

Machine Learning
on Kubernetes

A practical handbook for building and using a
complete open source machine learning platform
on Kubernetes

Faisal Masood

Ross Brigoli

BIRMINGHAM—MUMBAI

Machine Learning on Kubernetes
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Publishing Product Manager: Dhruv Jagdish Kataria
Senior Editor: David Sugarman
Content Development Editor: Priyanka Soam
Technical Editor: Devanshi Ayare
Copy Editor: Safis Editing
Project Coordinator: Farheen Fathima
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Nilesh Mohite
Marketing Coordinators: Shifa Ansari, Abeer Riyaz Dawe

First published: June 2022
Production reference: 1190522

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80324-180-7
www.packt.com

http://www.packt.com

"To my daughter, Yleana Zorelle – hopefully, this book will help you
understand what Papa does for a living."

Ross Brigoli

"To my wife, Bushra Arif – without your support, none of this would have
become a reality"

Faisal Masood

Contributors

About the authors
Faisal Masood is a principal architect at Red Hat. He has been helping teams to design
and build data science and application platforms using OpenShift, Red Hat's enterprise
Kubernetes offering. Faisal has over 20 years of experience in building software and has
been building microservices since the pre-Kubernetes era.

Ross Brigoli is an associate principal architect at Red Hat. He has been designing and
building software in various industries for over 18 years. He has designed and built
data platforms and workflow automation platforms. Before Red Hat, Ross led a data
engineering team as an architect in the financial services industry. He currently designs
and builds microservices architectures and machine learning solutions on OpenShift.

About the reviewers
Audrey Reznik is a senior principal software engineer in the Red Hat Cloud
Services – OpenShift Data Science team focusing on managed services, AI/ML workloads,
and next-generation platforms. She has been working in the IT Industry for over 20 years
in full stack development relating to data science roles. As a former technical advisor and
data scientist, Audrey has been instrumental in educating data scientists and developers
about what the OpenShift platform is and how to use OpenShift containers (images)
to organize, develop, train, and deploy intelligent applications using MLOps. She is
passionate about data science and, in particular, the current opportunities with machine
learning and open source technologies.

Cory Latschkowski has made a number of major stops in various IT fields over the
past two decades, including high-performance computing (HPC), cybersecurity, data
science, and container platform design. Much of his experience was acquired within large
organizations, including one Fortune 100 company. His last name is pronounced Latch
- cow - ski. His passions are pretty moderate, but he will admit to a love of automation,
Kubernetes, RTFM, and bacon. To learn more about his personal bank security questions,
ping him on GitHub.

Shahebaz Sayed is a highly skilled certified cloud computing engineer with exceptional
development ability and extensive knowledge of scripting and data serialization languages.
Shahebaz has expertise in all three major clouds – AWS, Azure, and GCP. He also has
extensive experience with technologies such as Kubernetes, Terraform, Docker, and others
from the DevOps domain. Shahebaz is also certified with global certifications, including
AWS Certified DevOps Engineer Professional, AWS Solution Architect Associate, Azure
DevOps Expert, Azure Developer Associate, and Kubernetes CKA. He has also worked
with Packt as a technical reviewer on multiple projects, including AWS Automation
Cookbook, Kubernetes on AWS, and Kubernetes for Serverless Applications.

Table of Contents
Preface

Part 1: The Challenges of Adopting ML and
Understanding MLOps (What and Why)

1
Challenges in Machine Learning

Understanding ML� 4
Delivering ML value� 5
Choosing the right approach� 6
The importance of data� 6

Facing the challenges of
adopting ML� 7

Focusing on the big picture� 7
Breaking down silos� 10
Fail-fast culture� 11

An overview of the ML platform� 12
Summary� 14
Further reading� 15

2
Understanding MLOps

Comparing ML to traditional
programming � 18
Exploring the benefits of DevOps�19
Understanding MLOps� 21
ML� 21
DevOps� 23
ML project life cycle� 25

Fast feedback loop� 26
Collaborating over the project life cycle� 28

The role of OSS in ML projects� 29
Running ML projects on
Kubernetes� 31
Summary� 32
Further reading� 32

viii Table of Contents

3
Exploring Kubernetes

Technical requirements� 34
Exploring Kubernetes major
components� 34
Control plane� 35
Worker nodes� 36
Kubernetes objects required to run
an application� 37

Becoming cloud-agnostic
through Kubernetes� 41

Understanding Operators� 42
Setting up your local
Kubernetes environment� 44
Installing kubectl� 44
Installing minikube� 47
Installing OLM� 57

Provisioning a VM on GCP� 59
Summary� 63

Part 2: The Building Blocks of an MLOps
Platform and How to Build One on
Kubernetes

4
The Anatomy of a Machine Learning Platform

Technical requirements� 68
Defining a self-service platform� 68
Exploring the data engineering
components� 69
Data engineer workflow� 72

Exploring the model
development components� 72
Understanding the data scientist
workflow� 75

Security, monitoring, and
automation� 76
Introducing ODH� 77
Installing the ODH operator on
Kubernetes� 79
Enabling the ingress controller on the
Kubernetes cluster� 82
Installing Keycloak on Kubernetes� 83

Summary� 88
Further reading� 89

Table of Contents ix

5
Data Engineering

Technical requirements� 92
Configuring Keycloak for
authentication� 92
Importing the Keycloak configuration
for the ODH components� 93
Creating a Keycloak user� 98

Configuring ODH components� 100
Installing ODH� 102

Understanding and using
JupyterHub� 105
Validating the JupyterHub installation� 107
Running your first Jupyter notebook� 113

Understanding the basics of
Apache Spark� 115
Understanding Apache Spark
job execution� 116

Understanding how ODH
provisions Apache Spark
cluster on-demand� 118
Creating a Spark cluster� 118
Understanding how JupyterHub
creates a Spark cluster� 120

Writing and running a Spark
application from Jupyter
Notebook� 123
Summary� 130

6
Machine Learning Engineering

Technical requirements� 132
Understanding ML engineering� 132
Using a custom notebook image�133
Building a custom notebook
container image� 134

Introducing MLflow� 139
Understanding MLflow components� 140
Validating the MLflow installation� 142

Using MLFlow as an
experiment tracking system� 147
Adding custom data to the
experiment run� 158

Using MLFlow as a model
registry system� 164
Summary� 168

7
Model Deployment and Automation

Technical requirements� 170
Understanding model
inferencing with Seldon Core� 170

Wrapping the model using Python� 171
Containerizing the model� 172

x Table of Contents

Deploying the model using the
Seldon controller� 174

Packaging, running, and
monitoring a model using
Seldon Core� 179
Introducing Apache Airflow� 192
Understanding DAG� 192
Exploring Airflow features� 194
Understanding Airflow components� 194

Validating the Airflow installation� 196
Configuring the Airflow DAG repository� 197
Configuring Airflow runtime images� 199

Automating ML model
deployments in Airflow� 210
Creating the pipeline by using the
pipeline editor� 210

Summary� 220

Part 3: How to Use the MLOps Platform and
Build a Full End-to-End Project Using the
New Platform

8
Building a Complete ML Project Using the Platform

Reviewing the complete picture
of the ML platform� 224
Understanding the business
problem� 226
Data collection, processing,
and cleaning� 227
Understanding data sources, location,
and the format� 227
Understanding data processing and
cleaning� 227

Performing exploratory
data analysis� 229

Understanding sample data� 229

Understanding feature
engineering � 232
Data augmentation� 233

Building and evaluating the
ML model� 233
Selecting evaluation criteria� 233
Building the model� 234
Deploying the model� 235

Reproducibility� 236
Summary� 236

9
Building Your Data Pipeline

Technical requirements� 238 Automated provisioning of a
Spark cluster for development � 238

Table of Contents xi

Writing a Spark data pipeline� 241
Preparing the environment� 242
Understanding data� 245
Designing and building the pipeline� 254
Using the Spark UI to monitor your
data pipeline� 268

Building and executing a data
pipeline using Airflow� 274
Understanding the data pipeline DAG� 275
Building and running the DAG� 278

Summary� 291

10
Building, Deploying, and Monitoring Your Model

Technical requirements� 294
Visualizing and exploring data
using JupyterHub� 294
Building and tuning your model
using JupyterHub� 302
Tracking model experiments
and versioning using MLflow� 310
Tracking model experiments� 311
Versioning models� 314

Deploying the model as
a service� 315
Calling your model� 323

Monitoring your model� 324
Understanding monitoring
components� 325
Configuring Grafana and a dashboard� 328

Summary� 335

11
Machine Learning on Kubernetes

Identifying ML platform use
cases� 338
Considering AutoML� 338
Commercial platforms� 339
ODH� 340

Operationalizing ML� 340
Setting the business expectations� 340
Dealing with dirty real-world data� 341
Dealing with incorrect results� 342
Maintaining continuous delivery� 343

Managing security� 343
Adhering to compliance policies� 344
Applying governance� 344

Running on Kubernetes� 346
Avoiding vendor lock-ins� 347
Considering other Kubernetes
platforms� 347

Roadmap� 348
Summary� 349
Further reading� 350

Index
Other Books You May Enjoy

Preface
Machine Learning (ML) is the new black. Organizations are investing in adopting and
uplifting their ML capabilities to build new products and improve customer experience.
The focus of this book is on assisting organizations and teams to get business value out of
ML initiatives. By implementing MLOps with Kubernetes, data scientists, IT operations
professionals, and data engineers will be able to collaborate and build ML solutions that
create tangible outcomes for their business. This book enables teams to take a practical
approach to work together to bring the software engineering discipline to the ML project
life cycle.

You'll begin by understanding why MLOps is important and discover the different
components of an ML project. Later in the book, you'll design and build a practical
end-to-end MLOps project that'll use the most popular OSS components. As you
progress, you'll get to grips with the basics of MLOps and the value it can bring to your
ML projects, as well as gaining experience in building, configuring, and using an open
source, containerized ML platform on Kubernetes. Finally, you'll learn how to prepare
data, build and deploy models quickly, and automate tasks for an efficient ML pipeline
using a common platform. The exercises in this book will help you get hands-on with
using Kubernetes and integrating it with OSS, such as JupyterHub, MLflow, and Airflow.

By the end of this book, you'll have learned how to effectively build, train, and deploy an
ML model using the ML platform you built.

Who this book is for
This book is for data scientists, data engineers, IT platform owners, AI product owners,
and data architects who want to use open source components to compose an ML
platform. Although this book starts with the basics, a good understanding of Python
and Kubernetes, along with knowledge of the basic concepts of data science and data
engineering, will help you grasp the topics covered in this book much better.

xiv Preface

What this book covers
Chapter 1, Challenges in Machine Learning, discusses the challenges organizations face
in adopting ML and why a good number of ML initiatives may not deliver the expected
outcomes. The chapter further discusses the top few reasons why organizations face
these challenges.

Chapter 2, Understanding MLOps, continues building on the identified set of problems
from Chapter 1, Challenges in Machine Learning, and discusses how we can tackle the
challenges in adopting ML. The chapter will provide the definition of MLOps and how
it helps organizations to get value out of their ML initiatives. The chapter also provides a
blueprint on how companies can adopt MLOps in their ML projects.

Chapter 3, Exploring Kubernetes, first describes why we have chosen Kubernetes as the
basis for MLOps in this book. The chapter further defines the core concept of Kubernetes
and assists you in creating an environment where the code can be tested. The world is
changing fast and part of this high-velocity disruption is the availability of the cloud and
cloud-based solutions. This chapter provides an overview of how the Kubernetes-based
platform can give you the flexibility to run your solution anywhere.

Chapter 4, The Anatomy of a Machine Learning Platform, takes a 1,000-foot view of what
an ML platform looks like. You already know what problems MLOps solves. This chapter
defines the components of an MLOps platform in a technology-agnostic way. You will
build a solid foundation on the core components of an MLOps platform.

Chapter 5, Data Engineering, covers an important part of any ML project that is often
missed. A good number of ML tutorials/books start with a clean dataset, maybe a CSV
file to build your model against. The real world is different. Data comes in many shapes
and sizes and it is important that you have a well-defined strategy to harvest, process, and
prepare data at scale. This chapter will define the role data engineering plays in a successful
ML project. It will discuss OSS tools that can provide the basis for data engineering. The
chapter will then talk about how you can install these toolsets on the Kubernetes platform.

Chapter 6, Machine Learning Engineering, will move the discussion to the model building
tuning and deployment activities of an ML development life cycle. The chapter will discuss
providing a self-service solution to data scientists so they can work more efficiently and
collaborate with data engineering teams and fellow data scientists using the same platform.
It will also discuss OSS tools that can provide the basis for model development. The chapter
will then talk about how you can install these toolsets on the Kubernetes platform.

Preface xv

Chapter 7, Model Deployment and Automation, covers the deployment phase of the ML
project life cycle. The model you build knows the data you provided to it. In the real
world, however, the data changes. This chapter discusses the tools and techniques to
monitor your model performance. This performance data could be used to decide whether
the model needs retraining on a new dataset or whether it's time to build a new model for
the given problem.

Chapter 8, Building a Complete ML Project Using the Platform, will define a typical ML
project and how each component of the platform is utilized in every step of the project life
cycle. The chapter will define the outcomes and requirements of the project and focus on
how the MLOps platform facilitates the project life cycle.

Chapter 9, Building Your Data Pipeline, will show how a Spark cluster can be used to ingest
and process data. The chapter will show how the platform enables the data engineer to
read the raw data from any storage, process it, and write it back to another storage. The
main focus is to demonstrate how a Spark cluster can be created on-demand and how
workloads could be isolated in a shared environment.

Chapter 10, Building, Deploying, and Monitoring Your Model, will show how the JuyterHub
server can be used to build, train, and tune models on the platform. The chapter will show
how the platform enables the data scientist to perform the modeling activities in a self-
serving fashion. This chapter will also introduce MLflow as the model experiment tracking
and model registry component. Now you have a working model, how do you want to share
this model for the other teams to consume? This chapter will show how the Seldon Core
component allows non-programmers to expose their models as REST APIs. You will see
how the deployed APIs automatically scale out using the Kubernetes capabilities.

Chapter 11, Machine Learning on Kubernetes, will take you through some of the key ideas
to bring forth with you to further your knowledge on the subject. This chapter will cover
identifying use cases for the ML platform, operationalizing ML, and running on Kubernetes.

To get the most out of this book
You will need a basic working knowledge of Kubernetes and Python to get the most out of
this book's technical exercises. The platform uses multiple software components to cover
the full ML development life cycle. You will need the recommended hardware to run all
the components with ease.

xvi Preface

Running the platform requires a good amount of compute resources. If you do not have
the required number of CPU cores and memory on your desktop or laptop computer, we
recommend running a virtual machine on Google Cloud or any other cloud platform.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

A good follow-up after you finish with this book is to create a proof of concept within your
team or organization using the platform. Assess the benefits and learn how you can further
optimize your organization's data science and ML project life cycle.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Machine-Learning-on-Kubernetes. If
there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781803241807_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Notice that you will need to adjust the following command and
change the quay.io/ml-on-k8s/ part before executing the command."

A block of code is set as follows:

docker tag scikit-notebook:v1.1.0 quay.io/ml-on-k8s/scikit-
notebook:v1.1.0

https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes
https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781803241807_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803241807_ColorImages.pdf
http://quay.io/ml-on-k8s/

Preface xvii

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

gcloud compute project-info add-metadata --metadata enable-
oslogin=FALSE

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "The
installer will present the following License Agreement screen. Click I Agree."

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://packt.com

xviii Preface

Share Your Thoughts
Once you've read Machine Learning on Kubernetes, we'd love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://packt.link/r/1-803-24180-2

In this section, we will define what MLOps is and why it is critical to the success of your
AI journey. You will go through the challenges organizations may encounter in their AI
journey and how MLOps can assist in overcoming those challenges.

The last chapter of this section will provide a refresher on Kubernetes and the role
it plays in bringing MLOps to the OSS community. This is by no means a guide to
Kubernetes, and you should consult other sources for a guide on Kubernetes.

This section comprises the following chapters:

•	 Chapter 1, Challenges in Machine Learning

•	 Chapter 2, Understanding MLOps

•	 Chapter 3, Exploring Kubernetes

Part 1:
The Challenges of
Adopting ML and

Understanding
MLOps

(What and Why)

1
Challenges in

Machine Learning
Many people believe that artificial intelligence (AI) is all about the idea of a humanoid
robot or an intelligent computer program that takes over humanity. The shocking news is
that we are not even close to this. A better term for such incredible machines is human-
like intelligence or artificial general intelligence (AGI).

So, what is AI? A more straightforward answer would be a system that uses a combination
of data and algorithms to make predictions. AI practitioners call it machine learning or
ML. A particular subset of ML algorithms, called deep learning (DL), refers to an ML
algorithm that uses a series of steps, or layers, of computation (Goodfellow, Bengio, and
Courville, 2017). This technique employs deep neural networks (DNNs) with multiple
layers of artificial neurons that mimic the architecture of the human brain. Though it
sounds complicated enough, it does not always mean that all DL systems will have a better
performance compared to other AI algorithms or even a traditional programming approach.

ML is not always about DL. Sometimes, a basic statistical model may be a better fit
for a problem you are trying to solve than a complex DNN. One of the challenges of
implementing ML is about selecting the right approach. Moreover, delivering an ML
project comes with other challenges, not only on the business and technology side but
also in people and processes. These challenges are the primary reasons why most ML
initiatives fail to deliver their expected value.

4 Challenges in Machine Learning

In this chapter, we will revisit a basic understanding of ML and understand the challenges
in delivering ML projects that can lead to a project not delivering its promised value.

The following topics will be covered:

•	 Understanding ML

•	 Delivering ML value

•	 Choosing the right approach

•	 Facing the challenges of adopting ML

•	 An overview of the ML platform

Understanding ML
In traditional computer programming, a human programmer must write a clear set of
instructions in order for a computer program to perform an operation or provide an
answer to a question. In ML, however, a human (usually an ML engineer or data scientist)
uses data and an algorithm to determine the best set of parameters for a model to yield
answers or predictions that are usable. While traditional computer programs provide
answers using exact logic (Yes/No, Correct/Wrong), ML algorithms involve fuzziness (Yes/
Maybe/No, 80% certain, Not sure, I do not know, and so on).

In other words, ML is a technique for solving problems by using data along with an
algorithm, statistical model, or a neural network, to infer or predict the desired answer
to a question. Instead of explicitly writing instructions on how to solve a problem, we
use a bunch of examples and let the algorithm figure out the best way (the best set of
parameters) to solve the problem. ML is useful when it is impossible or extremely difficult
to write a set of instructions to solve a problem. A typical example problem where ML
shines is computer vision (CV). Though it is easy for any normal human to identify a cat,
it is impossible or extremely difficult to manually write code to identify if a given image is
of a cat or not. If you are a programmer, try thinking about how you would write this code
without ML. This is a good mental exercise.

Delivering ML value 5

The following diagram illustrates where DL and ML sit in terms of AI:

Figure 1.1 – Relationship between AI, ML, and DL

AI is a broad subject covering any basic, rule-based agent system that can replace a human
operator, ML, and DL. But ML alone is another broad subject. It covers several algorithms,
from basic linear regression to very deep convolutional neural networks (CNNs). In
traditional programming, no matter which language or framework we use, the process
of developing and building applications is the same. In contrast, ML has a wide variety
of algorithms, and sometimes, they require a vastly different approach to utilize and
build models from. For example, a generative adversarial network (GAN), which is an
architecture used in many creative ML models to generate fake human faces, is trained
differently to a basic decision tree model.

Because of the nature of ML projects, some practices in software engineering may not
always apply to ML, and some practices, processes, and tools that are not present in
traditional programming must be invented.

Delivering ML value
There are many books, videos, and lectures available on ML and its related topics. In this
book, we will cover a more adaptive approach and show how open source software (OSS)
can provide the basis for you and your organization to benefit from the AI revolution.

In later chapters, we will tackle the challenges behind operationalizing ML projects by
deploying and using an open source toolchain on Kubernetes. Toward the end of the
book, we will build a reusable ML platform that provides essential features that will help
contribute to delivering a successful ML project.

6 Challenges in Machine Learning

Before we dig deeper into the software, we must have foundational knowledge, and we
must know the practical steps required to successfully deliver business value with ML
initiatives. With this knowledge, we will be able to address some of the challenges of
implementing an ML platform and identify how they will help deliver the expected value
from our ML projects. The primary reason why these promised values are not realized is
that they don't get to production. For example, imagine you built an excellent ML model
that predicts the outcome of football World Cup matches, but no one could use it during
the tournament. As a result, even though the model is successful, it failed to deliver its
expected business value. Most organization's AI and ML initiatives are in the same state.
The data science or ML engineering team may have built a perfectly working ML model
that could have helped the organization's business and/or its customers; however, these
models do not usually get deployed to production. So, what are the challenges teams face
that prevent them from putting their ML models into production?

Choosing the right approach
Before deciding to use ML for a given project, understand the problem first and assess if
it can be solved by ML. Invest enough time in working with the right stakeholder to see
what the expectations are. Some problems may be better suited to traditional approaches,
such as when you have predefined business rules for a given system. It is faster and easier
to code rules than is it to train a model, plus you do not need a huge amount of data.

While deciding whether to use ML or not, you can think in terms of whether pattern-
based results will work for your problem. If you are building a system that reads data
from the frequent-flyer database of an airline to find customers to which you want to
send a promotion, a rule-based system may also give you good and acceptable results.
An ML-based system may give you better matches for certain scenarios, but will the time
spent on building this system be worth it?

The importance of data
The efficiency of your ML model depends on the quality and accuracy of the data, but
unfortunately, data collection and processing activities do not get the attention they
deserve, which proves costly in later stages of the project in terms of the model not being
suitable enough for the given task.

"Everyone wants to do the model work, not the data work."

– Data Cascades in High-Stakes AI, Sambasivan et al. (see the Further
reading section)

Facing the challenges of adopting ML 7

The paper cited here discusses this challenge. An interesting example quoted in the paper
is of a team building a model to detect a particular pattern from patient scans, which
works brilliantly with test data. However, the model failed in production because the
scans being fed onto the model contained tiny dust particles, resulting in the inferior
performance of the model. This example is a classic case of a team being focused on model
building and not on how it will be used in the real world.

One thing that teams should put focus on is data validation and cleansing. Many times,
data is often missing or is not correct—for example, a string field in a number column,
different date formats in the same field, or the same identifier (ID) for different records if
the records come from different systems. All this data anomaly may result in an inefficient
model that will lead to inferior performance.

Once you've been through this process and come to the decision that yes, ML is the way to
go… what next?

Facing the challenges of adopting ML
Organizations are eager to adopt ML to drive their business growth. In many projects, the
teams become too focused on technical brilliance while not delivering the business value
expected from the ML initiative. This can cause early failures that may result in reduced
investment for future projects. These are the two main challenges that businesses are
facing in making ML mainstream in all the various parts of the business, as outlined here:

•	 Keeping the focus on the big picture

•	 Siloed teams

Focusing on the big picture
The first challenge organizations face is building an ecosystem where ML models create
value for the business. The challenging part is that teams often do not focus on all aspects of
a project and instead focus only on specific areas, resulting in poor value for the business.

How many organizations that we know of are successful in their ML journey? Beyond
the Googles, Metas (formerly Facebook), and Netflixs of the world, there are few success
stories. The number one reason is that the teams put focus just on building the model.
So, what else is there beyond the algorithm? Google published a paper about the hidden
technical debt in ML projects (see the Further reading section at the end of this chapter),
and it provides a good summary of things that we need to consider to be successful.

8 Challenges in Machine Learning

Have a look at the following diagram:

Figure 1.2 – The components of an ML system

Can you see the small block in Figure 1.2? The block in the picture captioned ML is the
ML model development part, and you can see that there are a lot more processes involved
in ML projects. Let's understand a few of them, as follows:

•	 Data collection and data verification: To have a reliable and trustworthy model, we
need a good set of data. ML is all about finding patterns in the data and predicting
unseen data results using those patterns. Therefore, the better the quality of your
data, the better your model will perform. The data, however, comes in all shapes and
sizes. Some of it may reside in files, some in proprietary databases; a dataset may
come from data streams, and some data may need to be harvested from Internet of
Things (IoT) devices. On top of that, the data may be owned by different teams with
different security and regulatory requirements. Therefore, you need to think about
technologies that allow you to collect, transform, and process data from various
sources and in a variety of formats.

•	 Feature extraction and analysis: Often, assumptions about data quality and
completeness are incorrect. Data science teams perform an activity called
exploratory data analysis (EDA) in which they read and process data from various
sources as fast as they can. Teams further improve their understanding of the data
before they invest time in processing the data at scale and going to the model-
building stage. Think about how your team or organization can facilitate the data
exploration to speed up your ML journey.

Facing the challenges of adopting ML 9

Data analysis leads to a better understanding of data, but feature extraction is another
thing. This is a process of identifying, through experiments, a set of data attributes
that influences the accuracy of the model output and identifying which attributes
are considered irrelevant or considered noise. For example, in an ML model that
classifies if a bank transaction is fraudulent or not, the name of the account holder
is considered to be irrelevant, or noise, while the amount of the transaction could
be an important feature. The output of this process is a transformed version of the
dataset that contains only relevant features and is formatted for consumption in the
ML model training process or fitness function. This is sometimes called a feature set.
Teams need a tool for performing such analysis and transforming data into a format
that is consumable for model training. Data collection, feature extraction, and analysis
are also collectively called feature engineering (FE).

•	 Infrastructure, monitoring, and resource management: You need computers to
process and explore data, build and train your models, and deploy ML models for
consumption. All these activities need processing power and storage capacity, at
the lowest possible cost. Think about how your team will get access to hardware
resources on-demand and in a self-service fashion. You need to plan how data
scientists and engineers will be able to request the required resources in the fastest
manner. At the same time, you still need to be able to follow your organization's
policies and procedures. You also need system monitoring to optimize resource
utilization and improve the operability of your ML platform.

•	 Model development: Once you have data available in the form of consumable
features, you need to build your models. Model building requires many iterations
with different algorithms and different parameters. Think about how to track
the outcomes of different experiments and where to store your models. Often,
different teams can reuse each other's work to increase the velocity of the teams
further. Think about how teams can share their findings. Teams must have a tool
that can facilitate model training and experiment runs, record model performance
and experiment metadata, store models, and manage the tagging of models and
promotion to an acceptable and deployable state.

•	 Process management: As you see, there are a lot of things to be done to make a
useful model. Think about the processes of automating model deployment and
monitoring processes. Different personas would be working on different things
such as data tasks, model tasks, infrastructure tasks, and more. The team needs
to collaborate and share to achieve a particular outcome. The real world keeps on
changing: once your model is deployed into production, you may need to retrain
your model with new data regularly. All these activities need well-defined processes
and automated stages so that the team can continue working on high-value tasks.

10 Challenges in Machine Learning

In summary, you will need an ecosystem that can provide solution components for all of
the following building blocks. This single platform will increase the team's velocity via
consistent experience within the team for all the needs of an ML system:

•	 Fetching, storing, and processing data

•	 Training, tuning, and tracking models

•	 Deploying and monitoring models

•	 Automating repetitive tasks, such as data processing and model deployment

But how can we make different teams collaborate and use a common platform to do
their tasks?

Breaking down silos
To complete an ML project, you need to have a team that comprises various roles.
However, with diverse roles, there comes a challenge of communication, team dynamics,
and conflicting priorities. In enterprises, these roles often belong to different teams in
different business units (BUs).

ML projects need a variety of teams and personas to be successful. The following
screenshot shows some of the roles and responsibilities that are required to complete a
simple ML project:

Figure 1.3 – Silos involved in ML projects

Facing the challenges of adopting ML 11

Let's look at these roles in more detail here:

•	 Data scientist: This role is the most understood one. This persona or team is
responsible for exploring the data and running experiment iterations to determine
which algorithm is suitable for a given problem.

•	 Data engineers: The persona or team in this role is responsible for ingesting data from
various sources, cleaning the data, and making it useful for the data science teams.

•	 Developers and operations: Once the model is built, this team is responsible for
taking the model and deploying it to be used. The operations team is responsible for
making sure that computers and storage are available for the other teams to perform
data processing, model life-cycle operations, and model inference.

•	 A business subject-matter expert (SME): Even though data scientists build the
ML model, understanding data and the business domain is critical to building
the right model. Imagine a data scientist who is building a model for predicting
COVID-19 without understanding the different parameters. An SME, which would
be a medical doctor in this case, would be required to assist the data scientists in
understanding data before going on to the model-building phase.

Of course, even with the building blocks in place, you're unlikely to succeed at the
first attempt.

Fail-fast culture
Building a cross-functional team is not enough. Make sure that the team is empowered to
make its own decisions and feels comfortable experimenting with different approaches.
The data and ML fields are fast-moving, and the team may choose to adapt a recent
technology or process or let go of an existing one based on the given success criteria.

Form a team of people who are passionate about the work, and when you give them
autonomy, you will have the best possible outcome. Enable your teams so that they can
adapt to change quickly and deliver value for your business. Establish an iterative and fast
feedback cycle where teams receive feedback on work that has been delivered so far. A
quick feedback loop will put more focus on solving the business problem.

However, this approach brings its own challenges. Adopting modern technologies may
be difficult and time-consuming. Think of Amazon Marketplace: if you want to sell some
new hot thing, by using Amazon Marketplace, you can bring your product to market
faster because the marketplace takes care of a lot of moving parts required to make a
sale. The ML platform you will learn about in this book enables you to experiment with
modern approaches and modern technologies with ease by supplying basic common
services and sandbox environments for your team to experiment fast.

12 Challenges in Machine Learning

It is critical to the success of projects that teams that belong to distinct groups form a
cross-functional and autonomous team. This new team will move with higher velocity
without internal friction and avoid tedious processes and delays. It is critical that the
cross-functional team is empowered to drive its own decisions and be supported with
self-serving platforms so it can work in an independent manner. The ML platform
you will see in this book will provide the basis of one such platform where teams can
collaborate and share.

Now, let's take a look at what kind of platform will help you address the challenges we
have discussed.

An overview of the ML platform
In this section, we will talk about the capabilities of the ML platform that you will need
to consider. The aim is to make you aware of the basic building blocks that could form an
ecosystem for your team to help you in your ML journey. An ML platform can be thought
of as a set of components that assists in the faster development and deployment of ML
models and data pipelines.

There are three main characteristics of an ML platform, as outlined here:

•	 A complete ecosystem: The platform should provide an end-to-end (E2E) solution
that includes data life-cycle management, ML life-cycle management, application
life-cycle management, and observability.

•	 Built on open standards: The platform should provide a way to extend and build
on the existing baseline. Because the field is fast-moving, it is critical that you can
further enhance, tailor, and optimize platforms for your specific needs.

•	 Self-serving: The platform should be able to provide the resources required by
teams automatically and on-demand, from hardware requests to deploying software
in production. The platform automates the provisioning of resources based on
enterprise controls and recovers them once the job is completed. The resources
can be central processing units (CPUs), memory, or disk, or can be software such
as integrated development environments (IDEs) to write code or a combination
of these.

An overview of the ML platform 13

The following diagram shows the various components of an ML platform that serves
different personas, allowing them to collaborate on a common platform:

Figure 1.4 – Personas and their interaction with the platform

Apart from the characteristics presented in Figure 1.4, the platform must have the
following technical capabilities:

•	 Workflow automation: The platform should have some form of workflow
automation capability where both data engineers can create jobs that perform
repetitive tasks such as data ingestion and preparation and data scientists can
orchestrate model training and automate model deployments.

•	 Security: The platform must be secured to prevent data leaks and data loss that can
have a negative impact on the business.

•	 Observability: We do not want to run applications without observability, whether
it is a traditional application or an ML model. Deploying applications in production
without observability is like riding a bike blindfolded. The platform should have a
good amount of observability where you can monitor the health and performance
of the entire system or sub-system in near real time. This should also include an
alerting capability.

•	 Logging: Logging plays a key role in understanding what happened when systems
start behaving in an unexpected way. The platform must have a solid logging
mechanism to allow operations teams to better support the ML project.

14 Challenges in Machine Learning

•	 Data processing and pipelining: Because ML projects rely on a huge amount of
data, the platform must include a reliable fully featured data processing and data
pipelining solution that can scale horizontally.

•	 Model packaging and deployment: Not all data scientists are experienced software
engineers. Although some may have an experience in writing applications, it is not
safe to assume that all data scientists can write production-grade applications and
deploy them to production. Therefore, the platform must be able to automatically
package an ML model into an application and serve it.

•	 ML life cycle: The platform must also be capable of managing ML experiments,
tracking performance, storing training and experiment metadata and feature sets,
and versioning models. This not only allows data scientists to work efficiently, but
also allows them to work collaboratively.

•	 On-demand resource allocation: One important feature an ML platform should
have is the capability that allows data scientists and data engineers to provision
their own runtime resources automatically and on-demand. This eliminates the
need for manual requisition of resources and eliminates time wasted on waiting and
handovers with operations teams. The platform must allow platform users to create
their own environment and to allocate the right amount of compute resources they
need to do their jobs.

There are already platform products that have most, if not all, of the capabilities you have
just learned about. What you will learn in the later chapters of this book is how to build
one such platform based on OSS on top of Kubernetes.

Summary
Even though ML is not new, recent advancements in relatively cheap computing power
have allowed many companies to start investing in it. This widespread availability of
hardware comes with its own challenges. Often, teams do not put the focus on the big
picture, and that may result in ML initiatives not delivering the value they promise.

In this chapter, we have discussed two common challenges that enterprises face while
going through their ML journey. The challenges span from the technology adoption to
the teams and how they collaborate. Being successful with your ML journey will require
time, effort, and practice. Expect it to be more than just a technology change. It will
require changing and improving the way you collaborate and use technology. Make your
team autonomous and prepare it to adapt to changes, enable a fail-fast culture, invest in
technology, and always keep an eye on the business outcome.

Further reading 15

We have also discussed some of the important attributes of an E2E ML platform. We will
talk about this topic in-depth in the later parts of this book.

In the next chapter, we will introduce an emerging concept in ML projects, ML operations
(MLOps). Through this, the industry is trying to bring the benefits of software engineering
practices to ML projects. Let's dig in.

Further reading
If you want to learn more about the challenges in machine learning, you might be
interested in the following articles as well.

•	 Hidden Technical Debt in Machine Learning, Sculley et al., 2015: https://
papers.nips.cc/paper/5656-hidden-technical-debt-in-
machine-learning-systems.pdf

•	 Data Cascades in High-Stakes AI, Sambasivan et al., 2021: https://storage.
googleapis.com/pub-tools-public-publication-data/
pdf/0d556e45afc54afeb2eb6b51a9bc1827b9961ff4.pdf

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/0d556e45afc54afeb2eb6b51a9bc1827b9961ff4.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/0d556e45afc54afeb2eb6b51a9bc1827b9961ff4.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/0d556e45afc54afeb2eb6b51a9bc1827b9961ff4.pdf

2
Understanding

MLOps
Most people from software engineering backgrounds know about the term development-
operations (DevOps). To us, DevOps is about collaboration and shared responsibilities
across different teams during the software development life cycle (SDLC). The teams
are not limited to a few information technology (IT) teams; instead, it involves everyone
from the organization who is a stakeholder in the project. No more segregation between
building software (developers' responsibility) and running it in production (operations'
responsibility). Instead, the team owns the product. DevOps is popular because it helps
teams increase the velocity and reliability of the software being developed.

In this chapter, we will cover the following topics:

•	 Comparing machine learning (ML) to traditional programming

•	 Exploring the benefits of DevOps

•	 Understanding ML operations (MLOps)

•	 The role of open source software (OSS) in ML projects

•	 Running ML projects on Kubernetes

Before we can apply DevOps to ML projects, we must first understand the difference
between traditional software development and ML development processes.

18 Understanding MLOps

Comparing ML to traditional programming
As with traditional application development, an ML project is also a software project, but
there are fundamental differences in the way they are delivered. Let's understand how an
ML project is different from a traditional software application.

In traditional software applications, a software developer writes a program that holds an
explicitly handcrafted set of rules. At runtime or prediction time, the built software applies
these well-defined rules to the given data, and the output of the program is the result
calculated based on coded rules.

The following diagram shows the inputs and outputs (I/Os) for a traditional
software application:

Figure 2.1 – Traditional software development

In an ML project, the rules or patterns are not completely known, therefore we cannot
explicitly describe rules in code as we can in traditional programming. In ML, there is a
process that extracts rules based on a given sample pair of data and its associated expected
results. This process is called model training. In the model-training process, the chosen
ML algorithm calculates rules based on the given data and the verified answer. The output
of this process is the ML model. This generated model can then be used to infer answers
during prediction time. In contrast with traditional software development, instead of
using explicitly written rules, we use a generated ML model to get a result.

The following diagram shows that the ML model is generated at training time, which is
then used to produce answers or results during prediction time:

Exploring the benefits of DevOps 19

Figure 2.2 – ML development

Though traditional software development and ML are fundamentally different, there
are some synergies in the engineering processes between the two approaches. Given
that traditional software development is very mature in the current era, we can apply
lessons from it to our ML projects. Primarily, of course, both traditional programming
and ML are software. Whichever processes we apply to build software in the traditional
world—such as versioning, packaging of software as containers, automated deployments,
and so on—these can be applied to ML projects too. However, we also must accommodate
added processes in ML, such as model training.

So, why do we really need DevOps in ML projects? What does it bring to the table? Let's
have a look at this in the next section.

Exploring the benefits of DevOps
DevOps is not just about toolsets. Say you have a tool available that can run unit tests for
you. However, if the team has no culture of writing test cases, the tool would not be useful.
DevOps is about how we work together on tasks that span across different teams. So, the
three primary areas to focus on in DevOps are these:

•	 People: Teams from multiple disciplines to achieve a common goal

•	 Processes: The way teams work together

•	 Technology: The tools that facilitate collaboration across different teams

20 Understanding MLOps

DevOps is built on top of Agile development practices with the objective of streamlining
the software development process. DevOps teams are cross-functional, and they have the
autonomy to build software through continuous integration/continuous delivery (CI/
CD). DevOps encourages teams to collaborate over a fast feedback loop to improve the
efficiency and quality of the software being developed.

The following diagram illustrates a complete DevOps cycle for traditional software
development projects:

Figure 2.3 – A mobius loop showcasing a DevOps process

Through DevOps, teams can have well-defined and streamlined development practices
for building, testing, deploying, and monitoring software in production. All this makes it
possible to quickly and reliably release software into production. Some of the benefits that
come out of DevOps practices are presented here:

•	 CI/CD: CI is a phase through which software is merged and verified as soon as the
developer pushes it into the code repository. CD is a series of stages through which
software is built, tested, and packaged in a deployment ready form. Continuous
deployment (also known as CD) is a phase where the deployment-ready code is
picked and deployed to be consumed by end users. In DevOps, all these processes
are automated.

•	 Infrastructure as Code (IaC): IaC is an approach to automate the provisioning
and configuring of IT infrastructure. This aspect enables the team to request and
configure infrastructure on an on-demand and as-needed basis. Imagine that a data
scientist in your team needs a graphics processing unit (GPU) to do their model
training. If we follow the practice of configuring and provisioning IaC, the request
for a GPU can be automatically fulfilled by the system. In the next chapters, you will
see this capability in action.

Understanding MLOps 21

•	 Observability: Observability relates to how well we understand the state of our
running system. DevOps makes systems observable via federating logging from
different components, monitoring the systems (such as central processing unit
(CPU), memory, response times, and so on), and providing a way to correlate
various parts of the system for a given call through call tracing. All these
capabilities, collectively, provide the basis for understanding the system state and
help debug any issues without changing the code.

•	 Team collaboration: DevOps is not just about technology. In fact, the key focus
area for the team is to collaborate. Collaboration is how multiple individuals from
different teams work toward a common goal. Business, development, and operations
teams working together is the core of DevOps. For ML-based projects, the team will
have data scientists and data engineers on top of the aforementioned roles. With
such a diverse team, communication is critical for building collective understanding
and ownership of the defined outcome.

So, how can we bring the benefits of a DevOps approach to ML projects? The answer
is MLOps.

Understanding MLOps
MLOps is an emerging domain that takes advantage of the maturity of existing software
development processes—in other words, DevOps combined with data engineering
and ML disciplines. MLOps can be simplified as an engineering practice of applying
DevOps to ML projects. Let's take a closer look at how these disciplines form the
foundation of MLOps.

ML
ML projects involve activities that are not present in traditional programming. You learned
in Figure 2.3 that the bulk of the work in ML projects is not model development. Rather,
it is more data gathering and processing, data analysis, feature engineering (FE), process
management, data analysis, model serving, and more. In fact, according to the paper
Hidden Technical Debt in Machine Learning Systems by D. Sculley et al., only 5% of the work
is ML model development. Because of this, MLOps is not only focused on the ML model
development task but mostly on the big picture—the entire ML project life cycle.

22 Understanding MLOps

Just as with DevOps, MLOps focuses on people, processes, and technology. But there are
some complexities that MLOps has to address and DevOps doesn't have to. Let's look at
some of these complexities in more detail here:

•	 First, unlike traditional programming, where your only input is code, in ML,
your input is both code and data. The ML model that is produced in the model
development stage is highly dependent on data. This means that even if you do
not change your code, if you train an ML algorithm using a different dataset, the
resulting ML model will be different and will perform differently. When it comes to
version control, this means that you not only version the code that facilitates model
training, but you also need to version the data. Data is difficult to version because of
the huge amount required, unlike code. One approach to address this is by using Git
to keep track of a dataset version using the hash of the data. The actual data is then
stored somewhere in remote storage such as a Simple Storage Service (S3) bucket.
An open source tool called Data Version Control (DVC) can do this.

•	 Secondly, there are more personas involved and more collaboration required in ML
projects. You have data scientists, ML engineers, and data engineers collaborating with
software engineers, business analysts, and operations teams. Sometimes, these personas
are very diverse. A data scientist may not completely understand what production
deployment really is. On the other hand, operations people (and sometimes even
software engineers) do not understand what an ML model is. This makes collaboration
in ML projects more complicated than a traditional software project.

•	 Third, the addition of a model development stage adds more pivot points to the life
cycle. This complicates the whole process. Unlike traditional software development,
you only need to develop one set of working code. In ML, a data scientist or ML
engineer may use multiple ML algorithms and generate multiple resulting ML
models, and because only one model will get selected to be deployed to production,
those models are compared with each other in terms of performance against
other model properties. MLOps accommodates this complex workflow of testing,
comparing, and selecting models to be deployed to production.

Building traditional code to generate an executable binary usually takes a few
seconds to a few minutes. However, training an ML algorithm to produce an ML
model can take hours or days, sometimes even weeks when you use certain deep
learning (DL) algorithms. This makes setting up an Agile iterative time-bound
cadence a little complicated. An MLOps-enabled team needs to handle this delay
in their workflow, and one way to do this is to start building the other model while
waiting for other models to be trained completely. This is very difficult to achieve if
the data scientists or ML engineers are training their ML algorithms using their own
laptops. This is where the use of a scalable infrastructure comes in handy.

Understanding MLOps 23

•	 Lastly, because ML models' performances rely on the data used during training,
if this data no longer represents the real-world situation, the model accuracy will
degrade, resulting in poor prediction performance. This is called model drift, and
this needs to be detected early. This is usually incorporated as part of the monitoring
process of the ML project life cycle. Aside from the traditional metrics that you
collect in production, with ML models, you also need to monitor model drift and
outliers. Outlier detection, however, is much more difficult to implement, and
sometimes requires you to train and build another ML model. Outlier detection is
about detecting incoming data, in production, that does not look like the data the
model was trained on: you do not want your model to provide irrelevant answers
to these non-related questions. Another reason is that this could be an attack or an
attempt to abuse the system. Once you have detected model drift or outliers, what
are you going to do with this information? It could very well be just about raising an
alert, or it could trigger some other automated processes.

Because of the complexity ML adds when compared to traditional programming, the need
to address these complexities led to the emergence of MLOps.

DevOps
In terms of deployment, think about all the sets of code you write in an ML project: the code
that performs the data processing, the code that facilitates model training and FE, the code
that runs the model inference, and the code that performs model drift and outlier detection.
All of these sets of code need to be built, packaged, and deployed for consumption at scale.
This code, once running in production, needs to be monitored and maintained as well.
This is where the CI/CD practices of DevOps help. The practice of automating software
packaging, testing, securing, deploying, and monitoring came from DevOps.

Data engineering
Every ML project involves data engineering, and ML projects deal with a lot of data
a lot more than code. Therefore, it is mandatory that your infrastructure includes data
processing capabilities and that it can integrate with existing data engineering pipelines in
your organization.

Data engineering is a huge subject—an entire book could be written about it. But what
we want to emphasize here is that MLOps intersects with data engineering practices,
particularly in data ingestion, data cleansing, data transformation, and big data testing.
In fact, your ML project could be just a small ML classification model that is a subpart of
a much bigger data engineering or data analytics project. MLOps adopts the best practices
in data engineering and analytics.

24 Understanding MLOps

A representation of MLOps is provided in the following diagram:

Figure 2.4 – MLOps as the intersection of ML, data engineering, and DevOps

To put it in another way, MLOps, as shown in Figure 2.4, is the convergence of ML,
DevOps, and data engineering disciplines that focus on running ML in production.
It is also about encapsulating ML projects in a highly scalable, reliable, observable
infrastructure. Finally, it is also about establishing repeatable processes for teams to
perform the tasks required to successfully deliver ML projects, as shown in Figure 2.4,
while supporting collaboration with each other.

With this basic understanding of MLOps, let's dig a little deeper into the ML project life
cycle. We'll start by defining what are the general stages of an ML project.

Understanding MLOps 25

ML project life cycle
As with DevOps, which provides a series of activities that could be performed in a
DevOps cycle, you can see a series of steps that could be used to take your ML project
from start to finish in Figure 2.5. These steps or stages will become part of your ML
projects' life cycle and provide a consistent way to take your ML projects into production.
The ML platform that you build in this book is the ecosystem that allows you to
implement this flow. In later chapters of this book, you will use this flow as the basis for
the platform. A summary of the stages in an ML project could be depicted as follows:

Figure 2.5 – A ML project life cycle

Here is a definition of each stage of the project life cycle presented in the preceding diagram:

•	 Codify the problem and define success metrics: In this stage, the team evaluates
if the given business problem can be solved using ML. Notice the word team here,
which would consist of data scientists and the business subject-matter expert
(SME) at a minimum. The team will then define a success criterion to assess the
prediction of the model.

•	 Ingest, clean, and label data: In this stage, the team assesses if the data required
to train the model is available. The team will play an additional role, that of data
engineers, to help move the project during this stage and beyond. The team will
build components to ingest data from a variety of sources, clean the captured data,
possibly label the data, and store it. This data will form the basis of ML activities.

•	 FE: FE is about transforming the raw data into features that are more relevant to
the given problem. Consider you are building a model that predicts if any given
passenger on the Titanic will survive or not. Imagine the dataset you got contains
the ticket number of the passenger. Do you think ticket numbers have something
to do with the survival of the passenger? A business SME may mention that ticket
numbers may be able to provide which class the customer belongs to on the ship,
and first-class passengers may have easier access to lifeboats on the ship.

•	 Model building and tuning: In this stage, the team starts experimenting with
different models and different hyperparameters. The team will test the model
against the given dataset and compare the results of each iteration. The team will
then determine the best model for the given success metrics and store the model in
the model registry.

26 Understanding MLOps

•	 Model validation: In this stage, the team validates the model against a new set of
data that is not available at the training time. This stage is critical as it determines
if the model is generalized enough for the unseen data, or if the model only works
well on the training data but not on the unseen data—in other words, avoiding
overfitting. Model validation also involves identifying model biases.

•	 Model deployment: In this stage, the team picks the model from the model registry,
packages it, and deploys it to be consumed. Traditional DevOps processes could
be used here to make the model available as a service. In this book, we will focus
on model as a service (MaaS), where the model is available as a REpresentational
State Transfer (REST) service. However, in certain scenarios, the model could be
packaged as a library for other applications to use it.

•	 Monitoring and validation: In this stage, the model will be continually monitored
for response times, the accuracy of predictions, and whether the input data is
like the data on which the model is trained. We have briefly touched on outlier
detection. In practice, it works like this: imagine that you have trained your model
for rush-hour vacancy in a public transport system, and the data the model is
trained against is where citizens use the public transport system for over a year. The
data will have variances for weekends, public holidays, and any other events. Now,
imagine if, due to the COVID-19 lockdown, no one is allowed to use the public
transport system. The real world is not the same as compared to the data our model
is trained upon. Naturally, our model is not particularly useful for this changed
world. We will need to detect this anomaly and generate alerts so that we can retrain
our model with the new datasets if possible.

You have just learned the stages of the ML project life cycle. Although the stages may look
straightforward, in the real world, there are several good reasons why you need to go back
to previous stages in certain cases.

Fast feedback loop
A keen observer may have noticed that a key attribute of the Agile and cross-functional
teams that we presented in the first chapter is not available in the stages presented so far in
this chapter. Modern DevOps is all about fast feedback loops to course-correct early in the
project life cycle. The same concept will bring even more value to ML projects because ML
projects are more complex than traditional software applications.

Let's see at which stages we can assess and evaluate the progress of the team. After
evaluation, the team can decide to course-correct by going back to an earlier stage or
moving on to the next stage.

Understanding MLOps 27

The following diagram shows the ML project life cycle with feedback checkpoints from
various stages, denoted by green arrows:

Figure 2.6 – A ML project life cycle with feedback checkpoints

Let's look at this in more detail here:

•	 Checkpoint from the ingest, clean, and label data stage: After Stage 1 is
completed, you have started to process data as defined in the second stage. You may
find that the actual data is incomplete or not correct. You can take this feedback to
improve your understanding of data and may need to redefine the success criteria
of the project or, in worse cases, stop the project because the required data is not
available. In many scenarios, teams find additional data sources to fill the data gap
identified in the second stage.

•	 Checkpoint from the model building and tuning stage: During this stage, the
team may find that the features available to train the model may not be enough to
get the desired metric. At this point, the team may decide to invest more time in
finding new features or revisit the raw data to determine if more data is needed.

•	 Checkpoint from the model validation stage: During this stage, the model will be
validated against a new dataset that the model has never seen before. Poor metrics
at this stage may trigger the tuning of the model, or you may decide to go back to
find more features for better model performance,

•	 Checkpoint from the model monitoring and validation stage: Once the model
moves into production, it must be monitored continuously to validate if the model
is still relevant to the real and changing world. You need to find out if the model
is still relevant and, if not, how you can make the model more useful. The result
of this may trigger any other stage in the life cycle; as you can see in Figure 2.6,
you may end up retraining an existing model with new data or going to a different
model altogether, or even rethinking if this problem should be tackled by ML. There
is no definitive answer on which stage you end up at; just as with the real world,
it is unpredictable. However, what is important is the capability to re-assess and
re-evaluate, and to continue to deliver value to the business.

28 Understanding MLOps

You have seen the stages of the ML project life cycle and the feedback checkpoints from
which you decided whether to continue to the next stage or go back to previous stages.
Now, let's look at the personas involved in each of the stages and their collaboration points.

Collaborating over the project life cycle
We have defined a streamlined process for building our model. Let's try to define how a
team of diverse roles and abilities will collaborate on this model. Recall from the previous
chapter that building a model takes effort from different teams with different abilities. It is
important to note that in smaller projects, the same person may be representing different
roles at the same time. For example, in a small project, the same person can be both a data
scientist and a data engineer.

The following diagram shows an ML project life cycle with an overlay of feedback points
and personas:

Figure 2.7 – A ML project life cycle with feedback checkpoints and team roles

The ML project within your organization needs collaboration between data scientists and
the business SMEs in the first stage. Imagine the team wants to predict, based on a picture,
the probability of a certain type of skin disease.

•	 At this stage, a collaboration between data scientists and doctors (the SME for this
case) is needed to define the problem and the performance metrics. Without this
collaboration, the project would not be successful.

•	 In the second stage—the data ingestion and cleaning stage—data engineers will need
to work along with the business SMEs to understand which data is available and how
to clean and label it correctly. The knowledge the SMEs will bring during this stage is
critical as this is responsible for creating a useful dataset for future stages.

•	 In the third stage, data scientists, data engineers, and SMEs will collaborate to work
on the base data from the second stage and process it to extract useful features
from it. The data scientists and SMEs will provide guidance on which data can be
extracted, and the data engineer will write processing logic to do so.

The role of OSS in ML projects 29

•	 In the fourth and the fifth stages, most of the work will be done by data scientists to
build and tune the model as per the given criteria. However, based on whether or
not the model has managed to achieve the defined metric, the team may decide to
go back to any of the previous stages for better performance.

Once the model is built, the DevOps team experts can package, version, and deploy the
model to the correct environment.

•	 The last stage is critical: the team uses observability capabilities to monitor the
performance of the model in the production environment. After monitoring the
model performance in the real world and based on the feedback, the team may
again decide to go back to any of the previous stages to make the model more useful
for the business.

Now that you have a good understanding of the challenges we have highlighted and how
you can overcome these challenges using the ML life cycle, the next phase is to have a
platform that supports this life cycle while providing a solution for each component
defined in the big picture (see Chapter 1, Challenges in Machine Learning) with self-service
and automation capabilities. What better way to start a journey while collaborating with
the open source community?

The role of OSS in ML projects
Now that you have a clear understanding of what problems the ML platform is expected
to solve, let's see why open source is the best place to start. We should start with some
definitions to set the basics, right?

Free OSS is where the users have the freedom to run, copy, distribute, study, change, and
improve the software.

OSS
For more information on OSS, see the following link:

https://www.gnu.org/philosophy/free-sw.html

OSS is everywhere. Linux is the most common operating system, running in data
centers and powering the cloud around the world. Apache Spark and related open source
technologies are the foundation for the big data revolution for a range of organizations.
Open source-based artificial intelligence (AI) technologies such as TensorFlow and
MLflow are at the forefront of AI advancement and are used by hundreds of organizations.
Kubernetes, the open source container orchestration platform, has become the de facto
standard for container platforms.

https://www.gnu.org/philosophy/free-sw.html

30 Understanding MLOps

The top players in computing—such as Amazon, Apple, Facebook, Google, Microsoft,
and Red Hat, to name a few—have contributed to and owned major open source projects,
and fresh players are joining all the time. Businesses and governments around the world
depend on open source to power mission-critical and highly scalable systems every day.

One of the most successful open source projects in the cloud computing space is
Kubernetes. Kubernetes was founded in mid-2014 and was followed by the release
of its version 1.0 in mid-2015. Since then, it has become the de facto standard for
container orchestration.

Moreover, the Cloud Native Computing Foundation (CNCF) was created by The Linux
Foundation with the mission of making cloud computing ubiquitous. CNCF does this
by bringing together the world's top engineers, developers, end users, and vendors. They
also run the world's largest open source conferences. The foundation was created by using
Kubernetes as the seed project. This is how Kubernetes sets the standard definition of
cloud native. As of this writing, the foundation has 741 member organizations and 130
certified Kubernetes distributions and platforms and has graduated 16 very successful
open source projects. Among those projects is, of course, Kubernetes but also the
Operator Framework, which you will learn more about in the next chapter.

Before the explosion of big data and cloud computing, ML projects were mostly academic.
They seldom left the boundaries of colleges and universities, but this doesn't mean that
AI, ML, and data science were not progressing forward. The academic world has actually
created hundreds of open source Python libraries for mathematical, scientific, and statistical
calculations. These libraries have become the foundation modern ML frameworks are built
upon. The most popular ML frameworks at the time of writing—TensorFlow, PyTorch,
scikit-learn, and Spark ML—are all open source. The most popular data science and ML
development environments today—Jupyter Notebook, JupyterLab, JupyterHub, Anaconda,
and many more—are also all open source.

ML is an evolving field, and it needs the vision of larger communities that go beyond
any single organization. The process of working in a community-based style enables
the collaboration and creativity that is required by ML projects, and open source is an
important part of why ML is progressing at a tremendous speed.

You now have a basic understanding of how important OSS is in the AI and ML space.
Now, let's take a closer look at why you should run ML projects on Kubernetes.

Running ML projects on Kubernetes 31

Running ML projects on Kubernetes
For building reliable and scalable ML systems, you need a rock-solid base. Kubernetes
provides the foundation for building scalable and reliable distributed systems along with
the self-service capabilities that are required by our platform. The capability of Kubernetes
to abstract the hardware infrastructure and consume it as a single unit is of great benefit to
our platform.

Another key component is the ability of Kubernetes-based software to run anywhere,
from small on-premises data centers to large hyperscalers (Amazon Web Services (AWS),
Google Cloud Platform (GCP), Azure). This capability will give you the portability to
run your ML platform anywhere you want. The consistency it brings to the consumer of
your platform is brilliant as the team can experiment with extremely low initial costs on
the cloud and then customize the platform for a wider audience in your enterprise.

The third and final reason to opt for Kubernetes is its capability to run different kinds
of workloads. You probably remember from the previous chapter that a successful ML
project needs not only ML but also infrastructure automation, data life cycle management,
stateful components, and more. Kubernetes provides a consistent base to run diverse types
of software components to create an end-to-end (E2E) solution for business use cases.

The following screenshot shows the layers of an ML platform. Kubernetes provides the
scaling and abstracting layer on which an ML platform is built. Kubernetes offers the
freedom of abstracting the underlying infrastructure. Because of this flexibility, we can
run on a variety of cloud providers and on-premises solutions. The ML platform you will
build in this book allows operationalization and self-service in the three wider areas of an
ML project—FE, model development, and DevOps:

Figure 2.8 – An OSS-based ML platform

There you go: your ML platform will be based on OSS and will use Kubernetes as the
hosting base. The strength of the open source Kubernetes communities will help you use
the best technologies that will evolve as the field continues to mature.

32 Understanding MLOps

Summary
In this chapter, we have defined the term MLOps and suggested an ML project life cycle
that is collaborative and provides early feedback. You have learned that with this project
life cycle, the team can continuously deliver value to the business. You have also learned
about some of the reasons why building a platform based on OSS makes sense and the
benefits of community-driven software.

This completes the part of the book about setting the context, learning why a platform
is needed, and discovering what kinds of problems it is expected to solve. In the next
chapter, we will examine some basic concepts of the Kubernetes system that is at the heart
of our ML platform.

Further reading
For more information regarding the topics that were covered in this chapter, take a look at
the following resources:

•	 DevOps: Breaking the development-operations barrier https://www.
atlassian.com/devops

https://www.atlassian.com/devops
https://www.atlassian.com/devops

3
Exploring

Kubernetes
Now that you have seen that Kubernetes will form the basis of your machine learning
(ML) platform, it's logical to refresh your knowledge of the underlying bedrock of
our solution. Though there are many resources available on the internet on this topic
of Kubernetes, we will briefly discuss the role of Kubernetes in the cloud era and the
flexibility it provides for building solutions. You will also learn about Operators in
Kubernetes and how they help simplify the installation and operation of Kubernetes
workloads. By the end of this chapter, you will have built a running minikube instance
either in your local machine or in the cloud. This is a single-node Kubernetes cluster that
you will use as the base infrastructure to build and run the ML platform.

In this particular order, we will cover the following topics:

•	 Exploring Kubernetes major components

•	 Becoming cloud-agnostic through Kubernetes

•	 Understanding Operators

•	 Setting up your local Kubernetes environment

•	 (Optional) Provisioning a virtual machine (VM) on google cloud platform (GCP)

34 Exploring Kubernetes

Technical requirements
This chapter includes some hands-on setup. You will be setting up a Kubernetes cluster,
and for this, you will need a machine with the following hardware specifications:

•	 A central processing unit (CPU) with at least four cores; eight are recommended

•	 Memory of at least 16 gigabytes (GB); 32 GB is recommended

•	 Disk with available space of at least 60 GB

This can be a physical machine such as a laptop, a server, or a VM running in the cloud
that supports nested virtualization.

Exploring Kubernetes major components
There are many definitions of Kubernetes available on the web. We assume that, as a
Kubernetes user, you already have a favorite pick. Therefore, in this section, you will see
some basic concepts to refresh your Kubernetes knowledge. This section is by no means a
reference or tutorial for the Kubernetes system.

From Chapter 2, Understanding MLOps, you have seen that Kubernetes provides the
means for your ML platform to perform the following capabilities:

•	 Provide a declarative style of running software components: This capability will
help your teams to be autonomous.

•	 Provide an abstraction layer for hardware resources: Through this capability,
you can run your ML platform on a variety of hardware and provide on-demand
resource scheduling.

•	 Provide an application programming interface (API) to interact with it: This
will enable you to bring the automation for running different components onto your
ML platform.

Let's start by defining the major components of the Kubernetes platform: the control plane
and the worker nodes.

Exploring Kubernetes major components 35

Control plane
The control plane is a set of components that form the brains of the Kubernetes. It
consists of an API server, a key-value database, a scheduler, and a set of controllers. Let's
define each of these components, as follows:

•	 API server: This component provides a set of REpresentational State Transfer
(REST) APIs to interact with the Kubernetes system. Everyone interacts with
Kubernetes through this API. As a developer or operations engineer, you use
the API, and internal Kubernetes components talk to the API server to perform
different activities.

•	 Key-value database: The API server is stateless; it needs to have a persistent
store where it can store different objects. The key-value database is fulfilled by a
component called etcd. No other component of the Kubernetes system talks to this
value store directly—this is only accessible by the API server.

•	 Scheduler: The scheduler component dictates where an application instance would
be running. The scheduler selects the most suitable worker node based on the policy
defined by the Kubernetes administrator.

•	 Controllers: There are multiple controllers running in the control plane. Each
controller has a set task; for example, a node controller is responsible for monitoring
the state of the nodes.

The following diagram shows the interaction between multiple control-plane components:

Figure 3.1 – Kubernetes control-plane components

36 Exploring Kubernetes

The control plane orchestrates the creation, update, and deletion of objects. It monitors
and maintains the healthy state of the Kubernetes cluster. The control plane runs
workloads that keep the cluster running. But what about the application workloads?

Worker nodes
As the name suggests, workers are a set of nodes that host the application software. For
example, all ML platform components will be executed on the worker nodes. However,
worker nodes also run a couple of Kubernetes components that make the communication
channel between the control plane and the worker and manage running applications on
the worker node. These are the key components running on the worker nodes besides
the applications:

•	 Kube proxy: Its primary role is to manage network communications rules for your
applications running on the node.

•	 Kubelet: Think of the Kubelet software component as an agent running on each
node. The primary role of this agent is to talk to the control-plane API server and
manage applications running on the node. The agent also captures and sends the
status of the node and the applications back to the control plane via the API.

•	 Container runtime: The container runtime component is responsible for running
containers that host applications, as directed by the Kubelet. Docker is one such
example; however, Kubernetes has defined a container runtime interface (CRI).
CRI defines interfaces that Kubernetes uses and the Kubernetes administrator can
choose any container runtime that is compatible with the CRI.

The following diagram shows the interaction between multiple worker-node components:

Figure 3.2 – Kubernetes worker components

Exploring Kubernetes major components 37

Worker nodes, also known as compute nodes, do the actual work of running the
application workloads in the cluster. Running application workloads requires you to
interact with the control plane using Kubernetes objects or resources.

Kubernetes objects required to run an application
Now, let's define a set of Kubernetes objects that are commonly required to run an
application on the Kubernetes system. When you build the components for your ML
platform, you will be using these Kubernetes objects to run applications on top of
Kubernetes. The objects are listed here:

•	 Namespace: One Kubernetes cluster is shared by multiple teams and projects.
Namespaces provide a way to isolate Kubernetes resources. This isolation allows
different teams, different environments, or even different applications to share the
same cluster while keeping different configurations, network policies, resource
quotas, and access control. It is like having a logical sub-cluster within the same
Kubernetes cluster.

•	 Container image: When you want to run an application on Kubernetes, you need
to package the application in a standard format. This packaged format, which
consists of your application and all its dependencies, is called a container image, and
the running instance of this image is called a container. It contains your application
and all the dependencies, including the operating system resources and your
application needs, in one common bundle.

•	 Deployment: This Kubernetes object represents an application's desired state on
the cluster. A Deployment object contains information such as which container
image you want to run and how many instances or replicas of containers you
require. Kubernetes is periodically comparing the current cluster state to the
desired state defined in the Deployment object. When Kubernetes finds that the
current state is different from the desired state, it will then apply the necessary
updates to the cluster to achieve the desired state. These updates include spinning
up new containers with the container image defined in the Deployment object,
stopping containers, and configuring network and other resources required by the
Deployment object.

•	 Pods: A Pod is a fundamental unit of running applications in Kubernetes. It is also
the smallest schedulable unit of deployment. It can contain one or more containers.
Containers inside the pod share networking and disk resources. Containers running
in a single pod are scheduled together on the same node while also having local
communication with each other.

38 Exploring Kubernetes

•	 Services: How do pods communicate with each other? Pods communicate through
the cluster network, and each pod has its own Internet Protocol (IP) address.
However, pods may come and go. Kubernetes may restart a pod due to node health
or scheduling changes, and when this happens, the pod's IP address will change.
Furthermore, if the Deployment object is configured to run multiple replicas of the
same pods, this means each replica will have its own IP address.

A service, in Kubernetes, exposes a set of pods as a single abstracted network
service. It provides a single consistent IP address and Domain Name System (DNS)
name that can route traffic and perform load balancing on pods. Think of a service
as a load-balanced reverse proxy to your running pods.

•	 ConfigMaps and Secrets: We have our application packaged as a container image
and running as a pod. The same pod will get deployed in multiple environments
such as Dev, Test, and Production. However, each environment will have a
different configuration, such as the database location or others. Hardcoding such
a configuration into a container image is not the right approach. One reason is
that the container image may be deployed in multiple environments with different
environment settings. There must be a way to define configuration outside of the
container image and inject this configuration onto our container at runtime!

ConfigMaps and Secrets provide a way to store configuration data in Kubernetes.
Once you have these objects defined, they can be injected into your running pods
either as a file within the pod's filesystem or as a set of environment variables.

A ConfigMap is used to store and access configuration data. However, for sensitive
configurations such as passwords and private keys, Kubernetes provides a special
object for this purpose, known as a Secret. Just as with ConfigMaps, Secrets can be
mounted either as files or as environment variables into pods.

The following diagram shows a logical relationship between Deployments, pods,
ConfigMaps, and Services. A Deployment object provides an abstraction of a
containerized application. This hides the complexity behind running replication
controllers and pods. Deployments help you in running your application as a pod or
group of pods, ConfigMaps provide an environment-specific configuration for your pods,
and Services expose the pods in your deployment as a single network service:

Exploring Kubernetes major components 39

Figure 3.3 – Storage provisioning in Kubernetes

•	 Storage (PersistentVolume and PersistentVolumeClaim (PV and PVC)): Pods
are ephemeral. Once they are destroyed, all the local resources of the pod are gone.
More often, applications deployed as pods may need access to storage to read and
write persistent data that can outlive pods.

Kubernetes promises to be the infrastructure abstraction layer on top of many
hardware vendors and cloud providers. However, the way to request storage
resources or provision disks is different with the various cloud providers and
on-premises systems. This calls for a need to request storage resources in a
consistent manner across different hardware vendors and cloud providers.

Kubernetes solution to this is to split storage resources into two Kubernetes objects.
A PV is an object that defines a physical storage volume. It contains the details of
the underlying storage infrastructure. A PVC, on the other hand, is an abstracted
pointer to a PV. A PVC indicates that the owner has a claim on a specific PV. Pods
storage resources are associated with PVCs and never directly with the PV; this way,
the underlying storage definition is abstracted from the application.

40 Exploring Kubernetes

The following diagram shows the relation between pods, PVCs, and PVs. The pod mounts
a PVC as a volume; the PVC works as an abstraction layer for the pod to request a physical
volume to be associated with the pod; the PVC is bound to a PV that provides specifics of
the disks:

Figure 3.4 – Storage provisioning in Kubernetes (continued)

•	 Ingress: Services enable access to pods within the Kubernetes cluster. For scenarios
in which you need access to a pod from outside the Kubernetes cluster, Ingress
is the answer. Ingress provides a way for you to expose a particular service to be
accessible from outside the cluster. This enables you to map a HyperText Transfer
Protocol (HTTP)-based Uniform Resource Locator (URL) that points to a service.
Ingress may also use Secure Sockets Layer (SSL) on the exposed URL and can be
configured to terminate SSL for traffic within the cluster. This way, the transport
layer will be encrypted all the way up to the Ingress, while forwarding the traffic to
the pod in plain HTTP. It is also worth noting that Kubernetes allows traffic to be
encrypted all the way to the pod if needed.

Becoming cloud-agnostic through Kubernetes 41

The following diagram shows how Ingress enables pods to be accessible from outside the
Kubernetes cluster:

Figure 3.5 – The Ingress object in the Kubernetes cluster

Now that you have refreshed your understanding of Kubernetes, let's see how Kubernetes
allows you to run your platform anywhere.

Becoming cloud-agnostic through Kubernetes
One of the key aspects of the ML platform we are building is that it enables the organization
to run on any cloud or data center. However, each cloud has its own proprietary APIs to
manage resources and deploy applications. For example, the Amazon Web Services (AWS)
API uses an Elastic Compute Cloud (EC2) instance (a server) when provisioning a server,
while Google Cloud's API uses a Google Compute Engine (GCE) VM (a server). Even the
names of the resources are different! This is where Kubernetes plays a key role.

The wide adoption of Kubernetes has forced major cloud vendors to come up with tight
integration solutions with Kubernetes. This allows anyone to spin up a Kubernetes cluster
in AWS, GCP, or Azure in a matter of minutes.

The Kubernetes API enables you to manage cloud resources. Using the standard
Kubernetes API, you can deploy applications on any major cloud provider without
needing to learn about the cloud provider's API. The Kubernetes API has become the
abstraction layer to manage workloads in the cloud. The ML platform you will build
in this book will exclusively use Kubernetes APIs to deploy and run applications. This
includes the software components that make up the ML platform.

42 Exploring Kubernetes

The following diagram shows how Kubernetes allows you to become cloud-agnostic. You
interact with Kubernetes through the Kubernetes API, which eliminates or reduces the
need to interact directly with the cloud vendor's API. In other words, Kubernetes provides
a consistent way of interacting with your environment regardless of which cloud or data
center it is running on:

Figure 3.6 – Kubernetes acting as a shim to cloud providers APIs

Another important thing that came out of the Kubernetes community is Operators. You
will be using Kubernetes Operators to deploy most of the components of the ML platform.
Let's dig in.

Understanding Operators
In traditional information technology (IT) organizations, specialized and dedicated
teams were required to maintain applications and other software components such as
databases, caches, and messaging components. Those teams were continuously observing
the software ecosystem and doing specific things such as taking backups for databases,
upgrading and patching newer versions of software components, and more.

Operators are like system administrators or engineers, continuously monitoring
applications running on the Kubernetes environment and performing operational tasks
associated with the specific component. In other words, an Operator is an automated
software manager that manages the installation and life cycle of applications on Kubernetes.

Put simply, instead of you creating and updating Kubernetes Objects (Deployment,
Ingress, and so on), the Operator takes this responsibility based on the configuration you
provide. The configuration that directs the Operator to perform certain tasks is called a
custom resource (CR), and the structure or schema for a CR is defined by an object called
a CR definition (CRD).

Understanding Operators 43

The following diagram shows how an Operator automates application operations
activities. In the traditional approach, the developer builds and develops the application,
and then an application operations team provides support to run the application. One of
the Kubernetes Operator's aims is to automate activities that operations people perform:

Figure 3.7 – An Operator is a software that automates tasks of the operations team

Kubernetes Operators can be complex. There are Operators that manage instances of
databases, while some manage clusters of pods that work together. Some Operators own
just 1 or 2 CRDs, while others could own more than 10 CRDs. The Operator Lifecycle
Manager (OLM) simplifies the installation and management of Kubernetes Operators.
Let's dig a little bit deeper into this.

In OLM, there are multiple stages required to install an Operator: creating a Deployment
object for the Operator, configuring the required permissions to run an Operator (because
it needs to observe changes in the Kubernetes cluster), and creating a CRD. To reduce
the complexity of installing an Operator, a management layer may come in handy. OLM
fulfills this role.

44 Exploring Kubernetes

OLM standardizes interactions with Operators. It requires that all interactions with the
Operator be done through the Kubernetes API. OLM makes it easy to manage the life
cycle of multiple Operators through a single standard interface—the Kubernetes API. Our
ML platform will make use of a few Operators, and therefore it is useful to understand
OLM and objects related to it. Let's look at them in more detail here:

•	 ClusterServiceVersion: This object defines metadata about an Operator.
It includes the name and version of the Operator, along with the installation
information and required permissions. It also describes the CRD owned and
required by the Operator.

•	 Subscription: The Subscription object allows the user to install and update
the Operator. OLM uses this object to install and configure Operators, CRDs, and
related access-control objects.

•	 OperatorGroup: OperatorGroup provides a way to associate your Operator
with a specific set of namespaces. OperatorGroup defines a set of namespaces
to which the associated Operator will react. If we do not define a set of namespaces
in the OperatorGroup definition, then the Operator will run globally across
all namespaces.

In the next section, you will get to install and configure your local Kubernetes
environment and install OLM on the Kubernetes cluster.

Setting up your local Kubernetes environment
Now that we have refreshed some basic Kubernetes concepts, it's time for the rubber to hit
the road. In this section, we will prepare and validate our local Kubernetes clusters. The
cluster we set up here will be used to host the ML platform in later chapters.

Installing kubectl
kubectl is a command-line tool that assists in running commands against a Kubernetes
cluster. You can create Kubernetes objects, view logs, and monitor the progress of your
actions through this utility. The following steps will install kubectl on your machine.

Installing kubectl on Linux
First, let's see the process for installing kubectl on a machine running Linux. Follow
these next steps:

1.	 Create or Secure Shell (SSH) to a Terminal session on your Linux computer.

Setting up your local Kubernetes environment 45

2.	 Download the kubectl. Kubernetes command-line interface (CLI). We will be
using version 1.22.4 throughout the book. The following two lines of code are
one command:

curl -LO https://dl.k8s.io/release/v1.22.4/bin/linux/
amd64/kubectl

3.	 Install the kubectl CLI by running the following command:

sudo install kubectl /usr/local/bin/kubectl

4.	 Validate that it is installed by running the following command:

kubectl version --client

You should see the following response to the version command:

Figure 3.8 – Output of the kubectl version command in Linux

You should now have kubectl running on your Linux machine.

Installing kubectl on macOS
First, let's see the process for installing kubectl on a machine running macOS. Follow
these steps:

1.	 Create or SSH to a Terminal session on your Mac computer.
2.	 Download the kubectl Kubernetes CLI. We will be using version 1.22.4

throughout the book.

For Intel Macs, run the following command:
curl -LO https://dl.k8s.io/release/v1.22.4/bin/darwin/
amd64/kubectl

For Apple M1 Macs, run the following command:
curl -LO https://dl.k8s.io/release/v1.22.4/bin/darwin/
aa64/kubectl

3.	 Install the kubectl CLI by running the following command:

sudo install kubectl /usr/local/bin/kubectl

46 Exploring Kubernetes

4.	 Validate that it is installed by running the following command:

kubectl version --client

You should see the following response to the version command:

Figure 3.9 – Output of the kubectl version command in macOS

You should now have kubectl running on macOS.

Installing kubectl on Windows
Now, let's go through the steps for Windows, as follows:

1.	 Run PowerShell as Administrator.
2.	 Download the kubectl Kubernetes CLI binary by running the following

command. We will be using version 1.22.4 throughout the book:

curl.exe -LO https://dl.k8s.io/release/v1.22.4/bin/
windows/amd64/kubectl.exe

3.	 Copy the kubectl.exe file to c:\kubectl by running the following commands:

mkdir c:\kubectl

copy kubectl.exe c:\kubectl

4.	 Add c:\kubectl to the PATH environment variable by running the following
command and then restart your PowerShell Terminal:

setx $ENV:PATH "$ENV:PATH;C:\kubectl" /M

5.	 Validate that it is installed by running the following command:

kubectl version –client

You should see the following response to the version command:

Figure 3.10 – Output of kubectl version command in Windows

Setting up your local Kubernetes environment 47

You have just installed the kubectl Kubernetes CLI. The next step is to install
minikube, a local, single-node Kubernetes cluster.

Installing minikube
minikube provides a way to run a local Kubernetes cluster with ease. This is a minimal
cluster, and it is intended to be only used for local development or experimentation.
Running Kubernetes in production environments is beyond the scope of this book.

As with kubectl, let's go through the installation for different types of operating systems.

Installing minikube on Linux
Follow these steps to install minikube on Linux:

1.	 Create a Terminal session or SSH to your Linux computer.
2.	 Install podman for minikube using the following code:

sudo dnf install podman -y

3.	 Download minikube from this location. We are using version 1.24.0 of
minikube:

curl -LO https://storage.googleapis.com/minikube/
releases/v1.24.0/minikube-linux-amd64

4.	 Install the minikube utility, as follows:

sudo install minikube-linux-amd64 /usr/local/bin/minikube

5.	 Validate the minikube version, like this:

minikube version

You should see the following response:

Figure 3.11 – Output of the minikube version command on Linux

You have just installed kubectl and minikube on Linux. These two command-line
tools will help you to set up a local Kubernetes cluster.

48 Exploring Kubernetes

Installing minikube on macOS
Although our preferred operating system is Linux for this book, we are providing steps to
install minikube on macOS too. A lot of developers use the macOS system, and it would
be beneficial to provide details for the operating system from Apple. Follow these next steps:

1.	 Download and install Docker Desktop from the Docker website or by accessing
the following web page: https://www.docker.com/products/docker-
desktop.

2.	 Once Docker is available, make sure that it is installed correctly by running
the following command. Make sure that Docker is running before running
this command:

docker version

You should see the following response. If you get an error, please make sure that
Docker is running:

Figure 3.12 – Output of the docker version command on macOS

https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop

Setting up your local Kubernetes environment 49

3.	 Open a Terminal on your macOS computer.
4.	 Download minikube by running one of the following commands. You will be

using version 1.24.0 of Minikube:

	� If you have an Intel Mac, run the following command:

curl -Lo minikube https://storage.googleapis.com/
minikube/releases/v1.24.0/minikube-darwin-amd64

	� If you have an M1 Mac (Apple silicon), run this command instead:

curl -Lo minikube https://storage.googleapis.com/
minikube/releases/v1.24.0/minikube-darwin-arm64

5.	 Move the downloaded file to the /usr/local/bin folder and make the
downloaded file an executable by using the following commands:

sudo mv minikube /usr/local/bin

sudo chmod +x /usr/local/bin/minikube

6.	 Validate the minikube version, as follows:

minikube version

You should see the following response:

Figure 3.13 – Output of the minikube version command

You have just installed kubectl and minikube on macOS. These two command-line
tools will help you set up a local Kubernetes cluster.

50 Exploring Kubernetes

Installing minikube on Windows
As with macOS, a substantial number of developers use Windows. It would be fair to
provide steps on how to run the exercises on the operating system from Microsoft, the
mighty Windows. Let's dig in on how to run minikube on Windows using Hyper-V,
the Microsoft virtualization layer. Please note that Hyper-V is available on all Windows
except Windows Home. Follow these steps:

1.	 Run PowerShell as Administrator.
2.	 In the PowerShell console, run the following command to enable Hyper-V:

Enable-WindowsOptionalFeature -Online -FeatureName
Microsoft-Hyper-V --All

You should see the following response if Hyper-V is not enabled. If it is enabled
already, the command will just print the status. Press Y to continue:

Figure 3.14 – Output of the command for enabling Hyper-V on Windows
Restart the computer, if needed.

3.	 Download the minikube installer by opening the following link in the browser:
https://github.com/kubernetes/minikube/releases/download/
v1.24.0/minikube-installer.exe.

4.	 Run the downloaded installer. You should see the language setup screen, as shown
in the following screenshot. Click OK:

Figure 3.15 – Language selection dialog of the minikube installer

https://github.com/kubernetes/minikube/releases/download/v1.24.0/minikube-installer.exe
https://github.com/kubernetes/minikube/releases/download/v1.24.0/minikube-installer.exe

Setting up your local Kubernetes environment 51

5.	 The installer will present the following welcome screen. Click Next >, as illustrated
in the following screenshot:

Figure 3.16 – The minikube installer wizard

52 Exploring Kubernetes

6.	 The installer will present the following License Agreement screen. Click I Agree:

Figure 3.17 – License Agreement screen of the minikube installer

Setting up your local Kubernetes environment 53

7.	 On this screen, select the location where you want to install minikube and then
click Install, as illustrated in the following screenshot:

Figure 3.18 – Install location screen of the minikube installer

54 Exploring Kubernetes

8.	 The installation may take a few minutes. Once the installation is successful, you
should see the following screen. Click Next >:

Figure 3.19 – Successful installation screen of the minikube installer

Setting up your local Kubernetes environment 55

9.	 This is the last screen in your minikube setup process. Click Finish to complete it:

Figure 3.20 – Final screen of the minikube installer

10.	 Finally, in the PowerShell console, set the virtualization driver for minikube to
hyperv. You can do this by running the following command:

minikube config set driver hyperv

You should see the following response:

Figure 3.21 – Output of the minikube config command

Congratulations—you have set up the minikube program on your Windows machine!

Over the preceding sections, you have installed the kubectl and minikube tools to set
up your Kubernetes cluster. In the next section, you will set up a Kubernetes cluster.

56 Exploring Kubernetes

Setting up a local Kubernetes cluster
Now, we will set up a Kubernetes cluster on your local machine. As mentioned in the
technical requirements, we will need a minimum of 4 CPU cores or virtual CPUs
(vCPUs), 60 GB of available disk, and at least 16 GB of memory to be allocated to the
Kubernetes cluster. Our recommended configuration is 8 CPUs and 64 GB of memory
with 60 GB of disk space. If you do not have these resources available locally, you can
provision a Linux host in the cloud. We will describe in the next section how to provision
a host on Google Cloud. Proceed as follows:

1.	 Set up the minikube configuration for CPU, disk, and memory through the
following commands:

minikube config set cpus 8

minikube config set memory 32GB

minikube config set disk-size 60GB

2.	 Validate if the configuration is set correctly via the following command:

minikube config view

You should see the following response:

Figure 3.22 – Output of the minikube config command

3.	 Now, start the Kubernetes cluster by running the following command:

minikube start --kubernetes-version=1.22.4

You should see the following response:

Figure 3.23 – Partial output of the minikube start command
Once the start process is completed, you should see a successful message like this
after the Kubernetes platform is available:

Figure 3.24 – Output after the successful start of minikube

Setting up your local Kubernetes environment 57

4.	 Validate that all the pods are in the Running state through the following command
on Linux or macOS. Note that it may take a few minutes for the pods to be in the
Running state:

watch kubectl get pods --all-namespaces

Or, run this command in Windows PowerShell:
while (1) {kubectl get pods --all-namespaces; sleep 5}

You should see the following response:

Figure 3.25 – Validating the Kubernetes pods have started successfully

Congratulations! You just installed and validated your new Kubernetes cluster. The
next step is to install components that will allow you to run Operators on your new
Kubernetes cluster.

Installing OLM
After you have validated that all pods are running for the local Kubernetes cluster, you
will now install OLM. The process for installing OLM or any other applications inside
Kubernetes is the same for all operating systems types. Proceed as follows:

1.	 Run the following command to install the CRD for the OLM:

kubectl apply -f https://github.com/operator-framework/
operator-lifecycle-manager/releases/download/v0.19.1/
crds.yaml

58 Exploring Kubernetes

You should see the following response:

Figure 3.26 – Validating OLM CRs have been created successfully

2.	 Run the following command to install OLM on Kubernetes:

kubectl apply -f https://github.com/operator-framework/
operator-lifecycle-manager/releases/download/v0.19.1/olm.
yaml

You should see the following response:

Figure 3.27 – Creating OLM objects in Kubernetes

3.	 Validate if all OLM pods are in the Running state by running this command on
Linux or macOS:

watch kubectl get pods -n olm

Or, run this command in Windows PowerShell:
while (1) {kubectl get pods -n olm; sleep 5}

Provisioning a VM on GCP 59

You should see the following response:

Figure 3.28 – Validating resources for OLM have been created successfully

4.	 Validate that catalogsource is available by issuing the following command:

kubectl get catalogsource -n olm

You should see the following response:

Figure 3.29 – Validating Operator catalog has been installed

Congratulations! You now have a local version of the Kubernetes cluster running and
you have installed OLM on it. Your cluster is now ready to install Kubernetes Operators.
Some of you may not have an access to a machine with the required minimum hardware
requirements to run the ML platform, but don't worry—we've got you covered. The
following section will help you provision the VM that you need in Google Cloud.

Provisioning a VM on GCP
It is always preferable to have a local environment that you can use to work on the
exercises in this book. However, we understand that not everyone has the required
compute resources available in their local machines. So, let's go to the cloud! You can
provision just the right machine that you need for the exercises, in the cloud, and for free.
For instance, Google Cloud gives United States dollars (USD) $300 worth of credit to
new accounts. Other cloud providers such as AWS and Azure also give a similar free tier
account, and it is up to you to select the cloud provider of your choice. For provisioning
the VM we need for this book, however, we will use Google Cloud.

Once you have the account details sorted, use the following steps to provision a VM
in your account. Just do not forget to stop the VM instance after you have completed a
session to avoid getting billed for the hours that you are not using your machine.

60 Exploring Kubernetes

The following instruction will guide you through the process of provisioning a VM in
Google Cloud:

1.	 First, register for a new account at https://cloud.google.com.
2.	 Install the gcloud software development kit (SDK) by following the steps at

https://cloud.google.com/sdk/docs/install.
3.	 Log in to Google Cloud using the following command. This command will

open a browser instance where you provide login credentials for your Google
Cloud account:

gcloud auth login

You should see the following response:

Figure 3.30 – Output for the login command

4.	 Then, it will take you to the browser where you will authenticate. Once the browser
completes the authentication steps, you will see the following output in the
command line:

Figure 3.31 – Output of a successful login to the gcloud account

5.	 Create a new project in Google Cloud, as follows. Your VM will belong to this
project. Note that the project name must be globally unique in GCP, so please
change it as per your preference:

gcloud projects create mlops-kube --name="MLOps on
Kubernetes"

You should see the following response:

Figure 3.32 – Output of the create project command in Google Cloud

https://cloud.google.com
https://cloud.google.com/sdk/docs/install

Provisioning a VM on GCP 61

Projects in GCP
Project identifiers (IDs) or project names must be globally unique across
Google Cloud. Only the first person will be able to create a project with the
name mlops-kube. Choose a different project name of your choice for
this command to work. You also need to use the chosen project name for
subsequent commands where the mlops-kube project name is specified.

6.	 Make sure you are in the right project by issuing the following command:

gcloud config set project mlops-kube

You should see the following response:

Figure 3.33 – Output of the command for setting the current project context

7.	 Set the right region and zone as per your location. You can get a list of all zones via
the gcloud compute zones list command, as shown here:

gcloud config set compute/region australia-southeast1

You should see the following response:

Figure 3.34 – Output after setting up the gcloud region
Run the following command:

gcloud config set compute/zone australia-southeast1-a

You should then see the following response:

Figure 3.35 – Output after setting up the gcloud zone

8.	 Enable the Compute Engine API, as follows. This step is required to provision the
Linux VM via APIs:

gcloud services enable compute.googleapis.com

62 Exploring Kubernetes

9.	 Disable OS Login because you only connect via SSH, as follows:

gcloud compute project-info add-metadata --metadata
enable-oslogin=FALSE

10.	 Now, create a VM within this project by running the following command:

gcloud compute instances create mlopskube-cluster
--project=mlops-kube --zone=australia-southeast1-a
--machine-type=c2-standard-8 --network-interface=network-
tier=PREMIUM,subnet=default --maintenance-policy=MIGRATE
--service-account=702800110954-compute@developer.
gserviceaccount.com --scopes=https://www.googleapis.
com/auth/devstorage.read_only,https://www.googleapis.
com/auth/logging.write,https://www.googleapis.
com/auth/monitoring.write,https://www.googleapis.
com/auth/servicecontrol,https://www.googleapis.
com/auth/service.management.readonly,https://
www.googleapis.com/auth/trace.append --create-
disk=auto-delete=yes,boot=yes,device-name=instance-
1,image=projects/centos-cloud/global/images/centos-8-
v20211105,mode=rw,size=80,type=projects/mlops-kube/
zones/australia-southeast1-b/diskTypes/pd-balanced
--no-shielded-secure-boot --shielded-vtpm --shielded-
integrity-monitoring --reservation-affinity=any

The output of the command should display the machine details, as illustrated here:

Figure 3.36 – Output of the create VM command on Google Cloud

11.	 Add a firewall rule to allow access to the instance via port 22 for SSH, as follows.
This is a lenient rule and should NOT be used in production:

gcloud compute --project=mlops-kube firewall-rules
create allow22 --direction=INGRESS --priority=1000
--network=default --action=ALLOW --rules=tcp:22 --source-
ranges=0.0.0.0/0

You should see the following response:

Figure 3.37 – Output of the firewall rule command

Summary 63

12.	 SSH to the machine using the gcloud SSH capability, as follows. This will give
the command line, and you can call the Kubernetes command mentioned in the
preceding section:

gcloud beta compute ssh --zone "australia-southeast1-a"
"mlopskube-cluster" --project "mlops-kube"

13.	 Delete the instance after you have completed the session, as follows:

gcloud compute instances delete --zone "australia-
southeast1-a" "mlopskube-cluster" --project "mlops-kube"

You should see the following response:

Figure 3.38 – Deleting the machine on Google Cloud

At this point, you can use this gcloud VM as the host machine for your Kubernetes
cluster. Following the previous sections, you should now know how to install kubectl
and minikube and how to set up a local Kubernetes cluster in this VM.

Summary
In this chapter, you have reviewed some basic Kubernetes concepts and gone through
the Operator ecosystem in the Kubernetes universe. If you want to learn more about
Kubernetes, The Kubernetes Workshop by Packt is a good place to start.

You have installed the tooling required to set up a local Kubernetes cluster. You have seen
the instructions to do it in other environments such as Linux, macOS, and Windows. You
have set up a VM on Google Cloud in case you do not want to use your local computer for
the exercises. You have configured OLM to manage Operators on your Kubernetes cluster.
These technologies will form the infrastructure foundation of our ML platform, which you
will start to shape up in the next chapter.

This part defines the different components of an MLOps solution in depth. The chapters
provide details on each component and the purpose it serves. This section also provides
an OSS solution that can play the role of each component in the MLOps platform.

This section comprises the following chapters:

•	 Chapter 4, The Anatomy of a Machine Learning Platform

•	 Chapter 5, Data Engineering

•	 Chapter 6, Machine Learning Engineering

•	 Chapter 7, Model Deployment and Automation

Part 2:
The Building Blocks

of an MLOps
Platform and How

to Build One on
Kubernetes

4
The Anatomy of a
Machine Learning

Platform
In this and the next few chapters, you will learn and install the components of a machine
learning (ML) platform on top of Kubernetes. An ML platform should be capable of
providing the tooling required to run the full life cycle of an ML project as described
in Chapter 2, Understanding MLOps. This chapter starts with defining the different
components of an ML platform in a technology-agnostic way. In the later parts, you
will see the group of open source software that can satisfy the requirements of each
component. We have chosen this approach to not tie you up with a specific technology
stack; instead, you can replace components as you deem fit for your environment.

The solution that you will build in this book will be based on open source technologies
and will be hosted on the Kubernetes platform that you built in Chapter 3, Exploring
Kubernetes.

68 The Anatomy of a Machine Learning Platform

In this chapter, you will learn about the following topics:

•	 Defining a self-service platform

•	 Exploring the data engineering components

•	 Exploring the ML model life cycle components

•	 Addressing security, monitoring, and automation

•	 Exploring Open Data Hub

Technical requirements
This chapter includes some hands-on setup. You will be needing a running Kubernetes
cluster configured with the Operator Life cycle Manager (OLM). Building such a
Kubernetes environment is covered in Chapter 3, Exploring Kubernetes. Before attempting
the technical exercises in this chapter, please make sure that you have a working
Kubernetes cluster. You may choose to use a different flavor of Kubernetes than the one
described in Chapter 3, Exploring Kubernetes, as long as the cluster has the OLM installed.

Defining a self-service platform
Self-service is defined as the capability of a platform that allows platform end users to
provision resources on-demand without other human intervention. Take, for example, a
data scientist user who needs an instance of a Jupyter notebook server, running on a host
container with eight CPUs, to perform his/her work. A self-service ML platform should
allow the data scientist to provision, through an end user friendly interface, the container
that will run an instance of the Jupyter notebook server on it. Another example of self-
service provisioning would be a data engineer requesting a new instance of an Apache
Spark cluster to be provisioned to run his/her data pipelines. The last example is a data
scientist who wants to package and deploy their ML model as a REST service so that the
application can use the model.

One benefit of a self-service platform is that it allows cross-functional teams to work
together with minimal dependencies on other teams. This independence results in better
team dynamics, less friction, and increased team velocity.

Exploring the data engineering components 69

The self-service model, however, needs governance. Imagine every data scientist
requesting GPUs or data engineers requesting tens of terabytes of storage! Self-service
capability is great, but without proper governance, it could also create problems. To avoid
such problems, the platform has to be managed by a platform team that can control or
limit the things the end users can do. One example of this limit is resource quotas. Teams
and/or individual users can be allocated with quotas and be responsible for managing
their own resources within the allocated quotas. Luckily, Kubernetes has this capability,
and our ML platform can utilize this capability to apply limits to the team's resources.

As part of governance, the platform must have role-based access control. This is to ensure
that only the users with the right role will have access to the resources they manage.
For example, the platform team may be able to change the resource quotas, while data
engineers can only spin up new Spark clusters and run data pipelines.

Another aspect of a self-service platform is the isolation of workloads. Many teams will
be sharing the same platform and, while the quotas will keep the teams within their
predefined boundaries, it is critical that there is a capability to isolate workloads from each
other so that multiple unrelated projects running on the same platform do not overlap.

Exploring the data engineering components
In the context of this book, data engineering is the process of ingesting raw data from
source systems and producing reliable data that could be used in scenarios such as analytics,
business reporting, and ML. A data engineer is a person who builds software that collects
and processes raw data to generate clean and meaningful datasets for data analysts and data
scientists. These datasets will form the backbone for your organization's ML initiatives.

Figure 4.1 shows the various stages of a typical data engineering area of an ML project:

Figure 4.1 – Data engineering stages for ML

70 The Anatomy of a Machine Learning Platform

Data engineering often overlaps with feature engineering. While a data scientist decides
on which features are more useful for the ML use case, he or she may work with the data
engineer to retrieve particular data points that are not available in the current feature
set. This is the main collaboration point between data engineers and data scientists. The
datasets created by the data engineer in the data engineering block become the feature set
in the ML block.

An ML platform that enables teams to perform feature engineering will have the following
components and processes.

•	 Data ingestion: Data ingestion is the process in which the team understands the
data sources and builds and deploys software that collects data from one or more
data sources. Data engineers understand the impact of reading data from source
systems. For example, while reading data from a source, the performance of the
source system may get affected. Therefore, it is important for the ML platform to
have a workflow scheduling capability so that the data collection can be scheduled
during a time when the source system is less active.

An ML platform enables the team to ingest data from various sources in multiple
ways. For example, some data sources would allow data to be pulled, while other
data sources may be able to push data. Data may come from a relational database,
data warehouses, data lakes, data pools, data streams, API calls, or even from a raw
filesystem. The platform should also have the capability to understand different
protocols, for example, a messaging system may have multiple protocols, such as
Advanced Message Queuing Protocol (AMQP), Message Queuing Telemetry
Transport (MQTT), and Kafka. In other words, the ML platform should have the
capability to gather data of various shapes and sizes from different types of data
sources in various ways. Figure 4.2 shows various sources of data from where the
platform should be able to ingest the data:

Exploring the data engineering components 71

Figure 4.2 – Data ingestion integrations

•	 Data transformation: Once the data is ingested from various sources, it needs to
be transformed from its original form into something that is more useful for the
ML model training and other use cases. According to a Forbes survey, 80% of data
scientists' work is related to preparing data for the model training; this is the stage
that is generally considered as boring among the data science teams. However, if
the data is not transformed into an appropriate form, it will lead to less useful and/
or inefficient ML models. An ML platform enables teams to code, build, and deploy
the data transformation pipelines and jobs with ease. The platform abstracts the
complications of running and managing data transformation components such
as Apache Spark jobs. Not only does the platform manage the execution of these
processes, but it also manages the provisioning and cleaning of compute resources
required to run these components, such as CPU, memory, and networking.

•	 Storage: During the feature engineering process, you will read and write data at
various stages. You might create a temporary representation of the dataset for
further processing, or you could write the new dataset to be used for ML processes.
In these scenarios, you will need storage resources that can be accessed with ease
and scale as needed. An ML platform provides on-demand storage for your datasets
to be stored in a reliable fashion.

Now, let's see how the data engineer will use these components in their workflow.

72 The Anatomy of a Machine Learning Platform

Data engineer workflow
All the capabilities mentioned in the previous section are provided by the ML platform
in a self-serving manner. The workflow that a data engineer using the platform would
typically perform is as follows:

1.	 Log in to the platform: In this step, the data engineer authenticates to the platform.
2.	 Provisioning of the development environment: In this step, the data engineer requests

the resource requirements for the development environment (such as the number
of CPUs, amount of memory, and specific software libraries) to the platform. The
platform then provisions the requested resources automatically.

3.	 Build a data pipeline: In this step, the data engineer writes the code for data
ingestion and data transformation. The data engineer then runs the code in an
isolated environment to verify its validity and perform the necessary refactoring
and tuning of the code.

4.	 Run a data pipeline: In this step, the data engineer schedules the code to run as
needed. It can be a regular schedule with periodic intervals such as hourly or daily,
or a one-off run, depending on the use case.

You can see in the preceding steps that besides writing the code, all other steps are
declarative. The data engineer's focus will be on building the code to ingest and transform
data. All other aspects of the flow will be taken care of by the ML platform. This will result
in improved efficiency and velocity for the team. The declarative capability of the platform
will allow teams to standardize processes across your organization, which will reduce the
number of bespoke toolchains and improve the security of the overall process.

The main output of the data engineering flow is a usable, transformed, and partially
cleaned set of data that can be used to start building and training a model.

Exploring the model development components
Once the cleaned data is available, data scientists then go through the problem and try
to determine what set of patterns would be helpful for the situation. The key here is
that the data scientist's primary role is to find patterns in the data. Model development
components of the ML platform explore data patterns, build and train ML models, and
trial multiple configurations to find the best set of configurations and algorithms to
achieve the desired performance of the model.

Exploring the model development components 73

Within the course of model development, data scientists or ML engineers build multiple
models based on multiple algorithms. These models are then trained using the data gathered
and prepared from the data engineering flow. The data scientist then plays around with
several hyperparameters to get different results from model testing. The result of such
training and testing is then compared with each of the other models. These experimentation
processes are then repeated multiple times until the desired results are achieved.

The experimentation phase will result in a selection of the most appropriate algorithm and
configuration. The selected model will then be tagged for packaging and deployment.

Figure 4.3 shows the various stages of model development for an ML project:

Figure 4.3 – Data engineering stages for ML

An ML platform that enables teams to perform model development will have the
following components:

•	 Data exploration: We humans are better at finding patterns when the data is
visualized as opposed to just looking at raw data sets. The ML platform enables
you to visualize data. As a data scientist, you will need to collaborate with subject
matter experts (SMEs) who have domain knowledge. Let's say you are analyzing a
dataset of coronavirus patients. If you are not an expert in the virology or medicine
domains, you will need to work with an SME who can provide insights about
the dataset, the relationships of features, and the quality of the data itself. An ML
platform allows you to share the visualizations you have created with the wider team
for improved feedback. The platform also allows non-technical people to look at the
data in a more graphical approach. This will help them gain a better understanding
of the data.

74 The Anatomy of a Machine Learning Platform

•	 Experimentation: As a data scientist, you will split the data into training and
testing sets, and then start building the model for the given metric. You will then
experiment with multiple ML algorithms such as decision trees, XGBoost, and
deep learning, and apply a variety of parameter tuning to each of the algorithms,
for example, the number of layers or number of neurons for a deep learning model.
This is what we call experimentation, and the platform enables the team to perform
the experimentation in an autonomous way. Keep in mind that for each experiment,
you may have different requirements for compute resources such as a GPU. This
makes the self-service provisioning capability of the platform critical.

•	 Tracking: While doing multiple experiments, you need to keep track of the
parameters used for each experiment and the metrics it has achieved. Some
algorithms may require different sets of features, which means you also need to keep
track of the version of the dataset that was used in training. There are two reasons for
doing this. The first reason is that you will need a history of your experiments so that
you can compare and pick the best combination. The second reason is that you may
need to share the results with your fellow data scientists. The ML platform enables
you to record the results of the experiments and share them seamlessly.

•	 Model building and tuning: In the experimentation stage, you have found the
best algorithm and the best parameters for your model. You have compared the
results and associated metrics for your model and have chosen the algorithm
and parameters to be used. In this stage, you will train your model with these
parameters, and register it with the model registry:

	� Model registry: As a data scientist, when you are satisfied with your model, you
work with your team to deploy it. The real world changes, however, and you will
need to update your model for new datasets or different metrics or simply for
improved metrics. New versions of the models come all the time and the ML
platform enables you to keep track of the versions of your models. The model
versioning capability will help the team to compare the efficiency of new model
versions with older model versions and allow the team to roll back a new model in
production to previous versions if the need arises.

•	 Storage: Storage is not only important in the data engineering phase but also in
model development. During the model development process, you read and write
data at various stages. You split the dataset into a testing dataset and a training
dataset, and you may choose to write it once so you can experiment with different
model parameters but with the same datasets. The experiment tracking module and
the model registry both need storage. The ML platform provides on-demand storage
for your datasets to be stored in a reliable fashion.

Now, let's see how the data scientists use these components in their workflow.

Exploring the model development components 75

Understanding the data scientist workflow
All the capabilities mentioned in the previous section are provided by the ML platform in
a self-serving way. The typical workflow for the data scientist would be as follows:

1.	 Log in to the platform: The data scientists authenticate to the platform.
2.	 Provisioning of the development environment: In this step, the data scientist requests,

to the platform, the resource requirements for the development environment, such
as the number of CPUs, amount of memory, and specific software libraries. The
platform then provisions the requested resources automatically.

3.	 Exploratory data analysis: In this stage, data scientists perform several types of data
transformations and visualization techniques to understand the patterns hidden in
the data.

4.	 Experimenting with different algorithms: In this stage, data scientists split the full
dataset into training and testing sets. Then, the data scientists apply different ML
algorithms and hyperparameters to achieve the desired metrics. Data scientists
then compare the parameters of each training run to select the best one for the
given use case.

5.	 Model training: Data scientists train the model as per the most optimized parameters
found in the previous stage, and register the model in the model registry.

6.	 Run model deployment pipeline: In this step, the data scientists package the model
to be consumed as a service and build the pipeline to automate the deployment
process. It can be scheduled regularly or as a one-off run, depending on the use case.

You can see in the preceding steps that besides writing the code to facilitate model
building and training, all other steps are declarative. The data scientists' focus will be on
building more data science and ML engineering tasks. All other aspects of the flow will
be taken care of by the ML platform. This will result in improved efficiency and velocity
for the team, not to mention a happier data scientist. The declarative capability of the
platform will also allow teams to standardize processes across your organization, which
will reduce the use of bespoke toolchains improving consistency and improving the
security of the overall process.

In the next section, you will explore the common services of the ML platform. These
services are critical to making the platform production-ready and easier to adopt in the
enterprise environment.

76 The Anatomy of a Machine Learning Platform

Security, monitoring, and automation
In this section, you will see some common components of the ML platform that apply to
all the components and stages we have discussed so far. These components assist you in
operationalizing the platform in your organization:

•	 Data pipeline execution: The outcome of data engineering is a data pipeline that
ingests, cleans, and processes data. You have built this pipeline with scaled-down
data for development purposes. Now, you need to run this code with production
data, or you want a scheduled run with new data available, say, every week. An
ML platform allows you to take your code and automate its execution in different
environments. This is a big step because the platform not only allows you to run
your code but will also manage the packaging of all the dependencies of your code
so that it can run anywhere. If the code that you have built is using Apache Spark,
the platform should allow you to automate the process of provisioning a Spark
cluster and all other components required to run your data pipeline.

•	 Model deployment: Once the model is ready to be used, it should be available to be
consumed as a service. Without the automated model packaging and deployment
capability of the ML platform, the process of packaging a model and hosting it
as a service requires some software engineering work. This work requires tight
collaboration with software engineers and the operations team and may take days,
if not weeks, to accomplish. The ML platform automates this process and it usually
takes only a few seconds to a few minutes. The result of this process is an ML model
deployed in an environment and is accessible as a service – typically, as a REST API.

Deployment of the model is one aspect; over time, you may also need to re-train
the model with new datasets. The platform also enables your team to automate the
retraining process using the same training code you built for the first time when
you trained your model. The retrained model is then redeployed automatically. This
capability massively improves the efficiency of the team and this allows for more
efficient use of time, such as working on newer challenges while delivering values
for the business.

Introducing ODH 77

•	 Monitoring: Monitoring does not just refer to having the capability to observe the
dynamics of the components in production, such as monitoring the model response
time, but it also enables the team to respond to events before they become problems.
A good monitoring platform provides observability during the full ML project life
cycle and not just monitoring in production. When you are writing code to process
data, you may need to tune the joins expression between datasets from multiple
systems. This is one of the examples of information you need during development.
The ML platform allows you to dig into the details during the development process.
The platform also provides capabilities to monitor the underlying IT infrastructure.
For example, when you are running your code during the model training stage, the
platform provides the metrics on hardware resource utilization.

•	 Security and governance: The platform you are building allows teams to work
autonomously. Teams can use the tools in the platform to perform the work
anytime. However, the question of who can access what and who can use which
tools proves to be a challenge for many organizations. For this, the platform must
have an access control capability and provide access to only authorized users.
The security component of the platform allows the users to be authenticated and
authorized through standard protocols such as OAuth2 or OpenID Connect.
You will be using open source components to bring authentication components
to the platform. The platform also uses the Kubernetes namespace feature to
provide workload isolation across different teams that are sharing the same cluster.
Kubernetes also provides the capability to assign limits of hardware resources to be
used by individual teams. These capabilities will enable teams to share the platform
across many different units within your organization while providing well-defined
isolation boundaries and hardware resource quotas.

•	 Source code management: When you build data pipelines or train your model,
you write code. The platform provides capabilities to integrate with source code
management solutions. Git is the default source code management solution
integrated platform.

Now, let's move on to cover Open Data Hub (ODH).

Introducing ODH
ODH is an open source project that provides most of the components required by our ML
platform. It comes with a Kubernetes operator and a curated set of open source software
components that make up most of the ML platform. In this book, we will mainly use the
ODH operator. There are also other components that we will be using in the platform that
don't originally come with ODH. One good thing about the ODH operator is the ability to
swap default components for another as you see fit for your case.

78 The Anatomy of a Machine Learning Platform

To build the platform, you will use the following components. In the next few chapters,
you will learn about the details of each of these components and how to use them. For
now, you just need to understand their purpose at a very high-level:

•	 ODH operator: A Kubernetes operator that manages the life cycle of different
components of the ML platform. It controls and manages the installation and
maintenance of the software components used in your ML platform.

•	 JupyterHub: Manages instances of Jupyter Notebook servers and their related
resources.

•	 Jupyter notebooks: An integrated development environment (IDE) is the main
data engineering and data science workspace in the platform. Data scientists
and engineers will use these workspaces to write and debug code for both data
engineering and ML workflows.

•	 Apache Spark: A distributed, parallel data processing engine and framework for
processing large datasets. It provides a wide array of data ingestion connectors to
consume data from a variety of sources.

•	 Apache Airflow: A workflow engine that automates the execution and scheduling of
data pipelines and model deployment. Airflow orchestrates different components of
your data pipelines.

•	 Seldon Core: A library for packaging and deploying ML models as a REST service.
It also has the capability of monitoring the deployed models. It provides support
for popular ML frameworks, which gives it the capability to wrap and package
ML models built with frameworks such as TensorFlow, scikit-learn, XGBoost, and
PyTorch, as REST services.

•	 Prometheus and Grafana: These two components provide the monitoring
capabilities for our platform. Prometheus provides the metrics database to record
telemetry data provided by the components of the platform, and Grafana provides
the graphical user interface (GUI) to visualize the captured metrics.

•	 Minio: An object storage provider that is compatible with Amazon S3 APIs.
The Minio component is not part of the ODH toolchain, but we will extend and
configure the ODH operator to manage the Minio component on the ML platform.

•	 MLFlow: A component for tracking different model experiments and also serves as
the model registry of the platform. The MLFlow component is not part of the ODH
toolchain, but we will extend the ODH operator to manage the MLFlow component
on the ML platform

Introducing ODH 79

You will also install an open source identity provider component. The goal for
this component is to provide a common single sign-on feature for all the platform
components. We will use Keycloak as the identity management system, but this could be
swapped with an OAuth2-based system that may already exist in your case. Keycloak is
not part of the ODH, and we will show you how to install it as a separate component on
your Kubernetes cluster.

Figure 4.4 shows the major open source software that serves as the main components
of the ML platform. The ODH extensibility model allows you to add or choose which
products to use for which components as per the requirements. You can replace any of the
components with other open source products of choice. However, for the exercises in this
book, we will use the product listed here:

Figure 4.4 – Major components of the ML platform

In the next section, you will deploy the ODH operator and Keycloak server on your
Kubernetes cluster. You will also install and configure the ingress controller to accept
traffic from outside the cluster.

Installing the ODH operator on Kubernetes
In this section, you will install the ODH operator onto your Kubernetes cluster. At this
stage, you will not enable any components of the platform. To install the operator, you first
need to register the catalog source for the operator, and then you can install it.

80 The Anatomy of a Machine Learning Platform

First, let's register the catalog for the ODH operator. A catalog source contains metadata
through which the OLM can discover operators and their dependencies. The ODH
operator is not available in the default OLM catalog, so we need to register a new catalog
that contains the ODH metadata for the OLM:

1.	 Validate that your Kubernetes cluster is running if you are using minikube:

minikube status

You should see the following response:

Figure 4.5 – Validate that Kubernetes is running via minikube
If your Kubernetes cluster is not running, please refer to Chapter 3, Exploring
Kubernetes, on how to configure and start the Kubernetes cluster.

2.	 Verify that the OLM is installed and is running by executing the following:

kubectl get pods -n olm

You should see the following response:

Figure 4.6 – Command output showing OLM pods are running
Make sure that all the OLM pods are running. If this is not the case for you, refer to
Chapter 3, Exploring Kubernetes, in the How to install OLM in your cluster section.

3.	 Clone the Git repository and navigate to the repository's root directory. This
repository contains all the source files, scripts, and manifests that you need to
build the platform within the scope of this book: https://github.com/
PacktPublishing/Machine-Learning-on-Kubernetes.git cd
Machine-Learning-on-Kubernetes.

https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes.git cd Machine-Learning-on-Kubernetes
https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes.git cd Machine-Learning-on-Kubernetes
https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes.git cd Machine-Learning-on-Kubernetes

Introducing ODH 81

Register a new catalog source operator by using the YAML file available in the
source code of this book:

kubectl create -f chapter4/catalog-source.yaml

4.	 After a couple of minutes, validate that the operator is available in your cluster:

kubectl get packagemanifests -o wide -n olm | grep -I
opendatahub

You should see the following response:

Figure 4.7 – Validate that the ODH operator is available
On Windows PowerShell, you may need to replace the grep command
with findstr.

5.	 Now, create the subscription for the ODH operator. Recall from the third chapter
that a subscription object triggers the installation of the operator via the OLM:

kubectl create -f chapter4/odh-subscription.yaml

You should see a response message that the subscription has been created.
6.	 After creating the subscription, the OLM will automatically install the operator and

all its components. Verify that the ODH pod is running by issuing the following
command. It may take a few seconds before the pods start appearing. If the pods are
not listed, wait for a few seconds and rerun the same command:

kubectl get pods -n operators

You should see the following response:

Figure 4.8 – Validate that the ODH pod is up and running

You have just installed the ODH operator on your Kubernetes cluster. Notice that you have
not used generic Kubernetes objects such as Deployments to run your operator. The OLM
allows you to easily manage the installation of an operator via the Subscription object.

82 The Anatomy of a Machine Learning Platform

In the next section, you install the ingress controller to allow traffic into your
Kubernetes cluster.

Enabling the ingress controller on the Kubernetes
cluster
Recall from Chapter 3, Exploring Kubernetes, that ingress provides a way for you to
expose a particular service to make it accessible from outside the cluster. There are many
ingress providers available on Kubernetes, and we leave it to you to select the right ingress
provider for your cluster.

If you are using minikube, you need to follow these steps to enable the default ingress:

1.	 Enable the NGINX-based ingress controller for your cluster by issuing the
following command:

minikube addons enable ingress

You should see the following response:

Figure 4.9 – Output for enabling minikube ingress plugin

2.	 Validate that the ingress pods are running in your cluster:

kubectl get pods -n ingress-nginx

You should see the following response:

Figure 4.10 – Validate that the Nginx ingress pods are in running state

Now that you have enabled the external traffic onto your cluster, the next step is to install
the open source authentication and authorization component for your ML platform.

Introducing ODH 83

Installing Keycloak on Kubernetes
We will use Keycloak (https://www.keycloak.org) as our identity provider and
add authentication and access management capabilities for your platform. Keycloak
supports industry-standard security mechanisms such as OAuth2 and OpenID Connect.
In this section, you will install the Keycloak server on the Kubernetes cluster and log in to
the Keycloak UI to validate the installation:

1.	 Start by creating a new namespace for the keycloak application:

kubectl create ns keycloak

You should see the following response:

Figure 4.11 – Output for creating a new namespace for Keycloak

2.	 Create the Keycloak manifest using the provided YAML file:

kubectl create -f chapter4/keycloak.yaml --namespace
keycloak

3.	 Validate that the keycloak pods are running. Note that the --namespace and
-n flags are interchangeable in kubectl:

kubectl get pods -n keycloak

It may take a while to start, as it will start by pulling container images from the
internet. The first time you run the command, you might see that the READY status
is 0/1. This is normal. Once the Keycloak pod is running, you should see the
following response:

Figure 4.12 – Validate that the Keycloak pods are in running state
In the next few steps, you will define and configure the ingress for your Keycloak
pod so that it can be accessed from outside the cluster.

https://www.keycloak.org

84 The Anatomy of a Machine Learning Platform

4.	 Get the IP address of your minikube machine by issuing the following command:

minikube ip

You should see the following response:

Figure 4.13 – IP address of your minikube instance

5.	 Open the chapter4/keycloak-ingress.yaml file and replace the KEYCLOAK_
HOST string with the keycloak.<THE_IP_ADDRESS_OF_YOUR_MINIKUBE>.
nip.io string. So, if the IP address of your minikube is 192.168.61.72, then
the string value would be keycloak.192.168.61.72.nip.io .

There are two places in the file where you need to put this new string. The file will
look like Figure 4.14. Do not forget to save the changes in this file.

Figure 4.14 – The IP address of your minikube instance changed in the keycloak-ingress file

Introducing ODH 85

Apply the modified file to the Kubernetes cluster. This ingress object will create
the required configuration for you to access the Keycloak server from outside the
Kubernetes cluster. Run the following command to create the ingress object:

kubectl create -f chapter4/keycloak-ingress.yaml
--namespace keycloak

You should see the following response:

Figure 4.15 – Modified ingress has been applied

6.	 Validate that the ingress object is available by issuing the following command:

kubectl get ingress --namespace keycloak

You should see the following response:

Figure 4.16 – Ingress object has been created

7.	 Now that you have validated that Keycloak is running and is exposed through the
ingress object, open a browser on your machine where minikube is running
and access the following URL. You need to replace the correct IP address, as stated
in step 5: https://keycloak.192.168.61.72.nip.io/auth/.

You will get a warning that the certificate is not valid. This is because the Keycloak
server uses a self-signed certificate by default. You just need to click the Advance
button presented by the browser and choose to continue to the website.

https://keycloak.192.168.61.72.nip.io/auth/

86 The Anatomy of a Machine Learning Platform

You should see the following page; click on the Administration Console link to
proceed further:

Figure 4.17 – Keycloak landing page

Introducing ODH 87

8.	 Log in using the credentials admin/admin in the following screen. After you enter
the credentials, click Sign in:

Figure 4.18 – Keycloak login page

88 The Anatomy of a Machine Learning Platform

9.	 Validate that the main administration page of Keycloak is displayed as follows:

Figure 4.19 – Keycloak administration page

Congratulations! You have successfully installed the ODH operator and Keycloak onto
your Kubernetes cluster.

Summary
In this chapter, you have learned about the major components of your ML platform
and how open source community projects provide software products for each of those
components. Using open source software enables a great number of people to use
software for free, while at the same time, contributing to improving the components while
continuously evolving and adding new capabilities to the software.

You have installed the operator required to set up the ML platform on your Kubernetes
cluster. You have installed the ingress controller to allow traffic into your cluster and installed
Keycloak to provide the identity and access management capabilities for your platform.

The foundation has been set for us to go deeper into each component of the ML life cycle.
In the next chapter, you will learn to set up Spark and JupyterHub on your platform,
which enables data engineers to build and deploy data pipelines.

Further reading 89

Further reading
•	 Data preparation is the least enjoyable task in data science: https://www.

forbes.com/sites/gilpress/2016/03/23/data-preparation-
most-time-consuming-least-enjoyable-data-science-task-
survey-says/?sh=1e5986216f63

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=1e5986216f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=1e5986216f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=1e5986216f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=1e5986216f63

5
Data Engineering

Data engineering, in general, refers to the management and organization of data and
data flows across an organization. It involves data gathering, processing, versioning, data
governance, and analytics. It is a huge topic that revolves around the development and
maintenance of data processing platforms, data lakes, data marts, data warehouses, and
data streams. It is an important practice that contributes to the success of big data and
machine learning (ML) projects. In this chapter, you will learn about the ML-specific
topics of data engineering.

A sizable number of ML tutorials/books start with a clean dataset and a CSV file to build
your model against. The real world is different. Data comes in many shapes and sizes, and
it is important that you have a well-defined strategy to harvest, process, and prepare data
at scale. This chapter will discuss open source tools that can provide the foundations for
data engineering in ML projects. You will learn how to install the open source toolsets on
the Kubernetes platform and how these tools will enable you and your team to be more
efficient and agile.

92 Data Engineering

 In this chapter, you will learn about the following topics:

•	 Configuring Keycloak for authentication

•	 Configuring Open Data Hub components

•	 Understanding and using the JupyterHub IDE

•	 Understanding the basics of Apache Spark

•	 Understanding how Open Data Hub provisions on-demand Apache Spark clusters

•	 Writing and running a Spark application from Jupyter Notebook

Technical requirements
This chapter includes some hands-on setup and exercises. You will need a running
Kubernetes cluster configured with Operator Lifecycle Manager. Building such a
Kubernetes environment is covered in Chapter 3, Exploring Kubernetes. Before attempting
the technical exercises in this chapter, please make sure that you have a working
Kubernetes cluster and Open Data Hub (ODH) installed on your Kubernetes cluster.
Installing the ODH is covered in Chapter 4, The Anatomy of a Machine Learning Platform.
You can find all the code associated with this book at https://github.com/
PacktPublishing/Machine-Learning-on-Kubernetes.

Configuring Keycloak for authentication
Before you start using any component of your platform, you need to configure the
authentication system to be associated with the platform components. As mentioned in
Chapter 4, The Anatomy of a Machine Learning Platform, you will use Keycloak, an open
source software to provide authentication services.

As a first step, import the configuration from chapter5/realm-export.json,
which is available in the code repository associated with this book. This file contains the
configuration required to associate the OAuth2 capabilities for the platform components.

Though this book is not a Keycloak guide by any means, we will provide some basic
definitions for you to understand the high-level taxonomy of the Keycloak server:

•	 Realm: A Keycloak realm is an object that manages the users, roles, groups, and
client applications that belong to the same domain. One Keycloak server can have
multiple realms, so you have multiple sets of configurations, such as one realm for
internal applications and one for external applications.

https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes
https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes

Configuring Keycloak for authentication 93

•	 Clients: Clients are entities that can request user authentication. A Keycloak client
object is associated with a realm. All the applications in our platform that require
single sign-on (SSO) will be registered as clients in the Keycloak server.

•	 Users and groups: These two terms are self-explanatory, and you will be creating
a new user in the following steps and using it to log into different software of
the platform.

The next step is to configure Keycloak to provide OAuth capabilities to our ML
platform component.

Importing the Keycloak configuration for the ODH
components
In this section, you will import the clients and group configurations onto the Keycloak
server running on your Kubernetes cluster. The following steps will import everything
onto the master realm of the Keycloak server:

1.	 Log in to your Keycloak server using the username admin and the password admin.
Click on the Import link on the left-hand sidebar under the Manage heading:

Figure 5.1 – Keycloak Master realm

94 Data Engineering

2.	 Click on the Select file button on the screen, as follows:

Figure 5.2 – Keycloak import configuration page

Configuring Keycloak for authentication 95

3.	 Select the chapter5/realm-export.json file from the pop-up window. After
that, select Skip for the If a resource exists drop-down options, and click Import:

Figure 5.3 – Keycloak import configuration page

96 Data Engineering

4.	 Validate that the records have been imported successfully onto your Keycloak server:

Figure 5.4 – Keycloak import configuration results page

Configuring Keycloak for authentication 97

5.	 Validate that there are four clients created by clicking on the Clients item on the
left-hand side menu. The following client IDs should exist: aflow, mflow, grafana,
and jhub. The aflow client is for the workflow engine of the platform, which is an
instance of Apache Airflow. The mflow client is for the model registry and training
tracker tool and is an instance of MLflow. The grafana client is for monitoring
UI and is an instance of Grafana. And last, the jhub client is for the JupyterHub
server instance.

Figure 5.5 – Keycloak clients page

98 Data Engineering

6.	 Validate that a group called ml-group has been created by clicking on the Groups
link on the left-hand panel:

Figure 5.6 – Keycloak groups page
You will use this user group to create a user of the platform.

Great work! You have just configured multiple Keycloak clients for the ML platform. The
next step is to create a user in Keycloak that you will be using for the rest of this book.
It is important to note that Keycloak can be hooked with your enterprise directory or
any other database and to use them as a source of the users. Keep in mind that the realm
configuration we are using here is very basic and is not recommended for production use.

Creating a Keycloak user
In this section, you will create a new user and associate the newly created user with the
group imported in the preceding section. Associating the user with the group gives the
roles required for the different ODH software:

1.	 On the left-hand side of the Keycloak page, click on the Users link to come to this
page. To add a new user, click the Add user button on the right:

Configuring Keycloak for authentication 99

Figure 5.7 – Keycloak users list

2.	 Add the username mluser and make sure the User Enabled and Email Verified
toggle buttons are set to ON. In Groups, select the ml-group group and fill in the
Email, First Name, and Last Name fields, as shown in Figure 5.8, and then hit the
Save button:

Figure 5.8 – Keycloak Add user page

100 Data Engineering

3.	 Click on the Credentials tab to set the password for your user:

Figure 5.9 – Keycloak Credentials page

4.	 Type in the password of your choice, then disable the Temporary flag, and hit the
Set Password button.

You have just created and configured a user in Keycloak. Your Keycloak server is now ready
to be used by the ML platform components. The next step is to explore the component of
the platform that provides the main coding environment for all personas in the ML project.

Configuring ODH components
In Chapter 4, The Anatomy of a Machine Learning Platform, you have installed the ODH
operator. Using the ODH operator, you will now configure an instance of ODH that will
automatically install the components of the ML platform. ODH executes Kustomize scripts
to install the components of the ML platform. As part of the code for this book, we have
provided templates to install and configure all the components required to run the platform.

Configuring ODH components 101

You can also configure what components ODH operators install for you through a
manifests file. You can pass the specific configuration to the manifests and choose
the components you need. One such manifest is available in the code repository of the
book at manifests/kfdef/ml-platform.yaml. This YAML file is configured
for the ODH operator to do its magic and install the software we need to be part of the
platform. You will need to make some modifications to this file, as you will see in the
following section.

This file defines the components of your platform and the location from where these
components will get their settings:

•	 Name: Defines the name of the component.

•	 repoRef: This section contains the path property where you define the relative
path location of the files required to configure this component.

•	 Parameters: This section contains the parameters that will be used to configure
the component. Note that, in the following example, the IP address for
KEYCLOAK_URL and JUPYTERHUB_HOST will need to be changed as per
your configuration.

•	 Overlays: The ODH operator contains a default set of configurations for each
component. Overlays provide a way to further tune the default configuration. The
list of overlays is a set of folders, under the same location as the manifest file. The
ODH operator will read the files from these overlay folders and merge them on the
fly to produce a final configuration. You can find the overlays for JupyterHub in the
manifests/jupytherhub/overlays folder in the code repository.

•	 Repos: This configuration section is specific to each manifest file and applies to
all the components in the manifest. It defines the location and version of the Git
repository that contains all the files being referred to by this manifest file. If you
want the manifest to reference your own files for the installation, you need to refer
here to the right Git repository (the repository that contains your files).

102 Data Engineering

Figure 5.10 shows the part of the manifest file that holds the definition of the
JupyterHub component:

Figure 5.10 – A component in the ODH manifest file

You will use the provided manifest file to create an instance of the ML platform. You may
also tweak configurations or add or remove components of the platform as you wish
by modifying this file. However, for the exercises in the book, we do not recommend
changing this unless you are instructed to do so.

Now that you have seen the ODH manifest file, it's time to make good use of it to create
your first ML platform on Kubernetes.

Installing ODH
Before we can install the data engineering components of the platform, we first need to
create an instance of ODH. An ODH instance is a curated collection of related toolsets
that serve as the components of an ML platform. Although the ML platform may contain
components other than what is provided by ODH, it is fair to say that an instance of ODH
is an instance of the ML platform. You may also run multiple instances of ODH on the
same Kubernetes cluster as long as they run on their own isolated Kubernetes namespaces.
This is useful when multiple teams or departments in your organization are sharing a
single Kubernetes cluster.

Configuring ODH components 103

The following are the steps you need to follow to create an instance of ODH on your
Kubernetes cluster:

1.	 Create a new namespace in your Kubernetes cluster using the following command:

kubectl create ns ml-workshop

You should see the following response:

Figure 5.11 – New namespace in your Kubernetes cluster

2.	 Make sure that the ODH operator is running by issuing the following command:

kubectl get pods -n operators

You should see the following response. Make sure the status says Running:

Figure 5.12 – Status of the ODH operator

3.	 Get the IP address of your minikube environment. This IP address will be used
to create ingress for different components of the platform the same way we did
for Keycloak. Note that your IP may be different for each minikube instance
depending on your underlying infrastructure:

minikube ip

This command should give you the IP address of your minikube cluster.
4.	 Open the manifests/kfdef/ml-platform.yaml file and change the value

of the following parameters to a NIP (nip.io) domain name of your minikube
instance. Only replace the IP address part of the domain name. For example,
KEYCLOAK_URL keycloak.<IP Address>.nip.io should become
keycloak.192.168.61.72.nip.io. Note that these parameters may be
referenced in more than one place in this file. In a full Kubernetes environment,
<IP Address> should be the domain name of your Kubernetes cluster:

I.	 KEYCLOAK_URL

II.	 JUPYTERHUB_HOST

104 Data Engineering

III.	 AIRFLOW_HOST

IV.	 MINIO_HOST

V.	 MLFLOW_HOST

VI.	 GRAFANA_HOST

5.	 Apply the manifest file to your Kubernetes cluster using the following command:

kubectl create -f manifests/kfdef/ml-platform.yaml -n
ml-workshop

You should see the following response:

Figure 5.13 – Result from applying manifests for the ODH components

6.	 Start watching the pods being created in the ml-workshop namespace by using
the following command. It will take a while for all the components to be installed.
After several minutes, all the Pods will be in a running state. While the pods are
being created, you may see some pods throw errors. This is normal because some
pods are dependent on other pods. Be patient as all the components come together
and the pods will come into a running state:

watch kubectl get pods -n ml-workshop

You should see the following response when all the pods are running:

Figure 5.14 – CLI response showing the ODH components running on the Kubernetes cluster

Understanding and using JupyterHub 105

So, what does this command do? The Open Data Hub (ODH) operator consumed
the kfdef Custom Resource Definition (CRD) that you have created in Step 5.
The operator then goes through each of the application objects in the CRD and
creates the required Kubernetes objects to run these applications. The Kubernetes
objects created in your cluster include several Deployments, Pods, Services,
Ingresses, ConfigMaps, Secrets, and PersistentVolumeClaims. You may also run the
following command to see all the objects created in the ml-workshop namespace:

kubectl get all -n ml-workshop

You should see all the objects that were created in the ml-workshop namespace by
the ODH operator.

Congratulations! You have just created a fresh instance of ODH. Now that you have seen
the process of creating an instance of the ML platform from a manifest file, it is time to
take a look at each of the components of the platform that the data engineers will use for
their activities.

Minikube Using Podman Driver
Note that for some minikube setups that use podman drivers in Linux, the
Spark operator may fail due to the limit of the number of threads. To solve this
problem, you need to use a kvm2 driver in your minikube configuration.
You can do this by adding the --driver=kvm2 parameter to your
minikube start command.

Understanding and using JupyterHub
Jupyter Notebook has become an extremely popular tool for writing code for ML projects.
JupyterHub is a software that facilitates the self-service provisioning of computing
environments that includes spinning up pre-configured Jupyter Notebook servers and
provisioning the associated compute resources on the Kubernetes platform. On-demand
end users such as data engineers and data scientists can provision their own instances of
Jupyter Notebook dedicated only to them. If a requesting user already has his/her own
running instance of Jupyter Notebook, the hub will just direct the user to the existing
instance, avoiding duplicated environments. From the end user's perspective, the whole
interaction is seamless. You will see this in the next section of this chapter.

106 Data Engineering

When a user requests an environment in JupyterHub, they are also given the option
to choose a pre-configured sizing of hardware resources such as CPU, memory, and
storage. This allows for a flexible way for developers, data engineers, and data scientists
to provision just the right amount of computing resources for a given task. This dynamic
allocation of resources is facilitated by the underlying Kubernetes platform.

Different users may require different frameworks, libraries, and flavors of coding
environments. Some data scientists may want to use TensorFlow while others want to
use scikit-learn or PyTorch. Some data engineers may prefer to use pandas while some
may need to run their data pipelines in PySpark. In JupyterHub, they can configure
multiple pre-defined environments for such scenarios. Users can then select a predefined
configuration when they request a new environment. These predefined environments
are actually container images. This means that the platform operator or platform
administrator can prepare several predefined container images that will serve as the
end user's computing environment. This feature also enables the standardization of
environments. How many times do you have to deal with different versions of the libraries
on different developer computers? The standardization of environments can reduce the
number of problems related to library version inconsistencies and generally reduce the it
works on my machine issues.

Figure 5.15 shows the three-step process of provisioning a new JupyterHub environment:

Figure 5.15 – Workflow for creating a new environment in JupyterHub

Now that you know what JupyterHub can do, let's see it in action.

Understanding and using JupyterHub 107

Validating the JupyterHub installation
Every data engineer in the team follows a simple and standard workflow of provisioning
an environment. No more manual installations and fiddling with their workstation
configurations. This is great for autonomous teams and will definitely help improve your
team's velocity.

The ODH operator has already installed the JupyterHub for you in the previous sections.
Now, you will spin up a new Jupyter Notebook environment, as a data engineer, and write
your data pipelines:

1.	 Get the ingress objects created in your Kubernetes environment using the following
command. We are running this command to find the URL of JupyterHub:

kubectl get ingress -n ml-workshop

You should see the following example response. Take note of the JupyterHub URL
as displayed in the HOSTS column:

Figure 5.16 – All ingresses in your cluster

108 Data Engineering

2.	 Open a browser from the same machine where minikube is running and navigate to
the JupyterHub URL. The URL looks like https://jupyterhub.<MINIKUBE
IP ADDRESS>.nip.io. This URL will take you to the Keycloak login page to
perform SSO authentication. Make sure that you replace the IP address with your
minikube IP address in this URL:

Figure 5.17 – SSO challenge for JupyterHub

3.	 Type mluser for the username, then type whatever password you have set up for
this user, and click Sign In.

You will see the landing page of the JupyterHub server where it allows you to select
the notebook container image that you want to use and also a predefined size of
computing resources you need.

The notebook image section contains the standard notebooks that you have
provisioned using the ODH manifests from the manifests/jupyterhub-images
folder of the code repository.

The container size drop-down allows you to select the right size of environment for
your need. This configuration is also controlled via the manifests/jupyterhub/
jupyterhub/overlays/mlops/jupyterhub-singleuser-profiles-
sizes-configmap.yaml manifest file.

https://jupyterhub.<MINIKUBE IP ADDRESS>.nip.io
https://jupyterhub.<MINIKUBE IP ADDRESS>.nip.io

Understanding and using JupyterHub 109

We encourage you to look into these files to familiarize yourself with what
configuration you can set for each manifest.

Figure 5.18 – JupyterHub landing page
Select Base Elyra Notebook Image and the Default container size and hit
Start server.

4.	 Validate that a new pod has been created for your user by issuing the following
command. Jupyter Notebook instance names start with jupyter-nb- and are
suffixed with the username of the user. This allows for a unique name of notebook
pods for each user:

kubectl get pods -n ml-workshop | grep mluser

You should see the following response:

Figure 5.19 – Jupyter Notebook pod created by JupyterHub

110 Data Engineering

5.	 Congratulations! You are now running your own self-provisioned Jupyter Notebook
server on the Kubernetes platform.

Figure 5.20 – Jupyter Notebook landing page

Understanding and using JupyterHub 111

6.	 Now, let's stop the notebook server. Click on the File > Hub Control Panel menu
option to go to the Hub Control Panel page shown as follows:

Figure 5.21 – Menu option to see the Hub Control Panel

112 Data Engineering

7.	 Click on the Stop My Server button. This is how you stop your instance of Jupyter
Notebook. You may want to start it back again later for the next steps.

Figure 5.22 – Hub Control Panel

8.	 Validate that a new pod has been destroyed for your user by issuing the
following command:

kubectl get pods -n ml-workshop | grep mluser

There should be no output for this command because the Jupyter Notebook pod has
been destroyed by JupyterHub.

We leave it up to you to explore the different bits of the configuration of the notebook in
your environment. You will write code using this Jupyter notebook in the later sections of
this chapter and the next few chapters of this book, so if you just want to continue reading,
you will not miss anything.

Understanding and using JupyterHub 113

Running your first Jupyter notebook
Now that your Jupyter notebook is running, it is time to write the Hello World!
program. In the code repository of this book, we have provided one such program, and in
the following steps, you will check out the code using Git and run the program. Before we
start these steps, make sure that you can access your Jupyter notebook using the browser,
as mentioned in the preceding section:

1.	 Click on the Git icon on the left-hand side menu on your Jupyter notebook. The
icon is the third from the top. It will display three buttons for different operations.
Click on the Clone a Repository button:

Figure 5.23 – Git operations in the Jupyter notebook

114 Data Engineering

2.	 In the Clone a repo pop-up box, type in the location of the code repository of this
book, https://github.com/PacktPublishing/Machine-Learning-
on-Kubernetes.git, and hit CLONE.

Figure 5.24 – Git clone a repo in the Jupyter notebook

3.	 You will see that the code repository is cloned onto your Jupyter notebook's file
system. As shown in Figure 5.25, navigate to the chapter5/helloworld.ipynb
file and open it in your notebook. Click on the little play icon on the top bar to run
the cell:

https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes.git
https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes.git

Understanding the basics of Apache Spark 115

Figure 5.25 – Notebook on your Jupyter environment

4.	 Et voila! You have just executed a Python code in your own self-provisioned Jupyter
Notebook server running on Kubernetes.

5.	 Shut down your notebook by selecting the File > Hub Control Panel menu option.
Click on the Stop My Server button to shut down your environment. Note that
ODH will save your disk and next time you start your notebook, all your saved files
will be available.

Congratulations! Now, you can run your code on the platform. Next, we'll get some basics
refreshed for the Apache Spark engine.

Understanding the basics of Apache Spark
Apache Spark is an open source data processing engine designed for distributed
large-scale processing of data. This means that if you have smaller datasets, say 10s or even
a few 100s of GB, a tuned traditional database may provide faster processing times. The
main differentiator for Apache Spark is its capability to perform in-memory intermediate
computations, which makes Apache Spark much faster than Hadoop MapReduce.

116 Data Engineering

Apache Spark is built for speed, flexibility, and ease of use. Apache Spark offers more than
70 high-level data processing operators that make it easy for data engineers to build data
applications, so it is easy to write data processing logic using Apache Spark APIs. Being
flexible means that Spark works as a unified data processing engine and works on several
types of data workloads such as batch applications, streaming applications, interactive
queries, and even ML algorithms.

Figure 5.26 shows the Apache Spark components:

Figure 5.26 – Apache Spark components

Understanding Apache Spark job execution
Most data engineers now know that Apache Spark is a massively parallel data processing
engine. It is one of the most successful projects of the Apache Software Foundation. Spark
traditionally runs on a cluster of multiple virtual machines (VMs) or bare metal servers.
However, with the popularity of containers and Kubernetes, Spark added support for
running Spark clusters on containers on Kubernetes.

There are two most common ways of running Spark on Kubernetes. The first, and
the native way, is by using the Kubernetes engine itself to orchestrate the Kubernetes
worker pods. In this approach, the Spark cluster instance is always running and the
Spark applications are submitted to the Kubernetes API that will schedule the submitted
application. We will not dig deeper into how this is implemented. The second approach
is through Kubernetes operators. Operators take advantage of the Kubernetes CRDs to
create Spark objects natively in Kubernetes. In this approach, the Spark cluster is created
on the fly by the Spark operator. Instead of submitting a Spark application to an existing
cluster, the operator spins up spark clusters on-demand.

A Spark cluster follows a manager/worker architecture. The Spark cluster manager knows
where the workers are located, and the resources available for the worker. The Spark cluster
manages the resources for the cluster of worker nodes where your application will run.
Each worker has one or more executors that run the assigned jobs through an executor.

Understanding the basics of Apache Spark 117

Spark applications have two parts, the driver component, and the data processing logic.
A driver component is responsible for executing the flow of data processing operations.
The driver run first talks to the cluster manager to find out what worker nodes will run the
application logic. The driver transforms all the application operations into tasks, schedules
them, and assigns tasks directly to the executor processes on the worker node. One
executor can run multiple tasks that are associated with the same Spark context.

If your application requires you to collect the computed result and merge them, the driver
is the one who will be responsible for this activity. As a data engineer, all this activity
is abstracted from you via the SparkSession object. You only need to write the data
processing logic. Did we mention Apache Spark aims to be simple?

Figure 5.27 shows the relationship between the Spark driver, Spark cluster manager, and
Spark worker nodes:

Figure 5.27 – Relationship between Apache Spark components

118 Data Engineering

Understanding how ODH provisions Apache
Spark cluster on-demand
We have talked about how the ODH allows you to create a dynamic and flexible
development environment to write code such as data pipelines using Jupyter Notebook.
We have noticed that data developers need to interact with IT to get time on the data
processing clusters such as Apache Spark. These interactions reduce the agility of the
team, and this is one of the problems the ML platform solves. To adhere to this scenario,
ODH provides the following components:

•	 A Spark operator that spawns the Apache Spark cluster. For this book, we have
forked the original Spark operator provided by ODH and radanalytics to adhere to
the latest changes to the Kubernetes API.

•	 A capability in JupyterHub to issue a request for a new Spark cluster to the Spark
operator when certain notebook environments are created by the user.

As a data engineer, when you spin up a new notebook environment using certain
notebook images, JupyterHub not only spawns a new notebook server, it also creates the
Apache Spark cluster dedicated for you through the Spark operator.

Creating a Spark cluster
Let's first see how the Spark operator works on the Kubernetes cluster. ODH creates the
Spark controller. You can see the configuration in the chapter5/ml-platform.yaml
file under the name radanalyticsio-spark-cluster, as shown in Figure 5.28.
You can see this is another set of Kubernetes YAML files that defines the custom resource
definitions (CRDs), required roles, and the Spark operator deployment. All these files are
in the manifests/radanalyticsio folder in the code repository of this book.

Figure 5.28 – Snippet of the section of the manifest that installs the Spark operator

Understanding how ODH provisions Apache Spark cluster on-demand 119

When you need to spin up an Apache Spark cluster, you can do this by creating a
Kubernetes custom resource called SparkCluster. Upon receiving the request, the
Spark operator will provision a new Spark cluster as per the required configuration. The
following steps will show you the steps for provisioning a Spark cluster on your platform:

1.	 Validate that the Spark operator pod is running:

kubectl get pods -n ml-workshop | grep spark-operator

You should see the following response:

Figure 5.29 – Spark operator pod

2.	 Create a simple Spark cluster with one worker node using the file available at
chapter5/simple-spark-cluster.yaml. You can see that this file is
requesting a Spark cluster with one master and one worker node. Through this custom
resource, you can set several Spark configurations, as we shall see in the next section:

Figure 5.30 – Spark custom resource
Create this Spark cluster custom resource in your Kubernetes cluster by running
the following command. The Spark operator constantly scans for this resource in
the Kubernetes platform and automatically creates a new instance of Apache Spark
cluster for each given Spark cluster custom resource:

kubectl create -f chapter5/simple-spark-cluster.yaml -n
ml-workshop

120 Data Engineering

You should see the following response:

Figure 5.31 – Response to creating a Spark cluster

3.	 Validate that the Spark cluster pods are running in your cluster:

kubectl get pods -n ml-workshop | grep simple-spark

You should see the following response. There are two pods created by the Spark
operator, one for the Spark master node and another for the worker node. The
number of worker pods depends on the value of the instances parameters in the
SparkCluster resource. It may take some time for the pods to come to a running
state the first time:

Figure 5.32 – List of running Spark cluster pods

Now, you know how the Spark operator works on the Kubernetes cluster. The next step is
to see how JupyterHub is configured to request the cluster dynamically while provisioning
a new notebook for you.

Understanding how JupyterHub creates a Spark
cluster
Simply put, JupyterHub does what you did in the preceding section. JupyterHub creates
a SparkCluster resource in Kubernetes so that the Spark operator can provision
the Apache Spark cluster for your use. This SparkCluster resource configuration
is a Kubernetes ConfigMap file and can be found at manifests/jupyterhub/
jupyterhub/base/jupyterhub-spark-operator-configmap.yaml. Look for
sparkClusterTemplate in this file, as shown in Figure 5.33. You can see that it looks
like the file you have created in the previous section:

Understanding how ODH provisions Apache Spark cluster on-demand 121

Figure 5.33 – JupyterHub template for Spark resources

Some of you might have noticed that this is a template, and it needs the values for specific
variables mentioned in this template. Variables such as {{ user }} and {{ worker_
nodes }} and so on. Recall that we have mentioned that JupyterHub creates the
SparkCluster request while it is provisioning a container for your notebook. JupyterHub
uses this file as a template and fills in the values while creating your notebook. How does
JupyterHub decide to create a Spark cluster? This configuration is called profiles and is
available as a ConfigMap file in manifests/jupyterhub/jupyterhub/overlays/
spark3/jupyterhub-singleuser-profiles-configmap.yaml. This looks like
the file shown in Figure 5.33.

122 Data Engineering

You can see that the image field specifies the name of the container image on which this
profile will be triggered. So, as a data engineer, when you select this notebook image from
the JupyterHub landing page, JupyterHub will apply this profile. The second thing in the
profile is the env section, which specifies the environment variables that will be pushed to
the notebook container instance. The configuration object defines the values that will
be applied to the template that is mentioned in the resources key:

Figure 5.34 – JupyterHub profile for Spark resources

Writing and running a Spark application from Jupyter Notebook 123

As you may appreciate, there is a lot of work done behind the scenes to make a
streamlined experience for you and your team, and in the true sense of open source,
you can configure everything and even give back to the project if you come up with any
modifications or new features.

In the next section, you will see how easy it is to write and run a Spark application on your
platform running these components.

Writing and running a Spark application from
Jupyter Notebook
Before you run the following steps, make sure that you grasped the components and their
interactions that we have introduced in the previous section of this chapter:

1.	 Validate that the Spark operator pod is running by running the following command:

kubectl get pods -n ml-workshop | grep spark-operator

You should see the following response:

Figure 5.35 – Spark operator pod

2.	 Validate that the JupyterHub pod is running by running the following command:

kubectl get pods -n ml-workshop | grep jupyterhub

You should see the following response:

Figure 5.36 – JupyterHub pod

3.	 Before you start the notebook, let's delete the Spark cluster you have created in the
previous sections by running the following command. This is to demonstrate that
JupyterHub will automatically create a new instance of Spark cluster for you:

kubectl delete sparkcluster simple-spark-cluster -n
ml-workshop

124 Data Engineering

4.	 Log in to your JupyterHub server. Refer to the Validating JupyterHub configuration
section earlier in this chapter. You will get the landing page of your server. Select
the Elyra Notebook Image with Spark image and the Small container size. This
is the same image that you have configured in the manifests/jupyterhub/
jupyterhub/overlays/spark3/jupyterhub-singleuser-profiles-
configmap.yaml file.

5.	 Click on Start server:

Figure 5.37 – JupyterHub landing page showing Elyra Notebook Image with Spark

Writing and running a Spark application from Jupyter Notebook 125

The notebook you have just started will also trigger the creation of a dedicated
Spark cluster for you. It may take some time for the notebook to start because it has
to wait for the Spark cluster to be ready.

Also, you may have noticed that the image you have configured in the
jupyterhub-singleuser-profiles-configmap.yaml file is quay.io/
ml-aml-workshop/elyra-spark:0.0.4, while the name we have selected is
Elyra Notebook Image with Spark, and they are not the same. The mapping of the
image with the descriptive text is configured in the manifests/jupyterhub-
images/elyra-notebook-spark3-imagestream.yaml file. You will find
the descriptive text displayed on the JupyterHub landing page coming from the
annotations section of this file. If you want to add your own images with specific
libraries, you can just add another file here and it will be available for your team.
This feature of JupyterHub enables the standardization of notebook container
images, which allows everyone in the teams to have the same environment
configurations and the same set of libraries.

6.	 After the notebook has started, validate that the Spark cluster is provisioned for you.
Note that this is the Spark cluster for the user of this notebook and is dedicated to
this user only:

kubectl get pods -n ml-workshop | grep mluser

You should see the following response. The response contains a notebook pod and
two Spark pods; the one with a little -m character is the master, while the other is
the worker. Notice how your username (mluser) is associated with the pod names:

Figure 5.38 – Jupyter Notebook and Spark cluster pods
Now, everyone in your team will get their own developer environment with
dedicated Spark instances to write and test the data processing code.

126 Data Engineering

7.	 Apache Spark provides a UI through which you can monitor applications and data
processing jobs. The ODH-provisioned Spark cluster provides this GUI, and it is
available at https://spark-cluster-mluser.192.168.61.72.nip.io.
Make sure to change the IP address to your minikube IP address. You may also notice
that the username you have used to log in to JupyterHub, mluser, is part of the URL.
If you have used a different username, you may need to adjust the URL accordingly.

Figure 5.39 – Spark UI
The preceding UI mentions that you have one worker in the cluster, and you can
click on the worker node to find out the executors running inside the worker
node. If you want to refresh your knowledge of the Spark cluster, please refer to the
Understanding the basics of Apache Spark section earlier in this chapter.

8.	 Open the chapter5/hellospark.ipynb file from your notebook. This is quite
a simple job that calculates the square of the given array. Remember that Spark will
automatically schedule the job and distribute it among executors. The notebook
here is the Spark Driver program, which talks to the Spark cluster, and all of this is
abstracted via the SparkSession object.

Writing and running a Spark application from Jupyter Notebook 127

On the second code cell of this notebook, you are creating a SparkSession
object. The getOrCreateSparkSession utility function will connect to the
Spark cluster provisioned for you by the platform.

The last cell is where your data processing logic resides. In this example, the logic
was to take the data and calculate the square of each element in the array. Once the
data is processed, the collect method will bring the response to the driver that is
running in the Spark application in your notebook.

Figure 5.40 – A notebook with a simple Spark application
Click on the Run > Run All cells menu option, and the notebook will connect to
the Spark cluster, and submit and execute your job.

128 Data Engineering

9.	 While the job is progressing, open the Spark UI at https://spark-cluster-
mluser.192.168.61.72.nip.io. Remember to adjust the IP address as per
your settings, and click on the table with the Application ID heading under the
Running Applications heading on this page.

Figure 5.41 – Apache Spark UI

10.	 Navigate to the details page of the Spark application. Note that the application title,
Hello from ODH, has been set up in your notebook. Click on the Application
Detail UI link:

Figure 5.42 – Spark UI showing the submitted Spark job

https://spark-cluster-mluser.192.168.61.72.nip.io
https://spark-cluster-mluser.192.168.61.72.nip.io

Writing and running a Spark application from Jupyter Notebook 129

You should see a page showing the detailed metrics of the job that you have just
executed on the Spark cluster from your Jupyter notebook:

Figure 5.43 – Spark UI showing the submitted job details

11.	 Once you are done with your work, go to the File > Hub Control Panel menu
option and click on the Stop My Server button:

Figure 5.44 – Jupyter Notebook control panel

12.	 Validate that the Spark cluster has been terminated by issuing the following command:

kubectl get pods -n ml-workshop | grep mluser

You should not see a response because the pods are terminated by the Spark
operator on your cluster.

130 Data Engineering

You have finally run a basic data processing job in an on-demand ephemeral Spark cluster
that is running on Kubernetes. Note that you have done all this from a Jupyter notebook
running on Kubernetes.

With this capability in the platform, data engineers can perform huge data processing
tasks directly from the browser. This capability also allows them to collaborate easily with
each other to provide transformed, cleaned, high-quality data for your ML project.

Summary
In this chapter, you have just created your first ML platform. You have configured the ODH
components via the ODH Kubernetes operator. You have seen how a data engineer persona
will use JupyterHub to provision the Jupyter notebook and the Apache Spark cluster
instance while the platform provides the provisioning of the environments automatically.
You have also seen how the platform enables standardization of the operating environment
via the container images, which bring consistency and security. You have seen how a data
engineer could run Apache Spark jobs from the Jupyter notebook.

All these capabilities allow the data engineer to work autonomously and in a self-serving
fashion. You have seen that all these components were available autonomously and
on-demand. The elastic and self-serving nature of the platform will allow teams to be
more productive and agile while responding to the ever-changing requirements of the
data and the ML world.

In the next chapter, you will see how data scientists can benefit from the platform and be
more efficient.

6
Machine Learning

Engineering
In this chapter, we will move the discussion to the model building and model management
activities of the machine learning (ML) engineering lifecycle. You will learn about the ML
platform's role of providing a self-serving solution to data scientist so they can work more
efficiently and collaborate with data teams and fellow data scientists.

The focus of this chapter is not on building models; instead, it is on showing how the
platform can bring consistency and security across different environments and different
members of your teams. You will learn how the platform simplifies the work of data
scientists in terms of preparing and maintaining their data science workspaces.

In this chapter, you will learn about the following topics:

•	 Understanding ML engineering?

•	 Using a custom notebook image

•	 Introducing MLflow

•	 Using MLflow as an experiment tracking system

•	 Using MLflow as a model registry system

132 Machine Learning Engineering

Technical requirements
This chapter includes some hands-on setup and exercises. You will need a running
Kubernetes cluster configured with Operator Lifecycle Manager (OLM). Building such a
Kubernetes environment is covered in Chapter 3, Exploring Kubernetes. Before attempting
the technical exercises in this chapter, please make sure that you have a working
Kubernetes cluster and that Open Data Hub (ODH) is installed on your Kubernetes
cluster. Installing ODH is covered in Chapter 4, The Anatomy of a Machine Learning
Platform. You can find all the code associated with this book at https://github.
com/PacktPublishing/Machine-Learning-on-Kubernetes.

Understanding ML engineering
ML engineering is the process of applying software engineering principles and practices to
ML projects. In the context of this book, ML engineering is also a discipline that facilitates
applying application development practices to the data science lifecycle. When you write
a traditional application such as a website or a banking system, there are processes and
tools to assist you in writing high-quality code right from the start. Smart IDEs, standard
environments, continuous integration, automated testing, and static code analysis are just
a few examples. Automation and continuous deployment practices enable organizations to
deploy applications many times in a day and with no downtime.

ML engineering is a loose term that brings the benefits of traditional software engineering
practices to the model development world. However, most data scientists are not
developers. They may not be familiar with software engineering practices. Also, the tools
that the data scientists use may not be the right tools to perform ML engineering tasks.
Having said that, the model is just another piece of software. Therefore, we can also apply
existing software engineering approaches to ML models. Using containers to package and
deploy ML models is one such example.

Some teams may employ ML engineers to supplement the work of data scientists. While
the data scientist's primary responsibility is to build ML or deep learning models that
solve business problems, ML engineers focus more on the software engineering facets.
Some of the responsibilities of data engineers include the following:

•	 Model optimization (also about making sure that the built model is optimized for
the target environment where the model will be hosted).

•	 Model packaging (making ML models portable, shippable, executable, and version-
controlled). Model packaging may also include model serving and containerization.

•	 Monitoring (establishing an infrastructure for collecting performance metrics,
logging, alerting, and anomaly detection such as drift and outlier detection).

https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes
https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes

Using a custom notebook image 133

•	 Model testing (including facilitation and automation of A/B testing).

•	 Model deployment.

•	 Building and maintenance of MLOps infrastructure.

•	 Implementation of continuous integration and continuous deployment pipelines for
ML models.

•	 Automation of ML lifecycle processes.

There are other responsibilities of ML engineers that are not listed in the preceding list,
but this list should already give you an idea of how to differentiate data science from
ML engineering.

The ML platform that you are building will reduce the number of ML engineering tasks
to be done manually to a point where even the data scientists can do most of the ML
engineering tasks by themselves.

In the next sections, you will see how data scientists can track the model development
iterations to improve model quality and share the learning with the team. You will see how
teams can apply version control to ML models and other practices of software engineering
to the ML world.

We will continue our journey of ML engineering into the next chapter, where you will see
how models can be packaged and deployed in a standard way and see how the deployment
process can be automated.

Let's start with building standard development environments for our data science team.

Using a custom notebook image
As you have seen in Chapter 5, Data Engineering, JupyterHub allows you to spin up
Jupyter Notebook-based development environments in a self-service manner. You have
launched the Base Elyra Notebook Image container image and used it to write the data
processing code using Apache Spark. This approach enables your team to use a consistent
or standardized development environment (for example, same Python versions and same
libraries for building code) and apply security policies to the known set of software being
used by your team. However, you may also want to create your own custom images with a
different set of libraries or a different ML framework. The platform allows you to do that.

In the following subsection, you will build and deploy a custom container image to be
used within your team.

134 Machine Learning Engineering

Building a custom notebook container image
Let's assume that your team wants to use a specific version of the Scikit library along with
some other supporting libraries such as joblib. You then want your team to use this
library while developing their data science code:

1.	 Open the Dockerfile provided in the code repository of this book at
chapter6/CustomNotebookDockerfile. This file uses the base image
provided and used by ODH and then adds the required libraries. The file is shown
in Figure 6.1:

Figure 6.1 – Dockerfile for the custom notebook image
Note the first line, which refers to the latest image at the time of writing. This
image is used by ODH. Lines 4 and 5 install the Python packages defined in the
requirements.txt file. Line 8 installs the dependencies that are not in the
requirements.txt file. If you wish to add additional packages to the image, you
can simply insert a line in requirements.txt.

Using a custom notebook image 135

2.	 Build the image using the file provided in the preceding step. Run the
following command:

docker build -t scikit-notebook:v1.1.0 -f chapter6/
CustomNotebookDockerfile ./chapter6/.

You should see the following response:

Figure 6.2 – Output of the container build command

3.	 Tag the built image as per your liking. You will need to push this image to a registry
from where your Kubernetes cluster can access it. We use quay.io as the public
Docker repository of choice, and you can use your preferred repository here. Notice
that you will need to adjust the following command and change the quay.io/
ml-on-k8s/ part before execution of the command:

docker tag scikit-notebook:v1.1.0 quay.io/ml-on-k8s/
scikit-notebook:v1.1.0

There is no output of the preceding command.
4.	 Push the image to the Docker repository of your choice. Use the following

command and make sure to change the repository location as per Step 3. This
image may take some time to be pushed to an internet repository based on your
connection speed. Be patient:

docker push quay.io/ml-on-k8s/scikit-notebook:v1.1.0

136 Machine Learning Engineering

You should see the output of this command as shown in Figure 6.3. Wait for the
push to complete.

Figure 6.3 – Pushing the custom notebook image to a Docker repository
Now, the image is available to be used. You will configure ODH manifests in the
next steps to use this image.

5.	 Open the manifests/jupyterhub-images/base/customnotebook-
imagestream.yaml file. This file is shown as follows:

Using a custom notebook image 137

Figure 6.4 – ImageStream object
JupyterHub from ODH uses a CRD called Imagestream. This is a native object
on Red Hat OpenShift, but it is not available in standard Kubernetes. We have
created this object as a custom resource in the manifests of ODH so that it can
integrate with upstream Kubernetes. You can find these resources at manifests/
odh-common/base/imagestream-crd.yaml.

Notice on lines 7 and 8, we have defined some annotations. JupyterHub reads
all the imagestream objects and uses these annotations to be displayed
on the JupyterHub landing page. JupyterHub also looks at the field named
dockerImageReference to load these container images upon request.

We encourage you to fork the code repository of this book onto your own Git
account and add more images. Keep in mind to change the location of the Git
repository in the manifests/kfdef/ml-platform.yaml file.

138 Machine Learning Engineering

6.	 For the JupyterHub server to see the newly created image, you will need to restart
the JupyterHub pod. You can find the pod via the following command and delete
this pod. After a few seconds, Kubernetes will restart this pod and your new image
will appear on the JupyterHub landing page:

kubectl get pods -n ml-workshop | grep jupyterhub

You should see the following response. Note that the pod name will be different for
your setup:

Figure 6.5 – Pods with names containing jupyterhub

7.	 Delete the JupyterHub pod by running the following command. Note that you
do not need to delete this pod for this exercise, because the custom image is
already present in our manifest files. This step will be required once you add a new
customer notebook image using the steps mentioned in this section:

kubectl delete pod jupyterhub-7848ccd4b7-thnmm -n
ml-workshop

You should see the following response. Note that the pod name will be different for
your setup:

Figure 6.6 – Output of the delete pod command

Introducing MLflow 139

8.	 Log in to JupyterHub and you will see the new notebook image listed there:

Figure 6.7 – JupyterHub landing page showing the new notebook image

In the next section, you will learn about MLflow, a software that assists teams in recording
and sharing the outcomes of model training and tuning experiments.

Introducing MLflow
Simply put, MLflow is there to simplify the model development lifecycle. A lot of the
data scientist's time is spent finding the right algorithms with the right hyperparameters
for the given dataset. As a data scientist, you experiment with different combinations of
parameters and algorithms, then review and compare the results to make the right choice.
MLflow allows you to record, track, and compare these parameters, their results, and
associated metrics. The component of MLflow that captures the details of each of your
experiments is called the tracking server. The tracking server captures the environment
details of your notebook, such as the Python libraries and their versions, and the artifacts
generated by your experiment.

140 Machine Learning Engineering

The tracking server allows you to compare the data captured between different runs of
an experiment, such as the performance metrics (for example, accuracy) alongside the
hyperparameters used. You can also share this data with your team for collaboration.

The second key capability of the MLflow tracking server is the model registry. Consider that
you have run ten different experiments for the given dataset, while each of the experiments
resulted in a model. Only one of the models will be used for the given problem. The
model registry allows you to tag the selected model with one of the three stages (Staging,
Production, and Archived). The model registry has APIs that allow you to access these
models from your automated jobs. Versioning models in a registry will enable you to roll
back to previous versions of the model using your automation tools in production if needed.

Figure 6.8 shows the two major capabilities of the MLflow software:

 Figure 6.8 – MLflow major capabilities

Now that you know what MLFlow is used for, let's take a look at the components that
made up MLFlow.

Understanding MLflow components
Let's see what the major components of the MLflow system are and how it fits into our ML
platform's ecosystem.

MLflow server
MLflow is deployed as a container, and it contains a backend server, a GUI, and an API to
interact with it. In the later sections of this chapter, you will use the MLflow API to store
the experiment data onto it. You will use the GUI component to visualize experiment
tracking and the model registry parts. You can find this configuration at manifests/
mlflow/base/mlflow-dc.yaml.

Introducing MLflow 141

MLflow backend store
The MLflow server needs a backend store to store the metadata about experiments. The
ODH component automatically provisions a PostgreSQL database to be used as a backend
store for MLflow. You can find this configuration at manifests/mlflow/base/
mlflow-postgres-statefulset.yaml.

MLflow storage
The MLflow server supports several types of storage, such as S3 and databases. This
storage will serve as the persistent storage for the artifacts, such as files and model files.
In our platform, you will provision an open source S3 compatible storage service known
as Minio. Minio will provide the S3 API capabilities to the platform; however, your
organization may already have an enterprise-wide S3 solution, and we recommend using
the existing solution if there is one. You can find this configuration at manifests/
minio/base/minio-dc.yaml.

MLflow authentication
MLflow does not have an out-of-the-box authentication system at the time of writing.
In our platform, we have configured a proxy server in front of the MLflow GUI that will
authenticate the request before forwarding it to the MLflow server. We are using the open
source component at https://github.com/oauth2-proxy/oauth2-proxy for
this purpose. The proxy has been configured to perform Single-Sign-On (SSO) with the
Keycloak service of the platform.

Figure 6.9 – MLflow and associated components in the platform

https://github.com/oauth2-proxy/oauth2-proxy

142 Machine Learning Engineering

As you can see in Figure 6.9, the MLflow pod has two containers in it: the MLflow server
and the OAuth2 proxy. The Oauth2 proxy has been configured to use the Keycloak
instance you installed.

When you created a new instance of ODH in Chapter 5, Data Engineering, it installed
many platform components, including MLflow and Minio. Now, let's validate the
MLflow installation.

Validating the MLflow installation
ODH has already installed the MLflow and associated components for you. Now, you
will use the MLflow GUI to get yourself familiar with the tool. You can imagine all the
team members will have access to experiments and models, which will improve your
team's collaboration:

1.	 Get the ingress objects created in your Kubernetes environment using the following
command. This is to get the URL of the endpoints where our services are deployed:

kubectl get ingress -n ml-workshop

You should see the following response:

Figure 6.10 – All ingress objects in your cluster namespace

2.	 Open the Minio GUI, our S3 component, and validate that there is a bucket
available for MLflow to be used as its storage. The URL for the Minio component
will look like https://minio.192.168.61.72.nip.io, where you will
adjust the IP address as per your environment. The password is configured in the
manifests file, and it is minio123. We have added Minio to the manifests to show
that there is an option available using open source technologies, but making it
suitable for production is out of scope for this book. Click on the buckets menu item
on the left-hand side of the screen and you will see the available buckets:

Introducing MLflow 143

Figure 6.11 – Minio bucket list
How are all of these buckets created? In the manifests, we have a Kubernetes job that
creates the buckets. You can find the job at manifests/minio/base/minio-
job.yaml. The job is using the Minio command-line client, mc, to create the
buckets. You can find these commands under the command field name in this file.

The configuration of S3 that is being used by MLflow is configured at manifests/
mlflow/base/mlflow-dc.yaml file.

144 Machine Learning Engineering

You can see the settings as follows:

Figure 6.12 – MLflow configuration to use Minio

3.	 Open a browser and paste the HOSTS value for the jupyterhub ingress into your
browser. For me, it was https://mlflow.192.168.61.72.nip.io. This
URL will take you to the Keycloak login page, which is the SSO server as shown in
the following figure. Make sure that you replace the IP address with yours in this
URL. Recall that the authentication part of MLflow is being managed by a proxy
that you have configured in manifests/mlflow/base/mlflow-dc.yaml.

4.	 You can see the configuration of the OAuth proxy for MLflow as follows. Because
oauth-proxy and MLflow belong to the same pod, all we have done is route
the traffic from oauth-proxy to the MLflow container. This is set up with
the –upstream property. You can also see oauth-proxy needs the name of
the identity provider server, which is Keycloak, and it is configured under the
–oidc-issuer property:

https://mlflow.192.168.61.72.nip.io

Introducing MLflow 145

Figure 6.13 – OAuth proxy configuration for MLflow
The landing page of MLflow looks like the page in Figure 6.14. You will notice there
are two sections on the top bar menu. One has the label Experiments and the other
one, Models.

146 Machine Learning Engineering

5.	 Before you see this page, the SSO configuration will display the login page. Enter
the user ID as mluser and the password as mluser to log in. The username
and password were configured in Chapter 4, The Anatomy of a Machine Learning
Platform, in the Creating a Keycloak user section.

Figure 6.14 – MLflow experiment tracking page
The left-hand side of the Experiments screen contains the list of experiments, and
the right-hand side displays the details of experiment runs. Think of the experiment
as the data science project you are working on, such as fraud detection in consumer
transactions, and the Notes section captures the combination of parameters,
algorithms, and other information used to run the experiment.

Using MLFlow as an experiment tracking system 147

6.	 Click on the Models tab to see the landing page of the model registry.

The Models tab contains the list of models in the registry, their versions, and their
corresponding stages, which mention what environment the models are deployed in.

 Figure 6.15 – MLflow model registry page

If you can open the MLflow URL and see the pages as described in the preceding steps,
then you have just validated that MLflow is configured in your platform. The next step
is to write a notebook that will train a basic model while recording the details in your
MLflow server.

Using MLFlow as an experiment tracking
system
In this section, you will see how the MLflow library allows you to record your experiments
with the MLflow server. The custom notebook image, which you saw in the first part of
this chapter, already has MLflow libraries packaged into the container. Please refer to the
chapter6/requirements.txt file for the exact version of the MLflow library.

148 Machine Learning Engineering

Before we start this activity, it is important to understand two main concepts: experiment
and run.

An experiment is a logical name under which MLflow records and groups the metadata,
for example, an experiment could be the name of your project. Let's say you are working
on building a model for predicting credit card fraud for your retail customer. This could
become the experiment name.

A run is a single execution of an experiment that is tracked in MLflow. A run belongs
to an experiment. Each run may have a slightly different configuration, different
hyperparameters, and sometimes, different datasets. You will tweak these parameters
of the experiment in a Jupyter notebook. Each execution of model training is typically
considered a run.

MLflow has two main methods of recording the experiment details. The first one, which
is our preferred method, is to enable the auto-logging features of MLflow to work with
your ML library. It has integration with Scikit, TensorFlow, PyTorch, XGBoost, and a few
more. The second way is to record everything manually. You will see both options in the
following steps.

These steps will show you how an experiment run or a model training can be recorded in
MLflow while executing in a Jupyter notebook:

1.	 Log in to JupyterHub and make sure to select the custom container, for example,
Scikit v1.10 - Elyra Notebook Image.

Before you hit the Start Server button, add an environment variable by clicking
on the Add more variables link. This variable may contain sensitive information
such as passwords. MLflow needs this information to upload the artifacts to the
Minio S3 server.

Using MLFlow as an experiment tracking system 149

The landing page will look like the screenshot in Figure 6.16:

 Figure 6.16 – JupyterHub with an environment variable

150 Machine Learning Engineering

2.	 Open the notebook at chapter6/hellomlflow.ipynb. This notebook shows
you how you can record your experiment data onto the MLflow server.

Figure 6.17 – Notebook with Mlflow integration
Note that at the first code cell, you have imported the MLflow library. In the
second code cell, you have set up the location of the MLflow server through the
set_tracking_uri method. Note that because your notebook and the MLflow
server are running on Kubernetes, we just put the location of the Kubernetes Service
that is stored in the HOST variable name and is being used in this method.

Using MLFlow as an experiment tracking system 151

You then set the name of the experiment using the set_experiment method.
This is one important variable through which all your experiment runs will be
stored in the MLflow server.

The last method in this cell is sklearn.autolog, which is a way to tell MLflow
that we are using the Scikit library for our training, and MLflow will record the data
through Scikit APIs.

 Figure 6.18 – Notebook cell with MLflow configuration
In the last cell of this notebook, you are using a simple
DecisionTreeClassifier to train your model. Notice that this is quite a
simple model and is used to highlight the capabilities of the MLflow server.

3.	 Run the notebook by selecting the Run > Run all cells menu option.
4.	 Log in to the MLflow server and click on the experiment name HelloMlFlow.

The URL of MLflow will be like https://mlflow.192.168.61.72.nip.io
with the IP address replaced as per your environment. As mentioned earlier in this
chapter, you get this URL by listing the ingress objects of your Kubernetes cluster.

https://mlflow.192.168.61.72.nip.io

152 Machine Learning Engineering

You will see the screen as shown in Figure 6.19:

 Figure 6.19 – MLflow experiments tracking screen showing an experiment run
You will notice that the table on the right-hand side contains one record. This is the
experiment run you performed in Step 6. If you have executed your notebook multiple
times with different parameters, each run will be recorded as a row in this table.

Using MLFlow as an experiment tracking system 153

5.	 Click on the first row of the table.

You will get to the details of the run you selected in the previous step. The screen
will look like the screenshot in Figure 6.20:

 Figure 6.20 – MLflow run details
Let's understand the information that is available on this screen:

154 Machine Learning Engineering

	� Parameters: If you click on the little arrow next to Parameters, you will see that it
has recorded the hyperparameters of your model training run. If you refer to the
notebook code cell number 4, you will see that the parameters that we have used
for DecisionTreeClassifier are recorded here too. One such example is the
max_depth parameter, as shown in Figure 6.21:

Figure 6.21 – MLflow run parameters

Using MLFlow as an experiment tracking system 155

	� Metrics: If you click on the little arrow next to Metrics, you will see that it
has recorded the metrics for your model training run. You can see
training_accuracy in the screenshot, as shown in Figure 6.22:

Figure 6.22 – MLflow run metrics

156 Machine Learning Engineering

	� Tags: If you click on the little arrow next to Tags, you will see the automatically
associated tags (for example, estimator_class), which define the type of ML
algorithm you have used. Note that you can add your own tags if needed. In the
next section, we will show how to associate a custom tag for your run. Figure 6.23
shows an example of tags:

Figure 6.23 – MLflow run tags

Using MLFlow as an experiment tracking system 157

	� Artifacts: This section contains the artifacts associated with the run, such as the
binary model file. Note that you can add your own artifacts here if needed. In the
next section, we will show you how to associate an artifact with your run. Keep
in mind that the artifacts are stored in the associated S3 bucket of your MLflow
server. Note that the model binary is saved as a model.pkl file.

Figure 6.24 – MLflow run artifacts

158 Machine Learning Engineering

6.	 To validate that these files are indeed stored in the S3 server, log in to the Minio
server, select Buckets, and click on Browse button for the MLflow bucket. You will
find a folder created with the name of your run. This name is displayed in the top-left
corner of your experiment screen; consult the top-left corner of the preceding screen
and you will see a label with a combination of 32 alphanumeric characters. This long
number is your run ID, and you can see a folder label with a combination of 32
alphanumeric characters in your S3 bucket, as shown in the following screenshot.
You can click on this link to find the artifacts stored on the S3 bucket:

Figure 6.25 – Minio bucket location

You have just successfully trained a model in JupyterHub and tracked the training run
in MLflow.

You have seen how MLflow associates the data with each of your runs. You can even
compare the data between multiple runs by selecting multiple runs from the table shown
in Step 6 and clicking on the Compare button.

Adding custom data to the experiment run
Now, let's see how we can add more data for each run. You will learn how to use the
MLflow API to associate custom data with your experiment:

1.	 Start by firing up the Jupyter notebook as you did in the preceding section.
2.	 Open the notebook at chapter6/hellomlflow-custom.ipynb. This

notebook shows you how you can customize the recording of your experiment data
onto the MLflow server. The notebook is similar to the previous notebook, except
for the code in cell number 6, which is shown in Figure 6.26. This code cell contains
the functions that show how to associate data with your experiment:

Using MLFlow as an experiment tracking system 159

Figure 6.26 – MLflow customized data collection notebook
Let's understand these functions in the next few steps. The code snippet in code cell
number 6 is as follows:

with mlflow.start_run(tags={ "mlflow.source.
git.commit" : mlflow_util.get_git_revision_hash()
, "mlflow.source.git.branch": mlflow_util.get_git_
branch(), "code.repoURL": mlflow_util.get_git_remote()
}) as run: model.fit(X, y) mlflow_util.record_
libraries(mlflow) mlflow_util.log_metric(mlflow,
"custom_mteric", 1.0) mlflow_util.log_param(mlflow,
"docker_image_name", os.environ["JUPYTER_IMAGE"])

The preceding code will include a custom tag labeled code.repoURL. This makes
it easier to trace back the original source code that produced the model in a given
experiment run.

160 Machine Learning Engineering

3.	 You can associate any tags while calling the start_run function. Tag keys that
start with mlflow are reserved for internal use. You can see that we have associated
the GIT commit hash with the first property. This will help us in following through
on what experiment belongs to what code version in your code repository.

You will find that the code.repoURL tag contains the Git repository location. You
can add as many tags as you want. You can see the tags by going to the MLflow UI
and opening the experiment. Note that the notebook has a different experiment
name, and it is being referenced as HelloMlFlowCustom.

Note the Git Commit label at the top section of the page, and the custom tag name
code.repoURL in the Tags section:

 Figure 6.27 – MLflow custom tags

4.	 The second function that we have used is record_libraries. This is a wrapper
function that internally uses the mlflow.log_artifact function to associate a
file with the run. This utility function is capturing the pip freeze output, which
gives the libraries in the current environment. The utility function then writes it to a
file and uploads the file to the MLflow experiment. You can look at this, and all the
other functions, in the chapter6/mlflow_util.py file.

Using MLFlow as an experiment tracking system 161

You can see in the Artifacts section that a new file, pip_freeze.txt, is available,
and it records the output of the pipe freeze command:

Figure 6.28 – MLflow customized artifacts

162 Machine Learning Engineering

5.	 The log_metric function records the metric name and its associated value. Note
that the value for the metric is expected to be a number. For the sample code, you
can see that we have just put a hardcoded value (1), however, in the real world,
this would be a dynamic value that refers to something relative to each run of your
experiment. You can find your custom metric in the Metrics section of the page:

Figure 6.29 – MLflow customized metrics

6.	 The log_param function is like the log_metric function, but it can take any
type of value against a given parameter name. For example, we have recorded
the Docker image used by the Jupyter notebook. Recall that this is the custom
image you built to be used by the data scientist team. You can see the following
docker_image_name parameter that contains the desired value:

Using MLFlow as an experiment tracking system 163

Figure 6.30 – MLflow customized parameters

You have used MLflow to track, add custom tags, and custom artifacts to an experiment
run. In the next section, you will see the capabilities of MLflow as a model registry
component. Let's dig in.

164 Machine Learning Engineering

Using MLFlow as a model registry system
Recall that MLflow has a model registry feature. The registry provides the versioning
capabilities for your models. Automation tools can get the models from the registry to
deploy or even roll back your models across different environments. You will see in the
later chapters that automation tools in our platform fetch the model from this registry via
the API. For now, let's see how to use the registry:

1.	 Log in to the MLflow server by accessing the UI and clicking on the Models link.
You should see the following screen. Click on the Create Model button:

Figure 6.31 – MLflow registering a new model

2.	 Type a name for your model in the pop-up window, as shown in the following
screenshot, and click on the Create button. This name could mention the name of
the project that this model is serving:

Using MLFlow as a model registry system 165

Figure 6.32 – MLflow model name prompt

3.	 Now, you need to attach a model file to this registered name. Recall from the
preceding section that you have multiple runs in your experiment. Each run defines
the set of configuration parameters and associated models with it. Select the
experiment and run for which you want to register your model.

4.	 You will see a screen like the following. Select the model label in the Artifacts
section, and you will notice a Register Model button on the right-hand side.
Click on this button:

Figure 6.33 – MLflow showing the Register Model button

166 Machine Learning Engineering

5.	 From the pop-up window, select the model name you created in Step 1 and click
on Register.

Figure 6.34 – Model name dialog when registering a model in MLflow

6.	 Go to the Models tab as mentioned in Step 1 and you will see your model is
registered in the MLflow registry. You will see the list as shown in the following
screenshot. Click on the model name, for example, mlflowdemo:

Using MLFlow as a model registry system 167

Figure 6.35 – MLflow showing the list of registered models and their versions

7.	 You will see the detail screen where you can attach the stage of the model as referred
to by the Stage label. You can also edit other properties, and we will leave it to you
to explore the data you can associate with this model:

Figure 6.36 – MLflow showing the buttons for promoting registered models to higher environments

Congratulations! You have just experienced using MLflow as a model registry! You have
also seen how the model version can be promoted to the different stages of the lifecycle.

168 Machine Learning Engineering

Summary
In this chapter, you have gained a better understanding of ML engineering and how it
differs from data science. You have also learned about some of the responsibilities of
ML engineers. You must take note that the definition of ML engineering and the role of
ML engineers are still evolving, as more and more techniques are surfacing. One such
technique that we will not talk about in this book is online ML.

You have also learned how to create a custom notebook image and use it to standardize
notebook environments. You have trained a model in the Jupyter notebook while using
MLflow to track and compare your model development parameters, training results,
and metrics. You have also seen how MLflow can be used as a model registry and how to
promote model versions to different stages of the lifecycle.

The next chapter will continue the ML engineering domain and you will package and
deploy ML models to be consumed as an API. You will then automate the package and
deploy the process using the tools available in the ML platform.

7
Model Deployment

and Automation
In the previous chapter, you saw how the platform enables you to build and register the
model in an autonomous fashion. In this chapter, we will extend the machine learning
(ML) engineering domain to model deployment, monitoring, and automation of
deployment activities.

You will learn how the platform provides the model packaging and deployment capabilities
and how you can automate them. You will take the model from the registry, package it as a
container, and deploy the model onto the platform to be consumed as an API. You will then
automate all these steps using the workflow engine provided by the platform.

Once your model is deployed, it works well for the data it was trained upon. The real
world, however, changes. You will see how the platform allows you to observe your
model's performance. This chapter discusses the tools and techniques to monitor your
model performance. The performance data could be used to decide whether the model
needs retraining on the new dataset, or whether it is time to build a new model for the
given problem.

170 Model Deployment and Automation

In this chapter, you will learn about the following topics:

•	 Understanding model inferencing with Seldon Core

•	 Packaging, running, and monitoring a model using Seldon Core

•	 Understanding Apache Airflow

•	 Automating ML model deployments in Airflow

Technical requirements
This chapter includes some hands-on setup and exercises. You will need a running
Kubernetes cluster configured with Operator Lifecycle Manager. Building such a
Kubernetes environment is covered in Chapter 3, Exploring Kubernetes. Before attempting
the technical exercises in this chapter, please make sure that you have a working
Kubernetes cluster and Open Data Hub (ODH) is installed on your Kubernetes cluster.
Installing ODH is covered in Chapter 4, The Anatomy of a Machine Learning Platform.

Understanding model inferencing with
Seldon Core
In the previous chapter, you built the model. These models are built by data science teams
to be used in production and serve the prediction requests. There are many ways to use a
model in production, such as embedding the model with your customer-facing program,
but the most common way is to expose the model as a REST API. The REST API can
then be used by any application. In general, running and serving a model in production is
called model serving.

However, once the model is in production, it needs to be monitored for performance and
needs updating to meet the expected criteria. A hosted model solution enables you to not
only serve the model but monitor its performance and generate alerts that can be used to
trigger retraining of the model.

Seldon is a UK-based firm that created a set of tools to manage the model's life cycle.
Seldon Core is an open source framework that helps expose ML models to be consumed
as REST APIs. Seldon Core automatically exposes the monitoring statistics for the REST
API, which can be consumed by Prometheus, the platform's monitoring component. To
expose your model as a REST API in the platform, the following steps are required:

1.	 Write a language-specific wrapper for your model to expose as a service.
2.	 Containerize your model.

Understanding model inferencing with Seldon Core 171

3.	 Define and deploy the model using the inference graph of your model using Seldon
Deployment custom resource (CR) in Kubernetes

Next, we will see these three steps in detail.

Wrapping the model using Python
Let's see how you can apply the preceding steps. In Chapter 6, Machine Learning
Engineering, you registered your experiment details and a model with the MLflow server.
Recall that the model file was stored in the artifacts of MLflow and named model.pkl.

Let's take the model file and write a simple Python wrapper around it. The job of the
wrapper is to use Seldon libraries to conveniently expose the model as a REST service.
You can find the example of the wrapper in the code at chapter7/model_deploy_
pipeline/model_build_push/Predictor.py. The key component of this
wrapper is a function named predict that will be invoked from an HTTP endpoint
created by the Seldon framework. Figure 7.1 shows a simple Python wrapper using a
joblib model:

Figure 7.1 – A Python language wrapper for the model prediction

The predict function receives a numpy array (data_array) and a set of column names
(column_names), serialized from the HTTP request. The method returns the result of the
prediction as either a numpy array or a list of values or bytes. There are many more methods
available for the language wrapper and a full list is available at https://docs.seldon.
io/projects/seldon-core/en/v1.12.0/python/python_component.
html#low-level-methods. Note that in later chapters of this book, you will see a more
thorough inferencing example that will have additional wrappers for data transformation
before prediction. But, for this chapter, we keep it as simple as possible.

https://docs.seldon.io/projects/seldon-core/en/v1.12.0/python/python_component.html#low-level-methods
https://docs.seldon.io/projects/seldon-core/en/v1.12.0/python/python_component.html#low-level-methods
https://docs.seldon.io/projects/seldon-core/en/v1.12.0/python/python_component.html#low-level-methods

172 Model Deployment and Automation

The language wrapper is ready, and the next stage is to containerize the model and the
language wrapper.

Containerizing the model
What would you put in the container? Let's start with a list. You will need the model and
the wrapper files. You will need the Seldon Python packages available in the container.
Once you have all these packages, then you will use the Seldon services to expose the
model. Figure 7.2 shows a Docker file that is building one such container. This file is
available in Chapter 7/model_deployment_pipeline/model_build_push/
Dockerfile.py.

Figure 7.2 – Docker file to package the model as a container

Now, let's understand the content of the Docker file:

•	 Line 1 indicates the base container image for your model service. We have
chosen the freely available image from Red Hat, but you can choose as per your
convenience. This image could be your organization's base image with the standard
version of Python and related software.

•	 In Line 3, we have created a microservice directory to place all the related
artifacts in our container.

•	 In Line 4, the first file we need to build the container is base_requirements.
txt. This file contains the packages and dependencies for the Seldon Core system.
You can find this file at chapter7/model_deployment_pipeline/model_
build_push/base_requirements.txt. In this file, you will see that Seldon
Core packages and joblib packages have been added.

Understanding model inferencing with Seldon Core 173

Figure 7.3 shows the base_requirements.txt file:

Figure 7.3 – File adding Seldon and Joblib to the container

•	 Line 5 is using the base_requirements.txt file to install the Python packages
onto the container.

•	 In Lines 7 and 8, when you are training the model, you may use different packages.
During inferencing, some of the packages may be needed; for example, if you have
done input data scaling before model training using a library, you may need the
same library to apply the scaling at inference time.

In Chapter 6, Machine Learning Engineering, you registered your experiment details and a
model with the MLflow server. Recall that the model file was stored in the artifacts along
with a file containing packages used to train the model named requirements.txt. Using
the requirements.txt file generated by MLflow, you can install the packages required
to run your model, or you may choose to add these dependencies on your own to a custom
file. Figure 7.4 shows the MLflow snapshot referred to in Chapter 6, Machine Learning
Engineering. You can see the requirements.txt file here next to the model.pkl file.

Figure 7.4 – MLflow run artifacts

174 Model Deployment and Automation

Line 10: You add the language wrapper files and the model files to the container.

Line 11: Here, you are using the seldon-core-microservice server to start the
inferencing server. Notice that the parameters have been passed here, and in the next
section, you will see how we can pass these parameters:

•	 MODEL_NAME: This is the name of the Python class in the language wrapper
containing the model.

•	 SERVICE_TYPE: This parameter contains the type of service being created here
in the inference pipeline. Recall that an inference pipeline may contain the model
execution or data transformation or it may be an outlier-detector. For model
execution, the value of this parameter will be MODEL.

•	 GRPC_PORT: The port at which the Google Remote Procedure Call (gRPC)
endpoint will listen for model inference.

•	 METRICS_PORT: The port at which the service performance data will be exposed.
Note that this is the performance data for the service and not the model.

•	 HTTP_NAME: The HTTP port where will you serve the model over HTTP.

Now, we have a container specification in the form of the Docker file. Next, we will see
how to deploy the container on the Kubernetes platform using the Seldon controller.

Deploying the model using the Seldon controller
Our ML platform provides a Seldon controller, a piece of software that runs as a pod
and assists in deploying the containers you built in the preceding section. Note that the
controller in our platform is the extension of the existing Seldon operator. At the time
of writing, the Seldon operator was not compatible with Kubernetes version 1.22, so we
have extended the existing operator to work with the latest and future versions of the
Kubernetes platform.

Refer to Chapter 4, The Anatomy of a Machine Learning Platform, where you learned
about installing ODH and how it works on the Kubernetes cluster. In an equivalent
manner, the Seldon controller is also installed by the ODH operator. The manifests/
ml-platform.yaml file has the configuration for installing the Seldon controller.
Figure 7.5 shows the settings:

Understanding model inferencing with Seldon Core 175

Figure 7.5 – MLFlow section of the manifest file

Let's verify whether the Seldon controller is running correctly in the cluster:

kubectl get pods –n ml-workshop | grep –i seldon

You should see the following response:

Figure 7.6 – Seldon controller pod

The Seldon controller pod is installed by the ODH operators, which watch for the Seldon
Deployment CR. This schema for this resource is defined by the Seldon Deployment
custom resource definition (CRD); you can find the CRD at manifests/odhseldon/
cluster/base/seldon-operator-crd-seldondeployments.yaml. Once you
create the Seldon Deployment CR, the controller deploys the pods associated with the CR.
Figure 7.7 shows this relationship:

Figure 7.7 – Components of the platform for deploying Seldon services

Let's see the different components of the Seldon Deployment CR. You can find one simple
example in chapter7/manual_model_deployment/SeldonDeploy.yaml.

176 Model Deployment and Automation

The Seldon Deployment CR contains all the information that is required by the Seldon
controller to deploy your model on the Kubernetes cluster. There are three main sections
in the Seldon Deployment CR:

•	 General information: This is the section that describes apiVersion, kind, and
other Kubernetes-related information. You will define the labels and name of the
Seldon Deployment as any other Kubernetes object. You can see in the following
screenshot that it contains the labels and annotations for the object:

Figure 7.8 – Seldon Deployment – Kubernetes-related information

•	 Container specifications: The second section is where you provide details about the
container location, the deployment, and the horizontal pod scaling configuration
of your service. Note that this is the same container that you built in the preceding
section. Figure 7.7 contains the section of the chapter7/manual_model_
deployment/SeldonDeploy.yaml file that has this information.

Notice that containers take an array for the image object, so you can add more
images to it. The image key will have the location of your container. The env array
defines the environment variables that will be available for the pod. Recall that, in
our Docker file in the previous section, these variables have been used. MODEL_
NAME has a value of Predictor, which is the name of the class you have used
as a wrapper. SERVICE_TYPE has a value of MODEL, which mentions the type of
service this container provides.

Understanding model inferencing with Seldon Core 177

The last part has hpaSpec, which the Seldon controller will translate onto the
Kubernetes Horizontal Pod Autoscaler object. Through these settings, you can
control the scalability of your pods while serving inferencing calls. For the following
example, maxReplicas is set to 1, so there will not be any new pods, but you
can control this value for each deployment. The scalability will kick in if the CPU
utilization goes beyond 80% for the pods in the following example; however,
because maxReplica is 1, there will not be any new pods created.

Figure 7.9 – Seldon Deployment – Seldon service containers

•	 Inference graph: The section under the graph key builds the inference graph for
your service. An inference graph will have different nodes and you will define what
container will be used at each node. You will see there is a children key that
takes an array of objects through which you define your inference graph. For this
example, graph has only one node and the children key has no information
associated with it; however, in the later chapters, you will see how to build the
inference graph with more nodes.

178 Model Deployment and Automation

The remaining fields under the graph define the first node of your inference graph.
The name field has the value that corresponds to the name you have given in the
containers section. Note that this is the key through which Seldon knows what
container would be serving at this node of your inference graph.

The other important part is the logger section. Seldon can automatically forward
the request and response to the URL mentioned under the logger section. The
capability of forwarding the request and response can be used for a variety of
scenarios, such as storing the payload for audit/legal reasons or applying data drift
algorithms to trigger retraining or anything else. Note that Seldon can also forward
to Kafka if needed, but this is outside the scope of this book.

Figure 7.10 – Seldon Deployment – inference graph

Once you create the Seldon Deployment CR using the routine kubectl command, the
Seldon controller will deploy the pods, and the model will be available for consumption as
a service.

Next, we'll move on to packaging and deploying the basic model that you built in Chapter 6,
Machine Learning Engineering.

Packaging, running, and monitoring a model using Seldon Core 179

Packaging, running, and monitoring a model
using Seldon Core
In this section, you will package and build the container from the model file you built in
Chapter 6, Machine Learning Engineering. You will then use the Seldon Deployment to
deploy and access the model. Later in this book, you will automate the process, but to do it
manually, as you'll do in this section, we will further strengthen your understanding of the
components and how they work.

Before you start this exercise, please make sure that you have created an account with a
public Docker registry. We will use the free quay.io as our registry, but you are free to
use your preferred one:

1.	 Let's first verify that MLflow and Minio (our S3 server) are running in our cluster:

kubectl get pods -n ml-workshop | grep -iE 'mlflow|minio'

You should see the following response:

Figure 7.11 – MLflow and Minio are running on the platform

2.	 Get the ingress list for MLflow, and log in to MLflow using the mlflow URL
available from the following output:

kubectl get ingresses.networking.k8s.io -n ml-workshop

You should see the following response:

Figure 7.12 – ingress in your Kubernetes cluster

180 Model Deployment and Automation

3.	 Once you are in the MLflow UI, navigate to the experiment that you recorded
in Chapter 6, Machine Learning Engineering. The name of the experiment is
HelloMIFlow.

Figure 7.13 – MlFlow Experiment Tracking

4.	 Select the first run from the right-hand panel to get to the detail page of the
run. From the Artifacts section, click on model.pkl and you will see a little
download arrow icon to the right. Use the icon to download the model.pkl and
requirements.txt files from this screen.

Packaging, running, and monitoring a model using Seldon Core 181

Figure 7.14 – MLflow experiment tracking – run details

5.	 Go to the folder where you have cloned the code repository that comes with
this book. If you have not done so, please clone the https://github.com/
PacktPublishing/Machine-Learning-on-Kubernetes.git repository
on your local machine.

6.	 Then, go to the chapter7/model_deploy_pipeline/model_build_push
folder and copy the two files downloaded in the previous step to this folder. In the
end, this folder will have the following files:

Figure 7.15 – Sample files to package the model as a container

Note
The last two files are the ones that you have just copied. All other files are
coming from the code repository that you have cloned.

https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes.git
https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes.git

182 Model Deployment and Automation

Curious people will note that the requirements.txt file that you have
downloaded from the MLFlow server contains the packages required while you run
the notebook for model training. Not all of these packages (mlflow, for example)
will be needed to execute the saved model. To keep things simple, we will add all of
them to our container.

7.	 Now, let's build the container on the local machine:

docker build -t hellomlflow-manual:1.0.0 .

You should see the following response:

Figure 7.16 – Packaging the model as a container

8.	 The next step is to tag the container and push it to the repository of your choice.
Before you push your image to a repository, you will need to have an account with
an image registry. If you do not have one, you can create one at https://hub.
docker.com or https://quay.io. Once you have created your registry, you
can run the following commands to tag and push the image:

docker tag hellomlflow-manual:1.0.0 <DOCKER_REGISTRY>/
hellomlflow-manual:1.0.0

docker push <DOCKER_REGISTRY> /hellomlflow-manual:1.0.0

You should see the following response. You will notice that, in the following
screenshot, we refer to quay.io/ml-on-k8s as our registry:

https://hub.docker.com
https://hub.docker.com
https://quay.io

Packaging, running, and monitoring a model using Seldon Core 183

Figure 7.17 – Pushing the model to a public repository

9.	 Now that your container is available in a registry, you will need to use the Seldon
Deployment CR to deploy it as a service. Open the chapter7/manual_model_
deployment/SeldonDeploy.yaml file and adjust the location of the image.

You can see the file after I have modified line 16 (as per my image location)
as follows:

Figure 7.18 – Seldon Deployment CR with the image location

184 Model Deployment and Automation

10.	 Let's deploy the model as a service by deploying the chapter7/manual_model_
deployment/SeldonDeploy.yaml file. Run the following command:

kubectl create -f chapter7/manual_model_deployment/
SeldonDeploy.yaml -n ml-workshop

You should see the following response:

Figure 7.19 – Creating the Seldon Deployment CR

11.	 Validate that the container is in a running state. Run the following command:

kubectl get pod -n ml-workshop | grep model-test-
predictor

You will note that the name that you have put in the graph section of the
SeldonDeploy.yaml file (model-test-predictor) is part of the
container name.

You should see the following response:

Figure 7.20 – Validating the pod after the Seldon Deployment CR

12.	 Great! You have a model running as a service. Now, let's see what is in the pod
created for us by the Seldon controller. Run the following command to get a list of
containers inside our pod:

export POD_NAME=$(kubectl get pod -o=custom-
columns=NAME:.metadata.name -n ml-workshop | grep model-
test-predictor)

kubectl get pods $POD_NAME -o jsonpath='{.spec.
containers[*].name}' -n ml-workshop

You should see the following response:

Figure 7.21 – Containers inside the Seldon pod

Packaging, running, and monitoring a model using Seldon Core 185

You will see that there are two containers. One is model-test-predictor,
which is the image that we have built, and the second container is seldon-
container-engine, which is the Seldon server.

The model-test-predictor container has the model and is using the language
wrapper to expose the model over HTTP and gRPC. You can use the following
command to see the logs and what ports have been exposed from model-test-
predictor:

kubectl logs -f $POD_NAME -n ml-workshop -c model-test-
predictor

You should see the following response (among other logs):

Figure 7.22 – Containers log showing the ports
You can see that the servers are ready to take the calls on 9000 for HTTP and on
6005 for the metrics server. This metrics server will have the Prometheus-based
monitoring data exposed on the /prometheus endpoint. You can see this in the
following portion of the log:

Figure 7.23 – Containers log showing the Prometheus endpoint
The second container is seldon-container-engine, which does the
orchestration for the inference graph and forwards the payloads to the service
configured by you in the logger section of the Seldon Deployment CR.

13.	 In this step, you will find out what Kubernetes objects your Seldon Deployment CR
has created for you. A simple way to find out is by running the command as follows.
This command depends on the Seldon controller labeling the objects it creates with
the label key as seldon-deployment-id, and the value is the name of your
Seldon Deployment CR, which is model-test:

kubectl get all -l seldon-deployment-id=model-test -n
ml-workshop

186 Model Deployment and Automation

You should see the following response:

Figure 7.24 – Kubernetes objects created by the Seldon controller
You can see that there are Deployment objects, services, and Horizontal Pod
Autoscalers (HPA) objects created for you for the Seldon controller using
the configuration that you have provided in the Seldon Deployment CR. The
deployment ends up creating pods and a replica set for your pods. The Seldon
controller made it easy to deploy our model on the Kubernetes platform.

14.	 You may have noticed that there is no ingress object created by the Seldon
Deployment CR. Let's create the ingress object so that we can call our model from
outside the cluster by running the command as follows. The ingress object is created
by the file in chapter7/manual_model_deployment/Ingress.yaml. Make
sure to adjust the host value as per your configuration, as you have done in earlier
chapters. You will also notice that the ingress is forwarding traffic to port 8000.
Seldon provides the listener to this port, which orchestrates the inference call. This
service is available in the container named seldon-container-engine:

kubectl create -f chapter7/manual_model_deployment/
Ingress.yaml -n ml-workshop

You should see the following response:

Figure 7.25 – Creating ingress objects for our service
Validate that the ingress has been created by issuing the following command:

kubectl get ingress -n ml-workshop | grep model-test

Packaging, running, and monitoring a model using Seldon Core 187

You should see the following response:

Figure 7.26 – Validating the ingress for our service

15.	 Since our Seldon Deployment CR has referenced a logger URL, you will deploy a
simple HTTP echo server that will just print the calls it received. This will assist us
in validating whether the payloads have been forwarded to the configured URL in
the logger section of the Seldon Deployment CR. A very simple echo server can
be created via the following command:

kubectl create -f chapter7/manual_model_deployment/http-
echo-service.yaml -n ml-workshop

You should see the following response:

Figure 7.27 – Creating a simple HTTP echo server to validate payload logging
Validate that the pod has been created by issuing the following command:

kubectl get pods -n ml-workshop | grep logger

You should see the following response:

Figure 7.28 – Validating a simple HTTP echo server

16.	 Let's make a call for our model to predict something. The model we developed in
the previous chapter is not very useful, but it will help us understand and validate
the overall process of packaging and deploying the model.

Recall from Chapter 6, Machine Learning Engineering, that the hellomlflow
notebook has the input for the model with shape (4,2), and the output shape
is (4,).

Figure 7.29 – Input and output for the model

188 Model Deployment and Automation

So, if we want to send data to our model, it would be an array of integer pairs such
as [2,1]. When you make a call to your model, the input data is required within an
ndarray field under a key named data. The input would look as follows. This is
the format the Seldon service expects for the data to be sent to it:

Figure 7.30 – Input for the model as an HTTP payload

17.	 Next is the REST endpoint for the model. It will be the ingress that you created
in Step 13 and the standard Seldon URL. The final form would be as follows:
http://<INGRESS_LOCATION>/api/v1.0/predictions.

This would translate, in my case, to http://model-test.192.168.61.72.
nip.io/api/v1.0/predictions.

Now, you have the payload and the URL to send this request to.
18.	 In this step, you will make a call to your model. We are using a commonly used

command-line option to make this call; however, you may choose to use other
software, such as Postman, to make this HTTP call.

You will use the POST HTTP verb in the call and then provide the location of the
service. You will have to pass the Content-Type header to mention JSON content
and the body is passed using the data-raw flag of the curl program:

curl -vvvv -X POST 'http://<INGRESS_LOCATION>/api/v1.0/
predictions' \--header 'Content-Type: application/json'
\--data-raw '{ "data": { "ndarray": [[2,1]] }}'

The final request should look as follows. Before making this call, make sure to
change the URL as per your ingress location:

curl -vvvv -X POST 'http://model-test.192.168.61.72.
nip.io/api/v1.0/predictions' \--header 'Content-Type:
application/json' \--data-raw '{ "data": { "ndarray":
[[2,1]] }}'

http://<INGRESS_LOCATION>/api/v1.0/predictions
http://model-test.192.168.61.72.nip.io/api/v1.0/predictions
http://model-test.192.168.61.72.nip.io/api/v1.0/predictions

Packaging, running, and monitoring a model using Seldon Core 189

You should see the following response. Note that the output of the command shows
the array of the same shape as per our model, which is (4,), and it is under the
ndarray key in the following screenshot:

Figure 7.31 – Output payload for the model inference call

19.	 Now, let's verify that the model payload has been logged onto our echo server. You
are validating the capability of Seldon to capture input and output and send it to the
desired location for further processing, such as drift detection or audit logging:

export LOGGER_POD_NAME=$(kubectl get pod -o=custom-
columns=NAME:.metadata.name -n ml-workshop | grep logger)

kubectl logs -f $LOGGER_POD_NAME -n ml-workshop

You will see there is a separate record for the input and the output payload. You
can use the ce-requestid key to correlate the two records in the logs. The
following screenshot displays the main fields of the captured input payload of the
inference call:

Figure 7.32 – Captured input payload forwarded to the echo pod

190 Model Deployment and Automation

The following screenshot displays the main fields of the output payload of the
inference call:

Figure 7.33 – Captured output payload forwarded to the echo pod

20.	 Now, let's verify that service monitoring data is captured by the Seldon engine and
is available for us to use and record. Note that the way Prometheus works is by
scraping repetitively, so this data is in the current state and the Prometheus server is
responsible for calling this URL and record in its database.

The URL format for this information is as follows. The ingress is the same as you
created in Step 13:

http://<INGRESS_LOCATION>/prometheus

Packaging, running, and monitoring a model using Seldon Core 191

This would translate to the following for my ingress:
http://model-test.192.168.61.72.nip.io/prometheus

Open a browser and access the URL in it. You should see the following response:

Figure 7.34 – Accessing monitoring data in Prometheus format
You will find that a lot of information is captured, including response times, the
number of HTTP responses per status code (200, 400, 500, and so on), data
capture, server performance, and exposing the Go runtime metrics. We encourage
you to go through these parameters to develop an understanding of the data
available. In the later chapters, you will see how to harvest and plot this data to
visualize the performance of the model inferencing server.

You have done a great deal in this exercise. The aim of this section was to showcase the
steps and components involved to deploy a model using Seldon Core. In the next section,
you will be introduced to the workflow component of the platform, Airflow, and in the
next couple of chapters, all of these steps will be automated using the components in the
ML platform.

192 Model Deployment and Automation

Introducing Apache Airflow
Apache Airflow is an open source software designed for programmatically authoring,
executing, scheduling, and monitoring workflows. A workflow is a sequence of tasks that
can include data pipelines, ML workflows, deployment pipelines, and even infrastructure
tasks. It was developed by Airbnb as a workflow management system and was later open
sourced as a project in Apache Software Foundation's incubation program.

While most workflow engines use XML to define workflows, Airflow uses Python as
the core language for defining workflows. The tasks within the workflow are also written
in Python.

Airflow has many features, but we will cover only the fundamental bits of Airflow in this
book. This section is by no means a detailed guide for Airflow. Our focus is to introduce
you to the software components for the ML platform. Let's start with DAG.

Understanding DAG
A workflow can be simply defined as a sequence of tasks. In Airflow, the sequence of tasks
follows a data structure called a directed acyclic graph (DAG). If you remember your
computer science data structures, a DAG is composed of nodes and one-way vertices
organized in a way to ensure that there are no cycles or loops. Hence, a workflow in
Airflow is called a DAG.

Figure 7.35 shows a typical example of a data pipeline workflow:

Figure 7.35 – Typical data pipeline workflow

The example workflow in Figure 7.36 is composed of tasks represented by boxes. The order
of execution of these tasks is determined by the direction of the arrows:

Figure 7.36 – Example workflow with parallel execution

Introducing Apache Airflow 193

Another example of a workflow is shown in Figure 7.36. In this example, there are tasks
that are executed in parallel. The Generate Report tasks will wait for both Transform
Data tasks to complete. This is called execution dependency and it is one of the problems
Airflow is solving. Tasks can only execute if the upstream tasks are completed.

You can configure the workflow however you want as long as there are no cycles in the
graph, as shown in Figure 7.37:

Figure 7.37 – Example workflow with cycle

In the example in Figure 7.37, the Clean Data task will never be executed because it is
dependent on the Store Data task, which will also not be executed. Airflow only allows
acyclic graphs.

As illustrated, a DAG is a series of tasks, and there are three common types of tasks
in Airflow:

•	 Operators: Predefined tasks that you can use to execute something, They can be
strung together to form a pipeline or a workflow. Your DAG is composed mostly, if
not entirely, of operators.

•	 Sensors: Subtypes of operators that are used for a series of other operators based on
an external event.

•	 TaskFlow: Custom Python functions decorated with @task. This allows you to run
regular Python functions as tasks.

Airflow operators are extendable, which means there are quite a lot of predefined
operators created by the community that you can simply use. One of the operators that
you will mostly use in the following exercises is the Notebook Operator. This operator
allows you to run any Jupyter notebook as tasks in the DAG.

So, what are the advantages of using DAGs to execute a sequence of tasks? Isn't it enough
to just write a script that can execute other scripts sequentially? Well, the answer lies in the
features that Airflow offers, which we will explore next.

194 Model Deployment and Automation

Exploring Airflow features
The advantages that Airflow brings when compared with cron jobs and scripts can be
detailed by its features. Let's start by looking at some of those features:

•	 Failure and error management: In the event of a task failure, Airflow handles
errors and failures gracefully. Tasks can be configured to automatically retry when
they fail. You can also configure how many times it retries.

In terms of execution sequence, there are two types of task dependencies in a typical
workflow that can be managed in Airflow much easier than writing a script.

•	 Data dependencies: Some tasks may require that the other tasks be processed first
because they require data that is generated by other tasks. This can be managed in
Airflow. Moreover, Airflow allows the passing of small amounts of metadata from
the output of one task as an input to another task.

•	 Execution dependencies: You may be able to script execution dependencies
in a small workflow. However, imagine scripting a workflow in Bash with a
hundred tasks, where some tasks can run concurrently while others can only run
sequentially. I imagine this to be a pretty daunting task. Airflow helps simplify this
by creating DAGs.

•	 Scalability: Airflow can horizontally scale to multiple machines or containers. The
tasks in the workflow may be executed on different nodes while being orchestrated
centrally by a common scheduler.

•	 Deployment: Airflow can use Git to store DAGs. This allows you to continuously
deploy new changes to your workflows. A sidecar container can automatically pick
up the changes from the git repository containing your DAGs. This allows you to
implement the continuous integration of DAGs.

The next step is to understand the different components of Airflow.

Understanding Airflow components
Airflow comprises multiple components running as independent services. Figure 7.38
shows the components of Airflow and their interactions:

Introducing Apache Airflow 195

Figure 7.38 – Airflow components

There are three core services in Airflow. The Airflow Web serves the user interface where
users can visually monitor and interact with DAGs and tasks. The Airflow Scheduler is
a service responsible for scheduling tasks for the Airflow Worker. Scheduling does not
only mean executing tasks according to their scheduled time. It's also about executing the
tasks in a particular sequence, taking into account the execution dependencies and failure
management. Airflow Worker is the service that executes the tasks. This is also the main
scalability point of Airflow. The more Airflow Worker is running, the more tasks can be
executed concurrently.

The DAG repository is a directory in the filesystem where DAG files written in Python are
stored and retrieved by the scheduler. The Airflow instance configured in our platform
includes a sidecar container that synchronizes the DAG repository with a remote git
repository. This simplifies the deployment of DAGs by simply pushing a Python file to Git.

We will not dig too deep into Airflow in this book. The objective is for you to learn
enough to a point where you are able to create pipelines in Airflow with minimal Python
coding. You will use the Elyra notebooks pipeline builder feature to build Airflow
pipelines graphically. If you want to learn more about Airflow and how to build pipelines
programmatically in Python, we recommend that you start with Apache Airflow's very
rich documentation at https://airflow.apache.org/docs/apache-airflow/
stable/concepts/overview.html.

Now that you have a basic understanding of Airflow, it's time to take a look at it in
action. In Chapter 4, The Anatomy of a Machine Learning Platform, you installed a fresh
instance of ODH. This process also installed the Airflow services for you. Now, let's
validate this installation.

https://airflow.apache.org/docs/apache-airflow/stable/concepts/overview.html
https://airflow.apache.org/docs/apache-airflow/stable/concepts/overview.html

196 Model Deployment and Automation

Validating the Airflow installation
To validate that Airflow is running correctly in your cluster, you need to perform the
following steps:

1.	 Check whether all the Airflow pods are running by executing the following
command:

kubectl get pods -n ml-workshop | grep airflow

You should see the three Airflow services pods in running status, as shown in the
following screenshot in Figure 7.39. Verify that all pods are in the Running state:

Figure 7.39 – Airflow pods in the Running state

2.	 Get the URL of Airflow Web by looking at the ingress host of ap-airflow2. You
can do this by executing the following command:

kubectl get ingress -n ml-workshop | grep airflow

You should see results similar to Figure 7.39. Take note of the host value of the
ap-airflow2 ingress. The IP address may be different in your environment:

Figure 7.40 – Airflow ingress in the ml-workshop namespace

3.	 Navigate to https://airflow.192.168.49.2.nip.io. Note that the
domain name is the host value of the ap-airflow2 ingress. You should see the
Airflow Web UI, as shown in Figure 7.41:

https://airflow.192.168.49.2.nip.io

Introducing Apache Airflow 197

Figure 7.41 – Home screen of Apache Airflow

If you are able to load the Airflow landing page, it means that the Airflow installation
is valid. You must have also noticed that in the table listing the DAGs, there are already
existing DAGs currently in failing status. These are existing DAG files that are in
https://github.com/airflow-dags/dags/, the default configured DAG
repository. You will need to create your own DAG repository for your experiments. The
next section will provide the details on how to do this.

Configuring the Airflow DAG repository
A DAG repository is a Git repository where Airflow picks up the DAG files that represent
your pipelines or workflows. To configure Airflow to point to your own DAG repository,
you need to create a Git repository and point the Airflow Scheduler and Airflow Web to
this Git repository. You will use GitHub to create this repository. The following steps will
guide you through the process:

1.	 Create a GitHub repository by going to https://github.com. This requires
that you have an existing account with GitHub. For the purpose of this exercise,
let's call this repository airflow-dags. Take note of the URL of your new Git
repository. It should look like this: https://github.com/your-user-name/
airflow-dags.git. We assume that you already know how to create a new
repository on GitHub.

https://github.com/airflow-dags/dags/
https://github.com
https://github.com/your-user-name/airflow-dags.git
https://github.com/your-user-name/airflow-dags.git

198 Model Deployment and Automation

2.	 Edit your instance of ODH by editing the kfdef (Kubeflow definition) object.
You can do this by executing the following command:

kubectl edit kfdef opendatahub-ml-workshop -n ml-workshop

You should be presented with a vim editor showing the kfdef manifest file as
shown in Figure 7.42. Press i to start editing.

Figure 7.42 – vim editor showing the section defining the Airflow instance

3.	 Replace the value of the DAG_REPO parameter with the URL of the Git repository
you created in Step 1. The edited file should look like the screenshot in Figure 7.43.
Press Esc, then :, and type wq and press Enter to save the changes you made to the
kfdef object.

Figure 7.43 – Value of the DAG_REPO parameter after editing

Introducing Apache Airflow 199

The changes will be picked up by the ODH operator and will be applied to the
affected Kubernetes deployment objects, in this case, Airflow Web and Airflow
Scheduler deployments. This process will take a couple of minutes to complete.

4.	 Validate the changes by inspecting the Airflow deployments. You can do this
by running the following command to look into the applied manifest of the
deployment object:

kubectl get deployment app-aflow-airflow-scheduler -o
yaml -n ml-workshop | grep value:.*airflow-dags.git

This should return a line containing the URL of your GitHub repository.
5.	 Because this repository is new and is empty, you should not see any DAG files when

you open the Airflow Web UI. To validate the Airflow web application, navigate
to your Airflow URL, or refresh your existing browser tab, and you should see an
empty Airflow DAG list similar to the screenshot in Figure 7.44:

Figure 7.44 – Empty Airflow DAG list

Now that you have validated your Airflow installation and updated the DAG repository to
your own git repository, it's time to put Airflow to good use.

Configuring Airflow runtime images
Airflow pipelines, or DAGs, can be authored by writing Python files using the Airflow
libraries. However, it is also possible to create DAGs graphically from an Elyra notebook.
In this section, you will create an Airflow DAG from Elyra, push it to the DAG repository,
and execute it in Airflow.

200 Model Deployment and Automation

To further validate the Airflow setup and test the configuration, you will need to run
a simple Hello world pipeline. Follow the steps to create a two-task pipeline. You
will create Python files, a pipeline, and configure runtime images to be used throughout
the process:

1.	 If you do not have a running notebook environment, start a notebook environment
by navigating to JupyterHub, clicking Start My Server, and selecting a notebook
image to run, as shown in Figure 7.45. Let's use Base Elyra Notebook Image this
time as we do not require any special libraries.

Figure 7.45 – JupyterHub landing page showing Base Elyra Notebook Image selected

Introducing Apache Airflow 201

2.	 In your Elyra browser, navigate to the Machine-Learning-on-Kubernetes/
chapter7/model_deploy_pipeline/ directory.

3.	 Open a new pipeline editor. You can do this by selecting the menu item
File>New>Pipeline Editor, as shown in Figure 7.46. A new file will appear in the
left-hand browser, named untitled.pipeline.

Figure 7.46 – Elyra notebook

4.	 Right-click on the untitled.pipeline file and rename it to hello_world.
pipeline.

202 Model Deployment and Automation

5.	 Create two Python files with the same contents containing the following line:
print('Hello airflow!'). You can do this by selecting the menu items
File > New Python File. Then, rename the files to hello.py and world.py.
Your directory structure should look like the screenshot in Figure 7.47:

Figure 7.47 – Elyra directory structure showing the hello.pipeline file

6.	 Create a pipeline with two tasks by dragging the hello.py file into the pipeline
editor window. Do the same for world.py. Connect the tasks by dragging the tiny
circle on the right of the task box to another box. The resulting pipeline topology
should look like the illustration in Figure 7.48. Save the pipeline by clicking the Save
icon in the top toolbar.

Figure 7.48 – Task topology

7.	 Before we can run this pipeline, we need to configure each of the tasks. Because
each task will run as a container in Kubernetes, we need to tell which container
image that task will use. Select the Runtime Images icon on the toolbar on the left.
Then, click the + button to add a new runtime image, as shown in Figure 7.49:

Introducing Apache Airflow 203

Figure 7.49 – Adding a new runtime image in Elyra

8.	 In the Add new Runtime Image dialog, add the details of the Kaniko Container
Builder image, as shown in Figure 7.50, and hit the SAVE & CLOSE button.

This container image (https://quay.io/repository/ml-on-k8s/kaniko-
container-builder) contains the tools required to build Docker files and push
images to an image registry from within Kubernetes. This image can also pull ML
models and metadata from the MLflow model registry. You will use this image to
build containers that host your ML model in the next section. This container image
was created for the purpose of this book. You can use any container image as a
runtime image for your pipeline tasks as long as the image can run on Kubernetes.

Figure 7.50 – Add new Runtime Image dialog for Kaniko builder

https://quay.io/repository/ml-on-k8s/kaniko-container-builder
https://quay.io/repository/ml-on-k8s/kaniko-container-builder

204 Model Deployment and Automation

9.	 Add another runtime image called Airflow Python Runner. The container image
is located at https://quay.io/repository/ml-on-k8s/airflow-
python-runner. This image can run any Python 3.8 scripts, and interact with
Kubernetes and Spark operators. You will use this image to deploy container images
to Kubernetes in the next section. Refer to Figure 7.51 for the Add new Runtime
Image dialog field values, and then hit the SAVE & CLOSE button:

Figure 7.51 – Add new Runtime Image dialog for Airflow Python Runner

10.	 Pull the images from the remote repository to the local Docker daemon of your
Kubernetes cluster. This will help speed up the start up times of tasks in Airflow by
using a runtime image that is already pulled into the local Docker instance.

You can do this by running the following command on the same machine where
your Minikube is running. This command allows you to connect your Docker client
to the Docker daemon inside your Minikube virtual machine (VM):

eval $(minikube docker-env)

11.	 Pull the Kaniko Container Builder image by running the following command in
the same machine where your Minikube is running. This will pull the image from
quay.io to the Docker daemon inside your Minikube:

docker pull quay.io/ml-on-k8s/kaniko-container-
builder:1.0.0

12.	 Pull the Airflow Python Runner image by running the following command in the
same machine where your Minikube is running:

docker pull quay.io/ml-on-k8s/airflow-python-
runner:0.0.11

https://quay.io/repository/ml-on-k8s/airflow-python-runner
https://quay.io/repository/ml-on-k8s/airflow-python-runner
http://quay.io

Introducing Apache Airflow 205

13.	 Assign Kaniko Container Builder runtime images to the hello.py task. You can
do this by right-clicking the task box and selecting the Properties context menu
item. The properties of the task will be displayed in the right pane of the pipeline
editor, as shown in Figure 7.52. Using the Runtime Image drop-down box, select
Kaniko Container Builder.

Figure 7.52 – Setting the runtime image of a task in the pipeline editor

Note
If you do not see the newly added runtime images in the drop-down list, you
need to close and reopen the pipeline editor. This will refresh the list of runtime
images.

14.	 Assign the Airflow Python Runner runtime image to the world.py task. This is
similar to Step 10, but for the world.py task. Refer to Figure 7.53 for the Runtime
Image value:

Figure 7.53 – Setting the runtime image of a task in the pipeline editor

206 Model Deployment and Automation

15.	 You have just created an Airflow pipeline that has two tasks, where each task uses
a different runtime. But, before we can run this pipeline in Airflow, we need to tell
Elyra where Airflow is. To do this, select the Runtimes icon on the left toolbar of
Elyra, as shown in Figure 7.54:

Figure 7.54 – Runtimes toolbar

16.	 Hit the + button and select the New Apache Airflow runtime menu item. Fill in the
details according to the following values or see Figure 7.55:

A.	 Apache Airflow UI Endpoint is where the Airflow UI is currently listening.
This is not critical, as Elyra does not interact with Airflow UI directly. Set
the value to the URL of your Airflow UI. This will look like https://
airflow.192.168.49.2.nip.io, where the IP address part is the IP
address of your Minikube.

B.	 Apache Airflow User Namespace is the Kubernetes namespace where all
the pods of the tasks will be created. Set this to ml-workshop. This is the
namespace of all your ML platform workloads.

C.	 GitHub DAG Repository is the DAG repository that you created in the previous
section, Configuring Airflow DAG Repository. This follows the github-
username/airflow-dags format. Replace github-username with your
GitHub username.

https://airflow.192.168.49.2.nip.io
https://airflow.192.168.49.2.nip.io

Introducing Apache Airflow 207

D.	 GitHub DAG Repository Branch is the branch in your GitHub repository where
Elyra will push the DAG files. Set this to main.

E.	 GitHub Personal Access Token is your GitHub user token with permission
to push to your DAG repository. You can refer to the GitHub documentation
for creating personal access tokens at https://docs.github.com/en/
authentication/keeping-your-account-and-data-secure/
creating-a-personal-access-token.

F.	 Cloud Object Storage Endpoint is the endpoint URL of any S3 storage API.
Airflow uses this to publish artifacts and logs of the DAG executions. You will
use the same Minio server for this. Set the value to http://minio-ml-
workshop:900. This is the URL of the Minio service. We did not use the
Minio's ingress because the JupyterHub server is running on the same Kubernetes
namespace as the Minio server, which means that the Minio service can be
addressed by its name.

G.	 Cloud Object Storage User name is the Minio username, which is minio.
H.	Cloud Object Storage Password is the Minio password, which is minio123.

Once all the fields are filled correctly, hit the SAVE & CLOSE button.

Figure 7.55 – Adding a new Apache Airflow runtime configuration

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-a
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-a
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-a
http://minio-ml-workshop:900
http://minio-ml-workshop:900

208 Model Deployment and Automation

17.	 Run the pipeline in Airflow by clicking the Play button in the top toolbar of the
pipeline editor. This will bring up a Run pipeline dialog. Select Apache Airflow
runtime as the runtime platform and MyAirflow as the runtime configuration, and
then hit OK. Refer to Figure 7.56:

Figure 7.56 – Run pipeline dialog
This action generates an Airflow DAG file and pushes the file to the GitHub
repository configured as a DAG repository. You can verify this by checking your
GitHub repository for newly pushed files.

Introducing Apache Airflow 209

18.	 Open the Airflow website. You should see the newly create DAG, as shown in
Figure 7.57. If you do not see it, refresh the Airflow page a few times. Sometimes,
it takes a few seconds before the DAGs appear in the UI.

Figure 7.57 – Airflow showing a running DAG
The DAG should succeed in a few minutes. If it does fail, you need to review the
steps to make sure you set the correct values and that you did not miss any steps.

You have just created a basic Airflow DAG using Elyra's graphical pipeline editor. The
generated DAG is, by default, configured to only run once, indicated by the @once
annotation. In the real world, you may not want to run your DAGs directly from Elyra.
You may want to add additional customizations to the DAG file. In this case, instead of
running the DAG by clicking the play button, use the export feature. This will export the
pipeline into a DAG file that you can further customize, such as setting the schedule. You
can then push the customized DAG file to the DAG repository to submit it to Airflow.

You have just validated your Airflow setup, added Airflow runtime configuration, and
integrated Elyra with Airflow. Now it is time to build a real deployment pipeline!

210 Model Deployment and Automation

Automating ML model deployments in Airflow
You have seen in the preceding sections how to manually package an ML model into a
running HTTP service on Kubernetes. You have also seen how to create and run basic
pipelines in Airflow. In this section, you will put this new knowledge together by creating
an Airflow DAG to automate the model deployment process. You will create a simple
Airflow pipeline for packaging and deploying an ML model from the MLflow model
registry to Kubernetes.

Creating the pipeline by using the pipeline editor
Similar to the previous section, you will use Elyra's pipeline editor to create the model
build and deployment DAG:

1.	 If you do not have a running Elyra environment, start a notebook environment by
navigating to JupyterHub, clicking Start My Server, and selecting a notebook image
to run, as shown in Figure 7.45. Let's use Base Elyra Notebook Image because this
time, we do not require any special libraries.

2.	 In your Elyra browser, navigate to the Machine-Learning-on-Kubernetes/
chapter7/model_deploy_pipeline/ directory.

3.	 Open a new pipeline editor. You can do this by selecting the menu item
File>New>Pipeline Editor, as shown in Figure 7.46. A new file will appear in the
left-hand browser, named untitled.pipeline.

4.	 Right-click on the untitled.pipeline file and rename it model_deploy.
pipeline. Your directory structure should look like the screenshot in Figure 7.58:

Figure 7.58 – Elyra showing empty pipeline editor

Automating ML model deployments in Airflow 211

5.	 You will build a pipeline with two tasks in it. The first task will pull the model
artifacts from the MLflow model registry, package the model as a container using
Seldon core, and then push the container image to an image repository. To create
the first task, drag and drop the build_push_image.py file from the model_
build_push directory to the pipeline editor's workspace. This action will create a
new task in the pipeline editor window, as shown in Figure 7.59:

Figure 7.59 – Elyra pipeline editor showing the build_push_image task

212 Model Deployment and Automation

6.	 The second task will pull the container image from the image repository and deploy
it to Kubernetes. Create the second task by dragging the deploy_model.py
file from model_deploy directory and dropping it into the pipeline editor
workspace. This action will create a second task in the pipeline editor, as shown
in Figure 7.60:

Figure 7.60 – Elyra pipeline editor showing the deploy_model task

7.	 Connect the two tasks by dragging the tiny circle at the right-hand side of the
build_push_image.py task to the deploy_model.py task box. The task
topology should look like the illustration in Figure 7.61. Take note of the direction
of the arrow highlighted in the red box.

Figure 7.61 – Task topology of the DAG

Automating ML model deployments in Airflow 213

8.	 Configure the build_push_image.py task by right-clicking the box and
selecting Properties. A property panel will appear on the right side of the editor, as
shown in Figure 7.62. Select Kaniko Container Builder as the runtime image for
this task.

Figure 7.62 – Pipeline editor with the property panel displayed showing the Kaniko Builder runtime

9.	 Add file dependencies to build_push_image.py by clicking the Add
Dependency button and selecting the following files. The file dependencies for this
task are also shown in Figure 7.62. The following list describes what each file does:

	� Dockerfile – This is the Docker file that will be built to produce the container
image that contains the ML model and the Predictor Python file.

	� Predictor.py – This is the Python file used by Seldon to define the inference
graph. You have seen this file in the preceding section.

	� Base_requirements.txt – This is a regular text file that contains a list of
Python packages required to run this model. This is used by the pip install
command inside the Docker file.

214 Model Deployment and Automation

10.	 At this point, you should have an idea of what the entire pipeline does. Because the
pipeline needs to push a container image to a registry, you will need a container
registry to hold your ML model containers. Create a new repository in a container
registry of your choice. For the exercises in this book, we will use Docker Hub as an
example. We assume that you know how to create a new repository in https://
hub.docker.com. Call this new repository mlflowdemo.

11.	 Once you have the image repository created, set the Environment Variables for the
build_push_image.py task, as shown in Figure 7.63. The following are the six
variables you need to set:

	� MODEL_NAME is the name of the ML model registered in MLflow. You used the
name mlflowdemo in the previous sections. Set the value of this variable to
mlflowdemo.

	� MODEL_VERSION is the version number of the ML model registered in MLflow.
Set the value of this variable to 1.

	� CONTAINER_REGISTRY is the container registry API endpoint. For Docker
Hub, this is available at https://index.docker.io/v1. Set the value of this
variable to https://index.docker.io/v1/.

	� CONTAINER_REGISTRY_USER is the username of the user who will push images
to the image registry. Set this to your Docker Hub username.

	� CONTAINER_REGISTRY_PASSWORD is the password of your Docker Hub user.
In production, you do not want to do this. You may use secret management tools
to serve your Docker Hub password. However, to keep things simple for this
exercise, you will put your Docker Hub password as an environment variable.

	� CONTAINER_DETAILS is the name of the repository where the image will be
pushed, along with the name and tag of the image. This includes the Docker Hub
username in the your-username/mlflowdemo:latestv format.

https://hub.docker.com
https://hub.docker.com
https://index.docker.io/v1

Automating ML model deployments in Airflow 215

Save the changes by clicking the Save icon from the top toolbar of the pipeline editor:

Figure 7.63 – Example environment variables of the build_push_image.py task

12.	 Configure the deploy_model.py task by setting the runtime image, the file
dependencies, and the environment variables, as shown in Figure 7.64. There are
four environment variables you need to set, as detailed in the following list:

A.	MODEL_NAME is the name of the ML model registered in MLflow. You used the
name mlflowdemo in the previous sections. Set the value of this variable to
mlflowdemo.

B.	 MODEL_VERSION is the version number of the ML model registered in MLflow.
Set the value of this variable to 1.

C.	CONTAINER_DETAILS is the name of the repository to where the image will be
pushed and the image name and tag. This includes the Docker Hub username in
the your-username/mlflowdemo:latest format.

216 Model Deployment and Automation

D.	CLUSTER_DOMAIN_NAME is the DNS name of your Kubernetes cluster, in this case,
the IP address of Minikube, which is <Minikube IP>.nip.io. For example, if
the response of the minikube ip command is 192.168.49.2, then the cluster
domain name is 192.168.49.2.nip.io. This is used to configure the ingress of
the ML model HTTP service so that it is accessible outside the Kubernetes cluster.

Save the changes by clicking the Save icon from the top toolbar of the pipeline editor.

Figure 7.64 – Properties of the deploy_model.py task

Automating ML model deployments in Airflow 217

13.	 You are now ready to run the pipeline. Hit the Play button from the top toolbar
of the pipeline editor. This will bring up the Run pipeline dialog, as shown in
Figure 7.65. Select Apache Airflow runtime under Runtime Platform, and
MyAirflow under Runtime Configuration. Click the OK button. This will generate
the Airflow DAG Python file and push it to the Git repository.

Figure 7.65 – Run pipeline dialog

14.	 Once the DAG is successfully generated and pushed to the git repository, you
should see a dialog as shown in Figure 7.66. Click OK.

Figure 7.66 – DAG submission confirmation dialog

218 Model Deployment and Automation

15.	 Navigate to Airflow's GUI. You should see a new DAG, labeled model_deploy-
some-number, appear in the DAGs table, and it should start running shortly, as
shown in Figure 7.67. The mint green color of the job indicates that it is currently
running. Dark green indicates that it is successful.

Note
If you do not see the new DAG, refresh the page until you see it. It may take a
few seconds for the Airflow to sync with the Git repository.

Figure 7.67 – Airflow GUI showing the model_deploy DAG

16.	 Meanwhile, you can explore the DAG by clicking the DAG name and selecting
the Graph View tab. It should display the topology of tasks as you designed it in
Elyra's pipeline editor, as shown in Figure 7.68. You may explore the DAG further by
selecting the <> Code tab. This will display the generated source code of the DAG.

Figure 7.68 – Graph view of the model_deploy DAG in Airflow

Automating ML model deployments in Airflow 219

17.	 After a few minutes, the job should succeed and you should see the outline of all the
tasks in Graph View turn to dark green. You can also explore the tasks by looking at
the pods in Kubernetes. Run the following command and you should see two pods
with the Completed status, as shown in Figure 7.69. These pods are the two tasks in
the pipeline that have been executed successfully:

kubectl get pods -n ml-workshop\

You should see the following response:

Figure 7.69 – Kubernetes pods with a Completed status

You have just created a complete ML model build and deployment pipeline using Seldon
Core, Elyra's pipeline editor, orchestrated by Airflow, and deployed to Kubernetes.

Seldon Core and Airflow are big tools that have a lot more features that we have not
covered and will not be entirely covered in this book. We have given you the essential
knowledge and skills to start exploring these tools further as part of your ML platform.

220 Model Deployment and Automation

Summary
Congratulations! You made it this far!

As of this point, you have already seen and used JupyterHub, Elyra, Apache Spark,
MLflow, Apache Airflow, Seldon Core, and Kubernetes. You have learned how these tools
can solve the problems that MLOps is trying to solve. And, you have seen all these tools
running well on Kubernetes.

There are a lot more things that we want to show you on the platform. However, we can
only write so much, as the features of each of those tools that you have seen are enough to
fill an entire book.

In the next chapter, we will take a step back to look at the big picture of what has been
built so far. Then, you will start using the platform end-to-end on an example use case.
You will be wearing different hats, such as data scientist, ML engineer, data engineer, and a
DevOps person in the succeeding chapters.

This section will show you how to build a complete ML project using the platform built in
the last section. The chapters in this section will put our platform to the test. This section
will define a complete ML life cycle and then will process the data, and build and deploy
the model using the platform.

This section comprises the following chapters:

•	 Chapter 8, Building a Complete ML Project Using the Platform

•	 Chapter 9, Building Your Data Pipeline

•	 Chapter 10, Building, Deploying, and Monitoring Your Model

•	 Chapter 11, Machine Learning on Kubernetes

Part 3:
How to Use the MLOps

Platform and Build
a Full End-to-End
Project Using the

New Platform

8
Building a Complete

ML Project Using
the Platform

Until now, you have seen a few components of the platform and how it works. You will
start this chapter by understanding the platform at a macro level. The holistic view will
help you see how the components weave a complete solution for your machine learning
(ML) needs.

In the later part of this chapter, you will see how you can start an ML project by using a
simple example and how the teams and platform will help achieve your required goal.

In this chapter, you will learn about the following topics:

•	 Reviewing the complete picture of the ML platform

•	 Understanding the business problem

•	 Data collection, processing, and cleaning

•	 Performing exploratory data analysis

224 Building a Complete ML Project Using the Platform

•	 Understanding feature engineering

•	 Building and evaluating the ML model

•	 Reproducibility

Reviewing the complete picture of the ML
platform
In the preceding chapters, you have built a complete ML platform on top of Kubernetes.
You have installed, configured, and explored the different components of the platform.
Before you start using the platform, let's take a step back and look at the platform you
have built from the tooling perspective. Figure 8.1 shows the complete logical architecture
of the platform:

Figure 8.1 – Logical platform architecture

Reviewing the complete picture of the ML platform 225

The diagram in Figure 8.1 also shows the interaction of each platform component. The
entire platform runs inside Kubernetes and is managed entirely by the Open Data Hub
(ODH) operator. Although MinIO is not officially part of the ODH project, we have
added it as another component operated by the ODH operator on the platform you just
built. In the real world, you will have an S3 storage server already in place, and you will
not need to include MinIO in your Kfdef file. It is also important to note that the ODH
operator allows you to add or remove tools or swap one tool for another. For example,
you could use Argo CD for model deployments instead of Airflow. Keycloak is also not
part of the ODH project. However, the components must be secured by a single sign-on
mechanism, and Keycloak is one of the best open source tools that can be used to add a
single sign-on capability to the platform.

Starting at the top of the diagram, you can see that end users interact with Jupyter
notebooks, and the Spark, Airflow, and MLflow UIs. You have seen and experienced these
interactions in the preceding chapters. The deployed ML model can then be used for
inferencing by applications through REST API calls.

In the middle of the diagram, you can see the interactions between the components
and the kind of interactions they perform with each other. Jupyter servers and Airflow
jobs can submit Spark applications to the managed Spark clusters. Airflow interacts
with the MLflow model registry, while Jupyter notebooks can interact with MLflow to
record experiment runs. Airflow also creates Seldon deployment objects that the Seldon
controller then converts into running Pods with ML models exposed as REST services.
There is no limit to how one component can interact with other platform components.

At the bottom of the diagram, the ODH operator manages and operates the platform
components. The ODH operator handles the installation and updates of these
components. Spark, JupyterHub, and the Seldon controller are also Kubernetes
operators that manage instances of Spark clusters, Jupyter notebook servers, and Seldon
deployments, respectively.

Lastly, the ODH operator also manages the Prometheus and Grafana instances. Prometheus
is used to collect metrics from each of the components, including the statistics of Seldon
deployments. Grafana can then visualize those metrics and can be configured to raise alerts.

The ODH project is still evolving. There may be changes as to what components will
be included or excluded in the project in the future. Some of the officially supported
components may get replaced with another over time. Therefore, it is important to
understand the architecture and how the ODH operator works so that you keep it up to date.

In the next sections, we will take a step back and understand ML projects a bit more,
starting with identifying opportunities where an ML solution fits. You will be taken
through a scenario that will lead to the creation of a complete ML project.

226 Building a Complete ML Project Using the Platform

Understanding the business problem
As with any software project, the first thing is to agree on the business problem you are
trying to solve. We have chosen a fictitious scenario for this book to keep it simple while
focusing on the process. You can apply the same approach to more complex projects.

Let's assume that you work for an airline booking company as a lead data analyst. The
business team of your company has reported that lots of customers complain about flights
being delayed. It is causing the company to have bad customer experiences, and the phone
staff spend lots of time explaining the details to customers. The business is looking at
you to provide a solution to identify which airlines and which flights and times have a
lower probability of delays so that the website can prioritize those airlines and, therefore,
customers end up with fewer delays.

Let's take a breather here and analyze how we can solve this problem. Do we need ML
here? If we take the historical data and place the airlines into two buckets of delayed and
on time, with each bucket placing the airlines into the right category, this attribute can
then be used while the customer searches for airlines with better on-time performance.
A team of data analysts will analyze the data and assign the ratings. Job done!

While exploring this set, the business has mentioned that one bucket per airline may
not provide the granularity that the solution requires. They would like to assess the
performance, not at the airline level, but using other factors such as origin and destination
airport, and time of day. So, airline A, with flights from Sydney to Melbourne, may go
into the on time bucket, while the same airline may go into the delayed bucket when flying
from Tokyo to Osaka. This suddenly expands the scope of the problem. If you need to
analyze data at this granularity, it will take a lot of time to process and assign the correct
category, and you may need to analyze this data very frequently.

Have you started to think about how you can automate this? The business then mentions
that the weather plays a vital role in this problem, and the forecast data from the weather
bureau will need to be fetched and preprocessed to perform the analysis. You realize that
performing this job with human teams will be slow and complicated and does not provide
the solution that the business is looking for. You then mention to the business that you
will need to investigate the existing data, which can be used to predict the correct category
for a particular flight. You and the business agree that the aim is to predict the flight delay
10 days before the scheduled time with at least 75% accuracy, to improve the customer
experience. You will also discuss the response time requirements for the model and
understand how the model will be used in the overall business process.

Data collection, processing, and cleaning 227

You have just defined the success criteria of this project. You have conveyed to the
business that your team will analyze available data to assess its suitability for the project
and then plan for the next steps. You have asked the business to associate a subject matter
expert (SME) who can assist in data exploration at this stage.

To summarize, you have outlined the business objectives and the scope of the project.
You have also defined the evaluation criteria through which the success of the project
would be measured. It is critical that you keep a note of the business value through each
stage of the ML life cycle.

Once you have defined the criteria, the next step is to start looking at the available
data. For this use case, the data is available at https://www.kaggle.com/usdot/
flight-delays?select=flights.csv.

Data collection, processing, and cleaning
In this stage, you will begin with gathering raw data from the identified sources. You will
write data pipelines to prepare and clean the raw data for analysis.

Understanding data sources, location, and the format
You have started working with the SME to access a subset of the flight data. You will
understand the data format and the integration process required to access this data.
The data could be in CSV format, or it may be available in some relational database
management system (RDBMS). It is vital to understand how this data would be available
for your project and how this data is being maintained eventually.

Start this process by identifying what data is easily available. The SME has mentioned
that the flight records data that covered the flight information, the scheduled and actual
departure times, and the scheduled and actual arrival times is readily available. This
information is available in the object store of your organization. This could be a good
starting point.

Understanding data processing and cleaning
The data collected from the raw data sources may have many problems. The collected data
may have duplication, missing values, and/or invalid records. For example, you may find
that a column of the string type may have numerical data in it. You will then work with
the SME to find out ways to handle the anomalies.

https://www.kaggle.com/usdot/flight-delays?select=flights.csv
https://www.kaggle.com/usdot/flight-delays?select=flights.csv

228 Building a Complete ML Project Using the Platform

How would you handle the missing data? Choose an estimated value of the missing data
from the existing set. Or you may decide to drop the column altogether if there are many
missing values and you can not find any way to impute the missing values.

Implement data validation checks to make sure that the cleaned dataset has consistency
and that the data quality problems described here are properly handled. Imagine that the
age column has a value of 250. Although we would all like to live this long or beyond,
clearly this data is not valid. During this stage, you will find the discrepancy in the data
and work out how to handle it.

You may find that the flight arrival and departure times are in the local time zones, and
you may choose to add a new column with the times represented in UTC format for
easier comparisons.

Data cleaning can happen in both the data engineering stage and the model development
stage. Data anomalies that are related to the domain or business logic may be found and
handled in the data engineering stage, while data augmentation and data encoding are
done at the model development stage. This is because it is the data scientist or the ML
engineer who knows best what data formats the model training requires, while the data
engineers work closer to the business domain experts.

One way to implement such data validation in the data engineering phase is through
Apache Spark. Spark has a set of built-in functions that you can use for data cleaning. The
following code shows an example of how to filter out invalid rows or rows that contain
malformed data while reading from a data source:

dataframe = spark.read.option("header", True).option("mode",
'DROPMALFORMED').csv('flights.csv')

Another example is the fillna() function. It is used to replace null values with any
other values. The following example shows how to replace all null values in the data frame
with zeros:

dataframe = dataframe.fillna(value=0)

On the model development side, there are several techniques to perform the same
operations using pandas to manipulate data frames. You will see this in action in the
following chapters.

Once you have executed the data cleaning pipeline and created an intermediary dataset
that can be used for the next stage, the next step is to see whether the available data helps
you in achieving the business goal.

Performing exploratory data analysis 229

Performing exploratory data analysis
At this stage, you analyze the data to assess its suitability for the given problem. Data
analysis is essential for building ML models. Before you create an ML model, you need
to understand the context of the data. Analyzing vast amounts of company data and
converting it into a useful result is extremely difficult, and there is no single answer on
how to do it. Figuring out what data is meaningful and what data is vital for business is the
foundation for your ML model.

This is a preliminary analysis, and it does not guarantee that the model will bring the
expected results. However, it provides an opportunity to understand the data at a higher
level and pivot if required.

Understanding sample data
When you get a set of data, you first try to understand it by merely looking at it. You then
go through the business problem and try to determine what set of patterns would be
helpful for the given situation. A lot of the time, you will need to collaborate with SMEs
who have relevant domain knowledge.

At this stage, you may choose to convert the data into a tabular form to better understand
it. Classify the columns according to the data values. Understand each variable in the
dataset and find out whether the values are continuous, or whether it represents a
category. You will then summarize the columns using descriptive statistics to understand
the values your columns contain. These statistics could be mean or median or anything
that helps you understand the data.

Understand the data variance. For example, your data has only 5% records of delayed
flights and the remaining flights are on time. Would this dataset be good for your desired
outcomes? You need to get a better dataset that represents a more balanced distribution.
You may choose to downsample the dataset, if it is highly imbalanced, by reducing the
examples from the majority class.

Humans are good at visualizing data so, to better understand the data, you will need to
visualize your columns using charts. There is a series of different charts that can help
you visualize your data. The platform we present here will assist you in writing code
to visualize the data using popular libraries such as Matplotlib or Seaborn. Before you
choose to visualize your data using a chart, think about what kind of information you are
expected to get from the chart and how it can assist you in understanding the data.

As an example, we define three basic charts and their characteristics given in the
following subsections.

230 Building a Complete ML Project Using the Platform

Box plots
A box plot (https://www.khanacademy.org/math/statistics-
probability/summarizing-quantitative-data/box-whisker-plots/a/
box-plot-review) is an excellent way to visualize and understand data variance. Box
plots show results in quartiles, each containing 25% of the values in the dataset; the values
are plotted to show how the data is distributed. Figure 8.2 shows a sample box plot. Note
the black dot is an outlier:

Figure 8.2 – Box plot

The first component of the box plot is the minimum value of the dataset. Then there is
the lower quartile, or the minimum 25% values. After that, we have the median value at
50% of the dataset. Then, we have the upper quartile, the maximum 25% value. At the
top, we have the maximum value based on the range of the dataset. Finally, we have the
outliers. Outliers are the extreme data points—on either the high or low side—that could
potentially impact the analysis.

Histograms
A histogram represents the numerical data distribution. To create a histogram, you first
split the range of values into intervals called bins. Once you have defined the number
of bins to hold your data, the data is then put into predefined ranges in the appropriate
bin. The histogram chart shows the distribution of the data as per the predefined bins.
Figure 8.3 shows a sample histogram. Note that the bins are on the x axis of the plot. The
following plot shows the distribution in just two bins. You can see that the distribution is
biased toward the first bin.

https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review

Performing exploratory data analysis 231

Figure 8.3 – Histogram

Density plots
One of the drawbacks of histograms is that they are sensitive to bin margins and the
number of bins. The distribution shape is affected by how the bins are defined. A
histogram may be a better fit if your data contains more discrete values (such as gender or
postcodes). Otherwise, an alternative is to use a density plot, which is a smoother version
of a histogram. Figure 8.4 shows a sample density plot:

Figure 8.4 – Density plot

232 Building a Complete ML Project Using the Platform

Once you have performed the exploratory data analysis, you may choose to go back and
collect more data from existing sources or find new sources of data. If you are confident
during this stage that the data you have captured can help you achieve the business goal,
then you go to the next stage, feature engineering.

Understanding feature engineering
ML is all about data. No matter how advanced our algorithm is, if the data is not correct
or not enough, our model will not be able to perform as desired. Feature engineering
transforms input data into features that are closely aligned with the model's objectives and
converts data into a format that assists in model training.

Sometimes, there is data that may not be useful for a given training problem. How do we
make sure that the algorithm is using only the right set of information? What about fields
that are not individually useful, but when we apply a function to a group of fields, the data
becomes particularly useful?

The act of making your data useful for the algorithm is called feature engineering. Most of
the time, a data scientist's job is to find the right set of data for a given problem. Feature
engineering requires knowledge of domain-specific techniques, and you will collaborate
with business SMEs to better understand the data.

Feature engineering is not only about finding the right features from existing data, but
you may need to create new features from existing data. These features are known as
engineered features.

Imagine that in your flight dataset, there are fields mentioning scheduled_departure_
time and departure_time. Both of these fields will tell you whether the flights are
late. However, your business is looking to classify whether the flights are late. You and the
business agree to classify the delay into three categories, as follows:

•	 On time

•	 Short-delayed

•	 Long-delayed

A short delay captures the flights that departed with a maximum delay of 30 minutes. All
other delayed flights are classified by the long delay value in the delayed column. You will
need to add this column or feature to your dataset.

You may end up dropping a column that may not be useful for the given problem. Do you
think the Cancellation Reason column may be useful for predicting the flight delay?
If not, you may choose to drop this column.

Building and evaluating the ML model 233

You will also represent your data that can be easily digestible by the ML algorithms. A
lot of ML algorithms operate on numerical values; however, not all data will be in the
numerical format. You will apply techniques such as one-hot encoding to convert the
columns into a numerical format.

Often, the ML algorithm works well with the value range between –1 and 1 because it
is faster to converge and results in better training time. Even if you have numerical data,
it could be beneficial to convert it into the range, and the process of doing this is called
scaling. During this stage, you may write code to scale the dataset.

Data augmentation
In some cases, you may want to create additional records in your datasets for a couple of
reasons. One reason is when you do not have enough data to train a meaningful model,
while another is when you deliberately want to influence the behavior of the model to
favor one answer over the other, such as correcting overfitting. This process of creating
synthetic data is called data augmentation.

All activities related to data collection, processing, cleaning, data analysis, feature
engineering, and data augmentation can be done in the platform by using Jupyter
notebooks and, potentially, Apache Spark.

Once you have the datasets cleaned, analyzed, and transformed, the next stage is to build
and train an ML model.

Building and evaluating the ML model
Congratulations! You are now ready to train your model. You will first evaluate what set
of algorithms will be a good fit for the given problem. Is it a regression or classification
problem? How do you evaluate to see whether the model is achieving 75% correct
predictability as described by the business?

Selecting evaluation criteria
Let's start with accuracy as the model evaluation criteria. This records how many times
the predicted values are the same as the labels in the test dataset. However, if the dataset
does not have the right variance, the model may guess the majority class for each example,
which is effectively not learning anything about the minority class.

234 Building a Complete ML Project Using the Platform

You decided to use the confusion matrix to see the accuracy for each class. Let's say you
have 1,000 records in your data, out of which 50 are labeled as delayed. So, there are 950
examples with the on time label. Now, if the model correctly predicts 920 out of 950 for on
time and 12 out of 50 for the delayed label, the matrix will look like the table in Figure 8.5:

Figure 8.5 – Confusion matrix

For the imbalanced dataset, it is recommended to choose the metrics such as recall and
precision or F-score to get a full picture. In this case, the precision is 31% (12/38) and the
recall is 24% (12/50), compared to the accuracy, which is 93.2% (932/1000), and which
could be misleading in your scenario.

Building the model
You will start with splitting your data into training, validation, and test sets. Consider
a scenario where you split your data into these sets and train a model; let's call this
experiment 1. Now, you want to retrain the model using different hyperparameters and
you split the data again for this new iteration and train the model; let's call it experiment 2.
Can you compare the results of the two experiments if the data splits across the two
experiments are not consistent? It is critical that your data splits are repeatable to compare
different runs of your training exercise.

You will try different algorithms or an ensemble of algorithms to assess the performance
of the data validation set and review the quality of the predictions. During this stage, every
time you try a new adjustment to the model (for example, hyperparameter or different
algorithms), you will measure and record the evaluation metrics that were set with the
SME during the Understanding the business problem stage.

Building and evaluating the ML model 235

Most of the steps of the modeling stage are iterative. Depending on the result of your
experiments, you might realize that the model performance is not as expected. In this
case, you may want to go back to the previous steps of the life cycle, such as feature
engineering. Or, you may want to redo your data analysis to make sure you understand
the data correctly. During training, you will revisit the business objectives and data to
find the right balance. You may decide that additional data points from new sources are
needed to enhance the training data. It is highly recommended that you present the results
to the business stakeholders during this stage. This communication will share the value of
the model to the business in the initial stages, collect early feedback, and give the team a
chance to course-correct if required.

The next stage is to deploy your model for inferencing.

Deploying the model
Once you have trained your model, the next stage is to version the model in MLflow and
deploy it into an environment where the model can be used to make predictions for the
incoming requests. The versioning of the models will allow you to keep track of models
and roll back to an older version if the need arises.

In this book, we will use the on-line model inference approach. The model has been
containerized using the platform's Seldon component and exposed as a REST API. Each
call to this REST API will result in one prediction. The stateless container running on
Kubernetes will scale hundreds of thousands of requests because of the inherent ability of
containers to scale.

The other way is to serve the incoming requests in batches. Imagine a scenario where you
have hundreds of thousands of records of labeled data, and you want to test that model
behavior for all these records. Making individual REST API calls may not be the right
approach in this scenario. Instead, batch inferencing provides an asynchronous approach
to making predictions for millions of records. Seldon has the capability to infer batches of
data, but it is out of scope for this book.

The REST API you expose for your flight delay prediction could be utilized by the web
application to further enhance the customer experience.

236 Building a Complete ML Project Using the Platform

Reproducibility
Now, you know what an ML life cycle would look like and how the platform assists you
in every step of your journey. As an individual, you may be able to write every step of the
data pipelines and model training and tuning in a single notebook. However, this may
cause a problem in teams where different people are working on different parts of the life
cycle. Let's say someone wants to run the model training part but the entire process is tied
up with one another. Your team may not be able to scale with this approach.

A better and more scalable approach is to write different notebooks for various stages
(such as data processing and model training) in your project life cycle and use a workflow
engine to tie them up. Using the Kubernetes platform, all the stages will be executed
using containers and provide a consistent environment for your project between different
runs. The platform provides Airflow, an engine that could be used for creating and
executing workflows.

Summary
In this short chapter, we wanted to step back and show you the big picture of the
platform and the model life cycle. We encourage you to refer to Chapter 2, Understanding
MLOps, where we presented a typical ML life cycle, for a more detailed discussion.
Recall the importance of collaborations across multiple teams and how investing more
time in understanding the available data will result in a model that delivers the expected
business value.

Now you know what the various stages of your project will look like. In the next two
chapters, you will implement the flight delay prediction service using the ML platform
that we have presented in this book and you will perform each of the stages we have
described in this chapter. The idea is to show you how the platform caters to every stage
of your project and how you can implement this platform in your organization.

9
Building Your
Data Pipeline

In the previous chapter, you understood the example business goal of improving user
experience by recommending flights that have a higher on-time probability. You have
worked with the business subject matter expert (SME) to understand the available data.
In this chapter, you will see how the platform assists you in harvesting and processing data
from a variety of sources. You will see how on-demand Spark clusters can be created and
how workloads could be isolated in a shared environment using the platform. New flights
data may be available on a frequent basis and you will see how the platform enables you to
automate the execution of your data pipeline.

In this chapter, you will learn about the following topics:

•	 Automated provisioning of a Spark cluster for development

•	 Writing a Spark data pipeline

•	 Using the Spark UI to monitor your jobs

•	 Building and executing a data pipeline using Airflow

238 Building Your Data Pipeline

Technical requirements
This chapter includes some hands-on setup and exercises. You will need a running
Kubernetes cluster configured with Operator Lifecycle Manager (OLM). Building such a
Kubernetes environment is covered in Chapter 3, Exploring Kubernetes. Before attempting
the technical exercises in this chapter, please make sure that you have a working
Kubernetes cluster and Open Data Hub (ODH) is installed on your Kubernetes cluster.
Installing ODH is covered in Chapter 4, The Anatomy of a Machine Learning Platform.

Automated provisioning of a Spark cluster for
development
In this section, you will learn how the platform enables your team to provision an Apache
Spark cluster on-demand. This capability of provisioning new Apache Spark clusters
on-demand enables your organization to run multiple isolated projects used by multiple
teams on a shared Kubernetes cluster without overlapping.

The heart of this component is the Spark operator that is available within the platform.
The Spark Kubernetes Operator allows you to start the Spark cluster declaratively. You
can find the necessary configuration files in the book's Git repository under the
manifests/radanalyticsio folder. The details of this operator are out of scope for
this book, but we will show you how the mechanism works.

The Spark operator defines a Kubernetes custom resource definition (CRD), which
provides the schema of the requests that you can make to the Spark operator. In this
schema, you can define many things, such as the number of worker nodes for your cluster
and resources allocated to the master and worker nodes for the cluster.

Through this file, you define the following options. Note that this is not an exhaustive
list. For a full list, please look into the documentation of this open source project at
https://github.com/radanalyticsio/spark-operator:

•	 The customImage section defines the name of the container that provides the
Spark software.

•	 The master section defines the number of Spark master instances and the
resources allocated to the master Pod.

•	 The worker section defines the number of Spark worker instances and the
resources allocated to the worker Pod.

•	 The sparkConfiguration section enables you to add any specific Spark
configuration, such as the broadcast join threshold.

https://github.com/radanalyticsio/spark-operator

Automated provisioning of a Spark cluster for development 239

•	 The env section enables you to add variables that Spark entertains, such as
SPARK_WORKER_CORES.

•	 The sparkWebUI section enables flags and instructs the operator to create a
Kubernetes Ingress for the Spark UI. In the following section, you will use this UI
to investigate your Spark code.

You can find one such file at manifests/radanalyticsio/spark/
cluster/base/simple-cluster.yaml, and it is shown in the following
screenshot. Figure 9.1 shows a section of the simple-cluster.yaml file:

Figure 9.1 – A simple Spark custom resource used by Spark operator

Now, you know the basic process of provisioning a Spark cluster on the platform.
However, you will see in the next section that when you select the Elyra Notebook Image
with Spark notebook image, the Spark cluster is provisioned for you. This is because, in
the platform, JupyterHub is configured to submit a Spark cluster custom resource (CR)
when you select a specific notebook. This configuration is available through two files.

240 Building Your Data Pipeline

The first one is manifests/jupyterhub/jupyterhub/overlays/spark3/
jupyterhub-singleusers-profiles-configmap.yaml, which defines a profile
as Spark Notebook. In this section, the platform configures the name of the container
images under the images key, so whenever JupyterHub spawns a new instance of this image,
it will apply these settings. The Elyra Notebook Image with Spark notebook points to an
image and it is the same image defined in this part of the configuration. This file contains the
configuration parameters under configuration, and the resources section points to
resources that will be created alongside the instance of this image. Figure 9.2 shows a section
of the jupyterhub-singleusers-profiles-configmap.yaml file:

Figure 9.2 – A section of jupyterhub-singleusers-profiles-configmap.yaml

Note that resources has a property with a value of sparkClusterTemplate, which
brings us to our second file.

Writing a Spark data pipeline 241

The second file, manifests/jupyterhub/jupyterhub/base/jupyterhub-
spark-operator-configmap.yaml, contains sparkClusterTemplate,
which defines the Spark CR. Note that the parameters available in the jupyterhub-
singleusers-profiles-configmap.yaml file will be utilized here. Figure 9.3
shows a section of the jupyterhub-spark-operator-configmap.yaml file:

Figure 9.3 – A section of jupyterhub-spark-operator-configmap.yaml

In this section, you have seen how the platform wires different components to make life
easier for your teams and organization, and you can change and configure each of these
components as per your needs, which brings on the true power of the open source software.

Let's write a data pipeline to process our flights data.

Writing a Spark data pipeline
In this section, you will build a real data pipeline for gathering and processing datasets.
The objective of the processing is to format, clean, and transform data into a state that is
useable for model training. Before writing our data pipeline, let's first understand the data.

242 Building Your Data Pipeline

Preparing the environment
In order to perform the following exercises, we first need to set up a couple of things. You
need to set up a PostgreSQL database to hold the historical flights data. And you need
to upload files to an S3 bucket in MinIO. We used both a relational database and an S3
bucket to better demonstrate how to gather data from disparate data sources.

We have prepared a Postgres database container image that you can run on your
Kubernetes cluster. The container image is available at https://quay.io/
repository/ml-on-k8s/flights-data. It runs a PostgreSQL database with
preloaded flights data in a table called flights.

Go through the following steps to run this container, verify the database table, and upload
CSV files onto MinIO:

1.	 Run the Postgres database container by running the following command on the
same machine where your minikube is running:

kubectl create -f chapter9/deployment-pg-flights-data.
yaml -n ml-workshop

You should see a message telling you the deployment object is created.
2.	 Expose the Pods of this deployment through a service by running the

following command:

kubectl create -f chapter9/service-pg-flights-data.yaml
-n ml-workshop

You should see a message saying that the service object has been created.
3.	 Explore the contents of the database. You can do this by going inside the Pod,

running the Postgres client command-line interface (CLI), psql, and running
SQL scripts. Execute the following command to connect to the Postgres Pod and
run the Postgres client interface:

POD_NAME=$(kubectl get pods -n ml-workshop –l app=pg-
flights-data)

https://quay.io/repository/ml-on-k8s/flights-data
https://quay.io/repository/ml-on-k8s/flights-data

Writing a Spark data pipeline 243

4.	 Connect to the Pod. You can do this by executing the following command:

kubectl exec -it $POD_NAME -n ml-workshop -- bash

5.	 Run the Postgres client CLI, psql, and verify the tables. Run the following
command to log in to the Postgres database from the command line:

psql –U postgres

This will run the client CLI and connect to the default database.
6.	 Verify that the tables exist. There should be a table named flights. Run the

following command from the psql shell to verify the correctness of the table:

select count(1) from flights;

This should give you the number of records in the flights table, which is more
than 5.8 million, as shown in Figure 9.4:

Figure 9.4 – Record count from the flights table

7.	 Upload the rest of the data to an S3 bucket in MinIO. Open a browser window
on the same machine where minikube is running, and navigate to https://
minio.<minikube_ip>.nip.io. Use the username minio and password
minio123. Remember to replace <minikube_ip> with the IP address of your
minikube instance.

https://minio.<minikube_ip>.nip.io
https://minio.<minikube_ip>.nip.io

244 Building Your Data Pipeline

8.	 Navigate to Buckets and then hit the Create Bucket + button. Name the bucket
airport-data and hit the Create Bucket button, as shown in Figure 9.5:

Figure 9.5 – MinIO Create a Bucket dialog

9.	 While inside the bucket, upload two CSV files from the chapter9/data/ folder
onto the airport-data bucket, as shown in Figure 9.6:

Writing a Spark data pipeline 245

Figure 9.6 – Airport and airline data files

In the real world, you do not need to take the preceding steps. The data sources should
already exist and you need to know where to get them. However, for the purpose of the
following exercises, we had to load this data into our environment to make it available for
the next steps.

You now have the data loaded to the platform. Let's explore and understand the data a
little bit more.

Understanding data
Understanding the data includes the following activities. It is important to understand the
characteristics of all the datasets involved in order to come up with a strategy and design
for the pipeline:

•	 Know where the data will be collected from. Data may come from a variety of sources.
It may come from a relational database, object store, NoSQL database, graph
database, data stream, S3 bucket, HDFS, filesystem, or FTP. With this information in
hand, you will be able to prepare the connectivity you need for your data pipeline. In
your case, you need to collect it from a PostgreSQL database and S3 buckets.

•	 Understand the format of the data. Data can come in many shapes and forms.
Whether it's a CSV file, a SQL table, a Kafka stream, an MQ stream, a Parquet file,
an Avro file, or even an Excel file, you need to have the right tools that can read such
a format. Understanding the format helps you prepare the tools or libraries you will
need to use to read these datasets.

246 Building Your Data Pipeline

•	 Clean unimportant or irrelevant data. Understanding what data is important and
what is irrelevant helps you design your pipeline in a more efficient way. For
example, if you have a dataset with fields for airline_name and airline_id,
you may want to drop airline_name in the final output and just use airline_
id alone. This means one field less to be encoded into numbers, which will improve
the performance of model training.

•	 Understand the relationships between different datasets. Identify the identifier fields
or primary keys, and understand the join keys and aggregation levels. You need to
know this so that you can flatten the data structure and make it easier for the data
scientist to consume your datasets.

•	 Know where to store the processed data. You need to know where you will write the
processed data so you can prepare the connectivity requirements and understand
the interface.

Given the preceding activities, you need a way to access and explore the data sources. The
next section will show you how to read a database table from within a Jupyter notebook.

Reading data from a database
Using a Jupyter notebook, let's look at the data. Use the following steps to get started with
data exploration, starting with reading data from a PostgreSQL database.

The entire data exploration notebook can be found in this book's Git repository at
chapter9/explore_data.ipynb. We recommend that you use this notebook to do
additional data exploration. It can be by simply displaying the fields, counting the number
of occurrences of the same values in a column, and finding the relationships between the
data sources:

1.	 Launch a Jupyter notebook by navigating to https://
jupyterhub.<minikube_ip>.nip.io. If you are prompted for login
credentials, you need to log in with the Keycloak user you've created. The username
is mluser and the password is mluser. Launch the Elyra Notebook Image with
Spark notebook, as shown in Figure 9.7. Because we will be reading a big dataset
with 5.8 million records, let's use the Large container size. Make sure that, in your
environment, you have enough capacity for running a large container. If you do not
have enough capacity, try running on a medium container.

Writing a Spark data pipeline 247

Figure 9.7 – JupyterHub launch page

248 Building Your Data Pipeline

2.	 Create a Python 3 notebook. You will use this notebook to explore the data. You can
do this by selecting the File | New | Notebook menu option. Then, select Python 3
as the kernel, as shown in Figure 9.8:

Figure 9.8 – Elyra notebook's kernel selection dialog

Writing a Spark data pipeline 249

3.	 You can start by looking at the flights table in the database. The most basic way of
accessing the database is through a PostgreSQL Python client library. Use psycopg2
for the exercises. You may also choose a different client library to connect to the
PostgreSQL database. The code snippet in Figure 9.9 is the most basic example:

Figure 9.9 – Basic connection to PostgreSQL using psycopg2

250 Building Your Data Pipeline

4.	 Another, more elegant, way of accessing the data is through pandas or PySpark.
Both pandas and PySpark allow you to access data, leveraging the functional
programming approach through data frames rather than the procedural approach
in Step 3. The difference between pandas and Spark is that Spark queries can be
executed in a distributed manner, using multiple machines or Pods executing your
query. This is ideal for huge datasets. However, pandas provides more aesthetically
appealing visualizations than Spark, which makes pandas good for exploring smaller
datasets. Figure 9.10 shows a snippet of how to access the database through pandas:

Figure 9.10 – Basic connection to PostgreSQL using pandas

Writing a Spark data pipeline 251

5.	 If you need to transform a huge dataset, PySpark would be the ideal option for this.
For example, let's say you need to transform and aggregate a table with 100 million
records. You will need to distribute this work to multiple machines to get faster
results. This is where Spark plays an important role. The code snippet in Figure 9.11
shows how to read the PostgreSQL table through PySpark:

Figure 9.11 – Reading a PostgreSQL table through PySpark
Because of the distributed architecture of Spark, you need to provide the partitioning
information, particularly the number of partitions and the partition column(s), when
reading a table from any relational database. Each partition will become a task in
Spark's vernacular, and each task can be executed independently by a single CPU
core. If the partition information is not provided, Spark will try to treat the entire
table as a single partition. You do not want to do this, as this table has 5.8 million
records and it may not fit in the memory of a single Spark worker node.

252 Building Your Data Pipeline

You also need to provide some information about the Spark cluster, such as the master
URL and the packages required to run your Spark application. In the example in
Figure 9.12, we included the org.postgresql:postgresql:42.3.3 package. This
is the PostgreSQL JDBC driver that Spark needs to connect to the database. Spark will
automatically download this package from Maven at the application startup.

Reading data from an S3 bucket
Now that you have learned different ways of accessing a PostgreSQL database from a
Jupyter notebook, let's explore the rest of the data. While the flights table in the
database contains the flight information, we also have the airport and airline information
provided as CSV files and hosted in an S3 bucket in MinIO.

Spark can communicate with any S3 server through the hadoop-aws library. Figure 9.12
shows how to access a CSV file in an S3 bucket from a notebook using Spark:

Figure 9.12 – Spark code to read an S3 bucket from a notebook

Writing a Spark data pipeline 253

Take note that we added a few more Spark submit arguments. This is to tell the Spark
engine where the S3 server is and what driver library to use.

After you have explored the datasets, you should have learned the following facts about
the data:

•	 The flights table contains 5,819,079 records.

•	 There are 322 airports in the airports.csv file.

•	 There are 22 airlines in the airlines.csv file.

•	 There is no direct relationship between airports and airlines.

•	 The flights table uses the IATA_CODE airport from the airport CSV file as
the origin and destination airport of a particular flight.

•	 The flights table is using the IATA_CODE airline from the airlines CSV file
to tell which airline is serving a particular flight.

•	 All the airports are in the United States. This means that the country columns are
useless for machine learning (ML) training.

•	 The flights table has the SCHEDULED_DEPARTURE, DEPARTURE_TIME, and
DEPARTURE_DELAY fields, which tell if a flight has been delayed and we can use to
produce a label column for our ML training.

Given these facts, we can say that we can use both the airports and airline data to add
additional airport and airline information to the original flights data. This process is
usually called enrichment and can be done through data frame joins. We can also use the
row count information to optimize our Spark code.

Now that you understand the data, you can start designing and building your pipeline.

254 Building Your Data Pipeline

Designing and building the pipeline
Understanding the data is one thing, designing a pipeline is another. From the data you
have explored in the previous section, you learned a few facts. We will use these facts to
decide how to build our data pipeline.

The objective is to produce a single, flat dataset containing all the vital information that
may be useful for ML training. We said all vital information because we do not know for
sure which fields or features are important until we do the actual ML training. As a data
engineer, you can take an educated guess, based on your understanding of the data and
with the help of an SME, on which fields are important and which ones are not. Along
the ML life cycle, the data scientist may get back to you to ask for more fields, drop some
fields, or perform some transformation on the data.

With the objective of producing a single dataset in mind, we need to enrich the flight
data with the airport and airline data. To enrich the original flight data with airports and
airlines data, we need to do a data frame join operation. We also need to take note that
the flight data has millions of records, while the airport and airline data has less than 50.
We can use this information to influence Spark's join algorithm for optimization.

Preparing a notebook for Data frame joins
To start, create a new notebook that performs the join, and then adds this notebook as a
stage to the pipeline. The following steps will show you how to do this:

1.	 Create a new notebook. Call it merge_data.ipynb.
2.	 Use Spark to gather the data from the Postgres and S3 buckets. Use the knowledge

you learned in the preceding section. Figure 9.13 shows the data reading part of the
notebook. We have also provided a utility Python file, chapter9/spark_util.
py. This wraps the creation of Spark context to make your notebook more readable.
The code snippet in Figure 9.13 shows you how to use this utility:

Writing a Spark data pipeline 255

Figure 9.13 – Spark code for preparing the data frames
Notice the new import statement here for broadcast(). You will use this
function for optimization in the next step.

256 Building Your Data Pipeline

3.	 Perform a data frame join in Spark, as shown in Figure 9.14. You need to join all three
data frames that you prepared in Step 2. From our understanding in the previous
section, both the airport and airline data should be merged by IATA_CODE as the
primary key. But first, let's do the join to the airline data. Notice the resulting schema
after the join; there are two additional columns at the bottom when compared to the
original schema. These new columns came from the airlines.csv file:

Figure 9.14 – Spark code for basic data frame join

Writing a Spark data pipeline 257

4.	 Joining the airport data is a little tricky because you must join it twice: once to
origin_airport and another to destination_airport. If we just follow the
same approach as Step 3, the join will work, and the columns will be added to the
schema. The problem is that it will be difficult to tell which airport fields represent
the destination airport and which ones are for the airport of origin. Figure 9.15
shows how the field names are duplicated:

Figure 9.15 – Duplicated columns after the join

258 Building Your Data Pipeline

5.	 The simplest way to solve this is to create new data frames with prefixed field names
(ORIG_ for origin airports and DEST_ for destination airports). You can also do the
same for the airline fields. Figure 9.16 shows how to do this:

Figure 9.16 – Adding prefixes to the field names

6.	 Replace the df_airports data frame with df_o_airports and df_d_
airports in your join statements, as shown in Figure 9.17. Now, you have a
more readable data frame:

Writing a Spark data pipeline 259

Figure 9.17 – Updated join statements with prefixed data frames

260 Building Your Data Pipeline

One thing to note in the join statements is the broadcast() function. In the
previous section, we talked about the importance of knowing the sizes of your
datasets so that you can optimize your code. The broadcast() function gives a
hint to the Spark engine that the given data frame should be broadcasted and that
the join operation must use the broadcast join algorithm. This means that before
execution, Spark will distribute a copy of the df_airlines, df_o_airports,
and df_d_airports data frames to each of the Spark executors so that they
can be joined to the records of each partition. In order to make the broadcast
join effective, you need to pick the smaller data frames to be broadcasted. If you
want to know more about this, refer to the performance tuning documentation of
Spark in the following URL: https://spark.apache.org/docs/latest/
sql-performance-tuning.html.

You have just learned how to join data frames using PySpark. Because PySpark statements
are lazily evaluated, the actual execution of the join operations hasn't taken place yet. That
is why the printSchema() execution is fast. Spark only performs the processing when the
actual data is required. One such scenario is when you persist the actual data to storage.

Persisting the data frames
To get the result of the joins, you need to turn the data frame into physical data. You will
write the data frame to S3 storage so that the next stage of your data pipeline can read it.
Figure 9.18 shows a code snippet that writes the joined flights data frame onto a CSV file
in MinIO:

Figure 9.18 – Writing a data frame to an S3 bucket

https://spark.apache.org/docs/latest/sql-performance-tuning.html
https://spark.apache.org/docs/latest/sql-performance-tuning.html

Writing a Spark data pipeline 261

Executing this will take some time because this is where the actual processing of 5.8
million records takes place. While this is running, you can take a look at what is going
on in the Spark cluster. When you started the notebook, it created a Spark cluster
in Kubernetes that dedicated the user mluser to you. The Spark GUI is exposed at
https://spark-cluster-mluser.<minikube_ip>.nip.io. Navigate to this
URL to monitor the Spark application and to check the status of the application's jobs.
You should see one running application named Enrich flights data. Clicking on this
application name will take you to a more detailed view of the jobs being processed, as
shown in Figure 9.19:

Figure 9.19 – Spark application UI

https://spark-cluster-mluser.<minikube_ip>.nip.io

262 Building Your Data Pipeline

Figure 9.19 shows the details of the Enrich flights data application. Each application
is made up of jobs, which are operations. At the bottom of the screen, you can see the
Completed Jobs section, which includes the broadcast operations. You can also tell that
the broadcast operations took around 1 second. Under the Active Jobs section, you see
the currently running operations, which, in our case, is the actual processing including the
reading of the flights data from the database, renaming of columns, joining of the data
frames, and writing the output to an S3 bucket. This is performed for each partition of the
data frame, which translates to tasks in Spark. On the right-most column of the Active Jobs
section, you see the tasks and their progress. Because we partitioned our flights data
frame by day of month, there are 31 partitions. Spark also created 31 parallel processing
tasks. Each of these tasks is scheduled to run on Spark executors. In Figure 9.19, the details
say that for the last 1.2 minutes of processing, there are 13 successfully completed tasks out
of 31, and there are four currently running.

You may also find tasks that failed in some cases. Failed tasks are automatically rescheduled
by Spark to another executor. By default, if the same task fails four times in a row, the
whole application will be terminated and marked as failed. There are several reasons task
failure happens. Some of them include network interruption or resource congestion, such
as out-of-memory exceptions or timeouts. This is why it is important to understand the
data so that you can fine-tune the partitioning logic. Here is a basic rule to take note of: the
bigger the number of partitions, the smaller the partition size. A smaller partition size will
have fewer chances of out-of-memory exceptions, but it also adds more CPU overhead to
scheduling. The Spark mechanism is a lot more complex than this, but it is a good start to
understanding the relationship between partitions, tasks, jobs, and executors.

Almost half of the data engineering work is actually spent on optimizing data pipelines.
There are quite a few techniques to optimize Spark applications, including code
optimization, partitioning, and executor sizing. We will not discuss this topic in detail in
this book. However, if you want to know more about this topic, you can always refer to the
performance tuning documentation of Spark.

Writing a Spark data pipeline 263

Figure 9.20 – S3 bucket with Parquet files

After the Spark application is completed, the data should be written in S3 in multiple files,
with one file representing one partition in Parquet format, as shown in Figure 9.20. The
Parquet file format is a columnar data format, meaning the data is organized by columns
rather than by rows as in a typical CSV file. The main advantage of Parquet is that you can
cherry-pick columns that you want to read without having to scan the entire dataset. This
makes Parquet ideal for analytics, reporting, and also data cleaning, which is what you
need to do next.

You can find the full merge_data.ipynb notebook in this book's Git repository
under the chapter9 folder. However, we strongly recommend that you create your own
notebook from scratch to maximize the learning experience.

264 Building Your Data Pipeline

Cleaning the datasets
You now have a flat and enriched version of the flights dataset. The next step is to
clean the data, remove unwanted fields, drop unwanted rows, homogenize the field values,
derive new fields, and, perhaps, transform some of the fields.

To start with, create a new notebook and use this notebook to read the Parquet file we
generated, and write it as a cleaned version of the dataset. The following steps will walk
you through the process:

1.	 Create a new notebook named clean_data.ipynb.
2.	 Load the flights data Parquet files from the flights-data/flights S3

bucket, as shown in Figure 9.21. Verify the schema and the row count. The row
count should be slightly less than the original dataset. This is because the join
operations performed in the previous steps are inner joins, and there are records in
the original flights data that do not have airport or airline references.

Figure 9.21 – Reading Parquet data from S3

Writing a Spark data pipeline 265

3.	 Remove the unwanted or duplicated fields, drop fields that have the same value
throughout the entire dataset, and create a derived Boolean field called DELAYED,
with the value 1 for delayed flights and 0 for non-delayed flights. Let's assume that
we only consider a flight as delayed if it is delayed for 15 minutes or more. You can
always change this depending on the requirement. Let's do this slowly. Drop the
unwanted columns first, as shown in Figure 9.22:

Figure 9.22 – Dropping unwanted columns

266 Building Your Data Pipeline

We do not need AI_IATA_CODE, ORIG_IATA_CODE, and DEST_IATA_
CODE because they are the same as the airline, origin_airport, and
destination_airport columns, respectively.

4.	 Finding the columns with the same values throughout the dataset is an expensive
operation. This means you need to count the distinct values of each column for
5 million records. Luckily, Spark provides the approx_count_distinct()
function, which is pretty fast. The code snippet in Figure 9.23 shows how to find the
columns with uniform values:

Figure 9.23 – Dropping columns that have uniform values in all rows

Writing a Spark data pipeline 267

5.	 Finally, create the label field that determines whether the flight is delayed or not.
The data scientist may use this field as the label for training. However, the data
scientist may also use an analog range, such as departure_delay, depending on
the algorithm chosen. So, let's keep the departure_delay field together with the
new Boolean field based on the 15-minute threshold on departure_delay. Let's
call this new field DELAYED:

Figure 9.24 – Creating the DELAYED column
Figure 9.24 shows the code snippet for creating a derived column. Test the column
creation logic by running a simple query using the show() function.

268 Building Your Data Pipeline

6.	 Now, write the physical data to the same S3 bucket under the flights-clean
path. We also want to write the output in Parquet (see Figure 9.25):

Figure 9.25 – Writing the final data frame to S3
As a data engineer, you need to agree with the data scientist on the output format.
Some data scientists may want to get a single huge CSV file dataset instead of
multiple Parquet files. In our case, let's assume that the data scientist prefers to read
multiple Parquet files.

7.	 Step 6 may take quite some time. You can visit the Spark UI to monitor the
application execution.

You can find the full clean_data.ipynb notebook in this book's Git repository
under the chapter9 folder. However, we strongly recommend that you create your own
notebook from scratch to maximize the learning experience.

Using the Spark UI to monitor your data pipeline
While running Spark applications, you may want to look deeper into what Spark is
actually doing in order to optimize your pipeline. The Spark UI provides very useful
information. The landing page from the master displays the list of worker nodes and
applications, as shown in Figure 9.26:

Writing a Spark data pipeline 269

Figure 9.26 – Spark cluster landing page

The landing page also displays the historical application runs. You can see some of the
details of the completed application by clicking on one of the completed application
IDs. However, we are more interested in the running application when monitoring
applications. Let's understand the information in the UI a little bit more.

270 Building Your Data Pipeline

Exploring the workers page
Workers are machines that are part of the Spark cluster. Their main responsibility is to run
executors. In our case, the worker nodes are Kubernetes Pods with a worker Java virtual
machine (JVM) running in them. Each Worker can host one or more executors. However,
this is not a good idea when running Spark workers on Kubernetes, so you should
configure your executors in a way that only one executor can run in a worker:

Figure 9.27 – Spark Worker view

Clicking on one of the workers in the UI will take you to the worker UI where you can see
all the executors that this worker has run or is currently running. You can also see which
application owns the executor. You can see how much CPU or memory is allocated to it,
and you can even see the logs of each executor.

Writing a Spark data pipeline 271

Exploring the Executors page
Executors are processes that run inside the worker nodes. Their main responsibility
is to execute tasks. An executor is nothing but a Java or JVM process running on the
worker node. The worker JVM process manages instances of executors within the same
host. Going to http://spark-cluster-mluser.<minikube_ip>.nip.io/
proxy/<application_id>/executors/ will take you to the Executors page, which
will list all the executors belonging to the current application, as shown in Figure 9.28:

Figure 9.28 – Spark Executors page

On this page, you will find useful metrics that are important in fine-tuning and optimizing
your application. For example, you can see the resource usage, garbage collection time, and
shuffles. Shuffles are exchanges of data across multiple executors, which will happen when
you perform an aggregate function, for example. You want to keep this as small as possible.

Exploring the application page
Applications in Spark are any processes that own a Spark context. It could be a running
Java, Scala, or Python application that created a Spark session or Spark context and
submitted it to the Spark master URL. The applications may not necessarily run in
the Spark cluster. It could be anywhere in the network as long as it can connect to the
Spark master. However, there is also a mode whereby the application, also called the
driver application, is executed inside one of the Spark executors. In our case, the driver
application is the Jupyter notebook that is running outside of the Spark cluster. This is
why, in Figure 9.28, you can see one executor, called driver, and not an actual executor ID.

http://spark-cluster-mluser.<minikube_ip>.nip.io/proxy/<application_id>/executors/
http://spark-cluster-mluser.<minikube_ip>.nip.io/proxy/<application_id>/executors/

272 Building Your Data Pipeline

Clicking the application name of a running application from the landing page will bring
you to the application UI page. This page displays all the jobs that belong to the current
application. A job is an operation that alters the data frame. Each job is composed of one
or more tasks. Tasks are a pair of an operation and a partition of a data frame. This is the
unit of work that is distributed to the executors. In computer science, this is equivalent
to a closure. These are shipped over the network as binaries to the worker nodes for the
executors to execute. Figure 9.29 shows the application UI page:

Figure 9.29 – Spark application UI

Writing a Spark data pipeline 273

In the example in Figure 9.29, you can see that active job 5 has five tasks, where four tasks are
running. The Tasks level of parallelism is dependent on the number of CPU cores allocated
to the application. You can also get even deeper into a particular job. If you go to http://
spark-cluster-mluser.<minikube_ip>.nip.io/proxy/<application_
id>/jobs/job/?id=<job_id>, you should see the stages of the job and the DAG of
each stage.

Figure 9.30 – Spark job detail page

http://spark-cluster-mluser.<minikube_ip>.nip.io/proxy/<application_id>/jobs/job/?id=<job_id>
http://spark-cluster-mluser.<minikube_ip>.nip.io/proxy/<application_id>/jobs/job/?id=<job_id>
http://spark-cluster-mluser.<minikube_ip>.nip.io/proxy/<application_id>/jobs/job/?id=<job_id>

274 Building Your Data Pipeline

The Spark GUI is extremely useful when performing diagnostics and fine-tuning complex
data processing applications. Spark is also well documented, and we recommend that you
visit Spark's documentation at the following link: https://spark.apache.org/
docs/3.0.0.

Now that you have created a notebook for enriching the flights data and another
notebook for cleaning up the dataset to prepare the dataset for the next stage of the ML
project life cycle, let's look at how you can automate the execution of these notebooks.

Building and executing a data pipeline
using Airflow
In the preceding section, you have built your data pipeline to ingest and process data.
Imagine that new flights data is available once a week and you need to process the new
data repeatedly. One way is to run the data pipeline manually; however, this approach may
not scale as the number of data pipelines grows. Data engineers' time would be used more
efficiently in writing new pipelines instead of repeatedly running the old ones. The second
concern is security. You may have written the data pipeline on sample data and your team
may not have access to production data to execute the data pipeline.

Automation provides the solution to both problems. You can schedule your data pipelines
to run as required while the data engineer works on more interesting work. Your
automated pipeline can connect to production data without any involvement from the
development team, which will result in better security.

The ML platform contains Airflow, which can automate the execution and scheduling
of your data pipelines. Refer to Chapter 7, Model Deployment and Automation, for an
introduction to Airflow and how the visual editor allows the data engineers to build
the data pipelines from the same IDE they have used for writing data pipelines. The
integration provides the capabilities for data engineering teams to work in a self-serving
and independent manner, which further improves the efficiency of your teams.

In the next section, you will automate the data pipeline for the project that you have built
in the preceding section.

https://spark.apache.org/docs/3.0.0
https://spark.apache.org/docs/3.0.0

Building and executing a data pipeline using Airflow 275

Understanding the data pipeline DAG
Let's first understand what is involved in running the data pipeline that you have built.
Once you have the right information, it would be easy to automate the process.

When you start writing your data pipeline in JupyterHub, you start with the Elyra Notebook
Image with Spark notebook from the JupyterHub landing page. In the notebook, you
connect to the Apache Spark cluster and start writing the data pipelines. The ML platform
knows that for the Elyra Notebook Image with Spark image, it needs to start a new Spark
cluster so that it can be used in the notebook. Once you have finished your work, you shut
down your Jupyter environment, which results in shutting down the Apache Spark cluster by
the ML platform.

The following are three major stages involved in the execution of your data pipeline for the
flights data:

1.	 Start the Spark cluster.
2.	 Run the data pipeline notebook.
3.	 Stop the Spark cluster.

Figure 9.31 shows the stages of your DAG:

Figure 9.31 – Airflow DAG for the flights project

Each of these stages will be executed by Airflow as a discrete step. Airflow spins a
Kubernetes Pod to run each of these stages while you provide the Pod image required to
run each stage. The Pod runs the code defined in the Airflow pipeline for that stage.

Let's see what each stage in our DAG is responsible for.

276 Building Your Data Pipeline

Starting the Spark cluster
In this stage, a new Spark cluster would be provisioned. This cluster will be dedicated
to running one Airflow DAG. The role of automation is to submit the request for a new
Spark cluster to Kubernetes as a CR. The Spark operator will then provide the cluster,
which can be used for the next step in your DAG.

Once the Airflow engine submits the request to create a Spark cluster, it will move to run
the second stage.

Running the data pipeline
In this stage, the set of notebooks (merge_data and clean_data) that you have written
earlier in this chapter will be executed by the Airflow DAG. Recall from Chapter 7, Model
Deployment and Automation, that Airflow uses different operators to run various stages
of your automation pipeline (note that Airflow operators are different from Kubernetes
Operators). Airflow provides a notebook operator to run the Jupyter notebooks.

The role of automation is to run your data pipeline notebook using the notebook operator.
After the data pipeline has finished executing your code, the Airflow engine will move to
the next stage.

Stopping the Spark cluster
At this stage, a Spark cluster would be destroyed. The role of automation is to delete the
Spark cluster CR created in the first stage of this DAG. The Spark operator will then
terminate the cluster that was used to execute the data pipeline in the previous stage.

Next is to define the container images that will be used by Airflow to execute each of
these stages.

Registering container images to execute your DAG
You have just built your automation DAG to run your data pipeline, and each stage of this
DAG will be executed by running a separate Pod for each stage:

1.	 To register the container images, first, open the JupyterHub IDE and click on the
Runtime Images option on the left menu bar. You will see the following screen:

Building and executing a data pipeline using Airflow 277

Figure 9.32 – Container Runtime Images registration in your JupyterHub IDE

2.	 Click on the + icon on the top right to register a new container. You will see the
following screen:

Figure 9.33 – Container Runtime Images registration details in your JupyterHub IDE

278 Building Your Data Pipeline

For the flights data pipeline DAG, you will need the following two containers:
I.	 The first container image will enable Airflow to run Python code. Fill the

screen (shown in Figure 9.33) with the following details and click on the
button titled SAVE & CLOSE:

	� Name: AirFlow Python Runner

	� Description: A container with Python runtime

	� Source: quay.io/ml-on-k8s/airflow-python-runner:0.0.11

	� Image Pull Policy: IfNotPresent

II.	 The second container image will enable Airflow to run the data pipeline
notebook. Fill the screen shown in Figure 9.33 with the following details and
click on the button titled SAVE & CLOSE:

	� Name: AirFlow PySpark Runner

	� Description: A container with notebook and pyspark to
enable execution of PySpark code

	� Source: quay.io/ml-on-k8s/elyra-spark:0.0.4

	� Image Pull Policy: IfNotPresent

In the next section, you will build and execute the three stages using Airflow.

Building and running the DAG
In this section, you will build and deploy the DAG using the ML platform. You will first
build the DAG using the drag-and-drop editor, and then modify the generated code to
further customize the DAG.

Building an Airflow DAG using the visual editor
In this section, you build the DAG for your data processing flow. You will see how
JupyterHub assists you in building your DAG using drag-and-drop capabilities:

1.	 Start with logging on to JupyterHub on the platform.
2.	 Create a new pipeline by selecting the File | New | PipelineEditor menu option.

You will get a new empty pipeline:

Building and executing a data pipeline using Airflow 279

Figure 9.34 – An empty Airflow DAG

3.	 As shown in the preceding screenshot, you can start by dragging the files required
for your pipeline from the file browser on the left-hand side of the editor. For our
flights DAG, the first step is to start a new Spark cluster. You will see a file
named pipeline-helpers/start-spark-cluster on the browser. Drag it
from the browser and drop it on your pipeline:

Figure 9.35 – Building DAG stages using drag and drop

4.	 Complete your pipeline by adding the files that are required for you. The full DAG
for the flights data is available in the next step.

280 Building Your Data Pipeline

5.	 We have added a pre-built one for you to use as a reference. Go to the folder named
Chapter 9/, and open the flights.pipeline file. You can see that there are
three stages required for processing the flights data:

Figure 9.36 – DAG view in the JupyterHub IDE

6.	 Click on the first element of the DAG named start-spark-cluster. Right-click on
this element and select Properties:

Figure 9.37 – Select the properties of the first stage in your DAG

Building and executing a data pipeline using Airflow 281

7.	 In the right-hand side window, you can see the properties of this stage:

Figure 9.38 – Properties of the start-spark.py stage

282 Building Your Data Pipeline

The following list describes each of the properties:

	� The Filename section defines the file (start-spark-cluster.py) that will be
executed by Airflow in this stage.

	� The Runtime Image section defines the image that will be used to execute the
file mentioned in the previous step. This is the container image that you have
registered in the earlier section. For the Python stages, you will use the AirFlow
Python Runner container image.

	� The File Dependencies section defines files required at this stage. The
spark-cluster.yaml defines the configuration of the Spark cluster. The
spark_util.py file is the file we have created as a helper utility to talk to the
Spark cluster. Note that the files associated with this stage in the DAG will be
packaged in the DAG and are available for your stage when it is being executed by
Airflow. All of these files are available in the repository.

	� The Environment Variables section defines environment variables. The file,
start-spark-cluster.py in this case, will have access to these environment
variables. Think of these variables as configurations that can be used to manage
the behavior of your file. For example, the SPARK_CLUSTER variable is used to
name the Spark cluster created. WORKER_NODES defines how many worker Pods
will be created as Spark workers. So, for bigger jobs, you may choose to change this
parameter to have more nodes. Open the start-spark-cluster.py file, and
you will see that the two environment variables are being read by it. Figure 9.39
shows the file:

Figure 9.39 – The start-spark.py file reading the environment variables

Building and executing a data pipeline using Airflow 283

The Output Files section defines any files created by this stage of the DAG. Airflow
will copy this file for all other stages of your DAG. This way you can share the
information across multiple stages of your DAG. In this example, the spark_util.
py file prints the location of the Spark cluster; think of it as the network name at
which the cluster is listening. This name can be used by other stages, such as the data
pipeline notebook, to connect to the Spark cluster. There are other options available
in Airflow to share data between stages that you can explore and decide the best one
for your use case.

8.	 Click on the second element of the DAG named merge_data.ipynb. Right-click
on this element and select Properties. You will see that for this stage, Runtime
Image has been changed to AirFlow PySpark Runner. You will notice that the file
associated with this stage is the Jupyter notebook file. This is the same file you have
used to develop the data pipeline. This is the true flexibility of this integration that
will take your code as it is to run in any environment.

Figure 9.40 – Spark notebook stage in the DAG

284 Building Your Data Pipeline

Add the second notebook, clean_data.ipynb, as the next stage of the DAG
with a similar setup as merge_data.ipynb. We have broken the data pipeline
into multiple notebooks for easier maintenance and code management.

9.	 The last stage of this DAG is stopping the Spark cluster. Notice that Runtime Image
for this stage is again AirFlow Python Runner, as the code is Python-based.

Figure 9.41 – Properties of the stop-spark-cluster.py stage

10.	 Make sure to save the flights.pipeline file if you make any changes to it.

You have now finished the first DAG. The important thing is that, as a data engineer, you
have built the DAG yourself and the data pipeline code you have built is used as it is in the
pipeline. This capability will increase the velocity and make your data engineering team
autonomous and self-sufficient.

In the next stage, you will run this DAG on the platform.

Building and executing a data pipeline using Airflow 285

Running and validating the DAG
In this section, you will run the DAG you have built in the preceding section. We have
assumed that you have completed the steps mentioned in Chapter 7, Model Deployment
and Automation, in the Introducing Airflow section:

1.	 Load the flights.pipeline file in the JupyterHub IDE and hit the Run
pipeline icon. The icon is a little play button on the icon bar. You will get the
following Run pipeline screen:

Figure 9.42 – Airflow DAG submission dialog
Give the pipeline a name, select Apache Airflow runtime as the Runtime Platform
option, and select the Runtime Configuration option as per your settings. If you
have followed the instructions in Chapter 7, Model Deployment and Automation,
then the value would be MyAirflow.

2.	 Click OK after you have provided the information.

286 Building Your Data Pipeline

3.	 You will see the following screen, validating that the pipeline has been submitted to
the Airflow engine in the platform:

Figure 9.43 – Airflow DAG submission confirmation

4.	 Open the Airflow UI. You can access the UI at https://airflow.<IP
Address>.nip.io. The IP address is the address of your minikube environment.
You will find that the pipeline is displayed in the Airflow GUI:

Figure 9.44 – DAG list in the Airflow GUI

5.	 Click on the DAG, and then click on the Graph View link. You will get the details
of the executed DAG. This is the same graph that you have built in the preceding
section and has the three stages in it.

Building and executing a data pipeline using Airflow 287

Note that your screen may look different depending on your DAG execution stage:

Figure 9.45 – DAG execution status

In this section, you have seen how a data engineer can build the data pipeline (the
merge_data notebook) and then is able to package and deploy it using Airflow
(flights.pipeline) from the JupyterHub IDE. The platform provides an integrated
solution to build, test, and run your data pipelines at scale.

The IDE provides the basics to build the Airflow DAG. What if you want to change the
DAG to use the advanced capabilities of the Airflow engine? In the next section, you will
see how to change the DAG code generated by the IDE for advanced use cases.

Enhancing the DAG by editing the code
You may have noticed that the DAG that you built ran just once. What if you want to
run it on a recurring basis? In this section, you will enhance your DAG by changing its
running frequency to run daily:

1.	 Open flights.pipeline in the JupyterHub IDE. You will see the following
familiar screen:

Figure 9.46 – The flights.pipeline file

288 Building Your Data Pipeline

2.	 Click on the Export pipeline icon on the top bar, and you will be presented with a
dialog to export the pipeline. Click on the OK button:

Figure 9.47 – Export pipeline dialog

3.	 You will get a message that the pipeline export succeeded and a new file will be
created as flights.py. Open this file by selecting it from the left-hand side panel.
You should see the full code of the generated DAG:

Building and executing a data pipeline using Airflow 289

Figure 9.48 – The DAG code after the export

4.	 You will see your DAG code in Python. From here, you can change the code as
needed. For this exercise, we want to change the frequency of the DAG execution.
Find the DAG object in the code; it will be around line 11:

dag = DAG(

 "flights-0310132300",

 default_args=args,

 schedule_interval="@once",

 start_date=days_ago(1),

 description="Created with Elyra 2.2.4 pipeline editor
using flights.pipeline.",

 is_paused_upon_creation=False,

)

5.	 Change the schedule of the DAG object. Change the value from
schedule_interval="@once" to schedule_interval="@daily".

290 Building Your Data Pipeline

6.	 The DAG code will look as follows after the change:

dag = DAG(

 "flights-0310132300",

 default_args=args,

 schedule_interval="@daily",

 start_date=days_ago(1),

 description="Created with Elyra 2.2.4 pipeline editor
using flights.pipeline.",

 is_paused_upon_creation=False,

)

7.	 Save the file in the IDE and push the file to the Git repository of your DAGs. This
is the Git repository that you configured in Chapter 7, Model Deployment and
Automation, while configuring the Airflow.

8.	 Now, load the Airflow GUI and you will be able to see your new DAG with the
Schedule column containing the @daily tag. This means that the job will run daily:

Figure 9.49 – Airflow DAG list showing the daily schedule

Congratulations! You have successfully built the data pipeline and automated the
execution of the pipeline using the DAG. A big part of this abstraction is the life cycle of
the Apache Spark cluster that is managed by the platform. Your team will have a higher
velocity because the IDE, automation (Airflow), and data processing engine (Apache
Spark) are being managed by the platform.

Summary 291

Summary
Phew! This is another marathon chapter in which you have built the data processing
pipeline for predicting flights' on-time performance. You have seen how the platform
you have built enables you to write complicated data pipelines using Apache Spark,
without worrying about provisioning and maintaining the Spark cluster. In fact, you have
completed all the exercises without specific help from the IT group. You have automated
the execution of the data pipeline using the technologies provided in the platform and
have seen the integration of the Airflow pipelines from your IDE, the same IDE you have
used for writing the Spark data pipeline.

Keeping in mind that the main purpose of this book is to help you provide a platform
where data and ML teams can work in a self-serving and independent manner, you have
just achieved that. You and your team own the full life cycle of data engineering and
scheduling the execution of your pipelines.

In the next chapter, you will see how the same principles can be applied to the data science
life cycle, and how teams can use this platform to build and automate the data science
components for this project.

10
Building, Deploying,

and Monitoring
Your Model

In the previous chapter, you built the data pipeline and created a basic flight dataset that
can be used by your data science team. In this chapter, your data science team will use the
flight dataset to build a machine learning (ML) model. The model will be used to predict
the on-time performance of the flights.

In this chapter, you will see how the platform assists you in visualizing and experimenting
with the data to build the right model. You will see how to tune hyperparameters and
compare the results of different runs of model training. You will see how to register and
version models using the components provided by the platform. You will deploy the
model as a REST service and start monitoring the deployed model using the components
provided by the platform.

294 Building, Deploying, and Monitoring Your Model

Remember that this book is not about data science, instead, the focus is on enabling
teams to work autonomously and efficiently. You may see some concepts and steps being
repeated from earlier chapters. This is intentional to show you how the concepts provided
in the previous chapters help you build a full life cycle.

Keeping the goal in mind, you will learn about the following topics:

•	 Visualizing and exploring data using JupyterHub

•	 Building and tuning your model using JupyterHub

•	 Tracking model experiments and versioning using MLflow

•	 Deploying your model as a service via Seldon and Airflow

•	 Monitoring your model using Prometheus and Grafana

Technical requirements
This chapter includes some hands-on setup and exercises. You will need a running
Kubernetes cluster configured with the Operator Lifecycle Manager (OLM). Building
such a Kubernetes environment is covered in Chapter 3, Exploring Kubernetes. Before
attempting the technical exercises in this chapter, please make sure that you have a working
Kubernetes cluster and Open Data Hub (ODH) is installed on your Kubernetes cluster.
Installing ODH is covered in Chapter 4, The Anatomy of a Machine Learning Platform.

Visualizing and exploring data using
JupyterHub
Recall from Chapter 9, Building Your Data Pipeline, that the data engineer has worked
with the SME of the business and prepared the flight data that can be used to predict the
flights' on-time performance.

Visualizing and exploring data using JupyterHub 295

In this section, you will understand the data produced by the data engineering team. This
is the role of the data scientist who is responsible for building the model. You will see how
the platform enables your data science and data engineering teams to collaborate and how
the data scientist can use the platform to build a model for the given problem.

Let's do some base data exploring using the platform. Keep in mind that the focus of this
book is to enable your team to work efficiently. The focus is not on data science or data
engineering but on building and using the platform:

1.	 Launch JupyterHub, but this time select the image that is relative to the data science
life cycle. SciKit is one such image available on the platform. Do not click on the
Start server button just yet.

Figure 10.1 – JupyterHub landing page

296 Building, Deploying, and Monitoring Your Model

2.	 On the JupyterHub landing page, add an AWS_SECRET_ACCESS_KEY variable and
populate it with the password for your S3 environment. The value for this key for
this exercise would be minio123. Notice that we have used the Medium container
size to accommodate the dataset. Now, hit the Start server button to start your
JupyterHub IDE.

Figure 10.2 – JupyterHub landing page

Visualizing and exploring data using JupyterHub 297

3.	 Open the chapter10/visualize.ipynb file notebook in your JupyterHub IDE.
4.	 The first step is to read the data provided by the data engineering team. Note that

the data is available on the same platform, which improves the velocity of the teams.
Cell 2 in the notebook is using the PyArrow library to read the data as a pandas
data frame. You will read the data from the flights-data bucket, where data is
placed by the data team. You can see the data read code as follows:

Figure 10.3 – Cell 2 for the chapter10/visualize notebook

5.	 The first thing you will do is to look at the data. Trying to make sense of it and
familiarizing yourself with what is available can be the ideal take here. You can
see in Cell 3 that the DataFrame's head function has been used to see the first few
rows. You will notice the field names and the data in them and see whether you
can understand one record. Notice that some fields are NaN and some are None.
This gives you a clue that the dataset may not yet be ready for building models. The
following screen captures partial output, and it is expected that you run this code in
your environment to get the full picture:

Figure 10.4 – Cell 3 for the chapter10/visualize notebook

298 Building, Deploying, and Monitoring Your Model

6.	 The next stage is to do a simple verification to see how much data is available for
you and if you are reading all the records. You can see in Cell 4 that the DataFrame's
count function has been used for this. The following screen captures partial output,
and it is expected that you run this code in your environment to get the full picture:

Figure 10.5 – Cell 4 for the chapter10/visualize notebook

7.	 Cells 5 and 6 are using the DataFrame's shape and the columns' functions are self-
explanatory.

8.	 Cell 7 is using the DataFrame's describe function to generate some basic statistics
for the dataset. You may use this to verify whether there is some data that may not
make sense. An example could be an exceedingly high value as maximum for the
taxi_in time. In such cases, you will work with your SME to clarify and adjust the
records as needed. The following screen captures partial output, and it is expected
that you run this code in your environment to get the full picture:

Figure 10.6 – Cell 7 for the chapter10/visualize notebook

Visualizing and exploring data using JupyterHub 299

9.	 Next, you want to see whether the data has null values. You have seen in Step 3, that
there are some NaN and None values in the data. You have found out that there are
many columns with missing data problems. The following screen captures partial
output, and it is expected that you run this code in your environment to get the
full picture:

Figure 10.7 – Cell 8 for the chapter10/visualize notebook

10.	 You will use the Dataframe's isnull function to find out how many records have
this missing data. Using the output from the df.isnull().sum().sort_
values(ascending = False) code, there are two different groups. The first
six rows of the output show column names that have a very high missing data
rate and for these columns, you may talk to data engineering and the SME to find
resources from where you can fetch the data for them. For our example, we will just
drop these columns.

Figure 10.8 – Cell 9 for the chapter10/visualize notebook

300 Building, Deploying, and Monitoring Your Model

11.	 In the second group, starting from the wheels_on column, you may either choose
to drop the rows containing no data or try to fill the data with a suitable statistics
function. For example, the missing taxi_in columns could be the mean for the
same airport and same time. The strategy must be discussed with the team. For this
exercise, we will just drop the rows.

Figure 10.9 – Cell 9 for the chapter10/visualize notebook

12.	 Often, it is a good idea to investigate sample rows where a particular column has no
data. You may find a pattern in the data that could be extremely useful in further
understanding the data. You have chosen to see the rows where the tail_number
field has no value and see whether you can find any patterns. The following
screen captures partial output, and it is expected that you run this code in your
environment to get the full picture:

Figure 10.10 – Cell 10 for the chapter10/visualize notebook

13.	 You will then run the Dataframe's info function to find out the data types of the
columns. A lot of times, the data types of columns are not the ones that you are
expecting. You will then talk to the SME and data teams to improve the data quality.
The following screen captures partial output, and it is expected that you run this
code in your environment to get the full picture:

Visualizing and exploring data using JupyterHub 301

Figure 10.11 – Cell 11 for the chapter10/visualize notebook

14.	 Visualization is one particularly important tool to understand data. You can use
any of the libraries that you feel comfortable with. For example, in the last cell of
this notebook, you build a graph to find out the data distribution for the DELAYED
column. Imagine that 99% of the records are with the DELAYED column as 0. If that
is the case, the data may not be enough to predict the flights' on-time performance
and you will need to engage the SME and data teams to get more data. For this
exercise, we will use the existing data distribution.

Figure 10.12 – Cell 12 for the chapter10/visualize notebook

302 Building, Deploying, and Monitoring Your Model

Now that we understand flight data a bit better, let's start building our model. In the real
world, you would invest a lot more time to understand the data. The focus of this book is
to show you how to execute the model development life cycle and so we kept the examples
to a minimum.

Building and tuning your model using
JupyterHub
As a data scientist, you will want to try different models with different parameters to
find the right fit. Before you start building the model, recall from Chapter 8, Building a
Complete ML Project Using the Platform, that you need to define the evaluation criteria,
and that accuracy may be a misleading criterion for a lot of use cases.

For the flight use case, let's assume that your team and the SME agree on the PRECISION
metric. Note that precision measures the portion of correct positive identification in the
provided dataset.

Let's start writing our model and see how the platform enables data scientists to perform
their work efficiently:

1.	 Open the chapter10/experiments.ipynb file notebook in your JupyterHub
environment.

2.	 In Cell 2, add the connection information to MLflow. Recall that MLflow is the
component in the platform that records the model experiments and works as
the model registry. In the code, you will configure EXPERIMENT_NAME, which
provides a name for your experiment runs. The last line of this cell mentions how
MLflow will record the experiment run. The autolog feature enables MLflow to
register automatic callbacks during training to record the parameters for later use.

You also provide the configuration for the S3 bucket, which will be used by MLflow
to store the artifacts of your experiments:

Building and tuning your model using JupyterHub 303

Figure 10.13 – Cell 2 for the chapter10/experiments notebook

3.	 Cell 3 reads the data available from the data engineering team, and Cell 4 is again
providing the information on the missing data from multiple columns. In this
notebook, you will use this information to drop the columns that you do not find
useful. The following screen captures partial output, and it is expected that you run
this code in your environment to get the full picture:

Figure 10.14 – Cell 3 for the chapter10/experiments notebook

304 Building, Deploying, and Monitoring Your Model

4.	 Cell 5 is dropping two sets of columns. The first set drops the columns for which
you do not have data in most of the rows. You selected these columns based on
the previous step. We kept it simple here and dropped the columns; however, it
is highly recommended that you work with data teams to find the reason for this
anomaly and aim to get as much data as possible. The columns you are dropping
are "cancellation_reason", "late_aircraft_delay", "weather_
delay", "airline_delay", "security_delay", and "air_system_
delay", and are shown in the following screenshot:

Figure 10.15 – Cell 5 for the chapter10/experiments notebook
The second drop statement is dropping the tail_number column. This column
may not play any role in flights getting delayed. In a real-world scenario, you will
need to discuss this with the SMEs:

Figure 10.16 – Cell 5 for the chapter10/experiments notebook

5.	 Cell 6 is dropping rows for which the data is not available using the Dataframe's
dropna function. Recall, from Step 3, that the number of rows where data is
missing from these columns is less compared to the total rows available. air_
time, arrival_delay, and elapsed_time are examples of such columns from
Step 5. We have adopted this approach to keep things simple; a better way would be
to find a way to get the missing data or to create this data from existing values.

Figure 10.17 – Cell 6 for the chapter10/experiments notebook

6.	 In Cell 7, you are dropping columns for which you do not have data for future
flights. Recall that the model aims to predict the future flight on-time performance.
However, columns such as departure_time and arrival_time contain the
actual departure and arrival times. For predicting future flights, you will not have
such data available at the time of prediction, and so you need to drop these columns
while training your model.

Building and tuning your model using JupyterHub 305

Figure 10.18 – Cell 7 for the chapter10/experiments notebook

7.	 In the dataset, the scheduled departure and arrival time is available in HHMM
format, where HH is hours and MM is minutes. In Cell 8, as a data scientist,
you may choose to split this data into two different columns where one column
represents the hours and the other one represents the minutes. Doing this may
simplify the dataset and improve the model performance if some correlation
exists between the expected classification and split data. You may do it out of your
intuition, or you may discuss this option with the SMEs.

You have chosen to split the scheduled_departure and scheduled_
arrival columns:

Figure 10.19 – Cell 8 for the chapter10/experiments notebook

8.	 In Cell 9, you drop a few more columns. The first set contains columns for which we
have to split the time into hours and minutes, such as scheduled_arrival:

Figure 10.20 – Cell 9 for the chapter10/experiments notebook
The second set contains the columns that are represented in other columns.
For example, the origin_airport column has a key for the airport, and the
ORIG_AIRPORT column is a descriptive name. Both these columns represent the
same information:

Figure 10.21 – Cell 9 for the chapter10/experiments notebook

306 Building, Deploying, and Monitoring Your Model

9.	 In Cell 10, you visually see the dataset again using the head statement. You have
noticed that you have some data in string format, such as the airline column:

Figure 10.22 – Cell 10 for the chapter10/experiments notebook
You choose to encode that data to convert it into numbers. There are many techniques
available, such as ordinal encoding or one-hot encoding, to name a couple. For this
example, we choose to use the simple OrdinalEncoder. This encoder encodes
categorical values as an integer array. In Cell 12, you have applied the category
encoding to the selected fields such as airline and origin_airport:

Figure 10.23 – Cell 12 for the chapter10/experiments notebook
This means that the input string data for these fields will be converted into integers.
This is good for training; however, at inferencing time, the caller may not know
about this encoding that you have just performed. One way is to save this encoder
and use it at inferencing time to convert the value from string to integers. So, your
inferencing pipeline would consist of two steps. The first step is to apply the encoding
and the second step is to predict the response using the saved mode. In the last four
lines of Cell 12, you have saved the encoder and have to register it with MLflow:

Building and tuning your model using JupyterHub 307

Figure 10.24 – Cell 12 for the chapter10/experiments notebook

10.	 In Cell 13, you validate the data using the head statement. Notice that the airline
column (one of the columns that you have applied the category encoding to) has
changed. For example, compare the value of the airline column from Cell 10 and
Cell 13 and notice that the value of WN in the airline column has been changed
to 1. This confirms that the encoding has been applied to the dataset successfully:

Figure 10.25 – Cell 13 for the chapter10/experiments notebook

11.	 In Cell 14, you used the dftype statement to validate the data types of each column
in the dataset. Many algorithms need data to be in a numerical format and, based
on the available models, you may need to move all the fields to a numerical format.

12.	 In Cell 15, you have split your data into training and testing sets. You will train the
model using the X_Train and y_train set and use the X_Test and y_test for
validation of your model performance. You can perform cross-validation to further
assess the model performance on unseen data. We assume that you, as a data scientist,
are aware of such concepts and, therefore, will not provide more details on this.

Figure 10.26 – Cell 15 for the chapter10/experiments notebook

308 Building, Deploying, and Monitoring Your Model

13.	 In Cell 16, you visualize the data distribution of the dataset. The following
screenshot captures partial output, and it is expected that you run this code in your
environment to get the full picture:

Figure 10.27 – Cell 16 for the chapter10/experiments notebook
You can see from the preceding chart that the data is biased towards the
on-time flights. This may impact the performance of the model. Luckily, the
RandomForestClassifier object of the SciKit library provides a
class_weight parameter. It can take a Python dictionary object where we
can provide the desired weights for respective labels. One such example would be to
allocate less weight for a value of 0 in the DELAYED column, which represents the
on-time flight. A different value for class_weight could be balanced, which
will direct the algorithm to weigh the labels as per the inverse proportion to their
occurrence frequency. Simply, for our case, the balanced value will put more
weight on the value of 1 as compared to the value of 0 in the DELAYED column.

14.	 In Cell 19, you define a random forest classification model and in Cell 20, you train
the model. You have noticed that we have defined very minimal hyperparameters
and then used GridSearchCV to find the best estimator for the given dataset. We
have placed a separate set of hyperparameters in the comments of this cell. You are
encouraged to try different combinations.

Building and tuning your model using JupyterHub 309

Figure 10.28 – Cell 19 for the chapter10/experiments notebook
Figure 10.29 shows how the model training is performed by executing the
model.fit() function:

Figure 10.29 – Cell 20 for the chapter10/experiments notebook
The training will take some time to complete, so for Cell 20, where you are training
your model, be patient.

15.	 In Cell 21, you have used the predict method to capture the model prediction
for the test data. Note that the rf_best_model model is the output of the
GridSearchCV object:

Figure 10.30 – Cell 21 for the chapter10/experiments notebook

16.	 In Cell 22, you have used the confusion_matrix function to calculate the matrix
and validate the performance of your model:

Figure 10.31 – Cell 22 for the chapter10/experiments notebook

310 Building, Deploying, and Monitoring Your Model

17.	 In Cell 23, you have used the precision_score function to calculate
recallscore for your model on the test dataset. You can see that you have
achieved 72% precision, which is good for the first experiment run. You can run
more experiments and improve the metrics for your model using the platform:

Figure 10.32 – Cell 23 for the chapter10/experiments notebook

You have completed one experiment run with multiple parameters and the
RandomForestClassifier model. At this stage, you may want to check MLflow
and see all the runs the grid search has performed, captured parameters, and model
performance data.

Typically, data scientists try multiple algorithms to find the right fit for the given
problem. It is up to you to execute and enhance the code and use MLflow to compare
different algorithms.

Let's see what MLflow has recorded for us.

Tracking model experiments and versioning
using MLflow
In this section, you will use MLflow to track your experiment and version your model.
This small section is a review of the capabilities highlighted to you in Chapter 6, Machine
Learning Engineering, where we discussed MLflow in detail.

Tracking model experiments and versioning using MLflow 311

Tracking model experiments
In this section, you will see the data recorded by MLflow for your experiment. Note that
you have just registered the MLflow and called the autolog function, and MLflow
automatically records all your data. This is a powerful capability in your platform through
which you can compare multiple runs and share your findings with your team members.

The following steps shows you how experiment tracking is performed in MLflow:

1.	 Log in to the MLflow UI of the platform.
2.	 On the left-hand side, you will see the Experiments section and it contains

your experiment named FlightsDelay-mluser. Click on it and you will see the
following screen. The right-hand side shows all the runs. Recall that we have used
GridSearchCV so there will be multiple runs:

Figure 10.33 – The model tracking details in MLflow

312 Building, Deploying, and Monitoring Your Model

3.	 Click on the + icon and it will show you all the runs. Based on the hyperparameters,
we have four runs, and the best run is automatically selected. As a data scientist,
this capability will improve the way you work and provide a system where all the
experiments can be recorded, and it is available without too many changes. You
have just enabled the autolog feature and MLflow will capture the bulk of the
metrics automatically. Select all four runs and hit the Compare button.

Figure 10.34 shows the comparison of each run and the hyperparameters associated
with the run:

Figure 10.34 – Comparing models in MLflow

Tracking model experiments and versioning using MLflow 313

4.	 Click on the run next to the + icon, and MLflow will display the details of
this run. In the artifacts section, you will find that the model file is available.
You can also see that the ordinal encoder file is also available with the name
FlightsDelayOrdinalEncoder.pkl:

Figure 10.35 – Files and data captured by MLflow

In this section, you have seen that MLflow captured all the metrics from your training run
and assisted you in selecting the right model by providing a comparison function.

The next stage is to version your model.

314 Building, Deploying, and Monitoring Your Model

Versioning models
After giving some thought to the model performance and sharing the data with other
team members, you have selected the model that can be used for this project. In this
section, you will version your model to be used. Refer to Chapter 6, Machine Learning
Engineering, where we discussed model versioning in detail.

The following steps will guide you on how to version your model:

1.	 Go to MLflow and click on the FlightDelay-mluser experiment on the left-hand side.
2.	 Then, on the right-hand side of the screen, click on the + icon for your run. You will

see the following screen:

Figure 10.36 – Files and data captured by MLflow

Deploying the model as a service 315

3.	 Click on the model folder under artifacts and a blue button with the Register
Model label will appear:

Figure 10.37 – Versioning your models in MLflow

4.	 Click on the Register Model button and enter a name that identifies your model.
One example would be flights-ontime:

Figure 10.38 – Model registration in MLflow

As a data scientist, you have registered your model for predicting flight delays onto the
model registry. The next step is to deploy your model.

Deploying the model as a service
In this section, you will deploy your model as a REST service. You will see that using
the details mentioned in Chapter 7, Model Deployment and Automation, the team can
package and deploy the model as a service. This service will then be consumed by users of
your model. We highly encourage you to refresh your knowledge from Chapter 7, Model
Deployment and Automation before proceeding to this section.

316 Building, Deploying, and Monitoring Your Model

In Chapter 7, Model Deployment and Automation, you have deployed the model with a
Predictor class, which exposes the model as a REST service. You will use the same class
here, however, in the flight project, you applied categorical encoding to the data before it
was used for model training. This means that you will need to apply the same encoding to
the input data at the inferencing time. Recall that, earlier in this chapter, you saved the file
as FlightsDelayOrdinalEncoder.pkl and it is available in the MLflow repository.

The next step is to write a simple class that can apply the transformation to the input data.
Once this class is defined, you will define your inference pipeline using Seldon and then
package your model as a container. So, your inference pipeline will consist of two stages;
the first stage is to apply the encoding and the second stage is to use the model to predict
the class.

Sounds difficult? You will see that the platform abstracts most of the details, and you will
provide a few configuration parameters to package and deploy your model as a service.

Let's first see the Transformer class, which will load the
FlightsDelayOrdinalEncoder.pkl file and apply the encoding to the input
data. Open the chapter10/model_deploy_pipeline/model_build_push/
Transformer.py file. You will see that the __init__ function loads the encoder file
and the transform_input function applies the transformation to the input data using
the standard transform function. This is the same function you have used during the
model training. Figure 10.39 shows the code file:

Figure 10.39 – Transformer class

Deploying the model as a service 317

The second artifact is to define the model inference graph. Recall from Chapter 7, Model
Deployment and Automation, that you have defined a container and one stage in your
inference graph using the SeldonDeploy.yaml file. In this section, you will extend
the inference graph to cater to the transformation and the prediction part of the inference
pipeline. Naturally, when you define a new component in your graph, you will also need to
define the corresponding container that will be the service for the graph node.

Note that you may choose to execute the transformation logic in Predict.py to keep
things simple. However, we wanted to show how Seldon can build complicated graphs and
each graph could be a separate instance of a container. This approach brings versatility to
running your production models in an elastic fashion.

So, let's look into the chapter10/model_deploy_pipeline/model_deploy/
SeldonDeploy.yaml file. This file has been copied from Chapter 7, Model Deployment
and Automation, and the following changes have been made to it.

The first change is to build the inference graph. You need to apply the transformation first
and then run the model prediction. Figure 10.40 displays this graph. Note that the root
element for the graph is of the TRANSFORMER type with the name transformer, and
there is a children node in the graph. The children node will be executed after the
root node. This setup allows you to have different graphs as per your model requirements.
The child node in this example is the actual prediction:

Figure 10.40 – Seldon deployment YAML

318 Building, Deploying, and Monitoring Your Model

The second change to the chapter10/model_deploy_pipeline/model_
deploy/SeldonDeploy.yaml file is registering the containers for both the root and
the child node. The name field in the graph is the one that associates the container to the
graph node. So, we will have two instances of a container, one for transformer and the
second for predictor. The transformer instance will execute the Transformer.
py file and the predictor instance will execute the Predictor.py file. What we
have done is create a single container image with all these files, so our container image
is the same. You can examine the chapter10/model_deploy_pipeline/model_
build_push/Dockerfile.py file where you package all the files into a container
image. Figure 10.41 highlights the part of SeldonDeploy.yaml where the containers
have been configured.

Note that the first container is with the name transformer. The MODEL_NAME variable
mentions the name of the Python file and the SERVICE_TYPE variable mentions the type
of callback to call by Seldon. Recall that Transformer.py has a transform_input
method, and SERVICE_TYPE guides the Seldon system to call the right function. The
same is applied to the predictor container instance, and note how MODEL_NAME and
SERVICE_TYPE are different for the predictor instance:

Deploying the model as a service 319

Figure 10.41 – Seldon deployment YAML

That is it! For some of you, this may be a little overwhelming, but once you have defined
the structure for your projects, these files can be standardized, and the data scientists will
not need to change them for every project. You have seen how the ML platform allows you
to be self-sufficient in not only building the models but also packaging them.

The next step is to write a simple Airflow pipeline to deploy your model. Before you
start this section, we recommend refreshing your knowledge of deploying the models
using Airflow as detailed in Chapter 7, Model Deployment and Automation. There is no
change required in the pipeline that you have built, and you will just be changing a few
configuration parameters to provide the right model name and version to the pipeline.

We have prebuilt this pipeline for you, so, open the chapter10/model_deploy_
pipeline/flights_model.pipeline file. Open this file and validate that it has the
same two stages as mentioned in Chapter 7, Model Deployment and Automation. The first
stage builds and pushes the container image to a container registry and the second stage
deploys the model using Seldon.

320 Building, Deploying, and Monitoring Your Model

Figure 10.42 displays the first stage with the parameters used for building and pushing the
container image. Runtime Image and File Dependencies have the same values as shown
earlier. Notice the Environment Variables section, where you have the same variable
names but different values:

Figure 10.42 – Flights model deploy pipeline

Let's see each of them:

•	 MODEL_NAME has a value of flights-ontime. This is the name of the model you
were given when you registered the model with MLflow.

•	 MODEL_VERSION has a value of 1. This is the version of the model you would like
to deploy. This version is recorded in the MLflow system.

•	 CONTAINER_DETAILS has a value of flights-ontime. This is the name of the
model you were given when you registered the model with MLflow.

•	 CONTAINER_REGISTRY is the container registry API endpoint. For DockerHub,
this is at https://index.docker.io/v1. Set the value of this variable to
https://index.docker.io/v1/. In this example, we have used quay.io as
the registry. This is another free registry that you can use.

https://index.docker.io/v1
https://index.docker.io/v1/
http://quay.io

Deploying the model as a service 321

•	 CONTAINER_REGISTRY_USER is the username of the user that will push images
to the image registry. Set this to your DockerHub username or Quay username.

•	 CONTAINER_REGISTRY_PASSWORD is the password of your container registry
user. In production, you do not want to do this. You may use secret management
tools to serve your password.

CONTAINER_DETAILS is also the name of the repository to where the image will be
pushed and the image name and image tag. Figure 10.43 displays the second stage with
the parameters used for deploying the container image using Seldon. Runtime Image
and File Dependencies have the same values as shown earlier. Notice the Environment
Variable is the section where you have variable values set for this deployment. The
required variables are MODEL_NAME, MODEL_VERSION, CONTAINER_DETAILS, and
CLUSTER_DOMAIN. You have seen all the variables in the preceding paragraph, but
CLUSTER_DOMAIN is the DNS name of your Kubernetes cluster. In this case, the IP
address of minikube is <Minikube IP>.nip.io.

Figure 10.43 – Flights model deploy pipeline

322 Building, Deploying, and Monitoring Your Model

Save and deploy this DAG to your Airflow environment and the model will be available
for consumption when the Airflow DAG has finished execution. Validate that this DAG
has been executed correctly by logging into Airflow and checking the status of the DAG.
Figure 10.44 shows the Airflow UI where you have validated the DAG's status. Notice that
we have saved the DAG under the name flights-model-deploy; if you have chosen
some other name, your DAG name will reflect accordingly.

Figure 10.44 – Airflow DAG for the flights pipeline

Recall that MLflow associates a run ID for each of the experiments. You register one of
these experiments in the model registry so it can be deployed. Refer to Figure 10.34, which
shows a screenshot of the run ID for this model.

This model run will be associated with the deployed model, so your team can track the
models running in the environment to an individual run. This capability provides a
trace back on what version of the model is running in different environments. Run the
following command to see the resources created by the model:

kubectl get service,ingress,SeldonDeployment -n ml-workshop |
grep bf32

You should get the following response. As you can see, the Kubernetes service and ingress
have a run ID that starts with bf32 for this example. Note that it will have a different
value for your case, and you will need to adjust the run ID in the preceding command:

Figure 10.45 – Kubernetes objects created by the platform

Deploying the model as a service 323

Now, the model is deployed; you now test the model by running a RESTful call to
your model.

Calling your model
Recall that the model is exposed via the Kubernetes Ingress, which is created by
automation. In order to test whether the model is running properly as a RESTful API,
follow these steps:

1.	 Run the following command to get the ingress object. Note that the name of the
ingress object will be different for your setup:

kubectl get ingress <INGRESS_NAME> –n ml-workshop

2.	 Now, make an HTTP call to the location where your model is available for
inference. Run the following commands. The chapter10/inference folder
contains a payload for the flight data and in return, the model will predict the
probability of the flight getting delayed.

3.	 First, change the directory to the chapter10/inference folder:

cd chapter10/inference

4.	 Then, run a curl command to send the payload to the model. Note to change the
HTTP address as per your setup:

curl -vvvvk --header "content-type: application/json" -X
POST -d @data.json https://flights-ontime.192.168.39.216.
nip.io/api/v1.0/predictions; done

Windows users may choose to use the excellent Postman application
(https://www.postman.com/) to make an HTTP call.

https://www.postman.com/

324 Building, Deploying, and Monitoring Your Model

5.	 Open the chapter10/inference/data.json file to see the payload that we
are sending to the model. You will notice that there are two sections of the json
payload. The first part is with the names key, which captures the feature columns
that you have used to train the model. Notice that there is no DELAYED column
here because the model will predict the probability of the DELAYED column.
The second part is with the ndarrray key, which has the values for the feature
columns. Note that the values for the categorical columns are in the original form
and the inference pipeline will convert them into the categorical values before
executing the model. Figure 10.46 shows the following file:

Figure 10.46 – Sample payload for flights model inferencing

Now that you have successfully performed an inference call over HTTP, let's see how the
information has been captured by the monitoring system.

Monitoring your model
In this last section, you will see how the platform automatically starts capturing the
typical performance metrics of your model. The platform also helps you visualize the
performance of the inference. The platform uses Seldon to package the model, and Seldon
exposes default metrics to be captured. Seldon also allows you to write custom metrics for
specific models; however, it is out of the scope of this book.

Let's start by understanding how the metrics capture and visualization work.

Monitoring your model 325

Understanding monitoring components
The way metrics capture works is that your model is wrapped by Seldon. Seldon then
exposes the metrics to a well-defined URL endpoint, which was detailed in Chapter 7,
Model Deployment and Automation. Prometheus harvests this information and stores it in
its database. The platform's Grafana connects to Prometheus and helps you visualize the
recorded metrics.

Figure 10.47 summarizes the relationship between the model and monitoring
components:

Figure 10.47 – ML platform monitoring components

Let's understand each component of this diagram:

•	 Open Data Hub (ODH) Operator: This is the base operator for our platform.
Its role is to provision all the different components for your platform. We have
discussed this operator in various chapters of this book and so we do not describe it
in this section.

326 Building, Deploying, and Monitoring Your Model

•	 Prometheus Operator: Prometheus operator is responsible for creating the
Prometheus server. The ODH operator creates the Kubernetes subscriptions for
the Prometheus operators. You can find the subscription file at manifests/
prometheus/base/subscription.yaml. The following snippet shows that it
uses the OLM mechanism to install the Prometheus operator:

Figure 10.48 – Subscription for Prometheus operator

•	 Prometheus Server: The Prometheus operator installs and configures the
Prometheus server for you. The platform configures the file that directs the
Prometheus operator to create the Prometheus server. You can find the file at
manifests/prometheus/base/prometheus.yaml. The following snippet
shows the file:

Figure 10.49 – Prometheus server configuration

Monitoring your model 327

•	 Service Monitors: Service monitors are objects by which you configure the
Prometheus server to find and harvest information from the running Kubernetes
services and pod. The service monitors are defined by the platform, and you can
find one example at manifests/prometheus/base/prometheus.yaml. The
following snippet shows the file. Note that the configuration uses port 8000, which
is the port at which Seldon exposes the metrics information. The selector object
defines the filter by which Prometheus will decide what pods to scrape data from:

Figure 10.50 – Prometheus server monitors for Seldon pods

•	 Grafana Server: Grafana is the component that provides the visualization for the
data captured by Prometheus. Grafana is preferred to create dashboards when using
Prometheus and is continuously improving its Prometheus support. The platform
deploys Grafana via the manifests/grafana/base/deployment.yaml file.

In this section, you have seen how the platform provides and wires different components
to provide you with a visualization framework for your observability requirements.

Next is to configure Grafana.

328 Building, Deploying, and Monitoring Your Model

Configuring Grafana and a dashboard
In this section, you will configure Grafana to connect to Prometheus and build a dashboard
to visualize the model's metrics. What is a dashboard? It is a set of graphs, tables, and other
visualizations of your model. You will create a dashboard for the flight model.

Note that this is a one-time configuration, and it does not need to be repeated for every
model. This means that once you have a dashboard, you can use it for multiple models.
Your team may create a few standard dashboards and as soon as a new model is deployed,
the platform will automatically find it and make it available for monitoring.

Let's start with the configuration of the Grafana instance:

1.	 Log in to Grafana using https://grafna.192.128.36.219.nip.io.
Notice that you will need to change the IP address as per your setup. On the
login page, click the Sign in With KeyCloak button, which is at the bottom of
the login window:

Figure 10.51 – Grafana login page

Monitoring your model 329

2.	 First, you will need to add a data source. A data source is a system that will provide
the data that Grafana will help you visualize. The data provider in Prometheus
scrapes the metrics data from your models. Select the Configuration | Data sources
option from the left-hand menu:

Figure 10.52 – Grafana Data sources menu option

330 Building, Deploying, and Monitoring Your Model

3.	 Click on the Add data source button, as shown in the following screenshot:

Figure 10.53 – Add new Grafana data source

4.	 Select the data source type, which will be Prometheus for your case. You may notice
that Grafana can talk to a variety of data sources, including InfluxDB and YYYY, to
name a couple.

Figure 10.54 – Add new Prometheus Grafana data source

5.	 Now, you need to add the details for the Prometheus server. Grafana will use these
details to connect and fetch data from the Prometheus server. Add the following
properties in the screen mentioned:

	� Name: Prometheus

	� URL: http://prometheus-operated:9090

Monitoring your model 331

6.	 Then click the Save & test button. The URL is the location of the Prometheus
service created by the platform. Because the Grafana pod will talk to the
Prometheus pod using the internal Kubernetes network, this URL will be the same
for your setup too:

Figure 10.55 – Configuration for the Prometheus Grafana data source
You can find the prometheus service details by issuing the following command:

kubectl get service –n ml-platform | grep prometheus

332 Building, Deploying, and Monitoring Your Model

7.	 After you configure Grafana to connect to Prometheus, the next step is to build the
dashboard. As mentioned earlier, a dashboard is a set of visualizations, and each
visualization is backed by a query. Grafana runs those queries and plots the data for
you. Building dashboards is out of the scope of this book, but we have provided a
dashboard that you can use. Select the Import option from the left-hand menu:

Figure 10.56 – Adding a new dashboard in Grafana

Monitoring your model 333

8.	 On the Import screen, copy the contents from the chapter10/grafana-
dashboard/sample-seldon-dashboard.json file and paste it into the
Import via panel json textbox. Click on the Load button to import the dashboard:

Figure 10.57 – Importing a Seldon dashboard in Grafana

334 Building, Deploying, and Monitoring Your Model

9.	 Set the name for your imported dashboard and click on the Import button to
complete the import process for the dashboard. You can give the name as per your
liking; we have chosen the name Flights Prediction Analytics, as you
can see in the following screenshot:

Figure 10.58 – Importing Seldon dashboard in Grafana

10.	 After you import the dashboard, Grafana will start displaying the dashboard
immediately. You can see a few metrics such as response times, success rate, and
other relative metrics for your deployed model. You may need to hit your model
a few times to start populating this board. Refer to the Calling your model section
earlier in this chapter on how to make calls to your deployed models.

Summary 335

Figure 10.59 – Dashboard for Seldon models
You can see that the board captures the metrics that have been emitted by your
model wrapped in Seldon. As more models get deployed, they will be available in
this dashboard, and you can filter the models through the filters provided in the top
bar of the dashboard.

Your flights on-time prediction service is now available for consumption. You will now
work with the product development team and the website team of your organization so
that they can integrate this functionality and provide a better service for your customers.
Your work does not finish here; you will need to continuously see how the model is
performing and bring on improvements via new data and/or optimizing your models
further. The platform will help you to perform this cycle with higher velocity and
continuously improve the offerings to your customers.

Summary
This was another long chapter that covered the model development and deployment life
cycle for the flights on-time performance project. You have seen how the platform enables
you and your team to become autonomous in EDA, model experimentation and tracking,
model registry, and model deployment.

In the next chapter, we will take a step back and summarize our journey of the overall
platform and how you can use it as your own solution that fits your vertical. You can use
the concepts and tools to build a platform for your team and enable your business to
realize the power of AI.

11
Machine Learning

on Kubernetes
Throughout the chapters, you have learned about the differences between a traditional
software development process and machine learning (ML). You have learned about the
ML life cycle and you understand that it is pretty different from the conventional software
development life cycle. We have shown you how open source software can be used to
build a complete ML platform on Kubernetes. We presented to you the life cycle of ML
projects, and by doing the activities, you have experienced how each phase of the project
life cycle is executed.

In this chapter, we will show you some of the key ideas that we wanted to bring forth to
further your knowledge on the subject. The following topics will be covered in this chapter:

•	 Identifying ML platform use cases

•	 Operationalizing ML

•	 Running on Kubernetes

These topics will help you decide when and where to use the ML platform that we
presented in this book and help you set up the right organizational structure for running
and maintaining the platform in production.

338 Machine Learning on Kubernetes

Identifying ML platform use cases
As discussed in the earlier chapters, it is imperative to understand what ML is and how
it differs from other closely related disciplines, such as data analytics and data science.
Data science may be required as a precursor to ML. It is instrumental in the research and
exploration phase where you are unsure whether an ML algorithm can solve the problem.
In the previous chapters, you have employed data science practices such as problem
definitions, isolation of business metrics, and algorithm comparison. While data science
is essential, there are also ML use cases that do not require as many data science activities.
An example of such cases is the use of AutoML frameworks, which we will talk about in
the next section.

Identifying whether ML can best solve the problem and selecting the ML platform is a bit
of a chicken and egg problem. This is because, in order to be sure that an ML algorithm
can best solve a certain business problem, it requires some data science work such as data
exploration, and thus requires a platform to work on. If you are in this situation, your
best bet is to choose an open source platform such as Open Data Hub (ODH), which we
presented in this book. Because it is fully open source, there are no required commercial
agreements and licenses to start installing and using the platform, and you have already
seen how capable the platform is. Once you have a platform, you can then use it to initiate
your research and data exploration until you can conclude whether ML is the right
approach to solving the business problem or not. You can then either continue using the
platform for the remainder of the project life cycle or abandon it without incurring any
platform costs.

In some cases, you may already know that the business problem can be solved by ML
because you have seen a similar implementation somewhere else. In such cases, choosing
the ML platform we have presented is also a good option. However, you could also be in
a situation where you do not have a strong data science team. You may have a few data
engineers and ML engineers who understand the process of model development but are
not confident about their data science skills. This is where AutoML comes into the picture
as a consideration.

Considering AutoML
To define it in its simplest form, AutoML is about automatically producing ML models,
with little to no data science work needed. To elaborate a bit, it is about automatic
algorithm selection, automatic hyperparameter tuning, and automatic model evaluation.

Identifying ML platform use cases 339

AutoML technology comes as a framework or a software library that can generate an ML
model from a given dataset. There are several AutoML frameworks already available on
the market as of writing this book. The following list shows some of the popular AutoML
frameworks currently available. There are many other AutoML frameworks not listed
here, and we encourage you to explore them:

•	 BigML – An end-to-end AutoML enterprise platform sold commercially.

•	 MLJAR – An open source AutoML framework.

•	 H2O.ai – An open source full ML platform that includes an AutoML framework.

•	 TPOT – Considers itself as a data scientist assistant. It's an open source
AutoML framework developed by the Computational Genetics Lab at the
University of Pennsylvania.

•	 MLBox – An open source AutoML Python library.

•	 Ludwig – A toolbox featuring zero code ML model development that
includes AutoML.

•	 Auto-sklearn – An open source AutoML toolkit based on scikit-learn ML libraries.

•	 Auto-PyTorch – An open source AutoML framework that features an automatic
neural network architecture search. It can automatically optimize neural network
architectures.

•	 AutoKeras – An open source AutoML framework based on Keras ML libraries.

It is also important to note that some of these frameworks and libraries can be used
within, or in conjunction with, our ML platform or any ML platform.

Commercial platforms
Commercial vendors of ML platforms, including cloud providers, also include AutoML
products and services in their portfolio. Google has Google Cloud AutoML, Microsoft
has Azure Machine Learning, Amazon has Sagemaker Autopilot, and IBM has Watson
Studio with AutoML and AutoAI components. However, these vendors sell their AutoML
products and services as part of their ML platform product, which means you will have to
use their ML platform to take advantage of the AutoML features.

340 Machine Learning on Kubernetes

ODH
You have seen how the ODH allows you to choose which components to install and it
also allows you to replace one component with another by updating the kfdef manifest
file. This adds additional flexibility as to what components you choose to be part of your
platform. For example, suppose you only need JupyterHub and MLflow for your data
science team to start exploring the possibility of using ML to solve your business problem.
In that case, you can choose to install only these components. This will save you compute
resources and, therefore, reduce cloud computing bills.

Regardless of which ML platform you choose, it is also essential that the path to
operationalizing your ML platform is clearly established. This includes finding the right
people who can run the platform in production and mapping the personas in the ML
life cycle to the existing organization. This also includes establishing some processes and
communication channels, which brings us to our next topic.

Operationalizing ML
As discussed in earlier chapters, you can enjoy the full benefits of ML in your business if
your models get deployed and used in the production environment. Operationalization
is more than just deploying the ML model. There are also other things that need to be
addressed to have successful ML-enabled applications in production. Let's get into it.

Setting the business expectations
It is extremely important to ensure that the business stakeholders understand the risk of
making business decisions using the ML model's predictions. You do not want to be in a
situation where your organization fails because of ML. Zillow, a real estate company that
invested a lot in ML with their product Zestimate, lost 500 million dollars due to incorrect
price estimates of real properties. They ended up buying properties at prices set by their
ML model that they eventually ended up selling for a much lower price.

ML models are not perfect; they make mistakes. The business must accept this fact and
must not rely entirely on the ML model's prediction without looking at other data sources.
If the business fails to accept this fact, this could lead to irreparable damages caused by
wrong expectations. These damages include reputational damages, loss of trust by the
business, and even regulatory fines and penalties.

Operationalizing ML 341

Another case is that some algorithms, particularly deep learning, are not explainable. It
must be communicated to the business because, in some cases, an explainable algorithm
may be required for regulatory purposes. Some regulators may need you to explain the
reason behind the business decision. For example, suppose an ML model decided that
a new bank customer is not a risky individual and it turned out to be a black-listed or
sanctioned individual by some regulators; the financial organization may need to explain
the reasoning behind this decision to the regulators during the investigation and the
post-mortem analysis. Or, even worse, the organization could get fined millions of dollars.

Avoid over-promising results to the business. IBM Watson had the idea that ML could
diagnose cancer by making sense of diagnostic data from several medical institutions
and potentially assisting, or even replacing, doctors in performing a more reliable cancer
diagnosis in the future. This has gained a lot of attention, and many organizations invested
in the idea. However, it turned out to be a very difficult task. It did not only result in
losses, but it also somehow damaged the brand.

To summarize, before deciding whether to use ML models to predict business decisions,
make sure that the business understands the risks and consequences if the model does not
behave as expected. Set the expectations right. Be transparent about what is possible and
what is hard. Some ML models may be able to replace a human in a particular business
process, but not all ML models will achieve superhuman abilities.

Dealing with dirty real-world data
The data you used for model training comes as prepared datasets tested in a controlled
environment. However, this is not the case in the real-world setting. After your model gets
deployed to production, you must expect dirty data. You may receive wrongly structured
data, and most of the data is new and has never been seen by the model during training. To
ensure that your model is fit for production, avoid overfitting, and test the model thoroughly
with datasets that are as close as the ones it will see in production. If possible, use data
augmentation techniques or even manufactured data to simulate production scenarios.
For example, a model that works well in diagnosing a patient utilizing chest X-ray scans
may work well in one clinic, but it may not work in another clinic using older medical
equipment. There is a real story behind this, and the reason it did not work was that the
X-ray scanners generated scans that showed dust particles present in the machine's sensors.

To summarize, avoid overfitting. Have a solid data cleaning process as part of your
inference pipeline. Prepare for the worst possible input data by having suitable datasets
from various sources. Be ready when your model does not return what is expected of it.

342 Machine Learning on Kubernetes

Dealing with incorrect results
Imagine you have a credit card fraud detection and it marks a routine transaction as
fraudulent. There could be many reasons for this, such as your model may not be aware
of higher-than-normal spending during Christmas. You need the capability to investigate
such scenarios and that's why it is crucial to have logging in place. This will allow you to
recall the model's answer to a particular question thrown to it in production. You will
need this to investigate model issues.

When this happens, you must be prepared to face the consequences of the wrong
information your model returned. But also, you must be able to address the erroneous
result in the future by updating the model with new sets of data from time to time. You
must also have the ability to track the model's performance over time. You have seen in
the previous chapter how monitoring is done. The change in model performance over
time is also called a drift. There are two kinds of drift. Data drift happens when the
model starts receiving new types of data that it has not been trained on. For example, an
insurance fraud detection model worked well until it started seeing new data that included
a new insurance product that the model hadn't seen before. In this case, the model will
not produce a reliable result. In other words, your model performance has degraded.
Another example is that your model was trained on a certain demographic or age group,
and then suddenly a new age group started appearing. Similarly, there is a higher chance
that the ML model will return an unreliable result. Concept drift is when the functional
relationship between the input data and the label has changed. For example, in a fraud
detection model, a transaction that was not previously considered fraudulent is now
labeled as fraudulent or anomalous according to the new regulations. This means the
model will produce more false-negative results, which renders the model unreliable.

In these scenarios, you must have a process set for addressing these problems. You must
have a process for when to manually retrain the model, or even automatically retrain the
model when it detects a drift. You may also want to implement anomaly detection in the
input data. This ensures that your model only gives up results if the input data make sense.
This avoids abuse or attacks on the model as well. These automation requirements can be
integrated as part of your continuous integration and deployment pipelines.

Operationalizing ML 343

Maintaining continuous delivery
You have seen how to run model builds and model deployments in the platform manually.
You have also seen how to automate the deployment workflow using Airflow. Although
the data scientists or ML engineers in the team can manually perform or trigger such
operations, in the real world, you will also need someone or a team to maintain these
pipelines to make sure they are always working. You may want to have a dedicated
platform team to maintain the underlying platform that executes the pipelines, or you may
assign this responsibility to the data engineering team. Whatever approach you choose,
the important thing is that someone must be responsible for ensuring that the deployment
pipelines are always working.

Although the ODH operator completely manages the ML platform, you will still need
someone responsible for maintaining it. Ensure that the Kubernetes operators are up to
date. Apply security patches whenever necessary.

For some critical workloads, you may not be able to deploy to production automatically.
There will be manual approvals required before you can ship updates to a model in
production. In this case, you need to establish this approval workflow by either embedding
this process into the platform or through mutual agreement with manual approval
processes. Nevertheless, the objective is to have someone accountable for maintaining
continuous delivery services.

In summary, continuous delivery must always work so that the model development life
cycle can have a faster feedback cycle. Also, if drift is detected, you will always have a
ready-to-go delivery pipeline that can ship a more up-to-date version of the model.

Managing security
Security is another critical area to focus on when operationalizing ML projects. You have
seen in the preceding chapters that the ML platform can be secured by using OpenID
Connect (OIDC) or OAuth2, a standard authentication mechanism. Different platform
components can utilize the same authentication mechanism for a more seamless user
experience. You have used an open source tool called Keycloak, an industry-standard
implementation of the identity and access management (IAM) system that mainly
supports OIDC, Security Assertion Markup Language (SAML), and more. The
Seldon Core API allows the REST-exposed ML models to be protected behind the same
authentication mechanism. Refer to the Seldon Core documentation for more details.

344 Machine Learning on Kubernetes

To summarize, the ML platform must be protected by an authentication mechanism,
preferably OIDC. This also allows for the implementation of single sign-on (SSO).
Additionally, you also need to protect your deployed models to ensure that only the
intended audiences can access your ML models. And finally, there must be someone
responsible for maintaining the Keycloak instance that your platform uses and someone,
or a team, managing the access to the platform resources.

Adhering to compliance policies
In some business settings, compliance is at the center of the operation. Financial
institutions have a whole department managing compliance. These compliance rules
typically come from the regulatory bodies that oversee the financial institution's
operations. Depending on which country your ML platform will be used and hosted
in, regulatory policies may prevent you from moving data out of the on-premises data
centers. Or, there could be a requirement for encrypting data at rest.

The good news is that your platform is flexible enough to be configured for such
compliance measures. It can run on-premises or in any cloud provider, thanks to
Kubernetes. You can also run the ML platform in the cloud while having the storage
on-premises or take advantage of hybrid-cloud strategies.

Another thing is that each of the components in the platform is replaceable and pluggable.
For example, instead of using a dedicated instance of Keycloak, you could use an existing
regulator-approved OIDC provider.

Compliance could often become an impediment in progressing with ML projects. If you
plan to use a commercial platform rather than the one you built in this book, always
consider the compliance or regulatory requirements before deciding. Some commercial
platforms in the cloud may not be able to comply with data sovereignty, especially in
countries where the major cloud providers do not yet have a local data center.

In other words, always consider compliance requirements when planning for the
architecture of your ML platform.

Applying governance
After taking into account the preceding considerations, another important area that needs
to be cleared out to operationalize your ML platform is governance. This is where you
will design the organizational structure, roles and responsibilities, collaboration model,
and escalation points. The authors advocate for a more cross-functional team with very
high collaboration levels. However, this is not always possible in the real world. There
are organizations with very well-defined hierarchies and silos that refuse to change the
way things are. If you are in this type of organization, you may face several hurdles in
implementing the ML platform we have presented here.

Operationalizing ML 345

One of the platform's main features is that it is a self-service platform. It allows data
scientists, ML engineers, and data engineers to spin up their notebook servers and Spark
clusters. However, this will also lead to less predictable cloud billings or operating costs. If
you are the data architect of the project, part of your job is to convince the leadership team
and the platform teams to trust their data scientists and ML engineers.

Ideally, the best way to design the organizational structure around the ML project is to have
a platform team. This team is responsible for running the ML platform. This team then
acts as a service provider to the data and application teams, also called the stream-aligned
teams, in a software as a service (SaaS) model. The platform team's objective is to ensure
that the stream-aligned teams can perform their work on the platform as smoothly and as
quickly as possible. The data science and data engineering teams can be the stream-aligned
teams, and they are the main users of the platform and the main customers of the platform
team. The DevSecOps or DevOps teams may sit together in the same organizational unit,
as the platform team provides DevOps services to the stream-aligned teams. Figure 11.1
shows an example of an organizational structure that you could implement to run an ML
project using the Team Topologies notation:

Figure 11.1 – Example ML project team structure

346 Machine Learning on Kubernetes

In Figure 11.1, there are a total of three stream-aligned teams, namely, the data science team,
the data engineering team, and the software engineering team. All three stream-aligned
teams are collaborating with each other with the objective of delivering an ML-enabled
application in production. There are also three platform teams. The cloud infrastructure
team is providing a cloud platform as a service (PaaS) to the two other platform teams: the
ML platform team and the MLOps team. Both the ML platform team and the MLOps team
are providing ML PaaS and MLOps as a service to all the three stream-aligned teams. The
purple box represents an enabling team. This is where the SMEs and product owners sit.
This team enables and provides support to all the stream-aligned teams.

You must take note that this is just an example; you may want to combine the ML
platform team and MLOps team together, or the data science and data engineering teams,
and that's perfectly okay.

If you want to learn more about this type of organizational design notation, you may want
to read about Team Topologies.

We can summarize as follows:

•	 Use the ML life cycle diagram that you have seen in Figure 2.7 in Chapter 2,
Understanding MLOps, to map the current organizational structure of your teams.

•	 Communicate the roles and responsibilities clearly.

•	 Set the collaboration channels and feedback points, such as design spike meetings
and chatgroups.

Suppose you cannot break the silos; set up regular meetings between the silos and
establish a more streamlined handover process. However, if you want to take advantage
of the full potential of the ML platform, we strongly recommend that you form a cross-
functional and self-organizing team to deliver your ML project.

Running on Kubernetes
Using the ODH operator, the ML platform truly unlocks the full potential of Kubernetes
as the infrastructure layer of your ML platform. The Operator Lifecycle Management
(OLM) framework enables the ODH operator to simplify the operation and maintenance
of the ML platform. Almost all operational work is done in a Kubernetes-native way, and
you can even spin up multiple ML platforms with a few clicks. Kubernetes and the OLM
also allow you to implement the Platform as Code (PaC) approach, enabling you to
implement GitOps practices.

Running on Kubernetes 347

The ML platform you've seen in this book works well with vanilla Kubernetes instances or
any other flavors of Kubernetes or even a Kubernetes-based platform. In fact, the original
ODH repository was mainly designed and built for Red Hat OpenShift.

Avoiding vendor lock-ins
Kubernetes protects you from vendor lock-ins. Because of the extra layer of
containerization and container orchestration, all your workloads do not run directly on
the infrastructure layer but through containers. This allows the ML platform to be hosted
in any capable infrastructure. Whether on-premises or in the cloud, the operations will
be the same. This also allows you to seamlessly switch to a different cloud provider when
needed. This is one of the advantages of using this ML platform when compared to the
commercial platforms provided by cloud vendors. You are not subject to vendor lock-in.

For example, if you use Azure ML as your platform of choice, you will be stuck with using
Azure as your infrastructure provider. You will not be able to move your entire ML project
to another cloud vendor without changing the platform and deployment architecture.
In other words, the cost of switching to a different cloud vendor is so high that you are
basically stuck with the original vendor.

Considering other Kubernetes platforms
It is not mandatory for this ML platform to run on the vanilla Kubernetes platform only.
As mentioned in the previous section, the original ODH was designed to run on Red Hat
OpenShift, whereas in this book, you managed to make it run on minikube, a single-node
vanilla Kubernetes.

There are many other Kubernetes platforms out there, including those provided by the
major cloud providers. The following list includes the most common ones in no particular
order, but other emerging Kubernetes-based platforms have just entered the market or are
either in beta or in development as of this writing:

•	 Kubernetes

•	 Red Hat OpenShift Container Platform (OCP)

•	 Google Kubernetes Engine (GKE)

•	 Amazon Elastic Kubernetes Engine (EKS)

•	 Azure Kubernetes Service (AKS)

•	 VMware Tanzu

•	 Docker Enterprise Edition (Docker EE)

348 Machine Learning on Kubernetes

Although we have tested this platform in Kubernetes and Red Hat OpenShift, the ML
platform that you built in minikube can also be built in any of the above Kubernetes
platforms, and others. But, what about in the future? Where is ODH heading?

Roadmap
ODH is an active open source project primarily maintained by Red Hat, the largest open
source company in the world. ODH will keep getting updated to bring more and more
features to the product. However, because the ML and MLOps space is also relatively new
and still evolving, it is not unnatural to see significant changes and pivots in the project
over time.

As of writing this book, the next version of ODH includes the following changes (as
shown in Figure 11.2):

Figure 11.2 – ODH's next release

Summary 349

There are other features of ODH that you have not yet explored because they are more
geared toward data engineering and the data analytics space. One example is data
virtualization and visualization using Trino and Superset. If you want to learn more
about these features, you can explore them in the same ML platform you built by simply
updating the kfdef file to include Trino and Superset as components of your ML
platform. You will find some examples of these kfdef files in the ODH GitHub project.

You can look for future roadmaps of ODH at the following URL:
https://opendatahub.io/docs/roadmap/future.html.

In the future, there could be another open source ML platform project that will surface on
the market. Keep an open mind, and never stop exploring other open source projects.

Summary
The knowledge that you have gained in this book about ML, data science and data
engineering, MLOps, and the ML life cycle applies to any other ML platforms as well.
You have not only gained important insights and knowledge about running ML projects
in Kubernetes but also gained the experience of building the platform from scratch. In
the later chapters, you were able to gain hands-on experience and wear the hats of a data
engineer, data scientist, and MLOps engineer.

While writing this book, we realized that the subject is vast and that going deep into each
of the topics covered in the book may be too much for some. Although we have touched
upon most of the components of the ML platform, there is still a lot more to learn about
each of the components, especially Seldon Core, Apache Spark, and Apache Airflow. To
further your knowledge of these applications, we recommend going through the official
documentation pages.

ML, AI, and MLOps are still evolving. On the other hand, even though Kubernetes is
almost 8 years old, it is still relatively new to most enterprise organizations. Because of
this, most professionals in this space are still learning, while at the same time establishing
new standards.

Keep yourself updated on the latest ML and Kubernetes trends. You already have enough
knowledge to advance your learning in this subject on your own.

https://opendatahub.io/docs/roadmap/future.html

350 Machine Learning on Kubernetes

Further reading
•	 Seldon core documentation: https://docs.seldon.io/projects/seldon-

core/en/latest/index.html

•	 Team topologies: https://teamtopologies.com

•	 Open Data Hub: https://opendatahub.io

https://docs.seldon.io/projects/seldon-core/en/latest/index.html
https://docs.seldon.io/projects/seldon-core/en/latest/index.html
https://teamtopologies.com
https://opendatahub.io

Index

A
Airflow

about 192
components 195
directed acyclic graph (DAG) 192, 193
DAG repository, configuring 197-199
features, exploring 194
installation, validating 196, 197
ML model deployments,

automating in 210
runtime images, configuring 199-209
used, for building Spark

data pipeline 274
used, for executing Spark

data pipeline 274
Airflow DAG

building, with visual editor 278-284
Airflow Scheduler 195
Airflow Web 195
Airflow Worker 195
Amazon Elastic Kubernetes

Engine (EKS) 347
Amazon Web Services (AWS) 31, 41
Apache Airflow 78, 97

Apache Spark
about 78, 115
job execution 116, 117

Apache Spark cluster
creating 118-120
creating, with JupyterHub 120-123

Apache Spark cluster on-demand
provisioning, with ODH 118

application page
exploring 271-274

artificial intelligence (AI)
about 5, 29
deep learning (DL) 5
machine learning (ML) 5

AutoKeras 339
AutoML

considering 338, 339
frameworks, exploring 339

Auto-PyTorch 339
Auto-sklearn 339
Azure Kubernetes Service (AKS) 347

B
Base Elyra Notebook Image 133

352 Index

big data
about 91
testing 23

BigML 339
bins 230
box plot 230
business

issues 226, 227
business subject-matter expert (SME) 11
business units (BUs) 10

C
central processing unit (CPU) 12, 21
Cloud Native Computing

Foundation (CNCF) 30
command-line interface (CLI) 243
compute nodes 37
computer vision (CV) 4
concept drift 342
ConfigMap 38
container 37
container runtime interface (CRI) 36
Continuous deployment (CD) 20
continuous integration/continuous

delivery (CI/CD) 20
control plane

about 35
API server 35
controllers 35
key-value database 35
scheduler 35

convolutional neural networks (CNNs) 5
CR definition (CRD) 42
custom data

adding, to run 158-163
custom notebook container image

building 134-139

custom notebook image
using 133

custom resource (CR) 42, 171, 239
custom resource definition

(CRD) 118, 175, 238

D
data

about 245, 246
cleaning 227, 228
format 227
location 227
processing 227, 228
reading, from database 246-252
reading, from S3 bucket 252, 253
sources 227
visualizing and exploring, with

JupyterHub 294-302
data augmentation 233
database

data, reading from 246-252
data cleansing 23
data drift 342
data engineering 23
data engineering, components

data ingestion 70
data transformation 71
exploring 69, 70
storage 71

data engineers
about 11
responsibilities 132
workflow 72

Data frame joins
notebook, preparing 254-260

data frames
persisting 260-263

Index 353

data ingestion 23, 70
data pipeline DAG

about 275
container images, registering

to execute 276-278
running 276
Spark cluster, starting 276
Spark cluster, stopping 276
stages 275

data scientist
about 11
workflow 75

datasets
cleaning 264-268

data transformation 23, 71
data variance 229
density plot 231
developers 11
DevOps

about 23
benefits, best practices 20, 21
benefits, exploring 19, 20
data engineering 23, 24

directed acyclic graph (DAG)
about 192, 193
enhancing, by editing code 287-290
running and validating 285-287
tasks, types 193

Docker Enterprise Edition
(Docker EE) 348

Domain Name System (DNS) 38
drift 342

E
Elastic Compute Cloud (EC2) 41
Elyra's pipeline editor

used, for creating pipeline 210-219

end-to-end (E2E) 12, 31
engineered features 232
enrichment 253
execution dependency 193
Executors page

exploring 271
experiment 148
exploratory data analysis

data 229
performing 229

exploratory data analysis, data
box plot 230
density plot 231, 232
histogram 230

exploratory data analysis (EDA) 8

F
feature engineering (FE)

about 9, 21, 70, 232, 233
data augmentation 233

feature extraction 9
feature set 9

G
generative adversarial network (GAN) 5
Google Cloud Platform (GCP)

about 31
virtual machine (VM),

provisioning 59-63
Google Compute Engine (GCE) 41
Google Kubernetes Engine (GKE) 347
Google Remote Procedure

Call (gRPC) 174
Grafana

about 78, 97
configuring 328-335

354 Index

graphical user interface (GUI) 78
graphics processing unit (GPU) 20

H
H2O.ai 339
histogram 230
HyperText Transfer Protocol (HTTP) 40

I
identity and access management

(IAM) 343
Imagestream 137
information technology (IT) 42
Infrastructure as Code (IaC) 20
ingress controller

enabling, on Kubernetes cluster 82
inputs and outputs (I/Os) 18
integrated development

environment (IDE) 12, 78
Internet of Things (IoT) devices 8
Internet Protocol (IP) 38

J
Java virtual machine (JVM) 270
JupyterHub

about 78, 97, 105, 106
installation, validating 107-112
used, for building and tuning

model 302-310
used, for creating Apache

Spark cluster 120-123
used, for visualizing and

exploring data 294-302
using 105, 106

Jupyter Notebook
about 78
running 113-115
Spark application, writing and

running from 123-130

K
Keycloak

about 79, 141
clients 93
configuration, importing for

ODH components 93-98
configuring, for authentication 92, 93
installing, on Kubernetes 83-88
realm 92
URL 83
user, creating 98-100
users and groups 93

kubectl
about 44
installing 44
installing, on Linux 44
installing, on macOS 45, 46
installing, on Windows 46

Kubernetes
about 30, 347
cloud-agnostic 41, 42
ODH operator, installing on 79-81
platforms, considering 347, 348
running on 31, 346
vendor lock-ins, avoiding 347

Kubernetes cluster
ingress controller, enabling on 82
setting up, locally 56, 57

Kubernetes components
ConfigMap and Secret 38
control plane 35

Index 355

exploring 34
ingress 40
Kubernetes objects, defining

to run application 37
pod 37
services 38
storage 39, 40
worker nodes 36, 37

Kubernetes environment
kubectl, installing 44
minikube, installing 47
OLM, installing 57-59
setting up, locally 44

Kubernetes objects
container image 37
defining, to run application 37
deployment 37
namespace 37

Kustomize scripts 100

L
Linux

used, for installing kubectl 44
used, for installing minikube 47

logical platform architecture 225
Ludwig 339

M
machine learning (ML)

about 4, 5, 91, 253
adhering, to compliance policies 344
business expectations, setting 340, 341
challenges 7
continuous delivery, maintaining 343
data, significance 6, 7

dealing, with incorrect results 342
dealing, with real-world data 341
governance, applying 344-346
operationalizing 340
right approach, selecting 6
security, managing 343, 344
value, delivering 5, 6
versus traditional programming 18, 19

macOS
used, for installing kubectl 45
used, for installing minikube 48, 49

minikube
installing 47
installing, on Linux 47
installing, on macOS 48, 49
installing, on Windows 50-55
using Podman Driver 105

Minio 78, 141
MLBox 339
ML challenges

bigger aspects of project, focusing on 7
fail-fast culture 11, 12
silos, breaking down 10

ML engineering 132, 133
MLflow

about 78, 97, 139, 140
authentication 141, 142
backend store 141
installation, validating 142-147
used, for tracking model

experiments 310-313
used, for versioning models 314, 315
using, as model registry system 164-167
using, for experiment tracking 147-158

MLflow components
about 140
authentication 141, 142

356 Index

backend store 141
server 140
storage 141

MLJAR 339
ML lifecycle

reproducibility 236
ML model

about 18
building 233-235
deploying 235
deployments, automating in Airflow 210
evaluating 233
evaluation criteria, selecting 233, 234

MLOps
about 21
collaborating, over project

life cycle 28, 29
DevOps 23
fast feedback loop 26-28
ML 21-23
ML project, life cycle 25, 26

ML platform
AutoML, considering 338, 339
characteristics 12
commercial vendors 339
components 13, 79
data pipeline, executing 76
model deployment 76
monitoring 77
ODH 340
overview 12
reviewing 224, 225
security and governance 77
services 76
source code management 77
technical capabilities 13, 14
use cases, identifying 338

ML project
about 21-23
data analysis 9
data collection 8
data verification 8
feature extraction 8
infrastructure 9
life cycle 25, 26
life cycle, stages 25, 26
model development 9
monitoring 9
OSS, role in 29, 30
process management 9
resource management 9

model
building and tuning, with

JupyterHub 302-310
calling 323, 324
containerizing 172-174
dashboard, configuring 328-335
deploying, as service 315-323
deploying, with Seldon

controller 174-178
Grafana, configuring 328-335
inferencing, with Seldon Core 170
monitoring 324
monitoring components 325-327
monitoring, with Seldon Core 179-191
packaging, with Seldon Core 179-191
running, with Seldon Core 179-191
versioning, with MLflow 314, 315
wrapping, with Python 171

model as a service (MaaS) 26
model development, components

data exploration 73
experimentation 74
exploring 72, 73
model building 74

Index 357

model tuning 74
storage 74
tracking 74

model experiments
tracking, with MLflow 310-313

model registry 74
model serving 170
model training 18

N
notebook

preparing, for Data frame joins 254-260
NotebookOperator 193

O
OAuth2 77, 83, 343
observability 21
ODH components

configuring 100-102
Keycloak configuration,

importing 93-98
ODH operator

about 78
installing, on Kubernetes 79-81

OLM objects
ClusterServiceVersion 44
OperatorGroup 44
Subscription 44

one-hot encoding 233
Open Data Hub (ODH)

about 77-79, 225, 338, 340, 348, 349
installing 102-105
used, for provisioning Apache

Spark cluster on-demand 118
OpenID Connect (OIDC) 77, 83, 343

open source software (OSS)
about 5
role, in ML projects 29, 30

operations 11
Operator Lifecycle Manager (OLM)

about 43, 346
installing 57-59

Operators 42-43
outlier 230
overfitting 233

P
pandas 250
Parquet 263
PersistentVolumeClaim (PVC) 39
PersistentVolume (PV) 39
platform as a service (PaaS) 346
Platform as Code (PaC) 346
pod 37
Podman Driver

minikube, using 105
precision 234
profiles 121
prometheus 78
PySpark 250
Python

used, for wrapping model 171

R
recall 234
Red Hat OpenShift Container

Platform (OCP) 347
relational database management

system (RDBMS) 227
replication controllers 38

358 Index

REpresentational State Transfer
(REST) 26, 35

roles, ML project
business subject-matter expert (SME) 11
data engineers 11
data scientist 11
developers 11
operations 11

run 148

S
S3 bucket

data, reading from 252, 253
scaling 233
Secure Sockets Layer (SSL) 40
Seldon controller

used, for deploying model 174-178
Seldon Core

about 78
used, for inferencing model 170
used, for monitoring model 179-191
used, for packaging model 179-191
used, for running model 179-191

Seldon Deployment CR
sections 176-178

self-service platform
about 68, 69
benefits 68

shuffles 271
single sign-on (SSO) 93, 344
software as a service (SaaS) 345
Spark application

writing and running, from
Jupyter Notebook 123-130

Spark cluster
about 119
automated provisioning, for

development 238-241
Spark data pipeline

building 254
building, with Airflow 274
data 245, 246
data frames, persisting 260-263
data, reading from database 246-252
data, reading from S3 bucket 252, 253
datasets, cleaning 264-268
designing 254
environment, preparing 242-245
executing, with Airflow 274
monitoring, with Spark UI 268, 269
notebook, preparing for Data

frame joins 254-260
writing 241

Spark data pipeline, monitoring
with Spark UI

Application page, exploring 271-274
Executors page, exploring 271
Workers page, exploring 270

Spark executors 262
Spark UI

used, for monitoring Spark
data pipeline 268, 269

stream-aligned teams 345
subject matter expert (SME) 25, 73, 227

T
tasks 192, 262
team collaboration 21
technical capabilities, ML platform

data pipelining 14
data processing 14

Index 359

logging 13
ML life cycle 14
model deployment 14
model packaging 14
observability 13
on-demand resource allocation 14
security 13
workflow automation 13

TPOT 339
tracking server 139
traditional programming

versus machine learning (ML) 18, 19

U
Uniform Resource Locator (URL) 40

V
virtual CPUs (vCPUs) 56
virtual machines (VMs)

about 116, 204
provisioning, on Google Cloud

Platform (GCP) 59-63
visual editor

about 274
used, for building Airflow DAG 278-284

VMware Tanzu 348

W
Windows

used, for installing kubectl 46
used, for installing minikube 50-55

worker nodes
about 36, 37, 270
container runtime 36
Kubelet 36
Kube proxy 36

workers page
exploring 270

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

362 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

The Kubernetes Workshop
Zachary Arnold, Sahil Dua, Wei Huang, Faisal Masood, Melony Qin,
Mohammed Abu Taleb
ISBN: 978-1-83882-075-6

•	 Get to grips with the fundamentals of Kubernetes and its terminology

•	 Share or store data in different containers running in the same pod

•	 Create a container image from an image definition manifest

•	 Construct a Kubernetes-aware continuous integration (CI) pipeline for deployments

•	 Attract traffic to your app using Kubernetes ingress

•	 Build and deploy your own admission controller

https://www.packt.com/product/cloud-and-networking/b14870-the-kubernetes-workshop/

Other Books You May Enjoy 363

The Kubernetes Bible

Nassim Kebbani, Piotr Tylenda, Russ McKendrick

ISBN: 978-1-83882-769-4

•	 Manage containerized applications with Kubernetes

•	 Understand Kubernetes architecture and the responsibilities of each component

•	 Set up Kubernetes on Amazon Elastic Kubernetes Service, Google Kubernetes
Engine, and Microsoft Azure Kubernetes Service

•	 Deploy cloud applications such as Prometheus and Elasticsearch using Helm charts

•	 Discover advanced techniques for Pod scheduling and auto-scaling the cluster

•	 Understand possible approaches to traffic routing in Kubernetes

https://www.packt.com/product/cloud-and-networking/b14719-the-kubernetes-bible/

364

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Machine Learning on Kubernetes, we'd love to hear your thoughts!
If you purchased the book from Amazon, please click here to go straight to the Amazon
review page for this book and share your feedback or leave a review on the site that you
purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-803-24180-2
https://packt.link/r/1-803-24180-2

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Part 1:
The Challenges of Adopting ML and Understanding MLOps
(What and Why)
	Chapter 1: Challenges in Machine Learning
	Understanding ML
	Delivering ML value
	Choosing the right approach
	The importance of data

	Facing the challenges of adopting ML
	Focusing on the big picture
	Breaking down silos
	Fail-fast culture

	An overview of the ML platform
	Summary
	Further reading

	Chapter 2: Understanding MLOps
	Comparing ML to traditional programming
	Exploring the benefits of DevOps
	Understanding MLOps
	ML
	DevOps
	ML project life cycle
	Fast feedback loop
	Collaborating over the project life cycle

	The role of OSS in ML projects
	Running ML projects on Kubernetes
	Summary
	Further reading

	Chapter 3: Exploring Kubernetes
	Technical requirements
	Exploring Kubernetes major components
	Control plane
	Worker nodes
	Kubernetes objects required to run an application

	Becoming cloud-agnostic through Kubernetes
	Understanding Operators
	Setting up your local Kubernetes environment
	Installing kubectl
	Installing minikube
	Installing OLM

	Provisioning a VM on GCP
	Summary

	Part 2:
The Building Blocks of an MLOps Platform and How to Build One on Kubernetes
	Chapter 4: The Anatomy of a Machine Learning Platform
	Technical requirements
	Defining a self-service platform
	Exploring the data engineering components
	Data engineer workflow

	Exploring the model development components
	Understanding the data scientist workflow

	Security, monitoring, and automation
	Introducing ODH
	Installing the ODH operator on Kubernetes
	Enabling the ingress controller on the Kubernetes cluster
	Installing Keycloak on Kubernetes

	Summary
	Further reading

	Chapter 5: Data Engineering
	Technical requirements
	Configuring Keycloak for authentication
	Importing the Keycloak configuration for the ODH components
	Creating a Keycloak user

	Configuring ODH components
	Installing ODH

	Understanding and using JupyterHub
	Validating the JupyterHub installation
	Running your first Jupyter notebook

	Understanding the basics of Apache Spark
	Understanding Apache Spark job execution

	Understanding how ODH provisions Apache Spark cluster on-demand
	Creating a Spark cluster
	Understanding how JupyterHub creates a Spark cluster

	Writing and running a Spark application from Jupyter Notebook
	Summary

	Chapter 6: Machine Learning Engineering
	Technical requirements
	Understanding ML engineering
	Using a custom notebook image
	Building a custom notebook container image

	Introducing MLflow
	Understanding MLflow components
	Validating the MLflow installation

	Using MLFlow as an experiment tracking system
	Adding custom data to the experiment run

	Using MLFlow as a model registry system
	Summary

	Chapter 7: Model Deployment and Automation
	Technical requirements
	Understanding model inferencing with Seldon Core
	Wrapping the model using Python
	Containerizing the model
	Deploying the model using the Seldon controller

	Packaging, running, and monitoring a model using Seldon Core
	Introducing Apache Airflow
	Understanding DAG
	Exploring Airflow features
	Understanding Airflow components
	Validating the Airflow installation
	Configuring the Airflow DAG repository
	Configuring Airflow runtime images

	Automating ML model deployments in Airflow
	Creating the pipeline by using the pipeline editor

	Summary

	Part 3:
How to Use the MLOps Platform and Build
a Full End-to-End
Project Using the
New Platform
	Chapter 8: Building a Complete ML Project Using
the Platform
	Reviewing the complete picture of the ML platform
	Understanding the business problem
	Data collection, processing, and cleaning
	Understanding data sources, location, and the format
	Understanding data processing and cleaning

	Performing exploratory data analysis
	Understanding sample data

	Understanding feature engineering
	Data augmentation

	Building and evaluating the ML model
	Selecting evaluation criteria
	Building the model
	Deploying the model

	Reproducibility
	Summary

	Chapter 9: Building Your
Data Pipeline
	Technical requirements
	Automated provisioning of a Spark cluster for development
	Writing a Spark data pipeline
	Preparing the environment
	Understanding data
	Designing and building the pipeline
	Using the Spark UI to monitor your data pipeline

	Building and executing a data pipeline
using Airflow
	Understanding the data pipeline DAG
	Building and running the DAG

	Summary

	Chapter 10: Building, Deploying, and Monitoring
Your Model
	Technical requirements
	Visualizing and exploring data using JupyterHub
	Building and tuning your model using JupyterHub
	Tracking model experiments and versioning using MLflow
	Tracking model experiments
	Versioning models

	Deploying the model as a service
	Calling your model

	Monitoring your model
	Understanding monitoring components
	Configuring Grafana and a dashboard

	Summary

	Chapter 11: Machine Learning on Kubernetes
	Identifying ML platform use cases
	Considering AutoML
	Commercial platforms
	ODH

	Operationalizing ML
	Setting the business expectations
	Dealing with dirty real-world data
	Dealing with incorrect results
	Maintaining continuous delivery
	Managing security
	Adhering to compliance policies
	Applying governance

	Running on Kubernetes
	Avoiding vendor lock-ins
	Considering other Kubernetes platforms

	Roadmap
	Summary
	Further reading

	Index
	Other Books You May Enjoy

