application has been running (system uptime).

Below renew threshold
 : Our applications will have to send heartbeat signals to the registry service to notify the registry that the application is alive and running. The registry services rely on this heartbeat signal to register and deregister the application. That is, the existence of the application is determined with the help of this heartbeat ping. This is what will happen in the renew phase.

However, when the Eureka server is booting up, it will try to get all the information about instance registries from the nearby service. If the nearby service fails for any reason, then it will try to connect to all of its peers to fetch this information. If the Eureka server was able to fetch the information for all the servers, then it will set the renewal threshold based on the information received. Based on this information, JHipster Registry will hold the information on whether the current level is below the renewal threshold specified and notify users in the UI.

Instances registered

This will show basic information about the instances that have been registered with the registry. Since we have only booted up the gateway service, we will see only one instance here. Basically, this will list all the instances that are connected to this registry service.

It shows the status of the system, the name of the system, and then the instance ID. The instance ID is generated based on the configuration in the application.yml
 file of JHipster Registry. It assigns a random value.

General info and health

This also shows general information about the JHipster Registry service and health information of the cluster of services, similar to the gateway's health. The data here is fetched with the help of Spring Actuator's health and metric endpoints.

Application listing page

This page lists the applications that are registered in the JHipster Registry service.

Navigate to Administration
 |
Gateway

 :

This page shows the following information:

	The current instance ID and its name

	The current status of the instance

	The version that has been deployed

	The profile

	The zone in which it is deployed

The version number is fetched from the build.gradle
 or pom.xml
 file for Gradle and Maven projects, respectively.

The zone here normally refers to an Amazon zone. It is used by Ribbon to route the request to the nearest server. This configuration is useless if you don't use Amazon, and this is why we force it to primary
 (otherwise, the load balancing algorithm would be wrong).

All the pages in the administration module will have a drop-down menu that lists the various instances that are registered. From here, we can select an instance to view its metrics, health, configuration, and other information, depending on the page we are on.

Metrics page

By default, this will show the registry's JVM metrics and its service statistics:

From here, we can select any instance from the drop-down menu provided and see its statistics, thus making JHipster Registry a single point of information that provides all the necessary insight into your microservice architecture:

For example, u
 pon selecting the Store
 application instance, we will get store gateway-
 related information, as shown in the preceding screenshot.

Health page

The health page will list the health of the registry itself and all the instances that are connected to it:

For example, u
 pon selecting the Store
 application instance, we will get store gateway-
 related information, as shown in the preceding screenshot.

Configuration page

Similar to the health and metrics pages, JHipster Registry will provide detailed configuration information for all the instances connected to it. We can choose these instances from the drop-down menu:

The preceding screenshot shows the configuration screen for the store
 application.

Logs page

Similar to the preceding pages, the log page will also show the real-time logs of the application. This is really useful for debugging and getting more information when there is a failure:

The logs are formatted at the application level. The console in the preceding screenshot shows
 tail -f
 for consolidating logs.

The preceding screenshot shows the logs
 from the registry application.

Loggers

We can also control the log levels of the registry and all the connected apps from the loggers' screen, which is as follows:

The preceding screenshot shows the log-level config for the store application.

Swagger API endpoints

The microservice architecture relies heavily on API calls between the gateway and services, services and the registry, and the gateway and registries. Therefore, it is essential for developers and users to get to know the API endpoints that they can access, as well as the information that's required to access those endpoints.

This can be a lot of work. Fortunately, libraries such as Swagger come to the rescue. We just have to add the standard comments to the methods; then, the Swagger API will do the necessary work to extract information from them and convert them into a beautiful user interface:

The preceding screenshot shows the default generated Swagger UI page. It lists all the endpoints that are available and then supplies the list of operations that it provides. It shows the playground where we can frame requests and test them for output.

Normally, the Swagger API docs are only available in development mode. If you are developing an API service and if there is a need to expose this to end users or external developers using your service, you can enable it in production by setting the swagger
 profile, along with the
 prod
 profile, by
 setting the spring.profiles.active=prod,swagger
 property in the application-prod.yaml
 file.

Similar to the other pages, this also lists the various instances that are connected to this registry service. We can select them from the drop-down menu (upper-right corner) to see what APIs are provided by various applications:

The operations listed in the gateway API will provide the following information:

This lists all the operations that are available in the AccountResource
 file. It shows the method type (GET
 /POST
 /PUT
 /DELETE
), as well as the endpoint and the method name that is present in the AccountResource
 file:

Upon clicking any one of the endpoints that's available, you will see detailed information about the response classes, response errors, response content type, as well as how the response object is structured. In addition to this, it also shows how the model object is constructed. These are particularly helpful for end users who want to access these APIs:

UserDTO {

 activated (boolean, optional),

 authorities (Array[string], optional),

 createdBy (string, optional),

 createdDate (string, optional),

 email (string, optional),

 firstName (string, optional),

 id (integer, optional),

 imageUrl (string, optional),

 langKey (string, optional),

 lastModifiedDate (string, optional),

 lastModifiedBy (string optional),

 lastName (string, optional),

 login (string)

}

Next, there is the option to try out the endpoint by clicking the Try it out
 button:

This shows the request and its response. It also shows how to frame the request, along with the authentication token:

Also, it provides the response code and the response header information that is returned by the server, which is also extremely useful for API programmers.

Running invoice and notification applications locally

We have started the store gateway and registry services. Now, we can go to our invoice
 and notification
 application folders and run them locally:

> cd invoice

> ./gradlew

This will start the service on port 8081
 .

Open another Terminal and run the following command:

> cd notification

>

 docker-compose -f src/main/docker/mongodb.yml up -d

> ./gradlew

This will start the MongoDB server with Docker and run the microservice on port 8082
 :

Upon starting the application, it will also try to connect to JHipster Registry and register itself. Watch out for the preceding message once your server has started to make sure that it is connected to JHipster Registry.

Alternatively, you can test this via your gateway application. Log in to your gateway application and navigate to Administration
 | Gateway
 :

Here, you can see the two microservice applications (INVOICE
 and NOTIFICATION
)
 that have been booted up. These are available at their respective URLs.

You can also check the JHipster Registry home page to see the registered instances:

Similarly, all the other pages in JHipster Registry will start to show invoice
 or notification
 as one of the instances. Using this, we can get their health, configuration, logs, and metrics direct from JHipster Registry:

├── app.jdl

├── invoice

├── notification

└── store

If you have followed along with this book, the preceding code will be the directory structure you will have in the
 e-commerce-app
 folder.

Explaining the generated entity pages

Once the application has started successfully, you will see that the entities are generated in the gateway application and are available under the entity nav
 menu.

This includes all the gateway entities, as well as the microservice entities:

The following is the invoice screen that's created in the gateway application:

Try to create a few entities to verify that everything is working fine.

Summary

In this chapter, we have successfully generated a gateway and two microservices. We downloaded JHipster Registry and started it locally. Then, we successfully segregated and generated the entity files for a notification and invoice service. After that, we booted up all our applications and saw the generated code and explored the application screens. By doing this, we learned about using the JHipster Registry and setting it up locally. Last but not least, we committed all our changes to Git (in other words, reached a checkpoint).

In the next chapter, we will learn how to deploy our microservice stack using Docker and Docker Compose. We will also learn about the different deployment options provided by JHipster for microservices.

Section 5: Deployment of Microservices

This section first introduces you to advanced local and cloud deployment options for microservices with the help of Docker Compose and JHipster. Y
 ou will understand local deployment and testing techniques through the Google Cloud deployment of the generated microservice stack using Kubernetes and JHipster.

This section comprises the following chapters
 :

	

Chapter 11
 , Deploying with Docker Compose

	
Chapter 12
 , Deploying to the Cloud with Kubernetes

Deploying with Docker Compose

In the previous chapter, we generated the microservice application stack. Now, it's ready for production. In this chapter, we will focus on how to deploy the application using Docker Compose. We will also look at the various options that JHipster provides for deployment, followed by how to deploy JHipster Registry and JHipster Console alongside the application.

In this chapter, we will cover the following topics:

	Introducing microservice deployment options

	Generated Docker Compose files

	Generating Docker Compose files for microservices

By doing this, we will learn how to deploy our stack locally with JHipster Registry and JHipster Console using Docker Compose.

Introducing microservice deployment options

"The success of an application not only depends on how well we design it. It depends on how well we implement, deploy, and maintain it."

A well-designed microservice application in a low-availability environment is useless. Therefore, it is equally important to decide on a deployment strategy that increases its chances to succeed. When it comes to deployment, there are a plethora of tools available. Each one of them has its pros and cons, and we have to choose one that is suitable for our needs. JHipster currently provides sub-generators so that we can create configuration files to containerize, deploy, and manage the microservices via the following methods:

	Docker and Docker Compose

	Kubernetes (also helps to orchestrate your deployment)

	OpenShift (also provides private cloud deployment and orchestration)

We will look at these in detail in the following sections.

A short introduction to Docker Compose

Before looking at what Docker Compose is, let's go through some facts. Shipping code to the server is always difficult, especially when you want to scale it. This is mainly because we have to manually create the same environment and make sure the application has all the necessary connectivity (to other services). This was a major pain point for teams while shipping and scaling their code.

"Shipping code to the server is difficult."

Containers were the game-changer in this field. They helped bundle the entire application along with dependencies in a shippable container, and all we need is to provide an environment in which these containers can run. This simplified the process of shipping code to the server among development teams. This also reduced the amount of time a team spent making sure that the application ran seamlessly across the environment.

Containers solve the application deployment problem, but how do we scale them?

Docker Compose is an option we can consider. First, let's see what Docker Compose is, and then see what problems it solves.

Docker Compose is a tool that helps us define and run multi-container Docker applications with a single file. That is, we use a .yaml
 file to define the requirements and/or dependencies of the application. Then, with Docker Compose, we can create newer deployments and start our applications, as defined in the Docker Compose file. We can also use Docker Compose to seamlessly scale the deployed applications.

So, what is required in a Docker Compose file?

The following code segment is a sample Docker Compose file that will start a Redis database on port 5000
 :

version: '3'
services:
 web:
 build: .
 ports:
 - "5000:5000"
 redis:
 image: "redis:alpine"

Let's take a look at the code segment sequentially:

	The first line of the Docker Compose file should be the version of the Docker Compose tool.

	Then, we need to specify all the necessary services that we need for our application to run. They should be defined in the services:
 section.

	We can also define multiple services here, giving a name to each (web
 and redis
).

	This is followed by how to build the service
 (either via a command to build or referring to a Docker image).

	If the application needs any port access, we can configure it using 5000:5000
 (that is, internal port: external port).

	Then, we have to specify the volume information. This basically tells Docker Compose to serve the files from the location specified.

Once we have specified the services that are required for our application, we can start the application via Docker Compose. This will start the entire application, along with the services, and expose the services
 on the port specified.

With Docker Compose, we can perform the following operations:

	
Start
 : docker-compose -f <docker_file> up

	
Stop
 : docker-compose -f <docker_file> down

We can also perform the following operations:

	
List the running services and their status
 : docker ps

	
Logs
 : docker log <container_id>

In the Compose file, we can add the project name, as follows:

version: '3'

COMPOSE_PROJECT_NAME: "myapp"
services:
 web:
 build: .
 ports:
 - "5000:5000"
 redis:
 image: "redis:alpine"

This can be used to identify multiple environments. With the help of this, we can isolate multiple environments. This helps us handle multiple instances across various dev, QA, and prod environments.

Docker Compose itself is a great tool for deploying your application, along with all the services it needs. It provides infrastructure as a code. It is an excellent choice for development, QA, and other environments, except for production. But why?

Docker Compose is really good for creating and starting your application. However, when you want to update an existing container, there will be a definite downtime since Docker Compose will recreate the entire container (there are a few workarounds to make this happen but still, Docker Compose needs some improvement in this regard). In real-world scenarios, you would often need some kind of orchestration and advanced features for scalability.

Introduction to Kubernetes

According to the Kubernetes website:

"Kubernetes (K8s) is an open source system for automating the deployment, scaling, and management of containerized applications."

It is a simple and powerful tool for managing containerized applications. It provides zero downtime when you roll out a newer application or update an existing application. You can automate it to scale in and out based on certain factors. It also provides self-healing so that Kubernetes automatically detects the failing application and spins up a new instance. We can also define secrets and configuration that can be used across instances.

Kubernetes is kind of the de facto
 standard when it comes to container orchestration, the same way Docker is the de facto
 standard for creating containers.

Kubernetes primarily focuses on zero downtime production application upgrades and also scales them as required.

A single deployable component is called a pod
 in Kubernetes. This can be as simple as a running process in the container. A group of pods can be combined together to form a deployment
 .

Similar to Docker Compose, we can define the applications and their required services in a single YAML file or multiple files (as per our convenience).

The following code is a sample Kubernetes file that will start an NGINX server:

apiVersion

: apps/v1

kind

: Deployment

metadata

:

 name: nginx-deployment

spec:

 selector:

 matchLabels:

 app: nginx

 replicas

: 2 # tells deployment to run 2 pods matching the template

 template

:

 metadata:

 labels:

 app: nginx

 spec:

 containers

:

 - name

: nginx

 image

: nginx:1.7.9

 ports:

 - containerPort: 80

Here, we start with
 apiVersion
 in a Kubernetes deployment file.
 This is followed by the type
 , which takes a pod, deployment, service, namespace, Ingress (load balancing the pods), role, or something else.

Ingress forms a layer between the services and the internet so that all the inbound connections are controlled or configured with the Ingress controller before they are sent to Kubernetes services on the cluster. On the other hand, the egress controller controls or configures services that are going out of the Kubernetes cluster.

This is followed by the metadata
 information, such as the type of environments, the deployment name (
 nginx-deployment
), and labels (Kubernetes uses this information to identify and segregate the pods). Kubernetes uses this metadata information to identify particular pods or a group of pods, and we can manage these instances with this metadata. This is one of the key differences with D
 ocker Compose, where D
 ocker Compose doesn't have the flexibility of defining the metadata pertaining to the containers.

This is followed by the spec
 , where we define the replicas, selectors, and deployment template.

Within the template
 is containers
 , where the specification of the images or our application is defined. There can be one or more containers in a deployment. We can also define the pull strategy for our images, as well as the environment variables and their exposed ports. We can define the resource limitations on the machine (or VM) for a particular service. We can also define health checks here, that is, each service is monitored for its health and, when some services fail, they are immediately replaced by newer ones.

They also provide service discovery out of the box by assigning e
 ach pod an IP, which makes it easier for the services to identify and interact with them. They also provide a better dashboard so that you can visualize your architecture and the status of the application. You can do most of this management via this dashboard, including checking the status, logs, scaling the services up or down, and so on.

Since Kubernetes provides a complete orchestration of our services and deployments with configurable options, it makes it a bit hard to set up initially, and this means it is not ideal for a development environment. We also need the kubectl
 CLI tool for management. Despite the fact that we use Docker images inside, the Docker CLI can't be used.

There is also Minikube
 (minified Kubernetes), which is used for developing and testing applications locally. Kubernetes can also be enabled on Docker Desktop on Mac and Windows for development and testing purposes.

Kubernetes not only takes care of containerizing your application, but it also helps you scale, manage, and deploy your application. It orchestrates your entire application deployment. Additionally, it provides service discovery, automated health checks, and many more features.

We will focus more on the Kubernetes sub-generator in the next chapter.

Introduction to OpenShift

OpenShift is a multi-cloud, open source container application platform. It is based on Kubernetes and used for developing, deploying, and managing applications. It is a common platform for developers and operations. It helps them build, deploy, and manage applications consistently across hybrid cloud and multi-cloud infrastructures.

For developers, it provides a self-service platform in which they can provision, build, and deploy applications and their components. With automated workflows for converting your source into an image, it helps developers go from source to ready-to-run Dockerized images.

For operations, it provides a secure, enterprise-grade Kubernetes for policy-based controls and automation for application management, such as cluster services, scheduling, and orchestration with load balancing and autoscaling capabilities.

JHipster also provides OpenShift deployment files as a separate sub-generator. We can generate them by running jhipster openshift
 and answering the questions as needed. This will generate OpenShift-related deployment files. If you are familiar with OpenShift, try it out for the application stack we built.

Generated Docker Compose files

By default, JHipster will generate Docker Compose files that allow us to run the application completely in the containerized environment, irrespective of the options chosen. For example, in the gateway application that we have generated, the following files are generated by default under src/main/docker
 , among a few others:

	
sonar.yml
 : This file creates and starts a SonarQube server.

	
mysql.yml
 : This file creates and starts a MySQL database server and creates a user and schema. If we choose another database, the Docker Compose file that was generated would also correspond to that.

	
monitoring.yml
 : This file creates and starts Prometheus and Grafana for monitoring. Required configurations for the Grafana dashboard and Prometheus are also generated.

	
jhipster-registry.yml
 : This file creates and starts a JHipster Registry service.

	
app.yml
 : This is the main file that creates and starts the application, along with services such as JHipster Registry and the database.

In addition to this, JHipster also creates a JIB configuration, as we saw earlier, which helps you containerize the application.

Then, we will see a folder called central-server-config
 . This will be used as a central configuration server for the JHipster Registry.

When the registry and the application are running in Docker, it uses application.yml
 from the docker-config
 folder as the central configuration server.

On the other hand, when running only the registry in Docker mode, the application, not in Docker, will use application.yml
 from the localhost-config
 folder. The key difference is that the URL defining the Eureka client varies.

Now, let's look at the important Docker files that have been generated.

Walking through the generated files

Let's start with the app.yml
 file under src/main/docker
 , which can be found inside your gateway application.

As we saw at the beginning of this chapter, the file starts with the Docker version that it supports:

version: '2'

This is followed by the services section, where various services, applications, or components that we will kick start with this Docker Compose file are defined.

Under the services section, we have a name for the service –
 in our case, store-app
 –
 followed by the image that is used as the container. This image is generated with the help of JIB from our Gradle build.

This is followed by a series of environment variables that our application will depend on, including the following:

	
SPRING_PROFILES_ACTIVE

: This tells the application to run in production mode and expose Swagger endpoints.

	
EUREKA_CLIENT_SERVICE_URL_DEFAULTZONE
 : This tells the application where to check for the JHipster Registry (which is the Eureka client that we are using. If we have chosen Consul here, then the application will point to the Consul URL).

	
SPRING_CLOUD_CONFIG_URI
 : This tells the application where to look for the config
 service for the application.

	
SPRING_DATASOURCE_URL
 : This tells the application where to look for the data source.

	
JHIPSTER_SLEEP
 : Thi
 s is the custom property that we have used to make sure that the JHipster Registry starts before the application starts up.

Finally, the port that the application should run and be exposed on is specified:

 store-app:

 image

: store

 environment

:

 - _JAVA_OPTIONS=-Xmx512m -Xms256m

 - SPRING_PROFILES_ACTIVE=prod,swagger

 - MANAGEMENT_METRICS_EXPORT_PROMETHEUS_ENABLED=true

 - EUREKA_CLIENT_SERVICE_URL_DEFAULTZONE=...

 - SPRING_CLOUD_CONFIG_URI=...

 - SPRING_DATASOURCE_URL=..

 - JHIPSTER_SLEEP=30 # gives time for other services to boot before the application

 ports

:

 - 8080:8080

We have seen how the service is defined
 with the Docker Compose file. Now, let's look at two other services that are needed for our application to run. These are the database and JHipster Registry.

So, we have another service called store-mysql
 , which creates and starts the MySQL server. Since we already have MySQL
 as a separate Docker Compose file, it is linked here with an extends
 keyword, followed by the Docker Compose file and the service that we have to start from the specified file:

 store-mysql:

 extends

:

 file

: mysql.yml

 service

: store-mysql

The compose
 file, mysql.yml
 , contains the following code:

version: '2'

services:

 store-mysql

:

 image

: mysql:8.0.18

 # volumes:

 # - ~/volumes/jhipster/store/mysql/:/var/lib/mysql/

 environment

:

 - MYSQL_USER=root

 - MYSQL_ALLOW_EMPTY_PASSWORD=yes

 - MYSQL_DATABASE=store

 ports

:

 - 3306:3306

 command

: mysqld --lower_case_table_names=1 --skip-ssl --character_set_server=utf8mb4 --explicit_defaults_for_timestamp

This started with the version of Docker Compose, followed by the services
 keyword, and then specified the service
 name, store-mysql
 , that is used in the app.yml
 file.

If you want to specify a volume for the persistent data storage, you can uncomment the commented volumes segment. This basically maps the local file location to Docker's internal location so that the data is persistent, even if the Docker image itself is replaced or updated. This is recommended.

This is followed by a set of environment variables, such as the username and the password (it is set to empty here, but for a real production application, it is recommended to set a more complex password), and then the database schema name.

The command that needs to run in order to start the MySQL server is defined next. Now, we need to go back to the app.yml
 file and look at the JHipster Registry service. This is again extending the jhipster-registry.yml
 file. One more thing to note here is that even though we extend the services from another Docker Compose file, we can override the environment variables that we specified in the original Docker Compose file. This comes in handy in certain cases where we have to kickstart our application with different or customized values. In this case, the Spring Cloud Config server file location is overridden:

 jhipster-registry:

 extends:

 file: jhipster-registry.yml

 service: jhipster-registry

 environment:

 - SPRING_CLOUD_CONFIG_SERVER_COMPOSITE_0_TYPE

=native

 - SPRING_CLOUD_CONFIG_SERVER_COMPOSITE_0_SEARCH_LOCATIONS

=file:

 ./central-config/docker-config/

The Jhipster-registry.yml
 file is as follows:

version: '2'

services:

 jhipster-registry:

 image: jhipster/jhipster-registry:v5.0.2

 volumes:

 - ./central-server-config:/central-config

 environment:

 - _JAVA_OPTIONS=-Xmx512m -Xms256m

 - SPRING_PROFILES_ACTIVE=dev,swagger

 - SPRING_SECURITY_USER_PASSWORD=admin

 - JHIPSTER_REGISTRY_PASSWORD=admin

 - SPRING_CLOUD_CONFIG_SERVER_COMPOSITE_0_TYPE=native

 - SPRING_CLOUD_CONFIG_SERVER_COMPOSITE_0_SEARCH_LOCATIONS=file:

 ./central-config/localhost-config/

 # - SPRING_CLOUD_CONFIG_SERVER_COMPOSITE_0_TYPE=git

 # - SPRING_CLOUD_CONFIG_SERVER_COMPOSITE_0_URI=https://github.com/

 jhipster/jhipster-registry/

 # - SPRING_CLOUD_CONFIG_SERVER_COMPOSITE_0_SEARCH_PATHS=central-config

 ports:

 - 8761:8761

The central-config
 file for JHipster Registry can be seen in the following code block. The JWT secret and Eureka client's URL are configured here. The JWT token that's specified allows services to authorize and communicate between themselves and the registry:

Common configuration shared between all applications

configserver

:

name

:

Docker JHipster Registry

status

:

Connected to the JHipster Registry running in Docker

jhipster

:

security

:

authentication

:

jwt

:

secret

:

my-secret-token-to-change-in-production

eureka

:

client

:

service-url

:

defaultZone

:

http://admin:${jhipster.registry.

 password}@localhost:8761/eureka/

Apart from these, JHipster also generated the sonar.yml
 , hazelcast-management-center.yml
 , and monitoring.yml
 files (these files are not important for deploying your application).

Similarly, in the microservices, that is, in our invoice and the notification applications, similar files will be generated. They are the same except for the change in the service name.

MongoDB can also run as a cluster with different nodes and configurations and, hence, it has a slightly more complex configuration here. Here, we have two Docker Compose files:

	
mongodb.yml
 is for starting MongoDB with a single node.

	
mongodb-cluster.yml
 is used to start MongoDB as a cluster.

Please check the database port number between the gateway and the microservice application that contains the MySQL database. Since they use the same database, there may be a clash in the port number since JHipster generates the same port number for both. Change it to any other unused port; otherwise, Docker Compose will throw an error. In our case, I have changed the exposed port mapping to 3307:3306
 in the invoice service's mysql.yml
 file. This port is only used if you want to connect to the DB from outside the docker network; the invoice application can still access it via port 3306
 , which is internal to the service.

Building and deploying everything to Docker locally

There are multiple ways in which we can use the Docker Compose files based on our needs.

In general, when we are developing the application, we can run the application with the Maven or Gradle command so that we can debug the application and reload the changes faster, as well as start the database and JHipster registry with Docker.

Otherwise, you can start the entire application from the app.yml
 file, which will kickstart the database, JHipster Registry, and then the application itself. To do that, open your Terminal or Command Prompt, go to each of the application folders, and run the following commands.

First, Dockerize the application by taking a production build of our application with the following command:

> ./gradlew bootJar -Pprod jibDockerBuild

Once done, we can start the app via the docker-compose
 command:

> docker-compose -f src/main/docker/app.yml up -d

-f
 specifies the file that docker-compose
 should start the containers with. The -d
 flag tells docker-compose
 to run everything in detached mode. This will start the application in Docker and expose the application on ports 8080
 , 8081
 , and 8082
 , the registry server on port 8761
 , and the database on ports 3306
 , 3307
 , and 27017
 .

Once you have done this for all three applications, we can check the running Docker containers with the following command:

> docker ps -a

It should list all seven containers:

As you can see, there are three app containers (store
 , notification
 , and invoice
), as well as a JHipster Registry, followed by three database containers (two MySQL and one MongoDB. Their order may vary).

You can view the logs from the containers by running docker logs <container id>
 . You will see the application running on http://localhost:8080
 , and the registry running on http://localhost:8761
 .

You can shut down these instances by running docker-compose -f src/main/docker/app.yml down
 on each of the application folders or by running docker kill <container id>
 for each of the preceding containers.

Now, let's learn how we can do the same with the docker-compose sub-generator.

Generating Docker Compose files for microservices

There are many Docker Compose files and maintaining them is hard. Thankfully, JHipster has a docker-compose sub-generator
 bundled with it. The docker-compose sub-generator helps you organize all your application's D
 ocker Compose files
 together. It creates a single D
 ocker Compose file
 that refers to all the applications and their database, along with the registry and monitoring.

Let's go to the base folder, create a folder, and name it docker-compose
 :

> mkdir docker-compose && cd docker-compose

Once inside the docker-compose
 folder, we can run the following command:

 jhipster docker-compose

This will generate the Dockerfiles.

As usual, it will ask us a series of questions before generating the files:

First, it asks us which type of application we would like to deploy. We will select the microservice application option.

This is followed by choosing the type of gateway that we would like to use; there are two options available: a JHipster gateway with Zuul proxy, and the more exciting Traefik gateway with Consul.

Let's choose the JHipster gateway with Zuul proxy:

Then, we have to select the location of the microservice gateway and applications. This is the main reason why we have generated the applications inside a single parent folder. This will help any plugins and sub-generators easily find the Docker configuration files we've created. We will select the default option (shown as (../)
 in the following screenshot):

After selecting the location, JHipster will search inside the given folder for any application that was generated by JHipster
 and list them in the next question. In our case, it lists notification
 , invoice
 , and store
 . We can choose all of them (by pressing the spacebar key)
 and hit Enter
 :

It automatically detects that we have used MongoDB and asks us the next question, that is, whether we would like to have MongoDB as a cluster. We won't choose anything here:

Then, it asks us about monitoring; that is, whether we need to set up any monitoring for the application. We will choose logs and metrics with the JHipster Console (based on ELK and Zipkin):

We can also opt out of the monitoring option or choose Prometheus. This connects with Prometheus and shows metrics only.

Then, JHipster asks us whether we need Curator or Z
 ipkin:

	
Curator
 will help you curate and manage the indices that are created by Elasticsearch.

	
Zipkin
 provides distributed tracing, as we discussed in the previous chapter:

We will only choose Zipkin here.

We can also choose nothing here and go with the default option.

Finally, it asks for the password for the JHipster Registry; we will go with the default option here:

That's it; we have just created a higher-level Docker Compose setup that contains information about all the services that we need in order to run the application successfully:

Now, we can run the entire suite with the following command:

> docker-compose up -d

This will start the store gateway, notification, invoice, and the registry, along with the JHipster Console and all the other required services.

Don't forget to commit the generated files to Git.

Features of the deployed application

Now, the deployed applications are ready to be launched. We can launch the JHipster Registry at http://localhost:8761
 ; it will list all the registered applications:

Added to that, the registry also tells us about the number of instances that have been registered. Navigate to Eureka
 | Instances
 to check that. Currently, one of each instance has been registered:

Similarly, the gateway application will list the microservices that are connected to it. Go to http://localhost:8080
 .

Log in and navigate to Administration
 | Gateway
 to see the microservice applications that are connected to this gateway application:

Here, the gateway has registered our invoice and notification applications.

JHipster Console demo

JHipster also provides a console application based on the Elastic Stack (often referred to as ELK), which can be used for logs and metrics monitoring of the application. JHipster Console is another open source application. It is really useful and provides some nice dashboards that can be used to visualize the application. As with other JHipster products, it is much easier to get started with the JHipster Console.

The JHipster Console project is available in GitHub (https://github.com/jhipster/jhipster-console
).

Our applications stream the metrics and logs into the JHipster console. To make that happen, there are a few settings in the application-prod.yml
 file in all the applications (gateway and microservices applications):

 metrics:

 logs: # Reports metrics in the logs

 enabled: false

 report-frequency: 60 # in seconds

 logging:

 use-json-format: false # By default, logs are not in Json format

 logstash: # Forward logs to logstash over a socket, used by

 LoggingConfiguration

 enabled: false

 host: localhost

 port: 5000

 queue-size: 512

The metrics.logs.enabled
 and logging.logstash.enabled
 properties must be set to true
 . However, since we generated the docker-compose
 setup using JHipster, it created a file called docker-compose/central-server-config/application.yml
 , which will be used by the config server to override the preceding settings. This will push the logs to the console application. The JHipster Console will collect this information and show it in nice-looking dashboards with the help of Kibana. The following is the generated config file that's used by the config server:

...

jhipster:

 security:

 authentication:

 jwt:

 base64-secret: ...

 logging:

 logstash: # forward logs to ELK

 enabled: true

 host: jhipster-logstash

 metrics:

 logs: # report metrics in the logs

 enabled: true

 report-frequency: 60 # in seconds

spring:

 zipkin:

 base-url: http://jhipster-zipkin:9411

 enabled: true

 sleuth:

 sampler:

 probability: 1 # report 100% of traces to Zipkin

eureka:

 client:

 service-url:

 defaultZone: http://admin:${jhipster.registry.password}@

 jhipster-registry:8761/eureka/

Let's look at the JHipster Console running on http://localhost:5601
 .

The JHipster Console provides the following (customizable) dashboards in Kibana:

It also provides preconfigured dashboards for logs, application-level metrics such as JVM threads metrics, and other details:

Added to this, the console also has an interface where we can see the application logs. It shows the log of all the applications we've deployed. We can filter and search the logs with respect to the application:

Since we chose Zipkin integration, the Zipkin server
 is also configured and the trace details can be viewed in its UI, which is provided as part of the JHipster Console and integrates with the Kibana dashboard,
 at http://127.0.0.1:9411/
 , or from the trace data that was integrated into the Kibana dashboard in the JHipster Console:

Zipkin tracing is disabled by default. To enable Zipkin tracing, we need to include the zipkin
 profile when we build our images and need to
 set the spring.zipkin.enabled

 property to true
 in the application configurations. The configuration is enabled when running the preceding D
 ocker Compose setup, but the images still need to be built with the zipkin
 Gradle profile. This will trigger span reporting to the Zipkin server and also add correlation IDs (traceID
 , spanID
 , and parentID
) to request headers and logs.

You can learn more about the JHipster Console by visiting https://www.jhipster.tech/monitoring/#jhipster-console
 .

Scaling up with Docker

Docker Compose gives us the flexibility to scale our application with a single command with docker-compose
 :

> docker-compose up --scale <app-name>=<number of instance>

We can scale the instances using the following command:

> docker-compose up --scale invoice-app=2

The preceding command will spin up another invoice instance. We can view this on the JHipster Registry dashboard, as follows:

And that's it –
 we have successfully deployed and scaled our microservice application using Docker Compose.

Summary

In this chapter, we learned how to generate, set up, and start the Docker Compose configurations for our microservices, JHipster Registry, and Console. We also looked at their features. Then, we briefly learned about Kubernetes, OpenShift, and Docker Compose. We also learned how to create Docker Compose configurations using JHipster. This was followed by how to scale the application with Docker Compose.

In the next chapter, we will learn how to deploy the application to Google Cloud using Kubernetes.

Deploying to the Cloud with Kubernetes

Kubernetes is the de facto container orchestration tool in the cloud world. As we have seen in the previous chapter, it comes with many additional features and is easy to configure and manage. This makes Kubernetes a default choice for container orchestration. The ability to mask the lower-level details and provide out-of-the-box service discovery, self-healing, and health checks, among other features, attracted many companies and organizations to switch to Kubernetes.

Did you know that Kubernetes is the evolution of Google's internal orchestration tool called Borg?

In this chapter, we will cover the following topics:

	Generating Kubernetes configuration files with JHipster

	Walking through the generated files to learn about the Kubernetes configurations used

	Deploying the application to Google Cloud with Kubernetes

	Using Istio service mesh to learn how to use a service mesh with our application

Generating Kubernetes configuration files with JHipster

Knowing the components of Kubernetes and how they work is beyond the scope of this book. However, we will look at how JHipster simplifies microservices deployment with Kubernetes. Let's go ahead and generate the Kubernetes configuration files.

To deploy applications with Kubernetes, you need the Kubernetes kubectl
 client. To install
 kubectl
 , please follow the instructions on the Kubernetes website:
 https://kubernetes.io/docs/tasks/tools/install-kubectl/
 .

The Kubernetes sub-generator needs kubectl
 (v1.2 or later) to be installed on your computer. kubectl
 is the command-line interface for Kubernetes.

We can also install
kubectl
 along with
 the Cloud SDK from Google Cloud. Set up the gcloud
 CLI, as follows:

	Download the binary (based on your operating system) from https://cloud.google.com/sdk/install
 .

	Install the application by following the steps given on the website (make sure that you have Python installed).

	Once installed, set up Google Cloud. In order to set up Google Cloud, run gcloud init
 .

	This will then ask you to log in to your Google account; do so to authenticate (you must have a valid Google Cloud account).

	Run gcloud components install kubectl
 to install the Kubernetes client.

Generating the Kubernetes manifests

Similar to the D
 ocker Compose sub-generator, JHipster also comes bundled with a Kubernetes sub-generator. In order to use it, just like with D
 ocker Compose, we will create a new folder and name it Kubernetes. Then, we will go inside the folder to create the configuration files.

We can create Kubernetes configuration files with the following command:

> mkdir kubernetes && cd kubernetes

> jhipster kubernetes

As we have seen already, Kubernetes needs separate tools for running locally (that is, for development purposes). Therefore, if you need to do things locally, please enable the local Kubernetes cluster using Docker Desktop for Mac (https://docs.docker.com/docker-for-mac/kubernetes/
) or Windows (https://docs.docker.com/docker-for-windows/kubernetes/
). For Linux, install Minikube (https://kubernetes.io/docs/setup/learning-environment/minikube/
) from Kubernetes.

We then need to answer the questions that the sub-generator asks us, as follows:

	The first question the sub-generator asks is what type of application we'd like to deploy. It provides two options: monolithic and microservices. We will choose the microservices option:

	Then, it asks us to enter the root directory. We will select the default option since our directories are present as the siblings of the Kubernetes folder:

	Then, the sub-generator will list all the folders with our JHipster-generated applications. Here, it will list all three applications that we need—store
 , invoice
 , and notification
 . Select all three applications and hit Enter
 :

	
Then, it will ask whether we need monitoring. The options are JHipster Console or Prometheus, and we will select
 JHipster Console:

	Next, it will ask whether we need clustering enabled for MongoDB, similar to the docker-compose sub-generator. Let's skip clustering and proceed. Just hit Enter
 :

	Then, it will ask us to provide the password for the registry service. In our case, it is JHipster Registry. We will select the default one for now, but it is generally advisable to use a strong password here:

	Afterward, it will ask us for the namespace that we need to use in Kubernetes.

So, what is a namespace? We can consider namespaces as a group within which resources should be named uniquely. When the cluster is shared between different users or teams, namespaces can provide resource quotas for them. Ideally, namespaces should be used only for a larger team. For smaller teams, it is better to go with default options. Kubernetes, by default, provides three namespaces, which are as follows:

	
default
 : When you start a container or pod without providing any namespaces, they will end up in the default namespace.

	
kube-system
 : This namespace contains Kubernetes system-based objects.

	
kube-admin
 : This is a public namespace, which will be shown to all the users publically without any authentication.

We will set jhipster
 as the namespace here for the sake of this demo. Let's see what else the sub-generator asks us:

	The sub-generator will ask for our Docker repository name so that Kubernetes can use this Docker repository to pull the images (the login username of the Docker repository, or the URL in case of a custom Docker Registry):

	Then, the sub-generator will ask for the command that needs to be used to push the image to the Docker repository. We will select the default command here:

	Then, it will ask whether we want to use Istio. We will see what Istio is and how to use it later in this chapter. For now, choose No
 :

	Then, the generator will ask us to choose the Kubernetes service type. So, what is the service type?

In Kubernetes, everything that we deploy is a pod. These pods are managed by replication controllers that can create and destroy any pods. Each pod needs an identifier, so they are tagged with an IP address. This dynamic nature of pods will lead to a lot of problems for other pods that depend on them. As a solution to this problem, Kubernetes introduced services. Services are nothing but a logical grouping of unique pods that have policies attached to them. These policies are applicable for all the pods inside the services, but we need to publish these services to the external world to access them.

One of the most powerful features of Kubernetes is that it helps to maintain the number of pod replicas consistently. The replication controller helps to maintain the pod count by automatically shutting down and booting up the pods.

Kubernetes gives us four different service types, as follows:

	
ClusterIP
 : This is the default type. This will assign the cluster's internal IP and make it visible within the cluster itself.

	
NodePort
 : This will expose the service to a static port in the node's IP. The port will be random and will be chosen between 30000
 -32767
 .

	
LoadBalancer
 : This will expose the service externally. Kubernetes will assign an IP automatically. This will create a route to the NodePort
 and cluster IP internally.

	
Ingress
 : This is a special option that Kubernetes provides. This will provide load balancing, SSL termination, and name-based virtual hosting to the services.

We will select the LoadBalancer
 option:

That's it. This will generate the necessary configuration files for us to deploy the application with Kubernetes and will print out the commands needed for the next steps:

Next up, we will check the files that have been generated.

Walking through the generated files

The files generated by JHipster are organized by application. That is, each application will have its own folder and the files related to that service will be present inside it.

We will start with the store gateway application. There will be three generated files: the store-service.yml
 , store-mysql.yml
 , and store-deployment.yml
 files.

The following is the store-service.yml
 file:

apiVersion: v1

kind: Service

metadata:

 name: store

 namespace: jhipster

 labels:

 app: store

spec:

 selector:

 app: store

 type: LoadBalancer

 ports:

 - name: http

 port: 8080

The first line defines the API version of Kubernetes we want to target, followed by the kind
 of template or object that this template carries. This template has a service defined in it.

Then, we have the metadata
 information. Kubernetes uses this metadata information to group certain services together. In the metadata, we can define the following:

	The service name

	The namespace
 the object belongs to

	The labels
 , which are key and value pairs

Then, we have the spec
 . The spec in the Kubernetes object will provide the state of the service. In the spec, we can define the number of replicas we need. We also have the selector
 , within which we specify the deployment with identifiers (we will see the deployment spec soon). We also specify the type of service, followed by the ports in which the application should run. This is similar to the Dockerfile, so we are exposing the 8080
 port for the gateway service.

Then, we have the store-mysql.yml
 file, where we have defined our MySQL server for the store application. The difference here is that the service spec points to store-mysql
 , which is defined in the same file and is exposed on port 3306
 :

apiVersion: v1

kind: Service

metadata:

 name: store-mysql

 namespace: jhipster

spec:

 selector:

 app: store-mysql

 ports:

 - port: 3306

In the store-mysql
 app declaration, as shown in the next snippet, we have specified the database and environment properties that are needed for our application to run. Here, the kind
 is mentioned as Deployment
 . The job of the deployment object is to change the state of the services to the state that is defined in the deployment object.

Here, we have defined a single replica of the MySQL server, followed by the spec where we have mentioned the version of MySQL that we need (the container).

When it comes to databases, it is often preferable to use external database services rather than having the database in Kubernetes to reduce complexity.

This is then followed by the environment where we have the username, password, and then the database schema. We also have the volume information with volume mounts for persistent storage.

We can also define a spec inside a spec
 object (as shown in the following code):

apiVersion: apps/v1

kind: Deployment

metadata:

 ...

spec:

 replicas: 1

 selector:

 matchLabels:

 app: store-mysql

 template:

 metadata:

 labels:

 app: store-mysql

 spec:

 ...

 containers

:

 - name: mysql

 image: mysql:8.0.18

 env:

 ...

 args:

 ...

 ports

:

 - containerPort: 3306

 volumeMounts

:

 - name: data

 mountPath

: /var/lib/mysql/

Similarly, we have store-deployment.yml
 , in which we have defined the store gateway application and its environment properties, along with the other details such as initialization containers, ports, resource limits, probes, and so on:

apiVersion: apps/v1

kind: Deployment

metadata:

 ...

spec:

 replicas: 1

 selector:

 ...

 template:

 ...

 spec:

 initContainers

:

 - name: init-ds

 image: busybox:latest

 command: # This waits for DB to be ready

 ...

 containers

:

 - name: store-app

 image: deepu105/store

 env

:

 - name: SPRING_PROFILES_ACTIVE

 value: prod

 ...

 - name: JHIPSTER_REGISTRY_PASSWORD

 valueFrom:

 secretKeyRef

:

 name: registry-secret

 key: registry-admin-password

 ...

 resources:

 requests:

 ...

 limits:

 ...

 ports:

 ...

 readinessProbe:

 ...

 livenessProbe:

 ...

A similar approach is used for both the invoice and notification services. You can find them in their respective folders.

In JHipster-registry, alongside Service
 and Deployment
 , we have defined a Secret
 and a StatefulSet
 .

The secret is used to handle passwords. It will be an opaque type and the password is Base64-encoded.

Then, we have StatefulSet
 , which is similar to a pod except it has a sticky identity. Pods are dynamic in nature; these pods have a persistent identifier that is maintained throughout. It makes sense for a registry server to be defined as StatefulSet
 since it is essential that the registry server should be identified by a persistent identifier. This enables all services to connect to that single endpoint and get the necessary information. If the registry server is down, then communication between the services will also have problems since the services connect to other services via the registry server.

There are various options that can be set for the controller, which are as follows:

	
Replica set
 : This provides a replica of pods at any time with selectors.

	
Replica controller
 : This provides a replica of pods without any selectors.

	
StatefulSet
 : This makes the pod unique by providing it with a persistent identifier.

	
DaemonSet
 : This provides a copy of the pod that is going to be run.

The JHipster Registry is configured in a cluster with high availability. The UI access to the JHipster Registry is also restricted to the cluster for better security.

Similarly, configuration files are generated for the JHipster Console, and they are placed in a jhipster-console.yml
 folder where the JHipster Console is also defined.

The JHipster Console runs on an Elastic
 (ELK
) Stack
 , so we need Elasticsearch, which is defined in jhipster-elasticsearch.yml
 , followed by Logstash in the jhipster-logstash.yml
 file.

Commit the generated files to Git.

Now, let's see how we can deploy this.

Deploying the application to Google Cloud with Kubernetes

We have created Kubernetes configuration files with the jhipster kubernetes
 command. The next step is to build the artifacts and deploy them into Google Cloud.

It is also possible to deploy to other Kubernetes services such as Azure Kubernetes Service or Amazon Elastic Kubernetes Service using this configuration. Just follow the cloud provider's documentation to create a Kubernetes cluster and apply the generated configuration using the kubectl apply
 commands, as mentioned later in this section.

Kubernetes will use the image from the Docker Registry. We configured the Docker username when we generated the application, so the first step will be to tag those images and then push them to our Docker repository.

To do so, we will do the following:

	Open the Terminal and go to the Kubernetes folder that we have generated. We will tag the images first:

> docker image tag store deepu105/store

	Next, we will push this image into the Docker repository:

> docker push deepu105/store

Alternatively, if we haven't built the Docker images already, we could do the build and push in a single step using the following command, which can be executed under each application folder (note the app name at the end):

> ./gradlew bootJar -Pprod jib -Djib.to.image=deepu105/store

Note: You have to log in to Docker Hub before pushing the image. You can log in to Docker using the docker login
 command, followed by your username and password. If you don't have an account, you can create one at the following link: https://cloud.docker.com/
 .

	Similarly, push
 the invoice
 application to the Docker repository:

> docker image tag invoice deepu105/invoice

> docker push deepu105/invoice

	Do the same for notification
 :

> docker image tag notification deepu105/notification

> docker push deepu105/notification

This will push the store
 , invoice
 , and notification
 to the Docker repository. We can check this in the Docker Console:

	Now, we can connect to gcloud
 and deploy our containers with Kubernetes.

This assumes that you have set up the gcloud
 SDK and kubectl
 on your machine.

	First, we will log in to the gcloud
 CLI via the Terminal. In order to do that, open your Terminal:

> gcloud init

 // if this is the first time you are using gcloud (Ignore this step if you logged in already)

Then, gcloud
 will ask you to log in to your Google account. Once validated, this will list the projects that you might already have.

Here, we can choose [2] Create a new project
 by entering the number before creating a new project. Then, press Enter
 . It will ask you to enter the project information and then configure a few Google services for that project. Then, gcloud
 will list all the available regions and you can choose a region that suits you.

	If you have already logged in to the console and used it for other projects, then you can switch projects using the following command:

> gcloud config set project <project-name>

This will set the project, region, and the setting chosen as the default.

	Then, you have to enable Kubernetes in your application. We can do this by logging in to our Google Cloud Console via the browser. Then, select the project that we have just created and go to https://console.cloud.google.com/kubernetes/list
 to create a new cluster. Please choose the CPU type n1-standard-2
 as we need a bit more CPU to deploy everything.

	This will create a cluster for your project. Alternatively, you can also create a cluster using the gcloud
 command:

> gcloud container clusters create online-store-app \

 --machine-type n1-standard-2

The following is the output of the preceding command:

Thus, the cluster is created with three nodes and the configuration is added to our kubectl
 config.

	Then, we can go to our Kubernetes folder and start deploying the services using kubectl
 :

> kubectl apply -f namespace.yml

> kubectl apply -f registry/

> kubectl apply -f invoice/

> kubectl apply -f notification/

> kubectl apply -f store/

> kubectl apply -f console/

Alternatively, you can also run the bash script, ./kubectl-apply.sh
 , which does what we mentioned previously

The output will be as follows:

This will deploy all the applications to the Google Cloud environment, under your project.

	You can check the pod's deployment process using the following command on bash:

> watch kubectl get pods -n jhipster

This will list the status of the pods that are spinning up in a watch loop so it is updated at specified intervals:

	Once the pods are in Running
 status, you can also get the logs of the pod using the following command:

> kubectl logs <name of the pod as shown above>

-n jhipster

The following is the output:

You can stream the log by appending the -f
 flag to the command.

	You can get the application's external IP using this command:

 > kubectl get svc store -n jhipster

This will list the application name, type, IP address, external address, ports, and uptime:

We can find the same information on the Google Cloud Console as well under the Services & Ingress
 section:

The application can be accessed at t
 he e
 xternal IP we found from the preceding command, for
 example,
 http://34.77.214.210:8080/
 :

	Similarly, you can find the JHipster Console external IP as well using kubectl get svc jhipster-console -n jhipster
 and access it on port 5601
 .

The JHipster Registry is deployed in headless mode. In order to check the JHipster Registry, we can explicitly expose the service by using this command: kubectl expose service jhipster-registry --type=LoadBalancer --name=exposed-registry -n jhipster
 . T
 hen, we can access the application via the external IP of exposed-registry
 on port 8761
 .

	You can also scale the application by using the following command:

> kubectl scale deployment/<app-name>

 --replicas <number-of-replicas>

-n jhipster

For example, run kubectl scale deployment/invoice --replicas=2 -n jhipster
 . Now, if you run kubectl get pods -n jhipster
 , you will see that there are two pods for the invoice application. If you check the JHipster Registry, you will see two applications registered for INVOICE:

That is it, we have successfully deployed our entire microservice stack with monitoring and service discovery to Google Cloud using Kubernetes.

Next, we will see how we can use native Kubernetes features for service discovery, monitoring, and so on, using Istio service mesh.

Using Istio service mesh

JHipster also has support for the Istio service mesh. Let's see how we can create the same microservice architecture using Istio and deploy it to Google Cloud.

What is Istio?

Istio (https://istio.io/docs/concepts/what-is-istio/
) is a service mesh for distributed application architectures, especially the ones with Kubernetes. Istio integrates well with Kubernetes to provide a seamless experience to the end user.

Istio provides the following functionality in a microservice application architecture:

	

Service discovery
 : This is similar to
 Netflix Eureka
 or
 Consul

	

Automatic load balancing
 : This is similar to
 Netflix Zuul

	
Routing, circuit breaking, retries, failovers, fault injection
 : These are similar to Netflix Ribbon,
 Hytrix,
 and so on

	
Policy enforcement for access control, rate limiting, A/B testing, traffic splits, and quotas
 : Some features are similar to those in Zuul

	
Metrics, logs, and traces
 : These are similar to the JHipster Console

	Secure service-to-service communication

The following is the architecture of Istio:

Istio has two distinct planes:

	
Data plane
 : It is made of Envoy (https://www.envoyproxy.io/
) proxies deployed as sidecars to the application containers. They control all the incoming and outgoing traffic to the container and help with secure interservice communication.

	
Control plane
 : It is made up of Pilot, Mixer, Citadel, and Galley. Pilot manages and configures the proxies to route traffic. Mixer enforces policies and collects telemetry. Citadel manages security, while Galley manages configurations.

For monitoring and observability, the default Istio Helm charts can configure an instance of Grafana (https://grafana.com/
), Prometheus (https://prometheus.io/
), Jaeger (https://www.jaegertracing.io/
), and Kiali (https://www.kiali.io/
). You can use these or use your existing monitoring stack as well if you wish to do so.

Helm (https://helm.sh/
) is a package manager for Kubernetes. Kubernetes templates are bundled as Helm charts and can be distributed using the Helm repository. This helps with creating reusable Kubernetes manifests.

This is just an overview of Istio; head over to the Istio documentation at https://istio.io
 to learn more about it.

Let's see how we can rebuild the same microservice stack to use Istio.

Microservice with Istio service mesh

Let's create a new folder for this microservice stack. Let's call this folder e-commerce-app-istio
 . Make sure you are outside our existing e-commerce-app
 folder. Navigate into the folder and copy the JDL we created earlier for our application:

> mkdir e-commerce-app-istio

 && cd e-commerce-app-istio

> cp ../e-commerce-app/app.jdl app.jdl

Now, we need to make some small changes here. First, we need to set serviceDiscoveryType
 to no
 in all the application definitions. This removes the JHipster Registry and Eureka-related code from our applications. We won't be needing these as we will use Istio for that. Our new architecture is as follows:

As you can see, we have replaced JHipster Registry with Istio, and JHipster Console with Istio's monitoring setup. Our applications have the Envoy proxy attached to them as sidecars (meaning it runs in the same pod as our application container). There is a new Ingress Gateway in front of our store gateway. This Ingress is the only entry point into our application and you can see that routing is now handled by the Ingress Gateway and our application gateway is just another microservice.

Next, we can define the deployment option in the JDL. Earlier, we used the Docker Compose and Kubernetes sub-generators, but the same can be defined using the JDL as well.

Similar to other JDL options, it's a simple syntax (you can learn about all the supported options here:
 https://www.jhipster.tech/jdl/deployments
):

deployment {

 <deployment option name> <deployment option value>

}

For our new application stack, let's define the following deployment option at the end of the JDL file:

/**

 * Deployments

 */

deployment

 {

 deploymentType

 kubernetes

 appsFolders [store, invoice, notification]

 dockerRepositoryName "deepu105"

 serviceDiscoveryType

 no

 istio

 true

 kubernetesServiceType

 Ingress

 kubernetesNamespace jhipster

 ingressDomain

 "<IngresIp>.nip.io"

}

We have defined a Kubernetes deployment that is similar to what we generated earlier. The only difference is we have set serviceDiscoveryType
 to
 no
 , set the kubernetesServiceType
 as Ingress
 , and enabled Istio. We also need to set an ingressDomain
 , but we cannot do that yet – let's see why.

When we set the Kubernetes service type as Ingress
 , it would need a valid DNS name to be provided as an Ingress domain. If you already have a registered DNS, you can use that here and map it later to our actual Ingress Gateway that would be created by Istio; otherwise, we can do this only after creating our cluster and deploying Istio to it.

Deploying Istio to a Kubernetes cluster

Let's create a Kubernetes cluster and install Istio on it.

Make sure you have Helm installed; otherwise, go to https://helm.sh/docs/intro/install/
 and install Helm first. The commands are for Helm v3, as follows:

	Let's create a Kubernetes cluster on Google Cloud Platform
 (GCP
). Since we already configured the GCP project, we'll use the same and create a cluster directly by executing the following command:

> gcloud container clusters create online-store-istio

 \

 --cluster-version 1.13 \

 --num-nodes 4 \

 --machine-type n1-standard-2

The parameters passed are important; we need at least four nodes in the cluster and a bigger CPU. Once the cluster is created, we need to install Istio on it using Helm.

	Now, let's install Istio locally on our machine. Execute the following commands to fetch Istio:

> cd ~/

> export ISTIO_VERSION=1.3.0

> curl -L https://git.io/getLatestIstio | sh -

Link the installed version to a generic name

> ln -sf istio-$ISTIO_VERSION istio

> export PATH=~/istio/bin:$PATH

	Now, let's create a role binding on our Kubernetes cluster. This is required by Istio:

> kubectl create clusterrolebinding

 cluster-admin-binding \

 --clusterrole=cluster-admin \

 --user="$(gcloud config get-value core/account)"

	Now, we need to create a namespace for Istio so that we can clearly segregate our application from the Istio infrastructure:

> kubectl create namespace

 istio-system

	Now, we can install the Istio custom resource definitions
 (CRD
) using Helm:

> cd ~/istio-$ISTIO_VERSION

Install the Istio CRDs

> helm

 template istio-init install/kubernetes/helm/istio-init

 --namespace istio-system | kubectl apply -f -

	Verify all the required CRDs are installed. It should output 23
 for this version of Istio:

> kubectl get crds | grep 'istio.io\|certmanager.k8s.io' | wc -l

	Let's install the Istio components with Helm. We will install the Istio demo setup so that we get Grafana, Jaeger, and Kiali as well. For production, use the Istio default setup. Refer to https://istio.io/docs/setup/kubernetes/install/helm/
 to learn more:

> helm template istio install/kubernetes/helm/istio

 --namespace istio-system \

 --values install/kubernetes/helm/istio/values-istio-demo.yaml |

 kubectl apply -f -

	Wait for the installation to be ready. You can run a watch
 loop with watch kubectl get pods -n istio-system
 :

	Once everything is in Running
 status, we can fetch the external IP of the Istio Ingress Gateway by running this command. Copy the IP, as follows:

> kubectl get svc istio-ingressgateway -n istio-system

NAME TYPE CLUSTER-IP EXTERNAL-IP

istio-ingressgateway LoadBalancer 10.7.248.81 34.77.78.2

	Now, update this IP in the JDL file we created so that ingressDomain
 is "34.77.78.2.nip.io"
 .

You can find the final JDL at http://bit.ly/jh-book-istio-jdl
 .

That is it, we have Istio set up in our Kubernetes cluster. Let's generate our application stack and deploy it.

Generating the application

Make sure you are in the e-commerce-app-istio
 folder, run jhipster import-jdl app.jdl
 , and wait for the application generation to complete. You will see an output similar to this:

The applications are generated and we have our deployment generated as well. Compared to our previous application, the difference is that there is no JHipster Registry- or JHipster Console-related code in this application. Also, in the generated Kubernetes manifests, we have additional files for Istio-related setup. The additional configs are as follows:

	
*-destination-rule.yml
 : Each application will have the Istio destination rule spec, which defines the traffic policy for that application.

	
*-virtual-service.yml
 : Each application will have an Istio virtual service spec that is used by the Ingress Gateway to route traffic.

	
store-gateway.yml
 : This defines the store app as an entry point for the Ingress Gateway and its routing configuration.

	
istio/grafana-gateway.yml
 : This defines a gateway and virtual service for Grafana, which is used for viewing monitoring dashboards.

	
istio/kiali-gateway.yml
 : This defines a gateway and virtual service for Kiali, which is used for observability.

	
istio/zipkin-gateway.yml
 : This defines a gateway and virtual service for Zipkin, which is used for distributed tracing. We haven't set up Zipkin on our cluster but, with a minor change, we can make this work with Jaeger configured by the Istio demo setup. Follow the step as given:

	In the generated kubernetes/istio/zipkin-gateway.yml
 file, under the virtual service, change the http.route.destination.host
 value from zipkin
 to jaeger-query
 . This works since Jaeger is backward compatible with Zipkin. You can also go a step further and replace all occurrences of Zipkin in this file with Jaeger if you like, but it's not necessary.

Now, let's deploy everything.

Deploying to Google Cloud

The console output from JHipster gave us some handy commands for the next steps. Since we have new applications, we need to build them first, as follows:

	Let's go into each application folder and run the Gradle build. We can use the jib
 command to build and push directly to our registry, in this case, Docker Hub. If you want to build and tag locally, you can use the jibBuild
 command. Change the image name for each application:

> ./gradlew bootJar -Pprod jib -Djib.to.image=deepu105/store

	Since these are fresh applications, there should not be any errors. Once the builds are complete, we can navigate into the kubernetes
 folder and execute the provided bash script to start the deployment:

> cd kubernetes

> ./kubectl-apply.sh

....

###

Please find the below useful endpoints,

Gateway - http://store.jhipster.34.77.78.2.nip.io

Zipkin - http://zipkin.istio-system.34.77.78.2.nip.io

Grafana - http://grafana.istio-system.34.77.78.2.nip.io

Kiali - http://kiali.istio-system.34.77.78.2.nip.io

###

	This will start the deployment and print out important URLs. We can run a watch
 loop to observe the pod's creation:

> watch kubectl get pods -n jhipster

This will give us something similar to the following:

You will notice that we are running fewer items under the JHipster namespace since we are using Istio for service discovery, configurations, and monitoring. Once the pods are in Running
 status, we can visit the application URL, for example, http://store.jhipster.34.77.78.2.nip.io/
 , to see our application in action:

You can also visit Grafana and Kiali endpoints (log in using your
 username/password admin/admin
) to see the metrics at their corresponding URLs, printed at the end of the application generation process by JHipster. Here is one of the Grafana dashboards:

Here is one of the Kiali graphs showing how services are connected:

For Jaeger, visit the URL printed for Zipkin as we reconfigured it to route to Jaeger:

This is showing traces for the store application. You can click on a trace to dig deeper.

Summary

Orchestrating your containers is the most difficult task to perform in a microservices environment. Kubernetes, as a container orchestrator, stands out in solving this. We have seen how to generate the configuration file for Kubernetes with JHipster, followed by deploying the application to Google Cloud. We also saw how to use the Istio service mesh with our applications.

So far, we've seen how we can develop and deploy an e-commerce application using JHipster. We started with a monolith and we successfully scaled it into a microservice architecture. We finally deployed it with all the bells and whistles to a cloud service provider using Kubernetes—all with the help of JHipster and the various tools and technologies it supports. With this chapter, our journey of developing the e-commerce web application comes to an end and we hope you had a wonderful experience following it through.

In the next chapter, we will see how we can use JHipster further to create an application with a React or Vue.js client-side, so stay tuned.

Section 6: React and Vue.js for the Client Side

In the first chapter of this section, instead of generating a JHipster application with Angular, you will generate an application with React on the client side. The following chapter does the same, but this time, Vue.js will be used as the client-side framework. In the final chapter of this section, an entire summary of all the knowledge acquired throughout this book is presented, along with some best practices and next steps to optimize your skills.

This section comprises the following chapters
 :

	

Chapter 13
 , Using React for the Client-Side

	
Chapter 14
 , Using Vue.js for the Client-Side

	
Chapter 15
 , Best Practices with JHipster

Using React for the Client-Side

So far, we have learned how to build web applications and microservices with Angular as the client-side framework. AngularJS was the most popular client-side framework until the new Angular framework was released. Angular caused major disruptions due to its backward-incompatible architecture and gave way to more people migrating to React.
 Hence, the tides have shifted, and now React is the most popular and sought-after client-side framework, followed by Vue.js and Angular. JHipster has first-class support for React as well and can be used instead of Angular if you prefer. In this chapter, you will learn about the architecture that's used to build React
 apps in JHipster and how to use React as the client-side framework.

In this chapter, we will cover the following topics:

	
Generating an application with React client-side

	Technical stack and source code

	

Generating an entity with React client-side

Generating an application with React client-side

In this section, we'll create a React application with JHipster. You will need to open a Terminal to run the following commands:

	Create a new folder and navigate to it by running mkdir jhipster-react && cd jhipster-react

 .

	Now, run the jhipster
 command in the Terminal.

	JHipster will start with prompts; let's select default options for everything except for the question Which *Framework* would you like to use for the client?
 For this question, select

React

 as the value and proceed.

	Once all the prompts have been completed, JHipster will generate the application and start installing dependencies before starting the webpack
 build.

You can run npm run prettier:format
 to format the client-side code anytime. It will also be automatically run whenever you commit something with a Git pre-commit hook.

Our selected options will look as follows:

? Which *type* of application would you like to create? Monolithic application (recommended for simple projects)

? What is the base name of your application? jhreact

? What is your default Java package name? com.mycompany.store

? Do you want to use the JHipster Registry to configure, monitor and scale your application? No

? Which *type* of authentication would you like to use? JWT authentication (stateless, with a token)

? Which *type* of database would you like to use? SQL (H2, MySQL, MariaDB, PostgreSQL, Oracle, MSSQL)

? Which *production* database would you like to use? MySQL

? Which *development* database would you like to use? H2 with disk-based persistence

? Do you want to use the Spring cache abstraction? Yes, with the Ehcache implementation (local cache, for a single node)

? Do you want to use Hibernate 2nd level cache? Yes

? Would you like to use Maven or Gradle for building the backend? Maven

? Which other technologies would you like to use? (Press <space> to select, <a> to toggle all, <i> to invert selection)

? Which *Framework* would you like to use for the client? React

? Would you like to use a Bootswatch theme (https://bootswatch.com/)? Default JHipster

? Would you like to enable internationalization support? Yes

? Please choose the native language of the application English

? Please choose additional languages to install (Press <space> to select, <a> to toggle all, <i> to invert selection)

? Besides JUnit and Jest, which testing frameworks would you like to use? (Press <space> to select, <a> to toggle all, <i> to invert selection)

? Would you like to install other generators from the JHipster Marketplace? No

That's it; we're done. Our first JHipster React application was created successfully. Now, let's start the application so that we can play around.

Since we had chosen the default Maven build
 option, JHipster created a wrapper for it, so let's start our server by running ./mvnw
 in a Terminal.

You could choose Gradle instead of Maven if you prefer, just like we've done in previous chapters. It is good to mix it up a little to get some exposure to different technologies.

Maven will download the necessary dependencies and start the Spring Boot application using the embedded Undertow container. Once the application starts successfully, we will see the following in the console:

2019-12-10 23:11:29.855 INFO 1043043 --- [restartedMain] com.mycompany.store.JhreactApp :

--

 Application 'jhreact' is running! Access URLs:

 Local: http://localhost:8080/

 External: http://192.168.2.177:8080/

 Profile(s): [dev, swagger]

--

Visit the URL (http://localhost:8080
) in your favorite browser to see the following application in action:

You will see the home screen with the hipster person looking back at you (see the preceding screenshot). The only difference you will notice here is that the image is on the right-hand side instead of the left. Other than that, every screen should look identical to the one in Angular.

Go ahead and log in using the default admin user and play around.

The application looks exactly the same as the Angular application we built earlier, except for the image, of course, and has all the same account and administration modules.

This will make things more interesting when we look at the technical stack and source code.

Technical stack and source code

Before we dive into the generated code, let's talk about the technical stack. We looked at React in Chapter 2
 , Getting Started with JHipster
 , but let's recap.

React is a view rendering library that was created by Jordan Walke in 2011, and was open sourced in May 2013. It is maintained and backed by Facebook and has a huge community behind it. React follows the JS in HTML approach
 , where the markup code is written using JavaScript. To reduce verbosity, React uses a syntax sugar for JavaScript called JSX (https://reactjs.org/docs/introducing-jsx.html
) to describe view
 elements. It looks similar to HTML, but it is not exactly HTML as some of the standard HTML attributes, such as class, for example, are renamed to className
 , and attribute names are written using camelCase
 rather than dash-case.

For example, the following is a JSX snippet. You always have to use React in context for JSX to work:

const element = <div>Hello there</div>

When it comes to TypeScript, the JSX extension becomes TSX.

React uses a concept called virtual DOM to improve rendering efficiency. Virtual DOM is a lightweight copy of the actual DOM, and by comparing the virtual DOM after an update against the virtual
 DOM snapshot before the update, React can decide what exactly changed and render only that on to the actual DOM, hence making render cycles fast and efficient.

React components can have their own state and you can pass various properties to a component, all of which are available to the component as props.

Unlike Angular, React is not a full-fledged MVVM framework. It is just a view rendering library and, hence, when building React applications, we would always have to add a few more libraries for things such as state management, and routing.

Technical stacks

The following are the technical stacks that are used by JHipster when React is chosen as the client-side framework:

	
Rendering
 : React written using TypeScript

	
State management
 : Redux + React Redux + Redux Promise Middleware + Redux Thunk

	
Routing
 : React Router

	
HTTP
 : Axios

	
Responsive design
 : Bootstrap 4 + reactstrap

	
Linting
 : ESLint + TSLint

	
Utilities
 : Lodash

	
Unit testing
 : Jest + Enzyme

	
Build
 : Webpack

Let's look at some of the most important components of the stack.

Using TypeScript

The client-side is built using React, but instead of going with the traditional JavaScript ES6, we are using TypeScript as the language of choice.

Visit http://bit.ly/react-typescript
 to learn how TypeScript makes React components nicer. Also, visit https://github.com/piotrwitek/react-redux-typescript-guide
 to learn about how to make the most out of TypeScript + React.

This gives you the flexibility to use some of the concepts that you may already be familiar with if you come from a server-side background. It also provides static type checking, which
 makes development more efficient and less error-prone.

State management with Redux and friends

React provides basic state management within React components, but sometimes, this is not sufficient, especially when your application needs to share state between multiple components. State management solutions such as Flux, Redux, and MobX are quite popular in the React world and JHipster uses Redux as the state management layer.

When should you use the React component state?
	
If the variable can always be calculated using a prop
 : Don't use the component state; calculate the variable during rendering

	
If the variable is not used in rendering but to hold data
 : Don't use the component
 state; use private class fields

	
If the variable is obtained from an API and is required by more than one component
 : Don't use the component
 state; use the Redux global state and pass the variable as a prop

Redux (https://redux.js.org/
) is a predictable state management solution for JavaScript that evolved from the Flux concept (https://facebook.github.io/flux/
). Redux provides a global immutable store that can only be updated by emitting or dispatching actions. An action is an object that describes what changed, and it uses a pure reducer function to transform the state. A reducer is a pure function (a function that does not cause any side effects) that
 takes in the current state and an action. It returns a new state after applying any logic that's specified in the function.

React Redux is a binding for Redux that provides a higher-order component called
 connect
 for React, which is used to connect React components to the Redux store. For example, let's take a look at
 src/main/webapp/app/modules/login/login.tsx
 :

export const Login

 = (props: ILoginProps) => {

 const [showModal, setShowModal] = useState

(props.showModal);

 useEffect

(() => {

 setShowModal(true);

 }, []);

 ...

};

const mapStateToProps

 = ({ authentication }: IRootState) => ({

 isAuthenticated: authentication.isAuthenticated,

 loginError: authentication.loginError,

 showModal: authentication.showModalLogin

});

const mapDispatchToProps

 = { login };

type StateProps = ReturnType<typeof mapStateToProps>;

type DispatchProps = typeof mapDispatchToProps;

export default connect

(mapStateToProps, mapDispatchToProps)(Login);

In this component, we have the following:

	The mapStateToProps
 function is used to map properties from the global Redux store to the component's props.

	The mapDispatchToProps
 function is used to wrap the given functions with the Redux dispatch call.

	The useState
 hook provided by React lets us use a local state without writing a TypeScript class.

	The useEffect
 hook provided by React lets us perform side effects in function components.

Redux Promise Middleware (https://github.com/pburtchaell/redux-promise-middleware
) is used to handle asynchronous action payloads. It accepts a Promise and dispatches pending, fulfilled, and rejected actions based on the Promise state. It is useful when Redux actions are making HTTP requests or performing async operations.

Redux Thunk (https://github.com/gaearon/redux-thunk
) is another piece of middleware that's used to chain actions. It is useful when an action has to call another action based on certain conditions or in general to handle side effects.

Routing with React Router

React Router (https://reacttraining.com/react-router/web/guides/philosophy
) is used for client-side routing. The default setup with JHipster is to use browser history-based routing (HTML5 push state). It provides simple component-based routing, along with a flexible API for advanced routing setups. Routes can be defined anywhere in the application alongside the normal React rendering code. JHipster provides some custom wrappers such as PrivateRoute
 to enable authorization-based routing and ErrorBoundaryRoute
 with custom React error boundaries. JHipster also does lazy loading for entities and admin and account screens.

Let's take a look at src/main/webapp/app/routes.tsx
 :

...

// Lazy loading for account screens

const Account = Loadable

({

 loader: () => import(/* webpackChunkName: "account" */ 'app/modules/account'),

 loading: () => <div>loading ...</div>

});

// Lazy loading for admin screens

const Admin = Loadable

({

 loader: () => import(/* webpackChunkName: "administration" */ 'app/modules/administration'),

 loading: () => <div>loading ...</div>

});

const Routes = () => (

 <div className="view-routes">

 <Switch>

 <ErrorBoundaryRoute

 path="/login" component={Login} />

 ...

 <ErrorBoundaryRoute

 path="/account/reset/finish/:key?"

 component={PasswordResetFinish} />

 <PrivateRoute

 path="/admin" component={Admin}

 hasAnyAuthorities

={[AUTHORITIES.ADMIN]} />

 <PrivateRoute

 path="/account" component={Account}

 hasAnyAuthorities

={[AUTHORITIES.ADMIN, AUTHORITIES.USER]} />

 <ErrorBoundaryRoute

 path="/" exact component={Home} />

 <PrivateRoute

 path="/" component={Entities}

 hasAnyAuthorities

={[AUTHORITIES.USER]} />

 <ErrorBoundaryRoute

 component={PageNotFound} />

 </Switch>

 </div>

);

export default Routes;

The parent routes of our application are defined here; the child routes will be defined in their corresponding modules.

HTTP requests using Axios

Axios (https://github.com/axios/axios
) is a Promise-based HTTP client. It is a powerful and flexible library with a very straightforward API. It is used to fetch data from the JHipster application's server-side REST endpoints from Redux actions. The resulting Promise is resolved by the Redux Promise Middleware to provide data to the reducer.

The following code shows a Redux action with an asynchronous payload:

export const getEnv = () => ({

 type: ACTION_TYPES.FETCH_ENV,

 payload: axios

.get('management/env')

});

Axios is used to fetch the payload and return the promise that will be resolved by our Redux middleware.

Bootstrap components using reactstrap

JHipster uses Bootstrap 4 as its UI framework. Since we are building a React application, it makes sense to use a Native React binding instead of Bootstrap's jQuery-based components. Reactstrap (https://reactstrap.github.io/
) provides pure React components for Bootstrap 4. We also make use of the Availity reactstrap Validation (https://availity.github.io/availity-reactstrap-validation/
) library, which provides form validation support for reactstrap form elements.

Let's take a look at src/main/webapp/app/modules/login/login-modal.tsx
 :

<Modal

 isOpen={this.props.showModal} toggle={handleClose} backdrop="static" id="login-page" autoFocus={false}>

 <AvForm

 onSubmit={this.handleSubmit}>

 <ModalHeader

 id="login-title" toggle={handleClose}>

 <Translate contentKey="login.title">Sign in</Translate>

 </ModalHeader>

 <ModalBody

>

 <Row

>

 <Col

 md="12">

 ...

 </Col>

 </Row>

 ...

 </ModalBody>

 <ModalFooter

>

 <Button

 color="secondary" onClick={handleClose} tabIndex="1">

 <Translate contentKey="entity.action.cancel">Cancel</Translate>

 </Button>{' '}

 <Button

 color="primary" type="submit">

 <Translate contentKey="login.form.button">Sign in</Translate>

 </Button>

 </ModalFooter>

 </AvForm>

</Modal>

This a simple component that uses some reactstrap components to build the modal pop-up UI.

Unit testing setup

JHipster uses a combination of Jest and Enzyme to unit test the client-side components.

Jest (https://jestjs.io/
)
 is used as the testing framework. Enzyme (http://airbnb.io/enzyme/
) is a testing utility for React that makes it easy to unit test React components. In combination, these libraries provide a rich and intuitive testing environment for React.

Let's run the generated unit tests. Run
npm test
 in a Terminal. The tests should all pass out of the box.

Generated source code

Let's take a look at the generated code. Since we looked at the server-side code in the previous chapters, we will only look at the client-side code here:

The structure is quite similar to what we saw for Angular, but the React code is organized slightly differently. Here, we are only concerned with the code inside src/main/webapp/app
 since everything else is exactly the same as what we saw for the Angular application.

Let's take a look at some of the important parts of the code:

	
index.tsx
 : This is the entry point of our application. This is where we Bootstrap React to the root div
 and initialize the Redux store:

...

const store

 = initStore()

;

registerLocale(store);

const actions = bindActionCreators({ clearAuthentication }, store.dispatch);

setupAxiosInterceptors(() => actions.clearAuthentication('login.error.unauthorized'));

...

const rootEl

 = document.getElementById('root');

const render = Component =>

 ReactDOM.render(

 <ErrorBoundary>

 <Provider

 store={store}

>

 <div>

 ...

 <Component />

 </div>

 </Provider>

 </ErrorBoundary>,

 rootEl

);

render(AppComponent);

	
app.tsx
 : This is our main application component. We declare the React Router and the main application UI structure here:

...

export const App = (props: IAppProps) => {

 ...

 return (

 <Router basename={baseHref}>

 <div className="app-container" style={{ paddingTop }}>

 <ToastContainer ... />

 <ErrorBoundary>

 <Header

 ...

 />

 </ErrorBoundary>

 <div className="container-fluid view-container"

 id="app-view-container">

 <Card className="jh-card">

 <ErrorBoundary>

 <AppRoutes />

 </ErrorBoundary>

 </Card>

 <Footer />

 </div>

 </div>

 </Router>

);

};

...

	
routes.tsx
 : This is where the application's main parent routes are defined. They are imported into the app.tsx
 file from here. We looked at this component earlier.

	
config
 : This is where framework-level configurations are done. Some important ones are as follows:
	
axios-interceptor.ts
 : HTTP interceptors are configured here. This is where the JWT tokens are set to requests and errors are handled.

	
constants.ts
 : Application constants.

	
*-middleware.ts
 : The error, notification, and logging middleware for Redux is configured here.

	
store.ts
 : Redux store configuration is done here. Middlewares are registered during this stage. The order of the middlewares in the array is important as they act as a pipeline, passing actions from one middleware to another, as shown here:

const defaultMiddlewares = [

 thunkMiddleware,

 errorMiddleware,

 notificationMiddleware,

 promiseMiddleware(),

 loadingBarMiddleware(),

 loggerMiddleware

];

	

	
translation.ts
 : i18n-related configurations are done here.

	
entities
 : The entity modules are present here.

	
modules
 : The application UI modules are here:
	
account
 : Account pages such as settings and password reset can be found here.

	
administration
 : The admin screens, such as metric, health, and user management, are here.

	
home
 : Home screen of the application.

	
login
 : Login and logout components.

	
shared
 : Shared components and reducers:
	
auth
 : private-route.tsx
 : This is used for authenticated routes.

	
error
 : Custom error boundaries used in the application.

	
layout
 : Layout-related components such as header, footer, and menu.

	
model
 : TypeScript model for entities.

	
reducers
 : Shared reducers used by the application:
	
authentication.ts
 : This is used for authentication-related actions and reducers. Let's take the LOGIN
 action as an example. This action accepts username, password, and remember me and dispatches ACTION_TYPES.LOGIN
 with an asynchronous payload from an HTTP call to authenticate our credentials. We use the async/await
 feature from ES7 to avoid complex callbacks here. The result from the dispatch is obtained when we extract the JWT bearerToken
 and store it in the local or session storage of the browser, based on the remember me setting that's passed. Dispatching ACTION_TYPES.LOGIN
 will trigger the appropriate case in the reducer based on the status of the Promise:

...

export const ACTION_TYPES = {

 LOGIN: 'authentication/LOGIN',

 ...

};

const initialState = {

 ...

};

// Reducer

export default (state = initialState, action) => {

 switch (action.type) {

 case REQUEST(ACTION_TYPES.LOGIN):

 case REQUEST(ACTION_TYPES.GET_SESSION):

 return {

 ...state,

 loading: true

 };

 case FAILURE(ACTION_TYPES.LOGIN):

 return {

 ...initialState,

 errorMessage: action.payload,

 showModalLogin: true,

 loginError: true

 };

 ...

 case SUCCESS(ACTION_TYPES.LOGIN):

 return {

 ...state,

 loading: false,

 loginError: false,

 showModalLogin: false,

 loginSuccess: true

 };

 ...

 default:

 return state;

 }

};

...

export const login

 =

 (username, password, rememberMe = false) => async (dispatch, getState) => {

 const result = await dispatch({

 type: ACTION_TYPES.LOGIN

,

 payload: axios.post('/api/authenticate

', {

 username, password, rememberMe })

 });

 const bearerToken

 = result.value.headers.authorization;

 if (bearerToken && bearerToken.slice(0, 7) === 'Bearer ') {

 const jwt

 = bearerToken.slice(7, bearerToken.length);

 if (rememberMe) {

 Storage.local.set(AUTH_TOKEN_KEY, jwt);

 } else {

 Storage.session.set(AUTH_TOKEN_KEY, jwt);

 }

 }

 await dispatch(getSession());

};

...

	

	
util
 : Utility functions used in the application.

The folder structure of the unit test code is also quite similar to the main src
 folder:

Generating an entity with React client-side

Now, let's look at how we can create an entity using the JHipster entity generator with a React client-side. We will create a simple employee entity with the name, age, and date of birth fields:

	Open a Terminal, navigate to the folder of the React app, and run jhipster entity employee
 .

	Create the fields one by one
 ,
 select Yes
 for the question Do you want to add a field to your entity?
 , and start filling in the field with name
 for the next question, What is the name of your field?

	Select String
 as the field type for the next question, What is the type of your field?

	
For the question Which validation rules do you want to add?

 , choose Required
 for the name field and proceed.

	Continue this process for the age
 and dob
 fields. age
 is of the integer type, while dob
 is of the instant type.

	When asked again,
Do you want to add a field to your entity?
 , choose No
 .

	For the next question, Do you want to add a relationship to another entity?
 , choose yes.

	Provide user
 as the name of the other entity, and as the name of the relationship for the following questions.

	
For the next question, What is the type of the relationship?
 , we'll create a
 one-to-one relationship with the user.

	Choose no for the next two questions and no again when asked to add another relationship.

	For the questions that follow, select the default options and proceed.

The
jhipster entity employee

 command will produce the following console output:

Using JHipster version installed globally

Executing jhipster:entity employee

Options:

The entity employee is being created.

...

================= Employee =================

Fields

name

 (String) required

age

 (Integer)

dob

 (Instant)

Relationships

user

 (User) one-to-one

? Do you want to use separate service class for your business logic? No, the REST controller should use the repository directly

? Is this entity read-only? No

? Do you want pagination on your entity? No

Everything is configured, generating the entity...

...

JHipster will generate the entity and run the webpack build.

As an exercise, why don't you try to use the JDL model from the monolith application we built earlier here to generate entities?

	If your server is not running, start it in a Terminal by running ./mvnw
 . If it is already running, then just compile the new code by running ./mvnw compile
 ; Spring DevTools will restart the app automatically.

	Start BrowserSync in another Terminal by running npm start
 and check the employee entity we just created:

	Create an entity to check whether everything works fine:

Now, let's see what happens once the entity's been created:

	For the entity we created, JHipster generated/updated the following files:

	On the React client-side, we have the following files:

src/main/webapp/app/entities/employee/employee-detail.tsx

src/main/webapp/app/entities/employee/employee.tsx

src/main/webapp/app/entities/employee/employee.reducer.ts

src/main/webapp/app/shared/model/employee.model.ts

src/main/webapp/app/entities/employee/index.tsx

src/main/webapp/app/entities/employee/employee-delete-dialog.tsx

src/main/webapp/app/entities/employee/employee-update.tsx

src/test/javascript/spec/app/entities/employee/employee-

 reducer.spec.ts

	The index.tsx
 file declares the routes for the entity:

<Switch>

 <ErrorBoundaryRoute exact path={`${match.url}/:id/delete`}

 component={EmployeeDeleteDialog} />

 <ErrorBoundaryRoute exact path={`${match.url}/new`} component=

 {EmployeeUpdate} />

 <ErrorBoundaryRoute exact path={`${match.url}/:id/edit`} component=

 {EmployeeUpdate} />

 <ErrorBoundaryRoute exact path={`${match.url}/:id`} component=

 {EmployeeDetail} />

 <ErrorBoundaryRoute path={match.url} component={Employee} />

</Switch>

	The employee.reducer.ts
 file declares the actions and reducer for the entity; for example, let's look at the action and reducer that are used to create an entity. The createEntity
 action dispatches ACTION_TYPES.CREATE_EMPLOYEE
 with the HTTP payload. Once the HTTP request resolves, we dispatch the getEntities
 action to fetch the updated entity list. The reducer is common for create and update actions. Let's take a look at the create action and reducer:

...

export const ACTION_TYPES = {

 ...

 CREATE_EMPLOYEE: 'employee/CREATE_EMPLOYEE

',

 ...

};

const initialState = {

 ...

};

// Reducer

export default (state: EmployeeState = initialState, action): EmployeeState => {

 switch (action.type) {

 ...

 case REQUEST(ACTION_TYPES.CREATE_EMPLOYEE

):

 ...

 return {

 ...

 };

 ...

 case FAILURE(ACTION_TYPES.CREATE_EMPLOYEE

):

 ...

 return {

 ...

 };

 ...

 case SUCCESS(ACTION_TYPES.CREATE_EMPLOYEE

):

 case SUCCESS(ACTION_TYPES.UPDATE_EMPLOYEE):

 return {

 ...

 };

 ...

 default:

 return state;

 }

};

const apiUrl = 'api/employees';

...

export const createEntity

: ICrudPutAction<IEmployee> = entity => async dispatch => {

 const result = await dispatch({

 type: ACTION_TYPES.CREATE_EMPLOYEE,

 payload: axios.post(apiUrl, cleanEntity(entity))

 });

 dispatch(getEntities()

);

 return result;

};

...

	
employee.tsx
 , employee-update.tsx
 , employee-detail.tsx
 , and employee-delete-dialog.tsx
 declare the entity listing, entity update, entity detail, and entity delete dialog, respectively. Let's look at employee.tsx
 . Here, we define the type for the props using a TypeScript interface called IEmployeeProps
 . We trigger the actions to fetch entities when our component mounts using the useEffect
 hook method. The render
 method returns the JSX for the UI. The Employee
 component is connected to the Redux store using the higher-order component. Let's take a look:

...

export interface IEmployeeProps

 extends StateProps, DispatchProps, RouteComponentProps<{ url: string }> {}

export const Employee = (props: IEmployeeProps) => {

 useEffect

(() => {

 props.getEntities()

;

 }, []);

 const { employeeList, match } = props;

 return

 (

 <div>

 ...

 </div>

);

};

const mapStateToProps = ({ employee }: IRootState) => ({

 employeeList: employee.entities

});

const mapDispatchToProps = {

 getEntities

};

type StateProps = ReturnType<typeof mapStateToProps>;

type DispatchProps = typeof mapDispatchToProps;

export default connect(

 mapStateToProps,

 mapDispatchToProps

)(Employee);

The other components also follow a similar approach. Code wise, React code has much less boilerplate and is more concise compared to Angular.

Summary

In this chapter, we learned some general concepts about React, Redux, and other libraries on the React ecosystem. We also learned how to create a React app using JHipster and generated entities for it. We saw how we can make use of TypeScript with React and also walked through the generated code. Finally, we ran and tested our created application.

In the next chapter, we will learn how to create applications with Vue.js as the client-side framework.

Using Vue.js for the Client-Side

So far, we have learned how to build web applications and microservices with Angular and React as the client-side framework. Vue.js is one of the popular client-side frameworks that has been gaining momentum in recent times. It has a great community and is completely driven by its community, unlike Angular and React, which are backed by corporations. JHipster supports using Vue.js as the client-side by providing an official blueprint. In this chapter, we will learn how to use the official Vue.js module and about the technical stack that's used for Vue.js.

Blueprints are plugins for JHipster that help replace a specific part of the code that's generated for the application.

In this chapter, we will cover the following topics:

	Installing and using a JHipster Blueprint

	
Generating an application with Vue.js client-side

	Technical stack and source code

	
Generating an entity with Vue.js client-side

Generating an application with Vue.js client-side

In this section, we'll learn how to install the official JHipster blueprint for Vue.js. You will need to open the Terminal application to run the following commands:

	Run npm install -g generator-jhipster-vuejs
 on a Terminal to install it. Once the installation is complete, we can create a Vue.js application with JHipster using the blueprint.

	Create a new folder and navigate to it by running mkdir jhipster-vuejs && cd jhipster-vuejs

 .

	Now, run the
jhipster --blueprints vuejs

 command in the Terminal. The --blueprints
 flag is used to specify the blueprints that JHipster needs to use.

	JHipster will start with some prompts; let's select the default options for everything except for the build tool and test frameworks. For the question Which *Framework* would you like to use for the client?
 , you can see that there is only Vue.js presented as an option since we provided the blueprint. Also, you will see a message,
 info Using blueprint generator-jhipster-vuejs for client subgenerator
 , noting that the blueprint is being used.

	Once all the prompts have been completed, JHipster will generate the application and start installing dependencies before starting the webpack
 build.

Our selected options will look as follows:

? Which *type* of application would you like to create? Monolithic application (recommended for simple projects)

? What is the base name of your application? jhvue

? What is your default Java package name? com.mycompany.store

? Do you want to use the JHipster Registry to configure, monitor and scale your application? No

? Which *type* of authentication would you like to use? JWT authentication (stateless, with a token)

? Which *type* of database would you like to use? SQL (H2, MySQL, MariaDB, PostgreSQL, Oracle, MSSQL)

? Which *production* database would you like to use? MySQL

? Which *development* database would you like to use? H2 with disk-based persistence

? Do you want to use the Spring cache abstraction? Yes, with the Ehcache implementation (local cache, for a single node)

? Do you want to use Hibernate 2nd level cache? Yes

? Would you like to use Maven or Gradle for building the backend? Gradle

? Which other technologies would you like to use? (Press <space> to select, <a> to toggle all, <i> to invert selection)

 info Using blueprint generator-jhipster-vuejs for client subgenerator

? Which *Framework* would you like to use for the client? Vue.js

? Would you like to use a Bootswatch theme (https://bootswatch.com/)? Default JHipster

 info Using blueprint generator-jhipster-vuejs for common subgenerator

? Would you like to enable internationalization support? Yes

? Please choose the native language of the application English

? Please choose additional languages to install Hindi

? Besides JUnit and Jest, which testing frameworks would you like to use? Protractor

? Would you like to install other generators from the JHipster Marketplace? No

 info Using blueprint generator-jhipster-vuejs for languages subgenerator

Installing languages: en, hi

That's it; we are done. Our first JHipster Vue.js application was created successfully. Now, let's start the application so that we can play around with it.

Since we chose Gradle to build our application, let's start our server by running ./gradlew
 in a Terminal.

Gradle will download the necessary dependencies and start the Spring Boot application using the embedded Undertow container. Once the application starts successfully, we will see the following output in the console:

2018-03-04 16:37:48.096 INFO 4730 --- [restartedMain] com.mycompany.store.JhvueApp :

--

 Application 'jhvue' is running! Access URLs:

 Local: http://localhost:8080

 External: http://192.168.2.7:8080

 Profile(s): [swagger, dev]

--

Visit the URL (http://localhost:8080
) in your favorite browser to see the application in action:

You will see the preceding home screen, which is identical to the ones we saw for Angular and React.

Go ahead and log in using the default admin user and play around.

In the next section, we'll take a look at the technical stack.

Technical stack and source code

Before we look at the generated code, let's talk about the technical stack. We looked at Vue.js in Chapter 2
 , Getting Started with JHipster
 , but let's recap.

Vue.js (
 https://vuejs.org
) is a progressive JavaScript framework. It is open source and community-driven. Vue.js borrows concepts from both AngularJS (older version) and React. It has a similar syntax to AngularJS, but has the speed and performance of React. Like React, Vue.js is also a UI framework that can be combined with other libraries to build single-page applications. Vue.js can be written in JavaScript or TypeScript and can be used to write small web components or full-fledged SPA applications.

For example, the following is a simple Vue.js app:

<html>

 <head>

 <script src="https://cdn.jsdelivr.net/npm/vue/dist/vue.js"></script>

 </head>

 <body>

 <div id="app">

 {{ message }}

 </div>

 <script>

 const app = new Vue({

 el: '#app',

 data: {

 message: 'Hello Vue Hipster!'

 }

 })

 </script>

 </body>

</html>

Generally, for Vue.js components, we will use vue
 as the file extension.

Similar to React, Vue also uses the virtual DOM concept to improve rendering efficiency. It also provides composable components and maintains its focus on rendering of the view layer, while other concepts such as routing and state management are left to other libraries. This is the major difference between React/Vue and Angular, where the latter is a full-fledged MVVM framework.

Due to this, when building Vue applications, we would always have to add a few more libraries for things such as state management and routing. Unlike React, Vue provides official libraries for state management and routing.

Technical stack

The following are the technical stacks that are used by JHipster when Vue is chosen as the client-side framework:

	
Rendering
 : Vue.js written using TypeScript and HTML

	
State management
 : Vuex

	
Routing
 : Vue router

	
HTTP
 : Axios

	
Responsive design
 : Bootstrap 4 + BootstrapVue

	
Linting
 : TSLint

	
Unit testing
 : Jest + vue-jest

	
Build
 : Webpack

Let's look at some of the most important components of the stack.

Using TypeScript

Like Angular and React, the generated client-side for Vue is also written in TypeScript. Along with static type checking, this makes development more efficient and less error-prone. The components that are written in TypeScript are used along with Vue template files.

State management with Vuex

Vuex (https://vuex.vuejs.org/guide/
) is the official state management solution for Vue.js and is Redux inspired. JHipster uses Vuex for state management with Vue.js. It is also possible to use other state management solutions such as Redux and MobX.

Vuex provides a global immutable store that can only be updated by committing mutations explicitly. The store is also reactive, which means the components that use the store data are updated when the store changes. A mutation is a method that changes data in the store. You need to call the store commit method with the required mutation.

Vue components automatically get access to the store when you connect a store to an app. Let's take a look at
 src/main/webapp/app/core/home/home.component.ts
 :

@Component

export default class Home extends Vue {

 @Inject('loginService')

 private loginService: () => LoginService;

 public openLogin(): void {

 this.loginService().openLogin((<any>this).$root);

 }

 public get authenticated(): boolean {

 return this.$store

.getters.authenticated;

 }

 public get username(): string {

 return this.$store

.getters.account ? this.$store.getters.account.login : '';

 }

}

As you can see, the component has $store
 as an instance variable. The stores that are used are defined under src/main/webapp/app/shared/config/store
 .

Routing with Vue Router

Vue Router (https://router.vuejs.org/
) is the official Vue.js router and we use it for client-side routing. The default setup with JHipster is to use browser history-based routing (HTML5 pushState). It supports component-based routing, along with an API for advanced routing setups. Routes are defined centrally using the Router object.

Let's take a look at src/main/webapp/app/router/index.ts
 :

Vue.use(Router);

export default new Router

({

 mode: 'history',

 routes: [

 {

 path: '/',

 name: 'Home',

 component: Home

 },

 {

 path: '/forbidden',

 name: 'Forbidden',

 component: Error,

 meta: { error403: true }

 },

 {

 path: '/not-found',

 name: 'NotFound',

 component: Error,

 meta: { error404: true }

 },

 {

 path: '/register',

 name: 'Register',

 component: Register

 },

 ...

 {

 path: '/account/password',

 name: 'ChangePassword',

 component: ChangePassword,

 meta: { authorities: ['ROLE_USER'] }

 },

 ...

 {

 path: '/admin/user-management',

 name: 'JhiUser',

 component: JhiUserManagementComponent,

 meta: { authorities: ['ROLE_ADMIN'] }

 },

 ...

]

});

All the routes that are used by the application are defined centrally here, unlike in React or Angular, where the definitions are split across modules.

HTTP requests using Axios

Similar to our setup for React, Axios (https://github.com/axios/axios
) is used to fetch data from the JHipster application's server-side REST endpoints from the Vue.js services. The resulting Promise is resolved by the service to provide data to the components.

The following shows a service using axios
 :

export default class UserManagementService

 {

 public get(userId: number): Promise<any>

 {

 return axios

.get(`api/users/${userId}`);

 }

 public create(user): Promise<any>

 {

 return axios

.post('api/users', user);

 }

 ...

}

The preceding service uses axios
 and returns a promise that can be resolved from the component.

Bootstrap components using BootstrapVue

JHipster uses Bootstrap 4 as its UI framework. Since we are building a Vue application, it makes sense to use a native Vue binding instead of Bootstrap's jQuery-based components. BootstrapVue (https://bootstrap-vue.js.org/
) provides pure Vue components and directives for Bootstrap 4.

We only register the components we require in src/main/webapp/app/shared/config/config-bootstrap-vue.ts
 .

Let's take a look at src/main/webapp/app/account/login-form/login-form.vue
 :

<template>

 ...

 <b-alert

 show variant="danger" v-

 if="authenticationError" v-html="...">

 ...

 </b-alert>

 </div>

 <div class="col-md-8">

 <b-form

 role="form" v-on:submit.prevent="doLogin()">

 <b-form-group

 v-bind:label="..." label-

 for="username">

 <b-form-input

 id="username" type="text" ...

 v-model="login">

 </b-form-input>

 </b-form-group>

 ...

 <b-form-checkbox

 id="rememberMe" name="rememberMe"

 v-model="rememberMe" checked >

 <span v-text="$t('login.form.rememberme')

 ">Remember me

 </b-form-checkbox>

 <div>

 <b-button

 type="submit" variant="primary"

 v-text="$t('login.form.button')">Sign in

 </b-button>

 </div>

 </b-form>

 ...

 </div>

 </div>

 </div>

</template>

...

The preceding template uses standard HTML for the markup, along with additional custom-elements (directives and components) that are defined using Vue.js.

Unit testing setup

JHipster uses Jest to unit test the client-side components, similar to our React and Angular setup. Vue test utilities are used to mount and interact with Vue components.

The configuration for this can be found in src/test/javascript/jest.conf.js
 .

Let'
 s run the generated unit tests. Run npm test
 in a Terminal.

Generated source code

Let's take a look at the generated code. Since we looked at the server-side code in the previous chapters, we will only look at the client-side code here:

This structure is slightly different from what we saw for Angular and React. We are only concerned about the code inside src/main/webapp/app
 since everything else is exactly the same as what we saw for the Angular/React application.

Let's take a look at some of the important parts of the code:

	
main.ts
 : This is the entry point of our application. This is where we bootstrap Vue to the root div
 and initialize the application, along with other dependencies such as Vuex store, Bootstrap, and i18n
 :

...

Vue.config.productionTip = false;

config.initVueApp(Vue);

config.initFortAwesome(Vue);

bootstrapVueConfig.initBootstrapVue(Vue);

Vue.use(Vue2Filters);

Vue.component('font-awesome-icon', FontAwesomeIcon);

Vue.component('jhi-item-count', JhiItemCountComponent);

const i18n = config.initI18N(Vue);

const store = config.initVueXStore(Vue);

const alertService = new AlertService(store);

const translationService = new TranslationService(store, i18n);

const loginService = new LoginService();

const accountService = new AccountService(store, translationService, router);

...

/* tslint:disable */

new Vue

({

 el: '#app',

 components: { App },

 template: '<App/>',

 router,

 provide: {

 loginService: () => loginService,

 ...

 accountService: () => accountService

 },

 i18n,

 store

});

	
app.component.ts
 :
This is our main application component:

...

@Component

({

 components: {

 ribbon: Ribbon,

 'jhi-navbar': JhiNavbar,

 'login-form': LoginForm,

 'jhi-footer': JhiFooter

 }

})

export default class App

 extends

 Vue

 {}

	
app.vue
 : This is our main application component template. We define the main application UI structure here:

<template>

 <div id="app">

 <ribbon></ribbon>

 <div id="app-header">

 <jhi-navbar></jhi-navbar>

 </div>

 <div class="container-fluid">

 <div class="card jh-card">

 <router-view></router-view>

 </div>

 <b-modal id="login-page" hide-footer lazy>

 <span slot="modal-title" id="login-title" v-

 text="$t('login.title')">Sign in

 <login-form></login-form>

 </b-modal>

 <jhi-footer></jhi-footer>

 </div>

 </div>

</template>

<script lang="ts" src="./app.component.ts">

</script>

	
constants.ts
 : Application constants.

	
router
 : All of the application's routes are defined here and they are imported into main.ts
 from here.

	
account
 : The login and logout components, along with
 Account
 pages such as settings, and password reset, can be found here.

	
admin
 : The admin screens, such as metric, health, and user management, are here.

	
entities
 : The entity modules are present here.

	
core
 : The core application UI modules, such as home, navigation bar, and error, can be found here.

	
locale
 : Translation service used by the application.

	
shared
 : Shared components and reducers:
	
alert
 : Alert mixins and services are defined here.

	
config
 : This is where framework-level configurations are done:

	
axios-interceptor.ts
 : HTTP interceptors are configured here. This is where the JWT tokens are set to requests and errors are handled.

	
config-bootstrap-vue.ts
 : Bootstrap components are declared here.

	
config.ts
 : Application configurations, such as fonts, store, i18n
 , and date formats, are executed here.

	
formatter.ts
 : Formatters used in the application.

	
store
 : Vuex stores are defined here:
	
account-store.ts
 : This is used for account-related actions. It defines the state and mutations that can be used:

export const accountStore

: Module<any, any> = {

 state

: {

 logon: false,

 userIdentity: null,

 authenticated: false,

 ribbonOnProfiles: '',

 activeProfiles: ''

 },

 getters

: {

 logon: state => state.logon,

 account: state => state.userIdentity,

 authenticated: state =>

 state.authenticated,

 activeProfiles: state =>

 state.activeProfiles,

 ribbonOnProfiles: state =>

 state.ribbonOnProfiles

 },

 mutations

: {

 authenticate(state) {

 state.logon = true;

 },

 authenticated(state, identity) {

 state.userIdentity = identity;

 state.authenticated = true;

 state.logon = false;

 },

 logout(state) {

 state.userIdentity = null;

 state.authenticated = false;

 state.logon = false;

 },

 setActiveProfiles(state, profile) {

 state.activeProfiles = profile;

 },

 setRibbonOnProfiles(state, ribbon) {

 state.ribbonOnProfiles = ribbon;

 }

 }

};

	

	
data
 : Data utility services are defined here.

	
date
 : Date filters are defined here.

	
model
 : TypeScript model for entities.

The folder structure of the unit test code is also quite similar:

Now, we'll generate an entity for this application.

Generating an entity with VueJS client-side

Now, let's learn how to create an entity using the JHipster entity generator with a Vue.js client-side. We will create a simple employee entity with the name, age, and date of birth fields, just like we did for the React app earlier:

	Open a Terminal, navigate to the folder of the Vue.js app, and run jhipster entity employee
 .

	Create the fields one by one, select Yes
 for the question Do you want to add a field to your entity?
 , and fill in the name of the field with
 name
 for the next question, What is the name of your field?

	Select String
 as the field type for the next question, What is the type of your field
 ?

	
For the question Which validation rules do you want to add?
 , choose Required
 for the
 name
 field and proceed.

	Continue this process for the age
 and dob
 fields. age
 is of the integer type, while dob
 is of the instant type.

	When asked again,
Do you want to add a field to your entity?
 , choose No
 .

	For the next question, Do you want to add a relationship to another entity?
 , choose yes.

	Provide user
 as the name of the other entity, and as the name of the relationship for the questions that follow.

	
For the next question, What is the type of the relationship?
 , we'll create a
 one-to-one relationship with the user.

	Choose no for the next two questions and no again when asked to add another relationship.

	For the questions that follow, select the default options and proceed.

The
jhipster entity employee

 command will produce the following console output:

Using JHipster version installed globally

Executing jhipster:entity employee

Options:

The entity employee is being created.

...

================= Employee

 =================

Fields

name

 (String) required

age

 (Integer)

dob

 (Instant)

Relationships

user

 (User) one-to-one

? Do you want to use separate service class for your business logic? No, the REST controller should use the repository directly

? Is this entity read-only? No

? Do you want pagination on your entity? No

Everything is configured, generating the entity...

 info Using blueprint generator-jhipster-vuejs for entity-client

 subgenerator

...

JHipster will generate the entity and run the webpack
 build. From the logs, you will see that the Vue.js blueprint is being used here.

As an exercise, why don't you try to use here the JDL model from the monolith application we built earlier to generate entities?

	If your server is not running, start it in a Terminal by running ./gradlew
 . If it is already running, then just compile the new code by running ./gradlew
 compileJava
 ; Spring DevTools will restart the app automatically.

	Start BrowserSync in another Terminal by running npm start
 and check the employee entity we just created:

	Create an entity to check that everything works fine:

Now, let's see what happens once we've created the entity:

	For the entity we created, JHipster generated/updated the following files:

	On the Vue.js client-side, we have the following files:

src/main/webapp/app/entities/employee/employee-details.vue

src/main/webapp/app/entities/employee/employee.vue

src/main/webapp/app/entities/employee/employee-update.vue

src/main/webapp/app/entities/employee/employee-details.component.ts

src/main/webapp/app/entities/employee/employee.component.ts

src/main/webapp/app/entities/employee/employee.service.ts

src/main/webapp/app/shared/model/employee.model.ts

src/main/webapp/app/entities/employee/employee-update.component.ts

src/test/javascript/spec/app/entities/employee/employee.component.spec.ts

src/test/javascript/spec/app/entities/employee/employee-details.component.spec.ts

src/test/javascript/spec/app/entities/employee/employee.service.spec.ts

src/test/javascript/spec/app/entities/employee/employee-update.component.spec.ts

src/test/javascript/e2e/entities/employee/employee.page-object.ts

src/test/javascript/e2e/entities/employee/employee.spec.ts

src/test/javascript/e2e/entities/employee/employee-details.page-object.ts

src/test/javascript/e2e/entities/employee/employee-update.page-object.ts

	The routes for the entity are updated in the router/index.ts
 file:

const Employee = () => import('../entities/employee/employee.vue');

const EmployeeUpdate = () => import('../entities/employee/employee-update.vue');

const EmployeeDetails = () => import('../entities/employee/employee-details.vue');

	The employee.service.ts
 file declares the services that are required for the entities to communicate with the backend server. The following code block shows this:

...

const baseApiUrl = 'api/employees';

export default class EmployeeService

 {

 public find(id: number): Promise<IEmployee> {

 return new Promise<IEmployee>(resolve => {

 axios.get(`${baseApiUrl}/${id}`).then(function(res) {

 resolve(res.data);

 });

 });

 }

 public retrieve(): Promise<any> {

 return new Promise<any>(resolve => {

 axios.get(baseApiUrl).then(function(res) {

 resolve(res);

 });

 });

 }

 public delete(id: number): Promise<any> {

 return new Promise<any>(resolve => {

 axios.delete(`${baseApiUrl}/${id}`).then(function(res) {

 resolve(res);

 });

 });

 }

 public create(entity: IEmployee): Promise<IEmployee> {

 return new Promise<IEmployee>(resolve => {

 axios.post(`${baseApiUrl}`, entity).then(function(res) {

 resolve(res.data);

 });

 });

 }

 public update(entity: IEmployee): Promise<IEmployee> {

 return new Promise<IEmployee>(resolve => {

 axios.put(`${baseApiUrl}`, entity).then(function(res) {

 resolve(res.data);

 });

 });

 }

}

	
employee.component.ts
 , employee-update.component
 .ts
 , and employee-detail.component.
 ts
 declare the entity listing, entity update, and entity detail pages, respectively. Let's look at employee.component.ts
 . Here, we define the component and extend it with the required mixins. We also inject the required services, followed by the component methods that will be used by the template:

...

@Component

export default class Employee

 extends mixins(Vue2Filters.mixin, AlertMixin)

 {

 @Inject('employeeService')

 private employeeService: () => EmployeeService;

 private removeId: number = null;

 public employees: IEmployee[] = [];

 public isFetching = false;

 public mounted(): void {

 this.retrieveAllEmployees();

 }

 public clear(): void {

 this.retrieveAllEmployees();

 }

 public retrieveAllEmployees(): void {

 ...

 }

 public prepareRemove(instance: IEmployee): void {

 this.removeId = instance.id;

 }

 public removeEmployee(): void {

 ...

 }

 public closeDialog(): void {

 (<any>this.$refs.removeEntity).hide();

 }

}

The other components also follow a similar approach. Code wise, the Vue.js code is more similar to our Angular implementation.

Summary

In this chapter, we learned about the general concepts of Vue.js, Vuex, and some other libraries on the Vue.js ecosystem. We also learned how to create a Vue.js app using JHipster and generated an entity for it. We saw how we can make use of TypeScript with Vue.js and also walked through the generated code. Finally, we ran and tested our created application.

In the next chapter, we will conclude this book with some best practices from the JHipster community and look at the next steps you should take in order to make use of what you've learned so far.

Best Practices with JHipster

In the previous chapters of this book, we learned about JHipster and the various tools and technologies it supports in detail
 . These are the things we have learned so far:

	We learned to develop monolithic and microservice applications. We also learned about differences in the architecture and the reasons to choose one over the other.

	We created entities using JDL, and we customized the generated application for our business needs.

	We created a CI/CD setup using Jenkins.

	We deployed the monolith application to the Heroku cloud.

	We deployed the microservice architecture to the Google Cloud using Kubernetes and Docker.

	We learned about Spring Framework, Spring Boot, Angular, React, Vue.js, Docker, Kubernetes, and much more.

In this chapter, we will see what steps you need to take next to use what you have learned from this book, and we will also talk about some of the best practices, tips, tricks, and suggestions from the JHipster community. As core contributors to JHipster, we will also provide some insights and lessons in this chapter. The following are some of the topics that we will touch upon:

	The next steps to take

	The best practices to keep in mind

	Using JHipster modules

The next steps to take

JHipster supports a lot of technologies, and learning about all of them would require an insane amount of time and effort; it cannot be done in a single book. Each technology would require a book of its own to learn and master it. If you are already familiar with the core concepts of web development, you will have a fairly good idea of how a JHipster application works by now. We hope this book gave you a good introduction to the technologies and JHipster itself. But this in itself isn't sufficient; you will have to keep learning more to become a master. The following are some of the things you can do to further
 hone your skills in web development using JHipster. But before that, we would recommend that you learn more about Spring Framework and the Angular (or React or Vue.js) ecosystem to complement what you have learned in this book.

Adding a shopping cart for the application

In Chapter 5
 , Customization and Further Development
 , we saw how the generated application can be customized to make it look and behave like an e-commerce website. As we mentioned there, it is not enough to make the application truly usable. The following are some of the features that you can try to implement to make the application more feature-complete:

	
Add a simple shopping cart feature on the
 client-side:

	Create a ProductOrder
 object to hold the OrderItems
 . The ProductOrder
 is related to the customer, so tag it to the customer using the details of the currently logged-in user.

	
Add an Ad

 d to cart
 button to the product items in the list. On clicking the button, create a new OrderItem
 for the product and add the OrderItem
 to the OrderItems
 array of the ProductOrder
 . If the same product is clicked more than once, increase the quantity attribute of the existing OrderItem
 .
 Add a shopping cart dialog to list down all the OrderItems
 added to the
ProductOrder

 . It can use a similar listing UI to the products or a simple table to show the product, total price, and quantity.

	Add a View cart
 button to the product list page to view the shopping cart dialog.

	Add an Order Now
 feature:
	Add an Order Now
 button to the product list page.

	On clicking the button, send the
ProductOrder
 entity to the REST API to create a new ProductOrder

 . Use the product-order.service.ts
 for this.

	At the backend, modify the save
 method of ProductOrderService.java
 to create an invoice and shipment for the ProductOrder
 and save them all.

	Let's assume that we accept cash on delivery, so let's skip integration with a payment gateway for now.

	Send an order confirmation to the customer:
	JHipster comes with mail configuration and templates out of the box. You can configure your own SMTP server details in src/main/resources/config/application-*.yml
 . Refer to http://www.jhipster.tech/tips/011_tip_configuring_email_in_jhipster.html
 for instructions on how to configure popular SMTP services.

	Create a new email template in src/main/resources/templates/mail
 for order confirmation. Provide the details of products, total price, and quantity in the email.

	Use the provided sendEmailFromTemplate
 method in MailService.java
 to send the email when an invoice is successfully created.

	Create a customer profile when registering a new user:
	Add fields to the registration page and create a customer entity for every user from the details automatically.

Try to apply the changes to the microservice application as well.

Improving end-to-end tests

In Chapter 6
 ,
 Testing and Continuous Integration
 , we saw that some of the e2e tests were commented out because of the difficulty in generating tests for an entity with a required relationship. Try to fix the tests with the following approach:

	Add a method to delete entities after creation, similar to what we saw in Chapter 6
 , Testing and Continuous
 Integration
 , for the customer entity spec.

	Uncomment the commented-out e2e tests in the files under src/test/javascript/e2e/entities
 .

	Navigate the protractor to the related entity page and create a new item. If the related entity has required relationships, then follow the same approach and nest them until all the required entities are in place. This can be done in a beforeAll
 method of the test as well.

	
Now go back to the entity under test and see whether the test works fine.

	Once the test is complete, delete the created entities in the afterAll
 method of the test.

	Explore whether you can automate the creation of an entity item on the page object of the entity and use it when needed.

Improving the CI/CD pipeline

In Chapter 6
 , Testing and Continuous Integration
 , when we created the Jenkinsfile
 using the ci-cd sub-generator, we commented out the deployment stage. Re-enable it and check whether the application is deployed to Heroku when you make new commits. In particular, you should do the following:

	See if you can add e2e tests to the pipeline.

	If your application is on GitHub, try to add Travis to the project using the ci-cd sub-generator.

Create an e-commerce application with React or Vue.js

In the previous two chapters, we created a React- and Vue.js-based application. We used the JDL we designed for the monolith application to recreate the same with React and/or Vue.js on the client-side.

Building a JHipster module

JHipster has two mechanisms to extend its features:

	A modules system, which lets users build their own Yeoman generators (http://www.jhipster.tech/modules/creating-a-module/
) to complement JHipster

	A blueprint mechanism to customize the required parts of the code generated by JHipster

The difference between a module
 and a blueprint
 is that a blueprint lets you override certain parts of the generated application while JHipster scaffolds the remaining parts. For example, a blueprint can override the client-side code alone, while the server side is generated by JHipster. A module, on the other hand, can only change what is generated by JHipster, and so is more suitable for adding complementary features on top of the ones created by JHipster.

Try to build a module to add a simple, contact us page to your application.

You can use the JHipster module generator (https://github.com/jhipster/generator-jhipster-module
) to scaffold a new module.

Let's see what the
 best
 practices
 are
 .

The best practices to keep in mind

Over the years, the JHipster community has identified and adopted a lot of best practices from the technologies and tools it supports and from the general technical community. While JHipster has tried to follow these best practices in the code it creates, the following are some best practices, tips, and tricks that you as a user should follow.

Choosing a client-side framework

When using JHipster, you have the option to choose between using Angular, React, and Vue.js as the client-side framework. Do not choose something just for its hype—choose it based on your requirement, team composition, and familiarity:

	If you come from a heavy Java/Spring background, then Angular or Vue.js will be much easier to follow and work with

	If your application requires heavy state management and shared state, then React or Vue.js would be a more natural fit

	If you are planning to build a native mobile client for your application, then React is a good choice for this, with React Native allowing you to reuse a lot of code between your web and mobile application

	If your application depends heavily on HTML pages produced by a design team or a third party, then Angular or Vue.js will be much easier to integrate than React

	If you are familiar with AngularJS, then you might feel at home with Vue.js

If you need a lot of widgets that are not part of standard Bootstrap, then use an existing widget library, such as PrimeNG or VMware
 Clarity, rather than assembling widgets from different origins; however, if you
 only
 need a few more widgets on top of Bootstrap, then stick to Bootstrap and use a Bootstrap-compatible widget for Angular, Vue, or React.

Regardless of what you choose, follow the guidelines and best practices from that project's community.

Choosing a database option

JHipster provides support for many kinds of database, ranging from SQL to NoSQL. The following are some considerations when choosing a database
 (DB
):

	For most cases, an SQL DB would be more than sufficient, so if you do not see any reason to go with other NoSQL solutions, stick to SQL and choose from MySQL, Postgres, Oracle, MariaDB, and MS SQL:
	If you are working in an enterprise with Oracle or MS SQL subscriptions, then it would make sense to choose them as you would benefit from the support and enterprise features provided; otherwise, you should go with an open source solution.

	If you need to store and query a lot of JSON data, then Postgres offers the best JSON support with full-text search capabilities.

	For most simple use cases, MySQL or MariaDB will suffice.

	Always choose a second-level Hibernate cache when working with a SQL DB.

	When choosing a development database for SQL, you should do the following:
	Choose an H2 file DB if you want a simple development setup with persistent data.

	Choose the same DB as the production DB if you want faster restarts and your persistent data doesn't need to be wiped every now and then. If you are using the provided Docker images, then wiping data will not be an issue.

	Choose an H2 in-memory DB if you do not want any persistent data during development and would like a clean state on each restart.

	If your use case requires a lot of heavy data reads/writes, and if the data is not very relational, then Cassandra would be a perfect fit, as it is distributed and can work under extremely heavy loads.

	For a normal, nonrelational data structure, MongoDB may be sufficient. You could also use Postgres as a NoSQL JSON store if needed.

	If you need enterprise support for NoSQL, then CouchBase is a good option.

	Use Elasticsearch along with the primary DB for full-text search. If you only need simple filtering, use the JPA filtering option provided. Refer to http://www.jhipster.tech/entities-filtering/
 for more information.

	Do not use Elasticsearch as a primary database if it is not built for that purpose.

Architecture considerations

We have already discussed choosing a microservice or monolithic architecture in Chapter 1
 , Introduction to Modern Web Application Development
 . Here are some more points when it comes to architecture:

	
Don't use a microservice architecture if you're a small team. Microservices are about scaling teams more than anything. It's often easier to break up your monolith than start with microservices.

	Use asynchronous messaging in your monolith if you think you may need to refactor to microservices in the future. JHipster provides support for Apache Kafka, which is a good solution for asynchronous messaging.

Asynchronous messaging is the best way of building stateless systems. It is important in a microservice architecture, as you might often want communications to be stateless and nonblocking. Some of the popular solutions for this are Apache Kafka (http://kafka.apache.org/
), RabbitMQ (https://www.rabbitmq.com/
), and gRPC (https://grpc.io
). ReactiveX (http://reactivex.io/
) and Spring Reactor (http://projectreactor.io/
) are popular abstractions for working with asynchronous systems.
 Asynchronous messaging also makes the systems loosely coupled.

	

If you intend to expose an API to a third party, use API-first
 development. We now have a good workflow to do this with the OpenAPI generator (https://github.com/OpenAPITools/openapi-generator
). Refer to http://www.jhipster.tech/doing-api-first-development/
 for more information.

	When setting up communication between microservices with REST, don't put interface code in a shared package; it would tightly couple APIs to their clients, thereby creating a distributed monolith. It is better to have duplicated code than to be tightly coupled.

	With JHipster, it is possible to split the client and server. Refer to http://www.jhipster.tech/separating-front-end-and-api/
 for more information. However, think twice before separating them, as this will require you to open up CORS, which makes the security more vulnerable, and such architecture brings its own issues. So do this only if you have a good reason to.

	Use DTOs at the service layer so that you can aggregate entities and define a better API without exposing entities to the client. You will have to enable the service layer for your entities to use this with JHipster.

	Learn the technology stack of your application before you start development.

	Make yourself familiar with the provided toolbelt, such as build tools (Maven/Gradle/Webpack), BrowserSync, and so on.

	Follow the 12 factors of application development (https://12factor.net/
).

Security considerations

Security is one of the most important aspects of any application, and you should consider the following when choosing a security mechanism:

	For most use cases, JWT authentication will be sufficient, so stick to that if you are not sure

	
If you want single-sign-on capabilities in your application, use OAuth 2.0/OIDC rather than trying to make JWT or session authentication work as an SSO solution

	If you already have Keycloak or Okta set up in your company, choose OAuth 2.0/OIDC and connect to it

	Choose session-based authentication only if you want a stateful authentication

	Do not open up CORS unless you have to

	Use Spring Security to add authorization logic to your API endpoints and services

	Remove all secrets from the application-prod.yml
 file
 and use placeholders to inject values from the command line or environment variables. Never put any secrets or passwords in code or config files

	Change the generated JWT secrets for production

Refer to https://www.jhipster.tech/security/
 for more about security in JHipster

.

Deployment and maintenance

There are a lot of good practices in the field of deployment and maintenance; some of the most important ones are as follows:

	Docker is a must-have for the integration testing of microservices, but going into production with Docker is not easy, so you should use an orchestration tool, such as Kubernetes or OpenShift,
for that.

	Try to use Docker images even if you are building a monolith.

	Run a production build immediately after the application is generated and deploy to production immediately while your app is still very simple. This will help ease any deployment issues, as you will be sure that the app works fine out of the box.

	
The production build is quite different from the development build when it comes to the client-side, as the resources are minified and optimized. When adding any new frontend code or libraries, always verify the production build as well to ensure that it works fine.

	Run prod builds often, and when you do, always run them in prod mode in CI/CD.

	Try to keep your client-side JS bundles small, as this will affect the performance. Similarly, only add a dependency if you must.

	Always run end-to-end protractor tests with the prod profile.

	Embrace the embedded servlet engine and forget about deploying to a JEE server such as WebLogic, WebSphere, JBoss, and so on. The artifacts produced are executable and have an embedded Undertow server.

Did you know that Java EE was renamed to Jakarta EE? Refer to https://www.infoq.com/news/2018/03/java-ee-becomes-jakarta-ee
 for more information.

	Upgrade the application that often uses the JHipster upgrade sub-generator. This will ensure that the tools and technologies that you use are up to date and secure. Incremental upgrades will reduce merge conflicts and keep the process simple.

	Add unit, integration, and e2e tests as much as possible. There is no such thing as too many tests.

	Set up CI/CD for the application. An application with a decent CI/CD setup will save you countless hours spent on regressions and will improve your delivery speed.

	Run CI builds when you commit to the master. Enable CI builds for PRs and merge PRs only when they pass. Following this, as a rule, will tremendously increase your code quality.

General best practices

In general, the following are some best practices with respect to JHipster that you should consider:

	If you start creating entities using the entity sub-generator, then use export-jdl
 and switch to JDL once you have more than a handful of entities.

	Generate your application without any JHipster modules first and add the required modules only when the need arises.

	Evaluate a module carefully
 before adding it. Make sure that it supports the stack you have chosen.

	Follow each underlying technology's best practices
 —Angular best practices, Spring best practices, and so on. Change something only if there is a good reason to do so.

	Use the provided library versions on the client-side and server side. It's hard work to get them all working together, so stick to them. Update them only when JHipster updates them or if you really need to fix a bug or a security issue.

	Follow the workflows provided by JHipster. They are here to help you. There is usually a very good reason to use them in the recommended way. Read the JHipster
 documentation before looking for help outside.

	You have a great working environment out of the box; don't break it:
	Frontend and backend updates are automatic and fast, using live reload. Make use of them.

	Production deployment is easy using the provided sub-generators.

	Use the provided sub-generators for the cloud platform you are deploying to.

	Git is your friend. Commit each time you add a module or an entity, or when using a sub-generator. Every mistake (including those made in the database) should be easy to roll back with Git.

Using JHipster modules

JHipster modules and blueprints are a great way to add more features and functionality to your generated code. There are many modules and blueprints available to choose from in the JHipster marketplace (http://www.jhipster.tech/modules/marketplace
), and you can also build your own modules to suit your needs. Some of the modules worth noting are as follows:

	
Vue.js
 : This module provides Vue.js support for JHipster applications. It creates a full-fledged client-side app for JHipster using Vue.js.

	
Ignite JHipster
 : This provides a React Native boilerplate for JHipster apps, an ideal way to kickstart your React Native application using JHipster as the backend.

	
Entity Audit
 : This module enables entity audits. It uses Hibernate audit hooks to create a custom audit for entity CRUD operations. It also provides JaVers as the auditing mechanism instead of the custom Hibernate auditing. It also provides a nice UI to view the audits in an Angular application. It will enable auditing for new entities as well as for existing entities.

	
Ionic
 : This provides an Ionic client for JHipster apps. It is an ideal solution if you want to create mobile applications with a JHipster backend and an Angular frontend, made with the Ionic framework.

	
Swagger CLI
 : This module provides support for generating Swagger clients for a JHipster application.

	
gRPC
 : This module generates gRPC reactive endpoints for a JHipster application. It supports entities as well, and is an ideal choice if you want a nonblocking reactive API for your JHipster application.

	
Kotlin
 : This blueprint uses Kotlin instead of Java for the backend code. If you prefer Kotlin over Java, then this is for you.

	
PrimeNG
 : This module adds support for PrimeNG components in a JHipster Angular application.

	
NodeJS
 : This blueprint makes it possible to use
 TypeScript as the backend running on NodeJS instead of Java.

There are many more modules and blueprints out there.

To use a module, follow these steps:

	To use a JHipster module, first install it using npm i -g generator-<module-name>
 or yarn add global generator-<module-name>
 .

	Once installed, go into the JHipster application directory and execute yo <module-name>
 to initiate the module and follow the prompts.

To use a blueprint, follow these steps:

	To use a JHipster blueprint, first install it using npm i -g generator-<blueprint-name>
 or yarn add global generator-<blueprint
 -name>
 .

	Once installed, go into a directory and execute jhipster --blueprints <blueprint
 -name>
 to initiate JHipster with the blueprint hooked to it and follow the prompts.

Contributing to JHipster

One of the best ways to learn JHipster and the technologies it supports is by contributing to JHipster directly. Refer to the contribution guide (https://github.com/jhipster/generator-jhipster/blob/master/CONTRIBUTING.md
) for details about setting up JHipster for development.

You can contribute to the project in many ways, such as the
 following:

	
If you find a bug, enter an issue in the
 GitHub project (https://github.com/jhipster/generator-jhipster
), follow the guidelines in the issue template, run
 jhipster info
 , and provide the steps to reproduce it. You can also try to fix the issue yourself and submit a PR if you're successful.

	Work on open issues and feature requests. This way, you will learn the internals of JHipster and the technologies used along the way.

	Answer JHipster-related questions on Stack Overflow (https://stackoverflow.com/questions/tagged/jhipster
).

Summary

Our journey together through JHipster and full stack development has come to an end. In this chapter, we learned about the many best practices identified by the JHipster community. Try to complete the assignments in the section called The next steps to take
 , as it will help you to apply what you have learned and will help you understand the concepts better.

"Nothing helps you learn as much as trying and failing."

We hope you have had a fabulous learning experience, and that what you have learned about JHipster
 from this book will help you with your next project.

Follow @jhipster
 on Twitter (https://twitter.com/jhipster
) so that you can see when new releases come out and security vulnerabilities are revealed. Follow us on Twitter at @deepu105
 (https://twitter.com/deepu105?lang=en
) and @sendilkumarn
 (https://twitter.com/sendilkumarn?lang=en
) as well, if you like.

If you have questions or issues regarding JHipster, then post your questions to Stack Overflow (https://stackoverflow.com/questions/tagged/jhipster
) and add the jhipster
 tag. The team will be notified and will be happy to help!

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Microservices with Spring Boot and Spring Cloud

Magnus Larsson

ISBN: 978-1-78961-347-6

	Build reactive microservices using Spring Boot

	Develop resilient and scalable microservices using Spring Cloud

	Use OAuth 2.0/OIDC and Spring Security to protect public APIs

	Implement Docker to bridge the gap between development, testing, and production

	Deploy and manage microservices using Kubernetes

	Apply Istio for improved security, observability, and traffic management

Hands-On Enterprise Java Microservices with Eclipse MicroProfile

Jeff Mesnil, Cesar Saavedra, Et al

ISBN: 978-1-83864-310-2

	Understand why microservices are important in the digital economy

	Analyze how MicroProfile addresses the need for enterprise Java microservices

	Test and secure your applications with Eclipse MicroProfile

	Get to grips with various MicroProfile capabilities such as OpenAPI and Typesafe REST Client

	Explore reactive programming with MicroProfile Stream and Messaging candidate APIs

	Discover and implement coding best practices using MicroProfile

Leave a review - let other readers know what you think

Please share your thoughts on this book with others by leaving a review on the site that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book's Amazon page.
 This is vital so that other potential readers can see and use your unbiased opinion to make purchasing decisions, we can understand what our customers think about our products, and our authors can see your feedback on the title that they have worked with Packt to create. It will only take a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank you!

OEBPS/Image00111.jpg
v Docker is installed

? Which xtypex of application would you like to deploy? Microservice application

2 Which xtypex of gateway would you like to use? JHipster gateway based on Netflix Zuul
? Enter the root directory where your gateway(s) and microservices are located ../

3 applications found at /home/deepu/Documents/jhipster-book/v2/e-commerce-app/

Which applications do you want to include in your configuration? invoice, notification, store
Which applications do you want to use with clustered databases (only available with MongoDB and Couchbase)? (P
ress <space> to select, <a> to toggle all, <i> to invert selection)

? Do you want to setup monitoring for your applications ? Yes, for logs and metrics with the JHipster Console (b
ased on ELK and Zipkin)

? You have selected the JHipster Console which is based on the ELK stack and additional technologies, which one
do you want to use ? Zipkin, for distributed tracing (only compatible with JHipster >= v4.2.8)

JHipster registry detected as the service discovery and configuration provider used by your apps

? Enter the admin password used to secure the JHipster Registry (admin) _

OEBPS/Image00112.jpg
@ Welcome to the JHipster Docker Compose Sub-Generator @
Files will be generated in folder: /home/deepu/Documents/jhipster-book/v2/e-commerce-app/docker-compose

Checking Docker images in applications directories...
create log-conf/logstash.conf
create log-data/.gitignore
create docker-compose.yml
create README-DOCKER-COMPOSE.md
create jhipster-registry.yml
create central-server-config/application.yml
create jhipster-console.yml

Docker Compose configuration successfully generated!
You can launch all your infrastructure by running : docker-compose up -d
INFO! Congratulations, JHipster execution is complete!

OEBPS/Image00109.jpg
v Docker is installed

2
?
2
3

Which xtypex of application would you like to deploy? Microservice application

Which xtypex of gateway would you like to use? JHipster gateway based on Netflix Zuul
Enter the root directory where your gateway(s) and microservices are located ../
applications found at /home/deepu/Documents/jhipster-book/v2/e-commerce-app/

Which applications do you want to include in your configuration? invoice, notification, store

Which applications do you want to use with clustered databases (only available with MongoDB and Couchbase)?
Do you want to setup monitoring for your applications ?

No

Yes, for logs and metrics with the JHipster Console (based on ELK and Zipkin)

Yes, for metrics only with Prometheus

OEBPS/Image00110.jpg
v Docker is installed
Which xtypex of application would you like to deploy? Microservice application

Which xtypex of gateway would you like to use? JHipster gateway based on Netflix Zuul
Enter the root directory where your gateway(s) and microservices are located ../
applications found at /home/deepu/Documents/jhipster-book/v2/e-commerce-app/

W

Which applications do you want to include in your configuration? invoice, notification, store

Which applications do you want to use with clustered databases (only available with MongoDB and Couchbase)? (Press <space> to select,
Do you want to setup monitoring for your applications ? Yes, for logs and metrics with the JHipster Console (based on ELK and Zipkin
You have selected the JHipster Console which is based on the ELK stack and additional technologies, which one do you want to use ?
Ocurator, to help you curate and manage your Elasticsearch indices

) Zipkin, for distributed tracing (only compatible with JHipster >= v4.2.0)

OEBPS/Image00103.jpg
=& ~/Do..ts/jh..ok/v2/e-commerce-app on i P master! @ 2

) docker ps -a
CONTAINER ID
delbaef0b470
1ed9115906ca
475aa60a032b
bla821ad83e8
697ae8653e9%e
@e36afcf5ac2
3b0eadl11df68

IMAGE
jhipster/jhipster-registry:v5.0.2
notification

mysql:8.0.18

invoice

store

mongo:4.0.13

mysql:8.0.18

COMMAND
"/bin/sh —c 'java
"bash —c 'chmod +x

“docker-entrypoint.

"bash -c 'chmod +x
"bash -c 'chmod +x

"docker-entrypoint.
"docker-entrypoint.

CREATED

minutes
minutes
minutes
minutes
minutes

[SENENENEN

ago
ago
ago
ago
ago

25 hours ago
44 hours ago

STATUS
Up 2 minutes

Up 2 minutes

Up 2 minutes

Exited (1) About a minute ago
Exited (1) 2 minutes ago

Up 2 minutes

Up 43 hours

PORTS
0.0.0.0:
8082/tcp
33060/t

0.0.0.
0.0.0.

8761->8761/tcp

p, 0.0.0.0:3307->3306/tcp

©:27017->27017/tcp
0:3306->3306/tcp, 33060/tcp

NAMES
docker_jhipster-registry_1
docker_notification-app_1
docker_invoice-mysql_1
docker_invoice-app_1
docker_store-app_1
docker_notification-mongodb_1
docker_store-mysql_1

OEBPS/Image00104.jpg
) jhipster docker-compose

INFO! Using JHipster version installed globally

INFO! Executing jhipster:docker-compose

INFO! Options: from-cli: true

v Docker is installed

2 Which *typex of application would you like to deploy?
Monolithic application

) Microservice application

OEBPS/Image00107.jpg
v Docker is installed

Which xtypex of application would you Llike to deploy? Microservice application

Which xtypex of gateway would you like to use? JHipster gateway based on Netflix Zuul
Enter the root directory where your gateway(s) and microservices are located ../
applications found at /home/deepu/Documents/jhipster-book/v2/e-commerce-app/

(15160 st

2 Which applications do you want to include in your configuration?
® 1invoice

@ notification

Yo store

OEBPS/Image00108.jpg
 Docker is installed

2 Which xtypex of application would you like to deploy? Microservice application

? Which xtypex of gateway would you like to use? JHipster gateway based on Netflix Zuul
2 Enter the root directory where your gateway(s) and microservices are located ../

3 applications found at /home/deepu/Documents/jhipster-book/v2/e-commerce-app/

Which applications do you want to include in your configuration? invoice, notification, store
Which applications do you want to use with clustered databases (only available with MongoDB and Couchbase)?
YOnotification

OEBPS/Image00105.jpg
v Docker is installed
2 Which type* of application would you like to deploy? Microservice application
2 Which *types of gateway would you like to use? (Use arrow keys)
) JHipster gateway based on Netflix Zuul

Traefik gateway (only works with Consul)

OEBPS/Image00106.jpg
v Docker is installed
2 Which types of application would you like to deploy? Microservice application

2 Which *type of gateway would you like to use? JHipster gateway based on Netflix Zuul
2 Enter the root directory where your gateway(s) and microservices are located (../) _

OEBPS/Image00000.jpg

OEBPS/Image00122.jpg
v Docker is installed
2 Which xtypex of application would you Llike to deploy? Microservice application
2 Enter the root directory where your gateway(s) and microservices are located (../)

OEBPS/Image00002.jpg
PR I —
[

Load Balancer

I Resources API
I
Repository

OEBPS/Image00120.jpg
Registry

Application Instances [Refresh now ” disabled ~ |
NVOICE
NOTIFICATION
STORE
Instances
D Status
invoice:b96380f9b3ed6a5d12f003bbc9BYear? @ @ rimay @D prodswagger EEED 0.0.1-SNAPSHOT (GEIZEIIEDD 8081 QD TedcSae @D master
invoice:763a7c4923¢4002e35baf 1 efcf1c251 @ @ rimay @ prodswagger QD 0.0.1-SNAPSHOT QEIEEIEIEDD 9081 EEED ledcSae @D master

JHipster Registry - www_jhipster.tech

OEBPS/Image00001.jpg

OEBPS/Image00121.jpg
* Welcome to the JHipster Kubernetes Generator *

Files will be generated in folder: /home/deepu/Documents/jhipster-book/v2/e-commerce-app/kubernetes
Docker is installed

2 Which *type* of application would you like to deploy? (U
) Monolithic application
Microservice application

OEBPS/Image00114.jpg
Application Instances

NOTIFICATION

STORE

OEBPS/Image00115.jpg
Gateway
Current routes

URL

/services/notification/**

'services/invoice/**

This is your footer

Service

notification

invoice

Available servers

http:/172.19.0.5:8082

http://172.19.0.13:8081

UP.

& REFRESH

D mester | @D primary | @D prod.swagger QIR 6082 QEEED 0.0.1-SNAPSHOT QI Tedosae

D mester @D primary @D prodswagger GRS 8081

D 0.0.1SNAPSHOT QR 1e4csae

OEBPS/Image00113.jpg
Registry

tem Status

JHipster Registry v5.0.2

Refresh now H disabled ~

Environment

Data Center

Current Time

System Uptime

Below Renew Threshold

Total Available Memory

Current Memory Usage

Number of CPU

Instance Ip Address

Instance Status

JHipster Registry - www jhipster.tech

JHipster-Environment

JHipster-DataCenter

2019-12-09T18:17:26 +0000

0017

false

353mb
101mb (28%)
12

172.19.03

App Instance ID Status
INVOICE invoice:b96380f9b3ed6a5d12f003bbc98eaf7 -
NOTIFICATION notification:966ce6eb1d1e66bb82503307b44e975a -
STORE store:c202721000855cc00640007b33¢7c2b7 -

DiskSpace
RefreshScope
DiscoveryComposite
ConfigServer

Hystrix

OEBPS/Image00118.jpg
‘ kibana

@ oscover Oldest event reached.

Visualize
Dec 09 19:06:59 Laveice - Filtering metrics logs from all appe
hoard | Mders excapt the LOGSTASH appender
Laoan Dec 09 19:06:59 fnvoice - Started InvoicoApp in 11.502 seconds (JVM running fo
r 11.88)

Dec 09 19:06:59 inveics -

Config Server: Connected to the JHipster Registry running in Docker

®
-]
L
+
&

DevTools ? o o e
Application 'invoice’ is running! Access URLs.
Management Local http://localhost:8081)
External: http://172.19.0.13:8681/
Profile(s) [prod, suagger]
Dec 09 19:11:52 Fnveice % - Resolving eurska en
dpoints via configuration
Doc 89 19:16:52 invaice - + Resolving eureka en
dpoints via configuration
Dec 89 19:21:52 invaice - + Resolving eurcka en
dpoints via configuration
Dec 69 19:37:12 invoice - [172.19.0.13):5701
[dev] [3.11.5] MonitorInvocationsTask delayed 719484 ms
Dec 09 19:37:12 Invoice - + 1172.19.0.13]:5701 [de
V] [3.11.5] System clock apparently jumped from 2019-12-09 18:25:08.758 to 2019-12-09 18:37:12.272 since last heartbeat (+718514 ms)
Dec 03 19:37:12 fnvoice - + 1172.19.0.131:5701 [de
v] [3.11.5] Resetting heartbeat timestasps because of huge system clock jump! Clock-Jump: 718514 ms, Weartbeat-Tiseout: 60000 ms
Dec 69 19:37:21 Inveice - + 1172.19.0.13):5701
[dev] [3.11.5] BroadcastoperationControlTask delayed 713000 ms
Dec 09 19:38:50 Lnvoice - : Resolving eurcka en
dpoints via configuration
Dec 09 19:43:50 invoics - : Resolving eureka en
dpoints via configuration
Dac 09 19:48:50 invaics - Resolving eureka en
dpoints via configuration
Dec 09 21:10:56 invaice - + 1172.19.0.13]:5701
{dev] [3.11.5] MonitorInvocationsTask delayed 3303478 ms
Dec 89 21:10:58 inveice - + 1172.19.0.13]:5701 [de
vl [3.11.5] System clock apparently jusped from 2019-12-09 18:50:51.758 to 2019-12-09 20:10:38.748 since last heartbeat (+4501930 ms)
Dec 89 21:16:58 invaice - + 1172.19.0.13]:5701 [de
V] [3.11.5] Resetting heartbeat timestamps because of huge systes clock jump! Clock-Jump: 4801990 ms, Heartbeat-Timeout: 50000 ms
Dec 89 21:11:08 invaice - + 1172.19.0.13):5701
{dev] [3.11.5] BroadcastoperationControlTask delayed 4501990 ms
Dec 69 21:13: - Resolving eurcka en
dpoints via configuration
Dec 09 21:18:52 Lnveice - + Resolving eureka en

dpoints via configuration

0« e

OEBPS/Image00119.jpg
Service Name Span Name Lookback
all Span Name 1 hour .
Annotations Query Duration (s) >= Limit Sort
e.g. "http.path=/foo/bar/ and cluster=foo and cache.miss" 10 Longest First -

o]

Please select the criteria for your trace lookup.

OEBPS/Image00116.jpg
Management

571 hits

New Save Open Share CAutorefresh < O Last15minutes >

[Jsearch... (e.g. status:200 AND extension:PHP)

e o |

Add a filter 4
logs-*)

Selected fields
? _source

Avallable fields 3

Count

© etimestamp
t @version

t

t index

score

t type

t app_name

t app_port

t host

t instance name
t Instance name
t level

level value

t logger_name
t message

port

Time

Decenber 9th 2019, 19:42:52..

Decenber 9th 2019, 19:42:52..

Decenber 9th 2019, 19:42:52..

December 5th 2019, 19:27:56.473 - December 9th 2019, 19:42:56.473 — | Auto v

o0 93100

03500 9360 .

@timestamp per 30 seconds

_source

346 version: 5.0.2 level: DEBUG instance name: jhipster-registry-docker-compose jhipster-registry 1.docker-compose default:8761 logger name: io.gith
ub. jhipster. registry.service. ZuulUpdaterService app_name: jhipster-registry level value: 10,000 thread name: scheduling-1 message: Checking inst
ance invoice:b96380fobled6asd1203bbcoBgeat? - http://172.19.0.13:8081/ app_port: 8761 type: syslog port: 46,712 @uersion: 1 host: docker-com
pose_jhipster-registry_1.docker-compose_default @timestamp: December 9th 2019, 19:42:52.346 _id: QFnd624Bpn FTp OQUBH _type: doc _index: logs-20
19.12.09 _score: -

346 version: 5.6.2 level: DEBUG instance name: jhipster-registry-docker-compose jhipster-registry 1.docker-compose default:8761 logger name: io.gith

ub. jhipster. registry.service. ZuulUpdaterService app_name: jhipster-registry level value: 10,000 thread name: scheduling-1 message: Checking inst
ance store:c2027a100d855cc00640007b33c7c2b7 - http://172.19.0.7:8080/ app_port: 8761 type: syslog port: 46,712 @uersion: 1 host: docker-compos
e_jhipster-registry 1.docker-conpose_default @timestanp: December 9th 2019, 19:42:52.346 _id: PVn4624Bpn_FTp_0QUBH _type: doc _index: logs-2019.
12.09 _score: -

version: 5.0.2 level: DEBUG instance name: jhipster-registry-docker-conpose_jhipster-registry 1.docker-compose default:8761 logger_name: io.gith
ub. jhipster. registry.service. ZuulUpdaterservice app_name: jhipster-registry level value: 10,000 thread name: scheduling-1 message: Checking inst
ance notification:966ce6cbld1e66bb82503307b4deq75a - http://172.19.0.

18082/ ‘app_port: 8761 type: syslog port: 46,712 (@version: 1 host: docker

~compose_jhipster-registry 1.docker-conpose default @timestamp: December 9th 2019, 19:42:52.346 _id: 01nd6248pn_FTp_OQUBH _type:
5-2019.12.09 _score: -

doc _index: log

OEBPS/Image00117.jpg
Visualize / JVM Threads

metric_name=jymThreads*

Add afiter +

metrics-*

Data Metrics&Axes Panel Settings [l X

Metrics

BB v-axis Average metric value

metrics

Buckets
BB x-axis @timestamp per 30s.

BB st series metric namedke.

‘Add sub-buckets

value in bytes

3500

@timestamp per 30 seconds

save Share Inspect Refresh CAuto-refresh
== ——
00 194100 194300 19:4500 19:47:00

< OlastiSminutes >

opeors [N

© @ jvmihreadsPeak appl.
@ mThreadsLive.appl.
@ jymThreadsStates.ap.
@ jymThreadsDaemon..
@ jymThreadsstatesap..
® jymThreadsStates.ap.
@ jvmThreadsStates.ap..
@ jymThreadsStates ap..
@ jymThreadsStates.ap..
@ mThreadspeak
@ jymThreadsLive
@ jymThreadsstates sta.
@ jymThreadspeak.appl.
@ mhreadsLive.appli
@ jymThreadsDaemon
@ jymThreadsStatesap..
@ jvmThreadsstates sta.
@ jymThreadsstates.ap..
@ jymThreadsStates.ap.
@ jymThreadspeak.appl.
@ jymihreadsLive.appl.
@ jymThreadsStates.ap.
@ jymThreadsDaemon..
@ jymhreadsDaemorn..

<

OEBPS/Image00089.jpg
Refresh now] disabled ~ ‘

Configuration
Filter (by prefix)

Search an application

Spring configuration

[
‘ ihipster-registry
Prefix Properties ‘

|
JHIPSTER-REGISTRY [ur) ‘

application

eureka.client fetchRegistry
gZipContent
registryFetchintervalSeconds
initiallnstancelnfoReplicationinterv
alSeconds

OEBPS/Image00090.jpg
Registry vs.o.z2

View Logs

10.github. jhipster. registry.service.

2019-12-68 14:21:55.761 DEBUG 1 ---
http://192.168.2.177:8080/

2019-12-68 14:21:55.761 DEBUG 1 ---
2019-12-08 14:21:55.761 DEBUG 1 ---

io.github. jhipster. registry.service.

2019-12-68 14:22:00.761 DEBUG 1 ---

io.github. jhipster. registry.service.

2019-12-68 14:22:00.762 DEBUG 1 ---
http://192.168.2.177:8080/

2019-12-68 14:22:00.762 DEBUG 1 ---
2019-12-68 14:22:00.762 DEBUG 1 ---

io.github. jhipster. registry.service.

2019-12-68 14:22:05.762 DEBUG 1 ---

io.github. jhipster. registry.service.

2019-12-68 14:22:05.763 DEBUG 1 ---
http://192.168.2.177:8080/

2019-12-68 14:22:05.763 DEBUG 1 ---
2019-12-08 14:22:05.763 DEBUG 1 ---

io.github. jhipster. registry.service.

2019-12-08 14:22:10.763 DEBUG 1 ---

io.github. jhipster. registry.service.

2019-12-08 14:22:10.763 DEBUG 1 ---
http://192.168.2.177:8080/
2019-12-68 14:22:10.763 DEBUG 1 ---

ZuulUpdaterService.
[scheduling-11 i.g.

[scheduling-1] i.g.
[scheduling-1] i.g.
Zuulupdaterservice.
[scheduling-11 i.g.
Zuulupdaterservice.
[scheduling-1] i.g.

[scheduling-1] i.g.
[scheduling-1] i.g.
Zuulupdaterservice.
[scheduling-1] i.g.
Zuulupdaterservice.
[scheduling-11 i.g.

[scheduling-11 i.g.
[scheduling-1] i.g.
Zuulupdaterservice.
[scheduling-1] i.g.
Zuulupdaterservice.
[scheduling-11 i.g.

[scheduling-11 i.g.

updatezuulRoutes() with argumentlsl = (1

j.r.service.zuulupdaterservice

j.r.service.zuulUpdaterservice
j.r.aop.logging. LoggingAspect
updatezuulRoutes() with result = null
j.r.aop.logging. LoggingAspect

Checking

Instance
Exit

Enter:

updatezuulRoutes() with argunentls] = [1

j.r.service.zuulupdaterservice

j.r.service.zuulUpdaterservice
j.r.aop.logging. LoggingAspect
updatezuulRoutes() with result = null
j.r.aop.logging. LoggingAspect

Checking

Instance
Exit

Enter:

updateZuulRoutes() with argunent[s] = [1

j.r.service.ZuulUpdaterservice

j.r.service.zuulupdaterservice
j.r.aop.logging. LoggingAspect
updateZuulRoutes() with result = null
j.r.aop.logging. LoggingAspect

Checking

Instance
Exit

Enter:

updatezuulRoutes() with argument[s] = [1

j.r.service.zuulupdaterservice

j.r.service.zuulupdaterservice

Checking

Instance

3 Configuration ~

Administration v

instance sEHOR7obssobzobtabbazeacsaessssaz -

' store:ag70b550b20bf3bba6202c5008449832" already registered

instance store:a870b550b20bf3bba6292c5908449832 -

' store:a870b550b20b73bba6292c5008449832" already registered

instance store:a878b550b20bf3bba6292c5908449832 -

' store:ag70b550b20bf3bba6292c5008449832" already registered

instance store:a870b550b20bf3bba6292c5908449832 -

 store:ag70b550b26bf3bba6292c5008449832° already registered

c

OEBPS/Image00087.jpg
Application Metrics

JVM Metrics

Memory

PS Eden Space (1,011M / 2,560M)

Committed : 1,522M

SSRRNTANNNN
Code Cache (33M / 240M)

Committed : 34M

[1ax]
Compressed Class Space (16M / 1,024M)

Committed : 17M

2
PS Survivor Space (34M / 42M)

Committed : 42M

UMM LA LR L AL
PS 0ld Gen (49M / 5,295M)

Committed : 395M

[}
Metaspace 117M

Committed : 123M

Garbage collector statistics

GC Live Data Size/GC Max Data Size (49M / 5,295M)
{

Count

jvm.ge.pause 2

l STORE:5700A34B42D5B1694EE3EEBBCD1794B7 ~ ‘ ‘ Refresh now H disabled ~ ‘

Threads

Runnable 24

[o2]
Timed Waiting (19)

[s]
Waiting (73)

OO RO
Blocked (0)

Total: 116

GC Mermory Promoted/GC Memory Allocated (62M / 2,799M)
a

Mean Min p50

m 0 0

System
Uptime 12 minutes 20 seconds
Start time Sunday, December 8, 2019 at 4:59:08
PM GMT+01:00
Process CPU usage 0.28%
|
System CPU usage 1179%
[1179%]
System CPU count 12
System 1m Load average 159
Process files max 524,288
Process files open 338
Classes loaded 25341
Classes unloaded 0
p75 P95 p99 Max
0 0 0 0

OEBPS/Image00088.jpg
Health Checks STORE:5700A34B42D5B1694EE3EEBBCD1794B7 ~ l Refreshnow || disabled ~

Service Name Search an application ‘ Dersile
DiskSpace ‘ inipstes
JHIPSTER-REGISTRY [
Db ‘
RefreshScope

DiscoveryComposite
ClientConfigServer -

Hystrix [

OEBPS/Image00091.jpg
Loggers ‘ STORE:5700A34B42D5B1694EE3EEBBCD1794B7 ~ ‘ ‘ Refresh now H disabled ~ ‘

There are 1682 loggers.

Filter

Name Level

LiquibaseSchemaResolver

ROOT

ch

chaos

ch.qos logback

OEBPS/Image00092.jpg
JHipster Registry API

JHipster Reglstry API documentation

account-resource : Account Resource how/Hide | List Operat Expand Operations

encryption-controller : Encryption Controller Show/Hi Li

environment-controller : Environment Controller how/Hide Operati Expar

eureka-resource : Eureka Resource jide | List Oper Expand Operat

profile-info-resource : Profile Info Resource how/Hide | Li

resource-controller : Resource Controller how/Hide

routes-resource : Routes Resource how/Hide | List Operat Expand Operations
ssh-resource : Ssh Resource how/Hide | List Operati B

user-jwt-controller : User JWT Controller h

OEBPS/Image00085.jpg
Application Instances Refresh now

Instances

1D Status

store:5700a34b42d5h1694ee3eebbcd1794b7 @ @ rimay @D dev D 00.1-SNAPSHOT GEITEEERD 5080 @D 4309831 @D master

OEBPS/Image00086.jpg
try

Application Metrics

JVM Metrics

Memory

PS Eden Space (53M / 142M)

Committed : 140M

AR
Code Cache (29M / 240M)

Committed : 29M

[12]
Compressed Class Space (9M / 1,024M)

Committed : 10M

i
PS Survivor Space (13M / 14M)

Committed : 14M

AAARRAR A AR AR SRR AR AR R AN AN
PS 0ld Gen (36M / 342M)

Committed : 187M

[7%]
Metaspace 73M

Committed : 76M

Garbage collector statistics
GC Live Data Size/GC Max Data Size (35M / 342M)

Count

vm.gepause 1

Search an application

JHIPSTER-REGISTRY ~ Refresh now disabled ¥

Threads
Runnable 16 Jjfpstertegstry 22 minutes 5 seconds
[11%] o Inday, December 8, 2019 at 4:48:45
Timed Waiting (34)
PM GMT+01:00
[2an] | s o
Waiting (99) 001%
STORE (store:5700a34b42d5b1694ee3eebbcd1794b7) @D |
1067 %
Blocked (0))
[10.67%]
Teai 140 System CPU count 12
System m Load average 1.09
Process files max 1,048,576
Process files open 72
GC Memory Promoted/GC Memory Allocated (15M /2,172M) Classes loaded 15294
[Classes unloaded 1
Mean Min pS0 »75 p95 p99 Max
248 0 0 0 0 0 0

OEBPS/Image00083.jpg
&+ Administration ¥ W Languag

Health Checks

Service name Status Details
Disk space m °
Database @ °
Microservice Refresh Scope m

Discovery Composite °
ClientConfigServer @ °
Hystrix @

This is your footer

OEBPS/Image00084.jpg
4 Home

JHipster Registry v5.0.2

Refresh now ” disabled ~

Environment

Data Center

Current Time

System Uptime

Below Renew Threshold

JHipster-Environment App Instance ID Status
JHipster-DataCenter STORE store:5700234b42d5b1694ee3eebbed1794b7 @
2019-12-08T15:59:35 +0000

00:10

true

Total Available Memory

Current Memory Usage

Number of CPU

Instance Ip Address

Instance Status

JHipster Registry - www.jhipster.tech

344mb DiskSpace @
125mb (36%) RefreshScope -
12 DiscoveryComposite -
1721803 ConfigServer -
- Hystrix -

OEBPS/Image00100.jpg
App Instance ID Status

INVOICE invoice:0586b50366f6bb8fc51726c97¢c28a1df [ur)
NOTIFICATION notification:c0d97497619b384cb9953074316858d9 [ur)

STORE store:5700a34b42d5b1694ee3eebbcd1794b7 [ur)

OEBPS/Image00101.jpg
£Z Entities v

% Product

% Product Category
% Customer

% Product Order

% Order Item

% Invoice

% Shipment

% Notification

OEBPS/Image00098.jpg
Config Server: Connected to the JHipster Registry running in Docker

-> 83% EXECUTING [4m 21s]

OEBPS/Image00099.jpg
Current routes

URL Service Available servers

/services/notification/** notification
http://172.19.0.5:8082 D mester @D primary @D prodswagger EEEEISEED 6062 QD 0.0.1-SNAPSHOT @R TedcSee

'services/invoice/** invoi
http:/172.19.0.13:8081 [@D mester @D primay @R prodswagoer EEIEEEED A0S QD 0.0.-SNAPSHOT @I Tedcsse

This is your footer

OEBPS/Image00102.jpg
Create or edit a Invoice

Code

Date
|dd/mm/yyyy, -

Details

Status.

Payment Method

Payment Date
|dd/mm/yyyy, -

Payment Amount

Product Order Id

S

OEBPS/Image00093.jpg
store API

store APT documentation

account-resource : Account Resource
customer-resource : Customer Resource
gateway-resource : Gateway Resource
order-item-resource : Order Item Resource
product-category-resource : Product Category Resource
product-order-resource : Product Order Resource
product-resource : Product Resource
user-jwt-controller : User JWT Controller

user-resource : User Resource

OEBPS/Image00096.jpg
curl -X GET --header 'Accept: application/json' --header 'Authorization: Bearer eyJhbGciOLiJIUzUxMiJ9.eyJzdWIi01JhZGipbi

. »

Request URL

http://localhost:8761/services/store/store:5700a34b42d5b1694ee3eebbcd1794b7/api/account

Response Body

“adnin®,

“firstName": "Administrator”,

"lastName”: "Administrator",
“adminglocalhost”,

"imageUri”: "7,

"activated”

"langKe

"createdBy": "system",

"createdDate”: null,

"lastModifiedBy": "system",

"lastModifiedDate": null,

“authorities”: [

"ROLE_USER",

"ROLE_ADMIN"

1

Response Code

200

OEBPS/Image00097.jpg
Response Code

200

Response Headers

€ wcache-contro1: "no-cache, no-store, max-age=0, must-revalidate",
“connection”: "keep-alive",
“content-security-policy": "default-src 'self'; frame-src 'self' data:; script-src 'self' 'unsafe-inline’ 'unsafe-eva
‘application/json;charset=UTF-8",
g8 5881261526+ 3552 i
policy”: Jfeolocation none'; midi none’; sync-xhr ‘none'; microphone ‘none’; camera ‘none'; magnstometer !
pragma”: "no-cache
referrer-policy": "Strict-origin-when-cross-origin”,
transfer-encoding”: “chu
x-content. type-optigns”
o T

OEBPS/Image00094.jpg
store API

store API documentation

account-resource : Account Resource Show/Hide | List Operations | Expand Operations
IR /epi/account gethccount
=3 /epi/account saveAccount
[EB] /2pi/accountichange-password changepassword
[EB] /2pi/accountireset-password/finish finishpasswordReset
[EB] /2pi/accountireset-password/init requestpasswordReset
BB eviactivate activateAccount
Bl /pvauthenticate isAuthenticated
=1 /epiregister registeraccount

customer-resource : Customer Resource ShowrHide | List Operations | Expand Operations

OEBPS/Image00095.jpg
store API

store API documentation

account-resource : Account Resource Show/Hide | List Operations | Expand Operations
B8 /2piraccount getAccount

Response Class (Status 200)
0K

1o/ Example Value

“activated": true,
“authorities"
"string"

1.
“createdBy": "string”,

“createdDate”: "2019-12-08T16:26:12.0842",
"email: "string",
“firstName": "strin
id": 0, =

Response Content Type [*/*

Response Messages

HTTP Status Code Reason Response Model Headers
201 Unauthorized

403 Forbidden

404 Not Found

saveAccount

OEBPS/Image00067.jpg
$ docker-compose —f src/main/docker/mysql.yml
Recreating docker_store-mysql_1 .
Recreating docker_store-mysql_1 ...
Attaching to docker_store-mysql_1

store-mysql_1
store-mysql_1
store-mysql_1
store-mysql_1
store-mysql_1
store-mysql_1
store-mysql_1
store-mysql_1
store-mysql_1
store-mysql_1
store-mysql_1
store-mysql_1
store-mysql_1
store-mysql_1
store-mysql_1
store-mysql_1
store-mysql_1

2018-03-03T1:
2018-03-03T14:
2018-03-03T1:
2018-03-03T14:
2018-03-03T1:
2018-03-03T14:
2018-03-03T1:
2018-03-03T14:
2018-03-03T1:
2018-03-03T14:
2018-03-03T1:
2018-03-03T14:
2018-03-03T1:
2018-03-03T14:
2018-03-03T1:
2018-03-03T1:

0000000000000 00

2018-03-03T14:10:

142,
142,
142,
142,
142,
142.
142,
142,
142,
142,
142,
142,
142,
142.
142,
142,
42.

done

5182457
5211787
5211967
5212007
5212047
521209
5212137
5218327
5227272
5248907
5317267
5336417
5487652
5504337
5504547
5504587
5504617

ccoco0ooc00000000 00O

up

[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]

mysqld

InnoDB:
InnoDB:
InnoDB:
InnoDB:
InnoDB:
InnoDB:
InnoDB:
InnoDB:
InnoDB:
InnoDB:
InnoDB:
InnoDB:
InnoDB:
InnoDB:
InnoDB:
InnoDB:

(mysqld 5.7.20) starting as process 1 ...
PUNCH HOLE support available

Mutexes and rw_locks use GCC atomic builtins

Uses event mutexes

GCC builtin __atomic_thread_fence() is used for memory barrier

Compressed tables use zlib 1.2.3

Using Linux native AIO

Number of pools: 1

Using CPU crc32 instructions

Initializing buffer pool, total size = 128M, instances = 1, chunk size = 128M

Completed initialization of buffer pool

If the mysqld execution user is authorized, page cleaner thread priority can be changed.
Highest supported file format is Barracuda

Log scan progressed past the checkpoint lsn 12213183

Doing recovery: scanned up to log sequence number 12213192

Database was not shutdown normally

Starting crash recovery

OEBPS/Image00068.gif
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
£16076e9661 mysql:5.7.20 "docker-entrypoint 6 minutes ago Up 4 seconds 0.0.0.0:3306->3306/tcp docker_store-mysql_1

OEBPS/Image00065.jpg
Jenkin: Pipelines Administration

@ online-store vr ¢

STATU: RUN commiT MESSAGE DURATION

(] 2 - polish 4m 495 15 days ago

i1 = Started by user admin 4m 33s 18 days ago

OEBPS/Image00066.jpg
 online-store 2 Pipeline Char

Branch: — D 4m 4 Changes by d4udts

Commi Started by an SCM change

St checkout check java dlean installtools backend tests frontend tests End
L o L o L o L *
packaging - 1m 355 [Eal 4
| > /zradiew bootRepackage test -Pprod -Pnodelnstall --no-daemon 1m33s

> Archive the artifacts 1s

OEBPS/Image00071.jpg
MERGE CHANGES

® package json

7 gradle-wrapper.properties gradle/wrapper

¥ customerResourcelntTestjava src/test/java/com/mycompany/store/webj/rest
STAGED CHANGES

{} yo-rcjson

©® README.md

7 gradle.properties

{.} tsconfigjson

{} tsconfig-aot json

{.} tslint.json

¥ TokenProviderjava src/main/java/com/mycompany/store/security/jwt

@ app-routing.module.ts src/main/webapp/app

¥ app.constants.ts src/main/webapp/app

% app.module.ts src/main/webapp/app

activate.service.ts src/main/webapp/app/account/activate
password-strength-bar.component.ts src/main/webapp/app/account/password
password.service.ts src/main/webapp/app/account/password
password-reset-finish.service.ts src/main/webapp/app/account/password-reset/finish
password-reset-init.service.ts src/main/webapp/app/account/password-reset/init
register.component.ts src/main/webapp/app/account/register
register.service.ts sr/main/webapp/app/account/register

audits.component.ts src/main/webapp/app/admin/audits

© audits.service.ts src/main/webapp/app/admin/audits

© configuration.service.ts src/main/webapp/app/admin/configuration
© healthsservice.ts src/main/webapp/app/admin/health

@ logs.component.ts src/main/webapp/app/admin/logs

© logs.service.ts src/main/webapp/app/admin/logs

ann@

147

=Nz =i zizlizizsiziz =iz iz szl iz isiisl s

OEBPS/Image00072.jpg
) jhipster heroku

INFO! Using JHipster version installed locally in current project's node_modules
INFO! Executing jhipster:heroku

INFO! Options: from-cli: true

Heroku configuration is starting

2 Name to deploy as: jhbook-online-store

2 On which region do you want to deploy ? cu

2 Which type of deployment do you want ? JAR (compile locally)

Initializing Git repository
Initialized empty Git repository in /home/deepu/Documents/jhipster-book/v2/e-commerce-app/online-store/.git/

Installing Heroku CLI deployment plugin

Creating Heroku application and setting up node environment
https://jhbook-online-store.herokuapp.com/ | https://git.heroku.com/jhbook-online-store.git

Provisioning addons
Created Database addon

Creating Heroku deployment files
create Procfile
create gradle/heroku.gradle
conflict build.gradle
2 Overwrite build.gradle? overwrite this and all others
force build.gradle
create src/main/resources/config/bootstrap-heroku.yml
create src/main/resources/config/application-heroku.yml

Building application
> Task :bootBuildInfo

OEBPS/Image00069.jpg
store-app_1
store-app_1

Application 'store' is running! Access URLs

store-app_1 Local: http://localhost: 8080
store-app_1

Profile(s): [prod, swagger

|
I
|
store-app_1 | External: http://172.18.0.2:8080
|
|

tore-app_1

OEBPS/Image00070.jpg

OEBPS/Image00063.jpg
4 Back to Dashboard

@ Delete Pipeline

4% configure

©Q, Full Stage View

@ Open Blue Ocean

© Pipeline Syntax

@ Build History

trend &

Pipeline online-store

Recent Changes
=

Stage View

No data available. This Pipeline has not yet run.

OEBPS/Image00064.jpg
Jenkins

online-store

4 Back to Dashboard
O, status

= Changes

) suild Now

@ Delete Pipeline
£+ configure

O, Full Stage View
= Rename

© Pipeline syntax
[Z] Poling Log

“+ Build History

find

#

7.20199:33PM

v e “

Atom feed for all

Pipeline online-store

—#* Recent Changes
(St

Stage View

Deco7

238

Permalinks

+ Last build (#1), 21 sec ago

checkout

check java clean nohttp npm install backend tests
2s 317ms 5s s 55s 1min 10s
317 55 555

OEBPS/Image00078.jpg
Spring Cloud Configuration

Application

Profile
[s

Git Label:

=

Configuration

YAML Properties JSON Table

authenti
jut

761/eureka

t-key-which-sho changed-in-production-and-be-b

Configuration Sources

Index Configuration

0 « type:"native’
« search: { "locations": file: /central-config/localhost-config/" }

OEBPS/Image00079.jpg
4 Home M Language ~

Welcome, Java Hipster!

This is your homepage

If you have any question on JHipster

« JHipster homepage
JHipster on Stack Overflow
JHipster bug tracker
JHipster public chat room
follow @jhipster on Twitter

If you like JHipster, don' forget to give us a star on GitHub!

This is your footer

OEBPS/Image00076.jpg
Customer

firstName: String*
lastName: String*
gender: Gender’
email: String*

phone: String*
addressLine1: String*
addressLine2: String

city: String*
cot{lntry: gmng' " order
user
1-* customer
<<enumeration>>
o 11 ProductOrder
ender
User placedDate: Instant*
MALE status: OrderStatus™ |-
OTHER / code: String* Vo
orderltem
1-* order
<<enumeration>>
OrderStatus ProductCategory Orderitem
- String* quantity: Integer*
COMPLETED pane: Slngon totalPrice: BigDecimal*
PENDING descnpnon,gstrlng status: OrderltemStatus*
CANCELLED ool

roduct

1-* order

Invoice

date: Instant*
details: String
status: InvoiceStatus*

paymentMethod: PaymentMethod*

paymentDate: Instant*

paymentAmount: BigDecimal*

<<enumeration>> Product <<enumeration>> <<enumeration>>

OrderitemStatus name: Strings' InvoiceStatus PaymentMethod
description: Strin

AVAILABLE image: ImageBIol PAID CREDIT_CARD

OUT_OF_STOCK price: BigDecimal* ISSUED CASH_ON_DELIVERY

BACK_ORDER size: Size* CANCELLED

<<enumeration>>

Size

perza

shipment

11-" invoice

Shipment

trackingCode: String
date: Instant*
details: String

OEBPS/Image00077.jpg
> i core
“ @ entities
> BB customer
> @B invoice
> B notification
> BB order-item
> @8 product
> @@ product-category
> 8 product-order
) entity.module.ts
> 8 home

OEBPS/Image00082.jpg
Home n &+ Administration ¥ W Language ¥

1

Current routes

URL Service Available servers

This is your footer

OEBPS/Image00080.jpg
ministration ~ M Langu:

Welcome, Java Hipster!

This is your homepage

If you have any question on JHipst

« JHipster homepage
« JHipster on Stack Overflow
« JHipster bug tracker

« JHipster public chat room
« follow @jhipster on Twitter

If you like JHipster, don't forget to give us a star on GitHub!

This is your footer

OEBPS/Image00081.jpg
Administration ¥

A Gateway

& User management
@ User tracker

@ Metrics

¥ Health

Configuration I
A& Audits

#= Logs
8 APl

& Database

OEBPS/Image00074.jpg
Browsers Auth Server

Login request / POST

Creates JWT
Returns JWT

Future requests with JWT token (authorization)

Validates JWT
Returns response

OEBPS/Image00075.jpg
1 8761 8080 1 5601

Gateway i f‘\sg JHipster console 0

Secuity, Rate limiting, Swagoer AP Monitoring, Logs, Tracing

@ JHipster Registry . NETFLIX
e ©0o:r®

Service discovery, Cloud config
‘Admin, Metrics, Confia

TF 2
O e ,—l—mzl

(O~ R

Invoice microservice) Notification microservice

ne

Invoice service, Shipment service > &S Notifcation servce

@ m © =

OEBPS/Image00073.jpg
Deploying application

Uploading your application code.

This may take several minutes depending on your connection speed...

Uploading store-0.0.1-SNAPSHOT.jar

————— > Packaging application.
- app: jhbook-online-store
- including: build/libs/store-0.6.1-SNAPSHOT.jar

————— > Creating build.
- file: slug.tgz
- size: 64MB

————— > Uploading build...
- success

————— > Deploying. ..

remote:

remot

heroku-deploy app detected

remote: Installing JDK 1.8 done
remote: ——-—- > Discovering process types
remote: Procfile declares types —> web
remote:

remote: —-—-—— > Compressing

remote: Done: 115M

remote: ————— > Launching.

remote: Released v6

remote: https://jhbook-online-store.herokuapp.com/ deployed to Heroku
remote:

77777 > Done

Your app should now be live. To view it run
heroku open

And you can view the logs with this command
heroku logs --tail

After application modification, redeploy it with
jhipster heroku

INFO! Congratulations, JHipster execution is complete!

OEBPS/Image00051.jpg
Products

JHipster T-Shirt-Men

JHipster T-shirt-Women

Spring Tshirt

Spring Tshirt-Men

Description

JHipster T-Shirt for men

JHipster T-shirt for Women

Spring Tshirt womens

Spring Tshirt for men

Price $

20

20

15

10

Sizes Image $

M 4§ image/ipeg, 661 426 bytes
s 4§ image/ipeg, 661426 bytes
M && image/jpeg, 99 180 bytes
XL

Lﬂ" image/jpeg, 116 152 bytes

Showing 1-4 of 4 items

Product Category &

OEBPS/Image00052.jpg
7 Products

JHipster T-Shirt-Men 1

JHipster T-Shirt for men
Price: 20

size:M

JHipster T-shirt-Women 1

JHipster T-shirt for Women
Price: 20

size:s

Spring T-shirt A
‘Spring T-shirt womens
Price: 15

size:M

Spring T-shirt-Men 1
‘Spring T-shirt for men
Price: 10

size:XL

Showing 1- 4 of 4 items

OEBPS/Image00045.jpg
AN Compiled successfully in 10429ms

752 modules :

‘INFD' Coqgratulat1ons, JHipster execution i

i - execution is
! fon is ¢
JHipster execu is c
JHipster execu is
JHipster execution is complet
NFO! Congratulations, JHipster execution is comple

complete!

INFC "Cungratulnt1o

OEBPS/Image00166.jpg

OEBPS/Image00046.jpg
Home ntities v

% Product

* Product Category
* Customer

* Product Order

* Order Item

% Invoice

* Shipment

OEBPS/Image00167.jpg

OEBPS/Image00043.jpg
Customes

<<enumeration>>

[

<<enumeration>>
OrderStatus

feritemStatu:

OrderitemStatus

viceStatus PaymentMethod

OEBPS/Image00164.jpg
Enterprise Java
Microservices with
Eclipse MicroProfile

Packb

Cesar Saavedra, Heiko W. Rupp, Jeff Mesnil
Pavol Loffay, Antoine Sabot-Durand and Scott Stark

OEBPS/Image00044.jpg
Found the .jhipster/OrderItem.json configuration file, entity can be automatically generated

The entity OrderItem is being updated

Found the .jhipster/Invoice.json configuration file, entity can be automatically generated

The entity Invoice is being updated

Found the .jhipster/Shipment.json configuration file, entity can be automatically generated

The entity Shipment is being updated.

create src/main/resources/config/liquibase/changelog/20190818145106_added_entity_Product.xml
create src/main/resources/config/liquibase/fake-data/product.csv

create src/main/resources/config/liquibase/changelog/20196818145106_added_entity_constraints_Product

create src/main/resources/config/liquibase/fake-data/blob/hipster.png
create src/main/java/com/mycompany/store/domain/Product.java
create src/main/java/com/mycompany/store/repository/ProductRepository.java
create src/main/java/com/mycompany/store/web/rest/ProductResource.java
create src/main/java/com/mycompany/store/service/ProductService.java
create src/test/java/com/mycompany/store/web/rest/ProductResourceIT.java
conflict src/main/resources/config/liquibase/master.xml
? Overwrite src/main/resources/config/liquibase/master.xml? (ynaxdH) _

xml

OEBPS/Image00049.jpg
roducts

A new Product is created with identifier 12 x

OEBPS/Image00050.jpg
4 @ src
4 @ main
> B docker
> M java
» B resources
& webapp
4 @w app
> B account
> B admin
™ blocks
G entities
> B customer

.

N

> W invoice

I indexts
product-delete-dialog.component.html

product-delete-dialog.component.ts
product-detail.component.html
product-detail.component.ts
product-dialog.component.html
product-dialog.component.ts
product-popup.service.ts
product.component.html
product.component.ts
product.modelts
product.module.ts

product.route.ts

G- BON- RO -G Mo - B - |

product service.ts

» B product-category

OEBPS/Image00047.jpg
roducts

D
- Name $

1 mobileFish
2 deposit Tasty Metal Bacon
Implementation

3 Home Namibia

4 Savings Account syndicate Planner

Description &

Home Loan Account Table Computer

Chips

Steel zero administration

Refined Rubber Chicken Table

Price

5808

18340

36636

6505

Size

XL

XL

XL

[
8 image/png, 27702
bytes

[
§ imagespng 27702
bytes

o
8 imagespng, 27702
bytes

-
8 imagespng, 27 702
bytes

Product Category

+ Create a new Product

OEBPS/Image00169.jpg
Full Stack
Development
with JHipster

OEBPS/Image00048.jpg
Create or edit a Product

Name

T-shirt

Description

Awesome T-shirt

Price

10
size
Image

image/jpeg, 661 426 bytes n
shirt_bleu_jhipster17,jpg

Product Category

OEBPS/Image00163.jpg
Hands-On

Microservices with
Spring Boot and
Spring Cloud

OEBPS/Image00062.jpg
General

Build Triggers Advanced Project Options

Pipeline
Definition Pipeline script fomSCM 2

scm Git 3
Repositories
Branches to build
Repository browser
Additional Behaviours

Script Path Jenkinsfile

Lightweight checkout @

Pipeline Syntax
e

Repository URL _ htps:/igithub.com/deepu105/online-store.git

Credentials -none- v e Ad-

Branch Specifier (blank for ‘any) | +/master

(Auto)

4

Advanced..

Add Repository

Add Branch

OEBPS/Image00056.jpg
JProducts

Filter by name ‘women Sort by Name$ Price® Size$ Product Category $

JHipster T-shirt-Women Category: 1
JHipster T-shirt for Women
$20.00

size:s

Showing 1- 4 of 4 items

OEBPS/Image00057.jpg
JProducts

Filter by name Sort by Name$ Price$ Size$ Product Category $

JHipster T-Shirt-Men Category: T-shirt
JHipster T-shirt for men
$20.00

size:M

JHipster T-shirt-Women Category: T-Shirt
JHipster T-shirt for Women
$20.00

OEBPS/Image00054.jpg
PProducts

JHipster T-Shirt-Men Category: 1
JHipster T-Shirt for men
$20.00

size:M

JHipster T-shirt-Women Category: 1
JHipster T-shirt for Women
$20.00

size:s

OEBPS/Image00055.jpg
Spring T-shirt-Men
‘Spring T-shirt for men

$10.00

size: XL

Spring T-shirt
‘Spring T-shirt womens.

$15.00

size:M

Sortby Name$

Price*

Size$

Product Category &

Category: 1

Category: 1

OEBPS/Image00060.jpg
Enter an item name

online-store

» Required field

Freestyle project
This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any build system, and this can be even used for something other than software build.

Pipeline
Orchestrates long-running activties that can span multple build slaves. Suitable for building pipelines (formerly known as workflows) andor organizing complex activiies that do not easily fitn free-style job type.

Multi-configuration project
Suitable for projects that need a large number of different configurations, such as testing on muliple environments, platiorm-specific builds, etc.

Bitbucket Team/Project
Scans a Bitbucket Cloud Team (or Bitbucket Server Project) for al repositories matching some defined markers

Folder

Creates a container that stores nested items in it. Useful for grouping things together. Unlike view, which is just a filter, a folder creates a separate namespace, so you can have muliple things of the same name as
long as they are in different folders.

GitHub Organization
Scans a GitHub organization (or user account) for all repositories matching some defined markers.

Multibranch Pipeline
Creates a set of Pipeline projects according to detected branches in one SCM repository.

OEBPS/Image00061.jpg
General | Build Triggers | Advanced Project Options

3
Build Triggers

) Build after other projects are built

51 Build periodically

[GitHub hook trigger for GITScm polling
@paiscM 2

Schedule HIOL**+ 3

Pipeline

Would last have run at Monday, 19 February, 2018 6:01:21 PM CET; would next run at Monday, 19 February, 2018

Ignore post-commit hooks ()

O pisable this project
O Quiet period

0 Trigger builds remotely (e.g., from scripts)

1 PM CET.

@000

@0 o

OEBPS/Image00058.jpg
Filter by name Sort by NAME & PRICE S SIZE$ PRODUCT CATEGORY $

JHipster T-Shirt-Men Category: T-Shirt
JHipster T-Shirt for men
$20.00

size:M

JHipster T-shirt-Women Category: T-Shirt
JHipster T-shirt for Women
$20.00

size:s

OEBPS/Image00059.jpg
aurGeup S Combd , symeur Hipster !

&I 2 hIsT WSLILLILISSLD

JHipster g1 5C5@b Cacraladt @mpaTed

JHipster @sliLLLSSD
JHipster uder Stack Overflow
JHipster udér bug tracker
JHipster Weir Qg GuésWLED
* QBmLiL @jhipster Wi Twitter

JHipster-enw el Aaner 5 s8> QenHée wpés Caigm_mb GitHub!

Bgl 2 miseT (P iy

OEBPS/Image00053.jpg
moducts

JHipster T-Shirt-Men

JHipster TShirt for men
Price: 20

size:M

JHipster T-shirt-Women

JHipster Tshirt for Women
Price: 20

size:s

+ Create a new Product

OEBPS/Image00032.jpg
& Account ¥

User settings for [admin]

First Name

Administrator

Last Name

Administrator

Email

admin@localhost

Language

English -

This is your footer

OEBPS/Image00025.jpg
4 ONLINESTORE heod
» W@ gradle

4 @ src
4 @ main
» B docker
4 @ java
4 @ com
4 @ mycompany
4 G store
- a0p
™ config
= domain
W repository.
W security
W service

» 8 websocket
¥ Applicationwebxmljava
¥ StoreAppjava
> m
4+ @@ resources
4 G config
+ @ liquibase
> W changelog
» by data
B master.xml
> m s
1} application-dev.ym!
1} application-prod.yml
1} application-tis.yml
1} application.yml
> B i8n
Covmtempltes
£ h2.server.properties
& banner.txt
B logback-spring.xml

OEBPS/Image00024.jpg
4 ONLINESTORE DEod
» W@ gradle
4 @ src
4 G main
» W docker
> java
> mjib
> B resources
> 8 webapp
4 @ test
> ava
> W javascript
» BB resources
» B webpack
& editorconfig
4 _gitattributes
< .gitignore
[huskyre
prettierignore

prettierrc
1} yo-rcjson

© angularjson

build gradle

gradle properties

gradlew

B gradlewbat

@ package-lock.json

® package json

8 postcss.configjs

1.} proxy.confjson

©® README.md

settings.gradle

£ sonar-project.properties
1} tsconfig-aot.json

{} tsconfigjson

{} tslint.json

OEBPS/Image00027.gif
[restartediain] com.mycompany.store.StoreApp
[restartedMain] com.mycompany.store.StoreApp

2al1e16-15 22:23:53 000 INFG 2703
2617-10-15 22:23:53.513 1INFO 7713

Application 'store’ is running! Access URLs

Local: http://localhost:8080
External: http://192.168.2.4:8080
Profile(s): [swagger, dev]

> 90% EXECUTING [1m 49s]

: Started StoreApp in 15.134 seconds (JVM running for 16.204)

OEBPS/Image00026.jpg
4 @ webapp
4 @ app
> B account
> B admin
> m blocks
» 8 core
> entities
> = home
» W& layouts
» & shared
1 app-routing.module.ts
¥ app.constants.ts
B app.main.ts
© app.modulets
8 polyfills.ts
I vendorts
S odmemer
> s
» B images
> W scss
> B ien
» W swagger-ui
> B WEB-INF
404 html
* favicon.ico
© indexhtml
[manifest.webapp
B robots.txt

OEBPS/Image00029.jpg
Signin

Username
‘ admir|
Password

Remember me

Sign in

Did you forget your password?

You donit have an account yet?
Register a new account

OEBPS/Image00028.jpg
Welcome, Java Hipster!

This is your homepage

If you want to sign In, you can try the default accounts:
- Administrator (login="admin’" and password="admin’)
- User (login="user" and password="user’)

You dorit have an account yet? Register a new account

If you have any question on JHipster:

« JHipster homepage
JHipster on Stack Overflow
JHipster bug tracker

JHipster public chat room
follow @java_hipster on Twitter

If you like JHipster, don't forget to give us a star on GitHub!

This is your footer

OEBPS/Image00031.jpg
XK, Java Hipster!
XERER
EEFZL admin’' KSER.

MREEEAERX JHipster MNiE, AIUEFTHIAR

JHipster ME

Stack Overflow £XTF JHipster f3die
JHipster BIBRREIERR

JHipster public chat room

7 Twitter EBX4K @java_hipster

MREEIR JHipster, EITFAHAINEE GitHub!

OEBPS/Image00030.jpg
Welcome, Java Hipster!

This is your homepage
You are logged in as user "admir’"

If you have any question on JHipster:

« JHipster homepage
JHipster on Stack Overflow
JHipster bug tracker

JHipster public chat room
follow @java_hipster on Twitter

If you like JHipster, don't forget to give us a star on GitHub!

This is your footer

OEBPS/Image00023.jpg
Application successfully committed to Git from /home/deepu/Documents/jhipster-book/v2/online-store-monolith/e-commerce-app/online-store.
If you find JHipster useful consider sponsoring the project https://www.jhipster.tech/sponsors/
Server application generated successfully.

Run your Spring Boot application
./gradlew

Client application generated successfully.

Start your Webpack development server with:

npm start

> store@®.0.1-SNAPSHOT cleanup /home/deepu/Documents/jhipster-book/v2/online-store-monolith/e-commerce-app/online-store

> rimraf build/resources/main/static/ build/resources/main/aot

INFO! Congratulations, JHipster execution is complete!

OEBPS/Image00036.jpg
Application Metrics

JVM Metrics

Memory

PS Eden Space (863M / 2.585M)

Committed : 947M

AR
Code Cache (24M / 240M)

Committed : 24M

[o= |
Compressed Class Space (14M / 1,024M)

Committed : 15M

]
PS Survivor Space (OM / 34M)

Committed : 34M

PS 0Id Gen (51M / 5,303M)

Committed : 408M

[}
Metaspace 102M

Committed : 107M

Garbage collections

GC Live Data Size/GC Max Data Size (51M / 5,303M)
4

Count

jvm.ge.pause 2

Threads

Runnable 24

Timed waiting (26)

Waiting (72)

Blocked (0)

Total: 122
Expand

GC Memory Promoted/GC Memory Allocated (35M /
1,710M)
]

Mean Min pS0

12 0 0

HTTP requests (time in millisecond)

&+ Administration ¥

System
Uptime 9 minutes 2 seconds
Start time Monday, July 1,2019 at 12:11:58
AM GMT+02:00
Process CPU usage 019%
|
System CPU usage 1173%
[11.73%]
System CPU count 12
System 1m Load average 228
Process files max 524,288
Process files open 250
Classes loaded 22303
Classes unloaded 10
p75 p95 p99 Max
0 0 0 0

OEBPS/Image00035.jpg
1 system
3 admin
4 user

This is your footer

Email
system@Ilocalhost

admin@localhost

user@localhost

Language$ Profiles Created date ¢

en ROLE_USER
ROLE_ADMIN

system

system

en ROLE_USER
ROLE_ADMIN

en ROLE USER

system

Showing 1-3 of 3 items

Modified by ¢

&+ Administration ~

Modified date $

© View

© View

© View

Edit

Edit

Edit

X Delete

X Delete

X Delete

OEBPS/Image00038.jpg
&+ Administration ~

onfiguration
Filter (by prefix)

Spring configuration

Prefix

server.ports
Property

local.server.port

servletContextInitParams
Property

systemProperties
Property
java.runtime.name
sun.boot library.path
javavm.version
java.vm.vendor
java.vendor.url
path.separator
javavm.name

file.encoding.pkg

Properties

Value

Value

Value

[OpenJDK Runtime Environment]

zul Systems, Inc.

//www.azulsystems.com/|

OpenJDK 64-Bit Server VM|

OEBPS/Image00037.jpg
&¢ Administration ~

ealth Checks

Service name Status Details
Disk space °
Database °

This is your footer

OEBPS/Image00040.jpg
There are 1442 loggers.

Filter

Name

LiquibaseSchemaResolver
RoOT

ch

chgos

ch.gos logback

com

comhazelcast

com hazelcast core

com hazelcast core LifecycleService

&+ Administration ¥

Level

TRACE

TRACE

TRACE

TRACE

TRACE

TRACE

TRACE

TRACE

TRACE

WARN

WARN

WARN

WARN

WARN

WARN

WARN

WARN

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OEBPS/Image00039.jpg
&+ Administration ¥

Filter per date

from I 01/06/2019 to I 02/07/2019
Date* Users States Extra data
Jul 1,2019, 12:20:08 AM admin AUTHENTICATION_SUCCESS
Jul1,2019, 12:14:04 AM admin AUTHENTICATION_SUCCESS

Showing 1-2 of 2 items.

This is your footer

OEBPS/Image00042.jpg
® JLstudio

entity Region {
regionName String

entity Country {
countryName String

// an ignored comment

/** not an ignored c

entity Location {
streetAddress String,
postalCode String,
city String,
stateProvince String

nent

entity Department {

departmentName String required

i
* Task entity
* @author
7
entity Task {
title String,
description String

/
* The Employee entity
7

The JHipster team

*/

<<enumeration>>

Language

FRENCH
ENGLISH
SPANISH

JobHistory
startDate: ZonedDateTime :
endDate: ZonedDateTime | _SMPloyee
language: Language
Job
department
11
Department

departmentName: String*

employee

Employee

firstName: String
lastName: String
emall: String
phoneNumber: String
hireDate: ZonedDateTime
salary: Long
commissionPct: Long

Job

jobTitle: String
minSalary: Long
maxSalary: Long

task(title)

= job

Task

title: String
description:

location

RUmBL ol

ince: String

country

it

Country

countryName: String

region

it

Region

regionName: String

OEBPS/Image00041.jpg
&+ Administration ~

swagger

store API

store APT documentation

account-resource : Account Resource Show/Hide | List Operations = Expand Operations
B8 /2piaccount getAccount
=3 /2pifaccount SaveAccount
- Japilaccount/change-password changepassword
[EZ] /2pifaccountireset-password/finish finishPasswordReset
E=3 /2piaccountreset-passwordinit requestpasswordReset
Japi/activate activateAccount
Il /piauthenticate isAuthenticated
=3 /evirregister registerAccount

user-jwt-controller : User JWT Controller

user-resource : User Resource

0.0.1]

OEBPS/Image00034.jpg
Registration

Username

| Voiir usariimo

Your usemame is required

Email

| Your email

New password

I New password

Password strength:

New password confirmation

| Confirm the new password

If you want to sign In, you can try the default accounts:
- Administrator (login="admin’ and password="admir’)
- User (login="user" and password="user’).

OEBPS/Image00033.jpg
& Account ¥

Password for [admin]

Current password

New password

Password strength:

New password confirmation

| Confirm the new password

Save

This is your footer

OEBPS/Image00011.jpg
NS N Y N e ey ey

Which *typex of application would you like to create? Honolithic application (recommended for simple projects
What is the base name of your application? store

What is your default Java package name? com.mycompany.store

Do you want to use the JHipster Registry to configure, monitor and scale your application? No

Which xtypex of authentication would you like to use? JWT authentication (stateless, with a token)

Which *typex of database would you like to use? SQL (H2, MySQL, MariaDB, PostgreSQL, Oracle, MSSQL)

Which *productions database would you Like to use? (Use arrow keys)

MySQL

MariaDB

PostgresQL

Oracle (Please follow our documentation to use the Oracle proprietary driver)
Microsoft SQL Server

OEBPS/Image00010.jpg
NN N ey

Which xtypex of application would you like to create? lonolithic application (recommended for simple projects
What is the base name of your application? store

What is your default Java package name? com.mycompany.store

Do you want to use the JHipster Registry to configure, monitor and scale your application? No

Which *typex of authentication would you like to use? JWT authentication (stateless, with a token)

Which *typex of database would you like to use? (Use arrow keys)

SQL (H2, MySQL, MariaDB, PostgreSQL, Oracle, MSSQL)

MongoDB

Cassandra

Couchbase

No database

OEBPS/Image00131.jpg
¥ Docker is installed

2 Which xtypex of application would you Llike to deploy? MHicroservice application

2 Enter the root directory where your gateway(s) and microservices are located ../
3 applications found at /home/deepu/Documents/jhipster-book/v2/e-commerce-app/

2 Which applications do you want to include in your configuration? invoice, notification, store
? Do you want to setup monitoring for your applications ? Yes, for logs and metrics with the JHipster Console
2 Which applications do you want to use with clustered databases (only available with MongoDB and Couchbase)?
JHipster registry detected as the service discovery and configuration provider used by your apps
Enter the admin password used to secure the JHipster Registry admin
What should we use for the Kubernetes namespace? jhipster
What should we use for the base Docker repository name? deepul0s
What command should we use for push Docker image to repository? docker push
Do you want to enable Istio? No
Choose the Kubernetes service type for your edge services (Use arrow keys)
) LoadBalancer - Let a Kubernetes cloud provider automatically assign an IP
NodePort - expose the services to a random port (30000 - 32767) on all cluster nodes
Ingress - create ingresses for your services. Requires a running ingress controller

OEBPS/Image00012.jpg
7 Yy S S o LT R

Which *typex of application would you like to create? lonolithic application (recommended for simple projects
What is the base name of your application? store

What is your default Java package name? com.mycompany.store

Do you want to use the JHipster Registry to configure, monitor and scale your application? o
Which *typex of authentication would you like to use? JWT authentication (stateless, with a token)
Which xtypex of database would you like to use? SQL (H2, MySQL, MariaDB, PostgreSQL, Oracle, MSSQL)
Which *productions database would you like to use? HySOL

Which *developments database would you like to use? (Use arrow keys)

H2 with disk-based persistence

H2 with in-memory persistence

MySQL

OEBPS/Image00132.jpg
Kubernetes configuration successfully generated!

WARNING! You will need to push your image to a registry. If you have not done so, use the following commands to tag and push the images
docker image tag invoice deepul®5/invoice
docker push deepul®5/invoice
docker image tag notification deepul®5/notification
docker push deepul05/notification
docker image tag store deepul05/store
docker push deepul05/store

INFO! Alternatively, you can use Jib to build and push image directly to a remote registry
./gradlew bootJar —Pprod jibBuild -Djib.to.image=deepul05/invoice in /home/deepu/Documents/jhipstei
./gradlew bootJar -Pprod jibBuild -Dj
./gradlew bootJar -Pprod jibBuild -Dj

book/v2/e-commerce-app/invoice
eepul65/notification in /home/deepu/Documents/jhipster-book/v2/e-commerce-app/notification
eepul65/store in /home/deepu/Documents/jhipster-book/v2/e-commerce-app/store

You can deploy all your apps by running the following script
bash kubectl-apply.sh

Use these commands to find your application's IP addresses
kubectl get svc store -n jhipster

INFO! Congratulations, JHipster execution is complete!

OEBPS/Image00003.jpg
Gateway e —

Configuration server Service Discovery

WARIContainer N (G Microservice 1 R 4 Microservice 2 R\
WWFF Conlalner \ Wmmfontamer \
ul
Resources Resources
L API AP|
Domain Services Domain Services
Resources API
Repository Repository
1
Domain
Services
1
Repository
[})
H '
' = '
! i
! i
Service Registry 1 H
i A
' e
[WAR/Contamer ___\ Monitorin
ontainer E (itoring \
i [WAR/Container _\
u : ontainer
'
T e T e Dashboards
Resources API flens R
I 1)

OEBPS/Image00125.jpg
¥ Docker is installed

2 Which xtypex of application would you like to deploy? Microservice application

2 Enter the root directory where your gateway(s) and microservices are located ../
3 applications found at /home/deepu/Documents/jhipster-book/v2/e-commerce-app/

Which applications do you want to include in your configuration? invoice, notification, store
Do you want to setup monitoring for your applications ? Yes, for logs and metrics with the JHipster Console
Which applications do you want to use with clustered databases (only available with MongoDB and Couchbase)?
YOnotification

OEBPS/Image00126.jpg
v Docker is installed

? Which xtypex of application would you like to deploy? Microservice application

? Enter the root directory where your gateway(s) and microservices are located ../
3 applications found at /home/deepu/Documents/jhipster-book/v2/e-commerce-app/

Which applications do you want to include in your configuration? invoice, notification, store
? Do you want to setup monitoring for your applications ? Yes, for logs and metrics with the JHipster Console
Which applications do you want to use with clustered databases (only available with MongoDB and Couchbase)?
JHipster registry detected as the service discovery and configuration provider used by your apps

? Enter the admin password used to secure the JHipster Registry (admin) _

OEBPS/Image00005.jpg
) jhipster
INFO! Using JHipster version installed globally

INFO! Running default command

INFO! Executing jhipster:app
INFO! Options: from—cli: true
https://www.jhipster.tech

Welcome to JHipster v6.5.1

Application files will be generated in folder: /home/deepu/Documents/jhipster-book/v2/online-store-monolith/e-commerce-app/online-store

Documentation for creating an application is at https://www.jhipster.tech/creating-an-app/
If you find JHipster useful, consider sponsoring the project at https://opencollective.com/generator—jhipster

2 Which *typex of application would you like to create? (Use arrow keys)
) Monolithic application (recommended for simple projects)

Microservice application

Microservice gateway

JHipster UAA server (for microservice OAuth2 authentication)

[Alpha] Reactive monolithic application

[Alphal Reactive microservice application

OEBPS/Image00123.jpg
v Docker is installed
Which xtypex of application would you like to deploy? Microservice application
Enter the root directory where your gateway(s) and microservices are located ../
3 applications found at /home/deepu/Documents/jhipster-book/v2/e-commerce-app/

2 Which applications do you want to include in your configuration?
@ invoice

® notification

Yo store

OEBPS/Image00004.jpg
" ~
) jhipster —-version

INFO! Using JHipster version installed globally
6.5.1

OEBPS/Image00124.jpg
v Docker is installed
Which xtypex of application would you like to deploy? Microservice application
Enter the root directory where your gateway(s) and microservices are located ../
3 applications found at /home/deepu/Documents/jhipster-book/v2/e-commerce-app/

2 Which applications do you want to include in your configuration?
@ invoice

® notification

Yo store

OEBPS/Image00007.jpg
2 Which *typex of application would you like to create? Monolithic application (recommended for simple projects)
2 What is the base name of your application? store
2 What is your default Java package name? com.mycompany.store

OEBPS/Image00129.jpg
v Docker is installed

2 Which xtypex of application would you like to deploy? Microservice application

? Enter the root directory where your gateway(s) and microservices are located ../
3 applications found at /home/deepu/Documents/jhipster-book/v2/e-commerce-app/

Which applications do you want to include in your configuration? invoice, notification, store
? Do you want to setup monitoring for your applications ? Yes, for logs and metrics with the JHipster Console
Which applications do you want to use with clustered databases (only available with MongoDB and Couchbase)?
JHipster registry detected as the service discovery and configuration provider used by your apps

Enter the admin password used to secure the JHipster Registry adnin

? What should we use for the Kubernetes namespace? jhipster

? What should we use for the base Docker repository name? deepulos

? What command should we use for push Docker image to repository? (docker p

OEBPS/Image00006.jpg
2 Which *typex of application would you like to create? Monolithic application (recommended for simple projects)
2 What is the base name of your application? store_

OEBPS/Image00130.jpg
v Docker is installed

v
?
3

2
?
2

Which xtypex of application would you like to deploy? MHicroservice application
Enter the root directory where your gateway(s) and microservices are located ../
applications found at /home/deepu/Documents/jhipster-book/v2/e-commerce-app/

Which applications do you want to include in your configuration? invoice, notification, store
Do you want to setup monitoring for your applications ? Yes, for logs and metrics with the JHipster Console
Which applications do you want to use with clustered databases (only available with MongoDB and Couchbase)?

JHipster registry detected as the service discovery and configuration provider used by your apps

Enter the admin password used to secure the JHipster Registry admin
What should we use for the Kubernetes namespace? jhipster

What should we use for the base Docker repository name? deepui6s

What command should we use for push Docker image to repository? docker push
Do you want to enable Istio? (Use arrow keys)

) No

Yes

OEBPS/Image00009.jpg
? Which *typex of application would you like to create? Monolithic application (recommended for simple projects)
? What is the base name of your application? store
? What is your default Java package name? com.mycompany.store
? Do you want to use the JHipster Registry to configure, monitor and scale your application? No
? Which *typex of authentication would you like to use? (Use arrow keys)
) JWT authentication (stateless, with a token)
HTTP Session Authentication (stateful, default Spring Security mechanism)
OAuth 2.0 / OIDC Authentication (stateful, works with Keycloak and Okta)

OEBPS/Image00127.jpg
v Docker 1is installed

2 Which xtypex of application would you like to deploy? Microservice application

? Enter the root directory where your gateway(s) and microservices are located ../
3 applications found at /home/deepu/Documents/jhipster-book/v2/e-commerce-app/

Which applications do you want to include in your configuration? invoice, notification, store
? Do you want to setup monitoring for your applications ? Yes, for logs and metrics with the JHipster Console
Which applications do you want to use with clustered databases (only available with MongoDB and Couchbase)?
JHipster registry detected as the service discovery and configuration provider used by your apps

? Enter the admin password used to secure the JHipster Registry admin

? What should we use for the Kubernetes namespace? jhipster_

OEBPS/Image00008.jpg
Which xtypex of application would you like to create? lonolithic application (recommended for simple projects
What is the base name of your application? store
What is your default Java package name? com.mycompany.store

Do you want to use the JHipster Registry to configure, monitor and scale your application? (Use arrow keys)
> No
Yes

OEBPS/Image00128.jpg
v Docker is installed

2 Which xtypex of application would you like to deploy? Microservice application

2 Enter the root directory where your gateway(s) and microservices are located ../
3 applications found at /home/deepu/Documents/jhipster-book/v2/e-commerce-app/

2 Which applications do you want to include in your configuration? invoice, notification, store
2 Do you want to setup monitoring for your applications ? Ves, for logs and metrics with the JHipster Console
2 Which applications do you want to use with clustered databases (only available with MongoDB and Couchbase)?
JHipster registry detected as the service discovery and configuration provider used by your apps

2 Enter the admin password used to secure the JHipster Registry admin

2 What should we use for the Kubernetes namespace? jhipster

2 What should we use for the base Docker repository name? deepul®5_

OEBPS/Image00022.jpg
Which xtypex of application would you like to create? Monolithic application (recommended for simple projects)
What is the base name of your application? store

What is your default Java package name? com.mycompany.store

Do you want to use the JHipster Registry to configure, monitor and scale your application? No

Which xtypex of authentication would you like to use? JWT authentication (stateless, with a token

Which xtypex of database would you like to use? SQL (H2, MySQL, MariaDB, PostgresSQL, Oracle, MSSQL)

Which *productions database would you like to use? IySQL

Which xdevelopmentx database would you like to use? H2 with disk-based persistence

Do you want to use the Spring cache abstraction? Yes, with the Hazelcast implementation (distributed cache, for multiple nodes
Do you want to use Hibernate 2nd level cache? Ves

Would you like to use Maven or Gradle for building the backend? Gradle

Which other technologies would you like to use? WebSockets using Spring Websocket

Which *Frameworkx would you like to use for the client? Angular

Would you like to use a Bootswatch theme (https://bootswatch.com/)? Default JHipster

Would you like to enable internationalization support? Yes

Please choose the native language of the application English

Please choose additional languages to install Chinese (Simplified)

Besides JUnit and Jest, which testing frameworks would you like to use? Protractor

Would you like to install other generators from the JHipster Marketplace? (y/N) n_

OEBPS/Image00021.jpg
? Which xtypex of application would you like to create? Monolithic application (recommended for simple projects)
2 What is the base name of your application? store

2 What is your default Java package name? com.mycompany.store

2 Do you want to use the JHipster Registry to configure, monitor and scale your application? No

2 Which *typex of authentication would you like to use? JWT authentication (stateless, with a token)

2 Which xtypex of database would you like to use? SQL (H2, MySQL, MariaDB, PostgresQL, Oracle, MSSQL)

2 Which *productions database would you like to use? IySQL

2 Which xdevelopmentx database would you like to use? H2 with disk-based persistence

? Do you want to use the Spring cache abstraction? Yes, with the Hazelcast implementation (distributed cache, for multiple nodes
2 Do you want to use Hibernate 2nd level cache? Ves

? Would you like to use Maven or Gradle for building the backend? Gradle

2 Which other technologies would you like to use? WebSockets using Spring Websocket

? Which *Framework* would you like to use for the client? Angular

? Would you like to use a Bootswatch theme (https://bootswatch.com/)? Default JHipster

2 Would you like to enable internationalization support? Ves

2 Please choose the native language of the application English

2 Please choose additional languages to install Chinese (Simplified)

? Besides JUnit and Jest, which testing frameworks would you like to use?

Og6atling

OCucumber

Y Protractor

OEBPS/Image00142.jpg
Pilot Monitoring

Service discovery. Monitoring, Observabily, Tracing
Traffc management

B | 0%s

OEBPS/Image00014.jpg
Which xtypex of application would you like to create? Monolithic application (recommended for simple projects

What is the base name of your application? store

What is your default Java package name? com.mycompany.store

Do you want to use the JHipster Registry to configure, monitor and scale your application? No

Which *typex of authentication would you like to use? JWT authentication (stateless, with a token)

Which *typex of database would you like to use? SQL (H2, MySQL, MariaDB, PostgreSQL, Oracle, MSSQL)

Which *productions database would you like to use? MySOL

Which *developments database would you like to use? H2 with disk-based persistence

Do you want to use the Spring cache abstraction? Yes, with the Hazelcast implementation (distributed cache, for multiple nodes
Do you want to use Hibernate 2nd level cache? (V/n) y_

OEBPS/Image00136.jpg
Every 2.0s: kubectl get pods -n jhipster

NAME

invoice-5df7fd6f86-9ngpm
invoice-mysql-7b48d668f-dwj5k
jhipster-console-55c8d8f8d8—jpugs
jhipster-elasticsearch-client-7656547b47-skkrc
jhipster-elasticsearch-data-6
jhipster-elasticsearch-master-0
jhipster—import-dashboards-mkégb
jhipster-logstash-7fdc74bd58-dkbxj
jhipster-registry-0
jhipster-registry-1
jhipster-zipkin-7477f5499-pqlsq
notification-67fdb9f787-v9g25
notification-mongodb-0
store-5df8f645b7-nvxsr
store-mysql-76b66c895c-t74m9

READY
0/1
1/1
0/1
0/1
0/1
0/1
0/1
0/1
1/1
/1
/1
0/1
0/1
0/1
1/1

STATUS

Init:0/1

Running
ContainerCreating
Init:0/1
PodInitializing
Init:1/2

Init:0/1

Init:0/1

Running
ContainerCreating
ContainerCreating
Init:0/1

Init:0/3

Init:0/1

Running

RESTARTS

©cocooo0co00c000000 00

AGE
21s
20s
17s
16s
16s
17s
17s
15s
21s
12s
15s
19s
19s
18s
18s

OEBPS/Image00013.jpg
Which xtypex of application would you like to create? Monolithic application (recommended for simple projects)

What is the base name of your application? store

What is your default Java package name? com.mycompany.store

Do you want to use the JHipster Registry to configure, monitor and scale your application? No

Which *typex of authentication would you like to use? JWT authentication (stateless, with a token)

Which xtypex of database would you like to use? SQL (H2, MySQL, MariaDB, PostgreSQL, Oracle, MSSQL)

Which *productions database would you like to use? MySQL

Which *developments database would you like to use? H2 with disk-based persistence

Do you want to use the Spring cache abstraction?

Yes, with the Ehcache implementation (local cache, for a single node)

Yes, with the Caffeine implementation (local cache, for a single node)

Yes, with the Hazelcast implementation (distributed cache, for multiple nodes, supports rate-limiting for gateway applications)
[BETA] Yes, with the Infinispan implementation (hybrid cache, for multiple nodes)

Yes, with Memcached (distributed cache) - Warning, when using an SQL database, this will disable the Hibernate 2nd level cache
Yes, with the Redis implementation (single server)

No - Warning, when using an SQL database, this will disable the Hibernate 2nd level cache

OEBPS/Image00137.jpg
2019-12-10 10:50:50.875 INFO 1
2019-12-10 10:50:50.891 INFO 1

L main] com.mycompany.store.StoreApp
[main] com.mycompany.store.StoreApp

Application 'store' is running! Access URLs

Local: http://localhost:8080/
External: http://10.8.1.6:8080/
Profile(s) [prod]

2019-12-10 10:5

50.892 INFO 1 main] com.mycompany.store.StoreApp

Config Server: Connected to the JHipster Registry running in Kubernetes

2019-12-10 10:50:56.457 INFO 1
2019-12-10 10:51:11.458 INFO 1

[trap-executor
[trap-executor

d.s.r.aws.ConfigClusterResolver
n.d.s.r.aws.ConfigClusterResolver

Started StoreApp in 115.946 seconds (JVM running for 118.534)

Resolving eureka endpoints via configuration
Resolving eureka endpoints via configuration

OEBPS/Image00016.jpg
Which *typex of application would you like to create? Honolithic application (recommended for simple projects
What is the base name of your application? store

What is your default Java package name? com.mycompany.store

Do you want to use the JHipster Registry to configure, monitor and scale your application? No

Which xtypex of authentication would you like to use? JWT authentication (stateless, with a token)

Which *typex of database would you like to use? SQL (H2, MySQL, MariaDB, PostgreSQL, Oracle, MSSQL)

Which *productions database would you Llike to use? HySQL

Which *developments database would you like to use? H2 with disk-based persistence

Do you want to use the Spring cache abstraction? Yes, with the Hazelcast implementation (distributed cache, for multiple nodes
Do you want to use Hibernate 2nd level cache? Yes

Would you Llike to use Maven or Gradle for building the backend? Gradle

Which other technologies would you like to use?
OSearch engine using Elasticsearch
) WebSockets using Spring Websocket
OAsynchronous messages using Apache Kafka
OAPI first development using OpenAPI-generator

OEBPS/Image00134.jpg
Created [https://container.googleapis.com/vl/projects/jhipster-demo-deepu/zones/europe-westl-b/clusters/online-store-appl.
To inspect the contents of your cluster, go to: https://console.cloud.google.com/kubernetes/workload_/gcloud/europe-westl-b/online-store-app?project=jhipster-demo-deepu
kubeconfig entry generated for online-store-app.

NAME LOCATION MASTER_VERSION MASTER_IP MACHINE_TYPE NODE_VERSION NUM_NODES STATUS

online-store-app europe-westl-b 1.13.11-gke.14 35.205.201.187 nl-standard-2 1.13.11-gke.14 3 RUNNING

OEBPS/Image00015.jpg
Which *typex of application would you like to create? Honolithic application (recommended for simple projects
What is the base name of your application? store

What is your default Java package name? com.mycompany.store

Do you want to use the JHipster Registry to configure, monitor and scale your application? No

Which xtypex of authentication would you like to use? JWT authentication (stateless, with a token)

Which *typex of database would you like to use? SQL (H2, MySQL, MariaDB, PostgreSQL, Oracle, MSSQL)

Which *productions database would you Llike to use? HySQL

Which *developments database would you like to use? H2 with disk-based persistence

Do you want to use the Spring cache abstraction? Yes, with the Hazelcast implementation (distributed cache, for multiple nodes
Do you want to use Hibernate 2nd level cache? Yes

Would you Llike to use Maven or Gradle for building the backend?

LEVEL)

Gradle

OEBPS/Image00135.jpg
) ./kubectl-apply.sh
namespace/jhipster created
configmap/application-config created
secret/registry-secret created
service/jhipster-registry created
statefulset.apps/jhipster-registry created
deployment.apps/invoice created
deployment.apps/invoice-mysql created
service/invoice-mysql created

service/invoice created
deployment.apps/notification created
configmap/notification-mongodb-config created
configmap/notification-mongodb-init created
statefulset.apps/notification-mongodb created
service/notification-mongodb created
service/notification created

deployment.apps/store created
deployment.apps/store-mysql created
service/store-mysql created

service/store created
deployment.apps/jhipster-console created
service/jhipster-console created
job.batch/jhipster-import-dashboards created
configmap/es-config created
statefulset.apps/jhipster-elasticsearch-master created
statefulset.apps/jhipster-elasticsearch-data created
deployment.apps/jhipster-elasticsearch-client created
service/jhipster-elasticsearch-discovery created
service/jhipster-elasticsearch-data created
service/jhipster-elasticsearch created
deployment.apps/jhipster-logstash created
service/jhipster-logstash created
deployment.apps/jhipster-zipkin created
service/jhipster-zipkin created

RERBABARABABRBARA AR RBARABRRBRABABRARRB A RB BB R AR R R ARY
Please find the below useful endpoints,

JHipster Console - http://jhipster-console.jhipster.
BERHBRR AR AR R ARRA AR BB ABRBAGRRAABRB AR BB RB AR AR RS

OEBPS/Image00018.jpg
2 Which xtypex of application would you like to create? Monolithic application (recommended for simple projects
2 What is the base name of your application? store
2 What is your default Java package name? com.mycompany.store
2 Do you want to use the JHipster Registry to configure, monitor and scale your application? No
2 Which xtypex of authentication would you like to use? JWT authentication (stateless, with a token)
2 Which xtypex of database would you like to use? SQL (H2, MySQL, MariaDB, PostgresQL, Oracle, MSSQL
2 Which *productionx database would you like to use? MySQL
2 Which xdevelopmentx database would you like to use? H2 with disk-based persistence
? Do you want to use the Spring cache abstraction? Yes, with the Hazelcast implementation (distributed cache, for multiple nodes
2 Do you want to use Hibernate 2nd level cache? Ves
? Would you like to use Maven or Gradle for building the backend? Gradle
2 Which other technologies would you like to use? WebSockets using Spring Websocket
? Which *Framework* would you like to use for the client? Angular
? Would you like to use a Bootswatch theme (https://bootswatch.com/)? (Use arrow keys)
) Default JHipster
Cerulean
Cosmo
Cyborg
Darkly
Flatly
Journal

(Move up and down to reveal more choices)

OEBPS/Image00140.jpg
< C @ Notsecure | 34.77.214.210;

Welcome, Java Hipster!

This is your homepage

If you have any question on JHipster

JHipster homepage
JHipster on Stack Overflow
JHipster bug tracker
JHipster public chat room
follow @jhipster on Twitter

If you like JHipster, don' forget to give us a star on GitHub!

This is your footer

OEBPS/Image00017.jpg
e I I B R I B I)

Which *typex of application would you like to create? Monolithic application (recommended for simple projects)
What is the base name of your application? store

What is your default Java package name? com.mycompany.store

Do you want to use the JHipster Registry to configure, monitor and scale your application? No

Which *typex of authentication would you like to use? JWT authentication (stateless, with a token)

Which *typex of database would you like to use? SQL (H2, MySQL, MariaDB, PostgreSQL, Oracle, MSSQL)

Which *productions database would you like to use? HySoL

Which *developments database would you like to use? H2 with disk-based persistence

Do you want to use the Spring cache abstraction? Yes, with the Hazelcast implementation (distributed cache, for multiple nodes
Do you want to use Hibernate 2nd level cache? Yes

Would you like to use Maven or Gradle for building the backend? Gradle

Which other technologies would you Llike to use? licbSockets using Spring Websocket

Which *Frameworkx would you like to use for the client? (Use arrow keys)

Angular

React

No client

OEBPS/Image00141.jpg
App

INVOICE

INVOICE

JHIPSTER-REGISTRY

JHIPSTER-REGISTRY

NOTIFICATION

STORE

Instance ID

invoice:cfeb622b5116d7f33eedc96653¢15000
invoice:98a2b43dedac69c14724590146a6d36e
jhipsterRegistry:920af2dc070d799505849523de376e27
jhipsterRegistry:894a6b4ba4d4bf47434dcef770608446
notification:27f9108a63a058bbccec3ced1df2208

store:248f98ff9efbabded30689c09cca3bfo

Status

OEBPS/Image00020.jpg
Which xtypex of application would you like to create? Honolithic application (recommended for simple projects

What is the base name of your application? store

What is your default Java package name? com.mycompany.store

Do you want to use the JHipster Registry to configure, monitor and scale your application? No

Which xtypex of authentication would you like to use? JWT authentication (stateless, with a token)

Which xtypex of database would you like to use? SQL (H2, MySQL, MariaDB, PostgresQL, Oracle, MSSQL

Which *productions database would you like to use? MySQL

Which *developmentx database would you like to use? H2 with disk-based persistence

Do you want to use the Spring cache abstraction? Yes, with the Hazelcast implementation (distributed cache, for multiple nodes
Do you want to use Hibernate 2nd level cache? Ves

Would you like to use Maven or Gradle for building the backend? Gradle

Which other technologies would you like to use? WebSockets using Spring Websocket

Which *Frameworkx would you like to use for the client? Angular

Would you like to use a Bootswatch theme (https://bootswatch.com/)? Default JHipster

Would you like to enable internationalization support? Yes

Please choose the native language of the application English

Please choose additional languages to install (Press <space> to select, <a> to toggle all, <i> to invert selection)
OBelorussian
OBengali
Ocatalan
YOChinese (Simplified)
Ochinese (Traditional)
Oczech

Obanish
(Move up and down to reveal more choice

OEBPS/Image00138.jpg
= ~/Do..ts/jh..ok/v2/e-.pp/kubernetes on i P master? @ 2

) kubectl get svc store -n jhipster

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
store LoadBalancer 10.11.248.230 34.77.214.210 8080:32115/TCP 6m58s

OEBPS/Image00019.jpg
Which xtypex of application would you like to create? lonolithic application (recommended for simple projects)
What is the base name of your application? store

What is your default Java package name? com.mycompany.store

Do you want to use the JHipster Registry to configure, monitor and scale your application? No

Which xtypex of authentication would you like to use? JWT authentication (stateless, with a token)

Which xtypex of database would you like to use? SQL (H2, MySQL, MariaDB, PostgresQL, Oracle, MSSQL

Which *productionx database would you like to use? IySQL

Which xdevelopmentx database would you like to use? H2 with disk-based persistence

Do you want to use the Spring cache abstraction? Yes, with the Hazelcast implementation (distributed cache, for multiple nodes
Do you want to use Hibernate 2nd level cache? Ves

Would you like to use Maven or Gradle for building the backend? Gradle

Which other technologies would you like to use? WebSockets using Spring Websocket

Which *Frameworkx would you like to use for the client? Angular

Would you like to use a Bootswatch theme (https://bootswatch.com/)? Default JHipster

Would you like to enable internationalization support? (Y/n) y

OEBPS/Image00139.jpg
Google Cloud Platform

@ Kubernetes Engine Services & Ingress C/REFRESH [CREATE INGRESS
Elems Kubernetes services Brokered senvices 4EEE® Ingresses
% Workioads Services are sets of Pods with a network endpoint that can be used for discovery

and load balancing. Ingresses are collections of rules for routing external HTTP(S)

traffic to Services.
A& Services &ingress

Applications Is system object : False @ Filer reso X
B configuration E— il e Endpoints Pods Namespoce Custer
O storage invoice QoK Clusterp 1011240101 171 hipster online-store-app.
invoice-mysql QoK Clusterp 1011244116 171 hipster online-store-app.
Jhipster-console @K Loadbalancer 3477.240.119:5601 7 1/1 jhipster online-store-app.
Jhipster-elasticsearch QoK Clusterp 10.11.249.107 171 hipster online-store-app.
Jhipster-elasticsearch-data QoK Clusterip 1011.242.10 171 hipster online-store-app.
Jnipster-lasticsearch-discovery @ 0K Cluster IP 1011241170 171 hipster online-store-app.
Jhipster-fogstash QoK Clusterp 1011.244.40 171 hipster online-store-app.
Jhipster-registry QoK Clusterp None 2/2 hipster online store-app.
Jhipster-zipkin QoK Clusterp 101125229 171 hipster online-store-app.
notification QoK Clusterp 101124877 171 hipster online-store-app.
notification-mongodb QoK Clusterp None 171 hipster online-store-app.
store @K Loadbalancer 3477.2142108080 7 1/1 jhipster online-store-app.
storemysql @0k Clusterip 10.11.242.237 171 hipster online-store-app.

Rowsperpage: |50 v | 1-130f13 | < >

OEBPS/Image00133.jpg
Explore Repositories deeputos ~ (g

deepu105 - Q search by repository name., Create Repository +

deepu105 / store o 4 10k @ PUBLIC
Updated a few seconds ago

deepu105 / notification o & 10K+ © PUBLIC
Updated a few seconds ago

deepu105 / invoice o & 10k @ PUBLIC
Updated a minute ago

OEBPS/Image00152.jpg
v @ src
~ @ main
> m docker
> o java
> mjib
> W resources
v @ webapp
~ @ app
> @@ account
> @ admin
v @ core
> W8 error
> @@ home
> @ jhi-footer
> ®8 jhi-navbar
> B ribbon
> M locale
> B router
~ @ shared
> i alert
> B8 config
> mg data
> mm date
> #@ model
> I sort
B jhi-item-count.component.ts
V jhi-item-count.vue
Y app.component.ts
V app.yue
¥ constants.ts
BB maints
[1s shims-vue.d.ts
B8 content
= i1sn
™ swagger-ui
B8 WEB-INF
404 html

>
>
>
>

% favicon.ico
B indexhtml
[manifest.webapp
B robots.txt

OEBPS/Image00150.jpg
Search

Service (4)

store jhipster

Operation (2)

all

Tags @

Lookback

Last Hour

Min Duration
Max Duration

Limit Results

20

| ind Traces

JSON File

15

S00ms.

10:05:00 pm 100550 pm

20 Traces

10:06:40 pm

Sort: Most Recent

Compare traces by selecting result items

istio-ingressgateway: store.jhipster.sve.cluster.local:8080/* dseddid

25pans W erweson @) l soerman

istio-ingressgateway: store jhipster.sve.cluster.local:8080/* 1b43aza

2spars W ioingessgionsy @) [soreipsier ()

istio-ingressgateway: store.jhipster.sve.cluster.local:8080/* 1ea7daa

2spans Wi @) [soerma

istio-ingressgateway: store.jhipster.sve.cluster.local:8080/* e1édza0

2spars W errsom @) [l soerman

Today

Today

Today

Today

12.3ms

10:07:06 pm

11 minutes ago

10.27ms

10:07:04 pm

11 minutes ago

89.97ms.

10:07:02 pm

11 minutes ago

10.93ms

10:07:02 pm

OEBPS/Image00151.jpg
Jhreact oo suesior

elcome, Java Hipster!

This is your homepage

If you want to sign in, you can try the default accounts:
- Administrator (login="admin’ and password="admin’)
- User (login="user" and password="user’).

You don't have an account yet? Register a new account

If you have any question on JHipster:

« JHipster homepage
JHipster on Stack Overflow
JHipster bug tracker
JHipster public chat room
follow @jhipster on Twitter

If you like JHipster, don't forget to give us a star on Github!

This is your footer

OEBPS/Image00144.jpg
Every 2.0s: kubectl get pods -n istio-system

NAME
grafana-54ff8d5c44-hgvhc
istio-citadel-5778fd44d9-thzev
istio-cleanup-secrets-1.3.0-16dj2
istio-egressgateway-757668bf5c-qdjw6
istio-galley-5596777d77-v5kfx
istio-grafana-post-install-1.3.0-cns2z
istio-ingressgateway-74cc7678b6-85rwk
istio-init-crd-10-1.3.0-9krn8
istio-init-crd-11-1.3.0-zggbh
istio-init-crd-12-1.3.0-xm69t
istio-pilot-7bbdc4969c-6fgxz
istio-policy-69867c77c6-w2w24
istio-security-post-install-1.3.0-j79g5
istio-sidecar-injector-5dbb5db74b-kvwkz
istio-telemetry-6f7974dd46-p5zfq
istio-tracing-66875fddf-wf5m
kiali-f7469fb-cfxgx
prometheus-64464c7dc4-8nrrv

READY
/3
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
1/2
2/2
0/1
0/1
2/2
0/1
0/1
0/1

STATUS
Running
ContainerCreating
Completed

Running
ContainerCreating
Completed

Running

Completed
Completed
Completed

Running

Running

Completed
ContainerCreating
Running
ContainerCreating
Running
ContainerCreating

RESTARTS

©cocoo0o0o0000000000® 0O

AGE
27s
26s
13s
28s
28s
23s
27s
5m9s
5m9s
5m8s
26s
26s
23s
26s
27s
26s
27s
26s

OEBPS/Image00145.jpg
WARNING! Kubernetes configuration generated, but no Jib cache found

If you forgot to generate the Docker image for this application, please run:

To generate the missing Docker image(s), please run:
./gradlew bootJar —Pprod jibDockerBuild in /home/deepu/Documents/jhipster-book/v2/e-commerce-app-istio/store
./gradlew bootJar —Pprod jibDockerBuild in /home/deepu/Documents/jhipster-book/v2/e-commerce-app-istio/invoice
./gradlew bootJar —Pprod jibDockerBuild in /home/deepu/Documents/jhipster-book/v2/e-commerce-app-istio/notification

WARNING! You will need to push your image to a registry. If you have not done so, use the following commands to tag and push the images
docker image tag store deepul05/store
docker push deepul05/store
docker image tag invoice deepul®5/invoice
docker push deepul05/invoice
docker image tag notification deepul65/notification
docker push deepul05/notification

INFO! Alternatively, you can use Jib to build and push image directly to a remote registry
-/gradlew bootJar -Pprod jibBuild -Djib.to.image=deepul5/store in /home/deepu/Documents/jhipster-book/v2/e-commerce-app-istio/store
-/gradlew bootJar -Pprod jibBuild -Djib.to.image=deepuld5/invoice in /home/deepu/Documents/jhipster-book/v2/e-commerce-app-istio/invoice
./gradlew bootJar —Pprod jibBuild -Djib.to.image=deepul05/notification in /home/deepu/Documents/jhipster-book/v2/e-commerce-app-istio/notification

You can deploy all your apps by running the following script
bash kubectl-apply.sh

Use these commands to find your application's IP addresses
kubectl get svc store -n jhipster

INFO! Congratulations, JHipster execution is complete!
INFO! Deployment: child process exited with code 0

OEBPS/Image00143.jpg
Istio Control Plane

Security, Gateway
o P Smrm—rp——
8081 8082
ooy ey
4 £ Invoice microservice £ Notification microservice
> & nvoice service, Shipment service > Notification service

i @ @

ona

[

OEBPS/Image00148.jpg
» O

Ll

88 istio / Istio Service Dashboard - e

Service | storejhipster.sve.clusterlocal = | Client Workioad Namespace | All~ ClientWorkload | All + | Service Workload Namespace | All~ | Service Workioad

Client Request Volume
0 ops
‘Server Request Volume

0 ops

Incoming Requests by Source And Response Code

SERVICE: store.jhipster.svc.cluster.local

Client Success Rate (non-5xx responses) Client Request Duration
30s

208 g

— 100% 106

ons
208 210

‘Server Success Rate (non-5xx responses) Server Request Duration
30s

208 g

— 100% 106

ons
208 210

CLIENT WORKLOADS

0505 10000%
040ps T
030ps
50.00%
02005
e 2500%
0Oops o
220630 220700 220730 220800 220830 220900 220930 221000 221030 221100 20630 220700 220730 220870
= istioingressgatewaystio-system: 200 == istiongressgatewaylstio-system : 401 = istio-ngressgatewayistio-system

Incoming Request Duration by Source Incoming Request Size By Source

o

All~

—rps0
—ro0
—rpo5

—rps0
—ro0
—rpo5

220830

@ Last S minutes Refresh every 105

TCP Recelved Bytes

N/A

TCP Sent Bytes.

N/A

Incoming Success Rate (non-5xx responses) By Source

20900 220930 221000 221030

Response Size By Source

OEBPS/Image00149.jpg
tic

onfig

Namespace: jhipster v

Graph ®

Binvoice-mysal

Versioned app graph | | Requests per second | | Display v
¥ invoice invoice-mysal
o sa13 a3
P invoice
istio-ingressgateway.~~
(istio-system)”
[1e
~_P ¥ notification
A 5
notfication
notification-mongodd
vy store store-mysal
000, 10578 10578

@ store-mysal

£ notification-mongodb

store

“Hiide

10 Dec, 22

:48 ... 10 Dec, 22:07:48

Lastim v | Every15s v <

Namespace: jhipster
applications, services, workloads

Current Graph:
D 7apps
© 6services
. 10edges

HTTP Traffic (requests per second):

Total %Success S%Error
______*H

WOK M3 Max WS«

HTTP - Total Request Traffic min / max:
RPS:0.00/ 0,27, %Error 0.00/0.00

S |

TCP - Total Traffic - min / max:
8 Sent: 587/ 408.00 B/
W Received: 48014913 8/5

PRt

OEBPS/Image00146.jpg
NAME

invoice-6df4886bc5-xndsm
invoice-mysql-6d87747784-jzgj2
notification-654699dcc6-5p4tl
noti fication-mongodb-0
store-66bdb5fdb6-22q26
store-mysql-7fb4f47776-vk4t5

READY
2/2
1/1
2/2
1/1
2/2
1/1

STATUS

Running
Running
Running
Running
Running
Running

RESTARTS

cooooo

AGE

109s
109s
107s
107s
110s
110s

OEBPS/Image00147.jpg
C ® Notsecure | store.jhipster.34.77.78.2.nip.

Store A Home

Welcome, Java Hipster!

This is your homepage

If you want to sign In, you can try the default accounts:
- Administrator (login="admin" and password="admir’)
- User (login="user" and password="user’)

You dorit have an account yet? Register a new account

If you have any question on JHipster

JHipster homepage
JHipster on Stack Overflow
JHipster bug tracker
JHipster public chat room
follow @jhipster on Twitter

If you like JHipster, don't forget to give us a star on GitHub!

This is your footer

OEBPS/Image00161.jpg
Employees
D Name Age Dob User
1 mobile Fish 77969 Dec 12,2019, 1:48 AM @View ¢ Edit XDelete
2 Table Computer 5808 Dec 12,2019, 5:09 AM @View ¢ Edit XDelete
3 seamless Metal deposit 5641 Dec 11,2019, 4:53 PM @View ¢ Edit XDelete
4 parsing red Chips 18340 Dec 12,2019, 1:21 AM @View ¢ Edit XDelete
5 Home Loan Account 706 Dec 12,2019, 5:48 AM @View ¢ Edit XDelete
6 intangible 61185 Dec 12,2019, 6:34 AM # Edit
1 Gorgeous Frozen Pants 23277 Dec 12,2019, 5:13 AM @View ¢ Edit XDelete
8 bluetooth 19967 Dec 12,2019, 6:59 AM @View ¢ Edit XD
9 Planner Canyon 85994 Dec 12,2019, 1:35 AM @View ¢ Edit XDelete
10 Table Small Frozen Sausages Planner 80839 Dec 12,2019, 6:55 AM @View ¢ Edit XDelete

n Superman 30 Jan 1,1985, 12:00 AM admin @View ¢ Edit XDelete

OEBPS/Image00162.jpg
info Using blueprint generator-jhipster-vuejs for entity-client subgenerator
create .jhipster/Employee.json
create src/main/resources/config/liquibase/changelog/20191212151024_added_entity_Employee.xml
create src/main/resources/config/liquibase/changelog/20191212151024_added_entity_constraints_Employee.xml
create src/main/resources/config/liquibase/fake-data/employee.csv
create src/main/java/com/mycompany/store/domain/Employee.java
create src/main/java/com/mycompany/store/repository/EmployeeRepository.java
create src/main/java/com/mycompany/store/web/rest/EmployeeResource.java
create src/test/java/com/mycompany/store/web/rest/EmployeeResourcelT.java
create src/test/java/com/mycompany/store/domain/EmployeeTest.java
conflict src/main/resources/config/liquibase/master.xml
? Overwrite src/main/resources/config/liquibase/master.xml? overwrite this and all others
force src/main/resources/config/liquibase/master.xml
force src/main/java/com/mycompany/store/config/CacheConfiguration.java
create src/main/webapp/app/entities/employee/employee-details.vue
create src/main/webapp/app/entities/employee/employee.vue
create src/main/webapp/app/entities/employee/employee-update.vue
force src/main/webapp/app/core/jhi-navbar/jhi-navbar.vue
create src/main/webapp/app/entities/employee/employee-details.component.ts
create src/main/webapp/app/entities/employee/employee.component.ts
create src/main/webapp/app/entities/employee/employee.service.ts
create src/main/webapp/app/shared/model/employee.model.ts
create src/main/webapp/app/entities/employee/employee-update.component.ts
create src/test/javascript/spec/app/entities/employee/employee.component.spec.ts
create src/test/javascript/spec/app/entities/employee/employee-details.component.spec.ts
create src/test/javascript/spec/app/entities/employee/employee.service.spec.ts
create src/test/javascript/spec/app/entities/employee/employee-update.component.spec.ts
create src/test/javascript/e2e/entities/employee/employee.page-object.ts
create src/test/javascript/e2e/entities/employee/employee.spec.ts
create src/test/javascript/e2e/entities/employee/employee-details.page-object.ts
create src/test/javascript/e2e/entities/employee/employee-update.page-object.ts
force src/main/webapp/app/router/index.ts
force src/main/webapp/app/main.ts
create src/main/webapp/i18n/en/employee.json
force src/main/webapp/il8n/en/global.json
create src/main/webapp/i18n/hi/employee.json
force src/main/webapp/i18n/hi/global.json

OEBPS/Image00155.jpg
Employees

D

10

n

Name

mobile Fish

Table Computer

seamless Metal deposit

parsing red Chips

Home Loan Account

intangible

Gorgeous Frozen Pants

bluetooth

Planner Canyon

Table Small Frozen Sausages Planner

Superman

Age

77969

5808

5641

18340

706

61185

23277

19967

85994

80839

30

Dob

Dec 12,2019, 1:48 AM

Dec 12,2019, 5:09 AM

Dec 11,2019, 4:53 PM

Dec 12,2019, 1:21 AM

Dec 12,2019, 5:48 AM

Dec 12,2019, 6:34 AM

Dec 12,2019, 5:13 AM

Dec 12,2019, 6:59 AM

Dec 12,2019, 1:35 AM

Dec 12,2019, 6:55 AM

Jan 1, 1985, 12:00 AM

User

admin

© View

© View

© View

© View

© View

© View

© View

© View

© View

© View

© View

©
o
@
=
m
£l
=
5}
<
s
®

Edit

Edit

Edit

Edit

Edit

Edit

Edit

Edit

Edit

Edit

Edit

X Delete

X Delete

X Delete

X Delete

X Delete

X Delete

X Delete

X Del

X Delete

X Delete

X Delete

OEBPS/Image00156.jpg
info Using blueprint generator-jhipster-vuejs for entity-client subgenerator
create .jhipster/Employee.json
create src/main/resources/config/liquibase/changelog/20191212151024_added_entity_Employee.xml
create src/main/resources/config/liquibase/changelog/20191212151024_added_entity_constraints_Employee.xml
create src/main/resources/config/liquibase/fake-data/employee.csv
create src/main/java/com/mycompany/store/domain/Employee.java
create src/main/java/com/mycompany/store/repository/EmployeeRepository.java
create src/main/java/com/mycompany/store/web/rest/EmployeeResource.java
create src/test/java/com/mycompany/store/web/rest/EmployeeResourcelT.java
create src/test/java/com/mycompany/store/domain/EmployeeTest.java
conflict src/main/resources/config/liquibase/master.xml
? Overwrite src/main/resources/config/liquibase/master.xml? overwrite this and all others
force src/main/resources/config/liquibase/master.xml
force src/main/java/com/mycompany/store/config/CacheConfiguration.java
create src/main/webapp/app/entities/employee/employee-details.vue
create src/main/webapp/app/entities/employee/employee.vue
create src/main/webapp/app/entities/employee/employee-update.vue
force src/main/webapp/app/core/jhi-navbar/jhi-navbar.vue
create src/main/webapp/app/entities/employee/employee-details.component.ts
create src/main/webapp/app/entities/employee/employee.component.ts
create src/main/webapp/app/entities/employee/employee.service.ts
create src/main/webapp/app/shared/model/employee.model.ts
create src/main/webapp/app/entities/employee/employee-update.component.ts
create src/test/javascript/spec/app/entities/employee/employee.component.spec.ts
create src/test/javascript/spec/app/entities/employee/employee-details.component.spec.ts
create src/test/javascript/spec/app/entities/employee/employee.service.spec.ts
create src/test/javascript/spec/app/entities/employee/employee-update.component.spec.ts
create src/test/javascript/e2e/entities/employee/employee.page-object.ts
create src/test/javascript/e2e/entities/employee/employee.spec.ts
create src/test/javascript/e2e/entities/employee/employee-details.page-object.ts
create src/test/javascript/e2e/entities/employee/employee-update.page-object.ts
force src/main/webapp/app/router/index.ts
force src/main/webapp/app/main.ts
create src/main/webapp/i18n/en/employee.json
force src/main/webapp/il8n/en/global.json
create src/main/webapp/i18n/hi/employee.json
force src/main/webapp/i18n/hi/global.json

OEBPS/Image00153.jpg
v G test
> M java
~ @ javascript
v @ spec
v @ app
> W config
> 88 modules
> WA shared
B utilsts
B enzyme-setup.ts
8 storage-mock.ts
B jest.confjs
> @ resources

OEBPS/Image00154.jpg
Create or edit a Employee

Name
[
Age

30

Dob

01/01/0985, 00:00

User

system

OEBPS/Image00159.jpg
v @ test
> M java
v (@ javascript
> W e2e
~ G spec
~ (@ app
> B account
> M admin
v (@ core
> 8 error
> B home
> W jhi-footer
> B jhi-navbar
> ribbon
> @@ entities.
~ (@ shared
> m alert
> Wy config
> g data
B jest.confjs
@ protractor.confjs

OEBPS/Image00160.jpg
Create or edit a Employee

Name
[
Age

30

Dob

01/01/0985, 00:00

User

system

OEBPS/Image00157.jpg
Welcome, Java Hipster!

This is your homepage

If you want to sign in, you can try the default account
- Administrator (login="admin" and password="admin’)
- User (login="user" and password="user").

You donit have an account yet? Register a new account

If you have any question on JHipster:

« JHipster homepage
JHipster on Stack Overflow
JHipster bug tracker
JHipster public chat room
follow @jhipster on Twitter

If you like JHipster, donit forget to give us a star on GitHub!

This is your footer

OEBPS/Image00158.jpg
v @ src
~ @ main
> W docker
> java
> mjib
> @B resources
v @ webapp
~ @ app
> @@ account
> | admin
v @ core
> B8 error
> @@ home
> W jhi-footer
> m jhi-navbar
> 8 ribbon
> M locale
> B router
~ @ shared
> i alert
> B8 config
> oy data
> mm date
> m@ model
> | sort
@ jhi-item-count.component.ts
V jhi-item-count.vue
) app.component.ts
V app.vue
8 constants.ts
BB maints
[1s shims-vue.d.ts
B8 content
= i1sn
™ swagger-ui
B8 WEB-INF
B 404.html
% favicon.ico
B indexhtml
[manifest.webapp
B robots.txt

>
>
%
>

OEBPS/Image00165.jpg
Full Stack
Development
with JHipster

Second Edition

Build full stack applications and microservices with Spring Boot
and modern JavaScript frameworks

W.
<<, ‘5’

J& Packb

www.packt.com

Deepu K Sasidharan and Sendil Kumar N

