


Practical Linux 
DevOps

Building a Linux Lab 
for Modern Software 

Development

John S. Tonello



Practical Linux DevOps: Building a Linux Lab for Modern Software 

Development

ISBN-13 (pbk): 978-1-4842-8317-2		  ISBN-13 (electronic): 978-1-4842-8318-9
https://doi.org/10.1007/978-1-4842-8318-9

Copyright © 2022 by John S. Tonello 

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or 
part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal 
responsibility for any errors or omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail 
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a 
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc 
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for 
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Print 
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is 
available to readers on the Github repository: https://github.com/Apress/Practical-Linux-
DevOps. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

John S. Tonello
Baldwinville, NY, USA

https://doi.org/10.1007/978-1-4842-8318-9


iii

About the Author����������������������������������������������������������������������������������xi

About the Technical Reviewer������������������������������������������������������������xiii

Introduction�����������������������������������������������������������������������������������������xv

Chapter 1: �Gather Your Hardware����������������������������������������������������������1

The Basics: What You’ll Need to Build Your Linux Lab��������������������������������������������2

Using New Equipment for Your Lab������������������������������������������������������������������������3

CPU Core Considerations����������������������������������������������������������������������������������4

Memory Considerations������������������������������������������������������������������������������������5

Storage Considerations������������������������������������������������������������������������������������6

Using Old PCs and Laptops for Your Linux Lab������������������������������������������������������7

Raspberry Pis and IoT Devices�������������������������������������������������������������������������������8

Building Your Network������������������������������������������������������������������������������������������10

Managed vs. Unmanaged Switches���������������������������������������������������������������11

Using Your ISP Router�������������������������������������������������������������������������������������13

Deploy Managed and Unmanaged Switches��������������������������������������������������14

Use Network Bridges and Bonds to Improve Connectivity�����������������������������17

Tips for Avoiding Common Hardware Headaches������������������������������������������������18

Reserve IP Address Pools Now, Not Later�������������������������������������������������������19

Test and Document Your Configurations���������������������������������������������������������19

Conclusion�����������������������������������������������������������������������������������������������������������21

Table of Contents

https://doi.org/10.1007/978-1-4842-8318-9_1
https://doi.org/10.1007/978-1-4842-8318-9_1#Sec1
https://doi.org/10.1007/978-1-4842-8318-9_1#Sec2
https://doi.org/10.1007/978-1-4842-8318-9_1#Sec3
https://doi.org/10.1007/978-1-4842-8318-9_1#Sec4
https://doi.org/10.1007/978-1-4842-8318-9_1#Sec5
https://doi.org/10.1007/978-1-4842-8318-9_1#Sec6
https://doi.org/10.1007/978-1-4842-8318-9_1#Sec7
https://doi.org/10.1007/978-1-4842-8318-9_1#Sec8
https://doi.org/10.1007/978-1-4842-8318-9_1#Sec9
https://doi.org/10.1007/978-1-4842-8318-9_1#Sec10
https://doi.org/10.1007/978-1-4842-8318-9_1#Sec11
https://doi.org/10.1007/978-1-4842-8318-9_1#Sec12
https://doi.org/10.1007/978-1-4842-8318-9_1#Sec13
https://doi.org/10.1007/978-1-4842-8318-9_1#Sec14
https://doi.org/10.1007/978-1-4842-8318-9_1#Sec15
https://doi.org/10.1007/978-1-4842-8318-9_1#Sec16


iv

Chapter 2: �Setting Up a Virtual Environment���������������������������������������23

About the Proxmox Virtualization Environment (PVE)�������������������������������������������24

Set Up Proxmox����������������������������������������������������������������������������������������������������25

Post-install Configurations�����������������������������������������������������������������������������30

Prepare a Single-NIC Network Setup: VLAN-Aware���������������������������������������������33

Prepare a Dual-NIC Network Setup: VLAN-Aware������������������������������������������������34

Additional Storage Considerations�����������������������������������������������������������������������37

Thinking Ahead to Clustering��������������������������������������������������������������������������39

Deploy Your First VM��������������������������������������������������������������������������������������������41

Server Replication with Cloning and Templates���������������������������������������������������46

Deploy an LXC Template Container����������������������������������������������������������������������47

Set Up KVM����������������������������������������������������������������������������������������������������������52

Check for Virtualization Support���������������������������������������������������������������������54

Install KVM and Related Utilities���������������������������������������������������������������������55

Set Up Bridged Networking on AlmaLinux, Fedora, and openSUSE���������������������56

Set Up Bridged Networking on Debian and Ubuntu Desktops�����������������������������58

Set Up a Linux Bridge Using NetworkManager����������������������������������������������59

Set Up a Bridge Network with Netplan (Ubuntu)��������������������������������������������������66

Run virt-manager and Create Your First KVM VM�������������������������������������������68

Command-Line Deployments�������������������������������������������������������������������������������70

The Proxmox qm Command���������������������������������������������������������������������������70

The KVM virt-install Command�����������������������������������������������������������������������71

Conclusion�����������������������������������������������������������������������������������������������������������71

Chapter 3: �Set Up a DNS Server�����������������������������������������������������������73

Why It Matters������������������������������������������������������������������������������������������������������73

Planning Your Network�����������������������������������������������������������������������������������������74

Work with the Gear You Have�������������������������������������������������������������������������������75

Table of Contents

https://doi.org/10.1007/978-1-4842-8318-9_2
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec1
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec2
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec3
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec4
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec5
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec6
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec7
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec8
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec9
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec10
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec11
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec12
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec13
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec14
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec15
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec16
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec17
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec18
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec19
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec20
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec21
https://doi.org/10.1007/978-1-4842-8318-9_2#Sec22
https://doi.org/10.1007/978-1-4842-8318-9_3
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec1
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec2
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec3


v

Will You Have Multiple Networks (Dual-Homed)?������������������������������������������������75

What Domain Name Will You Use?�����������������������������������������������������������������������76

Reserving Pools of Addresses for Static and DHCP IP Addresses������������������������77

Configure Your Routers and Switches������������������������������������������������������������������79

Add Internet Access to Your Private Network Switch�������������������������������������79

To DHCP or Not to DHCP���������������������������������������������������������������������������������82

Deploy a VM to Host Your DNS Server������������������������������������������������������������������84

Using a Proxmox LXC Template����������������������������������������������������������������������������85

Install a Base Linux Template�������������������������������������������������������������������������86

Enable a Second Network Interface���������������������������������������������������������������87

Set Up Bind����������������������������������������������������������������������������������������������������������88

Configure named.conf������������������������������������������������������������������������������������89

Check Your DNS Configurations����������������������������������������������������������������������93

Create a Forward Zone File����������������������������������������������������������������������������94

Create a Reverse Zone File�����������������������������������������������������������������������������95

Set Up an Optional DNS Slave Server�������������������������������������������������������������99

Create a Second Host�������������������������������������������������������������������������������������99

Set Up the DNS Slave Zone Entries��������������������������������������������������������������101

Test Your DNS Slave�������������������������������������������������������������������������������������102

Graphical DNS Deployments and Management�������������������������������������������������104

Conclusion���������������������������������������������������������������������������������������������������������106

Chapter 4: �Setting Up an Email Server����������������������������������������������107

Set Up a DNS Server to Handle Email����������������������������������������������������������������108

Install Postfix and Dovecot���������������������������������������������������������������������������������112

Install Postfix�����������������������������������������������������������������������������������������������������114

Install Dovecot���������������������������������������������������������������������������������������������������116

Mail Server Security Considerations������������������������������������������������������������������117

Table of Contents

https://doi.org/10.1007/978-1-4842-8318-9_3#Sec4
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec5
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec6
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec7
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec8
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec9
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec10
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec11
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec12
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec13
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec14
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec15
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec16
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec17
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec18
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec19
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec20
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec21
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec22
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec23
https://doi.org/10.1007/978-1-4842-8318-9_3#Sec24
https://doi.org/10.1007/978-1-4842-8318-9_4
https://doi.org/10.1007/978-1-4842-8318-9_4#Sec1
https://doi.org/10.1007/978-1-4842-8318-9_4#Sec2
https://doi.org/10.1007/978-1-4842-8318-9_4#Sec3
https://doi.org/10.1007/978-1-4842-8318-9_4#Sec4
https://doi.org/10.1007/978-1-4842-8318-9_4#Sec5


vi

Initial Email Service Test������������������������������������������������������������������������������������119

Install Sendmail��������������������������������������������������������������������������������������������119

Install mailutils���������������������������������������������������������������������������������������������120

Test Sending and Receiving Mail������������������������������������������������������������������120

Set Up an Email Client to Use the Email Server�������������������������������������������������121

Install Postfix and Dovecot in a Docker Container���������������������������������������������124

Conclusion���������������������������������������������������������������������������������������������������������137

Chapter 5: �Building a LAMP Stack: Apache and PHP�������������������������139

Why LAMP?��������������������������������������������������������������������������������������������������������140

Configure a Web Server VM and Install the Packages���������������������������������������140

Update Your DNS Settings to Add Websites�������������������������������������������������������141

Install the Core LAMP Packages������������������������������������������������������������������������143

Create Two Web Server Directories��������������������������������������������������������������������144

Define Two Different Websites in Apache�����������������������������������������������������������145

Finalize Settings for the First Website���������������������������������������������������������������148

Configure Apache to Serve Up the Website Properly�����������������������������������������149

Create and Enable the Second Website�������������������������������������������������������������150

Take a Snapshot to Preserve Your Configuration�����������������������������������������������153

Use PHP with Your Website��������������������������������������������������������������������������������154

Test the PHP Installation�������������������������������������������������������������������������������154

Install RainLoop Webmail�����������������������������������������������������������������������������������157

Set Up RainLoop�������������������������������������������������������������������������������������������157

Set RainLoop Permissions����������������������������������������������������������������������������158

Configure RainLoop via the Admin Panel������������������������������������������������������158

Deploy Apache, PHP, and RainLoop as Docker Containers���������������������������������161

How the Containers Interact�������������������������������������������������������������������������161

Prepare the Docker Host������������������������������������������������������������������������������162

Table of Contents

https://doi.org/10.1007/978-1-4842-8318-9_4#Sec6
https://doi.org/10.1007/978-1-4842-8318-9_4#Sec7
https://doi.org/10.1007/978-1-4842-8318-9_4#Sec8
https://doi.org/10.1007/978-1-4842-8318-9_4#Sec9
https://doi.org/10.1007/978-1-4842-8318-9_4#Sec10
https://doi.org/10.1007/978-1-4842-8318-9_4#Sec11
https://doi.org/10.1007/978-1-4842-8318-9_4#Sec12
https://doi.org/10.1007/978-1-4842-8318-9_5
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec1
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec2
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec3
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec4
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec5
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec6
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec7
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec8
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec9
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec10
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec11
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec12
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec13
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec14
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec15
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec16
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec17
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec18
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec19


vii

Create a Docker Context for RainLoop����������������������������������������������������������162

Add Additional Docker Containers to the RainLoop Application�������������������165

Start the Multicontainer RainLoop Docker Application��������������������������������������168

Troubleshoot the Docker Deployment�����������������������������������������������������������169

Conclusion���������������������������������������������������������������������������������������������������������170

Chapter 6: Installing MariaDB and Creating a Simple Web 
Application����������������������������������������������������������������������������������������171

Set Up and Log In to MariaDB����������������������������������������������������������������������������172

Basic SQL Commands����������������������������������������������������������������������������������������175

Create MariaDB Users and Set Permissions������������������������������������������������������177

Create a Test MariaDB Database������������������������������������������������������������������������179

Create and Populate a Database Table��������������������������������������������������������������181

Add Data to a Table��������������������������������������������������������������������������������������������184

Update Table Entries������������������������������������������������������������������������������������������186

Delete Table Entries�������������������������������������������������������������������������������������������188

Read MariaDB Data with PHP����������������������������������������������������������������������������189

Containerize It����������������������������������������������������������������������������������������������������192

Create the PHP Container�����������������������������������������������������������������������������������192

Create MariaDB and Adminer�����������������������������������������������������������������������������193

Launch Your Containerized Stack�����������������������������������������������������������������������197

Try Out Adminer�������������������������������������������������������������������������������������������������199

Conclusion���������������������������������������������������������������������������������������������������������200

Chapter 7: �Web Server Alternatives���������������������������������������������������203

Deploy WordPress����������������������������������������������������������������������������������������������204

Create a WordPress System User�����������������������������������������������������������������207

Finish the WordPress Installation�����������������������������������������������������������������207

Install and Configure NGINX�������������������������������������������������������������������������������209

Table of Contents

https://doi.org/10.1007/978-1-4842-8318-9_5#Sec20
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec21
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec22
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec23
https://doi.org/10.1007/978-1-4842-8318-9_5#Sec24
https://doi.org/10.1007/978-1-4842-8318-9_6
https://doi.org/10.1007/978-1-4842-8318-9_6
https://doi.org/10.1007/978-1-4842-8318-9_6#Sec1
https://doi.org/10.1007/978-1-4842-8318-9_6#Sec2
https://doi.org/10.1007/978-1-4842-8318-9_6#Sec3
https://doi.org/10.1007/978-1-4842-8318-9_6#Sec4
https://doi.org/10.1007/978-1-4842-8318-9_6#Sec5
https://doi.org/10.1007/978-1-4842-8318-9_6#Sec6
https://doi.org/10.1007/978-1-4842-8318-9_6#Sec7
https://doi.org/10.1007/978-1-4842-8318-9_6#Sec8
https://doi.org/10.1007/978-1-4842-8318-9_6#Sec9
https://doi.org/10.1007/978-1-4842-8318-9_6#Sec10
https://doi.org/10.1007/978-1-4842-8318-9_6#Sec11
https://doi.org/10.1007/978-1-4842-8318-9_6#Sec12
https://doi.org/10.1007/978-1-4842-8318-9_6#Sec13
https://doi.org/10.1007/978-1-4842-8318-9_6#Sec14
https://doi.org/10.1007/978-1-4842-8318-9_6#Sec15
https://doi.org/10.1007/978-1-4842-8318-9_7
https://doi.org/10.1007/978-1-4842-8318-9_7#Sec1
https://doi.org/10.1007/978-1-4842-8318-9_7#Sec2
https://doi.org/10.1007/978-1-4842-8318-9_7#Sec3
https://doi.org/10.1007/978-1-4842-8318-9_7#Sec4


viii

Manually Install NGINX���������������������������������������������������������������������������������209

Configure NGINX�������������������������������������������������������������������������������������������210

Install NGINX Using a Proxmox Template�����������������������������������������������������������213

When a Little HTTP Is All You Need��������������������������������������������������������������������216

Python 3 http.server�������������������������������������������������������������������������������������216

Use the PHP CLI Built-In Server��������������������������������������������������������������������217

Run php-cli in a Container����������������������������������������������������������������������������218

Conclusion���������������������������������������������������������������������������������������������������������220

Chapter 8: �Containerizing and Automating Your Deployments����������221

Thinking in terms of Containers and Microservices������������������������������������������223

Deploy an NGINX Container��������������������������������������������������������������������������224

Automate Your NGINX Deployment���������������������������������������������������������������������226

Automate with Ansible����������������������������������������������������������������������������������227

Ansible Playbook Example����������������������������������������������������������������������������229

Apply the NGINX Playbook����������������������������������������������������������������������������233

Automate NGINX with Chef��������������������������������������������������������������������������������234

Create a Chef Cookbook and Recipes����������������������������������������������������������235

Create a Chef Recipe������������������������������������������������������������������������������������237

Create Templates������������������������������������������������������������������������������������������241

Create a Chef InSpec Profile�������������������������������������������������������������������������244

Apply and Test Your Chef Configuration��������������������������������������������������������246

Test with Test Kitchen�����������������������������������������������������������������������������������249

Conclusion����������������������������������������������������������������������������������������������������252

Chapter 9: �Server Management and Maintenance����������������������������253

A Closer Look at Webmin�����������������������������������������������������������������������������������254

Deploy Webmin with Chef����������������������������������������������������������������������������������257

Verify Your Webmin Installation��������������������������������������������������������������������������257

Table of Contents

https://doi.org/10.1007/978-1-4842-8318-9_7#Sec5
https://doi.org/10.1007/978-1-4842-8318-9_7#Sec6
https://doi.org/10.1007/978-1-4842-8318-9_7#Sec7
https://doi.org/10.1007/978-1-4842-8318-9_7#Sec8
https://doi.org/10.1007/978-1-4842-8318-9_7#Sec9
https://doi.org/10.1007/978-1-4842-8318-9_7#Sec10
https://doi.org/10.1007/978-1-4842-8318-9_7#Sec11
https://doi.org/10.1007/978-1-4842-8318-9_7#Sec12
https://doi.org/10.1007/978-1-4842-8318-9_8
https://doi.org/10.1007/978-1-4842-8318-9_8#Sec1
https://doi.org/10.1007/978-1-4842-8318-9_8#Sec2
https://doi.org/10.1007/978-1-4842-8318-9_8#Sec3
https://doi.org/10.1007/978-1-4842-8318-9_8#Sec4
https://doi.org/10.1007/978-1-4842-8318-9_8#Sec5
https://doi.org/10.1007/978-1-4842-8318-9_8#Sec6
https://doi.org/10.1007/978-1-4842-8318-9_8#Sec7
https://doi.org/10.1007/978-1-4842-8318-9_8#Sec8
https://doi.org/10.1007/978-1-4842-8318-9_8#Sec9
https://doi.org/10.1007/978-1-4842-8318-9_8#Sec10
https://doi.org/10.1007/978-1-4842-8318-9_8#Sec11
https://doi.org/10.1007/978-1-4842-8318-9_8#Sec12
https://doi.org/10.1007/978-1-4842-8318-9_8#Sec13
https://doi.org/10.1007/978-1-4842-8318-9_8#Sec14
https://doi.org/10.1007/978-1-4842-8318-9_9
https://doi.org/10.1007/978-1-4842-8318-9_9#Sec1
https://doi.org/10.1007/978-1-4842-8318-9_9#Sec2
https://doi.org/10.1007/978-1-4842-8318-9_9#Sec3


ix

Set Up Webmin for Multiple-Server Management���������������������������������������������260

Add Other Webmin Servers��������������������������������������������������������������������������260

Add Cluster Capabilities�������������������������������������������������������������������������������262

Test Some Cluster Actions����������������������������������������������������������������������������264

A More DevOps Way to Analyze Systems�����������������������������������������������������������265

Use Chef InSpec to Scan Systems����������������������������������������������������������������265

Apply a Linux Benchmark Profile������������������������������������������������������������������266

Create an InSpec Waiver File������������������������������������������������������������������������267

Other Ways to Apply InSpec Profiles������������������������������������������������������������������272

Apply an InSpec Profile via the Chef Supermarket���������������������������������������272

Create and Apply Your Own InSpec Profile���������������������������������������������������272

Some Useful Backup Tools���������������������������������������������������������������������������������274

Set Up Proxmox Replication�������������������������������������������������������������������������274

Back Up MariaDB Data���������������������������������������������������������������������������������275

Use Git to Store Your Code����������������������������������������������������������������������������276

Conclusion���������������������������������������������������������������������������������������������������������277

Chapter 10: �Extend Your DevOps Capabilities with Git����������������������279

Get Started with Git��������������������������������������������������������������������������������������������280

Create a GitHub Account�������������������������������������������������������������������������������280

The Advantage of SSH for Pushing���������������������������������������������������������������284

Create a New Git Repo���������������������������������������������������������������������������������284

Create Some Content������������������������������������������������������������������������������������286

Share Your Code�������������������������������������������������������������������������������������������291

Create a GitLab Host������������������������������������������������������������������������������������������295

Generate an SSL Key������������������������������������������������������������������������������������298

Use Your New GitLab Repo���������������������������������������������������������������������������302

Table of Contents

https://doi.org/10.1007/978-1-4842-8318-9_9#Sec4
https://doi.org/10.1007/978-1-4842-8318-9_9#Sec5
https://doi.org/10.1007/978-1-4842-8318-9_9#Sec6
https://doi.org/10.1007/978-1-4842-8318-9_9#Sec7
https://doi.org/10.1007/978-1-4842-8318-9_9#Sec8
https://doi.org/10.1007/978-1-4842-8318-9_9#Sec9
https://doi.org/10.1007/978-1-4842-8318-9_9#Sec10
https://doi.org/10.1007/978-1-4842-8318-9_9#Sec11
https://doi.org/10.1007/978-1-4842-8318-9_9#Sec12
https://doi.org/10.1007/978-1-4842-8318-9_9#Sec13
https://doi.org/10.1007/978-1-4842-8318-9_9#Sec14
https://doi.org/10.1007/978-1-4842-8318-9_9#Sec15
https://doi.org/10.1007/978-1-4842-8318-9_9#Sec16
https://doi.org/10.1007/978-1-4842-8318-9_9#Sec17
https://doi.org/10.1007/978-1-4842-8318-9_9#Sec18
https://doi.org/10.1007/978-1-4842-8318-9_9#Sec19
https://doi.org/10.1007/978-1-4842-8318-9_10
https://doi.org/10.1007/978-1-4842-8318-9_10#Sec1
https://doi.org/10.1007/978-1-4842-8318-9_10#Sec2
https://doi.org/10.1007/978-1-4842-8318-9_10#Sec3
https://doi.org/10.1007/978-1-4842-8318-9_10#Sec4
https://doi.org/10.1007/978-1-4842-8318-9_10#Sec5
https://doi.org/10.1007/978-1-4842-8318-9_10#Sec6
https://doi.org/10.1007/978-1-4842-8318-9_10#Sec7
https://doi.org/10.1007/978-1-4842-8318-9_10#Sec8
https://doi.org/10.1007/978-1-4842-8318-9_10#Sec9


x

Other GitLab Capabilities�����������������������������������������������������������������������������������303

A Bit on CI/CD�����������������������������������������������������������������������������������������������303

Create a GitLab Runner��������������������������������������������������������������������������������304

Register Your Runner with Your GitLab Instance������������������������������������������305

Create a Pipeline������������������������������������������������������������������������������������������306

Conclusion���������������������������������������������������������������������������������������������������������310

Chapter 11: �Automate System Deployments with Terraform������������311

Install Terraform�������������������������������������������������������������������������������������������������312

A Terraform Example with Docker���������������������������������������������������������������������313

Use Git to Track Your Work����������������������������������������������������������������������������315

Terraform Your First Bit of Infrastructure������������������������������������������������������316

Use Terraform with Proxmox������������������������������������������������������������������������������317

Configure Proxmox to Work with Terraform��������������������������������������������������317

Create a variables.tf File�������������������������������������������������������������������������������319

Create Your LXC with Terraform��������������������������������������������������������������������325

Make Updates or Destroy It All���������������������������������������������������������������������326

Conclusion���������������������������������������������������������������������������������������������������������327

�Index��������������������������������������������������������������������������������������������������329

Table of Contents

https://doi.org/10.1007/978-1-4842-8318-9_10#Sec10
https://doi.org/10.1007/978-1-4842-8318-9_10#Sec11
https://doi.org/10.1007/978-1-4842-8318-9_10#Sec12
https://doi.org/10.1007/978-1-4842-8318-9_10#Sec13
https://doi.org/10.1007/978-1-4842-8318-9_10#Sec14
https://doi.org/10.1007/978-1-4842-8318-9_10#Sec15
https://doi.org/10.1007/978-1-4842-8318-9_11
https://doi.org/10.1007/978-1-4842-8318-9_11#Sec1
https://doi.org/10.1007/978-1-4842-8318-9_11#Sec2
https://doi.org/10.1007/978-1-4842-8318-9_11#Sec3
https://doi.org/10.1007/978-1-4842-8318-9_11#Sec4
https://doi.org/10.1007/978-1-4842-8318-9_11#Sec5
https://doi.org/10.1007/978-1-4842-8318-9_11#Sec6
https://doi.org/10.1007/978-1-4842-8318-9_11#Sec7
https://doi.org/10.1007/978-1-4842-8318-9_11#Sec8
https://doi.org/10.1007/978-1-4842-8318-9_11#Sec9
https://doi.org/10.1007/978-1-4842-8318-9_11#Sec10


xi

About the Author

John S. Tonello writes about technology, software, infrastructure as code, 

and DevOps and has spent more than 20 years working in and around the 

software industry for companies like Tenable, HashiCorp, SUSE, Chef, and 

Puppet. He’s spent more than 25 years building Linux-based environments 

and regularly publishes a wide range of how-to guides and blogs about 

DevOps, Linux, and software-defined infrastructure.



xiii

About the Technical Reviewer

Nathan Haines is an instructor and a computer technician who has been 

using Linux since 1994. In addition to occasional programming projects 

and magazine articles, he is a member of Ubuntu, where he helps spread 

the word about Ubuntu and Free Software.



xv

Introduction

�The Power of Linux
When my mother gave me a cast-off x386 IBM-clone computer in the 

mid-1990s, I wasn’t entirely sure what I was going to do with it, but I felt 

impelled to get it running. My biggest challenge in doing so was economic, 

not technical. I was too cheap to buy a licensed copy of Windows 3.1 and 

went hunting for an alternative. Fortunately, I came across a book titled 

Linux Installation & Getting Started by Matt Welsh, which showed me 

everything I needed to get started. I downloaded the Slackware Linux 

installation files over a 56k modem, wrote them to a stack of floppy disks, 

and literally gave an audible hoot when I got the system up and running.

The moment markedly changed my future, with Linux and open 

source software becoming a key part of my life, first as a hobby and 

ultimately as a career.

Other early Linux adopters have similar stories to tell, and like them, 

I was fascinated by the ability to freely download and install a complete 

operating system and do “real computing.” In the ensuing years, I bought 

my share of thick Linux texts, installed hundreds (perhaps thousands) of 

Linux systems, and learned how to use and rely on open source software. 

That experience is encapsulated in this book.

A lot has changed in the technology world in the 30-plus years since 

Linus Torvalds first released Linux (and the hard-working kernel) in 1991, 

and much has been written about it. It’s no accident that Linux and the 

Internet grew up together. Linux remains a critical component of the 

technical landscape, spawning whole industries and many well-paying 

jobs. It’s at the core of modern life, though few recognize that fact. Today’s 



xvi

software developers certainly have heard of it, but many have never had a 

chance to really explore it.

Practical Linux DevOps is written to be a go-to Linux book for IT 

practitioners—or those who want to be—who want to explore Linux 

and the technologies that make modern software happen. It provides 

real-world tutorials and examples centered around DevOps practices, 

the concept of continuously building, testing, and deploying software 

applications that bridge the development side (think software and security 

engineers) and operations (think hardware administrators). DevOps is 

how modern software is made, and Linux is in the midst of it all. This 

book seeks to teach you practical Linux concepts within the context of 

DevOps, giving you the knowledge you need to confidently continue your 

exploration.

�Learning to Fish
The chapters in this book represent the culmination of my experience 

with Linux and open source software with new users in mind. I attempt to 

explain concepts in terms anyone can understand, and provide enough 

context to explain the whys, not just the hows. I want to leave you wanting 

more and with the ability to reason out how to keep learning. The adage 

goes, “If you give a man a fish, you feed him for a day. If you teach a man to 

fish, you feed him for a lifetime.” The goal of Practical Linux DevOps is to 

teach you how to fish (and not fear the command line).

Where can Linux take you? With Linux running on NASA’s 

Perseverance rover that’s exploring Mars, the sky is no longer the limit. 

This book will help you become part of it all.

Introduction



xvii

�Tips for Setting Up Your Environment
�Your Workstation
This book presumes you’ll use a Linux workstation for all the work you 

do, not just the virtual machines and containers you create. As you’ll 

read in Chapter 1, you can make good use of older hardware for a Linux 

workstation. The examples in this book mostly use Ubuntu (based 

on Debian), and there are many flavors of Ubuntu and other Linux 

distributions that can run on older Windows and Macintosh computers. 

I recommend using an existing spare machine, but if money is no object, 

feel free to get a new or used Intel- or AMD-based machine and install 

Linux on it.

�Environment Settings
After installing a fresh Linux desktop, there are a few steps I always take 

to make the workstation environment comfortable to my way of working. 

For example, when you run commands as a superuser (something you’ll 

do all the time), sudo requires a password. When you’re running dozens 

or hundreds of sudo commands a day, this can become tiring. I solve that 

problem by creating a file in /etc/sudoers.d/ that gives me superuser 

privileges without requiring a password.

To do this, create a new file in /etc/sudoers.d and add the 

following line, replacing <username> with the username you use on your 

Linux system:

$ sudo vi /etc/sudoers.d/<username>

<username> ALL=(ALL) NOPASSWD:ALL

Introduction

https://doi.org/10.1007/978-1-4842-8318-9_1


xviii

After you save this file, you’ll be able to run sudo commands without 

entering a password. Of course, this isn’t exactly secure and shouldn’t 

automatically be added to production systems, but when you’re working 

on your Linux workstation, it saves a lot of time and hassle.

�Terminal Look and Feel

You’ll spend a lot of time in your Linux terminal, so take a moment to make 

it comfortable. There’s no need to squint at tiny text or colors you don’t 

like. Xterm and other modern Linux terminals allow you to easily adjust 

the font, font size, text colors, and background. I recommend editing the 

preferences to make your terminal suit your tastes.

�Power Settings

It might seem like a little thing, but I hate when my workstation screen 

goes to sleep too often. By default, many Linux desktops go to sleep 

after just five minutes. You might look away for a few minutes to check 

headlines or focus on another machine, and you’ll have to log back in.  

I recommend going into your system’s Power settings to adjust the screen 

timeout to at least 30 minutes.

�Multiple Computers, One Mouse and Keyboard

If you’re running your Linux machine alongside another separate 

workstation, such as Windows or Macintosh, it can be quite cumbersome 

to have two different keyboards and mice. I resolve this by using a little tool 

called Barrier, a fork of Synergy, that allows you to share your mouse and 

keyboard with multiple systems on the same network. The machine with 

your physical keyboard and mouse attached becomes the Barrier server; 

every other machine becomes a Barrier client. You can set the geometry 

(left, right, up, or down) relative to your server machine and seamlessly 

control, copy, and paste (but not drag and drop) many different Linux, 

Windows, and Macintosh computers with a single keyboard and mouse.

Introduction



xix

�SCP

There are times when you need to move files from one Linux machine to 

another. You can email them to yourself, but I’ve found the tool SCP to 

be the best way to move files. It uses SSH to copy files or folders from one 

system to another. There’s no need to use FTP or other means:

$ scp /path/to/local_file username@remote_host:/path/to/

remote_file

You can copy whole directories using SCP by adding the -r 

(recursive) flag:

$ scp -r /path/to/local_folder username@remote_host:/path/to/

remote_folder

�Set Up Passwordless SSH

When you’re regularly SSHing or SCPing between machines, it can save a 

lot of time if you set up SSH keys between them. This enables you to use 

ssh and scp without having to always enter a password.

To set this up, start by creating an SSH key on your workstation:

$ ssh-keygen

Follow the prompts, but do not provide a password for the key.  

Then copy the newly generated key to one or more target systems:

$ ssh-copy-id username@remote_host

You’ll be prompted to enter a password when you first use ssh-copy-

id to copy the key, but never again after that. This simple setup makes for 

a more seamless integration between multiple Linux (and Macintosh) 

machines.

Introduction



xx

�Enjoy the Ride
With that, you’re ready to start digging in. Be sure to take advantage of the 

GitHub repo associated with this book for code examples. They’ll get you 

moving quickly and help you avoid having to manually type out longer 

code snippets.

Introduction



1

CHAPTER 1

Gather Your Hardware
To start building your Linux lab for DevOps, you first need to assemble 

some hardware. The idea is to be able to experiment without messing 

up your workstation with applications and packages that could leave it 

unstable or even unusable. In this chapter, you’ll deploy everything for 

your lab on a separate machine, or machines, where you can install what 

you need without worrying about wrecking your daily driver.

Today, public cloud providers are a big part of DevOps, making it 

relatively simple to spin up instances and get to work. Unfortunately, 

services like AWS and Azure obscure some important aspects of the 

environment itself and, of course, cost money. By building your own 

local Linux lab, you’ll get the benefits of speed and ease without having 

to worry about costs. Along the way, you’ll also learn a lot about the full 

environment your servers and applications are living in, giving you a 

greater insight—and greater abilities—to manage it all.

This book presumes you have access to the following:

•	 At least one separate physical computer system

•	 At least one basic network switch

•	 Perhaps a spare monitor, keyboard, and mouse

•	 Ethernet and peripheral cables to put it all together

If you’re like most tech-curious pack rats, you probably have some 

older equipment lying around that will do the job. If not, the goal is to get 

you up and running without spending a lot of cash.

© John S. Tonello 2022 
J. S. Tonello, Practical Linux DevOps, https://doi.org/10.1007/978-1-4842-8318-9_1

https://doi.org/10.1007/978-1-4842-8318-9_1#DOI


2

�The Basics: What You’ll Need to Build Your 
Linux Lab
The principles of building your lab environment are simple. Create a beefy 

virtual machine (VM) host with as much memory and CPU resources as 

possible so you can create as many VMs and Linux containers (LXCs) as 

possible.

Here are the basics for each physical lab node, which will run the 

Proxmox Virtualization Environment:

•	 A 64-bit-capable CPU, such as an Intel i3, i5, or i7 or 

AMD Ryzen 3, 5, or 7

•	 At least 8GB of RAM

•	 A spinning disk or solid-state drive (SSD) that’s at 

least 256GB

•	 An Ethernet port

•	 One VGA or HDMI video port

•	 One free USB port

For a more robust lab that will provide more speed, performance, and 

flexibility, each physical node should have

•	 At least 32GB of RAM

•	 Multiple hard drives or SSDs

•	 Two Ethernet ports

When you’re building your lab, it’s important to spend a little time 

thinking about your ultimate goal. Will you be running dozens of virtual 

machines or just a couple? How important is performance? Will you have 

an intricate network layout or something simple? Even if you don’t know 

the answers to these questions now, keep them in mind as you plan to 

Chapter 1  Gather Your Hardware



3

add capabilities. For example, when using Proxmox as your virtualization 

environment (described in detail in Chapter 2), you can’t easily add 

machines to a cluster if you’ve already added VMs to the running 

environment. That means you need to set up two or more Linux lab hosts 

before you start deploying any virtual machines.

�Using New Equipment for Your Lab
Part of the fun of building a Linux lab is finding new ways to put older gear 

to use, and you can certainly do that to accomplish most of the projects in 

this book. Sometimes, however, old hardware can be more trouble than 

it’s worth, and starting with clean, modern systems can get you up and 

running quickly and with less frustration.

It wasn’t so very long ago that if you wanted a computer with an 

eight-core CPU, 32GB of RAM, and a 1TB drive, you needed to buy a big, 

expensive blade server. Today, such systems are commonplace, much 

smaller, and far cheaper than ever before. Some good candidates for 

home-based Linux labs on a budget include products made by Intel, 

Gigabyte, ASRock, Asus, and Kingdel.

For the most part, you’ll want mini PCs or tower systems for your Linux 

lab host servers. The former are small and compact and don’t consume 

much power. The latter give you the most flexibility for CPU, RAM, and 

storage. Laptops are effective also, but the price point is probably more 

than you want to spend, although a laptop rig can mean fewer cables and 

peripherals. No need to drag out a monitor, keyboard, and mouse when 

you want to do initial configurations.

Something to keep in mind is that you’ll access your Proxmox server 

remotely via a browser-based dashboard and, occasionally, a remote shell. 

Once it’s initially configured, you’ll manage the environment from your 

workstation. The host machine will run headless.

Chapter 1  Gather Your Hardware

https://doi.org/10.1007/978-1-4842-8318-9_2


4

�CPU Core Considerations
All the mini PCs built by the vendors mentioned previously come in 

various sizes and capabilities, including bare-bones systems without 

memory or hard drives preinstalled. Shop for devices that have the fastest 

x86_64 (Intel or AMD) CPUs and the most cores you can afford. The 

more cores the underlying system has, the more virtual CPUs you’ll have 

available for your virtual machines. That’s particularly important as you 

deploy solutions like Kubernetes or OpenStack, which require you to 

have several machines running simultaneously. Without enough CPUs, 

performance will suffer, which, in some cases, renders your Linux lab too 

slow to use.

You can use ARM-based CPUs as well, but recognize that the 

architecture still is not as robust a development environment as x86_64. 

Yes, many applications will run fine on ARM-based processors, but some 

bleeding-edge or legacy applications may not be available.

Another thing to keep in mind if you’re planning to use a mini PC is 

its limited expandability. Some of these small boxes come with the CPU 

soldered to the motherboard, meaning you can’t remove it or replace it. If 

you’d rather not go the mini PC route and prefer a tower-sized system that 

can, say, accommodate a removable CPU or many internal hard drives, 

opt instead for those systems. Just keep in mind that these systems are 

generally noisier and consume more power.

Of course, be sure that any system you choose supports Linux, even if 

it initially comes with a flavor of Windows installed. Traditional BIOS or 

UEFI booting frameworks are fine. With Proxmox you can deploy systems 

with SeaBIOS and OVMF, an open source UFI implementation.

A CPU with multiple cores—typically four—is critical for running 

multiple virtual machines at the same time. In the next chapter, you’ll learn 

about the virtualization platform, but for now, be aware that the faster the 

CPU and the more cores each of your Linux lab machines has, the better.

Chapter 1  Gather Your Hardware



5

Each virtual machine you create on top of your Proxmox system will 

consume both CPU and RAM from the host system, so you can never have 

too much of either. Some applications are CPU-intensive; others are RAM-

intensive. The host environment will share everything among the VMs, 

so the more memory you have, the more systems you can create, and the 

more robust they’ll be.

At the same time, the virtualization environment will commit only the 

necessary CPU and RAM to your running VMs, so even though you might 

assign, say, an openSUSE system 8GB of RAM, it might require only 2GB 

most of the time it’s running. The rest of the Proxmox host’s RAM is free to 

be used by other running systems.

�Memory Considerations
As I mentioned earlier, the more memory you can afford, the better 

when it comes to deploying a versatile Linux lab. Generally speaking, 

mini computers like those listed previously may have a hard limit of 

32GB. That’s nothing to sneeze at, but an affordable tower machine will 

likely give you the ability to easily double or triple that amount.

If you come across a good deal on a mini computer with just 4GB of 

RAM, don’t buy it with such little memory. Plan to add more. Since most 

motherboards—large or mini—want memory chips installed in pairs, you 

might be limited to adding just another 4GB chip, which would give you 

only 8GB total in most mini PCs, which typically have only two RAM slots. 

It’s better to order the device with at least one 8GB RAM chip so you can 

expand it later.

Remember, it can be tricky to buy the correct memory for a computer, 

and some computers require RAM chips that are far more expensive than 

others. Check the technical specs before buying.

Chapter 1  Gather Your Hardware



6

�Storage Considerations
The price of most storage devices continues to drop, and you shouldn’t 

have any trouble finding a 500GB SSD for about the price of this book. 

SSDs and the newer NVMe solid-state drives are fast and come in many 

different sizes. Plan on at least half a terabyte, but if you can afford more, 

buy it. Proxmox itself doesn’t require much disk space at all. The disks you 

use will be filled by your virtual machines.

If you’re planning to mix and match new drives with old ones, that’ll 

work fine. Just be sure to have a physical machine that can fit them all and 

has enough motherboard connectors to accommodate them. One scenario 

is to install Proxmox itself (the server runs a version of Debian Linux) on a 

smaller drive and reserve additional drives for your VMs.

Some mini devices come with NVMe connectors and no SATA 

connectors. You can get PCIe adapters that plug into a device’s USB 3.0 

port to add external storage, which can be an inexpensive option. Without 

SATA interfaces, you won’t be able to add an SSD as a secondary internal 

drive, and in those situations, you’ll want to install the biggest single drive 

you can afford. Most towers, on the other hand, have motherboards with 

six or more SATA drive connectors, ideal for your older spinning SATA 

drives and most SSDs. NVMe drives are a different matter. They require a 

special slot. Do your homework before shelling out.

You can make do with spinning hard disks, but recognize that they’ll be 

slower than SSDs when it comes to reading and writing data. For example, 

an operating system running on a spinning disk will take longer to boot 

than one booting from an SSD. Depending on your use cases, an SSD’s 

higher input/output (I/O) speed can make a big difference and make life 

less tedious, but they’re not critical for your lab hosts.

If you have several older drives available and your lab host nodes have 

the room, install as many as you can. You’ll be able to take advantage 

of those drives, even if they’re relatively small. I’ve built nodes with a 

laughably small 60GB drive that enabled me to run several VMs without 

Chapter 1  Gather Your Hardware



7

any trouble. That’s because the virtual machines you create all use thin 

provisioning, which means they don’t consume any disk space until they 

need it. If you install Ubuntu on a 32GB virtual disk, it initially uses only 

5GB, but the virtual machine won’t touch the other 27GB you committed 

until it needs it.

A Linux lab based on a virtualization platform like Proxmox or 
VMware gives you the ability to overcommit all the physical system’s 
resources without requiring you to do any tricky math to make 
everything work.

�Using Old PCs and Laptops for Your 
Linux Lab
Although it’s true that new computers and networking gear can save you 

some time and frustration, there’s a lot to be said for older hardware you 

might already have.

The first Linux lab I built was on an older tower desktop machine with 

an Intel i3 quad-core processor with 8GB of RAM and a 1TB spinning drive. 

It had two Ethernet ports and served my needs for years. In fact, I still have 

it and fire it up from time to time. You may have similar older desktops or 

laptops like mine gathering dust that can serve as nodes for your lab cluster.

The most important consideration for using older gear is the system’s 

underlying architecture. Though you can still install Linux distributions 

on 32-bit systems, they don’t make good Linux lab hosts because 

virtualization is limited or unavailable. For virtualization, you need the 

multi-threading capabilities of 64-bit systems. How can you tell the 

difference? Check the vendor’s website for the original technical specs on 

the machines you have. That’ll give you a good start.

Chapter 1  Gather Your Hardware



8

An old laptop might be another good choice, particularly if portability 

is important to you. You can take your lab on the road if necessary (or at 

least to work).

If the system you’re planning to use is running Windows, open the 

file manager (or any folder) and right-click the This PC icon and choose 

Properties. You’ll see the system configuration there. If you have an Intel-

based Mac, you can click the apple in the top-left corner and choose 

System Properties to see what it has under the hood. If there’s no OS 

installed on the system, you can boot a live Linux USB and follow the 

instructions in Chapter 2 to check the system.

It’s tempting to want to build a Linux lab environment right on your 

main workstation or perhaps set up a dual-boot configuration so you 

can switch back and forth. That’s a workable option, particularly if you’re 

digging into containerized environments with Docker and the like. 

However, I don’t recommend it as the single resource for your DevOps lab. 

Later chapters will take you through container basics so you’ll get a chance 

to work with microservices, but the idea here is to have a fully independent 

environment to work on and access from your regular workstation. Even 

if you’re someone who always keeps their workstation up and running, 

this isn’t quite enough for a good lab. Instead, find at least one separate 

machine to use.

�Raspberry Pis and IoT Devices
Internet of Things (IoT) devices are becoming an important part of the 

hardware landscape, and you can definitely incorporate such devices into 

your lab environment. One of the best and easiest ways to do that is to get a 

few Raspberry Pis.

Chapter 1  Gather Your Hardware

https://doi.org/10.1007/978-1-4842-8318-9_2


9

Though there are many, many single-board devices from which to 

choose, including the Pine64 and Orange Pi, Raspberry Pi devices are a 

good choice because they support a wide variety of Linux OSes (including 

the Debian-based Raspbian default), they’re inexpensive, and they have a 

vast community of developers. This last point is important when it comes 

time to deploy applications and services because chances are good that 

someone else has tried what you want to do, and the Internet is full of 

guides and information. No other single-board device has as much readily 

available content for you to take advantage of when you’re stuck.

When buying Raspberry Pis for your Linux lab, be sure to get a model 

that’s at least version 3. RPi4 models are even better. These have faster 

CPUs, more RAM, and onboard WiFi and Bluetooth. Check with the 

vendor for the best storage options, armed with the knowledge that not all 

SD cards are suitable (durable and fast enough) to run a Raspberry Pi.

If you buy your Raspberry Pis as standalone devices, and not as part of 

a kit, be sure you get enough mini-USB and USB-C cables to power them. 

The Raspberry Pi 4 uses USB-C for power and has micro HDMI ports, so 

you’ll need an adapter to connect to monitors with full-size HDMI ports. 

Most of the time, you’ll run your Raspberry Pis headless—with no monitor 

or keyboard—but initial configuration often requires these interfaces.

Something else that’s handy with RPis is a USB power hub. These 

enable you to plug five or more mini-USB cables into a single device that 

uses just one wall outlet. This is a much better option than adding power 

strips to accommodate half a dozen wall warts.

Raspberry Pis are small, so you can fit a lot of them in very little space. I 

like to buy inexpensive racks to hold four or more in a neat stack.

Once considered a mere plaything, the Raspberry Pi is now anything 

but. They can power 4k monitors, and with the additional USB storage, you 

can use them as media streaming devices. In your lab environment, they 

are a great choice for deploying applications and containers, giving you the 

option to expand your lab for very little money.

Chapter 1  Gather Your Hardware



10

In my own lab, I’ve deployed a four-RPi cluster to host containerized 

applications and even a full-fledged Ceph storage cluster. Of course, the 

performance for storage isn’t something you’d use in production, but 

for applications that require multiple devices, they provide an excellent, 

inexpensive learning platform.

The capabilities of modern RPis make them even more useful for lab 

environments, and it’s possible to build an entire Linux environment using 

just them and your workstation. I won’t go into a lot of detail of how to 

accomplish this, but it’s something to keep in mind if you’re limited on 

resources and cash. For the purposes of this book, consider them excellent 

supplements, but not primary resources.

�Building Your Network
In order for your Linux lab to be truly valuable for all the DevOps work 

you want to do, it must connect to a network so you can install packages, 

remotely access it via the shell, and have it serve up resources like web 

pages and DNS information. That requires at least a single Ethernet 

interface on the host machine itself.

Fortunately, you have a lot of choices and can get great performance 

without having to spend much money. Well-known vendors, such as 

NETGEAR, Dell, D-Link, Linksys, and TP-Link, make suitable 1GB 

networking devices for your lab hosts, if they’re not built in already.

If you plan to use an older system, you can make do with a 100MB 

Ethernet port, but a 1GB connection is better. Everything in your lab 

environment will perform better with faster networking, and network 

installations can really fly with the additional bandwidth. Of course, to take 

advantage of a 1GB network interface on any Linux lab host, you’ll need a 

network switch capable of handling 1GB speeds. Many low-cost options 

are available.

Chapter 1  Gather Your Hardware



11

Running two separate networks is ideal for your lab environment, 

and for lab purposes that requires two separate network interfaces on 

your physical systems, including your separate workstation. Ideally, these 

should be physical Ethernet ports or USB 3 dongles, but one physical port 

and WiFi capability can be better than just a single port. Two separate 

network interfaces enable you to isolate your network traffic and help 

keep your lab secure. If you’re relying solely on your home network that 

everyone in your house uses for Netflix, having a separate lab network 

allows you—and your family—to avoid slowdowns.

The principle here is to create one network for all your lab traffic 

and one network for accessing the Internet. In a home environment, you 

typically accomplish the latter via the router provided by your ISP. The 

former would be a private network using a small gigabit Ethernet switch 

or router.

WiFi is robust enough to support most of the applications and 
deployments described in this book, but getting it to work can be 
tricky, and it’s not always as robust as a wired network interface. If 
you’re okay with spending a little more time and having a few more 
hiccups, try it.

�Managed vs. Unmanaged Switches
If you’re just starting out, unmanaged switches are easy to use and cheap 

to buy. They provide everything you need to get a simple network up 

and running. Just plug in some Ethernet cables, connect them to your 

workstation and lab hosts, and you’re off and running. They move network 

traffic well and are pretty foolproof.

Chapter 1  Gather Your Hardware



12

If you’re planning a more robust environment, get yourself a managed 

switch. These enable you to add a number of network configurations 

that can greatly extend the capabilities of your Linux lab. For example, 

a managed switch with 802.1Q capabilities enables you to create virtual 

LANs, or VLANs you can use to segregate network traffic and improve 

performance for certain deployments. If one of your end goals is to 

become more adept at networking, plan to get a managed switch.

If you’re buying new networking gear, it’s certainly possible to get 

decent performance out of a basic eight-port switch, but you may find 

that you quickly run out of ports and throughput. Although even a four-

node lab cluster plus your workstation will use up only five ports on an 

eight-port switch, what happens when you want to plug in a spare laptop, 

another switch, and a couple Raspberry Pis? Suddenly, what seemed like a 

wealth of riches isn’t so great.

Consider getting a device with 16 or 24 ports so you never run out. Also 

think about what else you might someday want to plug in to your switch. 

Do you have designs on some cool power-over-Ethernet (PoE) cameras? 

These and other devices get their power from the Ethernet switch, which 

can be handy in all sorts of real-world applications.

If you don’t want to buy anything to get started and all you have is a 

four-port 100MB switch (or old router), use it. You can always upgrade 

later without too much fuss.

Finally, give some thought to Ethernet cables. You’ll need Cat 5 or Cat 

6 (for less cross talk), and you’ll likely need cables of different lengths. If 

you’re super neat and tidy, a bag of 3-foot cables will do. Most of us aren’t 

so fastidious, so get yourself a mix of 12-inch, 3-foot, 6-foot, and even 

longer cables. There always seems to be a time when I need to stretch a 

cable across my desk to reach a system I want to attach for some reason or 

another. Avoid frustration by getting different cables of different lengths 

and ones that come in different colors to help you keep things straight.

Chapter 1  Gather Your Hardware



13

�Using Your ISP Router
If you’re building your Linux lab at home, you can take advantage of the 

router provided by your ISP. Newer routers now typically offer 1GB wired 

network speeds and dual-band wireless. If the router is physically located 

near your lab, you can plug your workstation and Proxmox virtualization 

hosts into it, and you’re off and running.

However, there are a few caveats. All your home-based network traffic uses 

this router, which can mean bottlenecks. Everything in your house will have 

access to your Linux lab and vice versa, which can create security concerns. 

ISP-provided routers usually have only four ports, which is barely enough for a 

versatile lab environment. If you’re going down this path, consider connecting 

another switch to one of the LAN ports to get more usable ports.

If your ISP router isn’t located in the same place as your Linux lab, you 

can bring good network speeds to another location in your home by using 

Ethernet-over-power devices. These plug in to any standard three-prong 

power outlet and provide one or more Ethernet ports. Plug one in to a 

power outlet near your ISP-provided router and use an Ethernet cable to 

connect it to one of the router’s LAN ports. Plug a second Ethernet-over-

power device into a power outlet where your lab is located, and connect 

it to your network switch. You now have wired Ethernet without having to 

string cables. Keep in mind that these devices aren’t completely perfect, 

but they offer a good way to extend your home network physically.

If you’re just starting out, using your ISP router is a solid option, but 

ultimately, it’s better to invest in a second router or switch to isolate your 

lab network traffic.

When I first started building Linux lab environments, I used old 

wireless routers for all my networking needs. These were 100MB four- 

and eight-port devices that worked great for linking together a bunch of 

machines and Raspberry Pis. They performed well, and because they had 

built-in DHCP capabilities and WiFi, it was easy to add network addresses 

dynamically to everything that came online.

Chapter 1  Gather Your Hardware



14

If you have an old router lying around, I recommend using it. Even if 

you decide later to add a full-blown modern switch to your environment, 

these old routers work great for DHCP and are easy to expand by adding a 

multi-port switch to one of the existing LAN ports.

Most mini PCs come with a single Ethernet port, but what if you want 

two? Well, first see if the device you have in mind is sold in a dual-Ethernet 

configuration, such as the Kingdel models. If not, make sure the device has 

a fast USB 3.0 port you can use to attach a USB-to-Ethernet adapter. These 

adapters are inexpensive and work well for giving any system a second (or 

third or fourth) Ethernet port. Be sure any adapters you buy support Linux, 

and remember that USB 3.0 versions are much faster than USB 2.0.

�Deploy Managed and Unmanaged Switches
In the next chapter, I’ll discuss how to add two different networks to your 

workstation and lab servers, but here are a couple tips when adding a 

second router to your environment. The general idea is to create two 

entirely separate network subnets so all your traffic is isolated.

Nearly every consumer-grade router comes preconfigured to use a 

common private subnet like 192.168.0.0/24 or 192.168.1.0/24, which 

provides 254 usable addresses for your computers, phones, TVs, and what 

have you. In order to use a second router alongside the first, you need 

to reset the second device’s subnet to something different from the first. 

If your ISP router uses 192.168.1.0/24, you can set your lab router to 

something like this:

•	 10.128.1.0/24

•	 172.16.1.0/24

•	 192.168.2.0/24

Chapter 1  Gather Your Hardware



15

Each of these options provides 254 usable addresses, which are plenty 

for a lab environment. The subnets listed below are part of the IPv4 private 

address space, which means they’re not publicly routable on the Internet. 

The full range of private addresses you have available are as follows:

•	 10.0.0.0/8 IP addresses: 10.0.0.0 to 10.255.255.255

•	 172.16.0.0/12 IP addresses: 172.16.0.0 to 172.31.255.255

•	 192.168.0.0/16 IP addresses: 192.168.0.0 to 

192.168.255.255

Since my home-based ISP router is set to 192.168.1.0/24, I used the 

10-net space for my lab (10.128.1.0/24).

To set up the lab router

•	 Reset it to its factory defaults.

•	 Connect it to an isolated workstation (not one already 

connected to another 192.168.1.0/24 address).

•	 Set the workstation to get its network configuration 

via DHCP.

•	 Log in to the router using the default IP address 

provided by the vendor.

•	 Edit the address range to what you want, setting the 

router’s IP address to the first IP in the subnet range 

(i.e., 10.128.1.1).

•	 Apply the changes to the router.

•	 Disconnect and reconnect your workstation and access 

it via 10.128.1.1 (in this example).

These procedures vary a bit by device, but are straightforward. Once 

you’re able to connect to your lab switch on its new private address, go 

in and edit the router’s DHCP settings, as shown in Figure 1-1. Instead 

Chapter 1  Gather Your Hardware



16

of having the router offer addresses between, say, 10.128.1.2 and 

10.128.1.255 by default, change the lower number to something like 

10.128.1.129. This will allow you to use addresses 2–128 for static IP 

addresses later.

Figure 1-1.  Setting DHCP range on the lab network router. 
The addresses 10.128.1.129 to 10.128.1.254 will be handed out 
automatically. The rest of the subnet can be used for static addresses

If you want your private network to be able to reach the Internet, you’ll 

need to use an Ethernet cable to connect any LAN port on your ISP router 

to the WAN port on the lab router. When I do this, I like to assign a static IP 

for the purpose, which means setting up a static IP address on the public 

router (something like 192.168.1.4) and assigning that address to the 

WAN port on the private router. You also can do this via DHCP from your 

ISP router, but it’s best to make the link between your lab router and your 

ISP router a static address to avoid connectivity issues and to keep things 

orderly.

Chapter 1  Gather Your Hardware



17

In a /24 network (pronounced “slash 24”), you’re setting the broadcast 

to 255.255.255.0, which is sort of the sweet spot for network overhead. 

Anything bigger than a /22 (identified as 255.255.252.0 with 1,024 

usable addresses) starts to add network overhead that can slow traffic. 

That overhead can slow things down and start to make things tough to 

troubleshoot. Start small, and grow later if necessary.

�Use Network Bridges and Bonds 
to Improve Connectivity
Adding network bridges to your workstation and your virtual machine 

hosts gives you significantly more flexibility, and you’ll learn how to 

deploy them in Chapter 2. The key advantage is the ability to route virtual 

machine traffic, including virtual LANs (VLANs), across the network and 

not have network traffic isolated to a single machine.

For example, if you set up Kernel-based Virtual Machine (KVM) on 

your workstation to do some virtualization and you don’t have a network 

bridge, each VM you create will only be accessible from a local Network 

Access Translation (NAT) address on that machine, not the subnet 

assigned to your network interface card (NIC).

Bridges solve that problem by creating a virtual network interface with 

your chosen subnet IP address range, and the physical network interface 

provides the actual connectivity as a pass-through. In this way, you can 

also effectively assign multiple routable IP addresses to a single physical 

interface.

Bonds are another network enhancement that allow you to join 

two or more physical Ethernet adapters into a single device, effectively 

doubling, tripling, or quadrupling the speed. For example, if you have two 

1GB Ethernet adapters on a single physical machine, you can bond them 

together into a single 2GB interface. For network-intensive workloads, this 

can help improve performance.

Chapter 1  Gather Your Hardware

https://doi.org/10.1007/978-1-4842-8318-9_2


18

Many modern applications, such as the OpenStack platform, take 

advantage of VLANs to separate network traffic and improve performance. 

VLANs work by assigning tags to each Ethernet packet and routing it 

accordingly. In this way, you can separate administrative and workload 

network traffic on a single physical or virtual network interface, reducing 

congestion, adding security, and speeding throughput.

In order to get VLANs working, you’ll need a network switch capable 

of handling VLAN tagging. Switches with 802.1Q capabilities support this 

capability.

Up to now, I’ve mentioned only IPv4 networking, which has been the 

standard for decades. However, with the rapid growth of Internet devices, 

those 3.7 trillion usable public IPv4 addresses—like 24.233.22.56 or 

202.77.84.34—are set to run out. That, in part, led to the development 

of a new IP address standard called IPv6, which provides 340 undecillion 

addresses (3.4 × 1038). IPv4 addresses are 32-bit, whereas IPv6 addresses 

are 128-bit and look like 2001:db8::8a2e:370:7334.

If you want to use IPv6 addresses in your Linux lab, you’ll need a 

network switch that supports them. Many modern switches do, but the 

addressing itself can be quite confusing. And since IPv6 is not backward-

compatible with IPv4, you’ll need to create separate subnets to handle 

both. Nothing in this book directly requires you to set up IPv6, but nothing 

prevents you from using it, either.

�Tips for Avoiding Common 
Hardware Headaches
The following tips are handy to think about as you assemble your Linux lab 

hardware and can help you decide on the best gear to use.

Chapter 1  Gather Your Hardware



19

�Reserve IP Address Pools Now, Not Later
Chances are good that everything you’ve ever connected to a router, either 

via a cable or WiFi, was given an address automatically via DHCP. With 

DHCP, the router assigns an available IP address to the device, the device 

connects to the router, and the router connects to the Internet. Everything 

just works.

In your lab environment, randomly assigned IP addresses handed out 

by a DHCP server can cause problems, not the least of which is having your 

devices get new addresses every few days or after they reboot. That means 

you’ll need to guess at the IP addresses used by DNS, web, email, and every 

server you deploy.

You can solve this problem by giving each server a static IP address 

and, before that, setting aside addresses on each router that it will never 

assign automatically via DHCP. Editing the lower limit on the DHCP 

servers as mentioned previously takes care of this. That way, you have 

a pool of static addresses you can manually assign and a pool of auto-

assigned addresses that can be initially handed out to your VMs and 

devices to get them online.

�Test and Document Your Configurations
Before moving on to the next sections and chapters in this book, take 

some time to test your networking. This can be easily done by using the 

ping command on your workstation. If you can ping the private router’s 

address (10.128.1.1 in this example), google.com, and 8.8.8.8, you’re good 

to go. Success means you’re able to access both public and private IP 

addresses. If not, double-check your network configurations before you 

start configuring your virtual machines.

This is also a good time to take a few moments to think about how 

you’ll be using your Linux lab and the IP addresses you might use. For 

example, if you’re planning to run a bunch of web servers, you may want to 

Chapter 1  Gather Your Hardware

https://google.com


20

reserve addresses for them in a group, such as 10.128.1.20, 10.128.1.21, 

and 10.128.1.22. Assigning portions of your non-DHCP addresses 

this way will keep things orderly, so if you later want to add a bunch of 

database servers, you might make them 10.128.1.40, 10.128.1.41, 

10.128.1.42, and so on. This little bit of organization can make your 

network layout more intuitive and make life much easier later, leaving 

room for additions.

It’s easy to lose track of which IP addresses you assign to which 

servers, so it’s good to come up with a way to keep track of them and map 

them out before you start to deploy equipment and VMs. You can use a 

simple spreadsheet or a Google Sheet, as shown in Figure 1-2, listing the 

IP address, machine name, and any other information you want. When it 

comes time to add a new virtual machine or server, you need only check 

the listing to ensure you’re not reusing one of your static addresses. If your 

anticipated lab, on paper, includes lots of devices and VMs, you’ll have a 

better idea of the speed and number of ports you’ll need from a network 

switch—before you buy.

Chapter 1  Gather Your Hardware



21

Figure 1-2.  You can use a simple spreadsheet to organize IP 
addresses, domain names, and system information

�Conclusion
With your hardware in place and some thought given to your environment 

and networking needs, you’re ready to set up your Linux lab environment. 

In the next chapter, you’ll learn how to deploy and configure Proxmox 

and KVM to run all the virtual machines you need to deploy servers and 

applications and really start to leverage the power of your Linux lab.

Chapter 1  Gather Your Hardware



23

CHAPTER 2

Setting Up a Virtual 
Environment
In this chapter, you’ll set up your base Linux lab environment by deploying 

one or more virtualization servers, which allow you to create virtual 

machines and containers that greatly extend the capabilities of one or 

more physical computers.

You’ll use Proxmox, a powerful open-source virtualization platform 

that can handle very small or enterprise-grade clusters. This environment 

will enable you to transform one or more physical machines (which you 

gathered in Chapter 1) into hosts for DNS, web, database, email, and other 

servers that are at the heart of any modern DevOps environment. This 

virtualization, and the ability to deploy a variety of systems on demand, is 

at the core of your Linux lab.

Having a number of servers managed by Proxmox rather than just 

a single workstation running, say, Linux-native Kernel-based Virtual 

Machine (KVM), greatly expands what you can do because you’ll be able 

to isolate your workloads. That isolation makes it easier to fix individual 

servers when things go wrong. You’ll also be able to take advantage of the 

resources—RAM, CPU, and storage—of several computers, not just one.

© John S. Tonello 2022 
J. S. Tonello, Practical Linux DevOps, https://doi.org/10.1007/978-1-4842-8318-9_2

https://doi.org/10.1007/978-1-4842-8318-9_1
https://doi.org/10.1007/978-1-4842-8318-9_2#DOI


24

System virtualization on your gathered hardware will give you plenty of 

oomph for virtual machines and containers, provide better resiliency, and, 

with Proxmox, enable you to move virtual machines around your physical 

cluster. That means you can migrate servers and do other tasks that closely 

replicate what you might find in an enterprise or cloud data center, where 

many machines of many types are running in harmony.

In this chapter, you’ll deploy Proxmox; spin up some initial virtual 

machines and Linux containers (LXCs), which are essentially small VMs 

in this environment; and take a brief look at KVM running on a Linux 

workstation to supplement your Proxmox cluster VMs. When you’re 

finished, you’ll feel comfortable with the virtualization environment and 

be ready to start deploying real workloads.

�About the Proxmox Virtualization  
Environment (PVE)
Proxmox VE is a robust open-source solution that’s easy to deploy and use, 

which makes it ideal for a lab environment or something much bigger. 

Although it scales well, in its most basic form—namely, running on a 

single machine—Proxmox works well for everything you’ll learn in the rest 

of this book. With a few tweaks, it can scale to manage a large cluster of 

machines.

Proxmox installs from a single USB thumb drive and becomes the 

base operating system on its physical host. It creates partitions and does 

some other things under the hood that don’t make it ideal for a dual-

boot environment. Any box you install it on will become a Proxmox 

Virtualization Environment (PVE) machine. If you’re thinking of setting 

up Proxmox VE as part of a dual-boot configuration with, say, Ubuntu 

or Windows, that’s possible, but recognize that switching to your non-

Proxmox environment renders your Linux lab inert.

Chapter 2  Setting Up a Virtual Environment



25

Under the covers, Proxmox is based on Debian and its latest long-

term support (LTS) kernel, but when you log in via the shell, what you’ll 

experience is a preinstalled, fully operational Linux environment. Don’t 

worry if you don’t know your way around Debian systems. You’ll spend 

99.9% of your time using Proxmox’s web-based dashboard building pretty 

much any kind of Linux or Windows systems you can imagine, including 

managing a single- or multi-node lab cluster from any web browser, 

creating VMs and LXCs, adding or removing resources, setting network 

parameters, and more.

Finding your way around Proxmox will be largely intuitive and easy to 

master. If you’re a more experienced systems administrator who’s used to 

VMware, Proxmox will feel familiar. The dashboard allows you to create 

new VMs and LXCs, interact with each through built-in terminal console 

capabilities, create custom storage, configure your networks, and much 

more. The look and feel of Proxmox has been incredibly consistent over 

the years, but slight version enhancements may make your dashboard look 

a little different from the version I use throughout this book.

If you decide you want even more capabilities and support, you can 

buy a paid subscription to Proxmox, but that’s not necessary for any of the 

activities in this book.

�Set Up Proxmox
To get started with Proxmox, use your workstation to download the latest 

version of the Proxmox Virtualization Environment (PVE) installer .iso file 

from www.proxmox.com/en/downloads and write it to a USB thumb drive. 

The version used in this book is just 778MB, so even an older 2GB thumb 

drive should suffice. Keep in mind that everything on the drive will be 

wiped and destroyed.

Chapter 2  Setting Up a Virtual Environment

http://www.proxmox.com/en/downloads


26

When it comes to burning an .iso file to a USB drive, you can find any 

number of graphical tools to do the job on Linux, Windows, and Mac 

platforms. Since we’re working in a Linux environment here, let’s use the 

built-in dd tool.

First, insert the USB, open a terminal, and list your system’s drives, 

also known as block devices, using the lsblk command, as shown 

in Listing 2-1. This helps ensure you’re targeting the correct drive for 

writing your Proxmox boot disk and helps you avoid accidentally deleting 

everything on one of your workstation’s system disks.

Listing 2-1.  Use lsblk to view your system’s storage

$ lsblk

NAME   MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT

sda      8:0    0 119.2G  0 disk

├─sda1  8:1    0   500M  0 part /boot/efi
├─sda2  8:2    0 114.8G  0 part /.snapshots
└─sda3  8:3    0     4G  0 part [SWAP]
sdb      8:16   0 465.8G  0 disk

├─sdb2  8:18   0 463.8G  0 part /storage1
└─sdb3  8:19   0     2G  0 part
sdc      8:80   1  28.9G  0 disk

In this example, the device sdc is a 32GB thumb drive, and it has no 

partitions. If it did, executing dd would delete them. The preceding output 

also shows the other physical disks on my system: sda and sdb. Each of 

those already has partitions, and they’re bigger than the USB, so I know 

not to target either of them during the dd process.

Now, execute the dd command, as shown in Listing 2-2. Set the .iso 

file as the value of if, the USB device as the value of the output of, and the 

block size as the value of bs. These tell dd to use the Proxmox .iso as its 

input and to expand it onto the device located at /dev/sdc. The bs setting 

tells dd to write 4096 bytes at a time, which speeds up the writing process.

Chapter 2  Setting Up a Virtual Environment



27

Listing 2-2.  Using the dd command to burn an .iso image to a 

USB device

$ sudo dd \

> if=/home/$USER/Downloads/Proxmox-ve_6.0.1.iso \

> of=/dev/sdc \

> bs=4M \

> status=progress \

> done;

The optional last bit, status=progress, provides feedback about the 

write process, which is useful because dd won’t otherwise display anything 

while it’s doing its work. If you omit it, burning the .iso to the USB will work 

fine, but you won’t see any output until the disk-writing is done.

When the write is complete, you’ll probably see the newly created 

partitions (named PVE) show up in your workstation’s folder list. Safely 

eject the USB drive from your workstation and plug it in to your Linux lab 

machine. If you’re using multiple systems, you’ll repeat the following steps 

on each.

Note M ake sure the BIOS settings on your PVE lab host are set 
to boot from the USB drive. Most systems recognize F12 or F8 to 
post the boot drive selection menu. Alternatively, press F2 or the Del 
key (common ways to access the BIOS menu) during system boot 
to select the thumb drive temporarily. Most modern machines are 
smart enough to detect the USB and boot from it, but not always. If 
you don’t do this, your target system will try to boot from the main 
internal disk, skipping the installation.

Chapter 2  Setting Up a Virtual Environment



28

When you first boot your Linux lab Proxmox machine, you’ll see the 

Proxmox splash page. Select the default “Install Proxmox VE” and agree to 

the end user license agreement to continue.

By default, Proxmox uses the entire target disk on your lab host and 

sets up Logical Volume Management (LVM) partitions that will generally 

consume the entire internal disk on which you install Proxmox. It will leave 

other separate disks alone.

LVM partitions are logical, rather than physical, so they can span 

multiple disks and provide other benefits. For example, they can be resized 

more easily and make point-in-time snapshots simpler. However, they’re 

not as transparent as traditional ext3 or ext4 Linux partitions, and they can 

be complicated to set up or modify. As the main disk type on your Proxmox 

nodes, LVM is fine because each virtual disk created for each virtual 

machine will appear as any format you want, merely storing the files for 

any virtual disks in the Proxmox LVM volume. For simplicity, keep this 

default setting.

If you want to do something more advanced, such as splitting the 

internal disk into multiple partitions, click the Options button and change 

the hdsize entry. The number you enter will become the Proxmox primary 

LVM disk; later, you can set up any remaining free space as a separate 

storage partition.

Next, select your country, time zone, and keyboard layout. Enter 

a password, confirm it, and provide an email address. The password 

you enter here will become the root password for the system, so make 

note of it.

Take your time when configuring the network management interface 

and other details, shown in the installation summary in Figure 2-1, 

particularly if you have a Linux lab host with multiple network interfaces. 

If your server is connected to a network during installation, Proxmox may 

autofill the network values with the wrong network for your purposes. Be 

sure to check this information carefully before proceeding.

Chapter 2  Setting Up a Virtual Environment



29

Figure 2-1.  Look over the Proxmox configuration summary 
information carefully before clicking the Install button. Take care to 
enter network settings that match your desired environment

Later, when creating your network and DNS server, you’ll want to make 

sure you’re using your private Linux lab network for your Proxmox traffic. 

In this example, the network is 10.128.1.0/24, so I’ve given the Proxmox 

host network values that make sense for that subnet. If your Linux lab 

host is connected to an active network during installation, Proxmox will 

typically detect the first network interface and autofill values via DHCP. Be 

careful not to select the defaults blindly.

Note, too, that in the preceding example, ext4 is configured for the 

Filesystem, not LVM, a customization I made on the previous Harddisk 

screen. Confirm the values that suit your needs before installing.

If you notice an error on the summary screen, click the Previous 

button to make changes. Carefully review the network settings; they can’t 

be easily changed later. Otherwise, click Install and wait for the system to 

deploy. When prompted, reboot the Linux lab host.

Chapter 2  Setting Up a Virtual Environment



30

After the installation and reboot, you’ll see the boot screen, as shown 

in Figure 2-2. There’s no need to press Enter to boot. The system will 

self-select the first line—Proxmox Virtual Environment—and after a few 

seconds it will start up. The Proxmox Virtual Environment shouldn’t need 

to be changed, but this menu provides advanced options and tests in case 

you run into trouble.

Figure 2-2.  The initial system Proxmox boot screen defaults

�Post-install Configurations
Once the system reboots, you’ll be prompted with a Debian-style boot 

menu, and after a few moments, the system will initialize and come online.

Chapter 2  Setting Up a Virtual Environment



31

Once the Proxmox system boots and you see the login prompt, you 

no longer need to interact with this server directly. You can disconnect 

its keyboard, mouse, and monitor. From here on, you’ll use the web-

based Proxmox dashboard, and if necessary, you’ll use SSH from your 

workstation to manage the PVE host itself.

Switch back to your workstation computer to continue the rest of this 

chapter’s work setting up VMs and applications to run on them. Recall 

the IP address of the PVE Linux lab host you entered during setup. The 

Proxmox login banner will show that IP address and the proper URL (with 

the port) to connect to. In my example, it’s https://10.128.1.10:8006.

Notice that the URL begins with https, not http. When you first attempt 

to access the dashboard, you’ll likely get a warning screen saying the 

connection is not secure. If that happens, click the Advanced option and 

choose Accept the risk and continue (or similar). It’s safe to proceed.

At the login screen, enter your credentials—root and the password you 

created earlier—and log in with the Realm set to the default, Linux PAM 

standard authentication. This Realm allows you to log in with the existing 

root user, but you can configure your system to use other system users with 

encrypted credentials. For the purposes of this lab, you can always use the 

root credentials.

After logging in, you’ll be taken to the main Proxmox dashboard, as 

shown in Figure 2-3.

Chapter 2  Setting Up a Virtual Environment



32

Figure 2-3.  The Proxmox dashboard, ready to use

Whenever you log in to the Proxmox dashboard, you’ll see a warning 

pop up about your system being unlicensed. You can safely ignore the 

warning. Everything you’ll do in this book does not require a Proxmox 

license, but if you use it a lot, it might be worth paying for a license.

The default view of the PVE node includes the local and local-lvm 

storage Proxmox created during installation. Note the green check mark 

showing the system is indeed up and running and healthy.

Take a few minutes to poke around, and be sure to click the Datacenter, 

pve, and local and local-lvm links in the left-hand Server View column. 

Each will open a wider view into the details of your PVE system. If you 

click Datacenter and choose Summary, you’ll see CPU load, server load, 

memory usage, and network traffic. If you click the name of this node (pve 

in this example) and then Summary, you’ll see similar information. Later, 

when you add systems to your cluster, the Datacenter view will show a 

summary for all the resources on all the machines, not just one host. This 

is a handy way to see how you might move VMs around your cluster to take 

best advantage of your compute resources.

Chapter 2  Setting Up a Virtual Environment



33

If you click the Documentation button at the top of the screen, you’ll 

have access to extensive Proxmox documentation. The Tasks and Cluster 

log tabs at the bottom of the screen provide real-time views of any actions 

you take, such as deploying, stopping, or shutting down a VM or LXC.

�Prepare a Single-NIC Network Setup: 
VLAN-Aware
When you first set up your Linux lab host, Proxmox automatically 

configured a physical network connection, which the underlying Debian 

system sees as ens3 in this example. Proxmox automatically created a 

network bridge named vmbr0 for the physical interface it discovered and 

configured on the machine. Regardless of the name the Proxmox host 

assigns to the network Ethernet adapter and the Linux bridge, your VMs 

running on this Proxmox system will all get their own interface names, 

like eth0. The network bridge provides the connectivity for everything, 

meaning your VMs can get and use network addresses on your private 

lab network, not a network limited to just the Proxmox box itself.

If you’re planning to use VLAN tagging with your system so you can 

take advantage of more sophisticated network setups with a smart switch, 

you’ll need to edit your Proxmox host’s network settings to make that 

happen. VLAN tagging is useful when you have a single network interface 

that you want to add multiple addresses to. VLANs also can be helpful if 

you’re planning to deploy complicated software like OpenStack and want 

to be able to access OpenStack services across your Linux lab environment.

By default, VLAN tagging isn’t enabled when Proxmox sets up the 

networking and bridged connection, but it’s simple to add it and a useful 

feature to have. You can do this from the browser-based dashboard by clicking 

the Proxmox node name in the left-hand column (pve) and then System 

➤ Network. Double-click the name of the Linux bridge interface you want, 

vmbr0 in this example, and tick the VLAN aware box. That’s it.

Chapter 2  Setting Up a Virtual Environment



34

Note A ccording to the IEEE 802.1Q standard, the maximum number 
of VLANs on a given Ethernet network is 4,094, which is 4,096 values 
provided by the 12-bit VID field minus reserved values at each end of 
the range, 0 and 4,095.

�Prepare a Dual-NIC Network Setup: 
VLAN-Aware
A dual-NIC machine has two network interfaces: one used for your Linux 

lab traffic and one for Internet traffic. If your Proxmox Linux lab host 

has two physical network connections, you’ll need to set up the second 

interface bridge from the Proxmox web dashboard. Proxmox doesn’t 

do anything with this second interface automatically when you install 

the system.

In this example, I have two network interface cards (NICs) on the Linux 

lab host. One is attached to my private Linux lab network (10.128.1.0/24), 

and the other is attached to my home public network (192.168.1.0/24). 

Both are reachable from my workstation, which also has a dual-network 

interface. The public network is connected to the Internet. I use this setup 

for two primary reasons. My Linux lab network is capable of 1GB speeds, 

and I want all my VM traffic on that network to take advantage of the fast 

speed. My home network is connected to every computer, TV, cell phone, 

and other device in the house. I don’t want those devices to access my 

Linux lab environment, and I don’t want my Linux lab work to bog down 

the network my family uses.

Chapter 2  Setting Up a Virtual Environment



35

Note I t’s a good idea to set aside some addresses on your home 
ISP router for static routes you can use in your lab. You can do this by 
changing the DHCP server settings on the router. Instead of handing 
out addresses between, say, 192.168.1.3 and 192.168.1.254, you 
can change the lower end to 192.168.1.50. That’ll give you and your 
family plenty of addresses on the public network and a nice pool of 
static IP addresses you can use in your lab. You won't need to worry 
about network conflicts with other devices in the house.

With this configuration, your Linux lab host will have a static address 

on your private network and a static address on your public network. So 

far, you’ve already set up the private network, which was 10.128.1.10 in 

my example. To set up the public address interface so it’s usable in your 

Linux lab, create a new virtual bridge called vmbr1.

When you click the dashboard Linux lab hostname, pve in this case, 

and then click System ➤ Network, you’ll see the unused network device 

in the right-side pane. In this example, it’s named ens7, as shown in 

Figure 2-4.

Figure 2-4.  The network view for the lab host, which shows the two 
physical interfaces, ens3 and ens7, and the vmbr0 bridge Proxmox 
created automatically when you installed the system

In this network view, click the Create button and select Linux Bridge 

from the drop-down menu to assign the static IP address and gateway for 

the public network, and add the name of the network device for the bridge 

Chapter 2  Setting Up a Virtual Environment



36

port. In this example, in the resulting pop-up, shown in Figure 2-5, the 

static address is 192.168.1.40/24, the gateway is 192.168.1.1, and the 

bridge port is ens7.

Note I f you set up a gateway on your vmbr0 bridge and prefer to 
use the gateway with the second bridge, you’ll first need to remove 
the gateway address from vmbr0. The system can have only one 
gateway.

Figure 2-5.  Set up the Linux bridge for your second network 
interface, assigning the second physical device, ens7, to this 
vmbr1 bridge

Notice I’ve ticked the VLAN aware box in the Create: Linux Bridge pop-

up window. If you want this public network to handle VLAN tagging, as 

explained earlier, check the box, but chances are you won’t need to do that 

if you’re segregating network traffic and confining lab work to your private 

network. Remember, assign a gateway address to one bridge or the other, 

not both.

When you click Create, the new vmbr1 bridge is set up and ready to 

use by all your VMs and LXCs, as shown in Figure 2-6.

Chapter 2  Setting Up a Virtual Environment



37

Figure 2-6.  In this Proxmox dashboard view, both network bridges 
are now set up and available to use in any VM or LXC you deploy

Any VM you create from here on out can use either of these networks 

or both. Your VMs also will be able to have multiple interfaces on one 

network, say, eth0 and eth1 on the 10.128.1.0/24 private subnet. That sort 

of configuration lets you experiment with a variety of different network 

configurations, including network bonding, a practice that allows you to 

improve network throughput by joining two or more physical interfaces. In 

Proxmox, each VM you create can have multiple network interfaces from 

either network.

�Additional Storage Considerations
When you deployed Proxmox on your lab host, you set up basic storage 

by having it allocate what it needed to run the system on an LVM disk 

partition, and it automatically used what was left for storage that can be 

used by your VMs and LXCs. In reality, more storage is better, and you may 

want to take advantage of additional drives on your Proxmox host. The 

basic steps to increase storage are as follows:

	 1.	 Attach the additional drive(s) to your lab host.

	 2.	 Use that mounted device in Proxmox.

Chapter 2  Setting Up a Virtual Environment



38

For best performance, attach a SATA or SSD drive to any open bay or 

slot you have on your Proxmox host. The faster the drive, the better, but 

don’t worry if all you have is an older spinning disk. After all, this is a Linux 

lab environment, and disk performance won’t bog down most of your 

deployments.

After you’ve installed the disk, start your lab host and navigate to the 

pve ➤ Disks entry, as shown in Figure 2-7. You should see your newly 

added drive, shown as /dev/sdb in this example.

Figure 2-7.  A newly added disk appears in the Proxmox lab 
host Disks menu after you’ve physically added it to the machine. 
Additional drives you add now or in the future will also appear here

You can now add that new disk as an LVM, LVM-Thin, Directory, or 

ZFS device. For this example, use the Directory feature under pve ➤ Disks 

➤ Directory to mount the disk and make it available in your cluster. When 

you create the new directory, follow these steps:

•	 Provide the raw device (/dev/sdb/ in this example).

•	 Choose a filesystem type (ext4 or xfs).

•	 Give your storage directory a name (storage01 in this 

example).

•	 Tick the Add Storage box.

Chapter 2  Setting Up a Virtual Environment



39

Proxmox will automatically mount the disk at /mnt/pve/storage01, 

format it, and make it available to your system. You should now see it in 

the main dashboard Server View on the left.

When you build VMs or LXCs, you can use this storage01 just as you 

would the original disk. If you want all the Proxmox hosts in your cluster 

to share it, navigate to Datacenter ➤ Storage and double-click the name of 

the disk to edit it. Tick the Shared box to make the drive visible and usable 

on each host.

For even better performance, consider creating a ZFS disk. These 

volumes can span multiple disks and be shared among all your Proxmox 

hosts. Complete information is available on the Proxmox wiki, but the key 

is to create ZFS volumes on each machine, giving them all the same name. 

If the ZFS volume on your first host is called my-zfs, name the ZFS volumes 

on your other Proxmox hosts the same.

�Thinking Ahead to Clustering
If you have more than one machine available for your Linux lab, put those 

machines to use and fortify your environment by creating a Proxmox 

cluster. Doing this will give you several advantages, including the ability 

to replicate your VMs and migrate them from one machine to another. It’s 

especially useful if you’re planning to deploy Kubernetes or OpenStack, 

which can gobble up lots of resources.

To enable a cluster, simply follow all the above steps to create a second 

(or third or fourth) Proxmox host, giving each its own hostname and static 

IP address. Add these to the spreadsheet you’re using to keep track of all 

your IP addresses and hostnames to help you avoid headaches later. As I 

mentioned in Chapter 1, sketch out your Linux lab first, so you can build 

your environment without having to backtrack.

Chapter 2  Setting Up a Virtual Environment

https://doi.org/10.1007/978-1-4842-8318-9_1


40

Note I f you’re planning to use multiple Proxmox hosts, give them 
names like pve01, pve02, and pve03 rather than just “pve”. This will 
help you stay organized.

Once your second Linux lab host is up and running, open a second 

browser window and log in to its own dashboard at its static IP address 

(and :8006). You’ll now have two browser windows open, one for each 

Proxmox host dashboard. In what will be your primary Linux lab host (pve 

in this example), navigate to Datacenter ➤ Cluster and click the Create 
Cluster button.

If you now have two networks available, choose the private network 

(10.128.1.10/24 in this example) so all cluster traffic uses that. This will 

ensure any traffic going between your Proxmox hosts doesn’t bog down 

your home network. If you have a 1GB switch for the private network and 

only a 100MB switch for your public/home network, your cluster can take 

advantage of the higher private network speed, which will improve your 

Linux lab performance and keep congestion off your other network.

Once complete, close the status window to return to the Cluster view, 

and click the Join Information button. It will provide everything you need 

for the other lab host (or hosts) to use to join the cluster managed by your 

primary Proxmox host.

Copying the configuration is as simple as clicking the Copy Information 

button and pasting the settings into the Datacenter ➤ Cluster ➤ Join 
Cluster pop-up window over on the new lab host (pve2), as shown in 

Figure 2-8. Be sure to add the root password for your primary pve host, and 

again select the private network from the Link 0: drop-down menu.

Chapter 2  Setting Up a Virtual Environment



41

Figure 2-8.  Paste the cluster information into the second host 
configuration dialogue box and click Join to automatically connect 
the machine to your cluster

When you click the Join button, this second Proxmox host will 

communicate with the primary lab host, pve, and it will appear in that 

host’s dashboard menu. You can now close the second browser window 

and manage both machines from the single pve dashboard. Be sure to use 

the private network for better performance.

�Deploy Your First VM
Up to now, you’ve given your Proxmox Linux lab host or hosts all the basic 

configurations you need to start deploying virtual machines. Proxmox has 

many more capabilities, but the base you’ve built is all you need for the 

rest of the projects in this book.

If your Proxmox Linux lab environment contains more than one 

physical host, follow the steps for joining them together into a cluster 

before you deploy your first virtual machine. Proxmox gives each VM or 

LXC (essentially tiny VMs) a unique instance ID that must be unique 

across all the systems in the cluster. If you add a VM to a second Proxmox 

host and decide later to add that separate host to the cluster, the action 

Chapter 2  Setting Up a Virtual Environment



42

will fail because Proxmox can’t ensure the second host doesn’t contain VM 

instance IDs that conflict with VM instance IDs on the primary host. You’d 

have to delete any VMs or LXCs running on the second host in order to join 

it to the cluster.

Deploying a VM requires that you have an OS installation .iso available. 

These can be any 32- or 64-bit installation .iso, including Linux or even 

Windows installers. If you have a favorite Linux flavor—such as AlmaLinux, 

Fedora, openSUSE, or Ubuntu—go to the distribution’s website and 

download the latest .iso. You can choose a live CD version, which 

enables you to test the OS without installing it, a server version without a 

graphical interface, or the standard installers that often include desktop 

environments. For this example, I’ll use openSUSE.

Note I t’s good practice to save your installer .iso files in the 
same place on your workstation so you can easily organize them. 
Once you copy them to the Proxmox host, they’re no longer needed 
locally, but it’s nice to have them handy. This will also help you avoid 
redownloading .iso files you already have.

In the main Proxmox dashboard under Datacenter ➤ pve, the last 

entries in the left-hand navigation include your disks (they have a stacked-

disk icon). Select local (pve). The disk’s navigation pane includes a menu 

with options to upload ISO images and CT templates. Click ISO Images 

and browse your workstation for the location of the Linux OS .iso you 

previously downloaded. After selecting it, Proxmox will begin the upload. 

When the upload progress completes, the .iso file will appear in your local 

(pve) content view.

You can upload as many different .iso files as you want; the storage 

capacity of the local (pve) disk is your only limitation. Once the images are 

uploaded, you can use them over and over again.

Chapter 2  Setting Up a Virtual Environment



43

You’re now ready to deploy a virtual machine based on the .iso you 

just uploaded by clicking the dashboard’s Create VM button. In the pop-

up dialog, you’ll see the name of your Proxmox host (pve) and an auto-

assigned VM ID, typically 101. You can change the ID to anything you 

want. For example, if you’re planning to run a group of VMs for, say, a 

Kubernetes cluster, you can give the first VM an ID of 1000, the next one 

1001, and so on. This helps group the hosts in the main pve Server View.

Give the VM a name, and in the next OS view, shown in Figure 2-9, the 

default Use CD/DVD disc image file (.iso) will be selected and storage set to 

local, which is where you placed your uploaded .iso. Be sure the Type: and 

Version: match the system you’re building. The defaults are usually fine. 

Finally, select your .iso image from the ISO Image drop-down. Ensure the 

Guest OS Type is set to Linux.

Figure 2-9.  When creating a virtual machine, select the local storage 
disk and then your .iso file

Chapter 2  Setting Up a Virtual Environment



44

Accept the defaults under the System tab setting Graphic card to 

Default and BIOS to Default (SeaBIOS). You’ll need to tick the Advanced 

box at the bottom of the window to see the BIOS option. This will use a 

GRUB-style bootloader. If you need UFI instead, select OVMF (UEFI) 

and create an EFI disk when prompted. The Hard Disk tab allows you to 

select the location where your VM’s virtual disk will live. Accept the default 

Storage: local-lvm, and adjust the Disk size (GiB) to something smaller 

than 32 if you have limited storage space. Leave the rest of the default 

settings as they are.

Note  By default, Proxmox VM storage disks are thin-provisioned, 
meaning the system will reserve the space for the disk, but won’t use 
it until it’s needed. In this way, it’s possible to overcommit your actual 
available disk space without actually filling up your drives.

In the CPU settings, Proxmox defaults to one socket and one core, 

which is often enough for basic systems, particularly small LXCs. If you 

have the resources, increase the cores to two for most system deployments 

to speed them up, and don’t worry too much about overcommitting. 

Proxmox will provide CPU and RAM resources where they’re needed to 

your various VMs.

On the Memory tab, give the system at least 2048MiB. Again, you can 

overcommit up to the physical limit of the PVE host’s physical memory. 

Proxmox will manage the resources for you behind the scenes. If you’re 

just starting out, it can be difficult to judge just how much CPU and RAM 

to assign to a VM, but you can always adjust these up or down later. After a 

while, you’ll get the hang of assigning resources based on your purposes.

As you can see on the Network tab in Figure 2-10, Proxmox will default 

to the first bridged network device (vmbr0 in this example), which in this 

case is fine, because that’s the private 10.128.1.0/24 subnet you deployed 

earlier. Keep that choice and leave the rest of the defaults. Uncheck the 

Chapter 2  Setting Up a Virtual Environment



45

Firewall box so Proxmox doesn’t apply any of its external firewall rules that 

might block traffic you need to get in and out of your VM. This firewall is 

separate from any firewall you might deploy inside your VM; and, for now, 

it’s easiest to keep things open while you’re experimenting. Remember, 

too, that your lab network is not publicly accessible, so the risk of an 

external hack is nearly nonexistent.

The Confirm tab allows you to review your system parameters, and if 

you like what you see, tick the Start after created box and click Finish to 

build and launch your VM.

Figure 2-10.  When setting any VM’s network, be sure to choose the 
bridge that matches your private lab network. You can always add 
more network interfaces later

Chapter 2  Setting Up a Virtual Environment



46

After a few moments, your VM will be created and start running. 

Select the system from your Proxmox Server View list and click Console 

in the right-hand pane to view the running system. At that point you can 

manually go through the on-screen steps to install the actual OS.

�Server Replication with Cloning 
and Templates
The process for creating new virtual machines follows these basic steps, 

which are straightforward enough, but can be time-consuming when you 

want to deploy multiple systems. It’s especially time-consuming to go 

through the system configuration inside a VM, having to manually repeat 

adding users, setting up networking, setting a time zone, and all the rest. 

To save time, use Proxmox’s built-in cloning and templating feature.

Instead of creating a new, second system from scratch, you can 

immediately clone a previously created system in its current state or 

convert it to a template, as shown in Figure 2-11. When you right-click 

the server in the left-hand Proxmox pane, you’ll see choices for Clone 

and Convert to template. Cloning a running machine doesn’t change it 

in any way. You just give the clone a unique VM ID and a name, and you 

get a duplicate server. Proxmox gives the clone a new MAC address, but 

any other settings you added—including users, SSH keys, and network 

settings—will be inherited by the clone. This will replicate the system in its 

last configured state.

Chapter 2  Setting Up a Virtual Environment



47

Figure 2-11.  You can clone any VM in your server list by right-
clicking it and choosing Clone from the menu. Shut down the VM 
before trying to clone it

Alternatively, you can convert an installed system to a template. This 

process changes the running server into a non-running template. That 

is, once turned into a template, you can no longer turn on and run the 

original server. However, you can right-click the template and clone it at 

any time as an exact replica (minus the new MAC address) of the originally 

configured server.

This process dramatically speeds up the creation of multiple servers 

of the same flavor, saving you all the time needed to step through a 

particular OS’s installation steps. When cloning, it’s handy to add all your 

customizations to the running VM system first, such as adding users and 

setting up system preferences. That way, those settings are in place in each 

new system you clone and boot.

�Deploy an LXC Template Container
You’ll primarily be building your own VMs throughout this book, but 

Proxmox also features pre-built LXC templates, which can come in 

handy by providing complete OS and software solutions in prepackaged 

Chapter 2  Setting Up a Virtual Environment



48

containers. These can be useful when you need to add a server quickly and 

don’t feel like going through all the setup screens required when creating a 

VM from scratch or when a clone of an existing system just won’t do.

LXCs are essentially lightweight virtual machines, and they behave 

more like a VM than a Docker container, which are designed to run a single 

service (or microservice). However, like Docker containers, LXCs share 

kernel resources from the host Proxmox system, so the resulting servers 

are much smaller and require fewer resources than a full-blown virtual 

machine. They’re ideal for servers that don’t need a lot of CPU or memory, 

such as a DNS server, which you’ll build in the next chapter. In that 

example, you’ll see that a DNS server running in an LXC consumes about 

one-tenth the resources of a full virtual machine. That’s especially useful in 

a Linux lab environment where resources are limited.

Let’s use a simple LXC template to illustrate how to take advantage of 

this Proxmox capability.

First, download the source files to your cluster. Navigate to your 

disk local ➤ CT Templates. This is where Proxmox stores container 

templates. This is separate from the area that holds ISO images. Click the 

Templates button to open a window like the one shown in Figure 2-12 

that reveals dozens of pre-built LXCs. These include everything from 

Linux distributions like CentOS, Fedora, openSUSE, and Ubuntu to pre-

built solutions like Drupal 8, LAMP machines, GitLab servers, and more. 

These are pre-built containers featuring raw OS systems or full-fledged 

applications that are ready to use.

Chapter 2  Setting Up a Virtual Environment



49

Figure 2-12.  LXC templates are available for download from the 
Proxmox dashboard

To get started, select one of the alpine images and, with it highlighted, 

click the Download button. This will download the template’s tar.gz file 

and store it in your Proxmox host’s CT Templates storage library, much 

like the .iso file you manually uploaded previously. When the download 

is complete, you can click the blue Create CT button at the top of the 

dashboard to deploy the LXC.

The following steps on the General tab are much like creating a VM, 

but with fewer steps. Once the configuration window appears, enter a 

container ID (CT ID), which can be any number not currently in use by 

another LXC or VM, a hostname (alpine in this example), and a password 

(this will be used with root to log in to the new LXC). You can also upload a 

public SSH key from your workstation at this point, something like ~/.ssh/

id_rsa.pub, that will allow you to log in without a password.

Chapter 2  Setting Up a Virtual Environment



50

On the Template tab, locate the downloaded alpine image. If you saved 

it in the Storage disk named local, the template will be available for you to 

choose from the Template menu. Next, select the Root Disk where you want 

to install the system’s virtual disk. It will default to the local-lvm disk, but 

you can select any other available disk. The default disk size of 8GB is fine 

for this example.

On the next tabs, assign the number of cores to your LXC (one is 

fine) and the memory (512 is plenty), and assign a virtual bridge to your 

machine, as shown in Figure 2-13. If you have only one network bridge 

(vmbr0), you will have only one choice. If you have multiple network 

interfaces, be sure to select the private Linux lab network for this example. 

Assign a static IP address, including the CIDR (10.128.1.101/24 in this 

example). Also supply the gateway address for your private network, which 

is 10.128.1.1 in this case. Leave the default name eth0 and uncheck the 

Firewall box.

Chapter 2  Setting Up a Virtual Environment



51

Figure 2-13.  Create an LXC from a turnkey image, choosing the 
template, root disk, CPU, memory, network, and DNS settings that 
meet your needs

These basic settings will become familiar to you as you deploy more 

VMs and LXCs, and you can experiment later with different settings. 

Unchecking the Firewall box ensures that Proxmox itself is not blocking 

traffic to the LXC. Again, this is separate from any firewall settings you 

might later deploy inside the running virtual host. For now, using the 

defaults will help guarantee a successful deployment.

On the DNS tab, you can leave Use host settings for now. That way, 

the new LXC will just grab the DNS information you previously provided 

for your Proxmox host. If these addresses ever change, you won’t need to 

reconfigure this system manually, but can do it at the pve level.

Chapter 2  Setting Up a Virtual Environment



52

Finally, on the Confirm tab, review your entries and click Finish. If you 

want the alpine LXC to start automatically after it’s created, tick the Start 

after created box.

When the LXC is ready, it will appear in the main Proxmox dashboard 

Server View menu under pve. Right-clicking it provides the options to start 

it, clone it, convert it to a template, or open a console to access it. If you 

start it and then click the Console tab in the right-hand pane, you’ll see 

the system booting. You can log in to it using the credentials you provided 

earlier: root and your password.

As with Proxmox VMs, cloning will make an exact copy of the LXC you 

just created, including any changes you make to the system since building 

it. Proxmox will automatically assign a new, unique MAC address to the 

network interface so all the clones you make appear as separate machines 

from a network perspective.

Later in this book, I’ll go into more detail about these actions and 

use them to create and clone both VMs and LXCs. For now, become 

comfortable with the process and use the dashboard to review the LXC’s 

resources, network, DNS, and other features.

�Set Up KVM
Though the majority of this book’s projects are centered on Proxmox, it’s 

worth touching on what I’m calling plain KVM, particularly if you’re short 

on resources. KVM is virtualization that’s part of the Linux kernel itself and 

is widely available and used across pretty much any flavor of Linux you 

can imagine. KVM also supports Windows workloads, which means you 

can use it to run Windows virtual machines on your Linux workstation. 

This comes in handy when you need to support mixed environments. 

KVM is also lightweight (it doesn’t require a lot of resources from the host 

machine), and it’s free. If you’re familiar with VirtualBox, a virtualization 

application for Linux, Windows, and Mac, KVM works much the same way, 

but has much less overhead.

Chapter 2  Setting Up a Virtual Environment



53

KVM is my go-to solution for running virtual machines or LXCs on any 

Linux workstation or server. It’s even popular in public clouds like AWS, 

which cooked up its own specialized version of KVM. Graphical tools like 

virt-manager now make it easier to use KVM from a desktop environment, 

though virt-manager is not nearly as sophisticated as the Proxmox 

dashboard. Still, it has a number of capabilities, including simple network 

setups, that can make it a good option for a Linux lab environment, 

particularly if you’re short on hardware.

Getting and installing KVM varies based on the Linux platform 

you’re using, and some distributions provide multi-package patterns 

(preconfigured groups of packages) that will install all the software and 

package dependencies you need all at once. Later in this chapter, you’ll see 

how to add KVM to an existing desktop or server.

With KVM, instead of running a completely separate Proxmox server 

or servers, you can deploy virtual machines and LXCs on the same Linux 

workstation where you do the rest of your work. This approach isn’t as 

versatile, but if you’re low on resources, it can be a viable Linux lab option. 

Again, the idea is to create separate virtual servers for your workloads 

rather than installing everything on your workstation.

Note O ne thing to make sure you do is create at least one Linux 
network bridge on your workstation for your VMs to use. A bridge will 
enable you to add network addresses to your VMs that are reachable 
by other machines elsewhere on your private Linux lab network. If 
not, KVM running on your workstation will default to a NAT network 
that’s accessible only from your workstation. That’s far too limiting for 
your Linux lab purposes.

Chapter 2  Setting Up a Virtual Environment



54

�Check for Virtualization Support
Since we’re all about Linux, we’ll use a Linux workstation as your KVM 

host. The first step is to ensure that your system supports virtualization. 

Most modern Intel- and AMD-based 64-bit systems do, but you can run 

these checks to be certain.

On Debian and Ubuntu, install cpu-checker and run kvm-ok, as shown 

in Listing 2-3.

Listing 2-3.  Check if your Ubuntu system supports virtualization

$ sudo apt install cpu-checker

$ sudo kvm-ok

INFO: /dev/kvm exists

KVM acceleration can be used

On AlmaLinux, Debian, Fedora, openSUSE, or Ubuntu, you can use 

grep to search the /proc/cpuinfo file and look for vmx or svm in the flags 

output, as shown in Listing 2-4.

Listing 2-4.  Using egrep to identify your CPU capabilities for 

virtualization

$ egrep '(svm|vmx)' /proc/cpuinfo

flags       : fpu vme de pse tsc msr pae mce cx8 apic sep 

mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse 

sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc 

arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid 

aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 

ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe 

popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 

3dnowprefetch cpuid_fault epb invpcid_single pti ssbd ibrs ibpb 

Chapter 2  Setting Up a Virtual Environment



55

stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust 

bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap intel_

pt xsaveopt dtherm ida arat pln pts md_clear flush_l1d

Note that I’ve highlighted vmx in the output, which shows that this 

system has Intel-based virtualization available. On an AMD-based system, 

I’d see svm instead.

�Install KVM and Related Utilities
Installing KVM on a workstation requires installing qemu-kvm, libvirt-

clients, libvirt-daemon-system, virt-manager, and bridge-utils, if you didn’t 

install them earlier. Together, these tools provide the virtualization layer 

and graphical tools to interact with KVM.

Depending on your system OS, run one of the commands shown in 

Listing 2-5.

Listing 2-5.  Install KVM and supporting tooling on various Linux 

operating systems

Debian and Ubuntu:

sudo apt install qemu-kvm libvirt-clients libvirt-daemon-system 

virt-manager bridge-utils

AlmaLinux, CentOS and Fedora:

$ sudo yum install qemu-kvm qemu-img virt-manager libvirt 

libvirt-python libvirt-client virt-install virt-viewer 

bridge-utils

On openSUSE, install KVM with two patterns:

$ sudo zypper install --type pattern kvm_server kvm_tools

Chapter 2  Setting Up a Virtual Environment



56

Once installed, add your local user (the same you used to log in to your 

desktop) to the libvirt group in /etc/group so you can run virt-manager 

without root privileges:

$ sudo usermod -aG libvirt $USER

Restart the terminal, and enable and start the libvirtd service:

$ sudo systemctl enable libvirtd.service

You may need to log out or reboot to ensure your local user can access 

the virt-manager connection without using root.

�Set Up Bridged Networking on AlmaLinux, 
Fedora, and openSUSE
As mentioned earlier, network bridges enable VMs to appear on your lab 

network with unique IP addresses, enabling you to access them from any 

physical or virtual device in your environment.

To add a network bridge on Linux systems, you often can use graphical 

tools like NetworkManager, but it helps to see how to do it manually. On a 

Linux workstation, navigate to /etc/sysconfig/network and identify the 

file that represents your Linux lab network. In this example, it’s eth0, so 

edit /etc/sysconfig/network/ifcfg-eth0. Remove any static or DHCP 

settings and give the interface a BOOTPROTO='none' setting, as shown in 

Listing 2-6, so you can assign the IP address to the bridge later.

Listing 2-6.  Manually setting the network interface to create 

a bridge

BOOTPROTO='none'

BROADCAST=''

ETHTOOL_OPTIONS=''

Chapter 2  Setting Up a Virtual Environment



57

IPADDR=''

MTU=''

NAME=''

NETMASK=''

NETWORK=''

REMOTE_IPADDR=''

STARTMODE='auto'

DHCLIENT_SET_DEFAULT_ROUTE='yes'

PREFIXLEN=''

The actual network information, namely, the IP address, will be added 

to a new ifcfg-br0 file. Create /etc/sysconfig/network/ifcfg-br0. 

Note that the IPADDR value is the base address for your workstation 

(10.128.1.9/24), with BRIDGE_ entries set as shown in Listing 2-7.

Listing 2-7.  Contents of a new ifcfg-br0 file that creates a bridge

BOOTPROTO='static'

BRIDGE='yes'

BRIDGE_FORWARDDELAY='0'

BRIDGE_PORTS='eth0'

BRIDGE_STP='off'

BROADCAST=''

ETHTOOL_OPTIONS=''

IPADDR='10.128.1.9/24'

MTU=''

NAME=''

NETWORK=''

REMOTE_IPADDR=''

STARTMODE='auto'

Chapter 2  Setting Up a Virtual Environment



58

The file includes BOOTPROTO, which is set to static for a 

static IP address of the host machine; BRIDGE, set to yes; BRIDGE_

FORWARDDELAY set to 0; BRIDGE_PORTS set here to eth0 because that’s 

the physical device on the workstation; BRIDGE_STP set to off to avoid 

unintended network loops; and the IPADDR set to 10.128.1.9/24, which is 

the IP and network mask of this example workstation.

Save the file and restart networking:

$ sudo systemctl restart networking

Test that your network is working by pinging your private Linux lab 

router and a public address:

$ ping 10.128.1.1

$ ping google.com

If pinging returns a time-out error, go back through these steps to 

double-check your configurations.

�Set Up Bridged Networking on Debian 
and Ubuntu Desktops
It was once possible to manually configure networking on a variety of 

different Linux systems by editing an /etc/network/interfaces file, but 

there’s been quite a divergence in recent years that makes the manual task 

hard to grasp. On the latest Ubuntu desktop systems, for example, you 

can set up a bridge network using Netplan. Netplan is a streamlined way 

to configure networking that uses YAML parameters. Instead of editing 

multiple network configuration files, Netplan takes care of the particulars 

in one place, making it easier to modify if necessary.

First-timers may find manually editing Netplan settings a little 

complicated—or discover that if they transition from Ubuntu to Debian, 

Netplan is no longer a thing. Fortunately, you can set up everything you 

Chapter 2  Setting Up a Virtual Environment



59

need for bridged networking using NetworkManager, a graphical Linux 

tool for managing network connections. The following section explains 

how to do that.

�Set Up a Linux Bridge Using NetworkManager
NetworkManager is a widely available Linux desktop utility that allows 

you to point and click your way to a stable, working network. It works with 

wired and wireless LAN connections and will be familiar to anyone who’s 

worked with the Windows or macOS networking tools.

Many flavors of Linux support NetworkManager (or come with it by 

default, like Ubuntu and Debian), so it’s a good option, particularly for 

newcomers. In most of these environments, clicking the Network icon in 

the Preferences or Control Panel launches the NetworkManager GUI. It can 

also be accessed by clicking or right-clicking the Network icon in many 

Linux desktop application panels.

When you use NetworkManager, you’re making changes in a graphical 

interface, and those settings are stored in configuration files your Linux 

system understands (/etc/NetworkManager). By using the graphical tool, 

you don’t need to manually edit those files.

Get started by opening the NetworkManager GUI from your system’s 

main application window, from the panel, or by entering nm-connection-

editor in a terminal. The window will look something like the example in 

Figure 2-14.

Chapter 2  Setting Up a Virtual Environment



60

Figure 2-14.  The main NetworkManager utility view

The preceding example includes two distinct network interfaces, one 

for each of the two subnets to which the Linux workstation is connected: 

10.128.1.0/24 and 192.168.1.0/24. In the example, these connections 

are named 10-net and 192-net, respectively; by default, they might show 

something like “Wired connection 1” and “Wired connection 2.”

Network bridges work by creating a new virtual network object that 

uses one or more physical devices. In the preceding example, the br0 

bridge uses the 10-net as its physical interface to access the network.

To make this work, the easiest way to begin is to delete the Ethernet 

interface you plan to use for your bridge from the NetworkManager 

window. Do that by clicking it once and clicking the – icon at the bottom 

of the window. With that done, click the + icon and select Bridge under 

the Virtual devices list and Create. This will spawn a new window, like the 

one shown in Figure 2-15.

Chapter 2  Setting Up a Virtual Environment



61

Figure 2-15.  The initial view of a newly created virtual network 
bridge using NetworkManager

Notice that the window opens on the Bridge tab, with a default 

Connection name (Bridge connection 1) and a default Interface name 

(bridge0). You can rename these to whatever you want, but keep the names 

simple and memorable, such as bridge0 or br0.

Chapter 2  Setting Up a Virtual Environment



62

The box under Bridged connections is empty, so you’ll need to add 

one of your network interfaces here. Click the Add button, select Ethernet 

from the menu, and click Create. This will open a new dialogue box, as 

shown in Figure 2-16.

Figure 2-16.  Creating an Ethernet bridge slave for the virtual 
bridge. Be sure to select the proper device for your lab subnet from the 
Devices menu

Again, NetworkManager gave this new Ethernet interface a name 

(bridge0 slave 1), but you can change that to anything you want. In the 

preceding first example, this is set to 10-net as a way to help me remember. 

The critical piece in this step is to select a Device from the drop-down 

menu. Be sure to select the proper interface for your DevOps lab network 

Chapter 2  Setting Up a Virtual Environment



63

and not, say, the interface for your second 192.168.1.0/24 network. With 

that done, click Save and return to the main bridge configuration window.

When setting up network interfaces with NetworkManager, you have a 

number of options on how to set up IPv4 and IPv6 addresses. Most Linux 

systems default to Automatic (DHCP). That’s fine for everyday networking, 

but in your lab it’s better to have static addresses associated with your 

workstation.

Click the IPv4 Settings tab in the main virtual bridge view and switch 

the Method to Manual, and click Add. In the Addresses box, enter a static 

IP on your DevOps lab subnet, a Netmask that matches your network 

(24), and the Gateway, as shown in Figure 2-17. Notice I’ve also added 

DNS servers for the two I have in my lab (10.128.1.2 and 10.128.1.3) 

and 8.8.8.8 for external name resolution. I also added devops.lab as 

my search domain, which will be appended to servers I try to ping and 

otherwise reach by their hostnames alone.

Chapter 2  Setting Up a Virtual Environment



64

Figure 2-17.  Create a static IP address for your virtual bridge in 
NetworkManager, with an address from your lab subnet, DNS servers, 
and search domains

You can optionally set up IPv6, but I generally leave it as-is or set 

it to Ignore to disable it. With everything double-checked, click the 

Save button.

Chapter 2  Setting Up a Virtual Environment



65

To enable your new network configurations on your workstation, you 

can reboot (rather drastic if you have a lot of windows and applications 

open), or you can right-click the NetworkManager icon in your Linux 

workstation’s panel and uncheck Enable networking. You can also 

run sudo systemctl restart NetworkManager from the CLI. Wait a 

few moments and then recheck it. Verify your network is configured by 

running a simple CLI command:

$ ip a

3: enp4s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc 

pfifo_fast master br0 state UP group default qlen 1000

    link/ether 18:c0:4d:84:cc:20 brd ff:ff:ff:ff:ff:ff

5: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc 

noqueue state UP group default qlen 1000

    link/ether de:64:d1:c4:02:a3 brd ff:ff:ff:ff:ff:ff

    inet 10.128.1.10/24 brd 10.128.1.255 scope global 

noprefixroute br0

       valid_lft forever preferred_lft forever

    inet6 fe80::dc64:d1ff:fec4:2a3/64 scope link

       valid_lft forever preferred_lft forever

Notice that the physical interface—enp4s0 in the preceding example—

is shown as UP, but has no IP address. That’s because it’s now linked 

to the bridge—named br0 previously—and the bridge has the address 

assigned to it.

Having a bridge shouldn’t impact your everyday networking in any 

way. The virtual bridge is largely invisible. Its value lies in its ability to give 

virtual machines and containers running on your system direct access 

to your 10.128.1.0/24 lab network. That allows you to assign lab-visible 

addresses to those machines and access them from anywhere on your 

subnet, not just your workstation machine.

Chapter 2  Setting Up a Virtual Environment



66

�Set Up a Bridge Network 
with Netplan (Ubuntu)
It’s worth taking a closer look at how to configure networking on an 

Ubuntu workstation using Netplan because it highlights how it handles 

bridges. If you use this method on Ubuntu, it will take precedence over 

anything you set using NetworkManager.

The default Netplan configuration file is /etc/netplan/50-cloud-

init.yaml. Edit the file, commenting out or deleting the default network 

device and adding a code block to define the bridge. In the example shown 

in Listing 2-8, the domain name is devops.lab.

Listing 2-8.  A sample Netplan configuration with original settings 

commented out

network:

  version: 2

  ethernets:

    enp4s0:

      dhcp4: false

      dhcp6: false

#      addresses:

#      - 10.128.1.10/24

#      gateway4: 10.128.1.1

#      nameservers:

#         addresses:

#         - 10.128.1.2

#         - 8.8.8.8

#         search:

#         - devops.lab

  bridges:

Chapter 2  Setting Up a Virtual Environment



67

    br0:

      interfaces: [eth0]

      addresses: [10.128.1.199/24]

      gateway4: 10.128.1.1

      mtu: 1500

      nameservers:

        addresses: [10.128.1.2,10.128.1.3,8.8.8.8]

        search: [devops.lab]

      parameters:

        stp: true

        forward-delay: 4

      dhcp4: no

      dhcp6: no

In the preceding code example, I’ve commented out the original 

network configurations to remove the addresses setting for the physical 

eth0 device and added bridge information to create br0. The interfaces 

entry uses the name of the physical device, eth0; the addresses entry is the 

workstation IP address; the gateway4 address is the Linux lab network’s 

IPv4 gateway or router; the nameservers addresses are DNS IP addresses 

with your Linux lab domain name; and dhcp4 and dhcp6 are disabled 

because you’re using a static address.

Like the bridge settings you applied on your Proxmox host, the bridge 

gets the IP address, gateway, and name server information, and it’s bound 

to the physical device on the system, enp4s0 in this example. You can 

update these settings at any time if your network topology changes.

Save the file and apply the configuration, which will apply your 

network settings, and start the libvirtd daemon:

$ sudo netplan apply

$ sudo systemctl start libvirtd.service

Chapter 2  Setting Up a Virtual Environment



68

If you need to make network edits, just be sure to rerun the netplan 

apply command to ensure everything is up to date.

�Run virt-manager and Create Your First KVM VM
With the libvirtd daemon running, you can now launch the graphical 

KVM management tool, virt-manager, either from the command line 

or from your application manager. The main window will open and look 

something like Figure 2-18.

Figure 2-18.  The virt-manager window with no virtual machines 
running. Click the screen icon with the yellow burst to start creating 
a new VM

A default connection should be visible as QEMU/KVM. Double-click 

that to connect to the locally running libvirtd daemon. Create a new 

VM with an existing .iso file by clicking File ➤ New Virtual Machine or 

by clicking the yellow burst icon. If you have trouble connecting, be sure 

your local system user has permissions to run libvirt in /etc/group. Also 

ensure that the libvirtd service is running:

$ sudo usermod -aG libvirt $USER

$ sudo systemctl status libvirtd.service

In the dialogue box, leave the default Local install media option 

checked, and then browse for a previously downloaded .iso file, such as 

Ubuntu, AlmaLinux, Fedora, or openSUSE.

Chapter 2  Setting Up a Virtual Environment



69

For most common OSes, virt-manager will automatically detect the 

operating system type. If not, set it to generic. Now set the memory and 

CPU for the VM. If virt-manager auto-detected the medium and OS in the 

previous step, it will recommend minimal memory and CPU cores, but you 

can set them to suit your needs.

Next, create a disk, either in the default location, which is your primary 

system hard drive, or elsewhere on your system. If you don’t have room on 

the default device or merely don’t want to clutter up your primary drive 

with virtual machine disk images, choose Select or Create custom storage. 

This latter option will allow you to browse your filesystem for an alternate 

storage location, perhaps a second disk installed on your workstation. 

To keep things tidy, try to save all your disk images in the same place on 

your system.

Give the VM disk a name, ubuntu01.qcow2, for example, and set 

any size that suits your needs. As with Proxmox, the storage will be thin-

provisioned, meaning that the virtual disk space you allocate won’t be 

committed by KVM on your workstation until the VM actually needs it.

Finally, give your VM a name, and under Network selection, choose 

the network bridge you created earlier, in this example, Bridge br0: Host 

device eth0. This final screen offers a summary of your system and allows 

you to add more features, such as additional disks and network interfaces, 

USB interfaces, and the like. You can experiment with those by clicking 

Customize configuration before clicking Finish.

Return to the virt-manager console, right-click the VM name, and 

choose Run. Your new VM is up and running.

Chapter 2  Setting Up a Virtual Environment



70

�Command-Line Deployments
One of the great advantages of Proxmox and KVM is the ability to create 

and deploy virtual machines from the command line, which enables you 

to automate the deployment of systems without having to go through the 

sometimes tedious steps of clicking through the GUI. The GUI tools are 

great, but command-line tasks can greatly speed up and automate the 

process in a repeatable way.

�The Proxmox qm Command
To create a virtual machine in Proxmox from the command line identical 

to the one you created earlier, log in to your Proxmox VE host and run the 

command shown in Listing 2-9.

Listing 2-9.  The command to create a Proxmox virtual machine 

from the CLI

➊ $ qm create 101 \

➋--cdrom local:iso/openSUSE-Leap-15.0-DVD-x86_64.iso \

➌--name opensuse \

➍--net0 virtio,bridge=vmbr0 \

➎--bootdisk scsi0 \

➏--ostype 26 \

➐--memory 2048 \

➑--onboot no \

➒--sockets 1

Here, you’re defining each aspect of the VM from nine parameters. Set 

the ID ➊ the disk path to the OS .iso ➋ the VM name ➌ the network ➍ the 

disk where the virtual image will be stored ➎ the type of OS (Linux) ➏ the 

amount of memory ➐ whether to start the VM automatically when your 

workstation host boots ➑ and the number of CPU sockets ➒.

Chapter 2  Setting Up a Virtual Environment



71

�The KVM virt-install Command
If you’re using plain KVM on your workstation, the process is similar. To 

create a VM like the one you created earlier with virt-install from the 

command line, issue the following command shown in Listing 2-10.

Listing 2-10.  The command to create a KVM virtual machine 

from the CLI

$ ➊ virt-install --name=ubuntu \

➋--vcpus=1 \

➌--memory=2048 \

➍--cdrom=/storage1/ubuntu-18.04.4-server-amd64.iso \

➎--network=bridge:br0 \

➏--disk size=32 \

➐--os-variant=ubuntu18.04

Again, you’re defining each parameter of the VM. Set the name ➊, the 

number of CPUs ➋, the memory ➌, the .iso image ➍, the network ➎, the 

disk size ➏, and the type of OS (Ubuntu) ➐.

I’ll go into more detail about these commands later in the book. For 

now, it’s good to know these options exist and get a feel for how they work.

�Conclusion
In this chapter, you deployed Proxmox and KVM on a workstation to 

establish the base of your Linux lab. These resources will be at the center 

of your work, so take some time to explore these options, spin up a few 

sample virtual machines, and test network connectivity. With these base 

systems in place, you’re ready to start deploying services in your Linux lab 

environment.

Chapter 2  Setting Up a Virtual Environment



72

In the next chapter, you’ll deploy a DNS server to provide all your VMs 

and LXCs with hostnames that can be reached from anywhere on your 

private lab network. This will streamline how you connect to your systems 

and mirror the kind of deployments you’ll find in the real world.

Chapter 2  Setting Up a Virtual Environment



73

CHAPTER 3

Set Up a DNS Server
In this chapter, you’ll use your newly deployed virtualization environment 

to create and launch your first meaningful workload: a domain name 

server (DNS), which can map IP addresses to easy-to-remember names 

and generally make life easier.

An important component of a DevOps Linux lab is DNS because 

domains are critical to the way different nodes communicate, including 

how they make secure connections. Once launched, your DNS server will 

give your Linux lab a true resolvable domain, like example.com or devops.

lab, you can use with all your virtual machines.

�Why It Matters
Setting up a domain on your private network is just as valuable as public 

domains are on the Internet. It makes it easier to reach your various 

servers via SSH, HTTP, and myriad other service ports and it enables a 

variety of services that require domain resolution, not just IP addresses, 

such as certificate-based connections.

DNS is a core service. You’ll keep it running all the time, and you’ll 

regularly edit it as your Linux lab grows. In this chapter, you’ll set up the 

base environment, create a domain name, and add some names and IP 

addresses, such as router.devops.lab, dns01.devops.lab, web01.devops.lab, 

or workstation.devops.lab.

© John S. Tonello 2022 
J. S. Tonello, Practical Linux DevOps, https://doi.org/10.1007/978-1-4842-8318-9_3

https://doi.org/10.1007/978-1-4842-8318-9_3#DOI


74

�Planning Your Network
Before sitting down to deploy your DNS server, take a moment to think 

about the layout of your Linux lab. This will make the process more 

intuitive, logical, and easier as you grow your environment.

Throughout this book, you’ll create several specific servers, including a 

DNS server, an email server, and a web server. But that’s just the beginning. 

Depending on what you’re planning, you could ultimately deploy a 

dozen or more virtual machines for various workloads. Some of those 

might include

•	 A database server

•	 A Docker container host

•	 Several Kubernetes hosts

•	 A DNS slave

•	 A Chef Infra Server

•	 A Linux distribution mirror

•	 A GitLab server

•	 A WordPress host

•	 Other non-virtual machines, like Raspberry Pis, 

workstations, and laptops

As you can see, the number of host machines can add up quickly, so 

it’s important to think about your network and domain layout carefully 

before diving in. Each of your hosts will have its own static IP address and a 

DNS name, so it’s a good idea to consider logical ways to group everything. 

For example, you can assign the single-digit IP addresses (10.128.1.2 to 

10.128.1.9) to DNS servers, Proxmox hosts, and your Linux mirrors; the 

10.128.1.20-29 to web servers; the 10.128.1.30-39 to Raspberry Pis; the 

10.128.1.40-49 to laptops, and so on.

Chapter 3  Set Up a DNS Server



75

�Work with the Gear You Have
In Chapter 1, I described the kind of physical networking gear you should 

use for your Linux lab, and if you’re just starting out, the private network 

might use a retired four-port router you have lying around. If that’s the 

case, you’ll initially be limited to only four wired hosts. Adding other 

hosts would require you to use the router’s WiFi capability or add an 

additional switch.

With that in mind, your Proxmox hosts should definitely each get one of 

the wired network ports. So should your workstation. That will leave one free 

port for, say, a spare laptop or a Raspberry Pi. Remember that each physical 

Proxmox server you run will host many virtual machines, each with its own 

static IP address and routable hostname, such as dns01.devops.lab.

If each Proxmox host has enough CPU, RAM, and storage to host a 

half-dozen running virtual machines, you’ll need six static IP addresses 

and six unique names for them, but none will require a physical hardware 

port on your network device. In this way, you can get started with quite a 

few VMs without much physical network port capacity. If you have two or 

more Proxmox hosts, you’ll need that many more IP addresses and names, 

but just one physical port on your network switch for each Proxmox host.

�Will You Have Multiple Networks 
(Dual-Homed)?
If you’re planning to connect each Proxmox host to your private network 

and your public network, you’ll need to assign static addresses on both 

networks. That means keeping track of the static IPs you use to keep 

everything straight and to avoid network conflicts. Assigning the same IP 

address to two different servers—physical or virtual—is a ticket to chaos. 

The address will alternately, and randomly, point to one or the other and 

make life miserable.

Chapter 3  Set Up a DNS Server

10.1007/978-1-4842-8318-9_1


76

As with your private network, you won’t need a lot of physical ports 

on your public network router, but you will need many IP addresses. I 

assign static IP addresses to the Proxmox hosts and my workstation, but 

use DHCP on the public network for any dual-homed virtual machines, 

which are any server with more than one NIC. That way, I don’t have to 

go through the hassle of setting aside static IP addresses on my public 

network router or a switch for what may likely be short-lived machines.

If you’re using a single network to start with, plan to connect your 

private router physically to your public router, so your private network 

devices can reach the Internet. This isn’t as ideal (or as fast) as having 

dual-homed Proxmox hosts, but it will enable your machines to download 

and install packages and allow each host and its guest VMs to have full 

network connectivity. This helps you avoid needing to set up a web proxy 

or some other intermediate network configuration.

For now, think about the total number of physical and virtual 

machines you plan to connect and plan accordingly.

�What Domain Name Will You Use?
When setting up your Linux lab, it might be tempting to create a domain 

like yourlastname.com or mylab.net. Avoid this temptation. The .com 

and .net suffixes conflict with the public Internet naming conventions. In 

fact, avoid any public domain suffix like .com, .net, and .org. Instead, use 

something that’s not publicly routable, like test or lab.

Since you won’t need a publicly routable domain for your Linux lab 

traffic (connections from one lab machine to another), it’s possible to set 

up a domain without any traditional suffix at all. The domain might just be 

test, and each physical or virtual host would get a name like web01.test or 

gitlab.test. There’s nothing wrong with that, but I prefer to create domains 

that have the same look and feel as public domains, assigning third-level 

domain names to each host, such as

Chapter 3  Set Up a DNS Server



77

•	 web01.devops.lab

•	 gitlab.devops.lab

•	 pve01.devops.lab

In this scenario, my domain name is devops.lab, which isn’t publicly 

routable, but it is short and easy to key in and remember. The sky’s the 

limit, but decide on a domain that’s short and sweet, and stick with it. If 

you use something like mycoolsdevopslab.test, you’ll quickly tire of having 

to type that whole thing every time you set up a fully qualified domain 

name (FQDN) on a new virtual machine.

�Reserving Pools of Addresses for Static 
and DHCP IP Addresses
Once you decide on your domain name, use the spreadsheet and notes 

you created in earlier chapters to start mapping those names to IP 

addresses. You’ll want static IP addresses on your private network for all 

your physical and virtual machines. Take a moment to jot them down 

now. It’s much easier to have this reference later when you set up your 

DNS server.

For example, a spreadsheet might look like the example in Table 3-1.

Chapter 3  Set Up a DNS Server



78

In this example, I’ve reserved the first address in my private 

10.128.1.0/24 subnet for the router itself, then two DNS servers, then 

two Proxmox hosts, and my workstation. The System column helps me 

remember the specific type of OS I’ve installed, and the Physical column 

indicates whether the host is physical (x) or virtual (blank). Of course, you 

can add as many columns of information as you like, but these four are a 

good start.

Further down this same spreadsheet are additional addresses, domain 

names, and gaps, as shown in Table 3-2 below.

Table 3-1.  This is a sample spreadsheet with your IPs and hostnames

IP FQDN System Physical

10.128.1.1 router.devops.lab NETGEAR router x

10.128.1.2 dns01.devops.lab Ubuntu 22.04

10.128.1.3 dns02.devops.lab Ubuntu 22.04

10.128.1.4 pve01.devops.lab Proxmox 7.2 x

10.128.1.5 pve02.devops.lab Proxmox 7.2 x

10.128.1.10 workstation.devops.lab Linux Mint 20.3 x

Table 3-2.  A continuation of your IP address and hostname spreadsheet

IP FQDN System Physical

10.128.1.30 web01.devops.lab Ubuntu 18.04 x

10.128.1.31 web02.devops.lab Centos 8

10.128.1.32

Chapter 3  Set Up a DNS Server



79

The gaps show at a glance which addresses are used and which are 

free, so if you deploy a third web server, you know quickly that 10.128.1.32 

is available.

�Configure Your Routers and Switches
For your private Linux lab network, you should have a standalone router 

and a managed or unmanaged switch connected to it. The setup is 

described in Chapter 1. Refer to that if you need a refresher. The switch 

attached to your lab router provides additional physical network ports by 

passing through your private subnet. You can configure most unmanaged 

switches by merely connecting an empty port on the router to an empty 

port on the switch.

The same is true for adding a switch to your public network. Simply 

connect an unused LAN port on one to an unused LAN port on the other, 

and you’ll now have lots more ports to work with.

�Add Internet Access to Your Private 
Network Switch
Connecting two routers together is a little more complicated than adding a 

switch to a router. Figure 3-1 shows a simple layout, which includes a static 

IP address on the public (ISP router) to the WAN port on the private router.

Chapter 3  Set Up a DNS Server

10.1007/978-1-4842-8318-9_1


80

Figure 3-1.  Connecting two routers is fairly straightforward, with 
a LAN port from the public network router connected to the WAN 
(Internet) port on the private network router. The static address 
provides connectivity between the two networks

Chapter 3  Set Up a DNS Server



81

Setting up a router’s WAN port varies by device, but the premise is to 

assign a static address from one router to another. In Figure 3-2, you can 

see that I’ve given the private 10.128.1.0/24 router a WAN IP address of 

192.168.1.4. Network traffic will pass from the 10-net to the 192-net and 

on to the Internet through this connection.

Figure 3-2.  The view from a NETGEAR router, used as a switch and 
DHCP server to the 10.128.1.0/24 network. The WAN address (shown 
here as Internet IP address) is statically assigned to the 192.168.1.4 
address from the public 192-net router

Technically speaking, this is a double-NATted configuration. Network 

Address Translation (NAT) routes one network to another, like your 

home ISP router, which connects all your devices through a single public 

IP such as 74.22.110.23 via a 192.168.1.0/24 subnet. A double-NATted 

configuration uses one of those subnet addresses, such as 192.168.1.4, 

to route all traffic via another attached subnet, like this 10.128.1.0/24 

Chapter 3  Set Up a DNS Server



82

example. In this case, by assigning a 192.168.1.0/24 address to the 10-net 

router, you’re adding another NAT layer. This can cause some congestion, 

but it’s a solid configuration for your Linux lab, because it allows any 

assigned 10.128.1.0/24 address to resolve Internet addresses, negating 

the need to add two network interfaces to every virtual machine.

With any dual-homed physical or virtual machine, each must be set 

with only a single gateway address. The gateway provides external access 

to other networks, and for all your systems that need to get to the Internet, 

this will be the router address. When you set up VMs with a single interface 

attached to your Linux lab 10.128.1.0/24 subnet, the default gateway 

address will be 10.128.1.1, as in this example. That gateway moves 

network traffic from your 10-net to your 192-net, from the LAN to the WAN.

�To DHCP or Not to DHCP
When you add a router to your Linux lab environment, it will give you a 

readily available DHCP server to use, which is handy when deploying new 

systems. You could instead deploy a DHCP server on a virtual machine 

in your environment, but the router option is built in, easy to configure, 

effective, and always on.

Deciding when to take advantage of DHCP on any particular VM is a 

question of how the system will be used. If you’re spinning up something 

for brief testing, chances are a dynamically assigned IP address is fine, and 

it will provide connectivity to both your private and public networks. This 

is particularly useful during an OS installation, when the system looks to 

download the latest packages. You save a few steps by just letting DHCP do 

its thing. An available Linux lab network address is assigned on the fly, and 

the VM has all the network access it needs.

Chapter 3  Set Up a DNS Server



83

If, however, you’re setting up a more permanent system to be a target 

for, say, DNS or a Linux mirror, you’ll need a static IP address. Using your 

spreadsheet, you can locate the next available free IP address and assign it 

during the initial setup or use DHCP for initial configuration and then edit 

the network settings after the first boot.

When you use cloning in Proxmox, which replicates all the settings 

of an existing virtual machine to create a new machine, it’s definitely 

easier to use DHCP initially. That way, each clone you launch will get its 

own unique IP address from DHCP when it boots. If you instead clone a 

VM with a static IP, the clone will have the same address as the original, 

which results in errors and often breaks networking on the new clone 

and the original if the source VM is still running. Using DHCP ensures 

each new clone can be up and running properly alongside the source 

VM. Otherwise, you’ll need to shut off or pause the source machine, wait 

for the clone to boot, edit its network settings, apply them, and then restart 

the source machine. Needing to do all of that can really slow you down.

Before you start deploying your DNS server, it’s always a good 

idea to do a sanity check to make sure your workstation and Proxmox 

hosts can reach the Internet. If basic connectivity doesn’t work, you’ll 

be left scratching your head when you go to test your private domain 

resolution later.

I like to perform four distinct ping tests, as shown in Listing 3-1, from 

my workstation and each Proxmox host.

Listing 3-1.  Perform four pings to test your networking

➊ $ ping 10.128.1.1

➋ $ ping 192.168.1.1

➌ $ ping 8.8.8.8

➍ $ ping google.com

Chapter 3  Set Up a DNS Server



84

First, I ping the private network router ➊ to ensure I can reach the 10-

net. Then I ping my public ISP router ➋ to make sure it’s resolvable. Next, I 

ping a public Google name server ➌ and finally a public domain name ➍. 

Pinging a domain name ensures that each physical machine can resolve 

external addresses, which is critical for installing software packages. If 

the results of any of these pings are slow or time out, double-check your 

configurations. Failures are typically the result of gateway issues. Make 

sure each machine has a single gateway address and it’s assigned to only 

one network interface.

�Deploy a VM to Host Your DNS Server
With basic networking configured, you’re now ready to deploy a virtual 

machine to host your private DNS server. You’ll be using bind and 

named for the actual server, which are available on any modern Linux 

distribution. Bind is the full package you install for DNS services, and 

named is the daemon bind uses.

Here are the steps you’ll follow:

•	 Create a virtual machine or LXC with one or two 

network interfaces.

•	 Install bind.

•	 Edit the configuration files.

•	 Configure the primary/master DNS file.

•	 Set up forward and reverse zones.

For the base OS, I’ll use Ubuntu, but these steps apply to AlmaLinux, 

Debian, openSUSE, or your preferred Linux flavor. Note that if you use 

openSUSE, it has handy software patterns and the YaST configuration tool, 

which can make this process less manual.

Chapter 3  Set Up a DNS Server



85

�Using a Proxmox LXC Template
DNS servers don’t require much in the way of resources, so using an 

LXC (Linux container) is a good choice for the base OS. I’ve found that a 

running LXC DNS server will use about one-tenth the resources a full VM 

consumes, so it’s ideal for this always-running service.

Start by logging in to your Proxmox dashboard and navigating to the 

content of your local (pve) storage and select Ubuntu from the available 

templates, as shown in Figure 3-3.

Figure 3-3.  Download the latest template version of Ubuntu to 
your local Proxmox machine. This will become the basis of your 
DNS server

Chapter 3  Set Up a DNS Server



86

�Install a Base Linux Template
Once the template is downloaded, click the blue Create CT button at 

the top of the Proxmox dashboard and create an LXC with the following 

parameters:

•	 Hostname: dns01.

•	 Template: The Ubuntu template file you just 

downloaded.

•	 Root disk: Your default storage location.

•	 Cores: 1.

•	 Memory: 512MB.

•	 Network: Use the default name eth0, your primary 

bridge vmbr0, IPv4 static IP 10.128.1.2/24, and gateway 

10.128.1.1 and uncheck the Firewall box.

•	 DNS: Use host settings or add 10.128.1.2 and 10.128.1.3 

so you resolve the server you’re about to create and the 

DNS slave. Also ensure there’s a public Internet DNS 

server, like 8.8.8.8.

Along with these basics, I like to add the existing SSH public key from 

my workstation in addition to a password. This step enables me to log in 

easily from a terminal without having to manually copy the SSH key later. If 

you don’t already have an SSH key on your workstation, you can generate 

one with the following command:

$ ssh-keygen

Accept the defaults and don’t set a password when prompted. The 

resulting keys—id_rsa and id_rsa.pub—are placed in /home/<user>/.

ssh (~/.ssh/). From the Proxmox dashboard, browse to that location on 

your workstation and upload the id_rsa.pub file.

Chapter 3  Set Up a DNS Server



87

�Enable a Second Network Interface
Before starting the LXC, optionally click Network and then the Add button 

to give the machine a second network interface on your public network. 

Name it eth1 and set the IPv4 address to DHCP, as shown in Figure 3-4. 

Setting a dynamic IP address (DHCP) for the public network in this way 

is fine, but feel free to create a static address. Just be sure to add that static 

address to your ISP router, which is your public network.

Adding a second interface is really only necessary if you have not 
physically connected your Linux lab router to your public ISP router. If 
you have, you scan skip this step.

Figure 3-4.  Optionally add a second network interface to your 
DNS server

Chapter 3  Set Up a DNS Server



88

�Set Up Bind
Start the LXC and click Console to view a terminal via Proxmox. You’ll 

notice that this host will boot up quickly because it’s a container, not a 

full-blown VM. Log in with root and the password you entered when you 

created the LXC. Alternatively, you can use SSH to access your running 

LXC from a Linux terminal workstation:

$ ssh root@10.128.1.2

Before proceeding to install bind, the package that provides the DNS 

server, make sure this host can reach your private router and the Internet 

by issuing the ping commands shown previously. This will ensure that you 

can download packages and your DNS server can properly access your 

networks. If you have trouble, double-check the DNS settings in Proxmox 

for this virtual machine.

Install bind, identified in Ubuntu by its latest version, bind9, using 

the package manager appropriate to your Linux distribution. Since I’m 

using Ubuntu, I’ll use apt. You’re logged in as root, so you don’t need to 

use sudo:

root@dns01:~# apt install bind9

This should install everything you need for DNS and enable and 

start the named service daemon for you. Check it by running a status 

command, as shown in Listing 3-2.

Listing 3-2.  Run a simple systemctl command to check the status of 

the named service

root@dns01:~# systemctl status named

● named.service - Berkeley Internet Name Domain (DNS)

   �Loaded: loaded (/usr/lib/systemd/system/named.service; 

enabled; vendor prese>

Chapter 3  Set Up a DNS Server



89

   �Active: active (running) since Wed 2022-02-12 11:21:32 EST; 

4 days ago

  �Process: 3776 ExecStop=/usr/sbin/named.init stop 

(code=exited, status=0/SUCCE>

  �Process: 3782 ExecStart=/usr/sbin/named.init start 

(code=exited, status=0/SUC>

 Main PID: 3823 (named)

    Tasks: 4 (limit: 4915)

   CGroup: /system.slice/named.service

           └─3823 /usr/sbin/named -t /var/lib/named -u named
--snip--

Depending on the operating system or shell settings you’re using, 

some of this output will be in color. Look for “active (running)” and ensure 

there are no errors in the output.

�Configure named.conf
You’re now ready to start configuring your DNS server. This is most easily 

done on openSUSE systems using the YaST system configuration tool, but 

I’ll cover the manual process to show you where everything is. In Ubuntu, 

it’s /etc/bind/named.conf, but on openSUSE, the main options file is /

etc/named.conf. If you’re using a different distribution, the filename and 

location may be different.

Regardless of which system you’re using, the named.conf file, as 

shown in Listings 3-3 and 3-4, will contain some default information. For 

example, adding Access Control List (ACL) entries limits access to your 

DNS server, and options set the directories for various files. To make things 

more modular, Ubuntu breaks out the options { ... } in a separate /etc/

bind/named.conf.options file. Either way will work, but separating out the 

configurations is cleaner.

Chapter 3  Set Up a DNS Server



90

Listing 3-3.  Working contents of the DNS (bind9) named.conf file 

on Ubuntu

acl trusted {

      10.128.1.0/24;

};

Listing 3-4.  Working contents of the named.conf.options file 

on Ubuntu

options {

      �directory "/var/cache/bind"; 

# Allow the DNS server to search other servers

      recursion yes;

      # Allow hosts on 10.128.1.0/24 to use this DNS

      allow-query { trusted; };

      # dns01’s private IP address

      listen-on { 10.128.1.2; };

      # Allow transfer to future secondary/slave zone

      allow-transfer { 10.128.1.3; };

        forwarders {

             # Forward requests not found on dns01

             8.8.8.8;

             8.8.4.4;

        };

};

Note  Be sure to add all the trailing semicolons (;), both inside and 
outside the brackets. Leaving any off will render your named.conf 
file’s syntax incorrectly, and your DNS server won’t be able to start.

Chapter 3  Set Up a DNS Server



91

As you can see in the preceding example, I’ve created an acl called 

trusted and added the Linux lab subnet 10.128.1.0/24. This acl entry 

ensures any server on the 10.128.1.0/24 subnet can query the DNS server 

and all other subnets are blocked. This is a good security measure that 

prevents servers you don’t want from accessing your DNS server.

The options entries provide information to the named daemon, telling 

it how to handle and process DNS requests. Enabling recursion allows your 

DNS server to pass along DNS queries it can’t resolve to the DNS servers 

defined in forwarders. The named.conf file also identifies the IP address of 

the server itself (10.128.1.2), which is the address on which it will listen 

for DNS queries.

The forwarders entries in this example are 8.8.8.8 and 8.8.4.4, 

Google’s public DNS servers. Your server will use the Google DNS to 

resolve any domains outside yours, such as espn.com or launchpad.

net. Since this is your DNS master or primary (as opposed to a slave or 

secondary), allow-transfer is set to the IP address of an as-yet-to-be-

deployed secondary DNS server. Here, it means the primary server can 

transfer entries to the slave located at the provided IP address, allowing the 

slave to respond to DNS queries you define on the primary.

Note T hough bind still uses the master/slave naming convention, 
this is beginning to disappear. In this chapter and elsewhere, master 
and primary are synonymous when not shown in code examples, as 
are slave and secondary.

Notice that the acl entry of trusted is the same as the value in the allow-

query option in the preceding example. If these don’t match, your DNS 

server will reject query requests from your Linux lab servers.

Chapter 3  Set Up a DNS Server



92

In openSUSE, your zone configurations are included in the main /etc/

named.conf file, but on Ubuntu they’re located separately in /etc/bind/

named.conf.local. Regardless of where they’re located, these entries, as 

shown in Listing 3-5, define the domain names and files your DNS server 

uses to map IP addresses to server names.

Listing 3-5.  Configuring zones allows your DNS server to 

accommodate one or more domains

zone "devops.lab" in {

      type master;

      # The path to your domain zone file

      file "/etc/bind/zones/devops.lab.zone";

      # The IP address of the future DNS slave

      allow-transfer { 10.128.1.3; };

};

zone "128.10.in-addr.arpa" {

      type master;

      # 10.128.1.0/24 subnet

      file "/etc/bind/zones/10.128.zone";

      # The IP address of the DNS slave

      allow-transfer { 10.128.1.3; };

};

The preceding example defines the devops.lab domain, sets this DNS 

server as type master, and allows transfers to a future DNS slave server 

at 10.128.1.3. The file entry is relative to the directory entry described 

earlier, but with the named.conf.options file pointing to /var/cache/

bind (and not /etc/bind), you’ll need to provide the full path to your /

etc/bind/zones/devops.lab.zone file. The second zone entry—128.10.

in-addr.arpa—defines a reverse zone. That is, if you query the DNS server 

by IP address, it will return the hostname associated with it. By contrast, a 

Chapter 3  Set Up a DNS Server



93

forward zone looks up an IP address associated with a hostname. Enabling 

this is useful when you want to probe a network for hostnames that can be 

used as application variables and the like.

If you want to add other domain names later, you’ll need to edit these 

zone entries to add them and create separate zone files in /etc/bind/

zones, described in the next step.

�Check Your DNS Configurations
So far, so good. It’s time to check that these basic bind configurations 

are correct before editing your DNS zone files. Execute the following 

command on your dns01 host:

root@dns01:~# named-checkconf /etc/bind/named.conf

The result will be empty if you have no syntax errors in your named.

conf file. Typical errors are related to leaving off necessary semicolons.

With a good result, restart bind9:

root@dns01:~# systemctl restart bind9

If you see no result, named restarted successfully, and you’re ready for 

the next step.

Note  On other systems, like openSUSE, the command will be 
systemctl restart named.

Chapter 3  Set Up a DNS Server



94

�Create a Forward Zone File
The forward zone file contains all the information about the hosts on your 

private network, including their static IP addresses and hostnames. Create 

your new zone file on Ubuntu by copying the existing db.local file to the 

directory /etc/bind/zones:

$ cd /etc/bind

$ cp db.local ./zones/devops.lab.zone

Notice the name of the file and its location match the entry you made 
in /etc/bind/named.conf earlier.

Edit the new devops.lab.zone file, changing the default local settings 

to entries that match your DNS layout. The finished file should look 

something like the sample shown in Listing 3-6.

Listing 3-6.  A configured zone file containing your IP addresses and 

hostnames

$TTL    604800

@   IN   SOA   ➊dns01.devops.lab. ➋root.devops.lab. (

                            ➌7          ; Serial

                         604800         ; Refresh

                          86400         ; Retry

                        2419200         ; Expire

                         604800 )       ; Negative Cache TTL

; name servers – NS records  ➍
      IN    NS     dns01.devops.lab.

      IN    NS     dns02.devops.lab.

; 10.128.1.0/24 – A records  ➎

Chapter 3  Set Up a DNS Server



95

router.devops.lab.       IN    A      10.128.1.1

;

dns01.devops.lab.        IN    A      10.128.1.2

dns02.devops.lab.        IN    A      10.128.1.3

;

;

;

;

workstation.devops.lab.  IN    A      10.128.1.10

In this example, the SOA (Start of Authority) record designates your 

DNS master’s fully qualified domain name ➊ and the same with the 

admin prefix for the admin email. This equates to “root@devops.lab” ➋. 

The Serial number ➌ should be incremented each time you add address 

(A) records. The NS records ➍ list both the master and future slave server 

names, and the A records ➎ are entered last. Add some sample A record 

entries, such as your private network router and your workstation. Note 

the dot (.) at the end of each hostname. It’s required when adding fully 

qualified domain names to this zone file.

�Create a Reverse Zone File
You’ll follow similar steps to create the reverse zone file, starting by copying 

the db.127 file to 10.128.zone in the zones directory you created earlier. 

Note that the name matches the subnet of your private network:

$ cd /etc/bind

$ cp db.127 ./zones/10.128.zone

Edit the file to look something like the example in Listing 3-7.

Chapter 3  Set Up a DNS Server



96

Listing 3-7.  Edit the reverse zone file. Notice it’s very similar to the 

forward zone file

$TTL    604800

@   IN   SOA   ➊dns01.devops.lab. ➋root.devops.lab. (

                            ➌7          ; Serial

                         604800         ; Refresh

                          86400         ; Retry

                        2419200         ; Expire

                         604800 )       ; Negative Cache TTL

; name servers – NS records  ➍
      IN     NS    dns01.devops.lab.

      IN     NS    dns02.devops.lab.

; name server resolution

dns01.tiny.lab. IN A 10.128.1.2

dns02.tiny.lab. IN A 10.128.1.3

; PTR Records ➎
1.1   IN  PTR   router.devops.lab.      ; 10.128.1.1

;

3.1   IN  PTR   dns01.devops.lab.       ; 10.128.1.2

4.1   IN  PTR   dns02.devops.lab.       ; 10.128.1.3

;

;

;

10.1  IN  PTR   workstation.devops.lab. ; 10.128.1.10

The first part of this file looks much like the forward zone file, but 

instead of A records, this features pointer records (PTR), which identify IP 

hostnames associated with IP addresses.

The SOA record again designates your DNS master’s fully qualified 

domain name ➊ and the domain with the root prefix for the admin email 

(root@devops.lab) ➋. The Serial number ➌ should, again, be incremented 

Chapter 3  Set Up a DNS Server

root@devops.lab


97

each time you add PTR records. The NS records ➍ entry lists both the 

master and future slave server names and A records for name resolution, 

and the PTR records ➎ are entered last. Add some sample PTR entries, such 

as your private network router and your workstation. Again, note the dot (.) 

at the end of each hostname entry. In this example, 3.1, 4.1, and the like 

indicate the IP address for the host, as in 10.128.1.3 and 10.128.1.4.

PTR records can be confusing. The first number is actually the last 

number of an IP address, and the number after the dot is the second-to-

last number in your subnet, so 1.1 is the PTR entry for 10.128.1.1, and 

1.2 is the PTR entry for 10.128.1.2, and so on.

Save and exit the file and run named-checkconf to ensure you have no 

syntax errors in either zone file. It’s also best to check the actual zone files 

for problems by using the named-checkzone command:

Check the forward zones with the syntax named-checkzone zone-name 

zone-file-name:

root@dns01:~# named-checkzone devops.lab /etc/bind/zones/

devops.l%MCEPASTEBIN%ab.zone

Check reverse zones:

root@dns01:~# named-checkzone 128.10.in-addr.arpa /etc/bind/

zones/10.128.zone

If these commands return no errors, reload the configuration:

root@dns01:~# rndc reload

You should get a “Server reload successful” confirmation, and you can 

test the DNS server with dig and dig -x commands on the DNS server itself 

or by pinging one of your new hostname entries from the command line:

root@dns01:~# dig workstation.devops.lab

root@dns01:~# dig -x 10.128.1.10

root@dns01:~# ping workstation.devops.lab

Chapter 3  Set Up a DNS Server



98

In order to test your DNS server from your workstation, you’ll need to 

edit your DNS server entries. This can be done using NetworkManager or 

by manually editing /etc/resolv.conf.

If you get a failure, ensure your workstation’s /etc/resolv.conf has a 

nameserver entry for your new dns01 server (10.128.1.2). The resolv.conf 

file maps network requests to your DNS servers, which are always written 

as IP addresses, not domain names, as shown in Listing 3-8. The search 

entry provides a domain suffix so you can ping workstation, and it will 

resolve to workstation.devops.lab:

Listing 3-8.  Sample contents of an /etc/resolv.conf file on your 

Linux workstation

--snip--

nameserver 10.128.1.2

nameserver 10.128.1.3

nameserver 8.8.8.8

search devops.lab

--snip--

If you try pinging without the domain name and get a failure, add a 

search entry to /etc/resolv.conf, as shown previously.

On some Ubuntu systems, the /etc/resolv.conf file is really a link to 

another form of onboard DNS. To disable that, simply delete the original 

file and create a new one with the contents shown in Listing 3-7:

$ sudo rm /etc/resolv.conf

$ sudo vi /etc/resolv.conf

Chapter 3  Set Up a DNS Server



99

�Set Up an Optional DNS Slave Server
Any good DevOps environment, whether it’s a Linux lab or a full-blown 

enterprise, has redundancy, so it’s a good idea to set up a DNS slave server 

to handle requests in case the master is unreachable. That means if your 

workstation and VMs can’t reach dns01 at 10.128.1.2, they’ll fall back 

to using dns02 at 10.128.1.3. Setting up a slave is similar to setting up a 

master, but much simpler because it gets all its A and PTR record entries 

from the master automatically.

The steps to create a DNS slave server are as follows:

•	 Create a second Proxmox template-based host.

•	 Install bind9.

•	 Edit the named.conf configuration files.

�Create a Second Host
Follow the previous steps to create another Ubuntu LXC host from a 

Proxmox LXC template. Name the host dns02 and give it an IP address 

of 10.128.1.3/24. Note that this is the same IP address you set up as the 

allow-transfer host during the master setup. Your master DNS server, at 

10.128.1.2, has been pre-authorized to transfer its zone records to dns02 

at 10.128.1.3.

Once the LXC has booted, run updates, and upgrade the system if 

necessary:

root@dns02: # apt update

With the system up to date, install the packages necessary for bind:

root@dns02: # apt install bind9

Chapter 3  Set Up a DNS Server



100

As with the master, the configuration settings are located in /etc/

bind/named.conf and /etc/bind/named.conf.options, as shown in 

Listings 3-9 and 3-10, which you’ll set up to look similar to the file on the 

master. In this case, however, allow-transfer is set to none: because 

you don’t want the DNS slave to send any of its zone file information to 

another server.

Listing 3-9.  The named.conf file on your DNS secondary/slave server

acl trusted {

        10.128.1.0/24;

};

Listing 3-10.  The named.conf.options file on your DNS secondary/

slave server

options {

        �directory "/var/cache/bind"; 

recursion yes;

        allow-recursion { trusted; };

        allow-query { trusted; };

        allow-transfer { none; };

        forwarders {

                10.128.1.2;

                8.8.8.8;

        };

...

};

Notice that one of the forwarders is set to the DNS master 

(10.128.1.2), so it can check that server for entries it doesn’t yet have 

before checking the public Google DNS server.

Chapter 3  Set Up a DNS Server



101

�Set Up the DNS Slave Zone Entries
Next, set up the zone entries (on Ubuntu in /etc/bind/named.conf.

local), which look much like the zone entries on the DNS master. 

However, the type is set to slave, and the master is explicitly identified by 

IP address, as shown in Listing 3-11. There is no transfer stanza.

Listing 3-11.  Zone entries for the dns02.devops.lab DNS 

slave server

zone "devops.lab" {

    type slave;

    file "/etc/bind/zones/devops.lab.zone";

    masters { 10.128.1.2; };

};

zone "128.10.in-addr.arpa" {

    type slave;

    file "/etc/bind/zones/10.128.zone";

    masters { 10.128.1.2; };

};

Ensure you haven’t made any syntax errors by using named-checkconf 

on each file:

root@dns02:~# named-checkconf /etc/bind/named.conf

If everything is good (no output), reload bind with rndc reload. If you 

get a “Server reload successful” response, you’ve successfully enabled 

your DNS slave. There’s no need to manually create zone files with A and 

PTR records as you did on the master. The DNS slave will gather all that 

information automatically from the master itself. That way, when you 

make updates to your DNS master, the DNS slave will get all your new 

entries.

Chapter 3  Set Up a DNS Server



102

�Test Your DNS Slave
Test your new slave by using the dig command on one of the fully qualified 

domain hostnames you configured on the master, such as workstation.

devops.lab:

root@dns02:~# dig workstation.devops.lab @10.128.1.3

Use the @10.128.1.3 to tell dig to use your slave server to resolve the 

host information. Remember, you don’t have to create any zone files or 

zone entries. The slave server will get this information from the master. It’s 

regularly updated to sync its information automatically.

The output should look something like the example in Listing 3-12.

Listing 3-12.  The output of a dig command using the slave server

; <<>> DiG 9.11.3-1ubuntu1.11-Ubuntu <<>> workstation.devops.

lab @10.128.1.3

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 29780

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, 

ADDITIONAL: 3

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 4096

; COOKIE: 

53b221dd5d0b4bf1da78de985e124493841383d1f103aab4 (good)

;; QUESTION SECTION:

;workstation.devops.lab.       IN      A

;; ANSWER SECTION:

workstation.devops.lab. 604800 IN      A       10.128.1.10

Chapter 3  Set Up a DNS Server



103

;; AUTHORITY SECTION:

devops.lab.            604800  IN      NS      dns01.

devops.lab.

devops.lab.            604800  IN      NS      dns02.

devops.lab.

;; ADDITIONAL SECTION:

dns01.devops.lab.      604800  IN      A       10.128.1.3

dns02.devops.lab.      604800  IN      A       10.128.1.4

;; Query time: 0 msec

;; SERVER: 10.128.1.4#53(10.128.1.3)

;; WHEN: Sun Jan 05 20:18:26 UTC 2022

;; MSG SIZE  rcvd: 168

The ANSWER SECTION shows the workstation.devops.lab A record IP 

address of 10.128.1.10, and the ADDITIONAL SECTION shows your master 

and slave DNS servers.

Test the reverse by running the dig -x command:

root@dns02:~# dig -x 10.128.1.10 @10.128.1.3

This should return the name of the host at 10.128.1.10, which is 

workstation.devops.lab.

Be sure to add your master and slave DNS IP addresses (10.128.1.2 

and 10.128.1.3) to your /etc/resolv.conf file (or network settings) on 

all future VMs and physical hosts you create (including your workstation). 

That will enable them to resolve your private domain addresses via your 

DNS servers.

Chapter 3  Set Up a DNS Server



104

�Graphical DNS Deployments 
and Management
In addition to setting up DNS manually via the command line and editing 

the various named.conf files, you can instead use Webmin, or if you’re 

using openSUSE, you can take advantage of the YaST configuration tool.

The Webmin DNS module, shown in Figure 3-5, enables you to deploy 

bind and configure your DNS master and slave servers quickly. It’s also a 

good way to check your configurations. Details on how to install and use 

Webmin for your particular platform are explained later in this book and 

are available at www.webmin.com/deb.html.

Figure 3-5.  The Webmin dashboard view of the BIND DNS Server 
configuration. It allows you to manage all aspects of bind and named, 
including creating master and slave zones

Chapter 3  Set Up a DNS Server

http://www.webmin.com/deb.html


105

When installing DNS on openSUSE using the pattern dhcp_dns_server, 

it installs all the packages you need for bind and named and gives you 

what’s known as a TUI (text-based user interface) YaST dns-server tool, as 

shown in Figure 3-6. This tool manages all the files and entries you created 

manually and is a good way to edit your configurations.

Figure 3-6.  The YaST DNS management tool in openSUSE. This tool 
can simplify DNS setup and adding hostnames

Try these options to learn more about how DNS configurations can 

be tweaked and expanded to suit your needs. What you deployed in this 

chapter is fine for everything else in this book, but bind and named have 

many more features than discussed here.

Chapter 3  Set Up a DNS Server



106

�Conclusion
You now have solid DNS master and redundant slave servers running in 

your Linux lab environment! This capability will dramatically simplify how 

you use your Linux lab by enabling you to reach all your servers by their 

domain names, not just their IP addresses. In this way, your Linux lab will 

behave much like the broader Internet and save you time and frustration.

In the next chapter, you’ll put DNS to use by setting up an email server 

that takes advantage of hostname and MX records.

Chapter 3  Set Up a DNS Server



107

CHAPTER 4

Setting Up an Email 
Server
In the age of cloud-based services like Gmail, Office 365, and Yahoo, it’s 

easy to forget that not long ago people ran and maintained their own email 

servers. Although the public cloud offerings are robust and widely used, 

having your own internal mail services is useful for sending and receiving 

log notifications, integrating with chat or software development tools, or 

just communicating in a lab environment.

In this chapter, you’ll install two open source email tools: Postfix 

and Dovecot. Together they will enable you to send and receive email to 

and from any machine in your lab network. Postfix provides the sending 

mechanism used by the Simple Mail Transfer Protocol (SMTP). Dovecot 

provides IMAP and POP3 capabilities for receiving email. IMAP allows 

a local email client to receive messages and also save them on a remote 

server. POP3 pulls email from the server so that messages are stored 

only on the local mail client machine. Of the two, IMAP has become the 

standard for email. Having copies of your email both locally and on a 

remote server means you can simultaneously access all your email from 

multiple devices, whether they’re separate PCs, smartphones, or web-

based email tools like RainLoop. In this chapter, you’ll deploy IMAP, but 

feel free to experiment with POP3. If you want to be able to view email 

offline or if bandwidth is a concern, POP3 might be a good choice.

© John S. Tonello 2022 
J. S. Tonello, Practical Linux DevOps, https://doi.org/10.1007/978-1-4842-8318-9_4

https://doi.org/10.1007/978-1-4842-8318-9_4#DOI


108

In addition to setting up an email server on a virtual machine in your 

lab, you’ll create the same configuration in a containerized environment 

using Docker. This way, you’ll gain a better understanding of how Postfix 

and Dovecot work and learn different ways to deploy and use those 

tools. You’ll also set up a virtual machine to serve as a Docker host. The 

Docker setup will give you a taste of how modern applications are built 

and deployed, separating out individual services that can be updated and 

maintained on their own. This means faster deployments that are easy to 

scale because they are described in code, automating the steps.

Finally, you’ll set up the Evolution open source email client to work 

with your new email server. And because you have a working domain 

name server (created in Chapter 3), you’ll update your DNS entries to 

make everything function properly.

�Set Up a DNS Server to Handle Email
DNS provides a specific MX record type for managing email, which serves 

as a domain-wide pointer for the mail server host. When sending mail, the 

remote mail transfer agent (MTA) queries the MX record for the domain 

and receives back the hostname (or hostnames) of your mail server and 

attempts to make an SMTP connection. If a successful connection is made, 

the remote email server sends the email, and you receive it in your inbox.

An email server can work without an MX record if you’re just using IP 

addresses for everything, but since you’re actively using DNS, adding this 

capability to your lab is useful. You’re essentially setting up your lab in the 

way enterprises would, planning and locking in your configurations to 

provide stability and versatility.

Adding an MX record to your DNS configuration is straightforward, but 

like other DNS entries, it has a specific format. Before setting up your email 

server, edit your DNS configuration to add both an MX record and an A 

record for the virtual machine that will become the mail server. (You added 

this record in the previous chapter, but let’s take a closer look at it.)

Chapter 4  Setting Up an Email Server

https://doi.org/10.1007/978-1-4842-8318-9_3


109

Log in to your dns01.devops.lab server and edit the forward address 

record, located at /etc/bind/zones/devops.lab.zone. Below the NS records 

entry, you should add a line that looks like this:

devops.lab.    IN      MX      0 mail.devops.lab.

This line identifies the mail server’s domain (devops.lab), record type 

(MX), priority (0), and hostname (mail.devops.lab), which is the server 

that will answer MX requests. Although it’s counterintuitive, 0 represents 

the highest priority and tells the server to check mail.devops.lab before 

any other email server. With a single email host, this priority number can 

be any integer, typically less than 50. If you have two mail servers and give 

the first one a priority of 10 and the second a priority of 20, 10 would be the 

higher priority and respond first.

To set up email load-balancing, with two servers receiving mail, add a 

second MX record with the same priority as the first and point the second 

MX record to a different A record host, which would look like something 

like this:

devops.lab.  IN    MX    10    mail1.devops.lab.

devops.lab   IN    MX    10    mail2.devops.lab.

As with your other VM hosts, the mail server’s hostname can be 

whatever you want, such as email.devops.lab or orange.devops.lab. Naming 

it mail is an easy-to-remember convention.

You may have noticed the MX record does not contain an IP address, 

which means network requests from other hosts on your network won’t be 

able to find the mail server host just by designating it in an MX record, so 

you also need to add an A record in the same DNS forward zone file:

mail.devops.lab.        IN    A     10.128.1.5

Chapter 4  Setting Up an Email Server



110

The trailing dot after each domain name in these examples is 

necessary for proper name resolution. These additions designate mail.

devops.lab as the definitive email server for your domain and forward 

any requests to the host at 10.128.1.5. If you set up two email servers, each 

needs its own A record.

Note H aving static IP addresses rather than random addresses 
handed out by a DHCP server is advantageous because DHCP 
addresses can (and do) change, which means you never really know 
where the server is on your network. With email, that means your 
email client configurations would change all the time, which simply 
isn’t practical.

Before exiting the forward zone file, increment the serial entry by either 

adding +1 to the existing number or setting it to the current year, month, day, 

and hour (2022120100). This entry is typically at the top of your zone files:

$TTL 2d

@     IN SOA   dns01.devops.lab. jadams.devops.lab. (

                         2022040100      ; serial

                         3h              ; refresh

                         1h              ; retry

                         1w              ; expiry

                         1d )            ; minimum

--snip--

Save the file and edit the reverse zone file, which is /etc/bind/

zones/10.128.zone, in this example.

You won’t add an MX record to the reverse zone file, but add a PTR 

record so the mail server host VM is configured the same way as all your 

other lab hosts, providing a reverse zone record for the email host:

5.1           IN    A      mail.devops.lab.

Chapter 4  Setting Up an Email Server



111

The 5.1 indicates the IP address for the host, which is 10.128.1.5, the IP 

address you’ll assign to your email server.

Increment the serial number at the top of the file, save it, and then run 

the following to apply your new DNS rules:

$ sudo rndc reload

Even though your mail server isn’t set up or running, test DNS 

resolution first for the server itself:

$ ping -c 5 mail.devops.lab

PING mail.devops.lab (10.128.1.5) 56(84) bytes of data.

--snip--

The ping output should show that the DNS server is configured 

properly to direct requests to the server located at 10.128.1.5.

Checking for the MX record with dig should return something like the 

following:

$ dig devops.lab MX

--snip--

;; ANSWER SECTION:

mail.devops.lab.          172800 IN    MX    0 mail.devops.lab.

--snip--

The dig command should return the proper hostname and priority of 

your mail server. In fact, the ANSWER SECTION from the dig should look very 

much like the entry you made in your DNS zone file.

Chapter 4  Setting Up an Email Server



112

�Install Postfix and Dovecot
Postfix and Dovecot are widely available on most flavors of Linux. For this 

example, you’ll install both packages on an Ubuntu virtual machine that 

will become your email server. Postfix and Dovecot are lightweight enough 

to run alongside other applications on an existing server, but having a 

standalone email server helps with debugging and ensures that other 

application configurations don’t present conflicts.

Create a new Ubuntu VM as described in Chapter 2. Provide it with 

a unique ID, a name (such as mail.devops.lab), 32GB of storage, at least 

one CPU, at least 1,024MB of RAM, and DNS servers set to 10.128.1.3 and 

10.128.1.4 (your devops.lab name servers). When the VM finishes building, 

start it, and log in from the console.

Restart the VM to ensure the updated settings are applied, and then 

ping the mail server’s IP address to test that its network settings are 

working.

Next, ssh in to the mail.devops.lab host:

$ ssh root@mail.devops.lab

Update your package repositories, upgrade the system to the latest, 

and reboot for good measure:

$ sudo apt update && sudo apt upgrade -y

You’ll configure Postfix to use existing Linux system users for active 

email accounts so you don’t have to maintain a list of authorized email 

users separately. Any user account on the machine will have permission 

to send and receive email. The username and password you set when 

creating the new system user will be the credentials you’ll use later when 

setting up your Evolution (or other) email client.

To add additional users, enter the following command:

$ sudo adduser jadams

Chapter 4  Setting Up an Email Server

https://doi.org/10.1007/978-1-4842-8318-9_2


113

You’ll be prompted to provide a password and other information. 

Under Ubuntu, the adduser command automatically creates a /home 

directory for the user and sets the shell to Bash, the system default.

If you’re using a different version of Linux, you may need to use the 

useradd -m <username> command to create the user and then set the 

password for that user with the passwd command:

$ sudo useradd -m <username>

$ sudo passwd <username>

System users need to have a home directory, which is the default 

location where Dovecot stores a user’s mail. Double-check that the mail 

server system’s /home directory exists to ensure your user directory (or 

directories) has been created:

$ ls /home/

jadams

Since your user’s /home directory is where Dovecot will store email 

folders and mail, that directory should be owned (and writable) by that 

distinct user. Check that with the ls command:

$ ls -la /home

total 16

drwxr-xr-x  4 root     root     4096 Mar 23 21:11 .

drwxr-xr-x 24 root     root     4096 Mar 18 14:12 ..

drwxr-xr-x  2 jadams   jadams   4096 Mar 23 21:11 jadams

This output shows that the /home folder itself—and the / above it—is 

owned by root, but /home/jadams is owned by the jadams user, which is as 

it should be.

If the user’s home directory is not owned by the username itself 

(jadams in the preceding example), correct it with the following command:

$ sudo chown jadams:jadams /home/jadams -R

Chapter 4  Setting Up an Email Server



114

The chown command with the -R flag makes this change on the 

directory recursive.

Dovecot is flexible, and you can configure it to use different email 

locations or other mail-related customizations. The steps described so 

far have followed the basic defaults. If you want to experiment with these 

settings, look at the configuration file: /etc/dovecot/dovecot.conf.

�Install Postfix
Postfix is a mail transfer agent (MTA) and works to send email, most 

commonly as SMTP. It’s widely used both for standalone email servers and 

as a relay to move mail traffic from external servers. In this example, you’ll 

set up a standalone server.

At its heart, Postfix sends email, but it has evolved to become a 

sophisticated and secure tool that can, for example, block unauthorized 

access that could turn your innocent mail server into a spam relay, or 

legitimately relay email to another server, including gmail.com or an 

Exchange server. Despite its powerful capabilities, it remains lightweight 

and doesn’t need tons of CPU, RAM, or system resources, particularly for 

your lab environment using basic Internet Site functionality.

With your apt repos up to date, install Postfix:

$ sudo apt install postfix

If the latest postfix package is already installed, run the dpkg-
reconfigure command to step through the default settings screens:

$ sudo dpkg-reconfigure postfix

Chapter 4  Setting Up an Email Server

http://gmail.com


115

During installation, you’ll be asked a number of questions that hint at 

the underlying capabilities of Postfix, which you can explore in detail at 

www.postfix.org/. For our purposes, choose the following default settings 

when prompted:

•	 General type of mail configuration: Internet Site.

•	 System mail name: devops.lab.

•	 For the root mail recipient, set the username you added 

earlier.

•	 For other destinations to accept mail, leave the defaults 

(mail.localdomain, localhost.localdomain, and 

localhost).

•	 Force synchronous updates on mail queue? No.

•	 Local networks: In addition to the default localhost 

IP range, add an entry for your lab network, which is 

10.128.1.0/24 in this example, to ensure that hosts on 

the lab network can reach the mail server and that it 

can answer. This also prevents other networks from 

accessing it.

•	 Mailbox size limit: 0 (no limit).

•	 Local address extension character: + (the default).

•	 Internet protocols to use: You can choose all, IPv6, 

or IPv4.

After you respond to the final question, Postfix stores its configuration 

information in /etc/postfix/main.cf, which you can edit manually at any 

point. If you do edit it, be sure to reload Postfix with service reload postfix 

to ensure that the server picks up your changes.

Chapter 4  Setting Up an Email Server

http://www.postfix.org/


116

�Install Dovecot
You’re now ready to install Dovecot to provide IMAP and POP3 email 

services, which are responsible for delivering email, either locally or to a 

remote email client like Evolution. Postfix is only the sending half of what 

you need for complete email services. Dovecot gives you the receiving 

half. In a production setting, you might separately install Postfix on some 

servers and reserve others for running Dovecot, where actual email is 

stored. The Postfix servers would handle all the responsibilities of sending 

email for your entire domain, and the Dovecot servers would receive 

and store all incoming, outgoing, draft, and trashed email messages for 

your users.

You need three packages to install Dovecot on Ubuntu with both IMAP 

and POP3 capability:

$ sudo apt install dovecot-core dovecot-imapd dovecot-pop3d

You shouldn’t need to alter the configuration defaults for basic 

operation.

When the Dovecot installation completes, restart Postfix:

$ sudo systemctl restart postfix

Ensure that Postfix and Dovecot are running without errors:

$ systemctl status dovecot

$ systemctl status postfix

Each of these commands should output a screenful of information. 

Check that the services are running without errors.

Both halves of your email server are now configured and running. 

Postfix should be listening for connections on port 25 for outgoing email 

it should relay, and Dovecot should be listening on port 143 for incoming 

mail messages. To confirm, use the lsof command that checks for 

listening ports:

Chapter 4  Setting Up an Email Server



117

$ sudo lsof -i -P -n | grep LISTEN

sshd     1108    root  3u  IPv4  30818  0t0  TCP *:22 (LISTEN)

master   1426    root  4u  IPv4  30820  0t0  TCP *:25 (LISTEN)

dovecot  1922    root  4u  IPv4  56361  0t0  TCP *:143 (LISTEN)

--snip--

This output shows that the ssh, master (Postfix), and imap (Dovecot) 

services are listening and lists their respective ports, 22, 25, and 143. It also 

indicates that the system is ready to receive connections and is properly 

configured for email.

This configuration uses the default ports for non-encrypted SMTP 

and IMAP. If you’re using a more secure setup, the ports would be 

different. For example, Transport Layer Security (TLS) uses port 587, and 

Secure Sockets Layer (SSL) uses port 465. Similarly, a secure, encrypted 

Dovecot setup would use port 993 instead of 143. I don’t cover TLS and 

SSL configurations here, but consider exploring them on your own. On 

a LAN-only lab setup like this one, there’s no need for encryption, but 

even private Internet-facing services should use encrypted ports. It can be 

tricky, so unencrypted ports are a good way to get started.

�Mail Server Security Considerations
Whenever you set up an email server, you’re opening yourself up to some 

serious security hazards, so it’s important to keep a few things in mind 

as you go along. Remember, too, that you don’t have to be too worried 

since your lab environment is isolated from the broader Internet, but it’s 

important to think about these things.

First of all, you’ll notice that Postfix and Dovecot were set up with 

their default email ports, 25 and 143, respectively. There’s nothing wrong 

with these for a lab environment, but in a production setting, you’ll 

likely use more secure ports as mentioned previously. During the base 

Chapter 4  Setting Up an Email Server



118

configuration, Dovecot actually defaults to using port 993 (SSL/TLS IMAP) 

and employs self-signed certificates to handle the secure connections. In 

a production environment, you’d use signed certificates attached to your 

public domain name.

When you created the virtual machine to host your mail.devops.lab 

server, you could optionally have disabled firewall filtering at the Proxmox 

level. You can also use a tool like ufw, the Uncomplicated Firewall, to set 

up firewall rules on the server itself. It’s a good habit to get into. If your 

server’s ports are wide open, it makes it easy to connect email clients in 

a lab environment. In production, the downside is that it makes it easy to 

connect email clients. The Web is full of bots and hackers hungry to exploit 

wide-open servers, so locking down ports with a software or hardware 

firewall is important along with setting up your servers to only allow traffic 

from certain domains or IP address ranges.

A final consideration is the power of the Sendmail tool described in the 

next section. It makes it really, really easy to send spoofed email messages. 

For example, adding a From: option to something like jadams@foobar.com  

will make the email appear to have come from a domain you don’t control 

or own. If bad actors get access to your email server, they can do the 

same thing.

Remember, too, that your lab email server (configured as described 

so far) is not Internet routable. That means it can’t send and receive email 

from outside your lab. If you try to use it to send email to, say, someuser@

gmail.com, it will fail. The caveat, though, is that your mail server can 

be set up to relay email legitimately, so it’s always best to deploy only 

the services you know you need and only where you need them. Some 

applications will deploy some form of mail server as part of their setups. 

Be conscious of those potential security holes and ensure you don’t have 

“rogue” email servers in your cluster.

Chapter 4  Setting Up an Email Server

jadams@foobar.com
someuser@gmail.com
someuser@gmail.com


119

�Initial Email Service Test
Before setting up a full-fledged email client in the next step, lets test the 

capabilities of your mail server with a simple command-line application 

called Sendmail.

Sendmail is a lightweight tool that allows you to send email from a 

terminal shell. In this case, you’re using the shell of the email server itself, 

so log in to mail.devops.lab via SSH as one of your system users—such as 

jadams@mail.devops.lab—for these steps.

�Install Sendmail
The Sendmail package is often installed automatically on many Linux 

systems, but run the which command to see if it exists on yours:

$ which sendmail

/usr/sbin/sendmail

The preceding is what’s returned on an Ubuntu system, but it may 

differ on yours. The /usr/sbin directory may not be in your system path, 

so to invoke it, use the full path to send email in the following examples.

If Sendmail isn’t already installed, install it:

$ sudo apt install sendmail

Since Sendmail is a command-line tool, it’s not very intuitive. It 

doesn’t offer obvious screen prompts, and to actually send your email, you 

have to type CTRL + d at the end of your message.

Chapter 4  Setting Up an Email Server

jadams@mail.devops.lab


120

�Install mailutils
While Sendmail takes care of actually sending email, you won’t be able 

to see or read them without the command-line application mailutils. It 

provides an interface for system email and will even alert you when you 

have new messages.

Install it with the following:

$ sudo apt install mailutils

Unlike Sendmail, mailutils actually installs several components to 

keep track of mail on the system. Check out the documentation for all the 

features:

$ man mailutils

Whenever you send email on this system, mailutils will keep track of 

it. Even when you later use a graphical mail client, you can always see your 

email via the command-line interface.

�Test Sending and Receiving Mail
With Sendmail and mailutils installed, you’re ready to give your email 

server a try. Start by invoking /usr/sbin/sendmail followed by the target 

email address. In this case, you’re sending it from jadams@devops.lab to 

jadams@devops.lab:

$ /usr/sbin/sendmail jadams@devops.lab

To give the email a subject line, start the email with Subject: followed 

by whatever you want it to be. You can then add the body of the email after 

that and type CTRL + d to send the email, as shown in Figure 4-1. There 

are other options you can include, such as To: to send to a different user or 

From: to make your email appear to be coming from a different user and 

domain altogether.

Chapter 4  Setting Up an Email Server

jadams@devops.lab
jadams@devops.lab


121

Figure 4-1.  A sample email message, with subject, using Sendmail

Once the email is sent, check your user’s email inbox by invoking the 

mail application from the command line:

$ mail

If everything worked correctly, you should see your email in the main 

mail list. To view an item, type the number next to it. To delete it, enter 

“delete #”, as in “delete 1”.

If you don’t see your email, something went wrong, and you’ll likely get 

a mail delivery error, which you can use to debug your server. Type exit to 

quit the application at any time, and be sure to check out the man page to 

see all the available options—including how to use mail to both send and 

receive local email:

$ man mail

�Set Up an Email Client to Use 
the Email Server
Your mail.devops.lab server is up and running, so you can now start  

using it with Evolution, the freely available email client that’s preinstalled 

on many Linux distributions. Evolution is a full-featured, modern,  

cross-platform email client that’s easy and intuitive to use. Another 

popular Linux email application is Thunderbird. Both email clients 

provide email folder views, HTML email, signatures, and most functions 

you’d expect in a graphical email tool. Your email server is robust enough 

to use any number of email clients, so if you have a preferred application, 

feel free to try it, but we’ll use Evolution here.

Chapter 4  Setting Up an Email Server



122

If Evolution isn’t already on your Ubuntu workstation system, enter the 

following to install it:

$ sudo apt install evolution

When you start Evolution the first time, it prompts you to set up an 

email account and asks you for the proper credentials (Figure 4-2). If 

you’re already using Thunderbird or another desktop mail client with 

a public email setup, just create a new account there with your lab mail 

credentials.

Figure 4-2.  The email account setup screen in Evolution

Chapter 4  Setting Up an Email Server



123

The email address uses the username you entered when creating the 

Ubuntu VM and the MX record name of your email server. In this example, 

the email address for that user is jadams@devops.lab. DNS knows to 

forward mail requests to mail.devops.lab. Without the MX record, you’d 

need to use the full hostname, which is jadams@mail.devops.lab in this 

example.

When you add this basic information during account setup, Evolution 

locates and populates the email server settings automatically. It’s using the 

MX record and automatically trying some common configurations so you 

don’t have to set up everything manually, which is nice. By default, your 

email connection uses STARTTLS, which Evolution should automatically 

discover along with the ports you’re using, 25 and 143 (and maybe 993). If 

Evolution doesn’t find those settings by default, be sure to add them under 

Receiving Email and Sending Email.

When the account is added, try to get messages or send an email. You 

should be prompted to approve a certificate. When you installed Postfix 

and Dovecot, a self-signed certificate was created. Since it’s self-signed, it 

provides only a minimum level of security; it’s fine for your lab, but don’t 

use it in production. If you have a signed certificate, you could replace the 

self-signed one to harden your email server. I won’t go into that here, but 

the process is well documented by various certificate providers, including 

Let’s Encrypt.

Save the certificates permanently and then try to get messages or send 

an email again. You should see a new email appear in your Inbox and Sent 

mail folders.

If you have difficulty, particularly when you’re adding the SMTP and 

IMAP servers to your email account, double-check your DNS entry and 

make sure you’re using the password you set for your Ubuntu user on the 

mail server itself. Remember, the username is just the account name—

jadams in this example—not the email address.

Chapter 4  Setting Up an Email Server

jadams@devops.lab
jadams@mail.devops.lab


124

�Install Postfix and Dovecot 
in a Docker Container
As you can see, installing mail services is fairly straightforward. In the 

previous example of installing Postfix and Dovecot in a virtual machine, 

the installation steps configured everything necessary to run mail services, 

including adding SSL keys to handle encryption. Again, in a production 

environment, you would replace those self-signed certificate keys and 

make a number of other modifications to harden your setup.

For the purposes of your lab, though, let’s deploy the same email 

services in a Docker container by creating a Docker host, installing docker.
io and docker-compose, creating a docker-compose.yml and Dockerfile, 

and running the mail host from there.

By going through these containerization steps, you can see a side-by-

side comparison of how traditional and modern applications are deployed. 

Today, software development often happens in containers, which are 

small, self-contained, highly portable services that are easy to replicate 

and scale up. For example, instead of creating a new VM for each new 

Postfix host you want, you can create new containers from a few files and 

guarantee the same configuration is deployed anywhere you need it. This 

flexibility, speed, and portability make containers very popular indeed.

The open source Docker container runtime package (not the 

enterprise version) is called docker.io or docker-ce in many Linux distros. 

It is the engine that allows you to build and run Docker containers, and 

docker-compose is a separate application that runs on top of Docker. It 

allows you to define your container services in simple docker-compose.yml 

files and extend their build-time specifications in associated Dockerfiles. 

With docker-compose, you can easily build Docker images, which can 

then be used to run containers that contain your services.

Chapter 4  Setting Up an Email Server



125

Before deploying a Docker version of your mail server, start by shutting 

down the mail.devops.lab VM server you just created so there aren’t any 

conflicts with the Docker one you’re about to create. Having conflicting 

mail servers can cause a lot of headaches, and this simple step helps you 

avoid them.

Since you’re creating a second email server, you’ll need to set up DNS 

to know about it. There are several ways to do that, including reusing your 

existing MX record as is (with mail.devops.lab), modifying that existing 

record, or adding a new MX record altogether. In this example, you’ll 

modify the existing zone record, replacing the MX entry with one for your 

Docker host, which is 10.128.1.6 in this example. Remember, the MX 

record is a domain-wide setting.

Edit your forward and reverse zone files, replacing mail.devops.lab 

with docker.devops.lab in your MX record entry and adding an A record for 

the Docker host itself. In this example, that would look like this:

--snip--

devops.lab.         IN MX        0 docker.devops.lab.

--snip--

docker.devops.lab.  IN A         10.128.1.6

Be sure to increment the serial values and run rndc reload after 

you’ve made these changes to ensure your new DNS settings are applied. 

Test the updates by pinging docker.devops.lab. It should resolve to 

10.128.1.6 in this example.

The dig command should show the hostname for the new server:

$ dig devops.lab MX

--snip--

;; ANSWER SECTION:

devops.lab.  2048   IN    MX     0 docker.devops.lab.

--snip--

Chapter 4  Setting Up an Email Server



126

In the next few steps, you’ll be building and configuring two Docker 

containers, one for Postfix and one for Dovecot, but I won’t go into a lot 

of detail about Docker itself. What you should know is that containers are 

much smaller than full virtual machines. They make use of the underlying 

operating system’s kernel and other resources, which live outside the 

container, and provide only the services you need for an application 

running inside the container.

When creating a container, you generally build it to run just a single 

service. This makes each container easy to recreate, and it also makes it 

easy to manage application components separately. This will become 

more obvious as you work through the following example and the slightly 

more complex example in Chapter 5.

You’ll be setting up a new Linux VM as your Docker host, but you 

can learn how to install Docker on other platforms by reading the 

documentation available at https://docs.docker.com. I like to use a 

separate VM for Docker—at least initially—because the installation adds 

networking and other configurations that can be confusing. It’s also 

safer to run Docker on a separate machine if you fear messing up your 

workstation.

For the Docker host, create another Ubuntu clone (or VM created 

from scratch), giving it a unique IP address of 10.128.1.6 to match the DNS 

entry you made, and update the /etc/hosts and /etc/hostname files if you 

manually added the entry on your workstation. Update the system and 

reboot before proceeding.

While the system is rebooting, double-check the changes you made to 

your DNS server. The name and IP don’t have to match my example, but 

they should match what you set up for your own lab’s Docker server.

Docker provides a script for installing Docker and docker-compose, 

but this example uses the packages available in Ubuntu itself. Feel free to 

experiment with the scripted version, available from the Docker website.

Chapter 4  Setting Up an Email Server

https://doi.org/10.1007/978-1-4842-8318-9_5
https://docs.docker.com


127

Enter the following to install the Docker runtime and docker-compose:

$ sudo apt install docker.io docker-compose

Once this installation is complete, add your username to the docker 

group so you can run Docker commands as a regular user; be sure to use 

the username you assigned when creating the VM. This simple action 

means you don’t need to type sudo before every Docker command:

$ sudo usermod -aG docker jadams

Log out and back in to ensure this configuration has been applied, and 

run a simple docker ps command to list running containers:

$ docker ps

Of course, you don’t have any yet, so you won’t see any results, but if 

it runs properly without errors, you know that you have permission as a 

regular user to run Docker commands.

Building a Docker container with docker-compose requires at least a 

docker-compose.yml file, but you’ll also use Dockerfiles. These tell Docker 

exactly how to build a container image, including the Linux OS on which to 

build everything. For example, even though your Docker host is running 

Ubuntu, the container could run Alpine, Fedora, or any number of other 

base Linux OS images.

Since the container build process is entirely hands-off, you need to 

provide details about each component of the email server build, including 

things that were automatic when you built your email server in a virtual 

machine. This is the heart of containerized application deployments. You 

define what you want, and your application services are built the same way 

every time. I’ll explain these as we go.

Log in to your Docker host, create a folder called mailserver, use cd 

to move into it, and create a file named docker-compose.yml. Add the 

following content to the file:

Chapter 4  Setting Up an Email Server



128

Note T his is written in YAML, so each indented line uses two 
spaces, not tabs, to make the proper spacing.

version: '2.1'

services:  

  postfix:

    restart: always

    hostname: mail.devops.lab

    build: ./postfix  

    container_name: postfix

    ports:

      - "25:25"  

    volumes:  

      - 'mail:/var/mail'

      - 'home:/home'

      - 'postfix-certs:/etc/ssl'

  dovecot:

    restart: always

    hostname: mail.devops.lab

    depends_on:

      - postfix

    build: ./dovecot  

    container_name: dovecot

    ports:

      - "143:143"  

    volumes:  x

      - "mail:/var/mail"

      - "home:/home"

      - "dovecot-certs:/etc/dovecot/private"

volumes:  

Chapter 4  Setting Up an Email Server



129

  mail:

  home:

  postfix-certs:

  dovecot-certs:

The file begins with the services: entry and the services called 

postfix and dovecot . All the indented parameters below postfix and 

dovecot pertain to each service. The build:  commands tell docker-

compose to build the container images based on the files in the postfix 

and dovecot subdirectories. The ports:  entries tell the containers 

to expose ports 25 and 143, respectively, mapping the container’s ports 

25 and 143 to the host’s ports 25 and 143. These are the incoming and 

outgoing ports needed for Postfix and Dovecot to be reachable by any 

system attempting to connect to your docker.devops.lab host. When you 

deployed these applications in your VM, these ports were automatically 

made available, but containers are truly isolated from the host system and 

don’t inherit those settings. You must define them explicitly.

Finally, docker-compose is told to create four persistent volumes: 

, which will retain data even after the container is stopped or 

restarted. Without persistent volumes, the user’s mail and mail folders 

would disappear after each container stop, and the system certificates 

would change, requiring an email client like Evolution to request new 

authorization each time the container starts.

The final volumes: entry—given the same indentation as services:—

provides names for the persistent volumes used in the postfix and 

dovecot services . Without them, the container builds will fail. By adding 

the same volumes in each container, the containers share access to data in 

those directories, which simplifies how those two services work together.

Chapter 4  Setting Up an Email Server



130

Save the docker-compose.yml file, and create a new folder within 
your mailserver directory called postfix. In that folder, create a new 
file called Dockerfile, and add the following contents:

FROM ubuntu:20.04

# Create a system user, a trusted network and other variables

ENV MYUSER jadams 

ENV MYPASS mypassword 

ENV TRUSTED_NETWORK 10.128.1.0/24 

ENV HOSTNAME devops.lab 

ENV DEBIAN_FRONTEND noninteractive

# Install the debconf utilities, and in copy the pre-

configured files

RUN apt update && apt install -y debconf-utils openssl 

RUN useradd -rm -d /home/${MYUSER} -s /bin/bash \

      -p "$(openssl passwd -1 ${MYPASS})" ${MYUSER}

WORKDIR /usr/src/app 

COPY postfix-debconf ./

RUN sed -i "s|TRUSTED_NETWORK|${TRUSTED_NETWORK}|g" postfix-

debconf 

RUN sed -i "s|HOSTNAME|${HOSTNAME}|g" postfix-debconf

RUN debconf-set-selections postfix-debconf 

# Install Postfix 

RUN apt install -y postfix

EXPOSE 25

CMD [ "/usr/sbin/postfix","start-fg"] 

Chapter 4  Setting Up an Email Server



131

The file begins with the base OS Docker image, which is likely the same 

version of Ubuntu you used for your mail.devops.lab virtual machine. 

The FROM tells docker-compose to download and use that specific image 

version of Ubuntu. Since you’re using Ubuntu, all the commands that 

follow will be specific to that distribution, such as using apt to install 

packages. If you were using Fedora, for example, those package commands 

would use yum.

The Dockerfile then sets five environmental variables that hold values 

you can pass to the containerized application and scripts running inside 

it. The MYUSER  and MYPASS  variables create a user with that password 

inside the running container. Set those to anything that suits your needs. 

Note that this is not secure at all because your credentials are exposed. 

There are ways around this with Docker secrets, which would make for a 

good side project to do on your own. For now, this exposed way of doing 

things makes the process a little clearer and easier to follow.

The TRUSTED_NETWORK  variable is defined here and will be later 

copied to the postfix-debconf configuration file, allowing any server on the 

10.128.1.0/24 subnet to access your email server. This is a security measure 

that prevents any system not on your network from using your system to 

send and receive email. If you leave it off, machines on your lab network 

won’t be able to connect.

The HOSTNAME  variable sets the name of the mail server, again 

allowing remote connections to work properly. In this example, reuse the 

same hostname you used in the VM example, docker.devops.lab. It will 

properly resolve to the Docker host because of the previous DNS edits 

you made.

The first RUN  command tells docker-compose to update the Ubuntu 

repository information on the system and install debconf-utils and 

openssl. The first is a utility that allows you to import configuration data for 

Postfix (instead of entering that information interactively like you did with 

your VM example), and openssl will be used in the next RUN statement to 

create an encrypted password for your user. The next RUN statements create 

Chapter 4  Setting Up an Email Server



132

an Inbox folder a Sent folder, and set the proper permissions on a newly 

created user mail directory.

The WORKDIR  directive sets an optional directory inside the 

container to store your configuration files. When the postfix-debconf file 

is copied into the container, it is copied from the postfix directory on your 

workstation into the container’s /user/src/app directory. This is a handy 

way to have files you need populated inside the container, including test 

scripts, .tar files, and configuration files.

The next step runs two sed commands  to replace plain-text 

placeholder terms in postfix-debconf (TRUSTED_NETWORK and HOSTNAME) 

with the environment variables 10.128.1.0/24 and devops.lab. Once 

that change is made, debconf-set-selections is run on postfix-debconf 

to import the values . With all the preconfiguration done, the next RUN 

command installs Postfix and Dovecot, just as you did on your VM .

The EXPOSE line is technically redundant since you already defined 

port 25 in your docker-compose.yml file, but it won’t hurt to leave this 

line as a reminder of the port needed to access SMTP remotely. In this 

example, the Docker host is passing along requests on ports 25 and later 

143 to the running containers listening on those ports.

Finally, the Dockerfile instructs docker-compose to execute the 

command to start Postfix in the foreground.

Now, create a new file in your postfix folder named postfix-debconf. 

This will import the necessary Postfix settings so you won’t need to enter 

them manually (as you did in the VM installation) or edit configuration 

files inside the container. I created the following example with debconf, a 

utility that shows you the system configurations for various applications 

installed on your system. If you install debconf on your VM email server 

and run debconf-get-selections > postfix-debconf, the contents of the 

outputted file will include settings for various applications, including 

Postfix. You’ll need to edit out everything not related to Postfix to use the 

information for your Postfix container, and feel free to experiment on your 

own, but my following example is all set to use.

Chapter 4  Setting Up an Email Server



133

Add the following to the postfix-debconf file:

debconf      postfix/destinations      string HOSTNAME, 

mail,  localhost.devops.lab, , localhost

debconf      postfix/newaliases    boolean     false

debconf      postfix/relayhost     string

# Install postfix despite an unsupported kernel?

debconf      postfix/kernel_version_warning    boolean

debconf      postfix/sqlite_warning    boolean

debconf      postfix/retry_upgrade_warning     boolean

# Set this variable to match your network

debconf      postfix/mynetworks    string   127.0.0.0/8 

[::ffff:127.0.0.0]/104     [::1]/128 TRUSTED_NETWORK

debconf      postfix/lmtp_retired_warning     boolean    true

debconf      postfix/rfc1035_violation   boolean    false

debconf      postfix/compat_conversion_warning   boolean  true

debconf      postfix/procmail    boolean    false

debconf      postfix/recipient_delim    string    +

debconf      postfix/mailname    string    devops.lab

debconf      postfix/main_cf_conversion_

warning    boolean    true

debconf      postfix/tlsmgr_upgrade_warning    boolean

debconf      postfix/chattr    boolean    false

debconf      postfix/dynamicmaps_conversion_warning    boolean

debconf      postfix/root_address    string

debconf      postfix/mailbox_limit    string    0

debconf      postfix/protocols    select    ipv4

debconf      postfix/main_mailer_

type    select    Internet Site

debconf      postfix/mydomain_warning    boolean

debconf      postfix/relay_restrictions_warning    boolean    #

Chapter 4  Setting Up an Email Server



134

The highlighted terms, HOSTNAME and TRUSTED_NETWORK, will 

be automatically replaced when the Docker image is built with the 

environment values you defined in the Dockerfile. This is a handy way to 

update variables without needing to edit multiple files to do it.

This takes care of the Postfix container. You’ve added all the necessary 

components to build and configure the service. Be sure to edit the MYUSER, 

MYPASS, and other ENV variables to suit your needs if you’re not using the 

default values shown in my Dockerfile example.

This is just half of your mail server, so it’s time to create the Dovecot 

service container. It will also set a username and password—matching 

the ones you set in the Postfix Dockerfile—so it will install openssl as 

part of that process before creating the appropriate email directories and 

installing the Dovecot packages.

Create a new Dockerfile in a new dovecot subfolder and add the 

following:

FROM ubuntu:20.04

# Create a system user

ENV MYUSER jadams

ENV MYPASS mypassword

ENV DOCKER_HOST 10.128.1.6

ENV DEBIAN_FRONTEND noninteractive

# Install openssl

RUN apt update && apt install -y openssl

RUN useradd -rm -d /home/${MYUSER} -s /bin/bash \

      -p "$(openssl passwd -1 ${MYPASS})" ${MYUSER}

RUN mkdir -p /home/${MYUSER}/mail/INBOX && \ 

      touch /home/${MYUSER}/mail/Sent && \

      chown ${MYUSER}:${MYUSER} /home/${MYUSER}/mail -R

# Install Dovecot

Chapter 4  Setting Up an Email Server



135

RUN apt install -y dovecot-core dovecot-imapd dovecot-pop3d 

EXPOSE 143

CMD [ "/usr/sbin/dovecot","-F"]  

This second Dockerfile begins much like the Postfix one, but then 

goes on to create folders inside the container that Dovecot needs to store 

email and sets the proper permissions . This should look familiar from 

the VM version you installed. The Dockerfile then tells docker-compose 

to install the necessary Dovecot packages  and start the service in the 

foreground .

Note  Services can’t be daemonized in a Docker container. If 
they are, the container will just keep restarting. That’s why these 
containers run the applications in the foreground. This isn’t true 
for LXCs, which behave much more like VMs and can start and run 
without any explicit daemon in the foreground.

To recap what’s happening here, you’re first defining services in a 

docker-compose.yml file and then creating Dockerfiles to set the base OS for 

the two containers, installing the necessary applications to run Postfix and 

Dovecot, configuring environment variables, and executing commands 

inside the running containers to start the mail server services via the 

final CMD .

As you can see, you’ve had to define everything you want (and nothing 

you don’t). The resulting containers will be small compared to your 

earlier VM, and though they’re separate, they will communicate and share 

everything they need to provide your email services.

Chapter 4  Setting Up an Email Server



136

You’re now ready to build the Docker images you’ve defined and run 

the containers. Navigate to the mailserver directory if you’re not already 

there (running the pwd command in the terminal shows you your present 

working directory) and run

$ docker-compose up -d

That’s it! This will first build the Docker images and then launch 

containers based on those images. You’ll see output from the shell showing 

docker-compose going through the build steps, including downloading the 

Ubuntu image used in each container, running apt updates, and the rest of 

your commands. When it completes, it will release the console (the -d flag 

tells docker-compose to start the containers in the background and leave 

them running).

Issue the docker ps command to confirm your containers are running:

$ docker ps

CONTAINER ID   IMAGE                COMMAND                    

CREATED        STATUS          PORTS                  NAMES

a71e3f2c7599   mailserver_dovecot   "/usr/sbin/dovecot -F"      

5 hours ago    Up 5 seconds    0.0.0.0:143->143/tcp   postfix

2b39252097d1   mailserver_postfix   "/usr/sbin/postfix s..."    

5 hours ago    Up 23 minutes   0.0.0.0:25->25/tcp     postfix

The headers in the preceding sample output carry over to two lines 

in this example, but they show that the container called dovecot is 

running from an image named mailserver_dovecot with port 143 open. 

It also created a container named postfix running from an image named 

mailserver_postfix with port 25 open. As you can see, docker-compose 

automatically created Docker images named after the directory root where 

the container files are located.

Chapter 4  Setting Up an Email Server



137

If you want to see just how small these containers are, run docker 
ps -s to add the size to the preceding output. In my example, the dovecot 

container is just 110MB, and the postfix container is 168MB. Although 

relatively small, they contain everything needed to run your mail services.

With the email server containers running, go back to Evolution on your 

workstation and add a new email account, this time using the username 

and password you set in the Dockerfile and an email address that’s 

<username>@devops.lab. Accept and save the certificate credentials, and 

you’re ready to start emailing!

�Conclusion
In this chapter, you successfully deployed a local email server as a virtual 

machine and in Docker containers. You can now use that email system for 

any other server in your lab that needs email capabilities.

In the next chapter, you’ll follow similar steps to set up a LAMP server 

using Linux, the Apache web server, the MySQL/MariaDB database server, 

and the PHP scripting language. With this configured, you’ll be able to 

create any number of websites, including a MediaWiki or WordPress site 

for documentation or database-driven web applications. You’ll also learn 

how to deploy the RainLoop webmail application, which uses a LAMP 

stack to provide a browser-based interface that takes advantage of your 

new email server.

Chapter 4  Setting Up an Email Server



139

CHAPTER 5

Building a LAMP 
Stack: Apache 
and PHP
A LAMP stack is the combination of Linux with Apache, MariaDB or 

MySQL, and PHP, that provides a robust, versatile platform for creating 

websites and web applications. It’s a perfect addition to your Linux lab 

because it can become the foundation for a wide variety of freely available 

and custom software tools.

In this chapter, you’ll begin building a LAMP stack by installing and 

configuring Apache to serve up two unique websites from a single server. 

As part of that process, you’ll install PHP and deploy the PHP-based 

RainLoop webmail application to work with the mail server you set up in 

the last chapter. Finally, you’ll containerize your deployment with Docker 

to demonstrate how individual services work together for faster, repeatable 

coding. In the next chapter, you’ll install MariaDB (or MySQL) to complete 

the stack.

© John S. Tonello 2022 
J. S. Tonello, Practical Linux DevOps, https://doi.org/10.1007/978-1-4842-8318-9_5

https://doi.org/10.1007/978-1-4842-8318-9_5#DOI


140

�Why LAMP?
Apache, formally known as the Apache HTTP Server, is free, open source, 

cross-platform web server software that powers more than 65% of all 

websites. When combined with the PHP programming language, MariaDB, 

and Linux, it’s the basis of popular content management platforms like 

WordPress, Drupal, and Joomla, shopping cart applications like OpenCart, 

as well as management tools like Webmin and Adminer. Apache is stable 

and well documented, and has been tested and run for decades, which 

means if you need help, you’ll easily find useful online examples, tutorials, 

and tips.

PHP has evolved to become a reliable Apache companion, providing 

not just a versatile environment for custom applications but also a robust 

framework for interacting with application programming interfaces (APIs). 

Many popular third-party applications, from the Spotify music platform 

to Facebook to Weather Underground, rely on it. These and many other 

APIs allow you to use a LAMP server to incorporate remote data and 

manipulate third-party services in your own custom applications.

�Configure a Web Server VM and Install 
the Packages
Start your web server deployment by creating a new Ubuntu virtual 

machine in Proxmox, either from scratch or by cloning an existing server, 

as explained in Chapter 2. Give the server at least 16GB of storage, 2GB of 

RAM, and a static IP address on your private network. Since the docker.

devops.lab host you created in Chapter 4 has the address of 10.128.1.6, 

give this server the address of 10.128.1.7. You could assign any IP address 

in your lab subnet (10.128.1.0/24) pool, but to keep things simple, use the 

next unused IP address.

Chapter 5  Building a LAMP Stack: Apache and PHP

https://doi.org/10.1007/978-1-4842-8318-9_2
https://doi.org/10.1007/978-1-4842-8318-9_4


141

It’s worth noting that Proxmox offers pre-built templates that will 

provide you with a full LAMP stack (and other stacks) in one step. Feel free 

to try those if you like, but for this chapter and the next, you’ll deploy a 

server from scratch to see how all the moving parts fit together.

�Update Your DNS Settings to Add Websites
As with other steps in this book, you’ll start by updating your DNS server 

entries so you can resolve each website in the following examples with real 

domain names, not just IP addresses. While your new VM is deploying, 

log in to your DNS server and add a new A record entry for this server, as 

described in Chapter 3. Enter the hostname and IP address in both the 

forward and reverse zone files. Also add a CNAME entry named myserver 

that points to web.devops.lab:

--snip--

web          IN A        10.128.1.7

myserver     IN CNAME    web

--snip--

In the preceding example, the fully qualified domain names (FQDNs) 

are shortened to their bare minimums, web and myserver, without a 

trailing dot. These are valid entries when DNS is handling a single domain. 

The myserver CNAME entry acts as an alias for the web A record entry. Both 

addresses—web.devops.lab and myserver.devops.lab—will resolve to the 

host with the same 10.128.1.7 address.

Although both DNS names resolve to the same physical host, Apache 

will treat them as separate destinations, allowing you to create two distinct 

websites on the same server. You can use this technique to create as many 

websites as you want on a single physical or virtual server.

Chapter 5  Building a LAMP Stack: Apache and PHP

https://doi.org/10.1007/978-1-4842-8318-9_3


142

Note D on’t forget to increment the serial number in each DNS 
zone file before saving and running rndc reload to apply your DNS 
edits. If you make changes to your DNS entries but don’t increment 
the serial number, your changes won’t take effect.

With each DNS change, perform a ping or a dig from your workstation 

to test the DNS entry:

$ ping web.devops.lab

$ dig web.devops.lab

$ dig myserver.devops.lab

The output of the dig commands should look something like this:

; <<>> DiG 9.11.2 <<>> myserver.devops.lab

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 42360

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 1, 

ADDITIONAL: 2

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 4096

; COOKIE: 

b5755587306b17e9d136aed85e8480a10761b848f40f5f41 (good)

;; QUESTION SECTION:

;myserver.devops.lab.         IN    A

;; ANSWER SECTION:

myserver.devops.lab.     172800  IN   CNAME  web.devops.lab.

web.devops.lab.          172800  IN   A      10.128.1.7

--snip--

Chapter 5  Building a LAMP Stack: Apache and PHP



143

The output contains a lot of information, but the last two lines show 

the answer to the “question” you asked—what you entered after your dig 

command—the correct entries in your DNS zone file.

With your web.devops.lab host VM up and running and DNS set, you’re 

ready to install the base packages for your web server.

�Install the Core LAMP Packages
Setting up a LAMP stack requires more than just the Apache base 

application; you also need to install modules that enable Apache to 

understand PHP and communicate with MariaDB databases. These 

modules allow your web server to run PHP files that interpret and compile 

the code when a page is requested. In addition, you’ll install packages that 

will make your web server ready to run RainLoop webmail later.

Install the following Apache and PHP packages on Ubuntu 22.04:

$ sudo apt update && sudo apt install apache2 \

  php8.1 libapache2-mod-php8.1 php8.1-common \

  php8.1-curl php8.1-xml php8.1-mysql php-date \

  php8.1-fpm php8.1-json php8.1-cli

Note U buntu 22.04 uses 8.1, but older Ubuntu 20.04 uses 7.4, and 
Ubuntu 18.04 uses 7.2.

Two packages worth noting are libapache2-mod-php8.1 and  

php8.1-mysql. The libapache2-mod-php8.1 package provides the PHP 

module for apache2, which enables the server to understand and 

manipulate .php files (and files with other extensions you want to 

properly parse PHP). Without this module, your web server would just 

show .php files as plain text. The php8.1-mysql package provides the 

Chapter 5  Building a LAMP Stack: Apache and PHP



144

module that allows PHP and MariaDB (or MySQL) to speak to each other. 

This module is necessary when building PHP applications that you want to 

read from and write to your databases.

When the package installation is complete, Apache starts automatically 

and will be running with two important directories in play: /var/www/

html, which is the default root directory for your files, and /etc/apache2/, 

which contains the default web server configuration files. The main 

configuration file is /etc/apache2/apache2.conf, and it defines everything 

from the log files it should create to how many simultaneous requests 

it should handle, to site-level file permissions. You can configure these 

settings to suit different needs, but keep the defaults for now.

�Create Two Web Server Directories
As mentioned previously, a single Apache instance can serve up content 

from two or more distinct domain names. To see how this works, you’ll 

create two websites and, therefore, two website directories: one at the 

default directory location and another in a new directory where you’ll store 

files to run a simple application.

Before leaving the shell, create a new directory under /var/www/ 

called myserver and change its ownership to the www-data Apache 

user, preceding each command with sudo to provide the necessary root 

privileges:

$ sudo mkdir /var/www/myserver

$ sudo chown www-data:www-data /var/www/myserver

This new directory will be home to the documents for your second 

website.

To test your web server, open a browser and visit the domain name 

you provided, which in this example is http://web.devops.lab. If it works 

as expected, you’ve successfully revised your DNS entries, your network 

Chapter 5  Building a LAMP Stack: Apache and PHP



145

configurations are correct, port 80 is open on your web server, and Apache 

is properly configured. It might seem like a small thing, but it can be 

gratifying to see that welcome page.

Note P orts 80 and 443 are the defaults for web servers. When you 
created the SMTP server in Chapter 4, it used port 25.

Now point your browser to http://myserver.devops.lab to test 

the CNAME you created. This is a little less exciting because it shows you 

the same welcome page you just saw. With a few Apache modifications, 

however, you can quickly define two completely independent websites on 

the same host.

�Define Two Different Websites in Apache
To create the two separate websites, you’ll edit the Apache parameters in  

/etc/apache2/apache2.conf and add separate site configuration files in  

the /etc/apache2/sites-available directory. In essence, the apache2.conf file 

sets server-wide configuration values for Apache. Those settings aren’t the 

same as firewall rules that generally open or close specific ports on your 

server. This file is where you set your website permissions, such as which 

files can be served up and which other remote machines can access them. 

The named files in /etc/apache2/sites-available control parameters for 

specific websites, including the directories where their files are stored.

Since you’ll be running two sites, web and myserver, open /etc/

apache2/apache2.conf and find the default directive that looks like this:

--snip--

<Directory /var/www/>

        Options Indexes FollowSymLinks ➊
        AllowOverride None ➋

Chapter 5  Building a LAMP Stack: Apache and PHP

https://doi.org/10.1007/978-1-4842-8318-9_4


146

        Require all granted ➌
</Directory>

--snip--

The Indexes and FollowSymLinks directives ➊ in this configuration 

file tell Apache to allow your server to return a directory listing if a file like 

index.html or index.php isn’t present and that it’s okay to follow symlinks 

(also known as soft links) to other locations on the server. You can test 

this by renaming the file /var/www/html/index.html to /var/www/html/

index and see what happens when you access http://web.devops.lab. 

You’ll get a directory listing because the option Indexes is included in the 

preceding configuration.

The AllowOverride None ➋ directive tells Apache not to process any 

directives it finds in an external .htaccess file, which can be placed in the 

root of the web server directory or any of its subdirectories. Using .htaccess 

files is a handy way to change how a site performs, but doing so also 

makes it easy for users to break things, like setting rules that override your 

security. That’s one of the reasons it’s set to None by default. If you set that 

directive to AllowOverride All or provide specific entries for the site, such 

as requiring authorization, those .htaccess directives will be processed by 

the web server first, superseding directives in apache2.conf.

The Require all granted ➌ directive tells Apache to allow HTTP 

requests from servers on any domain name. You can change this directive 

to Require host devops.lab to limit this to only your Linux lab domain.

Acceptable names for default index files are specified in the module 

configuration file /etc/apache2/mods-available/dir.conf, which includes 

index.html and index.htm. By default, the listing looks like this::

<IfModule mod_dir.c>

      DirectoryIndex index.html index.cgi \

         index.pl index.php index.xhtml index.htm

</IfModule>

Chapter 5  Building a LAMP Stack: Apache and PHP



147

Modify it to look like this, with index.php first:

<IfModule mod_dir.c>

      DirectoryIndex index.php index.html index.cgi \

      index.pl index.xhtml index.htm

</IfModule>

When you installed the PHP and XML modules earlier, the index.php, 

index.cgi, and index.xhtml files were added to the default index file list 

automatically. That means if any file matching one of those names is found 

in the website’s root directory, it will be shown without needing to be 

added explicitly to the URL (like http://web.devops.lab/index.php).

Your server will follow the order of the filenames listed in the dir.

conf file and load the first one it finds that matches, so if you have both 

an index.html file and an index.php file in the same directory, the server 

will load index.html and ignore index.php if index.html is listed first in 

DirectoryIndex. If you change the order and place index.php before index.

html in dir.conf, the server will load the index.php file by default. Make 

sure the PHP file is listed first. Otherwise, if both an index.html and index.

php file are placed in the same web directory, visiting a site like http://web.

devops.lab will load the index.html file, not index.php. If you’re running a 

PHP application, that means the default URL will serve up the plain index.

html file, not the index.php file that includes all your scripting. The file 

listing order matters.

Chapter 5  Building a LAMP Stack: Apache and PHP



148

�Finalize Settings for the First Website
By default, the /etc/apache2/apache2.conf entries apply to all sites located 

in directories below /var/www, including /var/www/html, the default 

location of the website’s files, and any other sites you create in that 

directory tree. If you want different directives for your myserver website, 

such as redirecting certain URLs, loading additional server modules, or 

denying access to specific files, this is the file where you should add those 

entries. See https://httpd.apache.org/docs/2.4/sections.html for 

more information on Apache’s options.

Note T he <Directory> entries in apache2.conf apply their 
enclosed directives server-wide, with the directory path identifying 
the system path to the location of the web server’s root, which is  
/var/www/ by default. Since this apache2.conf file is responsible 
for the permissions that apply to all of your websites, it can contain 
separate entries for each of them.

Adding an additional site-specific directive for myserver.devops.lab in  

/etc/apache2/apache2.conf might look like this:

--snip--

<Directory /var/www/> ➊
        Options Indexes FollowSymLinks

        AllowOverride None

        Require all granted

</Directory>

<Directory /var/www/myserver> ➋
        AllowOverride All

</Directory>

--snip--

Chapter 5  Building a LAMP Stack: Apache and PHP



149

The first entry ➊ remains unchanged and applies to all websites 

located under /var/www, which now includes html and myserver. The 

second entry ➋ contains a single directive, AllowOverride All, which 

allows that site to read server settings from .htaccess files, which can 

override entries in /etc/apache2/apache2.conf. Even though the Options 

and Require directives from the first entry aren’t explicitly defined in the 

second entry, they still apply to the myserver.devops.lab site because its 

document root directory is under /var/www/. The only difference is that 

the <Directory /var/www/myserver> entry overrides the AllowOverride 

directive in the <Directory /var/www/> entry, which enables the myserver 

site to parse .htaccess files.

�Configure Apache to Serve 
Up the Website Properly
The next step maps your server settings (the website name and file 

locations), so when the web server receives a request for a certain 

domain name, Apache recognizes it and serves up the files located in the 

DocumentRoot you set up earlier.

Save your apache2.conf file, and then find the default website 

configuration file, 000-default.conf, in the /etc/apache2/sites-available 

folder, which you should edit to look like the example below, changing 

(or uncommenting) ServerName www.example.com to ServerName web.

devops.lab. The document root is often defaulted to /var/www/html, but 

not always:

<VirtualHost *:80>

--snip--

        ServerName web.devops.lab

        ServerAdmin webmaster@localhost

        DocumentRoot /var/www/html

Chapter 5  Building a LAMP Stack: Apache and PHP



150

        ErrorLog ${APACHE_LOG_DIR}/error.log

        CustomLog ${APACHE_LOG_DIR}/access.log combined

--snip--

</VirtualHost>

This file sets the ServerName for your primary website, /var/www/

html, as your DocumentRoot, log paths, and other parameters. The 

parameters you apply here set the rules for all web pages for the website 

you define by ServerName. Since the ServerName variable isn’t initially 

defined by default in 000-default.conf, uncomment that line and insert 

your default server’s hostname, which is web.devops.lab in this example.

The 000-default.conf file begins and ends with <VirtualHost> tags. 

Each Apache website, even the default, is set up as a virtual host using 

those tags. This setting provides versatility and allows you to create as 

many virtual hosts (different websites) as you want on the same server. You 

could create one to listen on port 80 and another to listen on port 8080, 

one to have a document root at /var/www/html, and one at /var/www/

myserver or customize each directive as you see fit.

Leave the rest of this file as is and save it. In the next step, this file 

will become a template for your second site. Each website you create on 

a single Apache web server has its own .conf file, often given a name to 

match the website itself, such as myserver.conf or even myserver.devops.

lab.conf.

�Create and Enable the Second Website
When you configured Apache for the first website, web.devops.lab is 

enabled by default, and if you look in the /etc/apache2/sites-enabled 

directory with ls -l, you’ll see a linked file named 000-default.conf that 

points back to the /etc/apache2/sites-available file:

# ls -l /etc/apache2/sites-enabled

Chapter 5  Building a LAMP Stack: Apache and PHP



151

total

lrwxrwxrwx 1 root root 35 Apr  1 00:33 000-default.conf -> ../

sites-available/000-default.conf

Its presence in the sites-enabled directory means that site is both 

available and activated.

To create the second site’s configuration file, cd to /etc/apache2/sites-

available and copy 000-default.conf to a new file called myserver.conf in 

that same directory. Edit the new myserver.conf file to look like this:

<VirtualHost *:80> ➊
        ServerName myserver.devops.lab ➋
        ServerAdmin webmaster@localhost

        DocumentRoot /var/www/myserver ➌
        ErrorLog ${APACHE_LOG_DIR}/error.log

        CustomLog ${APACHE_LOG_DIR}/access.log combined

</VirtualHost>

This example sets the server name to myserver.devops.lab ➋ and 

locates the DocumentRoot at /var/www/myserver ➌. This site also uses 

the default port 80 ➊, which means Apache will serve up files from /var/

www/myserver when it receives a request for http://myserver.devops.

lab. Apache listens for requests, and when it receives a ServerName request 

(the URL for your website), it checks the enabled site configuration files 

for a match and returns pages found in the DocumentRoot directory for 

the VirtualHost you define. Requests for http://web.devops.lab will be 

served separately, from /var/www/html.

To give your second website something to present to visitors, enter the 

following to output a simple line of text to a new index.html file:

$ echo "This is myserver.devops.lab." | sudo tee /var/www/

myserver/index.html

$ sudo chown www-data:www-data /var/www/myserver -R

Chapter 5  Building a LAMP Stack: Apache and PHP



152

This places an index.html file in the /var/www/myserver directory and 

changes the ownership (chown) of that file’s user and group to www-data, 

providing the server a page to load for testing purposes and giving the 

default Apache user and group permission to access it.

Before you can see this simple index.html file from your browser, you 

need to enable the myserver site. Apache includes tools that make it easy 

to enable sites (and modules). Run a2ensite <config-filename> and then 

reload the Apache configuration to apply the changes:

$ sudo a2ensite myserver

$ sudo systemctl reload apache2

If you don’t see any errors, you’re ready to test your two websites. Open 

a browser and point it to http://web.devops.lab. You’ll see the Apache2 

Ubuntu default page telling you the site is up and running, just as before. 

Now point your browser to http://myserver.devops.lab. It should show 

the contents of your simple index.html file: “This is myserver.devops.lab.”

Note T he different domain names are important, which is why 
you set them up in DNS. They provide information Apache can use 
to direct web requests. Both websites are listening for requests on 
the web server’s HTTP port 80, but the domain names tell Apache 
to use a different directory for each site’s content. If you point your 
browser to your web server’s IP address, you’ll see the default site 
only and would have no way to access the myserver site. Give it a try 
at http://10.128.1.7.

You now know how to create any number of distinct websites on 

a single web server, which is much simpler (and more efficient) than 

needing different physical or virtual hosts for each site you want to build.

Chapter 5  Building a LAMP Stack: Apache and PHP



153

On your own, do some experimenting with your myserver.conf file; 

try changing the default port from 80 to 8080 and add Listen 8080 to /

etc/apache2/ports.conf. With those edits, you could use the IP address 

(http://10.128.1.7:8080) to view your myserver site (and from the 

domain name at http://myserver.devops.lab:8080). Using different 

ports is a common way of routing traffic to a web server. For example, your 

Proxmox server uses port 8006 instead of 80, which is why you access the 

dashboard at http://<server-name-or-ip>:8006.

�Take a Snapshot to Preserve 
Your Configuration
With your web server up and running and properly configured with two 

unique websites, take a Proxmox snapshot of the host before proceeding. 

Snapshots make a copy of the system as-is and allow you to roll back to 

that state at any time. If you mess something up later, you can always roll 

back to this pristine state of your web.devops.lab server.

To take a snapshot, go to the Proxmox dashboard, click the server 

in the VM list, and, in the right-hand panel, click Snapshots ➤ Take 
Snapshot. Give it a name and description—I like to add a date to my 

snapshot names and enough information to remind me what exactly I 

did up to that point—and apply. Proxmox takes a little time to create the 

snapshot, and you can monitor the progress as it does its thing. Proxmox 

will say “TASK OK” when it’s done, and the snapshot will remain available 

so you can roll back to it. Taking snapshots is a lot faster than recreating 

VMs from scratch.

Chapter 5  Building a LAMP Stack: Apache and PHP



154

�Use PHP with Your Website
Now that you have the snapshot as a backup, let’s start working with PHP 

to create and use scripted software applications, including RainLoop 

webmail. You’ll first test your PHP to make sure it’s installed and 

configured properly to serve up any number of PHP scripts.

During the initial web server installation, you added modules for 

PHP and MariaDB (MySQL), so you don’t need to install anything else 

to make your server handle .php files properly. The PHP module was 

enabled automatically when you installed it, so if you list the contents of 

/etc/apache2/mods-enabled, you’ll see php8.1.conf and php8.1.load in 

the output.

�Test the PHP Installation
The next step is to test that PHP is working and configured correctly. Create 

a test.php file in /var/www/html that contains the phpinfo() command:

$ sudo vi /var/www/html/test.php

<?php

      phpinfo();

?>

This simple phpinfo() command is interpreted and compiled at load 

time, and it shows your web server’s details (including system information 

and installed modules) when you visit it at http://web.devops.lab/

test.php.

When you access that page, you’ll see the lilac and gray tables that 

phpinfo() generates. Scroll through the page to review the various 

settings. You’ll find configuration information, system variables, and a 

wide range of data about the server and the PHP module itself. This is a 

good place to start troubleshooting if you run into any problems.

Chapter 5  Building a LAMP Stack: Apache and PHP



155

If for some reason test.php doesn’t load properly, use the a2enmod 

command (short for Apache2 enable module) to ensure that the PHP 

module is enabled:

$ sudo a2enmod php8.1

Enabling module php8.1.

To activate the new configuration, you also need to run:

  systemctl restart apache2

The a2enmod command is similar to the a2ensite command you used 

earlier to enable your myserver website. Apache site configurations that 

aren’t enabled won’t work, and those sites and site capabilities (like PHP) 

won’t be available until you run the a2enmod command and reload (or 

restart) Apache.

When the a2enmod command finishes, it reminds you to reload 

apache2 by entering the following:

$ sudo systemctl restart apache2

If this command is successful, it won’t provide any output, but you can 

confirm Apache is running with the status command:

$ systemctl status apache2

● apache2.service - The Apache HTTP Server

   Loaded: loaded (/lib/systemd/system/apache2.service; 

enabled; vendor preset:

  Drop-In: /lib/systemd/system/apache2.service.d

           └─apache2-systemd.conf
   �Active: active (running) since Wed 2022-04-20 16:00:07 UTC; 

3min 27s ago

  �Process: 25672 ExecStop=/usr/sbin/apachectl stop 

(code=exited, status=0/SUCCES

  �Process: 12611 ExecReload=/usr/sbin/apachectl graceful 

(code=exited, status=0/

Chapter 5  Building a LAMP Stack: Apache and PHP



156

  �Process: 25677 ExecStart=/usr/sbin/apachectl start 

(code=exited, status=0/SUCC

 Main PID: 25705 (apache2)

    Tasks: 10 (limit: 4659)

-- snip --

Here you can see that the service is running, that it was stopped, 

gracefully reloaded, and started.

Note  Be sure to reload or restart apache2 whenever you make 
changes to your web server configuration.

With PHP enabled, you can start creating and deploying web-based 

applications, such as RainLoop. Apache now can interpret PHP code, 

compile it when a .php file is requested, and return content appropriately. 

This is the heart of creating dynamic web pages that can return database 

content, execute functions that trigger actions based on user input, and 

much more. Of course, PHP isn’t your only choice. You can enable Apache 

to recognize many programming languages, including Perl, Python, 

and Ruby, and, as you’ll see in the next chapter, many external tools and 

databases like MariaDB.

Note I t’s considered good form to not leave a file like test.php 
hanging around in the website directory of a production server. 
The phpinfo() command gives detailed insight into your web server, 
making it easy for hackers to exploit it.

Chapter 5  Building a LAMP Stack: Apache and PHP



157

�Install RainLoop Webmail
With your web server set up with Apache and PHP, you’re ready to install 

a web-based application to demonstrate its advanced capabilities. 

Specifically, you’ll install the community edition of RainLoop, a browser-

based email client you can use to connect to the Postfix and Dovecot mail 

server you created in Chapter 4.

The RainLoop Email Client R ainLoop is one of several available 
webmail programs, and it’s a good tool for your Linux lab because it 
has an array of features and capabilities that are easy to understand 
and use, particularly if you’re familiar with tools like Gmail. It provides 
all typical email functions from a web browser, such as sending 
and receiving email and creating folders for storing messages. 
The RainLoop community edition is freely available at www.
rainloop.net/repository/webmail/rainloop-community-
latest.zip.

�Set Up RainLoop
To install RainLoop, log in to web.devops.lab via the terminal shell and use 

wget to download the RainLoop .zip file, but first install unzip so you can 

uncompress it:

$ sudo apt install unzip

$ wget https://www.rainloop.net/repository/webmail/rainloop-

community-latest.zip

$ sudo unzip rainloop-community-latest.zip -d /var/www/html/

Chapter 5  Building a LAMP Stack: Apache and PHP

https://doi.org/10.1007/978-1-4842-8318-9_4


158

Running the unzip command with the -d flag lets you tell unzip to 

uncompress RainLoop to a target directory (saving you some steps), in this 

case extracting into the document root of your default website directory 

located at /var/www/html/. Unlike installing a binary (such as a .exe or 

.rpm or .deb package), the RainLoop application is really just a folder full 

of .php and configuration files. By unzipping it, you’re moving the files to a 

specific directory in the root of your website.

�Set RainLoop Permissions
For RainLoop to work properly, set the permissions for the directories and 

files it needs. Its directories must be publicly executable, and its files must 

be publicly readable.

Run the following commands inside the /var/www/html directory to 

look for directories and files and change their permissions:

$ cd /var/www/html

$ sudo find . -type d -exec chmod 755 {} \;

$ sudo find . -type f -exec chmod 644 {} \;

$ sudo chown -R www-data:www-data .

The find command is used with the -type flag, applying different read, 

write, and execute properties to directories (-d) and files (-f) appropriately. 

The chown command changes the ownership of the files and directories to 

the www-data system user, the default for Apache on Ubuntu. This may be 

different on other Linux distros. For example, on Red Hat-based systems, 

the user is apache.

�Configure RainLoop via the Admin Panel
With the basics in place, you can finish the mail server configuration 

with the RainLoop web-based admin panel. When it installs, RainLoop 

automatically creates the folders and files it needs, using Apache and PHP 

Chapter 5  Building a LAMP Stack: Apache and PHP



159

to serve up the application. If you installed it according to the previous 

instructions, open a browser and go to http://web.devops.lab/?admin. 

Use the default credentials admin/12345 to log in.

Change the default admin password via the Security menu. Next, click 

Domains to set up RainLoop to work with your mail server, as shown in 

Figure 5-1. You’ll need two settings (see Chapter 4 for an email refresher): 

one for sending email (Postfix) and one for receiving email (Dovecot). 

For the mail server target, use either your mail.devops.lab VM or docker.

devops.lab containerized setup. Be sure your DNS records are configured 

correctly for whichever you plan to use.

Figure 5-1.  The RainLoop domain configuration, with STARTTLS 
and short login enabled

Both the IMAP and SMTP server addresses are mail.devops.lab 

with the same port numbers (143 and 25, respectively) you used when 

setting up Evolution in Chapter 4. Be sure to select STARTTLS from the 

Secure drop-down menu for each service and leave Use authentication 

unchecked under SMTP. If you want to log in with just the email 

Chapter 5  Building a LAMP Stack: Apache and PHP

https://doi.org/10.1007/978-1-4842-8318-9_4
https://doi.org/10.1007/978-1-4842-8318-9_4


160

username, such as jadams and not jadams@devops.lab, check the Use 
short login boxes. Once you’ve entered all the settings, click Test. If 

everything is green and works properly, click Add (or Update) to save the 

configuration.

Before leaving the admin panel, click the Login menu to set the 

Default Domain to devops.lab, as shown in Figure 5-2. Leave the Try to 
determine user domain box unchecked. These are the minimum settings 

you need to start using RainLoop; you can explore the rest of RainLoop’s 

menus later on your own.

Figure 5-2.  Set the default domain name for RainLoop

Log out and go to http://web.devops.lab (without the /?admin). 

You’ll notice that the login form is different from the admin one, namely, 

showing Email in the first box. Enter the email username (such as jadams, 

without the @devops.lab) and your password. You should see the main 

Inbox view. If you previously sent and received email using Evolution, 

those emails will appear in RainLoop too.

Chapter 5  Building a LAMP Stack: Apache and PHP



161

Note T his email works without the mail subdomain because you 
configured mail.devops.lab in your DNS MX record.

�Deploy Apache, PHP, and RainLoop 
as Docker Containers
Now that you’ve seen how all the pieces of your web server work, try 

the same deployment using a webmail server and interoperable Docker 

containers, also known as microservices. Unlike the virtual machine 

deployment, the container version splits each component into its own 

separate service, namely, httpd (Apache and PHP), rainloop, postfix, and 

dovecot, but all are running on the same physical host so they can interact 

and easily share a network and storage volumes. In the previous VM 

example, Apache, PHP, and RainLoop were running on one server, and 

Postfix and Dovecot on another. That’s perfectly fine, but it also means lots 

of separate moving parts that can make maintenance and troubleshooting 

more difficult and time-consuming. Containers allow you to make changes 

or update individual aspects of your application without having to touch 

the others.

�How the Containers Interact
Each distinct Docker service, including httpd and rainloop, will run 

independently but on the same physical host, where they can communicate 

and share storage. You’ll also create persistent volumes, which you can think 

of as shared drives that each service can see and use. By creating Apache 

and RainLoop as separate services, you can modify one without modifying 

the other. When you build applications this way, you can make small service 

changes and updates without needing to redeploy everything.

Chapter 5  Building a LAMP Stack: Apache and PHP



162

�Prepare the Docker Host
As with the containerized version of your mail server in Chapter 4, you’ll 

deploy these containers on your Docker host, docker.devops.lab. To avoid 

conflicts, ensure that your DNS MX record points to your Docker host and 

that the containers and images you deployed for the Docker mail server 

are stopped by issuing a simple ping command:

$ ping docker.devops.lab

To stop all running containers on your Docker host, execute the 

following command:

$ docker container stop $(docker ps -aq)

This returns the container ID for all running containers and stops 

them. To remove them (so you can reuse the container names later), you 

can run the prune command to purge them:

$ docker container prune

�Create a Docker Context for RainLoop
In the Docker mail server example from Chapter 4, you created a directory 

named myserver on docker.devops.lab to provide a home for all your 

Dockerfiles. You can reuse that directory and add subfolders for the new 

services or create a new directory called rainloop. Let’s do the latter to 

keep things separate for now.

In the new rainloop directory, create four subdirectories, one for each 

container service:

$ mkdir -p rainloop/{httpd,rainloop,postfix,dovecot}

Chapter 5  Building a LAMP Stack: Apache and PHP

https://doi.org/10.1007/978-1-4842-8318-9_4
https://doi.org/10.1007/978-1-4842-8318-9_4


163

In the root of the rainloop directory, create a docker-compose.yml file 

with the following contents:

version: '2.1'

services:

  httpd:

    build: ./httpd

    restart: always

    ports:

      - "80:80"

    container_name: httpd

    volumes:

    - 'rainloop:/var/www/html/rainloop'

  rainloop:

    build: ./rainloop

    restart: always

    container_name: rainloop

    volumes:

    - 'rainloop:/var/www/html/rainloop'

  postfix:

    restart: always

    hostname: docker.devops.lab

    build: ./postfix

    container_name: postfix

    ports:

      - "25:25"

    volumes:

      - 'mail:/var/mail'

      - 'home:/home'

      - 'postfix-certs:/etc/ssl'

Chapter 5  Building a LAMP Stack: Apache and PHP



164

  dovecot:

    restart: always

    hostname: docker.devops.lab

    depends_on:

      - postfix

    build: ./dovecot

    container_name: dovecot

    ports:

      - "143:143"

    volumes:

      - "mail:/var/mail"

      - "home:/home"

      - "dovecot-certs:/etc/dovecot/private"

volumes:

  mail:

  home:

  postfix-certs:

  dovecot-certs:

  rainloop:

This is similar to the email server version you created in Chapter 4, 

but it adds two more services (httpd and rainloop) and an additional 

persistent volume the two containers share (one that keeps its data when 

a container restarts), which means the httpd and rainloop containers 

can both access the data stored there. The httpd container, which builds 

Apache with PHP, has port 80 open to allow web requests. When it serves 

up files from /var/www/html/rainloop, thanks to the shared volume, it 

actually accesses files you deploy in the separate rainloop container.

As before, the postfix and dovecot services defined in your docker-

compose.yml file point to subdirectories containing Dockerfiles, and again, 

they have ports 25 and 143 exposed, respectively.

Chapter 5  Building a LAMP Stack: Apache and PHP

https://doi.org/10.1007/978-1-4842-8318-9_4


165

In the rainloop/dovecot directory, reuse the same dovecot Dockerfile 

you used in the previous chapter. Similarly, in the rainloop/postfix 

directory, reuse the postfix Dockerfile and the postfix-debconf file you 

created. Being able to reuse Dockerfiles is one of the advantages of 

containerized environments; there’s no need to start from scratch, and 

each service is deployed the same way every time.

�Add Additional Docker Containers to the 
RainLoop Application
The first all-new container service you’ll add to your existing RainLoop 

services is httpd, which includes both a Dockerfile and an entry.sh script 

that’s executed when the container starts. Bash scripts like entry.sh are 

often added to container projects to execute commands inside a running 

container. By contrast, Dockerfiles build images pre-populated with 

packages and configurations, but some actions need to be performed 

when the container is actually running, such as grabbing the live IP 

address.

In rainloop/httpd, create a Dockerfile with the following contents:

FROM ubuntu:22.04

ENV DOCKER_HOST 10.128.1.6

ENV MAIL_HOST docker.devops.lab

ENV DEBIAN_FRONTEND noninteractive

RUN apt update && apt install -y apache2 \

    php8.1 \

    libapache2-mod-php8.1 \

    php8.1-common \

    php8.1-curl \

    php8.1-xml \

    php8.1-mysql \

Chapter 5  Building a LAMP Stack: Apache and PHP



166

    php-date \

    php8.1-fpm \

    php8.1-json \

    php8.1-cli

ENV APACHE_RUN_USER www-data  ➊
ENV APACHE_RUN_GROUP www-data

ENV APACHE_LOG_DIR /var/log/apache2

ENV APACHE_RUN_DIR /var/www/html ➋

WORKDIR /usr/src/app

COPY entry.sh .

CMD ["bash", "entry.sh"] ➌

This Dockerfile includes the same commands you previously ran to 

install Apache and PHP on your web.devops.lab virtual machine. It also 

includes some environment variables that configure Apache to run as 

www-data ➊ and use /var/www/html ➋ as the default document root for the 

website. That directory will be shared with the rainloop service container 

through the persistent volume. These default settings were automatically 

applied when you installed Apache on your virtual machine, but here 

you’re explicitly defining them.

In order to add variables to a running container, and not during the 

Docker build process, you’ll run a Bash script as the final step of your 

Dockerfile to enter the correct values and then start Apache.

The entry.sh ➌ file writes entries into /etc/hosts and /etc/hostname that 

set the IP and hostname for name resolution and a fully qualified domain 

name to prevent Apache warnings. It then runs the apache2 service in the 

foreground to start the container.

For this to work, create a new file in rainloop/httpd named entry.sh and 

add the following contents:

#!/bin/bash

Chapter 5  Building a LAMP Stack: Apache and PHP



167

echo "${DOCKER_HOST}   ${MAIL_HOST}" >> /etc/hosts ➊
echo "${MAIL_HOST}" > /etc/hostname ➋
exec /usr/sbin/apache2 -D FOREGROUND ➌

The edits this Bash script entry.sh makes to /etc/hosts ➊ and /etc/

hostname ➋ echo the contents of ENV variables set in the Dockerfile to files 

in the running container.

Note T hese hostname entries aren’t strictly necessary because 
Docker containers can resolve each other by name, thanks to the 
way Docker handles its own networking and name resolution. That 
is, each container in this application can automatically resolve any 
other container listed in the docker-compose.yml file by its name, 
like postfix, not just its IP address. Later, when configuring RainLoop 
SMTP and IMAP settings, you can use the container names postfix 
and dovecot as the server targets instead of docker.devops.lab, and 
RainLoop will work just fine.

The last command in entry.sh starts Apache in the foreground.  

The -D FOREGROUND ➌ is critical to ensuring the container starts and 

remains running. If you try to start Apache without this flag, the container 

will continue to restart over and over.

Finally, create the second new service by adding a Dockerfile in the 

new rainloop/rainloop directory that defines the RainLoop service:

FROM ubuntu:22.04

RUN apt update && apt install -y wget unzip ➊

RUN wget https://www.rainloop.net/repository/webmail/ 

rainloop-community-latest.zip ➋

Chapter 5  Building a LAMP Stack: Apache and PHP



168

RUN mkdir -p /var/www/html/rainloop

RUN unzip rainloop-community-latest.zip -d /var/www/html/

rainloop && \ ➌
    chown -R www-data:www-data /var/www/html/rainloop/ && \  ➍
    find /var/www/html/rainloop/ -type d -exec chmod 750 

{} \; && \

    find /var/www/html/rainloop/ -type f -exec chmod 640 {} \;

CMD tail -f /dev/null ➎

As you can see, this Dockerfile contains all the instructions you passed 

on the command line when you built RainLoop in a virtual machine. Both 

wget and unzip ➊ are installed, the community edition of RainLoop is 

downloaded ➋ and unzipped to /var/www/html/rainloop ➌, and the file 

and directory permissions are changed appropriately ➍. This is slightly 

different from the VM version. Namely, the URL to reach RainLoop will 

be http://docker.devops.lab/rainloop. The final line in the Dockerfile 

➎ does nothing by itself except to create a foreground service inside the 

rainloop container. RainLoop doesn’t have its own service, since it’s just 

a folder with .php and related files, so this tail command prevents the 

container from constantly restarting.

�Start the Multicontainer RainLoop 
Docker Application
With everything in place, run docker-compose up -d to build the images, 

deploy your containers, and release the terminal when it’s done. This 

simple command builds the container images and then starts all your 

containers:

$ cd ~/myserver/rainloop

$ docker-compose up -d

Chapter 5  Building a LAMP Stack: Apache and PHP



169

After a few moments, you’ll see output showing that your containers 

are building and starting. You’ll now have four containers—postfix, 

dovecot, httpd, and rainloop—that can communicate and work together. 

Since they all contain only the packages they need, they’re much smaller 

than separate VMs. They also use less system resources, enabling them to 

start and restart quickly.

When docker-compose finishes, access the RainLoop admin and email 

login pages the same way you did earlier from http://docker.devops.

lab/rainloop/?admin and http://docker.devops.lab/rainloop/. When 

creating a new domain, remember you can use either docker.devops.lab 

for the SMTP and IMAP server addresses or just postfix and dovecot. 

If you use the latter, you’ll notice in the RainLoop dashboard that those 

hostnames are resolved properly, highlighting the fact that the containers 

share a network and have functioning name resolution. The httpd 

container will use those container names to correctly resolve the two mail 

services.

�Troubleshoot the Docker Deployment
If you run into trouble with the Docker container deployment, it could 

be that you’re having conflicts with previously generated Docker images, 

containers, and volumes. You can use the docker system prune command 

to purge everything, but be careful. It will delete anything you’ve built and 

deployed so far. It won’t remove your Dockerfiles or any files you created 

in the main rainloop directory, but it will remove containers, images, 

and volumes created when you ran the docker-compose up command 

previously.

Chapter 5  Building a LAMP Stack: Apache and PHP



170

The following commands stop and delete Docker items and essentially 

give you a clean slate. Running all of them will remove your images, 

containers, and volumes. When you do any future Docker builds, new 

images, containers, and fresh volumes will be created:

$ docker container stop $(docker ps -aq)

$ docker container rm $(docker ps -aq)

$ docker ps -a

$ docker image prune -a

$ docker volume prune

Recreating your web server in containers will give you a clear idea 

of how your stack works and how Docker enables you to group separate 

services together to make a powerful application.

�Conclusion
In this chapter, you successfully installed an Apache web server with PHP 

capabilities and put it to work with the ready-made webmail program 

RainLoop, which can send and receive email from your own lab mail server. 

These core capabilities—including setting up multiple virtual hosts on a single 

server and adding PHP—allow you to deploy any number of home-grown or 

off-the-shelf web applications. This is just the beginning of what you can do.

The Docker version deploys the same setup using containers, 

providing a taste of how you can use microservices to deploy applications 

that require a number of separate components. This exercise also 

demonstrates how services interact and how you can turn other services 

into containerized applications to expand their capabilities.

In the next chapter, you’ll finish building your LAMP stack by installing 

MariaDB, the open-source database server. Adding MariaDB will enable 

you to develop and use an even wider variety of web applications, 

including simple scripts and powerful web content tools like WordPress.

Chapter 5  Building a LAMP Stack: Apache and PHP



171

CHAPTER 6

Installing MariaDB 
and Creating a Simple 
Web Application
In Chapter 5, you deployed three of the four pieces necessary for your 

LAMP stack, and you learned how Apache and PHP can work together on 

a Linux host to serve up dynamic content. In this chapter, you’ll add the 

database component: MariaDB. The simple application you’ll create will 

read some information from a database table and show it in a browser.

In this chapter, you’ll first learn some MariaDB and Structured 

Query Language (SQL) basics to see how data is stored in a database and 

retrieved, providing the basis for the PHP commands you’ll execute and 

run later. Since the syntax is identical for SQL commands executed on the 

command line and in your small PHP application, everything you learn 

about MariaDB will transfer to the programming side of things.

MariaDB is a popular open-source relational database that provides 

backing for a vast array of use cases, from small scripts to large cloud-

based applications. It’s an enhanced version of (and drop-in replacement 

for) MySQL, which bloomed after Oracle acquired MySQL in 2008.

MariaDB is easy to learn and use, works well on its own or in 

conjunction with multiple programming languages, and is ideal for anyone 

who needs a relational database—that is, data stored in tables made of 

© John S. Tonello 2022 
J. S. Tonello, Practical Linux DevOps, https://doi.org/10.1007/978-1-4842-8318-9_6

10.1007/978-1-4842-8318-9_5
https://doi.org/10.1007/978-1-4842-8318-9_6#DOI


172

rows and columns that can stand alone or reference data from other tables. 

Once defined, the tables are structured and uniform, providing an internal 

integrity that allows you to join related tables and perform complex 

queries that return data consistently. Relational databases are best in cases 

where you know ahead of time the shape of the data you want to store, 

such as names, addresses, dollar amounts, dates, and so on.

Note  Non-relational databases, also known as NoSQL databases, 
provide flexibility when you’re not sure what shape your data may 
take. This is called unstructured data. Such databases are useful 
when you’re trying to store lots of data that has variable elements 
and sizes you don’t know ahead of time, such as Twitter tweets. With 
NoSQL databases, you can define your data structures as you go.

For the purposes of the examples in this chapter, you’ll create 

structured data, predetermining the size and type of each field, or column, 

in your database.

�Set Up and Log In to MariaDB
Installing MariaDB on Linux is straightforward and provides everything 

you need to access the database from the command line and interact with 

it via PHP scripts.

Log in to your web server and enter the following commands:

$ sudo apt update && sudo apt upgrade -y

$ sudo apt install mariadb-server

This will update your system and install mysql and mysqladmin along 

with a number of scripts and default configurations. A soft link from /usr/

bin/mariadb will point to /usr/bin/mysql, the main database binary. 

Chapter 6  Installing MariaDB and Creating a Simple Web Application



173

Even though you’re using MariaDB, under the covers, it often uses MySQL 

naming conventions. For that reason, executing either mariadb or mysql 

from the command line does the same thing.

Note A s you use MariaDB, you’ll notice that many of the commands 
are similar to those in MySQL, as MariaDB mostly adheres to SQL 
naming conventions. For example, you can launch the database from 
the command line with either mariadb or mysql. Some of the SQL 
commands do differ, however, so for the purposes of this book, you’ll 
use MariaDB SQL statements.

To use MariaDB, you’ll need to set an initial password for the 

database’s root user. If you don’t do this, the database won’t be accessible, 

and there’s not much you can do with it. After creating the root user, you 

can create other non-root users, databases, and tables, and you’ll be able 

to run any number of SQL queries to create and assign privileges to users 

and insert, select, update, and modify data. Though you’ll initially run 

commands as root, you’ll create a user with fewer privileges later in order 

to avoid making routine database queries with root, a security no-no that 

can wreak havoc with your database.

Log in to your web.devops.lab server (where you previously installed 

the MariaDB server), and enter the following to set the root password:

$ sudo mysql_secure_installation

This command prompts you to enter a password and asks some 

follow-up questions intended to secure your database installation, such as 

removing anonymous users, disallowing remote root logins, and removing 

the test database. Reply Y to those and to the final question that asks 

whether you want to reload privilege tables, which will apply and save your 

configurations.

Chapter 6  Installing MariaDB and Creating a Simple Web Application



174

Note  Be sure to jot down the password you use. Resetting the root 
password is possible, but it can be a real hassle if you forget it.

If you now run systemctl status mariadb from the command line, 

you should see the database server is up and running. It’ll also start 

automatically when your server boots and be running in the background 

every time you start or restart your web.devops.lab server.

Log in to MariaDB from the command line as root with the password 

you just created:

$ sudo mysql -u root -p

Enter password:

The -p flag allows you to enter the password privately, not in clear text. 

This is more secure than entering the password where it can be read by 

other logged-in users interested in viewing your commands using history.

After logging in, the command-line prompt changes, showing you’re 

no longer in the Bash shell, but in MariaDB itself:

Welcome to the MariaDB monitor.  Commands end with ; or \g.

Your MariaDB connection id is 48

--snip--

Type 'help;' or '\h' for help. Type '\c' to clear the current 

input statement.

MariaDB [(none)]>

The MariaDB prompt includes brackets around (none) to indicate you 

have yet to connect to a specific database, also known as a schema.

Chapter 6  Installing MariaDB and Creating a Simple Web Application



175

�Basic SQL Commands
From this point on, you’ll interact directly with different MariaDB 

databases and execute commands in SQL as the root user. Don’t worry 

if you don’t know the language well. You’ll need only a handful of 

commands, and you can always run help from the MariaDB command line 

for assistance.

Character case doesn’t matter when entering SQL commands, but 

it’s good form to enter SQL commands in uppercase and arguments 

in lowercase. Be sure to end all commands with a semicolon (;) to tell 

MariaDB you’re done entering your query. Leaving that off before pressing 

Enter brings you to a new line, which means MariaDB is waiting for 

additional input before executing your query.

To show the available databases that MariaDB installs automatically, 

enter the SHOW command followed by the databases argument:

MariaDB [(none)]> SHOW databases;

+--------------------+

| Database           |

+--------------------+

| information_schema |

| mysql              |

| performance_schema |

+--------------------+

3 rows in set (0.00 sec)

The three main databases installed by default (information_schema, 

mysql, and performance_schema) contain data about MariaDB’s base 

configuration. They set your database system’s default parameters and 

don’t need to be altered, but you can query them like any other database 

you create later.

Let’s do a simple query of the built-in mysql database’s user table, 

which stores data about all existing MariaDB users. The SELECT command 

Chapter 6  Installing MariaDB and Creating a Simple Web Application



176

is one you’ll use often (along with FROM) to show data stored in one or 

more tables:

MariaDB [(none)]> SELECT host, user FROM mysql.user;

+-----------+------+

| host      | user |

+-----------+------+

| localhost | root |

+-----------+------+

1 row in set (0.00 sec)

In a SQL SELECT statement, the FROM identifies the database and table 

you want to query, which follows the database.table format. This example 

tells MariaDB to select the column values host and user from the user table 

in the mysql database. The SELECT statement output shows the headers for 

the two columns and the values localhost and root, which indicate that 

the 'root'@'localhost' user has been created with permissions set to 

accept requests only from localhost. That makes sense, since you disabled 

remote root logins earlier during the installation.

To connect to a specific database, use the USE mysql; command, 

which places you in the mysql database context. From there, you can run 

the SELECT command without the mysql. prefix in the FROM argument. 

Connecting to a specific database shortens your commands and lets you 

keep track of where you are.

Run the USE command and notice how the context shown in the 

MariaDB prompt changes:

MariaDB [(none)]> USE mysql;

MariaDB [mysql]> SELECT host, user FROM user;

The SELECT query’s output will be the same as the previous, slightly 

longer query.

Chapter 6  Installing MariaDB and Creating a Simple Web Application



177

�Create MariaDB Users and Set Permissions
Creating non-root MariaDB users for your databases is just as important 

as creating non-root users on your Linux systems. These users are allowed 

to run routine SQL commands without all the privileges available to root, 

which is safer and more secure.

Like usernames for a Linux system, the name you give to a regular 

MariaDB user can be pretty much anything you want. I like to create 

usernames that describe a little about their purpose. In this case, you’ll 

create the user webuser to use later for your web-based application.

The syntax includes both the username and the hostname, which, 

in this example, will grant the user privileges on connections made to 

MariaDB from the localhost only and not from any external hosts. Log back 

in to MariaDB as the root user and then execute the following command:

$ sudo mysql -u root -p

MariaDB [(none)]> CREATE USER 'webuser'@'localhost' IDENTIFIED 

BY 'mypassword';

Query OK, 0 rows affected (0.00 sec)

This creates the webuser user, sets mypassword as the password, 

and limits connections to localhost only. If you want to execute database 

queries from a different virtual machine or server that has a different IP 

address, you could replace localhost with a single IP address, an entire 

IP range like 10.128.1.0/24, or the % wildcard to allow connections from 

anywhere. That last option, as well as setting password as the mypassword, 

is not secure and should not be used in production.

You can create the same user with different hosts like 

'webuser'@'localhost' and 'webuser'@'10.128.1.10' to grant permissions 

to the database from two specific hosts. This combination is a good way to 

secure access to your data.

Chapter 6  Installing MariaDB and Creating a Simple Web Application



178

To create a user with access to your entire lab network, shown as 

jadams in this example, enter the following:

MariaDB [(none)]> CREATE USER 'jadams'@'10.128.1.0/24' 

IDENTIFIED BY 'mypassword';

Query OK, 0 rows affected (0.00 sec)

If you rerun the SQL query you executed earlier, you’ll see the new user 

(or users) you created:

MariaDB [(none)]> SELECT host, user FROM mysql.user;

+---------------+----------+

| host          | user     |

+---------------+----------+

| 10.128.1.0/24 | jadams   |

| localhost     | root     |

| localhost     | webuser  |

+---------------+----------+

3 rows in set (0.00 sec)

The output shows I now have the root, webuser, and jadams users. 

Notice that jadams has permission to connect from any machine on the 

lab subnet, 10.128.1.0/24. The rows and columns in this query result 

show how MariaDB presents table data.

The next step is to run FLUSH PRIVILEGES; to commit your changes 

and log out as the root user and back in as the webuser user:

MariaDB [(none)]> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.000 sec)

MariaDB [(none)]> EXIT;

Bye

$ sudo mysql -u webuser -p

Enter password:

Chapter 6  Installing MariaDB and Creating a Simple Web Application



179

When you’re back in MariaDB, rerun the SHOW databases; query. 

You’ll see only the information_schema database. That’s because webuser 

doesn’t yet have permission to see or access anything else. Let’s change 

that by creating a new database and granting webuser permissions to use it.

�Create a Test MariaDB Database
You’re now going to create a custom database, grant permissions for 

webuser, and build your first database table. You can perform these steps 

again and again to create any number of databases to suit your needs. 

Since the webuser doesn’t have any privileges to do anything yet, you’ll 

need to EXIT; MariaDB and perform these steps by logging in again as the 

root user.

As the root MariaDB user, execute a CREATE query to create a new 

database. The name of the database doesn’t matter, but if you don’t follow 

my example, remember what you set. After creating the new database, run 

the SHOW query again to see that your new database has been created:

MariaDB [(none)]> CREATE DATABASE mydatabase;

MariaDB [(none)]> SHOW databases;

+--------------------+

| Database           |

+--------------------+

| information_schema |

| mydatabase         |

| mysql              |

| performance_schema |

+--------------------+

4 rows in set (0.00 sec)

Chapter 6  Installing MariaDB and Creating a Simple Web Application



180

The output confirms that you’ve created the new database called 

mydatabase.

That’s good, but remember, you created this database as the MariaDB 

root user; webuser doesn’t have permissions to use it. You need to grant 

privileges explicitly in order for webuser to write to, read from, and 

otherwise interact with the new database.

Connect to mydatabase with a USE query and then run a GRANT query 

to assign permissions:

MariaDB [(none)]> USE mydatabase;

MariaDB [mydatabase]> GRANT CREATE, SELECT, INSERT, UPDATE, 

DELETE ON mydatabase.* TO 'webuser'@'localhost';

The GRANT CREATE, SELECT, INSERT, UPDATE, DELETE portion of the 

SQL statement gives webuser permission to create tables and also to see, 

add, change, and delete data in mydatabase. This means webuser can 

manipulate the database in every way you’ll need for your web application, 

including creating tables and inserting data into them.

This is just one example of the privileges you can assign a user. You 

also can use GRANT ALL to assign all MariaDB privileges to the user, or you 

can replace a specific database name with a wildcard like *.* to apply 

privileges to all existing databases, for example:

MariaDB [mydatabase]> GRANT ALL ON *.* TO 

'webuser'@'localhost';

MariaDB [mydatabase]> FLUSH PRIVILEGES

Log out of MariaDB and log back in as webuser and execute the SHOW 

databases; command to confirm the user has the correct permissions:

MariaDB [(none)]> SHOW databases;

+--------------------+

| Database           |

Chapter 6  Installing MariaDB and Creating a Simple Web Application



181

+--------------------+

| information_schema |

| mydatabase         |

+--------------------+

2 rows in set (0.01 sec)

If you see results like the preceding, you’ve created the database 

successfully, and webuser has the correct permissions to use it.

�Create and Populate a Database Table
When you create a MariaDB table, you must define each column’s type and 

length. For example, is the column an integer? Text? A date? Something 

else? MariaDB provides different field types so you can maintain data 

integrity. For example, you can’t insert text into an integer field or a 

float value (a decimal number) into an integer field. Behind the scenes, 

MariaDB uses these field definitions to keep track of things and maintain 

the speed and accuracy of your queries and data.

By defining the length of a field, you’re telling MariaDB the maximum 

number of characters it can hold. For example, if you have a table column 

for US states, you know the length of that field should be no less than 13 

characters long so it can accommodate all the letters in Massachusetts (the 

state with the most letters). If you have a column for US cities, you’d assign 

it a length of 17 to accommodate Mooselookmeguntic, Maine. Field sizes 

should match your intent. Too small and your data will be truncated. Too 

long and MariaDB will reserve unnecessary space, which can slow down 

queries and make the database work harder than it needs to.

With that in mind, log in to MariaDB as webuser and execute the 

command USE mydatabase so you can create a simple table called my_

users in mydatabase to store first and last names. If you don’t first switch 

into the mydatabase, you’ll get an error. Remember, tables are inside 

Chapter 6  Installing MariaDB and Creating a Simple Web Application



182

databases, and MariaDB needs to know where to create the table. In this 

example, the table will contain user_id, user_first, and user_last columns. 

Enter the following SQL command:

$ sudo mysql -u webuser -p

MariaDB [(none)]> USE mydatabase;

MariaDB [(mydatabase)]> CREATE TABLE my_users (

      user_id INT(3) NOT NULL AUTO_INCREMENT, 

      user_first VARCHAR(30) NOT NULL, 

      user_last VARCHAR(30) NOT NULL, 

      PRIMARY KEY ( user_id ) 

);

Query OK, 0 rows affected (0.08 sec)

For the my_users table, the user_id field  identifies each row of data, 

so you’ll define an auto-incrementing integer to store a unique value to 

reference that row. Auto-incrementing means the field will be populated 

with a new integer value automatically each time you insert a new row 

of data. In a way, it’s a counter, so this field should be long enough to 

accommodate the total number of rows you ultimately expect to store in 

your table. For example, if you’re planning to enter 200 names into your 

table, define an INT(3) field to make sure the user_id field is at least three 

characters long (one for each digit in 200), which can accommodate an 

integer up to 999. If you set it to INT(2), the highest number the field can 

hold is 99.

The next two fields in the my_users table will hold text for first and last 

names: user_first ; and user_last . The VARCHAR type for the column and 

a length of 30 tell MariaDB to ensure that names entered in those columns 

are variable-length strings up to 30 characters long. The database won’t 

reserve the space needed for all 30 characters; it’ll use only what it needs 

up to that number. That means it uses fewer resources and is more flexible 

(and more common) than using the fixed-length CHAR string type.

Chapter 6  Installing MariaDB and Creating a Simple Web Application



183

The SQL command for creating the my_users table should also define 

a PRIMARY KEY , which is a unique identifier for that row of data to 

ensure no two rows can share the same primary key value. No duplicates 

are allowed, and this guarantees you won’t have two rows with the same 

user_id value. Primary keys can be created from one field, such as the 

user_id integer in this example, or multiple column values, such as user_id, 

user_first, and user_last.

The NOT NULL phrase added to each field definition in the example 

tells MariaDB that whenever it inserts a new row of data, those fields can’t 

be empty. A SQL query with missing values for those fields will fail, which 

helps MariaDB ensure data integrity.

This example my_users table is very basic, but it contains the same 

structure you’d use to create any other database table. MariaDB offers 

many more options than shown here. Visit www.mariadb.org for more 

information.

Note  The field names I used in the example are standardized. 
Underscores or CaMeL caps are common because they’re easy to 
read and remember. Being consistent from the beginning will help 
you avoid headaches later.

To confirm that your table was created the way you intended, log in as 

webuser and enter the following:

$ sudo mysql -u webuser -p

MariaDB [(none)]> USE mydatabase;

MariaDB [mydatabase]> SHOW tables;

+----------------------+

| Tables_in_mydatabase |

+----------------------+

Chapter 6  Installing MariaDB and Creating a Simple Web Application

http://www.mariadb.org


184

| my_users             |

+----------------------+

MariaDB [mydatabase]> DESCRIBE my_users;

+------------+-------------+------+-----+---------+----------------+

| Field      | Type        | Null | Key | Default | Extra          |

+------------+-------------+------+-----+---------+----------------+

| user_id    | int(3)      | NO   | PRI | NULL    | auto_increment |

| user_first | varchar(30) | NO   |     | NULL    |                |

| user_last  | varchar(30) | NO   |     | NULL    |                |

+------------+-------------+------+-----+---------+----------------+

3 rows in set (0.00 sec)

The SHOW tables; command shows all the tables in your database, 

similar to how the SHOW databases; command shows all the databases. 

The DESCRIBE my_users; command outputs the structure of the table 

itself so you can check that all is as expected. Be sure to confirm as you go 

to make sure everything in your lab works.

�Add Data to a Table
Database tables are flexible and powerful, but they’re not worth much if 

they don’t have any rows of data. As mentioned previously, MariaDB tables 

are rows and columns of data. Creating the table defined the columns; 

INSERT statements add the rows.

Each INSERT statement identifies the table, columns, and column data 

to add and takes the following form:

INSERT INTO <tablename> (<column1>, <column2>) VALUES 

('<value1>', '<value2>');

Chapter 6  Installing MariaDB and Creating a Simple Web Application



185

The column names and column values have a distinct relationship. 

MariaDB inserts value1 into column1 and so on. Each column is set to 

specific field types, such as text, integer, or date, and type mismatches can 

prevent a SQL query from executing. String and date values are enclosed 

in single quotation marks. Integers are not. Keep things orderly to ensure 

you’re inserting all your data properly.

Log in to MariaDB as webuser and connect to mydatabase to add your 

first row of data:

MariaDB [none]> USE mydatabase;

MariaDB [mydatabase]> INSERT INTO my_users (user_first, user_

last) VALUES ('John', 'Adams');

Notice that user_id is not included in the field or value lists. That’s 

because it’s set to auto-increment—the integer will increase by one each 

time a new row is added—and will be inserted automatically by MariaDB.

You can use the up arrow to see your last command and rerun this 

query a few more times, changing the VALUES items as follows:

INSERT INTO my_users (user_first, user_last) VALUES ('Betsy', 

'Ross');

INSERT INTO my_users (user_first, user_last) VALUES ('George', 

'Washington');

INSERT INTO my_users (user_first, user_last) VALUES ('Ben', 

'Franklin');

INSERT INTO my_users (user_first, user_last) VALUES ('Thomas', 

'Jefferson');

Now that you have rows of data, use the SELECT statement to show 

the values. This takes the form of SELECT <fields> FROM <table> WHERE 

<fields> and can be a list of column names separated by commas or an 

asterisk to show all fields:

MariaDB [mydatabase]> SELECT * FROM my_users;

Chapter 6  Installing MariaDB and Creating a Simple Web Application



186

+---------+------------+------------+

| user_id | user_first | user_last  |

+---------+------------+------------+

|       1 | John       | Adams      |

|       2 | Betsy      | Ross       |

|       3 | George     | Washington |

|       4 | Ben        | Franklin   |

|       5 | Thomas     | Jefferson  |

+---------+------------+------------+

The user_id has auto-incremented with each new row, providing a 

unique value. Since that table field value was set to INT(3), it can auto-

increment up to 999.

�Update Table Entries
To change values in any row of data in a MariaDB table, use a SQL WHERE 

clause to reference specific rows by the user_id (primary key) value to 

update and delete entries. Updating takes the following form:

UPDATE <table-name> SET <column-name>='<newvalue1>' WHERE 

<primary-key> = <value>;

In this example, the WHERE clause tells MariaDB to update only the 

column value in the row with the designated primary key value. If you 

leave off the WHERE clause, every record will be updated, which usually 

isn’t what you want.

Change the user_first value from Thomas to Tom to test updating a 

table entry:

MariaDB [mydatabase]> UPDATE my_users SET user_first='Tom' 

WHERE user_id=5;

Chapter 6  Installing MariaDB and Creating a Simple Web Application



187

Query OK, 1 row affected (0.00 sec)

Rows matched: 1  Changed: 1  Warnings: 0

The primary key value for that row is 5, so it’s used in the SQL 

statement. Since the user_first field is a string, the value is enclosed by 

single quotation marks.

Now, when you run the SELECT statement, you’ll see the change:

MariaDB [mydatabase]> SELECT * FROM my_users WHERE user_id=5;

+---------+------------+------------+

| user_id | user_first | user_last  |

+---------+------------+------------+

|       5 | Tom        | Jefferson  |

+---------+------------+------------+

1 row in set (0.00 sec)

The WHERE clause limits the output to a single row of data, but you 

can use any field to limit your query, for example:

MariaDB [mydatabase]> SELECT * FROM my_users WHERE user_first 

LIKE 'T%';

+---------+------------+-----------+

| user_id | user_first | user_last |

+---------+------------+-----------+

|       5 | Tom        | Jefferson |

+---------+------------+-----------+

1 row in set (0.00 sec)

This limits the search to the user_first column by using the LIKE 

command and the MariaDB wildcard (%) to indicate the first name value 

must begin with T followed by any other character. Think of a WHERE 

clause as a filter you can use to narrow your query results to just the values 

or table entries you want.

Chapter 6  Installing MariaDB and Creating a Simple Web Application



188

�Delete Table Entries
Deleting rows is similar to updating them, but be careful. It’s easy to delete 

everything in your database table if you don’t limit the SQL query with a 

WHERE clause. The syntax looks like this:

DELETE FROM <table-name> WHERE <column-name> = <value>;

Use the user_id column again as the reference to delete the Tom 

Jefferson entry:

MariaDB [mydatabase]> DELETE FROM my_users WHERE user_id=5;

Query OK, 1 row affected (0.01 sec)

Now, when you rerun a SELECT query to show all values in the table, 

Tom Jefferson is gone:

MariaDB [mydatabase]> SELECT * FROM my_users;

+---------+------------+------------+

| user_id | user_first | user_last  |

+---------+------------+------------+

|       1 | John       | Adams      |

|       2 | Betsy      | Ross       |

|       3 | George     | Washington |

|       4 | Ben        | Franklin   |

+---------+------------+------------+

4 rows in set (0.00 sec)

If you execute a new INSERT statement to add Thomas Jefferson back 

to your table and rerun the SELECT query, you’ll see the entry is back, but it 

has a new user_id value. MariaDB picks up where it left off with the auto-

incrementing and will never reuse a previous value, even if that record has 

since been deleted. Try it!

Chapter 6  Installing MariaDB and Creating a Simple Web Application



189

�Read MariaDB Data with PHP
With a little SQL under your belt, it’s time to create a simple PHP script that 

can query the MariaDB database and show the results on a web page. This 

basic capability is the heart of your LAMP stack.

Rather than creating static HTML files in the following examples, you’ll 

create PHP pages that read content directly from the database, allowing for 

real-time browser-based interactions.

The dynamic content generation works by having PHP connect to 

and read from MariaDB, execute database queries, and present data on 

a web page. PHP provides the programming logic, and Structured Query 

Language (SQL) commands select the appropriate MariaDB data to return. 

A single PHP file can present different content based on parameters you or 

your application’s users define.

So far, you’ve used MariaDB to manipulate data from the command 

line. Now you’ll hand off those commands to PHP, which you installed and 

configured in Chapter 5, to communicate with the database. Your PHP 

script will initiate a connection to MariaDB, define a SQL query, execute it, 

and show the results in a web browser.

Open a shell and log in to your web.devops.lab virtual machine, where 

you’ll create a .php file named index.php in the document root of your 

myserver.devops.lab (the second website you created in Chapter 5), that is, 

/var/www/myserver/index.php. Your entire application will consist of this 

single file, leveraging the power of your LAMP stack.

Add the following typical HTML to the index.php file:

<html>

<head> 

      <title>My Users</title>

      <style type="text/css">

            table, th, td {

                  border: solid 1px #eee;

Chapter 6  Installing MariaDB and Creating a Simple Web Application

10.1007/978-1-4842-8318-9_5
10.1007/978-1-4842-8318-9_5


190

                  border-collapse: collapse;

                  padding: 5px;

            }

            th {

                  width: 200px;

                  background-color: #eee;

            }

      </style>

</head>

<body>

<?php 

$host = "localhost";

$user = "webuser";

$password = "mypassword";

$database = "mydatabase";

$link = mysqli_connect($host, $user, $password, $database); 

$SQL = "SELECT user_id, user_first, user_last FROM my_

users"; 

$result = $link->query($SQL); 

echo "<table>\n";

echo "<thead><tr><th>First name</th><th>Last name</th></tr></

thead>\n"; 

while ($row = mysqli_fetch_assoc($result)) { 

       $user_id = $row['user_id'];

       $user_first = $row['user_first'];

       $user_last = $row['user_last'];

       �echo "<tr><td>$user_first</td><td>$user_last</td></

tr>\n"; 

};

Chapter 6  Installing MariaDB and Creating a Simple Web Application



191

echo "</table>\n";

?>

</body>

</html>

The header is the same as in a usual .html page . I’ve added some 

optional Cascading Style Sheets (CSS) in the header to make the output 

pretty. In the main body, the <?php  indicates the start of the PHP 

code. Everything between that and the ending ?> is in PHP, including the 

$host, $user, $password, and $database variables used to connect to the 

database with mysqli_connect() and assign that connection to a variable 

named $link . The credential values match the credentials and database 

you created in the previous step. The built-in PHP mysqli_connect() 

command negotiates the connection to MariaDB.

The next element assigns a simple SQL statement you executed in the 

previous exercise to a $SQL variable , which is then used with the $link 

variable to query the database and create a result set stored in a variable 

called $rs . This means the PHP script will connect to mydatabase as 

webuser and execute the query. The query output is stored as an array in 

the $rs variable, and the next step will format the content to be viewable in 

a browser.

I’ve added a standard HTML table header  before the step that 

iterates and presents the data stored in $rs to make the table look nicer. 

The iteration is done with a PHP while loop  and assigns each value 

stored in the $rs array to variables that PHP can use. This while statement 

is like telling the script, “While there are rows of data in $rs to show, keep 

showing them until you’re done.” Each time the loop proceeds to a new 

element in the array, it assigns its value to a new variable specific to the 

columns in the my_users database table.

Chapter 6  Installing MariaDB and Creating a Simple Web Application



192

Finally, the PHP script wraps some HTML around the variables to 

present the output in neat rows and columns . The HTML table element 

is closed with </table>, and the PHP section is closed with ?>, and the file 

ends with standard HTML </body> and </html> tags.

I’ve left out some error-checking to simplify this file, but it contains all 

the necessary elements to view the contents of your database table. Open a 

browser and go to http://myserver.devops.lab to see the results.

�Containerize It
Making a MariaDB container can be straightforward if all you want is the 

standalone database, but for this example you want both MariaDB and an 

Apache server with PHP. This can be accomplished by creating two Docker 

containers that can communicate with each other and share persistent 

volumes. Though each container will be distinct, the outcome—a full 

LAMP stack—will be the final result.

As in the Chapter 5 example, you’ll be able to deploy these containers 

on your docker.devops.lab host. Unlike the previous example, though, 

you’ll use raw Docker images (downloaded directly from Docker Hub) 

alongside a customized container.

�Create the PHP Container
It’s possible to create separate containers for PHP and Apache, but 

there’s a Docker image available that combines the two. You’ll use that 

in a Dockerfile. For MariaDB, you’ll use the public image, which means 

you won’t need to create a separate Dockerfile for it. You’ll also create a 

companion container running Adminer, a graphical tool you can use to 

interact with the MariaDB database.

In your work directory, create a new folder in your home directory 

called lamp and create a subdirectory inside it called php:

Chapter 6  Installing MariaDB and Creating a Simple Web Application

http://myserver.devops.lab
10.1007/978-1-4842-8318-9_5


193

$ cd ~

$ mkdir -p lamp/php

In the lamp/php folder, create a new Dockerfile with the following 

contents:

FROM php:8.0-apache

RUN docker-php-ext-install mysqli

WORKDIR /var/www/html

COPY index.php index.php

EXPOSE 80

This will use the PHP 8.0 image with Apache built in, as indicated 

in the FROM statement. The RUN command installs and enables the 

mysqli module, which you should recall as one of the Apache modules 

you installed when manually setting up your server in a virtual machine. 

Without this RUN statement, the index.php script will fail because it 

requires the module to work.

The rest of the Dockerfile should be self-explanatory. It sets /var/www/

html as the working directory, which is where you’ll copy in the index.php 

file from you workstation directory. Exposing port 80 ensures your small 

web app is reachable.

�Create MariaDB and Adminer
Save your php Dockerfile and create a new index.php file by copying the 

index.php you used in the previous example. It will be identical except for 

a single edit. Change the line that reads

$host = "localhost";

to

$host = "db";

Chapter 6  Installing MariaDB and Creating a Simple Web Application



194

This is necessary because the container will have “db” as its hostname 

(not localhost). Save this index.php file in the lamp/php/ directory.

With these two files complete, create a new docker-compose.yml file in 

the root of your /lamp folder. This will define the rest of your containerized 

LAMP stack. The file should look like this:

version: '3.3'

volumes:

  wwwroot:

  database:

services:

  php:

    build: ./php

    container_name: php-apache

    privileged: true

    volumes:

      - wwwroot:/var/www/html

    networks:

      - frontend

      - backend

    ports:

      - 80:80

  db:

    image: mariadb

    container_name: db

    environment:

      - MYSQL_ROOT_PASSWORD: "mypassword"

      - MYSQL_DATABASE: "mydatabase"

    volumes:

      - database:/var/lib/mysql

Chapter 6  Installing MariaDB and Creating a Simple Web Application



195

    networks:

      - backend

  adminer:

    image: adminer

    container_name: adminer

    ports:

      - 8080:8080

    networks:

      - frontend

      - backend

networks:

  frontend:

  backend:

Notice that the file begins with a volumes: entry, which defines two 

persistent volumes you’ll want for this example. The wwwroot volume is 

for the php-apache container content you want to preserve; the database 

volume will be used to preserve the MariaDB data files. Persistent volumes 

retain their contents even when a container is stopped and restarted. 

Without these, your database and /var/www/html directory will be wiped 

clean each time. That may not be what you want if you’re planning to keep 

this content available—even after shutting it down.

In the services: section, you’re defining three containers: php-

apache, db, and adminer. The first creates the image based on the 

contents of the Dockerfile you created in the last step. It’s given a name 

(php-apache), set as a privileged container, and assigned two networks: 

frontend and backend. Docker will create these networks when you build 

the images later, and it will enable the containers to communicate with 

each other. The frontend network is intended for external traffic (like 

someone visiting your app), and the backend network is intended for 

local container-to-container communication only. This is a good security 

Chapter 6  Installing MariaDB and Creating a Simple Web Application



196

measure that means the MariaDB server is never available directly outside 

your Docker host, but containers that use it—php-apache and adminer—

can reach it.

The db service is a little different. Instead of using the build: directive 

to reference a local Dockerfile, it uses the image: directive to fetch and 

use the latest version of MariaDB. In a production setting, you’d also set 

the version you want with a tag like mariadb:10.7.1. I’ve left that out 

for clarity. The container is given a name, and then some environment 

variables are identified. These will be passed to MariaDB to set passwords 

and the mydatabase values for you. These entries, in this format, are not 

considered secure. In a production environment, you’d use Docker secrets 

or a secrets file to obfuscate your sensitive data.

The container’s volumes: directive uses the volume created earlier that 

points to the /var/lib/mysql directory inside the container. That’s where 

MariaDB stores the files that hold data. By adding this line, you’re telling 

Docker to create a volume that will remain known to the container, even 

after the container is shut down and restarted. Note that the networks: for 

this container is set to just backend.

The third container builds and deploys Adminer. Like the MariaDB 

container, it’s built directly from the Docker Hub image. There’s no 

local Dockerfile needed to configure it. The container is given a name; 

and, since Adminer runs on port 8080, that port is opened. Note that 

this container has both the frontend and backend networks defined, 

which allows users to access the web-based dashboard, and Adminer to 

communicate internally with the db containerized database.

The final entry in the docker-compose.yml defines the networks. The 

format is very similar to how you define volumes. These networks will be 

created during the docker-compose steps that come next.

Chapter 6  Installing MariaDB and Creating a Simple Web Application



197

�Launch Your Containerized Stack
With everything complete, you’re now ready to launch your containerized 

stack and your small PHP application. Remember, the first time you do 

this, Docker will need to download any images that aren’t yet available on 

your local machine, so the initial launch will take some time. Once those 

images are local, all future launches will be considerably faster.

On the docker.devlops.lab host, enter the following:

$ cd ~/lamp

$ docker-compose up -d

This will download the images the containers need, configure them, 

copy in your index.php file, and launch the containers. If you point your 

browser to your Docker VM, you should see a basic page with some PHP 

errors. That’s because no database, table, or content has been created 

in your MariaDB container. You can do that now by using the Adminer 

interface or by issuing the following command on your Docker host, which 

will import all the SQL statements necessary to create and populate your 

database in a file named mydatabase.sql.

The mydatabase.sql contains all the commands you used in your 

virtual machine example, as shown in Listing 6-1.

Listing 6-1.  The contents of the mydatabase.sql file

SET NAMES utf8;

SET time_zone = '+00:00';

SET foreign_key_checks = 0;

SET sql_mode = 'NO_AUTO_VALUE_ON_ZERO';

SET NAMES utf8mb4;

DROP DATABASE IF EXISTS `mydatabase`;

Chapter 6  Installing MariaDB and Creating a Simple Web Application



198

CREATE DATABASE `mydatabase` /*!40100 DEFAULT CHARACTER SET 

utf8mb4 */;

USE `mydatabase`;

DROP TABLE IF EXISTS `my_users`;

CREATE TABLE `my_users` (

       `user_id` int(3) NOT NULL AUTO_INCREMENT,

       `user_first` varchar(30) NOT NULL,

       `user_last` varchar(30) NOT NULL,

       PRIMARY KEY (`user_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

INSERT INTO `my_users` (`user_id`, `user_first`, `user_last`)  

VALUES

(1,    'Betsy',    'Ross'),

(2,    'George',   'Washington'),

(3,    'Ben',      'Franklin'),

(4,    'Thomas',   'Jefferson');

CREATE USER 'webuser'@'%' IDENTIFIED BY 'mypassword';

GRANT CREATE, SELECT, INSERT, UPDATE, DELETE ON mydatabase.* TO 

'webuser'@'%';

FLUSH PRIVILEGES;

Docker has a way to interact with a running container without actually 

initiating a shell for you. The following command logs in to the container 

and runs a MySQL command, namely, importing the local mydatabase.

sql contents:

$ docker exec -i db mysql -uroot -ppassword mydatabase < 

mydatabase.sql

Chapter 6  Installing MariaDB and Creating a Simple Web Application



199

�Try Out Adminer
Since Adminer was set to listen at port 8080, point your browser to http://

docker.devops.lab:8080. You’ll see the login page, as in Figure 6-1.

Figure 6-1.  The Adminer login screen

As in the preceding example, enter the container name for the server 

(db), root as the Username, and “password” as the Password. These are the 

same as the values you set in the docker-compose.yml file.

After logging in, you can create a new database called mydatabase, 

create a table called my_users, and insert rows of data. You can use the 

SQL commands provided earlier in this chapter or use Adminer’s graphical 

interface to do that. I won’t go into specific detail about Adminer here, 

but feel free to explore its capabilities. It’s a nice, easy-to-use tool for 

manipulating MariaDB and other databases.

Chapter 6  Installing MariaDB and Creating a Simple Web Application

http://docker.devops.lab:8080
http://docker.devops.lab:8080


200

Once you’ve created your database and table, and granted your  

webuser permission to access them, return to your browser and point to 

http://docker.devops.lab. The result should appear like that in Figure 6-2 

below, showing you the same content you saw in the virtual machine 

example.

When you’re done, you can destroy the stack by using docker-compose 

from inside your lamp/ directory:

$ docker-compose down

That command will stop the running containers and disconnect the 

networks and volumes. If you want to purge your system completely, 

you can run docker system prune [-a], adding the -a option to delete 

everything—so be careful!

�Conclusion
In this chapter, you learned how to use MariaDB to store data and create a 

user, database, and table. You also learned how to manipulate that data on 

the command line and with a simple PHP script. Finally, you deployed the 

application using Docker containers.

Figure 6-2.  The results of the simple PHP application using data 
from MariaDB

Chapter 6  Installing MariaDB and Creating a Simple Web Application

http://docker.devops.lab


201

These examples should provide a good understanding of how a LAMP 

stack can work to create dynamic applications. Understanding this basic 

framework will give you a feel for creating web applications of all kinds; 

they don’t need to be limited to a LAMP stack. You can use the same 

concepts with other programming languages, such as Python, and other 

databases, such as PostgreSQL or MongoDB.

In the next chapter, you’ll learn how to extend your simple PHP script 

so you can insert, update, and delete database fields and rows in your 

MariaDB tables right from your web application.

Chapter 6  Installing MariaDB and Creating a Simple Web Application



203

CHAPTER 7

Web Server 
Alternatives
In the last two chapters, you got a good Apache workout, configuring 

a robust LAMP stack to handle a variety of web-based applications. In 

this chapter, you’ll take a look at a common alternative, the popular 

NGINX web server. You’ll wrap up with trying your hand at some web 

server alternatives for times when you only need something quick and 

lightweight.

Before diving into NGINX, try your hand at deploying a WordPress 

server. WordPress is a PHP application that uses MariaDB (MySQL) as 

the back end to store all the content for a website. It’s a free, flexible, 

and powerful way to deploy websites that have a professional look and, 

perhaps more importantly, a good WYSIWYG interface that one or more 

contributors can use to build site content.

Armed with what you know about creating a LAMP stack, installing 

WordPress is a breeze. It takes full advantage of your existing LAMP 

environment; and, like other PHP-based applications, it can be installed 

by simply downloading a .zip or .tar file and unpacking it to a new or 

existing web directory, such as /var/www/html/.

© John S. Tonello 2022 
J. S. Tonello, Practical Linux DevOps, https://doi.org/10.1007/978-1-4842-8318-9_7

https://doi.org/10.1007/978-1-4842-8318-9_7#DOI


204

�Deploy WordPress
The easiest way to install WordPress is to fire up your existing LAMP VM 

(or LXC) on Proxmox, shell into it with SSH, and download the latest 

version. Use wget to download the file and the -O flag to output it directly 

to your website directory. The -nc flag added at the end of the command 

tells wget to not clobber (don’t overwrite) a file of the same name:

$ ssh user@lamp.develops.lab

$ �sudo wget https://wordpress.org/latest.tar.gz -O /var/www/

html/latest.tar.gz -nc

The file is in a compressed format, so you can use gunzip to unpack 

the .gz file, which leaves yet another compressed file called latest.tar. 

Instead, you can just use tar with the -z flag to un-tar and unzip the file in 

one step:

$ sudo tar -xzvf /var/www/html/latest.tar.gz

The result will be a new directory, /var/www/html/wordpress, initially 

owned by root, which can create permission problems. Use chown to 

change the ownership to the web-data user with the following command:

$ sudo chown www-data:www-data /var/www/html/wordpress -R

With permissions set, point your browser to your server, such as 

https://web.devops.lab/wordpress, for the graphical setup, as shown 

in Figure 7-1. With WordPress, there’s no need to manually edit any of the 

files you just downloaded.

Chapter 7  Web Server Alternatives

https://web.devops.lab/wordpress


205

Figure 7-1.  The browser view of the WordPress initial setup screen 
(after selecting a language)

WordPress tells you it will do its best to set up everything for you and 

lets you know how to do some basic fiddling if necessary. To complete the 

graphical install, you’ll need

•	 The name of your WordPress database

•	 The database’s username and password

•	 The MariaDB hostname

To create the database (and give it a user), refresh your memory with a 

look back at Chapter 6. You can log in to MariaDB from the command line 

or use Adminer for these tasks.

Chapter 7  Web Server Alternatives

10.1007/978-1-4842-8318-9_6


206

From the command line, first, log in to the MariaDB/MySQL shell on 

your LAMP host or a fresh VM:

$ mysql -u root -p

Note I f the mysql command fails for permission reasons, you can 
run the preceding as sudo mysql -u root -p or add your user 
to the mysql group on your system:$ sudo usermod -aG mysql 
$USER. Be sure to log out and log back in to activate these new 
permissions.

Once inside, issue the SQL command to create a new database:

MariaDB [(none)]> CREATE DATABASE wordpress;

Create a unique user that will have access to wordpress and any tables 

in that database. This is a good security measure and helps distinguish 

between various users and roles you assign to MariaDB:

MariaDB [(none)]> CREATE USER 'wordpress'@'localhost' 

IDENTIFIED BY 'mypassword';

With the user created, grant it permissions to access your wordpress 

database and all its tables, identified as wordpress.* in the following 

example:

MariaDB [(none)]> USE wordpress;

MariaDB [mydatabase]> GRANT CREATE, SELECT, INSERT, UPDATE, 

DELETE ON wordpress.* TO 'wordpress'@'localhost';

Before exiting, run the command to update user privileges:

$ FLUSH PRIVILEGES;

Chapter 7  Web Server Alternatives



207

�Create a WordPress System User
Your new WordPress site is really just a folder, but it may not have the 

correct permissions to allow the graphical installer to continue. That is, 

WordPress needs to be able to write to some files in the website directory, 

not just read them.

To make that work, first change the permission on the /var/www/html/

wordpress directory to www-data:

$ sudo chown www-data:www-data /var/www/html/wordpress -R

The trailing -R flag makes the change recursive, meaning the folder 

and all its subfolders and files are now owned by www-data.

One final step before you continue is to create a new system user called 

wordpress and add that user to the www-data group. This enables that user 

to read from and write to the WordPress application folder (to which you 

gave wordpress ownership):

$ sudo adduser wordpress

$ sudo usermod -aG www-data wordpress

�Finish the WordPress Installation
Armed with your database name, username, and password, continue the 

graphical WordPress installation. In the setup screen, enter the values you 

created in MariaDB, noting that the Username and Password WordPress 

wants in this view are the values you just set when creating the database 

user, which are wordpress and mypassword in the example shown in 

Figure 7-2.

Chapter 7  Web Server Alternatives



208

Figure 7-2.  Enter the same values in the WordPress setup that you 
just created in MariaDB

If all goes well, WordPress will tell you you’re ready to run the 

installation. During this step, it automatically creates a number of tables in 

your MariaDB database and populates them with some dummy data to get 

you started. If you get a write error, double-check the permissions on your 

/var/www/html/wordpress directory. The folder should be owned by www-

data and be readable and writeable (mode 755).

While WordPress is doing its configuration, it will prompt you for 

a website title, a username, a password, your email, and search engine 

visibility. These can be whatever you want, but make sure to make note of 

what you enter. For the email, you can use your new mail server address, 

such as jadams@devops.lab.

It only takes a moment for WordPress to finish the installation. When it 

does, it’ll take you to the login screen, and you’re off and running!

I won’t go into detail about using WordPress here (there are a lot of 

good resources on the Web), but feel free to play around with the site’s 

appearance, adding plugins and creating content.

Chapter 7  Web Server Alternatives



209

Before you move on to installing and using the NGINX web server, 

it’s important to note that you can use WordPress there too. The NGINX 

version you install will include PHP and MariaDB, all set for WordPress 

and other web applications.

�Install and Configure NGINX
Like Apache, NGINX is a common open source web server. It’s grown 

in popularity because it’s lightweight, easy to configure, and especially 

capable when serving static web pages, such as HTML or PHP files. In fact, 

some research shows it to be up to 2.5 times faster than Apache at serving 

up static pages.

As you proceed in this section, you’ll notice that many of the NGINX 

configurations will seem familiar. For example, setting up two distinct 

websites with two distinct domains on a single server is possible with 

NGINX just as it is with Apache. NGINX also has configuration directories 

for sites-available and sites-enabled, so your familiarity with how an 

Apache web server works will be valuable here.

�Manually Install NGINX
When it comes to installing NGINX, you have a lot of options, including 

using a Proxmox template (complete with FastCGI and MariaDB to run 

your PHP application), deploying a container on your Docker host, or 

manually with some basic command-line work. To get you familiar with 

NGINX, we’ll start with the latter.

For this example, deploy a basic Ubuntu or Debian LXC in Proxmox. It 

doesn’t need more than one core and 512MB of RAM, but give the instance 

a static IP address, such as 10.128.1.61/24 or the next available address in 

your DevOps lab subnet.

Chapter 7  Web Server Alternatives



210

While the machine is launching, step over to your DNS server and add 

two entries to the zone files. In the examples you’ve used so far, these are

•	 /etc/bind/zones/devops.lab.zone

•	 /etc/bind/zones/10.128.zone

In the first, increment the Serial entry and then add an A record and 

a CNAME. The idea here is to create two distinct domain names that point to 

the same server, just as you did in the Apache examples. These new entries 

in your devops.lab.zone file will look something like this:

...

nginx.devops.lab.  IN    A       10.128.1.61

nginx2.devops.lab. IN    CNAME   nginx

The single entry in your 10.128.zone file will look like this:

...

61.1  IN    PTR    nginx.devops.lab.

Save these files and update DNS by running rndc reload. You can test 

your DNS by pinging your two new domains from your workstation.

�Configure NGINX
Over on your new base Ubuntu or Debian instance, install the nginx 

package with sudo apt install nginx. This will create the /etc/nginx 

directory where all the configuration files are stored.

Like Apache, NGINX has a base nginx.conf file that holds all the 

core settings for your web server. The virtual host websites you create 

on the server will all draw from the base configurations listed in this file. 

It’s even possible to define your virtual hosts in nginx.conf, but it’s not 

recommended. Doing so would make your configuration file bloated and 

Chapter 7  Web Server Alternatives



211

unwieldy. It’s better to create different sites in the /etc/nginx/sites-

available/ directory, recognizing that they inherit certain capabilities 

from the main nginx.conf file.

For most cases, the default settings in nginx.conf are fine to keep as is. 

Two lines in this file are particularly important. On line 4 is the following:

...

include /etc/nginx/modules-enabled/*.conf;

...

This tells NGINX to look in that directory for any server modules you 

want to work with your websites.

On line 60 in Ubuntu 22.04 (line 62 in Ubuntu 20.04) is a similar 

directive that tells NGINX where to look for sites that should be enabled.  

In this case, you’ll have the default, served up when you visit  

http://nginx.devops.lab, and nginx2, served up when you visit  

http://nginx2.devops.lab:

...

include /etc/nginx/sites-enabled/*;

...

For this example, you’ll leave the default website (virtual host) as-

is and create a second site for nginx2. Like Apache, NGINX has a lot of 

options when it comes to configurations, including directives that enable 

SSL (port 443) and adding FastCGI to enable PHP and other capabilities. 

For now, start with the basics.

Create a new folder under your /var/www directory called nginx2 to 

hold your HTML files:

$ sudo mkdir /var/www/nginx2

$ sudo chown www-data:www-data /var/www/nginx2

Chapter 7  Web Server Alternatives

http://nginx.devops.lab
http://nginx2.devops.lab


212

Go ahead and add a simple index.html file to that directory, for 

example:

$ echo "NGINX 2 website" | sudo tee /var/www/nginx2/index.html

With this file, you’ll be able to quickly see that the site is different from 

the default website.

With your index.html file in place, go ahead and create a configuration 

file in /etc/nginx/sites-available/ called nginx2.devops.conf. It will 

tell NGINX to listen on port 80, serve up content from /var/www/nginx2/, 

and look for an index.html file by default. It will also set a default action 

to load the index.html file if no file is explicitly indicated in the URL 

path (http://nginx2.devops.lab/ vs. http://nginx2.devops.lab/

index.html).

This content looks like this:

server {

  listen 80;

  server_name nginx2.devops.lab;

  root /var/www/nginx2;

  index index.html;

  location / {

    try_files $uri $uri/ =404;

  }

}

To enable this site, you need to make a symbolic link to it to the /etc/

nginx/sites-enabled directory:

$ sudo ln -s /etc/nginx/sites-available/nginx2.devops.conf /

etc/nginx/sites-enabled/nginx2.devops.conf

Chapter 7  Web Server Alternatives

http://nginx2.devops.lab/
http://nginx2.devops.lab/index.html
http://nginx2.devops.lab/index.html


213

Reload NGINX to run a test to confirm the server process is running:

$ sudo nginx -s reload

$ sudo nginx -t

Note  You can also run sudo nginx -s restart, but if there 
is a failure due to a misconfiguration, the server will be dead. The 
reload action instead attempts to apply the configurations, but 
won’t kill the server if there’s an error.

That’s it! Now visit the two distinct URLS—nginx.devops.lab and 

nginx2.devops.lab—to see the results.

�Install NGINX Using a Proxmox Template
Getting NGINX up and running from scratch is pretty straightforward, but 

Proxmox has a ready-made template you can use to do the same thing. 

The Turnkey version includes NGINX along with Webmin, a graphical 

tool for managing the entire system; PHP (FastCGI); MariaDB/MySQL; 

and Adminer, the browser-based tool for interacting with the database. 

This option is a good choice if you’re looking to quickly spin up a site and 

perhaps install WordPress or some other application without much fuss.

To install the template, go to your main Proxmox dashboard, click the 

local storage icon under your Proxmox host, and click the CT Templates 

menu item. In that view, click the Templates button. This will give you a 

pop-up window from which you can select the template called turnkey-

nginx-php-fastcgi, as shown in Figure 7-3.

Chapter 7  Web Server Alternatives



214

Figure 7-3.  Select and download the turnkey-nginx-php-fastcgi 
template in Proxmox

As with other LXCs you’ve created, give this system a name, static IP 

address, one core, and 1024MB of RAM. You can adjust these if you plan to 

run a web application that requires more horsepower, but these basics will 

get you started.

Note I f you plan to reuse the same IP address you used earlier 
(10.128.1.61/24), destroy that container and create a new one. 
Otherwise, use a new IP address and set up DNS accordingly. 
Otherwise, you’ll have an IP conflict and have some real problems.

With Proxmox templates like this one, some of the configuration is 

done after you first log in. With that in mind, deploy the template and 

then switch to the Console view in Proxmox and log in with root and the 

password you set.

Chapter 7  Web Server Alternatives



215

As soon as you log in, you’ll get a series of screens prompting you to set 

a root password for your database, an admin email for reporting (you can 

use your “jadams@devops.lab” example), and some confirmation screens. 

Feel free to skip the Backup and Migration option. Once that’s done, quit 

out of the configuration console. If you make a mistake, you can always 

rerun this configuration by logging in as root and running the turnkey-

init command.

If you used the same IP address you set up with your previous example 

(10.128.1.61/24), you can just point your browser to https://nginx.

devops.lab. You’ll get warnings for the self-signed certificate (it’s okay 

to proceed) and then notice the built-in control panel with access to a 

graphical shell, Webmin, and Adminer, as shown in Figure 7-4.

Figure 7-4.  The turnkey template-based NGINX dashboard with 
access to a shell, Webmin, and Adminer

These are all handy tools you can use to administer your NGINX server. 

The login for Webmin is root and the password you set when you first 

created the Proxmox instance. If you click the Adminer button and enter 

your credentials—adminer and the password you set during the post-

configuration step—you can log in and start creating databases, tables, and 

content.

Chapter 7  Web Server Alternatives

https://nginx.devops.lab
https://nginx.devops.lab


216

As an exercise, try creating a separate website using the previous 

instructions. You can also deploy WordPress on this server; just be sure to 

create the necessary database and user settings explained previously.

�When a Little HTTP Is All You Need
While there are certainly occasions when you need a full-up web server 

like Apache or NGINX, sometimes all you need is a little HTTP server to 

test some functionality, either on your workstation, in a container, or on a 

server that only needs web services temporarily. For those occasions, there 

are some readily available options using Python and PHP CLI.

�Python 3 http.server
Most modern Linux systems come installed with Python 3, a powerful 

programming language that comes with a number of built-in features, 

including an HTTP service. If Python 3 isn’t installed on your system, 

install it using your package manager, such as

$ sudo apt install python3

Python includes a wide variety of capabilities, but for now you’ll just 

be experimenting with the http.server, which will start a very small 

web server in the directory where the command is run (the default) or in 

a directory you define. This makes a useful way to test network access, a 

simple HTML page, or a directory listing. I’ve actually used this as a sort 

of quicky and dirty file server to access and download files from another 

machine to my workstation.

Try this first on your Linux workstation by moving into your 

Downloads directory and starting the http.server:

$ cd ~/Downloads

$ python3 -m http.server

Chapter 7  Web Server Alternatives



217

This is the most basic option of the command, using the defaults. It will 

immediately start serving up content in the current directory on port 8000. 

When you open a web browser and navigate to http://localhost:8000, you’ll 

see the contents of the Downloads directory.

You can use other ports by just adding the port to the end of the 

command, such as

$ python3 -m http.server 8088

You can also designate a directory other than the current working 

directory by adding the -d flag:

$ python3 -m http.server -d /var/www/html 8088

Notice that these examples don’t use port 80, the common HTTP port. 

It’s reserved (along with all ports under 1024) and can only be used if you 

run the preceding command as root (e.g., using sudo):

$ sudo python3 -m http.server -d /var/www/html 80

Go ahead and experiment with this useful service and consider using it 

in a small container when you want to test simple web services or network 

connectivity.

�Use the PHP CLI Built-In Server
In Chapter 6, you installed a complete LAMP stack using Apache, PHP, and 

MariaDB, but there may be times when all you want or need is a simple 

test environment to test your PHP code. For that, you can use PHP CLI, 

a command-line interpreter for the language that allows you to run PHP 

commands from the shell or serve up PHP files as web pages.

To make this work on your Linux workstation or in a virtual machine, 

you’ll need php-cli installed. It’s a widely available package that doesn’t 

add much overhead to your machine. Install it with your Linux package 

manager, such as

Chapter 7  Web Server Alternatives

10.1007/978-1-4842-8318-9_6


218

$ sudo apt install php-cli

As with the Python 3 server, the php-cli integrated server exposes the 

content in the directory from which the command is run. That behavior 

can be changed by adding the target directory flag, -t. Running with that 

flag might look like the following:

$ php -S localhost:8080 -t ~/Documents

Unlike the Python server, the php-cli server understands and parses 

PHP files much like your LAMP stack (minus the database bit). This can 

be incredibly useful for testing and can be readily observed using the 

phpinfo() command in a simple file. Place an index.php file with the 

following content in the folder you want to serve:

<?php

     phpinfo();

?>

When you start your server in that directory and open a browser to 

view it, you’ll see the PHP configuration page just like you did on your 

LAMP server. If you compare this side by side with the same file accessed 

from a full LAMP stack, you’ll notice some differences, but for basic testing, 

the php-cli integrated server is hard to beat.

�Run php-cli in a Container
The next chapter will take a deep dive into containerizing and automating 

the deployment of your web servers, but it’s worth taking a moment to 

show how the php-cli server can be run on a Docker host with a couple 

simple commands. If your needs are limited, this is a quick way to create a 

PHP-enabled web server without installing anything permanently on your 

workstation.

Chapter 7  Web Server Alternatives



219

Fortunately, the good folks who develop PHP make available a 

number of container images, including one with php-cli installed, such as 

php:8.1-cli. That means you can just run the image on your Docker host 

(or workstation with Docker installed) and use it with the integrated web 

server in moments.

The important things to remember when using this pre-built Docker 

image to run your container are that it doesn’t designate your web server 

port exposed by default or attach itself to your DevOps lab network. If you 

just run the default image, it’ll run for a second and stop, which isn’t very 

useful. You can solve all these issues by defining a port, setting the network 

to your Docker host’s network, and using a command like tail -f /dev/

null to keep the container running after it starts.

This would look like the following command run on your Docker 

workstation or host:

$ docker run --rm --expose 8080 --network host --name  

php-server -d php:8.1-cli tail -f /dev/null

On first run, Docker will download the php:8.1-cli image to your 

local machine. Subsequent runs will be much faster because they’ll reuse 

that downloaded image.

The preceding example names the container php-server, exposes port 

8080, sets the network, and runs the tail command to keep the container 

running. The --rm flag removes any previous container of the same name, 

and the -d flag tells Docker to run the container and then free up the 

terminal. Having a running container is necessary so you can execute a 

docker exec command and run the PHP server inside the container.

With the container running, execute the following command to start 

the server on port 8080:

$ docker exec -it php-server php -S localhost:8080

Chapter 7  Web Server Alternatives



220

This example tells Docker to access the running container called php-

server and execute the PHP server command. You could add a volume to 

your container that maps a folder on your workstation to a folder inside the 

container, a step that would enable you to save your .php files locally and 

have them served from the container. You’ll see examples of that capability 

in Chapter 8.

�Conclusion
In this chapter, you’ve learned how to deploy NGINX manually or using a 

Proxmox template, and how to use simple web servers for testing. These 

principles can be used across your DevOps lab environment and give you a 

sense of how some basic Linux knowledge is a great help when you look to 

adopt a wide variety of DevOps tools and practices.

In the next chapter, you’ll take a deeper dive into how to containerize 

your web servers and use automation to deploy them quickly and 

consistently.

Chapter 7  Web Server Alternatives

10.1007/978-1-4842-8318-9_8


221

CHAPTER 8

Containerizing 
and Automating Your 
Deployments
Modern software engineering embraces the DevOps workflow, which 

highlights some key principles for rapidly developing, testing, and 

deploying software in a wide variety of environments. Even companies 

that aren’t outright “software” companies are driven by technology, and 

they’ve adopted DevOps to consistently manage systems running in 

on-premise data centers and public clouds like Amazon and Azure and 

on edge devices, which are often ARM-based computing devices like the 

Raspberry Pi.

In this chapter, you’ll take a closer look at the mechanisms that make 

DevOps possible, specifically containers and automation. Table 8-1 

explains some core DevOps principles, which you can refer back to as you 

explore these technologies.

© John S. Tonello 2022 
J. S. Tonello, Practical Linux DevOps, https://doi.org/10.1007/978-1-4842-8318-9_8

https://doi.org/10.1007/978-1-4842-8318-9_8#DOI


222

Table 8-1.  Some core DevOps principles

Practice Why Is It Important?

Automation Automate routine and advanced server and application 

configuration, security, deployment, and testing to avoid 

human error and free staff to work smarter.

Common tools Development, security, and operations (DevSecOps) teams 

should use and understand the same tools and languages so 

they can improve cooperation, speed their work, and avoid 

app sprawl.

Communication Share a common language between developers and 

architects that encourages on- and off-line collaboration and 

trust.

Agile development Use and integrate continuous integration/continuous delivery 

(CI/CD) practices to ensure reliable and rapid application 

builds, tests, and deployments.

Security 

aforethought

Company policies and rules and third-party regulations should 

be built in to system environments and applications from the 

start, not as an afterthought.

Shift Left Collaborate and test sooner, not later.

Observability and 

continuous feedback

Real-time views of outages, problems, breaches, 

misconfigurations, and fixes are critical—collaboration and 

transparency into remediation workflows, too.

(continued)

Chapter 8  Containerizing and Automating Your Deployments



223

Table 8-1.  (continued)

Practice Why Is It Important?

Continuous testing Test code, environments, and policies in build, test, and 

deployment phases.

Cultural practices

(autonomy, trust, 

and learning)

Developers should have the confidence to autonomously 

create approved environments and code. Code sharing and 

other practices build trust, and the work culture should 

support learning and boldness, not caution.

Broad use of open 

source software

Accelerate development by leaning in to developer 

communities and their expertise, not by creating everything 

from scratch. Draw on large communities of developers to 

deliver better apps.

Faster time to value 

and outcomes

DevOps practitioners deploy code 45 times more frequently, 

commit to deploy 2,500 times faster, recover from incidents 

2,600 times faster, and have change failure rates that are 7 

times lower.

�Thinking in terms of Containers 
and Microservices
Having DevOps principles in mind makes it easier to understand the 

value of containerizing applications. They make developing applications 

consistent and repeatable and, just as importantly, make it possible to 

deploy them successfully to any platform. In this section, you’ll take a look 

at the process by deploying NGINX with Docker.

As you learned in the last chapter, deploying NGINX is fairly 

straightforward. Armed with that knowledge, you can better understand 

how to do the same thing with Docker. In a production setting, NGINX 

Chapter 8  Containerizing and Automating Your Deployments



224

containers may act as the front end for a wide range of applications, all 

running in their own separate, but linked, containers. This is especially 

useful when it comes to scaling applications based on demand. For 

example, a company like Walmart can quickly add capacity to its retail 

website during times of high demand (such as the Christmas season) and 

then scale it back when the holidays are over.

�Deploy an NGINX Container
Getting basic NGINX up and running in a container is quite 

straightforward, and it’s something you can try from either the command 

line or by creating a full-blown docker-compose.yml file and an associated 

Dockerfile. The good folks at NGINX (and others) have made available a 

number of different versions of the application, including a base Docker 

image with just NGINX on it and other versions with PHP, Perl, and useful 

preinstalled modules. Check out https://hub.docker.com to see some 

options.

Let’s try the base container and fire it up using the command line. Of 

course, you can create a more sophisticated Docker deployment using a 

docker-compose.yml, but this will get you started.

Since the Docker command-line arguments automatically reference 

Docker Hub, you can run an NGINX container with a simple docker run 

nginx command, but it’s worth adding some configurations to make it 

more useful.

Shell into your docker.devops.lab host (or use your workstation if 

you’re running Docker there) and create a directory called nginx with a 

subdirectory called files:

$ mkdir -p ~/nginx/files

Place an index.html file in the files/ directory with whatever content 

you want. It can be full HTML or just some simple text. This file will be 

copied into the NGINX image (and the container) in this example by 

Chapter 8  Containerizing and Automating Your Deployments

https://hub.docker.com


225

passing the -v (volume) flag and placing the file or files it finds into the 

running container’s /usr/share/nginx/html/ directory. The following 

command also gives the container a name and forwards the default port 80 

traffic to port 8088 so it won’t conflict with other web servers you may be 

running on your Docker host. The -d flag tells Docker to build and run the 

container and then release the terminal:

$ docker run --name mynginx -v /home/$USER/nginx/files:/usr/

share/nginx/html:ro -p 8088:80 -d nginx

This default image uses /usr/share/nginx/html/ as the root of the 

NGINX server (not, say, /var/www/html/). The ro sets the folder and files 

contained in it to read-only, meaning you won’t be able to edit it as any 

user other than root. The first time you run this command, Docker will 

download the nginx image from Docker Hub and build the container from 

that file. On subsequent runs, Docker will use that local nginx image, and 

your deployments will be much faster.

When the build completes, confirm your container is running:

$ docker ps

Point your browser to your Docker host, being sure to add the port 

number to the URL: http://docker.devops.lab:8088. You’ll see the 

content of your index.html file.

The way this container was created, with the -v flag, mapped your ~/

nginx/files/ folder to the base NGINX directory in the running container. 

That means you can edit your index.html file on your Docker host (or 

workstation) and reload the browser to see the changes in real time. If 

you used docker exec -it mynginx /bin/bash to actually log in to the 

container to attempt these edits, that would work, too, but your changes 

would be lost the next time you start the container from the original image. 

By mapping the volume, you can rapidly edit your HTML code without 

ever having to redeploy your NGINX container.

Chapter 8  Containerizing and Automating Your Deployments

http://docker.devops.lab:8088


226

�Automate Your NGINX Deployment
Armed with what you now know about basic NGINX configurations, it’s 

time to try automating your web server deployment. Automation—also 

known as infrastructure as code—is a way to define everything you need 

to run in an on-premise or cloud instance without ever having to manually 

log in or edit configuration files by hand.

In the DevOps world, automation is critical for managing hundreds, 

thousands, or hundreds of thousands of virtual machines or AWS, Azure, 

Kubernetes, or other public cloud instances. It allows engineers to define 

what they want in simple code and just reapply it wherever they want to 

run that kind of server or application.

Note  It’s important to add the caveat that the infrastructure 
automation described in the next section is generally not a system 
provisioning tool. That is, you have to first create some type of VM, 
LXC, or cloud instance to configure. Tools like HashiCorp Vagrant and 
Terraform, and AWS AMI templates can handle the provisioning, and 
tools like Ansible and Chef can configure the raw instances.

Automating the deployment of NGINX—and setting all your custom 

configurations—is a good starting place because much of what DevOps 

engineers work on these days contains some sort of web component. 

Plus, you now already know how NGINX should look and behave, so the 

automation steps will look and feel familiar.

Chapter 8  Containerizing and Automating Your Deployments



227

�Automate with Ansible
Many DevOps engineers start their automation journeys with Ansible, a 

free open-source tool that can target Linux, Windows, and macOS systems. 

It’s agentless, which means you don’t need to install anything on the target 

machines for it to work. It uses SSH to connect to Linux and macOS hosts 

and WinRM to connect to Windows hosts.

If you want to see how automation can take you from raw to 

configured, go ahead and spin up a new Ubuntu or Debian LXC in 

Proxmox. Add a local SSH key during that step to enable passwordless 

login or do it afterward using the ssh-copy-id command on your 

workstation, such as

$ ssh-copy-id root@ansible.devops.lab

If you haven’t created a local SSH key on your Linux workstation, go 

ahead and do that with the following command. Don’t add a password 

when prompted:

$ ssh-keygen

By default, this places id_rsa and id_rsa.pub files in a /home/user/.

ssh/ directory on your system. When you run the preceding ssh-copy-id 

command, it copies the public half of the key pair to the remote host so 

all future logins won’t require you to enter a password when using SSH 

to log in.

Note  If you have a Raspberry Pi device lying around, you can use 
that as one of your targets, too. You’ll first need to put an operating 
system on it, such as Raspberry Pi OS or Ubuntu, but you can 
automate the NGINX configuration in the same way as for any other 
physical or virtual system.

Chapter 8  Containerizing and Automating Your Deployments



228

To work with Ansible, you need to install the ansible package on your 

workstation, which is available in the standard Ubuntu (and other Linux) 

repositories:

$ sudo apt update && sudo apt install ansible -y

Ansible uses a concept of an inventory to identify one or more systems 

you want to target with your configurations. You can add single machines 

by their domain names or IP addresses or even create groups of machines. 

These are then referenced in a configuration file called an Ansible 

playbook. By previously sharing your SSH key, you’ll be able to run Ansible 

commands without having to enter a password each time.

By default, the inventory file (in Ubuntu 20.04 LTS) is located at /etc/

ansible/hosts, and it contains a number of base examples to get you 

started. If the folder doesn’t exist on your version of Ubuntu (including 

21.10 and 22.04 LTS), create it with the following command:

$ sudo mkdir -p /etc/ansible

Listing 8-1 is an example Ansible host file that has individual entries, 

a group called mynginx that includes only the IP address of a single server, 

and a group called webservers that identifies multiple servers:

Listing 8-1.  An Ansible inventory file

# This is my default ansible 'hosts' file.

nginx.devops.lab

rpi4.devops.lab

server22 ansible_host=10.128.1.99

[mynginx]

10.128.1.62

[webservers]

nginx.devops.lab

Chapter 8  Containerizing and Automating Your Deployments



229

rpi4.devops.lab

10.128.1.62

With this Ansible host file, you can use either of the first three entries 

as the hosts value in your playbook to target those specific nodes one at a 

time, or you can use the myngnix group to target the host at 10.128.1.62 or 

use the webservers group to target those three servers at the same time. 

You can add many servers to a group, which should give you an idea of 

why DevOps engineers like to use automation to configure a whole lot 

of servers at once. The only hitch is that your workstation is doing all the 

work, so there’s a limit to how many nodes it can manage.

Instead of setting inventories system-wide, you can alternatively create 

inventory files in your project directories. For example, in the following 

example, you could create an ~/ansible/inventory file with the preceding 

contents instead of editing or creating /etc/ansible/hosts. This is 

invoked with the -i <inventory-file-name> flag when running your 

playbook, as shown later.

�Ansible Playbook Example
Ansible playbooks are written in YAML, a text-only language that can be 

composed in just about any plain-text editor, such as Visual Studio Code 
(VS Code) or vi or Notepad. To keep things orderly, it’s best to create a 

directory on your workstation and initiate it with Git so you can push 

your code to GitHub or GitLab. This is a common DevOps practice in 

environments where version control is critical for creating and sharing 

code and is explained in more detail in Chapter 10. You can install Git with 

the following command:

$ sudo apt install git

Chapter 8  Containerizing and Automating Your Deployments

https://doi.org/10.1007/978-1-4842-8318-9_10


230

Setting up Git on your workstation is a common DevOps practice in 

environments where code version control is critical:

$ mkdir -p ~/ansible/files

$ mkdir -p ~/ansible/html

$ cd ~/ansible

$ git init .

Open VS Code or your favorite text editor for the next steps and create 

a file called my-nginx-website.yml inside the ~/ansible/ directory. 

This will be your Ansible playbook. Add the following content, shown in 

Listing 8-2.

Note T he spacing in this YAML document is important. YAML doesn’t 
recognize tabs, so you need to enter spaces (or ensure your code editor 
uses spaces). Each sub-element begins with two spaces, and content 
like the tasks and vars entries all have the same indentation.

Listing 8-2.  Contents of an Ansible playbook for configuring NGINX 

on a node

---

- hosts: webservers 

  remote_user: root

  become: true

  vars: 

    document_root: /var/www/html

    app_root: html

  tasks: 

    - name: Update apt cache and install Nginx

      apt:

Chapter 8  Containerizing and Automating Your Deployments



231

        name: nginx

        state: latest

        update_cache: true

    - name: Copy website files to the server's document root

      copy:

        src: "{{ app_root }}" 

        dest: "{{ document_root }}"

        mode: preserve

    - name: Apply Nginx template 

      template:

        src: files/nginx.devops.conf

        dest: /etc/nginx/sites-available/default

      notify: Restart Nginx

    - name: Enable new site 

      file:

        src: /etc/nginx/sites-available/default

        dest: /etc/nginx/sites-enabled/default

        state: link

      notify: Restart Nginx

    - name: Allow all access to tcp port 80 

      ufw:

        rule: allow

        port: '80'

        proto: tcp

  handlers: 

    - name: Restart Nginx

      service:

        name: nginx

        state: restarted

Chapter 8  Containerizing and Automating Your Deployments



232

If you take a close look at the YAML playbook file, a lot of it should 

appear familiar. These few lines are very powerful, however, and provide 

quite a bit of capability. Let’s look at the various elements.

All Ansible playbooks begin with the hosts: element , which 

references an individual host or, as in this example, an inventory group 

called webservers in my /etc/ansible/hosts or a project-specific 

inventory file. When this file is applied, it will target the servers listed in 

that inventory group, shown as nginx.devops.lab, rpi4.devops.lab, and 

10.128.1.62 in the preceding example. This section also tells Ansible to 

connect to those remote systems as the root user and to run with elevated 

privileges. If you have other privileged users on a system (which is better 

than logging in as root!), you could use that instead.

The vars: section  defines some variables to use later in the 

playbook file. This is a handy way to add configurations in one place and 

use them elsewhere. It makes editing and debugging easier. The document_

root (/var/www/html) sets where web content will be served from, and 

the app_root value tells Ansible to look for a folder on your workstation 

relative to the playbook file called html from which to copy content. In this 

example, I have an index.html file in the ~/ansible/html folder on my 

workstation. I also have a file called nginx.devops.conf in the ~/ansible/

files folder with the content shown in Listing 8-3, which is very nearly the 

same as the example in Chapter 7.

Listing 8-3.  A static website configuration file that will be copied 

into the target node

server {

  listen 80;

  server_name nginx.devops.lab;

  root /var/www/html;

  index index.html;

  location / {

Chapter 8  Containerizing and Automating Your Deployments

https://doi.org/10.1007/978-1-4842-8318-9_7


233

    try_files $uri $uri/ =404;

  }

}

The Ansible playbook tasks: section  defines the actual steps to 

be performed on your web hosts, including installing nginx, copying my 

nginx.devops.conf file and HTML content  and , making a symbolic 

link from the sites-available configuration file to sites-enabled , 

ensuring port 80 is open in the firewall , and restarting the nginx server 

. The handlers: section  is referenced by tasks above it to tell the 

server to restart nginx if any of those settings change.

�Apply the NGINX Playbook
With the my-nginx-website.yml complete, you’re now ready to automate 

the configuration of your nodes. Since all the instructions—including the 

target hosts—are configured in the file, it’s a simple matter of executing the 

following command from inside your ~/ansible directory:

$ ansible-playbook my-nginx-website.yml

If you’re using an inventory file in your project directory (~/ansible/

inventory), you can invoke it with the -i flag, as in the following example:

$ ansible-playbook -i inventory my-nginx-website.yml

In the terminal, you’ll see Ansible running through the various steps 

and applying your configurations. When it’s done, you can point your 

browser at the target server(s) IP or hostname addresses to see the results! 

With this little bit of code, you can configure any Linux-based system in 

exactly the same way without ever having to manually log in.

Chapter 8  Containerizing and Automating Your Deployments



234

�Automate NGINX with Chef
As you saw, Ansible can make configuring a node fast and consistent. 

However, it doesn’t have any built-in way to test your code before it is 

deployed or after it’s been deployed. With Chef, you can automate node 

configurations, test them in local environments using tools like Docker and 

Vagrant (with VirtualBox), and run real-time scans to verify everything.

To get started, download Chef Workstation, a free bundle of tools that 

provides everything you need to start creating Chef cookbooks (code for 

configuring nodes) and profiles (code for scanning nodes). It also has 

a number of other tools and capabilities that allow you to scale to true 

enterprise-level deployments.

Download Chef Workstation at

www.chef.io/downloads/tools/workstation

After installing the package on your Linux system (Ubuntu in this 

example), edit your ~/.bashrc file to initialize the shell environment to 

use the embedded Chef resources, such as Ruby. This ensures you don’t 

need to install anything else to make it work. Place the following “eval” 

statement at the end of the file:

$ vi ~/.bashrc

...

eval "$(chef shell-init bash)"

...

Of course, you can run chef shell-init bash each time you open a 

shell terminal on your workstation, but this statement ensures it’s set up 

every time you open a new terminal.

Note  Don’t worry if you don’t know how to code using Ruby. The 
Chef language is intuitive and easy to get the hang of, even if you’ve 
never worked with the Ruby language.

Chapter 8  Containerizing and Automating Your Deployments

http://www.chef.io/downloads/tools/workstation


235

�Create a Chef Cookbook and Recipes
As mentioned earlier, Chef Workstation comes with the tools you need to 

work with the Chef language, which is based on Ruby. Don’t worry if you 

don’t know the Ruby language. Chef’s Domain-Specific Language (DSL) is 

easy to read and understand. If you’re using VS Code as your code editor, 

you can add the official Chef extension to your environment with a few 

clicks. The plugin offers code completion and error-checking built right in.

To create an NGINX cookbook, make a new folder on your workstation 

to hold your code. Chef has generators that do most of the work for 

you, including generating a Chef repository (a directory to hold all your 

automation content), cookbooks, recipes, profiles, templates, and more.

Start by generating a repo:

$ cd ~

$ chef generate repo chef-repo

This command will create the ~/chef-repo folder in your home 

directory and auto-create a number of subfolders and files. Move into 

the ~/chef-repo/cookbooks/ folder and use a similar chef generate 

command to create your NGINX cookbook, adding the -k dokken flag to 

have Chef automatically create a Test Kitchen kitchen.yml file that works 

with Docker. Test Kitchen allows you to fully test and verify your Chef code 

locally before trying it out on a separate target node:

$ cd ~/chef-repo/cookbooks

$ chef generate cookbook nginx -k dokken

Chapter 8  Containerizing and Automating Your Deployments



236

Again, Chef will create the ~/chef-repo/cookbooks/nginx folder along 

with several subfolders and files. Among these is a compliance folder, 

which holds Chef profiles. These are separate files that you use to test and 

verify everything set up by the cookbook is working as expected. The  

~/chef-repo/cookbooks/nginx/compliance/profiles folder is where you 

create one or more Chef profiles that can be used to scan your nodes.

Don’t be put off by all the files the chef cookbook generate command 

creates. You won’t use everything in this example. The important elements 

are the following in the ~/chef-repo/cookbooks/nginx/ directory:

├── compliance/
├── kitchen.yml
├── metadata.rb
├── recipes/
└── templates/

It’s always a good habit to edit the metadata.rb file before doing 

anything else, adding your name, email, and application version number, 

such as 0.1.0. As your needs and application change, you can increment 

the version number as you make updated versions of your cookbook. 

Before leaving this file, make sure the chef_version is set to at least '>= 

17.5' to take advantage of the features described in the next steps.

Creating a cookbook can be done with some manual Linux shell 

commands, but it’s best to use the built-in Chef generator. The same is true 

when creating profiles to work with Chef InSpec, one of the Workstation 

tools. To do that, use the inspec init profile <profile-name> 

command from within the compliance/profiles/ folder:

$ cd ~/chef-repo/cookbooks/nginx/compliance/profiles

$ inspec init profile nginx

Again, Chef creates an nginx folder with a controls subdirectory with 

an example.rb inside it and an inspec.yml file. Rename the example.rb 

file default.rb. You’ll edit it later.

Chapter 8  Containerizing and Automating Your Deployments



237

If you open the inspec.yml file, you’ll notice that the Chef generator 

completed much of it for you, including a version 0.1.0. It’s a good practice 

to increment the version as you make future iterations of your InSpec 

profile. Note that Chef considers your cookbook and your InSpec profile as 

two different things that can be versioned separately. For example, you can 

have version 0.1.0 in your metadata.rb file for your cookbook version and 

version 0.3.0 for your inspec.yml profile. They don’t need to be in sync.

�Create a Chef Recipe
In Chef, recipes are the files that contain your infrastructure configuration 

code. As in the YAML example with Ansible, Chef recipes include a wide 

variety of tasks using built-in resources to automate the things you want. 

Because recipes are Ruby files, you can add logic that allows you to set 

recipes to do different things based on your target nodes’ platforms, 

specific OS, and many other system values.

You may notice that the recipes folder contains a default.rb file 

already. You can add as many recipes as you want, but for this example, 

you’ll create just one in addition to the default.rb that will hold your 

web server configurations. Use the built-in Chef generator to create this 

second recipe:

$ cd ~/chef-repo/cookbooks/nginx

$ chef generate recipe webserver

After this command runs, a new file named webserver.rb will 

appear in your cookbook’s recipes folder. Chef adds the .rb extension 

automatically.

Open the ./recipes/default.rb file and add the following lines. These 

tell Chef to use both your webserver.rb file and the NGINX profile you’ll 

create in the next step. The paths use Chef notation:

# Cookbook:: nginx

Chapter 8  Containerizing and Automating Your Deployments



238

# Recipe:: default

#

include_recipe 'nginx::webserver'

include_profile 'nginx::nginx'

The include_recipe path points to ./recipes/webserver.rb; 

the include_profile path points to ./compliance/profiles/nginx/

controls/default.rb. This shorthand is used throughout Chef code to 

reference local files relative to the cookbook folder.

Save the default.rb recipe and edit the webserver.rb, adding the 

content shown in Listing 8-4. You’ll notice many similarities with the 

Ansible version, but this example will import some template files and pass 

them to the node. Templates provide a way to standardize your code while 

also inserting dynamic content from each node itself.

Listing 8-4.  The content for your webserver.rb recipe

# Cookbook:: nginx

# Recipe:: webserver

package 'nginx'  

package 'curl'

directory '/etc/nginx/ssl' do  

  owner 'root'

  group 'root'

  mode '0755'

  action :create

end

openssl_x509_certificate '/etc/nginx/ssl/mycert.pem' do

  common_name 'node[:fqdn]'

  org 'Chef'

Chapter 8  Containerizing and Automating Your Deployments



239

  org_unit 'Lab'

  country 'US'

  mode '0600'

end

template '/etc/nginx/nginx.conf' do  

  source 'nginx.conf.erb'

  owner 'root'

  group 'root'

  mode '0644'

  notifies :restart, 'service[nginx]', :delayed

  action :create

end

template '/etc/nginx/sites-available/default' do

  source 'server.erb'

  owner 'root'

  group 'root'

  mode '0644'

  notifies :restart, 'service[nginx]', :delayed

  action :create

end

template '/var/www/html/index.html' do

  source 'index.erb'

  owner 'root'

  group 'root'

  mode '0644'

  action :create

end

service 'nginx' do  

  action [:enable, :start]

Chapter 8  Containerizing and Automating Your Deployments



240

end

service 'nginx' do

  subscribes :reload, 'file[/etc/nginx/ssl/mycert.pem]', 

:immediately

end

Chef automates the installation of the latest versions of the nginx and 

curl packages with the package resource . You could also set specific 

versions of each (a good DevOps practice). This recipe creates a location 

for SSL certs and uses built-in resources to generate them .

The next group of resources uses the template resource to copy 

configuration and .html files to the target node . Templates are nice 

because you can embed elements that Chef reads from the target system, 

such as the FQDN of the host, shown in the previous example as 

node[:fqdn]. In that way, you can use the same template on all your target 

hosts without editing anything. Chef has a file resource to copy files as-is 

from your workstation to your node, and that’s a good option for static 

content.

The recipe ends with service resources that enable and start nginx 

and tell the target node to reload nginx if the SSL certificate changes. The 

subscribes element is similar to Ansible’s notify directive.

After you’ve created and saved your recipes, run Cookstyle, the built-in 

Chef code-checker (linter), on the directory. The -a flag autocorrects any 

errors it finds:

$ cookstyle -a

Cookstyle is a great way to verify your code as you go, and it’s 

particularly handy if your new to Chef. The VS Code plugin also shows you 

errors as you write, helping ensure your code is solid before moving on.

Chapter 8  Containerizing and Automating Your Deployments



241

�Create Templates
As mentioned previously, Chef template files can be used to define content 

with some variables populated from the target system itself. Your template 

files become static files on each target node, but will contain content 

defined when the cookbook is applied.

This NGINX example has three templates: nginx.conf.erb, server.

erb, and index.erb. The .erb extension indicates a template, but these 

also use Ruby as the base language. As with earlier examples, you can use a 

Chef generator to create the template files:

$ cd ~/chef-repo/cookbooks/nginx

$ chef generate template nginx.conf

The preceding command will create nginx.conf.erb in a new ./

templates directory inside your nginx cookbook folder. Add the content 

from Listing 8-5 (which is the same as the content you used to configure 

NGINX with Ansible) to the new .erb file.

Listing 8-5.  The nginx.conf template file, a generic NGINX 

configuration

user root;

worker_processes auto;

pid /run/nginx.pid;

events {

        worker_connections 768;

}

http {

        sendfile on;

        tcp_nopush on;

        tcp_nodelay on;

Chapter 8  Containerizing and Automating Your Deployments



242

        keepalive_timeout 65;

        types_hash_max_size 2048;

        include /etc/nginx/mime.types;

        default_type application/octet-stream;

        ssl_protocols TLSv1.2 TLSv1.3;

        access_log /var/log/nginx/access.log;

        error_log /var/log/nginx/error.log;

        include /etc/nginx/sites-enabled/*;

}

Next, create the server configuration file:

$ chef generate template server

This template contains server configuration content, as shown in Listing 

8-6, including the dynamically supplied server name, which Chef will 

populate from information it collects from the target node itself. This is shown 

in the <%= ... %> content. In the configuration file on the target node, this 

variable will be written based on that system’s unique domain name.

Listing 8-6.  The virtual host NGINX server configuration template 

server.erb with dynamic content

server {

  listen 443 ssl;

  server_name <%= node[:fqdn] %>;

  ssl_certificate /etc/nginx/ssl/mycert.pem;

  ssl_certificate_key /etc/nginx/ssl/mycert.key;

  ssl_protocols TLSv1.2 TLSv1.3;

  ssl on;

  root /var/www/html;

}

Chapter 8  Containerizing and Automating Your Deployments



243

The final template is the HTML page for your NGINX server. It contains 

several dynamic elements that will be written to the static index.html file 

on your server:

$ chef generate template index

Add the following content to it, as shown in Listing 8-7. Notice the 

elements in the <%= ... %> tags. This information will be grabbed by Chef 

during configuration and written to the static index.html file.

Listing 8-7.  The index.erb file with dynamic content

<html>

<head>

    <title>Nginx Site Created by Chef</title>

</head>

<body>

    <h3>This is Nginx by Chef</h3>

    <p><b>Hostname:</b> <%= node[:hostname] %></p>

    <p><b>FQDN:</b> <%= node[:fqdn] %></p>

    <p><b>IP Address:</b> <%= node[:ipaddress] %></p>

    <p><b>Platform:</b> <%= node[:platform] %></p>

</body>

</html>

With these templates configured, take another look at the webserver.

rb recipe you created previously. You can see that the template resources 

define the path on the node where the resulting file should be placed, 

using templates it finds in the ./cookbooks/nginx/templates directory, 

such as the snippet in Listing 8-8.

Chapter 8  Containerizing and Automating Your Deployments



244

Listing 8-8.  A Chef template resource showing the node path and 

local source path

...

template '/etc/nginx/nginx.conf' do 

  source 'nginx.conf.erb' 

  owner 'root'

  group 'root'

  mode '0644'

  notifies :restart, 'service[nginx]', :delayed

  action :create

end

...

In the preceding example,  is the file that will be created on the node, 

/etc/nginx/nginx.conf. The source directive points to ./cookbooks/

nginx/templates/nginx.conf.erb .

In the next step, you’ll create a compliance profile you can use to verify 

all the configurations defined in your Chef recipes are correct.

�Create a Chef InSpec Profile
Chef profiles contain controls that allow you to separate various actions 

into logical groups. In the following example, you’ll create two controls. 

One will contain configuration tests; the other will contain security tests. 

Sophisticated profiles can contain hundreds of controls.

Note  In a production environment, you would use Chef Infra 
Server to store your cookbooks, profiles, and other content and Chef 
Automate to graphically interact with data about all your nodes. You 
won’t be using those in this example, but the approach outlined here 
sets you up to use them.

Chapter 8  Containerizing and Automating Your Deployments



245

Profiles have many things in common with recipes, but instead of 

applying configurations, profiles describe resources that define the system 

states you want. The following profile, located in ./compliance/profiles/

nginx/controls/default.rb, includes only a few of the tests that could be 

run to verify NGINX is installed and configured as you want.

Edit the preceding default.rb file (renamed from the original 

example.rb created by the inspec init command earlier) and add the 

content shown in Listing 8-9.

Listing 8-9.  Contents of the default.rb profile file with tests to verify 

your NGINX node

control 'nginx-config' do  

  impact 0.7

  title 'Nginx configuration'

  desc 'Nginx configuration'

  describe port(80) do

    it { should_not be_listening }

  end

  describe port(443) do

    it { should be_listening }

  end

  describe package('nginx') do

    it { should be_installed }

  end

  �describe http('https://localhost:443/', ssl_verify: 

false) do  

    its('status') { should cmp 200 }

    its('body') { should match /Nginx Site Created by Chef/ }

  end

end

Chapter 8  Containerizing and Automating Your Deployments



246

control 'nginx-security' do 

  impact 1.0

  title 'Nginx TLS security'

  desc 'Do not support TLSv1.1'

  describe ssl(port: 443).protocols('tls1.1') do

    it { should_not be_enabled }

  end

  describe ssl(port: 443).protocols('tls1.2') do

    it { should be_enabled }

  end

end

The first control, nginx-config , contains information about the 

profile (severity level rated on a scale of 0.0 (minor) to 1.0 (critical)), a 

title, and a description. The four describe resources in this control check 

to ensure port 80 is not listening, port 443 is, NGINX is installed, and 

the website itself returns a correct portion of the content . The second 

control, nginx-security, uses two describe resources to check that the 

server is not using TLS 1.1, but is using TLS 1.2 .

You might think, “Gee, can I use this profile for the node I configured 

with Ansible?” The answer is yes! Even though the Ansible node didn’t use 

Chef for its initial configuration, Chef InSpec profiles like this one can be 

used on any target node, regardless of how they were originally configured.

�Apply and Test Your Chef Configuration
In the following steps, you’ll run what Chef calls ad hoc commands, one-

offs that are useful for configuring one or two nodes at a time. It has more 

production-friendly alternatives, but the next steps are valid for your small 

lab environment.

Chapter 8  Containerizing and Automating Your Deployments



247

Before running these commands, run cookstyle -a again in the root 

of your nginx cookbook directory:

$ cd ~/chef-repo/cookbooks/nginx

$ cookstyle -a

The following example targets an Ubuntu node running in an LXC in 

Proxmox called ubuntu05. I’ve pre-shared an SSH key, so I can add  

the -i flag to point to my key file and the --user flag for clarity. The chef-run 

command defaults to using the root user, and if an SSH key has been set up 

and added already, Chef knows about the credentials and uses them.

On your workstation, run the following from inside your nginx 

directory:

$ chef-run ubuntu05.devops.lab recipes/default.rb -i ~/.ssh/

id_rsa --user root

In the shell, you’ll see Chef doing its thing, starting by installing 

the chef-client agent and then installing and configuring your node. 

The chef-client is small and lightweight, but very powerful. It does 

all the work on the node, not your workstation, and can be set to run at 

regular intervals without any interaction from you. This is a great DevOps 

principle that ensures your node is configured and stays that way over time 

without any human interaction.

When the chef-run completes, run it again. You’ll see how much faster 

subsequent runs are. That’s because Chef recognizes that everything is 

configured already and it doesn’t need to take any actions or make any 

changes, a concept called idempotency.

When running chef-run in this example, you’re actually doing 

configuration and verification in one step. The verification shows up in 

your terminal in green-colored (passed) or red-colored (failed) tests. 

To verify your configuration without running chef-run (which reports 

Chapter 8  Containerizing and Automating Your Deployments



248

the state of the node because you’ve included the profile as part of your 

default.rb cookbook with the include_profile resource), you can run 

Chef InSpec by itself. It doesn’t require the chef-client to work, so try it 

with both your Chef and Ansible nodes:

$ cd ~/chef-repo/cookbooks/nginx

$ inspec exec compliance/profiles/nginx -t ssh://root@ubuntu05

$ inspec exec compliance/profiles/nginx -t ssh://root@rpi4

In each case, you should see the all green results and confirmation of 

success!

Profile: Nginx profile (nginx)

Version: 0.1.0

Target:  ssh://root@ubuntu05:22

 ✓  nginx-config: Nginx configuration

     ✓  Port 80 is expected not to be listening

     ✓  Port 443 is expected to be listening

     ✓  System Package nginx is expected to be installed

     ✓  �HTTP GET on https://localhost:443/ status is expected 

to cmp == 200

     ✓  �HTTP GET on https://localhost:443/ body is expected to 

match /Nginx Site Created by Chef/

  ✓  nginx-security: Nginx TLS security

     ✓  �SSL/TLS on ubuntu05:443 with protocol == "tls1.1" is 

expected not to be enabled

     ✓  �SSL/TLS on ubuntu05:443 with protocol == "tls1.2" is 

expected to be enabled

Profile Summary: 2 successful controls, 0 control failures, 0 

controls skipped

Test Summary: 7 successful, 0 failures, 0 skipped

Chapter 8  Containerizing and Automating Your Deployments



249

�Test with Test Kitchen
When you first created your cookbook with the -k dokken flag, Chef 

created a kitchen.yml file in the root of your ~/chef-repo/cookbooks/

nginx directory that’s set up to use Docker to test your configuration 

locally. Let’s see how that works.

Test Kitchen is installed when you installed Chef Workstation, and 

it has plugins that enable you to do local testing with Docker, Vagrant, 

and even cloud accounts in AWS and Azure, among others. The Dokken 

(Docker) version requires that you have Docker on your workstation. 

The Vagrant version requires the Vagrant application and something like 

VirtualBox to create local virtual machines where you can test instances. 

For this example, you’ll use Docker.

If you haven’t previously installed Docker on your Linux workstation, 

execute the following commands:

$ sudo apt install docker.io docker-compose

When the installation is complete, add your user to the docker group 

on your system:

$ sudo usermod -aG docker $USER

Log out and log back in to enable that group setting and run a quick 

test to ensure your user has permission to run Docker:

$ docker ps

Test Kitchen with Dokken spins up containers that are more like 

real VMs so you can do full-blown testing. You can deploy your code to 

multiple flavors of Linux, too, and Test Kitchen will create everything, 

apply your code, and test it in one step. From a DevOps standpoint, 

this makes fast code iteration possible, and the resulting code can be 

confidently applied to live test and production servers.

Chapter 8  Containerizing and Automating Your Deployments



250

Take a look at the kitchen.yml file in the root of your ~/chef-

repo/cookbooks/nginx directory. Modify it to look like the example in 

Listing 8-10.

Listing 8-10.  An example kitchen.yml file

---

driver:

  name: dokken

  privileged: true              # allows systemd services

  chef_version: latest

provisioner:

  name: dokken

transport:

  name: dokken

verifier:

  name: inspec

platforms:

  - name: ubuntu-20.04

    driver:

      image: dokken/ubuntu-20.04

      pid_one_command: /bin/systemd

      intermediate_instructions:

        - RUN /usr/bin/apt-get update

  # - name: centos-8

  #   driver:

  #     image: dokken/centos-8

  #     pid_one_command: /usr/lib/systemd/systemd

suites:

Chapter 8  Containerizing and Automating Your Deployments



251

  - name: default

    run_list:

      - recipe[nginx::default]

    verifier:

      inspec_tests:

        - compliance/profiles/nginx

    attributes:

      audit:

        reporter: 'cli'

The preceding example includes a couple edits to the default kitchen.

yml file that was first auto-generated, namely, telling Test Kitchen to build 

and run the containers as privileged, to use the latest version of the chef-

client, and to use the profile you created earlier. This version also shows the 

CentOS entry commented out because the webserver.rb recipe doesn’t 

contain logic to handle the differences between Ubuntu and Red Hat Linux.

The driver, provisioner, and transport elements are all set to dokken, 

which will handle how Test Kitchen creates the containers and sets up 

networking. The verifier is set to inspec. Notice in the suites section 

that Test Kitchen has a run_list (cookbooks assigned to a node) set 

to recipe[nginx::default], which will apply your default.rb and 

webserver.rb recipes. It also has an inspec_tests value set to the relative 

path of your compliance/profiles/nginx profile.

To make this work, you’ll need Docker running on your workstation. If 

that’s set, run the following from the root of your ./nginx directory:

$ cookstyle -a

$ kitchen test

The first command checks your code with Cookstyle; the second 

command creates an Ubuntu 20.04 image, applies your two cookbook 

recipes, runs the InSpec profile scan, and, if everything works correctly, 

shuts down and destroys everything. During that process, you’ll see the 

actions Chef is taking as Test Kitchen does its thing.

Chapter 8  Containerizing and Automating Your Deployments



252

Instead of doing all these steps at once, you can create, converge 

(apply your Chef code), verify, and destroy the test environments in 

separate steps:

$ kitchen create

$ kitchen converge

$ kitchen verify

$ kitchen destroy

Doing these one at a time allows you to rerun the converge and 

verify commands to update and revalidate your code. This is a key 

principle of Test-Driven Development, a common practice with modern 

DevOps teams.

Try your hand at modifying your Chef recipes and InSpec profiles to 

see how you might expand on what you’ve done here. You can draw on 

hundreds of Chef resources to configure and verify thousands of system 

settings—all without ever having to manually log in to your target systems.

�Conclusion
In this chapter, you’ve learned how to deploy NGINX using both 

Ansible and Chef. These principles can be used across your DevOps lab 

environment and give you a sense of how some basic Linux knowledge is a 

great help when you look to adopt a wide variety of DevOps practices.

Take some time to play around with different playbooks and 

cookbooks and different ways to automate some of the work you’ve done. 

Check the Ansible and Chef websites for detailed documentation on how 

to expand on what you’ve learned.

In the next chapter, you’ll take a look at ways to manage and maintain 

your servers, taking advantage of Webmin and the automation principles 

you’ve learned.

Chapter 8  Containerizing and Automating Your Deployments



253

CHAPTER 9

Server Management 
and Maintenance
In the chapters so far, you’ve learned how to deploy a wide range of servers 

and tools to make your DevOps lab a truly useful environment for testing 

just about any modern software technology. Managing those systems 

over time is a critical aspect of any environment—lab or enterprise—and 

this chapter explains some best practices for maintaining and securing 

your lab, just as you would as part of a DevSecOps team.

In this chapter, you’ll work with a variety of tools to graphically manage 

multiple systems and learn how to back up your servers and databases and 

use automation tools like Ansible and Chef, along with GitHub (or GitLab) 

to further define your infrastructure as code.

The key to system management and maintenance is visibility. Being 

able to know exactly what’s installed, what’s running, how much storage 

is free, and the like should be possible without you having to log in to each 

node to do it.

© John S. Tonello 2022 
J. S. Tonello, Practical Linux DevOps, https://doi.org/10.1007/978-1-4842-8318-9_9

https://doi.org/10.1007/978-1-4842-8318-9_9#DOI


254

�A Closer Look at Webmin
In Chapter 7, you deployed the NGINX template that included Webmin, 

the PHP-based dashboard for managing systems. As you saw, you can 

easily manage a single system with the Webmin dashboard, but you 

can also use a single interface to manage multiple servers that also have 

Webmin installed.

To be clear, Webmin is pretty lightweight in terms of resources, but 

it’s not necessarily something you want to install everywhere. Someone 

with access to the dashboard can do a lot of damage. That said, when 

you’re starting out, Webmin can provide a very useful way to analyze and 

configure Linux systems.

For this example, you’ll use a Chef cookbook to install Webmin on an 

Ubuntu target node. Webmin isn’t available as an apt package, so you’ll 

need to tell Chef to download the .deb file, install some dependencies, 

and, for security, add a line to the configuration file to limit traffic to the 

server to your DevOps lab subnet. You can do a lot more, but this is a good 

place to start and give you a taste of the steps involved.

To create a new cookbook, again use the built-in Chef generator from 

the root of your workstation’s cookbooks directory:

$ cd ~/chef-repo/cookbooks/

$ chef generate cookbook webmin -C "John Adams" -m "jadams@

devops.lab" -I apache2 -k dokken

This will create the directory called webmin and all the base subfolders, 

including recipes. I’ve added the -C, -m, and -I flags to automatically set 

my author name, email, and license in the metadata.rb file and the -k flag 

to create a kitchen.yml file ready to use with Test Kitchen. With that done, 

edit the ~/chef-repo/cookbooks/webmin/recipes/default.rb file and 

add the content shown in Listing 9-1.

Chapter 9  Server Management and Maintenance

https://doi.org/10.1007/978-1-4842-8318-9_7


255

Listing 9-1.  A Chef cookbook to install and configure Webmin on an 

Ubuntu node

# Cookbook:: webmin

# Recipe:: default

#

# Copyright:: 2022, John Adams

#

if platform?('ubuntu') 

  �%w(perl libnet-ssleay-perl openssl libauthen-pam-perl libpam-

runtime libio-pty-perl apt-show-versions python unzip).each 

do |pkg| 

    package pkg do

      action :install

    end

  end

  remote_file '/root/webmin_1.994.deb' do 

    �source 'http://prdownloads.sourceforge.net/webadmin/

webmin_1.994_all.deb'

    owner 'root'

    group 'root'

    mode '0755'

    action :create_if_missing

  end

  dpkg_package 'webin' do 

    source '/root/webmin_1.994.deb'

    action :install

  end

  bash 'append-trusted-ips' do 

    user 'root'

Chapter 9  Server Management and Maintenance



256

    code <<-EOF

      �echo "allow=10.128.1.0/24 LOCAL" >> /etc/webmin/

miniserv.conf

    EOF

    notifies :restart, 'service[webmin]', :immediately

    �not_if 'grep -q "allow=10.128.1.0/24 LOCAL" /etc/webmin/

miniserv.conf'

  end

  service 'webmin' do 

    supports status: true

    action [:enable, :restart]

  end

end

This cookbook example starts with a platform check  that will 

only apply the configurations that follow to nodes that have the Ubuntu 

OS. Chef includes dozens of platform types, so you can include different 

logic steps for different platforms. Check out https://docs.chef.io/

infra_language/checking_platforms/ to see them all.

Webmin requires a series of prerequisites to be installed for Webmin to 

work . This section defines the necessary Ubuntu/Debian packages (the 

%w tells it to chunk each separate word into an array called pkg), and the 

package resource installs the latest versions of each. To install the Webmin 

package, the cookbook uses the remote_file resource  to download 

it and place it in the local /root/ directory. The next step uses the dpkg_

package resource to install it .

Note I t’s a good DevOps practice to include specific versions of the 
packages you want to install, but I’ve left those out to simplify the 
examples.

Chapter 9  Server Management and Maintenance

https://docs.chef.io/infra_language/checking_platforms/
https://docs.chef.io/infra_language/checking_platforms/


257

In order to better secure the Webmin server, setting up the allowed 

subnets prevents access from outside your DevOps lab network. This 

is a good security step even though your lab network isn’t accessible to 

the outside world. In step , use the bash resource to append a line to 

the Webmin configuration file, /etc/webmin/miniserv.conf, if the line 

doesn’t exist already. This configuration allows both 10.128.1.0/24 and 

the LOCAL IP, 127.0.0.1.

The last step is to enable and start the Webmin service . This section 

is also referenced in the append-trusted-ips section that notifies 

:restart, 'service[webmin]', :immediately so the server will 

restart the Webmin service if this configuration line is changed on the 

targeted server.

�Deploy Webmin with Chef
With your cookbook and profile complete, it’s time to apply this 

configuration to a node. The following example targets a node named 

ubuntu04.devops.lab. You’ll again be using the ad hoc chef-run command, 

which will install the Chef client on the target node before applying the 

configuration. This command assumes you have root SSH login to the 

ubuntu04 node:

$ chef-run ssh://root@ubuntu04.devops.lab root -i ~/.ssh/id_rsa

�Verify Your Webmin Installation
The quickest way to see if Webmin is running on this second server is 

to log in using port 10000, as in https://ubuntu04.devops.lab:10000. 

However, you can also use Chef to verify the settings, by creating an InSpec 

profile that does that for you.

Chapter 9  Server Management and Maintenance

https://ubuntu04.devops.lab:10000


258

As you saw previously, Chef InSpec is a command-line tool you can use 

to remotely verify Linux, Windows, or macOS systems without having to 

install an agent on them. Later, you’ll use it to scan systems using a Linux 

baseline profile that tests the hardening and security of your systems.

For this step, create an InSpec profile to test your Webmin 

configuration using the Chef Workstation built-in generator. Using 

the same system paths you used in Chapter 8, this would look like the 

following:

$ cd ~/chef-repo/cookbooks/webmin/compliance/profiles

$ inspec init profile webmin

Your webmin profile will contain a single control with four describe 

resources to verify your configuration. Rename the main default profile file 

from example.rb to default.rb and add the content shown in Listing 9-2.

Listing 9-2.  A Chef InSpec profile to verify the Webmin 

configuration on Ubuntu

control 'webmin' do 

  impact 0.7

  title 'Webmin installed'

  desc 'Ensure Webmin is installed'

  describe package('webmin') do 

    it { should be_installed }

    its('version') { should cmp '1.994' }

  end

  describe port(10000) do 

    it { should be_listening }

  end

  describe file('/etc/webmin/miniserv.conf') do 

    it { should exist }

Chapter 9  Server Management and Maintenance

https://doi.org/10.1007/978-1-4842-8318-9_8


259

    �its('content') { should match(%r{allow=10.128.1.0/24 

LOCAL}) }

  end

  describe service('webmin') do 

    it { should be_enabled }

    it { should be_running }

  end

end

This profile does everything you need in a single control. The 

included resources ensure Webmin is installed (with a specific version) , 

port 10000 is open , the main configuration file has the allowed subnets 

line , and that the Webmin service is enabled and running .

You can run this with the following command from your workstation:

$ cd ~/chef-repo/cookbooks/webmin

$ inspec exec compliance/profiles/webmin -t ssh://ubuntu04 -i 

~/.ssh/id_rsa

If everything is successful, you’ll see something like the following:

  webmin: Webmin installed

       System Package webmin is expected to be installed

       �System Package webmin version is expected to cmp 

== "1.994"

       Port 10000 is expected to be listening

       File /etc/webmin/miniserv.conf is expected to exist

       �File /etc/webmin/miniserv.conf content is expected to 

match /allow=10.128.1.0\/24 LOCAL/

       Service webmin is expected to be enabled

       Service webmin is expected to be running

You could apply this cookbook to your nginx.devops.lab server (and 

others) in a similar way and use them in your cluster in the next step.

Chapter 9  Server Management and Maintenance



260

�Set Up Webmin for 
Multiple-Server Management
Adding other Webmin-enabled servers to your “main” Webmin interface 

using Webmin ➤ Webmin Servers Index in the main dashboard menu 

is a shortcut for reaching and interacting with your servers from a single 

dashboard. That’s not as useful as actually managing a full cluster of 

servers from the same dashboard, so you need to add the cluster-webmin 

module to get everything to work that way.

To reiterate, the idea here is to use one Webmin installation as your 

dashboard that controls multiple systems with Webmin separately running 

on them. That way, you can apply configurations from one dashboard 

and have them take effect across your cluster. This can be quite handy for 

creating users and groups, executing shell commands, installing packages, 

and generally synchronizing base configurations across your lab. This is 

best for ad hoc commands in a small cluster, like your DevOps lab.

For this example, you can use your nginx.devops.lab machine 

created in Chapter 8 as your main interface. Avoid using the Turnkey 

template version because it sets up Webmin to use a different base port 

(not 10000).

�Add Other Webmin Servers
The first step to setting up your cluster is to first add your other Webmin-

enabled servers. In the Webmin dashboard, navigate to Webmin ➤ 

Webmin Servers Index. Clicking the Broadcast for servers button, as 

shown in Figure 9-1, will automatically search your DevOps lab network 

for systems running Webmin.

Chapter 9  Server Management and Maintenance

https://doi.org/10.1007/978-1-4842-8318-9_8


261

Figure 9-1.  The Webmin Servers Index view. Click Broadcast for 
servers to automatically find and add other Webmin servers in your 
DevOps lab

After a few moments, you’ll see results that look something like 

the output example in Listing 9-3. Notice that this example found two 

Webmin-enabled servers in addition to the one used to broadcast from 

(nginx.devops.lab in this example).

Listing 9-3.  The results of using Broadcast for servers in Webmin

Broadcasting for servers on addresses 10.255.255.255 , 

255.255.255.255 , 00 , 10.128.1.255 ..

Found this server at https://nginx.devops.lab:10000/

Found new server at https://ubuntu04.devops.lab:10000/

Found new server at https://mail.devops.lab:10000/

You’ll see an icon appear in the dashboard for each Webmin server 

found under the menu Webmin ➤ Webmin Servers Index (or by clicking 

the Return to servers button). If you click the icon, it’ll open a new 

browser tab and take you to the Webmin login for that server. Instead, 

hover over the server icon and select the settings icon in the top-right 

corner to edit the entry. This will show the server settings, as in Figure 9-2. 

You can leave everything as is, but set Login via Webmin with username 

to an elevated user on the remote system. This example uses root and the 

root password.

Chapter 9  Server Management and Maintenance



262

Figure 9-2.  Editing a server to set the Link type to Login via Webmin 
with username

If the Server type doesn’t match the OS (such as Ubuntu Linux), 

go ahead and select that from the menu before saving the settings 

and repeating the steps for any other Webmin servers you want to 

centrally manage.

�Add Cluster Capabilities
In order to take advantage of the other clustering capabilities in Webmin, 

you need to add a module called cluster-webmin. In your main Webmin 

dashboard, navigate to Webmin ➤ Webmin Configuration ➤ Webmin 
modules. You’ll install a module using a standard module from  

www.webmin.com. Type cluster in the search box and click the globe icon. 

You’ll see a list of filterable options, as shown in Figure 9-3.

Chapter 9  Server Management and Maintenance

http://www.webmin.com


263

Figure 9-3.  Add the cluster-webmin module from the Webmin 
modules dashboard

Click the cluster-webmin link so it appears in the box next to the Select 

button and then click Select. Back on the main Webmin modules screen, 

set Grant access to option to root and click Install Module.

If you get errors installing this module, check that you have the latest 
version of Webmin running. You can update the version in your Chef 
recipe (before deploying) or use the built-in Webmin upgrade tool, 
available on the main Webmin dashboard page.

It only takes a moment for the module to be downloaded and installed. 

When it’s complete, you’ll see a new Cluster entry in the main left-hand 

Webmin dashboard menu. Go there next, and choose Cluster ➤ Cluster 
Webmin Servers. This is where you add the machines you found during 

the Broadcast step and configure the cluster. If you don’t see the servers 

Chapter 9  Server Management and Maintenance



264

you expect, double-check that you selected the Login via Webmin with 
username option in the previous step. Those previously added systems 

will appear in the Add server menu, as shown in Figure 9-4.

Figure 9-4.  Click the Add server button to add the selected server to 
your cluster

Once added, you’ll see the icon for the server in the Cluster Webmin 
Servers dashboard window. You can now add other cluster capabilities, 

such as installing software packages, issuing shell commands, and creating 

users. For most of these functions, you have to manually add cluster nodes 

to these capabilities, a security feature that assumes the fewest capabilities 

by default, not wide-open access to systems.

�Test Some Cluster Actions
To try out your new cluster settings, use the Cluster ➤ Cluster Shell 
Commands tool. A simple command might be uname -a, which shows 

information about the running systems. Select one or more cluster nodes 

to see the results!

This is just one example of cluster commands you can issue from the 

Webmin dashboard. Some other built-in features are setting system user 

passwords cluster-wide, creating cron jobs, installing packages, and more. 

Chapter 9  Server Management and Maintenance



265

Perhaps the most useful is the shell commands tool, which enables you to 

run pretty much any Linux command on all your nodes at once. Try a few, 

like df -Th to view disk space statistics on all your nodes at once.

�A More DevOps Way to Analyze Systems
Webmin is a powerful tool for running ad hoc commands on a relatively 

small fleet of servers, but the approach is largely manual and does nothing 

to ensure your systems are in the state you want over time. There’s also 

nothing to prevent someone else from making changes to a system, 

leading to configuration drift. In your DevOps lab, this may not be a 

consideration, but when you scale up or work in an engineering team, this 

kind of capability is a must.

To accomplish that, it’s good to employ configuration management 

and compliance tools, define your systems with code, and verify them with 

coded policies. The NGINX example in Chapter 8 is a good example of this 

approach.

�Use Chef InSpec to Scan Systems
The beauty of creating policy as code—combining configuration and 

compliance in one step—is that you can create your own profiles or take 

advantage of the open-source community to apply more sophisticated 

examples.

A good way to start is to make use of these publicly available InSpec 

profiles, such as a Linux baseline. It includes more than 100 tests to harden 

a system. A public GitHub repository contains a wide variety of similar 

hardening profiles you can use on raw systems; those managed by Ansible, 

Chef, or Puppet; and Docker and Kubernetes hosts.

Chapter 9  Server Management and Maintenance

https://doi.org/10.1007/978-1-4842-8318-9_8


266

These DevSec Hardening Framework files are available at https://

github.com/dev-sec. Other publicly available profiles are available in the 

Chef Supermarket, a source for free cookbooks, recipes, and profiles at 

https://supermarket.chef.io/tools?q=profiles. Give these a try to get 

a feel for how InSpec works.

�Apply a Linux Benchmark Profile
You can write simple InSpec profiles to run against any system (Linux, 

Windows, or macOS) as you did earlier, but if you’re just starting out, it’s 

useful to take advantage of sophisticated code that’s freely available. This 

is the case with the following example, which uses the https://github.

com/dev-sec/linux-baseline profile. These and other GitHub-based 

profiles can be downloaded and run locally, or you can apply them directly 

from the cloud. This is a great way to get powerful scan results with very 

little work.

InSpec makes this happen by grabbing a .tar.gz file from GitHub, 

unpacking it, and applying it to your target. For the Linux baseline, run 

the following on your workstation (where you’ve previously installed Chef 

Workstation and its tools), and target any one of your Linux systems. For 

this to work, the folder from which you run the command must be a Git-

enabled directory:

$ cd ~/chef-repo

$ inspec exec https://github.com/dev-sec/linux-baseline -t 

ssh://root@ubuntu04.devops.lab [-i ~/.ssh/id_rsa]

The preceding example also includes the optional -i flag to point to an 

SSH key previously shared with the target system. The results of running 

this will vary depending on your system and how it’s currently configured 

(if at all). On a raw Ubuntu node, InSpec reports in the terminal that this 

profile has 57 controls containing 169 different tests. Of these, 27 controls 

pass and 30 fail.

Chapter 9  Server Management and Maintenance

https://github.com/dev-sec
https://github.com/dev-sec
https://supermarket.chef.io/tools?q=profiles
https://github.com/dev-sec/linux-baseline
https://github.com/dev-sec/linux-baseline


267

InSpec uses the concept of waivers to allow you to ignore certain 

controls (and all the InSpec resources included in them). Waivers are 

compiled in a YAML file and include the name of the controls you want 

to ignore, how long you want to ignore them, and reasoning for your 

waiver. This is a great way to use public resources, but fine-tune them to 

your needs.

�Create an InSpec Waiver File
In the following example, you’ll rerun the same Linux baseline profile, but 

you’ll add a flag to include a waiver file you create. This file will explicitly 

tell InSpec to ignore certain controls.

The file format is shown in Listing 9-4. Create as many blocks as you 

want, one for each control you want to waive.

Listing 9-4.  The format of an InSpec waiver

control_id:

  expiration_date: YYYY-MM-DD

  run: false

  justification: "reason for waiving this control"

If you visit the GitHub sites for the linux-baseline, you can view all the 

controls listed in the files located at https://github.com/dev-sec/linux-

baseline/tree/master/controls. The controls are neatly separated into 

os_spec.rb, package_spec.rb, and sysctl_spec.rb files. The waivers used in 

the following example reference controls found in those files.

Start by identifying some controls that are meaningful for a small test, 

such as the following:

•	 os-02

•	 package-02

Chapter 9  Server Management and Maintenance

https://github.com/dev-sec/linux-baseline/tree/master/controls
https://github.com/dev-sec/linux-baseline/tree/master/controls


268

•	 package-03

•	 sysctl-01

•	 sysctl-14

Before creating a waiver file, test the results of running just these 

controls on your target system. This is done by adding a --controls= flag 

followed by the names of the controls you want to run. All other controls 

not explicitly listed will be ignored:

$ inspec exec https://github.com/dev-sec/linux-baseline-t 

ssh://root@ubuntu04 --controls=os-02 os-03 package-02 

package-03 sysctl-01 sysctl-14

Notice that all of these InSpec tests pass except sysctl-14, which 

disables acceptance of all IPv4 redirected packets, as shown in Listing 9-5.

Listing 9-5.  The output of an InSpec scan of specific controls

Profile: DevSec Linux Security Baseline (linux-baseline)

Version: 2.8.2

Target:  ssh://root@ubuntu04:22

  ✓  os-03: Check owner and permissions for /etc/passwd

     ✓  File /etc/passwd is expected to exist

     ✓  File /etc/passwd is expected to be file

     ✓  File /etc/passwd is expected to be owned by "root"

     ✓  File /etc/passwd is expected not to be executable

...

  ✓  package-02: Do not install Telnet server

     ✓  System Package telnetd is expected not to be installed

  ✓  package-03: Do not install rsh server

     ✓  �System Package rsh-server is expected not to be 

installed

  ✓  sysctl-01: IPv4 Forwarding

Chapter 9  Server Management and Maintenance



269

     ✓  �Kernel Parameter net.ipv4.ip_forward value is 

expected to eq 0

     ✓  �Kernel Parameter net.ipv4.conf.all.forwarding value is 

expected to eq 0

  ×  �sysctl-14: Disable acceptance of all IPv4 redirected 

packets (2 failed)

     ×  �Kernel Parameter net.ipv4.conf.default.accept_redirects 

value is expected to eq 0

     expected: 0

          got: 1

     (compared using ==)

     ×  �Kernel Parameter net.ipv4.conf.all.accept_redirects 

value is expected to eq 0

     expected: 0

          got: 1

     (compared using ==)

Profile Summary: 4 successful controls, 1 control failure, 0 

controls skipped

Test Summary: 15 successful, 2 failures, 0 skipped

To use an InSpec waiver to ignore the failing sysctl-14 control, create a 

waiver.yml file with the contents shown in Listing 9-6, and save it in a new 

~/chef-repo/profiles/waivers/inspec-test directory:

$ mkdir -p ~/chef-repo/profiles/waivers/inspec-test/

Chapter 9  Server Management and Maintenance



270

Listing 9-6.  Contents of a simple InSpec waiver.yml file

sysctl-14:

  expiration_date: 2024-12-31

  run: false

  �justification: "Disabling redirection of IPv4 packets 

not needed"

Notice the control-id is the name of the actual control called 

sysctl-14. By using this waiver file, InSpec ignores that control (run: 

false) and expires this waiver at the end of 2024. It also includes a 

justification that others can read and understand why this particular 

waiver exists in the first place.

Note T he following example uses both the --controls  
and--waiver-file flags, but you wouldn’t normally do this. I’ve 
added the --controls flag to limit the terminal output.

$ inspec exec https://github.com/dev-sec/linux-baseline -t 

ssh://root@ubuntu04 --controls=os-03 package-02 package-03 

sysctl-01 sysctl-14 --waiver-file ~/chef-repo/profiles/waivers/

inspec-test/waiver.yml

When you run this, you’ll see the InSpec waiver did its work and didn’t 

run the sysctl-14 control. It also included the justification line from the 

waiver.yml file as part of the terminal output, as shown in Listing 9-7.

Listing 9-7.  Results of an InSpec scan with a waiver file

Profile: DevSec Linux Security Baseline (linux-baseline)

Version: 2.8.2

Target:  ssh://root@ubuntu04:22

Chapter 9  Server Management and Maintenance



271

  ✓  os-03: Check owner and permissions for /etc/passwd

     ✓  File /etc/passwd is expected to exist

     ✓  File /etc/passwd is expected to be file

...

  ✓  package-02: Do not install Telnet server

     ✓  System Package telnetd is expected not to be installed

  ✓  package-03: Do not install rsh server

     ✓  �System Package rsh-server is expected not to be 

installed

  ✓  sysctl-01: IPv4 Forwarding

     ✓  �Kernel Parameter net.ipv4.ip_forward value is 

expected to eq 0

     ✓  �Kernel Parameter net.ipv4.conf.all.forwarding value is 

expected to eq 0

  ↺  �sysctl-14: Disable acceptance of all IPv4 

redirected packets

     ↺  �Skipped control due to waiver condition: Disabling 

redirection of IPv4 packets not needed

By using waivers, you can take full advantage of sophisticated public 

InSpec profiles, but make them more meaningful for your use cases 

by ignoring tests you don’t want or need. To actually remediate these 

compliance failures, you can use Ansible, Chef, or other configuration 

management tools to automate those settings. This is a true DevOps 

workflow that eliminates manual configurations and avoids the key cause 

of most system failures and security breaches: human error.

Chapter 9  Server Management and Maintenance



272

�Other Ways to Apply InSpec Profiles
Before leaving this section, it’s useful to define other ways you can run 

profiles to scan your nodes for compliance. The first uses a public profile 

available in the Chef Supermarket; the other is one you create yourself.

�Apply an InSpec Profile via 
the Chef Supermarket
The Chef Supermarket, available at https://supermarket.chef.io, 

is a clearinghouse for a wide variety of Chef-specific content, namely, 

cookbooks, recipes, and profiles. You can reference them much like using 

the preceding Git example:

$ inspec supermarket exec dev-sec/linux-baseline -t ssh://root@

ubuntu04

In this example, InSpec uses supermarket as part of the command and 

references the dev-sec/linux-baseline profile. With this notation, InSpec 

knows where to find the supermarket.chef.io site and the profile you want. 

Some users deploy their own Chef Supermarkets repositories as a way to 

host, reference, and use their unique, verified code. This approach can add 

a level of trust to their DevOps workflows.

�Create and Apply Your Own InSpec Profile
InSpec is flexible and fairly intuitive, making it easy to create your own 

compliance profiles. You saw earlier how to use a Chef generator to create 

a profile to include in a cookbook, but you can create simple tests in a less 

complex way by creating a my-inspec-test.rb file and include any InSpec 

resources you want to test.

Chapter 9  Server Management and Maintenance

https://supermarket.chef.io


273

Note A  file like this doesn’t necessarily need the same control 
structure, though it’s a good idea to follow that pattern.

For this example, create a simple profile file to test if a certain user 

exists on a target system, such as jadams. Your my-inspec-test.rb would 

include the following:

describe user('jadams') do

  it { should exist }

end

To run this on your targets, execute the following command, which 

should take a few seconds and show you output similar to that shown in 

Listing 9-8:

$ inspec exec path/to/my-inspec-test.rb -t ssh://root@ubuntu04

Listing 9-8.  The terminal output after running your small 

InSpec scan

Profile: tests from my-inspec-test.rb (tests from my-

inspec-test.rb)

Version: (not specified)

Target:  ssh://root@ubuntu04:22

  User jadams

     ✓  is expected to exist

Test Summary: 1 successful, 0 failures, 0 skipped

Getting started with writing profiles and tests can be tricky, but a built-

in InSpec tool allows you to actually test InSpec resource commands from 

the shell without having to create a file at all. This is a great way to debug 

and test before committing everything to code.

Chapter 9  Server Management and Maintenance



274

To use the tool, use inspec shell to target the node you want to 

interact with:

$ inspec shell -t ssh://root@ubuntu04

This will drop you into a terminal session with an inspec> prompt on 

the remote node. From there, you can use InSpec resources to write your 

tests, one line at a time:

describe user('jadams') do [ENTER]

  it { should exist } [ENTER]

end [ENTER]

You can use any of the nearly 500 Chef InSpec resources in this way 

to verify your syntax and test various matchers, ways to reference specific 

values on your systems, such as package versions.

�Some Useful Backup Tools
When you create systems and start building apps, it’s easy to lose track of 

what you have or—horrors—lose your work. To minimize these risks, it’s 

good to back up your systems, data, and code.

Since you’re using a Proxmox environment, using the system snapshot 

feature is a good way to back up your systems in their existing state. If you 

mess something up, you can roll back to an earlier version and continue on 

your way.

�Set Up Proxmox Replication
Proxmox also has replication capabilities that can be set to automatically 

back up a VM or LXC from one Proxmox node to another. To use it, you 

need at least two Proxmox nodes in your lab cluster. With that set up, click 

the Proxmox server you want to replicate and, in the right-hand menu, 

choose Replicate. When you click Add, you can set the parameters in the 

configuration window, as shown in Figure 9-5.

Chapter 9  Server Management and Maintenance



275

Figure 9-5.  Set up replication in the Proxmox dashboard

Replication will copy your system to an entirely different host, so if a 

drive fails or the underlying system dies for some reason, you can recover 

your system from the replica.

�Back Up MariaDB Data
If you’re creating databases for your own applications or for something 

like WordPress, it’s a good idea to back up your data. For this, replication 

of a server works, but it’s good to have the raw SQL so you can recreate and 

repopulate databases as necessary. This is easily done with mysqldump.

This command is available for both MariaDB and MySQL and outputs 

the contents of your database to a file that you define. It has a lot of 

arguments you can add to set the options you want (learn more with man 

mysqldump). Here are some examples:

$ mysqldump -u [user] -p [password]--all-databases > 

mydatabases.sql

$ mysqldump -u [user] -p [password] --database db1 db2 > db01_

dump.sql

Chapter 9  Server Management and Maintenance



276

The outputted .sql files are just that. They are text representations 

of your databases, tables, content, and more. These files can be used 

to restore your database (or copy it to another fresh system running 

MariaDB) with a simple command:

$ msyql -u [user] -p [password] [database-name] < db01_dump.sql

These files also can be imported to a database server that has Adminer 

installed. Simply log in to Adminer and choose the Import option to 

recreate the database schema and all its content.

In addition to restoring databases, you can use these mysqldump output 

files in your automation scripts. That way, you could install MariaDB on 

a server and import the necessary database structure and content as part 

of that process using your dumped .sql file. By codifying everything—the 

server applications, users, content, and the like—you can recreate whole 

systems at will.

�Use Git to Store Your Code
Though you may not think of Git as a backup solution, when used with 

automation and compliance code, it provides a solid way to remotely save 

and track your code. If using Chef or Ansible, get in the habit of creating Git 

repositories—GitHub and GitLab are good options—to store your content. 

You can deploy your own GitLab server using a built-in Proxmox Turnkey 

Template, and it makes a good addition to your DevOps lab.

Chapter 9  Server Management and Maintenance



277

�Conclusion
In this chapter, you learned different ways to manage, maintain, and 

back up the systems in your DevOps lab. As the software engineering 

world continues to advance, you’ll find infrastructure as code to be a 

more resilient option for not only configuring nodes but verifying those 

configurations and replicating them on dozens or thousands of nodes.

In the next chapter, you’ll learn some ways to extend your lab by taking 

a closer look at GitLab.

Chapter 9  Server Management and Maintenance



279

CHAPTER 10

Extend Your DevOps 
Capabilities with Git
As you’ve proceeded through this book, you’ve touched on quite a few 

different Linux and open source technologies, and you now have some 

good experience under your belt. That experience has given you a 

grounding in the automation and containerization technologies that can 

help you take on more complex tasks and turn manual configurations into 

code. DevOps is all about repeatable actions that eliminate the need for 

gobs of mundane, manual work.

In this chapter, you’ll look at some ways to extend that philosophy—

infrastructure as code—by diving a little deeper into Git. Modern DevOps 

teams use version control systems to manage far-flung code in an 

organized way, and version control provides the backing for continuous 

integration and continuous delivery (CI/CD) of infrastructure (bare metal, 

VMs, and containers) and applications. Regardless of whether you classify 

yourself as part of dev or ops, the tools are becoming more unified, with 

Git right at the heart of it all.

© John S. Tonello 2022 
J. S. Tonello, Practical Linux DevOps, https://doi.org/10.1007/978-1-4842-8318-9_10

https://doi.org/10.1007/978-1-4842-8318-9_10#DOI


280

�Get Started with Git
Throughout the previous chapters, you haven’t yet had a chance to dive 

into Git, the version control tool that enables you to version, remotely 

store, and share code. In DevOps, using Git has become automatic, 

particularly with well-known sites like GitHub, GitLab, and Bitbucket. In 

the following sections, you’ll take a look at some basic Git commands, 

create and use a public Git repo, and deploy your own GitLab server using 

Proxmox.

Git is worthy of entire books; and, indeed, there are many out there 

for you to reference. I won’t pretend to go into a deep level of detail, but 

there are some basics that will get you started. You’ll start by creating a free 

GitHub account, getting a feel for using Git in your lab, and move on to 

setting up your own GitLab server.

�Create a GitHub Account
GitHub is a good place to start with version control because it’s well 

established, relatively easy to use and provides you with unlimited numbers 

of public and private repositories. A free account also gives you 2,000 

minutes of GitHub Actions (used for automated software development 

workflows popularly known as continuous integration/continuous 

deployment or CI/CD), assigns shared-code owners on your public 

repositories, and other features. For your DevOps lab environment, a free 

GitHub account provides plenty of horsepower to accomplish your work.

Get started by visiting github.com and sign up for an account by 

providing a valid email address (not your lab email address) and setting 

a username. Your username will become home to your unique public 

GitHub space at https://github.com/your-user-name. For example, 

mine is https://github.com/jtonello, and the code examples in this 

book are all available there (as well as at the Apress GitHub repository: 

https://github.com/Apress/Practical-Linux-DevOps).

Chapter 10  Extend Your DevOps Capabilities with Git

http://github.com
https://github.com/your-user-name
https://github.com/jtonello
https://github.com/Apress/Practical-Linux-DevOps


281

With your account created, return to your Linux workstation terminal 

to install and configure git locally. This section focuses on the command-

line tool, but you can separately experiment with some of the cool 

graphical tools currently available. You can also integrate your remote 

GitHub repo with the VS Code editor to seamlessly work with your 

account, a handy way to keep track of changes to your work in real time.

On an Ubuntu system, installing Git is as easy as the following:

$ sudo apt update && apt install git

Though it’s small and lightweight, Git is actually very powerful. It 

keeps track of changes to your code and allows you to create and commit 

different versions of your work locally and push content remotely, where 

it can be widely shared. To be clear, Git works fine on its own without 

GitHub (or GitLab, Bitbucket, or similar public storage). Getting in the 

habit of using it—and executing Git commands as you’re working—is a 

great way to try new variations on your code without ever having to make 

bulky copies of everything. If you like a new version of your work, you 

can promote it (known as merging) and refer back to previous commits of 

your work.

To use Git on your workstation with GitHub, you need to set a couple 

local system variables, namely, your username and GitHub account email:

$ git config --global user.name "John Adams"

$ git config --global user.email "jadams@foobar.com"

By setting these variables globally, you’re telling Git who owns the 

code and the account to use when pushing code to your remote GitHub 

repos. In a team setting, this allows easy tracking of who made changes 

where and when. The --global flag sets these configurations system-wide 

(for your Linux user), so no matter where on your system you create code, 

Git knows it’s you doing the work. These global configurations are saved in 

your Linux home directory:

Chapter 10  Extend Your DevOps Capabilities with Git



282

$ cat ~/.gitconfig

[user]

    name = John Adams

    email = jadams@foobar.com

These basic settings are enough to get you started, but let’s set up a 

secure connection between your workstation and GitHub by creating and 

adding an SSH key to your GitHub account settings. This will enable you 

to push code up to and pull code down from GitHub public and private 

repos in a secure way. Private repos are just that. Other users of github.com 

can’t see your work unless you explicitly grant them permission. This is 

how distributed teams of software developers can store and share sensitive 

code among themselves, but not with the world.

Start by creating a new SSH key to use exclusively with GitHub. You 

could use a previously generated id_rsa key, but chances are that has 

access to all your systems, presenting some security concerns. Instead, 

create an all-new key and give it a name that helps you remember what 

it’s for:

$ ssh-keygen -t rsa -b 4096 -C "jadams@foobar.com" \

  -N '' -f $HOME/.ssh/github_rsa

This command creates a new SSH key without prompting you to 

answer configuration questions. In this example, you’re setting the 

encryption type to RSA, providing your email address, setting the password 

to nothing (-N ''), and saving the resulting public and private keys as 

github_rsa and github_rsa.pub in your ~/.ssh directory.

To use this new SSH key with GitHub to enable secure, passwordless 

access to the remote site, add the github_rsa.pub key to your GitHub 

account. Log in to GitHub via a browser, click the account icon at the top-

right corner of the screen, and choose Settings. In the left-hand menu, 

click SSH and GPG keys and then the green New SSH key button. You’ll be 

presented with a form like the example in Figure 10-1.

Chapter 10  Extend Your DevOps Capabilities with Git

http://github.com


283

Figure 10-1.  Adding a new SSH key in GitHub for secure 
communication

Give this new entry a Title (such as your workstation’s hostname or 

something like My-Workstation) and paste the contents of your newly 

created ~/.ssh/github_rsa.pub file into the Key box:

$cat ~/.ssh/github_rsa.pub

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQDUQpuzXn0bas3SJJJwdp 

5eQy9PGC6b/TWmeL1OnXpQYX1qqjP5hACJqcGEGu3p5q25dfXHpXseSBDl 

GNjs1WRBQ3RS9c3yc0L8bInN6c5EtFmY4ZKwf8v2LASq4hzJ3YYikAjY3bxv 

JyExA1LkTAh9BRcum7Epv9mxPA1VOwJgUQcxyKrsZaUWlJj5rvu9F8uOGUOQ 

CawjvP9Ut8dgUYkUzwuJf1CHCsn9Qz40vczextd98mlY4k7wBFryCqJ9bs 

GfsUsECGKSwao6LggmQ5u4W1TQls3pKk42owmqMh6ybCPf3rQ==  

jadams@foobar.com

Shortly after clicking the Add SSH key button to save this entry, you’ll 

get an email from GitHub telling you a new public key was added to your 

account, a nice security feature.

Chapter 10  Extend Your DevOps Capabilities with Git



284

�The Advantage of SSH for Pushing
Chances are you’ve come across an individual’s or a company’s GitHub 

repo and downloaded the code (known as cloning) using something like 

the following:

$ git clone https://github.com/ubuntu/thunderbird.git

$ git clone git@github.com:ubuntu/thunderbird.git

These are the standard ways of accessing both public and private 

GitHub repositories and their content. If the repo is private, you’d be 

asked to enter a password or token that gives you authorization to access 

it. With SSH keys, the authorization is pre-established between github.

com/your-user-name and your workstation. This isn’t such a big deal when 

cloning public code, but it makes life easier when you’re pushing code up 

to GitHub (or another version control system). You won’t need to enter a 

password or token to confirm your identity and authority, but the actions 

you take are secure, and the experience is seamless.

�Create a New Git Repo
Today’s GitHub and similar cloud services make it easy to create new 

project repositories from their web-based dashboards. To allow code to be 

shared (and essentially backed up), you can push it from your workstation 

to your remote GitHub repo.

Go to your github.com/your-user-name account, click the 

Repositories tab, and click the green New button to add a new repo. 

Enter a Repository name, choose either Public or Private, and leave the 

README, .gitignore, and Choose a license boxes unchecked, as shown in 

Figure 10-2.

Chapter 10  Extend Your DevOps Capabilities with Git

http://github.com/your-user-name
http://github.com/your-user-name
http://github.com/your-user-name


285

Figure 10-2.  Create a new repository on GitHub

That’s it. Your GitHub repo account will now show the repo in the main 

dashboard Repositories view.

Chapter 10  Extend Your DevOps Capabilities with Git



286

�Create Some Content
In this step, you’ll start to use Git on your workstation and, later, push it to 

your new GitHub repo. Though you’ve got a couple directories containing 

code from previous chapters, start this example from an all-new directory.

$ cd ~

$ mkdir my-test-repo

Inside that new folder, initiate it with Git:

$ cd ~/my-test-repo

$ git init

The init command creates a new .git directory inside the folder, 

which is where Git keeps track of the code you work on. You can add 

a .gitignore file in the directory that tells Git not to track certain files 

or folders that are part of your code base. For example, if you had a 

subdirectory in my-test-repo called private-stuff, you could create a 

.gitignore with that entry:

$ vi .gitignore

# Exclude the private-stuff folder

private-stuff

Any file or folder listed in .gitignore will be completely ignored. In 

this example, that means the private-stuff folder and everything in it. Of 

course, this is just a basic example. You can do a lot of fancy things with 

.gitignore, including having it ignore all files of a certain type (*.pub) 

and much more.

Git works by tracking files and maintaining information about them. 

Using git add and git commit gets this tracking started, and each commit 

you make is essentially a snapshot of your work in the current branch. Git 

uses branches to keep track of different content for the same repo, allowing 

you to make changes to your existing code in what are essentially all-new 

Chapter 10  Extend Your DevOps Capabilities with Git



287

files while leaving the originals as is. By doing this, you don’t have to make 

copies of files you know are “good” before changing them.

Let’s see how this works with a simple text file. Add a new file to ~/my-

test-repo, such as an example.txt file:

$ echo "This is my text file." > example.txt

If you look at the git status of this folder, your file will appear along 

with some other information about your current branch, which defaults 

to master:

$ git status

On branch master

No commits yet

Untracked files:

  (use "git add <file>..." to include in what will be 

committed)

      .gitignore

       example.txt

nothing added to commit but untracked files present (use "git 

add" to track)

This output tells you that you’re in the default branch (master) and 

have files in this branch, but Git isn’t doing anything with them yet. 

Change that by doing a git add followed by a git commit:

$ git add .

Here, the . is telling Git to add everything in the current folder my-

test-repo to its tracking. You can also add your single file with git add 

example.txt. It’s important to note that running git add will produce no 

output if it’s successful. Use git status again to see what changed.

Chapter 10  Extend Your DevOps Capabilities with Git



288

When you run git commit in the next example, Git will know which 

file or files it should include based on the git add step. Try this with the 

following, adding the -m flag to add a message about your commit. This is a 

required step that allows you to add a description about the commit itself, 

such as what changed:

$ git commit -m "First commit."

[master (root-commit) 8f9acf2] First commit.

 2 files changed, 3 insertions(+)

 create mode 100644 .gitignore

 create mode 100644 example.txt

Unlike git add, this command provides output, and if you run git 

status again, you’ll see that Git has indeed begun to track your work and 

knows you have saved (committed) your work. This also sets the head, the 

most currently tracked version of your code:

$ git status

On branch master

nothing to commit, working tree clean

If you run git show, you’ll see the content of your example.txt file and 

some information about the commit you called First commit.

Now, make an edit to your example.txt file, adding a new line, so 

it reads

This is my text file.

This is some more content.

If you now do a git add and git commit, Git is aware of both these 

versions of your single file and will show you the differences:

$ git add .

$ git commit -m "Second commit."

$ git show example.txt

Chapter 10  Extend Your DevOps Capabilities with Git



289

commit b90729532d55b5e2e27bbfc7e0ed6d20770126b2  

(HEAD -> master)

Author: John Adams <jadams@foobar.com>

Date:   Sat Mar 5 17:28:00 2022 -0500

    Second commit

diff --git a/example.txt b/example.txt

index 55e90be..302c049 100644

--- a/example.txt

+++ b/example.txt

@@ -1 +1,3 @@

 This is my text file.

+

+This is some more content.

The pluses (+) at the start of the last two lines of output show the 

changes between example.txt in your First Commit and Second Commit. 

If you want to roll back this commit—to tell Git you want it to undo the 

latest saved version—you can use git reset:

$ git reset --soft HEAD~1

Here, Git is removing the second commit, meaning it now sees your 

example.txt as it existed after your first commit. The --soft flag tells it 

not to modify your example.txt file, but just un-commit it. To actually 

roll back to the first version of the file and discard all changes, use the 

hard flag:

$ git reset --hard HEAD~1

HEAD is now at 8f9acf2 First commit.

If you look at your example.txt file, you’ll see that the addition you 

made is now gone. Running git status at this point shows you that 

everything is back to being up-to-date with your first commit. In this way, 

you can begin to see how you can edit files and maintain an active history.

Chapter 10  Extend Your DevOps Capabilities with Git



290

Rolling back commits is fine for small changes, but if you’re refactoring 

some code on a whole application or making other fixes, the best approach 

is to use branches. Branches take a sort of snapshot of your work in your 

starting branch (usually master or main) and allow you to start making 

changes and commits without ever altering the original versions of 

your files.

You can try this by issuing a one-line command that will create a new 

branch and move you into it. This leaves your original content as is, and 

any changes you make are only viewable in the new branch:

$ git checkout -b newbranch

Switched to a new branch 'newbranch'

Issue the git branch command to show where you are:

$ git branch

  master

* newbranch

The asterisk in front of newbranch indicates you’re working in that 

branch, which contains all the files from your my-test-repo folder, but 

changes you commit here will not overwrite the files in the master branch. 

For example, edit the example.txt file and add a new line of text to the file. 

Then run the git add and git commit commands:

$ git add .

$ git commit -m "My changes."

[newbranch fe130be] Fix commit

 1 file changed, 2 insertions(+)

If you cat the example.txt file in this branch, you’ll see your latest 

content. Switch back to the original branch and cat the example.txt file, 

and you’ll see the original:

$ cat example.txt

Chapter 10  Extend Your DevOps Capabilities with Git



291

$ git checkout master

$ cat example.txt

From a directory view on your workstation, you’ll see a single example.

txt file, but Git is aware of the changes you’ve made and is now tracking 

two unique versions of that single file.

Typical DevOps workflows work this way. Developers clone a Git repo 

to their local machines, create new branches for their new content, make 

code changes, commit those changes, push those changes to the shared 

Git repo (like GitHub), and then merge the changes back into the master 

or main branch (usually after someone else has approved the changes). 

Merging allows the newer content to overwrite the old, and Git maintains 

a history of the changes, so it’s easy to roll back if necessary. All this is 

done without having to make backup copies of code, which can get very 

confusing very fast.

�Share Your Code
So far, all your work—edits and commits—has all been done on your local 

machine. Let’s add in the remote capability. This is done by telling Git 

about your GitHub repo and setting what’s known as a remote origin. By 

setting one or more origins, you’re telling your local Git about the remote 

github.com/your-user-name/my-test-repo, so any actions you take to 

push or clone will use that destination. You only have to do this once in a 

particular local code folder:

$ git remote add origin git@github.com:your-user-name/my-

test-repo

This command uses the git@github.com syntax, not https, so it’s 

taking advantage of your shared SSH key. You won’t get prompted to enter 

credentials. If it works correctly, you’ll see no output in the terminal, but 

Git has made note of the remote GitHub repo it should reference when 

Chapter 10  Extend Your DevOps Capabilities with Git

http://github.com/your-user-name/my-test-repo
git@github.com


292

you do a git push, using origin as a map to the remote github.com/your-

user-name/my-test-repo destination. Since you’ve already added files and 

done at least one commit, you can issue a git push without preamble, but 

generally pushes are preceded by add and commit:

Note I f this is your first time connecting to GitHub using your 
shared SSH key, you'll get a security warning such as

The authenticity of host 'github.com (192.168.1.89)' 
can't be established.

ECDSA key fingerprint is 
SHA256:p2QAMXNIC1TJYWeIOttrVc98/R1BUFWu3/LiyKgUfQM.

Are you sure you want to continue connecting (yes/
no/[fingerprint])?

Type “yes” to continue.

$ git add .

$ git commit -m "Details about my commit."

$ git push origin master

Enumerating objects: 3, done.

Counting objects: 100% (3/3), done.

Delta compression using up to 8 threads

Compressing objects: 100% (2/2), done.

Writing objects: 100% (2/2), 273 bytes | 273.00 KiB/s, done.

Total 2 (delta 0), reused 0 (delta 0), pack-reused 0

To github.com:your-user-name/my-test-repo

   8f9acf2..f03d72c  master -> master

Check your github.com/your-user-name/my-test-repo on GitHub to see the 

results before trying your hand at using branches. So far, you’ve committed 

Chapter 10  Extend Your DevOps Capabilities with Git

http://github.com/your-user-name/my-test-repo
http://github.com/your-user-name/my-test-repo
http://github.com/your-user-name/my-test-repo


293

your example.txt and .gitignore files and pushed them to your github.com/

your-user-name/my-test-repo master branch. In the next example, you’ll switch 

to your new branch, make some changes to the file, commit them, and push 

them to the same repo, but into a new matching remote branch.

Switch branches:

$ git checkout -c newbranch

Switched to branch 'newbranch'

Note

Newer versions of Git allow you to use either git checkout or git 
switch to move between local branches.

Make some edits to the example.txt file and then commit those changes:

$ git add .

$ git commit -m "Some edits"

[newbranch 7ea5afc] Some edits

 1 file changed, 2 insertions(+)

Push these changes to GitHub using the git push command. Instead 

of indicating the master branch, however, you’ll designate your new 

branch called newbranch:

$ git push origin newbranch

numerating objects: 5, done.

Counting objects: 100% (5/5), done.

Delta compression using up to 8 threads

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 327 bytes | 327.00 KiB/s, done.

Total 3 (delta 0), reused 0 (delta 0), pack-reused 0

To github.com:your-username/my-test-repo

   b862ab7..7ea5afc  newbranch -> newbranch

Chapter 10  Extend Your DevOps Capabilities with Git

http://github.com/your-user-name/my-test-repo
http://github.com/your-user-name/my-test-repo


294

When you visit github.com/your-user-name/my-test-repo, you can view 

the content of both the master and newbranch by selecting the Branches 

menu, as shown in Figure 10-3. View the contents of your example.txt file 

in each branch and notice that your original file is unchanged and intact.

Figure 10-3.  The Branches view in GitHub

The final step in a typical workflow would be to merge the two 

branches. This tells Git to overwrite the content of one branch with the 

content of another. To make your master branch version of example.

txt match the edits you made to the newbranch version of example.txt, 

execute a git merge:

$ git checkout master

Switched to branch 'master'

$ git merge newbranch

Updating 72ed737..cf772ca

Fast-forward

 example.txt | 2 ++

 1 file changed, 2 insertions(+)

If you do a git push origin master, your master branch example.txt 

content on GitHub will be the same as the newbranch version, and GitHub 

Chapter 10  Extend Your DevOps Capabilities with Git

http://github.com/your-user-name/my-test-repo


295

will show you the history. So, even though you’ve overwritten the original, 

you can still look back in time to see the edits. After merging code to a 

master or main branch, it’s considered good form to delete the new branch 

when you’re done with it:

$ git branch -d newbranch

These examples are just the tip of the Git iceberg, but you can begin 

to see the value of Git when working with code, particularly when you’re 

developing Dockerfiles and infrastructure as code. In the next section, 

you’ll deploy GitLab in your DevOps lab so you can get a taste for on-

premise version control.

�Create a GitLab Host
Many companies have security policies and rules that don’t allow them 

the option of using public version control cloud offerings like GitHub, so 

they turn to hosting it themselves. Self-hosting a Git server means you 

can set up secure connections to other software development tools, such 

as Jenkins, which is used to automate software building, testing, and 

deployment. In the following example, you’ll use GitLab, which offers 

plenty of features and capabilities.

GitLab can be installed on most modern Linux distributions by adding 

a package repository and using your system’s package manager. GitLab 

uses email for notifications, so you’ll be able to take advantage of your 

mail.devops.lab server during the setup instead of installing another 

Postfix server alongside GitLab itself.

Since you’re running Proxmox, you could take advantage of the 

Turnkey GitLab template, but I’ve found this implementation to have a few 

issues. Instead, start by creating a fresh VM or LXC host on your Proxmox 

server using Ubuntu 20.04 or later. Give the node a 32GB disk, two CPU 

cores, 4096MB of RAM, and assign an IP address on your DevOps lab 

Chapter 10  Extend Your DevOps Capabilities with Git



296

subnet, such as 10.128.1.40/24. You’ll want to be sure your new GitLab 

host is reachable by its hostname, such as gitlab.devops.lab, so add an 

entry to your DNS server.

To make accessing this server easier, be sure to add an SSH key when 

creating this LXC. Use the contents of ~/.ssh/id_rsa.pub in the LXC’s SSH 
public key value when creating the container.

When the machine boots, SSH into it from your workstation to 

continue the rest of the steps. Log in using root and the password you set 

when creating the host.

First thing, update the host and make sure it has a couple required 

packages, including openssh-server, which enables you to SSH into 

the node:

# apt update && apt upgrade

# apt install -y curl openssh-server \

  ca-certificates tzdata perl

You don't need to add Postfix to this server because you’ll be using 

your mail.devops.lab server for all communications. Run the following 

command to add the Ubuntu repository for the gitlab-ee package:

# curl https://packages.gitlab.com/install/repositories/gitlab/

gitlab-ee/script.deb.sh | bash

The updated version of GitLab automatically enables Let’s Encrypt, but 

this will likely fail in your DevOps lab environment, which isn’t reachable 

from the Internet. To avoid this problem, edit /etc/gitlab/gitlab.rb and 

change the following line from true to false:

$ vi /etc/gitlab/gitlab.rb

...

Chapter 10  Extend Your DevOps Capabilities with Git



297

letsencrypt['enable'] = false

...

You’re now ready to do the actual installation. Prefix the command 

with the EXTERNAL_URL environment variable, setting it to match the FQDN 

of your gitlab.devops.lab host:

# EXTERNAL_URL="https://gitlab.devops.lab" apt install 

gitlab-ee

This will take a few minutes to complete. When it’s done, their 

installation will output the root password in a file located at /etc/gitlab/

initial_root_password. Look at that file to get the initial password:

# cat /etc/gitlab/initial_root_password

dokZGqHxbfIi5M2zCXp7TxVB9zxikCs6RYgyQtd7ICM=

Note S ave this password somewhere on your workstation for 
reference. GitLab will delete the initial_root_password file 24 
hours after the installation.

Before leaving your GitLab host, configure it to use your mail.devops.

lab email server by editing /etc/gitlab/gitlab.rb. Copy the original and 

replace the contents with the following content shown in Listing 10-1:

# cp /etc/gitlab/gitlab.rb /etc/gitlab/gitlab_original.rb

# vi /etc/gitlab/gitlab.rb

Listing 10-1.  Configure GitLab to use your lab email server by 

editing /etc/gitlab/gitlab.rb

gitlab_rails['smtp_enable'] = true

gitlab_rails['smtp_address'] = "mail.devops.lab"

Chapter 10  Extend Your DevOps Capabilities with Git



298

gitlab_rails['smtp_port'] = 25

gitlab_rails['smtp_domain'] = "devops.lab"

gitlab_rails['smtp_enable_starttls_auto'] = false

gitlab_rails['smtp_openssl_verify_mode'] = 'none'

gitlab_rails['smtp_tls'] = false

gitlab_rails['smtp_ssl'] = false

gitlab_rails['smtp_force_ssl'] = false

gitlab_rails['service_desk_email_host'] = "mail.devops.lab"

gitlab_rails['service_desk_email_port'] = 993

gitlab_rails['service_desk_email_ssl'] = false

gitlab_rails['service_desk_email_start_tls'] = true

# If your SMTP server does not like the default

# 'From: gitlab@gitlab.example.com' you can change the

# 'From' with this setting.

gitlab_rails['gitlab_email_from'] = 'gitlab@devops.lab'

gitlab_rails['gitlab_email_reply_to'] = 'noreply@devops.lab'

Note I f you don’t recall your Postfix settings or you’re having trouble 
getting the configurations right, you can run the postconf -n  
command on your mail server to see the details.

�Generate an SSL Key
GitLab integrates a runner—a separate server where it can run CI/CD 

jobs—and it can be tricky to get this to work with self-signed certificates 

like the ones running in your Proxmox lab. To fix this, edit your GitLab 

server’s SSL configuration file /etc/ssl/openssl.cnf to include the 

content shown in Listing 10-2 under the [ v3_ca ] heading.

Chapter 10  Extend Your DevOps Capabilities with Git



299

Listing 10-2.  Add configurations to /etc/ssl/openssl.cnf on your 

GitLab server to enable self-signed certificates to work properly

...

[ v3_ca ]

basicConstraints = CA:false

keyUsage = nonRepudiation, digitalSignature, \keyEncipherment

subjectAltName = @alt_names

[alt_names]

DNS.1 = gitlab.devops.lab

...

With this edited and saved, issue the following command to generate 

a new certificate for your gitlab.devops.lab server. This will include the 

subjectAltName (SAN) you added in the openssl.cnf file when the 

certificate is created:

# openssl req -x509 -nodes -days 3650 \

-newkey rsa:2048 \

-keyout /etc/gitlab/ssl/gitlab.devops.lab.key \

-out /etc/gitlab/ssl/gitlab.devops.lab.crt

openssl req -newkey rsa:4096 -x509 -sha512 -days 3650 -nodes  

 -out /etc/gitlab/ssl/gitlab.devops.lab.crt -keyout /etc/gitlab/

ssl/gitlab.devops.lab.key -subj "/C=US/ST=New_York/L=Syracuse/

O=devops-lab/CN=gitlab.devops.lab/" -addext "subjectAltName = 

DNS:gitlab.devops.lab"

Feel free to add your own geographic information instead of “New 

York” and “Syracuse”. Follow up with a command to generate a .pem key 

Chapter 10  Extend Your DevOps Capabilities with Git



300

based on the certificate using the Diffie-Hellman (DH) key exchange. Be 

patient. This can take a long time to generate:

# openssl dhparam -out /etc/gitlab/ssl/gitlab.devops.lab.

pem 2048

When the edits are complete, run gitlab-ctl reconfigure to 

apply the changes. Finally, open a browser and go to https://gitlab.

devops.lab. You’ll be greeted by the certificate warning screen. Click the 

Advanced button and the Safe to proceed/Accept the Risk and Continue 

link to get to the main GitLab login screen. If you get a 502 error, it means 

GitLab isn’t fully up and running yet. Wait a few moments and refresh the 

browser.

To log in to the dashboard, use root as the username and the password 

from the file created during installation. Once you’ve successfully logged 

in, it’s a good idea to change the root password by clicking the icon on the 

top right of the dashboard, clicking Edit profile in the menu, and selecting 

Password to change it.

To make an everyday user account, go to the main Menu at the top of 

the dashboard and select Admin. Under Overview, select Users and create 

a new non-root user. Enter something like jadams and your lab email 

address. This could match the username you set up on GitHub, but it can 

be anything you want, and you’ll be able to create multiple accounts in the 

future, though you can’t reuse email addresses.

Alternatively, you can log out as root and click the Register link on 

the main GitLab login page, adding basic information about your user 

account. See the example in Figure 10-4. If you use this method, you’ll 

need to log back in to the dashboard as root to approve the user, a GitLab 

security feature default.

Chapter 10  Extend Your DevOps Capabilities with Git

https://gitlab.devops.lab
https://gitlab.devops.lab


301

Figure 10-4.  Create a non-root user in the GitLab dashboard

Once the user is created, log in and select the type of user you are 

from the menu. You’ll be taken to your main GitLab dashboard, where 

you can create a new repository—known here as projects—by clicking the 

Create a project button followed by Create blank project. As with your 

GitHub repo, give it the same name (my-test-repo), provide an optional 

description, and set it initially to Public. You can leave the "Initialize 

repository with a README" box checked.

In order to push content to your new GitLab server, you’ll need to add 

an SSH key, just as you did with GitHub. When you create a new repo, 

you’ll likely see an Add SSH key banner, which you can click to take you 

to the SSH settings. You can also start the process by navigating to your 

profile in the top right, clicking Edit profile, and choosing SSH Keys in the 

Chapter 10  Extend Your DevOps Capabilities with Git



302

left-hand menu. You can add a key as you did in GitHub and reuse your 

~/.ssh/github_rsa.pub key to complete this step.

�Use Your New GitLab Repo
In the following example, you’re going to change the git origin you 

previously created that points to GitHub and point it to your new GitLab 

server. You can actually have multiple origins (allowing you to push to 

more than one remote Git repo at once), but to keep things simple, you’ll 

just replace the old origin with a new one.

Back in your workstation’s Linux shell, move into your my-test-repo 

directory and issue the following commands to rename your original 

GitHub origin and add the new GitLab one:

$ cd ~/my-test-repo

$ git remote rename origin github_origin

$ git remote add origin \ git@gitlab.devops.lab:username/ 

my-test-repo.git

You can now push your content to your GitLab server. Since the 

working tree is clean (your previous commits are all accounted for), edit 

your example.txt file to make a change and then commit it:

$ echo "some more text" >> example.txt

$ git add .

$ git commit -m "First push to GitLab."

$ git push -u origin master

If you look at the activity in your GitLab dashboard under https://

gitlab.devops.lab/username/my-test-repo, you’ll see your content 

in the master branch. If instead you issued the command git push -u 

origin --all, you would push up all your branches, namely, master and 

newbranch (if you didn’t delete it). When your push is successful, you’ll 

Chapter 10  Extend Your DevOps Capabilities with Git

https://gitlab.devops.lab/username/my-test-repo
https://gitlab.devops.lab/username/my-test-repo


303

see your content in the repo dashboard and get emails to your DevOps lab 

email account showing you details about the actions you just took.

�Other GitLab Capabilities
GitLab offers a lot of functionality beyond just a place to store content in 

repositories. You can create wikis to accompany your code projects, create 

artifact registries, integrate with Kubernetes (for container deployments) 

and Terraform (for automated provisioning), and much more. One of 

the most valuable features is GitLab’s CI/CD capability. You can use it to 

automate deployments of your code to actual running servers (including 

Docker hosts).

I won’t provide a lot of detail on setting up these features, but the 

dashboard provides lots of help. With your own GitLab server, you can 

experiment to your heart’s content with some of the most popular DevOps 

practices used today.

�A Bit on CI/CD
Continuous integration/continuous delivery is the modern practice 

of automatically building, testing, and deploying software code. As 

developers push code to GitHub, GitLab, or another Git repo, those actions 

can serve as triggers to sophisticated steps in the software development 

cycle. In this section, you’ll see some of the steps involved in creating what 

are known as pipelines.

In DevOps terms, pipelines are scripted automation steps that, 

in GitLab, are outlined in .gitlab-ci.yml files that you create and 

place in each of your code repositories, such as my-test-repo. These are 

straightforward YAML files that define the stages of your pipeline and 

specific jobs to run. Jobs can be used to test code with a linting tool (like 

Chef Cookstyle on your Chef code), package Docker images, push them to 

Chapter 10  Extend Your DevOps Capabilities with Git



304

Docker Hub, and deploy them to Docker hosts, among other things. The 

options are vast, and using the term “pipelines” is useful because it helps 

envision movement through the bends and turns of logical flows. If there 

are failures, you and your fellow developers can see immediately where 

the problems lie so you can make code edits and kick off the automated 

process again and again.

�Create a GitLab Runner
Before you can execute a pipeline, GitLab needs somewhere to run the 

jobs you define. This is known as a runner. A runner is usually a separate 

virtual machine that has gitlab-runner installed on it along with packages 

needed to execute the tasks you want. For example, if you’re just running 

simple Bash commands, the runner server needs Bash installed. If you’re 

running Ansible playbooks or Chef automation actions, the runner will 

need those packages installed. Think of a runner as a sort of workstation 

that you never actually log in to and use. GitLab uses it to perform its CI/

CD work for you.

To create a runner, spin up a new Ubuntu VM in Proxmox and give it 

the hostname runner.devops.lab. Configure DNS to point to the host at an 

address in your DevOps lab subnet, such as 10.128.1.41.

When the system boots, log in from a shell and run the following 

commands to install the gitlab-runner package. GitLab has versions for 

most Linux flavors, so you’re not limited to Ubuntu.

First, add the repository:

Tip T o avoid getting prompted for your password each time you run 
sudo, you can add a file to /etc/sudoers.d/ to make that automatic:

$ sudo echo "jadams ALL=(ALL) NOPASSWD:ALL" > /etc/
sudoers.d/jadams

Chapter 10  Extend Your DevOps Capabilities with Git



305

$ curl -L "https://packages.gitlab.com/install/repositories/

runner/gitlab-runner/script.deb.sh" | sudo bash

Install the package:

$ sudo gitlab-runner restart

�Register Your Runner with Your GitLab Instance
In order for your runner and GitLab to communicate, they need to have a 

trusted cert shared between them. This can be a complicated process, but 

the following steps make this work with self-signed certificates—so long as 

you completed the preceding steps to update the openssl.cnf file during 

your initial GitLab configuration. These steps copy the necessary files from 

your gitlab.devops.lab server to your runner.devops.lab server.

Note I t can be helpful for your runner server to have shared SSH 
credentials for passwordless access to your GitLab server. Use ssh-
keygen to create id_rsa credentials in ~/.ssh/ on your runner 
server and share them to the other using ssh-copy-id root@
gitlab.devops.lab.

On your runner.devops.lab server, execute the following commands:

$ sudo mkdir /etc/gitlab-runner/certs

$ sudo scp -i ~/.ssh/id_rsa  root@gitlab:/etc/gitlab/ssl/

gitlab.devops.lab{.crt,.pem} /etc/gitlab-runner/certs/

Chapter 10  Extend Your DevOps Capabilities with Git



306

# Register your runner

sudo gitlab-runner register --url https://gitlab.devops.lab/ 

--registration-token GR1348941s8WR5SgT8Zyr5uy3jXkA

The registration-token is available from your GitLab dashboard 

(along with instructions) under your my-test-repo Settings ➤ CI/CD with 

instructions) under Runners. Use that value for the preceding example, 

not the sample value shown in bold.

You’ll be prompted to enter some values. Just press Enter during the 

gitlab-runner register step until you’re asked to identify an executor, 

which is how the runner will execute CI/CD jobs you define. Enter shell 

when prompted.

When the configuration is complete, restart the gitlab-runner service 

on runner.devops.lab:

$ sudo systemctl restart gitlab-runner.service

�Create a Pipeline
To create a pipeline in your my-test-repo—a series of actions that will be 

run automatically each time you commit and push your code to GitLab—

you can use the basic GitLab CI/CD example.

In your GitLab dashboard, navigate to your my-test-repo. Click CI/
CD in the left-hand menu and then Editor. Click the Create new CI/CD 
pipeline to start creating your .gitlab-ci.yml file. This will take you to 

the Edit tab, where you can edit the YAML file right within the dashboard. 

Of course, you could also create a .gitlab-ci.yml file in your local 

workstation my-test-repo, edit it with a tool like VS Code, and push it to 

your GitLab repository.

The example GitLab pipeline, shown in Listing 10-3, is a valid pipeline, 

though it only uses some simple echo statements to output information 

rather than running actual actions.

Chapter 10  Extend Your DevOps Capabilities with Git



307

Listing 10-3.  The GitLab example pipeline, complete with stages 

and jobs

stages:

  - build

  - test

  - deploy

build-job:

  stage: build

  script:

    - echo "Compiling the code..."

    - echo "Compile complete."

unit-test-job:

  stage: test

  script:

    - �echo "Running unit tests... This will take about 60 

seconds."

    - sleep 60

    - echo "Code coverage is 90%"

lint-test-job:

  stage: test

  script:

    - echo "Linting code... This will take about 10 seconds."

    - sleep 10

    - echo "No lint issues found."

deploy-job:

  stage: deploy

  script:

    - echo "Deploying application..."

    - echo "Application successfully deployed."

Chapter 10  Extend Your DevOps Capabilities with Git



308

In the Edit view, you can make changes and experiment. Note that 

each job has a name (build-job, unit-test-job, lint-test-job, etc.) and 

includes one of the three stages defined at the top of the file (build, test, 

and deploy). These are followed by script: and commands to execute 

tasks. These organize the jobs and make them easy to track.

If you click the Visualize tab, you’ll see your pipeline displayed by 

stage and job, as shown in Figure 10-5.

Figure 10-5.  The Visualize view of a basic GitLab CI/CD pipeline

A built-in linting tool checks the syntax of your .gitlab-ci.yml when 

you click the Lint tab. This checks the pipeline file only, not the syntax of 

any code you may add to your repository.

After poking around, return to the Edit tab, and scroll down to the 

bottom of the page to click the Commit changes button. In the dashboard, 

you’ll see a turning status indicator while GitLab checks the file before 

showing you some confirmation information at the top of the screen, as 

shown in Figure 10-6.

Chapter 10  Extend Your DevOps Capabilities with Git



309

Figure 10-6.  Confirmation of your saved (committed) pipeline

When you click the View pipeline button, the pipeline will start and 

run for the first time. If all goes well, you’ll see the results in the CI/CD ➤ 

Pipelines view in your my-test-repo GitLab dashboard.

Steps to make CI/CD work are not for the faint of heart, but getting 

this working has a long-term payoff: each time you make a change to your 

my-test-repo code content and commit it to your GitLab repository, the 

pipeline will kick off automatically. Try it by editing your example.txt file 

and pushing your changes:

$ git pull origin master

$ vi example.txt [Add or remove some content]

$ git add .

$ git commit -m "Changed text for pipeline test"

$ git push origin master

When the push completes, your pipeline will trigger automatically, 

and you’ll get an email about the latest commit. You’ll also see the pipeline 

doing its thing in your GitLab dashboard under CI/CD ➤ Pipelines.

Of course, this example doesn’t actually do anything with your 

commits (like publishing them as Docker images or pushing new content 

to a web server), but hopefully you get a sense of the power of pipelines. 

Automated actions can really speed the deployment of software releases, 

making it a go-to capability for any DevOps team.

Chapter 10  Extend Your DevOps Capabilities with Git



310

�Conclusion
In this chapter, you learned some Git basics, set up an account on GitHub, 

experimented with basic Git commands on your workstation, deployed 

GitLab in your DevOps lab, and created your first CI/CD pipeline. These 

capabilities are critical to modern DevOps teams and illustrate how 

it’s possible to successfully collaborate on rapidly evolving software 

development.

In the next chapter, you’ll learn how to again combine capabilities 

you’ve become familiar with to automate the deployment of virtual 

machines using HashiCorp’s Terraform. With Terraform, you’ll be able to 

script the deployment of new systems, preconfigure them with Ansible or 

Chef, and get a feel for how DevOps engineers rapidly and securely create 

consistent environments in the cloud and in on-prem data centers.

Chapter 10  Extend Your DevOps Capabilities with Git



311

CHAPTER 11

Automate System 
Deployments 
with Terraform
As you dive deeper into DevOps workflows, you’ll find your Git skills come 

in handy when you really start automating your system and application 

deployments with infrastructure as code. Rather than manually deploying 

systems or making image templates (or cloning snapshots), you can 

describe what you want in a few code files and have fresh systems up and 

running in moments. The idea is to define once and deploy repeatedly 

anywhere.

Everything you’ve learned in this book so far has set you up for using 

Terraform, a popular tool for provisioning systems locally, in public clouds 

like AWS and Azure, and in your Proxmox DevOps lab. In this chapter, 

you’ll use Terraform to create Linux instances purely with code that you 

can use over and over to get identical results each time.

© John S. Tonello 2022 
J. S. Tonello, Practical Linux DevOps, https://doi.org/10.1007/978-1-4842-8318-9_11

https://doi.org/10.1007/978-1-4842-8318-9_11#DOI


312

�Install Terraform
Terraform, one of the open-source tools from HashiCorp, is freely available 

to download and install on most modern operating systems, including 

popular flavors of Linux, Windows, macOS, FreeBSD, and OpenBSD. You 

can download binaries (.deb, .rpm, .exe, and the like), or you can add the 

HashiCorp repository and install it using your system’s package manager. 

This example uses the latter.

On your Linux workstation, execute the commands shown in  

Listing 11-1 to add the repository key, the HashiCorp repo itself, and then 

Terraform. This example uses Ubuntu, but instructions are available for 

other Linux platforms at https://terraform.io/downloads.

Listing 11-1.  Install Terraform on an Ubuntu or Debian workstation

$ curl -fsSL https://apt.releases.hashicorp.com/gpg | sudo  

apt-key add -

$ sudo apt-add-repository "deb [arch=amd64] https://apt.

releases.hashicorp.com $(lsb_release -cs) main"

$ sudo apt update && sudo apt install terraform

The result of these actions places the application in /usr/bin/

terraform, which should be in your system PATH without having to 

take any other actions to use it. Test the installation by running the help 

command:

$ terraform -help

Usage: terraform [global options] <subcommand> [args]

...

Chapter 11  Automate System Deployments with Terraform

﻿https://terraform.io/downloads﻿


313

�A Terraform Example with Docker
The HashiCorp website has a lot of great examples on how to get started 

with Terraform, including how to use it to provision a Docker container 

that runs an NGINX web server. This is a good place to start to highlight the 

components of a typical Terraform project file, main.tf. These files define 

providers (the target platform you want to use to provision your system, 

such as Docker, AWS, Proxmox, VMware, and others) and resource blocks 

that describe what you want to install and configure.

Take a look at the example in Listing 11-2 to see these elements in 

action in a simple main.tf file. Create this file in a new ~/terraform-repo/

nginx directory on your workstation:

$ mkdir -p ~/terraform-repo/nginx

Note T hese examples run Docker and Terraform together on your 
laptop or workstation, but you could also deploy the container on your 
separate Docker host, docker.devops.lab. To use that remote Docker 
host, change your main.tf docker {} provider  line to the 
following:

provider "docker" {

host     = "ssh://user@docker.devops.lab:22"

}

Listing 11-2.  A simple Terraform main.tf file to create an NGINX 

container in Docker

terraform {

  required_providers {

    docker = {

Chapter 11  Automate System Deployments with Terraform



314

      source  = "kreuzwerker/docker" 

      version = "~> 2.13.0"

    }

  }

}

provider "docker" {} 

resource "docker_image" "nginx" { 

  name         = "nginx:latest"

  keep_locally = false

}

resource "docker_container" "nginx" { 

  image = docker_image.nginx.latest

  name  = "tutorial"

  ports {

    internal = 80

    external = 8000

  }

}

Terraform main.tf files begin with the terraform {} block, which 

describes required providers. Providers come in many, many forms, 

and HashiCorp maintains a registry where you can find official and 

community-contributed options. In the preceding example, the provider 

 is defined by a specific source and version. This provider is then called in 

the main body of the main.tf file with provider "docker" {} . These 

providers can have parameters of their own (such as adding a remote 

Docker host), which you’ll see later in the Proxmox example.

The main.tf file in the preceding Docker example includes two resource 

blocks. The first one  uses the native docker_image to download and use 

Chapter 11  Automate System Deployments with Terraform



315

the NGINX image. This is similar to running a docker pull nginx:latest. 

The second resource  creates the Docker container itself, using the nginx.

latest image defined earlier. The container is given a name (“tutorial”), and 

its internal port 80 is mapped to external port 8000.

These are very basic Terraform resources, but hint at the greater 

power of the tool and its ability to define infrastructure as code. You 

describe what you want to configure, and Terraform does the work for 

you. Regardless of the platform you’re using—Linux or something else—

Terraform knows how to make it so. Later, you’ll use resources to define 

Proxmox LXC templates, storage and network parameters, files, and more.

�Use Git to Track Your Work
Since you’re now using Git, initiate the directory to start tracking 

your work:

$ cd terraform-repo/

$ git init

$ git remote add origin git@github.com:username/

terraform-repo.git

To track this repo remotely, add a terraform-repo to your GitHub 

(or GitLab) repository as described in Chapter 10. When using GitHub or 

another version control system with Terraform, it’s important that you not 

reveal secrets and other secure keys. That would allow bad actors to access 

your infrastructure. To avoid tracking (or pushing) Terraform-specific files, 

create a .gitignore file in a new terraform-repo/nginx directory with the 

following content. This will prevent your Terraform state files from being 

uploaded to your Git repo:

.terraform*

Chapter 11  Automate System Deployments with Terraform

https://doi.org/10.1007/978-1-4842-8318-9_10


316

�Terraform Your First Bit of Infrastructure
To turn your main.tf code into a running container, execute the following 

commands. The terraform init initiates the project by downloading any 

plugins needed, in this case the Docker provider plugin. That’s followed 

with terraform plan to confirm your code is valid, and finally terraform 

apply to build it:

$ cd ~/terraform-repo/nginx

$ terraform init

$ terraform plan

$ terraform apply

When you execute terraform init, you’ll see output in the terminal 

showing you it’s downloading and initializing the Docker provider. Running 

terraform plan and terraform apply will output the steps Terraform will 

take to deploy your NGINX container. Type “yes” when prompted.

To confirm the container is created and running, use a simple Docker 

command:

$ docker ps

If you’re running this on your workstation, open a browser window 

and navigate to http://localhost:8000 to see the result. If you deployed on 

your docker.devops.lab host, use http://docker.devops.lab:8000.

When you’re done, you can destroy the container (and the Terraform 

deployment) with a simple command:

$ terraform destroy

You’ll be prompted to confirm this step, which is a nice way to avoid 

accidentally killing off your container. If you run docker ps -a afterward, 

you’ll see the container has been removed.

You may be thinking, “Gee, this seems like a lot of work to create an 

NGINX container.” Yes, this is slightly more involved, but in a modern 

Chapter 11  Automate System Deployments with Terraform

http://docker.devops.lab:8000


317

DevOps workflow, this approach enables you to confirm your container 

images and tags, certify different OS platforms for your applications, allow 

teams to share and reuse code (via Git), further automate deployments 

with CI/CD pipelines, and much more. This visibility allows engineers to 

do their work freely and collaborate at a high level.

�Use Terraform with Proxmox
The simple Docker example gave you a taste of some of the capabilities 

and syntax of using Terraform, but let’s try something a little more 

sophisticated using the provider for Proxmox.

For this example, you’ll use a specific Terraform provider called telmate/

proxmox, define a special API URL for your Proxmox host, and reference a 

specific Proxmox LXC template for Terraform to use. You’ll also use a separate 

variables.tf file to store variables you’ll use in your main.tf file. This is a 

cleaner workflow that separates out different elements of your code, making 

those elements easier to track and reuse in other unrelated projects.

Though the following example uses an LXC, you can also deploy a new 

Proxmox VM from an .iso file you’ve uploaded to your PVE host, clone 

existing Proxmox machines, and much more.

�Configure Proxmox to Work with Terraform
In order for Terraform to communicate properly with Proxmox, you need 

to do a little setup on your DevOps lab host. These settings create a role 

and user with permissions to perform automated tasks. The settings can be 

applied via the command line on your Proxmox (PVE) host or directly from 

the Proxmox dashboard. The following examples use the shell commands, 

and if you have multiple PVE hosts in your Proxmox cluster, you only 

have to do this once. In the dashboard view, these actions are done at the 

Datacenter level under the Permissions menu.

Chapter 11  Automate System Deployments with Terraform



318

Start by opening a terminal shell to your Proxmox host (such as ssh 

root@pve01.devops.lab) and execute the following three commands. The 

first creates a role with various privileges; the second creates a user; and 

the third attaches the role to the user. The pveum command is the Proxmox 

VE User Manager):

# pveum role add TerraformProv -privs "VM.Allocate VM.Clone 

VM.Config.CDROM VM.Config.CPU VM.Config.Cloudinit VM.Config.

Disk VM.Config.HWType VM.Config.Memory VM.Config.Network 

VM.Config.Options VM.Monitor VM.Audit VM.PowerMgmt Datastore.

AllocateSpace Datastore.Audit"

# pveum user add terraform-prov@pve --password <password>

# pveum aclmod / -user terraform-prov@pve -role TerraformProv

The username—shown as terraform-prov in the preceding 

examples—can be anything you want, but it’s helpful to give it a name 

that makes it easy to identify and remember. This user also has quite a bit 

of authority to interact with your Proxmox cluster, so it’s best to make a 

unique user for this purpose.

In order for Terraform to know about your new terraform-prov user, 

you must set some environment variables back on your Linux workstation. 

You can do this on the fly each time you open a new terminal, but it’s 

easier to add these values to your ~/.bashrc file. That way, they’re set each 

time you open a new terminal to do Terraform work.

Open ~/.bashrc with vi or your favorite text editor, scroll to the bottom 

of the file, and add the following lines. The password value in PM_PASS 

should match the password you provided when creating the preceding user:

...

export PM_USER="terraform-prov@pve"

export PM_PASS="password"

Chapter 11  Automate System Deployments with Terraform

root@pve01.devops.lab


319

To activate these variables, either close and reopen the terminal on 

your workstation or run source ~/.bashrc to load them. You’re now ready 

to move on to creating your Terraform files.

�Create a variables.tf File
In your ~/terraform-repo/ directory, create a new project folder called 

proxmox_lxc. With Terraform, each project you make should be in its own 

folder. Create a .gitignore with .terraform* in it so those files won’t be 

tracked by Git. The following example copies the .gitignore from your 

NGINX project folder to the new project:

$ mkdir -p ~/terraform-repo/proxmox_lxc

$ cd ~/terraform-repo/proxmox_lxc

$ cp ~/terraform-repo/nginx/.gitignore .

You’ll start by creating a variables.tf in this new project folder and 

adding the content shown in Listing 11-3.

Listing 11-3.  Contents of a Terraform variables.tf file

variable "ssh_key" {  

    default = "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDDG5Rdy 

V5UglPZgO0hTK70DODTDGDwRB8Eh9oisqzPNi7He6Tc8uD0GJhufGnYIt5ksw 

MptyVWjvzp09y2wip0aC1yAkFkhlgvwd73GaHbP5syRzHkBL+TWEcPU8T0U/ 

YYOx8TpNI+JTy9fNt6sF3ROrbLh3AQR5C25aBY29ydTXP3AI2r9vx88oIZwkt 

HHBy4H716aPFDj2YhFu4s22E6vfXjPuva8EOUU/JcgEUXN75Aw96I3WzXef 

4mp/iUBVagJ8li4KN1Zd0mfcpeFqkV1SrupBMZrBbDKDoGVeg0/dNE/fdHGo 

8fbNB9W34f8WpyMqlP1GWcZiwC+7l100ZH jadams@foo.bar"

}

variable "lxc_proxmox_host_name" {  
    default = "ubuntu-lxc-01"

}

Chapter 11  Automate System Deployments with Terraform



320

variable "lxc_template_name" {  

    �default = "local:vztmpl/ubuntu-20.04-standard_20.04-1_

amd64.tar.gz"

}

variable "root_password" {  

    default = "password"

}

variable "cidr" {  

    default = "10.128.1.51/24"

}

variable "ip" { 

    default = "10.128.1.51"

}

Each variable listed in this file will be referenced by the quoted name 

you provide here. For example, ssh_key and ip will be referenced in your 

main.tf file with var.ssh_key and var.ip, respectively.

The first variable, ssh_key , is the contents of a public key from your 

local workstation system, such as ~/.ssh/id_rsa.pub. Do not use the content in 

the preceding example. Use cat to view the source of your own id_rsa.pub file 

and paste that content into the default value field between the quotes. Note, 

too, that exposing your SSH key this way is not secure. You can use tools like 

HashiCorp Vault to share secrets, but I won't go into how to do that here.

The second variable, lxc_proxmox_host_name , is the name you 

want to give your LXC instance on Proxmox. This can be any string you 

want, but it should be in keeping with the naming convention you’re using.

The third variable, lxc_template_name,  defines the LXC template 

you want to use to create your instance. This example references the 

template ubuntu-20.04-standard_20.04-1_amd64.tar.gz that’s available 

on the local storage device on your Proxmox host. If you don’t already 

have this template on your host, go to your Proxmox dashboard, open 

Chapter 11  Automate System Deployments with Terraform



321

your main PVE instance, and click the local storage device and then CT 
Templates. Click the Templates button and choose the template you want 

to use. Note that the variables.tf file includes the full Proxmox path, 

local:vztmpl/<tempate.tar.gz>.

The root_password variable  contains the default password to use 

when logging in to the newly created LXC host from your workstation. As 

you may recall, when creating an LXC by hand, you’re asked to enter a 

root password. This is that value. Of course, this is a very insecure way to 

store passwords and is not recommended for production deployments. 

Terraform has other tools that allow you to obfuscate these values, 

including using HashiCorp Vault.

The cidr variable  holds the IP address and netmask for your LXC 

container, as in 10.128.1.51/24. As you recall, when creating a Proxmox 

LXC manually, you must add the full CIDR, not just the IP address.

The final variable is ip , which uses the same IP address provided 

in the cidr variable without the netmask (/24). This will be used by 

Terraform to log in to the running LXC when it needs to using root and 

root_password.

Save this file before creating a new main.tf in your project directory 

and adding the content from the example code in Listing 11-4.

Listing 11-4.  The Terraform main.tf code for creating a 

Proxmox LXC

terraform {

  required_providers {  

    proxmox = {

      source  = "telmate/proxmox"

      version = "2.9.6"

    }

  }

}

Chapter 11  Automate System Deployments with Terraform



322

provider "proxmox" {  
  pm_api_url = "https://pve01.devops.lab:8006/api2/json"

}

resource "proxmox_lxc" "advanced_features" {  

  target_node      = "pve01"

  hostname         = var.lxc_proxmox_host_name

  ostemplate       = var.lxc_template_name

  password         = var.root_password

  unprivileged     = true

  ssh_public_keys  = var.ssh_key

  searchdomain     = "devops.lab"

  start            = true

  rootfs {  

    storage = "zfs"

    size    = "2G"

  }

  network {  

    name   = "eth0"

    bridge = "vmbr0"

    ip     = var.cidr

    gw     = "10.128.1.1"

  }

  connection {  

    type  = "ssh"

    user  = "root"

    host  = var.ip

    private_key = "${file("~/.ssh/id_rsa")}"

  }

Chapter 11  Automate System Deployments with Terraform



323

  provisioner "file" { 

    source = "nginx.yml"

    destination = "/root/nginx.yml"

  }

  provisioner "remote-exec" { 

    inline = [

      "apt update",

      "apt install -y ansible",

      "/usr/bin/ansible-playbook /root/nginx.yml"

    ]

  }

}

This Terraform file will replicate the manual steps you go through to 

create an LXC instance on Proxmox, but everything is in code. You should 

recognize the elements as you go.

As in the previous Docker example, this main.tf starts with the 

terraform {} block , this time referencing the telmate/proxmox source 

and version. This is used to define the provider block , which includes 

the URL of your Proxmox host.

The real work begins in the proxmox_lxc resource block , which 

defines the target node—using the specific name of your node, which 

may or may not match your DevOps lab domain name. The block also 

references four of the variables you created in variables.tf. Notice that 

searchdomain is just a string value, which you could add to your variables, 

but I show it here to expose the inline syntax. The final element is start = 

true, which tells Proxmox to boot the LXC after it’s created.

The rootfs section  inside the proxmox_lxc resource block defines 

the Proxmox storage device you want to use (here, set to zfs; yours 

might be local-lvm). The network section  defines the LXC network 

configuration. This uses your var.cidr to represent the IP address and 

netmask. The gw entry is the gateway IP address for your DevOps lab.

Chapter 11  Automate System Deployments with Terraform



324

The connection block  sets up an SSH connection between your 

workstation and the new LXC. This enables Terraform to log in to the 

instance and perform any tasks you want, which is why you set start = 

true earlier. If the instance isn’t started, Terraform can’t do any of the 

provisioning steps. The connection block uses the var.ip set in your 

variables.tf and the value of your local system’s private id_rsa key to 

complete a secure login.

The connection block is followed by the first provisioner block , 

which uses the file provisioner to copy a file from your workstation to the 

LXC. In this case, it’s a simple Ansible playbook called nginx.yml, shown 

in Listing 11-5, that you should create in your current project directory. 

Instead of this simple example, you could reference any of your previous 

Ansible playbooks. This is a quick example with Ansible running on the 

actual node, but you could use other Terraform provisioners to apply a 

playbook from your local workstation to the remote node.

Listing 11-5.  A very simple Ansible playbook to deploy NGINX, 

saved in nginx.yml

---

- hosts: localhost

  tasks:

    - name: Install NGINX

      apt:

        name: nginx

        state: latest

        update_cache: true

The final provisioner block  in your project’s main.tf file uses the 

remote-exec resource to execute commands on the running LXC. You can 

include multiple provision blocks to perform a wide variety of actions 

Chapter 11  Automate System Deployments with Terraform



325

that occur after the system is up and running. They use the information in 

the connection block, and provisioners can be used to copy files, create 

directories, install agents and applications, and much more.

�Create Your LXC with Terraform
With your variables.tf, main.tf, and nginx.yml files created and 

your environment variables set, you’re now ready to init, plan and apply 

your code. Execute these commands in your project directory on your 

workstation:

$ cd ~/terraform-repo/proxmox-lxc

$ terraform init

$ terraform plan

$ terraform apply

As with the previous Docker example, the init command installs the 

provider plugin (this time, telmate/proxmox) and starts tracking your 

project. The plan and apply commands begin the Terraform actions to 

provision and configure your node.

If you get an error during the Terraform steps, make sure your 

environment variables are set:

$ echo $PM_USER

terraform-prov@pve

$ echo $PM_PASS

password

When the provisioning is complete, check your Proxmox dashboard 

to confirm the LXC has been created. Since you set up this instance to use 

root and your id_rsa keys, you can shell into it from your workstation by 

running the following:

$ ssh root@10.128.1.51

Chapter 11  Automate System Deployments with Terraform



326

This Terraform project also deployed basic NGINX, so you can 

test that it’s installed by opening a browser window and going to 

http://10.128.1.51. You should see the default NGINX welcome screen.

�Make Updates or Destroy It All
As with the Docker example, you can make changes to your main.

tf and variables.tf code and rerun terraform apply to update your 

target system. One caveat: Your changes to your static files—like nginx.

yml—won’t automatically refresh on the Terraformed system. If you make 

changes to that file, you’ll need to destroy the current instance and run 

terraform apply again.

A key advantage of using variables is that you can pass override 

values at runtime with the -var flag. For example, if you want to create 

another instance from the same Terraform main.tf file used previously 

with different IP and hostname values, you can pass variables from the 

command line:

$ terraform apply -var ip="10.128.1.98" -var 

cidr="10.128.1.98/24" -var lxc_proxmox_host_name="ubuntu45"

To destroy a deployment, which shuts down and completely removes 

the Terraformed instance, you can simply use the destroy command:

$ terraform destroy

You’ll be prompted to confirm that you really want to delete the 

instance, and entering “yes” begins the process.

Chapter 11  Automate System Deployments with Terraform



327

�Conclusion
In this chapter, you learned the basics of Terraform to provision and 

configure Docker containers and an LXC host on Proxmox. Though these 

examples used your DevOps lab environment, the same principles apply to 

provisioning instances in cloud environments like AWS and Azure.

This Terraform example brings together many of the DevOps 

approaches you’ve learned in this book. Continue to experiment with 

these tools to further hone your Linux skills and embrace DevOps tools 

and practices.

Chapter 11  Automate System Deployments with Terraform



329

Index

A
Access Control List (ACL), 89
Ansible playbooks, 227–233
Application programming 

interfaces (APIs), 140
ARM-based computing 

devices, 221
ARM-based processors, 4

B
Bare-bones systems, 4
Bind

configure named.conf, 89–93
DNS configurations, 93
DNS server, 88
DNS slave server, 99
forward zone file, 94, 95
Internet, 88
named service, 88
operating system, 89
reverse zone file creation, 95–98

bind9, 88
Block devices, 26
Bridged networking

CentOS, 56–58
Debian, 58, 59
Fedora, 56–58

Netplan (Ubuntu), 66–68
openSUSE, 56–58
Ubuntu desktops, 58, 59

Built-in linting tool, 308

C
CentOS, 56–58
Chef InSpec, 258
cidr variable, 321
Cloning, 46, 47, 52, 83
Clustering capabilities, 262
Cluster Shell Commands tool, 264
Cluster-webmin link, 263
Cluster-webmin module, 260
Cluster Webmin Servers, 264
Code—combining 

configuration, 265
Command-line deployments

KVM virt-install command, 71
Proxmox qm command, 70

Command-line interface, 120
Community-contributed 

options, 314
Consumer-grade router, 14
Continuous integration and 

continuous delivery (CI/
CD), 279, 303

© John S. Tonello 2022 
J. S. Tonello, Practical Linux DevOps, https://doi.org/10.1007/978-1-4842-8318-9

https://doi.org/10.1007/978-1-4842-8318-9#DOI


330

Cookstyle, 240
Cool graphical tools, 281

D
Debian, 25, 58, 59
Deploy virtual machines, 41–46
DevOps, 1, 10, 23, 221

engineers, 310
lab, 310
lab subnet, 295
Linux and open source 

technologies, 279
principles, 222, 223
terms, 303
workflows, 291

Devops.lab domain, 92
DHCP server, 19, 82–84
Dig command, 102
DNS Server, 108–111
DNS slave server, 99

DNS slave test, 102, 103
DNS slave zone entries, 101
second host creation, 99, 100

Docker containers
base OS Docker image, 131
CMD, 135
dig command, 125
docker-compose, 124, 127
docker.io/ docker-ce, 124
docker ps command, 136
dovecot subfolder, 134
EXPOSE, 132
host, 162

HOSTNAME, 131
mailserver, 127
multicontainer RainLoop docker 

application, 168, 169
MX record, 125
MYPASS, 131
MYUSER, 131
postfix-debconf file, 133
RainLoop application, 

162, 164–168
rndc reload, 125
troubleshoot, 169, 170
TRUSTED_NETWORK, 131
virtual machine, 124
WORKDIR, 132

Docker example, 326
Dockerfiles, 295
Domain name server (DNS)

add internet access to private 
network switch, 79–82

bind (see Bind)
deploy a VM, 84
devops.lab, 77
DevOps Linux lab, 73
to DHCP/not to DHCP, 82–84
domain, 76
double-NATted 

configuration, 81
dual-homed physical/virtual 

machine, 82
graphical DNS deployments 

and management, 104, 105
IP address and hostname 

spreadsheet, 78

INDEX



331

Linux lab, 73, 74, 106
multiple networks  

(dual-homed), 75, 76
Proxmox hosts, 75, 78
Proxmox LXC template, 85–87
public domains, 76
public domain suffix, 76
static IP addresses, 77
virtual machines, workloads, 74

Domain-Specific Language 
(DSL), 235

Double-NATted configuration, 81
Dovecot, 116, 117
Dual-NIC network setup, 34–37

E
Email server

cloud-based services, 107
DNS Server, 108–111
Docker, 108
Dovecot, 108, 116, 117
lab environment, 107
Linux, 112, 113
open source email tools, 107
Postfix, 107, 114, 115
RainLoop, 107
security considerations, 117, 118
service test

email client, 121–123
mailutils, 120
sending and receiving mail, 

120, 121
Sendmail, 119

system users, 113
Ubuntu virtual machine, 112

Ethernet-over-power devices, 13

F
Fedora, 56–58
First commit, 288
Forward zone file, 94, 95
Fully qualified domain names 

(FQDNs), 77, 95, 141, 
240, 297

G
Git commands, 280
Git-enabled directory, 266
GitHub account, 294, 310

settings, 282
software development, 280
version control, 280

GitHub repo account, 285
.gitignore file, 286
GitLab, 295, 298, 303

CI/CD pipeline, 308
dashboard, 306
pipeline, 306
repository, 309
runner, 304
server, 276, 302

GitLab host
pipeline, 306
policies and rules, 295
registration-token, 306

INDEX



332

runner, 305
server, 303

Graphical DNS deployments and 
management, 104, 105

H
HashiCorp repository, 312
HashiCorp website, 313
Home-based ISP router, 15
HTTP server, 216, 217

I
InSpec, 267, 272

resources, 274
waiver, 267, 270

Intel-based Mac, 8
Internet, 9
Internet of Things (IoT) devices, 8–10
IPv6 addresses, 18
.iso files, 26, 42
ISP-provided routers, 13
ISP router, 13, 14

J
Jenkins, 295

K
Kernel-based Virtual Machine 

(KVM), 17
Kingdel models, 14

Kubernetes, 4
KVM virt-install command, 71

L
Lab router, 15
LAMP stack

Apache HTTP Server, 140
configuring apache, 149, 150
content-management 

platforms, 140
DNS Settings, 141–143
/etc/apache2/apache2.

conf, 148
/etc/apache2/sites-available 

file, 150–153
html and myserver, 149
install, packages, 143, 144
packages, 140, 141
PHP-based RainLoop webmail 

application, 139
snapshot, 153
web server  

directories, 144, 145
Web Server VM, 140, 141
websites in Apache, 145–147

Logical Volume Management 
(LVM), 28, 29, 38

Linux baseline profile, 267
Linux bridge, 36, 59–65
Linux containers (LXCs), 2, 24, 25, 

33, 36, 37, 39, 41, 44, 48–53
Linux home  

directory, 281

GitLab host (cont.)

INDEX



333

Linux lab hardware
CPU core considerations, 4, 5
deploying managed/

unmanaged 
switches, 14–17

DevOps, 1, 10
IoT devices, 8–10
ISP router, 13, 14
laptops, 7, 8
managed vs. unmanaged 

switches, 11, 12
100MB Ethernet port, 10
memory considerations, 5
network bridges, 17, 18
networks, 11
new equipment, 3
old PCs, 7, 8
physical Ethernet ports, 11
principles, 2
Proxmox virtual  

environment, 2
Raspberry Pis devices, 8–10
reserve IP address pools, 19
robust lab, 2
template container, 47–52
test and document, 19, 20
vendors, 10
virtualization platform, 7
virtual machines, 2
WiFi, 11

Linux shell, 302
Linux skills, 327
Linux systems, 139, 216
Linux workstation, 312

M
Mail transfer  

agent (MTA), 108, 114
MariaDB

adminer, 193–196, 199, 200
Apache server, 192
basic SQL  

commands, 175, 176
cloud-based applications, 171
containerized stack, 197, 198
database, 179–181
database tables, 184, 185
deleting entries, 188
multiple programming 

languages, 171
PHP container, 189–193
relational databases, 172
setting up and logging, 172–174
table, 181–184
updating entries, 186, 187
users and setting 

permissions, 177–179
Matching remote branch, 293
Microservices

definition, 161
DevOps principles, 223
Docker, 223
NGINX container, 224, 225

Mini computers, 5
mydatabase, 199
mynginx, 228
my-nginx-website.yml, 230
my-zfs, 39

INDEX



334

N
named.conf, 89–93
NETGEAR router, 81
Netplan, 58, 66
Network Access Translation 

(NAT), 17, 81
Network bridges, 17, 18
Network interface card 

(NIC), 17, 34
NetworkManager, 56, 59–65, 98
NGINX

configuration, 210–213
container, 316
install and configure, 209
manually  

installation, 209, 210
Proxmox Template, 213–215

NGINX deployment
Ansible, 227–229
Ansible playbooks, 229–233
automation, 226
NGINX Playbook, 233
web component, 226

nginx.devops.conf, 212, 232
NGINX example, 265
NGINX with Chef

configuration, 246–248
cookbook, 235–237
creation, recipe, 237–240
enterprise-level 

deployments, 234
InSpec Profile, 244–246
Linux system, 234
recipes, 235–237

template files, 241–244
Test Kitchen, 249–252

NVMe connectors, 6

O
OpenStack, 4
openSUSE, 56–58, 92, 93

P, Q
PHP

installation, 154–156
RainLoop webmail, 154

Ping tests, 83
Plain KVM, 52, 53
Postfix, 114, 115
Power-over-Ethernet (PoE), 12
Proxmox, 23, 24
Proxmox  

dashboard, 31, 32, 42, 325
Proxmox DevOps lab, 311
Proxmox environment, 274
Proxmox host dashboard, 40
Proxmox LXC template

DNS servers, 85
parameters, 86
second network interface, 87
$ ssh-keygen, 86
Ubuntu, 85

Proxmox qm command, 70
Proxmox replication, 274
Proxmox server, 295
Proxmox system, 3, 5, 6

INDEX



335

Proxmox virtual 
environment (PVE)

additional storage 
considerations, 37–39

basics, 2
BIOS settings, 27
block devices, 26
bridged networking

virt-manager, 68, 69
CentOS, 56–58
Debian, 58, 59
Fedora, 56–58
Netplan (Ubuntu), 66–68
openSUSE, 56–58
Ubuntu desktops, 58, 59

check for virtualization 
support, 54, 55

cluster, 39–41
command-line deployments

KVM virt-install 
command, 71

Proxmox qm command, 70
configuration, 29
dd command, 26, 27
Debian, 25
deploy an LXC template 

container, 47–52
deploy virtual machines, 41–46
dual-NIC network setup 

preparation, 34
error on the summary 

screen, 29
ext4, 29
initial system Proxmox boot, 30

installation, 24
install KVM and related 

utilities, 55, 56
.iso file, 25, 26
Linux bridge, 36

NetworkManager, 59–65
Linux lab Proxmox machine, 28
LVM, 28
network and DNS server, 29
network management 

interface, 28
network view for the lab host, 35
post-install 

configurations, 30–33
Proxmox dashboard view, 37
device sdc, 26
server replication with cloning 

and templates, 46, 47
set up plain KVM, 52, 53
single machine—Proxmox, 24
single-NIC network setup 

preparation, 33
Terraform, 317

Proxmox virtualization, 13
Proxmox VM storage disks, 44
Pointer records (PTR), 96, 97
Public GitHub repository, 265
Python 3 http.server, 216, 217

R
RainLoop webmail

admin panel, 158–160
permissions, 158

INDEX



336

setting up, 157
web-based application, 157

Raspberry Pi, 221
Raspberry Pi devices, 8–10
Remote GitHub repo, 284
Remote origin, 291
Replication, 275
Restoring databases, 276
Reverse zone file, 95–98
root_password variable, 321

S
SATA drive connectors, 6
Second network interface, 87
Secure Sockets Layer (SSL), 117
Sendmail, 119
Server management

cookbook example, 256
directory, 254
NGINX template, 254
ubuntu04.devops.lab, 257

Service reload postfix, 115
Simple Mail Transfer Protocol 

(SMTP), 107
Single-board devices, 9
Single-NIC network, 33
Spinning hard disks, 6
SSH keys, 284
Start of Authority (SOA), 95
Structured Query Language 

(SQL), 171
System virtualization, 24

T
Terraform, 312–314, 317–319, 

324, 326
actions, 325
environment variables, 325
steps, 325

Terraformed instance, 326
Terraform files, 319, 323
Terraform resources, 315
Traditional BIOS, 4
Transport Layer Security (TLS), 117
turnkey-nginx-php-fastcgi, 213
/24 network, 17

U
Ubuntu system, 281
UEFI booting frameworks, 4

V
Version control tool, 280
Virt-manager, 53, 68, 69
Virtual environment

Proxmox VE (see Proxmox 
virtual environment (PVE))

system virtualization, 24
Virtualization, 7, 23, 54
Virtual LANs (VLANs), 17, 18
Virtual machines (VM), 2, 5, 7, 

43, 45, 84
VLAN-aware

dual-NIC network setup, 34
single-NIC network setup, 33

RainLoop webmail (cont.)

INDEX



337

W, X
Waiver file, 268
Webmin, 254, 256
Webmin DNS module, 104
Webmin-enabled servers, 260
Webmin installation

configuration file, 259
dashboard, 261
default profile file, 258
InSpec profile, 258
servers, 265
setting up, 260
verify, 257

Web servers
HTTP server, 216, 217
LAMP environment, 203
MariaDB (MySQL), 203
NGINX, 203

PHP CLI Built-In Server, 217, 218
php-cli server, 218, 219
web-based applications, 203

WiFi, 11
WordPress, 275

browser view, 205
creation, 207
database, 206
graphical install, 205
graphical setup, 204
installation, 207–209
latest.tar, 204

Y, Z
YaST configuration tool, 104
YaST DNS management tool, 105
YaST dns-server tool, 105

INDEX


	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Gather Your Hardware
	The Basics: What You’ll Need to Build Your Linux Lab
	Using New Equipment for Your Lab
	CPU Core Considerations
	Memory Considerations
	Storage Considerations

	Using Old PCs and Laptops for Your Linux Lab
	Raspberry Pis and IoT Devices
	Building Your Network
	Managed vs. Unmanaged Switches
	Using Your ISP Router
	Deploy Managed and Unmanaged Switches
	Use Network Bridges and Bonds to Improve Connectivity

	Tips for Avoiding Common Hardware Headaches
	Reserve IP Address Pools Now, Not Later
	Test and Document Your Configurations

	Conclusion

	Chapter 2: Setting Up a Virtual Environment
	About the Proxmox Virtualization Environment (PVE)
	Set Up Proxmox
	Post-install Configurations

	Prepare a Single-NIC Network Setup: VLAN-Aware
	Prepare a Dual-NIC Network Setup: VLAN-Aware
	Additional Storage Considerations
	Thinking Ahead to Clustering

	Deploy Your First VM
	Server Replication with Cloning and Templates
	Deploy an LXC Template Container
	Set Up KVM
	Check for Virtualization Support
	Install KVM and Related Utilities

	Set Up Bridged Networking on AlmaLinux, Fedora, and openSUSE
	Set Up Bridged Networking on Debian and Ubuntu Desktops
	Set Up a Linux Bridge Using NetworkManager

	Set Up a Bridge Network with Netplan (Ubuntu)
	Run virt-manager and Create Your First KVM VM

	Command-Line Deployments
	The Proxmox qm Command
	The KVM virt-install Command

	Conclusion

	Chapter 3: Set Up a DNS Server
	Why It Matters
	Planning Your Network
	Work with the Gear You Have
	Will You Have Multiple Networks (Dual-Homed)?
	What Domain Name Will You Use?
	Reserving Pools of Addresses for Static and DHCP IP Addresses
	Configure Your Routers and Switches
	Add Internet Access to Your Private Network Switch
	To DHCP or Not to DHCP

	Deploy a VM to Host Your DNS Server
	Using a Proxmox LXC Template
	Install a Base Linux Template
	Enable a Second Network Interface

	Set Up Bind
	Configure named.conf
	Check Your DNS Configurations
	Create a Forward Zone File
	Create a Reverse Zone File
	Set Up an Optional DNS Slave Server
	Create a Second Host
	Set Up the DNS Slave Zone Entries
	Test Your DNS Slave

	Graphical DNS Deployments and Management
	Conclusion

	Chapter 4: Setting Up an Email Server
	Set Up a DNS Server to Handle Email
	Install Postfix and Dovecot
	Install Postfix
	Install Dovecot
	Mail Server Security Considerations
	Initial Email Service Test
	Install Sendmail
	Install mailutils
	Test Sending and Receiving Mail

	Set Up an Email Client to Use the Email Server
	Install Postfix and Dovecot in a Docker Container
	Conclusion

	Chapter 5: Building a LAMP Stack: Apache and PHP
	Why LAMP?
	Configure a Web Server VM and Install the Packages
	Update Your DNS Settings to Add Websites
	Install the Core LAMP Packages
	Create Two Web Server Directories
	Define Two Different Websites in Apache
	Finalize Settings for the First Website
	Configure Apache to Serve Up the Website Properly
	Create and Enable the Second Website
	Take a Snapshot to Preserve Your Configuration
	Use PHP with Your Website
	Test the PHP Installation

	Install RainLoop Webmail
	Set Up RainLoop
	Set RainLoop Permissions
	Configure RainLoop via the Admin Panel

	Deploy Apache, PHP, and RainLoop as Docker Containers
	How the Containers Interact
	Prepare the Docker Host
	Create a Docker Context for RainLoop
	Add Additional Docker Containers to the RainLoop Application

	Start the Multicontainer RainLoop Docker Application
	Troubleshoot the Docker Deployment

	Conclusion

	Chapter 6: Installing MariaDB and Creating a Simple Web Application
	Set Up and Log In to MariaDB
	Basic SQL Commands
	Create MariaDB Users and Set Permissions
	Create a Test MariaDB Database
	Create and Populate a Database Table
	Add Data to a Table
	Update Table Entries
	Delete Table Entries
	Read MariaDB Data with PHP
	Containerize It
	Create the PHP Container
	Create MariaDB and Adminer
	Launch Your Containerized Stack
	Try Out Adminer
	Conclusion

	Chapter 7: Web Server Alternatives
	Deploy WordPress
	Create a WordPress System User
	Finish the WordPress Installation

	Install and Configure NGINX
	Manually Install NGINX
	Configure NGINX

	Install NGINX Using a Proxmox Template
	When a Little HTTP Is All You Need
	Python 3 http.server
	Use the PHP CLI Built-In Server
	Run php-cli in a Container

	Conclusion

	Chapter 8: Containerizing and Automating Your Deployments
	Thinking in terms of Containers and Microservices
	Deploy an NGINX Container

	Automate Your NGINX Deployment
	Automate with Ansible
	Ansible Playbook Example
	Apply the NGINX Playbook

	Automate NGINX with Chef
	Create a Chef Cookbook and Recipes
	Create a Chef Recipe
	Create Templates
	Create a Chef InSpec Profile
	Apply and Test Your Chef Configuration
	Test with Test Kitchen
	Conclusion


	Chapter 9: Server Management and Maintenance
	A Closer Look at Webmin
	Deploy Webmin with Chef
	Verify Your Webmin Installation
	Set Up Webmin for Multiple-Server Management
	Add Other Webmin Servers
	Add Cluster Capabilities
	Test Some Cluster Actions

	A More DevOps Way to Analyze Systems
	Use Chef InSpec to Scan Systems
	Apply a Linux Benchmark Profile
	Create an InSpec Waiver File

	Other Ways to Apply InSpec Profiles
	Apply an InSpec Profile via the Chef Supermarket
	Create and Apply Your Own InSpec Profile

	Some Useful Backup Tools
	Set Up Proxmox Replication
	Back Up MariaDB Data
	Use Git to Store Your Code

	Conclusion

	Chapter 10: Extend Your DevOps Capabilities with Git
	Get Started with Git
	Create a GitHub Account
	The Advantage of SSH for Pushing
	Create a New Git Repo
	Create Some Content
	Share Your Code

	Create a GitLab Host
	Generate an SSL Key
	Use Your New GitLab Repo

	Other GitLab Capabilities
	A Bit on CI/CD
	Create a GitLab Runner
	Register Your Runner with Your GitLab Instance
	Create a Pipeline

	Conclusion

	Chapter 11: Automate System Deployments with Terraform
	Install Terraform
	A Terraform Example with Docker
	Use Git to Track Your Work
	Terraform Your First Bit of Infrastructure

	Use Terraform with Proxmox
	Configure Proxmox to Work with Terraform
	Create a variables.tf File
	Create Your LXC with Terraform
	Make Updates or Destroy It All

	Conclusion

	Index

