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Preface
Machine Learning (ML) is the new black. Organizations are investing in adopting and 
uplifting their ML capabilities to build new products and improve customer experience. 
The focus of this book is on assisting organizations and teams to get business value out of 
ML initiatives. By implementing MLOps with Kubernetes, data scientists, IT operations 
professionals, and data engineers will be able to collaborate and build ML solutions that 
create tangible outcomes for their business. This book enables teams to take a practical 
approach to work together to bring the software engineering discipline to the ML project 
life cycle.

You'll begin by understanding why MLOps is important and discover the different 
components of an ML project. Later in the book, you'll design and build a practical 
end-to-end MLOps project that'll use the most popular OSS components. As you 
progress, you'll get to grips with the basics of MLOps and the value it can bring to your 
ML projects, as well as gaining experience in building, configuring, and using an open 
source, containerized ML platform on Kubernetes. Finally, you'll learn how to prepare 
data, build and deploy models quickly, and automate tasks for an efficient ML pipeline 
using a common platform. The exercises in this book will help you get hands-on with 
using Kubernetes and integrating it with OSS, such as JupyterHub, MLflow, and Airflow.

By the end of this book, you'll have learned how to effectively build, train, and deploy an 
ML model using the ML platform you built.

Who this book is for
This book is for data scientists, data engineers, IT platform owners, AI product owners, 
and data architects who want to use open source components to compose an ML 
platform. Although this book starts with the basics, a good understanding of Python 
and Kubernetes, along with knowledge of the basic concepts of data science and data 
engineering, will help you grasp the topics covered in this book much better.
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What this book covers
Chapter 1, Challenges in Machine Learning, discusses the challenges organizations face 
in adopting ML and why a good number of ML initiatives may not deliver the expected 
outcomes. The chapter further discusses the top few reasons why organizations face  
these challenges.

Chapter 2, Understanding MLOps, continues building on the identified set of problems 
from Chapter 1, Challenges in Machine Learning, and discusses how we can tackle the 
challenges in adopting ML. The chapter will provide the definition of MLOps and how 
it helps organizations to get value out of their ML initiatives. The chapter also provides a 
blueprint on how companies can adopt MLOps in their ML projects.

Chapter 3, Exploring Kubernetes, first describes why we have chosen Kubernetes as the 
basis for MLOps in this book. The chapter further defines the core concept of Kubernetes 
and assists you in creating an environment where the code can be tested. The world is 
changing fast and part of this high-velocity disruption is the availability of the cloud and 
cloud-based solutions. This chapter provides an overview of how the Kubernetes-based 
platform can give you the flexibility to run your solution anywhere.

Chapter 4, The Anatomy of a Machine Learning Platform, takes a 1,000-foot view of what 
an ML platform looks like. You already know what problems MLOps solves. This chapter 
defines the components of an MLOps platform in a technology-agnostic way. You will 
build a solid foundation on the core components of an MLOps platform.

Chapter 5, Data Engineering, covers an important part of any ML project that is often 
missed. A good number of ML tutorials/books start with a clean dataset, maybe a CSV 
file to build your model against. The real world is different. Data comes in many shapes 
and sizes and it is important that you have a well-defined strategy to harvest, process, and 
prepare data at scale. This chapter will define the role data engineering plays in a successful 
ML project. It will discuss OSS tools that can provide the basis for data engineering. The 
chapter will then talk about how you can install these toolsets on the Kubernetes platform.

Chapter 6, Machine Learning Engineering, will move the discussion to the model building 
tuning and deployment activities of an ML development life cycle. The chapter will discuss 
providing a self-service solution to data scientists so they can work more efficiently and 
collaborate with data engineering teams and fellow data scientists using the same platform. 
It will also discuss OSS tools that can provide the basis for model development. The chapter 
will then talk about how you can install these toolsets on the Kubernetes platform.
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Chapter 7, Model Deployment and Automation, covers the deployment phase of the ML 
project life cycle. The model you build knows the data you provided to it. In the real 
world, however, the data changes. This chapter discusses the tools and techniques to 
monitor your model performance. This performance data could be used to decide whether 
the model needs retraining on a new dataset or whether it's time to build a new model for 
the given problem.

Chapter 8, Building a Complete ML Project Using the Platform, will define a typical ML 
project and how each component of the platform is utilized in every step of the project life 
cycle. The chapter will define the outcomes and requirements of the project and focus on 
how the MLOps platform facilitates the project life cycle.

Chapter 9, Building Your Data Pipeline, will show how a Spark cluster can be used to ingest 
and process data. The chapter will show how the platform enables the data engineer to 
read the raw data from any storage, process it, and write it back to another storage. The 
main focus is to demonstrate how a Spark cluster can be created on-demand and how 
workloads could be isolated in a shared environment.

Chapter 10, Building, Deploying, and Monitoring Your Model, will show how the JuyterHub 
server can be used to build, train, and tune models on the platform. The chapter will show 
how the platform enables the data scientist to perform the modeling activities in a self-
serving fashion. This chapter will also introduce MLflow as the model experiment tracking 
and model registry component. Now you have a working model, how do you want to share 
this model for the other teams to consume? This chapter will show how the Seldon Core 
component allows non-programmers to expose their models as REST APIs. You will see 
how the deployed APIs automatically scale out using the Kubernetes capabilities.

Chapter 11, Machine Learning on Kubernetes, will take you through some of the key ideas 
to bring forth with you to further your knowledge on the subject. This chapter will cover 
identifying use cases for the ML platform, operationalizing ML, and running on Kubernetes.

To get the most out of this book
You will need a basic working knowledge of Kubernetes and Python to get the most out of 
this book's technical exercises. The platform uses multiple software components to cover 
the full ML development life cycle. You will need the recommended hardware to run all 
the components with ease.
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Running the platform requires a good amount of compute resources. If you do not have 
the required number of CPU cores and memory on your desktop or laptop computer, we 
recommend running a virtual machine on Google Cloud or any other cloud platform.

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code from the book's GitHub repository (a link is available in the next 
section). Doing so will help you avoid any potential errors related to the copying and 
pasting of code.

A good follow-up after you finish with this book is to create a proof of concept within your 
team or organization using the platform. Assess the benefits and learn how you can further 
optimize your organization's data science and ML project life cycle.

Download the example code files
You can download the example code files for this book from GitHub at  https://
github.com/PacktPublishing/Machine-Learning-on-Kubernetes. If 
there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781803241807_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "Notice that you will need to adjust the following command and 
change the quay.io/ml-on-k8s/ part before executing the command."

A block of code is set as follows:

docker tag scikit-notebook:v1.1.0 quay.io/ml-on-k8s/scikit-
notebook:v1.1.0

https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes
https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781803241807_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803241807_ColorImages.pdf
http://quay.io/ml-on-k8s/
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When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

gcloud compute project-info add-metadata --metadata enable-
oslogin=FALSE

Bold: Indicates a new term, an important word, or words that you see onscreen. For 
instance, words in menus or dialog boxes appear in bold. Here is an example: "The 
installer will present the following License Agreement screen. Click I Agree."

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book 
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book, we would be grateful if you would 
report this to us. Please visit www.packtpub.com/support/errata, selecting your 
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise  
in and you are interested in either writing or contributing to a book, please visit 
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on 
the site that you purchased it from? Potential readers can then see and use your unbiased 
opinion to make purchase decisions, we at Packt can understand what you think about 
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://packt.com
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Share Your Thoughts
Once you've read Machine Learning on Kubernetes, we'd love to hear your thoughts! Please 
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're 
delivering excellent quality content.

https://packt.link/r/1-803-24180-2


In this section, we will define what MLOps is and why it is critical to the success of your 
AI journey. You will go through the challenges organizations may encounter in their AI 
journey and how MLOps can assist in overcoming those challenges.

The last chapter of this section will provide a refresher on Kubernetes and the role 
it plays in bringing MLOps to the OSS community. This is by no means a guide to 
Kubernetes, and you should consult other sources for a guide on Kubernetes.

This section comprises the following chapters:

•	 Chapter 1, Challenges in Machine Learning

•	 Chapter 2, Understanding MLOps

•	 Chapter 3, Exploring Kubernetes

Part 1:  
The Challenges of 
Adopting ML and 

Understanding 
MLOps  

(What and Why)





1
Challenges in 

Machine Learning
Many people believe that artificial intelligence (AI) is all about the idea of a humanoid 
robot or an intelligent computer program that takes over humanity. The shocking news is 
that we are not even close to this. A better term for such incredible machines is human-
like intelligence or artificial general intelligence (AGI).

So, what is AI? A more straightforward answer would be a system that uses a combination 
of data and algorithms to make predictions. AI practitioners call it machine learning or 
ML. A particular subset of ML algorithms, called deep learning (DL), refers to an ML 
algorithm that uses a series of steps, or layers, of computation (Goodfellow, Bengio, and 
Courville, 2017). This technique employs deep neural networks (DNNs) with multiple 
layers of artificial neurons that mimic the architecture of the human brain. Though it 
sounds complicated enough, it does not always mean that all DL systems will have a better 
performance compared to other AI algorithms or even a traditional programming approach.

ML is not always about DL. Sometimes, a basic statistical model may be a better fit 
for a problem you are trying to solve than a complex DNN. One of the challenges of 
implementing ML is about selecting the right approach. Moreover, delivering an ML 
project comes with other challenges, not only on the business and technology side but 
also in people and processes. These challenges are the primary reasons why most ML 
initiatives fail to deliver their expected value.
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In this chapter, we will revisit a basic understanding of ML and understand the challenges 
in delivering ML projects that can lead to a project not delivering its promised value.

The following topics will be covered:

•	 Understanding ML

•	 Delivering ML value

•	 Choosing the right approach

•	 Facing the challenges of adopting ML

•	 An overview of the ML platform

Understanding ML
In traditional computer programming, a human programmer must write a clear set of 
instructions in order for a computer program to perform an operation or provide an 
answer to a question. In ML, however, a human (usually an ML engineer or data scientist) 
uses data and an algorithm to determine the best set of parameters for a model to yield 
answers or predictions that are usable. While traditional computer programs provide 
answers using exact logic (Yes/No, Correct/Wrong), ML algorithms involve fuzziness (Yes/
Maybe/No, 80% certain, Not sure, I do not know, and so on).

In other words, ML is a technique for solving problems by using data along with an 
algorithm, statistical model, or a neural network, to infer or predict the desired answer 
to a question. Instead of explicitly writing instructions on how to solve a problem, we 
use a bunch of examples and let the algorithm figure out the best way (the best set of 
parameters) to solve the problem. ML is useful when it is impossible or extremely difficult 
to write a set of instructions to solve a problem. A typical example problem where ML 
shines is computer vision (CV). Though it is easy for any normal human to identify a cat, 
it is impossible or extremely difficult to manually write code to identify if a given image is 
of a cat or not. If you are a programmer, try thinking about how you would write this code 
without ML. This is a good mental exercise.
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The following diagram illustrates where DL and ML sit in terms of AI:

Figure 1.1 – Relationship between AI, ML, and DL

AI is a broad subject covering any basic, rule-based agent system that can replace a human 
operator, ML, and DL. But ML alone is another broad subject. It covers several algorithms, 
from basic linear regression to very deep convolutional neural networks (CNNs). In 
traditional programming, no matter which language or framework we use, the process 
of developing and building applications is the same. In contrast, ML has a wide variety 
of algorithms, and sometimes, they require a vastly different approach to utilize and 
build models from. For example, a generative adversarial network (GAN), which is an 
architecture used in many creative ML models to generate fake human faces, is trained 
differently to a basic decision tree model.

Because of the nature of ML projects, some practices in software engineering may not 
always apply to ML, and some practices, processes, and tools that are not present in 
traditional programming must be invented.

Delivering ML value
There are many books, videos, and lectures available on ML and its related topics. In this 
book, we will cover a more adaptive approach and show how open source software (OSS) 
can provide the basis for you and your organization to benefit from the AI revolution. 

In later chapters, we will tackle the challenges behind operationalizing ML projects by 
deploying and using an open source toolchain on Kubernetes. Toward the end of the 
book, we will build a reusable ML platform that provides essential features that will help 
contribute to delivering a successful ML project.
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Before we dig deeper into the software, we must have foundational knowledge, and we 
must know the practical steps required to successfully deliver business value with ML 
initiatives. With this knowledge, we will be able to address some of the challenges of 
implementing an ML platform and identify how they will help deliver the expected value 
from our ML projects. The primary reason why these promised values are not realized is 
that they don't get to production. For example, imagine you built an excellent ML model 
that predicts the outcome of football World Cup matches, but no one could use it during 
the tournament. As a result, even though the model is successful, it failed to deliver its 
expected business value. Most organization's AI and ML initiatives are in the same state. 
The data science or ML engineering team may have built a perfectly working ML model 
that could have helped the organization's business and/or its customers; however, these 
models do not usually get deployed to production. So, what are the challenges teams face 
that prevent them from putting their ML models into production?

Choosing the right approach
Before deciding to use ML for a given project, understand the problem first and assess if 
it can be solved by ML. Invest enough time in working with the right stakeholder to see 
what the expectations are. Some problems may be better suited to traditional approaches, 
such as when you have predefined business rules for a given system. It is faster and easier 
to code rules than is it to train a model, plus you do not need a huge amount of data.

While deciding whether to use ML or not, you can think in terms of whether pattern-
based results will work for your problem. If you are building a system that reads data 
from the frequent-flyer database of an airline to find customers to which you want to 
send a promotion, a rule-based system may also give you good and acceptable results. 
An ML-based system may give you better matches for certain scenarios, but will the time 
spent on building this system be worth it?

The importance of data
The efficiency of your ML model depends on the quality and accuracy of the data, but 
unfortunately, data collection and processing activities do not get the attention they 
deserve, which proves costly in later stages of the project in terms of the model not being 
suitable enough for the given task.

"Everyone wants to do the model work, not the data work."

– Data Cascades in High-Stakes AI, Sambasivan et al. (see the Further 
reading section)
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The paper cited here discusses this challenge. An interesting example quoted in the paper 
is of a team building a model to detect a particular pattern from patient scans, which 
works brilliantly with test data. However, the model failed in production because the 
scans being fed onto the model contained tiny dust particles, resulting in the inferior 
performance of the model. This example is a classic case of a team being focused on model 
building and not on how it will be used in the real world.

One thing that teams should put focus on is data validation and cleansing. Many times, 
data is often missing or is not correct—for example, a string field in a number column, 
different date formats in the same field, or the same identifier (ID) for different records if 
the records come from different systems. All this data anomaly may result in an inefficient 
model that will lead to inferior performance.

Once you've been through this process and come to the decision that yes, ML is the way to 
go… what next?

Facing the challenges of adopting ML
Organizations are eager to adopt ML to drive their business growth. In many projects, the 
teams become too focused on technical brilliance while not delivering the business value 
expected from the ML initiative. This can cause early failures that may result in reduced 
investment for future projects. These are the two main challenges that businesses are 
facing in making ML mainstream in all the various parts of the business, as outlined here:

•	 Keeping the focus on the big picture

•	 Siloed teams

Focusing on the big picture
The first challenge organizations face is building an ecosystem where ML models create 
value for the business. The challenging part is that teams often do not focus on all aspects of 
a project and instead focus only on specific areas, resulting in poor value for the business.

How many organizations that we know of are successful in their ML journey? Beyond 
the Googles, Metas (formerly Facebook), and Netflixs of the world, there are few success 
stories. The number one reason is that the teams put focus just on building the model. 
So, what else is there beyond the algorithm? Google published a paper about the hidden 
technical debt in ML projects (see the Further reading section at the end of this chapter), 
and it provides a good summary of things that we need to consider to be successful.
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Have a look at the following diagram:

Figure 1.2 – The components of an ML system

Can you see the small block in Figure 1.2? The block in the picture captioned ML is the 
ML model development part, and you can see that there are a lot more processes involved 
in ML projects. Let's understand a few of them, as follows:

•	 Data collection and data verification: To have a reliable and trustworthy model, we 
need a good set of data. ML is all about finding patterns in the data and predicting 
unseen data results using those patterns. Therefore, the better the quality of your 
data, the better your model will perform. The data, however, comes in all shapes and 
sizes. Some of it may reside in files, some in proprietary databases; a dataset may 
come from data streams, and some data may need to be harvested from Internet of 
Things (IoT) devices. On top of that, the data may be owned by different teams with 
different security and regulatory requirements. Therefore, you need to think about 
technologies that allow you to collect, transform, and process data from various 
sources and in a variety of formats.

•	 Feature extraction and analysis: Often, assumptions about data quality and 
completeness are incorrect. Data science teams perform an activity called 
exploratory data analysis (EDA) in which they read and process data from various 
sources as fast as they can. Teams further improve their understanding of the data 
before they invest time in processing the data at scale and going to the model-
building stage. Think about how your team or organization can facilitate the data 
exploration to speed up your ML journey.
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Data analysis leads to a better understanding of data, but feature extraction is another 
thing. This is a process of identifying, through experiments, a set of data attributes 
that influences the accuracy of the model output and identifying which attributes 
are considered irrelevant or considered noise. For example, in an ML model that 
classifies if a bank transaction is fraudulent or not, the name of the account holder 
is considered to be irrelevant, or noise, while the amount of the transaction could 
be an important feature. The output of this process is a transformed version of the 
dataset that contains only relevant features and is formatted for consumption in the 
ML model training process or fitness function. This is sometimes called a feature set. 
Teams need a tool for performing such analysis and transforming data into a format 
that is consumable for model training. Data collection, feature extraction, and analysis 
are also collectively called feature engineering (FE).

•	 Infrastructure, monitoring, and resource management: You need computers to 
process and explore data, build and train your models, and deploy ML models for 
consumption. All these activities need processing power and storage capacity, at 
the lowest possible cost. Think about how your team will get access to hardware 
resources on-demand and in a self-service fashion. You need to plan how data 
scientists and engineers will be able to request the required resources in the fastest 
manner. At the same time, you still need to be able to follow your organization's 
policies and procedures. You also need system monitoring to optimize resource 
utilization and improve the operability of your ML platform.

•	 Model development: Once you have data available in the form of consumable 
features, you need to build your models. Model building requires many iterations 
with different algorithms and different parameters. Think about how to track 
the outcomes of different experiments and where to store your models. Often, 
different teams can reuse each other's work to increase the velocity of the teams 
further. Think about how teams can share their findings. Teams must have a tool 
that can facilitate model training and experiment runs, record model performance 
and experiment metadata, store models, and manage the tagging of models and 
promotion to an acceptable and deployable state.

•	 Process management: As you see, there are a lot of things to be done to make a 
useful model. Think about the processes of automating model deployment and 
monitoring processes. Different personas would be working on different things 
such as data tasks, model tasks, infrastructure tasks, and more. The team needs 
to collaborate and share to achieve a particular outcome. The real world keeps on 
changing: once your model is deployed into production, you may need to retrain 
your model with new data regularly. All these activities need well-defined processes 
and automated stages so that the team can continue working on high-value tasks.
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In summary, you will need an ecosystem that can provide solution components for all of 
the following building blocks. This single platform will increase the team's velocity via 
consistent experience within the team for all the needs of an ML system: 

•	 Fetching, storing, and processing data

•	 Training, tuning, and tracking models 

•	 Deploying and monitoring models

•	 Automating repetitive tasks, such as data processing and model deployment

But how can we make different teams collaborate and use a common platform to do  
their tasks?

Breaking down silos
To complete an ML project, you need to have a team that comprises various roles. 
However, with diverse roles, there comes a challenge of communication, team dynamics, 
and conflicting priorities. In enterprises, these roles often belong to different teams in 
different business units (BUs). 

ML projects need a variety of teams and personas to be successful. The following 
screenshot shows some of the roles and responsibilities that are required to complete a 
simple ML project:

Figure 1.3 – Silos involved in ML projects
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Let's look at these roles in more detail here:

•	 Data scientist: This role is the most understood one. This persona or team is 
responsible for exploring the data and running experiment iterations to determine 
which algorithm is suitable for a given problem.

•	 Data engineers: The persona or team in this role is responsible for ingesting data from 
various sources, cleaning the data, and making it useful for the data science teams.

•	 Developers and operations: Once the model is built, this team is responsible for 
taking the model and deploying it to be used. The operations team is responsible for 
making sure that computers and storage are available for the other teams to perform 
data processing, model life-cycle operations, and model inference.

•	 A business subject-matter expert (SME): Even though data scientists build the 
ML model, understanding data and the business domain is critical to building 
the right model. Imagine a data scientist who is building a model for predicting 
COVID-19 without understanding the different parameters. An SME, which would 
be a medical doctor in this case, would be required to assist the data scientists in 
understanding data before going on to the model-building phase.

Of course, even with the building blocks in place, you're unlikely to succeed at the  
first attempt.

Fail-fast culture
Building a cross-functional team is not enough. Make sure that the team is empowered to 
make its own decisions and feels comfortable experimenting with different approaches. 
The data and ML fields are fast-moving, and the team may choose to adapt a recent 
technology or process or let go of an existing one based on the given success criteria. 

Form a team of people who are passionate about the work, and when you give them 
autonomy, you will have the best possible outcome. Enable your teams so that they can 
adapt to change quickly and deliver value for your business. Establish an iterative and fast 
feedback cycle where teams receive feedback on work that has been delivered so far. A 
quick feedback loop will put more focus on solving the business problem.

However, this approach brings its own challenges. Adopting modern technologies may 
be difficult and time-consuming. Think of Amazon Marketplace: if you want to sell some 
new hot thing, by using Amazon Marketplace, you can bring your product to market 
faster because the marketplace takes care of a lot of moving parts required to make a 
sale. The ML platform you will learn about in this book enables you to experiment with 
modern approaches and modern technologies with ease by supplying basic common 
services and sandbox environments for your team to experiment fast.
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It is critical to the success of projects that teams that belong to distinct groups form a 
cross-functional and autonomous team. This new team will move with higher velocity 
without internal friction and avoid tedious processes and delays. It is critical that the 
cross-functional team is empowered to drive its own decisions and be supported with  
self-serving platforms so it can work in an independent manner. The ML platform 
you will see in this book will provide the basis of one such platform where teams can 
collaborate and share.

Now, let's take a look at what kind of platform will help you address the challenges we 
have discussed.

An overview of the ML platform
In this section, we will talk about the capabilities of the ML platform that you will need 
to consider. The aim is to make you aware of the basic building blocks that could form an 
ecosystem for your team to help you in your ML journey. An ML platform can be thought 
of as a set of components that assists in the faster development and deployment of ML 
models and data pipelines.

There are three main characteristics of an ML platform, as outlined here:

•	 A complete ecosystem: The platform should provide an end-to-end (E2E) solution 
that includes data life-cycle management, ML life-cycle management, application 
life-cycle management, and observability.

•	 Built on open standards: The platform should provide a way to extend and build 
on the existing baseline. Because the field is fast-moving, it is critical that you can 
further enhance, tailor, and optimize platforms for your specific needs.

•	 Self-serving: The platform should be able to provide the resources required by 
teams automatically and on-demand, from hardware requests to deploying software 
in production. The platform automates the provisioning of resources based on 
enterprise controls and recovers them once the job is completed. The resources  
can be central processing units (CPUs), memory, or disk, or can be software such 
as integrated development environments (IDEs) to write code or a combination  
of these.
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The following diagram shows the various components of an ML platform that serves 
different personas, allowing them to collaborate on a common platform:

Figure 1.4 – Personas and their interaction with the platform

Apart from the characteristics presented in Figure 1.4, the platform must have the 
following technical capabilities:

•	 Workflow automation: The platform should have some form of workflow 
automation capability where both data engineers can create jobs that perform 
repetitive tasks such as data ingestion and preparation and data scientists can 
orchestrate model training and automate model deployments.

•	 Security: The platform must be secured to prevent data leaks and data loss that can 
have a negative impact on the business.

•	 Observability: We do not want to run applications without observability, whether 
it is a traditional application or an ML model. Deploying applications in production 
without observability is like riding a bike blindfolded. The platform should have a 
good amount of observability where you can monitor the health and performance 
of the entire system or sub-system in near real time. This should also include an 
alerting capability.

•	 Logging: Logging plays a key role in understanding what happened when systems 
start behaving in an unexpected way. The platform must have a solid logging 
mechanism to allow operations teams to better support the ML project.
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•	 Data processing and pipelining: Because ML projects rely on a huge amount of 
data, the platform must include a reliable fully featured data processing and data 
pipelining solution that can scale horizontally.

•	 Model packaging and deployment: Not all data scientists are experienced software 
engineers. Although some may have an experience in writing applications, it is not 
safe to assume that all data scientists can write production-grade applications and 
deploy them to production. Therefore, the platform must be able to automatically 
package an ML model into an application and serve it.

•	 ML life cycle: The platform must also be capable of managing ML experiments, 
tracking performance, storing training and experiment metadata and feature sets, 
and versioning models. This not only allows data scientists to work efficiently, but 
also allows them to work collaboratively.

•	 On-demand resource allocation: One important feature an ML platform should 
have is the capability that allows data scientists and data engineers to provision 
their own runtime resources automatically and on-demand. This eliminates the 
need for manual requisition of resources and eliminates time wasted on waiting and 
handovers with operations teams. The platform must allow platform users to create 
their own environment and to allocate the right amount of compute resources they 
need to do their jobs.

There are already platform products that have most, if not all, of the capabilities you have 
just learned about. What you will learn in the later chapters of this book is how to build 
one such platform based on OSS on top of Kubernetes. 

Summary
Even though ML is not new, recent advancements in relatively cheap computing power 
have allowed many companies to start investing in it. This widespread availability of 
hardware comes with its own challenges. Often, teams do not put the focus on the big 
picture, and that may result in ML initiatives not delivering the value they promise. 

In this chapter, we have discussed two common challenges that enterprises face while 
going through their ML journey. The challenges span from the technology adoption to 
the teams and how they collaborate. Being successful with your ML journey will require 
time, effort, and practice. Expect it to be more than just a technology change. It will 
require changing and improving the way you collaborate and use technology. Make your 
team autonomous and prepare it to adapt to changes, enable a fail-fast culture, invest in 
technology, and always keep an eye on the business outcome.
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We have also discussed some of the important attributes of an E2E ML platform. We will 
talk about this topic in-depth in the later parts of this book.

In the next chapter, we will introduce an emerging concept in ML projects, ML operations 
(MLOps). Through this, the industry is trying to bring the benefits of software engineering 
practices to ML projects. Let's dig in.

Further reading
If you want to learn more about the challenges in machine learning, you might be 
interested in the following articles as well.

•	 Hidden Technical Debt in Machine Learning, Sculley et al., 2015: https://
papers.nips.cc/paper/5656-hidden-technical-debt-in-
machine-learning-systems.pdf

•	 Data Cascades in High-Stakes AI, Sambasivan et al., 2021: https://storage.
googleapis.com/pub-tools-public-publication-data/
pdf/0d556e45afc54afeb2eb6b51a9bc1827b9961ff4.pdf

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/0d556e45afc54afeb2eb6b51a9bc1827b9961ff4.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/0d556e45afc54afeb2eb6b51a9bc1827b9961ff4.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/0d556e45afc54afeb2eb6b51a9bc1827b9961ff4.pdf
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Understanding 

MLOps
Most people from software engineering backgrounds know about the term development-
operations (DevOps). To us, DevOps is about collaboration and shared responsibilities 
across different teams during the software development life cycle (SDLC). The teams 
are not limited to a few information technology (IT) teams; instead, it involves everyone 
from the organization who is a stakeholder in the project. No more segregation between 
building software (developers' responsibility) and running it in production (operations' 
responsibility). Instead, the team owns the product. DevOps is popular because it helps 
teams increase the velocity and reliability of the software being developed.

In this chapter, we will cover the following topics:

•	 Comparing machine learning (ML) to traditional programming

•	 Exploring the benefits of DevOps

•	 Understanding ML operations (MLOps)

•	 The role of open source software (OSS) in ML projects

•	 Running ML projects on Kubernetes

Before we can apply DevOps to ML projects, we must first understand the difference 
between traditional software development and ML development processes.
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Comparing ML to traditional programming
As with traditional application development, an ML project is also a software project, but 
there are fundamental differences in the way they are delivered. Let's understand how an 
ML project is different from a traditional software application.

In traditional software applications, a software developer writes a program that holds an 
explicitly handcrafted set of rules. At runtime or prediction time, the built software applies 
these well-defined rules to the given data, and the output of the program is the result 
calculated based on coded rules.

The following diagram shows the inputs and outputs (I/Os) for a traditional  
software application:

Figure 2.1 – Traditional software development

In an ML project, the rules or patterns are not completely known, therefore we cannot 
explicitly describe rules in code as we can in traditional programming. In ML, there is a 
process that extracts rules based on a given sample pair of data and its associated expected 
results. This process is called model training. In the model-training process, the chosen 
ML algorithm calculates rules based on the given data and the verified answer. The output 
of this process is the ML model. This generated model can then be used to infer answers 
during prediction time. In contrast with traditional software development, instead of 
using explicitly written rules, we use a generated ML model to get a result.

The following diagram shows that the ML model is generated at training time, which is 
then used to produce answers or results during prediction time:
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Figure 2.2 – ML development

Though traditional software development and ML are fundamentally different, there  
are some synergies in the engineering processes between the two approaches. Given  
that traditional software development is very mature in the current era, we can apply 
lessons from it to our ML projects. Primarily, of course, both traditional programming 
and ML are software. Whichever processes we apply to build software in the traditional 
world—such as versioning, packaging of software as containers, automated deployments, 
and so on—these can be applied to ML projects too. However, we also must accommodate 
added processes in ML, such as model training.

So, why do we really need DevOps in ML projects? What does it bring to the table? Let's 
have a look at this in the next section.

Exploring the benefits of DevOps
DevOps is not just about toolsets. Say you have a tool available that can run unit tests for 
you. However, if the team has no culture of writing test cases, the tool would not be useful. 
DevOps is about how we work together on tasks that span across different teams. So, the 
three primary areas to focus on in DevOps are these:

•	 People: Teams from multiple disciplines to achieve a common goal

•	 Processes: The way teams work together

•	 Technology: The tools that facilitate collaboration across different teams
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DevOps is built on top of Agile development practices with the objective of streamlining 
the software development process. DevOps teams are cross-functional, and they have the 
autonomy to build software through continuous integration/continuous delivery (CI/
CD). DevOps encourages teams to collaborate over a fast feedback loop to improve the 
efficiency and quality of the software being developed. 

The following diagram illustrates a complete DevOps cycle for traditional software 
development projects:

Figure 2.3 – A mobius loop showcasing a DevOps process

Through DevOps, teams can have well-defined and streamlined development practices 
for building, testing, deploying, and monitoring software in production. All this makes it 
possible to quickly and reliably release software into production. Some of the benefits that 
come out of DevOps practices are presented here:

•	 CI/CD: CI is a phase through which software is merged and verified as soon as the 
developer pushes it into the code repository. CD is a series of stages through which 
software is built, tested, and packaged in a deployment ready form. Continuous 
deployment (also known as CD) is a phase where the deployment-ready code is 
picked and deployed to be consumed by end users. In DevOps, all these processes 
are automated.

•	 Infrastructure as Code (IaC): IaC is an approach to automate the provisioning 
and configuring of IT infrastructure. This aspect enables the team to request and 
configure infrastructure on an on-demand and as-needed basis. Imagine that a data 
scientist in your team needs a graphics processing unit (GPU) to do their model 
training. If we follow the practice of configuring and provisioning IaC, the request 
for a GPU can be automatically fulfilled by the system. In the next chapters, you will 
see this capability in action.
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•	 Observability: Observability relates to how well we understand the state of our 
running system. DevOps makes systems observable via federating logging from 
different components, monitoring the systems (such as central processing unit 
(CPU), memory, response times, and so on), and providing a way to correlate 
various parts of the system for a given call through call tracing. All these 
capabilities, collectively, provide the basis for understanding the system state and 
help debug any issues without changing the code.

•	 Team collaboration: DevOps is not just about technology. In fact, the key focus 
area for the team is to collaborate. Collaboration is how multiple individuals from 
different teams work toward a common goal. Business, development, and operations 
teams working together is the core of DevOps. For ML-based projects, the team will 
have data scientists and data engineers on top of the aforementioned roles. With 
such a diverse team, communication is critical for building collective understanding 
and ownership of the defined outcome. 

So, how can we bring the benefits of a DevOps approach to ML projects? The answer  
is MLOps.

Understanding MLOps
MLOps is an emerging domain that takes advantage of the maturity of existing software 
development processes—in other words, DevOps combined with data engineering  
and ML disciplines. MLOps can be simplified as an engineering practice of applying 
DevOps to ML projects. Let's take a closer look at how these disciplines form the 
foundation of MLOps.

ML
ML projects involve activities that are not present in traditional programming. You learned 
in Figure 2.3 that the bulk of the work in ML projects is not model development. Rather, 
it is more data gathering and processing, data analysis, feature engineering (FE), process 
management, data analysis, model serving, and more. In fact, according to the paper 
Hidden Technical Debt in Machine Learning Systems by D. Sculley et al., only 5% of the work 
is ML model development. Because of this, MLOps is not only focused on the ML model 
development task but mostly on the big picture—the entire ML project life cycle.
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Just as with DevOps, MLOps focuses on people, processes, and technology. But there are 
some complexities that MLOps has to address and DevOps doesn't have to. Let's look at 
some of these complexities in more detail here:

•	 First, unlike traditional programming, where your only input is code, in ML, 
your input is both code and data. The ML model that is produced in the model 
development stage is highly dependent on data. This means that even if you do 
not change your code, if you train an ML algorithm using a different dataset, the 
resulting ML model will be different and will perform differently. When it comes to 
version control, this means that you not only version the code that facilitates model 
training, but you also need to version the data. Data is difficult to version because of 
the huge amount required, unlike code. One approach to address this is by using Git 
to keep track of a dataset version using the hash of the data. The actual data is then 
stored somewhere in remote storage such as a Simple Storage Service (S3) bucket. 
An open source tool called Data Version Control (DVC) can do this.

•	 Secondly, there are more personas involved and more collaboration required in ML 
projects. You have data scientists, ML engineers, and data engineers collaborating with 
software engineers, business analysts, and operations teams. Sometimes, these personas 
are very diverse. A data scientist may not completely understand what production 
deployment really is. On the other hand, operations people (and sometimes even 
software engineers) do not understand what an ML model is. This makes collaboration 
in ML projects more complicated than a traditional software project.

•	 Third, the addition of a model development stage adds more pivot points to the life 
cycle. This complicates the whole process. Unlike traditional software development, 
you only need to develop one set of working code. In ML, a data scientist or ML 
engineer may use multiple ML algorithms and generate multiple resulting ML 
models, and because only one model will get selected to be deployed to production, 
those models are compared with each other in terms of performance against 
other model properties. MLOps accommodates this complex workflow of testing, 
comparing, and selecting models to be deployed to production.

Building traditional code to generate an executable binary usually takes a few 
seconds to a few minutes. However, training an ML algorithm to produce an ML 
model can take hours or days, sometimes even weeks when you use certain deep 
learning (DL) algorithms. This makes setting up an Agile iterative time-bound 
cadence a little complicated. An MLOps-enabled team needs to handle this delay 
in their workflow, and one way to do this is to start building the other model while 
waiting for other models to be trained completely. This is very difficult to achieve if 
the data scientists or ML engineers are training their ML algorithms using their own 
laptops. This is where the use of a scalable infrastructure comes in handy.
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•	 Lastly, because ML models' performances rely on the data used during training, 
if this data no longer represents the real-world situation, the model accuracy will 
degrade, resulting in poor prediction performance. This is called model drift, and 
this needs to be detected early. This is usually incorporated as part of the monitoring 
process of the ML project life cycle. Aside from the traditional metrics that you 
collect in production, with ML models, you also need to monitor model drift and 
outliers. Outlier detection, however, is much more difficult to implement, and 
sometimes requires you to train and build another ML model. Outlier detection is 
about detecting incoming data, in production, that does not look like the data the 
model was trained on: you do not want your model to provide irrelevant answers 
to these non-related questions. Another reason is that this could be an attack or an 
attempt to abuse the system. Once you have detected model drift or outliers, what 
are you going to do with this information? It could very well be just about raising an 
alert, or it could trigger some other automated processes.

Because of the complexity ML adds when compared to traditional programming, the need 
to address these complexities led to the emergence of MLOps.

DevOps
In terms of deployment, think about all the sets of code you write in an ML project: the code 
that performs the data processing, the code that facilitates model training and FE, the code 
that runs the model inference, and the code that performs model drift and outlier detection. 
All of these sets of code need to be built, packaged, and deployed for consumption at scale. 
This code, once running in production, needs to be monitored and maintained as well. 
This is where the CI/CD practices of DevOps help. The practice of automating software 
packaging, testing, securing, deploying, and monitoring came from DevOps.

Data engineering
Every ML project involves data engineering, and ML projects deal with a lot of data 
a lot more than code. Therefore, it is mandatory that your infrastructure includes data 
processing capabilities and that it can integrate with existing data engineering pipelines in 
your organization.

Data engineering is a huge subject—an entire book could be written about it. But what 
we want to emphasize here is that MLOps intersects with data engineering practices, 
particularly in data ingestion, data cleansing, data transformation, and big data testing. 
In fact, your ML project could be just a small ML classification model that is a subpart of 
a much bigger data engineering or data analytics project. MLOps adopts the best practices 
in data engineering and analytics.
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A representation of MLOps is provided in the following diagram:

Figure 2.4 – MLOps as the intersection of ML, data engineering, and DevOps

To put it in another way, MLOps, as shown in Figure 2.4, is the convergence of ML, 
DevOps, and data engineering disciplines that focus on running ML in production. 
It is also about encapsulating ML projects in a highly scalable, reliable, observable 
infrastructure. Finally, it is also about establishing repeatable processes for teams to 
perform the tasks required to successfully deliver ML projects, as shown in Figure 2.4, 
while supporting collaboration with each other.

With this basic understanding of MLOps, let's dig a little deeper into the ML project life 
cycle. We'll start by defining what are the general stages of an ML project.
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ML project life cycle
As with DevOps, which provides a series of activities that could be performed in a 
DevOps cycle, you can see a series of steps that could be used to take your ML project 
from start to finish in Figure 2.5. These steps or stages will become part of your ML 
projects' life cycle and provide a consistent way to take your ML projects into production. 
The ML platform that you build in this book is the ecosystem that allows you to 
implement this flow. In later chapters of this book, you will use this flow as the basis for 
the platform. A summary of the stages in an ML project could be depicted as follows:

Figure 2.5 – A ML project life cycle

Here is a definition of each stage of the project life cycle presented in the preceding diagram:

•	 Codify the problem and define success metrics: In this stage, the team evaluates 
if the given business problem can be solved using ML. Notice the word team here, 
which would consist of data scientists and the business subject-matter expert 
(SME) at a minimum. The team will then define a success criterion to assess the 
prediction of the model. 

•	 Ingest, clean, and label data: In this stage, the team assesses if the data required 
to train the model is available. The team will play an additional role, that of data 
engineers, to help move the project during this stage and beyond. The team will 
build components to ingest data from a variety of sources, clean the captured data, 
possibly label the data, and store it. This data will form the basis of ML activities.

•	 FE: FE is about transforming the raw data into features that are more relevant to 
the given problem. Consider you are building a model that predicts if any given 
passenger on the Titanic will survive or not. Imagine the dataset you got contains 
the ticket number of the passenger. Do you think ticket numbers have something 
to do with the survival of the passenger? A business SME may mention that ticket 
numbers may be able to provide which class the customer belongs to on the ship, 
and first-class passengers may have easier access to lifeboats on the ship.

•	 Model building and tuning: In this stage, the team starts experimenting with 
different models and different hyperparameters. The team will test the model 
against the given dataset and compare the results of each iteration. The team will 
then determine the best model for the given success metrics and store the model in 
the model registry.
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•	 Model validation: In this stage, the team validates the model against a new set of 
data that is not available at the training time. This stage is critical as it determines 
if the model is generalized enough for the unseen data, or if the model only works 
well on the training data but not on the unseen data—in other words, avoiding 
overfitting. Model validation also involves identifying model biases.

•	 Model deployment: In this stage, the team picks the model from the model registry, 
packages it, and deploys it to be consumed. Traditional DevOps processes could 
be used here to make the model available as a service. In this book, we will focus 
on model as a service (MaaS), where the model is available as a REpresentational 
State Transfer (REST) service. However, in certain scenarios, the model could be 
packaged as a library for other applications to use it.

•	 Monitoring and validation: In this stage, the model will be continually monitored 
for response times, the accuracy of predictions, and whether the input data is 
like the data on which the model is trained. We have briefly touched on outlier 
detection. In practice, it works like this: imagine that you have trained your model 
for rush-hour vacancy in a public transport system, and the data the model is 
trained against is where citizens use the public transport system for over a year. The 
data will have variances for weekends, public holidays, and any other events. Now, 
imagine if, due to the COVID-19 lockdown, no one is allowed to use the public 
transport system. The real world is not the same as compared to the data our model 
is trained upon. Naturally, our model is not particularly useful for this changed 
world. We will need to detect this anomaly and generate alerts so that we can retrain 
our model with the new datasets if possible.

You have just learned the stages of the ML project life cycle. Although the stages may look 
straightforward, in the real world, there are several good reasons why you need to go back 
to previous stages in certain cases.

Fast feedback loop
A keen observer may have noticed that a key attribute of the Agile and cross-functional 
teams that we presented in the first chapter is not available in the stages presented so far in 
this chapter. Modern DevOps is all about fast feedback loops to course-correct early in the 
project life cycle. The same concept will bring even more value to ML projects because ML 
projects are more complex than traditional software applications.

Let's see at which stages we can assess and evaluate the progress of the team. After 
evaluation, the team can decide to course-correct by going back to an earlier stage or 
moving on to the next stage.
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The following diagram shows the ML project life cycle with feedback checkpoints from 
various stages, denoted by green arrows:

Figure 2.6 – A ML project life cycle with feedback checkpoints

Let's look at this in more detail here:

•	 Checkpoint from the ingest, clean, and label data stage: After Stage 1 is 
completed, you have started to process data as defined in the second stage. You may 
find that the actual data is incomplete or not correct. You can take this feedback to 
improve your understanding of data and may need to redefine the success criteria 
of the project or, in worse cases, stop the project because the required data is not 
available. In many scenarios, teams find additional data sources to fill the data gap 
identified in the second stage.

•	 Checkpoint from the model building and tuning stage: During this stage, the 
team may find that the features available to train the model may not be enough to 
get the desired metric. At this point, the team may decide to invest more time in 
finding new features or revisit the raw data to determine if more data is needed.

•	 Checkpoint from the model validation stage: During this stage, the model will be 
validated against a new dataset that the model has never seen before. Poor metrics 
at this stage may trigger the tuning of the model, or you may decide to go back to 
find more features for better model performance,

•	 Checkpoint from the model monitoring and validation stage: Once the model 
moves into production, it must be monitored continuously to validate if the model 
is still relevant to the real and changing world. You need to find out if the model 
is still relevant and, if not, how you can make the model more useful. The result 
of this may trigger any other stage in the life cycle; as you can see in Figure 2.6, 
you may end up retraining an existing model with new data or going to a different 
model altogether, or even rethinking if this problem should be tackled by ML. There 
is no definitive answer on which stage you end up at; just as with the real world, 
it is unpredictable. However, what is important is the capability to re-assess and 
re-evaluate, and to continue to deliver value to the business.
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You have seen the stages of the ML project life cycle and the feedback checkpoints from 
which you decided whether to continue to the next stage or go back to previous stages. 
Now, let's look at the personas involved in each of the stages and their collaboration points.

Collaborating over the project life cycle
We have defined a streamlined process for building our model. Let's try to define how a 
team of diverse roles and abilities will collaborate on this model. Recall from the previous 
chapter that building a model takes effort from different teams with different abilities. It is 
important to note that in smaller projects, the same person may be representing different 
roles at the same time. For example, in a small project, the same person can be both a data 
scientist and a data engineer.

The following diagram shows an ML project life cycle with an overlay of feedback points 
and personas:

Figure 2.7 – A ML project life cycle with feedback checkpoints and team roles

The ML project within your organization needs collaboration between data scientists and 
the business SMEs in the first stage. Imagine the team wants to predict, based on a picture, 
the probability of a certain type of skin disease.

•	 At this stage, a collaboration between data scientists and doctors (the SME for this 
case) is needed to define the problem and the performance metrics. Without this 
collaboration, the project would not be successful.

•	 In the second stage—the data ingestion and cleaning stage—data engineers will need 
to work along with the business SMEs to understand which data is available and how 
to clean and label it correctly. The knowledge the SMEs will bring during this stage is 
critical as this is responsible for creating a useful dataset for future stages.

•	 In the third stage, data scientists, data engineers, and SMEs will collaborate to work 
on the base data from the second stage and process it to extract useful features 
from it. The data scientists and SMEs will provide guidance on which data can be 
extracted, and the data engineer will write processing logic to do so.
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•	 In the fourth and the fifth stages, most of the work will be done by data scientists to 
build and tune the model as per the given criteria. However, based on whether or 
not the model has managed to achieve the defined metric, the team may decide to 
go back to any of the previous stages for better performance.

Once the model is built, the DevOps team experts can package, version, and deploy the 
model to the correct environment.

•	 The last stage is critical: the team uses observability capabilities to monitor the 
performance of the model in the production environment. After monitoring the 
model performance in the real world and based on the feedback, the team may 
again decide to go back to any of the previous stages to make the model more useful 
for the business.

Now that you have a good understanding of the challenges we have highlighted and how 
you can overcome these challenges using the ML life cycle, the next phase is to have a 
platform that supports this life cycle while providing a solution for each component 
defined in the big picture (see Chapter 1, Challenges in Machine Learning) with self-service 
and automation capabilities. What better way to start a journey while collaborating with 
the open source community?

The role of OSS in ML projects
Now that you have a clear understanding of what problems the ML platform is expected 
to solve, let's see why open source is the best place to start. We should start with some 
definitions to set the basics, right?

Free OSS is where the users have the freedom to run, copy, distribute, study, change, and 
improve the software.

OSS
For more information on OSS, see the following link:

https://www.gnu.org/philosophy/free-sw.html

OSS is everywhere. Linux is the most common operating system, running in data 
centers and powering the cloud around the world. Apache Spark and related open source 
technologies are the foundation for the big data revolution for a range of organizations. 
Open source-based artificial intelligence (AI) technologies such as TensorFlow and 
MLflow are at the forefront of AI advancement and are used by hundreds of organizations. 
Kubernetes, the open source container orchestration platform, has become the de facto 
standard for container platforms.

https://www.gnu.org/philosophy/free-sw.html
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The top players in computing—such as Amazon, Apple, Facebook, Google, Microsoft, 
and Red Hat, to name a few—have contributed to and owned major open source projects, 
and fresh players are joining all the time. Businesses and governments around the world 
depend on open source to power mission-critical and highly scalable systems every day.

One of the most successful open source projects in the cloud computing space is 
Kubernetes. Kubernetes was founded in mid-2014 and was followed by the release  
of its version 1.0 in mid-2015. Since then, it has become the de facto standard for 
container orchestration.

Moreover, the Cloud Native Computing Foundation (CNCF) was created by The Linux 
Foundation with the mission of making cloud computing ubiquitous. CNCF does this 
by bringing together the world's top engineers, developers, end users, and vendors. They 
also run the world's largest open source conferences. The foundation was created by using 
Kubernetes as the seed project. This is how Kubernetes sets the standard definition of 
cloud native. As of this writing, the foundation has 741 member organizations and 130 
certified Kubernetes distributions and platforms and has graduated 16 very successful 
open source projects. Among those projects is, of course, Kubernetes but also the 
Operator Framework, which you will learn more about in the next chapter.

Before the explosion of big data and cloud computing, ML projects were mostly academic. 
They seldom left the boundaries of colleges and universities, but this doesn't mean that 
AI, ML, and data science were not progressing forward. The academic world has actually 
created hundreds of open source Python libraries for mathematical, scientific, and statistical 
calculations. These libraries have become the foundation modern ML frameworks are built 
upon. The most popular ML frameworks at the time of writing—TensorFlow, PyTorch, 
scikit-learn, and Spark ML—are all open source. The most popular data science and ML 
development environments today—Jupyter Notebook, JupyterLab, JupyterHub, Anaconda, 
and many more—are also all open source.

ML is an evolving field, and it needs the vision of larger communities that go beyond 
any single organization. The process of working in a community-based style enables 
the collaboration and creativity that is required by ML projects, and open source is an 
important part of why ML is progressing at a tremendous speed.

You now have a basic understanding of how important OSS is in the AI and ML space. 
Now, let's take a closer look at why you should run ML projects on Kubernetes.
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Running ML projects on Kubernetes
For building reliable and scalable ML systems, you need a rock-solid base. Kubernetes 
provides the foundation for building scalable and reliable distributed systems along with 
the self-service capabilities that are required by our platform. The capability of Kubernetes 
to abstract the hardware infrastructure and consume it as a single unit is of great benefit to 
our platform.

Another key component is the ability of Kubernetes-based software to run anywhere, 
from small on-premises data centers to large hyperscalers (Amazon Web Services (AWS), 
Google Cloud Platform (GCP), Azure). This capability will give you the portability to 
run your ML platform anywhere you want. The consistency it brings to the consumer of 
your platform is brilliant as the team can experiment with extremely low initial costs on 
the cloud and then customize the platform for a wider audience in your enterprise.

The third and final reason to opt for Kubernetes is its capability to run different kinds 
of workloads. You probably remember from the previous chapter that a successful ML 
project needs not only ML but also infrastructure automation, data life cycle management, 
stateful components, and more. Kubernetes provides a consistent base to run diverse types 
of software components to create an end-to-end (E2E) solution for business use cases.

The following screenshot shows the layers of an ML platform. Kubernetes provides the 
scaling and abstracting layer on which an ML platform is built. Kubernetes offers the 
freedom of abstracting the underlying infrastructure. Because of this flexibility, we can 
run on a variety of cloud providers and on-premises solutions. The ML platform you will 
build in this book allows operationalization and self-service in the three wider areas of an 
ML project—FE, model development, and DevOps:

Figure 2.8 – An OSS-based ML platform

There you go: your ML platform will be based on OSS and will use Kubernetes as the 
hosting base. The strength of the open source Kubernetes communities will help you use 
the best technologies that will evolve as the field continues to mature.
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Summary
In this chapter, we have defined the term MLOps and suggested an ML project life cycle 
that is collaborative and provides early feedback. You have learned that with this project 
life cycle, the team can continuously deliver value to the business. You have also learned 
about some of the reasons why building a platform based on OSS makes sense and the 
benefits of community-driven software.

This completes the part of the book about setting the context, learning why a platform 
is needed, and discovering what kinds of problems it is expected to solve. In the next 
chapter, we will examine some basic concepts of the Kubernetes system that is at the heart 
of our ML platform.

Further reading
For more information regarding the topics that were covered in this chapter, take a look at 
the following resources:

•	 DevOps: Breaking the development-operations barrier https://www.
atlassian.com/devops

https://www.atlassian.com/devops
https://www.atlassian.com/devops
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Exploring 

Kubernetes
Now that you have seen that Kubernetes will form the basis of your machine learning 
(ML) platform, it's logical to refresh your knowledge of the underlying bedrock of 
our solution. Though there are many resources available on the internet on this topic 
of Kubernetes, we will briefly discuss the role of Kubernetes in the cloud era and the 
flexibility it provides for building solutions. You will also learn about Operators in 
Kubernetes and how they help simplify the installation and operation of Kubernetes 
workloads. By the end of this chapter, you will have built a running minikube instance 
either in your local machine or in the cloud. This is a single-node Kubernetes cluster that 
you will use as the base infrastructure to build and run the ML platform.

In this particular order, we will cover the following topics:

•	 Exploring Kubernetes major components

•	 Becoming cloud-agnostic through Kubernetes

•	 Understanding Operators

•	 Setting up your local Kubernetes environment

•	 (Optional) Provisioning a virtual machine (VM) on google cloud platform (GCP)
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Technical requirements
This chapter includes some hands-on setup. You will be setting up a Kubernetes cluster, 
and for this, you will need a machine with the following hardware specifications:

•	 A central processing unit (CPU) with at least four cores; eight are recommended

•	 Memory of at least 16 gigabytes (GB); 32 GB is recommended

•	 Disk with available space of at least 60 GB

This can be a physical machine such as a laptop, a server, or a VM running in the cloud 
that supports nested virtualization.

Exploring Kubernetes major components
There are many definitions of Kubernetes available on the web. We assume that, as a 
Kubernetes user, you already have a favorite pick. Therefore, in this section, you will see 
some basic concepts to refresh your Kubernetes knowledge. This section is by no means a 
reference or tutorial for the Kubernetes system.

From Chapter 2, Understanding MLOps, you have seen that Kubernetes provides the 
means for your ML platform to perform the following capabilities:

•	 Provide a declarative style of running software components: This capability will 
help your teams to be autonomous.

•	 Provide an abstraction layer for hardware resources: Through this capability, 
you can run your ML platform on a variety of hardware and provide on-demand 
resource scheduling.

•	 Provide an application programming interface (API) to interact with it: This  
will enable you to bring the automation for running different components onto your 
ML platform.

Let's start by defining the major components of the Kubernetes platform: the control plane 
and the worker nodes.
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Control plane
The control plane is a set of components that form the brains of the Kubernetes. It 
consists of an API server, a key-value database, a scheduler, and a set of controllers. Let's 
define each of these components, as follows:

•	 API server: This component provides a set of REpresentational State Transfer 
(REST) APIs to interact with the Kubernetes system. Everyone interacts with 
Kubernetes through this API. As a developer or operations engineer, you use 
the API, and internal Kubernetes components talk to the API server to perform 
different activities.

•	 Key-value database: The API server is stateless; it needs to have a persistent 
store where it can store different objects. The key-value database is fulfilled by a 
component called etcd. No other component of the Kubernetes system talks to this 
value store directly—this is only accessible by the API server.

•	 Scheduler: The scheduler component dictates where an application instance would 
be running. The scheduler selects the most suitable worker node based on the policy 
defined by the Kubernetes administrator.

•	 Controllers: There are multiple controllers running in the control plane. Each 
controller has a set task; for example, a node controller is responsible for monitoring 
the state of the nodes.

The following diagram shows the interaction between multiple control-plane components:

Figure 3.1 – Kubernetes control-plane components
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The control plane orchestrates the creation, update, and deletion of objects. It monitors 
and maintains the healthy state of the Kubernetes cluster. The control plane runs 
workloads that keep the cluster running. But what about the application workloads?

Worker nodes
As the name suggests, workers are a set of nodes that host the application software. For 
example, all ML platform components will be executed on the worker nodes. However, 
worker nodes also run a couple of Kubernetes components that make the communication 
channel between the control plane and the worker and manage running applications on 
the worker node. These are the key components running on the worker nodes besides  
the applications:

•	 Kube proxy: Its primary role is to manage network communications rules for your 
applications running on the node. 

•	 Kubelet: Think of the Kubelet software component as an agent running on each 
node. The primary role of this agent is to talk to the control-plane API server and 
manage applications running on the node. The agent also captures and sends the 
status of the node and the applications back to the control plane via the API.

•	 Container runtime: The container runtime component is responsible for running 
containers that host applications, as directed by the Kubelet. Docker is one such 
example; however, Kubernetes has defined a container runtime interface (CRI). 
CRI defines interfaces that Kubernetes uses and the Kubernetes administrator can 
choose any container runtime that is compatible with the CRI.

The following diagram shows the interaction between multiple worker-node components:

Figure 3.2 – Kubernetes worker components
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Worker nodes, also known as compute nodes, do the actual work of running the 
application workloads in the cluster. Running application workloads requires you to 
interact with the control plane using Kubernetes objects or resources. 

Kubernetes objects required to run an application
Now, let's define a set of Kubernetes objects that are commonly required to run an 
application on the Kubernetes system. When you build the components for your ML 
platform, you will be using these Kubernetes objects to run applications on top of 
Kubernetes. The objects are listed here:

•	 Namespace: One Kubernetes cluster is shared by multiple teams and projects. 
Namespaces provide a way to isolate Kubernetes resources. This isolation allows 
different teams, different environments, or even different applications to share the 
same cluster while keeping different configurations, network policies, resource 
quotas, and access control. It is like having a logical sub-cluster within the same 
Kubernetes cluster.

•	 Container image: When you want to run an application on Kubernetes, you need 
to package the application in a standard format. This packaged format, which 
consists of your application and all its dependencies, is called a container image, and 
the running instance of this image is called a container. It contains your application 
and all the dependencies, including the operating system resources and your 
application needs, in one common bundle.

•	 Deployment: This Kubernetes object represents an application's desired state on 
the cluster. A Deployment object contains information such as which container 
image you want to run and how many instances or replicas of containers you 
require. Kubernetes is periodically comparing the current cluster state to the 
desired state defined in the Deployment object. When Kubernetes finds that the 
current state is different from the desired state, it will then apply the necessary 
updates to the cluster to achieve the desired state. These updates include spinning 
up new containers with the container image defined in the Deployment object, 
stopping containers, and configuring network and other resources required by the 
Deployment object.

•	 Pods: A Pod is a fundamental unit of running applications in Kubernetes. It is also 
the smallest schedulable unit of deployment. It can contain one or more containers. 
Containers inside the pod share networking and disk resources. Containers running 
in a single pod are scheduled together on the same node while also having local 
communication with each other.
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•	 Services: How do pods communicate with each other? Pods communicate through 
the cluster network, and each pod has its own Internet Protocol (IP) address. 
However, pods may come and go. Kubernetes may restart a pod due to node health 
or scheduling changes, and when this happens, the pod's IP address will change. 
Furthermore, if the Deployment object is configured to run multiple replicas of the 
same pods, this means each replica will have its own IP address.

A service, in Kubernetes, exposes a set of pods as a single abstracted network 
service. It provides a single consistent IP address and Domain Name System (DNS) 
name that can route traffic and perform load balancing on pods. Think of a service 
as a load-balanced reverse proxy to your running pods.

•	 ConfigMaps and Secrets: We have our application packaged as a container image 
and running as a pod. The same pod will get deployed in multiple environments 
such as Dev, Test, and Production. However, each environment will have a 
different configuration, such as the database location or others. Hardcoding such 
a configuration into a container image is not the right approach. One reason is 
that the container image may be deployed in multiple environments with different 
environment settings. There must be a way to define configuration outside of the 
container image and inject this configuration onto our container at runtime!

ConfigMaps and Secrets provide a way to store configuration data in Kubernetes. 
Once you have these objects defined, they can be injected into your running pods 
either as a file within the pod's filesystem or as a set of environment variables. 

A ConfigMap is used to store and access configuration data. However, for sensitive 
configurations such as passwords and private keys, Kubernetes provides a special 
object for this purpose, known as a Secret. Just as with ConfigMaps, Secrets can be 
mounted either as files or as environment variables into pods.

The following diagram shows a logical relationship between Deployments, pods, 
ConfigMaps, and Services. A Deployment object provides an abstraction of a 
containerized application. This hides the complexity behind running replication 
controllers and pods. Deployments help you in running your application as a pod or 
group of pods, ConfigMaps provide an environment-specific configuration for your pods, 
and Services expose the pods in your deployment as a single network service:
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Figure 3.3 – Storage provisioning in Kubernetes

•	 Storage (PersistentVolume and PersistentVolumeClaim (PV and PVC)): Pods 
are ephemeral. Once they are destroyed, all the local resources of the pod are gone. 
More often, applications deployed as pods may need access to storage to read and 
write persistent data that can outlive pods.

Kubernetes promises to be the infrastructure abstraction layer on top of many 
hardware vendors and cloud providers. However, the way to request storage 
resources or provision disks is different with the various cloud providers and 
on-premises systems. This calls for a need to request storage resources in a 
consistent manner across different hardware vendors and cloud providers.

Kubernetes solution to this is to split storage resources into two Kubernetes objects. 
A PV is an object that defines a physical storage volume. It contains the details of 
the underlying storage infrastructure. A PVC, on the other hand, is an abstracted 
pointer to a PV. A PVC indicates that the owner has a claim on a specific PV. Pods 
storage resources are associated with PVCs and never directly with the PV; this way, 
the underlying storage definition is abstracted from the application.
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The following diagram shows the relation between pods, PVCs, and PVs. The pod mounts 
a PVC as a volume; the PVC works as an abstraction layer for the pod to request a physical 
volume to be associated with the pod; the PVC is bound to a PV that provides specifics of 
the disks:

Figure 3.4 – Storage provisioning in Kubernetes (continued)

•	 Ingress: Services enable access to pods within the Kubernetes cluster. For scenarios 
in which you need access to a pod from outside the Kubernetes cluster, Ingress 
is the answer. Ingress provides a way for you to expose a particular service to be 
accessible from outside the cluster. This enables you to map a HyperText Transfer 
Protocol (HTTP)-based Uniform Resource Locator (URL) that points to a service. 
Ingress may also use Secure Sockets Layer (SSL) on the exposed URL and can be 
configured to terminate SSL for traffic within the cluster. This way, the transport 
layer will be encrypted all the way up to the Ingress, while forwarding the traffic to 
the pod in plain HTTP. It is also worth noting that Kubernetes allows traffic to be 
encrypted all the way to the pod if needed.
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The following diagram shows how Ingress enables pods to be accessible from outside the 
Kubernetes cluster:

Figure 3.5 – The Ingress object in the Kubernetes cluster

Now that you have refreshed your understanding of Kubernetes, let's see how Kubernetes 
allows you to run your platform anywhere.

Becoming cloud-agnostic through Kubernetes
One of the key aspects of the ML platform we are building is that it enables the organization 
to run on any cloud or data center. However, each cloud has its own proprietary APIs to 
manage resources and deploy applications. For example, the Amazon Web Services (AWS) 
API uses an Elastic Compute Cloud (EC2) instance (a server) when provisioning a server, 
while Google Cloud's API uses a Google Compute Engine (GCE) VM (a server). Even the 
names of the resources are different! This is where Kubernetes plays a key role.

The wide adoption of Kubernetes has forced major cloud vendors to come up with tight 
integration solutions with Kubernetes. This allows anyone to spin up a Kubernetes cluster 
in AWS, GCP, or Azure in a matter of minutes.

The Kubernetes API enables you to manage cloud resources. Using the standard 
Kubernetes API, you can deploy applications on any major cloud provider without 
needing to learn about the cloud provider's API. The Kubernetes API has become the 
abstraction layer to manage workloads in the cloud. The ML platform you will build 
in this book will exclusively use Kubernetes APIs to deploy and run applications. This 
includes the software components that make up the ML platform.
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The following diagram shows how Kubernetes allows you to become cloud-agnostic. You 
interact with Kubernetes through the Kubernetes API, which eliminates or reduces the 
need to interact directly with the cloud vendor's API. In other words, Kubernetes provides 
a consistent way of interacting with your environment regardless of which cloud or data 
center it is running on:

Figure 3.6 – Kubernetes acting as a shim to cloud providers APIs 

Another important thing that came out of the Kubernetes community is Operators. You 
will be using Kubernetes Operators to deploy most of the components of the ML platform. 
Let's dig in.

Understanding Operators
In traditional information technology (IT) organizations, specialized and dedicated 
teams were required to maintain applications and other software components such as 
databases, caches, and messaging components. Those teams were continuously observing 
the software ecosystem and doing specific things such as taking backups for databases, 
upgrading and patching newer versions of software components, and more.

Operators are like system administrators or engineers, continuously monitoring 
applications running on the Kubernetes environment and performing operational tasks 
associated with the specific component. In other words, an Operator is an automated 
software manager that manages the installation and life cycle of applications on Kubernetes.

Put simply, instead of you creating and updating Kubernetes Objects (Deployment, 
Ingress, and so on), the Operator takes this responsibility based on the configuration you 
provide. The configuration that directs the Operator to perform certain tasks is called a 
custom resource (CR), and the structure or schema for a CR is defined by an object called 
a CR definition (CRD).
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The following diagram shows how an Operator automates application operations 
activities. In the traditional approach, the developer builds and develops the application, 
and then an application operations team provides support to run the application. One of 
the Kubernetes Operator's aims is to automate activities that operations people perform:

Figure 3.7 – An Operator is a software that automates tasks of the operations team

Kubernetes Operators can be complex. There are Operators that manage instances of 
databases, while some manage clusters of pods that work together. Some Operators own 
just 1 or 2 CRDs, while others could own more than 10 CRDs. The Operator Lifecycle 
Manager (OLM) simplifies the installation and management of Kubernetes Operators. 
Let's dig a little bit deeper into this.

In OLM, there are multiple stages required to install an Operator: creating a Deployment 
object for the Operator, configuring the required permissions to run an Operator (because 
it needs to observe changes in the Kubernetes cluster), and creating a CRD. To reduce 
the complexity of installing an Operator, a management layer may come in handy. OLM 
fulfills this role.
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OLM standardizes interactions with Operators. It requires that all interactions with the 
Operator be done through the Kubernetes API. OLM makes it easy to manage the life 
cycle of multiple Operators through a single standard interface—the Kubernetes API. Our 
ML platform will make use of a few Operators, and therefore it is useful to understand 
OLM and objects related to it. Let's look at them in more detail here:

•	 ClusterServiceVersion: This object defines metadata about an Operator. 
It includes the name and version of the Operator, along with the installation 
information and required permissions. It also describes the CRD owned and 
required by the Operator.

•	 Subscription: The Subscription object allows the user to install and update 
the Operator. OLM uses this object to install and configure Operators, CRDs, and 
related access-control objects.

•	 OperatorGroup: OperatorGroup provides a way to associate your Operator 
with a specific set of namespaces. OperatorGroup defines a set of namespaces  
to which the associated Operator will react. If we do not define a set of namespaces 
in the OperatorGroup definition, then the Operator will run globally across  
all namespaces.

In the next section, you will get to install and configure your local Kubernetes 
environment and install OLM on the Kubernetes cluster.

Setting up your local Kubernetes environment
Now that we have refreshed some basic Kubernetes concepts, it's time for the rubber to hit 
the road. In this section, we will prepare and validate our local Kubernetes clusters. The 
cluster we set up here will be used to host the ML platform in later chapters.

Installing kubectl
kubectl is a command-line tool that assists in running commands against a Kubernetes 
cluster. You can create Kubernetes objects, view logs, and monitor the progress of your 
actions through this utility. The following steps will install kubectl on your machine.

Installing kubectl on Linux
First, let's see the process for installing kubectl on a machine running Linux. Follow 
these next steps:

1.	 Create or Secure Shell (SSH) to a Terminal session on your Linux computer.
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2.	 Download the kubectl. Kubernetes command-line interface (CLI). We will be 
using version 1.22.4 throughout the book. The following two lines of code are  
one command:

curl -LO https://dl.k8s.io/release/v1.22.4/bin/linux/
amd64/kubectl

3.	 Install the kubectl CLI by running the following command:

sudo install kubectl /usr/local/bin/kubectl

4.	 Validate that it is installed by running the following command:

kubectl version --client

You should see the following response to the version command:

Figure 3.8 – Output of the kubectl version command in Linux

You should now have kubectl running on your Linux machine.

Installing kubectl on macOS
First, let's see the process for installing kubectl on a machine running macOS. Follow 
these steps:

1.	 Create or SSH to a Terminal session on your Mac computer.
2.	 Download the kubectl Kubernetes CLI. We will be using version 1.22.4 

throughout the book.

For Intel Macs, run the following command:
curl -LO https://dl.k8s.io/release/v1.22.4/bin/darwin/
amd64/kubectl

For Apple M1 Macs, run the following command:
curl -LO https://dl.k8s.io/release/v1.22.4/bin/darwin/
aa64/kubectl

3.	 Install the kubectl CLI by running the following command:

sudo install kubectl /usr/local/bin/kubectl
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4.	 Validate that it is installed by running the following command:

kubectl version --client

You should see the following response to the version command:

Figure 3.9 – Output of the kubectl version command in macOS

You should now have kubectl running on macOS.

Installing kubectl on Windows
Now, let's go through the steps for Windows, as follows:

1.	 Run PowerShell as Administrator.
2.	 Download the kubectl Kubernetes CLI binary by running the following 

command. We will be using version 1.22.4 throughout the book:

curl.exe -LO https://dl.k8s.io/release/v1.22.4/bin/
windows/amd64/kubectl.exe

3.	 Copy the kubectl.exe file to c:\kubectl by running the following commands:

mkdir c:\kubectl 

copy kubectl.exe c:\kubectl

4.	 Add c:\kubectl to the PATH environment variable by running the following 
command and then restart your PowerShell Terminal:

setx $ENV:PATH "$ENV:PATH;C:\kubectl" /M

5.	 Validate that it is installed by running the following command:

kubectl version –client

You should see the following response to the version command:

Figure 3.10 – Output of kubectl version command in Windows
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You have just installed the kubectl Kubernetes CLI. The next step is to install 
minikube, a local, single-node Kubernetes cluster.

Installing minikube
minikube provides a way to run a local Kubernetes cluster with ease. This is a minimal 
cluster, and it is intended to be only used for local development or experimentation. 
Running Kubernetes in production environments is beyond the scope of this book.

As with kubectl, let's go through the installation for different types of operating systems.

Installing minikube on Linux
Follow these steps to install minikube on Linux:

1.	 Create a Terminal session or SSH to your Linux computer.
2.	 Install podman for minikube using the following code:

sudo dnf install podman -y

3.	 Download minikube from this location. We are using version 1.24.0 of 
minikube:

curl -LO https://storage.googleapis.com/minikube/
releases/v1.24.0/minikube-linux-amd64

4.	 Install the minikube utility, as follows:

sudo install minikube-linux-amd64 /usr/local/bin/minikube

5.	 Validate the minikube version, like this:

minikube version

You should see the following response:

Figure 3.11 – Output of the minikube version command on Linux

You have just installed kubectl and minikube on Linux. These two command-line 
tools will help you to set up a local Kubernetes cluster.
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Installing minikube on macOS
Although our preferred operating system is Linux for this book, we are providing steps to 
install minikube on macOS too. A lot of developers use the macOS system, and it would 
be beneficial to provide details for the operating system from Apple. Follow these next steps:

1.	 Download and install Docker Desktop from the Docker website or by accessing 
the following web page: https://www.docker.com/products/docker-
desktop.

2.	 Once Docker is available, make sure that it is installed correctly by running  
the following command. Make sure that Docker is running before running  
this command:

docker version

You should see the following response. If you get an error, please make sure that 
Docker is running:

Figure 3.12 – Output of the docker version command on macOS

https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
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3.	 Open a Terminal on your macOS computer.
4.	 Download minikube by running one of the following commands. You will be 

using version 1.24.0 of Minikube:

	� If you have an Intel Mac, run the following command:

curl -Lo minikube https://storage.googleapis.com/
minikube/releases/v1.24.0/minikube-darwin-amd64

	� If you have an M1 Mac (Apple silicon), run this command instead:

curl -Lo minikube https://storage.googleapis.com/
minikube/releases/v1.24.0/minikube-darwin-arm64

5.	 Move the downloaded file to the /usr/local/bin folder and make the 
downloaded file an executable by using the following commands:

sudo mv minikube /usr/local/bin

sudo chmod +x /usr/local/bin/minikube

6.	 Validate the minikube version, as follows:

minikube version

You should see the following response:

Figure 3.13 – Output of the minikube version command

You have just installed kubectl and minikube on macOS. These two command-line 
tools will help you set up a local Kubernetes cluster.
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Installing minikube on Windows
As with macOS, a substantial number of developers use Windows. It would be fair to 
provide steps on how to run the exercises on the operating system from Microsoft, the 
mighty Windows. Let's dig in on how to run minikube on Windows using Hyper-V, 
the Microsoft virtualization layer. Please note that Hyper-V is available on all Windows 
except Windows Home. Follow these steps:

1.	 Run PowerShell as Administrator.
2.	 In the PowerShell console, run the following command to enable Hyper-V:

Enable-WindowsOptionalFeature -Online -FeatureName 
Microsoft-Hyper-V --All

You should see the following response if Hyper-V is not enabled. If it is enabled 
already, the command will just print the status. Press Y to continue:

Figure 3.14 – Output of the command for enabling Hyper-V on Windows
Restart the computer, if needed.

3.	 Download the minikube installer by opening the following link in the browser: 
https://github.com/kubernetes/minikube/releases/download/
v1.24.0/minikube-installer.exe.

4.	 Run the downloaded installer. You should see the language setup screen, as shown 
in the following screenshot. Click OK:

Figure 3.15 – Language selection dialog of the minikube installer

https://github.com/kubernetes/minikube/releases/download/v1.24.0/minikube-installer.exe
https://github.com/kubernetes/minikube/releases/download/v1.24.0/minikube-installer.exe
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5.	 The installer will present the following welcome screen. Click Next >, as illustrated 
in the following screenshot:

Figure 3.16 – The minikube installer wizard
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6.	 The installer will present the following License Agreement screen. Click I Agree:

Figure 3.17 – License Agreement screen of the minikube installer
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7.	 On this screen, select the location where you want to install minikube and then 
click Install, as illustrated in the following screenshot:

Figure 3.18 – Install location screen of the minikube installer
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8.	 The installation may take a few minutes. Once the installation is successful, you 
should see the following screen. Click Next >:

Figure 3.19 – Successful installation screen of the minikube installer
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9.	 This is the last screen in your minikube setup process. Click Finish to complete it:

Figure 3.20 – Final screen of the minikube installer

10.	 Finally, in the PowerShell console, set the virtualization driver for minikube to 
hyperv. You can do this by running the following command:

minikube config set driver hyperv

You should see the following response:

Figure 3.21 – Output of the minikube config command

Congratulations—you have set up the minikube program on your Windows machine!

Over the preceding sections, you have installed the kubectl and minikube tools to set 
up your Kubernetes cluster. In the next section, you will set up a Kubernetes cluster.
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Setting up a local Kubernetes cluster
Now, we will set up a Kubernetes cluster on your local machine. As mentioned in the 
technical requirements, we will need a minimum of 4 CPU cores or virtual CPUs 
(vCPUs), 60 GB of available disk, and at least 16 GB of memory to be allocated to the 
Kubernetes cluster. Our recommended configuration is 8 CPUs and 64 GB of memory 
with 60 GB of disk space. If you do not have these resources available locally, you can 
provision a Linux host in the cloud. We will describe in the next section how to provision 
a host on Google Cloud. Proceed as follows:

1.	 Set up the minikube configuration for CPU, disk, and memory through the 
following commands:

minikube config set cpus 8

minikube config set memory 32GB

minikube config set disk-size 60GB

2.	 Validate if the configuration is set correctly via the following command:

minikube config view

You should see the following response:

Figure 3.22 – Output of the minikube config command

3.	 Now, start the Kubernetes cluster by running the following command:

minikube start --kubernetes-version=1.22.4

You should see the following response:

Figure 3.23 – Partial output of the minikube start command
Once the start process is completed, you should see a successful message like this 
after the Kubernetes platform is available: 

Figure 3.24 – Output after the successful start of minikube
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4.	 Validate that all the pods are in the Running state through the following command 
on Linux or macOS. Note that it may take a few minutes for the pods to be in the 
Running state:

watch kubectl get pods --all-namespaces

Or, run this command in Windows PowerShell:
while (1) {kubectl get pods --all-namespaces; sleep 5}

You should see the following response:

Figure 3.25 – Validating the Kubernetes pods have started successfully

Congratulations! You just installed and validated your new Kubernetes cluster. The  
next step is to install components that will allow you to run Operators on your new 
Kubernetes cluster.

Installing OLM
After you have validated that all pods are running for the local Kubernetes cluster, you 
will now install OLM. The process for installing OLM or any other applications inside 
Kubernetes is the same for all operating systems types. Proceed as follows:

1.	 Run the following command to install the CRD for the OLM:

kubectl apply -f https://github.com/operator-framework/
operator-lifecycle-manager/releases/download/v0.19.1/
crds.yaml
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You should see the following response:

Figure 3.26 – Validating OLM CRs have been created successfully

2.	 Run the following command to install OLM on Kubernetes:

kubectl apply -f https://github.com/operator-framework/
operator-lifecycle-manager/releases/download/v0.19.1/olm.
yaml

You should see the following response:

Figure 3.27 – Creating OLM objects in Kubernetes 

3.	 Validate if all OLM pods are in the Running state by running this command on 
Linux or macOS:

watch kubectl get pods -n olm

Or, run this command in Windows PowerShell:
while (1) {kubectl get pods -n olm; sleep 5}
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You should see the following response:

Figure 3.28 – Validating resources for OLM have been created successfully

4.	 Validate that catalogsource is available by issuing the following command:

kubectl get catalogsource -n olm

You should see the following response:

Figure 3.29 – Validating Operator catalog has been installed

Congratulations! You now have a local version of the Kubernetes cluster running and 
you have installed OLM on it. Your cluster is now ready to install Kubernetes Operators. 
Some of you may not have an access to a machine with the required minimum hardware 
requirements to run the ML platform, but don't worry—we've got you covered. The 
following section will help you provision the VM that you need in Google Cloud.

Provisioning a VM on GCP
It is always preferable to have a local environment that you can use to work on the 
exercises in this book. However, we understand that not everyone has the required 
compute resources available in their local machines. So, let's go to the cloud! You can 
provision just the right machine that you need for the exercises, in the cloud, and for free. 
For instance, Google Cloud gives United States dollars (USD) $300 worth of credit to 
new accounts. Other cloud providers such as AWS and Azure also give a similar free tier 
account, and it is up to you to select the cloud provider of your choice. For provisioning 
the VM we need for this book, however, we will use Google Cloud.

Once you have the account details sorted, use the following steps to provision a VM 
in your account. Just do not forget to stop the VM instance after you have completed a 
session to avoid getting billed for the hours that you are not using your machine.
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The following instruction will guide you through the process of provisioning a VM in 
Google Cloud:

1.	 First, register for a new account at https://cloud.google.com.
2.	 Install the gcloud software development kit (SDK) by following the steps at 

https://cloud.google.com/sdk/docs/install.
3.	 Log in to Google Cloud using the following command. This command will  

open a browser instance where you provide login credentials for your Google  
Cloud account:

gcloud auth login

You should see the following response:

Figure 3.30 – Output for the login command

4.	 Then, it will take you to the browser where you will authenticate. Once the browser 
completes the authentication steps, you will see the following output in the 
command line:

Figure 3.31 – Output of a successful login to the gcloud account

5.	 Create a new project in Google Cloud, as follows. Your VM will belong to this 
project. Note that the project name must be globally unique in GCP, so please 
change it as per your preference:

gcloud projects create mlops-kube --name="MLOps on 
Kubernetes"

You should see the following response:

Figure 3.32 – Output of the create project command in Google Cloud

https://cloud.google.com
https://cloud.google.com/sdk/docs/install
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Projects in GCP
Project identifiers (IDs) or project names must be globally unique across 
Google Cloud. Only the first person will be able to create a project with the 
name mlops-kube. Choose a different project name of your choice for 
this command to work. You also need to use the chosen project name for 
subsequent commands where the mlops-kube project name is specified. 

6.	 Make sure you are in the right project by issuing the following command:

gcloud config set project mlops-kube

You should see the following response:

Figure 3.33 – Output of the command for setting the current project context

7.	 Set the right region and zone as per your location. You can get a list of all zones via 
the gcloud compute zones list command, as shown here:

gcloud config set compute/region australia-southeast1

You should see the following response:

Figure 3.34 – Output after setting up the gcloud region
Run the following command:

gcloud config set compute/zone australia-southeast1-a

You should then see the following response:

Figure 3.35 – Output after setting up the gcloud zone

8.	 Enable the Compute Engine API, as follows. This step is required to provision the 
Linux VM via APIs: 

gcloud services enable compute.googleapis.com
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9.	 Disable OS Login because you only connect via SSH, as follows:

gcloud compute project-info add-metadata --metadata 
enable-oslogin=FALSE

10.	 Now, create a VM within this project by running the following command:

gcloud compute instances create mlopskube-cluster 
--project=mlops-kube --zone=australia-southeast1-a 
--machine-type=c2-standard-8 --network-interface=network-
tier=PREMIUM,subnet=default --maintenance-policy=MIGRATE 
--service-account=702800110954-compute@developer.
gserviceaccount.com --scopes=https://www.googleapis.
com/auth/devstorage.read_only,https://www.googleapis.
com/auth/logging.write,https://www.googleapis.
com/auth/monitoring.write,https://www.googleapis.
com/auth/servicecontrol,https://www.googleapis.
com/auth/service.management.readonly,https://
www.googleapis.com/auth/trace.append --create-
disk=auto-delete=yes,boot=yes,device-name=instance-
1,image=projects/centos-cloud/global/images/centos-8-
v20211105,mode=rw,size=80,type=projects/mlops-kube/
zones/australia-southeast1-b/diskTypes/pd-balanced 
--no-shielded-secure-boot --shielded-vtpm --shielded-
integrity-monitoring --reservation-affinity=any

The output of the command should display the machine details, as illustrated here:

Figure 3.36 – Output of the create VM command on Google Cloud

11.	 Add a firewall rule to allow access to the instance via port 22 for SSH, as follows. 
This is a lenient rule and should NOT be used in production:

gcloud compute --project=mlops-kube firewall-rules 
create allow22 --direction=INGRESS --priority=1000 
--network=default --action=ALLOW --rules=tcp:22 --source-
ranges=0.0.0.0/0

You should see the following response:

Figure 3.37 – Output of the firewall rule command
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12.	 SSH to the machine using the gcloud SSH capability, as follows. This will give 
the command line, and you can call the Kubernetes command mentioned in the 
preceding section:

gcloud beta compute ssh --zone "australia-southeast1-a" 
"mlopskube-cluster"  --project "mlops-kube"

13.	 Delete the instance after you have completed the session, as follows: 

gcloud  compute instances delete --zone "australia-
southeast1-a" "mlopskube-cluster"  --project "mlops-kube"

You should see the following response:

Figure 3.38 – Deleting the machine on Google Cloud

At this point, you can use this gcloud VM as the host machine for your Kubernetes 
cluster. Following the previous sections, you should now know how to install kubectl 
and minikube and how to set up a local Kubernetes cluster in this VM.

Summary
In this chapter, you have reviewed some basic Kubernetes concepts and gone through 
the Operator ecosystem in the Kubernetes universe. If you want to learn more about 
Kubernetes, The Kubernetes Workshop by Packt is a good place to start. 

You have installed the tooling required to set up a local Kubernetes cluster. You have seen 
the instructions to do it in other environments such as Linux, macOS, and Windows. You 
have set up a VM on Google Cloud in case you do not want to use your local computer for 
the exercises. You have configured OLM to manage Operators on your Kubernetes cluster. 
These technologies will form the infrastructure foundation of our ML platform, which you 
will start to shape up in the next chapter.





This part defines the different components of an MLOps solution in depth. The chapters 
provide details on each component and the purpose it serves. This section also provides 
an OSS solution that can play the role of each component in the MLOps platform.

This section comprises the following chapters:

•	 Chapter 4, The Anatomy of a Machine Learning Platform

•	 Chapter 5, Data Engineering

•	 Chapter 6, Machine Learning Engineering

•	 Chapter 7, Model Deployment and Automation

Part 2:  
The Building Blocks 

of an MLOps 
Platform and How 

to Build One on 
Kubernetes





4
The Anatomy of a 
Machine Learning 

Platform
In this and the next few chapters, you will learn and install the components of a machine 
learning (ML) platform on top of Kubernetes. An ML platform should be capable of 
providing the tooling required to run the full life cycle of an ML project as described 
in Chapter 2, Understanding MLOps. This chapter starts with defining the different 
components of an ML platform in a technology-agnostic way. In the later parts, you 
will see the group of open source software that can satisfy the requirements of each 
component. We have chosen this approach to not tie you up with a specific technology 
stack; instead, you can replace components as you deem fit for your environment. 

The solution that you will build in this book will be based on open source technologies 
and will be hosted on the Kubernetes platform that you built in Chapter 3, Exploring 
Kubernetes.
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In this chapter, you will learn about the following topics:

•	 Defining a self-service platform

•	 Exploring the data engineering components 

•	 Exploring the ML model life cycle components

•	 Addressing security, monitoring, and automation

•	 Exploring Open Data Hub

Technical requirements
This chapter includes some hands-on setup. You will be needing a running Kubernetes 
cluster configured with the Operator Life cycle Manager (OLM). Building such a 
Kubernetes environment is covered in Chapter 3, Exploring Kubernetes. Before attempting 
the technical exercises in this chapter, please make sure that you have a working 
Kubernetes cluster. You may choose to use a different flavor of Kubernetes than the one 
described in Chapter 3, Exploring Kubernetes, as long as the cluster has the OLM installed.

Defining a self-service platform
Self-service is defined as the capability of a platform that allows platform end users to 
provision resources on-demand without other human intervention. Take, for example, a 
data scientist user who needs an instance of a Jupyter notebook server, running on a host 
container with eight CPUs, to perform his/her work. A self-service ML platform should 
allow the data scientist to provision, through an end user friendly interface, the container 
that will run an instance of the Jupyter notebook server on it. Another example of self-
service provisioning would be a data engineer requesting a new instance of an Apache 
Spark cluster to be provisioned to run his/her data pipelines. The last example is a data 
scientist who wants to package and deploy their ML model as a REST service so that the 
application can use the model.

One benefit of a self-service platform is that it allows cross-functional teams to work 
together with minimal dependencies on other teams. This independence results in better 
team dynamics, less friction, and increased team velocity.
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The self-service model, however, needs governance. Imagine every data scientist 
requesting GPUs or data engineers requesting tens of terabytes of storage! Self-service 
capability is great, but without proper governance, it could also create problems. To avoid 
such problems, the platform has to be managed by a platform team that can control or 
limit the things the end users can do. One example of this limit is resource quotas. Teams 
and/or individual users can be allocated with quotas and be responsible for managing 
their own resources within the allocated quotas. Luckily, Kubernetes has this capability, 
and our ML platform can utilize this capability to apply limits to the team's resources. 

As part of governance, the platform must have role-based access control. This is to ensure 
that only the users with the right role will have access to the resources they manage. 
For example, the platform team may be able to change the resource quotas, while data 
engineers can only spin up new Spark clusters and run data pipelines. 

Another aspect of a self-service platform is the isolation of workloads. Many teams will 
be sharing the same platform and, while the quotas will keep the teams within their 
predefined boundaries, it is critical that there is a capability to isolate workloads from each 
other so that multiple unrelated projects running on the same platform do not overlap.

Exploring the data engineering components
In the context of this book, data engineering is the process of ingesting raw data from 
source systems and producing reliable data that could be used in scenarios such as analytics, 
business reporting, and ML. A data engineer is a person who builds software that collects 
and processes raw data to generate clean and meaningful datasets for data analysts and data 
scientists. These datasets will form the backbone for your organization's ML initiatives.

Figure 4.1 shows the various stages of a typical data engineering area of an ML project:

Figure 4.1 – Data engineering stages for ML
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Data engineering often overlaps with feature engineering. While a data scientist decides 
on which features are more useful for the ML use case, he or she may work with the data 
engineer to retrieve particular data points that are not available in the current feature 
set. This is the main collaboration point between data engineers and data scientists. The 
datasets created by the data engineer in the data engineering block become the feature set 
in the ML block.

An ML platform that enables teams to perform feature engineering will have the following 
components and processes. 

•	 Data ingestion: Data ingestion is the process in which the team understands the 
data sources and builds and deploys software that collects data from one or more 
data sources. Data engineers understand the impact of reading data from source 
systems. For example, while reading data from a source, the performance of the 
source system may get affected. Therefore, it is important for the ML platform to 
have a workflow scheduling capability so that the data collection can be scheduled 
during a time when the source system is less active.

An ML platform enables the team to ingest data from various sources in multiple 
ways. For example, some data sources would allow data to be pulled, while other 
data sources may be able to push data. Data may come from a relational database, 
data warehouses, data lakes, data pools, data streams, API calls, or even from a raw 
filesystem. The platform should also have the capability to understand different 
protocols, for example, a messaging system may have multiple protocols, such as 
Advanced Message Queuing Protocol (AMQP), Message Queuing Telemetry 
Transport (MQTT), and Kafka. In other words, the ML platform should have the 
capability to gather data of various shapes and sizes from different types of data 
sources in various ways. Figure 4.2 shows various sources of data from where the 
platform should be able to ingest the data:
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Figure 4.2 – Data ingestion integrations

•	 Data transformation: Once the data is ingested from various sources, it needs to 
be transformed from its original form into something that is more useful for the 
ML model training and other use cases. According to a Forbes survey, 80% of data 
scientists' work is related to preparing data for the model training; this is the stage 
that is generally considered as boring among the data science teams. However, if 
the data is not transformed into an appropriate form, it will lead to less useful and/
or inefficient ML models. An ML platform enables teams to code, build, and deploy 
the data transformation pipelines and jobs with ease. The platform abstracts the 
complications of running and managing data transformation components such 
as Apache Spark jobs. Not only does the platform manage the execution of these 
processes, but it also manages the provisioning and cleaning of compute resources 
required to run these components, such as CPU, memory, and networking.

•	 Storage: During the feature engineering process, you will read and write data at 
various stages. You might create a temporary representation of the dataset for 
further processing, or you could write the new dataset to be used for ML processes. 
In these scenarios, you will need storage resources that can be accessed with ease 
and scale as needed. An ML platform provides on-demand storage for your datasets 
to be stored in a reliable fashion.

Now, let's see how the data engineer will use these components in their workflow.
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Data engineer workflow
All the capabilities mentioned in the previous section are provided by the ML platform 
in a self-serving manner. The workflow that a data engineer using the platform would 
typically perform is as follows:

1.	 Log in to the platform: In this step, the data engineer authenticates to the platform.
2.	 Provisioning of the development environment: In this step, the data engineer requests 

the resource requirements for the development environment (such as the number 
of CPUs, amount of memory, and specific software libraries) to the platform. The 
platform then provisions the requested resources automatically.

3.	 Build a data pipeline: In this step, the data engineer writes the code for data 
ingestion and data transformation. The data engineer then runs the code in an 
isolated environment to verify its validity and perform the necessary refactoring 
and tuning of the code.

4.	 Run a data pipeline: In this step, the data engineer schedules the code to run as 
needed. It can be a regular schedule with periodic intervals such as hourly or daily, 
or a one-off run, depending on the use case.

You can see in the preceding steps that besides writing the code, all other steps are 
declarative. The data engineer's focus will be on building the code to ingest and transform 
data. All other aspects of the flow will be taken care of by the ML platform. This will result 
in improved efficiency and velocity for the team. The declarative capability of the platform 
will allow teams to standardize processes across your organization, which will reduce the 
number of bespoke toolchains and improve the security of the overall process.

The main output of the data engineering flow is a usable, transformed, and partially 
cleaned set of data that can be used to start building and training a model.

Exploring the model development components
Once the cleaned data is available, data scientists then go through the problem and try 
to determine what set of patterns would be helpful for the situation. The key here is 
that the data scientist's primary role is to find patterns in the data. Model development 
components of the ML platform explore data patterns, build and train ML models, and 
trial multiple configurations to find the best set of configurations and algorithms to 
achieve the desired performance of the model.
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Within the course of model development, data scientists or ML engineers build multiple 
models based on multiple algorithms. These models are then trained using the data gathered 
and prepared from the data engineering flow. The data scientist then plays around with 
several hyperparameters to get different results from model testing. The result of such 
training and testing is then compared with each of the other models. These experimentation 
processes are then repeated multiple times until the desired results are achieved.

The experimentation phase will result in a selection of the most appropriate algorithm and 
configuration. The selected model will then be tagged for packaging and deployment.

Figure 4.3 shows the various stages of model development for an ML project:

Figure 4.3 – Data engineering stages for ML

An ML platform that enables teams to perform model development will have the 
following components:

•	 Data exploration: We humans are better at finding patterns when the data is 
visualized as opposed to just looking at raw data sets. The ML platform enables 
you to visualize data. As a data scientist, you will need to collaborate with subject 
matter experts (SMEs) who have domain knowledge. Let's say you are analyzing a 
dataset of coronavirus patients. If you are not an expert in the virology or medicine 
domains, you will need to work with an SME who can provide insights about 
the dataset, the relationships of features, and the quality of the data itself. An ML 
platform allows you to share the visualizations you have created with the wider team 
for improved feedback. The platform also allows non-technical people to look at the 
data in a more graphical approach. This will help them gain a better understanding 
of the data.
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•	 Experimentation: As a data scientist, you will split the data into training and 
testing sets, and then start building the model for the given metric. You will then 
experiment with multiple ML algorithms such as decision trees, XGBoost, and 
deep learning, and apply a variety of parameter tuning to each of the algorithms, 
for example, the number of layers or number of neurons for a deep learning model. 
This is what we call experimentation, and the platform enables the team to perform 
the experimentation in an autonomous way. Keep in mind that for each experiment, 
you may have different requirements for compute resources such as a GPU. This 
makes the self-service provisioning capability of the platform critical.

•	 Tracking: While doing multiple experiments, you need to keep track of the 
parameters used for each experiment and the metrics it has achieved. Some 
algorithms may require different sets of features, which means you also need to keep 
track of the version of the dataset that was used in training. There are two reasons for 
doing this. The first reason is that you will need a history of your experiments so that 
you can compare and pick the best combination. The second reason is that you may 
need to share the results with your fellow data scientists. The ML platform enables 
you to record the results of the experiments and share them seamlessly.

•	 Model building and tuning: In the experimentation stage, you have found the 
best algorithm and the best parameters for your model. You have compared the 
results and associated metrics for your model and have chosen the algorithm 
and parameters to be used. In this stage, you will train your model with these 
parameters, and register it with the model registry:

	� Model registry: As a data scientist, when you are satisfied with your model, you 
work with your team to deploy it. The real world changes, however, and you will 
need to update your model for new datasets or different metrics or simply for 
improved metrics. New versions of the models come all the time and the ML 
platform enables you to keep track of the versions of your models. The model 
versioning capability will help the team to compare the efficiency of new model 
versions with older model versions and allow the team to roll back a new model in 
production to previous versions if the need arises.

•	 Storage: Storage is not only important in the data engineering phase but also in 
model development. During the model development process, you read and write 
data at various stages. You split the dataset into a testing dataset and a training 
dataset, and you may choose to write it once so you can experiment with different 
model parameters but with the same datasets. The experiment tracking module and 
the model registry both need storage. The ML platform provides on-demand storage 
for your datasets to be stored in a reliable fashion.

Now, let's see how the data scientists use these components in their workflow.



Exploring the model development components     75

Understanding the data scientist workflow
All the capabilities mentioned in the previous section are provided by the ML platform in 
a self-serving way. The typical workflow for the data scientist would be as follows:

1.	 Log in to the platform: The data scientists authenticate to the platform.
2.	 Provisioning of the development environment: In this step, the data scientist requests, 

to the platform, the resource requirements for the development environment, such 
as the number of CPUs, amount of memory, and specific software libraries. The 
platform then provisions the requested resources automatically.

3.	 Exploratory data analysis: In this stage, data scientists perform several types of data 
transformations and visualization techniques to understand the patterns hidden in 
the data.

4.	 Experimenting with different algorithms: In this stage, data scientists split the full 
dataset into training and testing sets. Then, the data scientists apply different ML 
algorithms and hyperparameters to achieve the desired metrics. Data scientists  
then compare the parameters of each training run to select the best one for the 
given use case.

5.	 Model training: Data scientists train the model as per the most optimized parameters 
found in the previous stage, and register the model in the model registry.

6.	 Run model deployment pipeline: In this step, the data scientists package the model 
to be consumed as a service and build the pipeline to automate the deployment 
process. It can be scheduled regularly or as a one-off run, depending on the use case. 

You can see in the preceding steps that besides writing the code to facilitate model 
building and training, all other steps are declarative. The data scientists' focus will be on 
building more data science and ML engineering tasks. All other aspects of the flow will 
be taken care of by the ML platform. This will result in improved efficiency and velocity 
for the team, not to mention a happier data scientist. The declarative capability of the 
platform will also allow teams to standardize processes across your organization, which 
will reduce the use of bespoke toolchains improving consistency and improving the 
security of the overall process.

In the next section, you will explore the common services of the ML platform. These 
services are critical to making the platform production-ready and easier to adopt in the 
enterprise environment.
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Security, monitoring, and automation
In this section, you will see some common components of the ML platform that apply to 
all the components and stages we have discussed so far. These components assist you in 
operationalizing the platform in your organization:

•	 Data pipeline execution: The outcome of data engineering is a data pipeline that 
ingests, cleans, and processes data. You have built this pipeline with scaled-down 
data for development purposes. Now, you need to run this code with production 
data, or you want a scheduled run with new data available, say, every week. An 
ML platform allows you to take your code and automate its execution in different 
environments. This is a big step because the platform not only allows you to run 
your code but will also manage the packaging of all the dependencies of your code 
so that it can run anywhere. If the code that you have built is using Apache Spark, 
the platform should allow you to automate the process of provisioning a Spark 
cluster and all other components required to run your data pipeline.

•	 Model deployment: Once the model is ready to be used, it should be available to be 
consumed as a service. Without the automated model packaging and deployment 
capability of the ML platform, the process of packaging a model and hosting it 
as a service requires some software engineering work. This work requires tight 
collaboration with software engineers and the operations team and may take days, 
if not weeks, to accomplish. The ML platform automates this process and it usually 
takes only a few seconds to a few minutes. The result of this process is an ML model 
deployed in an environment and is accessible as a service – typically, as a REST API.

Deployment of the model is one aspect; over time, you may also need to re-train 
the model with new datasets. The platform also enables your team to automate the 
retraining process using the same training code you built for the first time when 
you trained your model. The retrained model is then redeployed automatically. This 
capability massively improves the efficiency of the team and this allows for more 
efficient use of time, such as working on newer challenges while delivering values 
for the business.
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•	 Monitoring: Monitoring does not just refer to having the capability to observe the 
dynamics of the components in production, such as monitoring the model response 
time, but it also enables the team to respond to events before they become problems. 
A good monitoring platform provides observability during the full ML project life 
cycle and not just monitoring in production. When you are writing code to process 
data, you may need to tune the joins expression between datasets from multiple 
systems. This is one of the examples of information you need during development. 
The ML platform allows you to dig into the details during the development process. 
The platform also provides capabilities to monitor the underlying IT infrastructure. 
For example, when you are running your code during the model training stage, the 
platform provides the metrics on hardware resource utilization.

•	 Security and governance: The platform you are building allows teams to work 
autonomously. Teams can use the tools in the platform to perform the work 
anytime. However, the question of who can access what and who can use which 
tools proves to be a challenge for many organizations. For this, the platform must 
have an access control capability and provide access to only authorized users. 
The security component of the platform allows the users to be authenticated and 
authorized through standard protocols such as OAuth2 or OpenID Connect. 
You will be using open source components to bring authentication components 
to the platform. The platform also uses the Kubernetes namespace feature to 
provide workload isolation across different teams that are sharing the same cluster. 
Kubernetes also provides the capability to assign limits of hardware resources to be 
used by individual teams. These capabilities will enable teams to share the platform 
across many different units within your organization while providing well-defined 
isolation boundaries and hardware resource quotas.

•	 Source code management: When you build data pipelines or train your model, 
you write code. The platform provides capabilities to integrate with source code 
management solutions. Git is the default source code management solution 
integrated platform.

Now, let's move on to cover Open Data Hub (ODH).

Introducing ODH
ODH is an open source project that provides most of the components required by our ML 
platform. It comes with a Kubernetes operator and a curated set of open source software 
components that make up most of the ML platform. In this book, we will mainly use the 
ODH operator. There are also other components that we will be using in the platform that 
don't originally come with ODH. One good thing about the ODH operator is the ability to 
swap default components for another as you see fit for your case.
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To build the platform, you will use the following components. In the next few chapters, 
you will learn about the details of each of these components and how to use them. For 
now, you just need to understand their purpose at a very high-level: 

•	 ODH operator: A Kubernetes operator that manages the life cycle of different 
components of the ML platform. It controls and manages the installation and 
maintenance of the software components used in your ML platform.

•	 JupyterHub: Manages instances of Jupyter Notebook servers and their related 
resources.

•	 Jupyter notebooks: An integrated development environment (IDE) is the main 
data engineering and data science workspace in the platform. Data scientists 
and engineers will use these workspaces to write and debug code for both data 
engineering and ML workflows.

•	 Apache Spark: A distributed, parallel data processing engine and framework for 
processing large datasets. It provides a wide array of data ingestion connectors to 
consume data from a variety of sources.

•	 Apache Airflow: A workflow engine that automates the execution and scheduling of 
data pipelines and model deployment. Airflow orchestrates different components of 
your data pipelines.

•	 Seldon Core: A library for packaging and deploying ML models as a REST service. 
It also has the capability of monitoring the deployed models. It provides support 
for popular ML frameworks, which gives it the capability to wrap and package 
ML models built with frameworks such as TensorFlow, scikit-learn, XGBoost, and 
PyTorch, as REST services.

•	 Prometheus and Grafana: These two components provide the monitoring 
capabilities for our platform. Prometheus provides the metrics database to record 
telemetry data provided by the components of the platform, and Grafana provides 
the graphical user interface (GUI) to visualize the captured metrics.

•	 Minio: An object storage provider that is compatible with Amazon S3 APIs. 
The Minio component is not part of the ODH toolchain, but we will extend and 
configure the ODH operator to manage the Minio component on the ML platform.

•	 MLFlow: A component for tracking different model experiments and also serves as 
the model registry of the platform. The MLFlow component is not part of the ODH 
toolchain, but we will extend the ODH operator to manage the MLFlow component 
on the ML platform
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You will also install an open source identity provider component. The goal for 
this component is to provide a common single sign-on feature for all the platform 
components. We will use Keycloak as the identity management system, but this could be 
swapped with an OAuth2-based system that may already exist in your case. Keycloak is 
not part of the ODH, and we will show you how to install it as a separate component on 
your Kubernetes cluster.

Figure 4.4 shows the major open source software that serves as the main components 
of the ML platform. The ODH extensibility model allows you to add or choose which 
products to use for which components as per the requirements. You can replace any of the 
components with other open source products of choice. However, for the exercises in this 
book, we will use the product listed here:

Figure 4.4 – Major components of the ML platform

In the next section, you will deploy the ODH operator and Keycloak server on your 
Kubernetes cluster. You will also install and configure the ingress controller to accept 
traffic from outside the cluster.

Installing the ODH operator on Kubernetes
In this section, you will install the ODH operator onto your Kubernetes cluster. At this 
stage, you will not enable any components of the platform. To install the operator, you first 
need to register the catalog source for the operator, and then you can install it.
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First, let's register the catalog for the ODH operator. A catalog source contains metadata 
through which the OLM can discover operators and their dependencies. The ODH 
operator is not available in the default OLM catalog, so we need to register a new catalog 
that contains the ODH metadata for the OLM:  

1.	 Validate that your Kubernetes cluster is running if you are using minikube:

minikube status

You should see the following response:

Figure 4.5 – Validate that Kubernetes is running via minikube
If your Kubernetes cluster is not running, please refer to Chapter 3, Exploring 
Kubernetes, on how to configure and start the Kubernetes cluster.

2.	 Verify that the OLM is installed and is running by executing the following:

kubectl get pods -n olm

You should see the following response:

Figure 4.6 – Command output showing OLM pods are running
Make sure that all the OLM pods are running. If this is not the case for you, refer to 
Chapter 3, Exploring Kubernetes, in the How to install OLM in your cluster section.

3.	 Clone the Git repository and navigate to the repository's root directory. This 
repository contains all the source files, scripts, and manifests that you need to 
build the platform within the scope of this book: https://github.com/
PacktPublishing/Machine-Learning-on-Kubernetes.git cd 
Machine-Learning-on-Kubernetes.

https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes.git cd Machine-Learning-on-Kubernetes
https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes.git cd Machine-Learning-on-Kubernetes
https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes.git cd Machine-Learning-on-Kubernetes
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Register a new catalog source operator by using the YAML file available in the 
source code of this book:

kubectl create -f chapter4/catalog-source.yaml

4.	 After a couple of minutes, validate that the operator is available in your cluster:

kubectl get packagemanifests -o wide -n olm | grep -I 
opendatahub

You should see the following response:

Figure 4.7 – Validate that the ODH operator is available
On Windows PowerShell, you may need to replace the grep command  
with findstr.

5.	 Now, create the subscription for the ODH operator. Recall from the third chapter 
that a subscription object triggers the installation of the operator via the OLM:

kubectl create -f chapter4/odh-subscription.yaml 

You should see a response message that the subscription has been created.
6.	 After creating the subscription, the OLM will automatically install the operator and 

all its components. Verify that the ODH pod is running by issuing the following 
command. It may take a few seconds before the pods start appearing. If the pods are 
not listed, wait for a few seconds and rerun the same command:

kubectl get pods -n operators

You should see the following response:

Figure 4.8 – Validate that the ODH pod is up and running

You have just installed the ODH operator on your Kubernetes cluster. Notice that you have 
not used generic Kubernetes objects such as Deployments to run your operator. The OLM 
allows you to easily manage the installation of an operator via the Subscription object.
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In the next section, you install the ingress controller to allow traffic into your  
Kubernetes cluster.

Enabling the ingress controller on the Kubernetes 
cluster
Recall from Chapter 3, Exploring Kubernetes, that ingress provides a way for you to 
expose a particular service to make it accessible from outside the cluster. There are many 
ingress providers available on Kubernetes, and we leave it to you to select the right ingress 
provider for your cluster.

If you are using minikube, you need to follow these steps to enable the default ingress:

1.	 Enable the NGINX-based ingress controller for your cluster by issuing the  
following command: 

minikube addons enable ingress

You should see the following response:

Figure 4.9 – Output for enabling minikube ingress plugin

2.	 Validate that the ingress pods are running in your cluster:

kubectl get pods -n ingress-nginx

You should see the following response:

Figure 4.10 – Validate that the Nginx ingress pods are in running state

Now that you have enabled the external traffic onto your cluster, the next step is to install 
the open source authentication and authorization component for your ML platform.
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Installing Keycloak on Kubernetes
We will use Keycloak (https://www.keycloak.org) as our identity provider and 
add authentication and access management capabilities for your platform. Keycloak 
supports industry-standard security mechanisms such as OAuth2 and OpenID Connect. 
In this section, you will install the Keycloak server on the Kubernetes cluster and log in to 
the Keycloak UI to validate the installation:

1.	 Start by creating a new namespace for the keycloak application:

kubectl create ns keycloak

You should see the following response:

Figure 4.11 – Output for creating a new namespace for Keycloak

2.	 Create the Keycloak manifest using the provided YAML file:

kubectl create -f chapter4/keycloak.yaml --namespace 
keycloak

3.	 Validate that the keycloak pods are running. Note that the --namespace and 
-n flags are interchangeable in kubectl:

kubectl get pods -n keycloak

It may take a while to start, as it will start by pulling container images from the 
internet. The first time you run the command, you might see that the READY status 
is 0/1. This is normal. Once the Keycloak pod is running, you should see the 
following response:

Figure 4.12 – Validate that the Keycloak pods are in running state
In the next few steps, you will define and configure the ingress for your Keycloak 
pod so that it can be accessed from outside the cluster.

https://www.keycloak.org
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4.	 Get the IP address of your minikube machine by issuing the following command:

minikube ip

You should see the following response:

Figure 4.13 – IP address of your minikube instance

5.	 Open the chapter4/keycloak-ingress.yaml file and replace the KEYCLOAK_
HOST string with the keycloak.<THE_IP_ADDRESS_OF_YOUR_MINIKUBE>.
nip.io string. So, if the IP address of your minikube is 192.168.61.72, then 
the string value would be keycloak.192.168.61.72.nip.io .

There are two places in the file where you need to put this new string. The file will 
look like Figure 4.14. Do not forget to save the changes in this file.

Figure 4.14 – The IP address of your minikube instance changed in the keycloak-ingress file
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Apply the modified file to the Kubernetes cluster. This ingress object will create 
the required configuration for you to access the Keycloak server from outside the 
Kubernetes cluster. Run the following command to create the ingress object:

kubectl create -f chapter4/keycloak-ingress.yaml 
--namespace keycloak

You should see the following response:

Figure 4.15 – Modified ingress has been applied 

6.	 Validate that the ingress object is available by issuing the following command:

kubectl get ingress --namespace keycloak

You should see the following response:

Figure 4.16 – Ingress object has been created

7.	 Now that you have validated that Keycloak is running and is exposed through the 
ingress object, open a browser on your machine where minikube is running  
and access the following URL. You need to replace the correct IP address, as stated  
in step 5: https://keycloak.192.168.61.72.nip.io/auth/.

You will get a warning that the certificate is not valid. This is because the Keycloak 
server uses a self-signed certificate by default. You just need to click the Advance 
button presented by the browser and choose to continue to the website.

https://keycloak.192.168.61.72.nip.io/auth/
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You should see the following page; click on the Administration Console link to 
proceed further:

Figure 4.17 – Keycloak landing page
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8.	 Log in using the credentials admin/admin in the following screen. After you enter 
the credentials, click Sign in:

Figure 4.18 – Keycloak login page
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9.	 Validate that the main administration page of Keycloak is displayed as follows:

Figure 4.19  – Keycloak administration page

Congratulations! You have successfully installed the ODH operator and Keycloak onto 
your Kubernetes cluster.

Summary
In this chapter, you have learned about the major components of your ML platform 
and how open source community projects provide software products for each of those 
components. Using open source software enables a great number of people to use 
software for free, while at the same time, contributing to improving the components while 
continuously evolving and adding new capabilities to the software.

You have installed the operator required to set up the ML platform on your Kubernetes 
cluster. You have installed the ingress controller to allow traffic into your cluster and installed 
Keycloak to provide the identity and access management capabilities for your platform.

The foundation has been set for us to go deeper into each component of the ML life cycle. 
In the next chapter, you will learn to set up Spark and JupyterHub on your platform, 
which enables data engineers to build and deploy data pipelines.
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Further reading
•	 Data preparation is the least enjoyable task in data science:  https://www.

forbes.com/sites/gilpress/2016/03/23/data-preparation-
most-time-consuming-least-enjoyable-data-science-task-
survey-says/?sh=1e5986216f63

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=1e5986216f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=1e5986216f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=1e5986216f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=1e5986216f63
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Data Engineering

Data engineering, in general, refers to the management and organization of data and 
data flows across an organization. It involves data gathering, processing, versioning, data 
governance, and analytics. It is a huge topic that revolves around the development and 
maintenance of data processing platforms, data lakes, data marts, data warehouses, and 
data streams. It is an important practice that contributes to the success of big data and 
machine learning (ML) projects. In this chapter, you will learn about the ML-specific 
topics of data engineering.

A sizable number of ML tutorials/books start with a clean dataset and a CSV file to build 
your model against. The real world is different. Data comes in many shapes and sizes, and 
it is important that you have a well-defined strategy to harvest, process, and prepare data 
at scale. This chapter will discuss open source tools that can provide the foundations for 
data engineering in ML projects. You will learn how to install the open source toolsets on 
the Kubernetes platform and how these tools will enable you and your team to be more 
efficient and agile.
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 In this chapter, you will learn about the following topics:

•	 Configuring Keycloak for authentication

•	 Configuring Open Data Hub components

•	 Understanding and using the JupyterHub IDE 

•	 Understanding the basics of Apache Spark

•	 Understanding how Open Data Hub provisions on-demand Apache Spark clusters

•	 Writing and running a Spark application from Jupyter Notebook

Technical requirements
This chapter includes some hands-on setup and exercises. You will need a running 
Kubernetes cluster configured with Operator Lifecycle Manager. Building such a 
Kubernetes environment is covered in Chapter 3, Exploring Kubernetes. Before attempting 
the technical exercises in this chapter, please make sure that you have a working 
Kubernetes cluster and Open Data Hub (ODH) installed on your Kubernetes cluster. 
Installing the ODH is covered in Chapter 4, The Anatomy of a Machine Learning Platform. 
You can find all the code associated with this book at https://github.com/
PacktPublishing/Machine-Learning-on-Kubernetes.

Configuring Keycloak for authentication
Before you start using any component of your platform, you need to configure the 
authentication system to be associated with the platform components. As mentioned in 
Chapter 4, The Anatomy of a Machine Learning Platform, you will use Keycloak, an open 
source software to provide authentication services.

As a first step, import the configuration from chapter5/realm-export.json, 
which is available in the code repository associated with this book. This file contains the 
configuration required to associate the OAuth2 capabilities for the platform components.

Though this book is not a Keycloak guide by any means, we will provide some basic 
definitions for you to understand the high-level taxonomy of the Keycloak server: 

•	 Realm: A Keycloak realm is an object that manages the users, roles, groups, and 
client applications that belong to the same domain. One Keycloak server can have 
multiple realms, so you have multiple sets of configurations, such as one realm for 
internal applications and one for external applications.

https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes
https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes
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•	 Clients: Clients are entities that can request user authentication. A Keycloak client 
object is associated with a realm. All the applications in our platform that require 
single sign-on (SSO) will be registered as clients in the Keycloak server.

•	 Users and groups: These two terms are self-explanatory, and you will be creating  
a new user in the following steps and using it to log into different software of  
the platform.

The next step is to configure Keycloak to provide OAuth capabilities to our ML  
platform component. 

Importing the Keycloak configuration for the ODH 
components
In this section, you will import the clients and group configurations onto the Keycloak 
server running on your Kubernetes cluster. The following steps will import everything 
onto the master realm of the Keycloak server:

1.	 Log in to your Keycloak server using the username admin and the password admin. 
Click on the Import link on the left-hand sidebar under the Manage heading:

Figure 5.1 – Keycloak Master realm
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2.	 Click on the Select file button on the screen, as follows:

Figure 5.2 – Keycloak import configuration page
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3.	 Select the chapter5/realm-export.json file from the pop-up window. After 
that, select Skip for the If a resource exists drop-down options, and click Import:

Figure 5.3 – Keycloak import configuration page



96     Data Engineering

4.	 Validate that the records have been imported successfully onto your Keycloak server:

Figure 5.4 – Keycloak import configuration results page
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5.	 Validate that there are four clients created by clicking on the Clients item on the 
left-hand side menu. The following client IDs should exist: aflow, mflow, grafana, 
and jhub. The aflow client is for the workflow engine of the platform, which is an 
instance of Apache Airflow. The mflow client is for the model registry and training 
tracker tool and is an instance of MLflow. The grafana client is for monitoring  
UI and is an instance of Grafana. And last, the jhub client is for the JupyterHub 
server instance.

Figure 5.5 – Keycloak clients page
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6.	 Validate that a group called ml-group has been created by clicking on the Groups 
link on the left-hand panel: 

Figure 5.6 – Keycloak groups page
You will use this user group to create a user of the platform.

Great work! You have just configured multiple Keycloak clients for the ML platform. The 
next step is to create a user in Keycloak that you will be using for the rest of this book. 
It is important to note that Keycloak can be hooked with your enterprise directory or 
any other database and to use them as a source of the users. Keep in mind that the realm 
configuration we are using here is very basic and is not recommended for production use.

Creating a Keycloak user
In this section, you will create a new user and associate the newly created user with the 
group imported in the preceding section. Associating the user with the group gives the 
roles required for the different ODH software:

1.	 On the left-hand side of the Keycloak page, click on the Users link to come to this 
page. To add a new user, click the Add user button on the right:
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Figure 5.7 – Keycloak users list

2.	 Add the username mluser and make sure the User Enabled and Email Verified 
toggle buttons are set to ON. In Groups, select the ml-group group and fill in the 
Email, First Name, and Last Name fields, as shown in Figure 5.8, and then hit the 
Save button:

Figure 5.8 – Keycloak Add user page
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3.	 Click on the Credentials tab to set the password for your user:

Figure 5.9 – Keycloak Credentials page

4.	 Type in the password of your choice, then disable the Temporary flag, and hit the 
Set Password button.

You have just created and configured a user in Keycloak. Your Keycloak server is now ready 
to be used by the ML platform components. The next step is to explore the component of 
the platform that provides the main coding environment for all personas in the ML project.

Configuring ODH components
In Chapter 4, The Anatomy of a Machine Learning Platform, you have installed the ODH 
operator. Using the ODH operator, you will now configure an instance of ODH that will 
automatically install the components of the ML platform. ODH executes Kustomize scripts 
to install the components of the ML platform. As part of the code for this book, we have 
provided templates to install and configure all the components required to run the platform.
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You can also configure what components ODH operators install for you through a 
manifests file. You can pass the specific configuration to the manifests and choose  
the components you need. One such manifest is available in the code repository of the 
book at manifests/kfdef/ml-platform.yaml. This YAML file is configured 
for the ODH operator to do its magic and install the software we need to be part of the 
platform. You will need to make some modifications to this file, as you will see in the 
following section.

This file defines the components of your platform and the location from where these 
components will get their settings: 

•	 Name: Defines the name of the component.

•	 repoRef: This section contains the path property where you define the relative 
path location of the files required to configure this component.

•	 Parameters: This section contains the parameters that will be used to configure  
the component. Note that, in the following example, the IP address for  
KEYCLOAK_URL and JUPYTERHUB_HOST will need to be changed as per  
your configuration.

•	 Overlays: The ODH operator contains a default set of configurations for each 
component. Overlays provide a way to further tune the default configuration. The 
list of overlays is a set of folders, under the same location as the manifest file. The 
ODH operator will read the files from these overlay folders and merge them on the 
fly to produce a final configuration. You can find the overlays for JupyterHub in the 
manifests/jupytherhub/overlays folder in the code repository.

•	 Repos: This configuration section is specific to each manifest file and applies to 
all the components in the manifest. It defines the location and version of the Git 
repository that contains all the files being referred to by this manifest file. If you 
want the manifest to reference your own files for the installation, you need to refer 
here to the right Git repository (the repository that contains your files).
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Figure 5.10 shows the part of the manifest file that holds the definition of the  
JupyterHub component:

Figure 5.10 – A component in the ODH manifest file

You will use the provided manifest file to create an instance of the ML platform. You may 
also tweak configurations or add or remove components of the platform as you wish 
by modifying this file. However, for the exercises in the book, we do not recommend 
changing this unless you are instructed to do so.

Now that you have seen the ODH manifest file, it's time to make good use of it to create 
your first ML platform on Kubernetes.

Installing ODH
Before we can install the data engineering components of the platform, we first need to 
create an instance of ODH. An ODH instance is a curated collection of related toolsets 
that serve as the components of an ML platform. Although the ML platform may contain 
components other than what is provided by ODH, it is fair to say that an instance of ODH 
is an instance of the ML platform. You may also run multiple instances of ODH on the 
same Kubernetes cluster as long as they run on their own isolated Kubernetes namespaces. 
This is useful when multiple teams or departments in your organization are sharing a 
single Kubernetes cluster.
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The following are the steps you need to follow to create an instance of ODH on your 
Kubernetes cluster:

1.	 Create a new namespace in your Kubernetes cluster using the following command:

kubectl create ns ml-workshop

You should see the following response:

Figure 5.11 – New namespace in your Kubernetes cluster

2.	 Make sure that the ODH operator is running by issuing the following command:

kubectl get pods -n operators

You should see the following response. Make sure the status says Running:

Figure 5.12 – Status of the ODH operator 

3.	 Get the IP address of your minikube environment. This IP address will be used 
to create ingress for different components of the platform the same way we did 
for Keycloak. Note that your IP may be different for each minikube instance 
depending on your underlying infrastructure:

minikube ip

This command should give you the IP address of your minikube cluster.
4.	 Open the manifests/kfdef/ml-platform.yaml file and change the value 

of the following parameters to a NIP (nip.io) domain name of your minikube 
instance. Only replace the IP address part of the domain name. For example, 
KEYCLOAK_URL keycloak.<IP Address>.nip.io should become 
keycloak.192.168.61.72.nip.io. Note that these parameters may be 
referenced in more than one place in this file. In a full Kubernetes environment, 
<IP Address> should be the domain name of your Kubernetes cluster:

I.	 KEYCLOAK_URL

II.	 JUPYTERHUB_HOST
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III.	 AIRFLOW_HOST

IV.	 MINIO_HOST

V.	 MLFLOW_HOST

VI.	 GRAFANA_HOST

5.	 Apply the manifest file to your Kubernetes cluster using the following command:

kubectl create -f manifests/kfdef/ml-platform.yaml -n 
ml-workshop

You should see the following response:

Figure 5.13 – Result from applying manifests for the ODH components

6.	 Start watching the pods being created in the ml-workshop namespace by using 
the following command. It will take a while for all the components to be installed. 
After several minutes, all the Pods will be in a running state. While the pods are 
being created, you may see some pods throw errors. This is normal because some 
pods are dependent on other pods. Be patient as all the components come together 
and the pods will come into a running state:

watch kubectl get pods -n ml-workshop

You should see the following response when all the pods are running:

Figure 5.14 – CLI response showing the ODH components running on the Kubernetes cluster
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So, what does this command do? The Open Data Hub (ODH) operator consumed 
the kfdef Custom Resource Definition (CRD) that you have created in Step 5. 
The operator then goes through each of the application objects in the CRD and 
creates the required Kubernetes objects to run these applications. The Kubernetes 
objects created in your cluster include several Deployments, Pods, Services, 
Ingresses, ConfigMaps, Secrets, and PersistentVolumeClaims. You may also run the 
following command to see all the objects created in the ml-workshop namespace:

kubectl get all -n ml-workshop

You should see all the objects that were created in the ml-workshop namespace by 
the ODH operator.

Congratulations! You have just created a fresh instance of ODH. Now that you have seen 
the process of creating an instance of the ML platform from a manifest file, it is time to 
take a look at each of the components of the platform that the data engineers will use for 
their activities.

Minikube Using Podman Driver
Note that for some minikube setups that use podman drivers in Linux, the 
Spark operator may fail due to the limit of the number of threads. To solve this 
problem, you need to use a kvm2 driver in your minikube configuration. 
You can do this by adding the --driver=kvm2 parameter to your 
minikube start command.

Understanding and using JupyterHub
Jupyter Notebook has become an extremely popular tool for writing code for ML projects. 
JupyterHub is a software that facilitates the self-service provisioning of computing 
environments that includes spinning up pre-configured Jupyter Notebook servers and 
provisioning the associated compute resources on the Kubernetes platform. On-demand 
end users such as data engineers and data scientists can provision their own instances of 
Jupyter Notebook dedicated only to them. If a requesting user already has his/her own 
running instance of Jupyter Notebook, the hub will just direct the user to the existing 
instance, avoiding duplicated environments. From the end user's perspective, the whole 
interaction is seamless. You will see this in the next section of this chapter.
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When a user requests an environment in JupyterHub, they are also given the option 
to choose a pre-configured sizing of hardware resources such as CPU, memory, and 
storage. This allows for a flexible way for developers, data engineers, and data scientists 
to provision just the right amount of computing resources for a given task. This dynamic 
allocation of resources is facilitated by the underlying Kubernetes platform.

Different users may require different frameworks, libraries, and flavors of coding 
environments. Some data scientists may want to use TensorFlow while others want to 
use scikit-learn or PyTorch. Some data engineers may prefer to use pandas while some 
may need to run their data pipelines in PySpark. In JupyterHub, they can configure 
multiple pre-defined environments for such scenarios. Users can then select a predefined 
configuration when they request a new environment. These predefined environments 
are actually container images. This means that the platform operator or platform 
administrator can prepare several predefined container images that will serve as the 
end user's computing environment. This feature also enables the standardization of 
environments. How many times do you have to deal with different versions of the libraries 
on different developer computers? The standardization of environments can reduce the 
number of problems related to library version inconsistencies and generally reduce the it 
works on my machine issues.

Figure 5.15 shows the three-step process of provisioning a new JupyterHub environment: 

Figure 5.15 – Workflow for creating a new environment in JupyterHub

Now that you know what JupyterHub can do, let's see it in action.
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Validating the JupyterHub installation
Every data engineer in the team follows a simple and standard workflow of provisioning 
an environment. No more manual installations and fiddling with their workstation 
configurations. This is great for autonomous teams and will definitely help improve your 
team's velocity.

The ODH operator has already installed the JupyterHub for you in the previous sections. 
Now, you will spin up a new Jupyter Notebook environment, as a data engineer, and write 
your data pipelines:

1.	 Get the ingress objects created in your Kubernetes environment using the following 
command. We are running this command to find the URL of JupyterHub:

kubectl get ingress -n ml-workshop

You should see the following example response. Take note of the JupyterHub URL 
as displayed in the HOSTS column:

Figure 5.16 – All ingresses in your cluster
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2.	 Open a browser from the same machine where minikube is running and navigate to 
the JupyterHub URL. The URL looks like https://jupyterhub.<MINIKUBE 
IP ADDRESS>.nip.io. This URL will take you to the Keycloak login page to 
perform SSO authentication. Make sure that you replace the IP address with your 
minikube IP address in this URL:

Figure 5.17 – SSO challenge for JupyterHub

3.	 Type mluser for the username, then type whatever password you have set up for 
this user, and click Sign In.

You will see the landing page of the JupyterHub server where it allows you to select 
the notebook container image that you want to use and also a predefined size of 
computing resources you need.

The notebook image section contains the standard notebooks that you have 
provisioned using the ODH manifests from the manifests/jupyterhub-images 
folder of the code repository.

The container size drop-down allows you to select the right size of environment for 
your need. This configuration is also controlled via the manifests/jupyterhub/
jupyterhub/overlays/mlops/jupyterhub-singleuser-profiles-
sizes-configmap.yaml manifest file.

https://jupyterhub.<MINIKUBE IP ADDRESS>.nip.io
https://jupyterhub.<MINIKUBE IP ADDRESS>.nip.io
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We encourage you to look into these files to familiarize yourself with what 
configuration you can set for each manifest.

Figure 5.18 – JupyterHub landing page
Select Base Elyra Notebook Image and the Default container size and hit  
Start server.

4.	 Validate that a new pod has been created for your user by issuing the following 
command. Jupyter Notebook instance names start with jupyter-nb- and are 
suffixed with the username of the user. This allows for a unique name of notebook 
pods for each user:

kubectl get pods -n ml-workshop | grep mluser 

You should see the following response:

Figure 5.19 – Jupyter Notebook pod created by JupyterHub
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5.	 Congratulations! You are now running your own self-provisioned Jupyter Notebook 
server on the Kubernetes platform.

Figure 5.20 – Jupyter Notebook landing page
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6.	 Now, let's stop the notebook server. Click on the File > Hub Control Panel menu 
option to go to the Hub Control Panel page shown as follows:

Figure 5.21 – Menu option to see the Hub Control Panel
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7.	 Click on the Stop My Server button. This is how you stop your instance of Jupyter 
Notebook. You may want to start it back again later for the next steps.

Figure 5.22 – Hub Control Panel

8.	 Validate that a new pod has been destroyed for your user by issuing the  
following command:

kubectl get pods -n ml-workshop | grep mluser 

There should be no output for this command because the Jupyter Notebook pod has 
been destroyed by JupyterHub.

We leave it up to you to explore the different bits of the configuration of the notebook in 
your environment. You will write code using this Jupyter notebook in the later sections of 
this chapter and the next few chapters of this book, so if you just want to continue reading, 
you will not miss anything.
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Running your first Jupyter notebook
Now that your Jupyter notebook is running, it is time to write the Hello World! 
program. In the code repository of this book, we have provided one such program, and in 
the following steps, you will check out the code using Git and run the program. Before we 
start these steps, make sure that you can access your Jupyter notebook using the browser, 
as mentioned in the preceding section:

1.	 Click on the Git icon on the left-hand side menu on your Jupyter notebook. The 
icon is the third from the top. It will display three buttons for different operations. 
Click on the Clone a Repository button:

Figure 5.23 – Git operations in the Jupyter notebook
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2.	 In the Clone a repo pop-up box, type in the location of the code repository of this 
book, https://github.com/PacktPublishing/Machine-Learning-
on-Kubernetes.git, and hit CLONE.

Figure 5.24 – Git clone a repo in the Jupyter notebook

3.	 You will see that the code repository is cloned onto your Jupyter notebook's file 
system. As shown in Figure 5.25, navigate to the chapter5/helloworld.ipynb 
file and open it in your notebook. Click on the little play icon on the top bar to run 
the cell:

https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes.git
https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes.git
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Figure 5.25 – Notebook on your Jupyter environment

4.	 Et voila! You have just executed a Python code in your own self-provisioned Jupyter 
Notebook server running on Kubernetes.

5.	 Shut down your notebook by selecting the File > Hub Control Panel menu option. 
Click on the Stop My Server button to shut down your environment. Note that 
ODH will save your disk and next time you start your notebook, all your saved files 
will be available.

Congratulations! Now, you can run your code on the platform. Next, we'll get some basics 
refreshed for the Apache Spark engine.

Understanding the basics of Apache Spark
Apache Spark is an open source data processing engine designed for distributed  
large-scale processing of data. This means that if you have smaller datasets, say 10s or even 
a few 100s of GB, a tuned traditional database may provide faster processing times. The 
main differentiator for Apache Spark is its capability to perform in-memory intermediate 
computations, which makes Apache Spark much faster than Hadoop MapReduce.
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Apache Spark is built for speed, flexibility, and ease of use. Apache Spark offers more than 
70 high-level data processing operators that make it easy for data engineers to build data 
applications, so it is easy to write data processing logic using Apache Spark APIs. Being 
flexible means that Spark works as a unified data processing engine and works on several 
types of data workloads such as batch applications, streaming applications, interactive 
queries, and even ML algorithms.

Figure 5.26 shows the Apache Spark components:

Figure 5.26 – Apache Spark components

Understanding Apache Spark job execution
Most data engineers now know that Apache Spark is a massively parallel data processing 
engine. It is one of the most successful projects of the Apache Software Foundation. Spark 
traditionally runs on a cluster of multiple virtual machines (VMs) or bare metal servers. 
However, with the popularity of containers and Kubernetes, Spark added support for 
running Spark clusters on containers on Kubernetes.

There are two most common ways of running Spark on Kubernetes. The first, and 
the native way, is by using the Kubernetes engine itself to orchestrate the Kubernetes 
worker pods. In this approach, the Spark cluster instance is always running and the 
Spark applications are submitted to the Kubernetes API that will schedule the submitted 
application. We will not dig deeper into how this is implemented. The second approach 
is through Kubernetes operators. Operators take advantage of the Kubernetes CRDs to 
create Spark objects natively in Kubernetes. In this approach, the Spark cluster is created 
on the fly by the Spark operator. Instead of submitting a Spark application to an existing 
cluster, the operator spins up spark clusters on-demand.

A Spark cluster follows a manager/worker architecture. The Spark cluster manager knows 
where the workers are located, and the resources available for the worker. The Spark cluster 
manages the resources for the cluster of worker nodes where your application will run. 
Each worker has one or more executors that run the assigned jobs through an executor.



Understanding the basics of Apache Spark     117

Spark applications have two parts, the driver component, and the data processing logic. 
A driver component is responsible for executing the flow of data processing operations. 
The driver run first talks to the cluster manager to find out what worker nodes will run the 
application logic. The driver transforms all the application operations into tasks, schedules 
them, and assigns tasks directly to the executor processes on the worker node. One 
executor can run multiple tasks that are associated with the same Spark context.

If your application requires you to collect the computed result and merge them, the driver 
is the one who will be responsible for this activity. As a data engineer, all this activity 
is abstracted from you via the SparkSession object. You only need to write the data 
processing logic. Did we mention Apache Spark aims to be simple?

Figure 5.27 shows the relationship between the Spark driver, Spark cluster manager, and 
Spark worker nodes:

Figure 5.27 – Relationship between Apache Spark components
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Understanding how ODH provisions Apache 
Spark cluster on-demand
We have talked about how the ODH allows you to create a dynamic and flexible 
development environment to write code such as data pipelines using Jupyter Notebook. 
We have noticed that data developers need to interact with IT to get time on the data 
processing clusters such as Apache Spark. These interactions reduce the agility of the 
team, and this is one of the problems the ML platform solves. To adhere to this scenario, 
ODH provides the following components:

•	 A Spark operator that spawns the Apache Spark cluster. For this book, we have 
forked the original Spark operator provided by ODH and radanalytics to adhere to 
the latest changes to the Kubernetes API.

•	 A capability in JupyterHub to issue a request for a new Spark cluster to the Spark 
operator when certain notebook environments are created by the user.

As a data engineer, when you spin up a new notebook environment using certain 
notebook images, JupyterHub not only spawns a new notebook server, it also creates the 
Apache Spark cluster dedicated for you through the Spark operator.

Creating a Spark cluster
Let's first see how the Spark operator works on the Kubernetes cluster. ODH creates the 
Spark controller. You can see the configuration in the chapter5/ml-platform.yaml 
file under the name radanalyticsio-spark-cluster, as shown in Figure 5.28. 
You can see this is another set of Kubernetes YAML files that defines the custom resource 
definitions (CRDs), required roles, and the Spark operator deployment. All these files are 
in the manifests/radanalyticsio folder in the code repository of this book.

Figure 5.28 – Snippet of the section of the manifest that installs the Spark operator
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When you need to spin up an Apache Spark cluster, you can do this by creating a 
Kubernetes custom resource called SparkCluster. Upon receiving the request, the 
Spark operator will provision a new Spark cluster as per the required configuration. The 
following steps will show you the steps for provisioning a Spark cluster on your platform:

1.	 Validate that the Spark operator pod is running:

kubectl get pods -n ml-workshop | grep spark-operator

You should see the following response:

Figure 5.29 – Spark operator pod

2.	 Create a simple Spark cluster with one worker node using the file available at 
chapter5/simple-spark-cluster.yaml. You can see that this file is 
requesting a Spark cluster with one master and one worker node. Through this custom 
resource, you can set several Spark configurations, as we shall see in the next section:

Figure 5.30 – Spark custom resource
Create this Spark cluster custom resource in your Kubernetes cluster by running 
the following command. The Spark operator constantly scans for this resource in 
the Kubernetes platform and automatically creates a new instance of Apache Spark 
cluster for each given Spark cluster custom resource:

kubectl create -f chapter5/simple-spark-cluster.yaml -n 
ml-workshop
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You should see the following response:

Figure 5.31 – Response to creating a Spark cluster

3.	 Validate that the Spark cluster pods are running in your cluster:

kubectl get pods -n ml-workshop | grep simple-spark

You should see the following response. There are two pods created by the Spark 
operator, one for the Spark master node and another for the worker node. The 
number of worker pods depends on the value of the instances parameters in the 
SparkCluster resource. It may take some time for the pods to come to a running 
state the first time:

Figure 5.32 – List of running Spark cluster pods 

Now, you know how the Spark operator works on the Kubernetes cluster. The next step is 
to see how JupyterHub is configured to request the cluster dynamically while provisioning 
a new notebook for you.

Understanding how JupyterHub creates a Spark 
cluster
Simply put, JupyterHub does what you did in the preceding section. JupyterHub creates 
a SparkCluster resource in Kubernetes so that the Spark operator can provision 
the Apache Spark cluster for your use. This SparkCluster resource configuration 
is a Kubernetes ConfigMap file and can be found at manifests/jupyterhub/
jupyterhub/base/jupyterhub-spark-operator-configmap.yaml. Look for 
sparkClusterTemplate in this file, as shown in Figure 5.33. You can see that it looks 
like the file you have created in the previous section:
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Figure 5.33 – JupyterHub template for Spark resources

Some of you might have noticed that this is a template, and it needs the values for specific 
variables mentioned in this template. Variables such as {{ user }} and {{ worker_
nodes }} and so on. Recall that we have mentioned that JupyterHub creates the 
SparkCluster request while it is provisioning a container for your notebook. JupyterHub 
uses this file as a template and fills in the values while creating your notebook. How does 
JupyterHub decide to create a Spark cluster? This configuration is called profiles and is 
available as a ConfigMap file in manifests/jupyterhub/jupyterhub/overlays/
spark3/jupyterhub-singleuser-profiles-configmap.yaml. This looks like 
the file shown in Figure 5.33.
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You can see that the image field specifies the name of the container image on which this 
profile will be triggered. So, as a data engineer, when you select this notebook image from 
the JupyterHub landing page, JupyterHub will apply this profile. The second thing in the 
profile is the env section, which specifies the environment variables that will be pushed to 
the notebook container instance. The configuration object defines the values that will 
be applied to the template that is mentioned in the resources key:

Figure 5.34 – JupyterHub profile for Spark resources
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As you may appreciate, there is a lot of work done behind the scenes to make a 
streamlined experience for you and your team, and in the true sense of open source, 
you can configure everything and even give back to the project if you come up with any 
modifications or new features.

In the next section, you will see how easy it is to write and run a Spark application on your 
platform running these components.

Writing and running a Spark application from 
Jupyter Notebook
Before you run the following steps, make sure that you grasped the components and their 
interactions that we have introduced in the previous section of this chapter:

1.	 Validate that the Spark operator pod is running by running the following command:

kubectl get pods -n ml-workshop | grep spark-operator

You should see the following response:

Figure 5.35 – Spark operator pod

2.	 Validate that the JupyterHub pod is running by running the following command:

kubectl get pods -n ml-workshop | grep jupyterhub

You should see the following response:

Figure 5.36 – JupyterHub pod

3.	 Before you start the notebook, let's delete the Spark cluster you have created in the 
previous sections by running the following command. This is to demonstrate that 
JupyterHub will automatically create a new instance of Spark cluster for you:

kubectl delete sparkcluster simple-spark-cluster -n 
ml-workshop
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4.	 Log in to your JupyterHub server. Refer to the Validating JupyterHub configuration 
section earlier in this chapter. You will get the landing page of your server. Select 
the Elyra Notebook Image with Spark image and the Small container size. This 
is the same image that you have configured in the manifests/jupyterhub/
jupyterhub/overlays/spark3/jupyterhub-singleuser-profiles-
configmap.yaml file. 

5.	 Click on Start server:

Figure 5.37 – JupyterHub landing page showing Elyra Notebook Image with Spark
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The notebook you have just started will also trigger the creation of a dedicated 
Spark cluster for you. It may take some time for the notebook to start because it has 
to wait for the Spark cluster to be ready.

Also, you may have noticed that the image you have configured in the 
jupyterhub-singleuser-profiles-configmap.yaml file is quay.io/
ml-aml-workshop/elyra-spark:0.0.4, while the name we have selected is 
Elyra Notebook Image with Spark, and they are not the same. The mapping of the 
image with the descriptive text is configured in the manifests/jupyterhub-
images/elyra-notebook-spark3-imagestream.yaml file. You will find 
the descriptive text displayed on the JupyterHub landing page coming from the 
annotations section of this file. If you want to add your own images with specific 
libraries, you can just add another file here and it will be available for your team. 
This feature of JupyterHub enables the standardization of notebook container 
images, which allows everyone in the teams to have the same environment 
configurations and the same set of libraries.

6.	 After the notebook has started, validate that the Spark cluster is provisioned for you. 
Note that this is the Spark cluster for the user of this notebook and is dedicated to 
this user only:

kubectl get pods -n ml-workshop | grep mluser

You should see the following response. The response contains a notebook pod and 
two Spark pods; the one with a little -m character is the master, while the other is 
the worker. Notice how your username (mluser) is associated with the pod names:

Figure 5.38 – Jupyter Notebook and Spark cluster pods
Now, everyone in your team will get their own developer environment with 
dedicated Spark instances to write and test the data processing code.
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7.	 Apache Spark provides a UI through which you can monitor applications and data 
processing jobs. The ODH-provisioned Spark cluster provides this GUI, and it is 
available at https://spark-cluster-mluser.192.168.61.72.nip.io. 
Make sure to change the IP address to your minikube IP address. You may also notice 
that the username you have used to log in to JupyterHub, mluser, is part of the URL. 
If you have used a different username, you may need to adjust the URL accordingly.

Figure 5.39 – Spark UI
The preceding UI mentions that you have one worker in the cluster, and you can 
click on the worker node to find out the executors running inside the worker 
node. If you want to refresh your knowledge of the Spark cluster, please refer to the 
Understanding the basics of Apache Spark section earlier in this chapter.

8.	 Open the chapter5/hellospark.ipynb file from your notebook. This is quite 
a simple job that calculates the square of the given array. Remember that Spark will 
automatically schedule the job and distribute it among executors. The notebook 
here is the Spark Driver program, which talks to the Spark cluster, and all of this is 
abstracted via the SparkSession object.
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On the second code cell of this notebook, you are creating a SparkSession 
object. The getOrCreateSparkSession utility function will connect to the 
Spark cluster provisioned for you by the platform.

The last cell is where your data processing logic resides. In this example, the logic 
was to take the data and calculate the square of each element in the array. Once the 
data is processed, the collect method will bring the response to the driver that is 
running in the Spark application in your notebook.

Figure 5.40 – A notebook with a simple Spark application
Click on the Run > Run All cells menu option, and the notebook will connect to 
the Spark cluster, and submit and execute your job.
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9.	 While the job is progressing, open the Spark UI at https://spark-cluster-
mluser.192.168.61.72.nip.io. Remember to adjust the IP address as per 
your settings, and click on the table with the Application ID heading under the 
Running Applications heading on this page.

Figure 5.41 – Apache Spark UI

10.	 Navigate to the details page of the Spark application. Note that the application title, 
Hello from ODH, has been set up in your notebook. Click on the Application 
Detail UI link:

Figure 5.42 – Spark UI showing the submitted Spark job

https://spark-cluster-mluser.192.168.61.72.nip.io
https://spark-cluster-mluser.192.168.61.72.nip.io
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You should see a page showing the detailed metrics of the job that you have just 
executed on the Spark cluster from your Jupyter notebook:

Figure 5.43 – Spark UI showing the submitted job details

11.	 Once you are done with your work, go to the File > Hub Control Panel menu 
option and click on the Stop My Server button:

Figure 5.44 – Jupyter Notebook control panel

12.	 Validate that the Spark cluster has been terminated by issuing the following command:

kubectl get pods -n ml-workshop | grep mluser

You should not see a response because the pods are terminated by the Spark 
operator on your cluster.
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You have finally run a basic data processing job in an on-demand ephemeral Spark cluster 
that is running on Kubernetes. Note that you have done all this from a Jupyter notebook 
running on Kubernetes.

With this capability in the platform, data engineers can perform huge data processing 
tasks directly from the browser. This capability also allows them to collaborate easily with 
each other to provide transformed, cleaned, high-quality data for your ML project.

Summary
In this chapter, you have just created your first ML platform. You have configured the ODH 
components via the ODH Kubernetes operator. You have seen how a data engineer persona 
will use JupyterHub to provision the Jupyter notebook and the Apache Spark cluster 
instance while the platform provides the provisioning of the environments automatically. 
You have also seen how the platform enables standardization of the operating environment 
via the container images, which bring consistency and security. You have seen how a data 
engineer could run Apache Spark jobs from the Jupyter notebook.

All these capabilities allow the data engineer to work autonomously and in a self-serving 
fashion. You have seen that all these components were available autonomously and 
on-demand. The elastic and self-serving nature of the platform will allow teams to be 
more productive and agile while responding to the ever-changing requirements of the 
data and the ML world.

In the next chapter, you will see how data scientists can benefit from the platform and be 
more efficient.
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Machine Learning 

Engineering
In this chapter, we will move the discussion to the model building and model management 
activities of the machine learning (ML) engineering lifecycle. You will learn about the ML 
platform's role of providing a self-serving solution to data scientist so they can work more 
efficiently and collaborate with data teams and fellow data scientists.

The focus of this chapter is not on building models; instead, it is on showing how the 
platform can bring consistency and security across different environments and different 
members of your teams. You will learn how the platform simplifies the work of data 
scientists in terms of preparing and maintaining their data science workspaces.

In this chapter, you will learn about the following topics:

•	 Understanding ML engineering?

•	 Using a custom notebook image 

•	 Introducing MLflow

•	 Using MLflow as an experiment tracking system

•	 Using MLflow as a model registry system
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Technical requirements
This chapter includes some hands-on setup and exercises. You will need a running 
Kubernetes cluster configured with Operator Lifecycle Manager (OLM). Building such a 
Kubernetes environment is covered in Chapter 3, Exploring Kubernetes. Before attempting 
the technical exercises in this chapter, please make sure that you have a working 
Kubernetes cluster and that Open Data Hub (ODH) is installed on your Kubernetes 
cluster. Installing ODH is covered in Chapter 4, The Anatomy of a Machine Learning 
Platform. You can find all the code associated with this book at https://github.
com/PacktPublishing/Machine-Learning-on-Kubernetes.

Understanding ML engineering
ML engineering is the process of applying software engineering principles and practices to 
ML projects. In the context of this book, ML engineering is also a discipline that facilitates 
applying application development practices to the data science lifecycle. When you write 
a traditional application such as a website or a banking system, there are processes and 
tools to assist you in writing high-quality code right from the start. Smart IDEs, standard 
environments, continuous integration, automated testing, and static code analysis are just 
a few examples. Automation and continuous deployment practices enable organizations to 
deploy applications many times in a day and with no downtime. 

ML engineering is a loose term that brings the benefits of traditional software engineering 
practices to the model development world. However, most data scientists are not 
developers. They may not be familiar with software engineering practices. Also, the tools 
that the data scientists use may not be the right tools to perform ML engineering tasks. 
Having said that, the model is just another piece of software. Therefore, we can also apply 
existing software engineering approaches to ML models. Using containers to package and 
deploy ML models is one such example.

Some teams may employ ML engineers to supplement the work of data scientists. While 
the data scientist's primary responsibility is to build ML or deep learning models that 
solve business problems, ML engineers focus more on the software engineering facets. 
Some of the responsibilities of data engineers include the following:

•	 Model optimization (also about making sure that the built model is optimized for 
the target environment where the model will be hosted).

•	 Model packaging (making ML models portable, shippable, executable, and version-
controlled). Model packaging may also include model serving and containerization.

•	 Monitoring (establishing an infrastructure for collecting performance metrics, 
logging, alerting, and anomaly detection such as drift and outlier detection).

https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes
https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes
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•	 Model testing (including facilitation and automation of A/B testing).

•	 Model deployment.

•	 Building and maintenance of MLOps infrastructure.

•	 Implementation of continuous integration and continuous deployment pipelines for 
ML models.

•	 Automation of ML lifecycle processes.

There are other responsibilities of ML engineers that are not listed in the preceding list, 
but this list should already give you an idea of how to differentiate data science from  
ML engineering.

The ML platform that you are building will reduce the number of ML engineering tasks 
to be done manually to a point where even the data scientists can do most of the ML 
engineering tasks by themselves.

In the next sections, you will see how data scientists can track the model development 
iterations to improve model quality and share the learning with the team. You will see how 
teams can apply version control to ML models and other practices of software engineering 
to the ML world.

We will continue our journey of ML engineering into the next chapter, where you will see 
how models can be packaged and deployed in a standard way and see how the deployment 
process can be automated.

Let's start with building standard development environments for our data science team.

Using a custom notebook image
As you have seen in Chapter 5, Data Engineering, JupyterHub allows you to spin up 
Jupyter Notebook-based development environments in a self-service manner. You have 
launched the Base Elyra Notebook Image container image and used it to write the data 
processing code using Apache Spark. This approach enables your team to use a consistent 
or standardized development environment (for example, same Python versions and same 
libraries for building code) and apply security policies to the known set of software being 
used by your team. However, you may also want to create your own custom images with a 
different set of libraries or a different ML framework. The platform allows you to do that. 

In the following subsection, you will build and deploy a custom container image to be 
used within your team.
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Building a custom notebook container image
Let's assume that your team wants to use a specific version of the Scikit library along with 
some other supporting libraries such as joblib. You then want your team to use this 
library while developing their data science code:

1.	 Open the Dockerfile provided in the code repository of this book at 
chapter6/CustomNotebookDockerfile. This file uses the base image 
provided and used by ODH and then adds the required libraries. The file is shown 
in Figure 6.1: 

Figure 6.1 – Dockerfile for the custom notebook image
Note the first line, which refers to the latest image at the time of writing. This 
image is used by ODH. Lines 4 and 5 install the Python packages defined in the 
requirements.txt file. Line 8 installs the dependencies that are not in the 
requirements.txt file. If you wish to add additional packages to the image, you 
can simply insert a line in requirements.txt.
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2.	 Build the image using the file provided in the preceding step. Run the  
following command:

docker build -t scikit-notebook:v1.1.0 -f chapter6/
CustomNotebookDockerfile ./chapter6/. 

You should see the following response:

Figure 6.2 – Output of the container build command

3.	 Tag the built image as per your liking. You will need to push this image to a registry 
from where your Kubernetes cluster can access it. We use quay.io as the public 
Docker repository of choice, and you can use your preferred repository here. Notice 
that you will need to adjust the following command and change the quay.io/
ml-on-k8s/ part before execution of the command:

docker tag scikit-notebook:v1.1.0 quay.io/ml-on-k8s/
scikit-notebook:v1.1.0

There is no output of the preceding command.
4.	 Push the image to the Docker repository of your choice. Use the following 

command and make sure to change the repository location as per Step 3. This 
image may take some time to be pushed to an internet repository based on your 
connection speed. Be patient:

docker push quay.io/ml-on-k8s/scikit-notebook:v1.1.0
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You should see the output of this command as shown in Figure 6.3. Wait for the 
push to complete.

Figure 6.3 – Pushing the custom notebook image to a Docker repository
Now, the image is available to be used. You will configure ODH manifests in the 
next steps to use this image. 

5.	 Open the manifests/jupyterhub-images/base/customnotebook-
imagestream.yaml file. This file is shown as follows:
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Figure 6.4 – ImageStream object
JupyterHub from ODH uses a CRD called Imagestream. This is a native object 
on Red Hat OpenShift, but it is not available in standard Kubernetes. We have 
created this object as a custom resource in the manifests of ODH so that it can 
integrate with upstream Kubernetes. You can find these resources at manifests/
odh-common/base/imagestream-crd.yaml.

Notice on lines 7 and 8, we have defined some annotations. JupyterHub reads 
all the imagestream objects and uses these annotations to be displayed 
on the JupyterHub landing page. JupyterHub also looks at the field named 
dockerImageReference to load these container images upon request.

We encourage you to fork the code repository of this book onto your own Git 
account and add more images. Keep in mind to change the location of the Git 
repository in the manifests/kfdef/ml-platform.yaml file.
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6.	 For the JupyterHub server to see the newly created image, you will need to restart 
the JupyterHub pod. You can find the pod via the following command and delete 
this pod. After a few seconds, Kubernetes will restart this pod and your new image 
will appear on the JupyterHub landing page:

kubectl get pods -n ml-workshop | grep jupyterhub

You should see the following response. Note that the pod name will be different for 
your setup:

Figure 6.5 – Pods with names containing jupyterhub

7.	 Delete the JupyterHub pod by running the following command. Note that you 
do not need to delete this pod for this exercise, because the custom image is 
already present in our manifest files. This step will be required once you add a new 
customer notebook image using the steps mentioned in this section: 

kubectl delete pod jupyterhub-7848ccd4b7-thnmm -n 
ml-workshop

You should see the following response. Note that the pod name will be different for 
your setup:

Figure 6.6 – Output of the delete pod command
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8.	 Log in to JupyterHub and you will see the new notebook image listed there: 

Figure 6.7 – JupyterHub landing page showing the new notebook image

In the next section, you will learn about MLflow, a software that assists teams in recording 
and sharing the outcomes of model training and tuning experiments.

Introducing MLflow
Simply put, MLflow is there to simplify the model development lifecycle. A lot of the 
data scientist's time is spent finding the right algorithms with the right hyperparameters 
for the given dataset. As a data scientist, you experiment with different combinations of 
parameters and algorithms, then review and compare the results to make the right choice. 
MLflow allows you to record, track, and compare these parameters, their results, and 
associated metrics. The component of MLflow that captures the details of each of your 
experiments is called the tracking server. The tracking server captures the environment 
details of your notebook, such as the Python libraries and their versions, and the artifacts 
generated by your experiment.
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The tracking server allows you to compare the data captured between different runs of 
an experiment, such as the performance metrics (for example, accuracy) alongside the 
hyperparameters used. You can also share this data with your team for collaboration.

The second key capability of the MLflow tracking server is the model registry. Consider that 
you have run ten different experiments for the given dataset, while each of the experiments 
resulted in a model. Only one of the models will be used for the given problem. The 
model registry allows you to tag the selected model with one of the three stages (Staging, 
Production, and Archived). The model registry has APIs that allow you to access these 
models from your automated jobs. Versioning models in a registry will enable you to roll 
back to previous versions of the model using your automation tools in production if needed.

Figure 6.8 shows the two major capabilities of the MLflow software:

       Figure 6.8 – MLflow major capabilities

Now that you know what MLFlow is used for, let's take a look at the components that 
made up MLFlow.

Understanding MLflow components
Let's see what the major components of the MLflow system are and how it fits into our ML 
platform's ecosystem.

MLflow server
MLflow is deployed as a container, and it contains a backend server, a GUI, and an API to 
interact with it. In the later sections of this chapter, you will use the MLflow API to store 
the experiment data onto it. You will use the GUI component to visualize experiment 
tracking and the model registry parts. You can find this configuration at manifests/
mlflow/base/mlflow-dc.yaml.



Introducing MLflow     141

MLflow backend store
The MLflow server needs a backend store to store the metadata about experiments. The 
ODH component automatically provisions a PostgreSQL database to be used as a backend 
store for MLflow. You can find this configuration at manifests/mlflow/base/
mlflow-postgres-statefulset.yaml.

MLflow storage 
The MLflow server supports several types of storage, such as S3 and databases. This 
storage will serve as the persistent storage for the artifacts, such as files and model files. 
In our platform, you will provision an open source S3 compatible storage service known 
as Minio. Minio will provide the S3 API capabilities to the platform; however, your 
organization may already have an enterprise-wide S3 solution, and we recommend using 
the existing solution if there is one. You can find this configuration at manifests/
minio/base/minio-dc.yaml.

MLflow authentication
MLflow does not have an out-of-the-box authentication system at the time of writing. 
In our platform, we have configured a proxy server in front of the MLflow GUI that will 
authenticate the request before forwarding it to the MLflow server. We are using the open 
source component at https://github.com/oauth2-proxy/oauth2-proxy for 
this purpose. The proxy has been configured to perform Single-Sign-On (SSO) with the 
Keycloak service of the platform.

Figure 6.9 – MLflow and associated components in the platform

https://github.com/oauth2-proxy/oauth2-proxy
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As you can see in Figure 6.9, the MLflow pod has two containers in it: the MLflow server 
and the OAuth2 proxy. The Oauth2 proxy has been configured to use the Keycloak 
instance you installed.

When you created a new instance of ODH in Chapter 5, Data Engineering, it installed 
many platform components, including MLflow and Minio. Now, let's validate the  
MLflow installation.

Validating the MLflow installation
ODH has already installed the MLflow and associated components for you. Now, you  
will use the MLflow GUI to get yourself familiar with the tool. You can imagine all the 
team members will have access to experiments and models, which will improve your 
team's collaboration:

1.	 Get the ingress objects created in your Kubernetes environment using the following 
command. This is to get the URL of the endpoints where our services are deployed:

kubectl get ingress -n ml-workshop

You should see the following response:

Figure 6.10 – All ingress objects in your cluster namespace

2.	 Open the Minio GUI, our S3 component, and validate that there is a bucket 
available for MLflow to be used as its storage. The URL for the Minio component 
will look like https://minio.192.168.61.72.nip.io, where you will 
adjust the IP address as per your environment. The password is configured in the 
manifests file, and it is minio123. We have added Minio to the manifests to show 
that there is an option available using open source technologies, but making it 
suitable for production is out of scope for this book. Click on the buckets menu item 
on the left-hand side of the screen and you will see the available buckets:
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Figure 6.11 – Minio bucket list
How are all of these buckets created? In the manifests, we have a Kubernetes job that 
creates the buckets. You can find the job at manifests/minio/base/minio-
job.yaml. The job is using the Minio command-line client, mc, to create the 
buckets. You can find these commands under the command field name in this file.

The configuration of S3 that is being used by MLflow is configured at manifests/
mlflow/base/mlflow-dc.yaml file.
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You can see the settings as follows: 

Figure 6.12 – MLflow configuration to use Minio

3.	 Open a browser and paste the HOSTS value for the jupyterhub ingress into your 
browser. For me, it was https://mlflow.192.168.61.72.nip.io. This 
URL will take you to the Keycloak login page, which is the SSO server as shown in 
the following figure. Make sure that you replace the IP address with yours in this 
URL. Recall that the authentication part of MLflow is being managed by a proxy 
that you have configured in manifests/mlflow/base/mlflow-dc.yaml.

4.	 You can see the configuration of the OAuth proxy for MLflow as follows. Because 
oauth-proxy and MLflow belong to the same pod, all we have done is route  
the traffic from oauth-proxy to the MLflow container. This is set up with  
the –upstream property. You can also see oauth-proxy needs the name of  
the identity provider server, which is Keycloak, and it is configured under the  
–oidc-issuer property:

https://mlflow.192.168.61.72.nip.io
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Figure 6.13 – OAuth proxy configuration for MLflow 
The landing page of MLflow looks like the page in Figure 6.14. You will notice there 
are two sections on the top bar menu. One has the label Experiments and the other 
one, Models.
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5.	 Before you see this page, the SSO configuration will display the login page. Enter 
the user ID as mluser and the password as mluser to log in. The username 
and password were configured in Chapter 4, The Anatomy of a Machine Learning 
Platform, in the Creating a Keycloak user section. 

Figure 6.14 – MLflow experiment tracking page
The left-hand side of the Experiments screen contains the list of experiments, and 
the right-hand side displays the details of experiment runs. Think of the experiment 
as the data science project you are working on, such as fraud detection in consumer 
transactions, and the Notes section captures the combination of parameters, 
algorithms, and other information used to run the experiment.
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6.	 Click on the Models tab to see the landing page of the model registry.

The Models tab contains the list of models in the registry, their versions, and their 
corresponding stages, which mention what environment the models are deployed in.

       Figure 6.15 – MLflow model registry page

If you can open the MLflow URL and see the pages as described in the preceding steps, 
then you have just validated that MLflow is configured in your platform. The next step 
is to write a notebook that will train a basic model while recording the details in your 
MLflow server.

Using MLFlow as an experiment tracking 
system
In this section, you will see how the MLflow library allows you to record your experiments 
with the MLflow server. The custom notebook image, which you saw in the first part of 
this chapter, already has MLflow libraries packaged into the container. Please refer to the 
chapter6/requirements.txt file for the exact version of the MLflow library.
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Before we start this activity, it is important to understand two main concepts: experiment 
and run.

An experiment is a logical name under which MLflow records and groups the metadata, 
for example, an experiment could be the name of your project. Let's say you are working 
on building a model for predicting credit card fraud for your retail customer. This could 
become the experiment name.

A run is a single execution of an experiment that is tracked in MLflow. A run belongs 
to an experiment. Each run may have a slightly different configuration, different 
hyperparameters, and sometimes, different datasets. You will tweak these parameters 
of the experiment in a Jupyter notebook. Each execution of model training is typically 
considered a run.

MLflow has two main methods of recording the experiment details. The first one, which 
is our preferred method, is to enable the auto-logging features of MLflow to work with 
your ML library. It has integration with Scikit, TensorFlow, PyTorch, XGBoost, and a few 
more. The second way is to record everything manually. You will see both options in the 
following steps.

These steps will show you how an experiment run or a model training can be recorded in 
MLflow while executing in a Jupyter notebook:

1.	 Log in to JupyterHub and make sure to select the custom container, for example, 
Scikit v1.10 - Elyra Notebook Image.

Before you hit the Start Server button, add an environment variable by clicking  
on the Add more variables link. This variable may contain sensitive information 
such as passwords. MLflow needs this information to upload the artifacts to the 
Minio S3 server.
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The landing page will look like the screenshot in Figure 6.16:

       Figure 6.16 – JupyterHub with an environment variable
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2.	 Open the notebook at chapter6/hellomlflow.ipynb. This notebook shows 
you how you can record your experiment data onto the MLflow server.

Figure 6.17 – Notebook with Mlflow integration
Note that at the first code cell, you have imported the MLflow library. In the  
second code cell, you have set up the location of the MLflow server through the 
set_tracking_uri method. Note that because your notebook and the MLflow 
server are running on Kubernetes, we just put the location of the Kubernetes Service 
that is stored in the HOST variable name and is being used in this method.
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You then set the name of the experiment using the set_experiment method. 
This is one important variable through which all your experiment runs will be 
stored in the MLflow server.

The last method in this cell is sklearn.autolog, which is a way to tell MLflow 
that we are using the Scikit library for our training, and MLflow will record the data 
through Scikit APIs.

       Figure 6.18 – Notebook cell with MLflow configuration
In the last cell of this notebook, you are using a simple 
DecisionTreeClassifier to train your model. Notice that this is quite a 
simple model and is used to highlight the capabilities of the MLflow server.

3.	 Run the notebook by selecting the Run > Run all cells menu option.
4.	 Log in to the MLflow server and click on the experiment name HelloMlFlow. 

The URL of MLflow will be like https://mlflow.192.168.61.72.nip.io 
with the IP address replaced as per your environment. As mentioned earlier in this 
chapter, you get this URL by listing the ingress objects of your Kubernetes cluster.

https://mlflow.192.168.61.72.nip.io
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You will see the screen as shown in Figure 6.19:

 

       Figure 6.19 – MLflow experiments tracking screen showing an experiment run
You will notice that the table on the right-hand side contains one record. This is the 
experiment run you performed in Step 6. If you have executed your notebook multiple 
times with different parameters, each run will be recorded as a row in this table.
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5.	 Click on the first row of the table.

You will get to the details of the run you selected in the previous step. The screen 
will look like the screenshot in Figure 6.20:

       Figure 6.20 – MLflow run details
Let's understand the information that is available on this screen:
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	� Parameters: If you click on the little arrow next to Parameters, you will see that it 
has recorded the hyperparameters of your model training run. If you refer to the 
notebook code cell number 4, you will see that the parameters that we have used 
for DecisionTreeClassifier are recorded here too. One such example is the 
max_depth parameter, as shown in Figure 6.21:

Figure 6.21 – MLflow run parameters
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	� Metrics: If you click on the little arrow next to Metrics, you will see that it  
has recorded the metrics for your model training run. You can see  
training_accuracy in the screenshot, as shown in Figure 6.22:

Figure 6.22 – MLflow run metrics
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	� Tags: If you click on the little arrow next to Tags, you will see the automatically 
associated tags (for example, estimator_class), which define the type of ML 
algorithm you have used. Note that you can add your own tags if needed. In the 
next section, we will show how to associate a custom tag for your run. Figure 6.23 
shows an example of tags:

Figure 6.23 – MLflow run tags
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	� Artifacts: This section contains the artifacts associated with the run, such as the 
binary model file. Note that you can add your own artifacts here if needed. In the 
next section, we will show you how to associate an artifact with your run. Keep 
in mind that the artifacts are stored in the associated S3 bucket of your MLflow 
server. Note that the model binary is saved as a model.pkl file.

Figure 6.24 – MLflow run artifacts
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6.	 To validate that these files are indeed stored in the S3 server, log in to the Minio 
server, select Buckets, and click on Browse button for the MLflow bucket. You will 
find a folder created with the name of your run. This name is displayed in the top-left 
corner of your experiment screen; consult the top-left corner of the preceding screen 
and you will see a label with a combination of 32 alphanumeric characters. This long 
number is your run ID, and you can see a folder label with a combination of 32 
alphanumeric characters in your S3 bucket, as shown in the following screenshot. 
You can click on this link to find the artifacts stored on the S3 bucket:

Figure 6.25 – Minio bucket location

You have just successfully trained a model in JupyterHub and tracked the training run  
in MLflow.

You have seen how MLflow associates the data with each of your runs. You can even 
compare the data between multiple runs by selecting multiple runs from the table shown 
in Step 6 and clicking on the Compare button.

Adding custom data to the experiment run
Now, let's see how we can add more data for each run. You will learn how to use the 
MLflow API to associate custom data with your experiment:

1.	 Start by firing up the Jupyter notebook as you did in the preceding section.
2.	 Open the notebook at chapter6/hellomlflow-custom.ipynb. This 

notebook shows you how you can customize the recording of your experiment data 
onto the MLflow server. The notebook is similar to the previous notebook, except 
for the code in cell number 6, which is shown in Figure 6.26. This code cell contains 
the functions that show how to associate data with your experiment:
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Figure 6.26 – MLflow customized data collection notebook
Let's understand these functions in the next few steps. The code snippet in code cell 
number 6 is as follows:

with mlflow.start_run(tags={    "mlflow.source.
git.commit" : mlflow_util.get_git_revision_hash() 
,    "mlflow.source.git.branch": mlflow_util.get_git_
branch(),    "code.repoURL": mlflow_util.get_git_remote()    
}) as run:        model.fit(X, y)    mlflow_util.record_
libraries(mlflow)    mlflow_util.log_metric(mlflow, 
"custom_mteric", 1.0)    mlflow_util.log_param(mlflow, 
"docker_image_name", os.environ["JUPYTER_IMAGE"])

The preceding code will include a custom tag labeled code.repoURL. This makes 
it easier to trace back the original source code that produced the model in a given 
experiment run.
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3.	 You can associate any tags while calling the start_run function. Tag keys that 
start with mlflow are reserved for internal use. You can see that we have associated 
the GIT commit hash with the first property. This will help us in following through 
on what experiment belongs to what code version in your code repository.

You will find that the code.repoURL tag contains the Git repository location. You 
can add as many tags as you want. You can see the tags by going to the MLflow UI 
and opening the experiment. Note that the notebook has a different experiment 
name, and it is being referenced as HelloMlFlowCustom.

Note the Git Commit label at the top section of the page, and the custom tag name 
code.repoURL in the Tags section:

 Figure 6.27 – MLflow custom tags

4.	 The second function that we have used is record_libraries. This is a wrapper 
function that internally uses the mlflow.log_artifact function to associate a 
file with the run. This utility function is capturing the pip freeze output, which 
gives the libraries in the current environment. The utility function then writes it to a 
file and uploads the file to the MLflow experiment. You can look at this, and all the 
other functions, in the chapter6/mlflow_util.py file.
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You can see in the Artifacts section that a new file, pip_freeze.txt, is available, 
and it records the output of the pipe freeze command:

Figure 6.28 – MLflow customized artifacts
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5.	 The log_metric function records the metric name and its associated value. Note 
that the value for the metric is expected to be a number. For the sample code, you 
can see that we have just put a hardcoded value (1), however, in the real world, 
this would be a dynamic value that refers to something relative to each run of your 
experiment. You can find your custom metric in the Metrics section of the page:

Figure 6.29 – MLflow customized metrics

6.	 The log_param function is like the log_metric function, but it can take any 
type of value against a given parameter name. For example, we have recorded  
the Docker image used by the Jupyter notebook. Recall that this is the custom  
image you built to be used by the data scientist team. You can see the following 
docker_image_name parameter that contains the desired value:
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Figure 6.30 – MLflow customized parameters

You have used MLflow to track, add custom tags, and custom artifacts to an experiment 
run. In the next section, you will see the capabilities of MLflow as a model registry 
component. Let's dig in.
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Using MLFlow as a model registry system
Recall that MLflow has a model registry feature. The registry provides the versioning 
capabilities for your models. Automation tools can get the models from the registry to 
deploy or even roll back your models across different environments. You will see in the 
later chapters that automation tools in our platform fetch the model from this registry via 
the API. For now, let's see how to use the registry:

1.	 Log in to the MLflow server by accessing the UI and clicking on the Models link. 
You should see the following screen. Click on the Create Model button:

Figure 6.31 – MLflow registering a new model

2.	 Type a name for your model in the pop-up window, as shown in the following 
screenshot, and click on the Create button. This name could mention the name of 
the project that this model is serving:
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Figure 6.32 – MLflow model name prompt

3.	 Now, you need to attach a model file to this registered name. Recall from the 
preceding section that you have multiple runs in your experiment. Each run defines 
the set of configuration parameters and associated models with it. Select the 
experiment and run for which you want to register your model.

4.	 You will see a screen like the following. Select the model label in the Artifacts 
section, and you will notice a Register Model button on the right-hand side.  
Click on this button:

Figure 6.33 – MLflow showing the Register Model button
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5.	 From the pop-up window, select the model name you created in Step 1 and click  
on Register.

Figure 6.34 – Model name dialog when registering a model in MLflow

6.	 Go to the Models tab as mentioned in Step 1 and you will see your model is 
registered in the MLflow registry. You will see the list as shown in the following 
screenshot. Click on the model name, for example, mlflowdemo:



Using MLFlow as a model registry system     167

Figure 6.35 – MLflow showing the list of registered models and their versions

7.	 You will see the detail screen where you can attach the stage of the model as referred 
to by the Stage label. You can also edit other properties, and we will leave it to you 
to explore the data you can associate with this model:

Figure 6.36 – MLflow showing the buttons for promoting registered models to higher environments

Congratulations! You have just experienced using MLflow as a model registry! You have 
also seen how the model version can be promoted to the different stages of the lifecycle.
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Summary
In this chapter, you have gained a better understanding of ML engineering and how it 
differs from data science. You have also learned about some of the responsibilities of 
ML engineers. You must take note that the definition of ML engineering and the role of 
ML engineers are still evolving, as more and more techniques are surfacing. One such 
technique that we will not talk about in this book is online ML.

You have also learned how to create a custom notebook image and use it to standardize 
notebook environments. You have trained a model in the Jupyter notebook while using 
MLflow to track and compare your model development parameters, training results, 
and metrics. You have also seen how MLflow can be used as a model registry and how to 
promote model versions to different stages of the lifecycle.

The next chapter will continue the ML engineering domain and you will package and 
deploy ML models to be consumed as an API. You will then automate the package and 
deploy the process using the tools available in the ML platform.



7
Model Deployment 

and Automation
In the previous chapter, you saw how the platform enables you to build and register the 
model in an autonomous fashion. In this chapter, we will extend the machine learning 
(ML) engineering domain to model deployment, monitoring, and automation of 
deployment activities. 

You will learn how the platform provides the model packaging and deployment capabilities 
and how you can automate them. You will take the model from the registry, package it as a 
container, and deploy the model onto the platform to be consumed as an API. You will then 
automate all these steps using the workflow engine provided by the platform. 

Once your model is deployed, it works well for the data it was trained upon. The real 
world, however, changes. You will see how the platform allows you to observe your 
model's performance. This chapter discusses the tools and techniques to monitor your 
model performance. The performance data could be used to decide whether the model 
needs retraining on the new dataset, or whether it is time to build a new model for the 
given problem.
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In this chapter, you will learn about the following topics:

•	 Understanding model inferencing with Seldon Core

•	 Packaging, running, and monitoring a model using Seldon Core

•	 Understanding Apache Airflow

•	 Automating ML model deployments in Airflow

Technical requirements
This chapter includes some hands-on setup and exercises. You will need a running 
Kubernetes cluster configured with Operator Lifecycle Manager. Building such a 
Kubernetes environment is covered in Chapter 3, Exploring Kubernetes. Before attempting 
the technical exercises in this chapter, please make sure that you have a working 
Kubernetes cluster and Open Data Hub (ODH) is installed on your Kubernetes cluster. 
Installing ODH is covered in Chapter 4, The Anatomy of a Machine Learning Platform.

Understanding model inferencing with  
Seldon Core
In the previous chapter, you built the model. These models are built by data science teams 
to be used in production and serve the prediction requests. There are many ways to use a 
model in production, such as embedding the model with your customer-facing program, 
but the most common way is to expose the model as a REST API. The REST API can 
then be used by any application. In general, running and serving a model in production is 
called model serving.

However, once the model is in production, it needs to be monitored for performance and 
needs updating to meet the expected criteria. A hosted model solution enables you to not 
only serve the model but monitor its performance and generate alerts that can be used to 
trigger retraining of the model.

Seldon is a UK-based firm that created a set of tools to manage the model's life cycle. 
Seldon Core is an open source framework that helps expose ML models to be consumed 
as REST APIs. Seldon Core automatically exposes the monitoring statistics for the REST 
API, which can be consumed by Prometheus, the platform's monitoring component. To 
expose your model as a REST API in the platform, the following steps are required:

1.	 Write a language-specific wrapper for your model to expose as a service.
2.	 Containerize your model.
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3.	 Define and deploy the model using the inference graph of your model using Seldon 
Deployment custom resource (CR) in Kubernetes

Next, we will see these three steps in detail.

Wrapping the model using Python
Let's see how you can apply the preceding steps. In Chapter 6, Machine Learning 
Engineering, you registered your experiment details and a model with the MLflow server. 
Recall that the model file was stored in the artifacts of MLflow and named model.pkl. 

Let's take the model file and write a simple Python wrapper around it. The job of the 
wrapper is to use Seldon libraries to conveniently expose the model as a REST service. 
You can find the example of the wrapper in the code at chapter7/model_deploy_
pipeline/model_build_push/Predictor.py. The key component of this 
wrapper is a function named predict that will be invoked from an HTTP endpoint 
created by the Seldon framework. Figure 7.1 shows a simple Python wrapper using a 
joblib model:

Figure 7.1 – A Python language wrapper for the model prediction

The predict function receives a numpy array (data_array) and a set of column names 
(column_names), serialized from the HTTP request. The method returns the result of the 
prediction as either a numpy array or a list of values or bytes. There are many more methods 
available for the language wrapper and a full list is available at https://docs.seldon.
io/projects/seldon-core/en/v1.12.0/python/python_component.
html#low-level-methods. Note that in later chapters of this book, you will see a more 
thorough inferencing example that will have additional wrappers for data transformation 
before prediction. But, for this chapter, we keep it as simple as possible.

https://docs.seldon.io/projects/seldon-core/en/v1.12.0/python/python_component.html#low-level-methods
https://docs.seldon.io/projects/seldon-core/en/v1.12.0/python/python_component.html#low-level-methods
https://docs.seldon.io/projects/seldon-core/en/v1.12.0/python/python_component.html#low-level-methods
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The language wrapper is ready, and the next stage is to containerize the model and the 
language wrapper. 

Containerizing the model
What would you put in the container? Let's start with a list. You will need the model and 
the wrapper files. You will need the Seldon Python packages available in the container. 
Once you have all these packages, then you will use the Seldon services to expose the 
model. Figure 7.2 shows a Docker file that is building one such container. This file is 
available in Chapter 7/model_deployment_pipeline/model_build_push/
Dockerfile.py.

Figure 7.2 – Docker file to package the model as a container

Now, let's understand the content of the Docker file: 

•	 Line 1 indicates the base container image for your model service. We have 
chosen the freely available image from Red Hat, but you can choose as per your 
convenience. This image could be your organization's base image with the standard 
version of Python and related software.

•	 In Line 3, we have created a microservice directory to place all the related 
artifacts in our container. 

•	 In Line 4, the first file we need to build the container is base_requirements.
txt. This file contains the packages and dependencies for the Seldon Core system. 
You can find this file at chapter7/model_deployment_pipeline/model_
build_push/base_requirements.txt. In this file, you will see that Seldon 
Core packages and joblib packages have been added.
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Figure 7.3 shows the base_requirements.txt file:

Figure 7.3 – File adding Seldon and Joblib to the container

•	 Line 5 is using the base_requirements.txt file to install the Python packages 
onto the container.

•	 In Lines 7 and 8, when you are training the model, you may use different packages. 
During inferencing, some of the packages may be needed; for example, if you have 
done input data scaling before model training using a library, you may need the 
same library to apply the scaling at inference time. 

In Chapter 6, Machine Learning Engineering, you registered your experiment details and a 
model with the MLflow server. Recall that the model file was stored in the artifacts along 
with a file containing packages used to train the model named requirements.txt. Using 
the requirements.txt file generated by MLflow, you can install the packages required 
to run your model, or you may choose to add these dependencies on your own to a custom 
file. Figure 7.4 shows the MLflow snapshot referred to in Chapter 6, Machine Learning 
Engineering. You can see the requirements.txt file here next to the model.pkl file.

Figure 7.4 – MLflow run artifacts
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Line 10: You add the language wrapper files and the model files to the container.

Line 11: Here, you are using the seldon-core-microservice server to start the 
inferencing server. Notice that the parameters have been passed here, and in the next 
section, you will see how we can pass these parameters: 

•	 MODEL_NAME: This is the name of the Python class in the language wrapper 
containing the model.

•	 SERVICE_TYPE: This parameter contains the type of service being created here 
in the inference pipeline. Recall that an inference pipeline may contain the model 
execution or data transformation or it may be an outlier-detector. For model 
execution, the value of this parameter will be MODEL.

•	 GRPC_PORT: The port at which the Google Remote Procedure Call (gRPC) 
endpoint will listen for model inference.

•	 METRICS_PORT: The port at which the service performance data will be exposed. 
Note that this is the performance data for the service and not the model.

•	 HTTP_NAME: The HTTP port where will you serve the model over HTTP.

Now, we have a container specification in the form of the Docker file. Next, we will see 
how to deploy the container on the Kubernetes platform using the Seldon controller.

Deploying the model using the Seldon controller
Our ML platform provides a Seldon controller, a piece of software that runs as a pod 
and assists in deploying the containers you built in the preceding section. Note that the 
controller in our platform is the extension of the existing Seldon operator. At the time 
of writing, the Seldon operator was not compatible with Kubernetes version 1.22, so we 
have extended the existing operator to work with the latest and future versions of the 
Kubernetes platform.

Refer to Chapter 4, The Anatomy of a Machine Learning Platform, where you learned 
about installing ODH and how it works on the Kubernetes cluster. In an equivalent 
manner, the Seldon controller is also installed by the ODH operator. The manifests/
ml-platform.yaml file has the configuration for installing the Seldon controller. 
Figure 7.5 shows the settings:
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Figure 7.5 – MLFlow section of the manifest file

Let's verify whether the Seldon controller is running correctly in the cluster:

kubectl get pods –n ml-workshop | grep –i seldon

You should see the following response:

Figure 7.6 – Seldon controller pod

The Seldon controller pod is installed by the ODH operators, which watch for the Seldon 
Deployment CR. This schema for this resource is defined by the Seldon Deployment 
custom resource definition (CRD); you can find the CRD at manifests/odhseldon/
cluster/base/seldon-operator-crd-seldondeployments.yaml. Once you 
create the Seldon Deployment CR, the controller deploys the pods associated with the CR. 
Figure 7.7 shows this relationship:

Figure 7.7 – Components of the platform for deploying Seldon services

Let's see the different components of the Seldon Deployment CR. You can find one simple 
example in chapter7/manual_model_deployment/SeldonDeploy.yaml.
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The Seldon Deployment CR contains all the information that is required by the Seldon 
controller to deploy your model on the Kubernetes cluster. There are three main sections 
in the Seldon Deployment CR:

•	 General information: This is the section that describes apiVersion, kind, and 
other Kubernetes-related information. You will define the labels and name of the 
Seldon Deployment as any other Kubernetes object. You can see in the following 
screenshot that it contains the labels and annotations for the object:

Figure 7.8 – Seldon Deployment – Kubernetes-related information

•	 Container specifications: The second section is where you provide details about the 
container location, the deployment, and the horizontal pod scaling configuration 
of your service. Note that this is the same container that you built in the preceding 
section. Figure 7.7 contains the section of the chapter7/manual_model_
deployment/SeldonDeploy.yaml file that has this information.

Notice that containers take an array for the image object, so you can add more 
images to it. The image key will have the location of your container. The env array 
defines the environment variables that will be available for the pod. Recall that, in 
our Docker file in the previous section, these variables have been used. MODEL_
NAME has a value of Predictor, which is the name of the class you have used 
as a wrapper. SERVICE_TYPE has a value of MODEL, which mentions the type of 
service this container provides.
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The last part has hpaSpec, which the Seldon controller will translate onto the 
Kubernetes Horizontal Pod Autoscaler object. Through these settings, you can 
control the scalability of your pods while serving inferencing calls. For the following 
example, maxReplicas is set to 1, so there will not be any new pods, but you 
can control this value for each deployment. The scalability will kick in if the CPU 
utilization goes beyond 80% for the pods in the following example; however, 
because maxReplica is 1, there will not be any new pods created.

Figure 7.9 – Seldon Deployment – Seldon service containers

•	 Inference graph: The section under the graph key builds the inference graph for 
your service. An inference graph will have different nodes and you will define what 
container will be used at each node. You will see there is a children key that 
takes an array of objects through which you define your inference graph. For this 
example, graph has only one node and the children key has no information 
associated with it; however, in the later chapters, you will see how to build the 
inference graph with more nodes.
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The remaining fields under the graph define the first node of your inference graph. 
The name field has the value that corresponds to the name you have given in the 
containers section. Note that this is the key through which Seldon knows what 
container would be serving at this node of your inference graph.

The other important part is the logger section. Seldon can automatically forward 
the request and response to the URL mentioned under the logger section. The 
capability of forwarding the request and response can be used for a variety of 
scenarios, such as storing the payload for audit/legal reasons or applying data drift 
algorithms to trigger retraining or anything else. Note that Seldon can also forward 
to Kafka if needed, but this is outside the scope of this book.

Figure 7.10 – Seldon Deployment – inference graph

Once you create the Seldon Deployment CR using the routine kubectl command, the 
Seldon controller will deploy the pods, and the model will be available for consumption as 
a service.

Next, we'll move on to packaging and deploying the basic model that you built in Chapter 6, 
Machine Learning Engineering.
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Packaging, running, and monitoring a model 
using Seldon Core
In this section, you will package and build the container from the model file you built in 
Chapter 6,  Machine Learning Engineering. You will then use the Seldon Deployment to 
deploy and access the model. Later in this book, you will automate the process, but to do it 
manually, as you'll do in this section, we will further strengthen your understanding of the 
components and how they work.

Before you start this exercise, please make sure that you have created an account with a 
public Docker registry. We will use the free quay.io as our registry, but you are free to 
use your preferred one:

1.	 Let's first verify that MLflow and Minio (our S3 server) are running in our cluster: 

kubectl get pods -n ml-workshop | grep -iE 'mlflow|minio' 

You should see the following response:

Figure 7.11 – MLflow and Minio are running on the platform

2.	 Get the ingress list for MLflow, and log in to MLflow using the mlflow URL 
available from the following output:

kubectl get ingresses.networking.k8s.io -n ml-workshop 

You should see the following response:

Figure 7.12 – ingress in your Kubernetes cluster
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3.	 Once you are in the MLflow UI, navigate to the experiment that you recorded 
in Chapter 6, Machine Learning Engineering. The name of the experiment is 
HelloMIFlow.

Figure 7.13 – MlFlow Experiment Tracking

4.	 Select the first run from the right-hand panel to get to the detail page of the 
run. From the Artifacts section, click on model.pkl and you will see a little 
download arrow icon to the right. Use the icon to download the model.pkl and 
requirements.txt files from this screen.
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Figure 7.14 – MLflow experiment tracking – run details

5.	 Go to the folder where you have cloned the code repository that comes with 
this book. If you have not done so, please clone the https://github.com/
PacktPublishing/Machine-Learning-on-Kubernetes.git repository 
on your local machine.

6.	 Then, go to the chapter7/model_deploy_pipeline/model_build_push 
folder and copy the two files downloaded in the previous step to this folder. In the 
end, this folder will have the following files:

Figure 7.15 – Sample files to package the model as a container

Note
The last two files are the ones that you have just copied. All other files are 
coming from the code repository that you have cloned.

https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes.git
https://github.com/PacktPublishing/Machine-Learning-on-Kubernetes.git
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Curious people will note that the requirements.txt file that you have 
downloaded from the MLFlow server contains the packages required while you run 
the notebook for model training. Not all of these packages (mlflow, for example) 
will be needed to execute the saved model. To keep things simple, we will add all of 
them to our container.

7.	 Now, let's build the container on the local machine:

docker build -t hellomlflow-manual:1.0.0 .

You should see the following response:

Figure 7.16 – Packaging the model as a container

8.	 The next step is to tag the container and push it to the repository of your choice. 
Before you push your image to a repository, you will need to have an account with 
an image registry. If you do not have one, you can create one at https://hub.
docker.com or https://quay.io. Once you have created your registry, you 
can run the following commands to tag and push the image: 

docker tag hellomlflow-manual:1.0.0 <DOCKER_REGISTRY>/
hellomlflow-manual:1.0.0

docker push <DOCKER_REGISTRY> /hellomlflow-manual:1.0.0

You should see the following response. You will notice that, in the following 
screenshot, we refer to quay.io/ml-on-k8s as our registry:

https://hub.docker.com
https://hub.docker.com
https://quay.io
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Figure 7.17 – Pushing the model to a public repository

9.	 Now that your container is available in a registry, you will need to use the Seldon 
Deployment CR to deploy it as a service. Open the chapter7/manual_model_
deployment/SeldonDeploy.yaml file and adjust the location of the image. 

You can see the file after I have modified line 16 (as per my image location)  
as follows:

Figure 7.18 – Seldon Deployment CR with the image location
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10.	 Let's deploy the model as a service by deploying the chapter7/manual_model_
deployment/SeldonDeploy.yaml file. Run the following command:

kubectl create -f chapter7/manual_model_deployment/
SeldonDeploy.yaml -n ml-workshop

You should see the following response:

Figure 7.19 – Creating the Seldon Deployment CR 

11.	 Validate that the container is in a running state. Run the following command:

kubectl get pod -n ml-workshop | grep model-test-
predictor

You will note that the name that you have put in the graph section of the 
SeldonDeploy.yaml file (model-test-predictor) is part of the  
container name.

You should see the following response:

Figure 7.20 – Validating the pod after the Seldon Deployment CR 

12.	 Great! You have a model running as a service. Now, let's see what is in the pod 
created for us by the Seldon controller. Run the following command to get a list of 
containers inside our pod:

export POD_NAME=$(kubectl get pod -o=custom-
columns=NAME:.metadata.name -n ml-workshop | grep model-
test-predictor) 

kubectl get pods $POD_NAME -o jsonpath='{.spec.
containers[*].name}' -n ml-workshop 

You should see the following response:

Figure 7.21 – Containers inside the Seldon pod
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You will see that there are two containers. One is model-test-predictor, 
which is the image that we have built, and the second container is seldon-
container-engine, which is the Seldon server. 

The model-test-predictor container has the model and is using the language 
wrapper to expose the model over HTTP and gRPC. You can use the following 
command to see the logs and what ports have been exposed from model-test-
predictor:

kubectl logs -f $POD_NAME -n ml-workshop -c model-test-
predictor

You should see the following response (among other logs):

Figure 7.22 – Containers log showing the ports
You can see that the servers are ready to take the calls on 9000 for HTTP and on 
6005 for the metrics server. This metrics server will have the Prometheus-based 
monitoring data exposed on the /prometheus endpoint. You can see this in the 
following portion of the log:

Figure 7.23 – Containers log showing the Prometheus endpoint
The second container is seldon-container-engine, which does the 
orchestration for the inference graph and forwards the payloads to the service 
configured by you in the logger section of the Seldon Deployment CR. 

13.	 In this step, you will find out what Kubernetes objects your Seldon Deployment CR 
has created for you. A simple way to find out is by running the command as follows. 
This command depends on the Seldon controller labeling the objects it creates with 
the label key as seldon-deployment-id, and the value is the name of your 
Seldon Deployment CR, which is model-test:

kubectl get all  -l seldon-deployment-id=model-test -n 
ml-workshop



186     Model Deployment and Automation

You should see the following response:

Figure 7.24 – Kubernetes objects created by the Seldon controller
You can see that there are Deployment objects, services, and Horizontal Pod 
Autoscalers (HPA) objects created for you for the Seldon controller using 
the configuration that you have provided in the Seldon Deployment CR. The 
deployment ends up creating pods and a replica set for your pods. The Seldon 
controller made it easy to deploy our model on the Kubernetes platform.

14.	 You may have noticed that there is no ingress object created by the Seldon 
Deployment CR. Let's create the ingress object so that we can call our model from 
outside the cluster by running the command as follows. The ingress object is created 
by the file in chapter7/manual_model_deployment/Ingress.yaml. Make 
sure to adjust the host value as per your configuration, as you have done in earlier 
chapters. You will also notice that the ingress is forwarding traffic to port 8000. 
Seldon provides the listener to this port, which orchestrates the inference call. This 
service is available in the container named seldon-container-engine:

kubectl create -f chapter7/manual_model_deployment/
Ingress.yaml -n ml-workshop

You should see the following response:

Figure 7.25 – Creating ingress objects for our service
Validate that the ingress has been created by issuing the following command:

kubectl get ingress -n ml-workshop | grep model-test
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You should see the following response:

Figure 7.26 – Validating the ingress for our service

15.	 Since our Seldon Deployment CR has referenced a logger URL, you will deploy a 
simple HTTP echo server that will just print the calls it received. This will assist us 
in validating whether the payloads have been forwarded to the configured URL in 
the logger section of the Seldon Deployment CR. A very simple echo server can 
be created via the following command:

kubectl create -f chapter7/manual_model_deployment/http-
echo-service.yaml -n ml-workshop

You should see the following response:

Figure 7.27 – Creating a simple HTTP echo server to validate payload logging
Validate that the pod has been created by issuing the following command:

kubectl get pods  -n ml-workshop | grep logger

You should see the following response:

Figure 7.28 – Validating a simple HTTP echo server 

16.	 Let's make a call for our model to predict something. The model we developed in 
the previous chapter is not very useful, but it will help us understand and validate 
the overall process of packaging and deploying the model.

Recall from Chapter 6, Machine Learning Engineering, that the hellomlflow 
notebook has the input for the model with shape (4,2), and the output shape  
is (4,).

Figure 7.29 – Input and output for the model
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So, if we want to send data to our model, it would be an array of integer pairs such 
as [2,1]. When you make a call to your model, the input data is required within an 
ndarray field under a key named data. The input would look as follows. This is 
the format the Seldon service expects for the data to be sent to it:

Figure 7.30 – Input for the model as an HTTP payload

17.	 Next is the REST endpoint for the model. It will be the ingress that you created 
in Step 13 and the standard Seldon URL. The final form would be as follows: 
http://<INGRESS_LOCATION>/api/v1.0/predictions.

This would translate, in my case, to http://model-test.192.168.61.72.
nip.io/api/v1.0/predictions.

Now, you have the payload and the URL to send this request to.
18.	 In this step, you will make a call to your model. We are using a commonly used 

command-line option to make this call; however, you may choose to use other 
software, such as Postman, to make this HTTP call. 

You will use the POST HTTP verb in the call and then provide the location of the 
service. You will have to pass the Content-Type header to mention JSON content 
and the body is passed using the data-raw flag of the curl program:

curl -vvvv -X POST 'http://<INGRESS_LOCATION>/api/v1.0/
predictions' \--header 'Content-Type: application/json' 
\--data-raw '{  "data": {    "ndarray": [[2,1]]  }}'

The final request should look as follows. Before making this call, make sure to 
change the URL as per your ingress location:

curl -vvvv -X POST 'http://model-test.192.168.61.72.
nip.io/api/v1.0/predictions' \--header 'Content-Type: 
application/json' \--data-raw '{  "data": {    "ndarray": 
[[2,1]]  }}'

http://<INGRESS_LOCATION>/api/v1.0/predictions
http://model-test.192.168.61.72.nip.io/api/v1.0/predictions
http://model-test.192.168.61.72.nip.io/api/v1.0/predictions
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You should see the following response. Note that the output of the command shows 
the array of the same shape as per our model, which is (4,), and it is under the 
ndarray key in the following screenshot:

Figure 7.31 – Output payload for the model inference call

19.	 Now, let's verify that the model payload has been logged onto our echo server. You 
are validating the capability of Seldon to capture input and output and send it to the 
desired location for further processing, such as drift detection or audit logging:

export LOGGER_POD_NAME=$(kubectl get pod -o=custom-
columns=NAME:.metadata.name -n ml-workshop | grep logger)

kubectl logs -f $LOGGER_POD_NAME -n ml-workshop

You will see there is a separate record for the input and the output payload. You  
can use the ce-requestid key to correlate the two records in the logs. The 
following screenshot displays the main fields of the captured input payload of the 
inference call: 

Figure 7.32 – Captured input payload forwarded to the echo pod



190     Model Deployment and Automation

The following screenshot displays the main fields of the output payload of the 
inference call:

Figure 7.33 – Captured output payload forwarded to the echo pod

20.	 Now, let's verify that service monitoring data is captured by the Seldon engine and 
is available for us to use and record. Note that the way Prometheus works is by 
scraping repetitively, so this data is in the current state and the Prometheus server is 
responsible for calling this URL and record in its database.

The URL format for this information is as follows. The ingress is the same as you 
created in Step 13:

http://<INGRESS_LOCATION>/prometheus
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This would translate to the following for my ingress: 
http://model-test.192.168.61.72.nip.io/prometheus

Open a browser and access the URL in it. You should see the following response:

Figure 7.34 – Accessing monitoring data in Prometheus format
You will find that a lot of information is captured, including response times, the 
number of HTTP responses per status code (200, 400, 500, and so on), data 
capture, server performance, and exposing the Go runtime metrics. We encourage 
you to go through these parameters to develop an understanding of the data 
available. In the later chapters, you will see how to harvest and plot this data to 
visualize the performance of the model inferencing server.

You have done a great deal in this exercise. The aim of this section was to showcase the 
steps and components involved to deploy a model using Seldon Core. In the next section, 
you will be introduced to the workflow component of the platform, Airflow, and in the 
next couple of chapters, all of these steps will be automated using the components in the 
ML platform.
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Introducing Apache Airflow
Apache Airflow is an open source software designed for programmatically authoring, 
executing, scheduling, and monitoring workflows. A workflow is a sequence of tasks that 
can include data pipelines, ML workflows, deployment pipelines, and even infrastructure 
tasks. It was developed by Airbnb as a workflow management system and was later open 
sourced as a project in Apache Software Foundation's incubation program.

While most workflow engines use XML to define workflows, Airflow uses Python as  
the core language for defining workflows. The tasks within the workflow are also written 
in Python.

Airflow has many features, but we will cover only the fundamental bits of Airflow in this 
book. This section is by no means a detailed guide for Airflow. Our focus is to introduce 
you to the software components for the ML platform. Let's start with DAG.

Understanding DAG
A workflow can be simply defined as a sequence of tasks. In Airflow, the sequence of tasks 
follows a data structure called a directed acyclic graph (DAG). If you remember your 
computer science data structures, a DAG is composed of nodes and one-way vertices 
organized in a way to ensure that there are no cycles or loops. Hence, a workflow in 
Airflow is called a DAG.

Figure 7.35 shows a typical example of a data pipeline workflow:

Figure 7.35 – Typical data pipeline workflow

The example workflow in Figure 7.36 is composed of tasks represented by boxes. The order 
of execution of these tasks is determined by the direction of the arrows:

Figure 7.36 – Example workflow with parallel execution 
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Another example of a workflow is shown in Figure 7.36. In this example, there are tasks 
that are executed in parallel. The Generate Report tasks will wait for both Transform 
Data tasks to complete. This is called execution dependency and it is one of the problems 
Airflow is solving. Tasks can only execute if the upstream tasks are completed.

You can configure the workflow however you want as long as there are no cycles in the 
graph, as shown in Figure 7.37:

Figure 7.37 – Example workflow with cycle

In the example in Figure 7.37, the Clean Data task will never be executed because it is 
dependent on the Store Data task, which will also not be executed. Airflow only allows 
acyclic graphs. 

As illustrated, a DAG is a series of tasks, and there are three common types of tasks  
in Airflow:

•	 Operators: Predefined tasks that you can use to execute something, They can be 
strung together to form a pipeline or a workflow. Your DAG is composed mostly, if 
not entirely, of operators.

•	 Sensors: Subtypes of operators that are used for a series of other operators based on 
an external event. 

•	 TaskFlow: Custom Python functions decorated with @task. This allows you to run 
regular Python functions as tasks.

Airflow operators are extendable, which means there are quite a lot of predefined 
operators created by the community that you can simply use. One of the operators that 
you will mostly use in the following exercises is the Notebook Operator. This operator 
allows you to run any Jupyter notebook as tasks in the DAG.

So, what are the advantages of using DAGs to execute a sequence of tasks? Isn't it enough 
to just write a script that can execute other scripts sequentially? Well, the answer lies in the 
features that Airflow offers, which we will explore next.
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Exploring Airflow features
The advantages that Airflow brings when compared with cron jobs and scripts can be 
detailed by its features. Let's start by looking at some of those features:

•	 Failure and error management: In the event of a task failure, Airflow handles 
errors and failures gracefully. Tasks can be configured to automatically retry when 
they fail. You can also configure how many times it retries.

In terms of execution sequence, there are two types of task dependencies in a typical 
workflow that can be managed in Airflow much easier than writing a script.

•	 Data dependencies: Some tasks may require that the other tasks be processed first 
because they require data that is generated by other tasks. This can be managed in 
Airflow. Moreover, Airflow allows the passing of small amounts of metadata from 
the output of one task as an input to another task.

•	 Execution dependencies: You may be able to script execution dependencies 
in a small workflow. However, imagine scripting a workflow in Bash with a 
hundred tasks, where some tasks can run concurrently while others can only run 
sequentially. I imagine this to be a pretty daunting task. Airflow helps simplify this 
by creating DAGs.

•	 Scalability: Airflow can horizontally scale to multiple machines or containers. The 
tasks in the workflow may be executed on different nodes while being orchestrated 
centrally by a common scheduler.

•	 Deployment: Airflow can use Git to store DAGs. This allows you to continuously 
deploy new changes to your workflows. A sidecar container can automatically pick 
up the changes from the git repository containing your DAGs. This allows you to 
implement the continuous integration of DAGs.

The next step is to understand the different components of Airflow.

Understanding Airflow components
Airflow comprises multiple components running as independent services. Figure 7.38 
shows the components of Airflow and their interactions:
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Figure 7.38 – Airflow components

There are three core services in Airflow. The Airflow Web serves the user interface where 
users can visually monitor and interact with DAGs and tasks. The Airflow Scheduler is 
a service responsible for scheduling tasks for the Airflow Worker. Scheduling does not 
only mean executing tasks according to their scheduled time. It's also about executing the 
tasks in a particular sequence, taking into account the execution dependencies and failure 
management. Airflow Worker is the service that executes the tasks. This is also the main 
scalability point of Airflow. The more Airflow Worker is running, the more tasks can be 
executed concurrently.

The DAG repository is a directory in the filesystem where DAG files written in Python are 
stored and retrieved by the scheduler. The Airflow instance configured in our platform 
includes a sidecar container that synchronizes the DAG repository with a remote git 
repository. This simplifies the deployment of DAGs by simply pushing a Python file to Git.

We will not dig too deep into Airflow in this book. The objective is for you to learn 
enough to a point where you are able to create pipelines in Airflow with minimal Python 
coding. You will use the Elyra notebooks pipeline builder feature to build Airflow 
pipelines graphically. If you want to learn more about Airflow and how to build pipelines 
programmatically in Python, we recommend that you start with Apache Airflow's very 
rich documentation at https://airflow.apache.org/docs/apache-airflow/
stable/concepts/overview.html. 

Now that you have a basic understanding of Airflow, it's time to take a look at it in  
action. In Chapter 4, The Anatomy of a Machine Learning Platform, you installed a fresh 
instance of ODH. This process also installed the Airflow services for you. Now, let's 
validate this installation.

https://airflow.apache.org/docs/apache-airflow/stable/concepts/overview.html
https://airflow.apache.org/docs/apache-airflow/stable/concepts/overview.html
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Validating the Airflow installation
To validate that Airflow is running correctly in your cluster, you need to perform the 
following steps:

1.	 Check whether all the Airflow pods are running by executing the following 
command:

kubectl get pods -n ml-workshop | grep airflow

You should see the three Airflow services pods in running status, as shown in the 
following screenshot in Figure 7.39. Verify that all pods are in the Running state:

Figure 7.39 – Airflow pods in the Running state

2.	 Get the URL of Airflow Web by looking at the ingress host of ap-airflow2. You 
can do this by executing the following command:

kubectl get ingress -n ml-workshop | grep airflow

You should see results similar to Figure 7.39. Take note of the host value of the 
ap-airflow2 ingress. The IP address may be different in your environment:

Figure 7.40 – Airflow ingress in the ml-workshop namespace

3.	 Navigate to https://airflow.192.168.49.2.nip.io. Note that the 
domain name is the host value of the ap-airflow2 ingress. You should see the 
Airflow Web UI, as shown in Figure 7.41:

https://airflow.192.168.49.2.nip.io
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Figure 7.41 – Home screen of Apache Airflow

If you are able to load the Airflow landing page, it means that the Airflow installation 
is valid. You must have also noticed that in the table listing the DAGs, there are already 
existing DAGs currently in failing status. These are existing DAG files that are in 
https://github.com/airflow-dags/dags/, the default configured DAG 
repository. You will need to create your own DAG repository for your experiments. The 
next section will provide the details on how to do this.

Configuring the Airflow DAG repository
A DAG repository is a Git repository where Airflow picks up the DAG files that represent 
your pipelines or workflows. To configure Airflow to point to your own DAG repository, 
you need to create a Git repository and point the Airflow Scheduler and Airflow Web to 
this Git repository. You will use GitHub to create this repository. The following steps will 
guide you through the process:

1.	 Create a GitHub repository by going to https://github.com. This requires  
that you have an existing account with GitHub. For the purpose of this exercise, 
let's call this repository airflow-dags. Take note of the URL of your new Git 
repository. It should look like this: https://github.com/your-user-name/
airflow-dags.git. We assume that you already know how to create a new 
repository on GitHub.

https://github.com/airflow-dags/dags/
https://github.com
https://github.com/your-user-name/airflow-dags.git
https://github.com/your-user-name/airflow-dags.git


198     Model Deployment and Automation

2.	 Edit your instance of ODH by editing the kfdef (Kubeflow definition) object.  
You can do this by executing the following command:

kubectl edit kfdef opendatahub-ml-workshop -n ml-workshop

You should be presented with a vim editor showing the kfdef manifest file as 
shown in Figure 7.42. Press i to start editing.

Figure 7.42 – vim editor showing the section defining the Airflow instance

3.	 Replace the value of the DAG_REPO parameter with the URL of the Git repository 
you created in Step 1. The edited file should look like the screenshot in Figure 7.43. 
Press Esc, then :, and type wq and press Enter to save the changes you made to the 
kfdef object.

Figure 7.43 – Value of the DAG_REPO parameter after editing
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The changes will be picked up by the ODH operator and will be applied to the 
affected Kubernetes deployment objects, in this case, Airflow Web and Airflow 
Scheduler deployments. This process will take a couple of minutes to complete.

4.	 Validate the changes by inspecting the Airflow deployments. You can do this 
by running the following command to look into the applied manifest of the 
deployment object:

kubectl get deployment app-aflow-airflow-scheduler -o 
yaml -n ml-workshop | grep value:.*airflow-dags.git

This should return a line containing the URL of your GitHub repository. 
5.	 Because this repository is new and is empty, you should not see any DAG files when 

you open the Airflow Web UI. To validate the Airflow web application, navigate 
to your Airflow URL, or refresh your existing browser tab, and you should see an 
empty Airflow DAG list similar to the screenshot in Figure 7.44: 

Figure 7.44 – Empty Airflow DAG list

Now that you have validated your Airflow installation and updated the DAG repository to 
your own git repository, it's time to put Airflow to good use.

Configuring Airflow runtime images
Airflow pipelines, or DAGs, can be authored by writing Python files using the Airflow 
libraries. However, it is also possible to create DAGs graphically from an Elyra notebook. 
In this section, you will create an Airflow DAG from Elyra, push it to the DAG repository, 
and execute it in Airflow.
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To further validate the Airflow setup and test the configuration, you will need to run  
a simple Hello world pipeline. Follow the steps to create a two-task pipeline. You 
will create Python files, a pipeline, and configure runtime images to be used throughout 
the process:

1.	 If you do not have a running notebook environment, start a notebook environment 
by navigating to JupyterHub, clicking Start My Server, and selecting a notebook 
image to run, as shown in Figure 7.45. Let's use Base Elyra Notebook Image this 
time as we do not require any special libraries.

Figure 7.45 – JupyterHub landing page showing Base Elyra Notebook Image selected
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2.	 In your Elyra browser, navigate to the Machine-Learning-on-Kubernetes/
chapter7/model_deploy_pipeline/ directory.

3.	 Open a new pipeline editor. You can do this by selecting the menu item 
File>New>Pipeline Editor, as shown in Figure 7.46. A new file will appear in the 
left-hand browser, named untitled.pipeline.

Figure 7.46 – Elyra notebook

4.	 Right-click on the untitled.pipeline file and rename it to hello_world.
pipeline. 
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5.	 Create two Python files with the same contents containing the following line: 
print('Hello airflow!'). You can do this by selecting the menu items  
File > New Python File. Then, rename the files to hello.py and world.py.  
Your directory structure should look like the screenshot in Figure 7.47:

Figure 7.47 – Elyra directory structure showing the hello.pipeline file

6.	 Create a pipeline with two tasks by dragging the hello.py file into the pipeline 
editor window. Do the same for world.py. Connect the tasks by dragging the tiny 
circle on the right of the task box to another box. The resulting pipeline topology 
should look like the illustration in Figure 7.48. Save the pipeline by clicking the Save 
icon in the top toolbar.

Figure 7.48 – Task topology

7.	 Before we can run this pipeline, we need to configure each of the tasks. Because 
each task will run as a container in Kubernetes, we need to tell which container 
image that task will use. Select the Runtime Images icon on the toolbar on the left. 
Then, click the + button to add a new runtime image, as shown in Figure 7.49:
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Figure 7.49 – Adding a new runtime image in Elyra

8.	 In the Add new Runtime Image dialog, add the details of the Kaniko Container 
Builder image, as shown in Figure 7.50, and hit the SAVE & CLOSE button.

This container image (https://quay.io/repository/ml-on-k8s/kaniko-
container-builder) contains the tools required to build Docker files and push 
images to an image registry from within Kubernetes. This image can also pull ML 
models and metadata from the MLflow model registry. You will use this image to 
build containers that host your ML model in the next section. This container image 
was created for the purpose of this book. You can use any container image as a 
runtime image for your pipeline tasks as long as the image can run on Kubernetes.

Figure 7.50 – Add new Runtime Image dialog for Kaniko builder

https://quay.io/repository/ml-on-k8s/kaniko-container-builder
https://quay.io/repository/ml-on-k8s/kaniko-container-builder
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9.	 Add another runtime image called Airflow Python Runner. The container image 
is located at https://quay.io/repository/ml-on-k8s/airflow-
python-runner. This image can run any Python 3.8 scripts, and interact with 
Kubernetes and Spark operators. You will use this image to deploy container images 
to Kubernetes in the next section. Refer to Figure 7.51 for the Add new Runtime 
Image dialog field values, and then hit the SAVE & CLOSE button:

Figure 7.51 – Add new Runtime Image dialog for Airflow Python Runner

10.	 Pull the images from the remote repository to the local Docker daemon of your 
Kubernetes cluster. This will help speed up the start up times of tasks in Airflow by 
using a runtime image that is already pulled into the local Docker instance. 

You can do this by running the following command on the same machine where 
your Minikube is running. This command allows you to connect your Docker client 
to the Docker daemon inside your Minikube virtual machine (VM):

eval $(minikube docker-env)

11.	 Pull the Kaniko Container Builder image by running the following command in 
the same machine where your Minikube is running. This will pull the image from 
quay.io to the Docker daemon inside your Minikube:

docker pull quay.io/ml-on-k8s/kaniko-container-
builder:1.0.0

12.	 Pull the Airflow Python Runner image by running the following command in the 
same machine where your Minikube is running:

docker pull quay.io/ml-on-k8s/airflow-python-
runner:0.0.11

https://quay.io/repository/ml-on-k8s/airflow-python-runner
https://quay.io/repository/ml-on-k8s/airflow-python-runner
http://quay.io
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13.	 Assign Kaniko Container Builder runtime images to the hello.py task. You can 
do this by right-clicking the task box and selecting the Properties context menu 
item. The properties of the task will be displayed in the right pane of the pipeline 
editor, as shown in Figure 7.52. Using the Runtime Image drop-down box, select 
Kaniko Container Builder.

Figure 7.52 – Setting the runtime image of a task in the pipeline editor

Note
If you do not see the newly added runtime images in the drop-down list, you 
need to close and reopen the pipeline editor. This will refresh the list of runtime 
images.

14.	 Assign the Airflow Python Runner runtime image to the world.py task. This is 
similar to Step 10, but for the world.py task. Refer to Figure 7.53 for the Runtime 
Image value:

Figure 7.53 – Setting the runtime image of a task in the pipeline editor
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15.	 You have just created an Airflow pipeline that has two tasks, where each task uses 
a different runtime. But, before we can run this pipeline in Airflow, we need to tell 
Elyra where Airflow is. To do this, select the Runtimes icon on the left toolbar of 
Elyra, as shown in Figure 7.54:

Figure 7.54 – Runtimes toolbar

16.	 Hit the + button and select the New Apache Airflow runtime menu item. Fill in the 
details according to the following values or see Figure 7.55:

A.	 Apache Airflow UI Endpoint is where the Airflow UI is currently listening. 
This is not critical, as Elyra does not interact with Airflow UI directly. Set 
the value to the URL of your Airflow UI. This will look like https://
airflow.192.168.49.2.nip.io, where the IP address part is the IP 
address of your Minikube.

B.	 Apache Airflow User Namespace is the Kubernetes namespace where all 
the pods of the tasks will be created. Set this to ml-workshop. This is the 
namespace of all your ML platform workloads. 

C.	 GitHub DAG Repository is the DAG repository that you created in the previous 
section, Configuring Airflow DAG Repository. This follows the github-
username/airflow-dags format. Replace github-username with your 
GitHub username.

https://airflow.192.168.49.2.nip.io
https://airflow.192.168.49.2.nip.io
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D.	 GitHub DAG Repository Branch is the branch in your GitHub repository where 
Elyra will push the DAG files. Set this to main.

E.	 GitHub Personal Access Token is your GitHub user token with permission 
to push to your DAG repository. You can refer to the GitHub documentation 
for creating personal access tokens at https://docs.github.com/en/
authentication/keeping-your-account-and-data-secure/
creating-a-personal-access-token. 

F.	 Cloud Object Storage Endpoint is the endpoint URL of any S3 storage API. 
Airflow uses this to publish artifacts and logs of the DAG executions. You will 
use the same Minio server for this. Set the value to http://minio-ml-
workshop:900. This is the URL of the Minio service. We did not use the 
Minio's ingress because the JupyterHub server is running on the same Kubernetes 
namespace as the Minio server, which means that the Minio service can be 
addressed by its name.

G.	 Cloud Object Storage User name is the Minio username, which is minio.
H.	Cloud Object Storage Password is the Minio password, which is minio123.

Once all the fields are filled correctly, hit the SAVE & CLOSE button.

Figure 7.55 – Adding a new Apache Airflow runtime configuration

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-a
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-a
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-a
http://minio-ml-workshop:900
http://minio-ml-workshop:900
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17.	 Run the pipeline in Airflow by clicking the Play button in the top toolbar of the 
pipeline editor. This will bring up a Run pipeline dialog. Select Apache Airflow 
runtime as the runtime platform and MyAirflow as the runtime configuration, and 
then hit OK. Refer to Figure 7.56:

Figure 7.56 – Run pipeline dialog
This action generates an Airflow DAG file and pushes the file to the GitHub 
repository configured as a DAG repository. You can verify this by checking your 
GitHub repository for newly pushed files.
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18.	 Open the Airflow website. You should see the newly create DAG, as shown in  
Figure 7.57. If you do not see it, refresh the Airflow page a few times. Sometimes,  
it takes a few seconds before the DAGs appear in the UI.

Figure 7.57 – Airflow showing a running DAG
The DAG should succeed in a few minutes. If it does fail, you need to review the 
steps to make sure you set the correct values and that you did not miss any steps.

You have just created a basic Airflow DAG using Elyra's graphical pipeline editor. The 
generated DAG is, by default, configured to only run once, indicated by the @once 
annotation. In the real world, you may not want to run your DAGs directly from Elyra. 
You may want to add additional customizations to the DAG file. In this case, instead of 
running the DAG by clicking the play button, use the export feature. This will export the 
pipeline into a DAG file that you can further customize, such as setting the schedule. You 
can then push the customized DAG file to the DAG repository to submit it to Airflow.

You have just validated your Airflow setup, added Airflow runtime configuration, and 
integrated Elyra with Airflow. Now it is time to build a real deployment pipeline!
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Automating ML model deployments in Airflow
You have seen in the preceding sections how to manually package an ML model into a 
running HTTP service on Kubernetes. You have also seen how to create and run basic 
pipelines in Airflow. In this section, you will put this new knowledge together by creating 
an Airflow DAG to automate the model deployment process. You will create a simple 
Airflow pipeline for packaging and deploying an ML model from the MLflow model 
registry to Kubernetes.

Creating the pipeline by using the pipeline editor
Similar to the previous section, you will use Elyra's pipeline editor to create the model 
build and deployment DAG: 

1.	 If you do not have a running Elyra environment, start a notebook environment by 
navigating to JupyterHub, clicking Start My Server, and selecting a notebook image 
to run, as shown in Figure 7.45. Let's use Base Elyra Notebook Image because this 
time, we do not require any special libraries.

2.	 In your Elyra browser, navigate to the Machine-Learning-on-Kubernetes/
chapter7/model_deploy_pipeline/ directory.

3.	 Open a new pipeline editor. You can do this by selecting the menu item 
File>New>Pipeline Editor, as shown in Figure 7.46. A new file will appear in the 
left-hand browser, named untitled.pipeline.

4.	 Right-click on the untitled.pipeline file and rename it model_deploy.
pipeline. Your directory structure should look like the screenshot in Figure 7.58:

Figure 7.58 – Elyra showing empty pipeline editor
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5.	 You will build a pipeline with two tasks in it. The first task will pull the model 
artifacts from the MLflow model registry, package the model as a container using 
Seldon core, and then push the container image to an image repository. To create 
the first task, drag and drop the build_push_image.py file from the model_
build_push directory to the pipeline editor's workspace. This action will create a 
new task in the pipeline editor window, as shown in Figure 7.59:

Figure 7.59 – Elyra pipeline editor showing the build_push_image task
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6.	 The second task will pull the container image from the image repository and deploy 
it to Kubernetes. Create the second task by dragging the deploy_model.py 
file from model_deploy directory and dropping it into the pipeline editor 
workspace. This action will create a second task in the pipeline editor, as shown  
in Figure 7.60:

Figure 7.60 – Elyra pipeline editor showing the deploy_model task

7.	 Connect the two tasks by dragging the tiny circle at the right-hand side of the 
build_push_image.py task to the deploy_model.py task box. The task 
topology should look like the illustration in Figure 7.61. Take note of the direction 
of the arrow highlighted in the red box.

Figure 7.61 – Task topology of the DAG
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8.	 Configure the build_push_image.py task by right-clicking the box and 
selecting Properties. A property panel will appear on the right side of the editor, as 
shown in Figure 7.62. Select Kaniko Container Builder as the runtime image for 
this task.

Figure 7.62 – Pipeline editor with the property panel displayed showing the Kaniko Builder runtime 

9.	 Add file dependencies to build_push_image.py by clicking the Add 
Dependency button and selecting the following files. The file dependencies for this 
task are also shown in Figure 7.62. The following list describes what each file does:

	� Dockerfile – This is the Docker file that will be built to produce the container 
image that contains the ML model and the Predictor Python file.

	� Predictor.py – This is the Python file used by Seldon to define the inference 
graph. You have seen this file in the preceding section.

	� Base_requirements.txt – This is a regular text file that contains a list of 
Python packages required to run this model. This is used by the pip install 
command inside the Docker file.
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10.	 At this point, you should have an idea of what the entire pipeline does. Because the 
pipeline needs to push a container image to a registry, you will need a container 
registry to hold your ML model containers. Create a new repository in a container 
registry of your choice. For the exercises in this book, we will use Docker Hub as an 
example. We assume that you know how to create a new repository in https://
hub.docker.com. Call this new repository mlflowdemo.

11.	 Once you have the image repository created, set the Environment Variables for the 
build_push_image.py task, as shown in Figure 7.63. The following are the six 
variables you need to set:

	� MODEL_NAME is the name of the ML model registered in MLflow. You used the 
name mlflowdemo in the previous sections. Set the value of this variable to 
mlflowdemo.

	� MODEL_VERSION is the version number of the ML model registered in MLflow. 
Set the value of this variable to 1.

	� CONTAINER_REGISTRY is the container registry API endpoint. For Docker 
Hub, this is available at https://index.docker.io/v1. Set the value of this 
variable to https://index.docker.io/v1/.

	� CONTAINER_REGISTRY_USER is the username of the user who will push images 
to the image registry. Set this to your Docker Hub username.

	� CONTAINER_REGISTRY_PASSWORD is the password of your Docker Hub user. 
In production, you do not want to do this. You may use secret management tools 
to serve your Docker Hub password. However, to keep things simple for this 
exercise, you will put your Docker Hub password as an environment variable.

	� CONTAINER_DETAILS is the name of the repository where the image will be 
pushed, along with the name and tag of the image. This includes the Docker Hub 
username in the your-username/mlflowdemo:latestv format.

https://hub.docker.com
https://hub.docker.com
https://index.docker.io/v1
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Save the changes by clicking the Save icon from the top toolbar of the pipeline editor:

Figure 7.63 – Example environment variables of the build_push_image.py task

12.	 Configure the deploy_model.py task by setting the runtime image, the file 
dependencies, and the environment variables, as shown in Figure 7.64. There are 
four environment variables you need to set, as detailed in the following list:

A.	MODEL_NAME is the name of the ML model registered in MLflow. You used the 
name mlflowdemo in the previous sections. Set the value of this variable to 
mlflowdemo.

B.	 MODEL_VERSION is the version number of the ML model registered in MLflow. 
Set the value of this variable to 1.

C.	CONTAINER_DETAILS is the name of the repository to where the image will be 
pushed and the image name and tag. This includes the Docker Hub username in 
the your-username/mlflowdemo:latest format.
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D.	CLUSTER_DOMAIN_NAME is the DNS name of your Kubernetes cluster, in this case, 
the IP address of Minikube, which is <Minikube IP>.nip.io. For example, if 
the response of the minikube ip command is 192.168.49.2, then the cluster 
domain name is 192.168.49.2.nip.io. This is used to configure the ingress of 
the ML model HTTP service so that it is accessible outside the Kubernetes cluster.

Save the changes by clicking the Save icon from the top toolbar of the pipeline editor.

Figure 7.64 – Properties of the deploy_model.py task
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13.	 You are now ready to run the pipeline. Hit the Play button from the top toolbar  
of the pipeline editor. This will bring up the Run pipeline dialog, as shown in  
Figure 7.65. Select Apache Airflow runtime under Runtime Platform, and 
MyAirflow under Runtime Configuration. Click the OK button. This will generate 
the Airflow DAG Python file and push it to the Git repository.

Figure 7.65 – Run pipeline dialog

14.	 Once the DAG is successfully generated and pushed to the git repository, you 
should see a dialog as shown in Figure 7.66. Click OK.

Figure 7.66 – DAG submission confirmation dialog
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15.	 Navigate to Airflow's GUI. You should see a new DAG, labeled model_deploy-
some-number, appear in the DAGs table, and it should start running shortly, as 
shown in Figure 7.67. The mint green color of the job indicates that it is currently 
running. Dark green indicates that it is successful.

Note
If you do not see the new DAG, refresh the page until you see it. It may take a 
few seconds for the Airflow to sync with the Git repository.

Figure 7.67 – Airflow GUI showing the model_deploy DAG

16.	 Meanwhile, you can explore the DAG by clicking the DAG name and selecting 
the Graph View tab. It should display the topology of tasks as you designed it in 
Elyra's pipeline editor, as shown in Figure 7.68. You may explore the DAG further by 
selecting the <> Code tab. This will display the generated source code of the DAG.

Figure 7.68 – Graph view of the model_deploy DAG in Airflow



Automating ML model deployments in Airflow     219

17.	 After a few minutes, the job should succeed and you should see the outline of all the 
tasks in Graph View turn to dark green. You can also explore the tasks by looking at 
the pods in Kubernetes. Run the following command and you should see two pods 
with the Completed status, as shown in Figure 7.69. These pods are the two tasks in 
the pipeline that have been executed successfully:

kubectl get pods -n ml-workshop\

You should see the following response:

Figure 7.69 – Kubernetes pods with a Completed status

You have just created a complete ML model build and deployment pipeline using Seldon 
Core, Elyra's pipeline editor, orchestrated by Airflow, and deployed to Kubernetes.

Seldon Core and Airflow are big tools that have a lot more features that we have not 
covered and will not be entirely covered in this book. We have given you the essential 
knowledge and skills to start exploring these tools further as part of your ML platform.
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Summary
Congratulations! You made it this far!

As of this point, you have already seen and used JupyterHub, Elyra, Apache Spark, 
MLflow, Apache Airflow, Seldon Core, and Kubernetes. You have learned how these tools 
can solve the problems that MLOps is trying to solve. And, you have seen all these tools 
running well on Kubernetes.

There are a lot more things that we want to show you on the platform. However, we can 
only write so much, as the features of each of those tools that you have seen are enough to 
fill an entire book.

In the next chapter, we will take a step back to look at the big picture of what has been 
built so far. Then, you will start using the platform end-to-end on an example use case. 
You will be wearing different hats, such as data scientist, ML engineer, data engineer, and a 
DevOps person in the succeeding chapters. 



This section will show you how to build a complete ML project using the platform built in 
the last section. The chapters in this section will put our platform to the test. This section 
will define a complete ML life cycle and then will process the data, and build and deploy 
the model using the platform.

This section comprises the following chapters:

•	 Chapter 8, Building a Complete ML Project Using the Platform

•	 Chapter 9, Building Your Data Pipeline

•	 Chapter 10, Building, Deploying, and Monitoring Your Model

•	 Chapter 11, Machine Learning on Kubernetes

Part 3:  
How to Use the MLOps 

Platform and Build  
a Full End-to-End  
Project Using the  

New Platform





8
Building a Complete 

ML Project Using  
the Platform

Until now, you have seen a few components of the platform and how it works. You will 
start this chapter by understanding the platform at a macro level. The holistic view will 
help you see how the components weave a complete solution for your machine learning 
(ML) needs.

In the later part of this chapter, you will see how you can start an ML project by using a 
simple example and how the teams and platform will help achieve your required goal.

In this chapter, you will learn about the following topics:

•	 Reviewing the complete picture of the ML platform

•	 Understanding the business problem

•	 Data collection, processing, and cleaning

•	 Performing exploratory data analysis
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•	 Understanding feature engineering

•	 Building and evaluating the ML model

•	 Reproducibility

Reviewing the complete picture of the ML 
platform
In the preceding chapters, you have built a complete ML platform on top of Kubernetes. 
You have installed, configured, and explored the different components of the platform. 
Before you start using the platform, let's take a step back and look at the platform you 
have built from the tooling perspective. Figure 8.1 shows the complete logical architecture 
of the platform:

 

Figure 8.1 – Logical platform architecture
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The diagram in Figure 8.1 also shows the interaction of each platform component. The 
entire platform runs inside Kubernetes and is managed entirely by the Open Data Hub 
(ODH) operator. Although MinIO is not officially part of the ODH project, we have 
added it as another component operated by the ODH operator on the platform you just 
built. In the real world, you will have an S3 storage server already in place, and you will 
not need to include MinIO in your Kfdef file. It is also important to note that the ODH 
operator allows you to add or remove tools or swap one tool for another. For example, 
you could use Argo CD for model deployments instead of Airflow. Keycloak is also not 
part of the ODH project. However, the components must be secured by a single sign-on 
mechanism, and Keycloak is one of the best open source tools that can be used to add a 
single sign-on capability to the platform. 

Starting at the top of the diagram, you can see that end users interact with Jupyter 
notebooks, and the Spark, Airflow, and MLflow UIs. You have seen and experienced these 
interactions in the preceding chapters. The deployed ML model can then be used for 
inferencing by applications through REST API calls. 

In the middle of the diagram, you can see the interactions between the components 
and the kind of interactions they perform with each other. Jupyter servers and Airflow 
jobs can submit Spark applications to the managed Spark clusters. Airflow interacts 
with the MLflow model registry, while Jupyter notebooks can interact with MLflow to 
record experiment runs. Airflow also creates Seldon deployment objects that the Seldon 
controller then converts into running Pods with ML models exposed as REST services. 
There is no limit to how one component can interact with other platform components. 

At the bottom of the diagram, the ODH operator manages and operates the platform 
components. The ODH operator handles the installation and updates of these 
components. Spark, JupyterHub, and the Seldon controller are also Kubernetes 
operators that manage instances of Spark clusters, Jupyter notebook servers, and Seldon 
deployments, respectively.

Lastly, the ODH operator also manages the Prometheus and Grafana instances. Prometheus 
is used to collect metrics from each of the components, including the statistics of Seldon 
deployments. Grafana can then visualize those metrics and can be configured to raise alerts.

The ODH project is still evolving. There may be changes as to what components will 
be included or excluded in the project in the future. Some of the officially supported 
components may get replaced with another over time. Therefore, it is important to 
understand the architecture and how the ODH operator works so that you keep it up to date. 

In the next sections, we will take a step back and understand ML projects a bit more, 
starting with identifying opportunities where an ML solution fits. You will be taken 
through a scenario that will lead to the creation of a complete ML project.
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Understanding the business problem
As with any software project, the first thing is to agree on the business problem you are 
trying to solve. We have chosen a fictitious scenario for this book to keep it simple while 
focusing on the process. You can apply the same approach to more complex projects.

Let's assume that you work for an airline booking company as a lead data analyst. The 
business team of your company has reported that lots of customers complain about flights 
being delayed. It is causing the company to have bad customer experiences, and the phone 
staff spend lots of time explaining the details to customers. The business is looking at 
you to provide a solution to identify which airlines and which flights and times have a 
lower probability of delays so that the website can prioritize those airlines and, therefore, 
customers end up with fewer delays.

Let's take a breather here and analyze how we can solve this problem. Do we need ML 
here? If we take the historical data and place the airlines into two buckets of delayed and 
on time, with each bucket placing the airlines into the right category, this attribute can 
then be used while the customer searches for airlines with better on-time performance.  
A team of data analysts will analyze the data and assign the ratings. Job done!

While exploring this set, the business has mentioned that one bucket per airline may 
not provide the granularity that the solution requires. They would like to assess the 
performance, not at the airline level, but using other factors such as origin and destination 
airport, and time of day. So, airline A, with flights from Sydney to Melbourne, may go 
into the on time bucket, while the same airline may go into the delayed bucket when flying 
from Tokyo to Osaka. This suddenly expands the scope of the problem. If you need to 
analyze data at this granularity, it will take a lot of time to process and assign the correct 
category, and you may need to analyze this data very frequently.

Have you started to think about how you can automate this? The business then mentions 
that the weather plays a vital role in this problem, and the forecast data from the weather 
bureau will need to be fetched and preprocessed to perform the analysis. You realize that 
performing this job with human teams will be slow and complicated and does not provide 
the solution that the business is looking for. You then mention to the business that you 
will need to investigate the existing data, which can be used to predict the correct category 
for a particular flight. You and the business agree that the aim is to predict the flight delay 
10 days before the scheduled time with at least 75% accuracy, to improve the customer 
experience. You will also discuss the response time requirements for the model and 
understand how the model will be used in the overall business process.
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You have just defined the success criteria of this project. You have conveyed to the 
business that your team will analyze available data to assess its suitability for the project 
and then plan for the next steps. You have asked the business to associate a subject matter 
expert (SME) who can assist in data exploration at this stage.

To summarize, you have outlined the business objectives and the scope of the project.  
You have also defined the evaluation criteria through which the success of the project 
would be measured. It is critical that you keep a note of the business value through each 
stage of the ML life cycle.

Once you have defined the criteria, the next step is to start looking at the available 
data. For this use case, the data is available at https://www.kaggle.com/usdot/
flight-delays?select=flights.csv.

Data collection, processing, and cleaning
In this stage, you will begin with gathering raw data from the identified sources. You will 
write data pipelines to prepare and clean the raw data for analysis.

Understanding data sources, location, and the format
You have started working with the SME to access a subset of the flight data. You will 
understand the data format and the integration process required to access this data. 
The data could be in CSV format, or it may be available in some relational database 
management system (RDBMS). It is vital to understand how this data would be available 
for your project and how this data is being maintained eventually.

Start this process by identifying what data is easily available. The SME has mentioned 
that the flight records data that covered the flight information, the scheduled and actual 
departure times, and the scheduled and actual arrival times is readily available. This 
information is available in the object store of your organization. This could be a good 
starting point.

Understanding data processing and cleaning
The data collected from the raw data sources may have many problems. The collected data 
may have duplication, missing values, and/or invalid records. For example, you may find 
that a column of the string type may have numerical data in it. You will then work with 
the SME to find out ways to handle the anomalies.

https://www.kaggle.com/usdot/flight-delays?select=flights.csv
https://www.kaggle.com/usdot/flight-delays?select=flights.csv


228     Building a Complete ML Project Using the Platform

How would you handle the missing data? Choose an estimated value of the missing data 
from the existing set. Or you may decide to drop the column altogether if there are many 
missing values and you can not find any way to impute the missing values.

Implement data validation checks to make sure that the cleaned dataset has consistency 
and that the data quality problems described here are properly handled. Imagine that the 
age column has a value of 250. Although we would all like to live this long or beyond, 
clearly this data is not valid. During this stage, you will find the discrepancy in the data 
and work out how to handle it.

You may find that the flight arrival and departure times are in the local time zones, and  
you may choose to add a new column with the times represented in UTC format for  
easier comparisons.

Data cleaning can happen in both the data engineering stage and the model development 
stage. Data anomalies that are related to the domain or business logic may be found and 
handled in the data engineering stage, while data augmentation and data encoding are 
done at the model development stage. This is because it is the data scientist or the ML 
engineer who knows best what data formats the model training requires, while the data 
engineers work closer to the business domain experts.

One way to implement such data validation in the data engineering phase is through 
Apache Spark. Spark has a set of built-in functions that you can use for data cleaning. The 
following code shows an example of how to filter out invalid rows or rows that contain 
malformed data while reading from a data source:

dataframe = spark.read.option("header", True).option("mode", 
'DROPMALFORMED').csv('flights.csv')

Another example is the fillna() function. It is used to replace null values with any 
other values. The following example shows how to replace all null values in the data frame 
with zeros:

dataframe = dataframe.fillna(value=0)

On the model development side, there are several techniques to perform the same 
operations using pandas to manipulate data frames. You will see this in action in the 
following chapters.

Once you have executed the data cleaning pipeline and created an intermediary dataset 
that can be used for the next stage, the next step is to see whether the available data helps 
you in achieving the business goal.
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Performing exploratory data analysis
At this stage, you analyze the data to assess its suitability for the given problem. Data 
analysis is essential for building ML models. Before you create an ML model, you need 
to understand the context of the data. Analyzing vast amounts of company data and 
converting it into a useful result is extremely difficult, and there is no single answer on 
how to do it. Figuring out what data is meaningful and what data is vital for business is the 
foundation for your ML model.

This is a preliminary analysis, and it does not guarantee that the model will bring the 
expected results. However, it provides an opportunity to understand the data at a higher 
level and pivot if required.

Understanding sample data
When you get a set of data, you first try to understand it by merely looking at it. You then 
go through the business problem and try to determine what set of patterns would be 
helpful for the given situation. A lot of the time, you will need to collaborate with SMEs 
who have relevant domain knowledge.

At this stage, you may choose to convert the data into a tabular form to better understand 
it. Classify the columns according to the data values. Understand each variable in the 
dataset and find out whether the values are continuous, or whether it represents a 
category. You will then summarize the columns using descriptive statistics to understand 
the values your columns contain. These statistics could be mean or median or anything 
that helps you understand the data.

Understand the data variance. For example, your data has only 5% records of delayed 
flights and the remaining flights are on time. Would this dataset be good for your desired 
outcomes? You need to get a better dataset that represents a more balanced distribution. 
You may choose to downsample the dataset, if it is highly imbalanced, by reducing the 
examples from the majority class.

Humans are good at visualizing data so, to better understand the data, you will need to 
visualize your columns using charts. There is a series of different charts that can help 
you visualize your data. The platform we present here will assist you in writing code 
to visualize the data using popular libraries such as Matplotlib or Seaborn. Before you 
choose to visualize your data using a chart, think about what kind of information you are 
expected to get from the chart and how it can assist you in understanding the data.

As an example, we define three basic charts and their characteristics given in the  
following subsections.
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Box plots
A box plot (https://www.khanacademy.org/math/statistics-
probability/summarizing-quantitative-data/box-whisker-plots/a/
box-plot-review) is an excellent way to visualize and understand data variance. Box 
plots show results in quartiles, each containing 25% of the values in the dataset; the values 
are plotted to show how the data is distributed. Figure 8.2 shows a sample box plot. Note 
the black dot is an outlier:

Figure 8.2 – Box plot

The first component of the box plot is the minimum value of the dataset. Then there is 
the lower quartile, or the minimum 25% values. After that, we have the median value at 
50% of the dataset. Then, we have the upper quartile, the maximum 25% value. At the 
top, we have the maximum value based on the range of the dataset. Finally, we have the 
outliers. Outliers are the extreme data points—on either the high or low side—that could 
potentially impact the analysis.

Histograms
A histogram represents the numerical data distribution. To create a histogram, you first 
split the range of values into intervals called bins. Once you have defined the number 
of bins to hold your data, the data is then put into predefined ranges in the appropriate 
bin. The histogram chart shows the distribution of the data as per the predefined bins. 
Figure 8.3 shows a sample histogram. Note that the bins are on the x axis of the plot. The 
following plot shows the distribution in just two bins. You can see that the distribution is 
biased toward the first bin.

https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/box-plot-review
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Figure 8.3 – Histogram

Density plots
One of the drawbacks of histograms is that they are sensitive to bin margins and the 
number of bins. The distribution shape is affected by how the bins are defined. A 
histogram may be a better fit if your data contains more discrete values (such as gender or 
postcodes). Otherwise, an alternative is to use a density plot, which is a smoother version 
of a histogram. Figure 8.4 shows a sample density plot:

Figure 8.4 – Density plot
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Once you have performed the exploratory data analysis, you may choose to go back and 
collect more data from existing sources or find new sources of data. If you are confident 
during this stage that the data you have captured can help you achieve the business goal, 
then you go to the next stage, feature engineering.

Understanding feature engineering 
ML is all about data. No matter how advanced our algorithm is, if the data is not correct 
or not enough, our model will not be able to perform as desired. Feature engineering 
transforms input data into features that are closely aligned with the model's objectives and 
converts data into a format that assists in model training.

Sometimes, there is data that may not be useful for a given training problem. How do we 
make sure that the algorithm is using only the right set of information? What about fields 
that are not individually useful, but when we apply a function to a group of fields, the data 
becomes particularly useful?

The act of making your data useful for the algorithm is called feature engineering. Most of 
the time, a data scientist's job is to find the right set of data for a given problem. Feature 
engineering requires knowledge of domain-specific techniques, and you will collaborate 
with business SMEs to better understand the data.

Feature engineering is not only about finding the right features from existing data, but 
you may need to create new features from existing data. These features are known as 
engineered features. 

Imagine that in your flight dataset, there are fields mentioning scheduled_departure_
time and departure_time. Both of these fields will tell you whether the flights are 
late. However, your business is looking to classify whether the flights are late. You and the 
business agree to classify the delay into three categories, as follows:

•	 On time

•	 Short-delayed

•	 Long-delayed 

A short delay captures the flights that departed with a maximum delay of 30 minutes. All 
other delayed flights are classified by the long delay value in the delayed column. You will 
need to add this column or feature to your dataset.

You may end up dropping a column that may not be useful for the given problem. Do you 
think the Cancellation Reason column may be useful for predicting the flight delay? 
If not, you may choose to drop this column.
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You will also represent your data that can be easily digestible by the ML algorithms. A 
lot of ML algorithms operate on numerical values; however, not all data will be in the 
numerical format. You will apply techniques such as one-hot encoding to convert the 
columns into a numerical format. 

Often, the ML algorithm works well with the value range between –1 and 1 because it 
is faster to converge and results in better training time. Even if you have numerical data, 
it could be beneficial to convert it into the range, and the process of doing this is called 
scaling. During this stage, you may write code to scale the dataset.

Data augmentation
In some cases, you may want to create additional records in your datasets for a couple of 
reasons. One reason is when you do not have enough data to train a meaningful model, 
while another is when you deliberately want to influence the behavior of the model to 
favor one answer over the other, such as correcting overfitting. This process of creating 
synthetic data is called data augmentation.

All activities related to data collection, processing, cleaning, data analysis, feature 
engineering, and data augmentation can be done in the platform by using Jupyter 
notebooks and, potentially, Apache Spark.

Once you have the datasets cleaned, analyzed, and transformed, the next stage is to build 
and train an ML model.

Building and evaluating the ML model
Congratulations! You are now ready to train your model. You will first evaluate what set 
of algorithms will be a good fit for the given problem. Is it a regression or classification 
problem? How do you evaluate to see whether the model is achieving 75% correct 
predictability as described by the business?

Selecting evaluation criteria
Let's start with accuracy as the model evaluation criteria. This records how many times 
the predicted values are the same as the labels in the test dataset. However, if the dataset 
does not have the right variance, the model may guess the majority class for each example, 
which is effectively not learning anything about the minority class.
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You decided to use the confusion matrix to see the accuracy for each class. Let's say you 
have 1,000 records in your data, out of which 50 are labeled as delayed. So, there are 950 
examples with the on time label. Now, if the model correctly predicts 920 out of 950 for on 
time and 12 out of 50 for the delayed label, the matrix will look like the table in Figure 8.5:

Figure 8.5 – Confusion matrix

For the imbalanced dataset, it is recommended to choose the metrics such as recall and 
precision or F-score to get a full picture. In this case, the precision is 31% (12/38) and the 
recall is 24% (12/50), compared to the accuracy, which is 93.2% (932/1000), and which 
could be misleading in your scenario.

Building the model
You will start with splitting your data into training, validation, and test sets. Consider 
a scenario where you split your data into these sets and train a model; let's call this 
experiment 1. Now, you want to retrain the model using different hyperparameters and 
you split the data again for this new iteration and train the model; let's call it experiment 2.  
Can you compare the results of the two experiments if the data splits across the two 
experiments are not consistent? It is critical that your data splits are repeatable to compare 
different runs of your training exercise.

You will try different algorithms or an ensemble of algorithms to assess the performance 
of the data validation set and review the quality of the predictions. During this stage, every 
time you try a new adjustment to the model (for example, hyperparameter or different 
algorithms), you will measure and record the evaluation metrics that were set with the 
SME during the Understanding the business problem stage.
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Most of the steps of the modeling stage are iterative. Depending on the result of your 
experiments, you might realize that the model performance is not as expected. In this 
case, you may want to go back to the previous steps of the life cycle, such as feature 
engineering. Or, you may want to redo your data analysis to make sure you understand 
the data correctly. During training, you will revisit the business objectives and data to 
find the right balance. You may decide that additional data points from new sources are 
needed to enhance the training data. It is highly recommended that you present the results 
to the business stakeholders during this stage. This communication will share the value of 
the model to the business in the initial stages, collect early feedback, and give the team a 
chance to course-correct if required.

The next stage is to deploy your model for inferencing.

Deploying the model
Once you have trained your model, the next stage is to version the model in MLflow and 
deploy it into an environment where the model can be used to make predictions for the 
incoming requests. The versioning of the models will allow you to keep track of models 
and roll back to an older version if the need arises.

In this book, we will use the on-line model inference approach. The model has been 
containerized using the platform's Seldon component and exposed as a REST API.  Each 
call to this REST API will result in one prediction. The stateless container running on 
Kubernetes will scale hundreds of thousands of requests because of the inherent ability of 
containers to scale.

The other way is to serve the incoming requests in batches. Imagine a scenario where you 
have hundreds of thousands of records of labeled data, and you want to test that model 
behavior for all these records. Making individual REST API calls may not be the right 
approach in this scenario. Instead, batch inferencing provides an asynchronous approach 
to making predictions for millions of records. Seldon has the capability to infer batches of 
data, but it is out of scope for this book.

The REST API you expose for your flight delay prediction could be utilized by the web 
application to further enhance the customer experience.
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Reproducibility
Now, you know what an ML life cycle would look like and how the platform assists you 
in every step of your journey. As an individual, you may be able to write every step of the 
data pipelines and model training and tuning in a single notebook. However, this may 
cause a problem in teams where different people are working on different parts of the life 
cycle. Let's say someone wants to run the model training part but the entire process is tied 
up with one another. Your team may not be able to scale with this approach.

A better and more scalable approach is to write different notebooks for various stages 
(such as data processing and model training) in your project life cycle and use a workflow 
engine to tie them up. Using the Kubernetes platform, all the stages will be executed  
using containers and provide a consistent environment for your project between different 
runs. The platform provides Airflow, an engine that could be used for creating and 
executing workflows.

Summary
In this short chapter, we wanted to step back and show you the big picture of the  
platform and the model life cycle. We encourage you to refer to Chapter 2, Understanding 
MLOps, where we presented a typical ML life cycle, for a more detailed discussion.  
Recall the importance of collaborations across multiple teams and how investing more 
time in understanding the available data will result in a model that delivers the expected 
business value.

Now you know what the various stages of your project will look like. In the next two 
chapters, you will implement the flight delay prediction service using the ML platform 
that we have presented in this book and you will perform each of the stages we have 
described in this chapter. The idea is to show you how the platform caters to every stage  
of your project and how you can implement this platform in your organization.
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Data Pipeline

In the previous chapter, you understood the example business goal of improving user 
experience by recommending flights that have a higher on-time probability. You have 
worked with the business subject matter expert (SME) to understand the available data. 
In this chapter, you will see how the platform assists you in harvesting and processing data 
from a variety of sources. You will see how on-demand Spark clusters can be created and 
how workloads could be isolated in a shared environment using the platform. New flights 
data may be available on a frequent basis and you will see how the platform enables you to 
automate the execution of your data pipeline.

In this chapter, you will learn about the following topics:

•	 Automated provisioning of a Spark cluster for development

•	 Writing a Spark data pipeline

•	 Using the Spark UI to monitor your jobs

•	 Building and executing a data pipeline using Airflow
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Technical requirements
This chapter includes some hands-on setup and exercises. You will need a running 
Kubernetes cluster configured with Operator Lifecycle Manager (OLM). Building such a 
Kubernetes environment is covered in Chapter 3, Exploring Kubernetes. Before attempting 
the technical exercises in this chapter, please make sure that you have a working 
Kubernetes cluster and Open Data Hub (ODH) is installed on your Kubernetes cluster. 
Installing ODH is covered in Chapter 4, The Anatomy of a Machine Learning Platform.

Automated provisioning of a Spark cluster for 
development 
In this section, you will learn how the platform enables your team to provision an Apache 
Spark cluster on-demand. This capability of provisioning new Apache Spark clusters 
on-demand enables your organization to run multiple isolated projects used by multiple 
teams on a shared Kubernetes cluster without overlapping.

The heart of this component is the Spark operator that is available within the platform. 
The Spark Kubernetes Operator allows you to start the Spark cluster declaratively. You  
can find the necessary configuration files in the book's Git repository under the 
manifests/radanalyticsio folder. The details of this operator are out of scope for 
this book, but we will show you how the mechanism works.

The Spark operator defines a Kubernetes custom resource definition (CRD), which 
provides the schema of the requests that you can make to the Spark operator. In this 
schema, you can define many things, such as the number of worker nodes for your cluster 
and resources allocated to the master and worker nodes for the cluster.

Through this file, you define the following options. Note that this is not an exhaustive 
list. For a full list, please look into the documentation of this open source project at 
https://github.com/radanalyticsio/spark-operator:

•	 The customImage section defines the name of the container that provides the 
Spark software.

•	 The master section defines the number of Spark master instances and the 
resources allocated to the master Pod.

•	 The worker section defines the number of Spark worker instances and the 
resources allocated to the worker Pod.

•	 The sparkConfiguration section enables you to add any specific Spark 
configuration, such as the broadcast join threshold.

https://github.com/radanalyticsio/spark-operator
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•	 The env section enables you to add variables that Spark entertains, such as  
SPARK_WORKER_CORES.

•	 The sparkWebUI section enables flags and instructs the operator to create a 
Kubernetes Ingress for the Spark UI. In the following section, you will use this UI  
to investigate your Spark code.

You can find one such file at manifests/radanalyticsio/spark/
cluster/base/simple-cluster.yaml, and it is shown in the following 
screenshot. Figure 9.1 shows a section of the simple-cluster.yaml file:

Figure 9.1 – A simple Spark custom resource used by Spark operator

Now, you know the basic process of provisioning a Spark cluster on the platform. 
However, you will see in the next section that when you select the Elyra Notebook Image 
with Spark notebook image, the Spark cluster is provisioned for you. This is because, in 
the platform, JupyterHub is configured to submit a Spark cluster custom resource (CR) 
when you select a specific notebook. This configuration is available through two files.
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The first one is manifests/jupyterhub/jupyterhub/overlays/spark3/
jupyterhub-singleusers-profiles-configmap.yaml, which defines a profile 
as Spark Notebook. In this section, the platform configures the name of the container 
images under the images key, so whenever JupyterHub spawns a new instance of this image, 
it will apply these settings. The Elyra Notebook Image with Spark notebook points to an 
image and it is the same image defined in this part of the configuration. This file contains the 
configuration parameters under configuration, and the resources section points to 
resources that will be created alongside the instance of this image. Figure 9.2 shows a section 
of the jupyterhub-singleusers-profiles-configmap.yaml file:

Figure 9.2 – A section of jupyterhub-singleusers-profiles-configmap.yaml

Note that resources has a property with a value of sparkClusterTemplate, which 
brings us to our second file.
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The second file, manifests/jupyterhub/jupyterhub/base/jupyterhub-
spark-operator-configmap.yaml, contains sparkClusterTemplate, 
which defines the Spark CR. Note that the parameters available in the jupyterhub-
singleusers-profiles-configmap.yaml file will be utilized here. Figure 9.3 
shows a section of the jupyterhub-spark-operator-configmap.yaml file:

Figure 9.3 – A section of jupyterhub-spark-operator-configmap.yaml

In this section, you have seen how the platform wires different components to make life 
easier for your teams and organization, and you can change and configure each of these 
components as per your needs, which brings on the true power of the open source software.

Let's write a data pipeline to process our flights data.

Writing a Spark data pipeline
In this section, you will build a real data pipeline for gathering and processing datasets. 
The objective of the processing is to format, clean, and transform data into a state that is 
useable for model training. Before writing our data pipeline, let's first understand the data.
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Preparing the environment
In order to perform the following exercises, we first need to set up a couple of things. You 
need to set up a PostgreSQL database to hold the historical flights data. And you need 
to upload files to an S3 bucket in MinIO. We used both a relational database and an S3 
bucket to better demonstrate how to gather data from disparate data sources.

We have prepared a Postgres database container image that you can run on your 
Kubernetes cluster. The container image is available at https://quay.io/
repository/ml-on-k8s/flights-data. It runs a PostgreSQL database with 
preloaded flights data in a table called flights.

Go through the following steps to run this container, verify the database table, and upload 
CSV files onto MinIO:

1.	 Run the Postgres database container by running the following command on the 
same machine where your minikube is running:

kubectl create -f chapter9/deployment-pg-flights-data.
yaml -n ml-workshop

You should see a message telling you the deployment object is created.
2.	 Expose the Pods of this deployment through a service by running the  

following command:

kubectl create -f chapter9/service-pg-flights-data.yaml 
-n ml-workshop

You should see a message saying that the service object has been created.
3.	 Explore the contents of the database. You can do this by going inside the Pod, 

running the Postgres client command-line interface (CLI), psql, and running 
SQL scripts. Execute the following command to connect to the Postgres Pod and 
run the Postgres client interface:

POD_NAME=$(kubectl get pods -n ml-workshop –l app=pg-
flights-data)

https://quay.io/repository/ml-on-k8s/flights-data
https://quay.io/repository/ml-on-k8s/flights-data
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4.	 Connect to the Pod. You can do this by executing the following command:

kubectl exec -it $POD_NAME -n ml-workshop -- bash

5.	 Run the Postgres client CLI, psql, and verify the tables. Run the following 
command to log in to the Postgres database from the command line:

psql –U postgres

This will run the client CLI and connect to the default database. 
6.	 Verify that the tables exist. There should be a table named flights. Run the 

following command from the psql shell to verify the correctness of the table:

select count(1) from flights;

This should give you the number of records in the flights table, which is more 
than 5.8 million, as shown in Figure 9.4:

Figure 9.4 – Record count from the flights table

7.	 Upload the rest of the data to an S3 bucket in MinIO. Open a browser window 
on the same machine where minikube is running, and navigate to https://
minio.<minikube_ip>.nip.io. Use the username minio and password 
minio123. Remember to replace <minikube_ip> with the IP address of your 
minikube instance.

https://minio.<minikube_ip>.nip.io
https://minio.<minikube_ip>.nip.io
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8.	 Navigate to Buckets and then hit the Create Bucket + button. Name the bucket 
airport-data and hit the Create Bucket button, as shown in Figure 9.5:

Figure 9.5 – MinIO Create a Bucket dialog 

9.	 While inside the bucket, upload two CSV files from the chapter9/data/ folder 
onto the airport-data bucket, as shown in Figure 9.6:
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Figure 9.6 – Airport and airline data files

In the real world, you do not need to take the preceding steps. The data sources should 
already exist and you need to know where to get them. However, for the purpose of the 
following exercises, we had to load this data into our environment to make it available for 
the next steps.

You now have the data loaded to the platform. Let's explore and understand the data a 
little bit more.

Understanding data
Understanding the data includes the following activities. It is important to understand the 
characteristics of all the datasets involved in order to come up with a strategy and design 
for the pipeline:

•	 Know where the data will be collected from. Data may come from a variety of sources. 
It may come from a relational database, object store, NoSQL database, graph 
database, data stream, S3 bucket, HDFS, filesystem, or FTP. With this information in 
hand, you will be able to prepare the connectivity you need for your data pipeline. In 
your case, you need to collect it from a PostgreSQL database and S3 buckets.

•	 Understand the format of the data. Data can come in many shapes and forms. 
Whether it's a CSV file, a SQL table, a Kafka stream, an MQ stream, a Parquet file, 
an Avro file, or even an Excel file, you need to have the right tools that can read such 
a format. Understanding the format helps you prepare the tools or libraries you will 
need to use to read these datasets.
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•	 Clean unimportant or irrelevant data. Understanding what data is important and 
what is irrelevant helps you design your pipeline in a more efficient way. For 
example, if you have a dataset with fields for airline_name and airline_id, 
you may want to drop airline_name in the final output and just use airline_
id alone. This means one field less to be encoded into numbers, which will improve 
the performance of model training.

•	 Understand the relationships between different datasets. Identify the identifier fields 
or primary keys, and understand the join keys and aggregation levels. You need to 
know this so that you can flatten the data structure and make it easier for the data 
scientist to consume your datasets.

•	 Know where to store the processed data. You need to know where you will write the 
processed data so you can prepare the connectivity requirements and understand 
the interface.

Given the preceding activities, you need a way to access and explore the data sources. The 
next section will show you how to read a database table from within a Jupyter notebook.

Reading data from a database
Using a Jupyter notebook, let's look at the data. Use the following steps to get started with 
data exploration, starting with reading data from a PostgreSQL database.

The entire data exploration notebook can be found in this book's Git repository at 
chapter9/explore_data.ipynb. We recommend that you use this notebook to do 
additional data exploration. It can be by simply displaying the fields, counting the number 
of occurrences of the same values in a column, and finding the relationships between the 
data sources:

1.	 Launch a Jupyter notebook by navigating to https://
jupyterhub.<minikube_ip>.nip.io. If you are prompted for login 
credentials, you need to log in with the Keycloak user you've created. The username 
is mluser and the password is mluser. Launch the Elyra Notebook Image with 
Spark notebook, as shown in Figure 9.7. Because we will be reading a big dataset 
with 5.8 million records, let's use the Large container size. Make sure that, in your 
environment, you have enough capacity for running a large container. If you do not 
have enough capacity, try running on a medium container.
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Figure 9.7 – JupyterHub launch page
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2.	 Create a Python 3 notebook. You will use this notebook to explore the data. You can 
do this by selecting the File | New | Notebook menu option. Then, select Python 3 
as the kernel, as shown in Figure 9.8:

Figure 9.8 – Elyra notebook's kernel selection dialog
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3.	 You can start by looking at the flights table in the database. The most basic way of 
accessing the database is through a PostgreSQL Python client library. Use psycopg2 
for the exercises. You may also choose a different client library to connect to the 
PostgreSQL database. The code snippet in Figure 9.9 is the most basic example:

Figure 9.9 – Basic connection to PostgreSQL using psycopg2 
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4.	 Another, more elegant, way of accessing the data is through pandas or PySpark. 
Both pandas and PySpark allow you to access data, leveraging the functional 
programming approach through data frames rather than the procedural approach 
in Step 3. The difference between pandas and Spark is that Spark queries can be 
executed in a distributed manner, using multiple machines or Pods executing your 
query. This is ideal for huge datasets. However, pandas provides more aesthetically 
appealing visualizations than Spark, which makes pandas good for exploring smaller 
datasets. Figure 9.10 shows a snippet of how to access the database through pandas:

Figure 9.10 – Basic connection to PostgreSQL using pandas
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5.	 If you need to transform a huge dataset, PySpark would be the ideal option for this. 
For example, let's say you need to transform and aggregate a table with 100 million 
records. You will need to distribute this work to multiple machines to get faster 
results. This is where Spark plays an important role. The code snippet in Figure 9.11 
shows how to read the PostgreSQL table through PySpark:

Figure 9.11 – Reading a PostgreSQL table through PySpark
Because of the distributed architecture of Spark, you need to provide the partitioning 
information, particularly the number of partitions and the partition column(s), when 
reading a table from any relational database. Each partition will become a task in 
Spark's vernacular, and each task can be executed independently by a single CPU 
core. If the partition information is not provided, Spark will try to treat the entire 
table as a single partition. You do not want to do this, as this table has 5.8 million 
records and it may not fit in the memory of a single Spark worker node.
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You also need to provide some information about the Spark cluster, such as the master 
URL and the packages required to run your Spark application. In the example in  
Figure 9.12, we included the org.postgresql:postgresql:42.3.3 package. This 
is the PostgreSQL JDBC driver that Spark needs to connect to the database. Spark will 
automatically download this package from Maven at the application startup.

Reading data from an S3 bucket
Now that you have learned different ways of accessing a PostgreSQL database from a 
Jupyter notebook, let's explore the rest of the data. While the flights table in the 
database contains the flight information, we also have the airport and airline information 
provided as CSV files and hosted in an S3 bucket in MinIO.

Spark can communicate with any S3 server through the hadoop-aws library. Figure 9.12 
shows how to access a CSV file in an S3 bucket from a notebook using Spark:

Figure 9.12 – Spark code to read an S3 bucket from a notebook
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Take note that we added a few more Spark submit arguments. This is to tell the Spark 
engine where the S3 server is and what driver library to use.

After you have explored the datasets, you should have learned the following facts about 
the data:

•	 The flights table contains 5,819,079 records.

•	 There are 322 airports in the airports.csv file.

•	 There are 22 airlines in the airlines.csv file.

•	 There is no direct relationship between airports and airlines.

•	 The flights table uses the IATA_CODE airport from the airport CSV file as 
the origin and destination airport of a particular flight.

•	 The flights table is using the IATA_CODE airline from the airlines CSV file 
to tell which airline is serving a particular flight.

•	 All the airports are in the United States. This means that the country columns are 
useless for machine learning (ML) training.

•	 The flights table has the SCHEDULED_DEPARTURE, DEPARTURE_TIME, and 
DEPARTURE_DELAY fields, which tell if a flight has been delayed and we can use to 
produce a label column for our ML training.

Given these facts, we can say that we can use both the airports and airline data to add 
additional airport and airline information to the original flights data. This process is 
usually called enrichment and can be done through data frame joins. We can also use the 
row count information to optimize our Spark code.

Now that you understand the data, you can start designing and building your pipeline.
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Designing and building the pipeline
Understanding the data is one thing, designing a pipeline is another. From the data you 
have explored in the previous section, you learned a few facts. We will use these facts to 
decide how to build our data pipeline.

The objective is to produce a single, flat dataset containing all the vital information that 
may be useful for ML training. We said all vital information because we do not know for 
sure which fields or features are important until we do the actual ML training. As a data 
engineer, you can take an educated guess, based on your understanding of the data and 
with the help of an SME, on which fields are important and which ones are not. Along 
the ML life cycle, the data scientist may get back to you to ask for more fields, drop some 
fields, or perform some transformation on the data.

With the objective of producing a single dataset in mind, we need to enrich the flight 
data with the airport and airline data. To enrich the original flight data with airports and 
airlines data, we need to do a data frame join operation. We also need to take note that 
the flight data has millions of records, while the airport and airline data has less than 50. 
We can use this information to influence Spark's join algorithm for optimization.

Preparing a notebook for Data frame joins
To start, create a new notebook that performs the join, and then adds this notebook as a 
stage to the pipeline. The following steps will show you how to do this:

1.	 Create a new notebook. Call it merge_data.ipynb.
2.	 Use Spark to gather the data from the Postgres and S3 buckets. Use the knowledge 

you learned in the preceding section. Figure 9.13 shows the data reading part of the 
notebook. We have also provided a utility Python file, chapter9/spark_util.
py. This wraps the creation of Spark context to make your notebook more readable. 
The code snippet in Figure 9.13 shows you how to use this utility:
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Figure 9.13 – Spark code for preparing the data frames
Notice the new import statement here for broadcast(). You will use this 
function for optimization in the next step.
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3.	 Perform a data frame join in Spark, as shown in Figure 9.14. You need to join all three 
data frames that you prepared in Step 2. From our understanding in the previous 
section, both the airport and airline data should be merged by IATA_CODE as the 
primary key. But first, let's do the join to the airline data. Notice the resulting schema 
after the join; there are two additional columns at the bottom when compared to the 
original schema. These new columns came from the airlines.csv file:

Figure 9.14 – Spark code for basic data frame join
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4.	 Joining the airport data is a little tricky because you must join it twice: once to 
origin_airport and another to destination_airport. If we just follow the 
same approach as Step 3, the join will work, and the columns will be added to the 
schema. The problem is that it will be difficult to tell which airport fields represent 
the destination airport and which ones are for the airport of origin. Figure 9.15 
shows how the field names are duplicated:

Figure 9.15 – Duplicated columns after the join
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5.	 The simplest way to solve this is to create new data frames with prefixed field names 
(ORIG_ for origin airports and DEST_ for destination airports). You can also do the 
same for the airline fields. Figure 9.16 shows how to do this:

Figure 9.16 – Adding prefixes to the field names

6.	 Replace the df_airports data frame with df_o_airports and df_d_
airports in your join statements, as shown in Figure 9.17. Now, you have a 
more readable data frame:
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Figure 9.17 – Updated join statements with prefixed data frames
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One thing to note in the join statements is the broadcast() function. In the 
previous section, we talked about the importance of knowing the sizes of your 
datasets so that you can optimize your code. The broadcast() function gives a 
hint to the Spark engine that the given data frame should be broadcasted and that 
the join operation must use the broadcast join algorithm. This means that before 
execution, Spark will distribute a copy of the df_airlines, df_o_airports, 
and df_d_airports data frames to each of the Spark executors so that they 
can be joined to the records of each partition. In order to make the broadcast 
join effective, you need to pick the smaller data frames to be broadcasted. If you 
want to know more about this, refer to the performance tuning documentation of 
Spark in the following URL: https://spark.apache.org/docs/latest/
sql-performance-tuning.html.

You have just learned how to join data frames using PySpark. Because PySpark statements 
are lazily evaluated, the actual execution of the join operations hasn't taken place yet. That 
is why the printSchema() execution is fast. Spark only performs the processing when the 
actual data is required. One such scenario is when you persist the actual data to storage.

Persisting the data frames
To get the result of the joins, you need to turn the data frame into physical data. You will 
write the data frame to S3 storage so that the next stage of your data pipeline can read it. 
Figure 9.18 shows a code snippet that writes the joined flights data frame onto a CSV file 
in MinIO:

Figure 9.18 – Writing a data frame to an S3 bucket

https://spark.apache.org/docs/latest/sql-performance-tuning.html
https://spark.apache.org/docs/latest/sql-performance-tuning.html
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Executing this will take some time because this is where the actual processing of 5.8 
million records takes place. While this is running, you can take a look at what is going 
on in the Spark cluster. When you started the notebook, it created a Spark cluster 
in Kubernetes that dedicated the user mluser to you. The Spark GUI is exposed at 
https://spark-cluster-mluser.<minikube_ip>.nip.io. Navigate to this 
URL to monitor the Spark application and to check the status of the application's jobs. 
You should see one running application named Enrich flights data. Clicking on this 
application name will take you to a more detailed view of the jobs being processed, as 
shown in Figure 9.19:

Figure 9.19 – Spark application UI

https://spark-cluster-mluser.<minikube_ip>.nip.io
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Figure 9.19 shows the details of the Enrich flights data application. Each application 
is made up of jobs, which are operations. At the bottom of the screen, you can see the 
Completed Jobs section, which includes the broadcast operations. You can also tell that 
the broadcast operations took around 1 second. Under the Active Jobs section, you see 
the currently running operations, which, in our case, is the actual processing including the 
reading of the flights data from the database, renaming of columns, joining of the data 
frames, and writing the output to an S3 bucket. This is performed for each partition of the 
data frame, which translates to tasks in Spark. On the right-most column of the Active Jobs 
section, you see the tasks and their progress. Because we partitioned our flights data 
frame by day of month, there are 31 partitions. Spark also created 31 parallel processing 
tasks. Each of these tasks is scheduled to run on Spark executors. In Figure 9.19, the details 
say that for the last 1.2 minutes of processing, there are 13 successfully completed tasks out 
of 31, and there are four currently running.

You may also find tasks that failed in some cases. Failed tasks are automatically rescheduled 
by Spark to another executor. By default, if the same task fails four times in a row, the 
whole application will be terminated and marked as failed. There are several reasons task 
failure happens. Some of them include network interruption or resource congestion, such 
as out-of-memory exceptions or timeouts. This is why it is important to understand the 
data so that you can fine-tune the partitioning logic. Here is a basic rule to take note of: the 
bigger the number of partitions, the smaller the partition size. A smaller partition size will 
have fewer chances of out-of-memory exceptions, but it also adds more CPU overhead to 
scheduling. The Spark mechanism is a lot more complex than this, but it is a good start to 
understanding the relationship between partitions, tasks, jobs, and executors.

Almost half of the data engineering work is actually spent on optimizing data pipelines. 
There are quite a few techniques to optimize Spark applications, including code 
optimization, partitioning, and executor sizing. We will not discuss this topic in detail in 
this book. However, if you want to know more about this topic, you can always refer to the 
performance tuning documentation of Spark.
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Figure 9.20 – S3 bucket with Parquet files

After the Spark application is completed, the data should be written in S3 in multiple files, 
with one file representing one partition in Parquet format, as shown in Figure 9.20. The 
Parquet file format is a columnar data format, meaning the data is organized by columns 
rather than by rows as in a typical CSV file. The main advantage of Parquet is that you can 
cherry-pick columns that you want to read without having to scan the entire dataset. This 
makes Parquet ideal for analytics, reporting, and also data cleaning, which is what you 
need to do next.

You can find the full merge_data.ipynb notebook in this book's Git repository 
under the chapter9 folder. However, we strongly recommend that you create your own 
notebook from scratch to maximize the learning experience.
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Cleaning the datasets
You now have a flat and enriched version of the flights dataset. The next step is to 
clean the data, remove unwanted fields, drop unwanted rows, homogenize the field values, 
derive new fields, and, perhaps, transform some of the fields.

To start with, create a new notebook and use this notebook to read the Parquet file we 
generated, and write it as a cleaned version of the dataset. The following steps will walk 
you through the process:

1.	 Create a new notebook named clean_data.ipynb.
2.	 Load the flights data Parquet files from the flights-data/flights S3 

bucket, as shown in Figure 9.21. Verify the schema and the row count. The row 
count should be slightly less than the original dataset. This is because the join 
operations performed in the previous steps are inner joins, and there are records in 
the original flights data that do not have airport or airline references.

Figure 9.21 – Reading Parquet data from S3
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3.	 Remove the unwanted or duplicated fields, drop fields that have the same value 
throughout the entire dataset, and create a derived Boolean field called DELAYED, 
with the value 1 for delayed flights and 0 for non-delayed flights. Let's assume that 
we only consider a flight as delayed if it is delayed for 15 minutes or more. You can 
always change this depending on the requirement. Let's do this slowly. Drop the 
unwanted columns first, as shown in Figure 9.22:

Figure 9.22 – Dropping unwanted columns
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We do not need AI_IATA_CODE, ORIG_IATA_CODE, and DEST_IATA_
CODE because they are the same as the airline, origin_airport, and 
destination_airport columns, respectively.

4.	 Finding the columns with the same values throughout the dataset is an expensive 
operation. This means you need to count the distinct values of each column for 
5 million records. Luckily, Spark provides the approx_count_distinct() 
function, which is pretty fast. The code snippet in Figure 9.23 shows how to find the 
columns with uniform values:

Figure 9.23 – Dropping columns that have uniform values in all rows
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5.	 Finally, create the label field that determines whether the flight is delayed or not. 
The data scientist may use this field as the label for training. However, the data 
scientist may also use an analog range, such as departure_delay, depending on 
the algorithm chosen. So, let's keep the departure_delay field together with the 
new Boolean field based on the 15-minute threshold on departure_delay. Let's 
call this new field DELAYED:

Figure 9.24 – Creating the DELAYED column
Figure 9.24 shows the code snippet for creating a derived column. Test the column 
creation logic by running a simple query using the show() function.
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6.	 Now, write the physical data to the same S3 bucket under the flights-clean 
path. We also want to write the output in Parquet (see Figure 9.25):

Figure 9.25 – Writing the final data frame to S3
As a data engineer, you need to agree with the data scientist on the output format. 
Some data scientists may want to get a single huge CSV file dataset instead of 
multiple Parquet files. In our case, let's assume that the data scientist prefers to read 
multiple Parquet files.

7.	 Step 6 may take quite some time. You can visit the Spark UI to monitor the 
application execution.

You can find the full clean_data.ipynb notebook in this book's Git repository 
under the chapter9 folder. However, we strongly recommend that you create your own 
notebook from scratch to maximize the learning experience.

Using the Spark UI to monitor your data pipeline
While running Spark applications, you may want to look deeper into what Spark is 
actually doing in order to optimize your pipeline. The Spark UI provides very useful 
information. The landing page from the master displays the list of worker nodes and 
applications, as shown in Figure 9.26:
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Figure 9.26 – Spark cluster landing page

The landing page also displays the historical application runs. You can see some of the 
details of the completed application by clicking on one of the completed application 
IDs. However, we are more interested in the running application when monitoring 
applications. Let's understand the information in the UI a little bit more.
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Exploring the workers page
Workers are machines that are part of the Spark cluster. Their main responsibility is to run 
executors. In our case, the worker nodes are Kubernetes Pods with a worker Java virtual 
machine (JVM) running in them. Each Worker can host one or more executors. However, 
this is not a good idea when running Spark workers on Kubernetes, so you should 
configure your executors in a way that only one executor can run in a worker:

Figure 9.27 – Spark Worker view

Clicking on one of the workers in the UI will take you to the worker UI where you can see 
all the executors that this worker has run or is currently running. You can also see which 
application owns the executor. You can see how much CPU or memory is allocated to it, 
and you can even see the logs of each executor.
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Exploring the Executors page
Executors are processes that run inside the worker nodes. Their main responsibility 
is to execute tasks. An executor is nothing but a Java or JVM process running on the 
worker node. The worker JVM process manages instances of executors within the same 
host. Going to http://spark-cluster-mluser.<minikube_ip>.nip.io/
proxy/<application_id>/executors/ will take you to the Executors page, which 
will list all the executors belonging to the current application, as shown in Figure 9.28:

Figure 9.28 – Spark Executors page

On this page, you will find useful metrics that are important in fine-tuning and optimizing 
your application. For example, you can see the resource usage, garbage collection time, and 
shuffles. Shuffles are exchanges of data across multiple executors, which will happen when 
you perform an aggregate function, for example. You want to keep this as small as possible.

Exploring the application page
Applications in Spark are any processes that own a Spark context. It could be a running 
Java, Scala, or Python application that created a Spark session or Spark context and 
submitted it to the Spark master URL. The applications may not necessarily run in 
the Spark cluster. It could be anywhere in the network as long as it can connect to the 
Spark master. However, there is also a mode whereby the application, also called the 
driver application, is executed inside one of the Spark executors. In our case, the driver 
application is the Jupyter notebook that is running outside of the Spark cluster. This is 
why, in Figure 9.28, you can see one executor, called driver, and not an actual executor ID.

http://spark-cluster-mluser.<minikube_ip>.nip.io/proxy/<application_id>/executors/
http://spark-cluster-mluser.<minikube_ip>.nip.io/proxy/<application_id>/executors/
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Clicking the application name of a running application from the landing page will bring 
you to the application UI page. This page displays all the jobs that belong to the current 
application. A job is an operation that alters the data frame. Each job is composed of one 
or more tasks. Tasks are a pair of an operation and a partition of a data frame. This is the 
unit of work that is distributed to the executors. In computer science, this is equivalent 
to a closure. These are shipped over the network as binaries to the worker nodes for the 
executors to execute. Figure 9.29 shows the application UI page:

Figure 9.29 – Spark application UI
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In the example in Figure 9.29, you can see that active job 5 has five tasks, where four tasks are 
running. The Tasks level of parallelism is dependent on the number of CPU cores allocated 
to the application. You can also get even deeper into a particular job. If you go to http://
spark-cluster-mluser.<minikube_ip>.nip.io/proxy/<application_
id>/jobs/job/?id=<job_id>, you should see the stages of the job and the DAG of 
each stage.

Figure 9.30 – Spark job detail page

http://spark-cluster-mluser.<minikube_ip>.nip.io/proxy/<application_id>/jobs/job/?id=<job_id>
http://spark-cluster-mluser.<minikube_ip>.nip.io/proxy/<application_id>/jobs/job/?id=<job_id>
http://spark-cluster-mluser.<minikube_ip>.nip.io/proxy/<application_id>/jobs/job/?id=<job_id>
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The Spark GUI is extremely useful when performing diagnostics and fine-tuning complex 
data processing applications. Spark is also well documented, and we recommend that you 
visit Spark's documentation at the following link: https://spark.apache.org/
docs/3.0.0.

Now that you have created a notebook for enriching the flights data and another 
notebook for cleaning up the dataset to prepare the dataset for the next stage of the ML 
project life cycle, let's look at how you can automate the execution of these notebooks.

Building and executing a data pipeline  
using Airflow
In the preceding section, you have built your data pipeline to ingest and process data. 
Imagine that new flights data is available once a week and you need to process the new 
data repeatedly. One way is to run the data pipeline manually; however, this approach may 
not scale as the number of data pipelines grows. Data engineers' time would be used more 
efficiently in writing new pipelines instead of repeatedly running the old ones. The second 
concern is security. You may have written the data pipeline on sample data and your team 
may not have access to production data to execute the data pipeline.

Automation provides the solution to both problems. You can schedule your data pipelines 
to run as required while the data engineer works on more interesting work. Your 
automated pipeline can connect to production data without any involvement from the 
development team, which will result in better security.

The ML platform contains Airflow, which can automate the execution and scheduling 
of your data pipelines. Refer to Chapter 7, Model Deployment and Automation, for an 
introduction to Airflow and how the visual editor allows the data engineers to build 
the data pipelines from the same IDE they have used for writing data pipelines. The 
integration provides the capabilities for data engineering teams to work in a self-serving 
and independent manner, which further improves the efficiency of your teams.

In the next section, you will automate the data pipeline for the project that you have built 
in the preceding section.

https://spark.apache.org/docs/3.0.0
https://spark.apache.org/docs/3.0.0
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Understanding the data pipeline DAG
Let's first understand what is involved in running the data pipeline that you have built. 
Once you have the right information, it would be easy to automate the process.

When you start writing your data pipeline in JupyterHub, you start with the Elyra Notebook 
Image with Spark notebook from the JupyterHub landing page. In the notebook, you 
connect to the Apache Spark cluster and start writing the data pipelines. The ML platform 
knows that for the Elyra Notebook Image with Spark image, it needs to start a new Spark 
cluster so that it can be used in the notebook. Once you have finished your work, you shut 
down your Jupyter environment, which results in shutting down the Apache Spark cluster by 
the ML platform.

The following are three major stages involved in the execution of your data pipeline for the 
flights data:

1.	 Start the Spark cluster.
2.	 Run the data pipeline notebook.
3.	 Stop the Spark cluster.

Figure 9.31 shows the stages of your DAG:

Figure 9.31 – Airflow DAG for the flights project

Each of these stages will be executed by Airflow as a discrete step. Airflow spins a 
Kubernetes Pod to run each of these stages while you provide the Pod image required to 
run each stage. The Pod runs the code defined in the Airflow pipeline for that stage.

Let's see what each stage in our DAG is responsible for.



276     Building Your Data Pipeline

Starting the Spark cluster
In this stage, a new Spark cluster would be provisioned. This cluster will be dedicated 
to running one Airflow DAG. The role of automation is to submit the request for a new 
Spark cluster to Kubernetes as a CR. The Spark operator will then provide the cluster, 
which can be used for the next step in your DAG.

Once the Airflow engine submits the request to create a Spark cluster, it will move to run 
the second stage.

Running the data pipeline
In this stage, the set of notebooks (merge_data and clean_data) that you have written 
earlier in this chapter will be executed by the Airflow DAG. Recall from Chapter 7, Model 
Deployment and Automation, that Airflow uses different operators to run various stages 
of your automation pipeline (note that Airflow operators are different from Kubernetes 
Operators). Airflow provides a notebook operator to run the Jupyter notebooks. 

The role of automation is to run your data pipeline notebook using the notebook operator. 
After the data pipeline has finished executing your code, the Airflow engine will move to 
the next stage.

Stopping the Spark cluster
At this stage, a Spark cluster would be destroyed. The role of automation is to delete the 
Spark cluster CR created in the first stage of this DAG. The Spark operator will then 
terminate the cluster that was used to execute the data pipeline in the previous stage.

Next is to define the container images that will be used by Airflow to execute each of  
these stages.

Registering container images to execute your DAG
You have just built your automation DAG to run your data pipeline, and each stage of this 
DAG will be executed by running a separate Pod for each stage:

1.	 To register the container images, first, open the JupyterHub IDE and click on the 
Runtime Images option on the left menu bar. You will see the following screen:
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Figure 9.32 – Container Runtime Images registration in your JupyterHub IDE

2.	 Click on the + icon on the top right to register a new container. You will see the 
following screen:

Figure 9.33 – Container Runtime Images registration details in your JupyterHub IDE
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For the flights data pipeline DAG, you will need the following two containers:
I.	 The first container image will enable Airflow to run Python code. Fill the 

screen (shown in Figure 9.33) with the following details and click on the 
button titled SAVE & CLOSE:

	� Name: AirFlow Python Runner

	� Description: A container with Python runtime

	� Source: quay.io/ml-on-k8s/airflow-python-runner:0.0.11

	� Image Pull Policy: IfNotPresent

II.	 The second container image will enable Airflow to run the data pipeline 
notebook. Fill the screen shown in Figure 9.33 with the following details and 
click on the button titled SAVE & CLOSE:

	� Name: AirFlow PySpark Runner

	� Description: A container with notebook and pyspark to 
enable execution of PySpark code

	� Source: quay.io/ml-on-k8s/elyra-spark:0.0.4

	� Image Pull Policy: IfNotPresent

In the next section, you will build and execute the three stages using Airflow.

Building and running the DAG
In this section, you will build and deploy the DAG using the ML platform. You will first 
build the DAG using the drag-and-drop editor, and then modify the generated code to 
further customize the DAG.

Building an Airflow DAG using the visual editor 
In this section, you build the DAG for your data processing flow. You will see how 
JupyterHub assists you in building your DAG using drag-and-drop capabilities:

1.	 Start with logging on to JupyterHub on the platform.
2.	 Create a new pipeline by selecting the File | New | PipelineEditor menu option. 

You will get a new empty pipeline:
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Figure 9.34 – An empty Airflow DAG

3.	 As shown in the preceding screenshot, you can start by dragging the files required 
for your pipeline from the file browser on the left-hand side of the editor. For our 
flights DAG, the first step is to start a new Spark cluster. You will see a file 
named pipeline-helpers/start-spark-cluster on the browser. Drag it 
from the browser and drop it on your pipeline:

Figure 9.35 – Building DAG stages using drag and drop

4.	 Complete your pipeline by adding the files that are required for you. The full DAG 
for the flights data is available in the next step.
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5.	 We have added a pre-built one for you to use as a reference. Go to the folder named 
Chapter 9/, and open the flights.pipeline file. You can see that there are 
three stages required for processing the flights data:

Figure 9.36 – DAG view in the JupyterHub IDE

6.	 Click on the first element of the DAG named start-spark-cluster. Right-click on 
this element and select Properties:

Figure 9.37 – Select the properties of the first stage in your DAG
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7.	 In the right-hand side window, you can see the properties of this stage: 

Figure 9.38 – Properties of the start-spark.py stage
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The following list describes each of the properties:

	� The Filename section defines the file (start-spark-cluster.py) that will be 
executed by Airflow in this stage. 

	� The Runtime Image section defines the image that will be used to execute the 
file mentioned in the previous step. This is the container image that you have 
registered in the earlier section. For the Python stages, you will use the AirFlow 
Python Runner container image.

	� The File Dependencies section defines files required at this stage. The  
spark-cluster.yaml defines the configuration of the Spark cluster. The 
spark_util.py file is the file we have created as a helper utility to talk to the 
Spark cluster. Note that the files associated with this stage in the DAG will be 
packaged in the DAG and are available for your stage when it is being executed by 
Airflow. All of these files are available in the repository.

	� The Environment Variables section defines environment variables. The file, 
start-spark-cluster.py in this case, will have access to these environment 
variables. Think of these variables as configurations that can be used to manage 
the behavior of your file. For example, the SPARK_CLUSTER variable is used to 
name the Spark cluster created. WORKER_NODES defines how many worker Pods 
will be created as Spark workers. So, for bigger jobs, you may choose to change this 
parameter to have more nodes. Open the start-spark-cluster.py file, and 
you will see that the two environment variables are being read by it. Figure 9.39  
shows the file:

Figure 9.39 – The start-spark.py file reading the environment variables
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The Output Files section defines any files created by this stage of the DAG. Airflow 
will copy this file for all other stages of your DAG. This way you can share the 
information across multiple stages of your DAG. In this example, the spark_util.
py file prints the location of the Spark cluster; think of it as the network name at 
which the cluster is listening. This name can be used by other stages, such as the data 
pipeline notebook, to connect to the Spark cluster. There are other options available 
in Airflow to share data between stages that you can explore and decide the best one 
for your use case.

8.	 Click on the second element of the DAG named merge_data.ipynb. Right-click 
on this element and select Properties. You will see that for this stage, Runtime 
Image has been changed to AirFlow PySpark Runner. You will notice that the file 
associated with this stage is the Jupyter notebook file. This is the same file you have 
used to develop the data pipeline. This is the true flexibility of this integration that 
will take your code as it is to run in any environment.

Figure 9.40 – Spark notebook stage in the DAG
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Add the second notebook, clean_data.ipynb, as the next stage of the DAG 
with a similar setup as merge_data.ipynb. We have broken the data pipeline 
into multiple notebooks for easier maintenance and code management.

9.	 The last stage of this DAG is stopping the Spark cluster. Notice that Runtime Image 
for this stage is again AirFlow Python Runner, as the code is Python-based.

Figure 9.41 – Properties of the stop-spark-cluster.py stage

10.	 Make sure to save the flights.pipeline file if you make any changes to it.

You have now finished the first DAG. The important thing is that, as a data engineer, you 
have built the DAG yourself and the data pipeline code you have built is used as it is in the 
pipeline. This capability will increase the velocity and make your data engineering team 
autonomous and self-sufficient.

In the next stage, you will run this DAG on the platform.
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Running and validating the DAG
In this section, you will run the DAG you have built in the preceding section. We have 
assumed that you have completed the steps mentioned in Chapter 7, Model Deployment 
and Automation, in the Introducing Airflow section:

1.	 Load the flights.pipeline file in the JupyterHub IDE and hit the Run 
pipeline icon. The icon is a little play button on the icon bar. You will get the 
following Run pipeline screen:

Figure 9.42 – Airflow DAG submission dialog
Give the pipeline a name, select Apache Airflow runtime as the Runtime Platform 
option, and select the Runtime Configuration option as per your settings. If you 
have followed the instructions in Chapter 7, Model Deployment and Automation, 
then the value would be MyAirflow.

2.	 Click OK after you have provided the information.
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3.	 You will see the following screen, validating that the pipeline has been submitted to 
the Airflow engine in the platform:

Figure 9.43 – Airflow DAG submission confirmation

4.	 Open the Airflow UI. You can access the UI at https://airflow.<IP 
Address>.nip.io. The IP address is the address of your minikube environment. 
You will find that the pipeline is displayed in the Airflow GUI:

Figure 9.44 – DAG list in the Airflow GUI

5.	 Click on the DAG, and then click on the Graph View link. You will get the details 
of the executed DAG. This is the same graph that you have built in the preceding 
section and has the three stages in it.
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Note that your screen may look different depending on your DAG execution stage:

Figure 9.45 – DAG execution status

In this section, you have seen how a data engineer can build the data pipeline (the 
merge_data notebook) and then is able to package and deploy it using Airflow 
(flights.pipeline) from the JupyterHub IDE. The platform provides an integrated 
solution to build, test, and run your data pipelines at scale.

The IDE provides the basics to build the Airflow DAG. What if you want to change the 
DAG to use the advanced capabilities of the Airflow engine? In the next section, you will 
see how to change the DAG code generated by the IDE for advanced use cases.

Enhancing the DAG by editing the code
You may have noticed that the DAG that you built ran just once. What if you want to 
run it on a recurring basis? In this section, you will enhance your DAG by changing its 
running frequency to run daily: 

1.	 Open flights.pipeline in the JupyterHub IDE. You will see the following 
familiar screen:

Figure 9.46 – The flights.pipeline file
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2.	 Click on the Export pipeline icon on the top bar, and you will be presented with a 
dialog to export the pipeline. Click on the OK button:

Figure 9.47 – Export pipeline dialog

3.	 You will get a message that the pipeline export succeeded and a new file will be 
created as flights.py. Open this file by selecting it from the left-hand side panel. 
You should see the full code of the generated DAG:
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Figure 9.48 – The DAG code after the export

4.	 You will see your DAG code in Python. From here, you can change the code as 
needed. For this exercise, we want to change the frequency of the DAG execution. 
Find the DAG object in the code; it will be around line 11: 

dag = DAG(

    "flights-0310132300",

    default_args=args,

    schedule_interval="@once",

    start_date=days_ago(1),

    description="Created with Elyra 2.2.4 pipeline editor 
using flights.pipeline.",

    is_paused_upon_creation=False,

)

5.	 Change the schedule of the DAG object. Change the value from  
schedule_interval="@once" to schedule_interval="@daily".
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6.	 The DAG code will look as follows after the change:

dag = DAG(

    "flights-0310132300",

    default_args=args,

    schedule_interval="@daily",

    start_date=days_ago(1),

    description="Created with Elyra 2.2.4 pipeline editor 
using flights.pipeline.",

    is_paused_upon_creation=False,

)

7.	 Save the file in the IDE and push the file to the Git repository of your DAGs. This 
is the Git repository that you configured in Chapter 7, Model Deployment and 
Automation, while configuring the Airflow.

8.	 Now, load the Airflow GUI and you will be able to see your new DAG with the 
Schedule column containing the @daily tag. This means that the job will run daily:

Figure 9.49 – Airflow DAG list showing the daily schedule

Congratulations! You have successfully built the data pipeline and automated the 
execution of the pipeline using the DAG. A big part of this abstraction is the life cycle of 
the Apache Spark cluster that is managed by the platform. Your team will have a higher 
velocity because the IDE, automation (Airflow), and data processing engine (Apache 
Spark) are being managed by the platform.
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Summary
Phew! This is another marathon chapter in which you have built the data processing 
pipeline for predicting flights' on-time performance. You have seen how the platform 
you have built enables you to write complicated data pipelines using Apache Spark, 
without worrying about provisioning and maintaining the Spark cluster. In fact, you have 
completed all the exercises without specific help from the IT group. You have automated 
the execution of the data pipeline using the technologies provided in the platform and 
have seen the integration of the Airflow pipelines from your IDE, the same IDE you have 
used for writing the Spark data pipeline.

Keeping in mind that the main purpose of this book is to help you provide a platform 
where data and ML teams can work in a self-serving and independent manner, you have 
just achieved that. You and your team own the full life cycle of data engineering and 
scheduling the execution of your pipelines.

In the next chapter, you will see how the same principles can be applied to the data science 
life cycle, and how teams can use this platform to build and automate the data science 
components for this project.
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Building, Deploying, 

and Monitoring  
Your Model

In the previous chapter, you built the data pipeline and created a basic flight dataset that 
can be used by your data science team. In this chapter, your data science team will use the 
flight dataset to build a machine learning (ML) model. The model will be used to predict 
the on-time performance of the flights.

In this chapter, you will see how the platform assists you in visualizing and experimenting 
with the data to build the right model. You will see how to tune hyperparameters and 
compare the results of different runs of model training. You will see how to register and 
version models using the components provided by the platform. You will deploy the 
model as a REST service and start monitoring the deployed model using the components 
provided by the platform.
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Remember that this book is not about data science, instead, the focus is on enabling 
teams to work autonomously and efficiently. You may see some concepts and steps being 
repeated from earlier chapters. This is intentional to show you how the concepts provided 
in the previous chapters help you build a full life cycle.

Keeping the goal in mind, you will learn about the following topics:

•	 Visualizing and exploring data using JupyterHub

•	 Building and tuning your model using JupyterHub

•	 Tracking model experiments and versioning using MLflow

•	 Deploying your model as a service via Seldon and Airflow

•	 Monitoring your model using Prometheus and Grafana

Technical requirements
This chapter includes some hands-on setup and exercises. You will need a running 
Kubernetes cluster configured with the Operator Lifecycle Manager (OLM). Building 
such a Kubernetes environment is covered in Chapter 3, Exploring Kubernetes. Before 
attempting the technical exercises in this chapter, please make sure that you have a working 
Kubernetes cluster and Open Data Hub (ODH) is installed on your Kubernetes cluster. 
Installing ODH is covered in Chapter 4, The Anatomy of a Machine Learning Platform.

Visualizing and exploring data using 
JupyterHub
Recall from Chapter 9, Building Your Data Pipeline, that the data engineer has worked 
with the SME of the business and prepared the flight data that can be used to predict the 
flights' on-time performance. 
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In this section, you will understand the data produced by the data engineering team. This 
is the role of the data scientist who is responsible for building the model. You will see how 
the platform enables your data science and data engineering teams to collaborate and how 
the data scientist can use the platform to build a model for the given problem.

Let's do some base data exploring using the platform. Keep in mind that the focus of this 
book is to enable your team to work efficiently. The focus is not on data science or data 
engineering but on building and using the platform:

1.	 Launch JupyterHub, but this time select the image that is relative to the data science 
life cycle. SciKit is one such image available on the platform. Do not click on the 
Start server button just yet.

Figure 10.1 – JupyterHub landing page
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2.	 On the JupyterHub landing page, add an AWS_SECRET_ACCESS_KEY variable and 
populate it with the password for your S3 environment. The value for this key for 
this exercise would be minio123. Notice that we have used the Medium container 
size to accommodate the dataset. Now, hit the Start server button to start your 
JupyterHub IDE.

Figure 10.2 – JupyterHub landing page
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3.	 Open the chapter10/visualize.ipynb file notebook in your JupyterHub IDE.
4.	 The first step is to read the data provided by the data engineering team. Note that 

the data is available on the same platform, which improves the velocity of the teams. 
Cell 2 in the notebook is using the PyArrow library to read the data as a pandas 
data frame. You will read the data from the flights-data bucket, where data is 
placed by the data team. You can see the data read code as follows:

Figure 10.3 – Cell 2 for the chapter10/visualize notebook

5.	 The first thing you will do is to look at the data. Trying to make sense of it and 
familiarizing yourself with what is available can be the ideal take here. You can 
see in Cell 3 that the DataFrame's head function has been used to see the first few 
rows. You will notice the field names and the data in them and see whether you 
can understand one record. Notice that some fields are NaN and some are None. 
This gives you a clue that the dataset may not yet be ready for building models. The 
following screen captures partial output, and it is expected that you run this code in 
your environment to get the full picture:

Figure 10.4 – Cell 3 for the chapter10/visualize notebook
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6.	 The next stage is to do a simple verification to see how much data is available for 
you and if you are reading all the records. You can see in Cell 4 that the DataFrame's 
count function has been used for this. The following screen captures partial output, 
and it is expected that you run this code in your environment to get the full picture:

Figure 10.5 – Cell 4 for the chapter10/visualize notebook

7.	 Cells 5 and 6 are using the DataFrame's shape and the columns' functions are self-
explanatory. 

8.	 Cell 7 is using the DataFrame's describe function to generate some basic statistics 
for the dataset. You may use this to verify whether there is some data that may not 
make sense. An example could be an exceedingly high value as maximum for the 
taxi_in time. In such cases, you will work with your SME to clarify and adjust the 
records as needed. The following screen captures partial output, and it is expected 
that you run this code in your environment to get the full picture:

Figure 10.6 – Cell 7 for the chapter10/visualize notebook
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9.	 Next, you want to see whether the data has null values. You have seen in Step 3, that 
there are some NaN and None values in the data. You have found out that there are 
many columns with missing data problems. The following screen captures partial 
output, and it is expected that you run this code in your environment to get the  
full picture:

Figure 10.7 – Cell 8 for the chapter10/visualize notebook

10.	 You will use the Dataframe's isnull function to find out how many records have 
this missing data. Using the output from the df.isnull().sum().sort_
values(ascending = False) code, there are two different groups. The first 
six rows of the output show column names that have a very high missing data 
rate and for these columns, you may talk to data engineering and the SME to find 
resources from where you can fetch the data for them. For our example, we will just 
drop these columns. 

Figure 10.8 – Cell 9 for the chapter10/visualize notebook
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11.	 In the second group, starting from the wheels_on column, you may either choose 
to drop the rows containing no data or try to fill the data with a suitable statistics 
function. For example, the missing taxi_in columns could be the mean for the 
same airport and same time. The strategy must be discussed with the team. For this 
exercise, we will just drop the rows.

Figure 10.9 – Cell 9 for the chapter10/visualize notebook

12.	 Often, it is a good idea to investigate sample rows where a particular column has no 
data. You may find a pattern in the data that could be extremely useful in further 
understanding the data. You have chosen to see the rows where the tail_number 
field has no value and see whether you can find any patterns. The following 
screen captures partial output, and it is expected that you run this code in your 
environment to get the full picture:

Figure 10.10 – Cell 10 for the chapter10/visualize notebook

13.	 You will then run the Dataframe's info function to find out the data types of the 
columns. A lot of times, the data types of columns are not the ones that you are 
expecting. You will then talk to the SME and data teams to improve the data quality. 
The following screen captures partial output, and it is expected that you run this 
code in your environment to get the full picture:
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Figure 10.11 – Cell 11 for the chapter10/visualize notebook

14.	 Visualization is one particularly important tool to understand data. You can use 
any of the libraries that you feel comfortable with. For example, in the last cell of 
this notebook, you build a graph to find out the data distribution for the DELAYED 
column. Imagine that 99% of the records are with the DELAYED column as 0. If that 
is the case, the data may not be enough to predict the flights' on-time performance 
and you will need to engage the SME and data teams to get more data. For this 
exercise, we will use the existing data distribution.

Figure 10.12 – Cell 12 for the chapter10/visualize notebook
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Now that we understand flight data a bit better, let's start building our model. In the real 
world, you would invest a lot more time to understand the data. The focus of this book is 
to show you how to execute the model development life cycle and so we kept the examples 
to a minimum.

Building and tuning your model using 
JupyterHub
As a data scientist, you will want to try different models with different parameters to 
find the right fit. Before you start building the model, recall from Chapter 8, Building a 
Complete ML Project Using the Platform, that you need to define the evaluation criteria, 
and that accuracy may be a misleading criterion for a lot of use cases.

For the flight use case, let's assume that your team and the SME agree on the PRECISION 
metric. Note that precision measures the portion of correct positive identification in the 
provided dataset.

Let's start writing our model and see how the platform enables data scientists to perform 
their work efficiently:

1.	 Open the chapter10/experiments.ipynb file notebook in your JupyterHub 
environment.

2.	 In Cell 2, add the connection information to MLflow. Recall that MLflow is the 
component in the platform that records the model experiments and works as 
the model registry. In the code, you will configure EXPERIMENT_NAME, which 
provides a name for your experiment runs. The last line of this cell mentions how 
MLflow will record the experiment run. The autolog feature enables MLflow to 
register automatic callbacks during training to record the parameters for later use.

You also provide the configuration for the S3 bucket, which will be used by MLflow 
to store the artifacts of your experiments:
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Figure 10.13 – Cell 2 for the chapter10/experiments notebook

3.	 Cell 3 reads the data available from the data engineering team, and Cell 4 is again 
providing the information on the missing data from multiple columns. In this 
notebook, you will use this information to drop the columns that you do not find 
useful. The following screen captures partial output, and it is expected that you run 
this code in your environment to get the full picture:

Figure 10.14 – Cell 3 for the chapter10/experiments notebook
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4.	 Cell 5 is dropping two sets of columns. The first set drops the columns for which 
you do not have data in most of the rows. You selected these columns based on 
the previous step. We kept it simple here and dropped the columns; however, it 
is highly recommended that you work with data teams to find the reason for this 
anomaly and aim to get as much data as possible. The columns you are dropping 
are "cancellation_reason", "late_aircraft_delay", "weather_
delay", "airline_delay", "security_delay", and "air_system_
delay", and are shown in the following screenshot:

Figure 10.15 – Cell 5 for the chapter10/experiments notebook
The second drop statement is dropping the tail_number column. This column 
may not play any role in flights getting delayed. In a real-world scenario, you will 
need to discuss this with the SMEs: 

Figure 10.16 – Cell 5 for the chapter10/experiments notebook

5.	 Cell 6 is dropping rows for which the data is not available using the Dataframe's 
dropna function. Recall, from Step 3, that the number of rows where data is 
missing from these columns is less compared to the total rows available. air_
time, arrival_delay, and elapsed_time are examples of such columns from 
Step 5. We have adopted this approach to keep things simple; a better way would be 
to find a way to get the missing data or to create this data from existing values.

Figure 10.17 – Cell 6 for the chapter10/experiments notebook

6.	 In Cell 7, you are dropping columns for which you do not have data for future 
flights. Recall that the model aims to predict the future flight on-time performance. 
However, columns such as departure_time and arrival_time contain the 
actual departure and arrival times. For predicting future flights, you will not have 
such data available at the time of prediction, and so you need to drop these columns 
while training your model.
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Figure 10.18 – Cell 7 for the chapter10/experiments notebook

7.	 In the dataset, the scheduled departure and arrival time is available in HHMM 
format, where HH is hours and MM is minutes. In Cell 8, as a data scientist, 
you may choose to split this data into two different columns where one column 
represents the hours and the other one represents the minutes. Doing this may 
simplify the dataset and improve the model performance if some correlation 
exists between the expected classification and split data. You may do it out of your 
intuition, or you may discuss this option with the SMEs.

You have chosen to split the scheduled_departure and scheduled_
arrival columns:

Figure 10.19 – Cell 8 for the chapter10/experiments notebook

8.	 In Cell 9, you drop a few more columns. The first set contains columns for which we 
have to split the time into hours and minutes, such as scheduled_arrival:

Figure 10.20 – Cell 9 for the chapter10/experiments notebook
The second set contains the columns that are represented in other columns.  
For example, the origin_airport column has a key for the airport, and the 
ORIG_AIRPORT column is a descriptive name. Both these columns represent the 
same information:

Figure 10.21 – Cell 9 for the chapter10/experiments notebook
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9.	 In Cell 10, you visually see the dataset again using the head statement. You have 
noticed that you have some data in string format, such as the airline column:

Figure 10.22 – Cell 10 for the chapter10/experiments notebook
You choose to encode that data to convert it into numbers. There are many techniques 
available, such as ordinal encoding or one-hot encoding, to name a couple. For this 
example, we choose to use the simple OrdinalEncoder. This encoder encodes 
categorical values as an integer array. In Cell 12, you have applied the category 
encoding to the selected fields such as airline and origin_airport:

Figure 10.23 – Cell 12 for the chapter10/experiments notebook
This means that the input string data for these fields will be converted into integers. 
This is good for training; however, at inferencing time, the caller may not know 
about this encoding that you have just performed. One way is to save this encoder 
and use it at inferencing time to convert the value from string to integers. So, your 
inferencing pipeline would consist of two steps. The first step is to apply the encoding 
and the second step is to predict the response using the saved mode. In the last four 
lines of Cell 12, you have saved the encoder and have to register it with MLflow:
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Figure 10.24 – Cell 12 for the chapter10/experiments notebook

10.	 In Cell 13, you validate the data using the head statement. Notice that the airline 
column (one of the columns that you have applied the category encoding to) has 
changed. For example, compare the value of the airline column from Cell 10 and 
Cell 13 and notice that the value of WN in the airline column has been changed 
to 1. This confirms that the encoding has been applied to the dataset successfully:

Figure 10.25 – Cell 13 for the chapter10/experiments notebook

11.	 In Cell 14, you used the dftype statement to validate the data types of each column 
in the dataset. Many algorithms need data to be in a numerical format and, based 
on the available models, you may need to move all the fields to a numerical format.

12.	 In Cell 15, you have split your data into training and testing sets. You will train the 
model using the X_Train and y_train set and use the X_Test and y_test for 
validation of your model performance. You can perform cross-validation to further 
assess the model performance on unseen data. We assume that you, as a data scientist, 
are aware of such concepts and, therefore, will not provide more details on this.

Figure 10.26 – Cell 15 for the chapter10/experiments notebook
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13.	 In Cell 16, you visualize the data distribution of the dataset. The following 
screenshot captures partial output, and it is expected that you run this code in your 
environment to get the full picture:

Figure 10.27 – Cell 16 for the chapter10/experiments notebook
You can see from the preceding chart that the data is biased towards the 
on-time flights. This may impact the performance of the model. Luckily, the 
RandomForestClassifier object of the SciKit library provides a  
class_weight parameter. It can take a Python dictionary object where we 
can provide the desired weights for respective labels. One such example would be to 
allocate less weight for a value of 0 in the DELAYED column, which represents the 
on-time flight. A different value for class_weight could be balanced, which 
will direct the algorithm to weigh the labels as per the inverse proportion to their 
occurrence frequency. Simply, for our case, the balanced value will put more 
weight on the value of 1 as compared to the value of 0 in the DELAYED column.

14.	 In Cell 19, you define a random forest classification model and in Cell 20, you train 
the model. You have noticed that we have defined very minimal hyperparameters 
and then used GridSearchCV to find the best estimator for the given dataset. We 
have placed a separate set of hyperparameters in the comments of this cell. You are 
encouraged to try different combinations.
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Figure 10.28 – Cell 19 for the chapter10/experiments notebook
Figure 10.29 shows how the model training is performed by executing the  
model.fit() function:

Figure 10.29 – Cell 20 for the chapter10/experiments notebook
The training will take some time to complete, so for Cell 20, where you are training 
your model, be patient.

15.	 In Cell 21, you have used the predict method to capture the model prediction 
for the test data. Note that the rf_best_model model is the output of the 
GridSearchCV object:

Figure 10.30 – Cell 21 for the chapter10/experiments notebook

16.	 In Cell 22, you have used the confusion_matrix function to calculate the matrix 
and validate the performance of your model: 

Figure 10.31 – Cell 22 for the chapter10/experiments notebook
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17.	 In Cell 23, you have used the precision_score function to calculate 
recallscore for your model on the test dataset. You can see that you have 
achieved 72% precision, which is good for the first experiment run. You can run 
more experiments and improve the metrics for your model using the platform:

Figure 10.32 – Cell 23 for the chapter10/experiments notebook

You have completed one experiment run with multiple parameters and the 
RandomForestClassifier model. At this stage, you may want to check MLflow 
and see all the runs the grid search has performed, captured parameters, and model 
performance data.

Typically, data scientists try multiple algorithms to find the right fit for the given  
problem. It is up to you to execute and enhance the code and use MLflow to compare 
different algorithms.

Let's see what MLflow has recorded for us.

Tracking model experiments and versioning 
using MLflow
In this section, you will use MLflow to track your experiment and version your model. 
This small section is a review of the capabilities highlighted to you in Chapter 6, Machine 
Learning Engineering, where we discussed MLflow in detail.
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Tracking model experiments
In this section, you will see the data recorded by MLflow for your experiment. Note that 
you have just registered the MLflow and called the autolog function, and MLflow 
automatically records all your data. This is a powerful capability in your platform through 
which you can compare multiple runs and share your findings with your team members.

The following steps shows you how experiment tracking is performed in MLflow:

1.	 Log in to the MLflow UI of the platform.
2.	 On the left-hand side, you will see the Experiments section and it contains 

your experiment named FlightsDelay-mluser. Click on it and you will see the 
following screen. The right-hand side shows all the runs. Recall that we have used 
GridSearchCV so there will be multiple runs:

Figure 10.33 – The model tracking details in MLflow
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3.	 Click on the + icon and it will show you all the runs. Based on the hyperparameters, 
we have four runs, and the best run is automatically selected. As a data scientist, 
this capability will improve the way you work and provide a system where all the 
experiments can be recorded, and it is available without too many changes. You 
have just enabled the autolog feature and MLflow will capture the bulk of the 
metrics automatically. Select all four runs and hit the Compare button.

Figure 10.34 shows the comparison of each run and the hyperparameters associated 
with the run:

Figure 10.34 – Comparing models in MLflow
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4.	 Click on the run next to the + icon, and MLflow will display the details of 
this run. In the artifacts section, you will find that the model file is available. 
You can also see that the ordinal encoder file is also available with the name 
FlightsDelayOrdinalEncoder.pkl:

Figure 10.35 – Files and data captured by MLflow

In this section, you have seen that MLflow captured all the metrics from your training run 
and assisted you in selecting the right model by providing a comparison function.

The next stage is to version your model.
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Versioning models
After giving some thought to the model performance and sharing the data with other 
team members, you have selected the model that can be used for this project. In this 
section, you will version your model to be used. Refer to Chapter 6, Machine Learning 
Engineering, where we discussed model versioning in detail.

The following steps will guide you on how to version your model:

1.	 Go to MLflow and click on the FlightDelay-mluser experiment on the left-hand side.
2.	 Then, on the right-hand side of the screen, click on the + icon for your run. You will 

see the following screen:

Figure 10.36 – Files and data captured by MLflow
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3.	 Click on the model folder under artifacts and a blue button with the Register 
Model label will appear:

Figure 10.37 – Versioning your models in MLflow

4.	 Click on the Register Model button and enter a name that identifies your model. 
One example would be flights-ontime:

Figure 10.38 – Model registration in MLflow

As a data scientist, you have registered your model for predicting flight delays onto the 
model registry. The next step is to deploy your model.

Deploying the model as a service
In this section, you will deploy your model as a REST service. You will see that using 
the details mentioned in Chapter 7, Model Deployment and Automation, the team can 
package and deploy the model as a service. This service will then be consumed by users of 
your model. We highly encourage you to refresh your knowledge from Chapter 7, Model 
Deployment and Automation before proceeding to this section.
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In Chapter 7, Model Deployment and Automation, you have deployed the model with a 
Predictor class, which exposes the model as a REST service. You will use the same class 
here, however, in the flight project, you applied categorical encoding to the data before it 
was used for model training. This means that you will need to apply the same encoding to 
the input data at the inferencing time. Recall that, earlier in this chapter, you saved the file 
as FlightsDelayOrdinalEncoder.pkl and it is available in the MLflow repository.

The next step is to write a simple class that can apply the transformation to the input data. 
Once this class is defined, you will define your inference pipeline using Seldon and then 
package your model as a container. So, your inference pipeline will consist of two stages; 
the first stage is to apply the encoding and the second stage is to use the model to predict 
the class.

Sounds difficult? You will see that the platform abstracts most of the details, and you will 
provide a few configuration parameters to package and deploy your model as a service. 

Let's first see the Transformer class, which will load the 
FlightsDelayOrdinalEncoder.pkl file and apply the encoding to the input 
data. Open the chapter10/model_deploy_pipeline/model_build_push/
Transformer.py file. You will see that the __init__ function loads the encoder file 
and the transform_input function applies the transformation to the input data using 
the standard transform function. This is the same function you have used during the 
model training. Figure 10.39 shows the code file:

Figure 10.39 – Transformer class
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The second artifact is to define the model inference graph. Recall from Chapter 7, Model 
Deployment and Automation, that you have defined a container and one stage in your 
inference graph using the SeldonDeploy.yaml file. In this section, you will extend 
the inference graph to cater to the transformation and the prediction part of the inference 
pipeline. Naturally, when you define a new component in your graph, you will also need to 
define the corresponding container that will be the service for the graph node. 

Note that you may choose to execute the transformation logic in Predict.py to keep 
things simple. However, we wanted to show how Seldon can build complicated graphs and 
each graph could be a separate instance of a container. This approach brings versatility to 
running your production models in an elastic fashion.

So, let's look into the chapter10/model_deploy_pipeline/model_deploy/
SeldonDeploy.yaml file. This file has been copied from Chapter 7, Model Deployment 
and Automation, and the following changes have been made to it.

The first change is to build the inference graph. You need to apply the transformation first 
and then run the model prediction. Figure 10.40 displays this graph. Note that the root 
element for the graph is of the TRANSFORMER type with the name transformer, and 
there is a children node in the graph. The children node will be executed after the 
root node. This setup allows you to have different graphs as per your model requirements. 
The child node in this example is the actual prediction:

Figure 10.40 – Seldon deployment YAML
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The second change to the chapter10/model_deploy_pipeline/model_
deploy/SeldonDeploy.yaml file is registering the containers for both the root and 
the child node. The name field in the graph is the one that associates the container to the 
graph node. So, we will have two instances of a container, one for transformer and the 
second for predictor. The transformer instance will execute the Transformer.
py file and the predictor instance will execute the Predictor.py file. What we 
have done is create a single container image with all these files, so our container image 
is the same. You can examine the chapter10/model_deploy_pipeline/model_
build_push/Dockerfile.py file where you package all the files into a container 
image. Figure 10.41 highlights the part of SeldonDeploy.yaml where the containers 
have been configured.

Note that the first container is with the name transformer. The MODEL_NAME variable 
mentions the name of the Python file and the SERVICE_TYPE variable mentions the type 
of callback to call by Seldon. Recall that Transformer.py has a transform_input 
method, and SERVICE_TYPE guides the Seldon system to call the right function. The 
same is applied to the predictor container instance, and note how MODEL_NAME and 
SERVICE_TYPE are different for the predictor instance:
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Figure 10.41 – Seldon deployment YAML

That is it! For some of you, this may be a little overwhelming, but once you have defined 
the structure for your projects, these files can be standardized, and the data scientists will 
not need to change them for every project. You have seen how the ML platform allows you 
to be self-sufficient in not only building the models but also packaging them.

The next step is to write a simple Airflow pipeline to deploy your model. Before you 
start this section, we recommend refreshing your knowledge of deploying the models 
using Airflow as detailed in Chapter 7, Model Deployment and Automation. There is no 
change required in the pipeline that you have built, and you will just be changing a few 
configuration parameters to provide the right model name and version to the pipeline.

We have prebuilt this pipeline for you, so, open the chapter10/model_deploy_
pipeline/flights_model.pipeline file. Open this file and validate that it has the 
same two stages as mentioned in Chapter 7, Model Deployment and Automation. The first 
stage builds and pushes the container image to a container registry and the second stage 
deploys the model using Seldon.



320     Building, Deploying, and Monitoring Your Model

Figure 10.42 displays the first stage with the parameters used for building and pushing the 
container image. Runtime Image and File Dependencies have the same values as shown 
earlier. Notice the Environment Variables section, where you have the same variable 
names but different values:

Figure 10.42 – Flights model deploy pipeline

Let's see each of them:

•	 MODEL_NAME has a value of flights-ontime. This is the name of the model you 
were given when you registered the model with MLflow.

•	 MODEL_VERSION has a value of 1. This is the version of the model you would like 
to deploy. This version is recorded in the MLflow system.

•	 CONTAINER_DETAILS has a value of flights-ontime. This is the name of the 
model you were given when you registered the model with MLflow.

•	 CONTAINER_REGISTRY is the container registry API endpoint. For DockerHub, 
this is at https://index.docker.io/v1. Set the value of this variable to 
https://index.docker.io/v1/. In this example, we have used quay.io as 
the registry. This is another free registry that you can use.

https://index.docker.io/v1
https://index.docker.io/v1/
http://quay.io
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•	 CONTAINER_REGISTRY_USER is the username of the user that will push images 
to the image registry. Set this to your DockerHub username or Quay username.

•	 CONTAINER_REGISTRY_PASSWORD is the password of your container registry 
user. In production, you do not want to do this. You may use secret management 
tools to serve your password. 

CONTAINER_DETAILS is also the name of the repository to where the image will be 
pushed and the image name and image tag. Figure 10.43 displays the second stage with 
the parameters used for deploying the container image using Seldon. Runtime Image 
and File Dependencies have the same values as shown earlier. Notice the Environment 
Variable is the section where you have variable values set for this deployment. The 
required variables are MODEL_NAME, MODEL_VERSION, CONTAINER_DETAILS, and 
CLUSTER_DOMAIN. You have seen all the variables in the preceding paragraph, but 
CLUSTER_DOMAIN is the DNS name of your Kubernetes cluster. In this case, the IP 
address of minikube is <Minikube IP>.nip.io.

Figure 10.43 – Flights model deploy pipeline
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Save and deploy this DAG to your Airflow environment and the model will be available 
for consumption when the Airflow DAG has finished execution. Validate that this DAG 
has been executed correctly by logging into Airflow and checking the status of the DAG. 
Figure 10.44 shows the Airflow UI where you have validated the DAG's status. Notice that 
we have saved the DAG under the name flights-model-deploy; if you have chosen 
some other name, your DAG name will reflect accordingly.

Figure 10.44 – Airflow DAG for the flights pipeline

Recall that MLflow associates a run ID for each of the experiments. You register one of 
these experiments in the model registry so it can be deployed. Refer to Figure 10.34, which 
shows a screenshot of the run ID for this model.

This model run will be associated with the deployed model, so your team can track the 
models running in the environment to an individual run. This capability provides a 
trace back on what version of the model is running in different environments. Run the 
following command to see the resources created by the model:

kubectl get service,ingress,SeldonDeployment -n ml-workshop | 
grep bf32

You should get the following response. As you can see, the Kubernetes service and ingress 
have a run ID that starts with bf32 for this example. Note that it will have a different 
value for your case, and you will need to adjust the run ID in the preceding command:

Figure 10.45 – Kubernetes objects created by the platform
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Now, the model is deployed; you now test the model by running a RESTful call to  
your model.

Calling your model
Recall that the model is exposed via the Kubernetes Ingress, which is created by 
automation. In order to test whether the model is running properly as a RESTful API, 
follow these steps:

1.	 Run the following command to get the ingress object. Note that the name of the 
ingress object will be different for your setup:

kubectl get ingress <INGRESS_NAME> –n ml-workshop

2.	 Now, make an HTTP call to the location where your model is available for 
inference. Run the following commands. The chapter10/inference folder 
contains a payload for the flight data and in return, the model will predict the 
probability of the flight getting delayed.

3.	 First, change the directory to the chapter10/inference folder:

cd chapter10/inference

4.	 Then, run a curl command to send the payload to the model. Note to change the 
HTTP address as per your setup:

curl -vvvvk --header "content-type: application/json" -X 
POST -d @data.json https://flights-ontime.192.168.39.216.
nip.io/api/v1.0/predictions; done

Windows users may choose to use the excellent Postman application  
(https://www.postman.com/) to make an HTTP call. 

https://www.postman.com/


324     Building, Deploying, and Monitoring Your Model

5.	 Open the chapter10/inference/data.json file to see the payload that we 
are sending to the model. You will notice that there are two sections of the json 
payload. The first part is with the names key, which captures the feature columns 
that you have used to train the model. Notice that there is no DELAYED column 
here because the model will predict the probability of the DELAYED column. 
The second part is with the ndarrray key, which has the values for the feature 
columns. Note that the values for the categorical columns are in the original form 
and the inference pipeline will convert them into the categorical values before 
executing the model. Figure 10.46 shows the following file:

Figure 10.46 – Sample payload for flights model inferencing

Now that you have successfully performed an inference call over HTTP, let's see how the 
information has been captured by the monitoring system.

Monitoring your model
In this last section, you will see how the platform automatically starts capturing the 
typical performance metrics of your model. The platform also helps you visualize the 
performance of the inference. The platform uses Seldon to package the model, and Seldon 
exposes default metrics to be captured. Seldon also allows you to write custom metrics for 
specific models; however, it is out of the scope of this book.

Let's start by understanding how the metrics capture and visualization work.
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Understanding monitoring components
The way metrics capture works is that your model is wrapped by Seldon. Seldon then 
exposes the metrics to a well-defined URL endpoint, which was detailed in Chapter 7, 
Model Deployment and Automation. Prometheus harvests this information and stores it in 
its database. The platform's Grafana connects to Prometheus and helps you visualize the 
recorded metrics.

Figure 10.47 summarizes the relationship between the model and monitoring 
components:

Figure 10.47 – ML platform monitoring components 

Let's understand each component of this diagram:

•	 Open Data Hub (ODH) Operator: This is the base operator for our platform. 
Its role is to provision all the different components for your platform. We have 
discussed this operator in various chapters of this book and so we do not describe it 
in this section.
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•	 Prometheus Operator: Prometheus operator is responsible for creating the 
Prometheus server. The ODH operator creates the Kubernetes subscriptions for 
the Prometheus operators. You can find the subscription file at manifests/
prometheus/base/subscription.yaml. The following snippet shows that it 
uses the OLM mechanism to install the Prometheus operator:

Figure 10.48 – Subscription for Prometheus operator

•	 Prometheus Server: The Prometheus operator installs and configures the 
Prometheus server for you. The platform configures the file that directs the 
Prometheus operator to create the Prometheus server. You can find the file at 
manifests/prometheus/base/prometheus.yaml. The following snippet 
shows the file:

Figure 10.49 – Prometheus server configuration
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•	 Service Monitors: Service monitors are objects by which you configure the 
Prometheus server to find and harvest information from the running Kubernetes 
services and pod. The service monitors are defined by the platform, and you can 
find one example at manifests/prometheus/base/prometheus.yaml. The 
following snippet shows the file. Note that the configuration uses port 8000, which 
is the port at which Seldon exposes the metrics information. The selector object 
defines the filter by which Prometheus will decide what pods to scrape data from: 

Figure 10.50 – Prometheus server monitors for Seldon pods

•	 Grafana Server: Grafana is the component that provides the visualization for the 
data captured by Prometheus. Grafana is preferred to create dashboards when using 
Prometheus and is continuously improving its Prometheus support. The platform 
deploys Grafana via the manifests/grafana/base/deployment.yaml file. 

In this section, you have seen how the platform provides and wires different components 
to provide you with a visualization framework for your observability requirements.

Next is to configure Grafana.
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Configuring Grafana and a dashboard
In this section, you will configure Grafana to connect to Prometheus and build a dashboard 
to visualize the model's metrics. What is a dashboard? It is a set of graphs, tables, and other 
visualizations of your model. You will create a dashboard for the flight model.

Note that this is a one-time configuration, and it does not need to be repeated for every 
model. This means that once you have a dashboard, you can use it for multiple models. 
Your team may create a few standard dashboards and as soon as a new model is deployed, 
the platform will automatically find it and make it available for monitoring.

Let's start with the configuration of the Grafana instance:

1.	 Log in to Grafana using https://grafna.192.128.36.219.nip.io.  
Notice that you will need to change the IP address as per your setup. On the  
login page, click the Sign in With KeyCloak button, which is at the bottom of  
the login window:

Figure 10.51 – Grafana login page
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2.	 First, you will need to add a data source. A data source is a system that will provide 
the data that Grafana will help you visualize. The data provider in Prometheus 
scrapes the metrics data from your models. Select the Configuration | Data sources 
option from the left-hand menu:

Figure 10.52 – Grafana Data sources menu option
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3.	 Click on the Add data source button, as shown in the following screenshot: 

Figure 10.53 – Add new Grafana data source

4.	 Select the data source type, which will be Prometheus for your case. You may notice 
that Grafana can talk to a variety of data sources, including InfluxDB and YYYY, to 
name a couple.

Figure 10.54 – Add new Prometheus Grafana data source

5.	 Now, you need to add the details for the Prometheus server. Grafana will use these 
details to connect and fetch data from the Prometheus server. Add the following 
properties in the screen mentioned:

	� Name: Prometheus

	� URL: http://prometheus-operated:9090
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6.	 Then click the Save & test button. The URL is the location of the Prometheus 
service created by the platform. Because the Grafana pod will talk to the 
Prometheus pod using the internal Kubernetes network, this URL will be the same 
for your setup too: 

Figure 10.55 – Configuration for the Prometheus Grafana data source
You can find the prometheus service details by issuing the following command:

kubectl get service –n ml-platform | grep prometheus
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7.	 After you configure Grafana to connect to Prometheus, the next step is to build the 
dashboard. As mentioned earlier, a dashboard is a set of visualizations, and each 
visualization is backed by a query. Grafana runs those queries and plots the data for 
you. Building dashboards is out of the scope of this book, but we have provided a 
dashboard that you can use. Select the Import option from the left-hand menu:

Figure 10.56 – Adding a new dashboard in Grafana
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8.	 On the Import screen, copy the contents from the chapter10/grafana-
dashboard/sample-seldon-dashboard.json file and paste it into the 
Import via panel json textbox. Click on the Load button to import the dashboard:

Figure 10.57 – Importing a Seldon dashboard in Grafana
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9.	 Set the name for your imported dashboard and click on the Import button to 
complete the import process for the dashboard. You can give the name as per your 
liking; we have chosen the name Flights Prediction Analytics, as you 
can see in the following screenshot:

Figure 10.58 – Importing Seldon dashboard in Grafana

10.	 After you import the dashboard, Grafana will start displaying the dashboard 
immediately. You can see a few metrics such as response times, success rate, and 
other relative metrics for your deployed model. You may need to hit your model 
a few times to start populating this board. Refer to the Calling your model section 
earlier in this chapter on how to make calls to your deployed models.
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Figure 10.59 – Dashboard for Seldon models
You can see that the board captures the metrics that have been emitted by your 
model wrapped in Seldon. As more models get deployed, they will be available in 
this dashboard, and you can filter the models through the filters provided in the top 
bar of the dashboard.

Your flights on-time prediction service is now available for consumption. You will now 
work with the product development team and the website team of your organization so 
that they can integrate this functionality and provide a better service for your customers. 
Your work does not finish here; you will need to continuously see how the model is 
performing and bring on improvements via new data and/or optimizing your models 
further. The platform will help you to perform this cycle with higher velocity and 
continuously improve the offerings to your customers.

Summary
This was another long chapter that covered the model development and deployment life 
cycle for the flights on-time performance project. You have seen how the platform enables 
you and your team to become autonomous in EDA, model experimentation and tracking, 
model registry, and model deployment.

In the next chapter, we will take a step back and summarize our journey of the overall 
platform and how you can use it as your own solution that fits your vertical. You can use 
the concepts and tools to build a platform for your team and enable your business to 
realize the power of AI.
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on Kubernetes
Throughout the chapters, you have learned about the differences between a traditional 
software development process and machine learning (ML). You have learned about the 
ML life cycle and you understand that it is pretty different from the conventional software 
development life cycle. We have shown you how open source software can be used to 
build a complete ML platform on Kubernetes. We presented to you the life cycle of ML 
projects, and by doing the activities, you have experienced how each phase of the project 
life cycle is executed. 

In this chapter, we will show you some of the key ideas that we wanted to bring forth to 
further your knowledge on the subject. The following topics will be covered in this chapter:

•	 Identifying ML platform use cases

•	 Operationalizing ML

•	 Running on Kubernetes

These topics will help you decide when and where to use the ML platform that we 
presented in this book and help you set up the right organizational structure for running 
and maintaining the platform in production.
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Identifying ML platform use cases
As discussed in the earlier chapters, it is imperative to understand what ML is and how 
it differs from other closely related disciplines, such as data analytics and data science. 
Data science may be required as a precursor to ML. It is instrumental in the research and 
exploration phase where you are unsure whether an ML algorithm can solve the problem. 
In the previous chapters, you have employed data science practices such as problem 
definitions, isolation of business metrics, and algorithm comparison. While data science 
is essential, there are also ML use cases that do not require as many data science activities. 
An example of such cases is the use of AutoML frameworks, which we will talk about in 
the next section.

Identifying whether ML can best solve the problem and selecting the ML platform is a bit 
of a chicken and egg problem. This is because, in order to be sure that an ML algorithm 
can best solve a certain business problem, it requires some data science work such as data 
exploration, and thus requires a platform to work on. If you are in this situation, your 
best bet is to choose an open source platform such as Open Data Hub (ODH), which we 
presented in this book. Because it is fully open source, there are no required commercial 
agreements and licenses to start installing and using the platform, and you have already 
seen how capable the platform is. Once you have a platform, you can then use it to initiate 
your research and data exploration until you can conclude whether ML is the right 
approach to solving the business problem or not. You can then either continue using the 
platform for the remainder of the project life cycle or abandon it without incurring any 
platform costs.

In some cases, you may already know that the business problem can be solved by ML 
because you have seen a similar implementation somewhere else. In such cases, choosing 
the ML platform we have presented is also a good option. However, you could also be in 
a situation where you do not have a strong data science team. You may have a few data 
engineers and ML engineers who understand the process of model development but are 
not confident about their data science skills. This is where AutoML comes into the picture 
as a consideration.

Considering AutoML
To define it in its simplest form, AutoML is about automatically producing ML models, 
with little to no data science work needed. To elaborate a bit, it is about automatic 
algorithm selection, automatic hyperparameter tuning, and automatic model evaluation.
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AutoML technology comes as a framework or a software library that can generate an ML 
model from a given dataset. There are several AutoML frameworks already available on 
the market as of writing this book. The following list shows some of the popular AutoML 
frameworks currently available. There are many other AutoML frameworks not listed 
here, and we encourage you to explore them:

•	 BigML – An end-to-end AutoML enterprise platform sold commercially. 

•	 MLJAR – An open source AutoML framework.

•	 H2O.ai – An open source full ML platform that includes an AutoML framework. 

•	 TPOT – Considers itself as a data scientist assistant. It's an open source  
AutoML framework developed by the Computational Genetics Lab at the  
University of Pennsylvania.

•	 MLBox – An open source AutoML Python library.

•	 Ludwig – A toolbox featuring zero code ML model development that  
includes AutoML.

•	 Auto-sklearn – An open source AutoML toolkit based on scikit-learn ML libraries.

•	 Auto-PyTorch – An open source AutoML framework that features an automatic 
neural network architecture search. It can automatically optimize neural network 
architectures.

•	 AutoKeras – An open source AutoML framework based on Keras ML libraries.

It is also important to note that some of these frameworks and libraries can be used 
within, or in conjunction with, our ML platform or any ML platform.

Commercial platforms
Commercial vendors of ML platforms, including cloud providers, also include AutoML 
products and services in their portfolio. Google has Google Cloud AutoML, Microsoft 
has Azure Machine Learning, Amazon has Sagemaker Autopilot, and IBM has Watson 
Studio with AutoML and AutoAI components. However, these vendors sell their AutoML 
products and services as part of their ML platform product, which means you will have to 
use their ML platform to take advantage of the AutoML features.
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ODH
You have seen how the ODH allows you to choose which components to install and it 
also allows you to replace one component with another by updating the kfdef manifest 
file. This adds additional flexibility as to what components you choose to be part of your 
platform. For example, suppose you only need JupyterHub and MLflow for your data 
science team to start exploring the possibility of using ML to solve your business problem. 
In that case, you can choose to install only these components. This will save you compute 
resources and, therefore, reduce cloud computing bills.

Regardless of which ML platform you choose, it is also essential that the path to 
operationalizing your ML platform is clearly established. This includes finding the right 
people who can run the platform in production and mapping the personas in the ML 
life cycle to the existing organization. This also includes establishing some processes and 
communication channels, which brings us to our next topic.

Operationalizing ML
As discussed in earlier chapters, you can enjoy the full benefits of ML in your business if 
your models get deployed and used in the production environment. Operationalization 
is more than just deploying the ML model. There are also other things that need to be 
addressed to have successful ML-enabled applications in production. Let's get into it.

Setting the business expectations
It is extremely important to ensure that the business stakeholders understand the risk of 
making business decisions using the ML model's predictions. You do not want to be in a 
situation where your organization fails because of ML. Zillow, a real estate company that 
invested a lot in ML with their product Zestimate, lost 500 million dollars due to incorrect 
price estimates of real properties. They ended up buying properties at prices set by their 
ML model that they eventually ended up selling for a much lower price.

ML models are not perfect; they make mistakes. The business must accept this fact and 
must not rely entirely on the ML model's prediction without looking at other data sources. 
If the business fails to accept this fact, this could lead to irreparable damages caused by 
wrong expectations. These damages include reputational damages, loss of trust by the 
business, and even regulatory fines and penalties.
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Another case is that some algorithms, particularly deep learning, are not explainable. It 
must be communicated to the business because, in some cases, an explainable algorithm 
may be required for regulatory purposes. Some regulators may need you to explain the 
reason behind the business decision. For example, suppose an ML model decided that 
a new bank customer is not a risky individual and it turned out to be a black-listed or 
sanctioned individual by some regulators; the financial organization may need to explain 
the reasoning behind this decision to the regulators during the investigation and the  
post-mortem analysis. Or, even worse, the organization could get fined millions of dollars. 

Avoid over-promising results to the business. IBM Watson had the idea that ML could 
diagnose cancer by making sense of diagnostic data from several medical institutions 
and potentially assisting, or even replacing, doctors in performing a more reliable cancer 
diagnosis in the future. This has gained a lot of attention, and many organizations invested 
in the idea. However, it turned out to be a very difficult task. It did not only result in 
losses, but it also somehow damaged the brand. 

To summarize, before deciding whether to use ML models to predict business decisions, 
make sure that the business understands the risks and consequences if the model does not 
behave as expected. Set the expectations right. Be transparent about what is possible and 
what is hard. Some ML models may be able to replace a human in a particular business 
process, but not all ML models will achieve superhuman abilities.

Dealing with dirty real-world data
The data you used for model training comes as prepared datasets tested in a controlled 
environment. However, this is not the case in the real-world setting. After your model gets 
deployed to production, you must expect dirty data. You may receive wrongly structured 
data, and most of the data is new and has never been seen by the model during training. To 
ensure that your model is fit for production, avoid overfitting, and test the model thoroughly 
with datasets that are as close as the ones it will see in production. If possible, use data 
augmentation techniques or even manufactured data to simulate production scenarios. 
For example, a model that works well in diagnosing a patient utilizing chest X-ray scans 
may work well in one clinic, but it may not work in another clinic using older medical 
equipment. There is a real story behind this, and the reason it did not work was that the 
X-ray scanners generated scans that showed dust particles present in the machine's sensors.

To summarize, avoid overfitting. Have a solid data cleaning process as part of your 
inference pipeline. Prepare for the worst possible input data by having suitable datasets 
from various sources. Be ready when your model does not return what is expected of it.
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Dealing with incorrect results
Imagine you have a credit card fraud detection and it marks a routine transaction as 
fraudulent. There could be many reasons for this, such as your model may not be aware 
of higher-than-normal spending during Christmas. You need the capability to investigate 
such scenarios and that's why it is crucial to have logging in place. This will allow you to 
recall the model's answer to a particular question thrown to it in production. You will 
need this to investigate model issues.

When this happens, you must be prepared to face the consequences of the wrong 
information your model returned. But also, you must be able to address the erroneous 
result in the future by updating the model with new sets of data from time to time. You 
must also have the ability to track the model's performance over time. You have seen in 
the previous chapter how monitoring is done. The change in model performance over 
time is also called a drift. There are two kinds of drift. Data drift happens when the 
model starts receiving new types of data that it has not been trained on. For example, an 
insurance fraud detection model worked well until it started seeing new data that included 
a new insurance product that the model hadn't seen before. In this case, the model will 
not produce a reliable result. In other words, your model performance has degraded. 
Another example is that your model was trained on a certain demographic or age group, 
and then suddenly a new age group started appearing. Similarly, there is a higher chance 
that the ML model will return an unreliable result. Concept drift is when the functional 
relationship between the input data and the label has changed. For example, in a fraud 
detection model, a transaction that was not previously considered fraudulent is now 
labeled as fraudulent or anomalous according to the new regulations. This means the 
model will produce more false-negative results, which renders the model unreliable.

In these scenarios, you must have a process set for addressing these problems. You must 
have a process for when to manually retrain the model, or even automatically retrain the 
model when it detects a drift. You may also want to implement anomaly detection in the 
input data. This ensures that your model only gives up results if the input data make sense. 
This avoids abuse or attacks on the model as well. These automation requirements can be 
integrated as part of your continuous integration and deployment pipelines.
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Maintaining continuous delivery
You have seen how to run model builds and model deployments in the platform manually. 
You have also seen how to automate the deployment workflow using Airflow. Although 
the data scientists or ML engineers in the team can manually perform or trigger such 
operations, in the real world, you will also need someone or a team to maintain these 
pipelines to make sure they are always working. You may want to have a dedicated 
platform team to maintain the underlying platform that executes the pipelines, or you may 
assign this responsibility to the data engineering team. Whatever approach you choose, 
the important thing is that someone must be responsible for ensuring that the deployment 
pipelines are always working.

Although the ODH operator completely manages the ML platform, you will still need 
someone responsible for maintaining it. Ensure that the Kubernetes operators are up to 
date. Apply security patches whenever necessary.

For some critical workloads, you may not be able to deploy to production automatically. 
There will be manual approvals required before you can ship updates to a model in 
production. In this case, you need to establish this approval workflow by either embedding 
this process into the platform or through mutual agreement with manual approval 
processes. Nevertheless, the objective is to have someone accountable for maintaining 
continuous delivery services.

In summary, continuous delivery must always work so that the model development life 
cycle can have a faster feedback cycle. Also, if drift is detected, you will always have a 
ready-to-go delivery pipeline that can ship a more up-to-date version of the model.

Managing security
Security is another critical area to focus on when operationalizing ML projects. You have 
seen in the preceding chapters that the ML platform can be secured by using OpenID 
Connect (OIDC) or OAuth2, a standard authentication mechanism. Different platform 
components can utilize the same authentication mechanism for a more seamless user 
experience. You have used an open source tool called Keycloak, an industry-standard 
implementation of the identity and access management (IAM) system that mainly 
supports OIDC, Security Assertion Markup Language (SAML), and more. The 
Seldon Core API allows the REST-exposed ML models to be protected behind the same 
authentication mechanism. Refer to the Seldon Core documentation for more details.
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To summarize, the ML platform must be protected by an authentication mechanism, 
preferably OIDC. This also allows for the implementation of single sign-on (SSO). 
Additionally, you also need to protect your deployed models to ensure that only the 
intended audiences can access your ML models. And finally, there must be someone 
responsible for maintaining the Keycloak instance that your platform uses and someone, 
or a team, managing the access to the platform resources.

Adhering to compliance policies
In some business settings, compliance is at the center of the operation. Financial 
institutions have a whole department managing compliance. These compliance rules 
typically come from the regulatory bodies that oversee the financial institution's 
operations. Depending on which country your ML platform will be used and hosted 
in, regulatory policies may prevent you from moving data out of the on-premises data 
centers. Or, there could be a requirement for encrypting data at rest. 

The good news is that your platform is flexible enough to be configured for such 
compliance measures. It can run on-premises or in any cloud provider, thanks to 
Kubernetes. You can also run the ML platform in the cloud while having the storage 
on-premises or take advantage of hybrid-cloud strategies.

Another thing is that each of the components in the platform is replaceable and pluggable. 
For example, instead of using a dedicated instance of Keycloak, you could use an existing 
regulator-approved OIDC provider.

Compliance could often become an impediment in progressing with ML projects. If you 
plan to use a commercial platform rather than the one you built in this book, always 
consider the compliance or regulatory requirements before deciding. Some commercial 
platforms in the cloud may not be able to comply with data sovereignty, especially in 
countries where the major cloud providers do not yet have a local data center.

In other words, always consider compliance requirements when planning for the 
architecture of your ML platform.

Applying governance
After taking into account the preceding considerations, another important area that needs 
to be cleared out to operationalize your ML platform is governance. This is where you 
will design the organizational structure, roles and responsibilities, collaboration model, 
and escalation points. The authors advocate for a more cross-functional team with very 
high collaboration levels. However, this is not always possible in the real world. There 
are organizations with very well-defined hierarchies and silos that refuse to change the 
way things are. If you are in this type of organization, you may face several hurdles in 
implementing the ML platform we have presented here.
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One of the platform's main features is that it is a self-service platform. It allows data 
scientists, ML engineers, and data engineers to spin up their notebook servers and Spark 
clusters. However, this will also lead to less predictable cloud billings or operating costs. If 
you are the data architect of the project, part of your job is to convince the leadership team 
and the platform teams to trust their data scientists and ML engineers.

Ideally, the best way to design the organizational structure around the ML project is to have 
a platform team. This team is responsible for running the ML platform. This team then 
acts as a service provider to the data and application teams, also called the stream-aligned 
teams, in a software as a service (SaaS) model. The platform team's objective is to ensure 
that the stream-aligned teams can perform their work on the platform as smoothly and as 
quickly as possible. The data science and data engineering teams can be the stream-aligned 
teams, and they are the main users of the platform and the main customers of the platform 
team. The DevSecOps or DevOps teams may sit together in the same organizational unit, 
as the platform team provides DevOps services to the stream-aligned teams. Figure 11.1 
shows an example of an organizational structure that you could implement to run an ML 
project using the Team Topologies notation:

Figure 11.1 – Example ML project team structure
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In Figure 11.1, there are a total of three stream-aligned teams, namely, the data science team, 
the data engineering team, and the software engineering team. All three stream-aligned 
teams are collaborating with each other with the objective of delivering an ML-enabled 
application in production. There are also three platform teams. The cloud infrastructure 
team is providing a cloud platform as a service (PaaS) to the two other platform teams: the 
ML platform team and the MLOps team. Both the ML platform team and the MLOps team 
are providing ML PaaS and MLOps as a service to all the three stream-aligned teams. The 
purple box represents an enabling team. This is where the SMEs and product owners sit. 
This team enables and provides support to all the stream-aligned teams.

You must take note that this is just an example; you may want to combine the ML 
platform team and MLOps team together, or the data science and data engineering teams, 
and that's perfectly okay.

If you want to learn more about this type of organizational design notation, you may want 
to read about Team Topologies. 

We can summarize as follows:

•	 Use the ML life cycle diagram that you have seen in Figure 2.7 in Chapter 2, 
Understanding MLOps, to map the current organizational structure of your teams.

•	 Communicate the roles and responsibilities clearly.

•	 Set the collaboration channels and feedback points, such as design spike meetings 
and chatgroups.

Suppose you cannot break the silos; set up regular meetings between the silos and 
establish a more streamlined handover process. However, if you want to take advantage 
of the full potential of the ML platform, we strongly recommend that you form a cross-
functional and self-organizing team to deliver your ML project.

Running on Kubernetes
Using the ODH operator, the ML platform truly unlocks the full potential of Kubernetes 
as the infrastructure layer of your ML platform. The Operator Lifecycle Management 
(OLM) framework enables the ODH operator to simplify the operation and maintenance 
of the ML platform. Almost all operational work is done in a Kubernetes-native way, and 
you can even spin up multiple ML platforms with a few clicks. Kubernetes and the OLM 
also allow you to implement the Platform as Code (PaC) approach, enabling you to 
implement GitOps practices.
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The ML platform you've seen in this book works well with vanilla Kubernetes instances or 
any other flavors of Kubernetes or even a Kubernetes-based platform. In fact, the original 
ODH repository was mainly designed and built for Red Hat OpenShift.

Avoiding vendor lock-ins
Kubernetes protects you from vendor lock-ins. Because of the extra layer of 
containerization and container orchestration, all your workloads do not run directly on 
the infrastructure layer but through containers. This allows the ML platform to be hosted 
in any capable infrastructure. Whether on-premises or in the cloud, the operations will 
be the same. This also allows you to seamlessly switch to a different cloud provider when 
needed. This is one of the advantages of using this ML platform when compared to the 
commercial platforms provided by cloud vendors. You are not subject to vendor lock-in.

For example, if you use Azure ML as your platform of choice, you will be stuck with using 
Azure as your infrastructure provider. You will not be able to move your entire ML project 
to another cloud vendor without changing the platform and deployment architecture. 
In other words, the cost of switching to a different cloud vendor is so high that you are 
basically stuck with the original vendor.

Considering other Kubernetes platforms
It is not mandatory for this ML platform to run on the vanilla Kubernetes platform only. 
As mentioned in the previous section, the original ODH was designed to run on Red Hat 
OpenShift, whereas in this book, you managed to make it run on minikube, a single-node 
vanilla Kubernetes.

There are many other Kubernetes platforms out there, including those provided by the 
major cloud providers. The following list includes the most common ones in no particular 
order, but other emerging Kubernetes-based platforms have just entered the market or are 
either in beta or in development as of this writing:

•	 Kubernetes

•	 Red Hat OpenShift Container Platform (OCP)

•	 Google Kubernetes Engine (GKE)

•	 Amazon Elastic Kubernetes Engine (EKS)

•	 Azure Kubernetes Service (AKS)

•	 VMware Tanzu

•	 Docker Enterprise Edition (Docker EE)
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Although we have tested this platform in Kubernetes and Red Hat OpenShift, the ML 
platform that you built in minikube can also be built in any of the above Kubernetes 
platforms, and others. But, what about in the future? Where is ODH heading?

Roadmap
ODH is an active open source project primarily maintained by Red Hat, the largest open 
source company in the world. ODH will keep getting updated to bring more and more 
features to the product. However, because the ML and MLOps space is also relatively new 
and still evolving, it is not unnatural to see significant changes and pivots in the project 
over time.

As of writing this book, the next version of ODH includes the following changes (as 
shown in Figure 11.2):

Figure 11.2 – ODH's next release
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There are other features of ODH that you have not yet explored because they are more 
geared toward data engineering and the data analytics space. One example is data 
virtualization and visualization using Trino and Superset. If you want to learn more 
about these features, you can explore them in the same ML platform you built by simply 
updating the kfdef file to include Trino and Superset as components of your ML 
platform. You will find some examples of these kfdef files in the ODH GitHub project.

You can look for future roadmaps of ODH at the following URL:  
https://opendatahub.io/docs/roadmap/future.html.

In the future, there could be another open source ML platform project that will surface on 
the market. Keep an open mind, and never stop exploring other open source projects.

Summary
The knowledge that you have gained in this book about ML, data science and data 
engineering, MLOps, and the ML life cycle applies to any other ML platforms as well. 
You have not only gained important insights and knowledge about running ML projects 
in Kubernetes but also gained the experience of building the platform from scratch. In 
the later chapters, you were able to gain hands-on experience and wear the hats of a data 
engineer, data scientist, and MLOps engineer.

While writing this book, we realized that the subject is vast and that going deep into each 
of the topics covered in the book may be too much for some. Although we have touched 
upon most of the components of the ML platform, there is still a lot more to learn about 
each of the components, especially Seldon Core, Apache Spark, and Apache Airflow. To 
further your knowledge of these applications, we recommend going through the official 
documentation pages.

ML, AI, and MLOps are still evolving. On the other hand, even though Kubernetes is 
almost 8 years old, it is still relatively new to most enterprise organizations. Because of 
this, most professionals in this space are still learning, while at the same time establishing 
new standards.

Keep yourself updated on the latest ML and Kubernetes trends. You already have enough 
knowledge to advance your learning in this subject on your own.

https://opendatahub.io/docs/roadmap/future.html
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Further reading
•	 Seldon core documentation: https://docs.seldon.io/projects/seldon-

core/en/latest/index.html

•	 Team topologies: https://teamtopologies.com

•	 Open Data Hub: https://opendatahub.io 

https://docs.seldon.io/projects/seldon-core/en/latest/index.html
https://docs.seldon.io/projects/seldon-core/en/latest/index.html
https://teamtopologies.com
https://opendatahub.io
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