
Praise for MySQL Cookbook, 4th Edition

Whether you are struggling to simply log in to your MySQL server, or trying to architect the right replication topology, MySQL Cookbook has your back. Sveta and Alkin share their decades of experience helping hundreds of MySQL users complete their everyday tasks.

Henrik Ingo, Chief of Staff, Engineering, DataStax

MySQL gets better with each release. This update by long-time MySQL experts makes it easier to keep up with the improvements. A valuable resource whether you are a beginner or an experienced user like me.

Mark Callaghan, ProUnlimited, long-time MySQL contributor

A great learning resource for all MySQL users. Sveta and Alkin have curated a comprehensive list of solutions to problems spanning all aspects of MySQL.

Shlomi Noach, database engineer, PlanetScale

I recommend this comprehensive book for all MySQL users. Its examples will help both beginners and advanced users of MySQL, and it features excellent chapters about MySQL Shell and JSON.

Frederic Descamps, MySQL Community Manager, Oracle

Sveta and Alkin walk you through practical examples of things you will need to do as a MySQL developer, operator, or DBA. This wealth of knowledge, distilled and condensed, is a next level “how to” guide for mastering MySQL.

Matt Lord, Vitess Maintainer, PlanetScale

MySQL Cookbook

Fourth Edition

Solutions for Database Developers and Administrators

Sveta Smirnova and Alkin Tezuysal

 MySQL Cookbook

 by
 Sveta
 Smirnova
 and
 Alkin
 Tezuysal

 Copyright © 2022 Sveta Smirnova and Alkin Tezuysal. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Acquisitions Editor:
 Andy Kwan

 	
 Development Editors:
 Amelia Blevins and Jeff Bleiel

 	
 Production Editor:
 Ashley Stussy

 	
 Copyeditor:
 Piper Editorial Consulting, LLC

 	
 Proofreader:
 Liz Wheeler

 	
 Indexer:
 Sue Klefstad

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 Illustrator:
 Kate Dullea

 	
 October 2002:
 First Edition

 	
 November 2006:
 Second Edition

 	
 August 2014:
 Third Edition

 	
 August 2022:
 Fourth Edition

 Revision History for the Fourth Edition

 	
 2022-08-02:
 First Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781492093169
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. MySQL
 Cookbook, the cover image, and related trade dress are trademarks of
 O’Reilly Media, Inc.

 The views expressed in this work are those of the authors, and do not
 represent the publisher’s views. While the publisher and the
 authors have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 authors disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 978-1-492-09316-9

 [LSI]

Foreword

MySQL is one of the most pragmatic relational databases that I have come across. It is fast, reliable, and easy to use. You can start off fairly easily with a very small footprint. Yet, it can be deployed at a massive scale. Some of the largest companies in the world run on MySQL. What makes MySQL attractive is that it makes the bread-and-butter features of a relational database work extremely well: these are indexes, joins and transactions. To top it off, it provides all the benefits of being open source.

The recent trend to migrate software to cloud providers has brought a unique momentum to MySQL. This is because some of the complexities associated with managing a relational database are being taken on by the cloud providers. This lets you enjoy all that is good about MySQL without incurring the overhead of having to manage it.

I have known Alkin and Sveta for many years. We have been meeting at various conferences, I have attended many of their sessions, and we have spent time together at many social events. Alkin was also a colleague at PlanetScale where he made substantial contributions to the Vitess project. What is best about Alkin and Sveta? They are both genuine individuals who like to work hard and want to help the community. Also, they have a vast amount of experience and possess a deep knowledge of how to get the best out of MySQL.

You can see their diligence in this book. They spend time making sure that every subject is well introduced. Each chapter reads like a story. But then, at the end, you have learned something extremely valuable. If you are getting started with MySQL, this is a great book. If you come back to this after using MySQL for a bit, you’ll discover hidden gems that you’ve missed before. And finally, the Problem-Solution-Discussion format allows you to quickly find a solution if you run into a specific problem while using MySQL.

If you intend to learn and use MySQL, this is the book for you.

Sugu Sougoumarane

CTO, PlanetScale

Co-creator, Vitess

Preface
The MySQL database management system is popular for many reasons. It’s
 fast, and it’s easy to set up, use, and administer. It runs under many
 varieties of Unix and Windows, and MySQL-based programs can be written in
 many languages.
MySQL’s popularity raises the need to address questions its users have
 about how to solve specific problems. That is the purpose of MySQL
 Cookbook: to serve as a handy resource to which you can turn for
 quick solutions or techniques for attacking particular types of questions
 that come up when you use MySQL. Naturally, because it’s a cookbook, it
 contains recipes: straightforward instructions you can follow, rather than how to
 develop your own code from scratch. It’s written using a
 problem-and-solution format designed to be extremely practical and to make
 the contents easy to read and assimilate. It contains many short sections,
 each describing how to write a query, apply a technique, or develop a script
 to solve a problem of limited and specific scope. This book doesn’t develop
 full-fledged, complex applications. Instead, it assists you in developing
 such applications yourself by helping you get past problems that have you
 stumped.
For example, a common question is How can I deal with quotes
 and special characters in data values when I’m writing queries?
 That’s not difficult, but figuring out how to do it is frustrating when
 you’re not sure where to start. This book demonstrates what to do; it shows
 you where to begin and how to proceed from there. This knowledge will serve
 you repeatedly because after you see what’s involved, you’ll be able to
 apply the technique to any kind of data, such as text, images, sound or
 video clips, news articles, compressed files, or PDF documents. Another
 common question is Can I access data from multiple tables at the
 same time? The answer is Yes, and it’s easy to do
 because it’s just a matter of knowing the proper SQL syntax. But it’s not
 always clear how until you see examples, which this book gives you. Other
 techniques that you’ll learn from this book include how to do the following:
	Use SQL to select, sort, and summarize rows

	Find matches or mismatches between tables

	Perform transactions

	Determine intervals between dates or times, including age
 calculations

	Identify or remove duplicate rows

	Use LOAD DATA to read your datafiles properly or find
 which values in the file are invalid

	Use CHECK constraints to prevent entry of bad data into your
 database

	Generate sequence numbers to use as unique row identifiers

	Use a view as a virtual table

	Write stored procedures and functions, set up triggers that
 activate to perform specific data-handling operations when you insert or
 update table rows, and use the Event Scheduler to run queries on a
 schedule

	Set up replication

	Manage user accounts

	Control server logging

One part of using MySQL is understanding how to communicate with the
 server—that is, how to use Structured Query Language (SQL; pronounced “sequel”), the language in which queries are
 formulated. Therefore, one major emphasis of this book is using SQL to
 formulate queries that answer particular kinds of questions. One helpful
 tool for learning and using SQL is the mysql client program that is included in MySQL
 distributions. You can use client interactively to send SQL statements to
 the server and see the results. This is extremely useful because it provides
 a direct interface to SQL—so useful, in fact, that the first chapter is
 devoted to mysql.
But the ability to issue SQL queries alone is not enough. Information
 extracted from a database often requires further processing or presentation
 in a particular way. What if you have queries with complex
 interrelationships, such as when you need to use the results of one query as
 the basis for others? What if you need to generate a specialized report with
 very specific formatting requirements? These problems bring us to the other
 major emphasis of the book—how to write programs that interact with the
 MySQL server through an application programming interface (API). When you
 know how to use MySQL from within the context of a programming language, you
 gain other ways to exploit MySQL’s capabilities:
	You can save query results and reuse them later.

	You have full access to the expressive power of a general-purpose
 programming language. This enables you to make decisions based on
 the success or failure of a query, or on the content of the rows that are
 returned, and then tailor the actions taken accordingly.

	You can format and display query results however you like. If
 you’re writing a command-line script, you can generate plain text. If
 it’s a web-based script, you can generate an HTML table. If it’s an
 application that extracts information for transfer to some other system,
 you might generate a datafile expressed in XML or JSON.

Combining SQL with a general-purpose programming language gives you an
 extremely flexible framework for issuing queries and processing their
 results. Programming languages increase your capability to perform complex
 database operations. But that doesn’t mean this book is complex. It keeps
 things simple, showing how to construct small building blocks using
 techniques that are easy to understand and easily mastered.
We’ll leave it to you to combine these techniques in your own programs,
 which you can do to produce arbitrarily complex applications. After all, the
 genetic code is based on only four nucleic acids, but these basic elements
 have been combined to produce the astonishing array of biological life we
 see all around us. Similarly, there are only 12 notes in the scale, but in
 the hands of skilled composers, they are interwoven to produce a rich and
 endless variety of music. In the same way, when you take a set of simple
 recipes, add your imagination, and apply them to the database programming
 problems you want to solve, you can produce applications that perhaps are
 not works of art but are certainly useful and will help you and others be
 more productive.
Who This Book Is For
This book will be useful for anybody who uses MySQL, ranging from
 individuals who want to use a database for personal projects such as a
 blog or wiki, to professional database and web developers. The book is
 also intended for people who do not know how to use MySQL but would like to.
If you’re new to MySQL, you’ll find lots of ways to use it here. If you’re more experienced, you’re probably already
 familiar with many of the problems addressed here but may not have had to
 solve them before and should find the book a great time-saver. Take
 advantage of the recipes given in the book, and use them in your own
 programs rather than writing the code from scratch.
The material ranges from introductory to advanced, so if a recipe
 describes techniques that seem obvious to you, skip it. Conversely, if you
 don’t understand a recipe, set it aside and come back to it later, perhaps
 after reading some of the other recipes.

What’s in This Book
It’s very likely when you use this book that you’re trying to
 develop an application but are not sure how to implement certain pieces of
 it. In this case, you already know what type of problem you want to solve;
 check the table of contents or the index for a recipe that shows how to do
 what you want. Ideally, the recipe will be just what you had in mind.
 Alternatively, you may be able to adapt a recipe for a similar problem to
 suit the issue at hand. We explain the principles involved in developing
 each technique so that you can modify it to fit the particular
 requirements of your own applications.
Another way to approach this book is to just read through it with no
 specific problem in mind. This can give you a broader understanding of the
 things MySQL can do, so we recommend that you page through the book
 occasionally. It’s a more effective tool if you know the kinds of problems
 it addresses.
As you get into later chapters, you’ll find recipes that assume a
 knowledge of topics covered in earlier chapters. This also applies within
 a chapter, where later sections often use techniques discussed earlier in
 the chapter. If you jump into a chapter and find a recipe that uses a
 technique with which you’re not familiar, check the table of contents or
 the index to find where the technique is explained earlier. For example,
 if a recipe sorts a query result using an ORDER BY
 clause that you don’t understand, turn to Chapter 9,
 which discusses various sorting methods and explains how they work.
Here’s a summary of each chapter to give you an overview of the
 book’s contents.
Chapter 1, “Using the mysql Client Program”, describes
 how to use the standard MySQL command-line client. mysql is often the first or primary interface to
 MySQL that people use, and it’s important to know how to exploit its
 capabilities. This program enables you to issue queries and see their
 results interactively, so it’s good for quick experimentation. You can
 also use it in batch mode to execute canned SQL scripts or send its output
 into other programs. In addition, the chapter discusses other ways to use
 mysql, such as how to make long lines
 more readable or generate output in various formats.

 Chapter 2, “Using MySQL Shell”, introduces the new MySQL command-line client, developed by the MySQL Team for versions 5.7 and newer. mysqlsh is compatible with mysql when it is running in SQL mode but also supports NoSQL in JavaScript and Python programming interfaces. With MySQL Shell, you can run SQL and NoSQL queries and automate many administrative tasks easily.

 Chapter 3, “MySQL Replication”, describes how to set up and use replication. Some of the content in this chapter is advanced. However, we decided to place it in the beginning of the book, because the replication is necessary for stable MySQL installations that can survive such disasters as corruptions or hardware failures. Practically, any production MySQL installation should use one of the replication setups. While setting up a replication is an administrative task, we believe that all MySQL users need to have knowledge of how the replication works and, as a result, write effective queries that would be performant on both source and replica servers.

Chapter 4, “Writing MySQL-Based Programs”, demonstrates
 the essential elements of MySQL programming: how to connect to the server,
 issue queries, retrieve the results, and handle errors. It also discusses
 how to handle special characters and NULL values in queries, how to write library
 files to encapsulate code for commonly used operations, and various ways
 to gather the parameters needed for making connections to the
 server.
Chapter 5, “Selecting Data from Tables”, covers
 several aspects of the SELECT
 statement, which is the primary vehicle for retrieving data from the MySQL
 server: specifying which columns and rows you want to retrieve, dealing
 with NULL values, and selecting one
 section of a query result. Later chapters cover some of these topics in
 more detail, but this chapter provides an overview of the concepts on
 which they depend if you need some introductory background on row
 selection or don’t yet know a lot about SQL.
Chapter 6, “Table Management”, covers
 table cloning, copying results into other tables, using temporary tables,
 and checking or changing a table’s storage engine.
Chapter 7, “Working with Strings”, describes
 how to deal with string data. It covers character sets and collations,
 string comparisons, dealing with case-sensitivity issues, pattern
 matching, breaking apart and combining strings, and performing FULLTEXT searches.
Chapter 8, “Working with Dates and Times”, shows how
 to work with temporal data. It describes MySQL’s date format and how to
 display date values in other formats. It also covers how to use MySQL’s
 special TIMESTAMP data type, how to set
 the time zone, how to convert between different temporal units, how to
 perform date arithmetic to compute intervals or generate one date from
 another, and how to perform leap-year calculations.
Chapter 9, “Sorting Query Results”, describes
 how to put the rows of a query result in the order you want. This includes
 specifying the sort direction, dealing with NULL values, accounting for string case
 sensitivity, and sorting by dates or partial column values. It also
 provides examples that show how to sort special kinds of values, such as
 domain names, IP numbers, and ENUM
 values.
Chapter 10, “Generating Summaries”, shows
 techniques for assessing the general characteristics of a set of data,
 such as how many values it contains or its minimum, maximum, and average
 values.
Chapter 11, “Using Stored Routines, Triggers, and Scheduled Events”,
 describes how to write functions and procedures that are stored on
 the server side, triggers that activate when tables are modified, and
 events that execute on a scheduled basis.
Chapter 12, “Working with Metadata”, discusses
 how to get information about the data that a query
 returns, such as the number of rows or columns in the result, or the name
 and data type of each column. It also shows how to ask MySQL what
 databases and tables are available or how to determine the structure of a
 table.
Chapter 13, “Importing and Exporting Data”, describes
 how to transfer information between MySQL and other programs. This
 includes how to use LOAD DATA, convert files from one format to another,
 and determine table structure appropriate for a dataset.
Chapter 14, “Validating and Reformatting Data”, describes
 how to extract or rearrange columns in datafiles, check and validate data,
 and rewrite values such as dates that often come in a variety of
 formats.
Chapter 15, “Generating and Using Sequences”,
 discusses AUTO_INCREMENT columns,
 MySQL’s mechanism for producing sequence numbers. It shows how to generate
 new sequence values or determine the most recent value, how to resequence
 a column, and how to use sequences to generate counters. It also shows how
 to use AUTO_INCREMENT values to
 maintain a master-detail relationship between tables, including pitfalls
 to avoid.
Chapter 16, “Using Joins and Subqueries”, shows how
 to perform operations that select rows from multiple tables. It
 demonstrates how to compare tables to find matches or mismatches, produce
 master-detail lists and summaries, and enumerate many-to-many
 relationships.
Chapter 17, “Statistical Techniques”, illustrates
 how to produce descriptive statistics, frequency distributions,
 regressions, and correlations. It also covers how to randomize a set of
 rows or pick rows at random from the set.
Chapter 18, “Handling Duplicates”, discusses
 how to identify, count, and remove duplicate rows—and how to prevent them
 from occurring in the first place.

 Chapter 19, “Working with JSON”, illustrates how to use JSON in MySQL. It covers such topics as validation, searching, and manipulation of JSON data. The chapter also discusses how to use MySQL as a Document Store.

Chapter 20, “Performing Transactions”, shows how to
 handle multiple SQL statements that must execute together as a unit. It
 discusses how to control MySQL’s auto-commit mode and how to commit or
 roll back transactions.
Chapter 22, “Server Administration”, is written
 for database administrators. It covers server configuration, the plug-in
 interface, and log management.

 Chapter 23, “Monitoring the MySQL Server”, illustrates how to monitor and troubleshoot MySQL issues, such as startup or connection failures. It shows how to use MySQL log files, built-in instruments, and standard operating system utilities to get information about the performance of MySQL queries and internal structures.

Chapter 24, “Security”, is
 another administrative chapter. It discusses user account management,
 including creating accounts, setting passwords, and assigning privileges.
 It also describes how to implement password policy, find and fix insecure
 accounts, and expire or unexpire passwords.

MySQL APIs Used in This Book
MySQL programming interfaces exist for many languages, including C,
 C++, Eiffel, Go, Java, Perl, PHP, Python, Ruby, and Tcl. Given this fact,
 writing a MySQL cookbook presents authors with a challenge. The book
 should provide recipes for doing many interesting and useful things with
 MySQL, but which API or APIs should the book use? Showing an
 implementation of every recipe in every language results either in
 covering very few recipes or in a very, very large book! It also results
 in redundancies when implementations in different languages bear a strong
 resemblance to one another. On the other hand, it’s worthwhile taking
 advantage of multiple languages, because one is often more suitable than
 another for solving a particular problem.
To resolve this dilemma, we’ve chosen a small number of APIs to write
 the recipes in this book. This makes its scope manageable while permitting
 latitude to choose from multiple APIs:
	The Perl DBI module

	Ruby, using the Mysql2 gem

	PHP, using the PDO extension

	Python, using the MySQL Connector/Python driver for the DB
 API

	
 Go, using the Go-MySQL-Driver for the sql interface

	Java, using the MySQL Connector/J driver for the JDBC
 interface

Why these languages? Perl is a
 widely used language that was very popular for writing
 MySQL programs when the first edition of this book was published and is still used in many applications today.
 Ruby has an easy-to-use database-access module. PHP is widely deployed, especially on the web.
 Go is getting very popular lately and replaces other languages, especially Perl, in many MySQL applications.
 Python and Java each
 has a significant number of followers.
We believe these languages taken together reflect pretty well the
 majority of the existing user base of MySQL programmers. If you prefer
 some language not shown here, be sure to pay careful attention to Chapter 4, to familiarize yourself with the book’s primary
 APIs. Knowing how to perform database operations with the programming
 interfaces used here will help you translate recipes for other
 languages.

Version and Platform Notes
Development of the code in this book took place under MySQL 5.7 and 8.0. Because new features are added to MySQL on a regular basis,
 some examples will not work under older versions. For example, MySQL 5.7
 introduces group replication, and MySQL 8.0 introduces CHECK constraints and common table expressions.
We do not assume that you are using Unix, although that is our own
 preferred development platform. (In this book, Unix also
 refers to Unix-like systems such as Linux and macOS X.) Most of the
 material here is applicable both to Unix and Windows.

Conventions Used in This Book
This book uses the following font conventions:
	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width bold
	Used to indicate text that you type when running
 commands.

	Constant
 width
 italic
	Used to indicate variable input; you should substitute a value
 of your own choosing.

	Italic
	Used for URLs, hostnames, names of directories and files, Unix
 commands and options, programs, and occasionally for
 emphasis.

Tip
This element signifies a tip or suggestion.

Caution
This element indicates a warning or caution.

Note
This element signifies a general note.

Commands often are shown with a prompt to illustrate the context in
 which they are used. Commands issued from the command line are shown with
 a $ prompt:
$ chmod 600 my.cnf
That prompt is one that Unix users are used to seeing, but it
 doesn’t necessarily signify that a command works only under Unix. Unless
 indicated otherwise, commands shown with a $ prompt generally should work under Windows,
 too.
If you should run a command under Unix as the root user, the prompt is # instead:
perl -MCPAN -e shell
Commands that are specific to Windows use the C:\> prompt:
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysql"
SQL statements that are issued from within the mysql client program are shown with a mysql> prompt and terminated with a
 semicolon:
mysql> SELECT * FROM my_table;
For examples that show a query result as you would see it when using
 mysql, we sometimes truncate the output,
 using an ellipsis (...) to indicate
 that the result consists of more rows than are shown. The following query
 produces many rows of output, from which those in the middle have been
 omitted:
mysql> SELECT name, abbrev FROM states ORDER BY name;
+----------------+--------+
| name | abbrev |
+----------------+--------+
Alabama	AL
Alaska	AK
Arizona	AZ
…	
West Virginia	WV
Wisconsin	WI
Wyoming	WY
+----------------+--------+
Examples that show only the syntax for SQL statements do not include
 the mysql> prompt, but they do
 include semicolons as necessary to make it clearer where statements end.
 For example, this is a single statement:
CREATE TABLE t1 (i INT)
SELECT * FROM t2;
But this example represents two statements:
CREATE TABLE t1 (i INT);
SELECT * FROM t2;
The semicolon is a notational convenience used within mysql as a statement terminator. But it is not
 part of SQL itself, so when you issue SQL statements from within programs
 that you write (for example, using Perl or Java), don’t include
 terminating semicolons.

 If a statement or a command output is too long and does not fit the book page, we use the symbol ↩ to show that the line was indented to fit:

mysql> SELECT 'Mysql: The Definitive Guide to Using, Programming,↩
 -> and Administering Mysql 4 (Developer\'s Library)' AS book;
+---+
| book |
+---+
| Mysql: The Definitive Guide to Using, Programming,↩
 and Administering Mysql 4 (Developer's Library) |
+---+
1 row in set (0,00 sec)

The MySQL Cookbook Companion GitHub Repository
MySQL Cookbook has a companion GitHub repository
 where you can obtain source code and sample data for examples developed
 throughout this book, and auxiliary documentation.
Recipe Source Code and Data
The examples in this book are based on source code and sample data
 from a distribution named recipes available at the
 companion GitHub repository.
The recipes distribution is the
 primary source of examples, and references to it occur throughout the
 book. The distribution is also available as a compressed TAR file (recipes.tar.gz) or as a ZIP file (recipes.zip). Either distribution format when
 unpacked creates a directory named mysqlcookbook-VERSION/recipes.
Use the recipes distribution to
 save yourself a lot of typing. For example, when you see a CREATE TABLE statement in the book that describes
 what a database table looks like, you’ll usually find a SQL batch file
 in the tables directory that you
 can use to create the table instead of entering the definition manually.
 Change location into the tables
 directory and execute the following command, where
 filename is the name of the file containing
 the CREATE TABLE statement:
$ mysql cookbook < filename
If you need to specify MySQL username or password options, add
 them to the command line.

 To import all the tables from the recipes distribution, use the command:

$ mysql cookbook < cookbook.sql

The recipes distribution
 contains programs as shown in the book, but in many cases it also includes
 implementations in additional languages. For example, a script shown in
 the book using Python may be available in the recipes distribution in Perl, Ruby, PHP, Go, or
 Java as well. This may save you translation effort should you wish to
 convert a program shown in the book to a different language.

Amazon Review Data (2018)
 Amazon-related review data used in Chapter 7, “Working with Strings”, can be found at http://deepyeti.ucsd.edu/jianmo/amazon/index.html
 and can be downloaded using this form.
 Justifying recommendations using distantly labeled reviews and fined-grained aspects.
 Jianmo Ni, Jiacheng Li, Julian McAuley
 Empirical Methods in Natural Language Processing (EMNLP), 2019.

MySQL Cookbook Companion Documents
Some appendices included in previous MySQL
 Cookbook editions are now available in standalone form at the
 companion GitHub repository. They provide background information for topics
 covered in the book.
“Executing Programs from the Command Line”
 provides instructions for executing commands at the command prompt
 and setting environment variables such as PATH.

Obtaining MySQL and Related Software
To run the examples in this book, you need access to MySQL, as well
 as the appropriate MySQL-specific interfaces for the programming languages
 that you want to use. The following notes describe what software is
 required and where to get it.
If you access a MySQL server run by somebody else, you need only the
 MySQL client software on your own machine. To run your own server, you
 need a full MySQL distribution.
To write your own MySQL-based programs, you communicate with the
 server through a language-specific API. The Perl and Ruby interfaces rely
 on the MySQL C API client library to handle the low-level client-server
 protocol. This is also true for the PHP interface, unless PHP is
 configured to use mysqlnd, the native
 protocol driver. For Perl and Ruby, you must install the C client library
 and header files first. PHP includes the required MySQL client support
 files but must be compiled with MySQL support enabled or you won’t be
 able to use it. The Python, Go, and Java drivers for MySQL implement the
 client-server protocol directly, so they do not require the MySQL C client
 library.
You may not need to install the client software yourself—it might
 already be present on your system. This is a common situation if you have
 an account with an Internet service provider (ISP) that provides services
 such as a web server already enabled for access to MySQL.
MySQL
MySQL distributions and documentation, including the
 MySQL Reference Manual and MySQL Shell, are available online.
If you need to install the MySQL C client library and header
 files, they’re included when you install MySQL from a source
 distribution, or when you install MySQL using a binary (precompiled)
 distribution other than an RPM or a DEB binary distribution. Under Linux, you
 have the option of installing MySQL using RPM or DEB files, but the client
 library and header files are not installed unless you install the
 development RPM or DEB. (There are separate RPM or DEB files for the server, the
 standard client programs, and the development libraries and header
 files.)

Perl Support
General Perl information is available on the Perl Programming Language
 website.
You can obtain Perl software from the Comprehensive Perl Archive Network
 (CPAN).
To write MySQL-based Perl programs, you need the DBI module and
 the MySQL-specific DBD module, DBD::mysql.
To install these modules under Unix, let Perl itself help you. For
 example, to install DBI and DBD::mysql, run the following commands
 (you’ll probably need to do this as root):
perl -MCPAN -e shell
cpan> install DBI
cpan> install DBD::mysql
If the last command complains about failed tests, use force install DBD::mysql instead. Under ActiveState Perl for
 Windows, use the ppm utility:
C:\> ppm
ppm> install DBI
ppm> install DBD-mysql
You can also use the CPAN shell or ppm to install other Perl modules mentioned in
 this book.
Once the DBI and DBD::mysql modules are installed, documentation
 is available from the command line:
$ perldoc DBI
$ perldoc DBI::FAQ
$ perldoc DBD::mysql
Documentation is also available from the Perl website.

Ruby Support
The primary Ruby website
 provides access to Ruby distributions and documentation.
The Ruby MySQL2 gem is available from RubyGems.

PHP Support
The primary PHP website
 provides access to PHP distributions and documentation, including PDO
 documentation.
PHP source distributions include PDO support, so you need not
 obtain it separately. However, you must enable PDO support for MySQL
 when you configure the distribution. If you use a binary distribution,
 be sure that it includes PDO MySQL support.

Python Support
The primary Python website
 provides access to Python distributions and documentation. General
 documentation for the DB API database access interface is on the Python Wiki.
For MySQL Connector/Python, the driver module that provides MySQL
 connectivity for the DB API, distributions, and documentation are
 available from MySQL Community
 Downloads and
 MySQL Connector/Python Developer Guide.

Go Support

 The primary Go website provides access to Go distributions and documentation, including the sql package and documentation.

 The Go-MySQL-Driver and its documentation are available from the GitHub go-sql-driver/mysql repository.

Java Support
You need a Java compiler to build and run Java programs. The javac compiler is a part of the Java Development Kit (JDK). If no JDK
 is installed on your system, versions are available for macOS, Linux,
 and Windows at Oracle’s Java site.
 The same site provides access to documentation (including the
 specifications) for JDBC, servlets, JavaServer Pages (JSP), and the JSP
 Standard Tag Library (JSTL).
For MySQL Connector/J, the driver that provides MySQL connectivity
 for the JDBC interface, distributions and documentation are available
 from MySQL Community Downloads and MySQL Connector/J 8.0 Developer Guide.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available
 for download at https://github.com/svetasmirnova/mysqlcookbook.
If you have a technical question or a problem using the code examples, please email bookquestions@oreilly.com.
This book is here to help you get your job done. In general, if
 example code is offered with this book, you may use it in your programs
 and documentation. You do not need to contact us for permission unless
 you’re reproducing a significant portion of the code. For example, writing
 a program that uses several chunks of code from this book does not require
 permission. Selling or distributing examples from O’Reilly
 books does require permission. Answering a question by citing this book
 and quoting example code does not require permission. Incorporating a
 significant amount of example code from this book into your product’s
 documentation does require permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “MySQL Cookbook, Fourth Edition by Sveta Smirnova and Alkin Tezuysal (O’Reilly). Copyright 2022 Sveta Smirnova and Alkin Tezuysal, 978-1-492-09316-9.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

O’Reilly Online Learning
Note
For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.

 Our unique network of experts and innovators share their knowledge and expertise through books, articles, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at https://oreil.ly/oreillymysql-ckbk4e.
Email
 bookquestions@oreilly.com to comment or ask technical questions about this book.
For more information about our books, courses, conferences, and
 news, see our website at https://www.oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-media
Follow us on Twitter: https://twitter.com/oreillymedia
Watch us on YouTube: https://www.youtube.com/oreillymedia

Acknowledgments
To each reader, thank you for reading our book. We hope that it serves
 you well and that you find it useful.
From Paul DuBois, for the Third Edition
Thanks to my technical reviewers, Johannes Schlüter, Geert
 Vanderkelen, and Ulf Wendel. They made several corrections and suggestions
 that improved the text in many ways, and I appreciate their help.
Andy Oram prodded me to begin the third edition and served as its
 editor, Nicole Shelby guided the book through production, and Kim Cofer
 and Lucie Haskins provided proofreading and indexing.
Thanks to my wife, Karen, whose encouragement and support throughout
 the writing process means more than I can say.

From Sveta Smirnova and Alkin Tezuysal

 Many thanks to our technical reviewers for their invaluable contributions for this book.

 Gillian Gunson not only provided comprehensive technical feedback but also showed how our text could be read by people with different backgrounds. Her language suggestions helped us make the recipes easier to read. Her attentiveness to details helped us identify inaccuracies and even potential risk areas that may show up when your database load grows. Gillian also reviewed all code examples and suggested how to make Ruby and Java code more aligned to current standards.

 Ege Gunes reviewed all Go language examples to ensure they were aligned with Go’s standard style.

 Karthik Appigatla, Timur Solodovnikov, Daniel Guzman Burgos, and Vladimir Fedorkov reviewed selected chapters of the book. Their suggested corrections helped us improve the book a great deal.

 Andy Kwan invited us to write the fourth edition of this book. Amelia Blevins and Jeff Bleiel were our editors and helped make the book easier to read. Rita Fernando reviewed a few chapters and provided feedback that allowed us to make the book easier to read and be more aligned with O’Reilly standards.

From Sveta Smirnova

 I want to thank my colleagues at Percona Support who understood that I needed to work a second shift on the book and allowed me to take time off when needed.

 Many thanks to my husband, Serguei Lassounov, who always supports me in all of my professional endeavors.

From Alkin Tezuysal

 I want to thank my wife, Aslihan, and my daughters, Ilayda and Lara, for their patience and support when I needed to focus and use family time to write this book.

 Many thanks to my colleagues and team at PlanetScale, especially Deepthi Sigireddi, for her extra care and support. Special thanks go to the MySQL community and my friends, and family members as well.

 I also want to take a moment to thank Sveta Smirnova for her endless support while coaching me throughout my first book journey.

Chapter 1. Using the mysql Client Program
1.0 Introduction
The MySQL database system uses a client-server architecture. The
 server, mysqld, is the program that actually manipulates databases. To tell the
 server what to do, use a client program that communicates your intent by
 means of statements written in SQL. Client programs are written
 for diverse purposes, but each interacts with the server by connecting to
 it, sending SQL statements to have database operations performed, and
 receiving the results.
Clients are installed locally on the machine from which you want to
 access MySQL, but the server can be installed anywhere, as long as clients
 can connect to it. Because MySQL is an inherently networked database
 system, clients can communicate with a server running locally on your own
 machine or somewhere on the other side of the planet.
The mysql program is one of the clients included in MySQL distributions. When
 used interactively, mysql prompts you
 for a statement, sends it to the MySQL server for execution, and displays
 the results. mysql can also be used
 noninteractively in batch mode to read statements stored in files or
 produced by programs. This enables the use of mysql from within scripts or cron jobs or in conjunction with other
 applications.
This chapter describes mysql’s
 capabilities so that you can use it more effectively:
	Setting up a MySQL account using the cookbook database

	Specifying connection parameters and using option files

	Executing SQL statements interactively and in batch mode

	Controlling mysql output
 format

	Using user-defined variables to save information

To try the examples shown in this book, you need a
 MySQL user account and a database. The first two recipes in this chapter
 describe how to use mysql to set those
 up, based on these assumptions:
	The MySQL server is running locally on your own system

	Your MySQL username and password are cbuser and cbpass

	Your database is named cookbook

If you like, you can violate any of the assumptions. Your server
 need not be running locally, and you need not use the username, password,
 or database name that are used in this book. Naturally, in such cases, you
 must modify the examples accordingly.
Even if you choose not to use cookbook as your database name, we recommend that
 you use a database dedicated to the examples shown here, not one that you
 also use for other purposes. Otherwise, the names of existing tables may
 conflict with those used in the examples, and you’ll have to make
 modifications that would be unnecessary with a dedicated database.
Scripts that create the tables used in this chapter are located in
 the tables directory of the recipes distribution that accompanies
 MySQL Cookbook. Other scripts are located in the
 mysql directory. To get the recipes distribution, see the Preface.
Alternatives to the mysql Program
The mysql client is not the only program you can use for executing queries.
 For example, you might prefer the graphical MySQL Workbench program, which provides a point-and-click
 interface to MySQL servers. Another popular interface is phpMyAdmin,
 which enables you to access MySQL through your web browser. Chapter 2 covers MySQL Shell, a powerful command line client that supports SQL, JavaScript, and Python modes for running your queries using both SQL and NoSQL syntaxes. However, please note that if
 you execute queries other than by using mysql, some concepts covered in this chapter
 may not apply.

1.1 Setting Up a MySQL User Account
Problem
You need an account for connecting to your MySQL server.

Solution
Use CREATE USER and GRANT statements to set up the account. Then use the account name and password
 to make connections to the server.

Discussion
Connecting to a MySQL server requires a username and password. You may also need to specify the name of the
 host on which the server is running. If you don’t specify connection
 parameters explicitly, mysql assumes
 default values. For example, given no explicit hostname, mysql assumes that the server is running on
 the local host.
If someone else has already set up an account for you and granted you privileges to create and modify the cookbook database, use
 that account. Otherwise, the following example shows how to use the
 mysql program to connect to the
 server and issue the statements that set up a user account with
 privileges for accessing a database named cookbook. The arguments to mysql include -h
 localhost to connect to the MySQL server running on the local
 host, -u root to connect
 as the MySQL root user, and
 -p to tell mysql to
 prompt for a password:
$ mysql -h localhost -u root -p
Enter password: ******
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 54117
Server version: 8.0.27 MySQL Community Server - GPL

Copyright (c) 2000, 2021, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> CREATE USER 'cbuser'@'localhost' IDENTIFIED BY 'cbpass';
mysql> GRANT ALL ON cookbook.* TO 'cbuser'@'localhost';
Query OK, 0 rows affected (0.09 sec)
mysql> GRANT PROCESS ON *.* to `cbuser`@`localhost` ;
Query OK, 0 rows affected (0,01 sec)
mysql> quit
Bye
Tip

 The PROCESS privilege is required if you need to generate a dump file of your MySQL data. See also Recipe 1.4.

If you attempt to invoke mysql and receive an error message that it cannot be found or is an invalid
 command, that means your command interpreter doesn’t know where mysql is installed. See Recipe 1.3 for information about setting the
 PATH environment variable that the
 interpreter uses to find commands.
In the commands shown, the $
 represents the prompt displayed by your shell or command interpreter, and
 mysql> is the prompt displayed by
 mysql. Text that you type is shown in
 bold. Nonbold text (including the prompts) is program output; don’t type
 any of that.
When mysql prints the password
 prompt, enter the MySQL root password
 where you see the ******; if
 the MySQL root user has no password,
 just press the Enter (or Return) key at the password prompt. You will see the MySQL welcome prompt, which could be slightly different for the MySQL version you use. Then enter
 the CREATE USER and GRANT statements as shown.
The quit command terminates your mysql
 session. You can also terminate a session by using an exit command or (under Unix) by typing Ctrl-D.
To grant the cbuser account
 access to a database other than cookbook, substitute the database name where
 you see cookbook in the GRANT statement. To grant access for the
 cookbook database to an existing
 account, omit the CREATE USER statement and substitute that account for
 'cbuser'@'localhost' in the GRANT statement.
Note

 The MySQL user account record contains two parts: the username and the host. The username is an identifier or the user who is accessing the MySQL server. You can specify anything for this part. The hostname is the IP address or name of the host from which this user will connect to the MySQL server. We discuss the MySQL security model and user accounts in Recipe 24.0.

The hostname part of 'cbuser'@'localhost' indicates the host
 from which you’ll connect to the MySQL server. To
 set up an account that will connect to a server running on the local
 host, use localhost, as shown. If you
 plan to connect to the server from another host, substitute that host in
 the CREATE USER and GRANT statements. For example, if you’ll
 connect to the server from a host named myhost.example.com, the statements look like
 this:
mysql> CREATE USER 'cbuser'@'myhost.example.com' IDENTIFIED BY 'cbpass';
mysql> GRANT ALL ON cookbook.* TO 'cbuser'@'myhost.example.com';
It may have occurred to you that there’s a paradox in the
 procedure just described: to set up a cbuser account that can connect to the MySQL
 server, you must first connect to the server so that you can execute the
 CREATE USER and GRANT statements. I’m assuming that you can
 already connect as the MySQL root
 user because CREATE USER and GRANT can be used only by a user such as
 root that has the administrative
 privileges needed to set up other user accounts. If you can’t connect to
 the server as root, ask your MySQL
 administrator to create the cbuser
 account for you.
MySQL Accounts and Login Accounts
MySQL accounts differ from login accounts for your operating system. For
 example, the MySQL root user and
 the Unix root user are separate and have nothing to do with each other, even
 though the username is the same in each case. This means you don’t create new
 MySQL accounts by creating login accounts for your operating system;
 use CREATE USER and GRANT instead.

After creating the cbuser
 account, verify that you can use it to connect to the MySQL server. From
 the host that was named in the CREATE
 USER statement, run the following
 command to do this (the host named after -h should be
 the host where the MySQL server is running):
$ mysql -h localhost -u cbuser -p
Enter password: cbpass
Now you can proceed to create the cookbook database and tables within it, as
 described in Recipe 1.2. To make it easier to
 invoke mysql without specifying
 connection parameters each time, put them in an option file (see Recipe 1.4).

See Also
For additional information about administering MySQL accounts,
 see Chapter 24.

1.2 Creating a Database and a Sample Table
Problem
You want to create a database and set up tables within it.

Solution
Use a CREATE DATABASE statement to create the database, a CREATE TABLE statement for each table, and INSERT statements to add rows to the
 tables.

Discussion
The GRANT statement shown in
 Recipe 1.1 sets up privileges for
 accessing the cookbook database but
 does not create the database. This section shows how to do that and
 also how to create a table and load it with the sample data used for
 examples in the following sections. Similar instructions apply for
 creating other tables used elsewhere in this book.
Connect to the MySQL server as shown at the end of Recipe 1.1, then create the database like
 this:
mysql> CREATE DATABASE cookbook;
Now that you have a database, you can create tables in it. First,
 select cookbook as the default
 database:
mysql> USE cookbook;
Then create a simple table:
mysql> CREATE TABLE limbs (thing VARCHAR(20), legs INT, arms INT, PRIMARY KEY(thing));
And populate it with a few rows:
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('human',2,2);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('insect',6,0);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('squid',0,10);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('fish',0,0);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('centipede',99,0);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('table',4,0);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('armchair',4,2);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('phonograph',0,1);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('tripod',3,0);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('Peg Leg Pete',1,2);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('space alien',NULL,NULL);
Tip
To enter the INSERT statements more easily, after entering the first one, press the up arrow
 to recall it, press Backspace (or Delete) a few times to erase
 characters back to the last open parenthesis, then type the data values
 for the next statement. Or, to avoid typing the INSERT
 statements altogether, skip ahead to Recipe 1.6.

The table you just created is named limbs and contains three columns to record the
 number of legs and arms possessed by various life forms and objects. The
 physiology of the alien in the last row is such that the proper values
 for the arms and legs columns cannot be determined; NULL
 indicates unknown value.

 The PRIMARY KEY clause defines the primary key that uniquely identifies the table row. This prevents inserting ambiguous data into the table and also helps MySQL to perform queries faster. We discuss ambiguous data in Chapter 18 and performance issues in Chapter 21.

Verify that the rows were added to the limbs table by executing a SELECT statement:
mysql> SELECT * FROM limbs;
+--------------+------+------+
| thing | legs | arms |
+--------------+------+------+
human	2	2
insect	6	0
squid	0	10
fish	0	0
centipede	99	0
table	4	0
armchair	4	2
phonograph	0	1
tripod	3	0
Peg Leg Pete	1	2
space alien	NULL	NULL
+--------------+------+------+
11 rows in set (0,01 sec)
At this point, you’re all set up with a database and a table. For
 additional information about executing SQL statements, see Recipes 1.5 and
 1.6.
Note
In this book, statements show SQL keywords such as SELECT or INSERT in uppercase for distinctiveness.
 That’s only a typographical convention; keywords can be any
 letter case.

1.3 Finding mysql Client
Problem
When you invoke mysql client from the
 command line, your command interpreter can’t find
 it.

Solution
Add the directory where mysql
 is installed to your PATH setting. Then
 you can run mysql from any directory
 easily.

Discussion
If your shell or command interpreter can’t find mysql when you invoke it, you’ll see some sort
 of error message. It might look like this under Unix:
$ mysql
mysql: Command not found.
Or like this under Windows:
C:\> mysql.exe
'mysql.exe' is not recognized as an internal or external command,↩
operable program or batch file.
One way to tell your command interpreter where to find mysql is to type its full pathname each time
 you run it. The command might look like this under Unix:
$ /usr/local/mysql/bin/mysql
Or like this under Windows:
C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysql"
Typing long pathnames gets tiresome pretty quickly. You can avoid
 doing so by changing location into the directory where mysql is installed before you run it. But if
 you do that, you may be tempted to put all your datafiles and SQL batch
 files in the same directory as mysql,
 thus unnecessarily cluttering up a location intended only for
 programs.
A better solution is to modify your PATH search-path environment variable, which
 specifies directories where the command interpreter looks for commands.
 Add to the PATH value the directory
 where mysql is installed. Then you
 can invoke mysql from any location by
 entering only its name, which eliminates pathname typing. For
 instructions on setting your PATH
 variable, read “Executing Programs from the Command Line”
 on the companion GitHub repository (see the Preface).
On Windows, another way to avoid typing the pathname or changing
 into the mysql directory is to create
 a shortcut and place it in a more convenient location, such as the
 desktop. This makes it easy to start mysql simply by opening the shortcut. To
 specify command options or the startup directory, edit the shortcut’s
 properties. If you don’t always invoke mysql with the same options, it might be
 useful to create one shortcut for each set of options you need. For
 example, create one shortcut to connect as an ordinary user for general
 work and another to connect as the MySQL root user for administrative purposes.

1.4 Specifying mysql Command Options
Problem
When you invoke the mysql
 program without command options, it exits immediately with an
 error message.

Solution
You must specify connection parameters. Do this on the command
 line, in an option file, or using a mix of the two.

Discussion
If you invoke mysql with no
 command options, the result may be an access
 denied error. To avoid that, connect to the MySQL server as
 shown in Recipe 1.1, using mysql like this:
$ mysql -h localhost -u cbuser -p
Enter password: cbpass
Each option is the single-dash short form: -h and -u to
 specify the hostname and username, and -p to be
 prompted for the password. There are also corresponding double-dash
 long forms: --host,
 --user, and --password. Use them like
 this:
$ mysql --host=localhost --user=cbuser --password
Enter password: cbpass
To see all options that mysql
 supports, use this command:
$ mysql --help
The way you specify command options for mysql also applies to other MySQL programs
 such as mysqldump and mysqladmin. For example, to generate
 a dump file named cookbook.sql that contains a backup of the
 tables in the cookbook database,
 execute mysqldump like this:
$ mysqldump -h localhost -u cbuser -p cookbook > cookbook.sql
Enter password: cbpass
Some operations require an administrative MySQL account. The
 mysqladmin program can perform
 operations that are available only to the MySQL root account. For example, to stop the server,
 invoke mysqladmin as follows:
$ mysqladmin -h localhost -u root -p shutdown
Enter password: ← enter MySQL root account password here
If the value that you use for an option is the same as its default
 value, you can omit the option. However, there is no default password.
 If you like, you can specify the password directly on the command line
 by using -ppassword (with
 no space between the option and the password) or
 --password=password.

Warning

 We don’t recommend this because the password is visible to onlookers and, on
 multiple-user systems, may be discoverable to other users who run tools
 such as ps that report process
 information or can read content of your shell history file.

Because the default host is localhost, the same value we’ve been
 specifying explicitly, you can omit the -h (or
 --host) option from the command line:
$ mysql -u cbuser -p
But suppose that you’d really rather not specify
 any options. How can you get mysql to just know what values
 to use? That’s easy because MySQL programs support option files:
	If you put an option in an option file, you need not specify
 it on the command line each time you invoke a given program.

	You can mix command-line and option-file options. This enables
 you to store the most commonly used option values in a file but
 override them as desired on the command line.

The rest of this section describes these capabilities.
The Meaning of Localhost in MySQL
One of the parameters you specify when connecting to a MySQL server is the host where the
 server is running. Most programs treat the hostname localhost and the IP address 127.0.0.1 as synonyms for the local
 host. Under Unix, MySQL programs behave differently: by convention, they
 treat the hostname localhost
 specially and attempt to connect to the local server using a Unix
 domain socket file. To force a TCP/IP connection to the local server,
 use the IP address 127.0.0.1 (or
 ::1 if your system is configured to
 support IPv6) rather than the hostname localhost. Alternatively, you can specify a
 --protocol=tcp option to force use of TCP/IP for connecting.
The default port number is 3306 for TCP/IP connections. The pathname for
 the Unix domain socket varies, although it’s often /tmp/mysql.sock. To name the socket file
 pathname explicitly for the mysql client in the connection string, use -S
 file_name or
 --socket=file_name.

Specifying connection parameters using option files
To avoid entering options on the command line each time you invoke
 mysql, put them in an option file
 for mysql to read automatically.
 Option files are plain-text files:
	Under Unix, your personal option file is named .my.cnf
 in your home directory. There are also site-wide option files that
 administrators can use to specify parameters that apply globally
 to all users. You can use the my.cnf file in the /etc or /etc/mysql directory, or in the
 etc directory under the MySQL
 installation directory.

	Under Windows, files you can use include the my.ini or my.cnf file in your MySQL installation
 directory (for example, C:\Program
 Files\MySQL\MySQL Server 8.0), your Windows directory
 (likely C:\WINDOWS), or the
 C:\ directory.

To see the exact list of permitted option-file locations, invoke
 mysql
 --help.
The following example illustrates the format used in MySQL
 option files:
general client program connection options
[client]
host = localhost
user = cbuser
password = cbpass

options specific to the mysql program
[mysql]
skip-auto-rehash
pager="/usr/bin/less -i" # specify pager for interactive mode
With connection parameters listed in the [client] group as just shown, you can
 connect as cbuser by invoking
 mysql with no options on the
 command line:
$ mysql
The same holds for other MySQL client programs, such as mysqldump.
Warning
The password option is stored in the configuration
 file in plain text format, and any user who has access to this file
 can read it. If you want to secure the connection credentials, you
 should use mysql_config_editor to
 store them securely.
mysql_config_editor stores
 connection credentials in a file, named .mylogin.cnf, located in your home
 directory under Unix and in the %APPDATA%\MySQL directory under Windows.
 It supports only the connection parameters host,
 user, password, and
 socket. The --login-path
 option specifies a group under which credentials are stored. The default is
 [client].
Following is an example of using mysql_config_editor to create an encrypted
 login file:
$ mysql_config_editor set --login-path=client \
> --host=localhost --user=cbuser --password
Enter password: cbpass

print stored credentials
$ mysql_config_editor print --all
[client]
user = cbuser
password = *****
host = localhost

MySQL option files have these characteristics:
	Lines are written in groups (or sections). The first line of
 a group specifies the group name within square brackets, and the
 remaining lines specify options associated with the group. The
 example file just shown has a [client] group and a [mysql] group. To specify options for
 the server, mysqld, put them in
 a [mysqld] group.

	The usual option group for specifying client connection
 parameters is [client]. This
 group is actually used by all the standard MySQL clients. By
 listing an option in this group, you make it easier to invoke not
 only mysql but also other
 programs such as mysqldump
 and mysqladmin. Just make sure
 that any option you put in this group is understood by
 all client programs. Otherwise, invoking any
 client that does not understand it results in an unknown
 option error.

	You can define multiple groups in an option file. By
 convention, MySQL clients look for parameters in the [client] group and in the group named
 for the program itself. This provides a convenient way to list
 general client parameters that you want all client programs to
 use, but you can still specify options that apply only to a
 particular program. The preceding sample option file illustrates
 this convention for the mysql
 program, which gets general connection parameters from the
 [client] group and also picks
 up the skip-auto-rehash and pager options from the [mysql] group.

	Within a group, write option lines in
 name=value format, where
 name corresponds to an option name
 (without leading dashes) and value is
 the option’s value. If an option takes no value (such as skip-auto-rehash), list the name by
 itself with no trailing =value
 part.

	In option files, only the long form of an option is
 permitted, not the short form. For example, on the command line,
 the hostname can be given using either -h
 host_name or
 --host=host_name.
 In an option file, only host=host_name
 is permitted.

	Many programs, mysql and
 mysqld included, have program
 variables in addition to command options. (For the server, these
 are called system variables; see Recipe 22.1.) Program variables can be
 specified in option files, just like options. Internally, program
 variable names use underscores, but in option files, you can write
 options and variables using dashes or underscores interchangeably.
 For example, skip-auto-rehash and
 skip_auto_rehash are equivalent. To set
 the server’s sql_mode system variable in a [mysqld] option group,
 sql_mode=value and
 sql-mode=value are
 equivalent. (The interchangeability of the dash and underscore also
 applies for options or variables specified on the command
 line.)

	In option files, spaces are permitted around the = that separates an option name and
 value. This contrasts with command lines, where no spaces around
 = are permitted.
 If an option value contains spaces or other special
 characters, you can quote it using single or double quotes. The
 pager option illustrates
 this.

	It’s common to use an option file to specify options for
 connection parameters (such as host, user, and password). However, the file can list
 options that have other purposes. The pager option shown for the [mysql] group specifies the paging
 program that mysql should use
 for displaying output in interactive mode. It has nothing to do
 with how the program connects to the server. We do not recommend putting password into the option file, because it is stored as plain text and could be discovered by users who have filesystem access to the configuration file while not necessary having access to the MySQL installation.

	If a parameter appears multiple times in an option file, the
 last value found takes precedence. Normally, you should list any
 program-specific groups following the [client] group so that if there is any
 overlap in the options set by the two groups, the more general
 options are overridden by the program-specific values.

	Lines beginning with # or
 ; characters are ignored as comments. Blank lines are ignored, too.
 # can be used to write comments
 at the end of option lines, as shown for the pager option.

	Options that specify file or directory pathnames should be
 written using / as the
 pathname separator character, even under Windows, which uses \ as the pathname separator.
 Alternatively, write \ by
 doubling it as \\ (this is
 necessary because \ is the
 MySQL escape character in strings).

To find out which options the mysql program will read from option files,
 use this command:
$ mysql --print-defaults
You can also use the my_print_defaults utility, which takes as arguments the names of the option-file
 groups that it should read. For example, mysqldump looks in both the [client] and [mysqldump] groups for options. To check
 which option-file settings are in those groups, use this
 command:
$ my_print_defaults client mysqldump

Mixing command-line and option-file parameters
It’s possible to mix command-line options and options in option
 files. Perhaps you want to list your username and server host in an
 option file but would rather not store your password there. That’s
 okay; MySQL programs first read your option file to see what
 connection parameters are listed there, then check the command line
 for additional parameters. This means you can specify some options one
 way and some the other way. For example, you can list your username
 and hostname in an option file but use a password option on the
 command line:
$ mysql -p
Enter password: ← enter your password here
Command-line parameters take precedence over parameters found in
 your option file, so to override an option file parameter, just
 specify it on the command line. For example, you can list your regular
 MySQL username and password in the option-file for general-purpose
 use. Then, if you must connect on occasion as the MySQL root user, specify the user and password
 options on the command line to override the option-file values:
$ mysql -u root -p
Enter password: ← enter MySQL root account password here
To explicitly specify no password when there is a
 nonempty password in the option file, use
 --skip-password on the command line:
$ mysql --skip-password
Note
From this point on, we’ll usually show commands for MySQL
 programs with no connection-parameter options. We assume that you’ll
 supply any parameters you need, either on the command line or
 in an option file.

Protecting option files from other users
On a multiple-user operating system such as Unix, protect the option file located in your home directory
 to prevent other users from reading it and finding out how to connect
 to MySQL using your account. Use chmod to
 make the file private by setting its mode to enable access only by
 yourself. Either of the following commands do this:
$ chmod 600 .my.cnf
$ chmod go-rwx .my.cnf
On Windows, you can use Windows Explorer to set file permissions.

1.5 Executing SQL Statements Interactively
Problem
You’ve started mysql. Now you
 want to send SQL statements to the MySQL server to be
 executed.

Solution
Just type them in, letting mysql know where each one ends. Alternatively, specify
 one-liners directly on the command line.

Discussion
When you invoke mysql, by default, it
 displays a mysql> prompt to tell
 you that it’s ready for input. To execute a SQL statement at the
 mysql> prompt, type it in, add a
 semicolon (;) at the end to signify
 the end of the statement, and press Enter. An explicit statement
 terminator is necessary; mysql
 doesn’t interpret Enter as a terminator because you can enter a
 statement using multiple input lines. The semicolon is the most common terminator, but you can
 also use \g
 (go) as a synonym for the semicolon. Thus, the following
 examples are equivalent ways of issuing the same statement, even though
 they are entered differently and terminated differently:
mysql> SELECT NOW();
+---------------------+
| NOW() |
+---------------------+
| 2014-04-06 17:43:52 |
+---------------------+
mysql> SELECT
 -> NOW()\g
+---------------------+
| NOW() |
+---------------------+
| 2014-04-06 17:43:57 |
+---------------------+
For the second statement, mysql
 changes the prompt from mysql> to
 -> to let you know that it’s still
 waiting to see the statement terminator.
The ; and \g statement terminators are not part of the
 statement itself. They’re conventions used by the mysql program, which recognizes these
 terminators and strips them from the input before sending the statement
 to the MySQL server.
Some statements generate output lines that are so long they take
 up more than one line on your terminal, which can make query results
 difficult to read. To avoid this problem, generate
 vertical output by terminating the statement with
 \G rather than with ; or \g.
 The output shows column values on separate lines:
mysql> USE cookbook
mysql> SHOW FULL COLUMNS FROM limbs LIKE 'thing'\G
*************************** 1. row ***************************
 Field: thing
 Type: varchar(20)
 Collation: utf8mb4_0900_ai_ci
 Null: YES
 Key:
 Default: NULL
 Extra:
Privileges: select,insert,update,references
 Comment:
To produce vertical output for all statements executed within a session, invoke mysql with the -E (or
 --vertical) option. To produce vertical output only for
 those results that exceed your terminal width, use --auto-vertical-output.
To execute a statement directly from the command line, specify it
 using the -e (or --execute)
 option. This is useful for one-liners. For example, to
 count the rows in the limbs table,
 use this command:
$ mysql -e "SELECT COUNT(*) FROM limbs" cookbook
+----------+
| COUNT(*) |
+----------+
| 11 |
+----------+
To execute multiple statements, separate them with
 semicolons:
$ mysql -e "SELECT COUNT(*) FROM limbs;SELECT NOW()" cookbook
+----------+
| COUNT(*) |
+----------+
| 11 |
+----------+
+---------------------+
| NOW() |
+---------------------+
| 2014-04-06 17:43:57 |
+---------------------+
mysql can also read statements
 from a file or from another program (see Recipe 1.6).

1.6 Executing SQL Statements Read from a File or Program
Problem
You want mysql to read
 statements stored in a file so you don’t have to enter them manually. Or you want
 mysql to read the output from another
 program.

Solution
To read a file, redirect mysql’s input, or use the source command.
 To read from a program, use a pipe.

Discussion
By default, the mysql program
 reads input interactively from the terminal, but you can feed it
 statements using other input sources such as a file or program.
For this purpose, MySQL supports batch mode, which is convenient for executing a set of statements on
 repeated occasions without entering them manually each time. Batch mode
 makes it easy to set up cron jobs
 that run with no user intervention.
To create a SQL script for mysql to execute in batch mode, put your
 statements in a text file. Then invoke mysql and redirect its input to read from that
 file:
$ mysql cookbook < file_name
Statements read from an input file substitute for what you’d
 normally enter interactively by hand, so they must be terminated with
 ;, \g, or \G,
 just as if you were entering them manually. Interactive and batch modes
 do differ in default output format. For interactive mode, the default is
 the tabular (boxed) format. For batch mode, the default is the tab-delimited
 format. To override the default, use the appropriate command option (see
 Recipe 1.7).
SQL scripts also are useful for
 distributing sets of SQL statements to other people. That is, in fact, how we
 distribute SQL examples for this book. Many of the examples shown here
 can be run using script files available in the accompanying recipes distribution (see the Preface). Feed these files to mysql in batch mode to avoid typing statements
 yourself. For example, when a recipe shows a CREATE TABLE statement that defines a table, you’ll
 usually find a SQL batch file in the recipes distribution that you can use to
 create (and perhaps load data into) the table. Recall that Recipe 1.2 shows the statements for creating and
 populating the limbs table. Those
 statements were shown as you would enter them manually, but the
 tables directory of the recipes distribution includes a limbs.sql file that contains statements to do
 the same thing. The file looks like this:
DROP TABLE IF EXISTS limbs;
CREATE TABLE limbs
(
 thing VARCHAR(20), # what the thing is
 legs INT, # number of legs it has
 arms INT, # number of arms it has
 PRIMARY KEY(thing)
);

INSERT INTO limbs (thing,legs,arms) VALUES('human',2,2);
INSERT INTO limbs (thing,legs,arms) VALUES('insect',6,0);
INSERT INTO limbs (thing,legs,arms) VALUES('squid',0,10);
INSERT INTO limbs (thing,legs,arms) VALUES('fish',0,0);
INSERT INTO limbs (thing,legs,arms) VALUES('centipede',99,0);
INSERT INTO limbs (thing,legs,arms) VALUES('table',4,0);
INSERT INTO limbs (thing,legs,arms) VALUES('armchair',4,2);
INSERT INTO limbs (thing,legs,arms) VALUES('phonograph',0,1);
INSERT INTO limbs (thing,legs,arms) VALUES('tripod',3,0);
INSERT INTO limbs (thing,legs,arms) VALUES('Peg Leg Pete',1,2);
INSERT INTO limbs (thing,legs,arms) VALUES('space alien',NULL,NULL);
To execute the statements in this SQL script file, change location
 into the tables directory of the
 recipes distribution and run this
 command:
$ mysql cookbook < limbs.sql
You’ll note that the script contains a statement to drop the table
 if it exists before creating the table anew and loading it with data.
 That enables you to experiment with the table, perhaps making changes to
 it, confident that you can easily restore it to its baseline state any
 time by running the script again.
The command just shown illustrates how to specify an input file
 for mysql on the command line.
 Alternatively, to read a file of SQL statements from within a mysql session, use a source filename
 command (or \.
 filename, which is synonymous):
mysql> source limbs.sql
mysql> \. limbs.sql
SQL scripts can themselves include source or \. commands to include other scripts. This
 gives you additional flexibility, but take care to avoid loops.
A file to be read by mysql need
 not be written by hand; it could be program generated. For example, the
 mysqldump utility generates database
 backups by writing a set of SQL statements that re-create the database.
 To reload mysqldump output, feed it
 to mysql. For example, you can copy a
 database over the network to another MySQL server like this:
$ mysqldump cookbook > dump.sql
$ mysql -h other-host.example.com cookbook < dump.sql
mysql can also read a pipe, so
 it can take output from other programs as its input.
 Any command that produces output consisting of
 properly terminated SQL statements can be used as an input source for
 mysql. The dump-and-reload example
 can be rewritten to connect the two programs directly with a pipe,
 avoiding the need for an intermediary file:
$ mysqldump cookbook | mysql -h other-host.example.com cookbook
Program-generated SQL can also be useful for populating a table
 with test data without writing the INSERT statements by hand. Create a program
 that generates the statements, then send its output to mysql using a pipe:
$ generate-test-data | mysql cookbook
Recipe 6.6 discusses
 mysqldump further.

1.7 Controlling mysql Output Destination and Format
Problem
You want mysql output to
 go somewhere other than your screen. And you don’t
 necessarily want the default output format.

Solution
Redirect the output to a file, or use a pipe to send the output to
 a program. You can also control other aspects of mysql output to produce tabular,
 tab-delimited, HTML, or XML output; suppress column headers; or make
 mysql more or less verbose.

Discussion
Unless you send mysql output
 elsewhere, it goes to your screen. To save output from mysql in a file, use your shell’s redirection
 capability:
$ mysql cookbook > outputfile
If you run mysql interactively
 with the output redirected, you can’t see what you type, so in this case
 you usually also read the input from a file (or another program):
$ mysql cookbook < inputfile > outputfile
To send the output to another program (for example, to parse the
 output of the query), use a pipe:
$ mysql cookbook < inputfile | sed -e "s/\t/:/g" > outputfile
The rest of this section shows how to control the mysql output format.
Producing tabular or tab-delimited output
mysql chooses its default
 output format by whether it runs interactively or
 noninteractively. For interactive use, mysql writes
 output to the terminal using the tabular (boxed) format:
$ mysql cookbook
mysql> SELECT * FROM limbs WHERE legs=0;
+------------+------+------+
| thing | legs | arms |
+------------+------+------+
squid	0	10
fish	0	0
phonograph	0	1
+------------+------+------+
3 rows in set (0.00 sec)
For noninteractive use (when the input or output is redirected), mysql writes tab-delimited output:
$ echo "SELECT * FROM limbs WHERE legs=0" | mysql cookbook
thing legs arms
squid 0 10
fish 0 0
phonograph 0 1
To override the default output format, use the appropriate
 command option. Consider a sed command, shown earlier, and change its parameters to
 obfuscate the output:
$ mysql cookbook < inputfile | sed -e "s/table/XXXXX/g"
$ mysql cookbook -e "SELECT * FROM limbs where legs=4" | ↩
 sed -e "s/table/XXXXX/g"
 thing legs arms
 XXXXX 4 0
 armchair 4 2
Because mysql runs
 noninteractively in that context, it produces tab-delimited output,
 which could be more difficult to read than tabular output. Use the -t (or
 --table) option to produce more readable tabular
 output:
$ mysql cookbook -t -e "SELECT * FROM limbs where legs=4" | ↩
 sed -e "s/table/XXXXX/g"

+----------+------+------+
| thing | legs | arms |
+----------+------+------+
| XXXXX | 4 | 0 |
| armchair | 4 | 2 |
+----------+------+------+
The inverse operation is to produce batch (tab-delimited) output
 in interactive mode. To do this, use -B (or
 --batch).

Producing HTML or XML output
mysql generates an HTML table
 from each query result set if you use the -H (or
 --html) option. This enables you to easily produce
 output for inclusion in a web page that shows a query result. Here’s
 an example (with line breaks added to make the output easier to
 read):
$ mysql -H -e "SELECT * FROM limbs WHERE legs=0" cookbook
<TABLE BORDER=1>
<TR><TH>thing</TH><TH>legs</TH><TH>arms</TH></TR>
<TR><TD>squid</TD><TD>0</TD><TD>10</TD></TR>
<TR><TD>fish</TD><TD>0</TD><TD>0</TD></TR>
<TR><TD>phonograph</TD><TD>0</TD><TD>1</TD></TR>
</TABLE>
The first row of the table contains column headings. If you
 don’t want a header row, see the next section for instructions.
You can save the output in a file, then view it with a web
 browser. For example, on Mac OS X, do this:
$ mysql -H -e "SELECT * FROM limbs WHERE legs=0" cookbook > limbs.html
$ open -a safari limbs.html
To generate an XML document instead of HTML, use the -X (or --xml)
 option:
$ mysql -X -e "SELECT * FROM limbs WHERE legs=0" cookbook
<?xml version="1.0"?>

<resultset statement="select * from limbs where legs=0
">
 <row>
 <field name="thing">squid</field>
 <field name="legs">0</field>
 <field name="arms">10</field>
 </row>

 <row>
 <field name="thing">fish</field>
 <field name="legs">0</field>
 <field name="arms">0</field>
 </row>

 <row>
 <field name="thing">phonograph</field>
 <field name="legs">0</field>
 <field name="arms">1</field>
 </row>
</resultset>
You can reformat XML to suit a variety of purposes by running it
 through XSLT transforms. This enables you to use the
 same input to produce many output formats.
The -H, --html
 -X, and --xml options produce output
 only for statements that generate a result set, not for statements
 such as INSERT or UPDATE.
To write your own programs that generate XML from query results,
 see Recipe 13.15.

Suppressing column headings in query
 output
The tab-delimited format is convenient for generating datafiles for import into
 other programs. However, the first row of output for each query lists
 the column headings by default, which may not always be what you want.
 Suppose that a program named summarize produces descriptive statistics
 for a column of numbers. If you produce output from mysql to be used with this program, a column
 header row would throw off the results because summarize would treat it as data. To create
 output that contains only data values, suppress the header row with
 the --skip-column-names option:
$ mysql --skip-column-names -e "SELECT arms FROM limbs" cookbook | summarize
Specifying the silent option (-s
 or --silent) twice achieves the same effect:
$ mysql -ss -e "SELECT arms FROM limbs" cookbook | summarize

Specifying the output column delimiter
In noninteractive mode, mysql
 separates output columns by tabs, and there is no option for
 specifying the output delimiter. To produce output that uses a
 different delimiter, postprocess mysql output. Suppose that you want to
 create an output file for use by a program that expects values to be
 separated by colon characters (:)
 rather than tabs. Under Unix, you can convert tabs to arbitrary delimiters by using a
 utility such as tr or
 sed. Any of the following commands
 change tabs to colons (TAB indicates where
 you type a tab character):
$ mysql cookbook < inputfile | sed -e "s/TAB/:/g" > outputfile
$ mysql cookbook < inputfile | tr "TAB" ":" > outputfile
$ mysql cookbook < inputfile | tr "\011" ":" > outputfile
The syntax differs among versions of tr; consult your local documentation. Also,
 some shells use the tab character for special purposes such as
 filename completion. For such shells, type a literal tab into the
 command by preceding it with Ctrl-V.
sed is more powerful than
 tr because it understands regular
 expressions and permits multiple substitutions. This is useful for
 producing output in something like the comma-separated values (CSV) format, which requires
 three substitutions:
	Escape any quote characters that appear in the data by
 doubling them so that when you use the resulting CSV file, they
 won’t be interpreted as column delimiters.

	Change the tabs to commas.

	Surround column values with quotes.

sed permits all three
 substitutions to be performed in a single command line:
$ mysql cookbook < inputfile \
 | sed -e 's/"/""/g' -e 's/TAB/","/g' -e 's/^/"/' -e 's/$/"/' > outputfile
That’s cryptic, to say the least. You can achieve the same
 result with other languages that may be easier to read. Here’s a short
 Perl script that does the same thing as the sed command (it converts tab-delimited input
 to CSV output) and includes comments to document how it works:
#!/usr/bin/perl
csv.pl: convert tab-delimited input to comma-separated values output
while (<>) # read next input line
{
 s/"/""/g; # double quotes within column values
 s/\t/","/g; # put "," between column values
 s/^/"/; # add " before the first value
 s/$/"/; # add " after the last value
 print; # print the result
}
If you name the script csv.pl, use it like this:
$ mysql cookbook < inputfile | perl csv.pl > outputfile
tr and sed normally are unavailable under Windows.
 Perl may be more suitable as a cross-platform solution because it runs
 under both Unix and Windows. (On Unix systems, Perl is usually
 preinstalled. On Windows, it is freely available for you to
 install.)
Another way to produce CSV output is to use the Perl
 Text::CSV_XS module, which was designed for that purpose. The cvt_file.pl utility, available in the recipes distribution, uses this module
 to construct a general-purpose file reformatter.

Controlling mysql’s verbosity level
When you run mysql
 noninteractively, not only does the default output format change, but it becomes
 more terse. For example, mysql
 doesn’t print row counts or indicate how long statements took to
 execute. To tell mysql to be more
 verbose, use -v (or --verbose),
 specifying the option multiple times for increasing verbosity. Try the
 following commands to see how the output differs:
$ echo "SELECT NOW()" | mysql
$ echo "SELECT NOW()" | mysql -v
$ echo "SELECT NOW()" | mysql -vv
$ echo "SELECT NOW()" | mysql -vvv
The counterparts of -v and
 --verbose are -s and
 --silent, which also can be used multiple times for increased effect.

1.8 Using User-Defined Variables in SQL Statements
Problem
You want to use a value in one statement that is produced by an earlier
 statement.

Solution
Save the value in a user-defined variable to store it for later
 use.

Discussion
To save a value returned by a SELECT statement, assign it to a user-defined variable. This enables you to
 refer to it in other statements later in the same session (but not
 across sessions). User variables are a
 MySQL-specific extension to standard SQL. They will not work with other
 database engines.
To assign a value to a user variable within a SELECT statement, use @var_name := value syntax.
 The variable can be used in subsequent statements wherever an expression
 is permitted, such as in a WHERE clause or
 in an INSERT statement.
Here is an example that assigns a value to a user variable, then
 refers to that variable later. This is a simple way to determine a value
 that characterizes some row in a table, then select that particular
 row:
mysql> SELECT MAX(arms+legs) INTO @max_limbs FROM limbs;
Query OK, 1 row affected (0,01 sec)
mysql> SELECT * FROM limbs WHERE arms+legs = @max_limbs;
+-----------+------+------+
| thing | legs | arms |
+-----------+------+------+
| centipede | 99 | 0 |
+-----------+------+------+
Another use for a variable is to save the result from LAST_INSERT_ID()
 after creating a new row in a table that has an AUTO_INCREMENT column:
mysql> SELECT @last_id := LAST_INSERT_ID();
LAST_INSERT_ID() returns the
 most recent AUTO_INCREMENT value. By saving it in a
 variable, you can refer to the value several times in subsequent
 statements, even if you issue other statements that create their own
 AUTO_INCREMENT values and thus change
 the value returned by LAST_INSERT_ID(). Recipe 15.10 discusses this technique
 further.
User variables hold single values. If a statement returns multiple
 rows, the statement will fail with an error, but the value from the first row is assigned:
mysql> SELECT thing FROM limbs WHERE legs = 0;
+------------+
| thing |
+------------+
| squid |
| fish |
| phonograph |
+------------+
3 rows in set (0,00 sec)

mysql> SELECT thing INTO @name FROM limbs WHERE legs = 0;
ERROR 1172 (42000): Result consisted of more than one row
mysql> SELECT @name;
+-------+
| @name |
+-------+
| squid |
+-------+
If the statement returns no rows, no assignment takes place, and
 the variable retains its previous value. If the variable has not been
 used previously, its value is NULL:
mysql> SELECT thing INTO @name2 FROM limbs WHERE legs < 0;
Query OK, 0 rows affected, 1 warning (0,00 sec)

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1329 | No data - zero rows fetched, selected, or processed |
+---------+------+---+
1 row in set (0,00 sec)

mysql> select @name2;
+--------+
| @name2 |
+--------+
| NULL |
+--------+
1 row in set (0,00 sec)
Tip

 The SQL SHOW WARNINGS command returns informational messages about recoverable errors, such as assigning an empty result to a variable or the use of a deprecated feature.

To set a variable explicitly to a particular value, use a SET
 statement. SET syntax can use either
 := or = as the assignment operator:
mysql> SET @sum = 4 + 7;
mysql> SELECT @sum;
+------+
| @sum |
+------+
| 11 |
+------+
You can assign a SELECT result
 to a variable, provided that you write it as a scalar subquery (a query
 within parentheses that returns a single value):
mysql> SET @max_limbs = (SELECT MAX(arms+legs) FROM limbs);
User variable names are not case sensitive:
mysql> SET @x = 1, @X = 2; SELECT @x, @X;
+------+------+
| @x | @X |
+------+------+
| 2 | 2 |
+------+------+
User variables can appear only where expressions are permitted,
 not where constants or literal identifiers must be provided. It’s
 tempting to attempt to use variables for such things as table names, but
 it doesn’t work. For example, if you try to generate a temporary table
 name using a variable as follows, it fails:
mysql> SET @tbl_name = CONCAT('tmp_tbl_', CONNECTION_ID());
mysql> CREATE TABLE @tbl_name (int_col INT);
ERROR 1064 (42000): You have an error in your SQL syntax; ↩
check the manual that corresponds to your MySQL server version for ↩
the right syntax to use near '@tbl_name (int_col INT)' at line 1
However, you can generate a prepared SQL
 statement that incorporates @tbl_name, then execute the result. Recipe 6.4 shows how.
SET is also used to assign
 values to stored program parameters, local variables, and
 system variables. For examples, see Chapter 11 and Recipe 22.1.

1.9 Customizing a mysql Prompt
Problem
You opened several connections in different terminal windows and
 want to visually distinguish them.

Solution
Set a mysql prompt to a custom
 value.

Discussion
You can customize a mysql prompt
 by providing the --prompt option on
 start:
$ mysql --prompt="MySQL Cookbook> "
MySQL Cookbook>
If the client has already been started, you can use the
 prompt command to change it interactively:

mysql> prompt MySQL Cookbook>
PROMPT set to 'MySQL Cookbook> '
MySQL Cookbook>
The command prompt, like other
 mysql commands, supports a short
 version: \R:
mysql> \R MySQL Cookbook>
PROMPT set to 'MySQL Cookbook> '
MySQL Cookbook>
To specify the prompt value in the configuration file, put the
 prompt option under the [mysql] section:
[mysql]
prompt="MySQL Cookbook> "
 Quotes are optional and required only when you want
 to have special characters, such as a space at the end of the prompt
 string.
Finally, you can specify a prompt using the environment variable
 MYSQL_PS1:
$ export MYSQL_PS1="MySQL Cookbook> "
$ mysql
MySQL Cookbook>
To reset a prompt to its default value, run the prompt command without arguments:
MySQL Cookbook> prompt
Returning to default PROMPT of mysql>
mysql>
Tip
If you used the MYSQL_PS1
 environment variable, the prompt default will be the value of the MYSQL_PS1 variable instead of mysql.

The mysql prompt is highly
 customizable. You can set it to show the current date, time, user account,
 default database, server host, and other information about your database
 connection. You will find the full list of supported options in the MySQL
 User Reference Manual.
To have a user account in the prompt, use either the special sequence
 \u to display just a user name or
 \U to show the full user account:

mysql> prompt \U>
PROMPT set to '\U> '
cbuser@localhost>
If you connect to MySQL servers on different machines, you may want
 to see the MySQL server host name in the prompt. A special sequence, \h, exists just for this:
mysql> \R \h>
PROMPT set to '\h> '
Delly-7390>
To have the current default database in the prompt, use the special
 sequence \d:
mysql> \R \d>
PROMPT set to '\d> '
(none)> use cookbook
Database changed
cookbook>
mysql supports multiple options
 to include time into the prompt. You can have full date and time
 information or just part of it:
mysql> prompt \R:\m:\s>
PROMPT set to '\R:\m:\s> '
15:30:10>
15:30:10> prompt \D>
PROMPT set to '\D> '
Sat Sep 19 15:31:19 2020>

Warning
You cannot specify the current day of the month unless
 you use the full current date. This was reported at MySQL Bug #72071
 and is still not fixed.

Special sequences can be combined together and with any other
 text, mysql uses the UTF-8 character set,
 and, if your terminal supports UTF-8 too, you can use smiley characters to make your prompt more impressive.
 For example, to have on hand information about the connected user account,
 MySQL host, default database, and current time, you can set the prompt to
 \u@\h [📁\d] (🕑\R:\m:\s)> :
mysql> prompt \u@\h [📁\d] (🕑\R:\m:\s)>
PROMPT set to '\u@\h [📁\d] (🕑\R:\m:\s)> '
cbuser@Delly-7390 [📁cookbook] (🕑16:15:41)>

1.10 Using External Programs
Problem
You want to use an external program without leaving the mysql client command
 prompt.

Solution
Use the system command to call a
 program.

Discussion
While MySQL allows you to generate random passwords for its own internal user accounts, it still does not have an internal function for
 generating a safe user password for all other cases. Run the system command to use one of the Operating System
 tools:
mysql> system openssl rand -base64 16
p1+iSG9rveeKc6v0+lFUHA==
 \! is a short
 version of the system command:

mysql> \! pwgen -synBC 16 1
Nu=3dWvrH7o_tWiE

 pwgen may not be installed on your operating system. You need to install the pwgen package before running this example.

system is a command of the
 mysql client and is executed locally,
 using permissions belonging to the client. By default, the MySQL server is
 running as user mysql, though you can
 connect using any user account. In this case, you’ll be able to
 access only those programs and files that are permitted for your
 operating system account. Thus, regular users cannot access the data
 directory, which belongs to the special user mysqld process is running as:

mysql> select @@datadir;
+-----------------+
| @@datadir |
+-----------------+
| /var/lib/mysql/ |
+-----------------+
1 row in set (0,00 sec)

mysql> system ls /var/lib/mysql/
ls: cannot open directory '/var/lib/mysql/': Permission denied
mysql> \! id
uid=1000(sveta) gid=1000(sveta) groups=1000(sveta)
For the same reason, system
 does not execute any command on the remote server.
You can use any program,
 specify options, redirect output, and pipe it to other commands. One
 useful insight the operating system can give you is how
 much physical resources are occupied by the mysqld process and compare it with data
 collected internally by the MySQL server itself.

MySQL stores information about memory usage in the Performance Schema. Its companion
 sys schema contains views, allowing you
 to access this information easily. Particularly, you can find the total
 amount of allocated memory in human-readable format by querying the
 sys.memory_global_total view:

mysql> SELECT * FROM sys.memory_global_total;
+-----------------+
| total_allocated |
+-----------------+
| 253.90 MiB |
+-----------------+
1 row in set (0.00 sec)

mysql> \! ps -o rss hp `pidof mysqld` | awk '{print $1/1024}'
298.66
 The chain of the operating system requests
 statistics about physical memory usage from the operating system and converts it into human-readable format. This
 example shows that not all allocated memory is instrumented inside the
 MySQL server.

 Note that you need to run mysql client on the same machine with your MySQL server for this to work.

1.11 Filtering and Processing Output
Warning
This recipe works only on Unix platforms!

Problem

 You want to change the output format of the MySQL client beyond its built-in capabilities.

Solution

 Set pager to a chain of commands, filtering output the way you want.

Discussion
Sometimes the formatting capabilities of the mysql client do not allow you to work with the result set easily.
 For example, the number of returned rows could be too big to fit the
 screen. Or the number of columns may make the result too wide to comfortably read
 it on the screen. Standard operating system pagers, such as less or more, allow you to work with long and wide texts
 more comfortably.
You can specify which pager to use either by providing the
 --pager option when you start mysql client or by using the
 pager command and its shorter
 version, \P. You can specify any
 argument for the pager.
To tell mysql to use less as a pager, specify the --pager=less option or assign this value
 interactively. Provide configuration parameters for the command
 the same way you do when you’re working in your favorite shell. In the
 following example, we specified options -F and -X,
 so less exits if the result set is
 small enough to fit the screen and works normally when needed:

mysql> pager less -F -X
PAGER set to 'less -F -X'
mysql> SELECT * FROM city;
+----------------+----------------+----------------+
| state | capital | largest |
+----------------+----------------+----------------+
Alabama	Montgomery	Birmingham
Alaska	Juneau	Anchorage
Arizona	Phoenix	Phoenix
Arkansas	Little Rock	Little Rock
California	Sacramento	Los Angeles
Colorado	Denver	Denver
Connecticut	Hartford	Bridgeport
Delaware	Dover	Wilmington
Florida	Tallahassee	Jacksonville
Georgia	Atlanta	Atlanta
Hawaii	Honolulu	Honolulu
Idaho	Boise	Boise
Illinois	Springfield	Chicago
Indiana	Indianapolis	Indianapolis
Iowa	Des Moines	Des Moines
Kansas	Topeka	Wichita
Kentucky	Frankfort	Louisville
:		
mysql> SELECT * FROM movies;		
+----+------+----------------------------+		
id	year	movie
+----+------+----------------------------+		
1	1997	The Fifth Element
2	1999	The Phantom Menace
3	2001	The Fellowship of the Ring
4	2005	Kingdom of Heaven
5	2010	Red
6	2011	Unknown
+----+------+----------------------------+
6 rows in set (0,00 sec)
You can use pager not only to
 beautify output but also to run any command that can process text. One
 common use is to search for a pattern in the data, printed by the
 diagnostic statement, using grep.
 For example, to watch only History list
 length in the long SHOW ENGINE
 INNODB STATUS output, use \P grep
 "History list length." Once you are done with the search,
 reset the pager with the empty pager
 command or instruct mysql to
 disable pager and print to STDOUT using nopager or \n:
mysql> \P grep "History list length"
PAGER set to 'grep "History list length"'
mysql> SHOW ENGINE INNODB STATUS\G
History list length 30
1 row in set (0,00 sec)

mysql> SELECT SLEEP(60);
1 row in set (1 min 0,00 sec)

mysql> SHOW ENGINE INNODB STATUS\G
History list length 37
1 row in set (0,00 sec)

mysql> nopager
PAGER set to stdout
Another useful option during diagnostics is sending output
 nowhere. For example, to measure the effectiveness of a query, you may want
 to examine session status variable Handler_*. In this case, you’re not
 interested in the result of the query but only in the output of the
 following diagnostic command. Even more, you may want to send
 diagnostic data to professional database consultants but do not want
 them to see actual query output due to security considerations.
 In
 this case, instruct pager to use a
 hashing function or to send output to nowhere:
mysql> pager md5sum
PAGER set to 'md5sum'
mysql> SELECT 'Output of this statement is a hash';
8d83fa642dbf6a2b7922bcf83bc1d861 -
1 row in set (0,00 sec)

mysql> pager cat > /dev/null
PAGER set to 'cat > /dev/null'
mysql> SELECT 'Output of this statement goes to nowhere';
1 row in set (0,00 sec)

mysql> pager
Default pager wasn't set, using stdout.
mysql> SELECT 'Output of this statement is visible';

+-------------------------------------+
| Output of this statement is visible |
+-------------------------------------+
| Output of this statement is visible |
+-------------------------------------+
1 row in set (0,00 sec)
Tip
To redirect the output of a query, information messages, and all commands you type into a file, use pager cat > FILENAME. To redirect to a
 file and still see the output, use the tee command and its short version, \T. The built-in tee command works on both UNIX and Windows
 platforms.

You can chain together pager
 commands using pipes. For example, to print the content of the limbs table in different font styles, set pager to a chain of calls as in the following list:
	tr -d ' ' to remove
 extra spaces

	awk -F'|' '{print "+"$2"+\033[3m"$3"\033[0m+⁠\033[1m"$4"\033​[0m"$5"+"}'
 to add styles to the text

	column -s '+' -t' for
 nicely formatted output

mysql> \P tr -d ' ' | ↩
awk -F'|' '{print "+"$2"+\033[3m"$3"\033[0m+\033[1m"$4"\033[0m"$5"+"}' | ↩
column -s '+' -t
PAGER set to 'tr -d ' ' | ↩
awk -F'|' '{print "+"$2"+\033[3m"$3"\033[0m+\033[1m"$4"\033[0m"$5"+"}' | ↩
column -s '+' -t'
mysql> select * from limbs;

thing legs arms

human 2 2
insect 6 0
squid 0 10
fish 0 0
centipede 99 0
table 4 0
armchair 4 2
phonograph 0 1
tripod 3 0
PegLegPete 1 2
spacealien NULL NULL

11 rows in set (0,00 sec)

Chapter 2. Using MySQL Shell
2.0 Introduction

 We discussed the mysql Client Program in Chapter 1. MySQL Shell is the modern alternative client. In addition to SQL, it supports nonrelational syntax for the database queries, also known as NoSQL, via the JavaScript or Python programming interface and provides a set of features to automate routine tasks.

 In this chapter, we will discuss how to do the following:

	Connect to MySQL Shell and select the right protocol

	Select the SQL, JavaScript, or Python interface

	Use both SQL and NoSQL syntax

	Control the output format

	Use MySQL Shell’s built-in utilities

	Write a script to automate your custom needs

	Use the Admin API

	Reuse your scripts

 Although MySQL Shell is a standard tool for certain tasks, it is not included in MySQL packages and needs to be installed separately. You can download it from the MySQL Shell download page or using the standard package manager of your operating system. We won’t cover MySQL Shell installation in this book, because it is straightforward.

 The MySQL Shell’s command name is mysqlsh. You can invoke it by typing mysqlsh in the terminal.

 MySQL Shell supports two protocols: the Classic MySQL protocol (similar to the one the mysql client uses) and the new X protocol. The X protocol is a modern protocol that communicates with the MySQL server on a separate port (the default is 33060). It supports both SQL and NoSQL APIs and provides an asynchronous API, allowing clients to send multiple queries to the server without waiting for the result from the previous ones. The X protocol is the preferred way to work with MySQL Shell. It’s especially important if you want to use NoSQL features.

2.1 Connecting to MySQL Server with MySQL Shell
Problem

 When you invoke mysqlsh, it opens a new session but does not connect to any MySQL server.

Solution

 Use the \connect command inside MySQL Shell, or provide your MySQL server uniform resource identifier (URI) at startup.

Discussion

 MySQL Shell allows you to connect to the MySQL server after you start the tool by providing connections options as a command-line parameter. You can also put default connection parameters in a startup script.

 MySQL Shell is flexible regarding connection options. You can supply them as a URI or name-value pairs, similar to one that mysql client accepts.

 URI uses this format:

[scheme://][user[:password]@]<host[:port]|socket>[/schema]↩
[?option=value&option=value...]

 Explanations of the parameters are explained in Table 2-1.

Table 2-1. Connection options in URI	Parameter	Explanation	Default
	scheme	A protocol to use. Could be one of mysql if you want to use the Classic protocol or mysqlx for the X protocol.	mysqlx
	user	User name to connect as.	Your operating system account.
	password	Password	Asks for a password.
	host	Host to connect to.	No default. This is the only required parameter unless the socket option is specified.
	port	Port to connect to.	3306 for the Classic protocol, and 33060 for the X protocol.
	socket	Socket, used for the localhost connection.	You must provide this or the host parameter.
	schema	Database schema to connect to.	No value. Do not select any schema.
	option	Any additional option you want to use.	No value. Choose any or no option.

 So, to connect to the MySQL server on your local machine via an interactive interface, type \connect 127.0.0.1:

 MySQL localhost JS > \connect 127.0.0.1
Creating a session to 'sveta@127.0.0.1'
Please provide the password for 'sveta@127.0.0.1':
Save password for 'sveta@127.0.0.1'? [Y]es/[N]o/Ne[v]er (default No):
Fetching schema names for autocompletion... Press ^C to stop.
Your MySQL connection id is 1066144 (X protocol)
Server version: 8.0.27 MySQL Community Server - GPL
No default schema selected; type \use <schema> to set one.

 This will create a connection using the X protocol.

Note

 When connecting without specifying a user name, MySQL Shell uses the operating system login. This is why a connection is created for the user sveta and not for the user cbuser that we used everywhere else in the book. We’ll cover how to specify the MySQL user account when connecting later.

 To exit from the MySQL Shell session, use the \exit or \quit command and its short form, \q:

 MySQL JS > \exit
Bye!

 To connect interactively using a socket, type \c (/var/run/mysqld/mysqld.sock):

 MySQL 127.0.0.1:33060+ ssl JS > \c (/var/run/mysqld/mysqld.sock)
Creating a session to 'sveta@/var%2Frun%2Fmysqld%2Fmysqld.sock'
Fetching schema names for autocompletion... Press ^C to stop.
Your MySQL connection id is 1067565
Server version: 8.0.27 MySQL Community Server - GPL
No default schema selected; type \use <schema> to set one.
This will create a connection using the Classic protocol. If you want to connect via the socket with the X protocol, use mysqlx_socket. You’ll find the value of the mysqlx_socket if you run the following query:

mysql> SELECT @@mysqlx_socket;

+-----------------------------+
| @@mysqlx_socket |
+-----------------------------+
| /var/run/mysqld/mysqlx.sock |
+-----------------------------+
1 row in set (0,00 sec)

 The \connect command has a shorter version, \c, that we used in the connection via the socket example. Note the parentheses in the command argument. Without parentheses, the command will fail with a syntax error. Alternatively, you can replace all of the following slash symbols with their URI-encoded value, %2F:

 MySQL localhost JS > \connect /var%2Frun%2Fmysqld%2Fmysqld.sock
Creating a session to 'sveta@/var%2Frun%2Fmysqld%2Fmysqld.sock'
Fetching schema names for autocompletion... Press ^C to stop.
Your MySQL connection id is 1073606
Server version: 8.0.27 MySQL Community Server - GPL
No default schema selected; type \use <schema> to set one.

 To connect using URI when opening a MySQL Shell session, use the following command:

$ mysqlsh mysqlx://cbuser:cbpass@127.0.0.1/cookbook
Please provide the password for 'cbuser@127.0.0.1:33060': ******
Save password for 'cbuser@127.0.0.1:33060'? [Y]es/[N]o/Ne[v]er (default No):
MySQL Shell 8.0.27

Copyright (c) 2016, 2021, Oracle and/or its affiliates.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

Type '\help' or '\?' for help; '\quit' to exit.
Creating a session to 'cbuser@127.0.0.1:33060/cookbook'
Fetching schema names for autocompletion... Press ^C to stop.
Your MySQL connection id is 1076096 (X protocol)
Server version: 8.0.27 MySQL Community Server - GPL
Default schema `cookbook` accessible through db.
 MySQL 127.0.0.1:33060+ ssl cookbook JS >

 In this case, we specified a user name and a password via the command line and selected cookbook as the default database.

 When connecting while invoking the mysqlsh command, you can also specify connection credentials separately, similar to when you connected with the mysql client:

$ mysqlsh --host=127.0.0.1 --port=33060 --user=cbuser --schema=cookbook
Please provide the password for 'cbuser@127.0.0.1:33060': ******
MySQL Shell 8.0.22

Copyright (c) 2016, 2020, Oracle and/or its affiliates.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

Type '\help' or '\?' for help; '\quit' to exit.
Creating a session to 'cbuser@127.0.0.1:33060/cookbook'
Fetching schema names for autocompletion... Press ^C to stop.
Your MySQL connection id is 8738 (X protocol)
Server version: 8.0.22-13 Percona Server (GPL), Release '13', Revision '6f7822f'
Default schema `cookbook` accessible through db.
 MySQL 127.0.0.1:33060+ ssl cookbook JS >

 If you want to specify the default schema, you need to pass it as a parameter to the configuration option schema. Otherwise, mysqlsh will treat it as a host name and fail with an error.

 Inside MySQL Shell, you can also specify options via named parameters. First, you need to create a dictionary with connection parameters, then pass it as an option to the connect() method of the built-in automatically created shell object:

 MySQL 127.0.0.1:33060+ ssl JS > connectionData={
 -> "host": "127.0.0.1",
 -> "user": "cbuser",
 -> "schema": "cookbook"
 -> }
 ->
{
 "host": "127.0.0.1",
 "schema": "cookbook",
 "user": "cbuser"
}
 MySQL 127.0.0.1:33060+ ssl JS > shell.connect(connectionData)
Creating a session to 'cbuser@127.0.0.1/cookbook'
Please provide the password for 'cbuser@127.0.0.1': ******
Save password for 'cbuser@127.0.0.1'? [Y]es/[N]o/Ne[v]er (default No):
Fetching schema names for autocompletion... Press ^C to stop.
Your MySQL connection id is 1077318 (X protocol)
Server version: 8.0.27 MySQL Community Server - GPL
Default schema `cookbook` accessible through db.
<Session:cbuser@127.0.0.1:33060>
 MySQL 127.0.0.1:33060+ ssl cookbook JS >

See Also
For additional information about how to connect to the MySQL server via MySQL Shell, see “MySQL Shell Connections”.

2.2 Selecting the Protocol
Problem

 You don’t want to use MySQL Shell’s default, and you want to select either the X protocol or the Classic protocol yourself.

Solution

 To select the X protocol, use the mysqlx, mx, or sqlx option. To select the Classic protocol, use the mysql, mc, and sqlc options.

Discussion

 MySQL Shell selects the protocol automatically using connection options and server response. If a port or socket option is not used, it tries to connect using a default port or socket for the X protocol. If that’s not available, it defaults to the Classic protocol. If you want to avoid this, or if you simply want to control which protocol to use explicitly, you can specify it by passing the mysqlx, mx, and sqlx options when starting the mysqlsh client to select the X protocol, and the mysql, mc, and sqlc options to select the Classic protocol:

$ mysqlsh --host=127.0.0.1 --user=cbuser --schema=cookbook --mysqlx
Please provide the password for 'cbuser@127.0.0.1': ******
MySQL Shell 8.0.22
...
Your MySQL connection id is 9143 (X protocol)

$ mysqlsh --host=127.0.0.1 --user=cbuser --schema=cookbook --mysql
Please provide the password for 'cbuser@127.0.0.1': ******
MySQL Shell 8.0.22
...
Creating a Classic session to 'cbuser@127.0.0.1/cookbook'

 Inside MySQL Shell, when opening a new connection, specify the value for the scheme key when passing options to the connectionData dictionary:

 MySQL 127.0.0.1:3306 ssl cookbook JS > connectionData={
 -> "scheme": "mysql", "host": "127.0.0.1",
 -> "user": "cbuser", "schema": "cookbook"
 -> }
{
 "host": "127.0.0.1",
 "schema": "cookbook",
 "scheme": "mysql",
 "user": "cbuser"
}
 MySQL 127.0.0.1:3306 ssl cookbook JS > shell.connect(connectionData, "cbpass")
Creating a Classic session to 'cbuser@127.0.0.1/cookbook'

 In both cases, when specifying a URI, you can prefix connection options by the scheme:

mysqlsh mysqlx://cbuser:cbpass@127.0.0.1/cookbook
\c mysql://cbuser:cbpass@127.0.0.1/cookbook

 If the specified protocol could not be used, MySQL Shell will fail with an error:

 MySQL JS > \c mysql://cbuser:cbpass@127.0.0.1:33060/cookbook
Creating a Classic session to 'cbuser@127.0.0.1:33060/cookbook'
MySQL Error 2007 (HY000): Protocol mismatch; server version = 11, client version = 10

$ mysqlsh --host=127.0.0.1 --port=3306 --user=cbuser --schema=cookbook --mx
Please provide the password for 'cbuser@127.0.0.1:3306': ******
MySQL Shell 8.0.22

Copyright (c) 2016, 2020, Oracle and/or its affiliates.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

Type '\help' or '\?' for help; '\quit' to exit.
Creating an X protocol session to 'cbuser@127.0.0.1:3306/cookbook' ↩
MySQL Error 2027: Requested session assumes MySQL X Protocol but '127.0.0.1:3306' ↩
seems to speak the classic MySQL protocol
(Unexpected response received from server, msg-id:10)

 You can find details of your current MySQL Shell connection by running the shell.status() command:

 MySQL 127.0.0.1:33060+ ssl cookbook JS > shell.status()
MySQL Shell version 8.0.22

Connection Id: 61
Default schema: cookbook
Current schema: cookbook
Current user: cbuser@localhost
SSL: Cipher in use: TLS_AES_256_GCM_SHA384 TLSv1.3
Using delimiter: ;
Server version: 8.0.22-13 Percona Server (GPL), Release '13', ↩
 Revision '6f7822f'
Protocol version: X protocol
Client library: 8.0.22
Connection: 127.0.0.1 via TCP/IP
TCP port: 33060
Server characterset: utf8mb4
Schema characterset: utf8mb4
Client characterset: utf8mb4
Conn. characterset: utf8mb4
Result characterset: utf8mb4
Compression: Enabled (DEFLATE_STREAM)
Uptime: 4 min 57.0000 sec

Tip

 MySQL Shell, like MySQL CLI, allows you to customize its prompt. To do it, you need to edit the prompt.json file, located in the configuration home of MySQL Shell. This file is in JSON format. MySQL Shell comes with a good number of custom prompt templates and the README.prompt file, explaining how to modify the prompt.

 We won’t cover in detail how to customize the MySQL Shell user prompt, but we will remove the host, port, and protocol information from the default prompt, so our examples will take less space in the book.

 The configuration home of the MySQL Shell is either ~/.mysqlsh/ on Unix or %AppData%\MySQL\mysqlsh\ on Windows. You can overwrite this location if you set the MYSQLSH_USER_CONFIG_HOME variable. README.prompt and examples are located in the share/mysqlsh/prompt/ directory under the MySQL Shell installation root.

See Also
For additional information about mysqlsh command options, see “A.1 mysqlsh—The MySQL Shell”.

2.3 Selecting SQL, JavaScript, or Python Mode
Problem

 MySQL Shell starts in the wrong mode, and you want to select a different mode than the default.

Solution

 Use the sql, js, or py options, or switch the mode after starting mysqlsh.

Discussion

 By default, MySQL Shell starts in JavaScript mode. You can see it by looking at the prompt string:

 MySQL cookbook JS >

 You can change the default mode by starting with the --sql option to select SQL mode or the --py option to select Python mode. To select JavaScript mode explicitly at startup, use the --js option. You will see that the MySQL Shell client’s prompt message will change to the selected mode. Here, we select the Python mode:

$ mysqlsh cbuser:cbpass@127.0.0.1/cookbook --py
...
Default schema `cookbook` accessible through db.
 MySQL cookbook Py >

Tip

 For SQL mode, you can explicitly instruct the tool to use not only the desired mode but also the desired protocol with the sqlx option to select the X protocol and the sqlc option to select the Classic protocol. This could be handy when you connect via the default TCP/IP port.

 Inside mysqlsh, you can change the processing mode with the \js, \py, and \sql commands to switch to JavaScript, Python, and SQL modes:

 MySQL cookbook SQL > \js
Switching to JavaScript mode...
 MySQL cookbook JS > \py
Switching to Python mode...
 MySQL cookbook Py > \sql
Switching to SQL mode... Commands end with ;
 MySQL cookbook SQL >

2.4 Running SQL Session
Problem

 You want to have the functionality of a mysql client, but you don’t want to leave MySQL Shell.

Solution

 Use SQL mode.

Discussion

 With SQL mode, MySQL Shell behaves exactly the same as the mysql client that we described in Chapter 1. You can run queries, control output using the \pager command, edit SQL in the system editor with the \edit command, execute SQL from a file with the \source command, and execute a system shell command with \system. You can view and edit the command-line history.

 There is no shortcut, \d, for the delimiter command, but the command itself works:

 MySQL cookbook SQL > delimiter |
 MySQL cookbook SQL > CREATE PROCEDURE get_client_info()
 -> BEGIN
 -> SELECT GROUP_CONCAT(ATTR_NAME, '=', ATTR_VALUE)
 -> FROM performance_schema.session_account_connect_attrs
 -> WHERE ATTR_NAME IN ('_client_name', '_client_version');
 -> END
 -> |
Query OK, 0 rows affected (0.0163 sec)
 MySQL cookbook SQL > delimiter ;
 MySQL cookbook SQL > CALL get_client_info();
+--+
| GROUP_CONCAT(ATTR_NAME, '=', ATTR_VALUE) |
+--+
| _client_name=libmysql,_client_version=8.0.22 |
+--+
1 row in set (0.0017 sec)

Query OK, 0 rows affected (0.0017 sec)

 There is no tee command. If you want to log query results into a file, set the pager to tee -a <DESIRED LOG FILE LOCATION>. However, it will not log SQL statements. They’re available only in the history file.

Tip

 By default, MySQL Shell does not save history between client sessions. This means that you cannot access your previous commands once you exit the shell. You can overwrite this behavior if you enable the history.autoSave option:

 MySQL JS > \option --persist history.autoSave=1

2.5 Running SQL in JavaScript Mode
Problem

 You’re in JavaScript mode but want to execute traditional SQL.

Solution

 Use the \sql command, or use the sql() and runSQL() methods that belong to the Session class.

Discussion

 JavaScript mode supports the object-oriented style of querying your database. Or, you can run plain SQL.

 If you want to run a single SQL statement and get results like you can in the MySQL client without leaving JavaScript mode, use the \sql command. In the following example, we run a plain SQL statement, selecting data from the table limbs for things that have two or more arms:

 MySQL cookbook JS > \sql SELECT * FROM limbs WHERE arms >=2 ORDER BY arms;
Fetching table and column names from `cookbook` for auto-completion...↩
Press ^C to stop.
+--------------+------+------+
| thing | legs | arms |
+--------------+------+------+
human	2	2
armchair	4	2
Peg Leg Pete	1	2
squid	0	10
+--------------+------+------+
4 rows in set (0.0002 sec)

 The object-oriented style of running SQL is more flexible and provides more options. To run a single statement, use the runSQL method of the Session class:

 MySQL cookbook JS > session.runSql(
 > "SELECT * FROM limbs WHERE arms >=2 ORDER BY arms")
+--------------+------+------+
| thing | legs | arms |
+--------------+------+------+
human	2	2
armchair	4	2
Peg Leg Pete	1	2
squid	0	10
+--------------+------+------+
4 rows in set (0.0014 sec)

Tip

 When you connect to MySQL Shell, it creates a default instance of the Session class. It’s accessible via the global session object.

 The runSQL method supports placeholders: just replace the variable values with the ? sign and pass parameters as an array:

 MySQL cookbook JS > session.runSql("SELECT * FROM limbs ↩
 WHERE arms >= ? AND legs != ? ↩
 ORDER BY arms", [2, 0])
+--------------+------+------+
| thing | legs | arms |
+--------------+------+------+
human	2	2
armchair	4	2
Peg Leg Pete	1	2
+--------------+------+------+
3 rows in set (0.0005 sec)

 You can combine this method with standard JavaScript syntax and create a script that can do more than just run SQL queries:

 MySQL cookbook JS > for (i = 1;
 -> i <= session.sql("SELECT MAX(arms) AS maxarms FROM limbs"). [image: 1]
 -> execute().fetchOne(). [image: 2]
 -> getField('maxarms'); [image: 3]
 -> i++) [image: 4]
 -> {
 -> species=session.sql("SELECT COUNT(*) AS countarms \
 -> FROM limbs WHERE arms =?").
 -> bind(i).execute(); [image: 5]
 -> if (species.hasData() && (armscount = species.fetchOne().
 -> getField('countarms')) > 0) [image: 6]
 -> {
 -> print("We have " + armscount + " species with " + i + [image: 7]
 -> (i == 1 ? " arm\n" : " arms\n"));
 -> }
 -> }
 ->
We have 1 species with 1 arm
We have 3 species with 2 arms
We have 1 species with 10 arms

	[image: 1]
	Select the maximum number of arms in the limbs table.

	[image: 2]
	The session.sql.execute() method returns a SqlResult object that has a method, called fetchOne, that returns the first row of the result set.

	[image: 3]
	Since our query is supposed to return one row, we didn’t traverse the result set but simply called the getField method, which takes a column name or its alias as a parameter to get the maximum number of arms, stored in the table limbs.

	[image: 4]
	We used this number as a stopping condition for the for loop.

	[image: 5]
	In the loop, we executed queries to get the number of the species with the specified number of arms. We used the sql method and its bind method to bind the value of the loop iterator i to the query.

	[image: 6]
	Check if we received a result and if the number of arms is greater than 0.

	[image: 7]
	If both conditions are true, print the result.

Note

 When you execute the sql or runSQL methods separately, MySQL Shell calls the execute method for them automatically. But if using these methods in more complicated code, like in the loops or multiple-statements blocks, you need to call the execute method explicitly. Otherwise, only the last statement will be executed, and all previous invocations will be ignored.

See Also
For additional information about the MySQL Shell API, see “Shell API” in the advanced MySQL User Reference Manual.

2.6 Running SQL in Python Mode
Problem

 You’re in Python mode but want to execute traditional SQL.

Solution

 Use the \sql command or the sql or run_sql methods of the Session class.

Discussion

 Just as we saw with JavaScript mode, Python mode also supports the \sql command. You can use it if you want to execute a SQL statement and don’t want to do anything with its result.
The following code selects all rows from the table movies:

 MySQL cookbook Py > \sql SELECT * FROM movies;
+----+------+----------------------------+
| id | year | movie |
+----+------+----------------------------+
1	1997	The Fifth Element
2	1999	The Phantom Menace
3	2001	The Fellowship of the Ring
4	2005	Kingdom of Heaven
5	2010	Red
6	2011	Unknown
+----+------+----------------------------+
6 rows in set (0.0008 sec)

 Method names in Python mode are slightly different from those in JavaScript mode. Thus, to run a SQL statement, using the Session object and binding parameters to it as an array, use the run_sql method:

 MySQL cookbook Py > session.run_sql("SELECT * FROM movies WHERE year < ?",[2000])
+----+------+--------------------+
| id | year | movie |
+----+------+--------------------+
| 1 | 1997 | The Fifth Element |
| 2 | 1999 | The Phantom Menace |
+----+------+--------------------+
2 rows in set (0.0009 sec)

 This example selects all movies created before the year 2000.

 You can program in Python as well as in JavaScript. For example, if you want to know the number of movies each actor was featured in as well as years when they starred, join the movies table with the movies_actors table, then print the result using Python code:

 MySQL cookbook Py > myres=session.sql("SELECT actor, COUNT(movie) as movies,↩ [image: 1]
 GROUP_CONCAT(year SEPARATOR ', ') AS years_string,↩
 COUNT(year) AS years FROM movies_actors ↩
 GROUP BY actor ORDER BY movies DESC").↩
 execute().fetch_all()
 MySQL cookbook Py > for myrow in myres: [image: 2]
 -> print(myrow[0] + " was featured in " + str(myrow[1]) +↩ [image: 3]
 (" movies" if (myrow[1] > 1) else " movie") + ↩
 " in " + ("years " if (myrow[3] > 1) else "the year ") +↩
 myrow[2] + ".")
 ->
Liam Neeson was featured in 3 movies in the years 2005, 1999, 2011.
Bruce Willis was featured in 2 movies in the years 1997, 2010.
Ian Holm was featured in 2 movies in the years 1997, 2001.
Orlando Bloom was featured in 2 movies in the years 2005, 2001.
Diane Kruger was featured in 1 movie in the year 2011.
Elijah Wood was featured in 1 movie in the year 2001.
Ewan McGregor was featured in 1 movie in the year 1999.
Gary Oldman was featured in 1 movie in the year 1997.
Helen Mirren was featured in 1 movie in the year 2010.
Ian McKellen was featured in 1 movie in the year 2001.

	[image: 1]
	Run the query, and fetch all the rows that it returns into a variable, myres.

	[image: 2]
	Traverse this variable in a for...in loop.

	[image: 3]
	Print the result.

Tip

 If you’re not familiar with the query syntax yet, don’t worry: we’ll discuss ways of querying data in Chapter 5 and how to join two or more tables in Recipe 16.0.

See Also
For additional information about the Python MySQL Shell API, use the \? mysqlx command inside the Python shell session.

2.7 Working with Tables in JavaScript Mode
Problem

 You want to query your tables using the object-oriented style in JavaScript mode.

Solution

 Use the getTable method to select a table, then the select, count, insert, update, and delete methods to select, retrieve number of rows, insert, update, or delete from the table.

Discussion

 MySQL Shell supports object-oriented syntax for querying and modifying database objects. Thus, to select all rows from the table limbs, we can use the select method:

 MySQL cookbook JS > session.getDefaultSchema().getTable('limbs').select()
+--------------+------+------+
| thing | legs | arms |
+--------------+------+------+
human	2	2
insect	6	0
squid	0	10
fish	0	0
centipede	99	0
table	4	0
armchair	4	2
phonograph	0	1
tripod	3	0
Peg Leg Pete	1	2
space alien	NULL	NULL
+--------------+------+------+
11 rows in set (0.0003 sec)

 In the preceding listing, we first selected the schema using the getDefaultSchema method, then selected a table with the getTable method, and finally retrieved all rows with select.

 The select method returns the TableSelect object that supports methods allowing you to specify the WHERE condition, ORDER BY and GROUP BY clauses, and other features that SQL SELECT has. It also supports prepared statements and parameters binding. Thus, to select only those species from the limbs table that have four or more legs and order them by number of legs, try the following code:

 MySQL cookbook JS > session.getDefaultSchema().getTable('limbs').select().
 -> where('legs >= :legs').orderBy('legs').bind('legs', 4)
+-----------+------+------+
| thing | legs | arms |
+-----------+------+------+
table	4	0
armchair	4	2
insect	6	0
centipede	99	0
+-----------+------+------+
4 rows in set (0.0004 sec)

Warning

 Notice that here we’re using named parameters for placeholders instead of question marks like we did when we queried the database with SQL.

 The MySQL Shell API also supports methods to insert, update, and delete data in the object-oriented style as well as to start and finish transactions. For instance, if we want to experiment with the cookbook database without actually modifying data, we can do so inside a transaction:

 MySQL cookbook JS > limbs = session.getDefaultSchema().getTable('limbs') [image: 1]
<Table:limbs>
 MySQL cookbook JS > session.startTransaction() [image: 2]
Query OK, 0 rows affected (0.0006 sec)
 MySQL cookbook JS > limbs.insert('thing', 'legs', 'arms'). [image: 3]
 -> values('cat', 4, 0).
 -> values('dog', 2, 2)
 ->
Query OK, 2 items affected (0.0012 sec)

Records: 2 Duplicates: 0 Warnings: 0
 MySQL cookbook JS > limbs.count() [image: 4]
13
 MySQL cookbook JS > limbs.update().set('legs', 4).set('arms', 0).
 -> where("thing='dog'") [image: 5]
Query OK, 1 item affected (0.0012 sec)

Rows matched: 1 Changed: 1 Warnings: 0
 MySQL cookbook JS > limbs.select().where("thing='dog'") [image: 6]
+-------+------+------+
| thing | legs | arms |
+-------+------+------+
| dog | 4 | 0 |
+-------+------+------+
1 row in set (0.0004 sec)
 MySQL cookbook JS > limbs.delete().where("thing='cat'") [image: 7]
Query OK, 1 item affected (0.0010 sec)
 MySQL cookbook JS > limbs.count() [image: 8]
12
 MySQL cookbook JS > session.rollback() [image: 9]
Query OK, 0 rows affected (0.0054 sec)
 MySQL cookbook JS > limbs.count() [image: 10]
11
 MySQL cookbook JS > limbs.select().where("thing='dog' or thing='cat'")
Empty set (0.0010 sec)

	[image: 1]
	Save the table object for the limbs table into a limbs variable.

	[image: 2]
	Start a transaction, so we can roll back our experiments.

	[image: 3]
	Insert two rows into the limbs table using the insert method, which takes a list of columns as a parameter, and the values method, that takes a list of values to be inserted as a parameter.

	[image: 4]
	Check the number of rows that now exist in the table.

	[image: 5]
	If you look back to the rows that we inserted, you may notice an error. A dog actually has four legs and not two legs and two arms. To fix this mistake, call the update method.

	[image: 6]
	The select command confirmed that our changes were applied to the limbs table.

	[image: 7]
	Then we figured out that cats and dogs are not always friends with one another, and we removed a cat from the table with the delete method.

	[image: 8]
	Confirm that the cat was successfully removed.

	[image: 9]
	Roll back the transaction to restore the table to its initial state.

	[image: 10]
	The count and select methods confirm that the table is in its initial state.

Note

 Since we executed all statements one by one in the interactive session, we omitted the execute method. This method is required if you’re executing SQL commands in loops or program scripts.

See Also
For additional information about how to work with tables in JavaScript mode, see “Table Class Reference” in the Reference Manual.

2.8 Working with Tables in Python Mode
Problem

 You have tables in your database and want to work with them in Python mode.

Solution

 Use the get_table method to get the table object, then the select, count, insert, update, and delete methods to select, retrieve number of rows, insert, update, or delete from the table.

Discussion

 Like JavaScript, Python supports working with tables in the object-oriented style. Thus, to select all rows from the movies table, try the select method of the Table class:

 MySQL cookbook Py > session.get_schema('cookbook').get_table('movies').select()
+----+------+----------------------------+
| id | year | movie |
+----+------+----------------------------+
1	1997	The Fifth Element
2	1999	The Phantom Menace
3	2001	The Fellowship of the Ring
4	2005	Kingdom of Heaven
5	2010	Red
6	2011	Unknown
+----+------+----------------------------+
6 rows in set (0.0003 sec)

 In this example, we used the get_schema method, which allows us to select any schema stored in the database to which the session user has been granted access.

 Python mode supports methods, allowing you to modify data in the tables as well as transaction statements.

 For our examples, we’ll save the tables movies and movies_actors into the variables first:

 MySQL cookbook Py > movies=session.get_schema('cookbook').get_table('movies')
 MySQL cookbook Py > movies_actors=session.get_schema('cookbook').↩
 get_table('movies_actors')

 Then, we’ll open a transaction, so our changes will apply either to both tables or to none at all, and we’ll insert a movie, Darkest Hour, starring Gary Oldman. Finally, we’ll commit the transaction:

 MySQL cookbook Py > session.start_transaction()
Query OK, 0 rows affected (0.0003 sec)
 MySQL cookbook Py > movies.insert('year', 'movie').↩
 values(2017, 'Darkest Hour')
Query OK, 1 item affected (0.0013 sec)
 MySQL cookbook Py > movies_actors.insert().↩
 values(1997, 'Darkest Hour', 'Gary Oldman')
Query OK, 1 item affected (0.0011 sec)
 MySQL cookbook Py > session.commit()
Query OK, 0 rows affected (0.0075 sec)

 To find all movies starring Gary Oldman we’ll use a SQL query, because the X API does not support joins:

 MySQL cookbook Py > session.sql("SELECT * FROM movies ↩
 JOIN movies_actors USING(movie) WHERE actor = 'Gary Oldman'")
+-------------------+----+------+------+-------------+
| movie | id | year | year | actor |
+-------------------+----+------+------+-------------+
| The Fifth Element | 1 | 1997 | 1997 | Gary Oldman |
| Darkest Hour | 7 | 2017 | 1997 | Gary Oldman |
+-------------------+----+------+------+-------------+
2 rows in set (0.0012 sec)

 Oops! The year for the movie Darkest Hour is not correct in one of the tables. Let’s update it:

 MySQL cookbook Py > session.start_transaction() [image: 1]
Query OK, 0 rows affected (0.0007 sec)
 MySQL cookbook Py > movies.update().set('year', 2017).where("movie='Darkest Hour'") [image: 2]
Query OK, 0 items affected (0.0013 sec)

Rows matched: 1 Changed: 0 Warnings: 0
 MySQL cookbook Py > movies_actors.update().set('year', 2017).↩ [image: 3]
 where("movie='Darkest Hour'")
Query OK, 1 item affected (0.0012 sec)

Rows matched: 1 Changed: 1 Warnings: 0
 MySQL cookbook Py > session.commit() [image: 4]
Query OK, 0 rows affected (0.0073 sec)
 MySQL cookbook Py > session.run_sql("SELECT * FROM movies JOIN movies_actors↩ [image: 5]
 USING(movie) WHERE actor = 'Gary Oldman'")
+-------------------+----+------+------+-------------+
| movie | id | year | year | actor |
+-------------------+----+------+------+-------------+
| The Fifth Element | 1 | 1997 | 1997 | Gary Oldman |
| Darkest Hour | 7 | 2017 | 2017 | Gary Oldman |
+-------------------+----+------+------+-------------+
2 rows in set (0.0005 sec)

	[image: 1]
	Start a transaction, so we update either all tables or no tables.

	[image: 2]
	Update the movies table.

	[image: 3]
	Update the movies_actors table.

	[image: 4]
	Commit the changes.

	[image: 5]
	Confirm that the changes were applied to the table.

 If we want to remove our newly inserted movie, we can use the delete method:

 MySQL cookbook Py > session.start_transaction()
Query OK, 0 rows affected (0.0006 sec)
 MySQL cookbook Py > movies.delete().where("movie='Darkest Hour'")
Query OK, 1 item affected (0.0012 sec)
 MySQL cookbook Py > movies_actors.delete().where("movie='Darkest Hour'")
Query OK, 1 item affected (0.0004 sec)
 MySQL cookbook Py > session.commit()
Query OK, 0 rows affected (0.0061 sec)

 In this example, we also started the transaction first, then called the delete method on two tables, and finally committed the transaction.

See Also
For additional information about accessing tables in the object-oriented style while in Python mode, see MySQL Shell’s interactive help using the \? command.

2.9 Working with Collections in JavaScript Mode
Problem

 You have semistructured data and want to use MySQL as a Document Store. You also want to query your data with NoSQL, without leaving the programming style of your preferred language.

Solution

 Use the Collection object and its methods.

Discussion

 MySQL supports not only SQL syntax but also NoSQL. When you use SQL, you query tables, and when you use NoSQL, you query collections. Physically, such collections are stored in tables that have three columns: a generated unique identifier column that is also a primary key, a JSON column that stores the document, and an internal column that stores the JSON schema. You can create a collection by using the createCollection method of the Schema class:

 MySQL cookbook JS > collectionLimbs=session.getCurrentSchema().
 -> createCollection('CollectionLimbs')
<Collection:CollectionLimbs>

 The preceding code creates the NoSQL CollectionLimbs collection.

 Collections support schema validation. There is no method to add a schema validation for the existent collection, but we can add the schema when creating the collection:

 MySQL cookbook JS > session.getCurrentSchema().
 -> dropCollection('collectionLimbs')
 ->
 MySQL cookbook JS > schema={
 -> "$schema": "http://json-schema.org/draft-07/schema",
 -> "id": "http://example.com/cookbook.json",
 -> "type": "object",
 -> "description": "Table limbs as a collection",
 -> "properties": {
 -> "thing": {"type": "string"},
 -> "legs": {
 -> "anyOf": [{"type": "number"},{"type": "null"}],
 -> "default": 0
 -> },
 -> "arms": {
 -> "anyOf": [{"type": "number"},{"type": "null"}],
 -> "default": 0
 -> }
 -> },
 -> "required": ["thing","legs","arms"]
 -> }
 ->
{
 "$schema": "http://json-schema.org/draft-07/schema",
 "description": "Table limbs as a collection",
 "id": "http://example.com/cookbook.json",
 "properties": {
 "arms": {
 "anyOf": [
 {
 "type": "number"
 },
 {
 "type": "null"
 }
],
 "default": 0
 },
 "legs": {
 "anyOf": [
 {
 "type": "number"
 },
 {
 "type": "null"
 }
],
 "default": 0
 },
 "thing": {
 "type": "string"
 }
 },
 "required": [
 "thing",
 "legs",
 "arms"
],
 "type": "object"
}
 MySQL cookbook JS > collectionLimbs=session.getCurrentSchema().
 -> createCollection('collectionLimbs',
 -> {"validation": {"level": "strict", "schema": schema}})
 ->
<Collection:CollectionLimbs>

 Once the NoSQL collection is created, you can insert, update, delete, and search documents.

 For example, to insert documents from the limbs table into the CollectionLimbs collection, we can use the following code:
 MySQL cookbook JS > {
 -> limbs=session.getCurrentSchema().
 -> getTable('limbs').select().execute(); [image: 1]
 -> while (limb = limbs.fetchOneObject()) { [image: 2]
 -> collectionLimbs.add([image: 3]
 -> mysqlx.expr(JSON.stringify(limb)) [image: 4]
 ->).execute(); [image: 5]
 -> }
 -> }
 ->
Query OK, 1 item affected (0.0049 sec)
	[image: 1]
	Select all rows from the limbs table.

	[image: 2]
	The fetchOneObject method returns a dictionary object.

	[image: 3]
	A dictionary object method cannot be saved in the collection without converting it to the proper JSON object. Therefore, we converted it into a JSON string first, then created an expression out of this string that could be inserted into the collection.

	[image: 4]
	The add method inserts a document into the collection.

	[image: 5]
	The execute method is required every time we update a database inside script blocks.

We enclosed the code in curly braces because otherwise, if the code is put on multiple lines, MySQL Shell will output the result of session.getCurrentSchema().getTable('limbs').select().execute(), and the limbs variable will contain only diagnostic messages about the number of rows affected.

 Finally, we can examine data just inserted into the CollectionLimbs collection:

 MySQL cookbook JS > collectionLimbs.count()
11
 MySQL cookbook JS > collectionLimbs.find().limit(3)
{
 "_id": "00006002f0650000000000000060",
 "arms": 2,
 "legs": 2,
 "thing": "human"
}
{
 "_id": "00006002f0650000000000000061",
 "arms": 0,
 "legs": 6,
 "thing": "insect"
}
{
 "_id": "00006002f0650000000000000062",
 "arms": 10,
 "legs": 0,
 "thing": "squid"
}
3 documents in set (0.0010 sec)

 You can also modify and remove documents from your collections. We’ll show examples of this in Recipe 2.10.

See Also
For additional information about how to use MySQL with JSON documents and NoSQL, see Chapter 19.

2.10 Working with Collections in Python Mode
Problem

 You want to use Document Store and NoSQL in Python mode.

Solution

 Use the Collection object and its methods.

Discussion

 Just as you can in JavaScript mode, you can work with NoSQL in Python mode. The syntax is also similar to JavaScript mode. However, method names follow the naming style recommended for programs written in Python.

 Thus, to assign a collection to a variable, use the get_collection method of the Schema class:

 MySQL cookbook Py > collectionLimbs=session.get_current_schema().↩
 get_collection('collectionLimbs')

 To select documents, use the find method:

 MySQL cookbook Py > collectionLimbs.find('legs > 3 and arms > 1')
{
 "_id": "00006002f0650000000000000066",
 "arms": 2,
 "legs": 4,
 "thing": "armchair"
}
1 document in set (0.0010 sec)

 The find method supports arguments that allow you to search for specific documents similar to the syntax of the WHERE clause in SQL. It also allows you to aggregate results and sort them and select specific fields. It does not support joining the collections.

 To insert a new document, use the add method:

 MySQL cookbook Py > collectionLimbs.add(mysqlx.expr(↩
 '{"thing": "cat", "legs": 2, "arms": 2}'))
Query OK, 1 item affected (0.0093 sec)
 MySQL cookbook Py > collectionLimbs.find('thing="cat"')
{
 "_id": "00006002f065000000000000006b",
 "arms": 2,
 "legs": 2,
 "thing": "cat"
}
1 document in set (0.0012 sec)
 MySQL cookbook Py > collectionLimbs.add(mysqlx.expr(↩
 '{"thing": "dog", "legs": 2, "arms": 2}'))
Query OK, 1 item affected (0.0086 sec)

 To modify an existing row, use either the add_or_replace_one method or the modify method:

 MySQL cookbook Py > collectionLimbs.add_or_replace_one(↩
 '00006002f065000000000000006b',↩
 {"thing": "cat", "legs": 4, "arms": 0})
Query OK, 2 items affected (0.0056 sec)

 The add_or_replace_one method takes the document _id as the first parameter and a JSON document as the second one. If a document with the specified _id is not found, it inserts a new document. If a document with the specified _id is found, it replaces the existing one.

 The modify method takes a search condition as an argument and returns an object of the CollectionModify class that supports methods, allowing you to modify parameters such as set. You can chain calls to the set method as many times as needed:

 MySQL cookbook Py > collectionLimbs.modify('thing = "dog"').set("legs", 4).set("arms", 0)
Query OK, 1 item affected (0.0077 sec)

Rows matched: 1 Changed: 1 Warnings: 0

 To check if we successfully changed the quantity of arms and legs for the newly inserted cat and dog documents, we can use the find method:

 MySQL cookbook Py > collectionLimbs.find('thing in ("dog", "cat")')
{
 "_id": "00006002f065000000000000006b",
 "arms": 0,
 "legs": 4,
 "thing": "cat"
}
{
 "_id": "00006002f065000000000000006c",
 "arms": 0,
 "legs": 4,
 "thing": "dog"
}
2 documents in set (0.0013 sec)

 The remove method deletes documents from the collection:

 MySQL cookbook Py > collectionLimbs.remove('thing in ("dog", "cat")')
Query OK, 2 items affected (0.0119 sec)
 MySQL cookbook Py > collectionLimbs.find('thing in ("dog", "cat")')
Empty set (0.0011 sec)
 MySQL cookbook Py > collectionLimbs.count()
11

 The remove method supports searching conditions similar to the modify and find methods.

See Also
For additional information about using MySQL with JSON documents and NoSQL, see Chapter 19.

2.11 Controlling the Output Format
Problem

 You want to print results in a format different from the default.

Solution

 Use the configuration option resultFormat or the command-line parameters --result-format, --table, --tabbed, --vertical, or --json.

Discussion

 By default, MySQL Shell prints results in a table format, similar to the default format of the mysql client. However, this format can be customized.

 Inside MySQL Shell, you can customize the format with the help of the \option command
 or the set method of the shell.options member of the Shell class.

 Thus, to print the content of the artist table in a tabbed format, run the following:

 MySQL cookbook JS > \option resultFormat=tabbed
 MySQL cookbook JS > artist=session.getCurrentSchema().getTable('artist')
<Table:artist>
 MySQL cookbook JS > artist.select()
a_id	name
1	Da Vinci
2	Monet
4	Renoir
3	Van Gogh
4 rows in set (0.0009 sec)

 To switch to the vertical format, run the following:

 MySQL cookbook JS > shell.options.set('resultFormat', 'vertical')
 MySQL cookbook JS > artist.select()
*************************** 1. row ***************************
a_id: 1
name: Da Vinci
*************************** 2. row ***************************
a_id: 2
name: Monet
*************************** 3. row ***************************
a_id: 4
name: Renoir
*************************** 4. row ***************************
a_id: 3
name: Van Gogh
4 rows in set (0.0009 sec)

 The JSON format supports few options. By default, if the value of the resultFormat option is set to json or MySQL Shell started with the --json option, it is same as json/pretty, or --json=pretty, which means that the result is printed as a JSON, formatted for better readability:

 MySQL cookbook JS > shell.options.set('resultFormat', 'json')
 MySQL cookbook JS > artist.select()
{
 "a_id": 1,
 "name": "Da Vinci"
}
{
 "a_id": 2,
 "name": "Monet"
}
{
 "a_id": 4,
 "name": "Renoir"
}
{
 "a_id": 3,
 "name": "Van Gogh"
}
4 rows in set (0.0008 sec)

 The ndjson, json/raw, and --json=raw options produce more compact raw JSON output:

 MySQL cookbook JS > shell.options.set('resultFormat', 'json/raw')
 MySQL cookbook JS > artist.select()
{"a_id":1,"name":"Da Vinci"}
{"a_id":2,"name":"Monet"}
{"a_id":4,"name":"Renoir"}
{"a_id":3,"name":"Van Gogh"}
4 rows in set (0.0003 sec)

 The json/array option represents the result as an array of JSON documents:

 MySQL cookbook JS > shell.options.set('resultFormat', 'json/array')
 MySQL cookbook JS > artist.select()
[
{"a_id":1,"name":"Da Vinci"},
{"a_id":2,"name":"Monet"},
{"a_id":4,"name":"Renoir"},
{"a_id":3,"name":"Van Gogh"}
]
4 rows in set (0.0010 sec)

 This could be especially useful if you’re selecting the data from the command line and later passing it to another program:

$ mysqlsh cbuser:cbpass@127.0.0.1:33060/cookbook \
> -i --execute="session.getSchema('cookbook').\
> getTable('artist').select().execute()" \
> --result-format=json/array --quiet-start=2 \
> | head -n -1 \
> | jq '.[] | .name'
"Da Vinci"
"Monet"
"Renoir"
"Van Gogh"

 In the preceding code, we started mysqlsh with the -i option, which enables interactive mode, so MySQL Shell behaves as if it were run interactively, and with the --quiet-start=2 option, which disables all welcome messages. Then we set the --result-format option to json/array to enable JSON array output, used the --execute option to select from the table artist, and passed output to the jq command, which removed all metadata information and printed only names of artists.

Tip

 The head -n -1 command removes the last line from the result that shows the number of rows returned by the select method. Note that specifying a negative number as a command head -n parameter may not work everywhere. If you’re on such a system, you can ignore the error message that the command jq will print or redirect it somewhere else:

$ mysqlsh cbuser:cbpass@127.0.0.1:33060/cookbook \
> -i --execute="session.getSchema('cookbook').\
> getTable('artist').select().execute()" \
> --result-format=json/array --quiet-start=2 \
> | jq '.[] | .name' 2>/dev/null
"Da Vinci"
"Monet"
"Renoir"
"Van Gogh"

 When JSON wrapping is enabled at the MySQL Shell startup with --json[=pretty|raw] option, it will also print diagnostic information in the resulting JSON output:

 MySQL cookbook JS > session.getCurrentSchema().getTable('artist').select()
{
 "hasData": true,
 "rows": [
 {
 "a_id": 1,
 "name": "Da Vinci"
 },
 {
 "a_id": 2,
 "name": "Monet"
 },
 {
 "a_id": 4,
 "name": "Renoir"
 },
 {
 "a_id": 3,
 "name": "Van Gogh"
 }
],
 "executionTime": "0.0007 sec",
 "affectedRowCount": 0,
 "affectedItemsCount": 0,
 "warningCount": 0,
 "warningsCount": 0,
 "warnings": [],
 "info": "",
 "autoIncrementValue": 0
}

 If you enabled JSON output using the --result-format=json[/pretty|/raw|/array] command-line option, this additional information is not printed.

 All output formats are independent from how you select data and are available in all modes.

See Also
For additional information about MySQL Shell output formats, see “Output Formats” in the MySQL User Reference Manual.

2.12 Running Reports with MySQL Shell
Problem

 You want to run periodic reports.

Solution

 Use the \show and \watch commands.

Discussion

 The MySQL Shell \show and \watch commands execute reports, both built-in and user-defined. \show executes a report once, whereas \watch runs the report continuously until interrupted.

 A report is a predefined sequence of commands. Reports may support arguments. For example, the built-in report query takes a SQL query as an argument. The built-in report thread reports details about a specific thread. By default, it reports details about the current thread:

 MySQL cookbook SQL > \show thread
GENERAL
Thread ID: 1434
Connection ID: 1382
Thread type: FOREGROUND
Program name: mysqlsh
User: sveta
Host: localhost
Database: cookbook
Command: Query
Time: 00:00:00
State: executing
Transaction state: NULL
Prepared statements: 0
Bytes received: 20280
Bytes sent: 40227
Info: SELECT json_object('tid',t.THR ... ↩
 JOIN information_schema.innodb
Previous statement: NULL

Warning

 The built-in report thread queries tables in performance_schema and sys; therefore, you should connect as a user that has SELECT privilege on performance_schema and sys schemas and EXECUTE privilege on sys schema. Otherwise, the report will fail with an access denied error.

 But the report thread supports arguments, so you can specify, for example, Connection ID of the thread and output information about the specific one:

 MySQL cookbook SQL > \show thread -c 1386
GENERAL
Thread ID: 1438
Connection ID: 1386
Thread type: FOREGROUND
Program name: mysql
User: sveta
Host: localhost
Database: cookbook
Command: Sleep
Time: 00:05:44
State: NULL
Transaction state: RUNNING
Prepared statements: 0
Bytes received: 1720
Bytes sent: 29733
Info: NULL
Previous statement: select * from adcount for update

 The output of the thread report is similar to the standard PROCESSLIST output but contains additional information, such as Transaction state and Previous statement. The latter could be especially useful when you’re trying to figure out what is preventing your transaction from finishing. For example, if one of the transactions runs in multiple statements and locks a record, it may cause other transactions to wait until the lock is released. But since the statement was already executed, it would not be visible in the regular PROCESSLIST output.

 Even more useful information could be found in the threads report that by default outputs information about all threads that belong to the current user. It runs the MySQL Shell session but can print information about all the threads running on the server and also filter them and define the output format.

 For example, to find all blocked and blocking transactions, you can define the --where "nblocked > 0 or nblocking > 0" option:

 MySQL cookbook SQL > \show threads --foreground ↩
 --where "nblocked > 0 or nblocking > 0" ↩
 -o tid,cid,txid,txstate,nblocked,nblocking,info,pinfo↩
 --vertical
*************************** 1. row ***************************
 tid: 1438
 cid: 1386
 txid: 292253
 txstate: RUNNING
 nblocked: 1
nblocking: 0
 info: NULL
 pinfo: select * from adcount for update
*************************** 2. row ***************************
 tid: 3320
 cid: 3268
 txid: 292254
 txstate: LOCK WAIT
 nblocked: 0
nblocking: 1
 info: update adcount set impressions = impressions + 1 where id=3
 pinfo: NULL

 Thus, in the preceding example, the thread with Connection ID 3268 is trying to execute an update:

UPDATE adcount SET impressions = impressions + 1 WHERE id=3;

 but is blocked by another transaction. Otherwise, the thread with Connection ID 1386 is not executing anything but blocks a thread. Its previous statement was:

SELECT * FROM adcount FOR UPDATE;

 which blocks all rows in the adcount table for writing. With this, we easily found why the UPDATE in the connection 3268 couldn’t finish.

 The threads report has more options. You can find all of them by running the \show command with the report name followed by the --help option:

 MySQL cookbook SQL > \show threads --help
NAME
 threads - Lists threads that belong to the user who owns the current
 session.

SYNTAX
 \show threads [OPTIONS]
 \watch threads [OPTIONS]

DESCRIPTION
 This report may contain the following columns:
...

Tip

 All MySQL Shell commands support help options. For built-in commands, run \? COMMAND, \help COMMAND, or \h COMMAND. For commands with parameters, try the --help option.

 The \watch command not only executes the report but does so repeatedly, at certain intervals. This could be very useful when you want to watch changes of a certain parameter. For example, to watch the number of internal temporary tables created to resolve queries, run the following command:

MySQL cookbook SQL > \watch query --nocls ↩
 	SHOW GLOBAL STATUS LIKE 'Created_tmp_%tables'
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| Created_tmp_disk_tables | 4758 |
| Created_tmp_tables | 25306 |
+-------------------------+-------+
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| Created_tmp_disk_tables | 4758 |
| Created_tmp_tables | 25309 |
+-------------------------+-------+
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| Created_tmp_disk_tables | 4758 |
| Created_tmp_tables | 25310 |
+-------------------------+-------+
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| Created_tmp_disk_tables | 4760 |
| Created_tmp_tables | 25318 |
+-------------------------+-------+
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| Created_tmp_disk_tables | 4760 |
| Created_tmp_tables | 25319 |
+-------------------------+-------+
...

 The query uses the LIKE operator and patterns to match the names of two system variables. We discuss how the LIKE operator works and matches patterns in Recipe 7.10.

 The query runs with a default interval of 2 seconds. The --nocls parameter instructs the command to not clear the screen before printing the latest result. To stop watching, issue the termination command Ctrl+C.

2.13 Using MySQL Shell Utilities
Problem

 You want to use MySQL Shell utilities.

Solution

 In JavaScript or Python modes, use the methods of the global util object interactively or pass the method via the command line.

Discussion

 MySQL Shell comes with a number of built-in utilities that allow you to perform common administrative tasks, such as checking if your MySQL server can be safely updated to the new version or making a reserve copy of the data. These utilities could be called as methods of the global util object in JavaScript and Python modes or specified as a command-line option.

 To find out which utilities MySQL Shell supports, run the \? util command. The names of methods are different in JavaScript and Python modes and follow naming best practices for each of the languages. The global util object isn’t available in the SQL mode, nor are utilities.

 To figure out how a utility works, use the help command with the name of the utility as an argument. For example, \? checkForServerUpgrade will print comprehensive help for the upgrade checker utility in JavaScript mode. \? dump_instance will print detailed usage instructions for the utility that dumps the instance in Python mode.

 Calling utility methods is no different than calling any other method. For example, the following code exports the limbs table into the limbs.csv file in fully quoted CSV format:

 MySQL cookbook JS > util.exportTable(
 -> 'limbs', 'BACKUP/cookbook/limbs.csv',
 -> {dialect: "csv-unix"})
Preparing data dump for table `cookbook`.`limbs`
Data dump for table `cookbook`.`limbs` will not use an index
Running data dump using 1 thread.
NOTE: Progress information uses estimated values and may not be accurate.
Data dump for table `cookbook`.`limbs` will be written to 1 file
91% (11 rows / ~12 rows), 0.00 rows/s, 0.00 B/s
Duration: 00:00:00s
Data size: 203 bytes
Rows written: 11
Bytes written: 203 bytes
Average throughput: 203.00 B/s

The dump can be loaded using:
util.importTable("BACKUP/cookbook/limbs.csv", {
 "characterSet": "utf8mb4",
 "dialect": "csv-unix",
 "schema": "cookbook",
 "table": "limbs"
})

 You need to create the BACKUP/cookbook directory before running this command or use a different location.

 This Python code restores the table into the limbs table in the database test:

 MySQL cookbook Py > \sql CREATE TABLE test.limbs LIKE limbs;
Fetching table and column names from `cookbook` for auto-completion... ↩
Press ^C to stop.
Query OK, 0 rows affected (0.0264 sec)
 MySQL cookbook Py > util.import_table("BACKUP/cookbook/limbs.csv", ↩
 {"dialect": "csv-unix", "schema": "test"})
Importing from file '/home/sveta/BACKUP/cookbook/limbs.csv' to table `test`.`limbs` ↩
in MySQL Server at 127.0.0.1:3306 using 1 thread
[Worker000] limbs.csv: Records: 11 Deleted: 0 Skipped: 0 Warnings: 0
100% (203 bytes / 203 bytes), 0.00 B/s
File '/home/sveta/BACKUP/cookbook/limbs.csv' (203 bytes) ↩
was imported in 0.0109 sec at 203.00 B/s
Total rows affected in test.limbs: Records: 11 Deleted: 0 Skipped: 0 Warnings: 0

 We omitted all but the necessary options for the import example to make it shorter.

 To use import_table, you need to be in the Classic protocol session. Otherwise, the command will fail with an error:

 MySQL cookbook Py > util.import_table("BACKUP/cookbook/limbs.csv", ↩
 {"dialect": "csv-unix", "schema": "test"})
Traceback (most recent call last):
 File "<string>", line 1, in <module>
SystemError: RuntimeError: Util.import_table: ↩
A classic protocol session is required to perform this operation.

Tip

 It’s always a good idea to read error messages, because they clearly show what is wrong and often contain instructions on how to fix the failure.

 Following is another error you can hit:

ERROR: The 'local_infile' global system variable must be set to ON ↩
in the target server, after the server is verified to be trusted:

 To bypass this error, enable the local_infile option with the following command:

SET GLOBAL local_infile=1;

 Or leave this example until you get to the Chapter 13, which covers exporting and importing MySQL database objects.

Tip

 If you don’t understand what the utility is doing in these examples, don’t worry. We’ll cover exporting and importing MySQL database objects in Chapter 13.

 If you want to run utilities without entering interactive mode, you can specify them after the two dashes, following standard mysqlsh options:

$ mysqlsh -- util check-for-server-upgrade root@127.0.0.1:13000 --output-format=JSON
Please provide the password for 'root@127.0.0.1:13000':
Save password for 'root@127.0.0.1:13000'? [Y]es/[N]o/Ne[v]er (default No):
{
 "serverAddress": "127.0.0.1:13000",
 "serverVersion": "8.0.23-debug - Source distribution",
 "targetVersion": "8.0.27",
 "errorCount": 0,
 "warningCount": 0,
 "noticeCount": 0,
 "summary": "No known compatibility errors or issues were found.",
...

 In this example, we first specified the command name, then added two dashes, followed by the global object name, the method we wanted to use, the connection string, and, finally, the method arguments.

 The command line uses the method names of JavaScript mode Camel-case syntax, checkForServerUpgrade; Kebab-case syntax, check-for-server-upgrade; or Snake-case syntax: check_for_server_upgrade. For more information about using global objects without entering interactive mode, use the \? command interactively.

Tip

 You can use -- syntax to call methods of other global objects on the command line:

$ mysqlsh cbuser:cbpass@127.0.0.1:33060/cookbook
 > -- shell status
WARNING: Using a password on the command-line interface ↩
can be insecure.
MySQL Shell version 8.0.22

Connection Id: 23563
Default schema: cookbook
Current schema: cookbook
Current user: cbuser@localhost
SSL: Cipher in use: ↩
 TLS_AES_256_GCM_SHA384 ↩
 TLSv1.3
...

 However, not all global objects are supported. Check \? cmdline for the list of supported objects.

See Also
For additional information about MySQL Shell utilities, see “MySQL Shell Utilities” in the Reference Manual.

2.14 Using the Admin API to Automate Replication Management
Problem

 You want to automate routine database administrator (DBA) tasks, such as deploying MySQL servers.

Solution

 Use the Admin API.

Discussion

 MySQL Shell supports not only the X DevAPI for querying the database but also the Admin API that allows you to manage the InnoDB ReplicaSet and InnoDB Cluster. The Admin API consists of three classes: Dba, Cluster, and ReplicaSet.

 Admin API is accessible from the global dba object of the DBA class. It allows you to configure MySQL instances and start either a standalone sandbox, ReplicaSet, or Cluster.

 To configure a standalone sandbox, use the deploySandboxInstance method in JavaScript mode or deploy_sandbox_instance in Python mode. This method takes a port number and a dictionary of parameters as arguments:

 MySQL cookbook JS > dba.deploySandboxInstance(13000,
 -> {"portx": 13010, "mysqldOptions": ["log-bin=cookbook"]})
A new MySQL sandbox instance will be created on this host in
/home/sveta/mysql-sandboxes/13000

Warning: Sandbox instances are only suitable for deploying and
running on your local machine for testing purposes and are not
accessible from external networks.

Please enter a MySQL root password for the new instance:

Deploying new MySQL instance...

Instance localhost:13000 successfully deployed and started.
Use shell.connect('root@localhost:13000') to connect to the instance.

 This will create a sandbox instance with X port 13010 and an enabled binary log with a name, starting from cookbook:

 MySQL localhost:13000 ssl JS > shell.connect('root@localhost:13000')
Creating a session to 'root@localhost:13000'
Please provide the password for 'root@localhost:13000':
Fetching schema names for autocompletion... Press ^C to stop.
Closing old connection...
Your MySQL connection id is 13
Server version: 8.0.22-13 Percona Server (GPL), Release '13', Revision '6f7822f'
No default schema selected; type \use <schema> to set one.
 MySQL localhost:13000 ssl JS > \sql show variables like 'log_bin_basename';
+------------------+--+
| Variable_name | Value |
+------------------+--+
| log_bin_basename | /home/sveta/mysql-sandboxes/13000/sandboxdata/cookbook |
+------------------+--+
1 row in set (0.0027 sec)

 To stop the instance, use the stopSandboxInstance method in JavaScript mode or stop_sandbox_instance in Python mode:

 MySQL localhost:13000 ssl JS > dba.stopSandboxInstance(13000)
The MySQL sandbox instance on this host in
/home/sveta/mysql-sandboxes/13000 will be stopped

Please enter the MySQL root password for the instance 'localhost:13000':

Stopping MySQL instance...

Instance localhost:13000 successfully stopped.

 To destroy the instance, use the deleteSandboxInstance method in JavaScript mode or delete_sandbox_instance in Python mode:

 MySQL cookbook Py > dba.delete_sandbox_instance(13000)

Deleting MySQL instance...

Instance localhost:13000 successfully deleted.

 The global dba object is accessible from the command line:

$ mysqlsh cbuser:cbpass@127.0.0.1:33060/cookbook -- dba kill-sandbox-instance 13000
WARNING: Using a password on the command-line interface can be insecure.

Killing MySQL instance...

Instance localhost:1300 successfully killed.

 The global dba object is not available in SQL mode.

See Also
For additional information about using Admin API to create and manage a ReplicaSet, see Recipe 3.17. For additional information about using Admin API to create and manage InnoDB Cluster, see “InnoDB Cluster”.

2.15 Working with JavaScript Objects
Problem

 You want to work with your documents as objects, and you want to modify them and store them in the database using your own methods and properties.

Solution

 Create an object that will have all the necessary methods to communicate with the database, and use it as a prototype of your data objects.

Discussion

 JavaScript is an object-oriented programming language, and it’s easy to create objects, modify them, and store them in the database. Sometimes it may be easier to simply write myObject.save() instead of calling the full chain of methods of the X DevAPI Collection class. For example, you may want to replace the following code:

session.getCurrentSchema().getCollection('CollectionLimbs').↩
 addOrReplaceOne(myObject).execute()

 with the following single call:

CollectionLimbs.save()

 JavaScript supports inheritance; therefore, you can create an object that will have all the necessary methods, working with the Collection class methods, and use it as a prototype of the object, containing your business logic.

 As an example, let’s create a CookbookCollection object that will have the find, save and remove methods. They will search for an object in the collection, save it after modification, and remove it from the database if necessary. The CookbookCollection object will also have a collection property that will store an object, representing the collection where our object is stored.

 To make our methods clear, we won’t add error handling. You can add this functionality yourself. For example, if a user forgets to set a collection property, you can throw a custom exception or have a default collection that will be used instead. We’re relying on JavaScript built-in exceptions.

 Let’s get started and create our object:

mysql-js [cookbook]> var CookbookCollection = {
 -> // Collection where the object is stored
 -> collection: null,

 First, we define the property collection where the object is stored. We don’t set the name of the collection here, because we want our prototype to work with any collection:

 -> // Searches collection and returns first
 -> // object that satisfies search condition.
 -> find: function(searchCondition) {
 -> return this.collection.find(searchCondition).
 -> execute().fetchOne();
 -> },

 The find function searches the collection using any search condition. It could be '_id = "00006002f0650000000000000061"' or 'thing="human"'. In other words, it can be any condition the Collection.find method accepts. Then we fetch one document and return it as a result. We intentionally didn’t add any unique check code or any other way to ensure that there is only one document satisfying our condition because we wanted to make the example as simple as possible and have it work with any collection:

 -> // Saves the object in the database
 -> save: function() {
 -> // If we know _id of the object we are
 -> // updating the existing one
 -> // We use the less-effective method addOrReplaceOne
 -> // instead of modify for simplicity.
 -> if ('_id' in this) {
 -> this.collection.addOrReplaceOne(this._id,
 -> // We use double conversion, because we cannot
 -> // store an object with methods in the database
 -> JSON.parse(
 -> JSON.stringify(
 -> this, Object.getOwnPropertyNames(
 -> Object.getPrototypeOf(this))
 ->)
 ->)
 ->)
 -> } else {
 -> // In case the object does not exist in the
 -> // database yet, we add it and assign
 -> // generated _id to its own property.
 -> // This _id could be used later if we want to update
 -> // or remove the database entry.
 -> this._id = this.collection.add(
 -> JSON.parse(
 -> JSON.stringify(
 -> this, Object.getOwnPropertyNames(
 -> Object.getPrototypeOf(this))
 ->)
 ->)
 ->).execute().getGeneratedIds()[0]
 -> }
 -> },

 The save method stores the object in the database. If there is no _id field in the object, that usually means there is no such object in the database yet. So, we use the add method to insert it into the database and set the _id property of the object to the value, generated by MySQL. If such a property already exists, that either means that the object is already in the database or we want to set _id explicitly. In this case, we use the addOrReplaceOne method that either adds a new object with the specified unique identifier or replaces the existing one:

 -> // Removes the entry from the database.
 -> // Once removed we unset property _id of the object.
 -> remove: function() {
 -> this.collection.remove("_id = '" + this._id + "'").
 -> execute()
 -> delete Object.getPrototypeOf(this)._id
 -> delete this._id
 -> }
 -> }

 The remove method deletes the record from the database and also deletes the _id property of our object so that, in case we want to store it in the database again, it will be considered a new record, and a new unique identifier will be generated. We remove the _id property from both the prototype and the object.

 Let’s take the CollectionLimbs collection that we created in Recipe 2.9 as an example. First, we retrieve it from the current session and set as a collection property of the CookbookCollection object:

mysql-js [cookbook]> CookbookCollection.collection=session.getCurrentSchema().
 -> getCollection('CollectionLimbs')
 ->
<Collection:CollectionLimbs>

Tip

 In Recipe 2.9, we rolled back all our modifications to the CollectionLimbs. If you continued your own experiments further before running the examples in this recipe, execute the following:

CookbookCollection.collection ↩
.remove("thing='cat' or thing='dog'")

 Then let’s create an object, cat, with two arms and two legs:

mysql-js [cookbook]> var cat = {
 -> thing: "cat",
 -> arms: 2,
 -> legs: 2
 -> }
 ->

 To be able to store our cat in the database, we need to assign the CookbookCollection object as a prototype of the cat object:

mysql-js [cookbook]> cat = Object.setPrototypeOf(CookbookCollection, cat)
{
 "arms": 2,
 "collection": <Collection:CollectionLimbs>,
 "find": <Function:find>,
 "legs": 2,
 "remove": <Function:remove>,
 "save": <Function:save>,
 "thing": "cat"
}

 Now we can save our object in the database:

mysql-js [cookbook]> cat.save()

 We can check if we can retrieve the object with the find method:

mysql-js [cookbook]> CookbookCollection.find('thing = "cat"')
{
 "_id": "000060140a2d0000000000000007",
 "arms": 2,
 "legs": 2,
 "thing": "cat"
}

 We can also confirm that our object now has _id property:

mysql-js [cookbook]> cat._id
000060140a2d0000000000000007

 Do you see anything wrong here? Yes! The cat has two arms and two legs, but cats usually have no arms and four legs. Let’s fix it:

mysql-js [cookbook]> cat.arms=0
0
mysql-js [cookbook]> cat.legs=4
4
mysql-js [cookbook]> cat.save()
mysql-js [cookbook]> CookbookCollection.find('thing = "cat"')
{
 "_id": "000060140a2d0000000000000007",
 "arms": 0,
 "legs": 4,
 "thing": "cat"
}

 Now our cat is in good shape.

 If we want to clean up the collection and leave it in the state it was in before our experiments, we can remove the cat document from the database:

mysql-js [cookbook]> cat.remove()

 We may also notice that the cat._id property does not exist in our object anymore:

mysql-js [cookbook]> cat._id
mysql-js [cookbook]>

 If we decide to store the object in the database again, a new unique identifier will be generated.

 You’ll find the CookbookCollection code in the file mysql_shell/CookbookCollection.js of the recipes distribution.

2.16 Filling Test Data Using Python’s Data Science Modules
Problem

 You want to fill a test table with partially random data. For example, you need IDs to follow a sequence. You also want them to have realistic names and surnames. The rest of the values in the table can be random, but the index should have certain a cardinality. More about indexes in Chapter 21.

Solution

 Script data population using Python and its specific data science modules.

Discussion

 We’re often in the situation where we need to fill a table with fake data that mimics real-world data for testing purposes. For example, perhaps you’ve developed an application and want to check what happens if the volume of data stored in it increases. Or you’ve hit a situation where a particular query works slowly in production, and you want to experiment on the test server but do not want to copy production data due to security or performance reasons. This task may also be required when you want to ask third-party consultants for help.

 One such example is the patients table that we used in Recipe 24.12. This table contains records of patients who spent more than one day in a hospital. It stores this data as national ID, name, surname, gender, diagnosis, and outcome, such as dates a patient spent in the hospital and if they recovered, checked out of the hospital with the same symptoms, or even died. You can find these details by running the SHOW CREATE TABLE command:

 MySQL cookbook Py > session.sql('SHOW CREATE TABLE patients')
*************************** 1. row ***************************
 Table: patients
Create Table: CREATE TABLE `patients` (
 `id` int NOT NULL AUTO_INCREMENT,
 `national_id` char(32) DEFAULT NULL,
 `name` varchar(255) DEFAULT NULL,
 `surname` varchar(255) DEFAULT NULL,
 `gender` enum('F','M') DEFAULT NULL,
 `age` tinyint unsigned DEFAULT NULL,
 `additional_data` json DEFAULT NULL,
 `diagnosis` varchar(255) DEFAULT NULL,
 `result` enum('R','N','D') DEFAULT NULL↩
 COMMENT 'R=Recovered, N=Not Recovered, D=Dead',
 `date_arrived` date NOT NULL,
 `date_departed` date DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1101 ↩
DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.0009 sec)

 Of course, we wouldn’t even think about using real data for examples in this table. However, we still want to pretend that the data is real. For example, names and surnames should be ones that are popular, and genders should correspond to the right names. For example, John is likely a male and Ann is likely a female. Ages should fall in realistic ranges, and departure dates should be greater than the date when the patient arrived to the hospital. It is also unlikely that a patient would spend 10 years in the hospital.

 Python is often used for data analysis and statistics. It has libraries, such as pandas, that help to manipulate large datasets and has convenient methods to read and generate data. All of these make Python ideal for performing our task.

 To use the pandas module in MySQL Shell, you need to have it installed on your machine and add the path where the library is located, in MySQL Shell’s sys.path. Here are the steps that will help you perform this task:

	
 First, check which version of Python MySQL Shell is running. In our case, it’s version 3.7.7:

 MySQL cookbook Py > import sys
 MySQL cookbook Py > sys.version
3.7.7 (default, Aug 12 2020, 09:13:48)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-23.0.1)]

	
 MySQL Shell does not come with the python executable and pip that you can run from outside MySQL Shell. Therefore, you need to install the same version as MySQL Shell’s Python. We preferred to keep the system-wide installed version 3.8.5 untouched and install the same version that our MySQL Shell instance used: 3.7.7 into a local directory from the source code. You can decide to have the same version system-wide.

	
 Once the correct version of Python is installed, check where it stores its modules, and add this directory to the sys.path of the MySQL Shell:

 MySQL cookbook Py > sys.path.append(↩
 "/home/sveta/bin/python-3.7.7/lib/python3.7/site-packages")

Tip

 To avoid typing this command each time you want to use modules that are not part of the MySQL Shell distribution, add this command to the Python mode configuration file. This file, by default, is located at ~/.mysqlsh/mysqlshrc.py.

	
 Install the necessary packages. For our example, we used numpy, pandas, random, string, and datetime.

 Once these prerequisites are met, we’re ready to fill our table with example data.

Data filling step-by-step

 First, we need to import all of the necessary packages. Type the following in the MySQL Shell Python protocol session:

import numpy
from pandas import pandas
import random
import string
from datetime import datetime
from datetime import timedelta

 Now we’re ready to generate the data.

 For names and surnames, we decided to use real names found in the datasets, available on the internet. You’ll find the datasets we used and their licenses and distribution rights in the datasets directory of the recipes distribution. For diagnoses, we also used publicly available data of the top 8 diagnoses and their frequencies, and the fake diagnosis “Data Phobia” with an even higher frequency. Data for genders is stored with the names. All other values are generated. The data doesn’t need to look real. For example, a 16-year-old patient may end up dying from alcoholic liver disease, which would be unlikely to happen in real life but is sufficient for demonstration purposes. However, Python allows to solve such collisions. You can change our example to have even more realistic data.

 It’s convenient to have a variable defining the final number of rows in the table:

 MySQL cookbook Py > num_rows=1000

 Now let’s discuss how we’ll process each column in the patients table.

Names and genders

 Names and genders are stored in the top-350-male-and-female-names-since-1848-2019-02-26.csv file in the following format:

$ head datasets/top-350-male-and-female-names-since-1848-2019-02-26.csv
Rank,Female Name,Count,Male Name,Count_
1,Mary,54276,John,108533
2,Margaret,49170,William,87239
3,Elizabeth,36556,James,69987
4,Sarah,28230,David,62774
5,Patricia,20689,Robert,56511
6,Catherine,19713,Michael,51768
7,Susan,19165,Peter,44758
8,Helen,18881,Thomas,42467
9,Emma,18192,George,39195

 This means that each row contains a rank from 1 to 350, one name that is traditionally female and one name that is traditionally male of this rank and count of such names. We’re not interested in the rank and count. We just need female and male names with gender information. Therefore, we need to perform slight manipulation on this dataset after reading.

 First, we read the file using the read_csv pandas method. We’ll read the file twice: once for traditional female names and once for traditional male names. We’ll use only the Female Name column in the first attempt and only the Male Name column in the second attempt. We’ll also rename this column so it corresponds with the name of the column in our database:

 MySQL cookbook Py > female_names=pandas.\
 -> read_csv(
 -> "top-350-male-and-female-names-since-1848-2019-02-26.csv",
 -> usecols=["Female Name"]
 ->).rename(columns={'Female Name': 'name'})
 ->
 MySQL cookbook Py > male_names=pandas.\
 -> read_csv(
 -> "top-350-male-and-female-names-since-1848-2019-02-26.csv",
 -> usecols=["Male Name"]
 ->).rename(columns={'Male Name': 'name'})
 ->

 Once done, we’ll add a gender column to our datasets:

 MySQL cookbook Py > female_names['gender']=(['F']*↩
 female_names.count()['name'])
 MySQL cookbook Py > male_names['gender']=(['M']*↩
 male_names.count()['name'])

 And, finally, we’ll concatenate the two datasets into one:

 MySQL cookbook Py > names=pandas.\
 -> concat([female_names, male_names],
 -> ignore_index=True)
 ->

 In order to read the top-350-male-and-female-names-since-1848-2019-02-26.csv file, it needs to be in the current working directory, or you need to provide the absolute path to the file. To find your current working directory, run the following:

os.getcwd()

 To change the working directory, run the following:

os.chdir('/mysqlcookbook/recipes/datasets')

 This will allow you to read files located in /mysqlcookbook/recipes/datasets. Adjust the directory path to reflect your environment.

Tip
The concat method of the Python pandas module works similarly to the SQL UNION clause.

 We can examine the content of our dataset that uses the pandas DataFrame data structure by typing its name:

 MySQL cookbook Py > names
 name gender
0 Mary F
1 Margaret F
2 Elizabeth F
3 Sarah F
4 Patricia F
..
695 Quentin M
696 Henare M
697 Joe M
698 Darcy M
699 Wade M

[700 rows x 2 columns]

 The number of rows in the DataFrame is smaller than the number of rows we want to have in our table, so we need to generate more. We also want to shuffle the data so we have a random distribution of names. We’ll use the sample method for this purpose. Since we’re creating a larger set than the initial one, we need to specify the replace=True option. We’ll also re-create the index for the new DataFrame using the pandas.Series method, so it will be ordered:

 MySQL cookbook Py > names=names.sample(num_rows, replace=True).\
 -> set_index(pandas.Series(range(num_rows)))
 ->

Surnames

 For surnames, we’ll use a dataset stored in the Names_2010Census.csv file. It has multiple columns, such as a rank, the number of surnames, and so on, but we’re interested only in the first column: name. We also don’t need the last row of this file, containing a record for ALL OTHER NAMES. Surnames in this file are stored in uppercase. We could format them differently, but we’ll leave them as is. We’ll also rename the name column to surname so it matches our table definition:

 MySQL cookbook Py > surnames=pandas.read_csv("Names_2010Census.csv",
 -> usecols=['name'], skipfooter=1, engine='python').\
 -> rename(columns={'name': 'surname'})
 ->

 pandas prints a warning that it will use a slower but more powerful python engine to process the file, but this warning can be ignored.

 We’ll shuffle the surnames using the same method that we used for the names:

 MySQL cookbook Py > surnames=surnames.sample(num_rows, replace=True).\
 -> set_index(pandas.Series(range(num_rows)))
 ->

Diagnoses

 We manually prepared the diagnosis.csv file that has just 9 diagnoses; therefore, we only need to read it and don’t need to specify any option:

 MySQL cookbook Py > diagnoses=pandas.read_csv('diagnosis.csv')
 MySQL cookbook Py > diagnoses
 diagnosis frequency
0 Acute coronary syndrome 2.1
1 Alcoholic liver disease 0.3
2 Pneumonia 3.6
3 Chronic obstructive pulmonary disease 2.1
4 Gastro-intestinal bleed 0.8
5 Heart failure 0.8
6 Sepsis 0.8
7 Urinary tract infection 2.4
8 Data Phobia 6.2

 Diagnoses are different from the names and surnames, because they have different frequencies and we want them distributed in our final dataset according to those frequencies. Therefore, we’ll pass the weights parameter to the sample method:

 MySQL cookbook Py > diagnoses=diagnoses.sample(
 -> num_rows, replace=True,
 -> weights=diagnoses['frequency']
 ->).set_index(pandas.Series(range(num_rows)))
 ->

Results

 The data type for the results is an ENUM that can contain only three possible values: R for recovered, N for not recovered, and D for dead. We would not use any source for such results but generate a DataFrame interactively:

 MySQL cookbook Py > results = pandas.DataFrame({
 -> "result": ["R", "N", "D"],
 -> "frequency": [6,3,1]
 -> })
 ->

 We added a frequency to our results. These frequencies have nothing to do with reality: we need them only to distribute our results differently.

 Since we have a frequency for our results, we’ll generate the dataset the same way we did for diagnoses:

 MySQL cookbook Py > results=results.sample(
 -> num_rows, replace=True,
 -> weights=results['frequency']
 ->).set_index(pandas.Series(range(num_rows)))
 ->

The table

 Our main datasets are prepared. Now we can start inserting rows into the table one by one.

 First, let’s retrieve a Table object so we can query it comfortably:

 MySQL cookbook Py > patients=session.get_schema('cookbook').↩
 get_table('patients')

 Then we’ll start the loop:

 MySQL cookbook Py > for i in range(num_rows):

 All subsequent generations will be proceeded in this loop.

National ID

 The format of the national ID can vary between countries, and we simply need something unique that follows some pattern. We decided to use two digits, followed by two uppercase letters, followed by six digits. To generate random digits we’ll use the randrange method of the random module, and to generate letters, we’ll use the sample method from the random module. We’ll use the predefined set string.ascii_uppercase as a dataset to sample. Then we’ll join the generated array to an empty string so it will create a string:

 MySQL cookbook Py > national_id=str(random.randrange(10,99)) +\
 -> ''.join(random.sample(string.ascii_uppercase, 2)) + \
 -> str(random.randrange(100000, 999999))
 ->

Age

 For the age we’ll simply choose a number between 15 and 99. We don’t care about the frequency of ages or about how many patients of certain ages have a certain disease:

 MySQL cookbook Py > age=random.randrange(15, 99)

Dates a patient spent in the hospital

 For the date_arrived column, we decided to just use any date in the year 2020. We can generate this date by specifying the start date as January 1, 2020, and using the timedelta method:

 MySQL cookbook Py > date_arrived=datetime.\
 -> strptime('2020-01-01', '%Y-%m-%d') +\
 -> timedelta(days=random.randrange(365))
 ->

 For the date_departed column, we’ll use the same idea, but we’ll use date_arrived as the starting date and an interval of two months:

 MySQL cookbook Py > date_departed=date_arrived +\
 -> timedelta(days=random.randrange(60))
 ->

 This code creates values for date_arrived and date_departed as datetime Python objects that could not be inserted into the MySQL table, so we need to convert them into the string format:

 MySQL cookbook Py > date_arrived=date_arrived.strftime('%Y-%m-%d')
 MySQL cookbook Py > date_departed=date_departed.strftime('%Y-%m-%d')

Preparing the row

 We have values to be inserted into the i-th row of our table into the columns national_id, age, date_arrived, and date_departed. But the rest of the values are stored in DataFrames of exactly the desired number of rows. We need to retrieve only a specific row from the DataFrame:

 MySQL cookbook Py > name=names['name'][i]
 MySQL cookbook Py > gender=names['gender'][i]
 MySQL cookbook Py > surname=surnames['surname'][i]
 MySQL cookbook Py > result=results['result'][i]
 MySQL cookbook Py > diagnosis=diagnoses['diagnosis'][i]

Inserting a row into a table

 Now we’re ready to insert a row into our table. We’ll use the insert method of the Table class that we discussed in detail in Recipe 2.8:

 MySQL cookbook Py > patients.insert(
 -> 'national_id', 'name', 'surname',
 -> 'gender', 'age', 'diagnosis',
 -> 'result', 'date_arrived', 'date_departed'
 ->).values(
 -> national_id, name, surname,
 -> gender, age, diagnosis,
 -> result, date_arrived, date_departed
 ->).execute()

Putting it all together

 It may be convenient to define the code we just wrote as a function so we can reuse it. Let’s create one, called generate_patients_data:

def generate_patients_data(num_rows):
 # read datasets
 # names and genders
 female_names = pandas.read_csv(
 "top-350-male-and-female-names-since-1848-2019-02-26.csv",
 usecols = ["Female Name"]
).rename(columns = {'Female Name': 'name'})
 female_names['gender'] = (['F']*female_names.count()['name'])
 male_names = pandas.read_csv(
 "top-350-male-and-female-names-since-1848-2019-02-26.csv",
 usecols = ["Male Name"]
).rename(columns = {'Male Name': 'name'})
 male_names['gender'] = (['M']*male_names.count()['name'])
 names = pandas.concat([female_names, male_names], ignore_index=True)
 surnames = pandas.read_csv(
 "Names_2010Census.csv",
 usecols=['name'], skipfooter=1
).rename(columns={'name': 'surname'})
 # diagnoses
 diagnoses = pandas.read_csv('diagnosis.csv')
 # Possible results
 results = pandas.DataFrame({
 "result": ["R", "N", "D"],
 "frequency": [6,3,1]
 })
 # Start building data
 diagnoses = diagnoses.sample(
 num_rows, replace=True,
 weights=diagnoses['frequency']
).set_index(pandas.Series(range(num_rows)))
 results = results.sample(
 num_rows, replace=True,
 weights=results['frequency']
).set_index(pandas.Series(range(num_rows)))
 names=names.sample(
 num_rows, replace=True
).set_index(pandas.Series(range(num_rows)))
 surnames=surnames.sample(
 num_rows, replace=True
).set_index(pandas.Series(range(num_rows)))
 # Get table object
 patients=session.get_schema('cookbook').get_table('patients')
 # Loop, inserting rows
 for i in range(num_rows):
 national_id = str(random.randrange(10,99)) + \
 ''.join(random.sample(string.ascii_uppercase, 2)) + \
 str(random.randrange(100000, 999999))
 age = random.randrange(15, 99)
 date_arrived = datetime.strptime('2020-01-01', '%Y-%m-%d') + \
 timedelta(days=random.randrange(365))
 date_departed = date_arrived + timedelta(days=random.randrange(60))
 date_arrived = date_arrived.strftime('%Y-%m-%d')
 date_departed = date_departed.strftime('%Y-%m-%d')
 name = names['name'][i]
 gender = names['gender'][i]
 surname = surnames['surname'][i]
 result = results['result'][i]
 diagnosis = diagnoses['diagnosis'][i]
 patients.insert(
 'national_id', 'name', 'surname',
 'gender', 'age', 'diagnosis',
 'result', 'date_arrived', 'date_departed'
).values(
 national_id, name, surname,
 gender, age, diagnosis,
 result, date_arrived, date_departed
).execute()

 We can check how it works by truncating the patients table and then calling the function:

 MySQL cookbook Py > \sql truncate table patients
Query OK, 0 rows affected (0.0477 sec)
 MySQL cookbook Py > session.get_schema('cookbook').get_table('patients').count()
0
 MySQL cookbook Py > generate_patients_data(1000)
__main__:17: ParserWarning: Falling back to the 'python' engine ↩
because the 'c' engine does not support skipfooter; ↩
you can avoid this warning by specifying engine='python'.
 MySQL cookbook Py > session.get_schema('cookbook'). ↩
 get_table('patients').count()
1000
 MySQL cookbook Py > session.get_schema('cookbook'). ↩
get_table('patients').select().limit(10)
+----+-------------+----------+------------+--------+-----+-----------------+....
| id | national_id | name | surname | gender | age | additional_data | ...
+----+-------------+----------+------------+--------+-----+-----------------+....
| 1 | 74LM282144 | May | NESSELRODE | F | 83 | NULL | ...
| 2 | 44PR883357 | Kathryn | DAKROUB | F | 44 | NULL | ...
| 3 | 60JP130066 | Owen | CIELINSKI | M | 47 | NULL | ...
| 4 | 28ST588095 | Diana | KILAR | F | 35 | NULL | ...
| 5 | 77RP202627 | Beryl | ANGIONE | F | 43 | NULL | ...
| 6 | 27MU569536 | Brian | HOUDEK | M | 84 | NULL | ...
| 7 | 94AG787006 | Fredrick | WOHLMAN | M | 20 | NULL | ...
| 8 | 42BX974594 | Jarrod | DECAPUA | M | 64 | NULL | ...
| 9 | 63XJ322387 | Ruth | PAHUJA | F | 16 | NULL | ...
| 10 | 91AT797455 | Frances | VANBRUGGEN | F | 63 | NULL | ...
+----+-------------+----------+------------+--------+-----+-----------------+....

+----+.....+-------------------------+--------+--------------+---------------+
| id | ... | diagnosis | result | date_arrived | date_departed |
+----+.....+-------------------------+--------+--------------+---------------+
1	...	Data Phobia	D	2020-03-20	2020-04-26
2	...	Data Phobia	R	2020-03-20	2020-05-09
3	...	Pneumonia	R	2020-04-05	2020-04-23
4	...	Acute coronary syndrome	R	2020-04-18	2020-05-01
5	...	Pneumonia	R	2020-01-31	2020-02-07
6	...	Acute coronary syndrome	D	2020-01-25	2020-03-06
7	...	Data Phobia	R	2020-08-10	2020-09-04
8	...	Pneumonia	R	2020-02-12	2020-03-31
9	...	Pneumonia	N	2020-11-17	2020-12-19
10	...	Sepsis	R	2020-12-11	2020-12-29
+----+.....+-------------------------+--------+--------------+---------------+
10 rows in set (0.0004 sec)

 We can also store this function in a file and reuse it later. We’ll discuss reusing user code in Recipe 2.17.

 You’ll find the code for the generate_patients_data function in the mysql_shell/generate_patients_data.py file of the recipes distribution.

See Also
For additional information about the Python pandas module, see the pandas documentation.

2.17 Reusing Your Scripts for MySQL Shell
Problem

 You wrote code for MySQL Shell and want to reuse it later.

Solution

 Store your work, and later load the files using the \source command. Or, set up the files as startup scripts.

Discussion

 MySQL Shell allows you to reuse your code. You can do it either by using the \source command or by setting your scripts to be executed at startup. Let’s examine each of these possibilities in detail.

 The \source command is available for each of the modes and works similarly to the \source of mysql command client. The only difference is that your source files should be written in the same language as the selected mode.

 For example, to load the CookbookCollection object that we discussed in Recipe 2.15, we can type this command:

 MySQL cookbook JS > \source /cookbook/recipes/mysql_shell/CookbookCollection.js
 MySQL cookbook JS > CookbookCollection
{
 "collection": null,
 "find": <Function:find>,
 "remove": <Function:remove>,
 "save": <Function:save>
}

 As you see, it immediately becomes available for use.

 Similarly, you can import the definition of the generate_patients_data function that we discussed in Recipe 2.16:

 MySQL cookbook Py > \source /cookbook/recipes/mysql_shell/generate_patients_data.py

 Or, in SQL mode, you can load any SQL file:

 MySQL cookbook SQL > \source /cookbook/recipes/tables/patients.sql
Query OK, 0 rows affected (0.0003 sec)
Query OK, 0 rows affected (0.0202 sec)
Query OK, 0 rows affected (0.0001 sec)
Query OK, 0 rows affected (0.0334 sec)
Query OK, 0 rows affected (0.0001 sec)
Query OK, 20 rows affected (0.0083 sec)

Records: 20 Duplicates: 0 Warnings: 0

 If you want to execute scripts at startup, you need to edit the mysqlshrc.js file for JavaScript mode and mysqlshrc.py for Python mode, located in one of the locations that MySQL Shell uses to search for the startup scripts. These can be located in any of the following:

	
 The global configuration file, located in /etc/mysql/mysqlsh/mysqlshrc.[js|py] on Unix or %PROGRAMDATA%\MySQL\mysqlsh\mysqlshrc.[js|py] on Windows.

	
 Your personal configuration file, located either under $HOME/.mysqlsh/mysqlshrc.[js|py] on Unix or under %APPDATA%\MySQL\mysqlsh\mysqlshrc.[js|py] on Windows. Alternatively, you can specify the MYSQLSH_USER_CONFIG_HOME variable and store the mysqlshrc.[js|py] file under it.

	
 The share/mysqlsh directory, located under the MySQL Shell installation root or specified by the MYSQLSH_HOME variable.

 The mysqlshrc.[js|py] format is the same as for the corresponding modes. Thus, to preload the CookbookCollection object, you need to convert CookbookCollection.js into a module by exporting our CookbookCollection object:

exports.CookbookCollection = {
 // Collection where the object is stored
 collection: null,
 ...

 Then you need to put two lines in the mysqlshrc.js file:

sys.path = [...sys.path, '/cookbook/recipes/mysql_shell'];
const cookbook=require('CookbookCollectionModule.js')

 In the first line, we added a directory where our modules are located in the modules’ search path. On the second line, we imported the module itself. The CookbookCollection object is available as a property of the global cookbook object:

 MySQL cookbook JS > cookbook
{
 "CookbookCollection": {
 "collection": null,
 "find": <Function:find>,
 "remove": <Function:remove>,
 "save": <Function:save>
 }
}

Tip

 MySQL Shell uses Node.js modules. Read the Node.js documentation to explain how to write and use JavaScript modules in MySQL Shell.

 CookbookCollectionModule.js is located in the mysql_shell directory of the recipes distribution.

 To import the Python generate_patients_data function in the startup script, we need to add the import mysqlsh instruction to our Python file, because when the module is loaded, global objects of the MySQL Shell are not yet available. We’ll also change the following line:

patients=session.get_schema('cookbook').get_table('patients')

 to:

patients=mysqlsh.globals.session.get_schema('cookbook').get_table('patients')

 Otherwise, Python will fail with an error that the session name is not yet defined.

 We’ll name our module cookbook.py for brevity.

 In our function, we use local paths from the current directory to the files; therefore, we’ll change the default search path to the directory that has all the datasets in it. To do this, we’ll import the os module and use its chdir method. Then we simply import the cookbook module. The resulting mysqlshrc.py will have the following code:

sys.path.append("/home/sveta/bin/python-3.7.7/lib/python3.7/site-packages")
sys.path.append("/cookbook/recipes/mysql_shell")

import os
os.chdir('/cookbook/recipes/datasets')
import cookbook

 The cookbook.py module is located in the mysql_shell directory of the recipes distribution.

See Also
For additional information about customizing MySQL Shell with external scripts, see “Customizing MySQL Shell” in the MySQL User Reference Manual.

Chapter 3. MySQL Replication
3.0 Introduction

 MySQL replication provides a way to set up a copy (replica) server of the active (source) database, then automatically continuously update such a copy applying all of the changes the source server receives.

 Replica is useful in many situations, particularly the following:

	Hot Standby
	A server, normally idle, will replace an active one in case of a failure.

	Read scale
	Multiple servers, replicating from the same source, can process more parallel read requests than a single machine.

	Geographical distribution
	When an application serves users in different regions, having a local database server can help users retrieve data faster.

	Analytics server
	Complicated analytics queries may take hours to run, set plenty of locks, and use a lot of resources. Running them on the replica minimizes the impact on other parts of the application.

	Backup server
	Taking backups from a live database involves high-IO resource usage and locking, which is necessary to avoid data inconsistencies between the backup and active dataset. Taking backups from the dedicated replica reduces the impact on production.

	Delayed copy
	A replica, applying updates with a delay, configured by the SOURCE_DELAY (MASTER_DELAY) option, allows for rolling back human errors, such as the removal of an important table.

Note

 Historically, the source server was called a “master,” and the replica server was called a “slave.” Recently, it was discovered that the terminology master and slave do not correctly reflect how replication works, and further, the words themselves are very problematic. In the last few years, most software vendors are switching from the old to the new terminology. For MySQL, this change was implemented in version 8.0.22 and is still in progress. Not all option names and commands support the new syntax. There’s also a good chance that even if your MySQL version fully supports the new syntax, you may still find legacy terminology on public forums and in previously printed books. Therefore, in this book we use the terms source and replica when discussing replication roles. For the commands and variable names that support the new syntax, we provide both syntaxes the first time, then use the new syntax. We use the legacy syntax if the change is still in progress.

 MySQL replication requires special activities on both servers.

 The source server stores all updates in binary log files. These files contain encoded update events. The source server writes to a single binary log file. Once it reaches max_binlog_size, the binary log is rotated and a new file is created.

 The binary log file supports two formats: STATEMENT and ROW. In the STATEMENT format, SQL statements are written as they are and then encoded into binary format. In the ROW format, SQL statements are not recorded. Instead, actual updates to the table rows are stored. The ROW binary log format is preferred.

Tip

 When using the ROW binary log format it could be useful, when troubleshooting replication errors, to know the actual statement received by the source server. Use the binlog_rows_query_log_events option to store the information log event with the original query. Such an event is not participating in replication and can be retrieved for informational purposes only.

 The replica server continuously requests binary log events from the source server, then stores them in special files called relay log files. It has a separate thread, called IO, or the connection thread, which does only this job. Another thread, or threads, called SQL, or the applier thread, reads events from the relay logs and applies them to the tables.

 Each event in the binary log has its own unique identifier: its position. The position is unique to each file and resets when a new one is created. The replica may use the binary log file name and position as a unique identifier of the event.

 While the binary log position uniquely identifies an event in a particular file, it cannot be used to identify whether a particular event was applied on the replica or not. To resolve this problem, Global Transaction Identifiers (GTIDs) were introduced. GTIDS are assigned to each transaction. They are unique across the life of a MySQL installation. They also use a mechanism to uniquely identify the server; therefore, they’re safe to use even if replication is possible from multiple sources.

 The replica stores information about source binary log coordinates in the special repository, defined by the master_info_repository variable. Such a repository can be stored either in a table or in a file.

 This chapter describes how to set up and use MySQL replication. It covers all typical replication scenarios, including the following:

	One-way source-replica setup for two servers

	Circular replication

	Multisource replication

	Semisynchronous replication

	Group replication

3.1 Configuring Basic Replication Between One Source and One Replica
Problem

 You want to prepare two servers for the replication.

Solution

 Add the configuration log-bin option to the source configuration file, specify a unique server_id for both servers, add options to support GTIDs and/or the nondefault binary log format, and create a user with the REPLICATION SLAVE privilege on the source.

Discussion

 First, you need to prepare both servers to be able to handle replication events.

 On the source server, do the following:

	Enable the binary log by adding the log-bin option into the configuration file. Changing this option requires a restart. The binary log is enabled by default since version 8.0.

	Set the unique server_id. server_id is a dynamic variable and can be changed without taking the server offline, but we strongly recommend setting it in the configuration file too, so it won’t be overridden after restart.

	Create a replication user, and grant REPLICATION SLAVE to it:
mysql> CREATE USER repl@'%' IDENTIFIED BY 'replrepl';
Query OK, 0 rows affected (0,01 sec)

mysql> GRANT REPLICATION SLAVE ON *.* TO repl@'%';
Query OK, 0 rows affected (0,03 sec)

Warning

 In MySQL 8.0, the default authentication plug-in is caching_sha2_password, which requires TLS connection or the source public key. Therefore, if you want to use this plug-in, you need to enable TLS connection for the replica as described in Recipe 3.14 or use the SOURCE_PUBLIC_KEY_PATH=1 (GET_MASTER_PUBLIC_KEY=1) option of the CHANGE REPLICATION SOURCE (CHANGE MASTER) command.

 Alternatively, you can use the authentication plug-in, allowing insecure connections:

mysql> CREATE USER repl@'%' IDENTIFIED WITH mysql_native_password BY 'replrepl';
Query OK, 0 rows affected (0,01 sec)

mysql> GRANT REPLICATION SLAVE ON *.* TO repl@'%';
Query OK, 0 rows affected (0,03 sec)

 On the replica, just set the unique server_id.

Tip

 Since version 8.0, you can use SET PERSIST to save a dynamically changed variable permanently:

mysql> SET PERSIST server_id=200;
Query OK, 0 rows affected (0,01 sec)

 See “Persisted System Variables” in the MySQL User Reference Manual for details.

 At this stage, you can tune other options that affect replication safety and performance, particularly the following:

	binlog_format
	Binary log format

	GTID support
	Support for global transaction identifiers

	replica_parallel_type (slave_parallel_type) and replica_parallel_workers (slave_parallel_workers)
	Multithreaded replica support

	Binary log on the replica
	Define if and how the replica will use the binary log

 We’ll cover these options in the following recipes.

3.2 Position-Based Replication in the New Installation Environment
Problem

 You want to set up a replica of the just-installed MySQL server using position-based configuration.

Solution

 Prepare the source and replica servers as described in Recipe 3.1. Obtain the current binary log position using the SHOW MASTER STATUS command on the source server, and point the replica to the appropriate position using the CHANGE REPLICATION SOURCE...source_log_file='BINARY LOG FILE NAME', source_log_pos=POSITION; (CHANGE MASTER...master_log_file='BINARY LOG FILE NAME', master_log_pos=POSITION;) command.

Discussion

 For this recipe, we assume that you have two freshly installed servers with no user data in them. There is no write activity on any of the servers.

 First, prepare them for replication as described in Recipe 3.1. Then, on the source, run the SHOW MASTER STATUS command:

mysql> SHOW MASTER STATUS;
+-------------------+----------+--------------+------------------+-------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB | Executed_Gtid_Set |
+-------------------+----------+--------------+------------------+-------------------+
| master-bin.000001 | 156 | | | |
+-------------------+----------+--------------+------------------+-------------------+
1 row in set (0.00 sec)

 The field File contains the name of the current binary log, and the Position field contains the current position. Record the values of these fields.

 On the replica, run the CHANGE REPLICATION SOURCE (CHANGE MASTER) command:

mysql> CHANGE REPLICATION SOURCE
 -> TO SOURCE_HOST='sourcehost', -- Host of the source server
 -> SOURCE_PORT=3306, -- Port of the source server
 -> SOURCE_USER='repl', -- Replication user
 -> SOURCE_PASSWORD='replrepl', -- Password
 -> SOURCE_LOG_FILE='source-bin.000001', -- Binary log file
 -> SOURCE_LOG_POS=156, -- Start position
 -> GET_SOURCE_PUBLIC_KEY=1;
Query OK, 0 rows affected, 1 warning (0.06 sec)

 To start the replica, use the START REPLICA (START SLAVE) command:

mysql> START REPLICA;
Query OK, 0 rows affected (0.01 sec)

 To check if the replica is running, use SHOW REPLICA STATUS (SHOW SLAVE STATUS):

mysql> \P grep Running
PAGER set to 'grep Running'
mysql> SHOW REPLICA STATUS\G
 Replica_IO_Running: Yes
 Replica_SQL_Running: Yes
 Replica_SQL_Running_State: Slave has read all relay log;↩
 waiting for more updates
1 row in set (0.00 sec)

 The preceding listing confirms that both the IO (connection) and SQL (applier) replica threads are running and that the replication state is fine. We’ll discuss the full output of the SHOW REPLICA STATUS command in Recipe 3.15.

 Now you can enable writes on the source server.

3.3 Setting Up a Position-Based Replica of a MySQL Installation that Is Already in Use
Problem

 Setting up a replica for the newly installed server is different from the case in which the future source already has data. In the latter case, you need to be especially careful to not introduce data inconsistency by specifying the wrong starting position. In this recipe, we provide instructions on how to set up a replica of the MySQL installation in use.

Solution

 Prepare the source and replica servers as described in Recipe 3.1, stop all writes on the source server, back it up, then obtain the current binary log position using the SHOW MASTER STATUS command, which will be used for pointing the replica to the appropriate position using the CHANGE REPLICATION SOURCE...source_log_file='BINARY LOG FILE NAME', source_log_pos=POSITION command.

Discussion

 As in the case of installing a new replica, both servers need to be configured for replication use, as described in Recipe 3.1. Before initiating setup, you need to ensure that both servers have the unique server_id and that the source server has binary logging enabled. You can create a replication user now, or you can do it before setting up a replica.

 If you have a server that has already been running for a while and want to set up a replica of it, you need to make a backup first, restore it on the replica, then point the replica to the source server. The challenge for this setup is using the correct binary log position: if the server is accepting writes while backup is running, the position will be consistently changing. As a result, the SHOW MASTER STATUS command will return the wrong result unless you stop all writes while making the backup.

 Standard backup tools support special options when making a backup of the future source server for a replica to bypass this issue.

 mysqldump, described in Recipe 6.6, has the --source-data (--master-data) option. If the --source-data option is set to 1, the CHANGE REPLICATION SOURCE statement, with the binary log coordinates at the time of the backup start, will be written into the resulting dump file and executed when the dump file is loaded:

$ mysqldump --host=127.0.0.1 --user=root \
> --source-data=1 --all-databases > mydump.sql
$ grep -b5 "CHANGE REPLICATION SOURCE" -m1 mydump.sql
906-
907---
910--- Position to start replication or point-in-time recovery from
974---
977-
978:CHANGE REPLICATION SOURCE TO SOURCE_LOG_FILE='source-bin.000002',↩
 SOURCE_LOG_POS=156;
1052-
1053---
1056--- Current Database: `mtr`
1083---
1086-

Tip

 If you want the replication position to be in the resulting dump file, but do not want the CHANGE REPLICATION SOURCE command to be automatically executed, set the --source-data option to 2: in this case, the statement will be written as a comment. You can execute it manually later.

 Tools that make online binary backups, such as Percona XtraBackup or MySQL Enterprise Backup, store binary log coordinates in special metadata files. Consult the documentation of your backup tool to find out how to safely back up the source server.

Tip

 There are several kinds of backups for MySQL. Tools that perform online backups don’t require you to stop the MySQL server. Logical backups result in a file with a set of commands that allow you to restore data. Binary backups copy physical database files. Binary backups are usually much faster than logical backups. Restoring binary backups is dramatically faster compared to restoring logical backups.

 The simplest and fastest binary backup utility is cp, which requires MySQL server to be stopped. Online backup tools allow you to copy binary data while the server is running and are the preferable solution for large datasets.

 Logical backup solutions, however, are compatible with higher differences between versions and can be used to recover data. They are also handy when you need to migrate a small part of your data, such as a table or even part of the table.

 Once you have a backup, restore it on the replica. For mysqldump, use mysql client to load the dump:

$ mysql < mydump.sql

 Once the backup is restored, start replication using the START REPLICA command.

3.4 Setting Up GTID-Based Replication
Problem

 You want to set up a replica using global transaction identifiers (GTIDs).

Solution

 Add the gtid_mode=ON and enforce_gtid_consistency=ON option in both the source and replica configuration files, then point the replica to the source server using the CHANGE REPLICATION SOURCE...SOURCE_AUTO_POSITION=1 command.

Discussion

 Position-based replication is easy to set up but is error-prone. What if you mix up and specify a position in the future? In this case, some transactions will be missed. Or, what happens if you specify a position in the past? In this case, the same transaction will be applied twice, and you’ll end up with duplicated, missed, or corrupted rows.

 To solve this issue, GTIDs were introduced to uniquely identify each transaction on the server. A GTID consists of two parts: the unique ID of the server where this transaction as executed the first time, and the unique ID of the transaction on this server. The source server ID is usually the value of the server_uuid global variable, and the transaction ID is a number starting with 1:

mysql> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: binlog.000001
 Position: 358
 Binlog_Do_DB:
 Binlog_Ignore_DB:
Executed_Gtid_Set: 467ccf91-0341-11eb-a2ae-0242dc638c6c:1
1 row in set (0.00 sec)

mysql> select @@gtid_executed;
+--+
| @@gtid_executed |
+--+
| 467ccf91-0341-11eb-a2ae-0242dc638c6c:1 |
+--+
1 row in set (0.00 sec)

 Transactions, executed by the server, are stored in GTID sets, and their GTIDs are visible in the SHOW MASTER STATUS output. You will also find them in the gtid_executed variable. The set contains the unique ID of the originating server and the range of transaction numbers.

 In the following example, 467ccf91-0341-11eb-a2ae-0242dc638c6c is the source server’s unique ID, and 1-299 is the range of transaction numbers that were executed on this server:

mysql> select @@gtid_executed;
+--+
| @@gtid_executed |
+--+
| 467ccf91-0341-11eb-a2ae-0242dc638c6c:1-299 |
+--+
1 row in set (0.00 sec)

 GTID sets can contain ranges, individual transactions, and groups of them, separated by a colon symbol. GTIDs with different source IDs are separated by a comma:

mysql> select @@gtid_executed\G
*************************** 1. row ***************************
@@gtid_executed: 000bbf91-0341-11eb-a2ae-0242dc638c6c:1,
467ccf91-0341-11eb-a2ae-0242dc638c6c:1-310:400
1 row in set (0.00 sec)

 Normally, GTIDs are automatically assigned, and you don’t need to worry about their values.

 However, in order to use GTIDs, there are additional steps to prepare your servers.

	 Two configuration options are required to enable GTIDs: gtid_mode=ON and enforce-gtid-consistency=ON. They must be enabled on both servers before starting replication.
	

	 If you’re setting up a new replica of a source that is running with GTIDs enabled, just adding these options into the configuration file and restarting the servers is enough. Once you’ve done that, you can enable replication using the CHANGE REPLICATION SOURCE...SOURCE_AUTO_POSITION=1 command and start it, as follows:
	
mysql> CHANGE REPLICATION SOURCE TO
 -> SOURCE_HOST='sourcehost', -- Host of the source server
 -> SOURCE_PORT=3306, -- Port of the source server
 -> SOURCE_USER='repl', -- Replication user
 -> SOURCE_PASSWORD='replrepl', -- Password
 -> GET_SOURCE_PUBLIC_KEY=1,
 -> SOURCE_AUTO_POSITION=1;
Query OK, 0 rows affected, 1 warning (0.06 sec)

mysql> START REPLICA;
Query OK, 0 rows affected (0.01 sec)

	

	 However, if replication was already running using position-based setup, you need to perform additional steps:
	
	
	 Stop all updates, making both servers read only:
	
mysql> SET GLOBAL super_read_only=1;
Query OK, 0 rows affected (0.01 sec)

	

	
	 Wait until the replica catches up with all updates from the source server: the File and Position values from the SHOW MASTER STATUS output on the source server should match the Relay_Source_Log_File and Exec_Source_Log_Pos values of the SHOW REPLICA STATUS, taken on the replica.
	
Inaccuracy of Seconds_Behind_Source

	 Don’t rely on the Seconds_Behind_Source value, because it’s inaccurate.
	

	 For example, in the following output on the source server:
	
mysql> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: master-bin.000001
 Position: 9614
 Binlog_Do_DB:
 Binlog_Ignore_DB:
Executed_Gtid_Set:
1 row in set (0.00 sec)

 the binary log position is 7090:

mysql> \P grep -E "Source_Log_Pos|Seconds_Behind_Source"
PAGER set to 'grep -E "Source_Log_Pos|Seconds_Behind_Source"'
mysql> SHOW REPLICA STATUS\G
 Read_Source_Log_Pos: 9614
 Exec_Source_Log_Pos: 7308
 Seconds_Behind_Source: 0
1 row in set (0.00 sec)

 On the replica, instead, the Read_Source_Log_Pos position that was read by the IO thread is same as on the source server, while the value position of the latest executed event, Exec_Source_Log_Pos, is 7308: somewhere earlier in the binary log file. The Seconds_Behind_Source value of 0 is normal because the MySQL server can execute thousands of updates per second. Still, this doesn’t mean that the replica fully catches up with the source server.

	
	 Once the replica has caught up, stop both servers, enable the gtid_mode=ON and enforce-gtid-consistency=ON options, start them, and enable replication:
	
mysql> CHANGE REPLICATION SOURCE TO
 -> SOURCE_HOST='sourcehost', -- Host of the source server
 -> SOURCE_PORT=3306, -- Port of the source server
 -> SOURCE_USER='repl', -- Replication user
 -> SOURCE_PASSWORD='replrepl', -- Password
 -> GET_SOURCE_PUBLIC_KEY=1,
 -> SOURCE_AUTO_POSITION=1;
Query OK, 0 rows affected, 1 warning (0.06 sec)

mysql> START REPLICA;
Query OK, 0 rows affected (0.01 sec)

	

	
Tip

	 You can omit replication source connection options if they were already known to the replica before you started switching the replication from position-based to GTID-based.
	

Note

		 You’re not required to enable binary logging on the replica in order to use GTIDs. But if you’re going to write to the replica outside of the replication, its transactions wouldn’t have their own GTID assigned. GTIDs will be used only for the replicated events.
		

See Also
For additional information about setting up MySQL replication with GTIDs,
 see the MySQL User Reference Manual.

3.5 Configuring a Binary Log Format
Problem

 You want to use the most suitable binary log format that is the most suitable for your application.

Solution

 Decide which format best suits your needs, and set it up using the binlog_format configuration option.

Discussion

 ROW has been the default MySQL binary log format since version 5.7.7. This is the safest possible format, fitting most applications. It stores encoded table rows, modified by the binary log event.

 However, the ROW binary log format may generate more disk and network traffic than the STATEMENT format. This happens because it stores two copies of the modified row in the binary log file: before the changes and after the changes. If a table has several columns, the values for all of them will be logged two times even if only one column was modified.

 If you want the binary log to store only the changed column and the column that can be used to identify the changed rows (normally the primary key), you can use the binlog_row_image=minimal configuration option. This will work perfectly if the tables on the source server and its replica are identical but may cause issues if the number of columns, their data types, or the primary key definitions do not match.

 To store a full row, except TEXT or BLOB columns that weren’t changed by the statement and are not required to uniquely identify the modified row, use the binlog_row_image=noblob option.

 If the row format still generates too much traffic, you can switch it to the STATEMENT. In this case, statements, modifying rows, will be recorded, then executed by the replica. To use the STATEMENT binary log format, set the binlog_format=STATEMENT option.

 The STATEMENT format is not recommended because some statements can produce different updates on different servers, even if the data was originally identical. These statements are called nondeterministic statements. To deal with this downside, MySQL has a special binary log format, MIXED, that normally logs events in the STATEMENT format and automatically switches to ROW if a statement is nondeterministic.

Warning

 If the binary log is enabled on the replica, it should use either the same binary log format as its source server or the MIXED format, unless you disabled binary logging of the replicated events using the log_replica_updates=OFF (log_slave_updates=OFF) option. This is required because the replica doesn’t convert the binary log format and simply copies received events into its own binary log file. If the formats don’t match, replication will stop with an error.

 The binary log format can be changed dynamically on the global or session level. To change the format on the global level, run the following:

mysql> set global binlog_format='statement';
Query OK, 0 rows affected (0,00 sec)

 To change the format on the global level and store it permanently, use the following:

mysql> set persist binlog_format='row';
Query OK, 0 rows affected (0,00 sec)

 Note that this will not change the binary logging format for the existing connections. To change the format on the session level, execute the following:

mysql> set session binlog_format='mixed';
Query OK, 0 rows affected (0,00 sec)

 While the STATEMENT format usually generates less traffic than ROW, this is not always the case. For example, complicated statements with long WHERE or IN clauses that modify just a few rows generate a bigger binary log event with the STATEMENT format.

 Another issue with the STATEMENT format is that the replica executes received events the same way they were running on the source server. Therefore, if a statement isn’t effective, it will run slow on the replica too. For example, statements on large tables that have a WHERE clause that cannot be resolved using indexes are usually slow. In this case, switching to the ROW format may improve performance.

Warning

 Normally, ROW events use a primary key to find the row on the replica that needs to be updated. If a table has no primary key, the ROW format can work extremely slowly. Older versions of MySQL could even update the wrong row because of (now-fixed) bugs. An auto-generated primary key that is used by the InnoDB storage engine is no help here, because it may generate different values on the source and replica servers for the same row. Therefore, it’s mandatory to define a primary key for tables when using the ROW binary log format.

3.6 Using Replication Filters
Problem

 You want to replicate only events for specific databases or tables.

Solution

 Use replication filters on the source, replica, or on both.

Discussion

 MySQL can filter updates to the specific databases or tables. You can set up such filters on the source server to prevent them from being recorded in the binary log, or on the replica server so replication won’t execute them.

Filtering on the source server
Warning

 Replication filters can cause data loss if set up incorrectly. Study this recipe very carefully, and always test how they work for your setup before deploying on production.

 To log only updates to a specific database, use the binlog-do-db=db_name configuration option. There is no corresponding variable for this option; therefore, changing the binary log filter requires a restart. To log updates for two or more specific databases, specify the binlog-do-db option as many times as needed:

[mysqld]
binlog-do-db=cookbook
binlog-do-db=test

 Binary log filters behave differently for ROW and STATEMENT binary log formats. For statement-based logging, only the default database is taken into account. If you are using fully qualified table names, such as mydatabase.mytable, they’ll be logged based on the default database value and not on the database part of the update.

 Thus, for the preceding configuration file snippet, the following three updates will be logged in the binary log:

	

$ mysql cookbook
mysql> INSERT INTO limbs (thing, legs, arms) VALUES('horse', 4, 0);
Query OK, 1 row affected (0,01 sec)

	

mysql> USE cookbook
Database changed
mysql> DELETE FROM limbs WHERE thing='horse';
Query OK, 1 row affected (0,00 sec)

	

mysql> USE cookbook
Database changed
mysql> INSERT INTO donotlog.onlylocal (mysecret)
 -> values('I do not want to replicate it!');
Query OK, 1 row affected (0,01 sec)

 However, this update on the cookbook database would not be logged:

mysql> use donotlog
Database changed
mysql> UPDATE cookbook.limbs set arms=8 WHERE thing='squid';
Query OK, 1 row affected (0,01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

 When the ROW binary log format is used, the default database is ignored for fully qualified table names. Thus, all these updates will be logged:

$ mysql cookbook
mysql> INSERT INTO limbs (thing, legs, arms) VALUES('horse', 4, 0);
Query OK, 1 row affected (0,01 sec)
mysql> USE cookbook
Database changed
mysql> DELETE FROM limbs WHERE thing='horse';
Query OK, 1 row affected (0,00 sec)
mysql> USE donotlog
Database changed
mysql> UPDATE cookbook.limbs SET arms=10 WHERE thing='squid';
Query OK, 1 row affected (0,01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

 However, this statement will not be logged:

mysql> USE cookbook
Database changed
mysql> INSERT INTO donotlog.onlylocal (mysecret)
 -> VALUES('I do not want to replicate it!');
Query OK, 1 row affected (0,01 sec)

 For multiple table updates, only updates to tables belonging to databases specified by filters are logged. In the following examples, only updates to the cookbook.limbs table are logged:

mysql> use donotlog
Database changed
mysql> UPDATE cookbook.limbs, donotlog.onlylocal SET arms=1,
 -> mysecret='I do not want to log it!';
Query OK, 12 rows affected (0,01 sec)
Rows matched: 12 Changed: 12 Warnings: 0
mysql> USE cookbook
Database changed
mysql> UPDATE cookbook.limbs, donotlog.onlylocal SET arms=0,
 -> mysecret='I do not want to log and replicate this!'
 -> WHERE cookbook.limbs.thing='table';
Query OK, 2 rows affected (0,00 sec)
Rows matched: 2 Changed: 2 Warnings: 0

Warning

 Data Definition Language (DDL) statements, such as ALTER TABLE, are always replicated in the STATEMENT format. Therefore, filtering rules for this format apply to them no matter the value of the binlog_format variable.

 If you want to log updates to all databases on your server and skip only a few of them, use binlog-ignore-db filters. Specify the filter multiple times to ignore multiple databases:

[mysqld]
binlog-ignore-db=donotlog
binlog-ignore-db=mysql

 binlog-ignore-db filters work similarly to binlog-do-db filters. In the case of STATEMENT binary logging, they honor the default database and ignore it if the ROW binary log format is used. If you didn’t specify a default database and use the STATEMENT binary log format, all updates will be logged.

 If you use the MIXED binary log format, filtering rules will be applied depending on whether the update is stored in the STATEMENT or ROW format.

 To find out which binary log filters are currently in use, run the SHOW MASTER STATUS command:

mysql> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: binlog.000008
 Position: 1202
 Binlog_Do_DB: cookbook,test
 Binlog_Ignore_DB: donotlog,mysql
Executed_Gtid_Set:
1 row in set (0,00 sec)

Warning

 Binary log files are often used not only for replication but also for point-in-time recovery (PITR) from failure. In this case, filtered updates cannot be restored, because they’re not stored anywhere. If you want to use binary logs for PITR and still filter some databases, log everything on the source server and filter on the replica.

Filtering on the replica

 The replica has more options to filter events. You can filter either specific databases or tables. You can also use wildcards.

 Filtering on the database level works in the same fashion as on the source server. It’s controlled by the replicate-do-db and replicate-ignore-db options. If you want to filter multiple databases, specify these options as many times as you need.

 To filter specific tables, use the replicate-do-table and replicate-ignore-table options. They take the fully qualified table name as an argument:

[mysqld]
replicate-do-db=cookbook
replicate-ignore-db=donotlog
replicate-do-table=donotlog.dataforeveryone
replicate-ignore-table=cookbook.limbs

 But the most flexible and safe syntax for replication filters is replicate-wild-do-table and replicate-wild-ignore-table. As the names suggest, they accept wildcards in the arguments. Wildcard syntax is the same as used for the LIKE clause. Refer to Recipe 7.10 for details on the LIKE clause syntax.

 The _ symbol replaces exactly one character. Thus, replicate-wild-ignore-table=cookbook.standings_ filters the cookbook.standings1 and cookbook.standings2 tables, but doesn’t filter cookbook.standings12 and cookbook.standings.

 The % symbol replaces zero or more characters. Thus, replicate-wild-do-table=cookbook.movies% instructs the replica to apply updates to the cookbook.movies, cookbook.movies_actors, and cookbook.movies_actors_link tables.

 If a table name itself contains a wildcard character that you don’t want to replace, you need to escape it. Thus, the replicate-wild-ignore-table=cookbook.trip_l_g option will filter the cookbook.trip_leg and cookbook.trip_log tables but also cookbook.tripslag, while replicate-wild-ignore-table=cookbook.trip_l_g will filter updates only to the cookbook.trip_leg and cookbook.trip_log tables. Note that if you specify this option on the command line, you may need to double escape wildcard characters depending on the SHELL version you use.

Tip

 Table-level filters are independent from the default database regardless of the binary log format. Therefore, it is safer to use them. If you want to filter all tables in the specific database or databases, use wildcards:

[mysqld]
replicate-wild-do-table=cookbook.%
replicate-wild-ignore-table=donotlog.%

 However, unlike database filters, replicate-wild-do-table and replicate-wild-ignore-table cannot filter stored routines or events. If you need to filter them, you have to use database-level filters.

 Replication filters can be set for the specific replication channel (Recipe 3.10). To specify the per-channel filter prefix database, table name, or wildcard expression with the channel name, followed by a colon, run the following:

[mysqld]
replicate-do-db=first:cookbook
replicate-ignore-db=second:donotlog
replicate-do-table=first:donotlog.dataforeveryone
replicate-ignore-table=second:cookbook.hitlog
replicate-wild-do-table=first:cookbook.movies%
replicate-wild-ignore-table=second:cookbook.movies%

 You can specify replication filters not only via configuration options but also using the CHANGE REPLICATION FILTER command:

mysql> CHANGE REPLICATION FILTER
 -> REPLICATE_DO_DB = (cookbook),
 -> REPLICATE_IGNORE_DB = (donotlog),
 -> REPLICATE_DO_TABLE = (donotlog.dataforeveryone),
 -> REPLICATE_IGNORE_TABLE = (cookbook.limbs),
 -> REPLICATE_WILD_DO_TABLE = ('cookbook.%'),
 -> REPLICATE_WILD_IGNORE_TABLE = ('cookbook.trip_l_g');
Query OK, 0 rows affected (0.00 sec)

Tip

 You need to stop replication using the STOP REPLICA (STOP SLAVE) command each time you change the replication parameters.

 To find out which replication filters are currently applied, use the SHOW REPLICA STATUS\G command or query tables replication_applier_filters and replication_applier_global_filters in the Performance Schema:

mysql> SHOW REPLICA STATUS\G
*************************** 1. row ***************************
 Replica_IO_State:
 Source_Host: 127.0.0.1
 Source_User: root
 Source_Port: 13000
 Connect_Retry: 60
 Source_Log_File: binlog.000001
 Read_Source_Log_Pos: 156
 Relay_Log_File: Delly-7390-relay-bin.000002
 Relay_Log_Pos: 365
 Relay_Source_Log_File: binlog.000001
 Replica_IO_Running: No
 Replica_SQL_Running: No
 Replicate_Do_DB: cookbook
 Replicate_Ignore_DB: donotlog
 Replicate_Do_Table: donotlog.dataforeveryone
 Replicate_Ignore_Table: cookbook.limbs
 Replicate_Wild_Do_Table: cookbook.%
 Replicate_Wild_Ignore_Table: cookbook.trip_l_g
...

mysql> SELECT * FROM performance_schema.replication_applier_filters\G
*************************** 1. row ***************************
 CHANNEL_NAME:
 FILTER_NAME: REPLICATE_DO_DB
 FILTER_RULE: cookbook
CONFIGURED_BY: CHANGE_REPLICATION_FILTER
 ACTIVE_SINCE: 2020-10-04 13:43:21.183768
 COUNTER: 0
*************************** 2. row ***************************
 CHANNEL_NAME:
 FILTER_NAME: REPLICATE_IGNORE_DB
 FILTER_RULE: donotlog
CONFIGURED_BY: CHANGE_REPLICATION_FILTER
 ACTIVE_SINCE: 2020-10-04 13:43:21.183768
 COUNTER: 0
*************************** 3. row ***************************
 CHANNEL_NAME:
 FILTER_NAME: REPLICATE_DO_TABLE
 FILTER_RULE: donotlog.dataforeveryone
CONFIGURED_BY: CHANGE_REPLICATION_FILTER
 ACTIVE_SINCE: 2020-10-04 13:43:21.183768
 COUNTER: 0
*************************** 4. row ***************************
 CHANNEL_NAME:
 FILTER_NAME: REPLICATE_IGNORE_TABLE
 FILTER_RULE: cookbook.limbs
CONFIGURED_BY: CHANGE_REPLICATION_FILTER
 ACTIVE_SINCE: 2020-10-04 13:43:21.183768
 COUNTER: 0
*************************** 5. row ***************************
 CHANNEL_NAME:
 FILTER_NAME: REPLICATE_WILD_DO_TABLE
 FILTER_RULE: cookbook.%
CONFIGURED_BY: CHANGE_REPLICATION_FILTER
 ACTIVE_SINCE: 2020-10-04 13:43:21.183768
 COUNTER: 0
*************************** 6. row ***************************
 CHANNEL_NAME:
 FILTER_NAME: REPLICATE_WILD_IGNORE_TABLE
 FILTER_RULE: cookbook.trip_l_g
CONFIGURED_BY: CHANGE_REPLICATION_FILTER
 ACTIVE_SINCE: 2020-10-04 13:43:21.183768
 COUNTER: 0
6 rows in set (0.00 sec)

See Also
For additional information about replication filters,
 see “How Servers Evaluate Replication Filtering Rules”.

3.7 Rewriting a Database on the Replica
Problem

 You want to replicate to a database on a replica that has a different name from the one used on the source server.

Solution

 Use the replicate-rewrite-db option on the replica server.

Discussion

 MySQL allows rewriting a database name on the fly using the replication filter replicate-rewrite-db.

 You can set this filter in the configuration file command line:

[mysqld]
replicate-rewrite-db=cookbook->recipes

 or via the CHANGE REPLICATION FILTER command:

mysql> CHANGE REPLICATION FILTER
 -> REPLICATE_REWRITE_DB=((cookbook,recipes));

 Or, for the multiple-channel replica:

[mysqld]
replicate-rewrite-db=channel_id:cookbook->recipes

 or via the CHANGE REPLICATION FILTER command:

mysql> CHANGE REPLICATION FILTER
 -> REPLICATE_REWRITE_DB=((cookbook,recipes))
 -> FOR CHANNEL 'channel_id';

Warning

 Be sure to use double brackets for the filter value and quotes for the channel name.

 MySQL does not support RENAME DATABASE operation. Therefore, to rename the database, you need to first create a database with the new name, then restore the data from the original database into the new database:

mysql> CREATE DATABASE recipes;
$ mysql recipes < cookbook.sql

 You need to take a dump with the mysqldump command of the single database. If you are dumping with the --databases option, also specify the --no-create-db option, so the resulting file will not contain the CREATE DATABASE statement.

3.8 Using a Multithreaded Replica
Problem

 The replica is installed on better hardware than the source, and the network connection between servers is good, but replication lag is increasing.

Solution

 Use multiple replication applier threads.

Discussion

 The MySQL server is multithreaded. It applies incoming updates in a highly concurrent manner. By default, it uses all hardware CPU cores when processing application requests. However, the replica by default uses a single thread to apply incoming events from the source server. As a result, it uses fewer resources to process replicated events and may lag even on decent hardware.

 To resolve this issue, use multiple applier threads. To do so, set the replica_parallel_workers variable to a value greater than 1. This specifies the number of parallel threads the replica will use to apply events. It makes sense to set the value of this variable up to or below the number of virtual CPU cores. Variable has no immediate effect; you have to restart replication to apply the change:

mysql> SET GLOBAL replica_parallel_workers=8;
Query OK, 0 rows affected (0.01 sec)

mysql> STOP REPLICA SQL_THREAD;
Query OK, 0 rows affected (0.01 sec)

mysql> START REPLICA;
Query OK, 0 rows affected (0.04 sec)

 Not all replication events can be applied in parallel. What if the binary log contains two statements updating the same row?

update limbs set arms=8 where thing='squid';
update limbs set arms=10 where thing='squid';

 Depending on the order of events, the limbs table will have either 8 or 10 arms for the squid. If these two statements are executed in different order on the source and replica, they will end up with different data.

 MySQL uses a special algorithm for dependency tracking. The current algorithm is set by the replica_parallel_type variable on the replica and the binlog_transaction_dependency_tracking variable on the source.

 The default value of the replica_parallel_type variable was DATABASE before 8.0.27 and is LOGICAL_CLOCK since this version. With this value, updates belonging to different databases can be applied in parallel, while updates to the same database are applied sequentially. This value does not correlate with binlog_transaction_dependency_tracking on the source.

 Parallelization on the database level does not perform much better for setups that update fewer databases than the number of CPU cores on the replica. To resolve this issue, replica_parallel_type=LOGICAL_CLOCK has been introduced. For this type, transactions belonging to the same binary log group commit on the source are applied in parallel.

 After changing the replica_parallel_type variable, you need to restart the replica.

 The value of the binlog_transaction_dependency_tracking variable on the source server defines which transactions belong to the same commit group. Default is COMMIT_ORDER, which is generated from the source’s timestamps. With this value, transactions committed nearly at the same time on the source server will be executed in parallel on the replica. This mode works perfectly if the source actively executes many small transactions. However, if the source server does not commit often, the replica will execute sequentially those transactions that were committed in different times even if they cannot interfere with each other and were executed on the source in parallel.

 To resolve this issue, the binlog_transaction_dependency_tracking modes WRITESET and WRITESET_SESSION were introduced. In these modes, MySQL decides if transactions are dependent on each other using a hashing algorithm, specified by the transaction_write_set_extraction variable and can be either XXHASH64 (default) or MURMUR32. This means that if the transactions modify a set of rows independent from one another, they can be executed in parallel, no matter how much time has passed between commits on each of them.

 With the binlog_transaction_dependency_tracking mode set to WRITESET, even transactions originally executed within the same session can be applied in parallel. This may cause issues when the replica sees changes in a different order from the source in some periods of time. It may or may not be acceptable depending on your application needs. To avoid such a situation, you can enable the replica_preserve_commit_order (slave_preserve_commit_order) option, which instructs the replica to apply binary log events in the same order as they were originally executed on the source server. Another solutions is to set binlog_transaction_dependency_tracking to WRITESET_SESSION. This mode ensures that transactions that originated from the same session are never applied in parallel.

 The binlog_transaction_dependency_tracking variable is dynamic, and you can modify it without stopping the server. You can also set it on the session level for the specific session only.

See Also
For additional information about multithreaded replicas,
 see “Improving the Parallel Applier with Writeset-based Dependency Tracking”.

3.9 Setting Up Circular Replication
Problem

 You want to set up a chain of servers that replicate from one another.

Solution

 Make each server in the chain a source and a replica of its peers.

Discussion

 Sometimes you may need to write to several MySQL servers and want updates to be visible on each of them. With MySQL replication, this is possible. It supports such popular setups as two-server, a chain of servers (A -> B -> C -> D ->...), circular, and star, as well as any creative setup you can imagine. For our circular replication example, you just need to set up every server as a source and replica of one another.

 You need to be very careful when using such a replication. Because updates are incoming from any server, they can conflict with one another. Imagine two nodes inserting a row with id=42 at the same time. First, each node inserts a row, then receives the exact same event from the binary log. The replication will stop with a duplicate key error.

 If you then try to delete a row with id=42 on both nodes, you will receive an error again! Because when the DELETE statement is received by the replication, the channel row will already have been deleted.

 But the worst can happen if you update a row with the same ID. Imagine if node1 sets the value to 42, and node2 sets the value to 25. After the replication events are applied, node1 will have a row with the value 25 and node2 with the value 42. This is different from what they initially had after the local update!

 Still, there can be very valid reasons to use circular replication. For example, you may want to use one of the nodes mostly for the purposes of one application and another for another application. You can have options and hardware that is suitable for both. Or you may have servers in different geographical locations (e.g., countries) and want to store local data closer to users. Or you can use your servers mostly for reads but still need to update them. And, finally, you may set up a hot standby server that technically allows writes but practically receives them only when the main source server dies.

 In this recipe, we’ll discuss how to set up a chain of three servers. You can modify this recipe for two or more servers. Then we’ll discuss safety considerations concerning the use of replication chains.

Setting up circle replication with three servers

	Prepare servers to use in the circular replication
	Here are the steps:

	
 Follow the instructions in Recipe 3.1 for the source server.

	
 Make sure the log_replica_updates option is enabled. Otherwise, if your replication chain includes more than two servers, updates would apply only on the neighboring ones.

	
 Ensure that the replicate-same-server-id option is disabled. Otherwise, you may end up in a situation where the same update will be applying in loops forever.

	Point nodes to each other
	
 Run the CHANGE REPLICATION SOURCE command on each server, as described in Recipe 3.2 or in Recipe 3.4. Specify the correct connection values. For example, if you want to have a circle of servers hostA -> hostB -> hostC -> hostA, you need to point hostB to hostA, hostA to hostC, and hostC to hostB:

hostA> CHANGE REPLICATION SOURCE TO SOURCE_HOST='hostC', ...
hostB> CHANGE REPLICATION SOURCE TO SOURCE_HOST='hostA', ...
hostC> CHANGE REPLICATION SOURCE TO SOURCE_HOST='hostB', ...

	Start replication
	
 Start replication using the START REPLICA command.

Safety considerations when using replication chains

 When writing to multiple servers which are replicating to one another, you need to logically separate objects to which you are going to write. You can do so on different levels.

	Business Logic
	
 Make sure at the application level that you do not update the same rows on multiple servers at the same time.

	Server
	
 Write to only one server at a time. This is a good solution for creating hot standby servers.

	Databases and Tables
	
 In your application, assign a specific set of tables to each server. For example, write only to the movies, movies_actors, and movies_actors_link tables on nodeA; to the trip_leg and trip_log tables on nodeB; and to the weatherdata and weekday tables on nodeC.

	Rows
	
 If you still need to write to the same table on all the servers, separate the rows that each node can update. If you use an integer primary key with the AUTO_INCREMENT option, you can do it by setting the auto_increment_increment option to the number of servers and setting auto_increment_offset to the number of the server in the chain, starting from 1. For example, on our three-servers setup, we set auto_increment_increment to 3 and auto_increment_offset to 1 on nodeA, to 2 on nodeB, and to 3 on nodeC. We discuss how to tune auto_increment_increment and auto_increment_offset in Recipe 15.14.

 If you do not use AUTO_INCREMENT, you need to create a rule at the application level so the identifier will follow its own unique pattern on each node.

3.10 Using Multisource Replication
Problem

 You want a replica to apply events from two or more source servers that are independent from one another.

Solution

 Create multiple replication channels by running the CHANGE REPLICATION SOURCE...FOR CHANNEL 'my source'; command for each of the source servers.

Discussion

 You may want to replicate from multiple servers to one, for example, if separate source servers are updated by different applications and you want to use a replica for backups or for analytics. To achieve this, you need to use multisource replica.

	Prepare servers for the replication
	
 Prepare source and replica servers as described in Recipe 3.1. For the replica server, add an additional step: configure master_info_repository and relay_log_info_repository to use tables:

mysql> SET PERSIST master_info_repository = 'TABLE';
mysql> SET PERSIST relay_log_info_repository = 'TABLE';

Replication Coordinates Storage

 MySQL stores information about source server coordinates, credentials, binary log, its position, and about current relay log status in the repositories, called master_info_repository and relay_log_info_repository, respectively. These repositories are physically stored either in a file or in a table inside the database mysql.

 File storage for the replication metadata existed since the very beginning. But it has a durability issue: when a transaction commits, MySQL has to perform synchronization between the storage engine and the filesystem. They are two completely independent systems; therefore, additional safety measures are performed to provide such a synchronization. The storage engine and filesystem affect performance and are not atomic; therefore, durability cannot be guaranteed in case of failure.

 Since version 5.6, table storage for the replication information repositories was introduced. It stores metadata in the InnoDB table, which supports transactions and does not require additional checks to ensure that the replication position update is written to the disk. Since then, synchronizing changes has become safe and fast.

 For multisource replication, table storage has a unique row for each channel, storing replication coordinates for each of the source servers.

 In version 8.0, file storage for the replication information repositories is deprecated, and table storage is the default. In version 5.7 and earlier, the default storage for the replication metadata was a file.

	Backup data on the source servers
	
 Make a full backup, or back up only the databases you want to replicate. For example, if you want to replicate the database cookbook from one server and the database production from another server, back up only these databases.

 If you’re going to use position-based replication, use mysqldump with the --source-data=2 option, which instructs the tool to log the CHANGE REPLICATION SOURCE command but comment it out:

$ mysqldump --host=source_cookbook --single-transaction --triggers --routines \
> --source-data=2 --databases cookbook > cookbook.sql

 For the GTID-based replication, use the --set-gtid-purged=COMMENTED option instead:

$ mysqldump --host=source_production --single-transaction --triggers --routines \
> --set-gtid-purged=COMMENTED --databases production > production.sql

Tip

 You can use position-based and GTID-based replication for different channels. You can use different binary log formats on the source servers as well, but in this case you need to set the binary log format on the replica to MIXED so it can store updates in any format.

	Restore data on the replica
	
 Restore the data collected from the source servers:

$ mysql < cookbook.sql
$ mysql < production.sql

Warning

 Ensure the data on the source servers do not have databases with the same name. If they have the same name, you’ll need to rename one of the databases and use the replicate-rewrite-db filter, which will rewrite the database name while applying the replication events. See Recipe 3.7 for details.

	Configure replication channels
	
 For the position-based replication, locate in the CHANGE REPLICATION SOURCE command in the dump file:

$ cat cookbook.sql | grep "CHANGE REPLICATION SOURCE"
-- CHANGE REPLICATION SOURCE TO SOURCE_LOG_FILE='binlog.000008', ↩
 SOURCE_LOG_POS=2603;

 Use the resulting coordinates to set up replication. Use the FOR CHANNEL clause of the CHANGE REPLICATION SOURCE command to specify which channel to use:

mysql> CHANGE REPLICATION SOURCE TO
 -> SOURCE_HOST='source_cookbook',
 -> SOURCE_LOG_FILE='binlog.000008',
 -> SOURCE_LOG_POS=2603
 -> FOR CHANNEL 'cookbook_channel';

 For the GTID-based replication, first locate the SET @@GLOBAL.GTID_PURGED statement:

$ grep GTID_PURGED production.sql
/* SET @@GLOBAL.GTID_PURGED='+9113f6b1-0751-11eb-9e7d-0242dc638c6c:1-385';*/

 Do this for all channels that will use GTID-based replication:

$ grep GTID_PURGED recipes.sql
/* SET @@GLOBAL.GTID_PURGED='+910c760a-0751-11eb-9da8-0242dc638c6c:1-385';*/

 Then combine them into a single set:

'9113f6b1-0751-11eb-9e7d-0242dc638c6c:1-385,910c760a-0751-11eb-9da8-0242dc638c6c:1-385'

 run RESET MASTER to reset the GTID execution history, and set GTID_PURGED to the set you just compiled:

mysql> RESET MASTER;
Query OK, 0 rows affected (0,03 sec)

mysql> SET @@GLOBAL.gtid_purged = '9113f6b1-0751-11eb-9e7d-0242dc638c6c:1-385,
 '> 910c760a-0751-11eb-9da8-0242dc638c6c:1-385';
Query OK, 0 rows affected (0,00 sec)

 Then use the CHANGE REPLICATION SOURCE command to set up the new channel:

mysql> CHANGE REPLICATION SOURCE TO
 -> SOURCE_HOST='source_production',
 -> SOURCE_AUTO_POSITION=1
 -> FOR CHANNEL 'production_channel';

	Start replication
	
 Start replication using the START REPLICA command:

mysql> START REPLICA FOR CHANNEL'cookbook_channel';
Query OK, 0 rows affected (0,00 sec)

mysql> START REPLICA FOR CHANNEL 'production_channel';
Query OK, 0 rows affected (0,00 sec)

	Confirm replication is running
	
 Run SHOW REPLICA STATUS and check the records for all channels:

mysql> SHOW REPLICA STATUS\G
...
 Replica_IO_Running: Yes
 Replica_SQL_Running: Yes
 ...
 Channel_Name: cookbook_channel
 Source_TLS_Version:
 Source_public_key_path:
 Get_source_public_key: 0
 Network_Namespace:
*************************** 2. row ***************************
...
 Replica_IO_Running: Yes
 Replica_SQL_Running: Yes
 ...
 Channel_Name: production_channel
 Source_TLS_Version:
 Source_public_key_path:
 Get_source_public_key: 0
 Network_Namespace:
2 rows in set (0.00 sec)

 Or query the Performance Schema:

mysql> SELECT CHANNEL_NAME, io.SERVICE_STATE as io_status,
 -> sqlt.SERVICE_STATE as sql_status,
 -> COUNT_RECEIVED_HEARTBEATS, RECEIVED_TRANSACTION_SET
 -> FROM performance_schema.replication_connection_status AS io
 -> JOIN performance_schema.replication_applier_status AS sqlt USING(channel_name)\G
*************************** 1. row ***************************
 CHANNEL_NAME: cookbook_channel
 io_status: ON
 sql_status: ON
COUNT_RECEIVED_HEARTBEATS: 11
 RECEIVED_TRANSACTION_SET: 9113f6b1-0751-11eb-9e7d-0242dc638c6c:1-387
*************************** 2. row ***************************
 CHANNEL_NAME: production_channel
 io_status: ON
 sql_status: ON
COUNT_RECEIVED_HEARTBEATS: 11
 RECEIVED_TRANSACTION_SET: 910c760a-0751-11eb-9da8-0242dc638c6c:1-385
2 rows in set (0.00 sec)

3.11 Using a Semisynchronous Replication Plug-In
Problem

 You want to ensure that at least one replica has the update before the client receives confirmation from the server that its COMMIT operation succeeded.

Solution

 Use a semisynchronous replication plug-in.

Discussion

 MySQL replication is asynchronous. This means that the source server can accept writes very fast. All it needs is to store data in the tables and write information about changes into the binary log file. However, it does not have any idea if any of the replicas received updates and if the updates they received were applied.

 We cannot guarantee that the asynchronous replica applies updates, but we can set it up to ensure that updates are received and stored in the relay log file. This does not guarantee that the update will be applied or, if applied, that it will result in the same values as on the source server, but it does guarantee that at least two servers will have a record of the update, which could be applied, say, in case of a disaster recovery. To achieve this, you’ll need to use a semisynchronous replication plug-in.

 The semisynchronous replication plug-in should be installed on both the source and replica servers.

 On the source server, run:

mysql> INSTALL PLUGIN rpl_semi_sync_source SONAME 'semisync_source.so';
Query OK, 0 rows affected (0.03 sec)

 On the replica, run:

mysql> INSTALL PLUGIN rpl_semi_sync_replica SONAME 'semisync_replica.so';
Query OK, 0 rows affected (0.00 sec)

 Once installed, you can enable semisynchronous replication. On the source, set the global rpl_semi_sync_source_enabled variable to 1. On the replica, use the rpl_semi_sync_replica_enabled variable.

Warning

 Semisynchronous replication works only with the default replication channel. You cannot use it with multisource replication.

 You can control semisynchronous replication behavior with help of variables, as seen in Table 3-1.

Table 3-1. Variables that control the behavior of the semisynchronous replication plug-in	Variable	What it controls	Default value
	rpl_semi_sync_source_timeout	How many milliseconds to wait for a response from the replica. If this value is exceeded, replication silently converts to the asynchronous.	10000
	rpl_semi_sync_source_wait_for​_replica_count	The number of replicas the source server needs to receive acknowledgment from before committing a transaction.	1
	rpl_semi_sync_source_wait_no_​replica	What happens if the number of connected replicas falls below rpl_semi_sync_source_wait_for_​replica_count. As long as these servers later reconnect and acknowledge the transaction, semisynchronous replication remains functional. If this variable is OFF, replication is converted to asynchronous as soon as the number of replicas drops below rpl_semi_sync_source_wait_for_​replica_count.	ON
	rpl_semi_sync_source_wait_point	When to expect acknowledgment from the replica that it received the transaction. This variable supports two possible values. In the case of AFTER_SYNC, the source writes each transaction into the binary log, then syncs it to the disk. The source waits for acknowledgment from the replica about the received changes, then commits the transaction. In the case of AFTER_COMMIT, the source commits the transaction, then waits for acknowledgment from the replica and upon success returns to the client.	AFTER_SYNC

 To find out the status of the semisynchronous replication, use the Rpl_semi_sync_* variable. The source server has plenty of them:

mysql> SHOW GLOBAL STATUS LIKE 'Rpl_semi_sync%';
+--+-------+
| Variable_name | Value |
+--+-------+
Rpl_semi_sync_source_clients	1
Rpl_semi_sync_source_net_avg_wait_time	0
Rpl_semi_sync_source_net_wait_time	0
Rpl_semi_sync_source_net_waits	9
Rpl_semi_sync_source_no_times	3
Rpl_semi_sync_source_no_tx	6
Rpl_semi_sync_source_status	ON
Rpl_semi_sync_source_timefunc_failures	0
Rpl_semi_sync_source_tx_avg_wait_time	1021
Rpl_semi_sync_source_tx_wait_time	4087
Rpl_semi_sync_source_tx_waits	4
Rpl_semi_sync_source_wait_pos_backtraverse	0
Rpl_semi_sync_source_wait_sessions	0
Rpl_semi_sync_source_yes_tx	4
+--+-------+
14 rows in set (0.00 sec)

 The most important variable is Rpl_semi_sync_source_clients, which shows if semisynchronous replication is currently in use and how many semisynchronous replicas are connected. If Rpl_semi_sync_source_clients is zero, no semisynchronous replica is connected, and asynchronous replication is used.

 On the replica server, only the Rpl_semi_sync_replica_status⁠ (Rpl_semi_​sync_slave_status) variable is available and can have values either ON or OFF.

Failing Back to the Asynchronous Replication

 If no replica accepts the write in rpl_semi_sync_source_timeout milliseconds, replication will switch to the asynchronous without any message or warning for the client. The only way to figure out that the replication mode switched to asynchronous is to examine the value of the Rpl_semi_sync_source_clients variable or to check the error log file for messages like:

2020-10-12T22:25:17.654563Z 0 [ERROR] [MY-013129] [Server] ↩
A message intended for a client cannot be sent there as ↩
no client-session is attached. Therefore, ↩
we're sending the information to the error-log instead: ↩

MY-001158 - Got an error reading communication packets

2020-10-12T22:25:20.083796Z 198 [Note] [MY-010014] [Repl] ↩
While initializing dump thread for slave with UUID ↩
<09bf4498-0cd2-11eb-9161-98af65266957>, ↩
found a zombie dump thread with the same UUID. ↩
Master is killing the zombie dump thread(180).

2020-10-12T22:25:20.084088Z 180 [Note] [MY-011171] [Server] ↩
Stop semi-sync binlog_dump to slave (server_id: 2).

2020-10-12T22:25:20.084204Z 198 [Note] [MY-010462] [Repl] ↩
Start binlog_dump to master_thread_id(198) slave_server(2), ↩
pos(, 4)

2020-10-12T22:25:20.084248Z 198 [Note] [MY-011170] [Server] ↩
Start asynchronous binlog_dump to slave (server_id: 2), pos(, 4).

2020-10-12T22:25:20.657800Z 180 [Note] [MY-011155] [Server] ↩
Semi-sync replication switched OFF.

 We discuss error log files in Recipe 23.2.

3.12 Using Group Replication
Problem

 You want to apply updates either on all the nodes or nowhere.

Solution

 Use Group Replication.

Discussion

 Starting from version 5.7.17, MySQL supports fully synchronous replication with help of the Group Replication plug-in. If the plug-in is in use, MySQL servers, called nodes, create a group that commits a transaction together or, if one of the members fails to apply the transaction, rolls it back. This way the update is either replicated to all group members or nowhere. High availability is ensured.

 You can have up to nine servers in the group. More than nine is not supported. There is a very good reason for this limitation: a higher number of servers implies higher replication delay. In the case of synchronous replication, all updates are applied to all the nodes before the transaction completes. Each update transferred to each node waits to be applied and only then commits. Thus, replication delay corresponds to the speed of the slowest member and the network transfer rate.

 While it is technically possible to have fewer than three servers in the Group Replication setup, a smaller number does not provide high availability. This is because the Paxos algorithm, used by the Group Communication Engine, requires 2F + 1 nodes to create a quorum, where F is any natural number. In other words, in case of a disaster, the number of active nodes should be greater than the number of disconnected nodes.

 Group Replication has limitations. First, and most importantly, it supports only the InnoDB storage engine. You need to disable other storage engines before enabling the plug-in. Each replicated table must have a primary key. You should put servers into the local network. While having Group Replication across the internet is possible, it may lead to longer times for applying transactions and disconnecting nodes from the group due to network timeouts. The LOCK TABLE and GET_LOCK statements are not taken into account in the certification process that determines whether the transaction should be applied or rolled back on all nodes, which means they are local to the node and error prone. The full list of limitations is available in the “Group Replication Limitations” user reference manual.

 To enable Group Replication, you need to prepare all the participating servers as described in Recipe 3.1, as they’re going to act as both source and replica, and perform additional preparations:

	
 Prepare the configuration file:

[mysqld]
Disable unsupported storage engines
disabled_storage_engines="MyISAM,BLACKHOLE,FEDERATED,ARCHIVE,MEMORY"
	
Set unique server ID. Each server in the group should have its own ID
server_id=1

Enable GTIDs
gtid_mode=ON
enforce_gtid_consistency=ON

Enable replica updates
log_replica_updates=ON

Only ROW binary log format supported
binlog_format=ROW

For versions before 8.0.21
binlog_checksum=NONE

Ensure that replication repository is TABLE
master_info_repository=TABLE
relay_log_info_repository=TABLE

Ensure that transaction_write_set_extraction is enabled
This option is deprecated starting from version 8.0.26
transaction_write_set_extraction=XXHASH64

Add Group Replication options
plugin_load_add='group_replication.so'

Any valid UUID should be the same for all group members
Use SELECT UUID() to generate a UUID
group_replication_group_name="dc527338-13d1-11eb-abf7-98af65266957"

Host of the local node and port that will be used
for communication between members
Put either hostname (in our case node1) or IP address here
Port number should be different from the one used for serving clients
E.g., if default MySQL port is 3306, specify any different number here
group_replication_local_address= "node1:33061"

Ports and addresses of all nodes in the group
Should be same on all nodes
group_replication_group_seeds= "node1:33061,node2:33061,node3:33061"

Since we did not set up Group replication at this stage,
it should not be started on boot
You may set this option ON after bootstrapping the group
group_replication_start_on_boot=off
group_replication_bootstrap_group=off

Request source server public key for
#the authentication plug-in caching_sha2_password
group_replication_recovery_get_public_key=1

	
 Start the servers. Do not enable replication yet.

	
 Choose a node to be the first node in the group.

	
 Create a replication user only on the first member, as described in Recipe 3.1, and additionally grant BACKUP_ADMIN to it:

node1> CREATE USER repl@'%' IDENTIFIED BY 'replrepl';
Query OK, 0 rows affected (0,01 sec)

node1> GRANT REPLICATION SLAVE, BACKUP_ADMIN ON *.* TO repl@'%';
Query OK, 0 rows affected (0,03 sec)

 You do not need to create a replication user on other group members, because the CREATE USER statement will be replicated.

	
 Set up replication on the first member to use this user:

node1> CHANGE REPLICATION SOURCE TO SOURCE_USER='repl',
 -> SOURCE_PASSWORD='replrepl'
 -> FOR CHANNEL 'group_replication_recovery';
Query OK, 0 rows affected (0,01 sec)

 group_replication_recovery is the special built-in name of the Group Replication channel.

Tip

 If you do not want replication credentials to be stored as plain text in the replication repository, skip this step and provide the credentials later when you run START GROUP_REPLICATION. See also Recipe 3.13.

	
 Bootstrap the node:

node1> SET GLOBAL group_replication_bootstrap_group=ON;
Query OK, 0 rows affected (0,00 sec)

node1> START GROUP_REPLICATION;
Query OK, 0 rows affected (0,00 sec)

node1> SET GLOBAL group_replication_bootstrap_group=OFF;
Query OK, 0 rows affected (0,00 sec)

	
 Check the Group Replication status by selecting from performance_schema.replication_group_members:

node1> SELECT * FROM performance_schema.replication_group_members\G
*************************** 1. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: d8a706aa-16ee-11eb-ba5a-98af65266957
 MEMBER_HOST: node1
 MEMBER_PORT: 33361
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: PRIMARY
MEMBER_VERSION: 8.0.21
1 row in set (0.00 sec)

 And wait when the first member state becomes ONLINE.

	
 Start replication on the second and third nodes:

node2> CHANGE REPLICATION SOURCE TO SOURCE_USER='repl',
 -> SOURCE_PASSWORD='replrepl'
 -> FOR CHANNEL 'group_replication_recovery';
Query OK, 0 rows affected (0,01 sec)

node2> START GROUP_REPLICATION;
Query OK, 0 rows affected (0,00 sec)

 Once you confirm that all members are in the ONLINE state, you can use Group Replication. Query the performance_schema.replication_group_members table to get this information. A healthy setup will output something like this:

node1> SELECT * FROM performance_schema.replication_group_members\G
*************************** 1. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: d8a706aa-16ee-11eb-ba5a-98af65266957
 MEMBER_HOST: node1
 MEMBER_PORT: 33061
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: PRIMARY
MEMBER_VERSION: 8.0.21
*************************** 2. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: e14043d7-16ee-11eb-b77a-98af65266957
 MEMBER_HOST: node2
 MEMBER_PORT: 33061
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: SECONDARY
MEMBER_VERSION: 8.0.21
*************************** 3. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: ea775284-16ee-11eb-8762-98af65266957
 MEMBER_HOST: node3
 MEMBER_PORT: 33061
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: SECONDARY
MEMBER_VERSION: 8.0.21
3 rows in set (0.00 sec)

Warning

 The SHOW REPLICA STATUS command does not work with Group Replication.

 If you want to start Group Replication with existent data, restore it on the first node before bootstrapping it. The data will be copied when the other nodes join the group.

 Finally, enable the group_replication_start_on_boot=on option in the node configuration files, so replication will be enabled after the node restart.

Writing on Multiple Nodes in the Group Replication Setup

 In this recipe, we started Group Replication in the single-primary mode. This mode allows writes on only one member of the group. This is the safest and recommended option. However, if you want to write on multiple nodes, you can switch to the multiprimary node by using the group_replication_switch_to_multi_primary_mode function:

mysql> SELECT group_replication_switch_to_multi_primary_mode();
+--+
| group_replication_switch_to_multi_primary_mode() |
+--+
| Mode switched to multi-primary successfully. |
+--+
1 row in set (1.01 sec)

mysql> SELECT * FROM performance_schema.replication_group ↩
_members\G
*************************** 1. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: d8a706aa-16ee-11eb-ba5a-98af65266957
 MEMBER_HOST: node1
 MEMBER_PORT: 33061
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: PRIMARY
MEMBER_VERSION: 8.0.21
*************************** 2. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: e14043d7-16ee-11eb-b77a-98af65266957
 MEMBER_HOST: node2
 MEMBER_PORT: 33061
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: PRIMARY
MEMBER_VERSION: 8.0.21
*************************** 3. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: ea775284-16ee-11eb-8762-98af65266957
 MEMBER_HOST: node3
 MEMBER_PORT: 33061
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: PRIMARY
MEMBER_VERSION: 8.0.21
3 rows in set (0.00 sec)

 For more details, check “Changing a Group’s Mode” in the MySQL Reference Manual.

See Also
For additional information about Group Replication,
 see “Group Replication” in the Reference Manual.

3.13 Storing Replication Credentials Securely
Problem

 By default, replication credentials are visible in the replication information repository if specified as part of the CHANGE REPLICATION SOURCE command. You want to hide them from occasional access by unauthorized users.

Solution

 Use the USER and PASSWORD options in the START REPLICA command.

Discussion

 When you specify replication user credentials using the CHANGE REPLICATION SOURCE command, they are stored in plain text, unencrypted, regardless of the master_info_repository option.

 Thus, if master_info_repository is set to TABLE, which is the default since version 8.0, any user with read access to the mysql database can query the slave_master_info table and read the password:

mysql> SELECT User_name, User_password FROM slave_master_info;
+-----------+---------------+
| User_name | User_password |
+-----------+---------------+
| repl | replrepl |
+-----------+---------------+
1 row in set (0.00 sec)

 Or, if master_info_repository is set to FILE, any operating system user who can access the file, by default located in the MySQL data directory, can get replication credentials:

$ head -n6 var/mysqld.3/data/master.info
31
binlog.000001
688
127.0.0.1
repl
replrepl

 If having replication credentials visible in the source information repository is not desirable, you can specify replication credentials as part of the START REPLICA or START GROUP_REPLICATION command:

mysql> START REPLICA USER='repl' PASSWORD='replrepl';
Query OK, 0 rows affected (0.01 sec)

 However, if you previously specified replication credentials as part of the CHANGE MASTER command, they will remain visible in the master information repository. To clear a previously entered user and password, run the CHANGE MASTER command with empty arguments for MASTER_USER and MASTER_PASSWORD:

mysql> SELECT User_name, User_password FROM slave_master_info;
+-----------+---------------+
| User_name | User_password |
+-----------+---------------+
| repl | replrepl |
+-----------+---------------+
1 row in set (0.00 sec)

mysql> CHANGE REPLICATION SOURCE TO SOURCE_USER='', SOURCE_PASSWORD='';
Query OK, 0 rows affected, 1 warning (0.01 sec)

mysql> START REPLICA USER='repl' PASSWORD='replrepl';
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT User_name, User_password FROM slave_master_info;
+-----------+---------------+
| User_name | User_password |
+-----------+---------------+
| | |
+-----------+---------------+
1 row in set (0.00 sec)

Warning

 Once you’ve cleared the replication credentials from the source information repository, they won’t be stored anywhere, and you will need to provide them each time you restart replication.

3.14 Using TLS (SSL) for Replication
Problem

 You want to transfer data between the source and replica securely.

Solution

 Set up TLS (Transport Layer Security) connections for the replication channel.

Discussion

 The connection between source and replica servers is technically similar to any other client connections to the MySQL server. Therefore, encrypting the connection between source and replica servers via TLS requires preparations similar to encrypting client connections, as described in Recipe 24.10.

 To create an encrypted replication setup, follow these steps:

	
 Obtain or create TLS keys and certificates as described in Recipe 24.10.

	
 Ensure that the source server has TLS configuration parameters under the [mysqld] section:

[mysqld]
ssl_ca=ca.pem
ssl_cert=server-cert.pem
ssl_key=server-key.pem

Note

 While MySQL uses the modern and safer TLS protocol in the latest versions, its configuration options still use the abbreviation SSL. The MySQL User Reference Manual also often refers to TLS as SSL.

 You can figure out if TLS is enabled by checking the value of the have_ssl system variable:

mysql> SHOW VARIABLES LIKE 'have_ssl';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_ssl | YES |
+---------------+-------+
1 row in set (0,01 sec)

	
 If insecure replication is running, stop the replica IO thread:

mysql> STOP REPLICA IO_THREAD; -- (STOP SLAVE IO_THREAD;)
Query OK, 0 rows affected (0.00 sec)

	
 On the replica server, put paths to the TLS client key and certificate under [client] of the configuration file:

[client]
ssl-ca=ca.pem
ssl-cert=client-cert.pem
ssl-key=client-key.pem

 and specify the SOURCE_SSL=1 option for the CHANGE REPLICATION SOURCE command:

mysql> CHANGE REPLICATION SOURCE TO SOURCE_SSL=1;
Query OK, 0 rows affected (0.03 sec

 Alternatively, you can specify paths to the client key and certificate as part of the CHANGE REPLICATION SOURCE command:

mysql> CHANGE REPLICATION SOURCE TO
 -> SOURCE_SSL_CA='ca.pem',
 -> SOURCE_SSL_CERT='client-cert.pem',
 -> SOURCE_SSL_KEY='client-key.pem',
 -> SOURCE_SSL=1;
Query OK, 0 rows affected (0.02 sec)

Note

 We intentionally omitted other parameters of the CHANGE REPLICATION SOURCE command, such as SOURCE_HOST, for brevity. But you need to use them as described in Recipes 3.2 or 3.4.

	
 Start replication:

mysql> START REPLICA;
Query OK, 0 rows affected (0.00 sec)

 The CHANGE REPLICATION SOURCE command supports other TLS modifiers that are compatible with regular client connection encryption options. For example, you can specify a cipher to use with the SOURCE_SSL_CIPHER clause or enforce source server certificate verification with the SOURCE_SSL_VERIFY_SERVER_CERT clause.

See Also
For additional information about securing connections between the source and replica servers,
 see “Setting Up Replication to Use Encrypted Connections”.

3.15 Replication Troubleshooting
Problem

 Replication is not working, and you want to fix it.

Solution

 Use the SHOW REPLICA STATUS command, query the replication tables in the Performance Schema, and check the error log file to understand why the replication failed, then fix it.

Discussion

 Replication is managed by two kinds of threads: IO and SQL (or connection and applier). The IO, or connection, thread is responsible for connecting to the source server, retrieving updates and storing them in the relay log file. There is always one IO thread per replication channel. The SQL, or applier, thread reads data from the relay log file and applies changes to the tables. One replication channel may have multiple SQL threads. Connection and applier threads are totally independent, and their errors are reported by different replication diagnostic instruments.

 There are two main instruments to diagnose replication errors: the SHOW REPLICA STATUS command and replication tables in the Performance Schema. SHOW REPLICA STATUS has existed since the very beginning, while replication tables in the Performance Schema were added in version 5.7. You’ll get very similar information by using these two instruments, and which to use depends on your preferences. In our opinion, SHOW REPLICA STATUS is good for manual review in the command line, while it is much easier to write monitoring alerts, querying the Performance Schema, rather than to parse SHOW REPLICA STATUS output.

SHOW REPLICA STATUS

 SHOW REPLICA STATUS contains all the information about IO and SQL thread configuration, status, and errors. All data is printed in a single row. However, this row is formatted with spaces and newlines. You can examine it comfortably by using the \G modifier of the mysql client. For a multisource replica, SHOW REPLICA STATUS prints information about each channel in a separate row:

mysql> SHOW REPLICA STATUS\G
*************************** 1. row ***************************
 Replica_IO_State: Waiting for master to send event
 Source_Host: 127.0.0.1
 Source_User: root
 Source_Port: 13000
 Connect_Retry: 60
 Source_Log_File: binlog.000001
 Read_Source_Log_Pos: 156
 Relay_Log_File: Delly-7390-relay-bin-cookbook.000002
 Relay_Log_Pos: 365
 Relay_Source_Log_File: binlog.000001
 Replica_IO_Running: Yes
 Replica_SQL_Running: Yes
 ...
 Channel_Name: cookbook
 Source_TLS_Version:
 Source_public_key_path:
 Get_source_public_key: 0
 Network_Namespace:
*************************** 2. row ***************************
 Replica_IO_State: Waiting for master to send event
 Source_Host: 127.0.0.1
 Source_User: root
 Source_Port: 13004
 Connect_Retry: 60
 Source_Log_File: binlog.000001
 Read_Source_Log_Pos: 156
 Relay_Log_File: Delly-7390-relay-bin-test.000002
 Relay_Log_Pos: 365
 Relay_Source_Log_File: binlog.000001
 Replica_IO_Running: Yes
 Replica_SQL_Running: Yes
 ...
 Channel_Name: test
 Source_TLS_Version:
 Source_public_key_path:
 Get_source_public_key: 0
 Network_Namespace:
2 rows in set (0.00 sec)

 We intentionally skipped part of the output for brevity. We don’t describe each field–only those required for handling stopped replication (see Table 3-2). If you are curious what other fields mean, consult “SHOW REPLICA STATUS Statement” in the Reference Manual.

Table 3-2. Explanation of the SHOW REPLICA STATUS fields for understanding and fixing errors	Field	Description	Subsystem
	Replica_IO_State (Slave_IO_State)	Status of the IO thread. Contains information on what the connection thread is doing when running: empty if IO thread is stopped and Connecting if connection is not yet established.	IO thread status
	Source_Host (Master_Host)	Host of the source server.	IO thread configuration
	Source_User (Master_User)	Replication user.	IO thread configuration
	Source_Port (Master_Port)	Port of the source server.	IO thread configuration
	Source_Log_File (Master_Log_File)	Binary log on the source server from which IO thread is currently reading.	IO thread status
	Read_Source_Log_Pos (Read_Master_Log_Pos)	Position in the binary log file on the source server from which IO thread is reading.	IO thread status
	Relay_Log_File	Current relay log file: the file the SQL thread is currently executing from.	IO thread status
	Relay_Log_Pos	The position in the relay log file the SQL thread has executed up to.	IO thread status
	Relay_Source_Log_File (Relay_Master_Log_File)	Binary log on the source server from which SQL thread is executing events.	SQL thread status
	Replica_IO_Running (Slave_IO_Running)	If IO thread is running. Use this field to quickly identify health of the connection thread.	IO thread status
	Replica_SQL_Running (Slave_SQL_Running)	If SQL thread is running. Use to quickly identify health of the applier thread.	SQL thread status
	Replicate_*	Replication filters.	SQL thread configuration
	Exec_Source_Log_Pos (Exec_Master_Log_Pos)	Position of the binary log file on the source up to which SQL thread executed events.	SQL thread status
	Until_Condition	Until conditions, if any.	SQL thread configuration
	Source_SSL_* (Master_SSL_*)	SSL options for connecting to the source server.	IO thread configuration
	Seconds_Behind_Source (Seconds_Behind_Master)	Estimated delay between source server and replica.	SQL thread status
	Last_IO_Errno	Last error number of the IO thread. Cleared once resolved.	IO thread status
	Last_IO_Error	Latest error on the IO thread. Cleared once resolved.	IO thread status
	Last_Errno, Last_SQL_Errno	Number of the last error, received by SQL thread. Cleared once resolved.	SQL thread status
	Last_Error, Last_SQL_Error	Last error of the SQL thread. Cleared once resolved.	SQL thread status
	Replica_SQL_Running_State (Slave_SQL_Running_State)	Status of the SQL thread. Empty if stopped.	SQL thread status
	Last_IO_Error_Timestamp	Time when last IO error happened. Cleared once resolved.	IO thread status
	Last_SQL_Error_Timestamp	Time when last SQL error happened. Cleared once resolved.	SQL thread status
	Retrieved_Gtid_Set	GTIDs, retrieved by the connection thread.	IO thread status
	Executed_Gtid_Set	GTIDs, executed by the SQL thread.	SQL thread status
	Channel_Name	Name of the replication channel.	IO and SQL thread configuration

 We’ll refer to this table when we discuss how to deal with specific IO and SQL threads errors.

Replication tables in the Performance Schema

 An alternative diagnostic solution, tables in the Performance Schema, unlike SHOW REPLICA STATUS, do not store all the information in a single place but in separate spaces.

 Information about the IO thread configuration is stored in the replication_connection_configuration table, and information about its status is in the replication_connection_status table.

 Information about SQL threads is stored in six tables, as shown in Table 3-3.

Table 3-3. Tables with information specific to SQL thread(s)	Table name	Description
	replication_applier_configuration	SQL thread configuration
	replication_applier_global_filters	Global replication filters: filters, applicable for all channels
	replication_applier_filters	Replication filters, specific to particular channels
	replication_applier_status	Status for the SQL thread, global
	replication_applier_status_by_worker	For multithreaded replica: status of each SQL thread
	replication_applier_status_by_​coordinator	For multithreaded replica: status of the SQL thread as seen by the coordinator

 Finally, you’ll find the Group Replication network configuration and status in the replication_group_members table, and statistics of the Group Replication members in the replication_group_member_stats table.

Troubleshooting an IO thread

 You can determine if a replication IO thread is having issues by checking the value of the Replica_IO_Running field of SHOW REPLICA STATUS. If the value is not Yes, the connection thread is likely having issues. The reason for these issues can be found in the Last_IO_Errno and Last_IO_Error fields:

mysql> SHOW REPLICA STATUS\G
*************************** 1. row ***************************
...
 Replica_IO_Running: Connecting
 Replica_SQL_Running: Yes
...
 Last_IO_Errno: 1045
 Last_IO_Error: error connecting to master 'repl@127.0.0.1:13000' - ↩
 retry-time: 60 retries: 1 message: ↩
 Access denied for user 'repl'@'localhost'↩
 (using password: NO)
...

 In the preceding example, the replica cannot connect to the source server because access is denied for the user 'repl'@'localhost'. The IO thread is still running and will try to connect again in 60 seconds (retry-time: 60). The reason for such a failure is clear: either the user does not exist on the source server or it does not have enough privileges. You need to connect to the source server and fix the user account. Once it has been fixed, the next connection attempt will succeed.

 Alternatively, you can query the replication_connection_status table in the Performance Schema:

mysql> SELECT SERVICE_STATE, LAST_ERROR_NUMBER,
 -> LAST_ERROR_MESSAGE, LAST_ERROR_TIMESTAMP
 -> FROM performance_schema.replication_connection_status\G
*************************** 1. row ***************************
 SERVICE_STATE: CONNECTING
 LAST_ERROR_NUMBER: 2061
 LAST_ERROR_MESSAGE: error connecting to master 'repl@127.0.0.1:13000' -↩
 retry-time: 60 retries: 1 ↩
 message: Authentication plugin 'caching_sha2_password' ↩
 reported error: Authentication requires secure connection.
LAST_ERROR_TIMESTAMP: 2020-10-17 13:23:03.663994
1 row in set (0.00 sec)

 In this example, the LAST_ERROR_MESSAGE field contains the reason why the IO thread failed to connect: the user account on the source server uses the caching_sha2_password authentication plug-in, which requires a secure connection. To fix this error, you need to stop the replication, then run CHANGE REPLICATION SOURCE with either the SOURCE_SSL=1 parameter or the GET_SOURCE_PUBLIC_KEY=1 parameter. In the latter case, traffic between the replica and source server will stay insecure, and only password exchange communication will be secured. See Recipe 3.14 for details.

Troubleshooting a SQL thread

 To find out why an applier thread had stopped, check the Replica_SQL_Running, Last_SQL_Errno, and Last_SQL_Error fields:

mysql> SHOW REPLICA STATUS\G
*************************** 1. row ***************************
...
 Replica_SQL_Running: No
...
 Last_SQL_Errno: 1007
 Last_SQL_Error: Error 'Can't create database 'cookbook'; ↩
 database exists' on query. ↩
 Default database: 'cookbook'. ↩
 Query: 'create database cookbook'

 In the preceding listing, the error message shows that the CREATE DATABASE command failed, because the database already exists on the replica.

 The same information can be found in the replication_applier_status_by_worker table in the Performance Schema:

mysql> SELECT SERVICE_STATE, LAST_ERROR_NUMBER,
 -> LAST_ERROR_MESSAGE, LAST_ERROR_TIMESTAMP
 -> FROM performance_schema.replication_applier_status_by_worker\G
*************************** 1. row ***************************
 SERVICE_STATE: OFF
 LAST_ERROR_NUMBER: 1007
 LAST_ERROR_MESSAGE: Error 'Can't create database 'cookbook'; ↩
 database exists' on query. ↩
 Default database: 'cookbook'.↩
 Query: 'create database cookbook'
LAST_ERROR_TIMESTAMP: 2020-10-17 13:58:12.115821
1 row in set (0.01 sec)

 There are a few ways to resolve this issue. First, you can simply drop the database on the replica and restart the SQL thread:

mysql> DROP DATABASE cookbook;
Query OK, 0 rows affected (0.04 sec)

mysql> START REPLICA SQL_THREAD;
Query OK, 0 rows affected (0.01 sec)

 Disable the binary log if it’s enabled on the replica.

 If you want to keep the database on the replica—for example, if it’s supposed to have extra tables that don’t exist on the source server—you can skip the replicated event.

 If you use position-based replication, use the sql_replica_skip_counter (sql_slave_skip_counter) variable:

mysql> SET GLOBAL sql_replica_skip_counter=1;
Query OK, 0 rows affected (0.00 sec)

mysql> START REPLICA SQL_THREAD;
Query OK, 0 rows affected (0.01 sec)

 In this example, we skipped one event from the binary log, then restarted replication.

 For GTID-based replication, the setting sql_replica_skip_counter wouldn’t work, because it doesn’t include GTID information. Instead, you need to generate an empty transaction with the GTID of the transaction the replica could not execute. To find out which GTID failed, check the Retrieved_Gtid_Set and Executed_Gtid_Set fields of the SHOW REPLICA STATUS:

mysql> SHOW REPLICA STATUS\G
*************************** 1. row ***************************
...
 Retrieved_Gtid_Set: de7e85f9-1060-11eb-8b8f-98af65266957:1-5
 Executed_Gtid_Set: de7e85f9-1060-11eb-8b8f-98af65266957:1-4,
de8d356e-1060-11eb-a568-98af65266957:1-3
...

 In this example, Retrieved_Gtid_Set contains transactions de7e85f9-1060-11eb-8b8f-98af65266957:1-5, while Executed_Gtid_Set contains only transactions de7e85f9-1060-11eb-8b8f-98af65266957:1-4. It’s clear that transaction de7e85f9-1060-11eb-8b8f-98af65266957:5 was not executed. Transactions with UUID de8d356e-1060-11eb-a568-98af65266957 are local and are not executed by the replication applier thread.

 You can also find a failing transaction by querying the APPLYING_TRANSACTION field of the replication_applier_status_by_worker table:

mysql> select LAST_APPLIED_TRANSACTION, APPLYING_TRANSACTION
 -> from performance_schema.replication_applier_status_by_worker\G
*************************** 1. row ***************************
LAST_APPLIED_TRANSACTION: de7e85f9-1060-11eb-8b8f-98af65266957:4
 APPLYING_TRANSACTION: de7e85f9-1060-11eb-8b8f-98af65266957:5
1 row in set (0.00 sec)

 Once you’ve found the failing transaction, inject the empty transaction with the same GTID and restart the SQL thread:

mysql> -- set explicit GTID
mysql> SET gtid_next='de7e85f9-1060-11eb-8b8f-98af65266957:5';
Query OK, 0 rows affected (0.00 sec)

mysql> -- inject empty transaction
mysql> BEGIN;COMMIT;
Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

mysql> -- revert GTID generation back to automatic
mysql> SET gtid_next='automatic';
Query OK, 0 rows affected (0.00 sec)

mysql> -- restart SQL thread
mysql> START REPLICA SQL_THREAD;
Query OK, 0 rows affected (0.01 sec)

Warning

 While skipping a binary log event or transaction helps to restart replication at the moment, it may cause bigger issues and lead to data inconsistency between the source and replica and, as a result, future errors. Always analyze why an error happened in the first place, and try to fix the reason, not simply skip the event.

 While SHOW REPLICA STATUS and the replication_applier_status_by_worker table both store error messages, if you use a multithreaded replica, the table can offer better information about what happened. For example, the following example error message doesn’t provide a full explanation of the reason for the failure:

mysql> SHOW REPLICA STATUS\G
*************************** 1. row ***************************
...
 Last_SQL_Errno: 1146
 Last_SQL_Error: Coordinator stopped because there were error(s) ↩
 in the worker(s). The most recent failure being: ↩
 Worker 8 failed executing transaction ↩
 'de7e85f9-1060-11eb-8b8f-98af65266957:7' at ↩
 master log binlog.000001, end_log_pos 1818. ↩
 See error log and/or performance_schema.↩
 replication_applier_status_by_worker table ↩
 for more details about this failure or others, if any.
...

 It reports that worker 8 failed but does not tell why. Querying on replication_applier_status_by_worker returns this information:

mysql> select SERVICE_STATE, LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE, LAST_ERROR_TIMESTAMP
 -> from performance_schema.replication_applier_status_by_worker where worker_id=8\G
*************************** 1. row ***************************
 SERVICE_STATE: OFF
 LAST_ERROR_NUMBER: 1146
 LAST_ERROR_MESSAGE: Worker 8 failed executing transaction ↩
 'de7e85f9-1060-11eb-8b8f-98af65266957:7' at master log↩
 binlog.000001, end_log_pos 1818; Error executing row event: ↩
 'Table 'cookbook.limbs' doesn't exist'
LAST_ERROR_TIMESTAMP: 2020-10-17 14:28:01.144521
1 row in set (0.00 sec)

 Now it’s clear that a specific table doesn’t exist. You can analyze why this is the case and correct the error.

Troubleshooting Group Replication

 SHOW REPLICA STATUS is not available for Group Replication. Therefore, you need to use the Performance Schema to troubleshoot issues with it. The Performance Schema has two special tables for Group Replication: replication_group_members, showing details of all members, and replication_group_member_stats, displaying statistics for them. However, these tables do not have information about IO and SQL thread errors. These details are available in the following replication_connection_status table as well as in Table 3-3.

 Let’s have a closer look at the Group Replication troubleshooting options.

 A quick way to identify if something is wrong with Group Replication is a replication_group_members table:

mysql> SELECT * FROM performance_schema.replication_group_members\G
*************************** 1. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: de5b65cb-16ae-11eb-826c-98af65266957
 MEMBER_HOST: Delly-7390
 MEMBER_PORT: 33361
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: PRIMARY
MEMBER_VERSION: 8.0.21
*************************** 2. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: e9514d63-16ae-11eb-8f6e-98af65266957
 MEMBER_HOST: Delly-7390
 MEMBER_PORT: 33362
 MEMBER_STATE: RECOVERING
 MEMBER_ROLE: SECONDARY
MEMBER_VERSION: 8.0.21
*************************** 3. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: f1e717ab-16ae-11eb-bfd2-98af65266957
 MEMBER_HOST: Delly-7390
 MEMBER_PORT: 33363
 MEMBER_STATE: RECOVERING
 MEMBER_ROLE: SECONDARY
MEMBER_VERSION: 8.0.21
3 rows in set (0.00 sec)

 In the preceding listing, only the PRIMARY member is in MEMBER_STATE: ONLINE, meaning it is healthy. Both SECONDARY members are in RECOVERING state and are having trouble joining the group.

 A failing member will stay in the RECOVERING state for some time while Group Replication tries to recover itself. If the error cannot be automatically recovered, the failing member will leave the group and stay in the ERROR state:

mysql> SELECT * FROM performance_schema.replication_group_members\G
*************************** 1. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: e9514d63-16ae-11eb-8f6e-98af65266957
 MEMBER_HOST: Delly-7390
 MEMBER_PORT: 33362
 MEMBER_STATE: ERROR
 MEMBER_ROLE:
MEMBER_VERSION: 8.0.21
1 row in set (0.00 sec)

 Both listings were taken on the same secondary member of the group, but after it left the group, it reports only itself as a Group Replication member and does not display information about other members.

 To determine the reason for the failure, you need to examine the replication_connection_status and replication_applier_status_by_worker tables.

 In our example, member e9514d63-16ae-11eb-8f6e-98af65266957 stopped with a SQL error. You’ll find error details in the replication_applier_status_by_worker table:

mysql> SELECT CHANNEL_NAME, LAST_ERROR_NUMBER,
 -> LAST_ERROR_MESSAGE, LAST_ERROR_TIMESTAMP,
 -> APPLYING_TRANSACTION
 -> FROM performance_schema.replication_applier_status_by_worker\G
*************************** 1. row ***************************
 CHANNEL_NAME: group_replication_recovery
 LAST_ERROR_NUMBER: 3635
 LAST_ERROR_MESSAGE: The table in transaction de5b65cb-16ae-11eb-826c-98af65266957:15 ↩
 does not comply with the requirements by an external plugin.
LAST_ERROR_TIMESTAMP: 2020-10-25 20:31:27.718638
APPLYING_TRANSACTION: de5b65cb-16ae-11eb-826c-98af65266957:15
*************************** 2. row ***************************
 CHANNEL_NAME: group_replication_applier
 LAST_ERROR_NUMBER: 0
 LAST_ERROR_MESSAGE:
LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00.000000
APPLYING_TRANSACTION:
2 rows in set (0.00 sec)

 The error message says that the definition of the table in the de5b65cb-16ae-11eb-826c-98af65266957:15 transaction is not compatible with the Group Replication plug-in. To find out why, check “Group Replication Requirements and Limitations”, identify the table used in the transaction, and fix the error.

 The error message in the replication_applier_status_by_worker table does not give any indication which table was used in the transaction. But the error log file may. Open the error log file, search for the LAST_ERROR_TIMESTAMP and LAST_ERROR_NUMBER to identify the error, and check if the previous or next rows have more information:

2020-10-25T17:31:27.718600Z 71 [ERROR] [MY-011542] [Repl] Plugin group_replication↩
reported: 'Table al_winner does not have any PRIMARY KEY. This is not compatible↩
with Group Replication.'
2020-10-25T17:31:27.718644Z 71 [ERROR] [MY-010584] [Repl] Slave SQL for channel↩
'group_replication_recovery': The table in transaction↩
de5b65cb-16ae-11eb-826c-98af65266957:15 does not comply with the requirements↩
by an external plugin. Error_code: MY-003635

 In this example, the error message on the previous row contains the table name al_winner, and the reason why it isn’t compatible with Group Replication is that the table doesn’t have a primary key.

 To fix the error, you need to fix the table definition on the PRIMARY and failing SECONDARY node.

 First, log in to the PRIMARY node, and add a surrogate primary key:

mysql> set sql_log_bin=0;
Query OK, 0 rows affected (0.00 sec)

mysql> alter table al_winner add id int not null auto_increment primary key;
Query OK, 0 rows affected (0.09 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> set sql_log_bin=1;
Query OK, 0 rows affected (0.01 sec)

 You need to disable binary logging, because otherwise this change will be replicated to the secondary members, and replication will stop with the duplicate column name error.

 Then, run the same command on the secondary members to fix the table definition and restart Group Replication:

mysql> set global super_read_only=0;
Query OK, 0 rows affected (0.00 sec)

mysql> set sql_log_bin=0;
Query OK, 0 rows affected (0.00 sec)

mysql> alter table al_winner add id int not null auto_increment primary key;
Query OK, 0 rows affected (0.09 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> set sql_log_bin=1;
Query OK, 0 rows affected (0.01 sec)

mysql> stop group_replication;
Query OK, 0 rows affected (1.02 sec)

mysql> start group_replication;
Query OK, 0 rows affected (3.22 sec)

 You need to disable super_read_only first, which is set by the Group Replication plug-in if the nodes are running in single-primary mode.

 Once the error is fixed, the node joins the group and reports its state as ONLINE:

mysql> SELECT * FROM performance_schema.replication_group_members\G
*************************** 1. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: d8a706aa-16ee-11eb-ba5a-98af65266957
 MEMBER_HOST: Delly-7390
 MEMBER_PORT: 33361
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: PRIMARY
MEMBER_VERSION: 8.0.21
*************************** 2. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: e14043d7-16ee-11eb-b77a-98af65266957
 MEMBER_HOST: Delly-7390
 MEMBER_PORT: 33362
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: SECONDARY
MEMBER_VERSION: 8.0.21
2 rows in set (0.00 sec)

Option --verbose

 You can find what the failing transaction is doing by running the mysqlbinlog command with the verbose option:

$ mysqlbinlog data1/binlog.000001
> --include-gtids=de5b65cb-16ae-11eb-826c-98af65266957:15 --verbose
...
SET @@SESSION.GTID_NEXT= 'de5b65cb-16ae-11eb-826c-98af65266957:15'/*!*/;
at 4015
#201025 13:44:34 server id 1 end_log_pos 4094 CRC32 0xad05e64e 	Query ↩
thread_id=10	exec_time=0	error_code=0
SET TIMESTAMP=1603622674/*!*/;
...
INSERT INTO `cookbook`.`al_winner`
SET
@1='Mulder, Mark' /* STRING(120) meta=65144 nullable=1 is_null=0 */
@2=21 /* INT meta=0 nullable=1 is_null=0 */
INSERT INTO `cookbook`.`al_winner`
SET
@1='Clemens, Roger' /* STRING(120) meta=65144 nullable=1 is_null=0 */
@2=20 /* INT meta=0 nullable=1 is_null=0 */
INSERT INTO `cookbook`.`al_winner`
...
INSERT INTO `cookbook`.`al_winner`
SET
@1='Sele, Aaron' /* STRING(120) meta=65144 nullable=1 is_null=0 */
@2=15 /* INT meta=0 nullable=1 is_null=0 */
at 4469
#201025 13:44:34 server id 1 end_log_pos 4500 CRC32 0xddd32d63 	Xid = 74
COMMIT/*!*/;
SET @@SESSION.GTID_NEXT= 'AUTOMATIC' /* added by mysqlbinlog */ /*!*/;
DELIMITER ;
End of log file
/*!50003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/;
/*!50530 SET @@SESSION.PSEUDO_SLAVE_MODE=0*/;

 The verbose option required to decode row events.

 We fixed the error on one node, but the third node didn’t join the group. After examining the content of the performance_schema.replication_connection_status table, we discovered that the replication connection options were not set up correctly:

mysql> SELECT CHANNEL_NAME, LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE, LAST_ERROR_TIMESTAMP
 -> FROM performance_schema.replication_connection_status\G
*************************** 1. row ***************************
 CHANNEL_NAME: group_replication_applier
 LAST_ERROR_NUMBER: 0
 LAST_ERROR_MESSAGE:
LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00.000000
*************************** 2. row ***************************
 CHANNEL_NAME: group_replication_recovery
 LAST_ERROR_NUMBER: 13117
 LAST_ERROR_MESSAGE: Fatal error: Invalid (empty) username when attempting ↩
 to connect to the master server. Connection attempt terminated.
LAST_ERROR_TIMESTAMP: 2020-10-25 21:31:31.413876
2 rows in set (0.00 sec)

 To fix this, we need to run the correct CHANGE REPLICATION SOURCE command:

mysql> STOP GROUP_REPLICATION;
Query OK, 0 rows affected (1.01 sec)

mysql> CHANGE REPLICATION SOURCE TO SOURCE_USER='repl', SOURCE_PASSWORD='replrepl'
 -> FOR CHANNEL 'group_replication_recovery';
Query OK, 0 rows affected, 2 warnings (0.03 sec)

mysql> START GROUP_REPLICATION;
Query OK, 0 rows affected (2.40 sec)

 Once fixed, the node will fail with the same SQL error as the previous one and has to be fixed in the way we previously described. Finally, after the SQL error is recovered, the node will join the cluster and will be reported as ONLINE:

mysql> SELECT * FROM performance_schema.replication_group_members\G
*************************** 1. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: d8a706aa-16ee-11eb-ba5a-98af65266957
 MEMBER_HOST: Delly-7390
 MEMBER_PORT: 33361
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: PRIMARY
MEMBER_VERSION: 8.0.21
*************************** 2. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: e14043d7-16ee-11eb-b77a-98af65266957
 MEMBER_HOST: Delly-7390
 MEMBER_PORT: 33362
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: SECONDARY
MEMBER_VERSION: 8.0.21
*************************** 3. row ***************************
 CHANNEL_NAME: group_replication_applier
 MEMBER_ID: ea775284-16ee-11eb-8762-98af65266957
 MEMBER_HOST: Delly-7390
 MEMBER_PORT: 33363
 MEMBER_STATE: ONLINE
 MEMBER_ROLE: SECONDARY
MEMBER_VERSION: 8.0.21
3 rows in set (0.00 sec)

 To check the performance of the Group Replication query performance_schema.replication_group_member_stats table, run the following:

mysql> SELECT * FROM performance_schema.replication_group_member_stats\G
*************************** 1. row ***************************
 CHANNEL_NAME: group_replication_applier
 VIEW_ID: 16036502905383892:9
 MEMBER_ID: d8a706aa-16ee-11eb-ba5a-98af65266957
 COUNT_TRANSACTIONS_IN_QUEUE: 0
 COUNT_TRANSACTIONS_CHECKED: 10154
 COUNT_CONFLICTS_DETECTED: 0
 COUNT_TRANSACTIONS_ROWS_VALIDATING: 9247
 TRANSACTIONS_COMMITTED_ALL_MEMBERS: d8a706aa-16ee-11eb-ba5a-98af65266957:1-18,
dc527338-13d1-11eb-abf7-98af65266957:1-1588
 LAST_CONFLICT_FREE_TRANSACTION: dc527338-13d1-11eb-abf7-98af65266957:10160
COUNT_TRANSACTIONS_REMOTE_IN_APPLIER_QUEUE: 0
 COUNT_TRANSACTIONS_REMOTE_APPLIED: 5
 COUNT_TRANSACTIONS_LOCAL_PROPOSED: 10154
 COUNT_TRANSACTIONS_LOCAL_ROLLBACK: 0
*************************** 2. row ***************************
 CHANNEL_NAME: group_replication_applier
 VIEW_ID: 16036502905383892:9
 MEMBER_ID: e14043d7-16ee-11eb-b77a-98af65266957
 COUNT_TRANSACTIONS_IN_QUEUE: 0
 COUNT_TRANSACTIONS_CHECKED: 10037
 COUNT_CONFLICTS_DETECTED: 0
 COUNT_TRANSACTIONS_ROWS_VALIDATING: 9218
 TRANSACTIONS_COMMITTED_ALL_MEMBERS: d8a706aa-16ee-11eb-ba5a-98af65266957:1-18,
dc527338-13d1-11eb-abf7-98af65266957:1-1588
 LAST_CONFLICT_FREE_TRANSACTION: dc527338-13d1-11eb-abf7-98af65266957:8030
COUNT_TRANSACTIONS_REMOTE_IN_APPLIER_QUEUE: 5859
 COUNT_TRANSACTIONS_REMOTE_APPLIED: 4180
 COUNT_TRANSACTIONS_LOCAL_PROPOSED: 0
 COUNT_TRANSACTIONS_LOCAL_ROLLBACK: 0
*************************** 3. row ***************************
 CHANNEL_NAME: group_replication_applier
 VIEW_ID: 16036502905383892:9
 MEMBER_ID: ea775284-16ee-11eb-8762-98af65266957
 COUNT_TRANSACTIONS_IN_QUEUE: 0
 COUNT_TRANSACTIONS_CHECKED: 10037
 COUNT_CONFLICTS_DETECTED: 0
 COUNT_TRANSACTIONS_ROWS_VALIDATING: 9218
 TRANSACTIONS_COMMITTED_ALL_MEMBERS: d8a706aa-16ee-11eb-ba5a-98af65266957:1-18,
dc527338-13d1-11eb-abf7-98af65266957:1-37
 LAST_CONFLICT_FREE_TRANSACTION: dc527338-13d1-11eb-abf7-98af65266957:6581
COUNT_TRANSACTIONS_REMOTE_IN_APPLIER_QUEUE: 5828
 COUNT_TRANSACTIONS_REMOTE_APPLIED: 4209
 COUNT_TRANSACTIONS_LOCAL_PROPOSED: 0
 COUNT_TRANSACTIONS_LOCAL_ROLLBACK: 0
3 rows in set (0.00 sec)

 Important fields are COUNT_TRANSACTIONS_REMOTE_IN_APPLIER_QUEUE, which shows how many transactions are waiting in the queue to be applied on the secondary node, and TRANSACTIONS_COMMITTED_ALL_MEMBERS, which shows that transactions were applied on all members. For more details, consult the User Reference Manual.

3.16 Using Processlist to Understand Replication Performance
Problem

 The replica is behind the source server, and lag is increasing. You want to understand what is going on.

Solution

 Examine the status of the SQL threads using replication tables in the Performance Schema as well as regular MySQL performance instrumentation.

Discussion

 The replica may fall behind the source if SQL threads are applying updates slower than the source server is. This may happen because updates on the source are running concurrently, while on the replica, fewer threads are used to process the same workload. This difference can even happen on replicas with the same or higher number of CPU cores than the source, either because you set up fewer replica_parallel_workers than active threads on the source server or because they’re not fully used due to safety measures that prevent the replica from applying updates in the wrong order.

 To understand how many parallel workers are active, you can query the replication_applier_status_by_worker table like this:

mysql> SELECT WORKER_ID, LAST_APPLIED_TRANSACTION, APPLYING_TRANSACTION
 -> FROM performance_schema.replication_applier_status_by_worker;
+-----------+---------------------------------+---------------------------------+
| WORKER_ID | LAST_APPLIED_TRANSACTION | APPLYING_TRANSACTION |
+-----------+---------------------------------+---------------------------------+
1	de7e85f9-...-98af65266957:26075	de7e85f9-...-98af65266957:26077
2	de7e85f9-...-98af65266957:26076	de7e85f9-...-98af65266957:26078
3	de7e85f9-...-98af65266957:26068	de7e85f9-...-98af65266957:26079
4	de7e85f9-...-98af65266957:26069	
5	de7e85f9-...-98af65266957:26070	
6	de7e85f9-...-98af65266957:26071	
7	de7e85f9-...-98af65266957:25931	
8	de7e85f9-...-98af65266957:21638	
+-----------+---------------------------------+---------------------------------+
8 rows in set (0.01 sec)

 In the preceding listing, you may notice that only three threads are currently applying a transaction, while others are idle. This is not stable information, and you need to run the same query several times to find out if this is a tendency.

 The threads table in the Performance Schema contains a list of all threads currently running on the MySQL server, including background ones. It has a name field, whose value is thread/sql/replica_worker (thread/sql/slave_worker) in the case of the replication SQL thread. You can query it and find more details about what each of the SQL thread workers is doing:

mysql> SELECT THREAD_ID AS TID, PROCESSLIST_ID AS PID,
 -> PROCESSLIST_DB, PROCESSLIST_STATE
 -> FROM performance_schema.threads WHERE NAME = 'thread/sql/replica_worker';
+-----+-----+----------------+--+
| TID | PID | PROCESSLIST_DB | PROCESSLIST_STATE |
+-----+-----+----------------+--+
54	13	NULL	waiting for handler commit
55	14	sbtest	Applying batch of row changes (update)
56	15	sbtest	Applying batch of row changes (delete)
57	16	NULL	Waiting for an event from Coordinator
58	17	NULL	Waiting for an event from Coordinator
59	18	NULL	Waiting for an event from Coordinator
60	19	NULL	Waiting for an event from Coordinator
61	20	NULL	Waiting for an event from Coordinator
+-----+-----+----------------+--+
8 rows in set (0.00 sec)

 In the preceding listing, thread 54 is waiting for a transaction commit, threads 55 and 56 are applying a batch of row changes, and other threads are waiting for an event from the coordinator.

 Since the source server applies changes in high numbers of threads, we may notice that the replication lag is increasing:

mysql> \P grep Seconds_Behind_Source
PAGER set to 'grep Seconds_Behind_Source'
mysql> SHOW REPLICA STATUS\G SELECT SLEEP(60); SHOW REPLICA STATUS\G
 Seconds_Behind_Source: 232
1 row in set (0.00 sec)

1 row in set (1 min 0.00 sec)

 Seconds_Behind_Source: 238
1 row in set (0.00 sec)

 One of the resolutions for an issue like this is to set the binlog_transaction_dependency_tracking option on the source server to WRITESET_SESSION or WRITESET. These options are discussed in Recipe 3.8 and allow higher parallelization on the replica. Note that changes won’t take effect immediately, because the replica will have to apply binary log events, recorded with the default binlog_transaction_dependency_tracking value COMMIT_ORDER.

 Still, after a while, you may notice that all SQL thread workers have become active and the replica lag has started to decrease:

mysql> SELECT WORKER_ID, LAST_APPLIED_TRANSACTION, APPLYING_TRANSACTION
 -> FROM performance_schema.replication_applier_status_by_worker;
+-----------+----------------------------------+-----------------------------------+
| WORKER_ID | LAST_APPLIED_TRANSACTION | APPLYING_TRANSACTION |
+-----------+----------------------------------+-----------------------------------+
1	de7e85f9-...-98af65266957:170966	de7e85f9-...-98af65266957:170976
2	de7e85f9-...-98af65266957:170970	de7e85f9-...-98af65266957:170973
3	de7e85f9-...-98af65266957:170968	de7e85f9-...-98af65266957:170975
4	de7e85f9-...-98af65266957:170960	de7e85f9-...-98af65266957:170967
5	de7e85f9-...-98af65266957:170964	de7e85f9-...-98af65266957:170972
6	de7e85f9-...-98af65266957:170962	de7e85f9-...-98af65266957:170969
7	de7e85f9-...-98af65266957:170971	de7e85f9-...-98af65266957:170977
8	de7e85f9-...-98af65266957:170965	de7e85f9-...-98af65266957:170974
+-----------+----------------------------------+-----------------------------------+
8 rows in set (0.00 sec)

mysql> SELECT THREAD_ID, PROCESSLIST_ID, PROCESSLIST_DB, PROCESSLIST_STATE
 -> FROM performance_schema.threads WHERE NAME = 'thread/sql/replica_worker';
+-----------+----------------+----------------+--+
| thread_id | PROCESSLIST_ID | PROCESSLIST_DB | PROCESSLIST_STATE |
+-----------+----------------+----------------+--+
54	13	sbtest	Applying batch of row changes (update)
55	14	NULL	waiting for handler commit
56	15	sbtest	Applying batch of row changes (delete)
57	16	sbtest	Applying batch of row changes (delete)
58	17	sbtest	Applying batch of row changes (update)
59	18	sbtest	Applying batch of row changes (delete)
60	19	sbtest	Applying batch of row changes (update)
61	20	sbtest	Applying batch of row changes (write)
+-----------+----------------+----------------+--+
8 rows in set (0.00 sec)

mysql> \P grep Seconds_Behind_Source
PAGER set to 'grep Seconds_Behind_Source'
mysql> SHOW REPLICATION SOURCE STATUS\G SELECT SLEEP(60); SHOW REPLICA STATUS\G
 Seconds_Behind_Source: 285
1 row in set (0.00 sec)

1 row in set (1 min 0.00 sec)

 Seconds_Behind_Source: 275
1 row in set (0.00 sec)

 Another common reason for the replication lag is a local command, affecting tables, updated by the replication. You may notice that this is the case by querying table replication_applier_status_by_worker and comparing the value of the field APPLYING_TRANSACTION_START_APPLY_TIMESTAMP with the current time:

mysql> SELECT WORKER_ID, APPLYING_TRANSACTION, TIMEDIFF(NOW(),
 -> APPLYING_TRANSACTION_START_APPLY_TIMESTAMP) AS exec_time
 -> FROM performance_schema.replication_applier_status_by_worker;
+-----------+---+-----------------+
| WORKER_ID | APPLYING_TRANSACTION | exec_time |
+-----------+---+-----------------+
1	de7e85f9-1060-11eb-8b8f-98af65266957:226091	00:05:14.367275
2	de7e85f9-1060-11eb-8b8f-98af65266957:226087	00:05:14.768701
3	de7e85f9-1060-11eb-8b8f-98af65266957:226090	00:05:14.501099
4	de7e85f9-1060-11eb-8b8f-98af65266957:226097	00:05:14.232062
5	de7e85f9-1060-11eb-8b8f-98af65266957:226086	00:05:14.773958
6	de7e85f9-1060-11eb-8b8f-98af65266957:226083	00:05:14.782274
7	de7e85f9-1060-11eb-8b8f-98af65266957:226080	00:05:14.843808
8	de7e85f9-1060-11eb-8b8f-98af65266957:226094	00:05:14.327028
+-----------+---+-----------------+
8 rows in set (0.00 sec)

 In the preceding listing, the transaction execution time is similar for all threads–around five minutes. That is ridiculously long!

 To find out why transactions are executing for such a long time, query the threads table in the Performance Schema:

mysql> SELECT THREAD_ID, PROCESSLIST_ID, PROCESSLIST_DB, PROCESSLIST_STATE
 -> FROM performance_schema.threads WHERE NAME = 'thread/sql/replica_worker';
+-----------+----------------+----------------+------------------------------+
| thread_id | PROCESSLIST_ID | PROCESSLIST_DB | PROCESSLIST_STATE |
+-----------+----------------+----------------+------------------------------+
54	13	NULL	Waiting for global read lock
55	14	NULL	Waiting for global read lock
56	15	NULL	Waiting for global read lock
57	16	NULL	Waiting for global read lock
58	17	NULL	Waiting for global read lock
59	18	NULL	Waiting for global read lock
60	19	NULL	Waiting for global read lock
61	20	NULL	Waiting for global read lock
+-----------+----------------+----------------+------------------------------+
8 rows in set (0.00 sec)

 It’s clear that the replication SQL threads aren’t doing any useful job and are just waiting for a global read lock.

 To find out which thread is holding a global read lock, try querying the threads table in the Performance Schema, but this time filter out replica threads:

mysql> SELECT THREAD_ID, PROCESSLIST_ID, PROCESSLIST_DB,
 -> PROCESSLIST_STATE, PROCESSLIST_INFO
 -> FROM performance_schema.threads
 -> WHERE NAME != 'thread/sql/replica_worker' AND PROCESSLIST_ID IS NOT NULL\G
*************************** 1. row ***************************
 thread_id: 46
 PROCESSLIST_ID: 7
 PROCESSLIST_DB: NULL
PROCESSLIST_STATE: Waiting on empty queue
 PROCESSLIST_INFO: NULL
*************************** 2. row ***************************
 thread_id: 50
 PROCESSLIST_ID: 9
 PROCESSLIST_DB: NULL
PROCESSLIST_STATE: Suspending
 PROCESSLIST_INFO: NULL
*************************** 3. row ***************************
 thread_id: 52
 PROCESSLIST_ID: 11
 PROCESSLIST_DB: NULL
PROCESSLIST_STATE: Waiting for master to send event
 PROCESSLIST_INFO: NULL
*************************** 4. row ***************************
 thread_id: 53
 PROCESSLIST_ID: 12
 PROCESSLIST_DB: NULL
PROCESSLIST_STATE: Waiting for slave workers to process their queues
 PROCESSLIST_INFO: NULL
*************************** 5. row ***************************
 thread_id: 64
 PROCESSLIST_ID: 23
 PROCESSLIST_DB: performance_schema
PROCESSLIST_STATE: executing
 PROCESSLIST_INFO: SELECT THREAD_ID, PROCESSLIST_ID, PROCESSLIST_DB, PROCESSLIST_STATE, ↩
 PROCESSLIST_INFO FROM performance_schema.threads WHERE ↩
 NAME != 'thread/sql/slave_worker' AND PROCESSLIST_ID IS NOT NULL
*************************** 6. row ***************************
 thread_id: 65
 PROCESSLIST_ID: 24
 PROCESSLIST_DB: NULL
PROCESSLIST_STATE: NULL
 PROCESSLIST_INFO: flush tables with read lock
6 rows in set (0.00 sec)

 In our example, the offending thread is the thread executed FLUSH TABLES WITH READ LOCK. This is a common safety lock, performed by backup programs. Since we know the reason for the replica stall, we can either wait until this job finishes or kill the thread. Once done, the replica will continue executing updates.

See Also
Troubleshooting performance is a long topic, and further detail is outside the scope of this book. For additional information about troubleshooting,
 see MySQL Troubleshooting (O’Reilly).

3.17 Setting Up Automated Replication
Problem

 You want to set up replication but do not want to configure it manually.

Solution

 Use MySQL Admin API, available in MySQL Shell (Chapter 2).

Discussion

 MySQL Shell provides MySQL Admin API, which allows you to automate standard replication administrative tasks, such as creating a ReplicaSet of a source server with one or more replicas. Or, you can create an InnoDB Cluster, using Group Replication.

InnoDB ReplicaSet

 If you want to automate replication setup, use the MySQL Admin API inside MySQL Shell and InnoDB ReplicaSet. InnoDB ReplicaSet allows you to create a single-primary replication topology with as many secondary read-only servers as you wish. You can later promote one of the secondary servers to primary. Multiple-primary setups, replication filters, and automatic failovers are not supported.

 First, you need to prepare the servers. Ensure that the following conditions are met:

	MySQL is version 8.0 or newer

	The GTID gtid_mode and enforce_gtid_consistency options are enabled

	The binary log format is ROW

	The default storage engine is InnoDB: set the option default_storage_engine=InnoDB

	
 Parallel-replication related options are set to the following values:

binlog_transaction_dependency_tracking=WRITESET
replica_preserve_commit_order=ON
replica_parallel_type=LOGICAL_CLOCK

Warning

 If you’re using Ubuntu and want to set up ReplicaSet on the local machine, edit the /etc/hosts file and either remove loopback address 127.0.1.1 or replace it with 127.0.0.1. Loopback addresses other than 127.0.0.1 are not supported by MySQL Shell.

 Once the servers are prepared for replication, you can start configuring them with MySQL Shell:

 MySQL JS > \c root@127.0.0.1:13000
Creating a session to 'root@127.0.0.1:13000'
Fetching schema names for autocompletion... Press ^C to stop.
Your MySQL connection id is 12
Server version: 8.0.28 MySQL Community Server - GPL
No default schema selected; type \use <schema> to set one.
 MySQL 127.0.0.1:13000 ssl JS > dba.configureReplicaSetInstance(
 -> 'root@127.0.0.1:13000', {clusterAdmin: "'repl'@'%'"})
 ->
Please provide the password for 'root@127.0.0.1:13000':
Save password for 'root@127.0.0.1:13000'? [Y]es/[N]o/Ne[v]er (default No):
Configuring local MySQL instance listening at port 13000 for use in an InnoDB ReplicaSet...

This instance reports its own address as Delly-7390:13000
Clients and other cluster members will communicate with it through↩
this address by default. If this is not correct, ↩
the report_host MySQL system variable should be changed.
Password for new account: ********
Confirm password: ********

applierWorkerThreads will be set to the default value of 4.

The instance 'Delly-7390:13000' is valid to be used in an InnoDB ReplicaSet.
Cluster admin user 'repl'@'%' created.
The instance 'Delly-7390:13000' is already ready to be used in an InnoDB ReplicaSet.

Successfully enabled parallel appliers.

 The dba.configureReplicaSetInstance command takes two parameters: URI to connect to the server and configuration options. The clusterAdmin option instructs you to create a replication user. Then you can provide a password when prompted.

 Repeat the configuration step for all servers in the ReplicaSet. Specify the same replication username and password.

 Once all instances are configured, create a ReplicaSet:

 MySQL 127.0.0.1:13000 ssl JS > var rs = dba.createReplicaSet("cookbook")
 A new replicaset with instance 'Delly-7390:13000' will be created.

* Checking MySQL instance at Delly-7390:13000

This instance reports its own address as Delly-7390:13000
Delly-7390:13000: Instance configuration is suitable.

* Updating metadata...

ReplicaSet object successfully created for Delly-7390:13000.
Use rs.addInstance() to add more asynchronously replicated instances to this ↩
replicaset and rs.status() to check its status.

 The dba.createReplicaSet command creates a named ReplicaSet and returns a ReplicaSet object. Save it into a variable to perform further management.

 Internally, it creates a mysql_innodb_cluster_metadata database with tables, describing ReplicaSet setup in the instance MySQL Shell connected to. At the same time, this first instance is set up as a PRIMARY ReplicaSet member. You can check it by running the rs.status() command:

 MySQL 127.0.0.1:13000 ssl JS > rs.status()
{
 "replicaSet": {
 "name": "cookbook",
 "primary": "Delly-7390:13000",
 "status": "AVAILABLE",
 "statusText": "All instances available.",
 "topology": {
 "Delly-7390:13000": {
 "address": "Delly-7390:13000",
 "instanceRole": "PRIMARY",
 "mode": "R/W",
 "status": "ONLINE"
 }
 },
 "type": "ASYNC"
 }
}

 Once the PRIMARY instance is set up, you can add as many secondary instances as desired:

 MySQL 127.0.0.1:13000 ssl JS > rs.addInstance('root@127.0.0.1:13002')
Adding instance to the replicaset...

* Performing validation checks

This instance reports its own address as Delly-7390:13002
Delly-7390:13002: Instance configuration is suitable.

* Checking async replication topology...

* Checking transaction state of the instance...

NOTE: The target instance 'Delly-7390:13002' has not been pre-provisioned ↩
(GTID set is empty). The Shell is unable to decide whether replication can ↩
completely recover its state.
The safest and most convenient way to provision a new instance is through ↩
automatic clone provisioning, which will completely overwrite the state of ↩
'Delly-7390:13002' with a physical snapshot from an existing replicaset member. ↩
To use this method by default, set the 'recoveryMethod' option to 'clone'.

WARNING: It should be safe to rely on replication to incrementally recover ↩
the state of the new instance if you are sure all updates ever executed in ↩
the replicaset were done with GTIDs enabled, there are no purged transactions, ↩
and the new instance contains the same GTID set as the replicaset or a subset ↩
of it. To use this method by default, set the 'recoveryMethod' option to 'incremental'.

Please select a recovery method [C]lone/[I]ncremental recovery/[A]bort (default Clone):
* Updating topology
Waiting for clone process of the new member to complete. Press ^C to abort the operation.
* Waiting for clone to finish...
NOTE: Delly-7390:13002 is being cloned from delly-7390:13000
** Stage DROP DATA: Completed
** Clone Transfer
 FILE COPY ## 100% Completed
 PAGE COPY ## 100% Completed
 REDO COPY ## 100% Completed

NOTE: Delly-7390:13002 is shutting down...

* Waiting for server restart... ready
* Delly-7390:13002 has restarted, waiting for clone to finish...
** Stage RESTART: Completed
* Clone process has finished: 60.00 MB transferred in about 1 second (~60.00 MB/s)

** Configuring Delly-7390:13002 to replicate from Delly-7390:13000
** Waiting for new instance to synchronize with PRIMARY...

The instance 'Delly-7390:13002' was added to the replicaset and is replicating
from Delly-7390:13000.

 Each secondary instance performs an initial data copy from the PRIMARY member. It can copy data using either the clone plug-in or through incremental recovery from the binary logs. For the server that already has data, the clone method is preferable. But you may need to manually restart the server to finish the installation. If you’ve chosen incremental recovery, ensure that no binary log containing data is purged. Otherwise, replication setup will fail.

 Once all secondary members are added, ReplicaSet is ready and can be used for writes and reads. You can check its status by running the rs.status() command. It supports the extended option, controlling verbosity of the output. Still, it doesn’t show all the information about replication health. If you want to have all the details, use the SHOW REPLICA STATUS command or query the Performance Schema.

 If you want to change which server is a PRIMARY, use the rs.setPrimaryInstance command. Thus, rs.setPrimaryInstance("127.0.0.1:13002") degrades the server to secondary when listening on port 1300, and promotes the server to PRIMARY when listening on port 13002.

 If you disconnected from a server participating in the ReplicaSet or destroyed a ReplicaSet object, reconnect to one of the ReplicaSet members and run the rs=dba.getReplicaSet() command to re-create the ReplicaSet object.

Warning

 If you want to manage ReplicaSet with MySQL Shell, do not modify the replication setup directly by running the CHANGE REPLICATION SOURCE command. All management should happen via the Admin API in MySQL Shell.

InnoDB Cluster

 To automate Group Replication, create a MySQL InnoDB Cluster. InnoDB Cluster is a complete high-availability solution that allows you to easily configure and administer a group of at least three MySQL Servers.

 Before setting up an InnoDB Cluster, prepare the servers. Each of the servers in the group should meet the following conditions:

	Have a unique server ID

	Have GTID enabled

	Have the disabled_storage_engines option set to "MyISAM,BLACKHOLE,FEDERATED,ARCHIVE,MEMORY"

	Have the log_replica_updates option enabled

	Have a user account with administrative privileges

	
 Parallel-replication related options:

binlog_transaction_dependency_tracking=WRITESET
replica_preserve_commit_order=ON
replica_parallel_type=LOGICAL_CLOCK
transaction_write_set_extraction=XXHASH64

 You can set other options (Recipe 3.12) required for Group Replication, but they can also be configured by the MySQL Shell.

 Once you have set up and started the MySQL instances, connect MySQL Shell to the one you want to make PRIMARY and configure them. You need to use an account (in our case, root) with administrative privileges to start the configuration process:

 MySQL 127.0.0.1:33367 ssl JS > dba.configureInstance('root@127.0.0.1:33367',
 -> {clusterAdmin: "grepl",
 -> clusterAdminPassword: "greplgrepl"})
 ->
Please provide the password for 'root@127.0.0.1:33367':
Configuring local MySQL instance listening at port 33367 for use in an InnoDB cluster...

This instance reports its own address as Delly-7390:33367
Clients and other cluster members will communicate with it through this address by default.
If this is not correct, the report_host MySQL system variable should be changed.
Assuming full account name 'grepl'@'%' for grepl

The instance 'Delly-7390:33367' is valid to be used in an InnoDB cluster.

Cluster admin user 'grepl'@'%' created.
The instance 'Delly-7390:33367' is already ready to be used in an InnoDB cluster.

 Repeat the configuration for other instances in the cluster.

Warning

 If an instance is manually configured for Group Replication, MySQL Shell wouldn’t be able to update its options and wouldn’t ensure that the Group Replication configuration persists after restart. Always run dba.configureInstance before setting up an InnoDB Cluster.

 After the instances are configured, create a cluster:

 MySQL 127.0.0.1:33367 ssl JS > var cluster = dba.createCluster('cookbook',
 -> {localAddress: ":34367"})
 ->
A new InnoDB cluster will be created on instance '127.0.0.1:33367'.

Validating instance configuration at 127.0.0.1:33367...

This instance reports its own address as Delly-7390:33367

Instance configuration is suitable.
Creating InnoDB cluster 'cookbook' on 'Delly-7390:33367'...

Adding Seed Instance...
Cluster successfully created. Use Cluster.addInstance() to add MySQL instances.
At least 3 instances are needed for the cluster to be able to withstand up to
one server failure.

 Then add instances to it: cluster.addInstance('root@127.0.0.1:33368', {localAddress: ":34368"}). When MySQL Shell asks you to select a recovery method, choose “Clone.” Then, depending on whether your server supports the RESTART command, either wait until it’s back online or start the node manually. If it’s successful, you’ll see a message similar to this:

State recovery already finished for 'Delly-7390:33368'

The instance '127.0.0.1:33368' was successfully added to the cluster.

 Add other instances to the cluster.

Tip

 MySQL Shell constructs a local address that Group nodes use to communicate with one another by using the report_host system variable for the host address and the formula (current port of the instance) * 10 + 1 for the port number. If the auto-generated value exceeds 65535, the instance cannot be added to the cluster. Therefore, if you use nonstandard ports, specify the custom value for the localAddress option.

 After instances are added, InnoDB Cluster is ready to use. To examine its status, use the cluster.status() command, which supports the extended key, controlling verbosity of the output. The default is 0: only basic information is printed. With option 2 and 3, you can examine which transactions are received and applied on each member. The command cluster.describe() gives a short overview of the cluster topology:

 MySQL 127.0.0.1:33367 ssl JS > cluster.describe()
{
 "clusterName": "cookbook",
 "defaultReplicaSet": {
 "name": "default",
 "topology": [
 {
 "address": "Delly-7390:33367",
 "label": "Delly-7390:33367",
 "role": "HA"
 },
 {
 "address": "Delly-7390:33368",
 "label": "Delly-7390:33368",
 "role": "HA"
 },
 {
 "address": "Delly-7390:33369",
 "label": "Delly-7390:33369",
 "role": "HA"
 }
],
 "topologyMode": "Single-Primary"
 }
}

 If you destroyed the cluster object, for example, by closing the session, reconnect to one of the cluster members and re-create it by running the cluster = dba.getCluster() command.

Note

 Both InnoDB ReplicaSet and InnoDB Cluster support the software router MySQL Router, which you can use for load balancing. We skipped this part because it’s outside the scope of the book. For information on how to set up the MySQL Router together with InnoDB ReplicaSet and InnoDB Cluster, consult the User Reference Manual.

See Also
For additional information about replication automation,
 see the MySQL Shell Reference Manual.

Chapter 4. Writing MySQL-Based Programs
4.0 Introduction
This chapter discusses how to use MySQL from within the context of a general-purpose
 programming language. It covers basic application programming interface
 (API) operations that are fundamental to and form the basis for the
 programming recipes developed in later chapters. These operations include
 connecting to the MySQL server, executing statements, and retrieving the
 results.
MySQL-based client programs can be written using many languages.
 This book covers the languages and interfaces shown in Table 4-1
 (for information on obtaining the interface software, see the Preface).
Table 4-1. Languages and interfaces covered in this book	Language	Interface
	Perl	Perl DBI
	Ruby	Mysql2 gem
	PHP	PDO
	Python	DB-API
	Go	Go sql
	Java	JDBC

MySQL client APIs provide the following capabilities, each covered in a
 section of this chapter:
	Connecting to the MySQL server, selecting a database, and
 disconnecting from the server
	Every program that uses MySQL must first establish a
 connection to the server. Most programs also select a default
 database, and well-behaved MySQL programs close the connection to
 the server when they’re done with it.

	Checking for errors
	Any database operation can fail. If you know how to
 find out when that occurs and why, you can take appropriate action,
 such as terminating the program or informing the user of the
 problem.

	Executing SQL statements and retrieving results
	The point of connecting to a database server is to execute SQL
 statements. Each API provides at least one way to do this, as well
 as methods for processing statement results.

	Handling special characters and NULL values in statements
	Data values can be embedded directly in statement strings.
 However, some characters such as quotes and backslashes have special
 meaning, and their use requires certain precautions. The same is
 true for NULL values. If you
 handle these improperly, your programs will generate SQL statements
 that are erroneous or yield unexpected results. If you incorporate
 data from external sources into queries, your program might become
 subject to SQL injection attacks. Most APIs enable you to avoid
 these problems by using placeholders, which refer to data values
 symbolically in a statement to be executed and supply those values
 separately. The API inserts data into the statement string after
 properly encoding any special characters or NULL values. Placeholders are also known
 as parameter markers.

	Identifying NULL values in
 result sets
	NULL values are special not
 only when you construct statements but also in the results returned
 from them. Each API provides a convention for recognizing and
 dealing with them.

No matter which programming language you use, it’s necessary to know
 how to perform each of the fundamental database API operations just
 described, so this chapter shows each operation in all five languages.
 Seeing how each API handles a given operation should help you see the
 correspondences between APIs more easily and better understand the recipes
 shown in the following chapters, even if they’re written in a language you
 don’t use much. (Later chapters usually implement recipes using only one
 or two languages.)
It may seem overwhelming to see each recipe in several languages if
 your interest is in only one particular API. If so, we advise you to read
 just the introductory recipe part that provides the general background,
 then go directly to the section for the language in which you’re
 interested. Skip the other languages; should you develop an interest in
 them later, come back and read about them then.
This chapter also discusses the following topics, which are not
 directly part of the MySQL APIs but help you use them more easily:
	Writing library files
	As you write program after program, you find that you carry out certain
 operations repeatedly. Library files enable encapsulating code for
 those operations so they can be performed easily from multiple
 scripts without repeating the code in each one. This reduces code
 duplication and makes your programs more portable. This chapter
 shows how to write a library file for each API that includes a
 routine for connecting to the server—one operation that every
 program that uses MySQL must perform. Later chapters develop
 additional library routines for other operations.

	Additional techniques for obtaining connection parameters
	An early section on establishing connections to the MySQL
 server relies on connection parameters hardwired into the code.
 However, there are other (and better) ways to obtain parameters,
 ranging from storing them in a separate file to enabling the user to
 specify them at runtime.

To avoid manually typing in the example programs, get a copy of the
 recipes source distribution (see the
 Preface). Then, when an example says
 something like Create a file named xyz that contains the following information, you can use the corresponding file from the recipes distribution. Most scripts for this
 chapter are located under the api
 directory; library files are located in the lib directory.
The primary table used for examples in this chapter is named
 profile. It first appears in Recipe 4.4, which you should know in case you skip
 around in the chapter and wonder where it came from. See also the section
 at the very end of the chapter about resetting the profile table to a known state for use in other
 chapters.
Note
The programs discussed here can be run from the command line. For
 instructions on invoking programs for each language covered here, read
 cmdline.pdf in the recipes distribution.

Assumptions
To use the material in this chapter most effectively, make sure to
 satisfy these requirements:
	Install MySQL programming support for any languages that you
 plan to use (see the Preface).

	You should already have set up a MySQL user account for
 accessing the server and a database for executing SQL statements. As
 described in Recipe 1.1, the
 examples in this book use a MySQL account that has a username and
 password of cbuser and cbpass, and we’ll connect to a MySQL
 server running on the local host to access a database named cookbook. To create the account or the
 database, see the instructions in that recipe.

	The discussion here shows how to use each API language to
 perform database operations but assumes a basic understanding of
 the language itself. If a recipe uses programming constructs with
 which you’re unfamiliar, consult a general reference for the
 language of interest.

	Proper execution of some of the programs might require that
 you set certain environment variables. General syntax for doing so
 is covered in cmdline.pdf in the recipes distribution (see the Preface). For details about environment
 variables that apply specifically to library file locations, see
 Recipe 4.3.

MySQL Client API Architecture
Each MySQL programming interface covered in this book uses a two-level
 architecture:
	The upper level provides database-independent methods that
 implement database access in a portable way that’s the same whether
 you use MySQL, PostgreSQL, Oracle, or whatever.

	The lower level consists of a set of drivers, each of which
 implements the details for a single database system.

This two-level architecture enables application programs to use an
 abstract interface not tied to details specific to any particular
 database server. This enhances portability of your programs: to use a
 different database system, just select a different lower-level driver.
 However, perfect portability is elusive:
	The interface methods provided by the upper level of the
 architecture are consistent regardless of the driver you use, but
 it’s still possible to write SQL statements that use constructs
 supported only by a particular server. For example, MySQL has
 SHOW statements that provide information about database and table
 structure, but using SHOW with a
 non-MySQL server likely will produce an error.

	Lower-level drivers often extend the abstract interface to
 make it more convenient to access database-specific features. For
 example, the MySQL driver for Perl DBI makes the most recent
 AUTO_INCREMENT value available as
 a database handle attribute accessible as $dbh->{mysql_insertid}. Such features
 make a program easier to write but less portable. To use the
 program with another database system will require some
 rewriting.

Despite these factors that compromise portability to some extent,
 the general portability characteristics of the two-level architecture
 provide significant benefits for MySQL developers.
Another characteristic common to the APIs used in this book is
 that they are object oriented. Whether you write in Perl, Ruby, PHP,
 Python, Java, or Go, the operation that connects to the MySQL server returns
 an object that enables you to process statements in an object-oriented
 manner. For example, when you connect to the database server, you get a
 database connection object with which to further interact with the
 server. The interfaces also provide objects for statements, result sets,
 metadata, and so forth.
Now let’s see how to use these programming interfaces to perform
 the most fundamental MySQL operations: connecting to and disconnecting
 from the server.

4.1 Connecting, Selecting a Database, and Disconnecting
Problem
You need to establish a connection to the database server and shut down the
 connection when you’re done.

Solution
Each API provides routines for connecting and disconnecting. The
 connection routines require that you provide parameters specifying the
 host on which the MySQL server is running and the MySQL account to use.
 You can also select a default database.

Discussion
This section shows how to perform some fundamental operations
 common to most MySQL programs:
	Establishing a connection to the MySQL server
	Every program that uses MySQL does this, no matter which API
 you use. The details on specifying connection parameters vary
 between APIs, and some APIs provide more flexibility than others.
 However, there are many common parameters, such as the host on
 which the server is running, and the username and password of the
 MySQL account to use for accessing the server.

	Selecting a database
	Most MySQL programs select a default database.

	Disconnecting from the server
	Each API provides a way to close an open connection. It’s
 best to do so as soon as you’re done using the server. If your
 program holds the connection open longer than necessary, the
 server cannot free up resources allocated to servicing the
 connection. It’s also preferable to close the connection
 explicitly. If a program simply terminates, the MySQL server
 eventually notices, but an explicit close on the user end enables
 the server to perform an immediate orderly close on its
 end.

This section includes example programs that show how to use each
 API to connect to the server, select the cookbook database, and disconnect. The
 discussion for each API also indicates how to connect without selecting
 any default database. This might be the case if you plan to execute a
 statement that doesn’t require a default database, such as SHOW VARIABLES or SELECT VERSION(). Or perhaps you’re writing a program
 that enables the user to specify the database after the connection has
 been made.
Tip
The scripts shown here use localhost as the hostname. If they produce a
 connection error indicating that a socket file cannot be found, try
 changing localhost to 127.0.0.1, the TCP/IP address of the local
 host. This tip applies throughout the book.

Perl
To write MySQL scripts in Perl, the DBI module must be installed, as well as the MySQL-specific driver
 module, DBD::mysql. To obtain these modules if they’re not already
 installed, see the Preface.
The following Perl script, connect.pl, connects to the MySQL server,
 selects cookbook as the default
 database, and disconnects:
#!/usr/bin/perl
connect.pl: connect to the MySQL server

use strict;
use warnings;
use DBI;

my $dsn = "DBI:mysql:host=localhost;database=cookbook";
my $dbh = DBI->connect ($dsn, "cbuser", "cbpass")
 or die "Cannot connect to server\n";
print "Connected\n";
$dbh->disconnect ();
print "Disconnected\n";
To try connect.pl, locate it
 under the api directory of the
 recipes distribution and run it
 from the command line. The program should print two lines indicating
 that it connected and disconnected successfully:
$ perl connect.pl
Connected
Disconnected

 In the rest of the section, we will walk through the code and explain how it works.

Tip

 If you get an Access Denied error when you connect to MySQL 8.0, ensure that the version of DBD::MySQL is linked with the MySQL 8.0 client library, or use the authentication plug-in mysql_native_password instead of the default caching_sha2_password plug-in. We discuss authentication plug-ins in Recipe 24.2.

For background on running Perl programs, read cmdline.pdf in the recipes distribution (see
 the Preface).
The use strict line turns on strict variable checking and causes Perl to
 complain about any variables that are used without having been
 declared first. This precaution helps find errors that might otherwise
 go undetected.
The use warnings line turns on warning mode so that
 Perl produces warnings for any questionable constructs. Our example
 script has none, but it’s a good idea to get in the habit of enabling
 warnings to catch problems that occur during the script development
 process. use warnings is similar to specifying the Perl
 -w command-line option but provides more control over which warnings to
 display. (For more information, execute a perldoc
 warnings command.)
The use DBI statement tells Perl to load the DBI
 module. It’s unnecessary to load the MySQL driver module (DBD::mysql)
 explicitly. DBI does that itself when the script connects to the
 database server.
The next two lines establish the connection to MySQL by setting
 up a data source name (DSN) and calling the DBI connect() method. The arguments to connect() are the DSN, the MySQL username and password, and any
 connection attributes you want to specify. The DSN is required. The
 other arguments are optional, although usually it’s necessary to
 supply a username and password.
The DSN specifies which database driver to use and other options
 that indicate where to connect. For MySQL programs, the DSN has the
 format DBI:mysql:options.
 The second colon in the DSN is required even if you specify no
 following options.
Use the DSN components as follows:
	The first component is always DBI. It’s not case sensitive.

	The second component tells DBI which database driver to use,
 and it is case sensitive. For MySQL, the name
 must be mysql.

	The third component, if present, is a semicolon-separated
 list of name=value pairs
 that specify additional connection options, in any order. For our
 purposes, the two most relevant options are host and
 database, to specify the
 hostname where the MySQL server is running and the default
 database.

Based on that information, the DSN for connecting to the
 cookbook database on the local host
 localhost looks like this:
DBI:mysql:host=localhost;database=cookbook
If you omit the host option,
 its default value is localhost.
 These two DSNs are equivalent:
DBI:mysql:host=localhost;database=cookbook
DBI:mysql:database=cookbook
To select no default database, omit the database option.
The second and third arguments of the connect() call are your MySQL username and
 password. Following the password, you can also provide a fourth
 argument to specify attributes that control DBI’s behavior when errors
 occur. With no attributes, DBI by default prints error messages when
 errors occur but does not terminate your script. That’s why connect.pl checks whether connect() returns undef, which indicates failure:
my $dbh = DBI->connect ($dsn, "cbuser", "cbpass")
 or die "Cannot connect to server\n";
Other error-handling strategies are possible. For example, to
 tell DBI to terminate the script if an error occurs in any DBI call,
 disable the PrintError
 attribute and enable RaiseError
 instead:
my $dbh = DBI->connect ($dsn, "cbuser", "cbpass",
 {PrintError => 0, RaiseError => 1});
Then you need not check for errors yourself. The trade-off is
 that you also lose the ability to decide how your program recovers
 from errors. Recipe 4.2 discusses error
 handling further.
Another common attribute is AutoCommit, which sets the connection’s auto-commit mode for transactions.
 MySQL enables this by default for new connections, but we’ll set it
 from this point on to make the initial connection state
 explicit:
my $dbh = DBI->connect ($dsn, "cbuser", "cbpass",
 {PrintError => 0, RaiseError => 1, AutoCommit => 1});
As shown, the fourth argument to connect() is a reference to a hash of
 attribute name/value pairs. An alternative way of writing this code
 follows:
my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit => 1};
my $dbh = DBI->connect ($dsn, "cbuser", "cbpass", $conn_attrs);
Use whichever style you prefer. Scripts in this book use the
 $conn_attr hashref to make connect() calls simpler to read.
Assuming that connect()
 succeeds, it returns a database handle that contains information about
 the state of the connection. (In DBI parlance, references to objects
 are called handles.) Later we’ll see other handles, such as statement
 handles, which are associated with particular statements. Perl DBI
 scripts in this book conventionally use $dbh and $sth to signify database and statement
 handles.
To specify the path to a socket file for localhost connections on Unix, provide a
 mysql_socket option in the DSN:
my $dsn = "DBI:mysql:host=localhost;database=cookbook"
 . ";mysql_socket=/var/tmp/mysql.sock";
To specify the port number for non-localhost (TCP/IP) connections,
 provide a port
 option:
my $dsn = "DBI:mysql:host=127.0.0.1;database=cookbook;port=3307";

Ruby

 To write MySQL scripts in Ruby, the Mysql2 gem must be installed. To obtain this gem if it is not already installed, see the Preface.

The following Ruby script, connect.rb, connects to the MySQL server,
 selects cookbook as the default
 database, and disconnects:
#!/usr/bin/ruby -w
connect.rb: connect to the MySQL server

require "mysql2"

begin
 client = Mysql2::Client.new(:host => "localhost",
 :username => "cbuser",
 :password => "cbpass",
 :database => "cookbook")
 puts "Connected"
rescue => e
 puts "Cannot connect to server"
 puts e.backtrace
 exit(1)
ensure
 client.close()
 puts "Disconnected"
end
To try connect.rb, locate it
 under the api directory of the
 recipes distribution and run it
 from the command line. The program should print two lines indicating
 that it connected and disconnected successfully:
$ ruby connect.rb
Connected
Disconnected
For background on running Ruby programs, read cmdline.pdf in the recipes distribution (see
 the Preface).
The -w option turns on warning mode so that Ruby produces warnings for any
 questionable constructs. Our example script has no such constructs,
 but it’s a good idea to get in the habit of using -w
 to catch problems that occur during the script development
 process.
The require statement tells
 Ruby to load the Mysql2 module.

 To establish the connection, create a Mysql2::Client object. Pass connection parameters as named arguments for the method new.

To select no default database, omit the database option.
Assuming that the Mysql2::Client object is successfully created, it will act as a database handle that contains information
 about the state of the connection. Ruby scripts in this book
 conventionally use client to signify a
 database handle object.
If the new() method
 fails, it raises an exception. To handle exceptions, put the
 statements that might fail inside a begin block, and use a rescue clause that contains the
 error-handling code. Exceptions that occur at the top level of a
 script (that is, outside of any begin block) are caught by the default
 exception handler, which prints a stack trace and exits. Recipe 4.2 discusses error handling
 further.
To specify the path to a socket file for localhost connections on Unix, provide a
 socket option for the method new:
client = Mysql2::Client.new(:host => "localhost",
 :socket => "/var/tmp/mysql.sock",
 :username => "cbuser",
 :password => "cbpass",
 :database => "cookbook")
To specify the port number for non-localhost (TCP/IP) connections,
 provide a port
 option:
client = Mysql2::Client.new(:host => "127.0.0.1",
 :port => 3307,
 :username => "cbuser",
 :password => "cbpass",
 :database => "cookbook")

PHP
To write PHP scripts that use MySQL, your PHP interpreter must have MySQL support compiled in. If
 your scripts are unable to connect to your MySQL server, check the
 instructions included with your PHP distribution to see how to enable
 MySQL support.
PHP actually has multiple extensions that enable the use of
 MySQL, such as mysql, the original
 (and now deprecated) MySQL extension; mysqli, the MySQL improved
 extension; and, more recently, the MySQL driver for the PDO (PHP Data Objects) interface. PHP scripts in
 this book use PDO. To obtain PHP and PDO if they’re not already
 installed, see the Preface.
PHP scripts usually are written for use with a web server. I
 assume that if you use PHP that way, you can copy PHP scripts into
 your server’s document tree, and request them from your browser, and they
 will execute. For example, if you run Apache as the web server on the
 host localhost and you install a
 PHP script named myscript.php at
 the top level of the Apache document tree, you should be able to
 access the script by requesting this URL:
http://localhost/myscript.php
This book uses the .php
 extension (suffix) for PHP script filenames, so your web server must
 be configured to recognize the .php extension. Otherwise, when you
 request a PHP script from your browser, the server simply sends the
 literal text of the script and that’s what appears in your browser
 window. You don’t want this to happen, particularly if the script
 contains the username and password for connecting to MySQL.
PHP scripts often are written as a mixture of HTML and PHP code,
 with the PHP code embedded between the special <?php and ?> tags. Here is an example:
<html>
<head><title>A simple page</title></head>
<body>
<p>
<?php
 print ("I am PHP code, hear me roar!");
?>
</p>
</body>
</html>
For brevity in examples consisting entirely of PHP code,
 typically I’ll omit the enclosing <?php and ?> tags. If you see no tags in a PHP
 example, assume that <?php and
 ?> surround the entire block of
 code that is shown. Examples that switch between HTML and PHP code do
 include the tags, to make it clear what is PHP code and what is
 not.
PHP can be configured to recognize short tags as
 well, written as <? and ?>. This book does not assume that you
 have short tags enabled and does not use them.
The following PHP script, connect.php, connects to the MySQL server,
 selects cookbook as the default
 database, and disconnects:
<?php
connect.php: connect to the MySQL server

try
{
 $dsn = "mysql:host=localhost;dbname=cookbook";
 $dbh = new PDO ($dsn, "cbuser", "cbpass");
 print ("Connected\n");
}
catch (PDOException $e)
{
 die ("Cannot connect to server\n");
}
$dbh = NULL;
print ("Disconnected\n");
?>
To try connect.php, locate it
 under the api directory of the
 recipes distribution, copy it to
 your web server’s document tree, and request it using your browser.
 Alternatively, if you have a standalone version of the PHP interpreter
 for use from the command line, execute the script directly:
$ php connect.php
Connected
Disconnected
For background on running PHP programs, read cmdline.pdf in the recipes distribution (see
 the Preface).
$dsn is the data source name
 (DSN) that indicates how to connect to the database
 server. It has this general syntax:
driver:name=value;name=value ...
The driver value is the PDO driver
 type. For MySQL, this is mysql.
Following the driver name, semicolon-separated
 name=value pairs
 specify connection parameters, in any order. For our purposes, the two
 most relevant options are host and dbname, to specify the hostname where the
 MySQL server is running and the default database. To select no default
 database, omit the dbname
 option.
To establish the connection, invoke the new PDO() class constructor, passing to it the
 appropriate arguments. The DSN is required. The other arguments are
 optional, although usually it’s necessary to supply a username and
 password. If the connection attempt succeeds, new PDO()
 returns a database-handle object that is used to access other
 MySQL-related methods. PHP scripts in this book conventionally use
 $dbh to signify a database
 handle.
If the connection attempt fails, PDO raises an exception. To
 handle this, put the connection attempt within a try block and use a catch block that contains the error-handling
 code, or just let the exception terminate your script. Recipe 4.2 discusses error handling
 further.
To disconnect, set the database handle to NULL. There is no explicit disconnect
 call.
To specify the path to a socket file for localhost connections on Unix, provide
 a unix_socket
 option in the DSN:
$dsn = "mysql:host=localhost;dbname=cookbook"
 . ";unix_socket=/var/tmp/mysql.sock";
To specify the port number for non-localhost
 (TCP/IP) connections, provide a port option:
$dsn = "mysql:host=127.0.0.1;database=cookbook;port=3307";

Python
To write MySQL programs in Python, a module must be installed that provides MySQL
 connectivity for the Python DB API, also known as Python Database API
 Specification v2.0 (PEP 249). This book uses MySQL Connector/Python.
 To obtain it if it’s not already installed, see the Preface.
To use the DB API, import the database driver module that you
 want to use (which is mysql.connector for MySQL programs that use
 Connector/Python). Then create a database connection object by calling
 the driver’s connect()
 method. This object provides access to other DB API methods, such as
 the close() method
 that serves the connection to the database server.
The following Python script, connect.py, connects to the MySQL server,
 selects cookbook as the default
 database, and disconnects:
#!/usr/bin/python3
connect.py: connect to the MySQL server

import mysql.connector

try:
 conn = mysql.connector.connect(database="cookbook",
 host="localhost",
 user="cbuser",
 password="cbpass")
 print("Connected")
except:
 print("Cannot connect to server")
else:
 conn.close()
 print("Disconnected")
To try connect.py, locate it
 under the api directory of the
 recipes distribution and run it
 from the command line. The program should print two lines indicating
 that it connected and disconnected successfully:
$ python3 connect.py
Connected
Disconnected
For background on running Python programs, read cmdline.pdf in the recipes distribution (see
 the Preface).
The import line tells Python
 to load the mysql.connector module.
 Then the script attempts to establish a connection to the MySQL server
 by calling connect() to obtain a
 connection object. Python scripts in this book conventionally use
 conn to signify connection
 objects.
If the connect() method
 fails, Connector/Python raises an exception. To handle exceptions, put
 the statements that might fail inside a try statement and
 use an except clause that contains
 the error-handling code. Exceptions that occur at the top level of a
 script (that is, outside of any try
 statement) are caught by the default exception handler, which prints a
 stack trace and exits. Recipe 4.2 discusses
 error handling further.
The else clause contains
 statements that execute if the try
 clause produces no exception. It’s used here to close the successfully
 opened connection.
Because the connect() call
 uses named arguments, their order does not matter. If you omit the
 host argument from the connect() call, its default value is
 127.0.0.1. To select no default
 database, omit the database
 argument or pass a database value
 of "" (the empty string) or
 None.
Another way to connect is to specify the parameters using a
 Python dictionary and pass the dictionary to connect():
conn_params = {
 "database": "cookbook",
 "host": "localhost",
 "user": "cbuser",
 "password": "cbpass",
}
conn = mysql.connector.connect(**conn_params)
print("Connected")
This book generally uses that style from now on.
To specify the path to a socket file for local host
 connections on Unix, omit the host parameter and provide a unix_socket
 parameter:
conn_params = {
 "database": "cookbook",
 "unix_socket": "/var/tmp/mysql.sock",
 "user": "cbuser",
 "password": "cbpass",
}
conn = mysql.connector.connect(**conn_params)
print("Connected")
To specify the port number for TCP/IP connections, include the host
 parameter and provide an integer-valued port parameter:
conn_params = {
 "database": "cookbook",
 "host": "127.0.0.1",
 "port": 3307,
 "user": "cbuser",
 "password": "cbpass",
}
conn = mysql.connector.connect(**conn_params)

Go
To write MySQL programs in Go, a Go SQL Driver must be installed.
 This book uses Go-MySQL-Driver.
 To obtain it if it’s not already installed, install Git, then issue the following command:
$ go get -u github.com/go-sql-driver/mysql
To use the Go SQL interface, import the database/sql package and your driver package. Then create a database connection object by calling
 the sql.Open()
 function. This object provides access to other database/sql package functions, such as
 the db.Close()
 that closes the connection to the database server. We also use a defer
 statement to call the db.Close() to make sure the
 function call is performed later in the program execution.
 You will see this usage throughout this chapter.
Tip

 The Go database/sql package and the Go-MySQL-Driver support context cancellation. This means that you can cancel database operations, such as running a query, if you cancel the context. To use this feature, you need to call context-aware functions of the sql interface. For brevity, we didn’t use Context in our examples in this chapter. We include an example using Context when we discuss transaction handling in Recipe 20.9.

The following Go script, connect.go, connects to the MySQL server,
 selects cookbook as the default
 database, and disconnects:
// connect.go: connect to MySQL server
package main

import (
 "database/sql"
 "fmt"
 "log"

 _ "github.com/go-sql-driver/mysql"
)

func main() {

 db, err := sql.Open("mysql", "cbuser:cbpass@tcp(127.0.0.1:3306)/cookbook")

 if err != nil {
 log.Fatal(err)
 }
 defer db.Close()

 err = db.Ping()

 if err != nil {
 log.Fatal(err)
 }

 fmt.Println("Connected!")
}
To try connect.go, locate it
 under the api/01_connect directory of the
 recipes distribution and run it
 from the command line. The program should print a single line indicating
 that it connected:
$ go run connect.go
Connected!
The import line tells Go
 to load the go-sql-driver/mysql package.

 Then the script validates connection parameters and obtains a connection object by calling sql.Open(). No MySQL connection established yet!

If the sql.Open() method
 fails, go-sql-driver/mysql returns an error. To handle the error, store it into a variable (in our example err) and
 use an if block that contains
 the error-handling code. Recipe 4.2 discusses
 error handling further.

 The db.Ping() call establishes the database connection. Only then can we say that we connected to the MySQL server successfully.

To specify the path to a socket file for local host
 connections on Unix, omit the tcp parameter in the DSN and provide a unix
 parameter:
// connect_socket.go : Connect MySQL server using socket
package main

import (
 "database/sql"
 "fmt"
 "log"

 _ "github.com/go-sql-driver/mysql"
)

func main() {
 db, err := sql.Open("mysql","cbuser:cbpass@unix(/tmp/mysql.sock)/cookbook")
 defer db.Close()

 if err != nil {
 log.Fatal(err)
 }

 var user string
 err = db.QueryRow("SELECT USER()").Scan(&user)

 if err != nil {
 log.Fatal(err)
 }

 fmt.Println("Connected User:", user, "via MySQL socket")
}

 Run this program:

$ go run connect_socket.go
Connected User: cbuser@localhost via MySQL socket

To specify the port number for TCP/IP connections, include the tcp
 parameter into the DSN and provide an integer-valued port port number:
// connect_tcpport.go : Connect MySQL server using tcp port number
package main

import (
	"database/sql"
	"fmt"
	"log"

	_ "github.com/go-sql-driver/mysql"
)

func main() {
	db, err := sql.Open("mysql",
	"cbuser:cbpass@tcp(127.0.0.1:3306)/cookbook?charset=utf8mb4")

	if err != nil {
		log.Fatal(err)
	}

	var user string
	err2 := db.QueryRow("SELECT USER()").Scan(&user)

	if err2 != nil {
		log.Fatal(err2)
	}

	fmt.Println("Connected User:", user, "via MySQL TCP/IP localhost on port 3306")
}
Run this program:
$ go run connect_tcpport.go
Connected User: cbuser@localhost via MySQL TCP/IP localhost on port 3306
Go accepts a DSN (Data Source Name) in this form:
[username[:password]@][protocol[(address)]]/dbname[?param1=value1&..¶mN=valueN]

 Where protocol could be either tcp or unix.

A DSN in its fullest form is as follows:
username:password@protocol(address)/dbname?param=value

Java
Database programs in Java use the JDBC interface, together with a driver
 for the particular database engine you want to access. That is, the
 JDBC architecture provides a generic interface used in conjunction
 with a database-specific driver.
Java programming requires a Java Development Kit (JDK), and you must set your JAVA_HOME
 environment variable to the location where your JDK is installed. To
 write MySQL-based Java programs, you’ll also need a MySQL-specific
 JDBC driver. Programs in this book use MySQL Connector/J. To obtain it
 if it’s not already installed, see the Preface. For information about
 obtaining a JDK and setting JAVA_HOME, read cmdline.pdf in the recipes distribution (see the Preface).
The following Java program, Connect.java, connects to the MySQL server,
 selects cookbook as the default
 database, and disconnects:
// Connect.java: connect to the MySQL server

import java.sql.*;

public class Connect {

 public static void main (String[] args) {
 Connection conn = null;
 String url = "jdbc:mysql://localhost/cookbook";
 String userName = "cbuser";
 String password = "cbpass";

 try {
 conn = DriverManager.getConnection (url, userName, password);
 System.out.println("Connected");
 } catch (Exception e) {
 System.err.println("Cannot connect to server");
 System.exit (1);
 }

 if (conn != null) {
 try {
 conn.close();
 System.out.println("Disconnected");
 } catch (Exception e) { /* ignore close errors */ }
 }
 }
}
To try Connect.java, locate
 it under the api directory of the
 recipes distribution, compile it,
 and execute it. The class statement
 indicates the program’s name, which in this case is
 Connect. The name of the file
 containing the program must match this name and include a .java extension, so the filename for the
 program is Connect.java. Compile
 the program using javac:
$ javac Connect.java
If you prefer a different Java compiler, substitute its name for
 javac.
The Java compiler generates compiled byte code to produce a
 class file named Connect.class.
 Use the java program to run the
 class file (specified without the .class extension). The program should print
 two lines indicating that it connected and disconnected
 successfully:
$ java Connect
Connected
Disconnected
You might need to set your CLASSPATH environment variable before the example program will compile and
 run. The value of CLASSPATH should
 include at least your current directory (.) and the path to the Connector/J JDBC
 driver. For background on running Java programs or setting CLASSPATH, read cmdline.pdf in the recipes distribution (see the Preface).
Tip

 Starting from Java 11, you can skip the javac call for a single-file program and run it as:

$ java Connect.java
Connected
Disconnected

The import java.sql.* statement references the classes and interfaces that provide
 access to the data types used to manage different aspects of your
 interaction with the database server. These are required for all JDBC
 programs.
To connect to the server, call DriverManager.getConnection() to initiate
 the connection and obtain a Connection object that maintains information
 about the state of the connection. Java programs in this book
 conventionally use conn to signify
 connection objects.
DriverManager.getConnection()
 takes three arguments: a URL that describes where to connect
 and the database to use, the MySQL username, and the password. The URL
 string has this format:
jdbc:driver://host_name/db_name
This format follows the Java convention that the URL for
 connecting to a network resource begins with a protocol designator.
 For JDBC programs, the protocol is jdbc, and you’ll also need a subprotocol
 designator that specifies the driver name (mysql, for MySQL programs). Many parts of
 the connection URL are optional, but the leading protocol and
 subprotocol designators are not. If you omit
 host_name, the default host value is
 localhost. To select no default
 database, omit the database name. However, you should not omit any of
 the slashes in any case. For example, to connect to the local host
 without selecting a default database, the URL is the following:
jdbc:mysql:///
In JDBC, you don’t test method calls for return values that
 indicate an error. Instead, provide handlers to be called when
 exceptions are thrown. Recipe 4.2 discusses
 error handling further.
Some JDBC drivers (Connector/J among them) permit you to specify
 the username and password as parameters at the end of the URL. In this
 case, omit the second and third arguments of the getConnection() call. Using that URL style,
 write the code that establishes the connection in the example program
 like this:
// connect using username and password included in URL
Connection conn = null;
String url = "jdbc:mysql://localhost/cookbook?user=cbuser&password=cbpass";

try
{
 conn = DriverManager.getConnection (url);
 System.out.println ("Connected");
}
The character that separates the user and password parameters should be &, not ;.
Connector/J does not natively support Unix domain socket file connections, so even
 connections for which the hostname is localhost are made via TCP/IP. To specify
 an explicit port number, add :port_num to the hostname in the connection URL:
String url = "jdbc:mysql://127.0.0.1:3307/cookbook";

 However, you can use third-party libraries that provide support for connections via a socket. See “Connecting Using Unix Domain Sockets” in the Reference Manual for details.

4.2 Checking for Errors
Problem
Something went wrong with your program, and you don’t know what.

Solution
Everyone has problems getting programs to work correctly. But if
 you don’t anticipate problems by checking for errors, the job becomes
 much more difficult. Add some error-checking code so your programs can
 help you figure out what went wrong.

Discussion
After working through Recipe 4.1, you
 know how to connect to the MySQL server. It’s also a good idea to know
 how to check for errors and how to retrieve specific error information
 from the API, so we cover that next. You’re probably anxious to do more
 interesting things (such as executing statements and getting back the
 results), but error checking is fundamentally important. Programs
 sometimes fail, especially during development, and if you can’t
 determine why failures occur, you’re flying blind. Plan
 for failure by checking for errors so that you can take appropriate
 action.
When an error occurs, MySQL provides three values:
	A MySQL-specific error number

	A MySQL-specific descriptive text error message

	A five-character SQLSTATE error code defined according to the ANSI and ODBC
 standards

This recipe shows how to access this information.
 The example programs are deliberately designed to fail so that the
 error-handling code executes. That’s why they attempt to connect using a
 username and password of baduser and
 badpass.
Tip
A general debugging aid not specific to any API is to use the
 available logs. Check the MySQL server’s general query log to see what
 statements the server is receiving. (This requires that log to be
 enabled; see Recipe 22.3.) The general query log
 might show that your program is not constructing the SQL statement
 string you expect. Similarly, if you run a script under a web server
 and it fails, check the web server’s error log.

Perl
The DBI module provides two attributes that control what happens when DBI method
 invocations fail:
	PrintError, if enabled,
 causes DBI to print an error message using warn().

	RaiseError, if enabled,
 causes DBI to print an error message using die(). This terminates your
 script.

By default, PrintError is
 enabled and RaiseError is disabled,
 so a script continues executing after printing a message if an error
 occurs. Either or both attributes can be specified in the connect() call. Setting an attribute to 1 or
 0 enables or disables it, respectively. To specify either or both
 attributes, pass them in a hash reference as the fourth argument to
 the connect()
 call.
The following code sets only the AutoCommit
 attribute and uses the default settings for the error-handling
 attributes. If the connect() call
 fails, a warning message results, but the script continues to
 execute:
my $conn_attrs = {AutoCommit => 1};
my $dbh = DBI->connect ($dsn, "baduser", "badpass", $conn_attrs);
Because you really can’t do much if the connection attempt
 fails, it’s often prudent to exit instead after DBI prints a
 message:
my $conn_attrs = {AutoCommit => 1};
my $dbh = DBI->connect ($dsn, "baduser", "badpass", $conn_attrs)
 or exit;
To print your own error messages, leave RaiseError disabled and disable PrintError as well. Then test the results of
 DBI method calls yourself. When a method fails, the $DBI::err, $DBI::errstr, and $DBI::state variables contain the MySQL
 error number, a descriptive error string, and the SQLSTATE value,
 respectively:
my $conn_attrs = {PrintError => 0, AutoCommit => 1};
my $dbh = DBI->connect ($dsn, "baduser", "badpass", $conn_attrs)
 or die "Connection error: "
 . "$DBI::errstr ($DBI::err/$DBI::state)\n";
If no error occurs, $DBI::err
 is 0, or undef; $DBI::errstr is the empty string, or undef; and $DBI::state is empty, or 00000.
When you check for errors, access these variables immediately
 after invoking the DBI method that sets them. If you invoke another
 method before using them, DBI resets their values.
If you print your own messages, the default settings (PrintError enabled, RaiseError disabled) are not so useful. DBI
 prints a message automatically, then your script prints its own
 message. This is redundant, as well as confusing to the person using
 the script.
If you enable RaiseError, you
 can call DBI methods without checking for return values that indicate
 errors. If a method fails, DBI prints an error and terminates your
 script. If the method returns, you can assume it succeeded. This is
 the easiest approach for script writers: let DBI do all the error
 checking! However, if both PrintError and RaiseError are enabled, DBI may call
 warn() and die() in succession, resulting in error
 messages being printed twice. To avoid this problem, disable PrintError whenever you enable RaiseError:
my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit => 1};
my $dbh = DBI->connect ($dsn, "baduser", "badpass", $conn_attrs);
This book generally uses that approach. If you don’t want the
 all-or-nothing behavior of enabling RaiseError for automatic error checking
 versus having to do all your own checking, adopt a mixed approach.
 Individual handles have PrintError
 and RaiseError attributes that can
 be enabled or disabled selectively. For example, you can enable
 RaiseError globally by turning it
 on when you call connect(), and
 then disable it selectively on a per-handle basis.
Suppose that a script reads the username and password from the
 command-line arguments and then loops while the user enters
 statements to be executed. In this case, you’d probably want DBI to
 die and print the error message automatically if the connection fails
 (you cannot proceed to the statement-execution loop in that case).
 After connecting, however, you wouldn’t want the script to exit just
 because the user enters a syntactically invalid statement. Instead,
 print an error message and loop to get the next statement. The
 following code shows how to do this. The do() method used in the example executes a statement and returns undef to
 indicate an error:
my $user_name = shift (@ARGV);
my $password = shift (@ARGV);
my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit => 1};
my $dbh = DBI->connect ($dsn, $user_name, $password, $conn_attrs);
$dbh->{RaiseError} = 0; # disable automatic termination on error
print "Enter statements to execute, one per line; terminate with Control-D\n";
while (<>) # read and execute queries
{
 $dbh->do ($_) or warn "Statement failed: $DBI::errstr ($DBI::err)\n";
}
If RaiseError is enabled, you
 can execute code within an eval
 block to trap errors without terminating your program. If an error
 occurs, eval returns a message in
 the $@ variable:
eval
{
 # statements that might fail go here...
};
if ($@)
{
 print "An error occurred: $@\n";
}
This eval technique is
 commonly used to perform transactions (see Recipe 20.4).
Using RaiseError in
 combination with eval differs from
 using RaiseError alone:
	Errors terminate only the eval block, not the entire
 script.

	Any error terminates the eval block, whereas RaiseError applies only to DBI-related
 errors.

When you use eval with
 RaiseError enabled, disable
 PrintError. Otherwise, in some
 versions of DBI, an error may simply cause warn() to be called without terminating the
 eval block as you expect.
In addition to using the error-handling attributes PrintError and RaiseError, lots of information about your
 script’s execution is available using DBI’s tracing mechanism. Invoke
 the trace() method with an argument
 indicating the trace level. Levels 1 to 9 enable tracing with
 increasingly more verbose output, and level 0 disables tracing:
DBI->trace (1); # enable tracing, minimal output
DBI->trace (3); # elevate trace level
DBI->trace (0); # disable tracing
Individual database and statement handles also have trace() methods, so you can localize tracing
 to a single handle if you want.
Trace output normally goes to your terminal (or, in the case of
 a web script, to the web server’s error log). To write trace output to
 a specific file, provide a second argument that indicates the
 filename:
DBI->trace (1, "/tmp/trace.out");
If the trace file already exists, its contents are not cleared
 first; trace output is appended to the end. Beware of turning on a
 file trace while developing a script but forgetting to disable the
 trace when you put the script into production. You’ll eventually find
 to your chagrin that the trace file has become quite large. Or worse,
 a filesystem will fill up, and you’ll have no idea why!

Ruby
Ruby signals errors by raising exceptions, and Ruby programs handle
 errors by catching exceptions in a rescue clause of a begin block. Ruby Mysql2 methods raise
 exceptions when they fail and provide error information by means of a
 Mysql2::Error object.
 To get the MySQL error number, error message, and
 SQLSTATE value, access the errno,
 message, and sql_state methods of this object. The following
 example shows how to trap exceptions and access error information in a
 Ruby script:
begin
 client = Mysql2::Client.new(:host => "localhost",
 :username => "baduser",
 :password => "badpass",
 :database => "cookbook")
 puts "Connected"
rescue Mysql2::Error => e
 puts "Cannot connect to server"
 puts "Error code: #{e.errno}"
 puts "Error message: #{e.message}"
 puts "Error SQLSTATE: #{e.sql_state}"
 exit(1)
ensure
 client.close()s
end

PHP
The new PDO() constructor raises an exception if it fails, but other PDO methods
 by default indicate success or failure by their return value. To cause
 all PDO methods to raise exceptions for errors, use the database
 handle resulting from a successful connection attempt to set the
 error-handling mode. This enables uniform handling of all PDO errors
 without checking the result of every call. The following example shows
 how to set the error mode if the connection attempt succeeds and how
 to handle exceptions if it fails:
try
{
 $dsn = "mysql:host=localhost;dbname=cookbook";
 $dbh = new PDO ($dsn, "baduser", "badpass");
 $dbh->setAttribute (PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 print ("Connected\n");
}
catch (PDOException $e)
{
 print ("Cannot connect to server\n");
 print ("Error code: " . $e->getCode () . "\n");
 print ("Error message: " . $e->getMessage () . "\n");
}
When PDO raises an exception, the resulting PDOException object provides error information. The getCode() method returns the SQLSTATE value.
 The getMessage() method returns a string containing the SQLSTATE value, MySQL
 error number, and error message.
Database and statement handles also provide information when an
 error occurs. For either type of handle, errorCode() returns the SQLSTATE value, and errorInfo() returns a three-element array
 containing the SQLSTATE value and a driver-specific error code and
 message. For MySQL, the latter two values are the error number and
 message string. The following example demonstrates how to get
 information from the exception object and the database handle:
try
{
 $dbh->query ("SELECT"); # malformed query
}
catch (PDOException $e)
{
 print ("Cannot execute query\n");
 print ("Error information using exception object:\n");
 print ("SQLSTATE value: " . $e->getCode () . "\n");
 print ("Error message: " . $e->getMessage () . "\n");

 print ("Error information using database handle:\n");
 print ("Error code: " . $dbh->errorCode () . "\n");
 $errorInfo = $dbh->errorInfo ();
 print ("SQLSTATE value: " . $errorInfo[0] . "\n");
 print ("Error number: " . $errorInfo[1] . "\n");
 print ("Error message: " . $errorInfo[2] . "\n");
}

Python
Python signals errors by raising exceptions, and Python programs handle
 errors by catching exceptions in the except clause of a try statement. To obtain MySQL-specific
 error information, name an exception class, and provide a variable to
 receive the information. Here’s an example:
conn_params = {
 "database": "cookbook",
 "host": "localhost",
 "user": "baduser",
 "password": "badpass"
}

try:
 conn = mysql.connector.connect(**conn_params)
 print("Connected")
except mysql.connector.Error as e:
 print("Cannot connect to server")
 print("Error code: %s" % e.errno)
 print("Error message: %s" % e.msg)
 print("Error SQLSTATE: %s" % e.sqlstate)
If an exception occurs, the errno, msg, and sqlstate members of the exception object
 contain the error number, error message, and SQLSTATE values,
 respectively. Note that access to the Error class is through the driver module
 name.

Go
Go does not support exceptions. Instead, its multivalue returns make it easy to pass an error when needed. To handle errors in Go, store the returned value of the type Error into a variable (we use the variable name err here) and handle it accordingly. To handle errors, Go offers a defer statement and Panic() and Recover() built-in functions, shown in Table 4-2.
Table 4-2. Error handling in Go	Function or statement	Meaning
	defer	Defers statement execution until the calling function returns.
	Panic()	The normal execution of the calling function stops, all deferred functions are executed, then the function returns a call to panic up the stack. The process continues. Finally, the program crashes.
	Recover()	Allows you to regain control in the panicking goroutine, so the program won’t crash and will continue executing. This works only in the deferred functions. If called in the function that is not deferred, it does nothing and returns nil.

// mysql_error.go : MySQL error handling
package main

import (
 "database/sql"
 "log"
 "fmt"

 _ "github.com/go-sql-driver/mysql"
)

var actor string

func main() {

 db, err := sql.Open("mysql", "cbuser:cbpass!@tcp(127.0.0.1:3306)/cookbook")
 defer db.Close()

 if err != nil {
 log.Fatal(err)
 }

 err = db.QueryRow("SELECT actor FROM actors where actor='Dwayne Johnson'").↩
 Scan(&actor)
 if err != nil {
	 if err == sql.ErrNoRows {
		 fmt.Print("There were no rows, but otherwise no error occurred")
	 } else {
		 fmt.Println(err.Error())
	 }
 }
 fmt.Println(actor)
}
If an error occurs, the function returns an object of the type error. Its Error() function returns a MySQL error code and message for the errors, raised by the Go-MySQL-Driver.

 There is an exceptional case for the QueryRow() function with the subsequent Scan() call. By default, Scan() returns nil if there is no error and error if there is an error. However, if the query ran successfully but returned no rows, this function returns sql.ErrNoRows.

Java
Java programs handle errors by catching exceptions. To do the minimum
 amount of work, print a stack trace to inform the user where the
 problem lies:
try
{
 /* ... some database operation ... */
}
catch (Exception e)
{
 e.printStackTrace ();
}
The stack trace shows the location of the problem but not
 necessarily what the problem was. Also, it may not be meaningful
 except to you, the program’s developer. To be more specific, print the
 error message and code associated with an exception:
	All Exception objects
 support the getMessage() method. JDBC methods may throw exceptions using SQLException objects; these are like
 Exception objects but also
 support getErrorCode() and getSQLState() methods. getErrorCode() and getMessage() return the MySQL-specific
 error number and message string, and getSQLState()
 returns a string containing the SQLSTATE value.

	Some methods generate SQLWarning
 objects to provide information about nonfatal warnings. SQLWarning is a subclass of SQLException, but warnings are
 accumulated in a list rather than thrown immediately. They don’t
 interrupt your program, and you can print them at your
 leisure.

The following example program, Error.java, demonstrates how to access
 error messages by printing all the error information available to it.
 It attempts to connect to the MySQL server and prints exception
 information if the attempt fails. Then it executes a statement and
 prints exception and warning information if the statement fails:
// Error.java: demonstrate MySQL error handling

import java.sql.*;

public class Error {
 public static void main(String[] args) {
 Connection conn = null;
 String url = "jdbc:mysql://localhost/cookbook";
 String userName = "baduser";
 String password = "badpass";

 try {
 conn = DriverManager.getConnection(url, userName, password);
 System.out.println("Connected");
 tryQuery(conn); // issue a query
 } catch (Exception e) {
 System.err.println("Cannot connect to server");
 System.err.println(e);
 if (e instanceof SQLException) // JDBC-specific exception?
 {
 // e must be cast from Exception to SQLException to
 // access the SQLException-specific methods
 printException((SQLException) e);
 }
 } finally {
 if (conn != null) {
 try {
 conn.close ();
 System.out.println("Disconnected");
 } catch (SQLException e) {
 printException (e);
 }
 }
 }
 }

 public static void tryQuery(Connection conn) {
 try {
 // issue a simple query
 Statement s = conn.createStatement();
 s.execute("USE cookbook");
 s.close();

 // print any accumulated warnings
 SQLWarning w = conn.getWarnings();
 while (w != null) {
 System.err.println("SQLWarning: " + w.getMessage());
 System.err.println("SQLState: " + w.getSQLState());
 System.err.println("Vendor code: " + w.getErrorCode());
 w = w.getNextWarning();
 }
 } catch (SQLException e) {
 printException(e);
 }
 }

 public static void printException(SQLException e) {
 // print general message, plus any database-specific message
 System.err.println("SQLException: " + e.getMessage ());
 System.err.println("SQLState: " + e.getSQLState ());
 System.err.println("Vendor code: " + e.getErrorCode ());
 }
}

4.3 Writing Library Files
Problem
You notice that you’re repeating code to perform common operations in multiple
 programs.

Solution
Write routines to perform those operations, put them in a library
 file, and arrange for your programs to access the library. This enables
 you to write the code only once. You might need to set an environment
 variable so that your scripts can find the library.

Discussion
This section describes how to put code for common operations in
 library files. Encapsulation (or modularization) isn’t really a
 recipe so much as a programming technique. Its principal
 benefit is that you need not repeat code in each program you write.
 Instead, simply call a routine that’s in the library. For example, by
 putting the code for connecting to the cookbook database into a library routine, you
 need not write out all the parameters associated with making that
 connection. Simply invoke the routine from your program, and you’re
 connected.
Connection establishment isn’t the only operation you can
 encapsulate, of course. Later sections in this book develop other
 utility functions to be placed in library files. All such files,
 including those shown in this section, are located under the lib directory of the recipes distribution. As you write your own
 programs, be on the lookout for operations that you perform often and
 that are good candidates for inclusion in a library. Use the techniques
 in this section to write your own library files.
Library files have other benefits besides making it easier to
 write programs, such as promoting portability. If you write connection
 parameters directly into each program that connects to the MySQL server,
 you must change all those programs if you move them to another machine
 that uses different parameters. If instead you write your programs to
 connect to the database by calling a library routine, it’s necessary
 only to modify the affected library routine, not all the programs that
 use it.
Code encapsulation can also improve security. If you make a
 private library file readable only to yourself, only scripts run by you
 can execute routines in the file. Or suppose that you have some scripts
 located in your web server’s document tree. A properly configured server
 executes the scripts and sends their output to remote clients. But if
 the server becomes misconfigured somehow, the result can be that it
 sends your scripts to clients as plain text, thus displaying your MySQL
 username and password.
 If you place the code for establishing a connection to the MySQL server
 in a library file located outside the document tree, those parameters
 won’t be exposed to clients.
Warning
Be aware that if you install a library file to be readable by
 your web server, you don’t have much security if other developers use
 the same server. Any of those developers can write a web script to
 read and display your library file because, by default, the script
 runs with the permissions of the web server and thus will have access
 to the library.

The recipes that follow demonstrate how to write, for each API, a
 library file that contains a routine for connecting to the cookbook database on the MySQL server. The
 calling program can use the error-checking techniques discussed in Recipe 4.2 to determine whether a connection attempt
 fails. The connection routine for each language returns a database
 handle or connection object when it succeeds or raises an exception if
 the connection cannot be established.
Libraries are of no utility in themselves, so the following
 discussion illustrates each one’s use by a short test
 harness program. To use any of these harness programs as the
 basis for creating new programs, make a copy of the file and add your
 own code between the connect and disconnect calls.
Library-file writing involves not only the question of what to put
 in the file but also subsidiary issues such as where to install the file
 so it is accessible by your programs, and (on multiuser systems such as
 Unix) how to set its access privileges so its contents aren’t exposed to
 people who shouldn’t see it.
Choosing a library-file installation location
If you install a library file in a directory that a language processor searches by default,
 programs written in that language need do nothing special to access
 the library. However, if you install a library file in a directory
 that the language processor does not search by default, you must tell
 your scripts how to find it. There are two common ways to do
 this:
	Most languages provide a statement that can be used within a
 script to add directories to the language processor search path.
 This requires that you modify each script that needs the
 library.

	You can set an environment or configuration variable that changes the language
 processor search path. With this approach, each user who executes
 scripts that require the library must set the appropriate
 variable. Alternatively, if the language processor has a
 configuration file, you might be able to set a parameter in the
 file that affects scripts globally for all users.

We’ll use the second approach. For our API languages,
 Table 4-3 shows the relevant variables. In each case, the
 variable value is a directory or list of directories.
Table 4-3. Default library paths	Language	Variable name	Variable type
	Perl	PERL5LIB 	Environment variable
	Ruby	RUBYLIB 	Environment variable
	PHP	include_path 	Configuration variable
	Python	PYTHONPATH 	Environment variable
	Go	GOPATH 	Environment variable
	Java	CLASSPATH 	Environment variable

For general information on setting environment variables, read
 cmdline.pdf in the recipes distribution (see the Preface). You can use those instructions
 to set environment variables to the values in the following
 discussion.
Suppose that you want to install library files in a directory
 that language processors do not search by default. For purposes of
 illustration, let’s use /usr/local/lib/mcb on Unix and C:\lib\mcb on Windows. (To put the files
 somewhere else, adjust the pathnames in the variable settings
 accordingly. For example, you might want to use a different directory,
 or you might want to put libraries for each language in separate
 directories.)
Under Unix, if you put Perl library files in the /usr/local/lib/mcb directory, set the
 PERL5LIB environment variable
 appropriately. For a shell in the Bourne shell family (sh, bash,
 ksh), set the variable like this in
 the appropriate startup file:
export PERL5LIB=/usr/local/lib/mcb
Note
For the original Bourne shell, sh, you may need to split this into two
 commands:
PERL5LIB=/usr/local/lib/mcb
export PERL5LIB

For a shell in the C shell family (csh, tcsh), set PERL5LIB like this in your .login file:
setenv PERL5LIB /usr/local/lib/mcb
Under Windows, if you put Perl library files in C:\lib\mcb, set PERL5LIB as follows:
PERL5LIB=C:\lib\mcb
In each case, the variable value tells Perl to look in the
 specified directory for library files, in addition to any other
 directories it searches by default. If you set PERL5LIB to name multiple directories, the
 separator character between directory pathnames is a colon (:) in Unix or
 a semicolon (;) in
 Windows.
Specify the other environment variables (RUBYLIB, PYTHONPATH, and CLASSPATH) using the same syntax.
Note
Setting these environment variables as just discussed should
 suffice for scripts that you run from the command line. For scripts
 intended to be executed by a web server, you likely must configure
 the server as well so that it can find the library files.

For PHP, the search path is defined by the value of the include_path variable in the php.ini PHP initialization file. On Unix,
 the file’s pathname is likely /usr/lib/php.ini or /usr/local/lib/php.ini. Under Windows, the
 file is likely found in the Windows directory or under the main PHP
 installation directory. To determine the location, run this
 command:
$ php --ini
Define the value of include_path in php.ini with a line like this:
include_path = "value"
Specify value using the same syntax
 as for environment variables that name directories. That is, it’s a
 list of directory names, with the names separated by colons in Unix or
 semicolons in Windows. In Unix, if you want PHP to look for included
 files in the current directory and in /usr/local/lib/mcb, set include_path like this:
include_path = ".:/usr/local/lib/mcb"
In Windows, to search the current directory and C:\lib\mcb, set include_path like this:
include_path = ".;C:\lib\mcb"
If PHP is running as an Apache module, restart Apache to make
 php.ini changes take
 effect.

Setting library-file access privileges
If you use a multiple-user system such as Unix, you must make decisions about library-file
 ownership and access mode:
	If a library file is private and contains code to be used
 only by you, place the file under your own account and make it
 accessible only to you. Assuming that a library file named
 mylib is already owned by
 you, you can make it private like this:
$ chmod 600 mylib

	If the library file is to be used only by your web server,
 install it in a server library directory and make it owned by and
 accessible only to the server user ID. You may need to be root to do this. For example, if the web
 server runs as wwwusr, the
 following commands make the file private to that user:
chown wwwusr mylib
chmod 600 mylib

	If the library file is public, you can place it in a
 location that your programming language searches automatically
 when it looks for libraries. (Most language processors search for
 libraries in some default set of directories, although this set
 can be influenced by setting environment variables as described
 previously.) You may need to be root to install files in one of these
 directories. Then you can make the file world readable:
chmod 444 mylib

Now let’s construct a library for each API. Each section here
 demonstrates how to write the library file itself and discusses how to
 use the library from within programs.

Perl
In Perl, library files are called modules and typically have an extension of
 .pm (Perl module).
 It’s conventional for the basename of a module file to be the same as
 the identifier on the package line
 in the file. The following file, Cookbook.pm, implements a module named
 Cookbook:
package Cookbook;
Cookbook.pm: library file with utility method for connecting to MySQL
using the Perl DBI module

use strict;
use warnings;
use DBI;

my $db_name = "cookbook";
my $host_name = "localhost";
my $user_name = "cbuser";
my $password = "cbpass";
my $port_num = undef;
my $socket_file = undef;

Establish a connection to the cookbook database, returning a database
handle. Raise an exception if the connection cannot be established.

sub connect
{
my $dsn = "DBI:mysql:host=$host_name";
my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit => 1};

 $dsn .= ";database=$db_name" if defined ($db_name);
 $dsn .= ";mysql_socket=$socket_file" if defined ($socket_file);
 $dsn .= ";port=$port_num" if defined ($port_num);

 return DBI->connect ($dsn, $user_name, $password, $conn_attrs);
}

1; # return true
The module encapsulates the code for establishing a connection
 to the MySQL server into a connect() method, and the package identifier establishes a Cookbook namespace for the module. To invoke
 the connect() method, use the
 module name:
$dbh = Cookbook::connect ();
The final line of the module file is a statement that trivially
 evaluates to true. (If the module doesn’t return a true value, Perl
 assumes that something is wrong with it and exits.)
Perl locates library files by searching the list of directories
 named in its @INC array. To
 check the default value of this variable on your system, invoke Perl
 as follows at the command line:
$ perl -V
The last part of the output from the command shows the
 directories listed in @INC. If you
 install a library file in one of those directories, your scripts will
 find it automatically. If you install the module somewhere else, tell
 your scripts where to find it by setting the PERL5LIB
 environment variable, as discussed in the introductory part of this
 recipe.
After installing the Cookbook.pm module, try it from a test
 harness script, harness.pl:
#!/usr/bin/perl
harness.pl: test harness for Cookbook.pm library

use strict;
use warnings;
use Cookbook;

my $dbh;
eval
{
 $dbh = Cookbook::connect ();
 print "Connected\n";
};
die "$@" if $@;
$dbh->disconnect ();
print "Disconnected\n";
harness.pl has no use DBI
 statement. It’s unnecessary because the Cookbook module itself imports DBI; any
 script that uses Cookbook also
 gains access to DBI.
If you don’t catch connection errors explicitly with eval, you can write the script body more
 simply:
my $dbh = Cookbook::connect ();
print "Connected\n";
$dbh->disconnect ();
print "Disconnected\n";
In this case, Perl catches any connection exception and
 terminates the script after printing the error message generated
 by the connect()
 method.

Ruby
The following Ruby library file, Cookbook.rb, defines a Cookbook class that implements a connect class
 method:
Cookbook.rb: library file with utility method for connecting to MySQL
using the Ruby Mysql2 module

require "mysql2"

Establish a connection to the cookbook database, returning a database
handle. Raise an exception if the connection cannot be established.

class Cookbook
 @@host_name = "localhost"
 @@db_name = "cookbook"
 @@user_name = "cbuser"
 @@password = "cbpass"

 # Class method for connecting to server to access the
 # cookbook database; returns a database handle object.

 def Cookbook.connect
 return Mysql2::Client.new(:host => @@host_name,
 :database => @@db_name,
 :username => @@user_name,
 :password => @@password)
 end
end
The connect method is defined
 in the library as Cookbook.connect
 because Ruby class methods are defined as
 class_name.method_name.
Ruby locates library files by searching the list of directories
 named in its $LOAD_PATH
 variable (also known as $:), which
 is an array. To check the default value of this variable on your
 system, use interactive Ruby to execute this statement:
$ irb
>> puts $LOAD_PATH
If you install a library file in one of those directories, your
 scripts will find it automatically. If you install the file somewhere
 else, tell your scripts where to find it by setting the RUBYLIB
 environment variable, as discussed in the introductory part of this
 recipe.
After installing the Cookbook.rb library file, try it from a
 test harness script, harness.rb:
#!/usr/bin/ruby -w
harness.rb: test harness for Cookbook.rb library

require "Cookbook"

begin
 client = Cookbook.connect
 print "Connected\n"
rescue Mysql2::Error => e
 puts "Cannot connect to server"
 puts "Error code: #{e.errno}"
 puts "Error message: #{e.message}"
 exit(1)
ensure
 client.close()
 print "Disconnected\n"
end
harness.rb has no require statement for the Mysql2 module. It’s
 unnecessary because the Cookbook
 module itself imports Mysql2; any script that imports Cookbook also gains access to Mysql2.
If you want a script to die if an error occurs without checking
 for an exception yourself, write the script body like this:
client = Cookbook.connect
print "Connected\n"
client.close
print "Disconnected\n"

PHP
PHP library files are written like regular PHP scripts. A Cookbook.php file that implements a
 Cookbook class with a connect()
 method looks like this:
<?php
Cookbook.php: library file with utility method for connecting to MySQL
using the PDO module

class Cookbook
{
 public static $host_name = "localhost";
 public static $db_name = "cookbook";
 public static $user_name = "cbuser";
 public static $password = "cbpass";

 # Establish a connection to the cookbook database, returning a database
 # handle. Raise an exception if the connection cannot be established.
 # In addition, cause exceptions to be raised for errors.

 public static function connect ()
 {
 $dsn = "mysql:host=" . self::$host_name . ";dbname=" . self::$db_name;
 $dbh = new PDO ($dsn, self::$user_name, self::$password);
 $dbh->setAttribute (PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 return ($dbh);
 }

} # end Cookbook
?>
The connect() routine within
 the class is declared using the static keyword to make it a class method
 rather than an instance method. This designates it as directly
 callable without instantiating an object through which to invoke
 it.
The new PDO() constructor raises an exception if the connection attempt fails.
 Following a successful attempt, connect() sets the error-handling mode so
 that other PDO calls raise exceptions for failure as well. This way,
 individual calls need not be tested for an error return value.
Although most PHP examples throughout this book don’t show the
 <?php and ?> tags, we’ve shown them as part of
 Cookbook.php here to emphasize
 that library files must enclose all PHP code within those tags. The
 PHP interpreter makes no assumptions about the contents of a library
 file when it begins parsing it because you might include a file that
 contains nothing but HTML. Therefore, you must use <?php and ?> to specify explicitly which parts of
 the library file should be considered as PHP code rather than as HTML,
 just as you do in the main script.
PHP looks for libraries by searching the directories named in
 the include_path variable in the
 PHP initialization file, as described in the introductory part of this
 recipe.
Note
PHP scripts often are placed in the document tree of your web
 server, and clients can request them directly. For PHP library
 files, we recommend that you
 place them somewhere outside the document tree, especially if (like
 Cookbook.php) they contain a
 username and password.

After installing Cookbook.php in one of the include_path directories, try it from a test harness script, harness.php:
<?php
harness.php: test harness for Cookbook.php library

require_once "Cookbook.php";

try
{
 $dbh = Cookbook::connect ();
 print ("Connected\n");
}
catch (PDOException $e)
{
 print ("Cannot connect to server\n");
 print ("Error code: " . $e->getCode () . "\n");
 print ("Error message: " . $e->getMessage () . "\n");
 exit (1);
}
$dbh = NULL;
print ("Disconnected\n");
?>
The require_once statement
 accesses the Cookbook.php file that is required to use
 the Cookbook class. require_once is one of several PHP
 file-inclusion statements:
	require and include instruct PHP to read the named file. They are similar, but require terminates the script if the
 file cannot be found; include
 produces only a warning.

	require_once and include_once are like require and include except that if the file has
 already been read, its contents are not processed again. This is useful for avoiding
 multiple-declaration problems that can easily occur when library
 files include other library files.

Python
Python libraries are written as modules and referenced from scripts using
 import statements. To create a method for connecting to MySQL, write a module
 file, cookbook.py (Python module
 names should be lowercase):
cookbook.py: library file with utility method for connecting to MySQL
using the Connector/Python module

import mysql.connector

conn_params = {
 "database": "cookbook",
 "host": "localhost",
 "user": "cbuser",
 "password": "cbpass",
}

Establish a connection to the cookbook database, returning a connection
object. Raise an exception if the connection cannot be established.

def connect():
 return mysql.connector.connect(**conn_params)
The filename basename determines the module name, so the module
 is called cookbook. Module methods
 are accessed through the module name; thus, import the cookbook module and invoke its connect()
 method like this:
import cookbook

conn = cookbook.connect();
The Python interpreter searches for modules in directories named
 in the sys.path variable. To check
 the default value of sys.path on
 your system, run Python interactively and enter a few
 commands:
$ python
>>> import sys
>>> sys.path
If you install cookbook.py
 in one of the directories named by sys.path, your scripts will find it with no
 special handling. If you install cookbook.py somewhere else, you must
 set the PYTHONPATH
 environment variable, as discussed in the introductory part of this
 recipe.
After installing the cookbook.py library file, try it from a
 test harness script, harness.py:
#!/usr/bin/python
harness.py: test harness for cookbook.py library

import mysql.connector
import cookbook

try:
 conn = cookbook.connect()
 print("Connected")
except mysql.connector.Error as e:
 print("Cannot connect to server")
 print("Error code: %s" % e.errno)
 print("Error message: %s" % e.msg)
else:
 conn.close()
 print("Disconnected")
The cookbook.py file
 imports the mysql.connector module,
 but a script that imports cookbook
 does not thereby gain access to mysql.connector. If the script needs
 Connector/Python-specific information (such as mysql.connector.Error), the script itself
 must import mysql.connector.
If you want a script to die if an error occurs without checking
 for an exception yourself, write the script body like this:
conn = cookbook.connect()
print("Connected")
conn.close()
print("Disconnected")

Go
Go programs are organized into packages that are a collection of the source files, located in the same directory. Packages, in their turn, are organized into modules that are collections of Go packages that are released together. Modules belong to a Go repository. A typical Go repository contains only one module, but you may have several modules in the same repository.

The Go interpreter searches for packages in directories named
 in the $GOPATH/src/{domain}/{project} variable.
 However, when using modules, Go no longer uses GOPATH. You do not need to change this variable no matter where your module is installed. We’ll use modules for our examples.

 To create a method for connecting to MySQL, write a package
 file, cookbook.go:
package cookbook

import (
 "database/sql"
 _"github.com/go-sql-driver/mysql"
)

func Connect() (*sql.DB, error) {
 db, err := sql.Open("mysql","cbuser:cbpass@tcp(127.0.0.1:3306)/cookbook")

 if err != nil {
 panic(err.Error())
 }

 err = db.Ping()

 return db, err
}
The filename basename does not determine the package name: Go searches through all files in the import path until it finds the one with the required package declaration. Package methods
 are accessed via the package name.

 To test the package, you can specify a relative path to the directory where the package file is located:

import "../../lib"

 This is a very easy way to quickly test your libraries, but such commands, like go install, won’t work for packages imported this way. As a result, your program will be rebuilt from scratch each time you access it.

 A better way to work with packages is to publish them as parts of modules. To do this, run the following in the directory where you store cookbook.go:

go mod init cookbook

 This will create a file, go.mod, that will have your module name and version of Go. You can name the module as you wish.

 You can publish your module on the internet and access it from the local program as you would do with any other module. However, during development, it would be useful to have the module only locally. In this case, you need to make few adjustments in the program directory that will use it.

 First, create a program that will call the package, harness.go:

package main

import (
 "fmt"
 "github.com/svetasmirnova/mysqlcookbook/recipes/lib"
)

func main() {
 db, err := cookbook.Connect()

 if err != nil {
 fmt.Println("Cannot connect to server")
 fmt.Printf("Error message: %s\n", err.Error())
 } else {
 fmt.Println("Connected")
 }
 defer db.Close()
}

 Then, in the directory, after the package is installed, initialize the module:

go mod init harness

 Once the module is initialized and go.mod is created, edit it with the following:

go mod edit -replace ↩
github.com/svetasmirnova/mysqlcookbook/recipes/lib=↩
/home/sveta/src/mysqlcookbook/recipes/lib

 Replace the URL and the local path with the ones that are valid in your environment.

 This command will tell Go to replace the remote module path with the local directory.

 Once done, you can test your connection:

$ go run harness.go
Connected

Java
Java library files are similar to Java programs in most ways:
	The class line in the
 source file indicates a class name.

	The file should have the same name as the class (with a
 .java extension).

	Compile the .java file
 to produce a .class
 file.

Java library files also differ from Java programs in some
 ways:
	Unlike regular program files, Java library files have no
 main() function.

	A library file should begin with a package identifier that specifies the
 position of the class within the Java namespace.

A common convention for Java package identifiers is to use the
 domain of the code author as a prefix; this helps make identifiers
 unique and avoids conflict with classes written by other authors.
 Domain names proceed right to left, from more general to more specific
 within the domain namespace, whereas the Java class namespace proceeds
 left to right, from general to specific. Thus, to use a domain as the
 prefix for a package name within the Java class namespace, it’s
 necessary to reverse it. For example, Paul’s domain is kitebird.com, so if he writes a library file
 and places it under mcb within his
 domain’s namespace, the library begins with a package statement like this:
package com.kitebird.mcb;
Java packages developed for this book are placed within the
 com.kitebird.mcb namespace to
 ensure their uniqueness in the package namespace.
The following library file, Cookbook.java, defines a Cookbook class that implements a connect() method for connecting to the
 cookbook database. connect() returns a Connection object if it succeeds and throws
 an exception otherwise. To help the caller deal with failures, the
 Cookbook class also defines
 getErrorMessage() and printErrorMessage() utility methods that
 return the error message as a string and print it to System.err, respectively:
// Cookbook.java: library file with utility methods for connecting to MySQL
// using MySQL Connector/J and for handling exceptions

package com.kitebird.mcb;

import java.sql.*;

public class Cookbook {
 // Establish a connection to the cookbook database, returning
 // a connection object. Throw an exception if the connection
 // cannot be established.

 public static Connection connect() throws Exception {
 String url = "jdbc:mysql://localhost/cookbook";
 String user = "cbuser";
 String password = "cbpass";

 return (DriverManager.getConnection(url, user, password));
 }

 // Return an error message as a string

 public static String getErrorMessage(Exception e) {
 StringBuffer s = new StringBuffer ();
 if (e instanceof SQLException) { // JDBC-specific exception?
 // print general message, plus any database-specific message
 s.append("Error message: " + e.getMessage () + "\n");
 s.append("Error code: " + ((SQLException) e).getErrorCode() + "\n");
 } else {
 s.append (e + "\n");
 }
 return (s.toString());
 }

 // Get the error message and print it to System.err

 public static void printErrorMessage(Exception e) {
 System.err.println(Cookbook.getErrorMessage(e));
 }
}
The routines within the class are declared using the static keyword,
 which makes them class methods rather than instance methods. That is
 done here because the class is used directly rather than creating an
 object from it and invoking the methods through the object.
To use the Cookbook.java
 file, compile it to produce Cookbook.class, then install the class file
 in a directory that corresponds to the package identifier.
This means
 that Cookbook.class should be
 installed in a directory named com/kitebird/mcb (Unix) or com\kitebird\mcb (Windows) that is located
 under some directory named in your CLASSPATH setting. For example, if CLASSPATH includes /usr/local/lib/mcb under Unix, you can
 install Cookbook.class in the
 /usr/local/lib/mcb/com/kitebird/mcb
 directory. (For more information about the CLASSPATH variable, see the Java discussion
 in Recipe 4.1.)
To use the Cookbook class
 from within a Java program, import it and invoke the Cookbook.connect() method. The following
 test harness program, Harness.java, shows how to do this:
// Harness.java: test harness for Cookbook library class

import java.sql.*;
import com.kitebird.mcb.Cookbook;

public class Harness {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = Cookbook.connect ();
 System.out.println("Connected");
 } catch (Exception e) {
 Cookbook.printErrorMessage (e);
 System.exit (1);
 } finally {
 if (conn != null) {
 try {
 conn.close();
 System.out.println("Disconnected");
 } catch (Exception e) {
 String err = Cookbook.getErrorMessage(e);
 System.out.println(err);
 }
 }
 }
 }
}
Harness.java also shows how
 to use the error message utility methods from the Cookbook class when a MySQL-related
 exception occurs:
	printErrorMessage() takes
 the exception object and uses it to print an error message to
 System.err.

	getErrorMessage() returns
 the error message as a string. You can display the message yourself, write it to a
 logfile, or whatever.

4.4 Executing Statements and Retrieving Results
Problem
You want a program to send a SQL statement to the MySQL server and retrieve its
 result.

Solution
Some statements return only a status code; others return a result
 set (a set of rows). Some APIs provide different methods for executing
 each type of statement. If so, use the appropriate method for the
 statement to be executed.

Discussion
You can execute two general categories of SQL statements. Some
 retrieve information from the database; others change that information or the database itself.
 Statements in the two categories are handled differently. In addition,
 some APIs provide multiple routines for executing statements,
 complicating matters further. Before we get to examples demonstrating
 how to execute statements from within each API, we’ll describe the
 database table the examples use, and then further discuss the two
 statement categories and outline a general strategy for processing
 statements in each category.
In Chapter 1, we created a table named limbs to try some sample statements. In this
 chapter, we’ll use a different table named profile. It’s based on the idea of a
 buddy list, that is, the set of people we like to keep in
 touch with while we’re online. The table definition looks like
 this:
CREATE TABLE profile
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 name VARCHAR(20) NOT NULL,
 birth DATE,
 color ENUM('blue','red','green','brown','black','white'),
 foods SET('lutefisk','burrito','curry','eggroll','fadge','pizza'),
 cats INT,
 PRIMARY KEY (id)
);
The profile table indicates the
 things that are important to us about each buddy: name, age, favorite
 color, favorite foods, and number of cats.
 Additionally, the table uses several different data types for its columns, and these
 come in handy to illustrate how to solve problems that pertain to
 specific data types.
The table also includes an id
 column containing unique values so that we can distinguish one row from
 another, even if two buddies have the same name. id and name
 are declared as NOT NULL because they’re each required to have a
 value. The other columns are implicitly permitted to be NULL (and that is also their default value)
 because we might not know the value to assign them for any given
 individual. That is, NULL signifies
 unknown.
Notice that although we want to keep track of age, there is no
 age column in the table. Instead,
 there is a birth column of DATE type. Ages change, so if we store age
 values, we’d have to keep updating them. Storing birth dates is better:
 they don’t change and can be used to calculate age any time (see Recipe 8.14). color is an ENUM column; color values can be any one of
 the listed values. foods is a
 SET, which permits the value to be
 any combination of the individual set members. That way we can record
 multiple favorite foods for any buddy.
To create the table, use the profile.sql script in the tables directory of the recipes distribution. Change location into
 that directory, then run this command:
$ mysql cookbook < profile.sql
The script also loads sample data into the table. You can
 experiment with the table, then restore it if you change its contents by
 running the script again. (See Recipe 4.9 on the
 importance of restoring the profile
 table after modifying it.)
The contents of the profile
 table as loaded by the profile.sql
 script look like this:
mysql> SELECT * FROM profile;
+----+---------+------------+-------+-----------------------+------+
| id | name | birth | color | foods | cats |
+----+---------+------------+-------+-----------------------+------+
1	Sybil	1970-04-13	black	lutefisk,fadge,pizza	0
2	Nancy	1969-09-30	white	burrito,curry,eggroll	3
3	Ralph	1973-11-02	red	eggroll,pizza	4
4	Lothair	1963-07-04	blue	burrito,curry	5
5	Henry	1965-02-14	red	curry,fadge	1
6	Aaron	1968-09-17	green	lutefisk,fadge	1
7	Joanna	1952-08-20	green	lutefisk,fadge	0
8	Stephen	1960-05-01	white	burrito,pizza	0
+----+---------+------------+-------+-----------------------+------+
Although most of the columns in the profile table permit NULL values, none of the rows in the sample
 dataset actually contain NULL yet. (We
 want to defer the complications of NULL value processing to Recipes 4.5 and
 4.7.)
SQL statement categories
SQL statements can be grouped into two broad categories, depending on whether
 they return a result set (a set of rows):
	INSERT, DELETE, or UPDATE
	Statements that return no result set, such as INSERT, DELETE, or UPDATE. As a general rule, statements of this type generally
 change the database in some way. There are some exceptions, such
 as USE
 db_name, which changes the default (current) database for your
 session without making any changes to the database itself. The
 example data-modifying statement used in this section is an
 UPDATE:
UPDATE profile SET cats = cats+1 WHERE name = 'Sybil';
We’ll cover how to execute this statement and determine the
 number of rows that it affects.

	SELECT,
 SHOW, EXPLAIN, or DESCRIBE
	Statements that return a result set, such as SELECT,
 SHOW, EXPLAIN, or DESCRIBE. We refer to such statements
 generically as SELECT
 statements, but you should understand that category to include any
 statement that returns rows. The example row-retrieval statement
 used in this section is a SELECT:
SELECT id, name, cats FROM profile;
We’ll cover how to execute this statement, fetch the rows in
 the result set, and determine the number of rows and columns in
 the result set. (To get information such as the column names or
 data types, access the result set metadata. That’s Recipe 12.2.)

The first step in processing a SQL statement is to send it to the MySQL server for
 execution. Some APIs (those for Perl and Java, for example)
 recognize a distinction between the two categories of statements and
 provide separate calls for executing them. Other APIs (such as the one
 for Python or Ruby) use a single call for all statements. However, one
 thing all APIs have in common is that no special character indicates
 the end of the statement. No terminator is necessary because the end
 of the statement string terminates it. This differs from executing
 statements in the mysql program,
 where you terminate statements using a semicolon (;) or \g.
 (It also differs from how this book usually includes semicolons in
 examples to make it clear where statements end.)
When you send a statement to the server, be prepared to handle errors if it did not execute
 successfully. If a statement
 fails and you proceed on the basis that it succeeded, your program
 won’t work. For the most part, this section does not show
 error-checking code, but that is for brevity. Production code should always include error handling. The sample scripts in
 the recipes distribution from which
 the examples are taken do include error handling, based on the
 techniques illustrated in Recipe 4.2.
If a statement does execute without error, your next step
 depends on the statement type. If it’s one that returns no result set,
 there’s nothing else to do, unless you want to check how many rows
 were affected. If the statement does return a result set, fetch its
 rows, then close the result set. In a context where you don’t know
 whether a statement returns a result set, Recipe 12.2 discusses how to tell.

Perl
The Perl DBI module provides two basic approaches to SQL statement
 execution, depending on whether you expect to get back a result set.
 For a statement such as INSERT or
 UPDATE that returns no result set,
 use the database handle do()
 method. It executes the statement and returns the number of rows
 affected by it, or undef if an
 error occurs. If Sybil gets a new cat, the following
 statement increments her cats count
 by one:
my $count = $dbh->do ("UPDATE profile SET cats = cats+1
 WHERE name = 'Sybil'");
if ($count) # print row count if no error occurred
{
 $count += 0;
 print "Number of rows updated: $count\n";
}
If the statement executes successfully but affects no rows,
 do() returns a special value,
 "0E0" (the value zero in scientific
 notation, expressed as a string). "0E0" can be used for testing the execution
 status of a statement because it is true in Boolean contexts (unlike
 undef). For successful statements,
 it can also be used when counting how many rows were affected because
 it is treated as the number zero in numeric contexts. Of course, if
 you print that value as is, you’ll print "0E0", which might look odd to people who
 use your program. The preceding example makes sure that doesn’t happen
 by adding zero to the value to coerce it to numeric form so that it
 displays as 0. Alternatively, use
 printf with a %d format specifier to cause an implicit numeric
 conversion:
if ($count) # print row count if no error occurred
{
 printf "Number of rows updated: %d\n", $count;
}
If RaiseError is enabled,
 your script terminates automatically for DBI-related
 errors, so you need not check $count to find out whether do() failed and consequently can simplify
 the code:
my $count = $dbh->do ("UPDATE profile SET cats = cats+1
 WHERE name = 'Sybil'");
printf "Number of rows updated: %d\n", $count;
To process a statement such as SELECT that does return a result set, use a
 different approach that involves these steps:
	Specify the statement to be executed by calling prepare() using the database handle.
 prepare() returns a statement handle to use with all subsequent
 operations on the statement. (If an error occurs, the script
 terminates if RaiseError is
 enabled; otherwise, prepare()
 returns undef.)

	Call execute() to execute
 the statement and generate the result set.

	Loop to fetch the rows returned by the statement. DBI
 provides several methods for this; we cover them shortly.

	If you don’t fetch the entire result set, release resources
 associated with it by calling finish().

The following example illustrates these steps, using fetchrow_array() as the row-fetching method
 and assuming that RaiseError is
 enabled so that errors terminate the script:
my $sth = $dbh->prepare ("SELECT id, name, cats FROM profile");
$sth->execute ();
my $count = 0;
while (my @val = $sth->fetchrow_array ())
{
 print "id: $val[0], name: $val[1], cats: $val[2]\n";
 ++$count;
}
$sth->finish ();
print "Number of rows returned: $count\n";
The row array size indicates the number of columns in the result
 set.
The row-fetching loop just shown is followed by a call to
 finish(), which closes the result
 set and tells the server to free any resources associated with it. If
 you fetch every row in the set, DBI notices when you reach the end and
 releases the resources for you. Thus, the example could omit the
 finish() call without ill
 effect.
As the example illustrates, to determine how many rows a result
 set contains, count them while fetching them. Do not use the DBI
 rows() method for this purpose. The
 DBI documentation discourages this practice because rows() is not necessarily reliable for SELECT
 statements—due to differences in
 behavior among database engines and drivers.
DBI has several methods that fetch a row at a time. The one used
 in the preceding example, fetchrow_array(), returns an array
 containing the next row, or an empty list when there are no more rows.
 Array elements are present in the order named in the SELECT statement. Access them as $val[0], $val[1], and so forth.
The fetchrow_array() method
 is most useful for statements that explicitly name the columns to
 select. (With SELECT *, there are no guarantees about the
 positions of columns within the array.)
fetchrow_arrayref() is
 like fetchrow_array(), except that it returns a
 reference to the array, or undef
 when there are no more rows. As with fetchrow_array(), array elements are present
 in the order named in the statement. Access them as $ref->[0], $ref->[1], and so forth:
while (my $ref = $sth->fetchrow_arrayref ())
{
 print "id: $ref->[0], name: $ref->[1], cats: $ref->[2]\n";
}
fetchrow_hashref() returns a
 reference to a hash structure, or undef when there are no more rows:
while (my $ref = $sth->fetchrow_hashref ())
{
 print "id: $ref->{id}, name: $ref->{name}, cats: $ref->{cats}\n";
}
To access the elements of the hash, use the names of the columns
 selected by the statement ($ref->{id}, $ref->{name}, and so forth). fetchrow_hashref() is particularly useful
 for SELECT * statements because you can access elements
 of rows without knowing anything about the order in which columns are
 returned. You need know only their names. On the other hand, it’s more
 expensive to set up a hash than an array, so fetchrow_hashref() is slower than fetchrow_array() or fetchrow_arrayref(). It’s also possible to
 lose row elements if they have the same name because
 column names must be unique. Same-name columns are not uncommon for
 joins between tables. For solutions to this problem, see Recipe 16.11.
In addition to the statement execution methods just described,
 DBI provides several high-level retrieval methods that execute a
 statement and return the result set in a single operation. All are
 database-handle methods that create and dispose of the statement
 handle internally before returning the result set. The methods differ
 in the form in which they return the result. Some return the entire
 result set, others return a single row or column of the set, as
 summarized in Table 4-4.
Table 4-4. Perl methods to retrieve results	Method	Return value
	selectrow_array() 	First row of result
 set as an array
	selectrow_arrayref() 	First row of result set
 as a reference to an array
	selectrow_hashref() 	First row of result
 set as a reference to a hash
	selectcol_arrayref() 	First column of result
 set as a reference to an array
	selectall_arrayref() 	Entire result set as a
 reference to an array of array
 references
	selectall_hashref() 	Entire result set as a reference to a hash of hash
 references

Most of these methods return a reference. The exception is
 selectrow_array(), which selects
 the first row of the result set and returns an array or a scalar,
 depending on how you call it. In array context, selectrow_array() returns the entire row as
 an array (or the empty list if no row was selected). This is useful
 for statements from which you expect to obtain only a single row. The
 return value can be used to determine the result set size. The column
 count is the number of elements in the array, and the row count is 1
 or 0:
my @val = $dbh->selectrow_array ("SELECT name, birth, foods FROM profile
 WHERE id = 3");
my $ncols = @val;
my $nrows = $ncols ? 1 : 0;
selectrow_arrayref() and
 selectrow_hashref() select the
 first row of the result set and return a reference to it, or undef if no row was selected. To access the
 column values, treat the reference the same way you treat the return
 value from fetchrow_arrayref() or
 fetchrow_hashref(). The reference
 also provides the row and column counts:
my $ref = $dbh->selectrow_arrayref ($stmt);
my $ncols = defined ($ref) ? @{$ref} : 0;
my $nrows = $ncols ? 1 : 0;

my $ref = $dbh->selectrow_hashref ($stmt);
my $ncols = defined ($ref) ? keys (%{$ref}) : 0;
my $nrows = $ncols ? 1 : 0;
selectcol_arrayref() returns
 a reference to a single-column array representing the first column of
 the result set. Assuming a non-undef return value, access elements of the
 array as $ref->[i] for the value from row
 i. The number of rows is the number of
 elements in the array, and the column count is 1 or 0:
my $ref = $dbh->selectcol_arrayref ($stmt);
my $nrows = defined ($ref) ? @{$ref} : 0;
my $ncols = $nrows ? 1 : 0;
selectall_arrayref() returns
 a reference to an array containing an element for each row of the
 result. Each element is a reference to an array. To access row
 i of the result set, use $ref->[i] to get a reference to the row. Then treat
 the row reference the same way, as a return value from fetchrow_arrayref(), to access individual
 column values in the row. The result set row and column counts are
 available as follows:
my $ref = $dbh->selectall_arrayref ($stmt);
my $nrows = defined ($ref) ? @{$ref} : 0;
my $ncols = $nrows ? @{$ref->[0]} : 0;
selectall_hashref() returns a
 reference to a hash, each element of which is a hash reference to a
 row of the result. To call it, specify an argument that indicates
 which column to use for hash keys. For example, if you retrieve rows
 from the profile table, the primary
 key is the id column:
my $ref = $dbh->selectall_hashref ("SELECT * FROM profile", "id");
Access rows using the keys of the hash. For a row that has a key
 column value of 12, the hash
 reference for the row is $ref->{12}. That row value is keyed on
 column names, which you can use to access individual column elements
 (for example, $ref->{12}->{name}). The result set
 row and column counts are available as follows:
my @keys = defined ($ref) ? keys (%{$ref}) : ();
my $nrows = scalar (@keys);
my $ncols = $nrows ? keys (%{$ref->{$keys[0]}}) : 0;
The selectall_XXX() methods are useful when you need to
 process a result set more than once because Perl DBI provides no way
 to rewind a result set. By assigning the entire result
 set to a variable, you can iterate through its elements multiple
 times.
Take care when using the high-level methods if you have RaiseError disabled. In that case, a
 method’s return value may not enable you to distinguish an error from
 an empty result set. For example, if you call selectrow_array() in scalar context to
 retrieve a single value, an undef
 return value is ambiguous because it may indicate any of three things:
 an error, an empty result set, or a result set consisting of a single
 NULL value. To test for an error,
 check the value of $DBI::errstr, $DBI::err, or $DBI::state.

Ruby

 The Ruby Mysql2 API uses the same calls for SQL statements that do not return a result
set and those that do. To process a statement in Ruby, use the query method.
 If the statement fails with an
 error, query raises an exception. Otherwise, the affected_rows method returns the number of rows changed for the last statement that modifies data:
client.query("UPDATE profile SET cats = cats+1 WHERE name = 'Sybil'")
puts "Number of rows updated: #{client.affected_rows}"
For statements such as SELECT that return
 a result set, the query method returns the result set as an instance of the Mysql2::Result class. The affected_rows method will return the number of rows in the result set for such statements. You can also obtain the number of rows in the result set by using the count method of the Mysql2::Result object:

result = client.query("SELECT id, name, cats FROM profile")
puts "Number of rows returned: #{client.affected_rows}"
puts "Number of rows returned: #{result.count}"
result.each do |row|
 printf "id: %s, name: %s, cats: %s\n", row["id"], row["name"], row["cats"]
end

 result.fields contains the names of the columns in the result set.

PHP
PDO has two connection-object methods to execute SQL statements:
 exec() for statements that do not
 return a result set and query() for
 those that do. If you have PDO exceptions enabled, both methods raise
 an exception if statement execution fails. (Another approach couples
 the prepare() and execute() methods; see Recipe 4.5.)
To execute statements such as INSERT or UPDATE that don’t return rows, use exec(). It
 returns a count to indicate how many rows were changed:
$count = $dbh->exec ("UPDATE profile SET cats = cats+1 WHERE name = 'Sybil'");
printf ("Number of rows updated: %d\n", $count);
For statements such as SELECT that return
 a result set, the query() method
 returns a statement handle. Generally, you use this object to call a
 row-fetching method in a loop, and count the rows if you need to know
 how many there are:
$sth = $dbh->query ("SELECT id, name, cats FROM profile");
$count = 0;
while ($row = $sth->fetch (PDO::FETCH_NUM))
{
 printf ("id: %s, name: %s, cats: %s\n", $row[0], $row[1], $row[2]);
 $count++;
}
printf ("Number of rows returned: %d\n", $count);
To determine the number of columns in the result set, call the
 statement handle columnCount()
 method.
The example demonstrates the statement handle fetch()
 method, which returns the next row of the result set or FALSE when there are no more. fetch() takes an optional argument that
 indicates what type of value it should return. As shown, with an
 argument of PDO::FETCH_NUM,
 fetch() returns an array with
 elements accessed using numeric subscripts, beginning with 0. The
 array size indicates the number of result set columns.
With a PDO::FETCH_ASSOC argument, fetch() returns an associative array
 containing values accessed by column name ($row["id"], $row["name"], $row["cats"]).
With a PDO::FETCH_OBJ argument, fetch() returns an object having members
 accessed using the column names ($row->id, $row->name, $row->cats).
fetch() uses the default
 fetch mode if you invoke it with no argument. Unless you’ve changed
 the mode, it’s PDO::FETCH_BOTH,
 which is a combination of PDO::FETCH_NUM and PDO::FETCH_ASSOC. To set the default fetch
 mode for all statements executed within a connection, use the setAttribute
 database-handle method:
$dbh->setAttribute (PDO::ATTR_DEFAULT_FETCH_MODE, PDO::FETCH_ASSOC);
To set the mode for a given statement, call its setFetchMode()
 method after executing the statement and before fetching the
 results:
$sth->setFetchMode (PDO::FETCH_OBJ);
It’s also possible to use a statement handle as an iterator. The
 handle uses the current default fetch mode:
$sth->setFetchMode (PDO::FETCH_NUM);
foreach ($sth as $row)
 printf ("id: %s, name: %s, cats: %s\n", $row[0], $row[1], $row[2]);
The fetchAll() method
 fetches and returns the entire result set as an array of
 rows. It permits an optional fetch-mode argument:
$rows = $sth->fetchAll (PDO::FETCH_NUM);
foreach ($rows as $row)
 printf ("id: %s, name: %s, cats: %s\n", $row[0], $row[1], $row[2]);
In this case, the row count is the number of elements in
 $rows.

Python
The Python DB API uses the same calls for SQL statements that do not
 return a result set and those that do. To process a statement in
 Python, use your database connection object to get a cursor object.
 Then use the cursor’s execute()
 method to send the statement to the server. If the statement
 fails with an error, execute()
 raises an exception. Otherwise, if there is no result set, statement
 execution is complete, and the cursor’s rowcount attribute indicates how many rows were changed:
cursor = conn.cursor()
cursor.execute("UPDATE profile SET cats = cats+1 WHERE name = 'Sybil'")
print("Number of rows updated: %d" % cursor.rowcount)
conn.commit()
cursor.close()
Note
The Python DB API specification indicates that database connections should begin with
 auto-commit mode disabled, so Connector/Python
 disables auto-commit when it connects to the MySQL server. If you
 use transactional tables, modifications to them are rolled back when
 you close the connection unless you commit the changes first, which
 is why the preceding example invokes the commit() method. For more information on auto-commit mode, see
 Chapter 20, particularly Recipe 20.7.

If the statement returns a result set, fetch its rows, then
 close the cursor. The fetchone() method
 returns the next row as a sequence, or None when there are no more rows:
cursor = conn.cursor()
cursor.execute("SELECT id, name, cats FROM profile")
while True:
 row = cursor.fetchone()
 if row is None:
 break
 print("id: %s, name: %s, cats: %s" % (row[0], row[1], row[2]))
print("Number of rows returned: %d" % cursor.rowcount)
cursor.close()
As you can see from the preceding example, the rowcount attribute is useful for SELECT
 statements, too; it indicates the number of rows in the result
 set.
len(row) tells you the number
 of columns in the result set.
Alternatively, use the cursor itself as an iterator that returns
 each row in turn:
cursor = conn.cursor()
cursor.execute("SELECT id, name, cats FROM profile")
for (id, name, cats) in cursor:
 print("id: %s, name: %s, cats: %s" % (id, name, cats))
print("Number of rows returned: %d" % cursor.rowcount)
cursor.close()
The fetchall() method
 returns the entire result set as a list of tuples. Iterate through the list to access the rows:
cursor = conn.cursor()
cursor.execute("SELECT id, name, cats FROM profile")
rows = cursor.fetchall()
for row in rows:
 print("id: %s, name: %s, cats: %s" % (row[0], row[1], row[2]))
print("Number of rows returned: %d" % cursor.rowcount)
cursor.close()
The DB API provides no way to rewind a result set, so fetchall() can be convenient when you must
 iterate through the rows of the result set more than once or access
 individual values directly. For example, if rows holds the result set, you can access
 the value of the third column in the second row as rows[1][2] (indexes begin at 0, not 1).

Go
The Go sql interface has two connection-object functions to execute SQL statements: Exec() for statements that do not return a result set and Query() for the statements that do. Both return error if the statement fails.

 To run a statement that doesn’t return any row, such as INSERT, UPDATE, or DELETE, use the Exec() function. Its return values can have a Result type or an error type. The interface Result has a RowsAffected() function that indicates how many rows were changed:

sql := "UPDATE profile SET cats = cats+1 WHERE name = 'Sybil'"
res, err := db.Exec(sql)

if err != nil {
	panic(err.Error())
}

affectedRows, err := res.RowsAffected()

if err != nil {
	log.Fatal(err)
}

fmt.Printf("The statement affected %d rows\n", affectedRows)

 For the statements that return a result set, typically SELECT, use the Query() function. This function returns the cursor to the object of the Rows type that holds the result of the query. Call the Next() function to iterate through the result and store returned values in the variables using the Scan() function. If Next() returns false, this means there is no result:

res, err := db.Query("SELECT id, name, cats FROM profile")

defer res.Close()

if err != nil {
	log.Fatal(err)
}

for res.Next() {

	var profile Profile
	err := res.Scan(&profile.id, &profile.name, &profile.cats)

	if err != nil {
		log.Fatal(err)
	}

	fmt.Printf("%+v\n", profile)
}

 If Next() is called and returns false, the Rows are closed automatically. Otherwise, you need to close them using the Close() function.

 For the queries that expect to return at most one row, there is a special function, QueryRow(), that returns a Row object that can be scanned immediately. QueryRow() never returns an error until Scan() is called. If the query returns no row, Scan() returns ErrNoRows:

row := db.QueryRow("SELECT id, name, cats FROM profile where id=3")

var profile Profile
err = row.Scan(&profile.id, &profile.name, &profile.cats)

if err == sql.ErrNoRows {
	fmt.Println("No row matched!")
} else if err != nil {
	log.Fatal(err)
} else {
	fmt.Printf("%v\n", profile)
}

Java
The JDBC interface provides specific object types for the various phases of
 SQL statement processing. Statements are executed in JDBC using Java
 objects of one type. The results, if any, are returned as objects of
 another type.
To execute a statement, first get a Statement object by calling the createStatement() method of your Connection object:
Statement s = conn.createStatement ();
Then use the Statement object
 to send the statement to the server. JDBC provides several
 methods for doing this. Choose the one that’s appropriate for the type
 of statement: executeUpdate() for
 statements that don’t return a result set, executeQuery() for statements that do, and
 execute() when you don’t know. Each
 method raises an exception if the statement fails.
The executeUpdate() method
 sends a statement that generates no result set to the server and
 returns a count indicating the number of affected rows. When you’re
 done with the statement object, close it:
Statement s = conn.createStatement ();
int count = s.executeUpdate(
 "UPDATE profile SET cats = cats+1 WHERE name = 'Sybil'");
s.close(); // close statement
System.out.println("Number of rows updated: " + count);
For statements that return a result set, use executeQuery(). Then get a result set
 object, and use it to retrieve the row values. When you’re done, close
 the result set and statement objects:
Statement s = conn.createStatement ();
s.executeQuery("SELECT id, name, cats FROM profile");
ResultSet rs = s.getResultSet();
int count = 0;
while (rs.next ()) { // loop through rows of result set\
 int id = rs.getInt(1); // extract columns 1, 2, and 3
 String name = rs.getString(2);
 int cats = rs.getInt(3);
 System.out.println("id: " + id
 + ", name: " + name
 + ", cats: " + cats);
 ++count;
}
rs.close (); // close result set
s.close (); // close statement
System.out.println ("Number of rows returned: " + count);
The ResultSet object
 returned by the getResultSet() method of your Statement object has its own methods, such
 as next(), to fetch rows and various
 getXXX() methods that access columns of the
 current row. Initially, the result set is positioned just before the
 first row of the set. Call next()
 to fetch each row in succession until it returns false. To determine
 the number of rows in a result set, count them yourself, as shown in
 the preceding example.
Tip

 For queries that return a single result set, it isn’t necessary to call getResultSet. The preceding code could be written as follows:

ResultSet rs = s.executeQuery("SELECT id, name, cats FROM profile");

 A separate call is needed when your query can return multiple result sets, for example, if you call a stored routine.

To access column values, use the getInt(), getString(), getFloat(), or getDate() methods. To obtain the column value as a
 generic object, use getObject(). The
 argument to a getXXX() call can indicate either column position
 (beginning at 1, not 0) or column name. The previous example shows how
 to retrieve the id, name, and cats columns by position. To access columns
 by name instead, write the row-fetching loop as follows:
while (rs.next ()) { // loop through rows of result set
 int id = rs.getInt("id");
 String name = rs.getString("name");
 int cats = rs.getInt("cats");
 System.out.println("id: " + id
 + ", name: " + name
 + ", cats: " + cats);
 ++count;
}
To retrieve a given column value, use any getXXX() call that makes sense for the data type.
 For example, getString() retrieves
 any column value as a string:
String id = rs.getString("id");
String name = rs.getString("name");
String cats = rs.getString("cats");
System.out.println("id: " + id
 + ", name: " + name
 + ", cats: " + cats);
Or use getObject() to
 retrieve values as generic objects and convert the values as
 necessary. The following example uses toString() to convert object values to printable form:
Object id = rs.getObject("id");
Object name = rs.getObject("name");
Object cats = rs.getObject("cats");
System.out.println("id: " + id.toString()
 + ", name: " + name.toString()
 + ", cats: " + cats.toString());
To determine the number of columns in the result set, access its
 metadata:
ResultSet rs = s.getResultSet();
ResultSetMetaData md = rs.getMetaData(); // get result set metadata
int ncols = md.getColumnCount(); // get column count from metadata
The third JDBC statement-execution method, execute(), works for either type of
 statement. It’s particularly useful when you receive a statement
 string from an external source and don’t know whether it generates a
 result set or returns multiple result sets. The return value from execute() indicates the statement type so
 that you can process it appropriately: if execute() returns true, there is a result
 set, otherwise not. Typically, you’d use it something like this, where
 stmtStr represents an arbitrary
 SQL statement:
Statement s = conn.createStatement();
if (s.execute(stmtStr)) {
 // there is a result set
 ResultSet rs = s.getResultSe();

 // ... process result set here ...

 rs.close(); // close result set
} else {
 // there is no result set, just print the row count
 System.out.println("Number of rows affected: " + s.getUpdateCount ());
}
s.close(); // close statement

4.5 Handling Special Characters and NULL Values in Statements
Problem
You need to construct SQL statements that refer to data values containing
 special characters such as quotes or backslashes, or special values such
 as NULL. Or you are constructing
 statements using data obtained from external sources and want to prevent
 SQL injection attacks.

Solution
Use your API’s placeholder mechanism or quoting function to make data safe for
 insertion.

Discussion
Up to this point in the chapter, our statements have used
 safe data values that require no special treatment. For
 example, we can easily construct the following SQL statements from
 within a program by writing the data values literally in the statement
 strings:
SELECT * FROM profile WHERE age > 40 AND color = 'green';

INSERT INTO profile (name,color) VALUES('Gary','blue');
However, some data values are not so easily handled and cause
 problems if you are not careful. Statements might use values that
 contain special characters such as quotes, backslashes, binary data, or
 values that are NULL. The following
 discussion describes the difficulties these values cause and the proper
 techniques for handling them.
Suppose that you want to execute this INSERT
 statement:
INSERT INTO profile (name,birth,color,foods,cats)
VALUES('Alison','1973-01-12','blue','eggroll',4);
There’s nothing unusual about that. But if you change the name column value to something like De'Mont that contains a single quote, the
 statement becomes syntactically invalid:
INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De'Mont','1973-01-12','blue','eggroll',4);
The problem is the single quote inside a single-quoted string. To
 make the statement legal by escaping the quote, precede it with either a
 single quote or a backslash:
INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De''Mont','1973-01-12','blue','eggroll',4);
INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De\'Mont','1973-01-12','blue','eggroll',4);
Alternatively, quote the name
 value itself within double quotes rather than within single quotes
 (assuming that the ANSI_QUOTES SQL
 mode is not enabled):
INSERT INTO profile (name,birth,color,foods,cats)
VALUES("De'Mont",'1973-01-12','blue','eggroll',4);
If you are writing a statement literally in your program, you can
 escape or quote the name value by
 hand because you know what the value is. But if the name is stored in a
 variable, you don’t necessarily know what the variable’s value is. Worse
 yet, a single quote isn’t the only character you must be prepared to deal
 with; double quotes and backslashes cause problems, too. And if the
 database stores binary data such as images or sound clips, a value might
 contain anything—not only quotes or backslashes but other characters
 such as nulls (zero-valued bytes). The need to handle special characters
 properly is particularly acute in a web environment where statements are
 constructed using form input (for example, if you search for rows that
 match search terms entered by the remote user). You must be able to
 handle any kind of input in a general way because you can’t predict in
 advance what kind of information a user will supply. It’s not uncommon
 for malicious users to enter garbage values containing problematic
 characters in a deliberate attempt to compromise the security of your
 server and even execute fatal commands, such as DROP TABLE. That is a standard technique for exploiting insecure
 scripts, called SQL injection.
The SQL NULL value is not a
 special character, but it too requires special treatment. In SQL,
 NULL indicates no
 value. This can have several meanings depending on context, such
 as unknown, missing, out of
 range, and so forth. Our statements thus far have not used
 NULL values, to avoid dealing with
 the complications they introduce, but now it’s time to address
 these issues. For example, if you don’t know De’Mont’s favorite color,
 you can set the color column to
 NULL—but not by writing the statement
 like this:
INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De''Mont','1973-01-12','NULL','eggroll',4);
Instead, the NULL value must
 have no enclosing quotes:
INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De''Mont','1973-01-12',NULL,'eggroll',4);
Were you writing the statement literally in your program, you’d
 simply write the word NULL. But
 if the color value comes from a
 variable, the proper action is not so obvious. You must know whether the
 variable’s value represents NULL to
 determine whether to enclose it within quotes when you construct the
 statement.
You have two means at your disposal for dealing with special
 characters such as quotes and backslashes and with special values such
 as NULL:
	Use placeholders in the statement string to refer to data
 values symbolically, then bind the data values to the placeholders
 when you execute the statement. This is the preferred method because
 the API itself does all or most of the work for you of providing
 quotes around values as necessary, quoting or escaping special
 characters within the data value, and possibly interpreting a
 special value to map onto NULL
 without enclosing quotes.

	Use a quoting function (if your API provides one) for
 converting data values to a safe form that is suitable for use in
 statement strings.

This section shows how to use these techniques to handle special
 characters and NULL values for each
 API. One of the examples demonstrated here shows how to insert a
 profile table row that contains
 De'Mont for the name value and NULL for the color value. However, the principles shown
 here have general utility and handle any special characters, including
 those found in binary data. Also, the principles are not limited to INSERT statements. They work for other kinds
 of statements as well, such as SELECT. One of the other examples shown here
 demonstrates how to execute a SELECT
 statement using placeholders.
Processing of special characters and NULL values comes up in other contexts covered
 elsewhere:
	The placeholder and quoting techniques described here are
 only for data values and not for identifiers
 such as database or table names. For a discussion of identifier
 quoting, refer to Recipe 4.6.

	Comparisons of NULL values
 require different operators than non-NULL values. Recipe 5.6 discusses how to
 construct SQL statements that perform NULL comparisons from within
 programs.

	This section covers the issue of getting special characters
 into your database. A related issue is the
 inverse operation of transforming special characters in values
 returned from your database for display in
 various contexts. For example, if you generate HTML pages that
 include values taken from your database, you must perform output
 encoding to convert < and
 > characters in those values
 to the HTML entities < and
 > to make sure they
 display properly.

Using placeholders
Placeholders enable you to avoid writing data values literally
 in SQL statements. Using this approach, you write statements using
 placeholders—special markers that indicate where the values go. Two
 common parameter markers are ? and
 %s. Depending on the marker,
 rewrite the INSERT statement to use
 placeholders like this:
INSERT INTO profile (name,birth,color,foods,cats)
VALUES(?,?,?,?,?);

INSERT INTO profile (name,birth,color,foods,cats)
VALUES(%s,%s,%s,%s,%s);
Then pass the statement string to the database server and supply
 the data values separately. The API binds the values to the
 placeholders to replace them, resulting in a statement that contains
 the data values.
One benefit of placeholders is that parameter-binding operations
 automatically handle escaping of characters such as quotes and
 backslashes. This is especially useful for inserting binary data such
 as images into your database or using data values with unknown content
 such as input submitted by a remote user through a form in a web page.
 Also, there is usually some special value that you bind to a
 placeholder to indicate that you want a SQL NULL value in the resulting
 statement.
A second benefit of placeholders is that you can
 prepare a statement in advance, then reuse it by
 binding different values to it each time it’s executed. Prepared
 statements thus encourage statement reuse. Statements become more
 generic because they contain placeholders rather than specific data
 values. If you perform an operation over and over, you may be able to
 reuse a prepared statement and simply bind different data values to it
 each time you execute it. Some database systems (MySQL not among them)
 have the capability of performing some preparsing or even execution
 planning prior to executing a prepared statement. For a statement that
 is executed multiple times later, this reduces overhead because
 anything that can be done prior to execution need be done only once,
 not once per execution. For example, if a program executes a
 particular type of SELECT statement
 several times while it runs, such a database system can construct a
 plan for the statement and then reuse it each time, rather than
 rebuild the plan over and over. MySQL doesn’t build query plans in
 advance, so you get no performance boost from using prepared
 statements. However, if you port a program to a database that does
 reuse query plans and you’ve written your program to use prepared
 statements, you can get this advantage of prepared statements
 automatically. You need not convert from nonprepared statements to
 enjoy that benefit.
A third (admittedly subjective) benefit is that code that uses
 placeholder-based statements can be easier to read. As you work
 through this section, compare the statements used here with those from
 Recipe 4.4 that didn’t use placeholders
 to see which you prefer.

Using a quoting function
Some APIs provide a quoting function that takes a data value as
 its argument and returns a properly quoted and escaped value suitable
 for safe insertion into a SQL statement. This is less common than
 using placeholders, but it can be useful for constructing statements
 that you don’t intend to execute immediately. However, you must have
 a connection open to the database server while you use such a quoting
 function because the API cannot select the proper quoting rules until
 the database driver is known. (The rules differ among database
 systems.)
Note
As we’ll indicate later, some APIs quote as strings all
 non-NULL values, even numbers,
 when binding them to parameter markers. This can be an issue in
 contexts that require numbers, as described
 further in Recipe 5.11.

Generating a List of Placeholders
You cannot bind an array of data values to a single placeholder. Each value
 must be bound to a separate placeholder. To use placeholders for a
 list of data values that may vary in number, construct a list of
 placeholder characters. In Perl, the following statement creates a
 string consisting of n placeholder
 characters separated by commas:
$str = join (",", ("?") x n);
The x repetition operator,
 when applied to a list, produces
 n copies of the list, so the join() call joins these lists to produce a
 single string containing n
 comma-separated instances of the ? character. This is handy for binding an
 array of data values to a list of placeholders in a statement string
 because the size of the array is the number of placeholders
 needed:
$str = join (",", ("?") x @values);
In Ruby, use the * operator
 to similar effect:
str = (["?"] * values.size).join(",")
A less cryptic method is to use a loop approach, here
 illustrated in Python:
str = ""
if len(values) > 0:
 str = "?"
for i in range(1, len(values)):
 str += ",?"

Perl
To use placeholders with Perl DBI, put a ? in
 your SQL statement string at each data value location. Then
 bind the values to the statement by passing them to do() or execute(), or by calling a DBI method
 specifically intended for placeholder substitution. Use undef to bind a NULL value to a placeholder.
With do(), add the profile row for
 De’Mont by passing the statement string and the data values in the
 same call:
my $count = $dbh->do ("INSERT INTO profile (name,birth,color,foods,cats)
 VALUES(?,?,?,?,?)",
 undef,
 "De'Mont", "1973-01-12", undef, "eggroll", 4);
The arguments following the statement string are undef, then one data value for each
 placeholder. The undef argument is
 a historical artifact but must be present.
Alternatively, pass the statement string to prepare() to get a statement handle, then use that handle to pass the data
 values to execute():
my $sth = $dbh->prepare ("INSERT INTO profile (name,birth,color,foods,cats)
 VALUES(?,?,?,?,?)");
my $count = $sth->execute ("De'Mont", "1973-01-12", undef, "eggroll", 4);
In either case, DBI generates this statement:
INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De\'Mont','1973-01-12',NULL,'eggroll','4');
The Perl DBI placeholder mechanism provides quotes around data
 values when they are bound to the statement string, so don’t put
 quotes around the ? characters in
 the string.
Note that the placeholder mechanism adds quotes around numeric
 values. DBI relies on the MySQL server to perform type conversion as
 necessary to convert strings to numbers. If you bind undef to
 a placeholder, DBI puts a NULL into
 the statement and correctly refrains from adding enclosing
 quotes.
To execute the same statement over and over again, use prepare() once, then call execute() with the appropriate data values each
 time you run it.
You can use these methods for other types of statements as well.
 For example, the following SELECT
 statement uses a placeholder to look for rows that have a cats value larger than 2:
my $sth = $dbh->prepare ("SELECT * FROM profile WHERE cats > ?");
$sth->execute (2);
while (my $ref = $sth->fetchrow_hashref ())
{
 print "id: $ref->{id}, name: $ref->{name}, cats: $ref->{cats}\n";
}
High-level retrieval methods such as selectrow_array() and selectall_arrayref() can be used with
 placeholders, too. Like the do()
 method, the arguments are the statement string, undef, and the data values to bind to the
 placeholders. Here’s an example:
my $ref = $dbh->selectall_arrayref (
 "SELECT name, birth, foods FROM profile WHERE id > ? AND color = ?",
 undef, 3, "green"
);
The Perl DBI quote()
 database-handle method is an alternative to using placeholders.
 Here’s how to use quote() to create
 a statement string that inserts a new row in the profile table. Write the %s format specifiers without enclosing
 quotes because quote() provides
 them automatically as necessary. Non-undef values are inserted with quotes, and
 undef values are inserted as
 NULL without quotes:
my $stmt = sprintf ("INSERT INTO profile (name,birth,color,foods,cats)
 VALUES(%s,%s,%s,%s,%s)",
 $dbh->quote ("De'Mont"),
 $dbh->quote ("1973-01-12"),
 $dbh->quote (undef),
 $dbh->quote ("eggroll"),
 $dbh->quote (4));
my $count = $dbh->do ($stmt);
The statement string generated by this code is the same as when
 you use placeholders.

Ruby
Ruby DBI uses ? as the
 placeholder character in SQL statements and nil as the value for binding a SQL NULL value to a placeholder.
To use the ?, pass the statement string to prepare to get a
 statement handle, then use that handle to invoke execute with
 the data values:
sth = client.prepare("INSERT INTO profile (name,birth,color,foods,cats)
 VALUES(?,?,?,?,?)")
sth.execute("De'Mont", "1973-01-12", nil, "eggroll", 4)
Mysql2 includes
 properly escaped quotes and a properly unquoted NULL value in the resulting statement:
INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De\'Mont','1973-01-12',NULL,'eggroll',4);
The Ruby Mysql2 placeholder mechanism provides quotes around data
 values as necessary when they are bound to the statement string, so
 don’t put quotes around the ?
 characters in the string.

PHP
To use placeholders with the PDO extension, pass a statement string
 to prepare() to get a
 statement object. The string can contain ? characters as placeholder markers. Use
 this object to invoke execute(),
 passing to it the array of data values to bind to the
 placeholders. Use the PHP NULL
 value to bind a SQL NULL value to
 a placeholder. The code to add the profile table row for De’Mont looks like
 this:
$sth = $dbh->prepare ("INSERT INTO profile (name,birth,color,foods,cats)
 VALUES(?,?,?,?,?)");
$sth->execute (array ("De'Mont","1973-01-12",NULL,"eggroll",4));
The resulting statement includes a properly escaped quote and a
 properly unquoted NULL
 value:
INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De\'Mont','1973-01-12',NULL,'eggroll','4');
The PDO placeholder mechanism provides quotes around data values
 when they are bound to the statement string, so don’t put quotes
 around the ? characters in the
 string. (Note that even the numeric value 4 is quoted; PDO relies on MySQL to perform
 type conversion as necessary when the statement executes.)

Python
The Connector/Python module implements placeholders using %s format specifiers in the SQL statement string. (To place
 a literal % character
 into the statement, use %% in the
 statement string.) To use placeholders, invoke the execute() method
 with two arguments: a statement string containing format specifiers
 and a sequence containing the values to bind to the statement string.
 Use None to bind a NULL value to a placeholder. The code to add
 the profile table row for De’Mont
 looks like this:
cursor = conn.cursor()
cursor.execute('''
 INSERT INTO profile (name,birth,color,foods,cats)
 VALUES(%s,%s,%s,%s,%s)
 ''', ("De'Mont", "1973-01-12", None, "eggroll", 4))
cursor.close()
conn.commit()
The statement sent to the server by the preceding execute() call looks like this:
INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De\'Mont','1973-01-12',NULL,'eggroll',4);
The Connector/Python placeholder mechanism provides quotes
 around data values as necessary when they are bound to the statement
 string, so don’t put quotes around the %s format specifiers in the string.
If you have only a single value, val,
 to bind to a placeholder, write it as a sequence using the syntax
 (val,):
cursor = conn.cursor()
cursor.execute("SELECT id, name, cats FROM profile WHERE cats = %s", (2,))
for (id, name, cats) in cursor:
 print("id: %s, name: %s, cats: %s" % (id, name, cats))
cursor.close()
Alternatively, write the value as a list using the syntax
 [val].

Go
The Go sql package uses question marks (?) as placeholder markers. You can use placeholders with single Exec() or Query() calls, and you can also prepare the statement in advance and execute it later. The latter method is good when you need to execute the statement multiple times.

 The code to add
 the profile table row for De’Mont
 looks like this:
stmt := `INSERT INTO profile (name,birth,color,foods,cats)
 VALUES(?,?,?,?,?)`
_, err = db.Exec(stmt, "De'Mont", "1973-01-12", nil, "eggroll", 4)

 The same code with the Prepare() call looks like this:

pstmt, err := db.Prepare(`INSERT INTO profile (name,birth,color,foods,cats)
 VALUES(?,?,?,?,?)`)
if err != nil {
 log.Fatal(err)
}
defer pstmt.Close()

_, err = pstmt.Exec("De'Mont", "1973-01-12", nil, "eggroll", 4)

Java
JDBC provides support for placeholders if you use prepared statements. Recall that
 the process for executing nonprepared statements in JDBC is to create
 a Statement object and then pass the statement string to the executeUpdate(),
 executeQuery(), or execute() function. To use a prepared
 statement instead, create a PreparedStatement object by passing a
 statement string containing ?
 placeholder characters to your connection object’s prepareStatement() method. Then bind the
 data values to the statement using setXXX() methods. Finally, execute the statement
 by calling executeUpdate(),
 executeQuery(), or execute() with an empty argument
 list.
Here is an example that uses executeUpdate() to execute an INSERT statement that adds the profile table row for De’Mont:
PreparedStatement s;
s = conn.prepareStatement(
 "INSERT INTO profile (name,birth,color,foods,cats)"
 + " VALUES(?,?,?,?,?)");
s.setString(1, "De'Mont"); // bind values to placeholders
s.setString(2, "1973-01-12");
s.setNull(3, java.sql.Types.CHAR);
s.setString(4, "eggroll");
s.setInt(5, 4);
s.close(); // close statement
The setXXX() methods that bind data values to
 statements take two arguments: a placeholder position (beginning with
 1, not 0) and the value to bind to the placeholder. Choose each
 value-binding call to match the data type of the column to which the
 value is bound: setString() to
 bind a string to the name column,
 setInt() to bind an integer to the cats column, and so forth. (Actually, we
 cheated a bit by using setString()
 to treat the date value for birth
 as a string.)
One difference between JDBC and the other APIs is that you don’t
 bind a NULL to a placeholder by
 specifying some special value (such as undef in Perl or nil in Ruby). Instead, invoke setNull() with
 a second argument that indicates the type of the column: java.sql.Types.CHAR for a string, java.sql.Types.INTEGER for an integer, and
 so forth.
The setXXX() calls add quotes around data values if
 necessary, so don’t put quotes around the ? placeholder characters in the statement
 string.
To handle a statement that returns a result set, the process is similar, but execute the prepared statement
 with executeQuery() rather than
 executeUpdate():
PreparedStatement s;
s = conn.prepareStatement("SELECT * FROM profile WHERE cats > ?");
s.setInt(1, 2); // bind 2 to first placeholder
s.executeQuery();
// ... process result set here ...
s.close(); // close statement

4.6 Handling Special Characters in Identifiers
Problem
You need to construct SQL statements that refer to identifiers containing special
 characters.

Solution
Quote each identifier so it can be inserted safely into statement strings.

Discussion
Recipe 4.5 discusses how to handle
 special characters in data values by using placeholders or quoting
 methods. Special characters can also be present in identifiers such as
 database, table, and column names. For example, the table name some table contains a space, which is not
 permitted by default:
mysql> CREATE TABLE some table (i INT);
ERROR 1064 (42000): You have an error in your SQL syntax near 'table (i INT)'
Special characters are handled differently in identifiers than in
 data values. To make an identifier safe for insertion into a SQL
 statement, quote it by enclosing it within backticks:
mysql> CREATE TABLE `some table` (i INT);
Query OK, 0 rows affected (0.04 sec)
In MySQL, backticks are always permitted for identifier quoting.
 The double-quote character is permitted as well, if the ANSI_QUOTES SQL mode is enabled. Thus, with ANSI_QUOTES
 enabled, both of these statements are equivalent:
CREATE TABLE `some table` (i INT);
CREATE TABLE "some table" (i INT);
If it’s necessary to know which identifier quoting characters are
 permitted, execute a SELECT
 @@sql_mode statement to retrieve the
 SQL mode for your session and check whether its value includes ANSI_QUOTES.
If a quoting character appears within the identifier itself,
 double it when quoting the identifier. For example, quote abc`def as `abc``def`.
Be aware that although string data values in MySQL normally can be
 quoted using either single-quote or double-quote
 characters ('abc', "abc"), that is not true when ANSI_QUOTES is enabled. In that case, MySQL
 interprets 'abc' as a string and
 "abc" as an identifier, so you must
 use only single quotes for strings.
Within a program, you can use an identifier-quoting routine if
 your API provides one, or write one yourself if not. Perl DBI has a
 quote_identifier() method that returns a properly quoted identifier. For an API that
 has no such method, you can quote an identifier by enclosing it within
 backticks and doubling any backticks that occur within the identifier.
 Here’s a PHP routine that does so:
function quote_identifier ($ident)
{
 return ('`' . str_replace('`', '``', $ident) . '`');
}
Portability note: if you write your own identifier-quoting
 routines, remember that other database management systems (DBMSs) may require different quoting
 conventions.
In contexts where identifiers are used as data values, handle them
 as such. If you select information from the INFORMATION_SCHEMA metadata database,
 it’s common to indicate which rows to return by specifying
 database object names in the WHERE clause. For
 example, this statement retrieves the column names for the profile table in the cookbook database:
SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'profile';
The database and table names are used here as data values, not as
 identifiers. Were you to construct this statement within a program,
 parameterize them using placeholders, not identifier quoting. For example, in
 Ruby, do this:
sth = client.prepare("SELECT COLUMN_NAME
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE TABLE_SCHEMA = ? AND TABLE_NAME = ?")
names = sth.execute(db_name, tbl_name)

4.7 Identifying NULL Values in Result Sets
Problem
A query result includes NULL values,
 but you’re not sure how to identify them.

Solution
Your API probably has some special value that represents NULL by convention. You just have to know what
 it is and how to test for it.

Discussion
Recipe 4.5 describes how to refer to
 NULL values when you send statements
 to the database server. In this section, we’ll deal
 instead with the question of how to recognize and process NULL values returned from
 the database server. In general, this is a matter of knowing what
 special value the API maps NULL
 values to, or what method to call. Table 4-5 shows these
 values.
Table 4-5. Detected NULL values	Language	NULL-detection value or method
	Perl DBI	undef value
	Ruby Mysql2 gem	nil value
	PHP PDO	NULL value
	Python DB API	None value
	Go sql interface	Go Null type implementation for the nullable data types.
	Java JDBC	wasNull() method

The following sections show a very simple application of NULL value detection. The examples retrieve a
 result set and print all values in it, mapping NULL values onto the printable string "NULL".
To make sure that the profile
 table has a row that contains some NULL values, use mysql to execute the following INSERT statement, then execute the SELECT statement to verify that the resulting row has the expected
 values:
mysql> INSERT INTO profile (name) VALUES('Amabel');
mysql> SELECT * FROM profile WHERE name = 'Amabel';
+----+--------+-------+-------+-------+------+
| id | name | birth | color | foods | cats |
+----+--------+-------+-------+-------+------+
| 9 | Amabel | NULL | NULL | NULL | NULL |
+----+--------+-------+-------+-------+------+
The id column might contain a
 different number, but the other columns should appear as shown, with
 values of NULL.
Perl
Perl DBI represents NULL
 values using undef. To detect
 such values, use the defined() function; it’s particularly important to do so if you enable
 warnings with the Perl -w option or by including a use
 warnings line in your script.
 Otherwise, accessing undef values
 causes Perl to issue Use of uninitialized value warnings.
To prevent these warnings, test column values that might be
 undef with defined() before using them. The following
 code selects a few columns from the profile table and prints "NULL" for any undefined values in each row.
 This makes NULL values explicit in
 the output without activating any warning messages:
my $sth = $dbh->prepare ("SELECT name, birth, foods FROM profile");
$sth->execute ();
while (my $ref = $sth->fetchrow_hashref ())
{
 printf "name: %s, birth: %s, foods: %s\n",
 defined ($ref->{name}) ? $ref->{name} : "NULL",
 defined ($ref->{birth}) ? $ref->{birth} : "NULL",
 defined ($ref->{foods}) ? $ref->{foods} : "NULL";
}
Unfortunately, testing multiple column values is ponderous and
 becomes worse the more columns there are. To avoid this, test and set
 undefined values using a loop or map prior to printing them. The following
 example uses map:
my $sth = $dbh->prepare ("SELECT name, birth, foods FROM profile");
$sth->execute ();
while (my $ref = $sth->fetchrow_hashref ())
{
 map { $ref->{$_} = "NULL" unless defined ($ref->{$_}); } keys (%{$ref});
 printf "name: %s, birth: %s, foods: %s\n",
 $ref->{name}, $ref->{birth}, $ref->{foods};
}
With this technique, the amount of code to perform the tests is
 constant, not proportional to the number of columns to be tested.
 Also, there is no reference to specific column names, so it can more
 easily be used in other programs or as the basis for a utility
 routine.
If you fetch rows into an array rather than into a hash, use
 map like this to convert undef values:
my $sth = $dbh->prepare ("SELECT name, birth, foods FROM profile");
$sth->execute ();
while (my @val = $sth->fetchrow_array ())
{
 @val = map { defined ($_) ? $_ : "NULL" } @val;
 printf "name: %s, birth: %s, foods: %s\n",
 $val[0], $val[1], $val[2];
}

Ruby
The Ruby Mysql2 module represents NULL
 values using nil, which can be
 identified by applying the nil?
 method to a value. The following example uses the nil? method and ternary operator to determine whether to print result
 set values as is or as the string "NULL" for NULL values:
result = client.query("SELECT name, birth, foods FROM profile")
result.each do |row|
 printf "name %s, birth: %s, foods: %s\n",
 row["name"].nil? ? "NULL" : row["name"],
 row["birth"].nil? ? "NULL" : row["birth"],
 row["foods"].nil? ? "NULL" : row["foods"]
end

PHP
PHP represents SQL NULL values in
 result sets as the PHP NULL value.
 To determine whether a value from a result set represents a NULL value, compare it to the PHP NULL value using the === triple
 equal operator:
if ($val === NULL)
{
 # $val is a NULL value
}
In PHP, the triple equal operator means exactly equal
 to. The usual ==,
 equal to, comparison operator is not suitable here: with ==, PHP considers the NULL value, the empty string, and 0 all equal.
The following code uses the === operator to identify NULL values in a result set and print them
 as the string "NULL":
$sth = $dbh->query ("SELECT name, birth, foods FROM profile");
while ($row = $sth->fetch (PDO::FETCH_NUM))
{
 foreach (array_keys ($row) as $key)
 {
 if ($row[$key] === NULL)
 $row[$key] = "NULL";
 }
 print ("name: $row[0], birth: $row[1], foods: $row[2]\n");
}
An alternative to === for
 NULL value tests is is_null().

Python
Python DB API programs represent NULL in
 result sets using None. The
 following example shows how to detect NULL values:
cursor = conn.cursor()
cursor.execute("SELECT name, birth, foods FROM profile")

for row in cursor:
 row = list(row) # convert nonmutable tuple to mutable list

 for i, value in enumerate(row):
 if value is None: # is the column value NULL?
 row[i] = "NULL"

 print("name: %s, birth: %s, foods: %s" % (row[0], row[1], row[2]))

cursor.close()
The inner loop checks for NULL column values by looking for None and converts them to the string
 "NULL". The example converts
 row to a mutable object (list) prior to
 the loop because fetchall()
 returns rows as sequence values, which are immutable (read
 only).

Go
The Go sql interface provides special data types to handle values in the result set that may contain NULL values. They are defined for the standard Go types. Table 4-6 contains the list of the standard data types and their nullable equivalents.
Table 4-6. Handling NULL values in Go	Standard Go type	Type that can contain NULL values
	bool	NullBool
	float64	NullFloat64
	int32	NullInt32
	int64	NullInt64
	string	NullString
	time.Time	NullTime

 To define a variable that can take both NULL and non-NULL values when passed as an argument to the function Scan(), use the corresponding nullable type.

 All nullable types contain two functions: Valid() that returns true if the value is not NULL and false if the value is NULL. The second function is the type name, started from the capital letter, for example, String() for string values and Time() for time.Time values. This method returns the actual value when it is not NULL.

 The following example shows you how to handle NULL values in Go:

// null-in-result.go : Selecting NULL values in Go
package main

import (
	"database/sql"
	"fmt"
	"log"

	_ "github.com/go-sql-driver/mysql"
)

type Profile struct {
 name string
 birth sql.NullString
 foods sql.NullString
}

func main() {

	db, err := sql.Open("mysql", "cbuser:cbpass@tcp(127.0.0.1:3306)/cookbook")

	if err != nil {
		log.Fatal(err)
	}
	defer db.Close()

	sql := "SELECT name, birth, foods FROM profile"
	res, err := db.Query(sql)

	if err != nil {
		log.Fatal(err)
	}
	defer res.Close()

	for res.Next() {
		var profile Profile
		err = res.Scan(&profile.name, &profile.birth, &profile.foods)
		if err != nil {
			log.Fatal(err)
		}

 if (profile.birth.Valid && profile.foods.Valid) {
 fmt.Printf("name: %s, birth: %s, foods: %s\n",
 profile.name, profile.birth.String, profile.foods.String)
 } else if profile.birth.Valid {
 fmt.Printf("name: %s, birth: %s, foods: NULL\n",
 profile.name, profile.birth.String)
 } else if profile.foods.Valid {
 fmt.Printf("name: %s, birth: NULL, foods: %s\n",
 profile.name, profile.foods.String)
 } else {
 fmt.Printf("name: %s, birth: NULL, foods: NULL\n",
 profile.name)
 }
	}
}
Warning

 We used the NullString type for the birth column for simplicity. If you want to use the NullTime type, you need to add the parseTime=true parameter to your connection string.

Tip

 Alternatively, you can use MySQL’s COALESCE() function to convert the NULL value
 to a string during the query execution:
sql := `SELECT name,
 COALESCE(birth, '') as birthday
 FROM profile WHERE id = 9`
res, err := db.Query(sql)
defer res.Close()

Java
For JDBC programs, if it’s possible for a column in a result set to contain
 NULL values, it’s best to check for
 them explicitly. The way to do this is to fetch the value and then
 invoke wasNull(),
 which returns true if the column is NULL and false otherwise, for
 example:
Object obj = rs.getObject (index);
if (rs.wasNull ())
{ /* the value's a NULL */ }
The preceding example uses getObject(), but
 the principle holds for other getXXX() calls as well.
Here’s an example that prints each row of a result set as a
 comma-separated list of values, with "NULL" printed for each NULL
 value:
Statement s = conn.createStatement();
s.executeQuery("SELECT name, birth, foods FROM profile");
ResultSet rs = s.getResultSet();
ResultSetMetaData md = rs.getMetaData();
int ncols = md.getColumnCount();
while (rs.next ()) { // loop through rows of result set
 for (int i = 0; i < ncols; i++) { // loop through columns
 String val = rs.getString(i+1);
 if (i > 0)
 System.out.print(", ");
 if (rs.wasNull())
 System.out.print("NULL");
 else
 System.out.print(val);
 }
 System.out.println();
}
rs.close(); // close result set
s.close(); // close statement

4.8 Obtaining Connection Parameters
Problem
You need to obtain connection parameters for a script so that it can
 connect to a MySQL server.

Solution
There are several ways to do this. Take your pick from the
 alternatives described here.

Discussion
Any program that connects to MySQL specifies connection parameters such as the username, password, and
 hostname. The recipes shown so far have put connection parameters
 directly into the code that attempts to establish the connection, but
 that is not the only way for your programs to obtain the parameters.
 This discussion briefly surveys some of the available techniques:
	Hardwire the parameters into the program
	The parameters can be given either in the main source file
 or in a library file used by the program. This technique is
 convenient because users need not enter the values themselves, but
 it’s also inflexible. To change parameters, you must modify your
 program. It is also insecure, because everyone who accesses the library would be able to read your database credentials.

	Ask for the parameters interactively
	In a command-line environment, you can ask the user a series
 of questions. In a web or GUI environment, you might do this by
 presenting a form or dialog. Either way, this becomes tedious for
 people who use the application frequently, due to the need to
 enter the parameters each time.

	Get the parameters from the command line
	You can use this method either for commands run
 interactively or from within a script. Like the method of
 obtaining parameters interactively, you must supply parameters for
 each command invocation. (A factor that mitigates this burden is
 that many shells enable you to easily recall commands from your
 history list for re-execution.) This method could be insecure if you provide your credentials this way.

	Get the parameters from the execution environment
	The most common way to do this is to set the appropriate
 environment variables in one of your shell’s startup
 files (such as .profile for
 sh, bash, or ksh; or .login for csh or tcsh). Programs that you run during your
 login session then can get parameter values by examining their
 environment.

	Get the parameters from a separate file
	With this method, store information such as the username and
 password in a file that programs can read before connecting to the
 MySQL server. Reading parameters from a file that’s separate from
 your program gives you the benefit of not having to enter them
 each time you use the program, without hardwiring the values into
 it. Also, storing the values in a file enables you to centralize
 parameters for use by multiple programs, and for security purposes,
 you can set the file access mode to keep other users from reading
 the file.
The MySQL client library itself supports an option file
 mechanism, although not all APIs provide access to it. For those
 that don’t, workarounds may exist. (As an example, Java supports
 the use of properties files and supplies utility routines for
 reading them.)

	Use a combination of methods
	It’s often useful to combine methods, to give users the
 flexibility of providing parameters different ways. For example,
 MySQL clients such as mysql and
 mysqladmin look for option
 files in several locations and read any that are present. They
 then check the command-line arguments for further parameters. This
 enables users to specify connection parameters in an option file
 or on the command line.

These methods of obtaining connection parameters do involve
 security issues:
	Any method that stores connection parameters in a file may
 compromise your system’s security unless the file is protected
 against access by unauthorized users. This is true whether
 parameters are stored in a source file, an option file, or a script
 that invokes a command and specifies the parameters on the command
 line. (Web scripts that can be read only by the web server don’t
 qualify as secure if other users have administrative access to the
 server.)

	Parameters specified on the command line or in environment
 variables are not particularly secure. While a program is executing,
 its command-line arguments and environment may be visible to other
 users who run process status commands such as ps -e. In particular,
 storing the password in an environment variable perhaps is best
 limited to those situations in which you’re the only user on the
 machine or you trust all other users.

The rest of this section discusses how to process command-line
 arguments to get connection parameters and how to read parameters from
 option files.
Getting parameters from the command line
The convention used by standard clients such as mysql and mysqladmin for command-line arguments is to
 permit parameters to be specified using either a short option or a
 long option. For example, the username cbuser can be specified either as -u cbuser (or
 -ucbuser) or --user=cbuser. In
 addition, for either of the password options (-p or
 --password), the password value may be omitted after the option name to cause the
 program to prompt for the password interactively.
The standard flags for these command options are -h or --host,
 -u or --user, and
 -p or --password. You could write
 your own code to iterate through the argument list, but it’s much
 easier to use existing option-processing modules written for that
 purpose. Under the api directory
 of the recipes distribution, you’ll
 find example programs that show how to process command arguments to
 obtain the hostname, username, and password for Perl, Ruby, Python,
 and Java. An accompanying PDF file explains how each one works.
Note
Insofar as possible, the programs mimic option-handling
 behavior of the standard MySQL clients. An exception is that
 option-processing libraries may not permit making the password value
 optional, and they provide no way of prompting the user for a
 password interactively if a password option is specified without a
 password value. Consequently, the programs are written so that if
 you use -p or --password, you must
 provide the password value following the option.

Getting parameters from option files
If your API supports it, you can specify connection parameters in a MySQL option
 file and let the API read the parameters from the file for you. For
 APIs that do not support option files directly, you may be able to
 arrange to read other types of files in which parameters are stored or
 to write your own functions that read option files.
Recipe 1.4 describes the format
 of MySQL option files. We assume that you’ve read the discussion there
 and concentrate here on how to use option files from within programs.
 You can find files containing the code discussed here under the
 api directory of the
 recipes distribution.
Under Unix, user-specific options are specified by convention in ~/.my.cnf (that is, in the .my.cnf file in your home directory).
 However, the MySQL option-file mechanism can look in several different
 files if they exist, although no option file is
 required to exist. (For the list of standard
 locations in which MySQL programs look for them, see Recipe 1.4.) If multiple option files exist
 and a given parameter is specified in several of them, the last value
 found takes precedence.
Programs you write do not use MySQL option files unless you tell
 them to:
	Perl DBI and Ruby Mysql2 gem provide direct API support for reading
 option files; simply indicate that you want to use them at the
 time that you connect to the server. It’s possible to specify that
 only a particular file should be read, or that the standard search
 order should be used to look for multiple option files.

	PHP PDO, Connector/Python, Java, and Go do not support option
 files. (The PDO MySQL driver does but not if you use mysqlnd as the underlying library.) As a
 workaround for PHP, we’ll write a simple option-file parsing
 function. For Java, we’ll adopt a different approach that uses
 properties files. For Go, we will utilize the INI
 parsing library.

Although the conventional name under Unix for the user-specific
 option file is .my.cnf in the
 current user’s home directory, there’s no rule that your own programs
 must use this particular file. You can name an option file anything
 you like and put it wherever you want. For example, you might set up a
 file named mcb.cnf and install it
 in the /usr/local/lib/mcb
 directory for use by scripts that access the cookbook database. Under some circumstances,
 you might even want to create multiple option files. Then, from within
 any given script, select the file that’s appropriate for the access
 privileges the script needs. For example, you might have one option
 file, mcb.cnf, that lists
 parameters for a full-access MySQL account, and another file,
 mcb-readonly.cnf, that lists
 connection parameters for an account that needs only read-only access
 to MySQL. Another possibility is to list multiple groups within the
 same option file and have your scripts select options from the
 appropriate group.
Perl
Perl DBI scripts can use option files. To take advantage of this, place the
 appropriate option specifiers in the third component of the Data
 Source Name (DSN) string:
	To specify an option group, use mysql_read_default_group=groupname.
 This tells MySQL to search the standard option files for options
 in the named group and in the [client] group. Write the
 groupname value without the
 surrounding square brackets. (If a group in an option file
 begins with a [my_prog] line,
 specify the groupname value as
 my_prog.) To search the
 standard files but look only in the [client] group,
 groupname should be client.

	To name a specific option file, use mysql_read_default_file=filename
 in the DSN. When you do this, MySQL looks only in that file and
 only for options in the [client] group.

	If you specify both an option file and an option group,
 MySQL reads only the named file but looks for options both in
 the named group and in the [client] group.

The following example tells MySQL to use the standard
 option-file search order to look for options in both the [cookbook] and [client] groups:
my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit => 1};
basic DSN
my $dsn = "DBI:mysql:database=cookbook";
look in standard option files; use [cookbook] and [client] groups
$dsn .= ";mysql_read_default_group=cookbook";
my $dbh = DBI->connect ($dsn, undef, undef, $conn_attrs);
The next example explicitly names the option file located in
 $ENV{HOME}, the home directory of
 the user running the script. Thus, MySQL looks only in that file and
 uses options from the [client]
 group:
my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit => 1};
basic DSN
my $dsn = "DBI:mysql:database=cookbook";
look in user-specific option file owned by the current user
$dsn .= ";mysql_read_default_file=$ENV{HOME}/.my.cnf";
my $dbh = DBI->connect ($dsn, undef, undef, $conn_attrs);
If you pass an empty value (undef or the empty string) for the
 username or password arguments of the connect() call, connect() uses whatever values are found in the option file or files. A
 nonempty username or password in the connect() call overrides any option-file
 value. Similarly, a host named in the DSN overrides any option-file
 value. Use this behavior to enable DBI scripts to obtain connection
 parameters both from option files as well as from the command line
 as follows:
	Create $host_name,
 $user_name, and $password variables, each with a value
 of undef. Then parse the
 command-line arguments to set the variables to non-undef values if the corresponding
 options are present on the command line. (The cmdline.pl Perl script under the
 api directory of the
 recipes distribution
 demonstrates how to do this.)

	After parsing the command arguments, construct the DSN
 string, and call connect().
 Use mysql_read_default_group
 and mysql_read_default_file
 in the DSN to specify how you want option files to be used, and,
 if $host_name is not undef, add host=$host_name to the DSN. In
 addition, pass $user_name and
 $password as the username and
 password arguments to connect(). These will be undef by default; if they were set
 from the command-line arguments, they will have non-undef values that override any
 option-file values.

If a script follows this procedure, parameters given by the
 user on the command line are passed to connect() and take precedence over the
 contents of option files.

Ruby
Ruby Mysql2 scripts can read option files, specified by the default_file connection parameter. If you want to specify the default group, use the default_group option.
This example uses the standard option-file search order to
 look for options in both the [cookbook] and [client] groups:
client = Mysql2::Client.new(:default_group => "cookbook", :database => "cookbook")
The following example uses the .my.cnf file in the current user’s home
 directory to obtain parameters from the [client] group:
client = Mysql2::Client.new(:default_file => "#{ENV['HOME']}/.my.cnf",↩
:database => "cookbook")

PHP
As mentioned earlier, the PDO MySQL driver does not necessarily
 support using MySQL option files (it does not if you use mysqlnd as the underlying library). To
 work around that limitation, use a function that reads an option
 file, such as the read_mysql_option_file() function shown in
 the following listing. It takes as arguments the name of an option
 file and an option group name or an array containing group names.
 (Group names should be written without square brackets.) It then
 reads any options present in the file for the named group or groups.
 If no option group argument is given, the function looks by default
 in the [client] group. The return
 value is an array of option name/value pairs, or FALSE if an error occurs. It is not an
 error for the file not to exist. (Note that quoted option values and
 trailing #-style comments
 following option values are legal in MySQL option files, but this
 function does not handle those constructs.):
function read_mysql_option_file ($filename, $group_list = "client")
{
 if (is_string ($group_list)) # convert string to array
 $group_list = array ($group_list);
 if (!is_array ($group_list)) # hmm ... garbage argument?
 return (FALSE);
 $opt = array (); # option name/value array
 if (!@($fp = fopen ($filename, "r"))) # if file does not exist,
 return ($opt); # return an empty list
 $in_named_group = 0; # set nonzero while processing a named group
 while ($s = fgets ($fp, 1024))
 {
 $s = trim ($s);
 if (preg_match ("/^[#;]/", $s)) # skip comments
 continue;
 if (preg_match ("/^\[([^]]+)]/", $s, $arg)) # option group line
 {
 # check whether we are in one of the desired groups
 $in_named_group = 0;
 foreach ($group_list as $group_name)
 {
 if ($arg[1] == $group_name)
 {
 $in_named_group = 1; # we are in a desired group
 break;
 }
 }
 continue;
 }
 if (!$in_named_group) # we are not in a desired
 continue; # group, skip the line
 if (preg_match ("/^([^ \t=]+)[\t]*=[\t]*(.*)/", $s, $arg))
 $opt[$arg[1]] = $arg[2]; # name=value
 else if (preg_match ("/^([^ \t]+)/", $s, $arg))
 $opt[$arg[1]] = ""; # name only
 # else line is malformed
 }
 return ($opt);
}
Here are two examples showing how to use read_mysql_option_file(). The first reads
 a user’s option file to get the [client] group parameters and uses them to
 connect to the server. The second reads the system-wide option file,
 /etc/my.cnf, and prints the
 server startup parameters that are found there (that is, the
 parameters in the [mysqld] and
 [server] groups):
$opt = read_mysql_option_file ("/home/paul/.my.cnf");
$dsn = "mysql:dbname=cookbook";
if (isset ($opt["host"]))
 $dsn .= ";host=" . $opt["host"];
$user = $opt["user"];
$password = $opt["password"];
try
{
 $dbh = new PDO ($dsn, $user, $password);
 print ("Connected\n");
 $dbh = NULL;
 print ("Disconnected\n");
}
catch (PDOException $e)
{
 print ("Cannot connect to server\n");
}

$opt = read_mysql_option_file ("/etc/my.cnf", array ("mysqld", "server"));
foreach ($opt as $name => $value)
 print ("$name => $value\n");
PHP does have a parse_ini_file() function that is intended for parsing .ini files. These have a syntax that is
 similar to MySQL option files, so you might find this function of
 use. However, there are some differences to watch out for. Suppose
 that you have a file written like this:
[client]
user=paul

[client]
host=127.0.0.1

[mysql]
no-auto-rehash
Standard MySQL option parsing considers both the user and host values part of the [client] group, whereas parse_ini_file() returns only the contents
 of the final [client] stanza; the
 user option is lost. Also,
 parse_ini_file() ignores options
 that are given without a value, so the no-auto-rehash option is lost.

Go
The Go-MySQL-Driver doesn’t support option files. However, the INI parsing
 library supports reading properties files that contain lines in the
 name=value format. Here is a sample properties file:
this file lists parameters for connecting to the MySQL server
[client]
user=cbuser
password=cbpass
host=localhost
The MyCnf() function shows one way to read
 a properties file named ~/.my.cnf to obtain connection
 parameters:
import (
 "fmt"
 "os"
 "gopkg.in/ini.v1"
)

// Configuration Parser
func MyCnf(client string) (string, error) {
 cfg, err := ini.LoadSources(ini.LoadOptions{AllowBooleanKeys: true}, ↩
 os.Getenv("HOME")+"/.my.cnf")
 if err != nil {
 return "", err
 }
 for _, s := range cfg.Sections() {
 if client != "" && s.Name() != client {
 continue
 }
 host := s.Key("host").String()
 port := s.Key("port").String()
 dbname := s.Key("dbname").String()
 user := s.Key("user").String()
 password := s.Key("password").String()
 return fmt.Sprintf("%s:%s@tcp(%s:%s)/%s", user, password, host, port, dbname),↩
 nil
 }
 return "", fmt.Errorf("No matching entry found in ~/.my.cnf")
}

 The function MyCnf() defined in the cookbook.go, developed elsewhere in the chapter (see Recipe 4.3). It is used in the file mycnf.go, which you will find in the directory api/06_conn_params in the recipes distribution:

// mycnf.go : Reads ~/.my.cnf file for DSN construct
package main

import (
	"fmt"
	"github.com/svetasmirnova/mysqlcookbook/recipes/lib"
)

func main() {
 fmt.Println("Calling db.MyCnf()")
 var dsn string

 dsn, err := cookbook.MyCnf("client")
 if err != nil {
	 fmt.Printf("error: %v\n", err)
 } else {
	 fmt.Printf("DSN is: %s\n", dsn)
 }
}
The MyCnf() function accepts the section name as a parameter. If you want to replace the [client] section with any other name, change MyCnf() to MyCnf("other"), where other is the name of the section.

Java
The JDBC MySQL Connector/J driver doesn’t support option files. However, the Java class
 library supports reading properties files that contain lines in the
 name=value format. This is similar but
 not identical to the MySQL option-file format (for example, properties
 files do not permit [groupname]
 lines). Here is a simple properties file:
this file lists parameters for connecting to the MySQL server
user=cbuser
password=cbpass
host=localhost
The following program, ReadPropsFile.java, shows one way to read
 a properties file named Cookbook.properties to obtain connection
 parameters. The file must be in some directory named in your
 CLASSPATH variable, or you must
 specify it using a full pathname (the example shown
 here assumes that the file is in a CLASSPATH directory):
import java.sql.*;
import java.util.*; // need this for properties file support

public class ReadPropsFile {
 public static void main(String[] args) {
 Connection conn = null;
 String url = null;
 String propsFile = "Cookbook.properties";
 Properties props = new Properties();

 try {
 props.load(ReadPropsFile.class.getResourceAsStream(propsFile));
 } catch (Exception e) {
 System.err.println("Cannot read properties file");
 System.exit (1);
 }
 try {
 // construct connection URL, encoding username
 // and password as parameters at the end
 url = "jdbc:mysql://"
 + props.getProperty("host")
 + "/cookbook"
 + "?user=" + props.getProperty("user")
 + "&password=" + props.getProperty("password");
 conn = DriverManager.getConnection(url);
 System.out.println("Connected");
 } catch (Exception e) {
 System.err.println("Cannot connect to server");
 } finally {
 try {
 if (conn != null) {
 conn.close();
 System.out.println("Disconnected");
 }
 } catch (SQLException e) { /* ignore close errors */ }
 }
 }
}
To have getProperty()
 return a particular default value when the named property is
 not found, pass that value as a second argument. For example, to use
 127.0.0.1 as the default host value, call getProperty() like this:
String hostName = props.getProperty("host", "127.0.0.1");
The Cookbook.java library
 file developed elsewhere in the chapter (see Recipe 4.3) includes an extra library call in
 the version of the file that you’ll find in the lib directory of the recipes distribution: a propsConnect() routine that is based on
 the concepts discussed here. To use it, set up the contents of the
 properties file, Cookbook.properties, and copy the file to
 the same location where you installed Cookbook.class. You can then establish a
 connection within a program by importing the Cookbook class and calling Cookbook.propsConnect() rather than by
 calling Cookbook.connect().

4.9 Resetting the profile Table
Problem

 While working on the examples in this chapter, you changed the original content of the profile table and now want it back, so you can use it while working with other recipes.

Solution

 Reload the table using the mysql client.

Discussion
It’s a good idea to reset the profile table used in this chapter to a known
 state. Change location into the tables directory of the recipes distribution, and run these
 commands:
$ mysql cookbook < profile.sql
$ mysql cookbook < profile2.sql
Several statements in later chapters use the profile table; by reinitializing it, you’ll get
 the same results displayed in those chapters when you run the statements
 shown there.
This chapter discussed the basic operations provided by each of our
 APIs for handling various aspects of interaction with the MySQL server.
 These operations enable you to write programs that execute any kind of
 statement and retrieve the results. Up to this point, we’ve used simple
 statements because the focus is on the APIs rather than on SQL. The next
 chapter focuses on SQL instead, to show how to ask the database server
 more complex questions.

Chapter 5. Selecting Data from Tables
5.0 Introduction
This chapter focuses on using the SELECT
 statement to retrieve information from your database. You will find the
 chapter helpful if your SQL background is limited or if you find out about the
 MySQL-specific extensions to SELECT
 syntax.
There are many ways to write SELECT statements; we’ll look at only a few.
 Consult the MySQL
 User Reference Manual or a general MySQL
 text for more information about SELECT
 syntax and the functions and operators available to extract and manipulate
 data.
Many examples in this chapter use a table named mail that contains rows that track mail message
 traffic between users on a set of hosts. The following shows how that table was created:
CREATE TABLE mail
(
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 t DATETIME, # when message was sent
 srcuser VARCHAR(8), # sender (source user and host)
 srchost VARCHAR(20),
 dstuser VARCHAR(8), # recipient (destination user and host)
 dsthost VARCHAR(20),
 size BIGINT, # message size in bytes
 INDEX (t)
);
The mail table contents look like
 this:
mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size FROM mail;
+---------------------+---------+---------+---------+---------+---------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+---------+
2014-05-11 10:15:08	barb	saturn	tricia	mars	58274
2014-05-12 12:48:13	tricia	mars	gene	venus	194925
2014-05-12 15:02:49	phil	mars	phil	saturn	1048
2014-05-12 18:59:18	barb	saturn	tricia	venus	271
2014-05-14 09:31:37	gene	venus	barb	mars	2291
2014-05-14 11:52:17	phil	mars	tricia	saturn	5781
2014-05-14 14:42:21	barb	venus	barb	venus	98151
2014-05-14 17:03:01	tricia	saturn	phil	venus	2394482
2014-05-15 07:17:48	gene	mars	gene	saturn	3824
2014-05-15 08:50:57	phil	venus	phil	venus	978
2014-05-15 10:25:52	gene	mars	tricia	saturn	998532
2014-05-15 17:35:31	gene	saturn	gene	mars	3856
2014-05-16 09:00:28	gene	venus	barb	mars	613
2014-05-16 23:04:19	phil	venus	barb	venus	10294
2014-05-19 12:49:23	phil	mars	tricia	saturn	873
2014-05-19 22:21:51	gene	saturn	gene	venus	23992
+---------------------+---------+---------+---------+---------+---------+
To create and load the mail
 table, change location into the tables directory of the recipes distribution and run this
 command:
$ mysql cookbook < mail.sql
This chapter also uses other tables from time to time. Some were
 used in previous chapters, whereas others are new. To create any of them,
 do so the same way as for the mail
 table, using the appropriate script in the tables directory. In addition, many of the
 other scripts and programs used in this chapter are located in the
 select directory. The files in that
 directory enable you to try the examples more easily.
Many of the statements shown here can be executed from within the
 mysql program, which is discussed in
 Chapter 1. A few examples involve issuing statements
 from within the context of a programming language. See Chapter 4 for information on programming techniques.

5.1 Specifying Which Columns and Rows to Select
Problem
You want to display specific columns and rows from a table.

Solution
To indicate which columns to display, name them in the output
 column list. To indicate which rows to display, use a WHERE clause that specifies conditions that rows must satisfy.

Discussion
The simplest way to display columns from a table is to use
 SELECT * FROM
 tbl_name. The * specifier is a shortcut that means all
 columns:
mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size FROM mail;
+---------------------+---------+---------+---------+---------+---------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+---------+
2014-05-11 10:15:08	barb	saturn	tricia	mars	58274
2014-05-12 12:48:13	tricia	mars	gene	venus	194925
2014-05-12 15:02:49	phil	mars	phil	saturn	1048
2014-05-12 18:59:18	barb	saturn	tricia	venus	271
…
Using * is easy, but you cannot
 select only certain columns or control the column display order. Naming
 columns explicitly enables you to select only the ones of interest, in
 any order. This query omits the recipient columns and displays the
 sender before the date and size:
mysql> SELECT srcuser, srchost, t, size FROM mail;
+---------+---------+---------------------+---------+
| srcuser | srchost | t | size |
+---------+---------+---------------------+---------+
barb	saturn	2014-05-11 10:15:08	58274
tricia	mars	2014-05-12 12:48:13	194925
phil	mars	2014-05-12 15:02:49	1048
barb	saturn	2014-05-12 18:59:18	271
…
Unless you qualify or restrict a SELECT query in some way, it retrieves every
 row in your table. To be more precise, provide a WHERE clause that specifies one or more
 conditions that rows must satisfy.
Conditions can test for equality, inequality, or relative
 ordering. For some types of data, such as strings, you can use pattern
 matches. The following statements select columns from rows in the
 mail table containing srchost values that are exactly equal to the
 'venus' string or that begin with the
 letter 's':
mysql> SELECT t, srcuser, srchost FROM mail WHERE srchost = 'venus';
+---------------------+---------+---------+
| t | srcuser | srchost |
+---------------------+---------+---------+
2014-05-14 09:31:37	gene	venus
2014-05-14 14:42:21	barb	venus
2014-05-15 08:50:57	phil	venus
2014-05-16 09:00:28	gene	venus
2014-05-16 23:04:19	phil	venus
+---------------------+---------+---------+		
mysql> SELECT t, srcuser, srchost FROM mail WHERE srchost LIKE 's%';		
+---------------------+---------+---------+		
t	srcuser	srchost
+---------------------+---------+---------+		
2014-05-11 10:15:08	barb	saturn
2014-05-12 18:59:18	barb	saturn
2014-05-14 17:03:01	tricia	saturn
2014-05-15 17:35:31	gene	saturn
2014-05-19 22:21:51	gene	saturn
+---------------------+---------+---------+
The LIKE operator in the previous query performs a pattern match, where % acts as
 a wildcard that matches any string. Recipe 7.10 discusses pattern matching
 further.
A WHERE clause can test
 multiple conditions, and different conditions can test different columns.
 The following statement finds messages sent by barb to tricia:
mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size FROM mail
 -> WHERE srcuser = 'barb' AND dstuser = 'tricia';
+---------------------+---------+---------+---------+---------+-------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+-------+
| 2014-05-11 10:15:08 | barb | saturn | tricia | mars | 58274 |
| 2014-05-12 18:59:18 | barb | saturn | tricia | venus | 271 |
+---------------------+---------+---------+---------+---------+-------+
Output columns can be calculated by evaluating expressions. This
 query combines the srcuser and
 srchost columns using CONCAT() to produce composite values in email address format:
mysql> SELECT t, CONCAT(srcuser,'@',srchost), size FROM mail;
+---------------------+-----------------------------+---------+
| t | CONCAT(srcuser,'@',srchost) | size |
+---------------------+-----------------------------+---------+
2014-05-11 10:15:08	barb@saturn	58274
2014-05-12 12:48:13	tricia@mars	194925
2014-05-12 15:02:49	phil@mars	1048
2014-05-12 18:59:18	barb@saturn	271
…
You’ll notice that the email address column label is the
 expression that calculates it. To provide a better label, use a column alias (see Recipe 5.2).

 As of MySQL 8.0.19, you can use the TABLE statement to select all columns from the table. TABLE supports ORDER BY (see Recipe 5.3) and LIMIT (see Recipe 5.11) clauses but does not allow any other filtering of columns or rows:

mysql> TABLE mail ORDER BY size DESC LIMIT 3;
+----+---------------------+---------+---------+---------+---------+---------+
| id | t | srcuser | srchost | dstuser | dsthost | size |
+----+---------------------+---------+---------+---------+---------+---------+
8	2014-05-14 17:03:01	tricia	saturn	phil	venus	2394482
11	2014-05-15 10:25:52	gene	mars	tricia	saturn	998532
2	2014-05-12 12:48:13	tricia	mars	gene	venus	194925
+----+---------------------+---------+---------+---------+---------+---------+
3 rows in set (0.00 sec)

5.2 Naming Query Result Columns
Problem
The column names in a query result are unsuitable, ugly, or difficult to
 work with, so you want to name them yourself.

Solution
Use aliases to choose your own column names.

Discussion
When you retrieve a result set, MySQL gives every output column a
 name. (That’s how the mysql program
 gets the names you see displayed in the initial row of column headers in
 the result set output.) By default, MySQL assigns the column names specified
 in the CREATE TABLE or ALTER TABLE
 statement to output columns, but if these defaults are not suitable, you
 can use column aliases to specify your own names.
This recipe explains aliases and shows how to use them to assign
 column names in statements. If you’re writing a program that must
 determine the names, see Recipe 12.2 for
 information about accessing column metadata.
If an output column comes directly from a table, MySQL uses the
 table column name for the output column name. The following statement
 selects four table columns, the names of which become the corresponding
 output column names:
mysql> SELECT t, srcuser, srchost, size FROM mail;
+---------------------+---------+---------+---------+
| t | srcuser | srchost | size |
+---------------------+---------+---------+---------+
2014-05-11 10:15:08	barb	saturn	58274
2014-05-12 12:48:13	tricia	mars	194925
2014-05-12 15:02:49	phil	mars	1048
2014-05-12 18:59:18	barb	saturn	271
…
If you generate a column by evaluating an expression, the
 expression itself is the column name. This can produce long and unwieldy
 names in result sets, as illustrated by the following statement that
 uses one expression to reformat the dates in the t column and another to combine srcuser and srchost into email address format:
mysql> SELECT
 -> DATE_FORMAT(t,'%M %e, %Y'), CONCAT(srcuser,'@',srchost), size
 -> FROM mail;
+----------------------------+-----------------------------+---------+
| DATE_FORMAT(t,'%M %e, %Y') | CONCAT(srcuser,'@',srchost) | size |
+----------------------------+-----------------------------+---------+
May 11, 2014	barb@saturn	58274
May 12, 2014	tricia@mars	194925
May 12, 2014	phil@mars	1048
May 12, 2014	barb@saturn	271
…
To choose your own output column name, use an AS name clause to
 specify a column alias (the keyword AS is
 optional). The following statement retrieves the same result as the
 previous one but renames the first column to date_sent and the second to sender:
mysql> SELECT
 -> DATE_FORMAT(t,'%M %e, %Y') AS date_sent,
 -> CONCAT(srcuser,'@',srchost) AS sender,
 -> size FROM mail;
+--------------+---------------+---------+
| date_sent | sender | size |
+--------------+---------------+---------+
May 11, 2014	barb@saturn	58274
May 12, 2014	tricia@mars	194925
May 12, 2014	phil@mars	1048
May 12, 2014	barb@saturn	271
…
The aliases make the column names more concise, easier to read,
 and more meaningful. Aliases are subject to a few restrictions. For
 example, they must be quoted if they are SQL keywords, entirely numeric,
 or contain spaces or other special characters (an alias can consist of
 several words if you want to use a descriptive phrase). The following
 statement retrieves the same data values as the preceding one but uses
 phrases to name the output columns:
mysql> SELECT
 -> DATE_FORMAT(t,'%M %e, %Y') AS 'Date of message',
 -> CONCAT(srcuser,'@',srchost) AS 'Message sender',
 -> size AS 'Number of bytes' FROM mail;
+-----------------+----------------+-----------------+
| Date of message | Message sender | Number of bytes |
+-----------------+----------------+-----------------+
May 11, 2014	barb@saturn	58274
May 12, 2014	tricia@mars	194925
May 12, 2014	phil@mars	1048
May 12, 2014	barb@saturn	271
…
If MySQL complains about a single-word alias, the word probably is
 reserved. Quoting the alias should make it legal:
mysql> SELECT 1 AS INTEGER;
You have an error in your SQL syntax near 'INTEGER'
mysql> SELECT 1 AS 'INTEGER';
+---------+
| INTEGER |
+---------+
| 1 |
+---------+
Column aliases are also useful for programming purposes. If you
 write a program that fetches rows into an array and accesses them by
 numeric column indexes, the presence or absence of column aliases makes
 no difference because aliases don’t change the positions of columns
 within the result set. However, aliases make a big difference if you
 access output columns by name because aliases change those names.
 Exploit this fact to give your program easier names to work with. For
 example, if your query displays reformatted message time values from the
 mail table using the expression
 DATE_FORMAT(t,'%M %e, %Y'), that
 expression is also the name you must use when referring to the output
 column. In a Perl hashref, for example, you’d access it as $ref->{"DATE_FORMAT(t,'%M %e, %Y')"}.
 That’s inconvenient. Use AS date_sent to give the column an alias and you
 can refer to it more easily as $ref->{date_sent}. Here’s an example that
 shows how a Perl DBI script might process such values. It retrieves rows
 into a hash and refers to column values by name:
$sth = $dbh->prepare ("SELECT srcuser,
 DATE_FORMAT(t,'%M %e, %Y') AS date_sent
 FROM mail");
$sth->execute ();
while (my $ref = $sth->fetchrow_hashref ())
{
 printf "user: %s, date sent: %s\n", $ref->{srcuser}, $ref->{date_sent};
}
In Java, you’d do something like this, where the argument to getString()
 names the column to access:
Statement s = conn.createStatement ();
s.executeQuery ("SELECT srcuser,"
 + " DATE_FORMAT(t,'%M %e, %Y') AS date_sent"
 + " FROM mail");
ResultSet rs = s.getResultSet ();
while (rs.next ()) // loop through rows of result set
{
 String name = rs.getString ("srcuser");
 String dateSent = rs.getString ("date_sent");
 System.out.println ("user: " + name + ", date sent: " + dateSent);
}
rs.close ();
s.close ();
Recipe 4.4 shows for each of our
 programming languages how to fetch rows into data structures that permit
 access to column values by name. The select directory of the recipes distribution has examples that show
 how to do this for the mail
 table.
You cannot refer to column aliases in a WHERE
 clause. Thus, the following statement is illegal:
mysql> SELECT t, srcuser, dstuser, size/1024 AS kilobytes
 -> FROM mail WHERE kilobytes > 500;
ERROR 1054 (42S22): Unknown column 'kilobytes' in 'where clause'
The error occurs because an alias names an
 output column, whereas a WHERE clause operates on
 input columns to determine which rows to select for
 output. To make the statement legal, replace the alias in the WHERE clause with the same column or
 expression that the alias represents:
mysql> SELECT t, srcuser, dstuser, size/1024 AS kilobytes
 -> FROM mail WHERE size/1024 > 500;
+---------------------+---------+---------+-----------+
| t | srcuser | dstuser | kilobytes |
+---------------------+---------+---------+-----------+
| 2014-05-14 17:03:01 | tricia | phil | 2338.3613 |
| 2014-05-15 10:25:52 | gene | tricia | 975.1289 |
+---------------------+---------+---------+-----------+

5.3 Sorting Query Results
Problem
You want to control how your query results are sorted.

Solution
Use an ORDER
 BY clause to tell it how to sort
 result rows.

Discussion
When you select rows, the MySQL server is free to return them in
 any order unless you instruct it otherwise by saying how to sort the
 result. There are lots of ways to use sorting techniques, as Chapter 9 explores in detail. Briefly, to sort a result set,
 add an ORDER BY clause that names the column or columns to
 use for sorting. This statement names multiple columns in the ORDER BY
 clause to sort rows by host and by user within each host:
mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size
 -> FROM mail WHERE dstuser = 'tricia'
 -> ORDER BY srchost, srcuser;
+---------------------+---------+---------+---------+---------+--------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+--------+
2014-05-15 10:25:52	gene	mars	tricia	saturn	998532
2014-05-14 11:52:17	phil	mars	tricia	saturn	5781
2014-05-19 12:49:23	phil	mars	tricia	saturn	873
2014-05-11 10:15:08	barb	saturn	tricia	mars	58274
2014-05-12 18:59:18	barb	saturn	tricia	venus	271
+---------------------+---------+---------+---------+---------+--------+
MySQL sorts rows in the ascending order by default. To sort a column in reverse (descending) order, add the keyword DESC after its
 name in the ORDER BY clause:
mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size
 -> FROM mail WHERE size > 50000 ORDER BY size DESC;
+---------------------+---------+---------+---------+---------+---------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+---------+
2014-05-14 17:03:01	tricia	saturn	phil	venus	2394482
2014-05-15 10:25:52	gene	mars	tricia	saturn	998532
2014-05-12 12:48:13	tricia	mars	gene	venus	194925
2014-05-14 14:42:21	barb	venus	barb	venus	98151
2014-05-11 10:15:08	barb	saturn	tricia	mars	58274
+---------------------+---------+---------+---------+---------+---------+

5.4 Removing Duplicate Rows
Problem
Output from a query contains duplicate rows. You want to eliminate them.

Solution
Use DISTINCT.

Discussion
Some queries produce results containing duplicate rows. For example, to
 see who sent mail, query the mail
 table like this:
mysql> SELECT srcuser FROM mail;
+---------+
| srcuser |
+---------+
| barb |
| tricia |
| phil |
| barb |
| gene |
| phil |
| barb |
| tricia |
| gene |
| phil |
| gene |
| gene |
| gene |
| phil |
| phil |
| gene |
+---------+
That result is heavily redundant. To remove the duplicate rows and
 produce a set of unique values, add DISTINCT to the query:
mysql> SELECT DISTINCT srcuser FROM mail;
+---------+
| srcuser |
+---------+
| barb |
| tricia |
| phil |
| gene |
+---------+
To count the number of unique values in a column, use COUNT(DISTINCT):
mysql> SELECT COUNT(DISTINCT srcuser) FROM mail;
+-------------------------+
| COUNT(DISTINCT srcuser) |
+-------------------------+
| 4 |
+-------------------------+
DISTINCT works with
 multiple-column output, too. The following query shows which dates are
 represented in the mail table:
mysql> SELECT DISTINCT YEAR(t), MONTH(t), DAYOFMONTH(t) FROM mail;
+---------+----------+---------------+
| YEAR(t) | MONTH(t) | DAYOFMONTH(t) |
+---------+----------+---------------+
2014	5	11
2014	5	12
2014	5	14
2014	5	15
2014	5	16
2014	5	19
+---------+----------+---------------+

See Also
Chapter 10 revisits DISTINCT and COUNT(DISTINCT). Chapter 18
 discusses duplicate removal in more detail.

5.5 Working with NULL Values
Problem
You’re trying to compare column values to NULL, but it isn’t working.

Solution
Use the proper comparison operators: IS NULL, IS
 NOT NULL, or <=>.

Discussion
Conditions that involve NULL
 are special because NULL means
 unknown value. Consequently, comparisons such as
 value =
 NULL or
 value <> NULL always produce a result of NULL (not true or false) because it’s
 impossible to tell whether they are true or false. Even NULL =
 NULL produces NULL because you can’t determine whether one
 unknown value is the same as another.
To look for values that are or are not NULL, use the IS NULL or
 IS NOT NULL
 operator. Suppose that a table named expt contains experimental results for
 subjects who are to be given four tests each and that represents tests
 not yet administered using NULL:
+---------+------+-------+
| subject | test | score |
+---------+------+-------+
Jane	A	47
Jane	B	50
Jane	C	NULL
Jane	D	NULL
Marvin	A	52
Marvin	B	45
Marvin	C	53
Marvin	D	NULL
+---------+------+-------+		
You can see that = and <> fail to identify NULL values:		
mysql> SELECT * FROM expt WHERE score = NULL;		
Empty set (0.00 sec)		
mysql> SELECT * FROM expt WHERE score <> NULL;		
Empty set (0.00 sec)		
Write the statements like this instead:		
mysql> SELECT * FROM expt WHERE score IS NULL;		
+---------+------+-------+		
subject	test	score
+---------+------+-------+		
Jane	C	NULL
Jane	D	NULL
Marvin	D	NULL
+---------+------+-------+		
mysql> SELECT * FROM expt WHERE score IS NOT NULL;		
+---------+------+-------+		
subject	test	score
+---------+------+-------+		
Jane	A	47
Jane	B	50
Marvin	A	52
Marvin	B	45
Marvin	C	53
+---------+------+-------+		
mysql> SELECT * FROM expt WHERE score <=> NULL;		
+---------+------+-------+		
subject	test	score
+---------+------+-------+		
Jane	C	NULL
Jane	D	NULL
Marvin	D	NULL
+---------+------+-------+
The MySQL-specific <=>
 null-safe comparison operator, unlike the =
 operator, is true even for two NULL
 values:
mysql> SELECT NULL = NULL, NULL <=> NULL;
+-------------+---------------+
| NULL = NULL | NULL <=> NULL |
+-------------+---------------+
| NULL | 1 |
+-------------+---------------+
Sometimes it’s useful to map NULL values onto some other value that has
 more meaning in the context of your application. For example, use IF() to map
 NULL onto the string Unknown:
mysql> SELECT subject, test, IF(score IS NULL,'Unknown', score) AS 'score'
 -> FROM expt;
+---------+------+---------+
| subject | test | score |
+---------+------+---------+
Jane	A	47
Jane	B	50
Jane	C	Unknown
Jane	D	Unknown
Marvin	A	52
Marvin	B	45
Marvin	C	53
Marvin	D	Unknown
+---------+------+---------+
This IF()-based mapping
 technique works for any kind of value, but it’s especially useful with
 NULL values because NULL tends to be given a variety of meanings:
 unknown, missing, not yet determined, out of range, and so forth. Choose
 the label that makes the most sense in a given context.
The preceding query can be written more concisely using IFNULL(), which
 tests its first argument and returns it if it’s not NULL, or returns its second argument
 otherwise:
SELECT subject, test, IFNULL(score,'Unknown') AS 'score'
FROM expt;
In other words, these two tests are equivalent:
IF(expr1 IS NOT NULL,expr1,expr2)
IFNULL(expr1,expr2)
From a readability standpoint, IF() often is easier to understand than
 IFNULL(). From a computational
 perspective, IFNULL() is more
 efficient because expr1 need not be evaluated
 twice, as happens with IF().

 One more way to map NULL values is to use the COALESCE function, which returns the first not-null element from the list of parameters:

SELECT subject, test, COALESCE(score,'Unknown') AS 'score' FROM expt;

See Also
NULL values also behave differently when used by sorting and summary operations. See Recipes 9.11 and 10.9.

5.6 Writing Comparisons Involving NULL in Programs
Problem
You’re writing a program that looks for rows containing a specific
 value, but it fails when the value is NULL.

Solution
Choose the proper comparison operator according to whether the
 comparison value is or is not NULL.

Discussion
Recipe 5.5 discusses the need to
 use different comparison operators for NULL values than for non-NULL values in SQL statements. This issue
 leads to a subtle danger when constructing statement strings within
 programs. If a value stored in a variable might represent a NULL value, you must account for that when you
 use the value in comparisons. For example, in Python, None
 represents a NULL value, so to
 construct a statement that finds rows in the expt table matching some arbitrary value in a
 score variable, you cannot do
 this:
cursor.execute("SELECT * FROM expt WHERE score = %s", (score,))
The statement fails when score
 is None because the resulting
 statement becomes the following:
SELECT * FROM expt WHERE score = NULL;
A comparison of score = NULL is
 never true, so that statement returns no rows. To take into account the
 possibility that score could be
 None, construct the statement using
 the appropriate comparison operator like this:
operator = "IS" if score is None else "="
cursor.execute("SELECT * FROM expt WHERE score {} %s".format(operator), (score,))
This results in statements as follows for score values of None (NULL) or 43 (not NULL):
SELECT * FROM expt WHERE score IS NULL
SELECT * FROM expt WHERE score = 43;
For inequality tests, set operator like this instead:
operator = "IS NOT" if score is None else "<>"

5.7 Using Views to Simplify Table Access
Problem
You want to refer to values calculated from expressions without writing the
 expressions each time you retrieve them.

Solution
Use a view defined such that its columns perform the desired
 calculations.

Discussion
Suppose that you retrieve several values from the mail table, using expressions to calculate
 most of them:
mysql> SELECT
 -> DATE_FORMAT(t,'%M %e, %Y') AS date_sent,
 -> CONCAT(srcuser,'@',srchost) AS sender,
 -> CONCAT(dstuser,'@',dsthost) AS recipient,
 -> size FROM mail;
+--------------+---------------+---------------+---------+
| date_sent | sender | recipient | size |
+--------------+---------------+---------------+---------+
May 11, 2014	barb@saturn	tricia@mars	58274
May 12, 2014	tricia@mars	gene@venus	194925
May 12, 2014	phil@mars	phil@saturn	1048
May 12, 2014	barb@saturn	tricia@venus	271
…
If you must issue such a statement often, it’s inconvenient to
 keep writing the expressions. To make the statement results easier to
 access, use a view, which is a virtual table that contains no data.
 Instead, it’s defined as the SELECT
 statement that retrieves the data of interest. The following view,
 mail_view, is equivalent to the
 SELECT statement just shown:
mysql> CREATE VIEW mail_view AS
 -> SELECT
 -> DATE_FORMAT(t,'%M %e, %Y') AS date_sent,
 -> CONCAT(srcuser,'@',srchost) AS sender,
 -> CONCAT(dstuser,'@',dsthost) AS recipient,
 -> size FROM mail;
To access the view contents, refer to it like any other table. You
 can select some or all of its columns, add a WHERE clause to restrict which rows to retrieve, use ORDER BY to
 sort the rows, and so forth, for example:
mysql> SELECT date_sent, sender, size FROM mail_view
 -> WHERE size > 100000 ORDER BY size;
+--------------+---------------+---------+
| date_sent | sender | size |
+--------------+---------------+---------+
May 12, 2014	tricia@mars	194925
May 15, 2014	gene@mars	998532
May 14, 2014	tricia@saturn	2394482
+--------------+---------------+---------+
Stored programs provide another way to encapsulate calculations
 (see Recipe 11.2).

5.8 Selecting Data from Multiple Tables
Problem
The answer to a question requires data from more than one table, so you need to select data from multiple tables.

Solution
Use a join or a subquery.

Discussion
The queries shown so far select data from a single table, but
 sometimes you must retrieve information from multiple tables. Two types
 of statements that accomplish this are joins and subqueries. A join
 matches rows in one table with rows in another and enables
 you to retrieve output rows that contain columns from either or both
 tables. A subquery is one query nested within another, to perform a comparison
 between values selected by the inner query against values selected by
 the outer query.
This recipe shows a couple of brief examples to illustrate the basic
 ideas. Other examples appear elsewhere: subqueries are used in various
 examples throughout the book (for example, Recipes 5.10 and 10.6). Chapter 16
 discusses joins in detail, including some that select from more than two
 tables.
The following examples use the profile table introduced in Chapter 4. Recall that it lists the people on your buddy
 list:
mysql> SELECT * FROM profile;
+----+---------+------------+-------+-----------------------+------+
| id | name | birth | color | foods | cats |
+----+---------+------------+-------+-----------------------+------+
1	Sybil	1970-04-13	black	lutefisk,fadge,pizza	0
2	Nancy	1969-09-30	white	burrito,curry,eggroll	3
3	Ralph	1973-11-02	red	eggroll,pizza	4
4	Lothair	1963-07-04	blue	burrito,curry	5
5	Henry	1965-02-14	red	curry,fadge	1
6	Aaron	1968-09-17	green	lutefisk,fadge	1
7	Joanna	1952-08-20	green	lutefisk,fadge	0
8	Stephen	1960-05-01	white	burrito,pizza	0
+----+---------+------------+-------+-----------------------+------+
Let’s extend the use of the profile
 table to include another table named profile_contact. This second table indicates
 how to contact people listed in the profile table via various social media
 services and is defined like this:
CREATE TABLE profile_contact
(
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 profile_id INT UNSIGNED NOT NULL, # ID from profile table
 service VARCHAR(20) NOT NULL, # social media service name
 contact_name VARCHAR(25) NOT NULL, # name to use for contacting person
 INDEX (profile_id)
);
The table associates each row with the proper profile row via the profile_id column. The service and contact_name columns name the media service
 and the name to use for contacting the given person via that service.
 For the examples, assume that the table contains these rows:
mysql> SELECT profile_id, service, contact_name
 -> FROM profile_contact ORDER BY profile_id, service;
+------------+----------+--------------+
| profile_id | service | contact_name |
+------------+----------+--------------+
1	Facebook	user1-fbid
1	Twitter	user1-twtrid
2	Facebook	user2-msnid
2	LinkedIn	user2-lnkdid
2	Twitter	user2-fbrid
4	LinkedIn	user4-lnkdid
+------------+----------+--------------+
A question that requires information from both tables is
 For each person in the profile table, show me which services I
 can use to get in touch and the contact name for each service.
 To answer this question, use a join. Select from both tables and match
 rows by comparing the id column from
 the profile table with the profile_id column from the profile_contact table:
mysql> SELECT profile.id, name, service, contact_name
 -> FROM profile INNER JOIN profile_contact ON profile.id = profile_id;
+----+---------+----------+--------------+
| id | name | service | contact_name |
+----+---------+----------+--------------+
1	Sybil	Twitter	user1-twtrid
1	Sybil	Facebook	user1-fbid
2	Nancy	Twitter	user2-fbrid
2	Nancy	Facebook	user2-msnid
2	Nancy	LinkedIn	user2-lnkdid
4	Lothair	LinkedIn	user4-lnkdid
+----+---------+----------+--------------+
The FROM clause indicates the
 tables from which to select data, and the ON clause tells MySQL which columns to use to
 find matches between the tables. In the result, rows include the
 id and name columns from the profile table, and the service and contact_name columns from the profile_contact table.
Here’s another question that requires both tables to answer:
 List all the profile_contact
 records for Nancy. To pull the proper rows from the profile_contact table, you need Nancy’s ID,
 which is stored in the profile table.
 To write the query without looking up Nancy’s ID yourself, use a
 subquery that, given her name, looks it up for you:
mysql> SELECT profile_id, service, contact_name FROM profile_contact
 -> WHERE profile_id = (SELECT id FROM profile WHERE name = 'Nancy');
+------------+----------+--------------+
| profile_id | service | contact_name |
+------------+----------+--------------+
2	Twitter	user2-fbrid
2	Facebook	user2-msnid
2	LinkedIn	user2-lnkdid
+------------+----------+--------------+
Here the subquery appears as a nested SELECT statement
 enclosed within parentheses.

5.9 Selecting Rows from the Beginning, End, or Middle of Query
 Results
Problem
You want only certain rows from a result set, such as the first one, the last
 five, or rows 21 through 40.

Solution
Use a LIMIT clause, perhaps in conjunction with an ORDER BY
 clause.

Discussion
MySQL supports a LIMIT clause
 that tells the server to return only part of a result set. LIMIT is a MySQL-specific extension to SQL
 that is extremely valuable when your result set contains more rows than
 you want to see at a time. It enables you to retrieve an arbitrary
 section of a result set. Typical LIMIT uses include the following kinds of
 problems:
	Answering questions about first or last, largest or smallest,
 newest or oldest, least or most expensive, and so forth.

	Splitting a result set into sections so that you can process
 it one piece at a time. This technique is common in web applications
 for displaying a large search result across several pages. Showing
 the result in sections enables the display of smaller,
 easier-to-understand pages.

The following examples use the profile table shown in Recipe 5.8. To see the first
 n rows of a SELECT result, add LIMIT n to the end
 of the statement:
mysql> SELECT * FROM profile LIMIT 1;
+----+-------+------------+-------+----------------------+------+
| id | name | birth | color | foods | cats |
+----+-------+------------+-------+----------------------+------+
| 1 | Sybil | 1970-04-13 | black | lutefisk,fadge,pizza | 0 |
+----+-------+------------+-------+----------------------+------+
mysql> SELECT * FROM profile LIMIT 3;
+----+-------+------------+-------+-----------------------+------+
| id | name | birth | color | foods | cats |
+----+-------+------------+-------+-----------------------+------+
1	Sybil	1970-04-13	black	lutefisk,fadge,pizza	0
2	Nancy	1969-09-30	white	burrito,curry,eggroll	3
3	Ralph	1973-11-02	red	eggroll,pizza	4
+----+-------+------------+-------+-----------------------+------+
LIMIT
 n means return at
 most n rows. If you
 specify LIMIT 10, and the result set has only four rows, the
 server returns four rows.
The rows in the preceding query results are returned in no
 particular order, so they may not be very meaningful. A more common
 technique uses ORDER BY to sort the result set and LIMIT to find smallest and largest values. For
 example, to find the row with the minimum (earliest) birth date, sort by
 the birth column, then add LIMIT 1 to
 retrieve the first row:
mysql> SELECT * FROM profile ORDER BY birth LIMIT 1;
+----+--------+------------+-------+----------------+------+
| id | name | birth | color | foods | cats |
+----+--------+------------+-------+----------------+------+
| 7 | Joanna | 1952-08-20 | green | lutefisk,fadge | 0 |
+----+--------+------------+-------+----------------+------+
This works because MySQL processes the ORDER BY
 clause to sort the rows, then applies LIMIT.
To obtain rows from the end of a result set, sort them in the
 opposite order. The statement that finds the row with the most recent
 birth date is similar to the previous one, except that the sort order is
 descending:
mysql> SELECT * FROM profile ORDER BY birth DESC LIMIT 1;
+----+-------+------------+-------+---------------+------+
| id | name | birth | color | foods | cats |
+----+-------+------------+-------+---------------+------+
| 3 | Ralph | 1973-11-02 | red | eggroll,pizza | 4 |
+----+-------+------------+-------+---------------+------+
To find the earliest or latest birthday within the calendar year,
 sort by the month and day of the birth values:
mysql> SELECT name, DATE_FORMAT(birth,'%m-%d') AS birthday
 -> FROM profile ORDER BY birthday LIMIT 1;
+-------+----------+
| name | birthday |
+-------+----------+
| Henry | 02-14 |
+-------+----------+
You can obtain the same information by running these statements
 without LIMIT and ignoring everything
 but the first row. The advantage of LIMIT is that the server returns only the
 first row, and the extra rows don’t cross the network at all. This is
 much more efficient than retrieving an entire result set, only to
 discard all but one row.
To pull rows from the middle of a result set, use the two-argument
 form of LIMIT, which enables you to
 pick an arbitrary section of rows. The arguments indicate how many rows
 to skip and how many to return. This means that you can use LIMIT to do such things as skip two rows and
 return the next one, thus answering questions such as What is the
 third-smallest or
 third-largest value? These are questions
 that MIN() or MAX() are not suited for but are easy with
 LIMIT:
mysql> SELECT * FROM profile ORDER BY birth LIMIT 2,1;
+----+---------+------------+-------+---------------+------+
| id | name | birth | color | foods | cats |
+----+---------+------------+-------+---------------+------+
| 4 | Lothair | 1963-07-04 | blue | burrito,curry | 5 |
+----+---------+------------+-------+---------------+------+
mysql> SELECT * FROM profile ORDER BY birth DESC LIMIT 2,1;
+----+-------+------------+-------+-----------------------+------+
| id | name | birth | color | foods | cats |
+----+-------+------------+-------+-----------------------+------+
| 2 | Nancy | 1969-09-30 | white | burrito,curry,eggroll | 3 |
+----+-------+------------+-------+-----------------------+------+
The two-argument form of LIMIT
 also makes it possible to partition a result set into smaller sections.
 For example, to retrieve 20 rows at a time from a result, issue a
 SELECT statement repeatedly, but vary
 its LIMIT clause like so:
SELECT ... FROM ... ORDER BY ... LIMIT 0, 20;
SELECT ... FROM ... ORDER BY ... LIMIT 20, 20;
SELECT ... FROM ... ORDER BY ... LIMIT 40, 20;
…
Warning

 This way of using a LIMIT clause can cause performance degradations for large datasets, because it requires reading minimum OFFSET plus LIMIT rows. This means that to get the result for the LIMIT 0, 20 statement, MySQL will have to read 20 rows from the table; to get result the of LIMIT 20, 20, it will need to read 40 rows; and so on.

To determine the number of rows in a result set so that you can
 determine the number of sections, issue a COUNT() statement first. For example, to display profile table rows in name order, three at a
 time, you can find out how many there are with the following
 statement:
mysql> SELECT COUNT(*) FROM profile;
+----------+
| COUNT(*) |
+----------+
| 8 |
+----------+
That tells you that there are three sets of rows (the last with
 fewer than three rows), which you can retrieve as follows:
SELECT * FROM profile ORDER BY name LIMIT 0, 3;
SELECT * FROM profile ORDER BY name LIMIT 3, 3;
SELECT * FROM profile ORDER BY name LIMIT 6, 3;

See Also
LIMIT is useful in combination
 with RAND() to make random selections from a set of items. See Recipe 17.8.
You can use LIMIT to restrict
 the effect of a DELETE or
 UPDATE statement to a subset of the
 rows that would otherwise be deleted or updated, respectively. For more
 information about using LIMIT for
 duplicate row removal, see Recipe 18.5.

5.10 What to Do When LIMIT and the Final Result Require a Different Sort Order
Problem
LIMIT usually works best in conjunction with an ORDER BY
 clause that sorts rows. But sometimes that sort order differs from what
 you want for the final result.

Solution
Use LIMIT in a subquery to
 retrieve the desired rows, then use the outer query to
 sort them.

Discussion
If you want the last four rows of a result set, you can obtain
 them easily by sorting the set in reverse order and using LIMIT 4.
 The following statement returns the names and birth dates for the four
 people in the profile table who were
 born most recently:
mysql> SELECT name, birth FROM profile ORDER BY birth DESC LIMIT 4;
+-------+------------+
| name | birth |
+-------+------------+
Ralph	1973-11-02
Sybil	1970-04-13
Nancy	1969-09-30
Aaron	1968-09-17
+-------+------------+
But that requires sorting the birth values in descending order to place them
 at the head of the result set. What if you want the output rows to
 appear in ascending order instead? Use the SELECT as a subquery of an outer statement
 that re-sorts the rows in the desired final order:
mysql> SELECT * FROM
 -> (SELECT name, birth FROM profile ORDER BY birth DESC LIMIT 4) AS t
 -> ORDER BY birth;
+-------+------------+
| name | birth |
+-------+------------+
Aaron	1968-09-17
Nancy	1969-09-30
Sybil	1970-04-13
Ralph	1973-11-02
+-------+------------+
AS t is used here because any table referred to in the FROM clause must
 have a name, even a derived table produced from a
 subquery.

5.11 Calculating LIMIT Values from Expressions
Problem
You want to use expressions to specify the arguments for LIMIT.

Solution
LIMIT
 arguments must be literal integers—unless you issue the statement in a
 context that permits the statement string to be constructed dynamically.
 In that case, you can evaluate the expressions yourself and insert the
 resulting values into the statement string.

Discussion
Arguments to LIMIT must be
 literal integers, not expressions. Statements such as the following are
 illegal:
SELECT * FROM profile LIMIT 5+5;
SELECT * FROM profile LIMIT @skip_count, @show_count;
The same no expressions permitted principle applies
 if you use an expression to calculate a LIMIT value in a program that constructs a
 statement string. You must evaluate the expression first, and then place
 the resulting value in the statement. For example, if you produce a
 statement string in Perl or PHP as follows, an error will result when
 you attempt to execute the statement:
$str = "SELECT * FROM profile LIMIT $x + $y";
To avoid the problem, evaluate the expression first:
$z = $x + $y;
$str = "SELECT * FROM profile LIMIT $z";
Or do this (don’t omit the parentheses or the expression won’t
 evaluate properly):
$str = "SELECT * FROM profile LIMIT " . ($x + $y);
To construct a two-argument LIMIT clause, evaluate both expressions before
 placing them into the statement string.

5.12 Combining Two or More SELECT Results
Problem

 You want to combine rows retrieved by two or more SELECT statements into one result set.

Solution

 Use the UNION clause.

Discussion

 The mail table stores user names and hosts of the email senders and recipients. But what if we want to know all the user and host combinations possible?

 A naive approach would be to choose either sender or receiver pairs. But if we perform even a very basic test by comparing the number of unique user-host combinations, we’ll find out that it is different for each direction:

mysql> SELECT COUNT(distinct srcuser, srchost) FROM mail;
+----------------------------------+
| count(distinct srcuser, srchost) |
+----------------------------------+
| 9 |
+----------------------------------+
1 row in set (0.01 sec)

mysql> select count(distinct dstuser, dsthost) from mail;
+----------------------------------+
| count(distinct dstuser, dsthost) |
+----------------------------------+
| 10 |
+----------------------------------+
1 row in set (0.00 sec)

 We also don’t know if our table stores emails from users who only send them and for users who receive but never send.

 To get the full list, we need to select pairs for both the sender and receiver, then remove duplicates. The SQL UNION DISTINCT clause and its short form, UNION, does exactly that. It combines results of two or more SELECT queries that select the same number of columns of the same type.

 By default, UNION uses the column names of the first SELECT for the full result set header, but we can also use aliases, as discussed in Recipe 5.2:

mysql> SELECT DISTINCT srcuser AS user, srchost AS host FROM mail
 -> UNION
 -> SELECT DISTINCT dstuser AS user, dsthost AS host FROM mail;

+--------+--------+
| user | host |
+--------+--------+
barb	saturn
tricia	mars
phil	mars
gene	venus
barb	venus
tricia	saturn
gene	mars
phil	venus
gene	saturn
phil	saturn
tricia	venus
barb	mars
+--------+--------+
12 rows in set (0.00 sec)

 You can sort an individual query, participating in UNION, as well as the whole result. If you do not want to remove duplicates from the result, use the UNION ALL clause.

 To demonstrate this, let’s create a query that will find four users who sent the highest number of emails and four users who received the highest number of emails, then sort the result of the union by the user name:

mysql> (SELECT CONCAT(srcuser, '@', srchost) AS user, COUNT(*) AS emails [image: 1]
 -> FROM mail GROUP BY srcuser, srchost ORDER BY emails DESC LIMIT 4) [image: 2]
 -> UNION ALL
 -> (SELECT CONCAT(dstuser, '@', dsthost) AS user, COUNT(*) AS emails
 -> FROM mail GROUP BY dstuser, dsthost ORDER BY emails DESC LIMIT 4) [image: 3]
 -> ORDER BY user;[image: 4]
+---------------+--------+
| user | emails |
+---------------+--------+
barb@mars	2
barb@saturn	2
barb@venus	2
gene@saturn	2
gene@venus	2
gene@venus	2
phil@mars	3
tricia@saturn	3
+---------------+--------+
8 rows in set (0.00 sec)

	[image: 1]
	Concatenate the user and host into the email address of the user.

	[image: 2]
	Order the first SELECT result by the number of emails in descending order, and limit the number of retrieved rows.

	[image: 3]
	Order the result of the second SELECT.

	[image: 4]
	Order the result of UNION by the user email address.

	[image: 5]
	We used the UNION ALL clause instead of UNION [DISTINCT]; therefore, we have two entries for gene@venus in the result. This user is in the top list of those who send emails and also of those who receive emails.

5.13 Selecting Results of Subqueries
Problem

 You want to retrieve not only table columns but also results of queries that use these columns.

Solution

 Use a subquery in the column list.

Discussion

 Suppose that you want to know not only how many emails were sent by a particular user but also how many emails they received. You cannot do this without accessing the mail table two times: one to count how many emails were sent and one to count how many emails were received.

 One solution for this issue is to use subqueries in the column list:

mysql> SELECT CONCAT(srcuser, '@', srchost) AS user, COUNT(*) AS mails_sent, [image: 1]
 -> (SELECT COUNT(*) FROM mail d WHERE d.dstuser=m.srcuser AND d.dsthost=m.srchost) [image: 2]
 -> AS mails_received [image: 3]
 -> FROM mail m
 -> GROUP BY srcuser, srchost [image: 4]
 -> ORDER BY mails_sent DESC;
+---------------+------------+----------------+
| user | mails_sent | mails_received |
+---------------+------------+----------------+
phil@mars	3	0
barb@saturn	2	0
gene@venus	2	2
gene@mars	2	1
phil@venus	2	2
gene@saturn	2	1
tricia@mars	1	1
barb@venus	1	2
tricia@saturn	1	3
+---------------+------------+----------------+
9 rows in set (0.00 sec)

	[image: 1]
	First, we retrieved a user name and a host of the sender and a count of the number of emails that they sent.

	[image: 2]
	To find the number of emails this user received, we’re using a subquery to the same mail table. In the WHERE clause, we select only those rows where the receiver has the same credentials as the sender in the main query.

	[image: 3]
	A subquery in the column list must have its own alias.

	[image: 4]
	To display statistics per user, we use the GROUP BY clause, so the result is grouped by each user name and host. We discuss the GROUP BY clause in detail in Chapter 10.

Chapter 6. Table Management
6.0 Introduction
This chapter covers topics that relate to creating and populating
 tables, including the following:
	Cloning a table

	Copying from one table to another

	Using temporary tables

	Generating unique table names

	Determining what storage engine a table uses or converting it
 from one storage engine to another

Many of the examples in this chapter use a table named mail containing rows that track mail message
 traffic between users on a set of hosts (see Recipe 5.0). To create and load this table,
 change location into the tables
 directory of the recipes distribution
 and run this command:
$ mysql cookbook < mail.sql

6.1 Cloning a Table
Problem
You want to create a table that has exactly the same structure as an existing
 table.

Solution
Use CREATE TABLE…LIKE to clone the table structure. To
 also copy some or all of the rows from the original table
 to the new one, use INSERT INTO…SELECT.

Discussion
To create a new table that is just like an existing table, use
 this statement:
CREATE TABLE new_table LIKE original_table;
The structure of the new table is the same as that of the original
 table, with a few exceptions: CREATE
 TABLE…LIKE does not copy foreign key definitions,
 and it doesn’t copy any DATA DIRECTORY or INDEX DIRECTORY table options that the table might
 use.
The new table is empty. If you also want the contents to be the
 same as the original table, copy the rows using an INSERT INTO…SELECT statement:
INSERT INTO new_table SELECT * FROM original_table;
To copy only part of the table, add an appropriate WHERE
 clause that identifies which rows to copy. For example, these statements
 create a copy of the mail table named
 mail2, populated only with the rows
 for mail sent by barb:
CREATE TABLE mail2 LIKE mail;
INSERT INTO mail2 SELECT * FROM mail WHERE srcuser = 'barb';
Warning

 Selecting everything from the large table could be slow and is not recommended on the production servers. We discuss how to copy huge tables in Recipes 6.7 and 6.8.

See Also
For additional information about INSERT…SELECT, see Recipe 6.2.

6.2 Saving a Query Result in a Table
Problem
You want to save the result from a SELECT
 statement to a table rather than display it.

Solution
If the table exists, retrieve rows into it using INSERT INTO…SELECT. If the table does not
 exist, create it on the fly using CREATE TABLE…SELECT.

Discussion
The MySQL server normally returns the result of a SELECT statement to the client that executed
 the statement. For example, when you execute a statement from within the
 mysql program, the server returns the
 result to mysql, which in turn
 displays it on the screen. It’s possible to save the results of a
 SELECT statement in a table instead,
 which is useful in several ways:
	You can easily create a complete or partial copy of a table.
 If you’re developing an algorithm for your application that modifies a table, it’s safer
 to work with a copy of a table so that you need not worry about the
 consequences of mistakes. If the original table is large, creating a
 partial copy can speed the development process because queries running
 against it take less time.

	For a data-loading operation based on information that might
 be malformed, load new rows into a test temporary table, perform some
 preliminary checks, and correct the rows as necessary. When you’re
 satisfied that the new rows are okay, copy them from the temporary
 table to your main table.

	Some applications maintain a large repository table and a
 smaller working table into which rows are inserted on a regular
 basis, copying the working table rows to the repository periodically
 and clearing the working table.

	To perform summary operations on a large table more
 efficiently, avoid running expensive summary operations repeatedly
 on it. Instead, select summary information once into a second table
 and use that for further analysis.

This recipe shows how to retrieve a result set into a table. The
 table names src_tbl and dst_tbl in the examples refer to the source
 table from which rows are selected and the destination table into which
 they are stored, respectively.
If the destination table already exists, use INSERT…SELECT to copy the result set into it. For
 example, if dst_tbl contains an
 integer column i and a string column
 s, the following statement copies
 rows from src_tbl into dst_tbl, assigning column val to i
 and column name to s:
INSERT INTO dst_tbl (i, s) SELECT val, name FROM src_tbl;
The number of columns to be inserted must match the number of selected columns,
 with the correspondence between columns based on position rather than
 name. To copy all columns, you can shorten the statement to this
 form:
INSERT INTO dst_tbl SELECT * FROM src_tbl;
To copy only certain rows, add a WHERE
 clause that selects those rows:
INSERT INTO dst_tbl SELECT * FROM src_tbl
WHERE val > 100 AND name LIKE 'A%';
The SELECT statement can
 produce values from expressions, too. For example, the following
 statement counts the number of times each name occurs in src_tbl and stores both the counts and the
 names in dst_tbl:
INSERT INTO dst_tbl (i, s) SELECT COUNT(*), name
FROM src_tbl GROUP BY name;
If the destination table does not exist, create it first with a
 CREATE TABLE statement, then copy rows into it with
 INSERT…SELECT. Alternatively, use CREATE TABLE…SELECT to create the destination table
 directly from the result of the SELECT. For example, to create dst_tbl and copy the entire contents of
 src_tbl into it, do this:
CREATE TABLE dst_tbl SELECT * FROM src_tbl;
Warning

INSERT INTO...SELECT...
 does not copy indexes from the source table. If you use this syntax, and the destination table should have indexes, create them after the statement completes. We discuss indexes in Recipe 21.1.

MySQL creates the columns in dst_tbl based on the name, number, and type of
 the columns in src_tbl. To copy only
 certain rows, add an appropriate WHERE clause. To create an empty table, use a
 WHERE clause that selects no
 rows:
CREATE TABLE dst_tbl SELECT * FROM src_tbl WHERE FALSE;
To copy only some of the columns, name the ones you want in the
 SELECT part of the statement. For
 example, if src_tbl contains columns
 a, b, c, and
 d, copy just b and d
 like this:
CREATE TABLE dst_tbl SELECT b, d FROM src_tbl;
To create columns in an order different from that in which they
 appear in the source table, name them in the desired order. If the
 source table contains columns a,
 b, and c that should appear in the destination table
 in the order c, a, b, do
 this:
CREATE TABLE dst_tbl SELECT c, a, b FROM src_tbl;
To create columns in the destination table in addition to those
 selected from the source table, provide appropriate column definitions
 in the CREATE TABLE part of the statement. The following
 statement creates id as
 an AUTO_INCREMENT column in dst_tbl and adds columns a, b, and
 c from src_tbl:
CREATE TABLE dst_tbl
(
 id INT NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (id)
)
SELECT a, b, c FROM src_tbl;
The resulting table contains four columns in the order id, a,
 b, c. Defined columns are assigned their default
 values. This means that id, being an
 AUTO_INCREMENT column, is assigned
 successive sequence numbers starting from 1 (see Recipe 15.1).
If you derive a column’s values from an expression, its default
 name is the expression itself, which can be difficult to work with
 later. In this case, it’s prudent to give the column a better name by
 providing an alias (see Recipe 5.2). Suppose that src_tbl contains invoice information that
 lists items in each invoice. The following statement generates a summary
 that lists each invoice named in the table and the total cost of its
 items, using an alias for the expression:
CREATE TABLE dst_tbl
SELECT inv_no, SUM(unit_cost*quantity) AS total_cost
FROM src_tbl GROUP BY inv_no;
CREATE TABLE…SELECT is extremely convenient but has some
 limitations that arise from the fact that the information available from
 a result set is not as extensive as what you can specify in a CREATE TABLE statement. For example, MySQL has no
 idea whether a result set column should be indexed or what its default
 value is. If it’s important to include this information in the
 destination table, use the following techniques:
	To make the destination table an exact
 copy of the source table, use the cloning technique described in
 Recipe 6.1.

	To include indexes in the destination table, specify them
 explicitly. For example, if src_tbl has a PRIMARY KEY on the id column, and
 a multiple-column index on state
 and city, specify them for
 dst_tbl as well:
CREATE TABLE dst_tbl (PRIMARY KEY (id), INDEX(state,city))
SELECT * FROM src_tbl;

	Column attributes such as AUTO_INCREMENT and a column’s default
 value are not copied to the destination table. To preserve these
 attributes, create the table, then use ALTER TABLE to apply the appropriate
 modifications to the column definition. For example, if src_tbl has an id column that is not only a PRIMARY KEY but also an AUTO_INCREMENT column, copy the table
 and modify the copy:
CREATE TABLE dst_tbl (PRIMARY KEY (id)) SELECT * FROM src_tbl;
ALTER TABLE dst_tbl MODIFY id INT UNSIGNED NOT NULL AUTO_INCREMENT;

6.3 Creating Temporary Tables
Problem
You need a table only for a short time, after which you want it to
 disappear automatically.

Solution
Create a table using the TEMPORARY
 keyword, and let MySQL take care of removing it.

Discussion
Some operations require a table that exists only temporarily and
 that should disappear when it’s no longer needed. You can, of course,
 execute a DROP TABLE statement explicitly to remove a table
 when you’re done with it. Another option is to use CREATE TEMPORARY TABLE. This statement is like CREATE TABLE but creates a transient table that
 disappears when your session with the server ends, if you haven’t
 already removed it yourself. This is extremely useful behavior because
 MySQL drops the table for you automatically; you need not remember to do
 it. TEMPORARY can be used with the
 usual table-creation methods:
	Create the table from explicit column definitions:
CREATE TEMPORARY TABLE tbl_name (...column definitions...);

	Create the table from an existing table:
CREATE TEMPORARY TABLE new_table LIKE original_table;

	Create the table on the fly from a result set:
CREATE TEMPORARY TABLE tbl_name SELECT...;

Temporary tables are session-specific, so multiple clients can
 each create a temporary table having the same name without interfering
 with each other. This makes it easier to write applications that use
 transient tables because you need not ensure that the tables have unique
 names for each client. (For further discussion of table-naming issues,
 see Recipe 6.4.)
A temporary table can have the same name as a permanent table. In
 this case, the temporary table hides the permanent table
 for the duration of its existence, which can be useful for making a copy
 of a table that you can modify without affecting the original by
 mistake. The DELETE statement
 in the following example removes rows from a temporary
 mail table, leaving the original
 permanent table unaffected:
mysql> CREATE TEMPORARY TABLE mail SELECT * FROM mail;
mysql> SELECT COUNT(*) FROM mail;
+----------+
| COUNT(*) |
+----------+
| 16 |
+----------+
mysql> DELETE FROM mail;
mysql> SELECT COUNT(*) FROM mail;
+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+
mysql> DROP TEMPORARY TABLE mail;
mysql> SELECT COUNT(*) FROM mail;
+----------+
| COUNT(*) |
+----------+
| 16 |
+----------+
Although temporary tables created with CREATE TEMPORARY TABLE have the benefits just discussed, keep
 the following caveats in mind:
	To reuse a temporary table within a given session, you must
 still drop it explicitly before re-creating it. Attempting to create
 a second temporary table with the same name results in an
 error.

	If you modify a temporary table that hides a
 permanent table with the same name, be sure to test for errors
 resulting from dropped connections if you use a programming
 interface that has reconnect capability enabled. If a client program
 automatically reconnects after detecting a dropped connection,
 modifications affect the permanent table after the reconnect, not
 the temporary table.

	Some APIs support persistent connections or connection pools.
 These prevent temporary tables from being dropped as you expect when
 your script ends because the connection remains open for reuse by
 other scripts. Your script has no control over when the connection
 closes. This means it can be prudent to execute the following
 statement prior to creating a temporary table, just in case it’s
 still in existence from a previous execution of the script:
DROP TEMPORARY TABLE IF EXISTS tbl_name;
The TEMPORARY keyword is
 useful here if the temporary table has already been dropped, to
 avoid dropping any permanent table that has the same name.

6.4 Generating Unique Table Names
Problem
You need to create a table with a name guaranteed not to exist.

Solution
Generate a value that is unique to your client
 program and incorporate it into the table name.

Discussion
MySQL is a multiple-client database server, so if a given script
 that creates a transient table might be invoked by several clients
 simultaneously, take care that multiple invocations of the script do not
 fight over the same table name. If the script creates tables using
 CREATE TEMPORARY TABLE, there is no problem because different
 clients can create temporary tables having the same name without
 clashing.
If you cannot or do not want to use a TEMPORARY table, make sure that each
 invocation of the script creates a uniquely named table and drops the
 table when it is no longer needed. To accomplish this, incorporate into
 the name some value guaranteed to be unique per invocation. A timestamp
 won’t work if it’s possible for two instances of a script to be invoked
 within the timestamp resolution. A random number may be better, but
 random numbers only reduce the possibility of name clashes, not
 eliminate it. Values, generated by the UUID function, are a better source for unique values. The UUID function returns a Universal Unique Identifier (UUID) generated according to RFC 4122, “A Universally Unique IDentifier (UUID) URN Namespace and designed to produce a 128-bit string that is unique in space and time. While the value generated by this function is not necessarily unique, it’s enough to generate a unique temporary table name.

It’s possible to incorporate a UUID into a table name
 within SQL by using prepared statements. The following example
 illustrates this, referring to the table name in the CREATE TABLE statement and a precautionary DROP TABLE
 statement:
SET @tbl_name = CONCAT('tmp_tbl_', UUID());
SET @stmt = CONCAT('CREATE TABLE `', @tbl_name, '` (i INT)');
PREPARE stmt FROM @stmt;
EXECUTE stmt;
DEALLOCATE PREPARE stmt;

6.5 Checking or Changing a Table Storage Engine
Problem
You want to check which storage engine a table uses so that you can
 determine what engine capabilities are applicable. Or you need to change
 a table’s storage engine because you realize that the capabilities of
 another engine are more suitable for the way you use the table.

Solution
To determine a table’s storage engine, you can use any of several statements. To change
 the table’s engine, use ALTER
 TABLE with an ENGINE clause.

Discussion
MySQL supports multiple storage engines, which have differing
 characteristics. For example, the InnoDB engine supports transactions, whereas Memory does not. If you need to know whether a table
 supports transactions, check which storage engine it uses. If the
 table’s engine does not support transactions, you can convert the table
 to use a transaction-capable engine.
To determine the current engine for a table, check INFORMATION_SCHEMA or use the SHOW TABLE
 STATUS or SHOW CREATE
 TABLE statement. For the mail table,
 obtain engine information as follows:
mysql> SELECT ENGINE FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'mail';
+--------+
| ENGINE |
+--------+
| InnoDB |
+--------+

mysql> SHOW TABLE STATUS LIKE 'mail'\G
*************************** 1. row ***************************
 Name: mail
 Engine: InnoDB
…

mysql> SHOW CREATE TABLE mail\G
*************************** 1. row ***************************
 Table: mail
Create Table: CREATE TABLE `mail` (
... column definitions ...
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
To change the storage engine for a table, use ALTER TABLE
 with an ENGINE specifier. For
 example, to convert the mail table to
 use the Memory storage engine, use this statement:
ALTER TABLE mail ENGINE = Memory;
Be aware that converting a large table to a different storage
 engine might take a long time and be expensive in terms of CPU and I/O
 activity.
To determine which storage engines your MySQL server supports,
 check the output from the SHOW ENGINES statement or query the INFORMATION_SCHEMA ENGINES table.

6.6 Copying a Table Using mysqldump
Problem
You want to copy a table or tables, either among the databases managed by a MySQL
 server or from one server to another.

Solution
Use the mysqldump
 program.

Discussion
The mysqldump program makes a
 backup file that can be reloaded to re-create the original table or
 tables:
$ mysqldump cookbook mail > mail.sql
The output file mail.sql
 consists of a CREATE TABLE statement to create the mail
 table and a set of INSERT statements
 to insert its rows. You can reload the file to re-create the
 table should the original be lost:
$ mysql cookbook < mail.sql
This method also makes it easy to deal with any triggers the table
 has. By default, mysqldump writes the
 triggers to the dump file, so reloading the file copies the triggers
 along with the table with no special handling.

 By default, mysqldump includes the DROP TABLE IF EXISTS statement before CREATE TABLE. If you do not want to drop the table when loading the dump and prefer the operation to fail instead, run mysqldump with the --skip-add-drop-table option.

In addition to restoring tables, mysqldump can be used to make
 copies of them by reloading the output into a
 different database. (If the destination database does not exist, create
 it first.) The following examples show some useful table-copying
 commands.
Copying tables within a single MySQL server
	Copy a single table to a different database:
$ mysqldump cookbook mail > mail.sql
$ mysql other_db < mail.sql
To dump multiple tables, name them all following the
 database name argument.

	Copy all tables in a database to a different
 database:
$ mysqldump cookbook > cookbook.sql
$ mysql other_db < cookbook.sql
When you name no tables after the database name, mysqldump dumps them all. To also
 include stored routines and events, add the --routines and
 --events options to the mysqldump command. (There is also
 a --triggers option, but it’s
 unneeded because, as mentioned previously, mysqldump dumps triggers with their
 associated tables by default.)

	Copy a table, using a different name for the copy:
	Dump the table:
$ mysqldump cookbook mail > mail.sql

	Reload the table into a different database that does
 not contain a table with that
 name:
$ mysql other_db < mail.sql

	Rename the table:
$ mysql other_db
mysql> RENAME mail TO mail2;
Or, to move the table into another database at the same
 time, qualify the new name with the database name:
$ mysql other_db
mysql> RENAME mail TO cookbook.mail2;

To perform a table-copying operation without an intermediary
 file, use a pipe to connect the mysqldump and mysql commands:
$ mysqldump cookbook mail | mysql other_db
$ mysqldump cookbook | mysql other_db
Tip

 You may consider using the newer mysqlpump tool that works similarly to mysqldump but supports smarter filters and parallel processing. We discuss mysqlpump in Recipe 13.13.

Copying tables between MySQL servers
The preceding commands use mysqldump to copy tables among the databases
 managed by a single MySQL server. Output from mysqldump can also be used to copy tables
 from one server to another. Suppose that you want to copy the mail table from the cookbook database on the local host to the
 other_db database on the host
 other-host.example.com. One way
 to do this is to dump the output into a file:
$ mysqldump cookbook mail > mail.sql
Then copy mail.sql to
 other-host.example.com, and run
 the following command there to load the table into that MySQL server’s
 other_db database:
$ mysql other_db < mail.sql
To accomplish this without an intermediary file, use a pipe to
 send the output of mysqldump
 directly over the network to the remote MySQL server. If you can
 connect to both servers from your local host, use this command:
$ mysqldump cookbook mail | mysql -h other-host.example.com other_db
The mysqldump half of the
 command connects to the local server and writes the dump output to the
 pipe. The mysql half of the command
 connects to the remote MySQL server on other-host.example.com. It reads the pipe
 for input and sends each statement to the other-host.example.com server.
If you cannot connect directly to the remote server using
 mysql from your local host, send
 the dump output into a pipe that uses ssh to invoke mysql remotely on other-host.example.com:
$ mysqldump cookbook mail | ssh other-host.example.com mysql other_db
ssh connects to other-host.example.com and launches
 mysql there. It then reads the
 mysqldump output from the pipe and
 passes it to the remote mysql
 process. ssh can be useful to send
 a dump over the network to a machine that has the MySQL port blocked
 by a firewall but that permits connections on the SSH port.
Regarding which table or tables to copy, similar principles
 apply as for local copies. To copy multiple tables over the network,
 name them all following the database argument of the mysqldump command. To copy an entire
 database, don’t specify any table names after the database name;
 mysqldump dumps all its tables. To copy all databases that reside on your MySQL instance, specify the --all-databases option.

6.7 Copying an InnoDB Table Using Transportable Tablespaces
Problem

 You want to copy an InnoDB table, but the table is too big, and dumping data from it in human-readable format takes long a time. Reload is not fast either.

Solution

 Use transportable tablespaces.

Discussion

 Tools like mysqldump and mysqlpump are good when you work with comparatively small tables or you want to examine the resulting SQL dump yourself before applying it to the target server. However, copying a table that occupies few gigabytes on the disk this way will take a lot of time. It will also create additional load on the server. To make things worse, protection mechanisms will affect other connections that use the same table.

 To resolve this issue, binary backup and restore methods exist. These methods work on the binary table files without doing any additional data manipulations; therefore, performance is the same as if you run the cp command on Linux or copy on Windows.

 As of version 8.0, MySQL stores table definitions in the data dictionary, while data is stored in the separate files. The format and name of these files depend on the storage engine. In the case of InnoDB, they are individual, general and system tablespaces. Individual tablespace files store data for each table individually and can be used for the method we describe in this section. If your tables are stored in the system or in general tablespaces, you first need to convert them to use the individual tablespace format:

ALTER TABLE tbl_name TABLESPACE = innodb_file_per_table;

 To find out if your table resides in the system or in general tablespaces, query the INNODB_TABLES table in the Information Schema:

mysql> SELECT NAME, SPACE_TYPE FROM INFORMATION_SCHEMA.INNODB_TABLES
 -> WHERE NAME LIKE 'test/%';
+--+------------+
| NAME | SPACE_TYPE |
+--+------------+
test/residing_in_system_tablespace	System
test/residing_in_individual_tablespace	Single
test/residing_in_general_tablespace	General
+--+------------+

 Once you are ready to copy the tablespace, log in into the mysql client and execute:

FLUSH TABLES limbs FOR EXPORT;

 This command will prepare the tablespace file for being copied and additionally create a configuration file with a .cfg extension that will contain the table metadata.

 Keep the MySQL client open and in the other terminal window, copy the tablespace and configuration files into the desired location:

cp /var/lib/mysql/cookbook/limbs.{cfg,ibd} .

 Once the copy finishes, unlock the table:

UNLOCK TABLES;

 Now you can import the tablespace into a remote server or into a different database on the same local server.

 The first step is to create a table with exactly the same definition as the original one. You can find the table definition by running the SHOW CREATE TABLE command:

source> SHOW CREATE TABLE limbs\G
*************************** 1. row ***************************
 Table: limbs
Create Table: CREATE TABLE `limbs` (
 `thing` varchar(20) DEFAULT NULL,
 `legs` int DEFAULT NULL,
 `arms` int DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)

 Once you’ve obtained it, connect to the destination database and create a table:

destination> USE cookbook_copy;
Database changed
destination> CREATE TABLE `limbs` (
 -> `thing` varchar(20) DEFAULT NULL,
 -> `legs` int DEFAULT NULL,
 -> `arms` int DEFAULT NULL
 ->) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;
Query OK, 0 rows affected (0.03 sec)

 After a new empty table is created, discard its tablespace:

ALTER TABLE limbs DISCARD TABLESPACE;

Warning

 DISCARD TABLESPACE removes tablespace files. Be very careful with this command. If you make a typo and discard a tablespace for the wrong table, it can’t be restored.

 After tablespace is discarded, copy the table files into the new database directory:

$ sudo cp limbs.{cfg,ibd} /var/lib/mysql/cookbook_copy
$ sudo chown mysql:mysql /var/lib/mysql/cookbook_copy/limbs.{cfg,ibd}

 Then import the tablespace.

ALTER TABLE limbs IMPORT TABLESPACE;

See Also
For additional information about exchanging tablespace files between MySQL databases and servers,
 see “Importing InnoDB Tables”.

6.8 Copying a MyISAM Table Using an sdi File
Problem

 You want to copy a large MyISAM table on MySQL 8.0.

Solution

 Use the IMPORT TABLE command.

Discussion

	 Tables that use the MyISAM storage engine support the importation of the raw table files with the help of the IMPORT TABLE statement. To export MyISAM tables without the risk of corrupting data during migration, open a MySQL connection first and flush the table files to the disk with a read lock:
FLUSH TABLES limbs_myisam WITH READ LOCK;
Then copy the table data, index, and metadata files into the backup location:
$ sudo cp /var/lib/mysql/cookbook/limbs_myisam.{MYD,MYI} .
$ sudo bash -c 'cp /var/lib/mysql/cookbook/limbs_myisam_*.sdi . '
Unlock the original table:
	

	 The table’s metadata file with the .sdi extension has a random sequence of digits in its name, therefore use sudo to copy it to allow the shell process to expand the file glob pattern.
	

	 To copy a MyISAM table into the desired destination, put the table’s metadata file with .sdi extension into the directory, specified by the --secure-file-priv option, or into any directory, readable by the target MySQL server if such an option is not set. Then copy the index and datafile into the target database directory:
	
$ sudo cp limbs_myisam.{MYD,MYI} /var/lib/mysql/cookbook_copy/
$ sudo chown mysql:mysql /var/lib/mysql/cookbook_copy/limbs_myisam.{MYD,MYI}

	 Then connect to the database and import the table:
	
IMPORT TABLE FROM '/tmp/limbs_myisam_11560.sdi';

	

	 If you are copying the table into a database with a different name, you need to edit the sdi file manually and replace the value of the schema_ref with the target database name.
	

Chapter 7. Working with Strings
7.0 Introduction
Like most types of data, string values can be compared for equality or inequality or
 relative ordering. However, strings have additional properties to
 consider:
	A string can be binary or nonbinary. Binary strings are used for
 raw data such as images, music files, or encrypted values. Nonbinary
 strings are used for character data such as text and are associated
 with a character set and collation (sort order).

	A character set determines
 which characters are legal in a string. You can choose
 collations according to whether you need comparisons to be case
 sensitive or case insensitive, or to use the rules of a particular
 language.

	Data types for binary strings are BINARY, VARBINARY, and BLOB. Data types for nonbinary strings are CHAR, VARCHAR, and TEXT, each of which permits CHARACTER
 SET and COLLATE attributes.

	You can convert a binary string to a nonbinary string and vice versa, or
 convert a nonbinary string from one character set or collation to
 another.

	You can use a string in its entirety or extract substrings from
 it. Strings can be combined with other strings.

	You can apply pattern-matching operations to strings.

	Full-text searching is available for efficient queries on large
 collections of text.

This chapter discusses how to use those properties so that you can
 store, retrieve, and manipulate strings according to any requirements your
 applications have.
Scripts to create the tables used in this chapter are located in the
 tables directory of the recipes distribution.

7.1 String Properties
One string property is whether it is binary or nonbinary:
	A binary string is a sequence of bytes. It can contain any type of
 information, such as images, MP3 files, or compressed or encrypted
 data. A binary string is not associated with a character set, even if
 you store a value such as abc that
 looks like ordinary text. Binary strings are compared byte by byte
 using numeric byte values.

	A nonbinary string is a sequence of characters. It stores text that has a
 particular character set and collation. The character set defines which
 characters can be stored in the string. The collation defines the
 character ordering, which affects comparison and sorting
 operations.

To see which character sets are available for nonbinary strings, use this statement:
mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
| big5 | Big5 Traditional Chinese | big5_chinese_ci | 2 |
…
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
…			
utf8	UTF-8 Unicode	utf8_general_ci	3
utf8mb4	UTF-8 Unicode	utf8mb4_0900_ai_ci	4
…
The default character set in MySQL 8.0 is utf8mb4 with collation of utf8mb4_0900_ai_ci.
 If you must store characters from several languages in a single column, consider
 using one of the Unicode character sets (such as utf8mb4 or utf16) because they can represent characters from
 multiple languages.
Some character sets contain only single-byte characters, whereas
 others permit multibyte characters. Some multibyte character sets contain
 characters of varying lengths. For others, all characters have a fixed
 length. For example, Unicode data can be stored using the utf8mb4 character set, in which characters take from
 one to four bytes, or the utf16
 character set, in which all characters take two bytes.
Note
In MySQL, to use the full set of
 Unicode characters, including supplemental characters that lie outside
 the Basic Multilingual Plane (BMP), use utf8mb4, in which
 characters take from one to four bytes. Other Unicode character sets
 that include supplemental characters are utf16, utf16le, and utf32.

To determine whether a given string contains multibyte characters,
 use the LENGTH() and CHAR_LENGTH() functions, which return the length
 of a string in bytes and characters, respectively. If LENGTH() is greater than CHAR_LENGTH() for a given string, multibyte characters are present:
	The utf8 Unicode character
 set has multibyte characters, but a given utf8 string might contain only single-byte
 characters, as in the following example:
mysql> SET @s = CONVERT('abc' USING utf8mb4);
mysql> SELECT LENGTH(@s), CHAR_LENGTH(@s);
+------------+-----------------+
| LENGTH(@s) | CHAR_LENGTH(@s) |
+------------+-----------------+
| 3 | 3 |
+------------+-----------------+

	For the utf16 Unicode
 character set, all characters are encoded using two bytes, even if
 they are single-byte characters in another character set, such as
 latin1. Thus, every utf16 string contains multibyte
 characters:
mysql> SET @s = CONVERT('abc' USING utf16);
mysql> SELECT LENGTH(@s), CHAR_LENGTH(@s);
+------------+-----------------+
| LENGTH(@s) | CHAR_LENGTH(@s) |
+------------+-----------------+
| 6 | 3 |
+------------+-----------------+

Another property of nonbinary strings is collation, which determines
 the sort order of characters in the character set. Use SHOW COLLATION to see all available collations; add a LIKE clause to see the collations for a
 particular character set:
mysql> SHOW COLLATION LIKE 'utf8mb4%';
+-------------------------+---------+-----+---------+----------+---------+---------------+
| Collation | Charset | Id | Default | Compiled | Sortlen | Pad_attribute |
+-------------------------+---------+-----+---------+----------+---------+---------------+
| utf8mb4_0900_ai_ci | utf8mb4 | 255 | Yes | Yes | 0 | NO PAD |
| utf8mb4_0900_as_ci | utf8mb4 | 305 | | Yes | 0 | NO PAD |
..
utf8mb4_es_0900_ai_ci	utf8mb4	263		Yes	0	NO PAD
utf8mb4_es_0900_as_cs	utf8mb4	286		Yes	0	NO PAD
utf8mb4_es_trad_0900...	utf8mb4	270		Yes	0	NO PAD
utf8mb4_es_trad_0900...	utf8mb4	293		Yes	0	NO PAD
..						
utf8mb4_tr_0900_ai_ci	utf8mb4	265		Yes	0	NO PAD
utf8mb4_tr_0900_as_cs	utf8mb4	288		Yes	0	NO PAD
utf8mb4_turkish_ci	utf8mb4	233		Yes	8	PAD SPACE
utf8mb4_unicode_520_ci	utf8mb4	246		Yes	8	PAD SPACE
In contexts where no collation is specified explicitly, strings in a
 given character set use the collation with Yes in the Default column. As shown, the default collation
 for utf8mb4 is utf8mb4_0900_ai_ci. (Default collations are also
 displayed by SHOW CHARACTER SET.)
A collation can be case sensitive (a and
 A are different), case insensitive
 (a and A are the same), or binary (two characters are
 the same or different based on whether their numeric values are equal). A
 collation name ending in _ci, _cs, or _bin
 is case insensitive, case sensitive, or binary, respectively.
Binary strings and binary collations both use numeric
 values. The difference is that binary string comparisons are always based
 on single-byte units, whereas a binary collation compares nonbinary
 strings using character numeric values; depending on
 the character set, some of these might be multibyte values.
The following example illustrates how collation affects sort order.
 Suppose that a table contains a utf8mb4
 string column and has the following rows:
mysql> CREATE TABLE t (c CHAR(3) CHARACTER SET utf8mb4);
mysql> INSERT INTO t (c) VALUES('AAA'),('bbb'),('aaa'),('BBB');
mysql> SELECT c FROM t;
+------+
| c |
+------+
| AAA |
| bbb |
| aaa |
| BBB |
+------+
By applying the COLLATE operator
 to the column, you can choose which collation to use for
 sorting and thus affect the order of the result:
	A case-insensitive collation sorts a and A
 together, placing them before b and
 B. However, for a given letter, it
 does not necessarily order one lettercase before another, as shown by
 the following result:
mysql> SELECT c FROM t ORDER BY c COLLATE utf8mb4_turkish_ci;
+------+
| c |
+------+
| AAA |
| aaa |
| bbb |
| BBB |
+------+

	A case-sensitive collation puts A and a
 before B and b and sorts lowercase before
 uppercase:
mysql> SELECT c FROM t ORDER BY c COLLATE utf8mb4_tr_0900_as_cs;
+------+
| c |
+------+
| aaa |
| AAA |
| bbb |
| BBB |
+------+

	A binary collation sorts characters using their numeric values. Assuming that
 uppercase letters have numeric values less than those of lowercase
 letters, a binary collation results in the following ordering:
mysql> SELECT c FROM t ORDER BY c COLLATE utf8mb4_bin;
+------+
| c |
+------+
| AAA |
| BBB |
| aaa |
| bbb |
+------+
Note that because characters in different lettercases have different numeric values, a binary
 collation produces a case-sensitive ordering. However, the order
 differs from that for the case-sensitive collation.

If you require that comparison and sorting operations use the
 sorting rules of a particular language, choose a language-specific
 collation. For example, if you store strings using the utf8mb4 character set, the default collation
 (utf8mb4_0900_ai_ci) treats ch and ll as
 two-character strings. To use the traditional Spanish ordering that treats
 ch and ll as single characters that follow c and l,
 respectively, specify the utf8mb4_spanish2_ci collation. The two collations
 produce different results, as shown here:
mysql> CREATE TABLE t (c CHAR(2) CHARACTER SET utf8mb4);
mysql> INSERT INTO t (c) VALUES('cg'),('ch'),('ci'),('lk'),('ll'),('lm');
mysql> SELECT c FROM t ORDER BY c COLLATE utf8mb4_general_ci;
+------+
| c |
+------+
| cg |
| ch |
| ci |
| lk |
| ll |
| lm |
+------+
mysql> SELECT c FROM t ORDER BY c COLLATE utf8mb4_spanish2_ci;
+------+
| c |
+------+
| cg |
| ci |
| ch |
| lk |
| lm |
| ll |
+------+
Ideally, set the collation in the column definition in case you are not using the default collation by running the following:

mysql> CREATE TABLE t (c CHAR(2) CHARACTER SET utf8mb4 COLLATE utf8mb4_spanish2_ci);

 This will make sure to avoid possible query performance degradation during sort operations by using wrong collation.

7.2 Choosing a String Data Type
Problem
You want to store string data but aren’t sure which data type is the most appropriate.

Solution
Choose the data type according to the characteristics of the
 information to be stored and how you need to use it. Consider questions
 such as these:
	Are the strings binary or nonbinary?

	Does case sensitivity matter?

	What is the maximum string length?

	Do you want to store fixed- or variable-length values?

	Do you need to retain trailing spaces?

	Is there a fixed set of permitted values?

Discussion
MySQL provides several binary and nonbinary string data types. These types come
 in pairs, as shown in the following table. The maximum length is in
 bytes, whether the type is binary or nonbinary. For nonbinary types, the
 maximum number of characters is less for strings
 that contain multibyte characters, as we show in Table 7-1.
Table 7-1. Maximum number of characters per data type	Binary data type	Nonbinary data type	Maximum length
	BINARY 	CHAR 	255
	VARBINARY 	VARCHAR 	65,535
	TINYBLOB 	TINYTEXT 	255
	BLOB 	TEXT 	65,535
	MEDIUMBLOB 	MEDIUMTEXT 	16,777,215
	LONGBLOB 	LONGTEXT 	4,294,967,295

For the BINARY and CHAR data types, MySQL stores column values using a fixed width. For
 example, values stored in a BINARY(10) or CHAR(10) column always take 10 bytes or 10
 characters, respectively. Shorter values are padded to the required
 length as necessary when stored. For BINARY, the pad value is 0x00 (the zero-valued byte, also known as
 ASCII NUL). CHAR values are
 padded with spaces for storage, and trailing spaces are stripped upon
 retrieval.
For VARBINARY, VARCHAR, and the BLOB and TEXT types, MySQL stores values using only as much storage as
 required, up to the maximum column length. No padding is added or
 stripped when values are stored or retrieved.
To preserve trailing pad values that are present in the original
 strings that are stored, use a data type for which no stripping occurs.
 For example, if you store character (nonbinary) strings that might end
 with spaces and want to preserve them, use VARCHAR or one of the TEXT data types. The following statements
 illustrate the difference in trailing-space handling for CHAR and VARCHAR columns:
mysql> DROP TABLE IF EXISTS t;
mysql> CREATE TABLE t (c1 CHAR(10), c2 VARCHAR(10));
mysql> INSERT INTO t (c1,c2) VALUES('abc ','abc ');
mysql> SELECT c1, c2, CHAR_LENGTH(c1), CHAR_LENGTH(c2) FROM t;
+------+------------+-----------------+-----------------+
| c1 | c2 | CHAR_LENGTH(c1) | CHAR_LENGTH(c2) |
+------+------------+-----------------+-----------------+
| abc | abc | 3 | 10 |
+------+------------+-----------------+-----------------+
This shows that if you store a string that contains trailing
 spaces into a CHAR column, they’re
 removed when you retrieve the value.
A table can include a mix of binary and nonbinary string columns,
 and its nonbinary columns can use different character sets and
 collations. When you declare a nonbinary string column, use the CHARACTER SET and COLLATE attributes if you require a particular
 character set and collation. For example, if you need to store utf8mb4 (Unicode)
 and sjis (Japanese) strings, you
 might define a table with two columns like this:
CREATE TABLE mytbl
(
 utf8str VARCHAR(100) CHARACTER SET utf8mb4 COLLATE utf8mb4_danish_ci,
 sjisstr VARCHAR(100) CHARACTER SET sjis COLLATE sjis_japanese_ci
);
The CHARACTER SET and COLLATE clauses are each optional in a column
 definition:
	If you specify CHARACTER
 SET and omit COLLATE, the default collation for the
 character set is used.

	If you specify COLLATE and
 omit CHARACTER SET, the character set implied by the
 collation name (the first part of the name) is used. For example,
 utf8mb4_danish_ci and sjis_japanese_ci imply utf8mb4 and sjis, respectively. This means that the
 CHARACTER SET attributes could have been omitted
 from the preceding CREATE
 TABLE statement.

	If you omit both CHARACTER
 SET and COLLATE, the column is assigned the table
 default character set and collation. A table definition can include
 those attributes following the closing parenthesis at the end of the
 CREATE TABLE statement. If present, they apply to
 columns that have no explicit character set or collation of their
 own. If omitted, the table defaults are taken from the database
 defaults. You can specify the database defaults when you create the
 database with the CREATE
 DATABASE statement. The server
 defaults apply to the database if they are omitted.

The server default character set and collation for MySQL 8.0 are utf8mb4 and utf8mb4_0900_ai_ci, so strings by default use
 the utf8mb4 character set and are not
 case sensitive. To change this, set the character_set_server and collation_server system variables at server startup (see Recipe 22.1).
MySQL also supports ENUM and
 SET string types, which are used for
 columns that have a fixed set of permitted values. The CHARACTER SET and COLLATE attributes apply to these data types
 as well.

7.3 Setting the Client Connection Character Set
Problem
You’re executing SQL statements or producing query results that don’t use
 the default character set.

Solution
Use SET NAMES or an equivalent method to set your connection to the proper
 character set.

Discussion
When you send information back and forth between your application
 and the server, you may need to tell MySQL the appropriate character
 set. For example, the default character set is latin1, but that may not always be the proper
 character set to use for connections to the server. If you have Greek
 data, displaying it using latin1 will
 result in gibberish on your screen. If you use Unicode strings
 in the utf8mb4 character
 set, latin1 might not be sufficient
 to represent all the characters that you might need.
To deal with this problem, configure your connection to use the
 appropriate character set. You have several ways to do this:
	Issue a SET NAMES statement after you connect:
mysql> SET NAMES 'utf8mb4';
SET NAMES permits the connection collation to
 be specified as well:
mysql> SET NAMES 'utf8mb4' COLLATE 'utf8mb4_0900_ai_ci';

	If your client program supports the --default-character-set option,
 you can use it to specify the character set at program invocation
 time. mysql is one such program.
 Put the option in an option file so that it takes effect each time
 you connect to the server:
[mysql]
default-character-set=utf8mb4

	If you set the environment for your working environment using the LANG or LC_ALL environment variable on Unix, or
 the code page setting on Windows, MySQL client programs
 automatically detect which character set to use. For example,
 setting LC_ALL to en_US.UTF-8 causes programs such as
 mysql to use utf8.

	Some programming interfaces provide their own method of
 setting the character set. For example, MySQL Connector/J for Java
 clients detects the character set used on the server side
 automatically when you connect, but you can specify a different set
 explicitly using the characterEncoding property in the
 connection URL. The property value should be the Java-style
 character-set name. To select utf8mb4, you might use a connection URL like
 this:
jdbc:mysql://localhost/cookbook?characterEncoding=UTF-8
This is preferable to SET
 NAMES because Connector/J
 performs character-set conversion on behalf of the application but
 is unaware of which character set applies if you use SET NAMES. Similar principles apply to
 programs written for other APIs. For PHP Data Objects (PDO), use a charset option in your data source name
 (DSN) string (this works in PHP 5.3.6 or later):
$dsn = "mysql:host=localhost;dbname=cookbook;charset=utf8mb4";
For Connector/Python, specify a charset connection parameter:
conn_params = {
 "database": "cookbook",
 "host": "localhost",
 "user": "cbuser",
 "password": "cbpass",
 "charset": "utf8mb4",
}
For Go, specify a charset connection parameter:
db, err := sql.Open("mysql",
 "cbuser:cbpass@tcp(127.0.0.1:3306)/cookbook?charset=utf8mb4")
Some APIs may also provide a parameter to specify the
 collation.

Note
Some character sets cannot be used as the connection character
 set: utf16, utf16le, and utf32.

You should also ensure that the character set used by your display
 device matches what you use for MySQL. Otherwise, even with MySQL
 handling the data properly, it might display as garbage. Suppose that
 you use the mysql program in a
 terminal window and that you configure MySQL to use utf8mb4 and store utf8mb4-encoded Turkish data. If you set your
 terminal window to use euc-tr encoding,
 that is also Turkish but its encoding for Turkish characters differs
 from utf8mb4, so the data will not
 display as you expect. (If you use autodetection, this should not be an
 issue.)
In the following example, Turkish characters inserted in a table will show up
 garbled in a connection made with a different character set:

mysql> DROP TABLE IF EXISTS t;
mysql> CREATE TABLE t (c CHAR(3) CHARACTER SET utf8mb4);
mysql> INSERT INTO t (c) VALUES('iii'),('şşş'),('ööö'),('ççç');
From another connection, using the Latin1 client
 character set will result in the following:
mysql> \s

mysql Ver 8.0.27 for Linux on x86_64 (MySQL Community Server - GPL)
...
Server characterset: utf8mb4
Db characterset: utf8mb4
Client characterset: latin1
Conn. characterset: latin1
...
SELECT c from t;
+------+
| c |
+------+
| iii |
| ??? |
| ��� |
| ��� |
+------+
To verify that you’re connected with the correct character set to the MySQL
 command-line interface, issue the following to show the status:
mysql> \s

mysql Ver 8.0.27 for Linux on x86_64 (MySQL Community Server - GPL)
...
Server characterset:	utf8mb4
Db characterset:	utf8mb4
Client characterset:	utf8mb4
Conn. characterset:	utf8mb4
...
SELECT c from t;
+------+
| c |
+------+
| iii |
| şşş |
| ööö |
| ççç |
+------+

7.4 Writing String Literals
Problem
You need to write literal strings in SQL statements.

Solution
Learn the syntax rules that govern string values.

Discussion
You can write strings several ways:
	Enclose the text of the string within single quotes or double quotes:
'my string'
"my string"
When the ANSI_QUOTES SQL
 mode is enabled, you cannot use double quotes for quoting
 strings: the server interprets a double quote as the quoting character
 for identifiers such as table or column names and not for strings
 (see Recipe 4.6). If you adopt the
 convention of always writing quoted strings using single quotes,
 MySQL interprets them as strings and not as identifiers regardless
 of the ANSI_QUOTES
 setting.

	Use hexadecimal notation. Each pair of hex digits produces
 one byte of the string. abcd can
 be written using any of these formats:
0x61626364
X'61626364'
x'61626364'
MySQL treats strings written using hex notation as binary strings. Not
 coincidentally, it’s common for applications to use hex strings when
 constructing SQL statements that refer to binary values:
INSERT INTO t SET binary_col = 0xdeadbeef;

	To specify a character set for interpretation of a literal
 string, use an introducer consisting of a character-set name
 preceded by an underscore:
_utf8mb4 'abcd'
_utf16 'abcd'
An introducer tells the server how to interpret the string
 that follows it. For _utf8mb4
 'abcd', the server produces a
 string consisting of four single-byte characters. For _ucs2 'abcd', the server produces a string
 consisting of two two-byte characters because ucs2 is a double-byte character
 set.

To ensure that a string is a binary string or that a nonbinary
 string has a specific character set or collation, use the instructions
 for string conversion given in Recipe 7.5.
A quoted string that includes the same quote character produces a syntax error if executed by an API or in the mysql batch mode:
mysql -e "SELECT 'I'm asleep'"
ERROR 1064 (42000) at line 1: You have an error in your SQL syntax; ↩
check the manual that corresponds to your MySQL server version ↩
for the right syntax to use near 'asleep'' at line 1

 If executed interactively by the mysql client, it waits for the closing quote:

mysql> SELECT 'I'm asleep';
 '>
 '> '\c
mysql>
You have several ways to deal with this:
	Enclose a string containing single quotes within double quotes
 (assuming that ANSI_QUOTES is
 disabled), or enclose a string containing double quotes within
 single quotes:
mysql> SELECT "I'm asleep", 'He said, "Boo!"';
+------------+-----------------+
| I'm asleep | He said, "Boo!" |
+------------+-----------------+
| I'm asleep | He said, "Boo!" |
+------------+-----------------+

	To include a quote character within a string quoted by the same kind of quote,
 double the quote or precede it with a backslash. When MySQL reads
 the statement, it strips the extra quote or the backslash:
mysql> SELECT 'I''m asleep', 'I\'m wide awake';
+------------+----------------+
| I'm asleep | I'm wide awake |
+------------+----------------+
| I'm asleep | I'm wide awake |
+------------+----------------+
mysql> SELECT "He said, ""Boo!""", "And I said, \"Yikes!\"";
+-----------------+----------------------+
| He said, "Boo!" | And I said, "Yikes!" |
+-----------------+----------------------+
| He said, "Boo!" | And I said, "Yikes!" |
+-----------------+----------------------+
A backslash turns off any special meaning of the following
 character, including itself. To write a literal backslash within a
 string, double it:
mysql> SELECT 'Install MySQL in C:\\mysql on Windows';
+--------------------------------------+
| Install MySQL in C:\mysql on Windows |
+--------------------------------------+
| Install MySQL in C:\mysql on Windows |
+--------------------------------------+
Backslash causes a temporary escape from normal string
 processing rules, so sequences such as \', \",
 and \\ are called escape
 sequences. Others recognized by MySQL are \b (backspace), \n (newline, also called linefeed),
 \r (carriage return), \t (tab), and \0 (ASCII NUL).

	Write the string as a hex value:
mysql> SELECT 0x49276D2061736C656570;
+------------------------+
| 0x49276D2061736C656570 |
+------------------------+
| I'm asleep |
+------------------------+

Warning

 Starting from version 8.0, mysql client is running with the --binary-as-hex option by default. If you do not disable this option, you will get binary output as hex values. For example, for the preceding command, you’ll see the following:

mysql> SELECT 0x49276D2061736C656570;
+--+
| 0x49276D2061736C656570 |
+--+
| 0x49276D2061736C656570 |
+--+
1 row in set (0,00 sec)

 To get human-readable output, start the mysql client with the --binary-as-hex=0 option.

See Also
If you execute SQL statements from within a program, you can refer
 to strings or binary values symbolically and let your programming
 interface take care of quoting: use the placeholder mechanism provided
 by the language’s database-access API (see Recipe 4.5). Alternatively, load binary values
 such as images from files using the LOAD_FILE()
 function (see the MySQL documentation).

7.5 Checking or Changing a String’s Character Set or Collation
Problem
You want to know the character set or collation of a string or change a string
 to some other character set or collation.

Solution
To check a string’s character set or collation, use the CHARSET() or
 COLLATION() function. To change its
 character set, use the CONVERT() function.
 To change its collation, use the COLLATE
 operator.

Discussion
For a table created as follows, you know that values stored in the
 column c have a character set of
 utf8 and a collation of utf8_danish_ci:
CREATE TABLE t (c CHAR(10) CHARACTER SET utf8mb4 COLLATE utf8mb4_danish_ci);
But sometimes it’s not so clear what character set or collation
 applies to a string. Server configuration can affect literal strings and
 some string functions, and other string functions return values in a
 specific character set. Symptoms that you have the wrong character set
 or collation are that a collation-mismatch error occurs for a comparison
 operation, or a lettercase conversion doesn’t work properly.
To determine a string’s character set or collation, use the
 CHARSET() or COLLATION() function. For example, did you
 know that the USER() function
 returns a Unicode string?
mysql> SELECT USER(), CHARSET(USER()), COLLATION(USER());
+------------------+-----------------+-------------------+
| USER() | CHARSET(USER()) | COLLATION(USER()) |
+------------------+-----------------+-------------------+
| cbuser@localhost | utf8mb3 | utf8_general_ci |
+------------------+-----------------+-------------------+
String values that take their character set and collation from the
 current client configuration may change properties if the configuration
 changes. This is true for literal strings:
mysql> SET NAMES 'utf8mb4';
mysql> SELECT CHARSET('abc'), COLLATION('abc');
+----------------+--------------------+
| CHARSET('abc') | COLLATION('abc') |
+----------------+--------------------+
| utf8mb4 | utf8mb4_0900_ai_ci|
+----------------+--------------------+
mysql> SET NAMES 'utf8mb4' COLLATE 'utf8mb4_bin';
mysql> SELECT CHARSET('abc'), COLLATION('abc');
+----------------+------------------+
| CHARSET('abc') | COLLATION('abc') |
+----------------+------------------+
| utf8mb4 | utf8mb4_bin |
+----------------+------------------+
For a binary string, the CHARSET() or COLLATION() function returns a value of
 binary, which means that the string
 is compared and sorted based on numeric byte values, not character
 collation values.
To convert a string from one character set to another, use the
 CONVERT() function:
mysql> SET @s1 = _latin1 'my string', @s2 = CONVERT(@s1 USING utf8mb4);
mysql> SELECT CHARSET(@s1), CHARSET(@s2);
+--------------+--------------+
| CHARSET(@s1) | CHARSET(@s2) |
+--------------+--------------+
| latin1 | utf8mb4 |
+--------------+--------------+
To change the collation of a string, use the COLLATE operator:
mysql> SET @s1 = _latin1 'my string', @s2 = @s1 COLLATE latin1_spanish_ci;
mysql> SELECT COLLATION(@s1), COLLATION(@s2);
+-------------------+-------------------+
| COLLATION(@s1) | COLLATION(@s2) |
+-------------------+-------------------+
| latin1_swedish_ci | latin1_spanish_ci |
+-------------------+-------------------+
The new collation must be legal for the character set of the
 string. For example, you can use the utf8_general_ci collation with utf8mb3 strings but not with latin1 strings:
mysql> SELECT _latin1 'abc' COLLATE utf8_bin;
ERROR 1253 (42000): COLLATION 'utf8_bin' is not valid for
CHARACTER SET 'latin1'
To convert both the character set and collation of a string, use
 CONVERT() to change the character
 set, and apply the COLLATE operator
 to the result:
mysql> SET @s1 = _latin1 'my string';
mysql> SET @s2 = CONVERT(@s1 USING utf8mb4) COLLATE utf8mb4_spanish_ci;
mysql> SELECT CHARSET(@s1), COLLATION(@s1), CHARSET(@s2), COLLATION(@s2);
+--------------+-------------------+--------------+-----------------+
| CHARSET(@s1) | COLLATION(@s1) | CHARSET(@s2) | COLLATION(@s2) |
+--------------+-------------------+--------------+-----------------+
| latin1 | latin1_swedish_ci | utf8 | utf8_spanish_ci |
+--------------+-------------------+--------------+-----------------+
The CONVERT() function can also
 convert binary strings to nonbinary strings and vice versa. To produce a
 binary string, use binary; any other
 character-set name produces a nonbinary string:
mysql> SET @s1 = _latin1 'my string';
mysql> SET @s2 = CONVERT(@s1 USING binary);
mysql> SET @s3 = CONVERT(@s2 USING utf8mb4);
mysql> SELECT CHARSET(@s1), CHARSET(@s2), CHARSET(@s3);
+--------------+--------------+--------------+
| CHARSET(@s1) | CHARSET(@s2) | CHARSET(@s3) |
+--------------+--------------+--------------+
| latin1 | binary | utf8mb4 |
+--------------+--------------+--------------+
Alternatively, produce binary strings using the CAST function, which is equivalent to CONVERT(str
 USING binary):
mysql> SELECT CHARSET(CAST(_utf8mb4 'my string' AS binary));
+---+
| CHARSET(CAST(_utf8mb4 'my string' AS binary)) |
+---+
| binary |
+---+
See also Recipe 7.3 for more
 information on character sets.

7.6 Converting the Lettercase of a String
Problem
You want to convert a string to uppercase or lowercase.

Solution
Use the UPPER() or LOWER() function. If they don’t work, you’re probably trying to convert a
 binary string. Convert it to a nonbinary string that has a character set
 and collation and is subject to case mapping.

Discussion
The UPPER() and LOWER() functions convert the lettercase of a
 string:
mysql> SELECT thing, UPPER(thing), LOWER(thing) FROM limbs;
+--------------+--------------+--------------+
| thing | UPPER(thing) | LOWER(thing) |
+--------------+--------------+--------------+
human	HUMAN	human
insect	INSECT	insect
squid	SQUID	squid
fish	FISH	fish
centipede	CENTIPEDE	centipede
table	TABLE	table
armchair	ARMCHAIR	armchair
phonograph	PHONOGRAPH	phonograph
tripod	TRIPOD	tripod
Peg Leg Pete	PEG LEG PETE	peg leg pete
space alien	SPACE ALIEN	space alien
+--------------+--------------+--------------+
But some strings are stubborn and resist lettercase
 conversion. To get human-readable output, start the mysql client with binary-as-hex=0 option:

mysql> CREATE TABLE t (b VARBINARY(10)) SELECT 'aBcD' AS b;
mysql> SELECT b, UPPER(b), LOWER(b) FROM t;
+------+----------+----------+
| b | UPPER(b) | LOWER(b) |
+------+----------+----------+
| aBcD | aBcD | aBcD |
+------+----------+----------+
This problem occurs for strings that have a BINARY or BLOB data type. These are binary strings that
 have no character set or collation. Lettercase does not apply, and
 UPPER() and LOWER() do nothing.
To map a binary string to a given lettercase, convert it to a nonbinary string, choosing a character set
 that has uppercase and lowercase characters. The case-conversion
 functions then work as you expect because the collation provides case
 mapping:
mysql> SELECT b,
 -> UPPER(CONVERT(b USING utf8mb4)) AS upper,
 -> LOWER(CONVERT(b USING utf8mb4)) AS lower
 -> FROM t;
+------+-------+-------+
| b | upper | lower |
+------+-------+-------+
| aBcD | ABCD | abcd |
+------+-------+-------+
The example uses a table column, but the same principles apply to
 binary string literals and string expressions.
If you’re not sure whether a string expression is binary or
 nonbinary, use the CHARSET() function to find out; see Recipe 7.5.
To convert the lettercase of only part of a string, break it into
 pieces, convert the relevant piece, and put the pieces back together.
 Suppose that you want to convert only the initial character of a string
 to uppercase. The following expression accomplishes that:
CONCAT(UPPER(LEFT(str,1)),MID(str,2))
But it’s ugly to write an expression like that each time you need
 it. For convenience, define a stored function:
mysql> CREATE FUNCTION initial_cap (s VARCHAR(255))
 -> RETURNS VARCHAR(255) DETERMINISTIC
 -> RETURN CONCAT(UPPER(LEFT(s,1)),MID(s,2));
Then you can capitalize initial characters more easily:
mysql> SELECT thing, initial_cap(thing) FROM limbs;
+--------------+--------------------+
| thing | initial_cap(thing) |
+--------------+--------------------+
human	Human
insect	Insect
squid	Squid
fish	Fish
centipede	Centipede
table	Table
armchair	Armchair
phonograph	Phonograph
tripod	Tripod
Peg Leg Pete	Peg Leg Pete
space alien	Space alien
+--------------+--------------------+
For more information about writing stored functions, see Chapter 11.

7.7 Comparing String Values
Problem
You want to know whether strings are equal or unequal or which appears
 first in lexical order.

Solution
Use a comparison operator. But remember that strings have properties such as case
 sensitivity that you must take into account. A string comparison might
 be case sensitive when you don’t want it to be, or vice versa.
As is the case with other data types, you can compare string values for
 equality, inequality, or relative ordering:
mysql> SELECT 'cat' = 'cat', 'cat' = 'dog', 'cat' <> 'cat', 'cat' <> 'dog';
+---------------+---------------+----------------+----------------+
| 'cat' = 'cat' | 'cat' = 'dog' | 'cat' <> 'cat' | 'cat' <> 'dog' |
+---------------+---------------+----------------+----------------+
| 1 | 0 | 0 | 1 |
+---------------+---------------+----------------+----------------+
mysql> SELECT 'cat' < 'auk', 'cat' < 'dog', 'cat' BETWEEN 'auk' AND 'eel';
+---------------+---------------+-------------------------------+
| 'cat' < 'auk' | 'cat' < 'dog' | 'cat' BETWEEN 'auk' AND 'eel' |
+---------------+---------------+-------------------------------+
| 0 | 1 | 1 |
+---------------+---------------+-------------------------------+

Discussion
However, comparison and sorting properties of strings are subject
 to complications that don’t apply to other types of data. For example,
 sometimes you must ensure that a string comparison is case sensitive
 that would not otherwise be, or vice versa. This section describes how
 to do that.
String comparison properties depend on whether the operands are
 binary or nonbinary strings:
	A binary string is a sequence of bytes and is compared using numeric byte
 values. Lettercase has no meaning. However, because letters in
 different cases have different byte values, comparisons of binary
 strings effectively are case sensitive. (That is, a and A
 are unequal.) To compare binary strings such that lettercase does
 not matter, convert them to nonbinary strings that have a
 case-insensitive collation.

	A nonbinary string is a sequence of characters and is compared in character
 units. (Depending on the character set, some characters might have
 multiple bytes.) The string has a character set that defines the
 legal characters and a collation that defines their sort order. The
 collation also determines whether to consider characters in
 different lettercases the same in comparisons. If the collation is
 case sensitive, and you want a case-insensitive collation (or vice
 versa), convert the strings to use a collation with the desired
 case-comparison properties.

By default, strings have a character set of utf8mb4 and a collation of utf8mb4_0900_ai_ci unless you reconfigure the
 server (see Recipe 22.1). This results in
 case-insensitive string comparisons.
The following example shows how two binary strings that compare as
 unequal can be handled so that they are equal when compared as
 case-insensitive nonbinary strings:
mysql> SET @s1 = CAST('cat' AS BINARY), @s2 = CAST('CAT' AS BINARY);
mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |
+-----------+
| 0 |
+-----------+
mysql> SET @s1 = CONVERT(@s1 USING utf8mb4) COLLATE utf8mb4_0900_ai_ci;
mysql> SET @s2 = CONVERT(@s2 USING utf8mb4) COLLATE utf8mb4_0900_ai_ci;
mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |
+-----------+
| 1 |
+-----------+
In this case, because utf8mb4_0900_ai_ci is the default collation for
 utf8mb4, you can omit the COLLATE operator:
mysql> SET @s1 = CONVERT(@s1 USING utf8mb4);
mysql> SET @s2 = CONVERT(@s2 USING utf8mb4);
mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |
+-----------+
| 1 |
+-----------+
The next example shows how to compare, in case-sensitive fashion,
 two strings that are not case sensitive:
mysql> SET @s1 = _latin1 'cat', @s2 = _latin1 'CAT';
mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |
+-----------+
| 1 |
+-----------+
mysql> SELECT @s1 COLLATE latin1_general_cs = @s2 COLLATE latin1_general_cs
 -> AS '@s1 = @s2';
+-----------+
| @s1 = @s2 |
+-----------+
| 0 |
+-----------+
If you compare a binary string with a nonbinary string, the
 comparison treats both operands as binary strings:
mysql> SELECT _latin1 'cat' = CAST('CAT' AS BINARY);
+---------------------------------------+
| _latin1 'cat' = CAST('CAT' AS BINARY) |
+---------------------------------------+
| 0 |
+---------------------------------------+
Thus, to compare two nonbinary strings as binary strings, cast them as the
 BINARY data type to either one
 when comparing them:
mysql> SET @s1 = _latin1 'cat', @s2 = _latin1 'CAT';
mysql> SELECT @s1 = @s2, CAST(@s1 AS BINARY) = @s2, @s1 = CAST(@s2 AS BINARY);
+-----------+---------------------------+---------------------------+
| @s1 = @s2 | CAST(@s1 AS BINARY) = @s2 | @s1 = CAST(@s2 AS BINARY) |
+-----------+---------------------------+---------------------------+
| 1 | 0 | 0 |
+-----------+---------------------------+---------------------------+
If you find that you’ve declared a column using a type not suited
 to the kind of comparisons for which you typically use it, use ALTER TABLE
 to change the type. Suppose that this table stores news
 articles:
CREATE TABLE news
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 article BLOB,
 PRIMARY KEY (id)
);
Here the article column is
 declared as a BLOB. That is a binary
 string type, so comparisons of text stored in the column are made
 without regard to character set. (In effect, they are case sensitive.)
 If that’s not what you want, use ALTER TABLE
 to convert the column to a nonbinary type that has a case-insensitive collation:
ALTER TABLE news
 MODIFY article TEXT CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci;

7.8 Converting Between Decimal, Octal, and Hexadecimal Formats
Problem

 You want to convert from one numeric base to another.

Solution

 Use the CONV() function and SQL pattern described in this
 section.

Discussion

 It is difficult to operate literals as text strings in some formats such as HEX. An alternative
 method is to convert them to binary values. This will produce a data type with a value of BINARY(16) that is
 128 bits long. Using BIN(), OCT(), and HEX() functions to convert
 between decimal numbers to binary, octal, and hexadecimal is already possible. What if we need to do the reverse? This is where the
 CONV() function comes in handy. With the CONV() function, we can convert from one
 numeric base system to another.

 The syntax to use the CONV() function is as follows:

 CONV(number, from_base, to_base)

	A number is a value that we
 want to convert from one numeric base to another.

	A from_base is the original base value of the
 numeric base limited to a value between 2 and 36.

	A to_base is the target value of the
 numeric base. This value can be between 2 and 36 or -2 and -36:

mysql> SELECT CONV(8, 10, 2) AS DectoBin;
+----------+
| DectoBin |
+----------+
| 1000 |
+----------+
Similar to the BIN() function, we get the same result, although the
	BIN() function returns a string:
	
mysql> SELECT BIN(8);
+--------+
| BIN(8) |
+--------+
| 1000 |
+--------+

	
Likewise, we can convert values between one another in reverse:
	
mysql> SELECT CONV('F', 16, 10) AS Hex2Dec;
+---------+
| Hex2Dec |
+---------+
| 15 |
+---------+

7.9 Converting Between ASCII, BIT, and Hexadecimal Formats
Problem

 You want to convert from one string format to another.

Solution

 Use the MySQL CHAR(), ASCII(), and BIT_LENGTH() functions
 and SQL pattern described in this section.

Discussion

 There are many powerful string functions to support MySQL’s string operations. In different use cases, we may have to
 convert them to have different results. Using some of the string functions, such as ASCII(),
 we can convert between other formats like BIT and HEX.

 The syntax to use the ASCII() function is as follows:

 ASCII(character);

Note
The ASCII() function returns only the left-most character’s numeric
 value of the string. This is similar to MySQL’s ORD() function.

mysql> SELECT ASCII("LARA");
+---------------+
| ASCII("LARA") |
+---------------+
| 76 |
+---------------+
mysql> SELECT ASCII("L");
+---------------+
| ASCII("L") |
+---------------+
| 76 |
+---------------+
As you can see, the result is the same for both strings. The function takes only the leftmost character of the string.

In the following example, we will convert a string value to HEX format:
	
mysql> SELECT DISTINCT CONV(ASCII("LARA"),10,16) as ASCII2HEX;
+-----------+
| ASCII2HEX |
+-----------+
| 4C |
+-----------+
Say we have table name and want to get all unique last_name from this
 table in HEX format:
	
mysql> SELECT DISTINCT CONV(ASCII(last_name),10,16) from name;
+------------------------------+
| CONV(ASCII(last_name),10,16) |
+------------------------------+
| 42 |
| 47 |
| 57 |
+------------------------------+

	
Bit operations before MySQL 8.0 handled unsigned 64-bit integer values. After MySQL 8.0,
	bit operations extended to handle binary string arguments. This allowed strings that are not
	integers or binary strings to be converted. A UUID (Universal Unique Identifier) specified by
	RFC 4122 is a 128-bit globally unique value when complete uniqueness is required. UUIDs also come in handy for security purposes since they don’t reveal any information about data.
	A UUID is represented in human-readable format as utf8mb4 with the string of five hexadecimal numbers.
	A good example is converting a UUID value to binary by using the UUID_TO_BIN function (we are running mysql with the binary-as-hex option):
	
mysql> SELECT UUID();
+--------------------------------------+
| UUID() |
+--------------------------------------+
| e52e0524-385b-11ec-99b1-054a662275e4 |
+--------------------------------------+

	
mysql> SELECT UUID_TO_BIN(UUID());
+--+
| UUID_TO_BIN(UUID()) |
+--+
| 0xB8D11A66134E11ECB46CC15B8175C680 |
+--+

Later, we can convert this value to compare the bit count using the BIT_COUNT() function.
This function is mainly used to identify active bits in a given input:
	
mysql> select UUID_TO_BIN(UUID()) into @bin_uuid;
mysql> select BIT_COUNT(@bin_uuid);
+----------------------+
| BIT_COUNT(@bin_uuid) |
+----------------------+
| 57 |
+----------------------+

The purpose of the BIT_COUNT() function is to identify active bits in a given decimal value, for example, if we wanted to identify the active bits in number 18. Binary conversion of 18 is 10010; hence, the active bits are only two:

mysql> select BIT_COUNT(18);
+---------------+
| BIT_COUNT(18) |
+---------------+
| 2 |
+---------------+
The BIT_COUNT() function can be combined with the BIT_OR() function to calculate the following problem.
The BIT_OR() function returns the bitwise or all the bits in an expression.
Say we want to find out the number of Sundays in the month of November. We will create a table called sundays:

mysql> CREATE TABLE sundays (
 year YEAR,
 month INT UNSIGNED ,
 day INT UNSIGNED
);

mysql> INSERT INTO sundays VALUES(2021,11,7),
 (2021,11,14),
 (2021,11,21),
 (2021,11,28);

mysql> SELECT year, month, BIT_COUNT(BIT_OR(1 << day)) AS 'Number of Sundays'
 -> FROM sundays GROUP BY year,month;

+------+-------+-------------------+
| year | month | Number of Sundays |
+------+-------+-------------------+
| 2021 | 11 | 4 |
+------+-------+-------------------+

This example can be extended to find the number of holidays in a given calendar year or date range.

Another use case is IPv6 and IPv4 network addresses that are string values by default. To return
the binary value to represent it in numeric format, the INET_ATON() function can be used. This function converts
the dotted-quad IPv4 address string representation to a numeric value. While use cases for this function may vary, it is widely
used for storing the source and destination of IP addresses for data.
Once the IPv4 address is stored in a numeric value, it can be indexed and processed faster:
	
mysql> SELECT INET_ATON('10.0.2.1');
+-----------------------+
| INET_ATON('10.0.2.1') |
+-----------------------+
| 167772673 |
+-----------------------+

mysql> SELECT HEX(INET6_ATON('10.0.2.1'));
+-----------------------------+
| HEX(INET6_ATON('10.0.2.1')) |
+-----------------------------+
| 0A000201 |
+-----------------------------+

7.10 Pattern Matching with SQL Patterns
Problem
You want to perform a pattern match, not a literal comparison.

Solution
Use the LIKE operator and
 a SQL pattern, described in this section. Or use a
 regular-expression pattern match, described in Recipe 7.11.

Discussion
Patterns are strings that contain special characters known as
 metacharacters because they stand for something other than
 themselves. MySQL provides two kinds of pattern matching. One is based
 on SQL patterns and the other on regular expressions. SQL patterns are
 more standard among different database systems, but regular expressions
 are more powerful. The two kinds of pattern match use different
 operators and different metacharacters. This section describes SQL
 patterns. Recipe 7.11 describes
 regular expressions.
The example here uses a table named metal that contains the following rows:
+----------+
| name |
+----------+
| gold |
| iron |
| lead |
| mercury |
| platinum |
| tin |
+----------+
SQL pattern matching uses the LIKE and NOT LIKE
 operators rather than = and
 <> to perform matching against
 a pattern string. Patterns may contain two special metacharacters: _
 matches any single character, and % matches any
 sequence of characters, including the empty string. You can use these
 characters to create patterns that match a variety of values:
	Strings that begin with a particular substring:
mysql> SELECT name FROM metal WHERE name LIKE 'me%';
+---------+
| name |
+---------+
| mercury |
+---------+

	Strings that end with a particular substring:
mysql> SELECT name FROM metal WHERE name LIKE '%d';
+------+
| name |
+------+
| gold |
| lead |
+------+

	Strings that contain a particular substring at any
 position:
mysql> SELECT name FROM metal WHERE name LIKE '%in%';
+----------+
| name |
+----------+
| platinum |
| tin |
+----------+

	Strings that contain a substring at a specific position (the
 pattern matches only if at occurs
 at the third position of the name
 column):
mysql> SELECT name FROM metal where name LIKE '__at%';
+----------+
| name |
+----------+
| platinum |
+----------+

A SQL pattern matches successfully only if it matches the entire
 comparison value. Of the following two pattern matches, only the second
 succeeds:
'abc' LIKE 'b'
'abc' LIKE '%b%'
To reverse the sense of a pattern match, use NOT LIKE.
 The following statement finds strings that contain no i characters:
mysql> SELECT name FROM metal WHERE name NOT LIKE '%i%';
+---------+
| name |
+---------+
| gold |
| lead |
| mercury |
+---------+
SQL patterns do not match NULL
 values. This is true both for LIKE
 and for NOT LIKE:
mysql> SELECT NULL LIKE '%', NULL NOT LIKE '%';
+---------------+-------------------+
| NULL LIKE '%' | NULL NOT LIKE '%' |
+---------------+-------------------+
| NULL | NULL |
+---------------+-------------------+
In some cases, pattern matches are equivalent to substring
 comparisons. For example, using patterns to find strings at one end or
 the other of a string is like using LEFT() or
 RIGHT(), as shown in Table 7-2.
Table 7-2. Pattern match versus substring comparison	Pattern match	Substring comparison
	str LIKE 'abc%'	LEFT(str,3) = 'abc'
	str LIKE '%abc'	RIGHT(str,3) = 'abc'

If you’re matching against a column that is indexed and you have a
 choice of using a pattern or an equivalent LEFT() expression, you’ll likely find the
 pattern match to be faster. MySQL can use the index to narrow the search
 for a pattern that begins with a literal string. With LEFT(), it cannot. Also, a LIKE comparison with a %
 in the beginning can be slow due to the optimizer checking the entire content
 of the string.
Case sensitivity of a pattern match is like that of a string
 comparison. That is, it depends on whether the operands are binary or
 nonbinary strings, and for nonbinary strings, it depends on their
 collation. See Recipe 7.7 for
 a discussion of how these factors apply to comparisons.
Using Patterns with Nonstring Values
Unlike some other database systems, MySQL permits pattern
 matches to be applied to nonstring values such as numbers or dates,
 which can sometimes be useful. Table 7-3 shows some ways to
 test a DATE value d using function calls that extract date
 parts and using the equivalent pattern matches. The pairs of
 expressions are true for dates occurring in the year 1975, in the
 month of June, or on the 21st day of the month:
Table 7-3. Pattern matching for temporal data types	Function value test	Pattern match test
	YEAR(d) = 1975	d LIKE '1975-%'
	MONTH(d) = 6	d LIKE '%-06-%'
	DAYOFMONTH(d) = 21	d LIKE '%-21'

7.11 Pattern Matching with Regular Expressions
Problem
You want to perform a pattern match, not a literal comparison.

Solution
Use the REGEXP operator and a
 regular expression pattern, described in this section. Or
 use a SQL pattern, described in Recipe 7.10.

Discussion
SQL patterns (see Recipe 7.10)
 are likely to be implemented by other database systems, so they’re
 reasonably portable beyond MySQL. On the other hand, they’re somewhat
 limited. For example, you can easily write a SQL pattern, %abc%, to find strings that contain abc, but you cannot write a single SQL pattern
 to identify strings that contain any of the characters a, b, or
 c. Nor can you match string content
 based on character types such as letters or digits.
For such operations, MySQL supports another type of pattern-matching operation based on
 regular expressions and the REGEXP
 operator (or NOT REGEXP to reverse the sense of the match).
 REGEXP matching uses the pattern
 elements shown in Table 7-4.
Table 7-4. Popular regular expressions syntax	Pattern	What the pattern matches
	^	Beginning of string
	$	End of string
	.	Any single character
	[...]	Any character listed between
 the square brackets
	[^...]	Any character not listed
 between the square brackets
	p1|p2|p3	Alternation; matches any of
 the patterns p1,
 p2, or
 p3
	*	Zero or more instances of preceding element
	+	One or more instances of preceding element
	{n}	n
 instances of preceding element
	{m,n}	m
 through n instances of preceding
 element

You may already be familiar with these regular expression pattern
 characters; many of them are the same as those used by vi, grep,
 sed, and other Unix utilities that
 support regular expressions. Most of them are also used in the regular
 expressions understood by programming languages. (For a discussion of
 pattern matching in programs for data validation and transformation, see
 Chapter 14.)
Recipe 7.10 shows how to use
 SQL patterns to match substrings at the beginning or end of a string or
 at an arbitrary or specific position within a string. You can do the
 same things with regular expressions:
	Use the following for strings that begin with a particular substring:
mysql> SELECT name FROM metal WHERE name REGEXP '^me';
+---------+
| name |
+---------+
| mercury |
+---------+

	Use the following for strings that end with a particular substring:
mysql> SELECT name FROM metal WHERE name REGEXP 'd$';
+------+
| name |
+------+
| gold |
| lead |
+------+

	Use the following for strings that contain a particular substring at any
 position:
mysql> SELECT name FROM metal WHERE name REGEXP 'in';
+----------+
| name |
+----------+
| platinum |
| tin |
+----------+

	Use the following for strings that contain a particular substring at a specific
 position:
mysql> SELECT name FROM metal WHERE name REGEXP '^..at';
+----------+
| name |
+----------+
| platinum |
+----------+

In addition, regular expressions have other capabilities and can
 perform matches that SQL patterns cannot. For example, regular
 expressions can contain character classes, which match any character in the
 class:
	To write a character class, use square brackets and list the
 characters you want the class to match inside the brackets. Thus,
 the pattern [abc] matches
 a, b, or c.

	Classes can indicate ranges of characters; use a dash between
 the beginning and end of the range. [a-z] matches any letter, [0-9] matches digits, and [a-z0-9] matches letters or digits.

	To negate a character class (match any character but
 these), begin the list with a ^ character. For example, [^0-9] matches anything but digits.

MySQL’s regular-expression capabilities also support POSIX character classes. These match specific
 character sets, as described in Table 7-5:
Table 7-5. POSIX regular expressions syntax	POSIX class	What the class matches
	[:alnum:] 	Alphabetic and numeric characters
	[:alpha:] 	Alphabetic characters
	[:blank:] 	Whitespace (space or tab characters)
	[:cntrl:] 	Control characters
	[:digit:] 	Digits
	[:graph:] 	Graphic (nonblank) characters
	[:lower:] 	Lowercase alphabetic characters
	[:print:] 	Graphic or space characters
	[:punct:] 	Punctuation characters
	[:space:] 	Space, tab, newline, carriage return
	[:upper:] 	Uppercase alphabetic characters
	[:xdigit:] 	Hexadecimal digits (0-9,
 a-f, A-F)

POSIX classes are intended for use within character classes, so
 use them within square brackets. The following expression matches values
 that contain any hexadecimal digit character:
mysql> SELECT name, name REGEXP '[[:xdigit:]]' FROM metal;
+----------+----------------------------+
| name | name REGEXP '[[:xdigit:]]' |
+----------+----------------------------+
gold	1
iron	0
lead	1
mercury	1
platinum	1
tin	0
+----------+----------------------------+
Regular expressions can specify alternations using this
 syntax:
alternative1|alternative2|...
An alternation is similar to a character class in the sense that it matches
 if any of the alternatives match. But unlike a character class, the
 alternatives are not limited to single characters. They can be
 multiple-character strings or even patterns. The following alternation
 matches strings that begin with a vowel or end with d:
mysql> SELECT name FROM metal WHERE name REGEXP '^[aeiou]|d$';
+------+
| name |
+------+
| gold |
| iron |
| lead |
+------+
Parentheses can be used to group alternations. For example, to match
 strings that consist entirely of digits or entirely of letters, you
 might try this pattern, using an alternation:
mysql> SELECT '0m' REGEXP '^[[:digit:]]+|[[:alpha:]]+$';
+---+
| '0m' REGEXP '^[[:digit:]]+|[[:alpha:]]+$' |
+---+
| 1 |
+---+
However, as the query result shows, the pattern doesn’t work.
 That’s because the ^ groups with the
 first alternative, and the $ groups
 with the second alternative. So the pattern actually matches strings
 that begin with one or more digits, or strings that end with one or more
 letters. If you group the alternatives within parentheses, the ^ and $
 apply to both of them, and the pattern acts as you expect:
mysql> SELECT '0m' REGEXP '^([[:digit:]]+|[[:alpha:]]+)$';
+---+
| '0m' REGEXP '^([[:digit:]]+|[[:alpha:]]+)$' |
+---+
| 0 |
+---+
Unlike SQL pattern matches, which are successful only if the
 pattern matches the entire comparison value, regular expressions are
 successful if the pattern matches anywhere within the value. The
 following two pattern matches are equivalent in the sense that each one
 succeeds only for strings that contain a b character, but the first is more efficient
 because the pattern is simpler:
'abc' REGEXP 'b'
'abc' REGEXP '^.*b.*$'
Regular expressions do not match NULL values. This is true both for REGEXP and for NOT REGEXP:
mysql> SELECT NULL REGEXP '.*', NULL NOT REGEXP '.*';
+------------------+----------------------+
| NULL REGEXP '.*' | NULL NOT REGEXP '.*' |
+------------------+----------------------+
| NULL | NULL |
+------------------+----------------------+
Because a regular expression matches a string if the pattern is
 found anywhere in the string, you must take care not to inadvertently
 specify a pattern that matches the empty string. If you do, it matches
 any non-NULL value. For example, the
 pattern a* matches any number of
 a characters, even none. If your goal
 is to match only strings containing nonempty sequences of a characters, use a+ instead. The + requires one or more instances of the
 preceding pattern element for a match.
As with SQL pattern matches performed using LIKE, regular-expression matches performed
 with REGEXP sometimes are equivalent
 to substring comparisons. As shown in Table 7-6, the ^ and $
 metacharacters serve much the same purpose as LEFT() or RIGHT(), at least if you’re looking for literal strings.
Table 7-6. Regular expressions versus substring comparison functions	Pattern match	Substring comparison
	str REGEXP '^abc'	LEFT(str,3) = 'abc'
	str REGEXP 'abc$'	RIGHT(str,3) = 'abc'

For nonliteral patterns, it’s typically not possible to construct
 an equivalent substring comparison. For example, to match strings that
 begin with any nonempty sequence of digits, use this pattern
 match:
str REGEXP '^[0-9]+'

That is something that LEFT()
 cannot do (and neither can LIKE, for
 that matter).
Case sensitivity of a regular-expression match is like that of a
 string comparison. That is, it depends on whether the operands are
 binary or nonbinary strings, and for nonbinary strings, it depends on
 their collation. See Recipe 7.7 for
 a discussion of how these factors apply to comparisons.
Note
Prior to version 8.0.4, regular expressions worked only for single-byte character
 sets. In MySQL 8.0.4, this limitation was removed, and now you can use regular expressions with multibyte character sets such as
 utf8mb4 or sjis.

7.12 Reversing the String Content
Problem
You want to modify a string and find its reverse form.

Solution
Use the REVERSE() function.

Discussion
You can reverse a string or a substring by using
 the REVERSE() function. This function converts any string
 value into its reverse form by character. It’s also often used in SELECT
 statements, like many other functions in this chapter.

 The syntax to use the REVERSE() function is as follows:

 REVERSE(expression)

The following examples show the basic functionality of the REVERSE()
 function:
mysql> SELECT REVERSE("sports flow");
+------------------------+
| REVERSE("sports flow") |
+------------------------+
| wolf strops |
+------------------------+
mysql> SELECT REVERSE(0123456789);
+---------------------+
| REVERSE(0123456789) |
+---------------------+
| 987654321 |
+---------------------+
mysql> SELECT REVERSE("0123456789");
+-----------------------+
| REVERSE("0123456789") |
+-----------------------+
| 9876543210 |
+-----------------------+
The following example shows that when the expression is a numeric
	 value, the zero value is omitted by the function:
mysql> SELECT REVERSE(001122334455);
+-----------------------+
| REVERSE(001122334455) |
+-----------------------+
| 5544332211 |
+-----------------------+
While we can reverse any expression, some words return exactly the same
 written in reverse, known as a palindrome. For such strings, the REVERSE function will return a string equal to the original one, for example, as follows:
mysql> SELECT REVERSE("STEP ON NO PETS");
+----------------------------+
| REVERSE("STEP ON NO PETS") |
+----------------------------+
| STEP ON NO PETS |
+----------------------------+
The broader example uses the top_names table from the recipes distribution that stores the most commonly used names.
	Among these names, we’ll find out the number of palindromic names:
mysql> SELECT COUNT(*) FROM top_names WHERE REVERSE(top_name) = top_name;
+----------+
| COUNT(*) |
+----------+
| 234 |
+----------+
Just to get a sample from this count, we can have a look at names start with U.
mysql> SELECT top_name FROM top_names
 -> WHERE REVERSE(top_name) = top_name
 -> AND top_name LIKE "U%";
+----------+
| top_name |
+----------+
| ULU |
| UTU |
+----------+

7.13 Searching for Substrings
Problem
You want to know whether a given string occurs within another
 string.

Solution
Use LOCATE() or a pattern match.

Discussion
The LOCATE() function takes two
 arguments representing the substring that you’re looking for and the
 string in which to look for it. The return value is the position at
 which the substring occurs, or 0 if
 it’s not present. An optional third argument may be given to indicate
 the position within the string at which to start looking:
mysql> SELECT name, LOCATE('in',name), LOCATE('in',name,3) FROM metal;
+----------+-------------------+---------------------+
| name | LOCATE('in',name) | LOCATE('in',name,3) |
+----------+-------------------+---------------------+
gold	0	0
iron	0	0
lead	0	0
mercury	0	0
platinum	5	5
tin	2	0
+----------+-------------------+---------------------+
To determine only whether the substring is present if you don’t
 care about its position, an alternative is to use LIKE or REGEXP:
mysql> SELECT name, name LIKE '%in%', name REGEXP 'in' FROM metal;
+----------+------------------+------------------+
| name | name LIKE '%in%' | name REGEXP 'in' |
+----------+------------------+------------------+
gold	0	0
iron	0	0
lead	0	0
mercury	0	0
platinum	1	1
tin	1	1
+----------+------------------+------------------+
LOCATE(), LIKE, and REGEXP use the collation of their arguments to
 determine whether the search is case sensitive. Recipes 7.5 and 7.7
 discuss changing the argument comparison properties if you want to
 change the search behavior.

7.14 Breaking Apart or Combining Strings
Problem
You want to extract a piece of a string or combine strings to form a larger
 string.

Solution
To obtain a piece of a string, use a substring-extraction
 function. To combine strings, use CONCAT().

Discussion
You can break apart strings by using the appropriate substring-extraction functions. For
 example, LEFT(), MID(), and RIGHT() extract substrings from the left,
 middle, or right part of a string:
mysql> SET @date = '2015-07-21';
mysql> SELECT @date, LEFT(@date,4) AS year,
 -> MID(@date,6,2) AS month, RIGHT(@date,2) AS day;
+------------+------+-------+------+
| @date | year | month | day |
+------------+------+-------+------+
| 2015-07-21 | 2015 | 07 | 21 |
+------------+------+-------+------+
For LEFT() and RIGHT(), the second argument indicates how
 many characters to return from the left or right end of the string. For
 MID(), the second argument is the
 starting position of the substring you want (beginning from 1), and the
 third argument indicates how many characters to return.
The SUBSTRING() function takes
 a string and a starting position, returning everything to
 the right of the position. MID() acts
 the same way if you omit its third argument because MID() is actually a synonym for SUBSTRING():
mysql> SET @date = '2015-07-21';
mysql> SELECT @date, SUBSTRING(@date,6), MID(@date,6);
+------------+--------------------+--------------+
| @date | SUBSTRING(@date,6) | MID(@date,6) |
+------------+--------------------+--------------+
| 2015-07-21 | 07-21 | 07-21 |
+------------+--------------------+--------------+
Use SUBSTRING_INDEX(str,c,n) to return everything to the right or left of a given
 character. It searches into a string, str, for
 the n-th occurrence of the character
 c and returns everything to its left. If
 n is negative, the search for
 c starts from the right and returns
 everything to the right of the character:
mysql> SET @email = 'postmaster@example.com';
mysql> SELECT @email,
 -> SUBSTRING_INDEX(@email,'@',1) AS user,
 -> SUBSTRING_INDEX(@email,'@',-1) AS host;
+------------------------+------------+-------------+
| @email | user | host |
+------------------------+------------+-------------+
| postmaster@example.com | postmaster | example.com |
+------------------------+------------+-------------+
If there is no n-th occurrence of the
 character, SUBSTRING_INDEX() returns
 the entire string. SUBSTRING_INDEX()
 is case sensitive.
You can use substrings for purposes other than display, such as to
 perform comparisons. The following statement finds metal names having a
 first letter that lies in the last half of the alphabet:
mysql> SELECT name from metal WHERE LEFT(name,1) >= 'n';
+----------+
| name |
+----------+
| platinum |
| tin |
+----------+
To combine rather than pull apart strings, use the CONCAT() function. It concatenates its
 arguments and returns the result:
mysql> SELECT CONCAT(name,' ends in "d": ',IF(name LIKE '%d','YES','NO'))
 -> AS 'ends in "d"?'
 -> FROM metal;
+--------------------------+
| ends in "d"? |
+--------------------------+
| gold ends in "d": YES |
| iron ends in "d": NO |
| lead ends in "d": YES |
| mercury ends in "d": NO |
| platinum ends in "d": NO |
| tin ends in "d": NO |
+--------------------------+
Concatenation can be useful for modifying column values in
 place. For example, the following UPDATE statement adds a string to the end of
 each name value in the metal table:
mysql> UPDATE metal SET name = CONCAT(name,'ide');
mysql> SELECT name FROM metal;
+-------------+
| name |
+-------------+
| goldide |
| ironide |
| leadide |
| mercuryide |
| platinumide |
| tinide |
+-------------+
To undo the operation, strip the last three characters (the CHAR_LENGTH() function returns the length of a
 string in characters):
mysql> UPDATE metal SET name = LEFT(name,CHAR_LENGTH(name)-3);
mysql> SELECT name FROM metal;
+----------+
| name |
+----------+
| gold |
| iron |
| lead |
| mercury |
| platinum |
| tin |
+----------+
The concept of modifying a column in place can be applied to ENUM or
 SET values as well, which usually can
 be treated as string values even though they are stored internally as
 numbers. For example, to concatenate a SET element to an existing SET column, use CONCAT() to add the new value to the existing
 value, preceded by a comma. But remember to account for the possibility
 that the existing value might be NULL. In that case, set the column value equal
 to the new element, without the leading comma:
UPDATE tbl_name
SET set_col = IF(set_col IS NULL,val,CONCAT(set_col,',',val));

7.15 Using Full-Text Searches
Problem
You want to search long text columns.

Solution
Use a FULLTEXT index.

Discussion
Pattern matches enable you to look through any number of rows, but
 as the amount of text goes up, the match operation can become quite
 slow. It’s also a common task to search for the same text in several
 string columns, but with pattern matching, that results in unwieldy
 queries:
SELECT * from tbl_name
WHERE col1 LIKE 'pat%' OR col2 LIKE 'pat%' OR col3 LIKE 'pat%' ...
A useful alternative is full-text searching, which is designed for
 looking through large amounts of text and can search multiple columns
 simultaneously. To use this capability, add a FULLTEXT index to your table, and then use the
 MATCH operator to look for strings in the indexed column or columns.
 FULLTEXT indexing can be used with
 MyISAM tables or InnoDB tables
 for nonbinary string data types (CHAR, VARCHAR, or TEXT).
Full-text searching is best illustrated with a reasonably
 good-sized body of text. If you don’t have a sample dataset, you can
 find several repositories of freely available electronic text on the
 internet. For the examples here, the one we’ve chosen is the sample
 dump of the Amazon review data (2018), which is both available for the public to
 download and to scrape from
 Amazon Review Data (2018). Because of its size, this dataset is not included with the recipes distribution but is available
 separately as instructions at the GitHub repository.
 The Amazon distribution includes a file named
 Appliances_5.json that contains the product reviews
 for each category. This is a subset of larger datasets. As mostly text-based data are found on the internet,
 this data is only available in JSON data format. Some sample records look like this:
{
 "overall": 2.0,
 "verified": false,
 "reviewTime": "07 6, 2017",
 "reviewerID": "A3LGZ8M29PBNGG",
 "asin": "B000N6302Q",
 "style": {"Color:": " Stainless Steel"},
 "reviewerName": "nerenttt",
 "reviewText": "Luved it for the few months it worked!↩
 great little diamond ice cubes...",
 "unixReviewTime": 1499299200
}
What we’re interested in here is the reviewText field, which has the large body of text
 we’re looking to examine.
Each record contains the following fields:
	overall
	Rating of the product

	verified
	Purchase verification flag

	reviewTime
	Date of the review

	reviewerID
	ID of the reviewer(O or N), for example, A2SUAM1J3GNN3B

	asin
	ID of the product, for example, 0000013714

	style
	A discretionary of the product metadata

	reviewerName
	Name of the reviewer

	reviewText
	Text of the review

	unixReviewTime
	Time of the review (Unix time)

To import the records into MySQL, create a table named reviews that looks like this:
CREATE TABLE `reviews` (
 `id` BIGINT UNSIGNED NOT NULL AUTO_INCREMENT,
 `appliances_review` JSON NOT NULL,
 PRIMARY KEY (`id`)
);
To load JSON data to this table, we could have used
 MySQL built-in JSON functions, which is covered in Recipe 13.17.
 In some cases of large text, data can include escape characters, such as end of line, /n/n,
 which breaks the import. To overcome this, we’ll use simple script to load the data,
 which is provided in the GitHub repository called load_amazon_reviews.py.
After loading the data, we’ll convert the reviewText column as
 the generated column and add the FULLTEXT index
 to enable its use in full-text searching:
ALTER TABLE `reviews` ADD COLUMN `reviews_virtual` TEXT
GENERATED ALWAYS AS (`appliances_review` ->> '$.reviewText') STORED NOT NULL;
ALTER TABLE `reviews` ADD FULLTEXT idx_ft_json(reviews_virtual);
The table now has the FULLTEXT index
 to enable its use in full-text searching.
After creating the reviews table,
 load the Appliances_5.json file into it using
 this statement:
 python3 load_amazon_reviews.py Appliances_5.json
You’ll notice that the reviews
 table contains columns for both complete appliances_review data and
 reviews_virtual to demonstrate the FULLTEXT index:

CREATE TABLE `reviews` (
 `id` bigint unsigned NOT NULL AUTO_INCREMENT,
 `appliances_review` json NOT NULL,
 `reviews_virtual` text GENERATED ALWAYS AS
 (json_unquote(json_extract(`appliances_review`,_utf8mb4'$.reviewText')))
 STORED NOT NULL,
 PRIMARY KEY (`id`),
 FULLTEXT KEY `idx_ft_json` (`reviews_virtual`)
) ENGINE=InnoDB AUTO_INCREMENT=2278 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;
To perform a search using the FULLTEXT index, use MATCH() to name the indexed column and
 AGAINST() to specify what text to look for. For example, you might wonder,
 How many times does the word awesome occur? To answer
 that question, search the reviews_virtual
 column using this statement:
mysql> SELECT COUNT(*) from reviews WHERE MATCH(reviews_virtual) AGAINST('awesome');
+----------+
| COUNT(*) |
+----------+
| 3 |
+----------+
To verify that the FULLTEXT index was used, run the following:

mysql> EXPLAIN select reviews_virtual from reviews WHERE MATCH(reviews_virtual)
 -> AGAINST('awesome') \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: reviews
 partitions: NULL
 type: fulltext
possible_keys: idx_ft_json
 key: idx_ft_json
 key_len: 0
 ref: const
 rows: 1
 filtered: 100.00
 Extra: Using where; Ft_hints: sorted
To find out which products had the keyword “excellent” in reviews, select the columns you want to
 see (the example here truncates the reviews_virtual column and uses \G so the results fit the page):
mysql> SELECT JSON_EXTRACT(appliances_review, "$.reviewerID") as ReviewerID,
 -> JSON_EXTRACT(appliances_review, "$.asin") as ProductID,
 -> JSON_EXTRACT(appliances_review, "$.overall") as Rating
 -> from reviews WHERE MATCH(reviews_virtual) AGAINST('excellent') \G
*************************** 1. row ***************************
ReviewerID: "A2CIEGHZ7L1WWR"
ProductID: "B00009W3PA"
 Rating: 5.0
*************************** 2. row ***************************
ReviewerID: "A1T1YSCDW0PD25"
ProductID: "B0013DN4NI"
 Rating: 5.0
*************************** 3. row ***************************
ReviewerID: "A1T1YSCDW0PD25"
ProductID: "B0013DN4NI"
 Rating: 5.0
*************************** 4. row ***************************
ReviewerID: "A26M3TN8QICJ3K"
ProductID: "B004XLDE5A"
 Rating: 5.0
*************************** 5. row ***************************
ReviewerID: "A2CIEGHZ7L1WWR"
ProductID: "B004XLDHSE"
 Rating: 5.0
By default, full-text searches compute a
 relevance ranking and use it for sorting. To make sure a search result
 is sorted the way you want, add an explicit ORDER BY clause:
SELECT reviews_virtual
FROM reviews WHERE MATCH(reviews_virtual) AGAINST('search string')
ORDER BY {column}, {column};
To see the relevance ranking, repeat the MATCH()…AGAINST() expression in the output column
 list.
To narrow the search further, include additional criteria. To provide additional
 fields in the search, we’ll add the following virtual columns from JSON_EXTRACT:
 	
ALTER TABLE `reviews`
 -> ADD COLUMN `reviews_virtual_vote` VARCHAR(10)
 -> GENERATED ALWAYS AS (`appliances_review` ->> '$.vote') STORED;

ALTER TABLE `reviews`
 -> ADD COLUMN `reviews_virtual_overall` VARCHAR(10)
 -> GENERATED ALWAYS AS (`appliances_review` ->> '$.overall') STORED;

ALTER TABLE `reviews`
 -> ADD COLUMN `reviews_virtual_verified` VARCHAR(10)
 -> GENERATED ALWAYS AS (`appliances_review` ->> '$.verified') STORED;

 The following queries perform progressively more specific searches to
 determine how often each keyword occurs:
mysql> SELECT count(*) from reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('good');
+----------+
| COUNT(*) |
+----------+
| 855 |
+----------+
mysql> SELECT count(*) from reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('good')
 -> AND reviews_virtual_vote > 5;
+----------+
| COUNT(*) |
+----------+
| 620 |
+----------+
mysql> SELECT COUNT(*) from reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('good')
 -> AND reviews_virtual_overall = 5;
+----------+
| COUNT(*) |
+----------+
| 646 |
+----------+
mysql> SELECT COUNT(*) from reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('good')
 -> AND reviews_virtual_overall = 5 AND reviews_virtual_verified = "True";
+----------+
| COUNT(*) |
+----------+
| 645 |
+----------+
If you expect to frequently use search criteria that include other
 non-FULLTEXT columns, add regular
 indexes to those columns so that queries perform better. For example, to
 index the vote, overall rating, and verified columns, do this:
mysql> ALTER TABLE reviews ADD INDEX idx_vote (reviews_virtual_vote),
 -> ADD INDEX idx_overall(reviews_virtual_overall),
 -> ADD INDEX idx_verified(reviews_virtual_verified);
Search strings in full-text queries can include more than one
 word, and you might suppose that adding words would make a search more
 specific. But in fact that widens it because a full-text search returns
 rows that contain any of the words. In effect, the query performs an
 OR search for any of the words. The
 following queries illustrate this; they identify successively larger
 numbers of reviews as additional search words are added:
mysql> SELECT COUNT(*) from reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('excellent');
+----------+
| COUNT(*) |
+----------+
| 11 |
+----------+
mysql> SELECT COUNT(*) from reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('excellent product');
+----------+
| COUNT(*) |
+----------+
| 1480 |
+----------+
mysql> SELECT COUNT(*) from reviews
 -> WHERE MATCH(reviews_text) AGAINST('excellent product for home');
+----------+
| COUNT(*) |
+----------+
| 1486 |
+----------+
To perform a search for which each word in the search string must
 be present, see Recipe 7.17.
To use full-text searches that look through multiple columns
 simultaneously, name all the columns when you construct the FULLTEXT index:
ALTER TABLE tbl_name ADD FULLTEXT (col1, col2, col3);
To issue a search query that uses the index, name those same
 columns in the MATCH() list:
SELECT...FROM tbl_name
WHERE MATCH(col1, col2, col3) AGAINST('search string');
You need one such FULLTEXT
 index for each distinct combination of columns that you want to
 search.

See Also
For further information on FULLTEXT indexing, see Recipe 21.9.

7.16 Using a Full-Text Search with Short Words
Problem
Your full-text searches for short words return no rows.

Solution
Change the indexing engine’s minimum-word-length parameter.

Discussion
In a text like the reviews, certain words have special significance,
 such as ok and up. You might want to
 check full-text index server variables first to make sure minimum length is satisfied by the
 engine:
mysql> SHOW GLOBAL VARIABLES LIKE 'innodb_ft_%';
+---------------------------------+------------+
| Variable_name | Value |
+---------------------------------+------------+
innodb_ft_aux_table	
innodb_ft_cache_size	8000000
innodb_ft_enable_diag_print	OFF
innodb_ft_enable_stopword	ON
innodb_ft_max_token_size	84
innodb_ft_min_token_size	3
innodb_ft_num_word_optimize	2000
innodb_ft_result_cache_limit	2000000000
innodb_ft_server_stopword_table	
innodb_ft_sort_pll_degree	2
innodb_ft_total_cache_size	640000000
innodb_ft_user_stopword_table	
+---------------------------------+------------+	
mysql> SELECT count(*) FROM reviews WHERE MATCH(reviews_virtual) AGAINST('ok');	
+----------+	
count(*)	
+----------+	
0	
+----------+	
SELECT count(*) FROM reviews WHERE MATCH(reviews_virtual) AGAINST('up');	
+----------+	
count(*)	
+----------+	
0	
+----------+
One property of the indexing engine is that it ignores words that
 are too common (that is, words that occur in more than
 half the rows). This eliminates words such as the or
 and from the index, but that’s not what is going on here.
 You can verify that by counting the total number of rows and by using
 SQL pattern matches to count the number of rows containing each word
 (see Recipe 10.1 regarding the use of COUNT() to produce multiple counts from the same set of
 values):
mysql> SELECT COUNT(*) AS Total_Reviews,
 -> COUNT(IF(reviews_virtual LIKE '%good%',1,NULL)) AS Good_Reviews,
 -> COUNT(IF(reviews_virtual LIKE '%great%',1,NULL)) AS Great_Reviews,
 -> COUNT(IF(reviews_virtual LIKE '%excellent%',1,NULL)) AS Excellent_Reviews
 -> FROM reviews;
+---------------+--------------+---------------+-------------------+
| Total_Reviews | Good_Reviews | Great_Reviews | Excellent_Reviews |
+---------------+--------------+---------------+-------------------+
| 2277 | 855 | 1095 | 11 |
+---------------+--------------+---------------+-------------------+

 The InnoDB full-text indexing engine doesn’t include words fewer than three
 characters long. The minimum word length is a configurable parameter; to
 change it, set the ft_min_word_len
 for MyISAM innodb_ft_min_token_size for the InnoDB storage
 engine system variable. For example, to tell the indexing engine to include
 words as short as two characters, add a line to the [mysqld] group of the /etc/my.cnf file (or whatever option file you
 use for server settings):
[mysqld]
ft_min_word_len=2 ##MyISAM
innodb_ft_min_token_size=2 ##InnoDB
After making this change, restart the server. Next, rebuild the
 FULLTEXT index to take advantage of the changes. From the command line, set the innodb_optimize_fulltext_only
 parameter and run the OPTIMIZE operation:
mysql> SET GLOBAL innodb_optimize_fulltext_only=ON;
mysql> OPTIMIZE TABLE reviews;

 For MyISAM, also run the REPAIR TABLE command:

mysql> REPAIR TABLE reviews QUICK;
You should also use REPAIR
 TABLE to rebuild the indexes for all other MyISAM tables that have
 FULLTEXT indexes.
Finally, try the new index to verify that it includes shorter
 words:
mysql> SELECT count(*) from reviews WHERE MATCH(reviews_virtual) AGAINST('ok');
+----------+
| count(*) |
+----------+
| 10 |
+----------+
mysql> SELECT count(*) from reviews WHERE MATCH(reviews_virtual) AGAINST('up');
+----------+
| COUNT(*) |
+----------+
| 1449 |
+----------+

7.17 Requiring or Prohibiting Full-Text Search Words
Problem
You want to require or prohibit specific words in a full-text search.

Solution
Use a Boolean-mode search.

Discussion
Normally, full-text searches return rows that contain any of the
 words in the search string, even if some of them are missing. For
 example, the following statement finds rows that contain either of the
 words good or great:
mysql> SELECT COUNT(*) FROM reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('good great');
+----------+
| COUNT(*) |
+----------+
| 1330 |
+----------+
This behavior is undesirable if you want only rows that contain
 both words. One way to do this is to rewrite the statement to look for
 each word separately and join the conditions with AND:
mysql> SELECT COUNT(*) FROM reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('good')
 -> AND MATCH(reviews_virtual) AGAINST('great');
+----------+
| COUNT(*) |
+----------+
| 620 |
+----------+
An easier way to require multiple words is with a Boolean-mode
 search. To do this, precede each word in the search string with a
 + character and add IN BOOLEAN MODE after the string:
mysql> SELECT COUNT(*) FROM reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('+good +great' IN BOOLEAN MODE);
+----------+
| COUNT(*) |
+----------+
| 620 |
+----------+
Boolean-mode searches also permit you to exclude words by
 preceding each one with a -
 character.
The following queries select reviews rows containing the name good but not
 great, and vice versa:
mysql> SELECT COUNT(*) FROM reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('+good -great' IN BOOLEAN MODE);
+----------+
| COUNT(*) |
+----------+
| 235 |
+----------+
mysql> SELECT COUNT(*) FROM reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('-good +great' IN BOOLEAN MODE);
+----------+
| COUNT(*) |
+----------+
| 475 |
+----------+
Another useful special character in Boolean searches is *; when appended to
 a search word, it acts as a wildcard operator. The following statement
 finds rows containing not only use
 but also words such as user,
 useful, and useless:
mysql> SELECT COUNT(*) FROM reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('use*' IN BOOLEAN MODE);
+----------+
| COUNT(*) |
+----------+
| 1475 |
+----------+
For the complete list of Boolean full-text operators, see the MySQL Reference
 Manual.

7.18 Performing Full-Text Phrase Searches
Problem
You want to perform a full-text search for a phrase, that is, for words that
 occur adjacent to each other and in a specific order.

Solution
Use the full-text phrase-search capability.

Discussion
To find rows that contain a particular phrase, a simple full-text
 search doesn’t work:
mysql> SELECT COUNT(*) FROM reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('great product');
+----------+
| COUNT(*) |
+----------+
| 1725 |
+----------+
The query returns a result but not the one you’re looking for. A
 full-text search computes a relevance ranking based on the presence of
 each word individually, no matter where it occurs within the reviews_virtual column, and the ranking is nonzero as
 long as any of the words are present. Consequently, that kind of
 statement tends to find too many rows.
Instead, use full-text Boolean mode, which supports phrase
 searching. Enclose the phrase in double quotes within the search
 string:
mysql> SELECT COUNT(*) FROM reviews
 -> WHERE MATCH(reviews_virtual) AGAINST('"great product"' IN BOOLEAN MODE);
+----------+
| COUNT(*) |
+----------+
| 216 |
+----------+
A phrase match succeeds if a column contains the same words as in
 the phrase, in the order specified.

Chapter 8. Working with Dates and Times
8.0 Introduction
MySQL has several data types for representing dates and times, and many functions
 for operating on them. MySQL stores dates and times in specific formats,
 and it’s important to understand them to avoid surprises in results from
 manipulating temporal data. This chapter covers the following aspects of
 working with date and time values in MySQL:
	Choosing a temporal data type
	MySQL provides several temporal data types to choose from when
 you create tables. Knowing their properties enables you to choose
 them appropriately.

	Displaying dates and times
	MySQL displays temporal values using specific formats by
 default. You can produce other formats by using the appropriate
 functions.

	Changing the client time zone
	The server interprets TIMESTAMP and DATETIME values in the client’s current time zone, not its own. Clients
 in different time zones should set their zone so that the server can
 properly interpret TIMESTAMP
 values for them.

	Determining the current date and time
	MySQL provides functions that return the date and time. These
 are useful for applications that must know these values or need to
 calculate other temporal values in relation to them.

	Tracking row modification times
	The TIMESTAMP and DATETIME data types have special properties that enable you to record
 row-creation and last-modification times automatically.

	Breaking dates and times into component values and creating dates
 and times from component values
	You can split date and time values when you need only a
 component, such as the month part of a date or the hour part of a
 time. Conversely, you can combine component values to synthesize
 dates and times.

	Converting between dates or times and basic units
	Some temporal calculations such as date arithmetic operations
 are more easily performed using the number of days or seconds
 represented by a date or time value than by using the value itself.
 MySQL can perform conversions between date and time values and more
 basic units such as days or seconds.

	Date and time arithmetic
	You can add or subtract temporal values to produce other
 temporal values or calculate intervals between values. Applications
 include age determination, relative date computation, and date
 shifting.

	Selecting data based on temporal constraints
	The calculations discussed in the preceding sections to
 produce output values can also be used in WHERE clauses to specify how to select
 rows using temporal conditions.

This chapter covers several MySQL functions for operating on date
 and time values, but there are many others. To familiarize yourself with
 the full set, consult the MySQL Reference Manual.
 The variety of functions available to you means that it’s often possible to
 perform a given temporal calculation more than one way. We sometimes
 illustrate alternative methods for achieving a given result, and many of
 the problems addressed in this chapter can be solved in ways other than
 those shown here. We invite you to experiment to find other solutions. You may
 find a method that’s more efficient or that you find more
 intuitive.
Scripts that implement recipes discussed in this chapter are located
 in the dates directory of the
 recipes source distribution. Scripts
 that create tables used here are located in the tables
 directory.

8.1 Choosing a Temporal Data Type
Problem
You need to store temporal data but aren’t sure which is the most
 appropriate data type.

Solution
Choose the data type according to the characteristics of the
 information to be stored and how you need to use it.

Discussion
To choose a temporal data type, consider questions such as
 these:
	Do you need times only, dates only, or combined date and time
 values?

	What range of values do you require?

	Do you want automatic initialization of the column to the
 current date and time?

MySQL provides DATE and
 TIME data types for representing date and time values separately, and
 DATETIME and TIMESTAMP types for combined date-and-time
 values. These values have the following characteristics:
	DATE values have YYYY-MM-DD format,
 where YY,
 MM, and DD
 represent the year, month, and day parts of
 the date. The supported range for DATE values is 1000-01-01 to 9999-12-31.

	TIME values have hh:mm:ss format, where
 hh, mm, and
 ss are the hours, minutes, and seconds
 parts of the time. TIME values can often be thought of as time-of-day values, but MySQL actually
 treats them as elapsed time. Thus, they may be greater than 23:59:59 or even negative. (The actual
 range of a TIME column is
 -838:59:59 to 838:59:59.)

	DATETIME and TIMESTAMP are combined date-and-time values in
 YYYY-MM-DD
 hh:mm:ss format.
The DATETIME and TIMESTAMP data types are similar in many
 respects, but watch out for these differences:
	DATETIME has a
 supported range of 1000-01-01
 00:00:00 to 9999-12-31
 23:59:59, whereas TIMESTAMP values are valid only from
 the year 1970 partially through 2038.

	TIMESTAMP and DATETIME have special
 auto-initialization and auto-update properties (see Recipe 8.8), but for DATETIME, they are not available before
 MySQL 5.6.5.

	When a client inserts a TIMESTAMP value, the server converts
 it from the time zone associated with the client session to UTC
 and stores the UTC value. When the client retrieves a TIMESTAMP value, the server performs
 the reverse operation to convert the UTC value back to the
 client session time zone. A client in a time zone different from
 the server can configure its session so that this conversion is
 appropriate for its own time zone (see Recipe 8.4).

	Types that include a time part can have a fractional seconds
 part for subsecond resolution (see Recipe 8.2).

Many of the examples in this chapter draw on the following tables,
 which contain columns representing time, date, and date-and-time values.
 (The time_val table has two columns
 for use in time interval calculation examples.):
mysql> SELECT t1, t2 FROM time_val;
+----------+----------+
| t1 | t2 |
+----------+----------+
15:00:00	15:00:00
05:01:30	02:30:20
12:30:20	17:30:45
+----------+----------+	
mysql> SELECT d FROM date_val;	
+------------+	
d	
+------------+	
1864-02-28	
1900-01-15	
1999-12-31	
2000-06-04	
2017-03-16	
+------------+	
mysql> SELECT dt FROM datetime_val;	
+---------------------+	
dt	
+---------------------+	
1970-01-01 00:00:00	
1999-12-31 09:00:00	
2000-06-04 15:45:30	
2017-03-16 12:30:15	
+---------------------+
It is a good idea to create the time_val, date_val, and datetime_val tables right now before reading
 further. (Use the appropriate scripts in the tables
 directory of the recipes
 distribution.)

8.2 Using Fractional Seconds Support
Problem
Your application requires subsecond resolution of time values.

Solution
Specify fractional seconds.

Discussion
As of MySQL 5.6.4, fractional seconds are supported for temporal types that include a time
 part: DATETIME, TIME, and TIMESTAMP. For applications that require
 subsecond resolution of time values, this enables you to specify
 fractional seconds with precision down to the microsecond level.
The default is to have no fractional seconds part, so to include it
 for temporal types that support this capability, specify it explicitly in
 the column declaration: include (fsp) after the data type name in a column
 definition. fsp can be from 0 to 6 to indicate
 the number of fractional digits. 0 means none (resolution
 to seconds); 6 means resolution to microseconds. For example, to create a
 TIME column with two fractional digits
 (resolution to hundredths of a second), use this syntax:
mycol TIME(2)
A precision timing is crucial for specific events such as races.
 One of the most popular and time-sensitive events worldwide are the Formula 1 races as seen in Table 8-1.
 Time tracking for the fastest motorsport requires detailed timekeeping and technology.
 In short, the necessary time to be tracked is within ten thousandths of a
 second which is accomplished by using multiple transponders.

Table 8-1. Formula 1 Rolex Turkish Grand Prix 2021–Race results	Driver	Car	Time
	Valtteri Bottas	MERCEDES	1:31:04.103
	Max Verstappen	RED BULL RACING HONDA	1:45:58.243
	Sergio Perez	RED BULL RACING HONDA	1:46:10.342

Temporal functions that return current time or date-and-time values
 also support fractional seconds. The default without an argument is no
 fractional part. Otherwise, the argument specifies the desired resolution.
 Permitted values are 0 to 6, the same as when declaring temporal
 columns:
mysql> SELECT CURTIME(), CURTIME(2), CURTIME(6);
+-----------+-------------+-----------------+
| CURTIME() | CURTIME(2) | CURTIME(6) |
+-----------+-------------+-----------------+
| 18:07:03 | 18:07:03.24 | 18:07:03.244950 |
+-----------+-------------+-----------------+

 To better demonstrate, we’ll use the Formula 1 race standings from one of the latest races
 held in Turkey (Table 8-1):
CREATE TABLE `formula1` (
 id INT AUTO_INCREMENT PRIMARY KEY,
 position INT UNSIGNED,
 no INT UNSIGNED,
 driver VARCHAR(25),
 car VARCHAR(25),
 laps SMALLINT,
 time TIMESTAMP(3),
 points SMALLINT
);
INSERT INTO formula1 VALUES(0,1,77,"Valtteri Bottas","MERCEDES",58,"2021-10-08
\ 1:31:04.103",26);
INSERT INTO formula1 VALUES(0,2,33,"Max Verstappen","RED BULL RACING HONDA",58,
\"2021-10-08 1:45:58.243",18);
INSERT INTO formula1 VALUES(0,3,11,"Sergio Perez","RED BULL RACING HONDA",58,
\"2021-10-08 1:46:10.342",15);
SELECT POSITION as pos,
 no,
 driver,
 car,
 laps,
 date_format(time,'%H:%i:%s:%f') as time,
 points as pts
 FROM formula1 ORDER BY time;
+------+------+-----------------+-----------------------+------+-----------------+------+
| pos | no | driver | car | laps | time | pts |
+------+------+-----------------+-----------------------+------+-----------------+------+
1	77	Valtteri Bottas	MERCEDES	58	01:31:04:103000	26
2	33	Max Verstappen	RED BULL RACING HONDA	58	01:45:58:243000	18
3	11	Sergio Perez	RED BULL RACING HONDA	58	01:46:10:342000	15
+------+------+-----------------+-----------------------+------+-----------------+------+
To get a proper listing of the time gaps between driver performance, we will use a CTE.
	We’ll discuss CTEs (Common Table Expressions) further in
	 Recipe 10.18. Here is the solution:
SELECT MIN(time) from formula1 into @fastest;

WITH time_gap AS (
 SELECT
 position,
 car,
 driver,
 time,
 TIMESTAMPDIFF(SECOND, time , @fastest) AS seconds
 FROM formula1
),

DIFFERENCES AS (
 SELECT
 position as pos,
 driver,
 car,
 time,
 seconds,
 MOD(seconds, 60) AS seconds_part,
 MOD(seconds, 3600) AS minutes_part
 FROM time_gap
)

SELECT
 pos,
 driver,
 time,
 CONCAT(
 FLOOR(minutes_part / 60), ' min ',
 SUBSTRING_INDEX(SUBSTRING_INDEX(seconds_part,'-',2),'-',-1),' secs'
) AS difference
FROM differences;
+------+-----------------+-------------------------+-----------------+
| pos | driver | time | difference |
+------+-----------------+-------------------------+-----------------+
1	Valtteri Bottas	2021-10-08 01:31:04.103	0 min 0 secs
2	Max Verstappen	2021-10-08 01:45:58.243	-15 min 54 secs
3	Sergio Perez	2021-10-08 01:46:10.342	-16 min 6 secs
+------+-----------------+-------------------------+-----------------+

8.3 Changing MySQL’s Date Format
Problem
You want to change the ISO format that MySQL uses for representing date
 values.

Solution
You can’t. However, you can rewrite non-ISO input values into ISO
 format when storing dates, and you can rewrite ISO values to other
 formats for display with the DATE_FORMAT()
 function.

Discussion
The YYYY-MM-DD format that MySQL uses
 for DATE values follows
 the ISO 8601 standard for representing dates. Because the
 year, month, and day parts have a fixed length and appear left to right
 in date strings, this format has the useful property that dates sort
 naturally into the proper temporal order. Recipes 9.5 and
 10.15
 discuss ordering and grouping techniques for date-based values.
ISO format, although common, is not used by all database systems,
 which can cause problems if you move data between different systems.
 Moreover, people commonly like to represent dates in other formats, such
 as MM/DD/YY or
 DD-MM-YYYY. This too can be a source of trouble, due to mismatches between human
 expectations of how dates should look and how MySQL actually represents
 them.
A question frequently asked by newcomers to MySQL is How
 do I tell MySQL to store dates in a specific format, such as
 MM/DD/YYYY? That’s the wrong
 question. Instead, ask, If I have a date in a specific format,
 how can I store it in MySQL’s supported format, and vice versa?
 MySQL always stores dates in ISO format, a fact with implications both
 for data entry (input) and for displaying query results (output):
	For data-entry purposes, to store values that are not in ISO
 format, you normally must rewrite them first. If you don’t want to
 rewrite them, you can store them as strings (for example, in
 a CHAR column). But
 then you can’t operate on them as dates.
Chapter 13 covers the topic of date rewriting
 for data entry, and Chapter 14 discusses checking
 dates to verify that they’re valid. In some cases, if your values
 are close to ISO format, rewriting may not be necessary. For
 example, MySQL interprets the string values 87-1-7 and 1987-1-7 and the numbers 870107 and 19870107 as the date 1987-01-07 when storing them into a
 DATE column.

	For display purposes, you can rewrite dates to non-ISO
 formats. The DATE_FORMAT()
 function provides a lot of flexibility for changing date values into
 other formats (see later in this section). You can also use
 functions such as YEAR() to
 extract parts of dates for display (see Recipe 8.9). For additional discussion, see
 Recipe 14.17.

One way to rewrite non-ISO values for date entry is to use
 the STR_TO_DATE()
 function, which takes a string representing a temporal value and a
 format string that specifies the syntax of the value.
 Within the formatting string, use special sequences of the form %c, where
 c specifies which part of the date to expect.
 For example, %Y, %M, and %d
 signify the four-digit year, the month name, and the two-digit day of
 the month. To insert the value May
 13, 2007 into a DATE column, do this:
mysql> INSERT INTO t (d) VALUES(STR_TO_DATE('May 13, 2007','%M %d, %Y'));
mysql> SELECT d FROM t;
+------------+
| d |
+------------+
| 2007-05-13 |
+------------+
For date display, MySQL uses ISO format
 (YYYY-MM-DD) unless you tell it otherwise. To
 display dates or times in other formats, use the DATE_FORMAT() or TIME_FORMAT() function to rewrite them. If you require a more specialized format
 those functions cannot provide, write a stored function.
The DATE_FORMAT() function
 takes two arguments: a DATE, DATETIME, or TIMESTAMP value and a string describing how to display the value. The
 format string uses the same kind of specifiers as STR_TO_DATE(). The following statement shows
 the values in the date_val table,
 both as MySQL displays them by default and as reformatted with DATE_FORMAT():
mysql> SELECT d, DATE_FORMAT(d,'%M %d, %Y') FROM date_val;
+------------+----------------------------+
| d | DATE_FORMAT(d,'%M %d, %Y') |
+------------+----------------------------+
1864-02-28	February 28, 1864
1900-01-15	January 15, 1900
1999-12-31	December 31, 1999
2000-06-04	June 04, 2000
2017-03-16	March 16, 2017
+------------+----------------------------+
Because DATE_FORMAT() produces
 long column headings, it’s often useful to provide an alias (see Recipe 5.2) to make a heading more
 concise or meaningful:
mysql> SELECT d, DATE_FORMAT(d,'%M %d, %Y') AS date FROM date_val;
+------------+-------------------+
| d | date |
+------------+-------------------+
1864-02-28	February 28, 1864
1900-01-15	January 15, 1900
1999-12-31	December 31, 1999
2000-06-04	June 04, 2000
2017-03-16	March 16, 2017
+------------+-------------------+
The MySQL Reference Manual provides a
 complete list of format sequences to use with DATE_FORMAT(), TIME_FORMAT(), and STR_TO_DATE(). Table 8-2 shows some
 of them.
Table 8-2. Format sequences to use with date and time formatting functions	Sequence	Meaning
	%Y	Four-digit year
	%y	Two-digit year
	%M	Complete month name
	%b	Month name, initial three letters
	%m	Two-digit month of year (01..12)
	%c	Month of year (1..12)
	%d	Two-digit day of month
 (01..31)
	%e	Day of month (1..31)
	%W	Weekday name (Sunday..Saturday)
	%r	12-hour time with AM or PM suffix
	%T	24-hour time
	%H	Two-digit hour
	%i	Two-digit minute
	%s	Two-digit second
	%f	Six-digit microsecond
	%%	Literal %

The time-related format sequences shown in the table are useful
 only when you pass DATE_FORMAT(), a
 value that has both date and time parts (a DATETIME or TIMESTAMP). The following statement displays
 DATETIME values from the datetime_val table using formats that include
 the time of day:
mysql> SELECT dt,
 -> DATE_FORMAT(dt,'%c/%e/%y %r') AS format1,
 -> DATE_FORMAT(dt,'%M %e, %Y %T') AS format2
 -> FROM datetime_val;
+---------------------+----------------------+----------------------------+
| dt | format1 | format2 |
+---------------------+----------------------+----------------------------+
1970-01-01 00:00:00	1/1/70 12:00:00 AM	January 1, 1970 00:00:00
1999-12-31 09:00:00	12/31/99 09:00:00 AM	December 31, 1999 09:00:00
2000-06-04 15:45:30	6/4/00 03:45:30 PM	June 4, 2000 15:45:30
2017-03-16 12:30:15	3/16/17 12:30:15 PM	March 16, 2017 12:30:15
+---------------------+----------------------+----------------------------+
TIME_FORMAT() is similar to
 DATE_FORMAT(). It works with TIME, DATETIME, or TIMESTAMP values but understands only
 time-related specifiers in the format string:
mysql> SELECT dt,
 -> TIME_FORMAT(dt, '%r') AS '12-hour time',
 -> TIME_FORMAT(dt, '%T') AS '24-hour time'
 -> FROM datetime_val;
+---------------------+--------------+--------------+
| dt | 12-hour time | 24-hour time |
+---------------------+--------------+--------------+
1970-01-01 00:00:00	12:00:00 AM	00:00:00
1999-12-31 09:00:00	09:00:00 AM	09:00:00
2000-06-04 15:45:30	03:45:30 PM	15:45:30
2017-03-16 12:30:15	12:30:15 PM	12:30:15
+---------------------+--------------+--------------+
If DATE_FORMAT() or TIME_FORMAT() cannot produce the results that
 you want, write a stored function that does. Suppose that you want to
 convert 24-hour TIME values to
 12-hour format but with a suffix of a.m. or p.m. rather than AM or PM.
 The following function accomplishes that task. It uses TIME_FORMAT() to do most of the work, then
 strips the suffix supplied by %r and
 replaces it with the desired suffix:
CREATE FUNCTION time_ampm (t TIME)
RETURNS VARCHAR(13) # mm:dd:ss {a.m.|p.m.} format
DETERMINISTIC
RETURN CONCAT(LEFT(TIME_FORMAT(t, '%r'), 9),
 IF(TIME_TO_SEC(t) < 12*60*60, 'a.m.', 'p.m.'));
Use the function like this:
mysql> SELECT t1, time_ampm(t1) FROM time_val;
+----------+---------------+
| t1 | time_ampm(t1) |
+----------+---------------+
15:00:00	03:00:00 p.m.
05:01:30	05:01:30 a.m.
12:30:20	12:30:20 p.m.
+----------+---------------+
For more information about writing stored functions, see Chapter 11.

8.4 Setting the Client Time Zone
Problem
You have a client application that connects from a time zone different from the server.
 Consequently, when it stores TIMESTAMP values, they don’t have the correct
 Coordinated Universal Time (UTC) values.

Solution
The client should set the time_zone system variable after connecting to the server.

Discussion
Time zone settings have an important effect on TIMESTAMP
 values:
	When the MySQL server starts, it examines its operating
 environment to determine its time zone. (To use a different value,
 start the server with the --default-time-zone
 option.)

	For each client that connects, the server interprets TIMESTAMP values with respect to the time
 zone associated with the client session. When a client inserts a
 TIMESTAMP value, the server
 converts it from the client time zone to UTC and stores the UTC value. (Internally, the server
 stores a TIMESTAMP value as the
 number of seconds since 1970-01-01 00:00:00 UTC.) When the client retrieves a
 TIMESTAMP value, the server
 performs the reverse operation to convert the UTC value back to the
 client time zone.

	The default session time zone for each client when it connects
 is the server time zone. If all clients are in the same time zone as
 the server, nothing special needs be done for proper TIMESTAMP time zone conversion to occur.
 But if a client is in a time zone different from the server and it
 inserts TIMESTAMP values without
 making the proper time zone correction, the UTC values won’t be
 correct.

Suppose that the server and client C1 are in the same time zone,
 and client C1 issues these statements:
mysql> CREATE TABLE t (ts TIMESTAMP);
mysql> INSERT INTO t (ts) VALUES('2021-06-21 12:30:00');
mysql> SELECT ts FROM t;
+---------------------+
| ts |
+---------------------+
| 2021-06-21 12:30:00 |
+---------------------+
Here, client C1 sees the same value that it stored. A different
 client, C2, will also see the same value if it retrieves it, but if
 client C2 is in a different time zone, that value isn’t correct for its
 zone. Conversely, if client C2 stores a value, that value when returned
 by client C1 won’t be correct for the client C1 time zone.
To deal with this problem so that TIMESTAMP conversions use the proper time
 zone, a client should set its time zone explicitly by setting the
 session value of the time_zone system
 variable. Suppose that the server has a global time zone of six hours
 ahead of UTC. Each client initially is assigned that same value as its
 session time zone:
mysql> SELECT @@global.time_zone, @@session.time_zone;
+--------------------+---------------------+
| @@global.time_zone | @@session.time_zone |
+--------------------+---------------------+
| SYSTEM | SYSTEM |
+--------------------+---------------------+
When client C2 connects, it sees the same TIMESTAMP value as client C1:
mysql> SELECT ts FROM t;
+---------------------+
| ts |
+---------------------+
| 2021-06-21 12:30:00 |
+---------------------+
But that value is incorrect if client C2 is only four hours ahead
 of UTC. C2 should set its time zone after connecting so that retrieved
 TIMESTAMP values are properly
 adjusted for its own session:
mysql> SET SESSION time_zone = '+04:00';
mysql> SELECT @@global.time_zone, @@session.time_zone;
+--------------------+---------------------+
| @@global.time_zone | @@session.time_zone |
+--------------------+---------------------+
| SYSTEM | +04:00 |
+--------------------+---------------------+
mysql> SELECT ts FROM t;
+---------------------+
| ts |
+---------------------+
| 2021-06-21 16:30:00 |
+---------------------+
 To see the System Timezone,
 check global variables:
mysql> SHOW GLOBAL VARIABLES LIKE "system_time_zone";
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| system_time_zone | UTC |
+------------------+-------+
The client time zone also affects the values displayed from
 functions that return the current date and time (see Recipe 8.7).

See Also
To convert individual date-and-time values from one time zone
 to another, use the CONVERT_TZ() function (see Recipe 8.6).

8.5 Setting the Server Time Zone
Problem
You have a localized application to serve customers,
 but you want to have a global time zone setting.

Solution
The server should set the time_zone system variable to SYSTEM at the server.
 This setting should point to UTC value.
 Accordingly, the system_time_zone
 value should be set to UTC.

Discussion
The MySQL server maintains several time zone settings:

	The server system time zone. When MySQL starts, it attempts to
 determine the system_time_zone variable. To
 explicitly set the system time zone for MySQL, set the TZ
 environment variable before starting mysqld. Alternatively,
 start the mysqld_safe with its --timezone
 option. The values for these variables are permissible by your operating system settings.

	The server current time zone is set by the global time_zone
 value. It’s generally set to SYSTEM on modern Linux operating systems:
mysql> SHOW GLOBAL VARIABLES LIKE "time_zone";
+---------------+--------+
| Variable_name | Value |
+---------------+--------+
| time_zone | SYSTEM |
+---------------+--------+
You may choose to set the global time zone variable using
 SET GLOBAL. This will not change the @@session.time_zone
 value:

mysql> SET GLOBAL time_zone = "+03:00";
mysql> SELECT @@global.time_zone, @@session.time_zone;
+--------------------+---------------------+
| @@global.time_zone | @@session.time_zone |
+--------------------+---------------------+
| +03:00 | SYSTEM |
+--------------------+---------------------+
The string indicating the time_zone value
 offset from UTC. Prior to MySQL 8.0.19,
 this value had to be in the range -12:59 to +13:00, inclusive;
 beginning with MySQL 8.0.19, the permitted range is -13:59 to
 +14:00, inclusive. Populated time zones are not permitted unless they are
 preloaded to MySQL tables; hence, you can’t use names like UTC:

mysql> SET GLOBAL time_zone = "US/Eastern" ;
ERROR 1298 (HY000): Unknown or incorrect time zone: 'US/Eastern'

For instructions on populating the time zone tables, see the
 MySQL Reference
 Manual.

	The system_time_zone variable is set when the server
 inherits a time zone setting from the machine defaults. Unlike the time_zone
 variable, this is not dynamic to set after the server starts. As of MySQL 8.0.26, if the server host
 time zone changes, such as during daylight saving time, system_time_zone will reflect
 the change. If a change happens during the execution of a query, the previous value will be cached:

mysql> SHOW GLOBAL VARIABLES LIKE "system_time_zone";
+---------------+------------+
| Variable_name | Value |
+---------------+------------+
| time_zone | US/Eastern |
+---------------+------------+

8.6 Shifting Temporal Values Between Time Zones
Problem
You have a date-and-time value but need to know what it would be in a different time
 zone. For example, you’re having a teleconference with people in
 different parts of the world, and they need to know the meeting time in
 their local time zones.

Solution
Use the CONVERT_TZ()
 function.

Discussion
The CONVERT_TZ() function
 converts temporal values between time zones. It takes three arguments: a
 date-and-time value and two time zone indicators. The function
 interprets the date-and-time value as a value in the first time zone and
 returns the value shifted into the second time zone.
Suppose that we live in Chicago, Illinois, in the United States and that we
 have a meeting with people in several other parts of the world.
 Table 8-3 shows the location of each meeting participant and the
 time zone name for each:
Table 8-3. Meeting participants	Location	Time zone name
	Chicago, Illinois,
 US	US/Central
	Istanbul, Turkey	Europe/Istanbul
	London, United
 Kingdom	Europe/London
	Edmonton, Alberta,
 Canada	America/Edmonton
	Brisbane, Australia	Australia/Brisbane

If the meeting is to take place at 8 a.m. local time for us on
 November 28, 2021, what time will that be for the other participants?
 The following statement uses CONVERT_TZ() to calculate the local times for
 each time zone:
mysql> SET @dt = '2021-11-28 08:00:00';
mysql> SELECT @dt AS Chicago,
 -> CONVERT_TZ(@dt,'US/Central','Europe/Istanbul') AS Istanbul,
 -> CONVERT_TZ(@dt,'US/Central','Europe/London') AS London,
 -> CONVERT_TZ(@dt,'US/Central','America/Edmonton') AS Edmonton,
 -> CONVERT_TZ(@dt,'US/Central','Australia/Brisbane') AS Brisbane\G
*************************** 1. row ***************************
 Chicago: 2021-11-28 08:00:00
Istanbul: 2021-11-28 17:00:00
 London: 2021-11-28 14:00:00
Edmonton: 2021-11-28 07:00:00
Brisbane: 2021-11-29 00:00:00
Let’s hope the Brisbane participant doesn’t mind being up after
 midnight.
The preceding example uses time zone names, so it requires that
 you have the time zone tables in the mysql database initialized with support for
 named time zones. (See the MySQL Reference Manual
 for information about setting up the time zone tables.) If you can’t use
 named time zones, specify them in terms of their numeric relationship to
 UTC. (This can be a little trickier; you might need to account for
 daylight saving time.) The corresponding statement with numeric time zones
 looks like this:
mysql> SELECT @dt AS Chicago,
 -> CONVERT_TZ(@dt,'-06:00','+03:00') AS Istanbul,
 -> CONVERT_TZ(@dt,'-06:00','+00:00') AS London,
 -> CONVERT_TZ(@dt,'-06:00','-07:00') AS Edmonton,
 -> CONVERT_TZ(@dt,'-06:00','+10:00') AS Brisbane\G
*************************** 1. row ***************************
 Chicago: 2021-11-28 08:00:00
Istanbul: 2021-11-28 17:00:00
 London: 2021-11-28 14:00:00
Edmonton: 2021-11-28 07:00:00
Brisbane: 2021-11-29 00:00:00

8.7 Determining the Current Date or Time
Problem
You want to know what today’s date is and/or what time it is.

Solution
Use the CURDATE(), CURTIME(), or NOW() functions to obtain values expressed in the client session time zone.
 Use UTC_DATE(),
 UTC_TIME(), or UTC_TIMESTAMP() for values in UTC time.

Discussion
Some applications must know the current date or time, such as
 those that write timestamped log records. This kind of information is
 also useful for date calculations performed in relation to the current
 date, such as finding the first (or last) day of the month or
 determining the date for Wednesday of next week.
The CURDATE() and CURTIME() functions return the current date
 and time separately, and NOW()
 returns both as a combined date-and-time value:
mysql> SELECT CURDATE(), CURTIME(), NOW();
+------------+-----------+---------------------+
| CURDATE() | CURTIME() | NOW() |
+------------+-----------+---------------------+
| 2021-11-28 | 08:42:57 | 2021-11-28 08:42:57 |
+------------+-----------+---------------------+
CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP are synonyms for CURDATE(),
 CURTIME(), and NOW(), respectively.
The preceding functions return values in the client session time
 zone (see Recipe 8.4). For
 values in UTC time, use the UTC_DATE(), UTC_TIME(), or UTC_TIMESTAMP() functions instead.
To determine the current date and time for an arbitrary time zone,
 pass the value of the appropriate UTC function to CONVERT_TZ() (see Recipe 8.6).
To obtain subparts of these values, such as the current day of the
 month or current hour of the day, use the decomposition techniques
 discussed in Recipe 8.9.

8.8 Using TIMESTAMP or DATETIME to Track Row-Modification Times
Problem
You want to record row-creation time or last-modification time
 automatically.

Solution
Use the auto-initialization and auto-update properties of the
 TIMESTAMP and DATETIME data types.

Discussion
MySQL supports TIMESTAMP and
 DATETIME data types that store
 date-and-time values. Recipe 8.1 covers
 the range of values for these types. This recipe focuses on special
 column attributes that enable you to track row-creation and row-update
 times automatically:
	A TIMESTAMP or DATETIME column declared with the DEFAULT
 CURRENT_TIMESTAMP attribute
 initializes automatically for new rows. Simply omit the column
 from INSERT
 statements and MySQL sets it to the row-creation time.

	A TIMESTAMP or DATETIME column declared with the ON UPDATE CURRENT_TIMESTAMP attribute automatically
 updates to the current date and time when you change any other
 column in the row from its current value.

These special properties make the TIMESTAMP and DATETIME data types particularly suited for
 applications that require recording the times at which rows are inserted
 or updated. The following discussion shows how to take advantage of
 these properties using TIMESTAMP
 columns. With some differences to be noted later, the discussion also
 applies to DATETIME columns.
Note
The default SQL_MODE does not allow NULL values unless relaxed. Also, NO_ZERO_DATE was deprecated as of MySQL 8.0
 and should be used in conjunction with STRICT MODE.

Our example table looks like this:
DROP TABLE IF EXISTS tsdemo;
CREATE TABLE `tsdemo` (
`val` INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
`ts_both` TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
`ts_create` TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
`ts_update` TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
) ENGINE=InnoDB ;
The TIMESTAMP columns have
 these properties:
	ts_both auto-initializes
 and auto-updates. This is useful for tracking the time of any change
 to a row, for both inserts and updates.

	ts_create auto-initializes
 only. This is useful when you want a column to be set to the time at
 which a row is created but remain constant thereafter.

	ts_update auto-updates
 only. It is set to the column default (or value you specify
 explicitly) at row-creation time, and it auto-updates for changes to
 the row thereafter. The use cases for this are more limited—for
 example, to track row-creation and last-modification times
 separately (using ts_update in
 conjunction with ts_create)
 rather than together in a single column like ts_both.

To see how the table works, insert some rows into the table (a few
 seconds apart so the timestamps differ), then select its
 contents:
mysql> INSERT INTO tsdemo (val,ts_both,ts_create,ts_update)
 -> VALUES(0,NULL,NULL,NULL);
mysql> INSERT INTO tsdemo (val) VALUES(5);
mysql> INSERT INTO tsdemo (val,ts_both,ts_create,ts_update)
 -> VALUES(10,NULL,NULL,NULL);
mysql> SELECT val, ts_both, ts_create, ts_update FROM tsdemo;
+-----+---------------------+---------------------+---------------------+
| val | ts_both | ts_create | ts_update |
+-----+---------------------+---------------------+---------------------+
1	2022-03-06 14:34:17	2022-03-06 14:34:17	2022-03-06 14:34:17
5	2022-03-06 14:35:16	2022-03-06 14:35:16	2022-03-06 14:35:16
10	2022-03-06 14:35:34	2022-03-06 14:35:34	2022-03-06 14:35:34
+-----+---------------------+---------------------+---------------------+
The first two INSERT statements
 show that you can set the auto-initialize columns to the current date
 and time by omitting them from the INSERT statement entirely. The third insert shows
 that you can set a TIMESTAMP column
 to the current date and time by setting it explicitly to NULL, even one that does not auto-initialize.
 This NULL-assignment behavior is not
 specific to INSERT statements; it
 works for UPDATE as well. You
 can disable this special handling of NULL assignments, as we’ll cover later in this
 recipe.
To see auto-updating in action, issue a statement that changes one
 row’s val column and check its effect
 on the table’s contents. The result shows that the auto-update columns
 are updated (in the modified row only):
mysql> UPDATE tsdemo SET val = 11 WHERE val = 10;
mysql> SELECT val, ts_both, ts_create, ts_update FROM tsdemo;
+-----+---------------------+---------------------+---------------------+
| val | ts_both | ts_create | ts_update |
+-----+---------------------+---------------------+---------------------+
1	2022-03-06 14:34:17	2022-03-06 14:34:17	2022-03-06 14:34:17
5	2022-03-06 14:35:16	2022-03-06 14:35:16	2022-03-06 14:35:16
11	2022-03-06 14:38:04	2022-03-06 14:35:34	2022-03-06 14:38:04
+-----+---------------------+---------------------+---------------------+
If you modify multiple rows, updates occur for the auto-update
 columns in each row:
mysql> UPDATE tsdemo SET val = val + 1;
mysql> SELECT val, ts_both, ts_create, ts_update FROM tsdemo;
+-----+---------------------+---------------------+---------------------+
| val | ts_both | ts_create | ts_update |
+-----+---------------------+---------------------+---------------------+
2	2022-03-06 14:38:45	2022-03-06 14:34:17	2022-03-06 14:38:45
6	2022-03-06 14:38:45	2022-03-06 14:35:16	2022-03-06 14:38:45
12	2022-03-06 14:38:45	2022-03-06 14:35:34	2022-03-06 14:38:45
+-----+---------------------+---------------------+---------------------+
An UPDATE statement that
 doesn’t actually change any value in a row doesn’t modify auto-update
 columns. To see this, set every row’s val column to its current value, then review
 the table contents to see that auto-update columns retain their
 values:
mysql> UPDATE tsdemo SET val = val;
mysql> SELECT val, ts_both, ts_create, ts_update FROM tsdemo;
+-----+---------------------+---------------------+---------------------+
| val | ts_both | ts_create | ts_update |
+-----+---------------------+---------------------+---------------------+
2	2022-03-06 14:38:45	2022-03-06 14:34:17	2022-03-06 14:38:45
6	2022-03-06 14:38:45	2022-03-06 14:35:16	2022-03-06 14:38:45
12	2022-03-06 14:38:45	2022-03-06 14:35:34	2022-03-06 14:38:45
+-----+---------------------+---------------------+---------------------+
As stated previously, automatic TIMESTAMP properties also apply to DATETIME, with some differences:
	For the first TIMESTAMP
 column in a table, if neither of the DEFAULT or ON UPDATE attributes are specified, the
 column is implicitly defined with both. For DATETIME, automatic properties never apply
 implicitly, only those specified explicitly.

	It is not possible to set NULL to TIMESTAMP anymore. To assign the current
 timestamp, set the column to CURRENT_TIMESTAMP or a synonym such as
 NOW().

To determine for any given TIMESTAMP column what happens when NULL is assigned to it, use SHOW CREATE
 TABLE to see the column definition.
 If the definition includes the NULL
 attribute, assigning NULL stores
 NULL. If the definition includes the
 NOT NULL attribute, you can specify NULL as the value to be assigned, but you
 cannot store NULL because MySQL stores the current date and
 time instead.

See Also
To simulate TIMESTAMP
 auto-initialization and auto-update properties for other temporal types,
 you can use triggers (see Chapter 11).

8.9 Extracting Parts of Dates or Times
Problem
You want to obtain just a part of a date or a time.

Solution
Invoke a function specifically intended for extracting part of a
 temporal value, such as MONTH() or MINUTE(). This is usually the fastest method
 for component extraction if you need only a single component of a value.
 Alternatively, use a formatting function such as DATE_FORMAT() or TIME_FORMAT() with a format string that includes a specifier for the part of
 the value you want to obtain.

Discussion
The following discussion shows different ways to extract parts of
 temporal values.
Decomposing dates or times using component-extraction
 functions
MySQL includes many functions for extracting date and time
 subparts. For example, DATE() and
 TIME() extract the date and time
 components of temporal values:
mysql> SELECT dt, DATE(dt), TIME(dt) FROM datetime_val;
+---------------------+------------+----------+
| dt | DATE(dt) | TIME(dt) |
+---------------------+------------+----------+
1970-01-01 00:00:00	1970-01-01	00:00:00
1999-12-31 09:00:00	1999-12-31	09:00:00
2000-06-04 15:45:30	2000-06-04	15:45:30
2017-03-16 12:30:15	2017-03-16	12:30:15
+---------------------+------------+----------+
Table 8-4 shows several component-extraction
 functions; consult the MySQL Reference
 Manual for
 a complete list. The date-related functions work with DATE, DATETIME, or TIMESTAMP values. The time-related functions
 work with TIME, DATETIME, or TIMESTAMP values.
Table 8-4. Component-extraction functions	Function	Return value
	YEAR() 	Year of date
	MONTH() 	Month number
 (1..12)
	MONTHNAME() 	Month name (January..December)
	DAYOFMONTH() 	Day of month (1..31)
	DAYNAME() 	Day name (Sunday..Saturday)
	DAYOFWEEK() 	Day of week (1..7 for Sunday..Saturday)
	WEEKDAY() 	Day of week (0..6 for Monday..Sunday)
	DAYOFYEAR() 	Day of year (1..366)
	HOUR() 	Hour of time (0..23)
	MINUTE() 	Minute of time
 (0..59)
	SECOND() 	Second of time (0..59)
	MICROSECOND() 	Microsecond of time (0..59)
	EXTRACT() 	Varies

Here’s an example:
mysql> SELECT dt, YEAR(dt), DAYOFMONTH(dt), HOUR(dt), SECOND(dt)
 -> FROM datetime_val;
+---------------------+----------+----------------+----------+------------+
| dt | YEAR(dt) | DAYOFMONTH(dt) | HOUR(dt) | SECOND(dt) |
+---------------------+----------+----------------+----------+------------+
1970-01-01 00:00:00	1970	1	0	0
1999-12-31 09:00:00	1999	31	9	0
2000-06-04 15:45:30	2000	4	15	30
2017-03-16 12:30:15	2017	16	12	15
+---------------------+----------+----------------+----------+------------+
mysql> set @date_time="2021-11-24 22:11:12.000201";
 -> SELECT HOUR(@date_time) as Hour, MINUTE(@date_time)
 -> as Minute,SECOND(@date_time) as Second, MICROSECOND(@date_time) as MicroSecond;
+------+--------+--------+-------------+
| Hour | Minute | Second | MicroSecond |
+------+--------+--------+-------------+
| 22 | 11 | 12 | 201 |
+------+--------+--------+-------------+
Functions such as YEAR() or
 DAYOFMONTH() extract values that
 have an obvious correspondence to a substring of the temporal value to
 which you apply them. Other component-extraction functions provide
 access to values that have no such correspondence. One is the
 day-of-year value:
mysql> SELECT d, DAYOFYEAR(d) FROM date_val;
+------------+--------------+
| d | DAYOFYEAR(d) |
+------------+--------------+
1864-02-28	59
1900-01-15	15
1999-12-31	365
2000-06-04	156
2017-03-16	75
+------------+--------------+
Another is the day of the week, which is available by name or
 number:
	DAYNAME() returns the
 complete day name. There is a DATE_FORMAT(d, '%a') function for returning the
 three-character name abbreviation that you can get easily by
 passing the full name to DATE_FORMAT():
mysql> SELECT d, DAYNAME(d), DATE_FORMAT(d, '%a') FROM date_val;
+------------+------------+----------------------+
| d | DAYNAME(d) | DATE_FORMAT(d, '%a') |
+------------+------------+----------------------+
1864-02-28	Sunday	Sun
1900-01-15	Monday	Mon
1999-12-31	Friday	Fri
2000-06-04	Sunday	Sun
2017-03-16	Thursday	Thu
+------------+------------+----------------------+

	To get the day of the week as a number, use DAYOFWEEK() or WEEKDAY(), but pay attention to the
 range of values each function returns. DAYOFWEEK() returns values from 1 to 7,
 corresponding to Sunday through Saturday. WEEKDAY() returns values from 0 to 6,
 corresponding to Monday through Sunday:
mysql> SELECT d, DAYNAME(d), DAYOFWEEK(d), WEEKDAY(d) FROM date_val;
+------------+------------+--------------+------------+
| d | DAYNAME(d) | DAYOFWEEK(d) | WEEKDAY(d) |
+------------+------------+--------------+------------+
1864-02-28	Sunday	1	6
1900-01-15	Monday	2	0
1999-12-31	Friday	6	4
2000-06-04	Sunday	1	6
2017-03-16	Thursday	5	3
+------------+------------+--------------+------------+

EXTRACT() is another function
 for obtaining individual parts of temporal values:
mysql> SELECT dt, EXTRACT(DAY FROM dt), EXTRACT(HOUR FROM dt)
 -> FROM datetime_val;
+---------------------+----------------------+-----------------------+
| dt | EXTRACT(DAY FROM dt) | EXTRACT(HOUR FROM dt) |
+---------------------+----------------------+-----------------------+
1970-01-01 00:00:00	1	0
1999-12-31 09:00:00	31	9
2000-06-04 15:45:30	4	15
2017-03-16 12:30:15	16	12
+---------------------+----------------------+-----------------------+
The keyword indicating what to extract from the value should be
 a unit specifier such as YEAR,
 MONTH, DAY, HOUR, MINUTE, or SECOND. Unit specifiers are singular, not
 plural. (Check the MySQL Reference
 Manual for the
 full list.)
Obtaining the Current Year, Month, Day, Hour, Minute, or
 Second
To obtain the current year, month, day, or day of week, apply the extraction functions shown in
 this recipe to CURDATE() or
 NOW():
mysql> SELECT CURDATE(), YEAR(CURDATE()) AS year,
 -> MONTH(CURDATE()) AS month, MONTHNAME(CURDATE()) AS monthname,
 -> DAYOFMONTH(CURDATE()) AS day, DAYNAME(CURDATE()) AS dayname;
+------------+------+-------+-----------+------+-----------+
| CURDATE() | year | month | monthname | day | dayname |
+------------+------+-------+-----------+------+-----------+
| 2021-11-24 | 2021 | 11 | November | 24 | Wednesday |
+------------+------+-------+-----------+------+-----------+
Similarly, to obtain the current hour, minute, or second,
 pass CURTIME() or
 NOW() to a time-component
 function:
mysql> SELECT NOW(), HOUR(NOW()) AS hour,
 -> MINUTE(NOW()) AS minute, SECOND(NOW()) AS second;
+---------------------+------+--------+--------+
| NOW() | hour | minute | second |
+---------------------+------+--------+--------+
| 2021-11-24 06:55:40 | 6 | 55 | 40 |
+---------------------+------+--------+--------+

Decomposing dates or times using formatting functions
The DATE_FORMAT() and
 TIME_FORMAT() functions reformat date and time values. By specifying appropriate
 format strings, you can extract individual parts of temporal
 values:
mysql> SELECT dt,
 -> DATE_FORMAT(dt,'%Y') AS year,
 -> DATE_FORMAT(dt,'%d') AS day,
 -> TIME_FORMAT(dt,'%H') AS hour,
 -> TIME_FORMAT(dt,'%s') AS second
 -> TIME_FORMAT(dt,'%f') AS microsecond
 -> FROM datetime_val;
+---------------------+------+------+------+--------+-------------+
| dt | year | day | hour | second | microsecond |
+---------------------+------+------+------+--------+-------------+
1970-01-01 00:00:00	1970	01	00	00	000000
1999-12-31 09:00:00	1999	31	09	00	000000
2000-06-04 15:45:30	2000	04	15	30	000000
2017-03-16 12:30:15	2017	16	12	15	000000
+---------------------+------+------+------+--------+-------------+
Formatting functions are advantageous when you want to extract
 more than one part of a value or display extracted values in a format
 different from the default.
For example, to extract the entire date or
 time from DATETIME values,
 do this:
mysql> SELECT dt,
 -> DATE_FORMAT(dt,'%Y-%m-%d') AS 'date part',
 -> TIME_FORMAT(dt,'%T') AS 'time part'
 -> FROM datetime_val;

+---------------------+------------+-----------+
| dt | date part | time part |
+---------------------+------------+-----------+
1970-01-01 00:00:00	1970-01-01	00:00:00
1999-12-31 09:00:00	1999-12-31	09:00:00
2000-06-04 15:45:30	2000-06-04	15:45:30
2017-03-16 12:30:15	2017-03-16	12:30:15
+---------------------+------------+-----------+
To present a date in other than
 YYYY-MM-DD format or a time without the
 seconds part, do this:
mysql> SELECT dt,
 -> DATE_FORMAT(dt,'%M %e, %Y') AS 'descriptive date',
 -> TIME_FORMAT(dt,'%H:%i') AS 'hours/minutes'
 -> FROM datetime_val;
+---------------------+-------------------+---------------+
| dt | descriptive date | hours/minutes |
+---------------------+-------------------+---------------+
1970-01-01 00:00:00	January 1, 1970	00:00
1999-12-31 09:00:00	December 31, 1999	09:00
2000-06-04 15:45:30	June 4, 2000	15:45
2017-03-16 12:30:15	March 16, 2017	12:30
+---------------------+-------------------+---------------+

8.10 Synthesizing Dates or Times from Component Values
Problem
You want to combine the parts of a date or time to produce a complete date or time
 value. Or you want to replace parts of a date to produce another
 date.

Solution
You have several options:
	Use MAKETIME() to construct
 a TIME value from hour, minute, and second parts.

	Use DATE_FORMAT() or
 TIME_FORMAT() to combine
 parts of the existing value with parts you want to
 replace.

	Pull out the parts that you need with component-extraction functions and recombine the parts
 with CONCAT().

Discussion
The reverse of splitting a date or time value into components is
 synthesizing a temporal value from its constituent parts. Techniques for
 date and time synthesis include using composition functions, formatting
 functions, and string concatenation.
The MAKETIME() function takes
 component hour, minute, and second values as arguments and combines them
 to produce a time:
mysql> SELECT MAKETIME(10,30,58), MAKETIME(-5,0,11);
+--------------------+-------------------+
| MAKETIME(10,30,58) | MAKETIME(-5,0,11) |
+--------------------+-------------------+
| 10:30:58 | -05:00:11 |
+--------------------+-------------------+
Date synthesis is often performed beginning with a given date,
 then keeping parts that you want to use and replacing the rest. For
 example, to produce the first day of the month in which a date falls,
 use DATE_FORMAT() to extract the year
 and month parts from the date, combining them with a day part of
 01:
mysql> SELECT d, DATE_FORMAT(d,'%Y-%m-01') FROM date_val;
+------------+---------------------------+
| d | DATE_FORMAT(d,'%Y-%m-01') |
+------------+---------------------------+
1864-02-28	1864-02-01
1900-01-15	1900-01-01
1999-12-31	1999-12-01
2000-06-04	2000-06-01
2017-03-16	2017-03-01
+------------+---------------------------+
TIME_FORMAT() can be used
 similarly. The following example produces time values that have the
 seconds part set to 00:
mysql> SELECT t1, TIME_FORMAT(t1,'%H:%i:00') FROM time_val;
+----------+----------------------------+
| t1 | TIME_FORMAT(t1,'%H:%i:00') |
+----------+----------------------------+
15:00:00	15:00:00
05:01:30	05:01:00
12:30:20	12:30:00
+----------+----------------------------+
Another way to construct temporal values is to use date-part
 extraction functions in conjunction with CONCAT(). However, this method is often
 messier than the DATE_FORMAT()
 technique just discussed, and it sometimes yields slightly different
 results:
mysql> SELECT d, CONCAT(YEAR(d),'-',MONTH(d),'-01') FROM date_val;
+------------+------------------------------------+
| d | CONCAT(YEAR(d),'-',MONTH(d),'-01') |
+------------+------------------------------------+
1864-02-28	1864-2-01
1900-01-15	1900-1-01
1999-12-31	1999-12-01
2000-06-04	2000-6-01
2017-03-16	2017-3-01
+------------+------------------------------------+
Note that the month values in some of these dates have only a
 single digit. To ensure that the month has two digits—as required for
 ISO format—use LPAD() to add a leading zero as necessary:
mysql> SELECT d, CONCAT(YEAR(d),'-',LPAD(MONTH(d),2,'0'),'-01')
 -> FROM date_val;
+------------+--+
| d | CONCAT(YEAR(d),'-',LPAD(MONTH(d),2,'0'),'-01') |
+------------+--+
1864-02-28	1864-02-01
1900-01-15	1900-01-01
1999-12-31	1999-12-01
2000-06-04	2000-06-01
2017-03-16	2017-03-01
+------------+--+
Recipe 8.18 shows other ways to
 solve the problem of producing ISO dates from not-quite-ISO
 dates.
TIME values can be produced
 from hours, minutes, and seconds values using methods analogous to those
 for creating DATE values. For
 example, to change a TIME value so
 that its seconds part is 00, extract
 the hour and minute parts, and then recombine them with CONCAT():
mysql> SELECT t1,
 -> CONCAT(LPAD(HOUR(t1),2,'0'),':',LPAD(MINUTE(t1),2,'0'),':00')
 -> AS recombined
 -> FROM time_val;
+----------+------------+
| t1 | recombined |
+----------+------------+
15:00:00	15:00:00
05:01:30	05:01:00
12:30:20	12:30:00
+----------+------------+
To produce a combined date-and-time value from separate date and
 time values, simply concatenate them separated by a space:
mysql> SET @d = '2009-06-03', @t = '16:15:08';
mysql> SELECT @d, @t, CONCAT(@d,' ',@t);
+------------+----------+---------------------+
| @d | @t | CONCAT(@d,' ',@t) |
+------------+----------+---------------------+
| 2009-06-03 | 16:15:08 | 2009-06-03 16:15:08 |
+------------+----------+---------------------+

8.11 Converting Between Temporal Values and Basic Units
Problem
You want to convert a temporal value such as a time or date to basic units such
 as seconds or days. This is often useful or necessary for performing
 temporal arithmetic operations (see Recipes 8.12 and 8.13).

Solution
The conversion method depends on the type of value to be
 converted:
	To convert between time values and seconds, use the TIME_TO_SEC()
 and SEC_TO_TIME()
 functions.

	To convert between date values and days, use the TO_DAYS()
 and FROM_DAYS() functions.

	To convert between date-and-time values and seconds, use
 the UNIX_TIMESTAMP() and FROM_UNIXTIME() functions.

Discussion
The following discussion shows how to convert several types of
 temporal values to basic units and vice versa.
Converting between times and seconds
TIME values are specialized
 representations of a simpler unit (seconds). To convert from one to
 the other, use the TIME_TO_SEC()
 and SEC_TO_TIME() functions.
TIME_TO_SEC() converts a
 TIME value to the equivalent number of seconds, and SEC_TO_TIME() does the opposite. The
 following statement demonstrates a simple conversion in both
 directions:
mysql> SELECT t1,
 -> TIME_TO_SEC(t1) AS 'TIME to seconds',
 -> SEC_TO_TIME(TIME_TO_SEC(t1)) AS 'TIME to seconds to TIME'
 -> FROM time_val;
+----------+-----------------+-------------------------+
| t1 | TIME to seconds | TIME to seconds to TIME |
+----------+-----------------+-------------------------+
15:00:00	54000	15:00:00
05:01:30	18090	05:01:30
12:30:20	45020	12:30:20
+----------+-----------------+-------------------------+
To express time values as minutes, hours, or days, perform the
 appropriate divisions:
mysql> SELECT t1,
 -> TIME_TO_SEC(t1) AS 'seconds',
 -> TIME_TO_SEC(t1)/60 AS 'minutes',
 -> TIME_TO_SEC(t1)/(60*60) AS 'hours',
 -> TIME_TO_SEC(t1)/(24*60*60) AS 'days'
 -> FROM time_val;
+----------+---------+----------+---------+--------+
| t1 | seconds | minutes | hours | days |
+----------+---------+----------+---------+--------+
15:00:00	54000	900.0000	15.0000	0.6250
05:01:30	18090	301.5000	5.0250	0.2094
12:30:20	45020	750.3333	12.5056	0.5211
+----------+---------+----------+---------+--------+
Use FLOOR() on the division results if you prefer integer values that have
 no fractional part.
If you pass TIME_TO_SEC() a
 date-and-time value, it extracts the time part and discards the date.
 This provides another means of extracting times from DATETIME (or
 TIMESTAMP) values, in addition to
 those already discussed in Recipe 8.9:
mysql> SELECT dt,
 -> TIME_TO_SEC(dt) AS 'time part in seconds',
 -> SEC_TO_TIME(TIME_TO_SEC(dt)) AS 'time part as TIME'
 -> FROM datetime_val;
+---------------------+----------------------+-------------------+
| dt | time part in seconds | time part as TIME |
+---------------------+----------------------+-------------------+
1970-01-01 00:00:00	0	00:00:00
1999-12-31 09:00:00	32400	09:00:00
2000-06-04 15:45:30	56730	15:45:30
2017-03-16 12:30:15	45015	12:30:15
+---------------------+----------------------+-------------------+

Converting between dates and days
If you have a date but want a value in days, or vice versa, use the TO_DAYS() and FROM_DAYS() functions. Date-and-time values
 also can be converted to days if you can suffer loss of the time
 part since the year 0.
TO_DAYS() converts a date to
 the corresponding number of days, and FROM_DAYS() does the opposite:
mysql> SELECT d,
 -> TO_DAYS(d) AS 'DATE to days',
 -> FROM_DAYS(TO_DAYS(d)) AS 'DATE to days to DATE'
 -> FROM date_val;
+------------+--------------+----------------------+
| d | DATE to days | DATE to days to DATE |
+------------+--------------+----------------------+
1864-02-28	680870	1864-02-28
1900-01-15	693975	1900-01-15
1999-12-31	730484	1999-12-31
2000-06-04	730640	2000-06-04
2017-03-16	736769	2017-03-16
+------------+--------------+----------------------+
When using TO_DAYS(), it’s
 best to stick to the advice of the MySQL Reference
 Manual and avoid DATE
 values that occur before the beginning of the Gregorian calendar
 (1582). Changes in the lengths of calendar years and months prior to
 that date make it difficult to speak meaningfully of what the value of
 day 0 might be. This differs from TIME_TO_SEC(), where the correspondence
 between a TIME value and the
 resulting seconds value is obvious and has a meaningful reference
 point of 0 seconds.
If you pass TO_DAYS() a
 date-and-time value, it extracts the date part and discards the time.
 This provides another means of extracting dates from DATETIME (or TIMESTAMP) values, in addition to those
 already discussed in Recipe 8.9:
mysql> SELECT dt,
 -> TO_DAYS(dt) AS 'date part in days',
 -> FROM_DAYS(TO_DAYS(dt)) AS 'date part as DATE'
 -> FROM datetime_val;
+---------------------+-------------------+-------------------+
| dt | date part in days | date part as DATE |
+---------------------+-------------------+-------------------+
1970-01-01 00:00:00	719528	1970-01-01
1999-12-31 09:00:00	730484	1999-12-31
2000-06-04 15:45:30	730640	2000-06-04
2017-03-16 12:30:15	736769	2017-03-16
+---------------------+-------------------+-------------------+

Converting between date-and-time values and seconds
For DATETIME or TIMESTAMP values that lie within the range of the TIMESTAMP data type (from the beginning of
 1970 partially through 2038), the UNIX_TIMESTAMP()
 and FROM_UNIXTIME() functions
 convert to and from the number of seconds elapsed since the beginning
 of 1970. The conversion to seconds offers higher precision for
 date-and-time values than a conversion to days, at the cost of a more
 limited range of values for which the conversion may be performed
 (TIME_TO_SEC() is unsuitable for
 this because it discards the date):
mysql> SELECT dt,
 -> UNIX_TIMESTAMP(dt) AS seconds,
 -> FROM_UNIXTIME(UNIX_TIMESTAMP(dt)) AS timestamp
 -> FROM datetime_val;
+---------------------+------------+---------------------+
| dt | seconds | timestamp |
+---------------------+------------+---------------------+
1970-01-01 00:00:00	21600	1970-01-01 00:00:00
1999-12-31 09:00:00	946652400	1999-12-31 09:00:00
2000-06-04 15:45:30	960151530	2000-06-04 15:45:30
2017-03-16 12:30:15	1489685415	2017-03-16 12:30:15
+---------------------+------------+---------------------+
There is a relationship between UNIX in the
 function names and the fact that the applicable range of values begins
 with 1970: the Unix epoch begins at 1970-01-01
 00:00:00 UTC. The epoch is time
 zero, or the reference point for measuring time in Unix systems. That
 being so, you may find it curious that the preceding example shows a
 UNIX_TIMESTAMP() value of 21600 for the first value in the datetime_val table. Why isn’t it 0? The apparent discrepancy is due to the
 fact that the MySQL server interprets the UNIX_TIMESTAMP() argument as a value in the
 client’s local time zone and converts it to UTC (see Recipe 8.4). Our server is in the US
 Central Time Zone, six hours (21,600 seconds) west of UTC. The
 DATETIME interpreted based on the time zone and the
 numbers would not change with a timestamp.
 Change the session time zone to '+00:00' for
 UTC time, and run the query again to observe a different result:
mysql> set time_zone = '+00:00';
mysql> SELECT dt,
 -> UNIX_TIMESTAMP(dt) AS seconds,
 -> FROM_UNIXTIME(UNIX_TIMESTAMP(dt)) AS timestamp
 -> FROM datetime_val;
+---------------------+------------+---------------------+
| dt | seconds | timestamp |
+---------------------+------------+---------------------+
1970-01-01 00:00:00	0	1970-01-01 00:00:00
1999-12-31 09:00:00	946630800	1999-12-31 09:00:00
2000-06-04 15:45:30	960133530	2000-06-04 15:45:30
2017-03-16 12:30:15	1489667415	2017-03-16 12:30:15
+---------------------+------------+---------------------+
UNIX_TIMESTAMP() can
 convert DATE values
 to seconds, too. It treats such values as having an implicit
 time-of-day part of 00:00:00:
mysql> SELECT
 -> CURDATE(),
 -> UNIX_TIMESTAMP(CURDATE()),
 -> FROM_UNIXTIME(UNIX_TIMESTAMP(CURDATE()))\G
*************************** 1. row ***************************
 CURDATE(): 2021-11-28
 UNIX_TIMESTAMP(CURDATE()): 1638046800
FROM_UNIXTIME(UNIX_TIMESTAMP(CURDATE())): 2021-11-28 00:00:00

8.12 Calculating Intervals Between Dates or Times
Problem
You want to know how long it is between two dates or times, that is, the
 interval between them.

Solution
To calculate an interval, use one of the temporal-difference
 functions, or convert your values to basic units and take the
 difference. The permitted functions depend on the types of the values
 for which you want to know the interval.

Discussion
The following discussion shows several ways to perform interval
 calculations.
Calculating intervals with temporal-difference
 functions
To calculate an interval in days between two date values, use the DATEDIFF() function:
mysql> SET @d1 = '2010-01-01', @d2 = '2009-12-01';
mysql> SELECT DATEDIFF(@d1,@d2) AS 'd1 - d2', DATEDIFF(@d2,@d1) AS 'd2 - d1';
+---------+---------+
| d1 - d2 | d2 - d1 |
+---------+---------+
| 31 | -31 |
+---------+---------+
DATEDIFF() also works with
 date-and-time values but ignores the time part. This makes it
 suitable for producing day intervals for DATE,
 DATETIME, or TIMESTAMP values.
To calculate an interval between TIME values as another TIME value,
 use the TIMEDIFF()
 function:
mysql> SET @t1 = '12:00:00', @t2 = '16:30:00';
mysql> SELECT TIMEDIFF(@t1,@t2) AS 't1 - t2', TIMEDIFF(@t2,@t1) AS 't2 - t1';
+-----------+----------+
| t1 - t2 | t2 - t1 |
+-----------+----------+
| -04:30:00 | 04:30:00 |
+-----------+----------+
TIMEDIFF() also works for
 date-and-time values. That is, it accepts either time or date-and-time
 values, but the types of the arguments must match.
A time interval expressed as a TIME value can be broken down into
 components using the techniques shown in Recipe 8.9. For example, to express a time
 interval in terms of its constituent hours, minutes, and seconds
 values, calculate time interval subparts using the HOUR(),
 MINUTE(), and SECOND() functions. (Don’t forget that if
 your intervals may be negative, you must take that into account.) The
 following SQL statement shows how to determine the components of the
 interval between the t1 and
 t2 columns of the time_val table:
mysql> SELECT t1, t2,
 -> TIMEDIFF(t2,t1) AS 't2 - t1 as TIME',
 -> IF(TIMEDIFF(t2,t1) >= 0,'+','-') AS sign,
 -> HOUR(TIMEDIFF(t2,t1)) AS hour,
 -> MINUTE(TIMEDIFF(t2,t1)) AS minute,
 -> SECOND(TIMEDIFF(t2,t1)) AS second
 -> FROM time_val;
+----------+----------+-----------------+------+------+--------+--------+
| t1 | t2 | t2 - t1 as TIME | sign | hour | minute | second |
+----------+----------+-----------------+------+------+--------+--------+
15:00:00	15:00:00	00:00:00	+	0	0	0
05:01:30	02:30:20	-02:31:10	-	2	31	10
12:30:20	17:30:45	05:00:25	+	5	0	25
+----------+----------+-----------------+------+------+--------+--------+
If you work with date or date-and-time values, the TIMESTAMPDIFF() function provides another
 way to calculate intervals. It enables you to specify the units in
 which intervals should be expressed:
TIMESTAMPDIFF(unit,val1,val2)
unit is the interval unit, and
 val1 and val2
 are the values between which to calculate the interval. With TIMESTAMPDIFF(), you can express an interval
 in many different ways:
mysql> SET @dt1 = '1900-01-01 00:00:00', @dt2 = '1910-01-01 00:00:00';
mysql> SELECT
 -> TIMESTAMPDIFF(MINUTE,@dt1,@dt2) AS minutes,
 -> TIMESTAMPDIFF(HOUR,@dt1,@dt2) AS hours,
 -> TIMESTAMPDIFF(DAY,@dt1,@dt2) AS days,
 -> TIMESTAMPDIFF(WEEK,@dt1,@dt2) AS weeks,
 -> TIMESTAMPDIFF(YEAR,@dt1,@dt2) AS years;
+---------+-------+------+-------+-------+
| minutes | hours | days | weeks | years |
+---------+-------+------+-------+-------+
| 5258880 | 87648 | 3652 | 521 | 10 |
+---------+-------+------+-------+-------+
Permitted unit specifiers are
 MICROSECOND, SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, or YEAR. Note that each is singular, not
 plural.
Be aware of these properties of TIMESTAMPDIFF():
	Its value is negative if the first temporal value is greater
 than the second, which is opposite the order of the arguments for
 DATEDIFF() and TIMEDIFF().

	Despite the TIMESTAMP in
 its name, TIMESTAMPDIFF()
 arguments are not limited to the range of the TIMESTAMP data type.

Time interval calculation using basic units
To calculate intervals in seconds between pairs of time values,
 convert them to seconds with TIME_TO_SEC() and take the difference. To
 express the resulting interval as a TIME value, pass it to SEC_TO_TIME(). The following statement
 calculates the intervals between the t1 and t2
 columns of the time_val table,
 expressing each interval both in seconds and as a TIME
 value:
mysql> SELECT t1, t2,
 -> TIME_TO_SEC(t2) - TIME_TO_SEC(t1) AS 't2 - t1 (in seconds)',
 -> SEC_TO_TIME(TIME_TO_SEC(t2) - TIME_TO_SEC(t1)) AS 't2 - t1 (as TIME)'
 -> FROM time_val;
+----------+----------+----------------------+-------------------+
| t1 | t2 | t2 - t1 (in seconds) | t2 - t1 (as TIME) |
+----------+----------+----------------------+-------------------+
15:00:00	15:00:00	0	00:00:00
05:01:30	02:30:20	-9070	-02:31:10
12:30:20	17:30:45	18025	05:00:25
+----------+----------+----------------------+-------------------+

Date or date-and-time interval calculation using basic
 units
When you calculate an interval between dates by converting both
 dates to a common unit in relation to a given reference point and take
 the difference, the range of your values determines which conversions
 are available:
	DATE, DATETIME, or TIMESTAMP values dating back to 1970-01-01 00:00:00 UTC—the Unix epoch—can be converted to seconds elapsed since the
 epoch. With dates in that range, you can calculate intervals to an
 accuracy of one second.

	Older dates from the beginning of the Gregorian calendar (1582) on can be converted to day
 values and used to compute intervals in days.

	Dates that begin earlier than either of these reference
 points present more of a problem. In such cases, you may find that
 your programming language offers computations that are not
 available or are difficult to perform in SQL. If so, consider
 processing date values directly from within your API language. For
 example, the Date::Calc and Date::Manip modules are available
 from the Comprehensive Perl Archive Network (CPAN) for use in Perl scripts.

To calculate an interval in days between date or date-and-time
 values, convert them to days with TO_DAYS() and take the difference. For an
 interval in weeks, do the same thing and divide the result by
 seven:
mysql> SET @days = TO_DAYS('1884-01-01') - TO_DAYS('1883-06-05');
mysql> SELECT @days AS days, @days/7 AS weeks;
+------+---------+
| days | weeks |
+------+---------+
| 210 | 30.0000 |
+------+---------+
You cannot convert days to months or years by simple division
 because those units vary in length. To yield date intervals expressed
 in those units, use TIMESTAMPDIFF(), discussed earlier in this
 recipe.
For date-and-time values occurring within the TIMESTAMP range from 1970 partially through
 2038, you can determine intervals to a resolution in seconds using the
 UNIX_TIMESTAMP() function. For
 intervals in other units, seconds are easily converted to minutes,
 hours, days, or weeks, as this expression shows for dates that lie two
 weeks apart:
mysql> SET @dt1 = '1984-01-01 09:00:00';
mysql> SET @dt2 = @dt1 + INTERVAL 14 DAY;
mysql> SET @interval = UNIX_TIMESTAMP(@dt2) - UNIX_TIMESTAMP(@dt1);
mysql> SELECT @interval AS seconds,
 -> @interval / 60 AS minutes,
 -> @interval / (60 * 60) AS hours,
 -> @interval / (24 * 60 * 60) AS days,
 -> @interval / (7 * 24 * 60 * 60) AS weeks;
+---------+------------+----------+---------+--------+
| seconds | minutes | hours | days | weeks |
+---------+------------+----------+---------+--------+
| 1209600 | 20160.0000 | 336.0000 | 14.0000 | 2.0000 |
+---------+------------+----------+---------+--------+
Use FLOOR() on the division results if you prefer integer values that have
 no fractional part.
For values that occur outside the TIMESTAMP range, this interval calculation
 method is more general (but messier):
	Take the difference in days between the date parts of the
 values and multiply by 24 × 60 × 60 to convert to seconds.

	Adjust the result by the difference in seconds between the
 time parts of the values.

Here’s an example, using two date-and-time values that lie
 slightly less than three days apart:
mysql> SET @dt1 = '1800-02-14 07:30:00';
mysql> SET @dt2 = '1800-02-17 06:30:00';
mysql> SET @interval =
 -> ((TO_DAYS(@dt2) - TO_DAYS(@dt1)) * 24*60*60)
 -> + TIME_TO_SEC(@dt2) - TIME_TO_SEC(@dt1);
mysql> SELECT @interval AS seconds, SEC_TO_TIME(@interval) AS TIME;
+---------+----------+
| seconds | TIME |
+---------+----------+
| 255600 | 71:00:00 |
+---------+----------+
Do You Want an Interval or a Span?
When you take a difference between dates (or times), consider
 whether you want an interval or a span. Taking a difference
 between dates gives you the interval from one date to the next. To
 determine the range spanned by the two dates, you must add a unit.
 For example, it’s a three-day interval from 2002-01-01 to 2002-01-04, but together they span a range
 of four days. If you don’t get the results you expect from a
 difference-of-values calculation, consider whether an
 off-by-one correction is needed.

8.13 Adding Date or Time Values
Problem
You want to add temporal values. For example, you want to add a given
 number of seconds to a time or determine what the date will be three
 weeks from today.

Solution
To add date or time values, you have several options:
	Use one of the temporal-addition functions.

	Use the + INTERVAL or - INTERVAL operator.

	Convert the values to basic units, and take the sum.

The applicable functions or operators depend on the types of the
 values.

Discussion
The following discussion shows several ways to add temporal
 values.
Adding temporal values using temporal-addition functions or
 operators
To add a time to a time or date-and-time value, use the ADDTIME()
 function:
mysql> SET @t1 = '12:00:00', @t2 = '15:30:00';
mysql> SELECT ADDTIME(@t1,@t2);
+------------------+
| ADDTIME(@t1,@t2) |
+------------------+
| 27:30:00 |
+------------------+
mysql> SET @dt = '1984-03-01 12:00:00', @t = '12:00:00';
mysql> SELECT ADDTIME(@dt,@t);
+----------------------------+
| TIMESTAMP(@d,@t) |
+----------------------------+
| 1984-03-01 15:30:00.000000 |
+----------------------------+
To add a time to a date or date-and-time value, use the TIMESTAMP()
 function:
mysql> SET @d = '1984-03-01', @t = '15:30:00';
mysql> SELECT TIMESTAMP(@d,@t);
+---------------------+
| TIMESTAMP(@d,@t) |
+---------------------+
| 1984-03-01 15:30:00 |
+---------------------+
mysql> SET @dt = '1984-03-01 12:00:00', @t = '12:00:00';
mysql> SELECT TIMESTAMP(@dt,@t);
+----------------------------+
| TIMESTAMP(@dt,@t) |
+----------------------------+
| 1984-03-02 00:00:00.000000 |
+----------------------------+
MySQL also provides DATE_ADD()
 and DATE_SUB() functions for adding
 intervals to dates and subtracting intervals from dates. Each function
 takes a date (or date-and-time) value d and an interval, expressed using the
 following syntax:
DATE_ADD(d,INTERVAL val unit)
DATE_SUB(d,INTERVAL val unit)
The + INTERVAL and - INTERVAL operators are similar:
d + INTERVAL val unit
d - INTERVAL val unit
unit is the interval unit, and val is an
 expression indicating the number of units. Some common unit specifiers
 are SECOND, MINUTE, HOUR, DAY, MONTH, and YEAR. Note that each is singular, not
 plural. (Check the MySQL Reference
 Manual for the
 full list.)
Use DATE_ADD() or DATE_SUB() to perform date arithmetic
 operations such as these:
	Determine the date three days from today:
mysql> SELECT CURDATE(), DATE_ADD(CURDATE(),INTERVAL 3 DAY);
++------------+------------------------------------+
| CURDATE() | DATE_ADD(CURDATE(),INTERVAL 3 DAY) |
+------------+------------------------------------+
| 2021-11-24 | 2021-11-27 |
+------------+------------------------------------+

	Find the date a week ago:
mysql> SELECT CURDATE(), DATE_SUB(CURDATE(),INTERVAL 1 WEEK);
+------------+-------------------------------------+
| CURDATE() | DATE_SUB(CURDATE(),INTERVAL 1 WEEK) |
+------------+-------------------------------------+
| 2021-11-24 | 2021-11-17 |
+------------+-------------------------------------+

	For questions where you need to know both the date and the
 time, begin with a DATETIME or
 TIMESTAMP value. To answer the question What time will it be
 in 60 hours? do this:
mysql> SELECT NOW(), DATE_ADD(NOW(),INTERVAL 60 HOUR);
+---------------------+----------------------------------+
| NOW() | DATE_ADD(NOW(),INTERVAL 60 HOUR) |
+---------------------+----------------------------------+
| 2021-11-24 22:44:19 | 2021-11-27 10:44:19 |
+---------------------+----------------------------------+

	Some interval specifiers have both date and time parts. The
 following adds 14.5 hours to the current date and time:
mysql> SELECT NOW(), DATE_ADD(NOW(),INTERVAL '14:30' HOUR_MINUTE);
+---------------------+--+
| NOW() | DATE_ADD(NOW(),INTERVAL '14:30' HOUR_MINUTE) |
+---------------------+--+
| 2021-11-24 22:46:37 | 2021-11-25 13:16:37 |
+---------------------+--+
Similarly, adding three days and four hours produces this
 result:
mysql> SELECT NOW(), DATE_ADD(NOW(),INTERVAL '3 4' DAY_HOUR);
+---------------------+---+
| NOW() | DATE_ADD(NOW(),INTERVAL '3 4' DAY_HOUR) |
+---------------------+---+
| 2021-11-24 22:47:15 | 2021-11-28 02:47:15 |
+---------------------+---+

DATE_ADD() and DATE_SUB() are interchangeable because one
 is the same as the other with the sign of the interval value flipped.
 These two expressions are equivalent for any date value d:
DATE_ADD(d,INTERVAL -3 MONTH)
DATE_SUB(d,INTERVAL 3 MONTH)
You can also use the +
 INTERVAL or - INTERVAL operator to perform date interval
 addition or subtraction:
mysql> SELECT CURDATE(), CURDATE() + INTERVAL 1 YEAR;
+------------+-----------------------------+
| CURDATE() | CURDATE() + INTERVAL 1 YEAR |
+------------+-----------------------------+
| 2021-11-24 | 2022-11-24 |
+------------+-----------------------------+
mysql> SELECT NOW(), NOW() - INTERVAL '1 12' DAY_HOUR;
+---------------------+----------------------------------+
| NOW() | NOW() - INTERVAL '1 12' DAY_HOUR |
+---------------------+----------------------------------+
| 2021-11-24 22:48:31 | 2021-11-23 10:48:31 |
+---------------------+----------------------------------+
TIMESTAMPADD() is an
 alternative function for adding intervals to date or
 date-and-time values. Its arguments are similar to those for DATE_ADD(), and the following equivalence holds:
TIMESTAMPADD(unit,interval,d) = DATE_ADD(d,INTERVAL interval unit)

Adding temporal values using basic units
Another way to add intervals to date or date-and-time values is
 to perform temporal shifting via functions that convert
 to and from basic units. For background information about the
 applicable functions, see Recipe 8.11.

Adding time values using basic units
Adding times with basic units is similar to calculating
 intervals between times, except that you compute a sum rather than a
 difference. To add an interval value in seconds to a TIME value, convert the TIME to seconds so that both values are
 represented in the same units, then add the values and convert the result
 back to a TIME. For example,
 two hours is 7,200 seconds (2 × 60 × 60), so the
 following statement adds two hours to each t1 value in the time_val table:
mysql> SELECT t1,
 -> SEC_TO_TIME(TIME_TO_SEC(t1) + 7200) AS 't1 plus 2 hours'
 -> FROM time_val;
+----------+-----------------+
| t1 | t1 plus 2 hours |
+----------+-----------------+
15:00:00	17:00:00
05:01:30	07:01:30
12:30:20	14:30:20
+----------+-----------------+
If the interval itself is expressed as a TIME, it too should be converted to seconds
 before adding the values together. The following example calculates
 the sum of the two TIME values in
 each row of the time_val
 table:
mysql> SELECT t1, t2,
 -> TIME_TO_SEC(t1) + TIME_TO_SEC(t2)
 -> AS 't1 + t2 (in seconds)',
 -> SEC_TO_TIME(TIME_TO_SEC(t1) + TIME_TO_SEC(t2))
 -> AS 't1 + t2 (as TIME)'
 -> FROM time_val;
+----------+----------+----------------------+-------------------+
| t1 | t2 | t1 + t2 (in seconds) | t1 + t2 (as TIME) |
+----------+----------+----------------------+-------------------+
15:00:00	15:00:00	108000	30:00:00
05:01:30	02:30:20	27110	07:31:50
12:30:20	17:30:45	108065	30:01:05
+----------+----------+----------------------+-------------------+
It’s important to recognize that MySQL TIME values represent elapsed time, not time
 of day, so they don’t reset to 0 after reaching 24 hours. You can see
 this in the first and third output rows from the previous statement.
 To produce time-of-day values, enforce a 24-hour wraparound using a
 modulo operation before converting the seconds value back to a
 TIME value. The number of seconds
 in a day is 24 × 60 × 60, or 86,400. To convert any seconds value
 s to lie within a 24-hour range,
 use the MOD() function or the
 % modulo operator like this:
MOD(s,86400)
s % 86400
s MOD 86400
The three expressions are equivalent. Applying the first of them
 to the time calculations from the preceding example produces the
 following result:
mysql> SELECT t1, t2,
 -> MOD(TIME_TO_SEC(t1) + TIME_TO_SEC(t2), 86400)
 -> AS 't1 + t2 (in seconds)',
 -> SEC_TO_TIME(MOD(TIME_TO_SEC(t1) + TIME_TO_SEC(t2), 86400))
 -> AS 't1 + t2 (as TIME)'
 -> FROM time_val;
+----------+----------+----------------------+-------------------+
| t1 | t2 | t1 + t2 (in seconds) | t1 + t2 (as TIME) |
+----------+----------+----------------------+-------------------+
15:00:00	15:00:00	21600	06:00:00
05:01:30	02:30:20	27110	07:31:50
12:30:20	17:30:45	21665	06:01:05
+----------+----------+----------------------+-------------------+
Note
The permitted range of a TIME column is -838:59:59 to 838:59:59 (that is, -3020399 to 3020399 seconds). However, the range of
 TIME
 expressions can be greater, so when you add
 time values, you can easily produce a result that lies outside this
 range and cannot be stored as is into a TIME column.

 Alternatively, you can use the TIMESTAMPDIFF()
 function to go outside of the TIMEDIFF() function
 limits:

mysql> SELECT NOW(),TIMESTAMPDIFF(minute,now(), '2023-01-01 00:00:00');
+---------------------+--+
| NOW() | TIMESTAMPDIFF(minute,now(), '2023-01-01 00:00:00') |
+---------------------+--+
| 2022-03-07 06:38:40 | 431601 |
+---------------------+--+

mysql> SELECT NOW(),TIMESTAMPDIFF(day,now(), '2023-01-01 00:00:00');
+---------------------+---+
| NOW() | TIMESTAMPDIFF(day,now(), '2023-01-01 00:00:00') |
+---------------------+---+
| 2022-03-07 06:38:50 | 299 |
+---------------------+---+

Adding to date or date-and-time values using basic
 units
Date or date-and-time values converted to basic units can be shifted to produce other
 dates. For example, to shift a date forward or backward a week (seven
 days), use TO_DAYS() and FROM_DAYS():
mysql> SET @d = '1980-01-01';
mysql> SELECT @d AS date,
 -> FROM_DAYS(TO_DAYS(@d) + 7) AS 'date + 1 week',
 -> FROM_DAYS(TO_DAYS(@d) - 7) AS 'date - 1 week';
+------------+---------------+---------------+
| date | date + 1 week | date - 1 week |
+------------+---------------+---------------+
| 1980-01-01 | 1980-01-08 | 1979-12-25 |
+------------+---------------+---------------+
TO_DAYS() also can convert
 date-and-time values to days, if you don’t mind having it chop off the
 time part.
To preserve the time, you can use UNIX_TIMESTAMP() and FROM_UNIXTIME() instead, if the initial and resulting values both lie in the
 permitted range for TIMESTAMP
 values (from 1970 partially through 2038). The following statement
 shifts a DATETIME value forward and
 backward by an hour (3,600 seconds):
mysql> SET @dt = '1980-01-01 09:00:00';
mysql> SELECT @dt AS datetime,
 -> FROM_UNIXTIME(UNIX_TIMESTAMP(@dt) + 3600) AS 'datetime + 1 hour',
 -> FROM_UNIXTIME(UNIX_TIMESTAMP(@dt) - 3600) AS 'datetime - 1 hour';
+---------------------+---------------------+---------------------+
| datetime | datetime + 1 hour | datetime - 1 hour |
+---------------------+---------------------+---------------------+
| 1980-01-01 09:00:00 | 1980-01-01 10:00:00 | 1980-01-01 08:00:00 |
+---------------------+---------------------+---------------------+

8.14 Calculating Ages
Problem
You want to know how old someone is.

Solution
This is a date-arithmetic problem. It amounts to computing the
 interval between dates but with a twist. For an age in years, it’s
 necessary to account for the relative placement of the start and end
 dates within the calendar year. For an age in months, it’s also
 necessary to account for the placement of the months and the days within
 the month.

Discussion
Age determination is a type of date-interval calculation. However,
 you cannot simply compute a difference in days and divide by 365 because
 leap years throw off the calculation. (It is 365 days from 1995-03-01 to
 1996-02-29, but that is not a year in age terms.) Dividing by 365.25 is
 slightly more accurate but still not correct for all dates.
To calculate ages, use the TIMESTAMPDIFF() function. Pass it a birth
 date, a current date, and the unit in which you want the age
 expressed:
TIMESTAMPDIFF(unit,birth,current)
TIMESTAMPDIFF() handles the
 calculations necessary to adjust for differing month and year lengths
 and relative positions of the dates within the calendar year. Suppose
 that a sibling table lists the birth
 dates of Ilayda and her sister Lara:
mysql> SELECT * FROM sibling;
+--------+------------+
| name | birth |
+--------+------------+
| Ilayda | 2002-12-17 |
| Lara | 2009-06-03 |
+--------+------------+
Using TIMESTAMPDIFF(), you can
 answer questions such as these:
	How old are the Alkins’ children today, in years, months, and
 days?
mysql> SELECT name,DATE_FORMAT(birth,'%Y-%m-%d') as dob,
 -> DATE_FORMAT(NOW(),'%Y-%m-%d') as today,
 -> TIMESTAMPDIFF(YEAR, birth, NOW()) as age_years',
 -> FLOOR(TIMESTAMPDIFF(DAY, birth, now()) % 30.4375) as age_days
 -> FROM sibling;
+--------+------------+------------+-----------+------------+----------+
| name | dob | today | age_years | age_months | age_days |
+--------+------------+------------+-----------+------------+----------+
| Ilayda | 2002-12-17 | 2022-03-07 | 19 | 2 | 19 |
| Lara | 2009-06-03 | 2022-03-07 | 12 | 9 | 3 |
+--------+------------+------------+-----------+------------+----------+

	How old was Ilayda when Lara was born, in years
 and months?
mysql> SELECT name, birth, '2009-06-03' AS 'Lara\'s birth',
 -> TIMESTAMPDIFF(YEAR,birth,'2009-06-03') AS 'age in years',
 -> TIMESTAMPDIFF(MONTH, birth,'2009-06-09') % 12 as age_months,
 -> FLOOR(TIMESTAMPDIFF(DAY, birth,'2009-06-09') % 30.4375) as age_days
 -> FROM sibling WHERE name <> 'Lara';
+--------+------------+--------------+-----------+------------+----------+
| name | birth | Lara's birth | age_years | age_months | age_days |
+--------+------------+--------------+-----------+------------+----------+
| Ilayda | 2002-12-17 | 2009-06-09 | 6 | 5 | 22 |
+--------+------------+--------------+-----------+------------+----------+

For further information about date calculation using these functions,
 consult the MySQL Reference Manual.

8.15 Finding the First Day, Last Day, or Length of a Month
Problem
Given a date, you want to determine the date for the first or last day of the month
 in which the date occurs, or the first or last day for the month
 n months away. A related problem is to
 determine the number of days in a month.

Solution
To determine the date for the first day in a month, use date
 shifting (an application of date arithmetic). To determine the date for
 the last day, use the LAST_DAY()
 function. To determine the number of days in a month, find the date for
 its last day and use it as the argument to DAYOFMONTH().

Discussion
Sometimes you have a reference date and want to reach a target
 date that doesn’t have a fixed relationship to the reference date. For
 example, the first or last days of the current month aren’t a fixed
 number of days from the current date.
To find the first day of the month for a given date, shift the
 date back by one fewer days than its DAYOFMONTH() value:
mysql> SELECT d, DATE_SUB(d,INTERVAL DAYOFMONTH(d)-1 DAY) AS '1st of month'
 -> FROM date_val;
+------------+--------------+
| d | 1st of month |
+------------+--------------+
1864-02-28	1864-02-01
1900-01-15	1900-01-01
1999-12-31	1999-12-01
2000-06-04	2000-06-01
2017-03-16	2017-03-01
+------------+--------------+
In the general case, to find the first of the month for any month
 n months away from a given date, calculate
 the first of the month for the date and shift the result by
 n months:
DATE_ADD(DATE_SUB(d,INTERVAL DAYOFMONTH(d)-1 DAY),INTERVAL n MONTH)
For example, to find the first day of the previous and following
 months relative to a given date, n is
 -1 and 1:
mysql> SELECT d,
 -> DATE_ADD(DATE_SUB(d,INTERVAL DAYOFMONTH(d)-1 DAY),INTERVAL -1 MONTH)
 -> AS '1st of previous month',
 -> DATE_ADD(DATE_SUB(d,INTERVAL DAYOFMONTH(d)-1 DAY),INTERVAL 1 MONTH)
 -> AS '1st of following month'
 -> FROM date_val;

+------------+-----------------------+------------------------+
| d | 1st of previous month | 1st of following month |
+------------+-----------------------+------------------------+
1864-02-28	1864-01-01	1864-03-01
1900-01-15	1899-12-01	1900-02-01
1999-12-31	1999-11-01	2000-01-01
2000-06-04	2000-05-01	2000-07-01
2017-03-16	2017-02-01	2017-04-01
+------------+-----------------------+------------------------+
It’s easier to find the last day of the month for a given date because there is a
 function for it:
mysql> SELECT d, LAST_DAY(d) AS 'last of month'
 -> FROM date_val;
+------------+---------------+
| d | last of month |
+------------+---------------+
1864-02-28	1864-02-29
1900-01-15	1900-01-31
1999-12-31	1999-12-31
2000-06-04	2000-06-30
2017-03-16	2017-03-31
+------------+---------------+
For the general case, to find the last day of the month for any month
 n months away from a given date, shift the
 date by that many months first, then pass it to LAST_DAY():
LAST_DAY(DATE_ADD(d,INTERVAL n MONTH))
For example, to find the last day of the previous and following
 months relative to a given date, n is
 -1 and 1:
mysql> SELECT d,
 -> LAST_DAY(DATE_ADD(d,INTERVAL -1 MONTH))
 -> AS 'last of previous month',
 -> LAST_DAY(DATE_ADD(d,INTERVAL 1 MONTH))
 -> AS 'last of following month'
 -> FROM date_val;
+------------+------------------------+-------------------------+
| d | last of previous month | last of following month |
+------------+------------------------+-------------------------+
1864-02-28	1864-01-31	1864-03-31
1900-01-15	1899-12-31	1900-02-28
1999-12-31	1999-11-30	2000-01-31
2000-06-04	2000-05-31	2000-07-31
2017-03-16	2017-02-28	2017-04-30
+------------+------------------------+-------------------------+
To find the length of a month in days, determine the date of its last day with
 LAST_DAY(), then use DAYOFMONTH() to extract the day-of-month
 component from the result:
mysql> SELECT d, DAYOFMONTH(LAST_DAY(d)) AS 'days in month' FROM date_val;
+------------+---------------+
| d | days in month |
+------------+---------------+
1864-02-28	29
1900-01-15	31
1999-12-31	31
2000-06-04	30
2017-03-16	31
+------------+---------------+

8.16 Finding the Day of the Week for a Date
Problem
You want to know the day of the week on which a date falls.

Solution
Use the DAYNAME()
 function.

Discussion
To determine the name of the day of the week for a given date, use
 DAYNAME():
mysql> SELECT CURDATE(), DAYNAME(CURDATE());
+------------+--------------------+
| CURDATE() | DAYNAME(CURDATE()) |
+------------+--------------------+
| 2021-11-24 | Wednesday |
+------------+--------------------+
DAYNAME() is often useful in
 conjunction with other date-related techniques. For example, to
 determine the day of the week for the first of the month, use the
 first-of-month expression from Recipe 8.15 as the argument to DAYNAME():
mysql> SET @d = CURDATE();
mysql> SET @first = DATE_SUB(@d,INTERVAL DAYOFMONTH(@d)-1 DAY);
mysql> SELECT @d AS 'starting date',
 -> @first AS '1st of month date',
 -> DAYNAME(@first) AS '1st of month day';
+---------------+-------------------+------------------+
| starting date | 1st of month date | 1st of month day |
+---------------+-------------------+------------------+
| 2021-11-24 | 2021-11-01 | Monday |
+---------------+-------------------+------------------+

8.17 Finding Dates for Any Weekday of a Given Week
Problem
You want to compute the date of some weekday for the week in which a given
 date lies. Suppose that you want to know the date of the Tuesday that
 falls in the same week as 2014-07-09.

Solution
This is an application of date shifting. Figure out the number of
 days between the starting weekday of the given date and the desired day,
 and shift the date by that many days.

Discussion
This section and the next describe how to convert one date to
 another when the target date is specified in terms of days of the week.
 To solve such problems, you need to know day-of-week values. Suppose you
 begin with a target date of 2014-07-09. To determine the date for Tuesday
 of the week in which that date lies, the calculation depends on what
 weekday it is. If it’s a Monday, you add a day to produce 2014-07-10, but if it’s a Wednesday, you
 subtract a day to produce 2014-07-08.
MySQL provides two functions that are useful here. DAYOFWEEK() treats Sunday as the first day of
 the week and returns 1 through 7 for Sunday through Saturday. WEEKDAY()
 treats Monday as the first day of the week and returns 0 through 6 for
 Monday through Sunday. (The examples shown here use DAYOFWEEK().) Another kind of day-of-week
 operation involves determining the name of the day. DAYNAME() can be used for that.
Calculations that determine one day of the week from another
 depend on the day you start from as well as the day you want to reach. I
 find it easiest to shift the reference date first to a known point
 relative to the beginning of the week, and then shift forward:
	Shift the reference date back by its DAYOFWEEK() value, which always produces
 the date for the Saturday preceding the week.

	Shift the Saturday date by one day to reach the Sunday date,
 by two days to reach the Monday date, and so forth.

In SQL, those operations can be expressed as follows for a date
 d, where n
 is 1 through 7 to produce the dates for Sunday through Saturday:
DATE_ADD(DATE_SUB(d,INTERVAL DAYOFWEEK(d) DAY),INTERVAL n DAY)
That expression splits the shift back to Saturday
 and shift forward phases into separate operations, but
 because the intervals for both DATE_SUB() and
 DATE_ADD() are in days, the
 expression can be simplified into a single DATE_ADD() call:
DATE_ADD(d,INTERVAL n-DAYOFWEEK(d) DAY)
Applying this formula to the dates in our date_val table, using an
 n of 1 for Sunday and 7 for Saturday to find
 the first and last days of the week, yields this result:
mysql> SELECT d, DAYNAME(d) AS day,
 -> DATE_ADD(d,INTERVAL 1-DAYOFWEEK(d) DAY) AS Sunday,
 -> DATE_ADD(d,INTERVAL 7-DAYOFWEEK(d) DAY) AS Saturday
 -> FROM date_val;
+------------+----------+------------+------------+
| d | day | Sunday | Saturday |
+------------+----------+------------+------------+
1864-02-28	Sunday	1864-02-28	1864-03-05
1900-01-15	Monday	1900-01-14	1900-01-20
1999-12-31	Friday	1999-12-26	2000-01-01
2000-06-04	Sunday	2000-06-04	2000-06-10
2017-03-16	Thursday	2017-03-12	2017-03-18
+------------+----------+------------+------------+
To determine the date of some weekday in a week relative to that of the target date, modify the preceding procedure a bit. First, determine the date of the desired weekday in the week containing the target date and then shift the result into the desired week.
Calculating the date for a day of the week in some other week is a
 problem that breaks down into a day-within-week shift (using the formula
 just given) plus a week shift. These operations can be done in either
 order because the amount of shift within the week is the same whether or
 not you shift the reference date into a different week first. For
 example, to calculate Wednesday of a week by the preceding formula,
 n is 4. To compute the date for Wednesday two
 weeks ago, you can perform the day-within-week shift first, like
 this:
mysql> SET @target =
 -> DATE_SUB(DATE_ADD(CURDATE(),INTERVAL 4-DAYOFWEEK(CURDATE()) DAY),
 -> INTERVAL 14 DAY);
mysql> SELECT CURDATE(), @target, DAYNAME(@target);
+------------+------------+------------------+
| CURDATE() | @target | DAYNAME(@target) |
+------------+------------+------------------+
| 2021-11-24 | 2021-11-10 | Wednesday |
+------------+------------+------------------+
Or you can perform the week shift first:
mysql> SET @target =
 -> DATE_ADD(DATE_SUB(CURDATE(),INTERVAL 14 DAY),
 -> INTERVAL 4-DAYOFWEEK(CURDATE()) DAY);
mysql> SELECT CURDATE(), @target, DAYNAME(@target);

+------------+------------+------------------+
| CURDATE() | @target | DAYNAME(@target) |
+------------+------------+------------------+
| 2021-11-24 | 2021-11-10 | Wednesday |
+------------+------------+------------------+
Some applications need to determine dates such as the
 n-th instance of particular weekdays. For
 example, to administer a payroll for which paydays are the second and
 fourth Thursdays of each month, you must know what those dates are. One
 way to do this for any given month is to begin with the first-of-month
 date and shift it forward. It’s easy enough to shift the date to the
 Thursday in that week; the trick is to figure out how many weeks forward
 to shift the result to reach the second and fourth Thursdays. If the
 first of the month occurs on any day from Sunday through Thursday, you
 shift forward one week to reach the second Thursday. If the first of the
 month occurs on Friday or later, you shift forward by two weeks. The
 fourth Thursday is, of course, two weeks after that.
The following Perl code implements this logic to find all paydays
 in the year 2021. It runs a loop that constructs the first-of-month date
 for the months of the year. For each month, it issues a statement that
 determines the dates of the second and fourth Thursdays:
my $year = 2021;
print "MM/YYYY 2nd Thursday 4th Thursday\n";
foreach my $month (1..12)
{
 my $first = sprintf ("%04d-%02d-01", $year, $month);
 my ($thu2, $thu4) = $dbh->selectrow_array (qq{
 SELECT
 DATE_ADD(
 DATE_ADD(?,INTERVAL 5-DAYOFWEEK(?) DAY),
 INTERVAL IF(DAYOFWEEK(?) <= 5, 7, 14) DAY),
 DATE_ADD(
 DATE_ADD(?,INTERVAL 5-DAYOFWEEK(?) DAY),
 INTERVAL IF(DAYOFWEEK(?) <= 5, 21, 28) DAY)
 }, undef, $first, $first, $first, $first, $first, $first);
 printf "%02d/%04d %s %s\n", $month, $year, $thu2, $thu4;
}
The program produces this output:
MM/YYYY 2nd Thursday 4th Thursday
01/2021 2021-01-14 2021-01-28
02/2021 2021-02-11 2021-02-25
03/2021 2021-03-11 2021-03-25
04/2021 2021-04-08 2021-04-22
05/2021 2021-05-13 2021-05-27
06/2021 2021-06-10 2021-06-24
07/2021 2021-07-08 2021-07-22
08/2021 2021-08-12 2021-08-26
09/2021 2021-09-09 2021-09-23
10/2021 2021-10-14 2021-10-28
11/2021 2021-11-11 2021-11-25
12/2021 2021-12-09 2021-12-23

8.18 Canonizing Not-Quite-ISO Date Strings
Problem
You have a date that is in a format that’s close to, but not
 exactly in, ISO format, and you want to convert it into an ISO-format
 date.

Solution
Canonize the date by passing it to a function that always returns
 an ISO-format date result.

Discussion
In Recipe 8.10, we ran into the
 problem that synthesizing dates with CONCAT() may
 produce values that are not quite in ISO format. For example, the
 following statement produces first-of-month values in which the month
 part may have only a single digit:
mysql> SELECT d, CONCAT(YEAR(d),'-',MONTH(d),'-01') FROM date_val;
+------------+------------------------------------+
| d | CONCAT(YEAR(d),'-',MONTH(d),'-01') |
+------------+------------------------------------+
1864-02-28	1864-2-01
1900-01-15	1900-1-01
1999-12-31	1999-12-01
2000-06-04	2000-6-01
2017-03-16	2017-3-01
+------------+------------------------------------+
Recipe 8.10 shows a technique
 using LPAD() for making
 sure the month values have two digits. Another way to standardize a
 close-to-ISO date is to use it in an expression that produces an ISO
 date result. For a date d, any of the
 following expressions will do:
DATE_ADD(d,INTERVAL 0 DAY)
d + INTERVAL 0 DAY
FROM_DAYS(TO_DAYS(d))
STR_TO_DATE(d,'%Y-%m-%d')
Using those expressions with the non-ISO results from the CONCAT() operation yields ISO format in
 several ways:
mysql> SELECT
 -> CONCAT(YEAR(d),'-',MONTH(d),'-01') AS 'non-ISO',
 -> DATE_ADD(CONCAT(YEAR(d),'-',MONTH(d),'-01'),INTERVAL 0 DAY) AS 'ISO 1',
 -> CONCAT(YEAR(d),'-',MONTH(d),'-01') + INTERVAL 0 DAY AS 'ISO 2',
 -> FROM_DAYS(TO_DAYS(CONCAT(YEAR(d),'-',MONTH(d),'-01'))) AS 'ISO 3',
 -> STR_TO_DATE(CONCAT(YEAR(d),'-',MONTH(d),'-01'),'%Y-%m-%d') AS 'ISO 4'
 -> FROM date_val;
+------------+------------+------------+------------+------------+
| non-ISO | ISO 1 | ISO 2 | ISO 3 | ISO 4 |
+------------+------------+------------+------------+------------+
1864-2-01	1864-02-01	1864-02-01	1864-02-01	1864-02-01
1900-1-01	1900-01-01	1900-01-01	1900-01-01	1900-01-01
1999-12-01	1999-12-01	1999-12-01	1999-12-01	1999-12-01
2000-6-01	2000-06-01	2000-06-01	2000-06-01	2000-06-01
2017-3-01	2017-03-01	2017-03-01	2017-03-01	2017-03-01
+------------+------------+------------+------------+------------+

8.19 Selecting Rows Based on Temporal Characteristics
Problem
You want to select rows based on temporal conditions.

Solution
Use a date or time condition in the WHERE clause. This
 may be based on direct comparison of column values with known values. Or
 it may be necessary to apply a function to column values to convert them
 to a more appropriate form for testing, such as using MONTH() to test the month part of a date.

Discussion
Most of the preceding date-based techniques were illustrated by
 example statements that produce date or time values as output. To place
 date-based restrictions on the rows selected by a statement, use the
 same techniques in a WHERE clause.
 For example, you can select rows by looking for values that occur before
 or after a given date, within a date range, or that match particular
 month or day values.
Comparing dates to one another
The following statements find rows from the date_val table that occur either before 1900
 or during the 1900s:
mysql> SELECT d FROM date_val where d < '1900-01-01';
+------------+
| d |
+------------+
| 1864-02-28 |
+------------+
mysql> SELECT d FROM date_val where d BETWEEN '1900-01-01' AND '1999-12-31';
+------------+
| d |
+------------+
| 1900-01-15 |
| 1999-12-31 |
+------------+
When you don’t know the exact date needed for a comparison in a
 WHERE clause, you can often
 calculate it using an expression. For example, to perform an on
 this day in history statement to search for rows in a table
 named history to find events
 occurring exactly 50 years ago, do this:
SELECT * FROM history WHERE d = DATE_SUB(CURDATE(),INTERVAL 50 YEAR);
You see this kind of thing in newspapers that run columns
 showing what the news events were in times past. (In essence, the
 statement identifies those events that have reached their
 n-th anniversary.) To retrieve events that
 occurred on this day for any year rather than on
 this date for a specific year, the statement is a bit
 different. In that case, you need to find rows that match the current
 calendar day, ignoring the year. That topic is discussed in “Comparing dates to calendar days”.
Calculated dates are useful for range testing as well. For
 example, to find dates that occur later than 20 years ago, use DATE_SUB() to
 calculate the cutoff date:
mysql> SELECT d FROM date_val WHERE d >= DATE_SUB(CURDATE(),INTERVAL 20 YEAR);
+------------+
| d |
+------------+
| 1999-12-31 |
| 2000-06-04 |
| 2017-03-16 |
+------------+
Note that the expression in the WHERE clause isolates the date column
 d on one side of the comparison
 operator. This is usually a good idea; if the column is indexed,
 placing it alone on one side of a comparison enables MySQL to process
 the statement more efficiently. To illustrate, the preceding WHERE clause can be written in a way that’s
 logically equivalent but much less efficient for MySQL to
 execute:
WHERE DATE_ADD(d,INTERVAL 20 YEAR) >= CURDATE();
Here, the d column is used
 within an expression. That means every row must
 be retrieved so that the expression can be evaluated and tested, which
 makes any index on the column useless.
Sometimes it’s not so obvious how to rewrite a comparison to
 isolate a date column on one side. For example, the following WHERE clause uses only part of the date
 column in the comparisons:
WHERE YEAR(d) >= 1987 AND YEAR(d) <= 1991;
To rewrite the first comparison, eliminate the YEAR() call, and replace its right side with
 a complete date:
WHERE d >= '1987-01-01' AND YEAR(d) <= 1991;
Rewriting the second comparison is a little trickier. You can
 eliminate the YEAR() call on the
 left side, just as with the first expression, but you can’t just add
 -01-01 to the year on the right
 side. That produces the following result, which is incorrect:
WHERE d >= '1987-01-01' AND d <= '1991-01-01';
That fails because dates from 1991-01-02 to 1991-12-31 fail the test but should pass.
 To rewrite the second comparison correctly, do this:
WHERE d >= '1987-01-01' AND d < '1992-01-01';
Another use for calculated dates occurs frequently in
 applications that create rows that have a limited lifetime. Such
 applications must be able to determine which rows to delete when
 performing an expiration operation. You can approach this problem in a
 couple of ways:
	Store a date in each row indicating when it was created. (Do
 this by making the column a TIMESTAMP or by setting it to NOW(); see
 Recipe 8.8 for details.) To
 perform an expiration operation later, determine which rows have a
 creation date that is too old by comparing that date to the
 current date. For example, the statement to expire rows that were
 created more than n days ago might look
 like this:
DELETE FROM mytbl WHERE create_date < DATE_SUB(NOW(),INTERVAL n DAY);

	Store an explicit expiration date in each row by calculating
 the expiration date with DATE_ADD() when the row is created. For
 a row that should expire in n days, do
 this:
INSERT INTO mytbl (expire_date,...)
VALUES(DATE_ADD(NOW(),INTERVAL n DAY),...);
To perform the expiration operation in this case, compare
 the expiration dates to the current date to see which have been
 reached:
DELETE FROM mytbl WHERE expire_date < NOW();

Comparing times to one another
Comparisons involving times are similar to those involving
 dates. For example, to find times in the t1 column that occurred from 9 AM to 2 PM,
 use an expression like one of these:
WHERE t1 BETWEEN '09:00:00' AND '14:00:00';
WHERE HOUR(t1) BETWEEN 9 AND 14;
For an indexed TIME column,
 the first method is more efficient. The second method has the
 property that it works not only for TIME columns but for DATETIME and TIMESTAMP columns as well.

Comparing dates to calendar days
To answer questions about particular days of the year, use
 calendar-day testing. The following examples illustrate how to do this
 in the context of looking for birthdays:
	Who has a birthday today? This requires matching a
 particular calendar day, so you extract the month and day but
 ignore the year when performing comparisons:
WHERE MONTH(d) = MONTH(CURDATE()) AND DAYOFMONTH(d) = DAYOFMONTH(CURDATE());
This kind of statement is commonly applied to biographical
 data to find lists of actors, politicians, musicians, and so
 forth who were born on a particular day of the year.
It’s tempting to use DAYOFYEAR() to solve on this day problems because it
 results in simpler statements. But DAYOFYEAR() doesn’t work properly for
 leap years. The presence of February 29 throws off the values for
 days from March through December:

	Who has a birthday this month? In this case, it’s necessary
 to check only the month:
WHERE MONTH(d) = MONTH(CURDATE());

	Who has a birthday next month? The trick here is that you
 can’t just add one to the current month to get the month number
 that qualifying dates must match. That gives you 13 for dates in
 December. To make sure that you get 1 (January), use either of the
 following techniques:
WHERE MONTH(d) = MONTH(DATE_ADD(CURDATE(),INTERVAL 1 MONTH));
WHERE MONTH(d) = MOD(MONTH(CURDATE()),12)+1;

Chapter 9. Sorting Query Results
9.0 Introduction
This chapter covers sorting, an extremely important operation for controlling how MySQL
 displays results from SELECT
 statements. To sort a query result, add an ORDER BY clause to the query. Without such a clause,
 MySQL is free to return rows in any order, so sorting helps bring order to
 disorder and makes query results easier to examine and understand.
You can sort rows of a query result in several ways:
	Using a single column, a combination of columns, or even parts
 of columns or expression results

	Using ascending or descending order

	Using case-sensitive or case-insensitive string
 comparisons

	Using temporal ordering

Several examples in this chapter use the driver_log table, which contains columns for
 recording daily mileage logs for a set of truck drivers:
mysql> SELECT * FROM driver_log;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
1	Ben	2014-07-30	152
2	Suzi	2014-07-29	391
3	Henry	2014-07-29	300
4	Henry	2014-07-27	96
5	Ben	2014-07-29	131
6	Henry	2014-07-26	115
7	Suzi	2014-08-02	502
8	Henry	2014-08-01	197
9	Ben	2014-08-02	79
10	Henry	2014-07-30	203
+--------+-------+------------+-------+
Many other examples use the mail
 table (used in earlier chapters):
mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size FROM mail;
+---------------------+---------+---------+---------+---------+---------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+---------+
2014-05-11 10:15:08	barb	saturn	tricia	mars	58274
2014-05-12 12:48:13	tricia	mars	gene	venus	194925
2014-05-12 15:02:49	phil	mars	phil	saturn	1048
2014-05-12 18:59:18	barb	saturn	tricia	venus	271
2014-05-14 09:31:37	gene	venus	barb	mars	2291
2014-05-14 11:52:17	phil	mars	tricia	saturn	5781
2014-05-14 14:42:21	barb	venus	barb	venus	98151
2014-05-14 17:03:01	tricia	saturn	phil	venus	2394482
2014-05-15 07:17:48	gene	mars	gene	saturn	3824
2014-05-15 08:50:57	phil	venus	phil	venus	978
2014-05-15 10:25:52	gene	mars	tricia	saturn	998532
2014-05-15 17:35:31	gene	saturn	gene	mars	3856
2014-05-16 09:00:28	gene	venus	barb	mars	613
2014-05-16 23:04:19	phil	venus	barb	venus	10294
2014-05-19 12:49:23	phil	mars	tricia	saturn	873
2014-05-19 22:21:51	gene	saturn	gene	venus	23992
+---------------------+---------+---------+---------+---------+---------+
Other tables are used occasionally as well. To create them, use
 scripts found in the tables directory
 of the recipes distribution.

9.1 Using ORDER BY to Sort Query Results
Problem
Rows in a query result don’t appear in the order you want.

Solution
Add an ORDER BY clause to the query to sort its
 result.

Discussion
The contents of the driver_log
 and mail tables shown in the chapter
 introduction are disorganized and difficult to make sense of. The values in the id and t
 columns are in order only by coincidence.
When you select rows, they’re returned from the database in
 whatever order the server happens to use. A relational database makes no
 guarantee about the order in which it returns rows—unless you tell it
 how, by adding an ORDER BY clause to your SELECT statement. Without ORDER BY,
 you may find that the retrieval order changes over time as you modify
 the table contents. With an ORDER
 BY clause, MySQL always sorts rows as
 you indicate.
ORDER BY has the following general characteristics:
	You can sort using one or more column or expression
 values.

	You can sort columns independently in ascending order (the
 default) or descending order.

	You can refer to sort columns by name or by using an
 alias.

This recipe shows some basic sorting techniques, such as how to
 name the sort columns and specify the sort direction. Recipes later in this chapter illustrate how to perform more complex sorts. Paradoxically,
 you can even use ORDER BY to disorder a result
 set, which is useful for randomizing the rows or (in conjunction with
 LIMIT) for picking a row at random
 from a result set (see Recipes 17.7 and 17.8).
The following examples demonstrate how to sort on a single column
 or multiple columns and how to sort in ascending or descending order.
 The examples select the rows in the driver_log table but sort them in different
 orders to demonstrate the effect of the different ORDER BY
 clauses.
This query produces a single-column sort using the driver
 name:
mysql> SELECT * FROM driver_log ORDER BY name;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
1	Ben	2014-07-30	152
9	Ben	2014-08-02	79
5	Ben	2014-07-29	131
8	Henry	2014-08-01	197
6	Henry	2014-07-26	115
4	Henry	2014-07-27	96
3	Henry	2014-07-29	300
10	Henry	2014-07-30	203
7	Suzi	2014-08-02	502
2	Suzi	2014-07-29	391
+--------+-------+------------+-------+
The default sort direction is ascending. To make the direction for
 an ascending sort explicit, add ASC
 after the sorted column’s name:
SELECT * FROM driver_log ORDER BY name ASC;
The opposite (or reverse) of ascending order is descending order,
 specified by adding DESC after the
 sorted column’s name:
mysql> SELECT * FROM driver_log ORDER BY name DESC;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
2	Suzi	2014-07-29	391
7	Suzi	2014-08-02	502
10	Henry	2014-07-30	203
8	Henry	2014-08-01	197
6	Henry	2014-07-26	115
4	Henry	2014-07-27	96
3	Henry	2014-07-29	300
5	Ben	2014-07-29	131
9	Ben	2014-08-02	79
1	Ben	2014-07-30	152
+--------+-------+------------+-------+
Closely examine the output from the queries just shown and you’ll
 notice that although rows are sorted by name, rows for any given name
 are in no special order. (The trav_date values aren’t in date order for
 Henry or Ben, for example.) That’s because MySQL doesn’t sort something
 unless you tell it to:
	The overall order of rows returned by a query is indeterminate
 unless you specify an ORDER
 BY clause.

	Within a group of rows that sort together based on the values
 in a given column, the order of values in other columns is
 also indeterminate unless you name them in the ORDER BY clause.

To more fully control output order, specify a multiple-column sort
 by listing each column to use for sorting, separated by commas. The
 following query sorts in ascending order by name and by trav_date within the rows for each
 name:
mysql> SELECT * FROM driver_log ORDER BY name, trav_date;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
5	Ben	2014-07-29	131
1	Ben	2014-07-30	152
9	Ben	2014-08-02	79
6	Henry	2014-07-26	115
4	Henry	2014-07-27	96
3	Henry	2014-07-29	300
10	Henry	2014-07-30	203
8	Henry	2014-08-01	197
2	Suzi	2014-07-29	391
7	Suzi	2014-08-02	502
+--------+-------+------------+-------+
Multiple-column sorts can be descending as well, but DESC must be specified after
 each column name to perform a fully descending
 sort.
Multiple-column ORDER BY clauses can perform mixed-order sorting
 where some columns are sorted in ascending order and others in
 descending order. The following query sorts by name in descending order, then by trav_date in ascending order for each
 name:
mysql> SELECT * FROM driver_log ORDER BY name DESC, trav_date;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
2	Suzi	2014-07-29	391
7	Suzi	2014-08-02	502
6	Henry	2014-07-26	115
4	Henry	2014-07-27	96
3	Henry	2014-07-29	300
10	Henry	2014-07-30	203
8	Henry	2014-08-01	197
5	Ben	2014-07-29	131
1	Ben	2014-07-30	152
9	Ben	2014-08-02	79
+--------+-------+------------+-------+
The ORDER BY clauses in the queries shown thus far refer
 to the sorted columns by name. You can also name the columns by using
 aliases. That is, if an output column has an alias, you can refer to the
 alias in the ORDER BY clause:
mysql> SELECT name, trav_date, miles AS distance FROM driver_log
 -> ORDER BY distance;
+-------+------------+----------+
| name | trav_date | distance |
+-------+------------+----------+
Ben	2014-08-02	79
Henry	2014-07-27	96
Henry	2014-07-26	115
Ben	2014-07-29	131
Ben	2014-07-30	152
Henry	2014-08-01	197
Henry	2014-07-30	203
Henry	2014-07-29	300
Suzi	2014-07-29	391
Suzi	2014-08-02	502
+-------+------------+----------+

9.2 Using Expressions for Sorting
Problem
You want to sort a query result based on values calculated from a column
 rather than the values actually stored in the column.

Solution
Put the expression that calculates the values in the ORDER BY
 clause.

Discussion
One of the mail table columns
 shows how large each mail message is, in bytes:
mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size FROM mail;
+---------------------+---------+---------+---------+---------+---------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+---------+
2014-05-11 10:15:08	barb	saturn	tricia	mars	58274
2014-05-12 12:48:13	tricia	mars	gene	venus	194925
2014-05-12 15:02:49	phil	mars	phil	saturn	1048
2014-05-12 18:59:18	barb	saturn	tricia	venus	271
…
Suppose that you want to retrieve rows for big mail
 messages (defined as those larger than 50,000 bytes), but you want them
 to be displayed and sorted by sizes in terms of kilobytes, not bytes. In
 this case, the values to sort are calculated by an expression:
FLOOR((size+1023)/1024)
The +1023 in the FLOOR() expression groups size values to
 the nearest upper boundary of the 1,024-byte categories. Without it, the
 values group by lower boundaries (for example, a 2,047-byte message is
 reported as having a size of 1 kilobyte rather than 2). Recipe 10.13 discusses this technique in more
 detail.
To sort by that expression, put it directly in the ORDER BY
 clause:
mysql> SELECT t, srcuser, FLOOR((size+1023)/1024)
 -> FROM mail WHERE size > 50000
 -> ORDER BY FLOOR((size+1023)/1024);
+---------------------+---------+-------------------------+
| t | srcuser | FLOOR((size+1023)/1024) |
+---------------------+---------+-------------------------+
2014-05-11 10:15:08	barb	57
2014-05-14 14:42:21	barb	96
2014-05-12 12:48:13	tricia	191
2014-05-15 10:25:52	gene	976
2014-05-14 17:03:01	tricia	2339
+---------------------+---------+-------------------------+
Alternatively, if the sorting expression appears in the output
 column list, you can alias it there and refer to the alias in the ORDER BY
 clause:
mysql> SELECT t, srcuser, FLOOR((size+1023)/1024) AS kilobytes
 -> FROM mail WHERE size > 50000
 -> ORDER BY kilobytes;
+---------------------+---------+-----------+
| t | srcuser | kilobytes |
+---------------------+---------+-----------+
2014-05-11 10:15:08	barb	57
2014-05-14 14:42:21	barb	96
2014-05-12 12:48:13	tricia	191
2014-05-15 10:25:52	gene	976
2014-05-14 17:03:01	tricia	2339
+---------------------+---------+-----------+
You might prefer the alias method for several reasons:
	It’s easier to write the alias in the ORDER BY clause than to repeat the (cumbersome)
 expression.

	Without the alias, if you change the expression one place, you
 must change it in the other.

	The alias may be useful for display purposes, to provide a
 better column label. Note how the third column heading is much more
 meaningful in the second of the two preceding queries.

9.3 Displaying One Set of Values While Sorting by Another
Problem
You want to sort a result set using values that don’t appear in the output
 column list.

Solution
That’s not a problem. The ORDER
 BY clause can refer to columns you
 don’t display.

Discussion
ORDER BY is not limited to sorting only those
 columns named in the output column list. It can sort using values that
 are hidden (that is, not displayed in the query output).
 This technique is commonly used when you have values that can be
 represented different ways and you want to display one type of value but
 sort by another. For example, you may want to display mail message sizes
 not in terms of bytes but as strings such as 103K for 103 kilobytes. You can convert a byte
 count to that kind of value using this expression:
CONCAT(FLOOR((size+1023)/1024),'K')
However, such values are strings, so they sort lexically, not
 numerically. If you use them for sorting, a value such as 96K sorts after 2339K, even though it represents a smaller
 number:
mysql> SELECT t, srcuser,
 -> CONCAT(FLOOR((size+1023)/1024),'K') AS size_in_K
 -> FROM mail WHERE size > 50000
 -> ORDER BY size_in_K;
+---------------------+---------+-----------+
| t | srcuser | size_in_K |
+---------------------+---------+-----------+
2014-05-12 12:48:13	tricia	191K
2014-05-14 17:03:01	tricia	2339K
2014-05-11 10:15:08	barb	57K
2014-05-14 14:42:21	barb	96K
2014-05-15 10:25:52	gene	976K
+---------------------+---------+-----------+
To achieve the desired output order, display the string, but use
 actual numeric size for sorting:
mysql> SELECT t, srcuser,
 -> CONCAT(FLOOR((size+1023)/1024),'K') AS size_in_K
 -> FROM mail WHERE size > 50000
 -> ORDER BY size;
+---------------------+---------+-----------+
| t | srcuser | size_in_K |
+---------------------+---------+-----------+
2014-05-11 10:15:08	barb	57K
2014-05-14 14:42:21	barb	96K
2014-05-12 12:48:13	tricia	191K
2014-05-15 10:25:52	gene	976K
2014-05-14 17:03:01	tricia	2339K
+---------------------+---------+-----------+
Displaying values as strings but sorting them as numbers helps
 solve some otherwise difficult problems. Members of sports teams
 typically are assigned a jersey number, which normally you might think
 should be stored using a numeric column. Not so fast! Some players like
 to have a jersey number of zero (0),
 and some like double-zero (00). If a
 team happens to have players with both numbers, you cannot represent
 them using a numeric column because both values will be treated as the
 same number. To solve this problem, store jersey numbers as
 strings:
CREATE TABLE roster
(
 name CHAR(30), # player name
 jersey_num CHAR(3), # jersey number
 PRIMARY KEY(name)
);
Then the jersey numbers will display the same way you enter them,
 and 0 and 00 will be treated as distinct values.
 Unfortunately, although representing numbers as strings solves the
 problem of distinguishing between 0 and
 00, it introduces a different
 problem. Suppose that a team has the following players:
mysql> SELECT name, jersey_num FROM roster;
+-----------+------------+
| name | jersey_num |
+-----------+------------+
Lynne	29
Ella	0
Elizabeth	100
Nancy	00
Jean	8
Sherry	47
+-----------+------------+
Now try to sort the team members by jersey number. If those
 numbers are stored as strings, they sort lexically, and lexical order
 often differs from numeric order. That’s certainly true for the team in
 question:
mysql> SELECT name, jersey_num FROM roster ORDER BY jersey_num;
+-----------+------------+
| name | jersey_num |
+-----------+------------+
Ella	0
Nancy	00
Elizabeth	100
Lynne	29
Sherry	47
Jean	8
+-----------+------------+
The values 100 and 8 are out of place, but that’s easily solved:
 display the string values and use the numeric values for sorting. To
 accomplish this, add zero to the jersey_num values to force a string-to-number
 conversion:
mysql> SELECT name, jersey_num FROM roster ORDER BY jersey_num+0;
+-----------+------------+
| name | jersey_num |
+-----------+------------+
Ella	0
Nancy	00
Jean	8
Lynne	29
Sherry	47
Elizabeth	100
+-----------+------------+
Warning

 Note that because this method performs string-to-number conversion it cannot use indexes and will run slower as the table gets bigger. As an alternative solution, you can create a column that will hold the result of this calculation and use it in the ORDER BY expression.

The technique of displaying one value but sorting by another is
 also useful when you display values composed from multiple columns that
 don’t sort the way you want. For example, the mail table lists message senders using
 separate srcuser and srchost values. To display message senders
 from the mail table as email
 addresses in srcuser@srchost format
 with the username first, construct those values using the following
 expression:
CONCAT(srcuser,'@',srchost)
However, those values are no good for sorting if you want to treat
 the hostname as more significant than the username. Instead,
 sort the results using the underlying column values rather than the
 displayed composite values:
mysql> SELECT t, CONCAT(srcuser,'@',srchost) AS sender, size
 -> FROM mail WHERE size > 50000
 -> ORDER BY srchost, srcuser;
+---------------------+---------------+---------+
| t | sender | size |
+---------------------+---------------+---------+
2014-05-15 10:25:52	gene@mars	998532
2014-05-12 12:48:13	tricia@mars	194925
2014-05-11 10:15:08	barb@saturn	58274
2014-05-14 17:03:01	tricia@saturn	2394482
2014-05-14 14:42:21	barb@venus	98151
+---------------------+---------------+---------+
The same idea commonly applies to sorting people’s names. Suppose
 that a names table contains last and
 first names. To display rows sorted by last name first, the query is
 straightforward when the columns are displayed separately:
mysql> SELECT last_name, first_name FROM name
 -> ORDER BY last_name, first_name;
+-----------+------------+
| last_name | first_name |
+-----------+------------+
Blue	Vida
Brown	Kevin
Gray	Pete
White	Devon
White	Rondell
+-----------+------------+
If instead you want to display each name as a single string
 composed of the first name, a space, and the last name, begin the query
 like this:
SELECT CONCAT(first_name,' ',last_name) AS full_name FROM name...
But then how do you sort the names so they come out in last-name
 order? Display composite names, but refer to the constituent values in the ORDER
 BY clause:
mysql> SELECT CONCAT(first_name,' ',last_name) AS full_name
 -> FROM name
 -> ORDER BY last_name, first_name;
+---------------+
| full_name |
+---------------+
| Vida Blue |
| Kevin Brown |
| Pete Gray |
| Devon White |
| Rondell White |
+---------------+

9.4 Controlling Case Sensitivity of String Sorts
Problem
String-sorting operations are case sensitive when you don’t want them to
 be, or vice versa.

Solution
Alter the comparison characteristics of the sorted values.

Discussion
Recipe 7.1 discusses
 how string-comparison properties depend on whether the
 strings are binary or nonbinary:
	Binary strings are sequences of bytes. They are compared byte by byte
 using numeric byte values. Character set and lettercase have no
 meaning for comparisons.

	Nonbinary strings are sequences of characters. They have a character set and
 collation and are compared character by character using the order
 defined by the collation.

These properties also apply to string sorting because sorting is
 based on comparison. To alter the sorting properties of a string column,
 alter its comparison properties. (For a summary of which string
 data types are binary and nonbinary, see Recipe 7.2.)
The examples in this section use a table that has case-insensitive and case-sensitive
 nonbinary columns and a binary column:
CREATE TABLE str_val
(
 ci_str CHAR(3) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci,
 cs_str CHAR(3) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_as_cs,
 bin_str BINARY(3)
);
Suppose that the table has these contents:
+--------+--------+---------+
| ci_str | cs_str | bin_str |
+--------+--------+---------+
AAA	AAA	AAA
aaa	aaa	aaa
bbb	bbb	bbb
BBB	BBB	BBB
+--------+--------+---------+
Tip

 As of MySLQ 8.0.19, mysql client prints binary data in hexadecimal format:

mysql> select * from str_val;
+--------+--------+------------------+
| ci_str | cs_str | bin_str |
+--------+--------+------------------+
AAA	AAA	0x414141
aaa	aaa	0x616161
bbb	bbb	0x626262
BBB	BBB	0x424242
+--------+--------+------------------+
4 rows in set (0.00 sec)

 To print values in ASCII format, start mysql with the --binary-as-hex=0 option.

Each column contains the same values, but the natural sort orders
 for the column data types produce three different results:
	The case-insensitive collation sorts a and A
 together, placing them before b
 and B. However, for a given
 letter, it does not necessarily order one lettercase before another,
 as shown by the following result:
mysql> SELECT ci_str FROM str_val ORDER BY ci_str;
+--------+
| ci_str |
+--------+
| AAA |
| aaa |
| bbb |
| BBB |
+--------+

	The case-sensitive collation puts a and A
 before b and B and sorts lowercase before
 uppercase:
mysql> SELECT cs_str FROM str_val ORDER BY cs_str;
+--------+
| cs_str |
+--------+
| aaa |
| AAA |
| bbb |
| BBB |
+--------+

	The binary strings sort numerically. Assuming that uppercase
 letters have numeric values less than those of lowercase letters, a
 binary sort results in the following ordering:
mysql> SELECT bin_str FROM str_val ORDER BY bin_str;
+---------+
| bin_str |
+---------+
| AAA |
| BBB |
| aaa |
| bbb |
+---------+
You get the same result for a nonbinary string column that has
 a binary collation, as long as the column contains single-byte
 characters (for example, CHAR(3)
 CHARACTER SET latin1 COLLATE latin1_bin). For multibyte characters, a
 binary collation still produces a numeric sort, but the character
 values use multibyte numbers.

To alter the sorting properties of each column, use the techniques
 described in Recipe 7.7 for
 controlling string comparisons:
	To sort case-insensitive strings in case-sensitive fashion,
 order the sorted values using a case-sensitive collation:
mysql> SELECT ci_str FROM str_val
 -> ORDER BY ci_str COLLATE utf8mb4_0900_as_cs;
+--------+
| ci_str |
+--------+
| aaa |
| AAA |
| bbb |
| BBB |
+--------+

	To sort case-sensitive strings in case-insensitive fashion,
 order the sorted values using a case-insensitive collation:
mysql> SELECT cs_str FROM str_val
 -> ORDER BY cs_str COLLATE utf8mb4_0900_ai_ci;
+--------+
| cs_str |
+--------+
| AAA |
| aaa |
| bbb |
| BBB |
+--------+
Alternatively, sort using values that have been converted to
 the same lettercase, which makes lettercase irrelevant:
mysql> SELECT cs_str FROM str_val
 -> ORDER BY UPPER(cs_str);
+--------+
| cs_str |
+--------+
| AAA |
| aaa |
| bbb |
| BBB |
+--------+

	Binary strings sort using numeric byte values, so there is no
 concept of lettercase involved. However, because letters in
 different cases have different byte values, comparisons of binary
 strings effectively are case sensitive. (That is, a and A
 are unequal.) To sort binary strings using a case-insensitive
 ordering, convert them to nonbinary strings and apply an appropriate
 collation. For example, to perform a case-insensitive sort, use a
 statement like this:
mysql> SELECT bin_str FROM str_val
 -> ORDER BY CONVERT(bin_str USING utf8mb4) COLLATE utf8mb4_0900_ai_ci;
+---------+
| bin_str |
+---------+
| AAA |
| aaa |
| bbb |
| BBB |
+---------+
If the character-set default collation is case insensitive (as is true for utf8mb4), you can omit the COLLATE clause.

9.5 Sorting in Temporal Order
Problem
You want to sort rows in temporal order.

Solution
Sort using a date or time column. If some parts of the values are
 irrelevant for the sort that you want to accomplish, ignore them.

Discussion
Many database tables include date or time information, and it’s
 very often necessary to sort results in temporal order. MySQL knows how
 to sort temporal data types, so there’s no special trick to ordering
 them. The next few examples use the mail table, which
 contains a DATETIME column, but the
 same sorting principles apply to DATE, TIME, and TIMESTAMP columns.
Here are the messages sent by phil:
mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size
 -> FROM mail WHERE srcuser = 'phil';
+---------------------+---------+---------+---------+---------+-------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+-------+
2014-05-12 15:02:49	phil	mars	phil	saturn	1048
2014-05-14 11:52:17	phil	mars	tricia	saturn	5781
2014-05-15 08:50:57	phil	venus	phil	venus	978
2014-05-16 23:04:19	phil	venus	barb	venus	10294
2014-05-19 12:49:23	phil	mars	tricia	saturn	873
+---------------------+---------+---------+---------+---------+-------+
To display the messages, most recently sent ones first, use ORDER
 BY with DESC:
mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size
 -> FROM mail WHERE srcuser = 'phil' ORDER BY t DESC;
+---------------------+---------+---------+---------+---------+-------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+-------+
2014-05-19 12:49:23	phil	mars	tricia	saturn	873
2014-05-16 23:04:19	phil	venus	barb	venus	10294
2014-05-15 08:50:57	phil	venus	phil	venus	978
2014-05-14 11:52:17	phil	mars	tricia	saturn	5781
2014-05-12 15:02:49	phil	mars	phil	saturn	1048
+---------------------+---------+---------+---------+---------+-------+
Sometimes a temporal sort uses only part of a date or time column.
 In that case, use an expression that extracts the part or parts you need
 and sort the result using the expression. Some examples of this are
 given in the following discussion.
Sorting by time of day
You can do time-of-day sorting different ways, depending on your
 column type. If the values are stored in a TIME column named timecol, just sort them directly using
 ORDER BY timecol. To put DATETIME or TIMESTAMP values in time-of-day order,
 extract the time parts and sort them. For example, the mail table contains DATETIME values, which can be sorted by time
 of day like this:
mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size FROM mail ORDER BY TIME(t);
+---------------------+---------+---------+---------+---------+---------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+---------+
2014-05-15 07:17:48	gene	mars	gene	saturn	3824
2014-05-15 08:50:57	phil	venus	phil	venus	978
2014-05-16 09:00:28	gene	venus	barb	mars	613
2014-05-14 09:31:37	gene	venus	barb	mars	2291
2014-05-11 10:15:08	barb	saturn	tricia	mars	58274
2014-05-15 10:25:52	gene	mars	tricia	saturn	998532
2014-05-14 11:52:17	phil	mars	tricia	saturn	5781
2014-05-12 12:48:13	tricia	mars	gene	venus	194925
…

Sorting by calendar day
To sort date values in calendar order, ignore the year part of
 the dates and use only the month and day to order values by where they
 fall during the calendar year. Suppose that an occasion table looks like this when values
 are ordered by date:
mysql> SELECT date, description FROM occasion ORDER BY date;
+------------+-------------------------------------+
| date | description |
+------------+-------------------------------------+
1215-06-15	Signing of the Magna Carta
1732-02-22	George Washington's birthday
1776-07-14	Bastille Day
1789-07-04	US Independence Day
1809-02-12	Abraham Lincoln's birthday
1919-06-28	Signing of the Treaty of Versailles
1944-06-06	D-Day at Normandy Beaches
1957-10-04	Sputnik launch date
1989-11-09	Opening of the Berlin Wall
+------------+-------------------------------------+
To put these items in calendar order, sort them by month and day
 within month:
mysql> SELECT date, description FROM occasion
 -> ORDER BY MONTH(date), DAYOFMONTH(date);
+------------+-------------------------------------+
| date | description |
+------------+-------------------------------------+
1809-02-12	Abraham Lincoln's birthday
1732-02-22	George Washington's birthday
1944-06-06	D-Day at Normandy Beaches
1215-06-15	Signing of the Magna Carta
1919-06-28	Signing of the Treaty of Versailles
1789-07-04	US Independence Day
1776-07-14	Bastille Day
1957-10-04	Sputnik launch date
1989-11-09	Opening of the Berlin Wall
+------------+-------------------------------------+
MySQL has a DAYOFYEAR()
 function that you might suspect would be useful for calendar-day
 sorting. However, it can generate the same value for different
 calendar days. For example, February 29 of leap years and March 1 of
 nonleap years have the same day-of-year value:
mysql> SELECT DAYOFYEAR('1996-02-29'), DAYOFYEAR('1997-03-01');
+-------------------------+-------------------------+
| DAYOFYEAR('1996-02-29') | DAYOFYEAR('1997-03-01') |
+-------------------------+-------------------------+
| 60 | 60 |
+-------------------------+-------------------------+
This means that DAYOFYEAR()
 can group dates that actually occur on different calendar days.
If a table represents dates using separate year, month, and day
 columns, calendar sorting does not require you to extract date parts. Just sort
 the relevant columns directly. For large datasets, sorting using
 separate date-part columns can be much faster than sorts based on
 extracting pieces of DATE values.
 There’s no overhead for part extraction, but more importantly, you can index the date-part
 columns separately—something not possible with a DATE column. The principle here is that you
 should design the table to make it easy to extract or sort by the
 values that you expect to use a lot.

Sorting by day of week
Day-of-week sorting is similar to calendar-day sorting, except
 that you use different functions to obtain the relevant ordering
 values.
You can get the day of the week using DAYNAME(), but that produces strings that sort lexically rather than in
 day-of-week order (Sunday, Monday, Tuesday, and so forth). Here the
 technique of displaying one value but sorting by another is useful
 (see Recipe 9.3). Display day
 names using DAYNAME(), but sort in
 day-of-week order using DAYOFWEEK(), which returns numeric values from 1 to 7 for Sunday through
 Saturday:
mysql> SELECT DAYNAME(date) AS day, date, description
 -> FROM occasion
 -> ORDER BY DAYOFWEEK(date);
+----------+------------+-------------------------------------+
| day | date | description |
+----------+------------+-------------------------------------+
Sunday	1776-07-14	Bastille Day
Sunday	1809-02-12	Abraham Lincoln's birthday
Monday	1215-06-15	Signing of the Magna Carta
Tuesday	1944-06-06	D-Day at Normandy Beaches
Thursday	1989-11-09	Opening of the Berlin Wall
Friday	1957-10-04	Sputnik launch date
Friday	1732-02-22	George Washington's birthday
Saturday	1789-07-04	US Independence Day
Saturday	1919-06-28	Signing of the Treaty of Versailles
+----------+------------+-------------------------------------+
To sort rows in day-of-week order but treat Monday as the first
 day of the week and Sunday as the last, use the modulo operation and the MOD() function to map Monday to 0, Tuesday to 1, …, Sunday to 6:
mysql> SELECT DAYNAME(date), date, description
 -> FROM occasion
 -> ORDER BY MOD(DAYOFWEEK(date)+5, 7);
+---------------+------------+-------------------------------------+
| DAYNAME(date) | date | description |
+---------------+------------+-------------------------------------+
Monday	1215-06-15	Signing of the Magna Carta
Tuesday	1944-06-06	D-Day at Normandy Beaches
Thursday	1989-11-09	Opening of the Berlin Wall
Friday	1957-10-04	Sputnik launch date
Friday	1732-02-22	George Washington's birthday
Saturday	1789-07-04	US Independence Day
Saturday	1919-06-28	Signing of the Treaty of Versailles
Sunday	1776-07-14	Bastille Day
Sunday	1809-02-12	Abraham Lincoln's birthday
+---------------+------------+-------------------------------------+
Table 9-1 shows the DAYOFWEEK() expressions for putting any day
 of the week first in the sort order.
Table 9-1. Using modulo to properly order days of a week	Day to list first	DAYOFWEEK() expression
	Sunday	DAYOFWEEK(date)
	Monday	MOD(DAYOFWEEK(date)+5, 7)
	Tuesday	MOD(DAYOFWEEK(date)+4, 7)
	Wednesday	MOD(DAYOFWEEK(date)+3, 7)
	Thursday	MOD(DAYOFWEEK(date)+2, 7)
	Friday	MOD(DAYOFWEEK(date)+1, 7)
	Saturday	MOD(DAYOFWEEK(date)+0, 7)

You can also use WEEKDAY() for
 day-of-week sorting, although it returns a different set of values (0
 for Monday through 6 for Sunday).

9.6 Sorting by Substrings of Column Values
Problem
You want to sort a set of values using one or more substrings of each
 value.

Solution
Extract the pieces you want and sort them separately.

Discussion
This is a specific application of sorting by expression value (see
 Recipe 9.2). To sort rows using just a
 particular portion of a column’s values, extract the substring you need
 and use it in the ORDER BY clause. This is easiest if the substrings
 are at a fixed position and length within the column. For substrings of
 variable position or length, you can still use them for sorting if you
 have a reliable way to identify them. The next several recipes show how
 to use substring extraction to produce specialized sort orders.

9.7 Sorting by Fixed-Length Substrings
Problem
You want to sort using parts of a column that occur at a given position within
 the column.

Solution
Pull out the parts you need with LEFT(), SUBSTRING() (MID()), or RIGHT(), and sort them.

Discussion
Suppose that a housewares table
 catalogs houseware furnishings, each identified by 10-character ID
 values consisting of three subparts: a three-character category
 abbreviation (such as DIN for
 dining room or KIT for
 kitchen), a five-digit serial number, and a two-character
 country code indicating where the part is manufactured:
mysql> SELECT * FROM housewares;
+------------+------------------+
| id | description |
+------------+------------------+
DIN40672US	dining table
KIT00372UK	garbage disposal
KIT01729JP	microwave oven
BED00038SG	bedside lamp
BTH00485US	shower stall
BTH00415JP	lavatory
+------------+------------------+
This is not necessarily a good way to store complex ID values, and
 later we’ll consider how to represent them using separate columns. For
 now, assume that the values must be stored as shown.
To sort rows from this table based on the id values, use the entire column value:
mysql> SELECT * FROM housewares ORDER BY id;
+------------+------------------+
| id | description |
+------------+------------------+
BED00038SG	bedside lamp
BTH00415JP	lavatory
BTH00485US	shower stall
DIN40672US	dining table
KIT00372UK	garbage disposal
KIT01729JP	microwave oven
+------------+------------------+
But you might also have a need to sort on any of the three
 subparts (for example, to sort by country of manufacture). For that kind
 of operation, functions such as LEFT(), MID(), and RIGHT() are useful to extract id value components:
mysql> SELECT id,
 -> LEFT(id,3) AS category,
 -> MID(id,4,5) AS serial,
 -> RIGHT(id,2) AS country
 -> FROM housewares;
+------------+----------+--------+---------+
| id | category | serial | country |
+------------+----------+--------+---------+
DIN40672US	DIN	40672	US
KIT00372UK	KIT	00372	UK
KIT01729JP	KIT	01729	JP
BED00038SG	BED	00038	SG
BTH00485US	BTH	00485	US
BTH00415JP	BTH	00415	JP
+------------+----------+--------+---------+
Tip

 Function MID() is a synonym of the function SUBSTRING().

Those fixed-length substrings of the id values can be used for sorting, either
 alone or in combination. For example, to sort by product category,
 extract and use the category in the ORDER BY clause:
mysql> SELECT * FROM housewares ORDER BY LEFT(id,3);
+------------+------------------+
| id | description |
+------------+------------------+
BED00038SG	bedside lamp
BTH00485US	shower stall
BTH00415JP	lavatory
DIN40672US	dining table
KIT00372UK	garbage disposal
KIT01729JP	microwave oven
+------------+------------------+
To sort by product serial number, use MID() to extract the middle five characters
 from the id values, beginning with
 the fourth:
mysql> SELECT * FROM housewares ORDER BY MID(id,4,5);
+------------+------------------+
| id | description |
+------------+------------------+
BED00038SG	bedside lamp
KIT00372UK	garbage disposal
BTH00415JP	lavatory
BTH00485US	shower stall
KIT01729JP	microwave oven
DIN40672US	dining table
+------------+------------------+
This appears to be a numeric sort, but it’s actually a string sort
 because MID() returns strings. The
 lexical and numeric sort order are the same in this case because the
 numbers have leading zeros to make them all the same
 length.
To sort by country code, use the rightmost two characters of the
 id values (ORDER BY
 RIGHT(id,2)).
You can also sort using combinations of substrings, for example,
 by country code and serial number within country:
mysql> SELECT * FROM housewares ORDER BY RIGHT(id,2), MID(id,4,5);
+------------+------------------+
| id | description |
+------------+------------------+
BTH00415JP	lavatory
KIT01729JP	microwave oven
BED00038SG	bedside lamp
KIT00372UK	garbage disposal
BTH00485US	shower stall
DIN40672US	dining table
+------------+------------------+
The ORDER BY clauses just shown suffice to sort by
 substrings of the id values, but if
 such operations on the table are common, it might be worth representing
 houseware IDs differently, for example, using separate columns for the
 ID components. This table, housewares2, is like housewares but uses category, serial, and country columns generated from the id column:
CREATE TABLE `housewares2` (
 `id` varchar(20) NOT NULL,
 `category` varchar(3) GENERATED ALWAYS AS (left(`id`,3)) STORED,
 `serial` char(5) GENERATED ALWAYS AS (substr(`id`,4,5)) STORED,
 `country` varchar(2) GENERATED ALWAYS AS (right(`id`,2)) STORED,
 `description` varchar(255) DEFAULT NULL,
 PRIMARY KEY (`id`)
);

 In this example, we used generated columns that are generated based on the expressions, defined at the column creation time.

With the ID values split into separate parts, sorting operations
 are easier to specify; refer to individual columns directly rather than
 pulling out substrings of the original id column. You can also make operations that
 sort the serial and country columns more efficient by adding
 indexes on those columns:
mysql> SELECT category, serial, country, id
 -> FROM housewares2 ORDER BY category, country, serial;
+----------+--------+---------+------------+
| category | serial | country | id |
+----------+--------+---------+------------+
BED	00038	SG	BED00038SG
BTH	00415	JP	BTH00415JP
BTH	00485	US	BTH00485US
DIN	40672	US	DIN40672US
KIT	01729	JP	KIT01729JP
KIT	00372	UK	KIT00372UK
+----------+--------+---------+------------+
This example illustrates an important principle: you might think
 about values one way (id values as
 single strings), but you need not necessarily represent them that way in
 the database. If an alternative representation (separate columns) is
 more efficient or easier to work with, it may well be worth using—even
 if you must reformat the underlying columns so they appear as people expect.

9.8 Sorting by Variable-Length Substrings
Problem
You want to sort using parts of a column that do
 not occur at a given position within the
 column.

Solution
Determine how to identify the parts you need so that you can
 extract them.

Discussion
If substrings to be used for sorting vary in length, you need a
 reliable means of extracting just the part you want. To see how this
 works, let’s create a housewares3 table
 that is like the housewares table
 used in Recipe 9.7, except that it
 has no leading zeros in the serial number part of the id values:
mysql> SELECT * FROM housewares3;
+------------+------------------+
| id | description |
+------------+------------------+
DIN40672US	dining table
KIT372UK	garbage disposal
KIT1729JP	microwave oven
BED38SG	bedside lamp
BTH485US	shower stall
BTH415JP	lavatory
+------------+------------------+
The category and country parts of the id values can be extracted and sorted
 using LEFT() and
 RIGHT(), just as for the housewares table. But now the numeric segments
 of the values have different lengths and cannot be extracted and sorted
 using a simple MID() call. Instead,
 use its full version SUBSTRING() to skip the first three characters. Of the remainder
 beginning with the fourth character (the first digit), take everything
 but the rightmost two columns. One way to do this is as follows:
mysql> SELECT id, LEFT(SUBSTRING(id,4),CHAR_LENGTH(SUBSTRING(id,4)-2))
 -> FROM housewares3;
+------------+--+
| id | LEFT(SUBSTRING(id,4),CHAR_LENGTH(SUBSTRING(id,4)-2)) |
+------------+--+
DIN40672US	40672
KIT372UK	372
KIT1729JP	1729
BED38SG	38
BTH485US	485
BTH415JP	415
+------------+--+
But that’s more complex than necessary. The SUBSTRING() function takes an optional third
 argument specifying a desired result length, and we know that the length
 of the middle part is equal to the length of the string minus five
 (three for the characters at the beginning and two for the characters at
 the end). The following query demonstrates how to get the numeric middle
 part by beginning with the ID and then stripping the rightmost
 suffix:
mysql> SELECT id, SUBSTRING(id,4), SUBSTRING(id,4,CHAR_LENGTH(id)-5)
 -> FROM housewares3;
+------------+-----------------+-----------------------------------+
| id | SUBSTRING(id,4) | SUBSTRING(id,4,CHAR_LENGTH(id)-5) |
+------------+-----------------+-----------------------------------+
DIN40672US	40672US	40672
KIT372UK	372UK	372
KIT1729JP	1729JP	1729
BED38SG	38SG	38
BTH485US	485US	485
BTH415JP	415JP	415
+------------+-----------------+-----------------------------------+
Unfortunately, although the final expression correctly extracts
 the numeric part from the IDs, the resulting values are strings.
 Consequently, they sort lexically rather than numerically:
mysql> SELECT * FROM housewares3
 -> ORDER BY SUBSTRING(id,4,CHAR_LENGTH(id)-5);
+------------+------------------+
| id | description |
+------------+------------------+
KIT1729JP	microwave oven
KIT372UK	garbage disposal
BED38SG	bedside lamp
DIN40672US	dining table
BTH415JP	lavatory
BTH485US	shower stall
+------------+------------------+
How to deal with that? One way is to add zero, which tells MySQL
 to perform a string-to-number conversion that results in a numeric sort
 of the serial number values:
mysql> SELECT * FROM housewares3
 -> ORDER BY SUBSTRING(id,4,CHAR_LENGTH(id)-5)+0;
+------------+------------------+
| id | description |
+------------+------------------+
BED38SG	bedside lamp
KIT372UK	garbage disposal
BTH415JP	lavatory
BTH485US	shower stall
KIT1729JP	microwave oven
DIN40672US	dining table
+------------+------------------+
In the preceding example, the ability to extract variable-length substrings
 is based on the different kinds of characters in the middle of the
 id values, compared to the characters on the ends
 (that is, digits versus nondigits). In other cases, you may be able to
 use delimiter characters to pull apart column values. For the next
 examples, assume a housewares4 table
 with id values that look like
 this:
mysql> SELECT * FROM housewares4;
+---------------+------------------+
| id | description |
+---------------+------------------+
13-478-92-2	dining table
873-48-649-63	garbage disposal
8-4-2-1	microwave oven
97-681-37-66	bedside lamp
27-48-534-2	shower stall
5764-56-89-72	lavatory
+---------------+------------------+
To extract segments from these values, use SUBSTRING_INDEX(str,c,n). It searches a string,
 str, for the n-th
 occurrence of a given character, c, and returns
 everything to the left of that character. For example, the following
 call returns 13-478:
SUBSTRING_INDEX('13-478-92-2','-',2)
If n is negative, the search for
 c proceeds from the right and returns the
 rightmost string. This call returns 478-92-2:
SUBSTRING_INDEX('13-478-92-2','-',-3)
By combining SUBSTRING_INDEX()
 calls with positive and negative indexes, it’s possible to extract
 successive pieces from each id value:
 extract the first n segments of the value and
 pull off the rightmost one. By varying n from
 1 to 4, we get the successive segments from left to right:
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',1),'-',-1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',2),'-',-1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',3),'-',-1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',4),'-',-1)
The first of those expressions can be optimized because the inner
 SUBSTRING_INDEX() call returns a
 single-segment string and is sufficient by itself to return the leftmost
 id segment:
SUBSTRING_INDEX(id,'-',1)
Another way to obtain substrings is to extract the rightmost
 n segments of the value and pull off the
 first one. Here we vary n from –4 to
 –1:
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',-4),'-',1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',-3),'-',1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',-2),'-',1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',-1),'-',1)
Again, an optimization is possible. For the fourth expression, the
 inner SUBSTRING_INDEX() call is
 sufficient to return the final substring:
SUBSTRING_INDEX(id,'-',-1)
These expressions can be difficult to read and understand, and
 experimenting with a few to see how they work may be useful. Here is an
 example that shows how to get the second and fourth segments from the
 id values:
mysql> SELECT
 -> id,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',2),'-',-1) AS segment2,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',4),'-',-1) AS segment4
 -> FROM housewares4;
+---------------+----------+----------+
| id | segment2 | segment4 |
+---------------+----------+----------+
13-478-92-2	478	2
873-48-649-63	48	63
8-4-2-1	4	1
97-681-37-66	681	66
27-48-534-2	48	2
5764-56-89-72	56	72
+---------------+----------+----------+
To use the substrings for sorting, use the appropriate expressions
 in the ORDER BY clause. (Remember to force a
 string-to-number conversion by adding zero if you want a numeric rather than lexical sort.) The
 following two queries order the results based on the second id segment. The first sorts lexically, the
 second numerically:
mysql> SELECT * FROM housewares4
 -> ORDER BY SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',2),'-',-1);
+---------------+------------------+
| id | description |
+---------------+------------------+
8-4-2-1	microwave oven
13-478-92-2	dining table
873-48-649-63	garbage disposal
27-48-534-2	shower stall
5764-56-89-72	lavatory
97-681-37-66	bedside lamp
+---------------+------------------+
mysql> SELECT * FROM housewares4
 -> ORDER BY SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',2),'-',-1)+0;
+---------------+------------------+
| id | description |
+---------------+------------------+
8-4-2-1	microwave oven
873-48-649-63	garbage disposal
27-48-534-2	shower stall
5764-56-89-72	lavatory
13-478-92-2	dining table
97-681-37-66	bedside lamp
+---------------+------------------+
The substring-extraction expressions here are messy, but at least
 the column values to which we apply the expressions have a consistent
 number of segments. To sort values that have varying numbers of
 segments, the job can be more difficult. Recipe 9.9 shows an example illustrating
 why that is.

9.9 Sorting Hostnames in Domain Order
Problem
You want to sort hostnames in domain order, with the rightmost parts of the
 names more significant than the leftmost parts.

Solution
Break apart the names, and sort the pieces from right to
 left.

Discussion
Hostnames are strings, and therefore their natural sort order is
 lexical. However, it’s often desirable to sort hostnames in domain
 order, where the rightmost segments of the hostname values are more
 significant than the leftmost segments. Suppose that a hostname table contains the following
 names:
mysql> SELECT name FROM hostname ORDER BY name;
+--------------------+
| name |
+--------------------+
| dbi.perl.org |
| jakarta.apache.org |
| lists.mysql.com |
| mysql.com |
| svn.php.net |
| www.kitebird.com |
+--------------------+
The preceding query demonstrates the natural lexical sort order of
 the name values. That differs from
 domain order, as Table 9-2 shows.
Table 9-2. Lexical versus domain sort order	Lexical order	Domain order
	dbi.perl.org 	www.kitebird.com
	jakarta.apache.org 	mysql.com
	lists.mysql.com 	lists.mysql.com
	mysql.com 	svn.php.net
	svn.php.net 	jakarta.apache.org
	www.kitebird.com 	dbi.perl.org

Producing domain-ordered output is a substring-sorting problem for
 which it’s necessary to extract each segment of the names so they can be
 sorted in right-to-left fashion. There is also an additional
 complication if your values contain different numbers of segments, as
 our example hostnames do. (Most of them have three segments, but
 mysql.com has only two.)
To extract the pieces of the hostnames, begin by using SUBSTRING_INDEX()
 in a manner similar to that described previously in Recipe 9.8. The hostname values have a
 maximum of three segments, from which the pieces can be extracted left
 to right like this:
SUBSTRING_INDEX(SUBSTRING_INDEX(name,'.',-3),'.',1)
SUBSTRING_INDEX(SUBSTRING_INDEX(name,'.',-2),'.',1)
SUBSTRING_INDEX(name,'.',-1)
These expressions work properly as long as all the hostnames have
 three components. But if a name has fewer than three, you don’t get the
 correct result, as the following query demonstrates:
mysql> SELECT name,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(name,'.',-3),'.',1) AS leftmost,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(name,'.',-2),'.',1) AS middle,
 -> SUBSTRING_INDEX(name,'.',-1) AS rightmost
 -> FROM hostname;
+--------------------+----------+----------+-----------+
| name | leftmost | middle | rightmost |
+--------------------+----------+----------+-----------+
svn.php.net	svn	php	net
dbi.perl.org	dbi	perl	org
lists.mysql.com	lists	mysql	com
mysql.com	mysql	mysql	com
jakarta.apache.org	jakarta	apache	org
www.kitebird.com	www	kitebird	com
+--------------------+----------+----------+-----------+
Notice the output for the mysql.com row; it has mysql for the value of the leftmost column, where it should have an empty
 string. The segment-extraction expressions work by pulling off the
 rightmost n segments and then returning the
 leftmost segment of the result. The source of the problem for mysql.com is that if there aren’t
 n segments, the expression simply returns the
 leftmost segment of however many there are. To fix this problem, add a
 sufficient number of periods at the beginning of the hostname values to
 guarantee that they have the requisite number of segments:
mysql> SELECT name,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(CONCAT('..',name),'.',-3),'.',1)
 -> AS leftmost,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(CONCAT('.',name),'.',-2),'.',1)
 -> AS middle,
 -> SUBSTRING_INDEX(name,'.',-1) AS rightmost
 -> FROM hostname;
+--------------------+----------+----------+-----------+
| name | leftmost | middle | rightmost |
+--------------------+----------+----------+-----------+
svn.php.net	svn	php	net
dbi.perl.org	dbi	perl	org
lists.mysql.com	lists	mysql	com
mysql.com		mysql	com
jakarta.apache.org	jakarta	apache	org
www.kitebird.com	www	kitebird	com
+--------------------+----------+----------+-----------+
That’s pretty ugly. But the expressions do serve to extract the
 substrings that are needed for sorting hostname values correctly in
 right-to-left fashion:
mysql> SELECT name FROM hostname
 -> ORDER BY
 -> SUBSTRING_INDEX(name,'.',-1),
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(CONCAT('.',name),'.',-2),'.',1),
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(CONCAT('..',name),'.',-3),'.',1);
+--------------------+
| name |
+--------------------+
| www.kitebird.com |
| mysql.com |
| lists.mysql.com |
| svn.php.net |
| jakarta.apache.org |
| dbi.perl.org |
+--------------------+
If your hostnames have a maximum of four segments rather than
 three, add to the ORDER BY clause another SUBSTRING_INDEX() expression that adds three
 dots at the beginning of the hostname values.

9.10 Sorting Dotted-Quad IP Values in Numeric Order
Problem
You want to sort in numeric order strings that represent IP numbers.

Solution
Break apart the strings, and sort the pieces numerically. Or just
 use INET_ATON(). Or
 consider storing the values as numbers instead.

Discussion
If a table contains IP numbers represented as strings in
 dotted-quad notation (192.168.1.10),
 they sort lexically rather than numerically. To produce a numeric
 ordering instead, sort them as four-part values with each part sorted
 numerically. Or, to be more efficient, represent the IP numbers as
 32-bit unsigned integers, which take less space and can be ordered by a
 simple numeric sort. This section shows both methods.
To sort string-valued dotted-quad IP numbers, use a technique
 similar to that for sorting hostnames (see Recipe 9.9) but with the following
 differences:
	Dotted quads always have four segments. There’s no need to add
 dots to the value before extracting substrings.

	Dotted quads sort left to right. The order of the substrings
 used in the ORDER BY clause is opposite to that used for
 hostname sorting.

	The segments of dotted-quad values are numbers. Add zero to
 each substring to force a numeric rather than lexical sort.

Suppose that a hostip table has
 a string-valued ip column containing
 IP numbers:
mysql> SELECT ip FROM hostip ORDER BY ip;
+-----------------+
| ip |
+-----------------+
| 127.0.0.1 |
| 192.168.0.10 |
| 192.168.0.2 |
| 192.168.1.10 |
| 192.168.1.2 |
| 21.0.0.1 |
| 255.255.255.255 |
+-----------------+
The preceding query produces output sorted in lexical order. To
 sort the ip values numerically,
 extract each segment and add zero to convert it to a number like
 this:
mysql> SELECT ip FROM hostip
 -> ORDER BY
 -> SUBSTRING_INDEX(ip,'.',1)+0,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(ip,'.',-3),'.',1)+0,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(ip,'.',-2),'.',1)+0,
 -> SUBSTRING_INDEX(ip,'.',-1)+0;
+-----------------+
| ip |
+-----------------+
| 21.0.0.1 |
| 127.0.0.1 |
| 192.168.0.2 |
| 192.168.0.10 |
| 192.168.1.2 |
| 192.168.1.10 |
| 255.255.255.255 |
+-----------------+
However, although that ORDER
 BY clause produces a correct result,
 it’s complicated. A simpler solution uses the INET_ATON() function to convert network
 addresses in string form to their underlying numeric values, then sorts
 those numbers:
mysql> SELECT ip FROM hostip ORDER BY INET_ATON(ip);
+-----------------+
| ip |
+-----------------+
| 21.0.0.1 |
| 127.0.0.1 |
| 192.168.0.2 |
| 192.168.0.10 |
| 192.168.1.2 |
| 192.168.1.10 |
| 255.255.255.255 |
+-----------------+
If you’re tempted to sort by simply adding zero to the ip value and using ORDER BY on
 the result, consider the values that kind of string-to-number conversion
 actually produces:
mysql> SELECT ip, ip+0 FROM hostip;
+-----------------+---------+
| ip | ip+0 |
+-----------------+---------+
127.0.0.1	127
192.168.0.2	192.168
192.168.0.10	192.168
192.168.1.2	192.168
192.168.1.10	192.168
255.255.255.255	255.255
21.0.0.1	21
+-----------------+---------+
7 rows in set, 7 warnings (0.00 sec)
The conversion retains only as much of each value as can be
 interpreted as a valid number (hence the warnings). The remainder
 becomes unavailable for sorting purposes, even though it’s required for
 a correct ordering.
Use of INET_ATON() in the
 ORDER BY clause is more efficient than six SUBSTRING_INDEX()
 calls. Moreover, if you’re storing IP addresses as
 numbers rather than as strings, you can avoid performing any conversion
 at all when sorting. You gain other benefits as well: numeric IP
 addresses have 32 bits, so you can use a 4-byte INT UNSIGNED column to store them, which requires
 less storage than the string form. Also, if you index the column, the
 query optimizer may be able to use the index for certain queries. For
 cases requiring display of numeric IP values in dotted-quad notation,
 convert them with the INET_NTOA()
 function.

9.11 Floating Values to the Head or Tail of the Sort Order
Problem
You want a column to sort the way it normally does, except for a few values
 that should appear at the beginning or end of the sort order. For
 example, you want to sort a list in lexical order except for certain
 high-priority values that should appear first no matter where they fall
 in the normal sort order.

Solution
Add an initial sort column to the ORDER BY
 clause that places those few values where you want them. The
 remaining sort columns have their usual effect for the other
 values.

Discussion
To sort a result set normally except that you
 want particular values first, create an additional sort column that is 0
 for those values and 1 for everything else. This enables you to float
 the values to the head of the ascending sort order. To put the values at the tail
 instead, use descending sort order or store 1 for rows that you want to be in the end of the list and 0 for others.
Suppose that a column contains NULL
 values:
mysql> SELECT val FROM t;
+------+
| val |
+------+
| 3 |
| 100 |
| NULL |
| NULL |
| 9 |
+------+
Normally, sorting groups the NULL values at the beginning for an ascending
 sort:
mysql> SELECT val FROM t ORDER BY val;
+------+
| val |
+------+
| NULL |
| NULL |
| 3 |
| 9 |
| 100 |
+------+
To put them at the end instead, without changing the order of
 other values, introduce an extra ORDER BY
 column that maps NULL values to a
 higher value than non-NULL values:
mysql> SELECT val FROM t ORDER BY IF(val IS NULL,1,0), val;
+------+
| val |
+------+
| 3 |
| 9 |
| 100 |
| NULL |
| NULL |
+------+
The IF() expression creates a
 new column for the sort that is used as the primary sort value.
For descending sorts, NULL
 values group at the end. To put them at the beginning instead, use the
 same technique but reverse the second and third arguments of the
 IF() function to map NULL values to a lower value than non-NULL values:
IF(val IS NULL,0,1)
The same technique is useful for floating values other than
 NULL to either end of the sort order.
 Suppose that you want to sort mail
 table messages in sender/recipient order, but you want to put messages
 for a particular sender first. In the real world, the most interesting sender might be postmaster or root. Those names don’t appear in the table,
 so let’s use phil as the name of
 interest instead:
mysql> SELECT t, srcuser, dstuser, size
 -> FROM mail
 -> ORDER BY IF(srcuser='phil',0,1), srcuser, dstuser;
+---------------------+---------+---------+---------+
| t | srcuser | dstuser | size |
+---------------------+---------+---------+---------+
2014-05-16 23:04:19	phil	barb	10294
2014-05-12 15:02:49	phil	phil	1048
2014-05-15 08:50:57	phil	phil	978
2014-05-14 11:52:17	phil	tricia	5781
2014-05-19 12:49:23	phil	tricia	873
2014-05-14 14:42:21	barb	barb	98151
2014-05-11 10:15:08	barb	tricia	58274
2014-05-12 18:59:18	barb	tricia	271
2014-05-14 09:31:37	gene	barb	2291
2014-05-16 09:00:28	gene	barb	613
2014-05-15 17:35:31	gene	gene	3856
2014-05-15 07:17:48	gene	gene	3824
2014-05-19 22:21:51	gene	gene	23992
2014-05-15 10:25:52	gene	tricia	998532
2014-05-12 12:48:13	tricia	gene	194925
2014-05-14 17:03:01	tricia	phil	2394482
+---------------------+---------+---------+---------+
The value of the extra sort column is 0 for rows in which the srcuser value is phil, and 1
 for all other rows. By making that the most significant sort column,
 rows for messages sent by phil float
 to the top of the output. (To sink them to the bottom instead, either
 sort the column in reverse order using DESC, or reverse the order of the second and
 third arguments of the IF()
 function.)
You can also use this technique for particular conditions, not
 only specific values. To put first those rows where people sent messages
 to themselves, do this:
mysql> SELECT t, srcuser, dstuser, size
 -> FROM mail
 -> ORDER BY IF(srcuser=dstuser,0,1), srcuser, dstuser;
+---------------------+---------+---------+---------+
| t | srcuser | dstuser | size |
+---------------------+---------+---------+---------+
2014-05-14 14:42:21	barb	barb	98151
2014-05-19 22:21:51	gene	gene	23992
2014-05-15 17:35:31	gene	gene	3856
2014-05-15 07:17:48	gene	gene	3824
2014-05-12 15:02:49	phil	phil	1048
...
If you have a pretty good idea about the contents of your table,
 it’s sometimes possible to eliminate the extra sort column. For example,
 srcuser is never NULL in the mail table, so the previous query can be
 rewritten as follows to use one fewer column in the ORDER BY
 clause (this relies on the property that NULL values sort ahead of all non-NULL
 values):
SELECT t, srcuser, dstuser, size
FROM mail
ORDER BY IF(srcuser=dstuser,NULL,srcuser), dstuser;

9.12 Defining a Custom Sort Order
Problem
You want to sort values in a nonstandard order.

Solution
Use FIELD() to map column
 values to a sequence that places the values in the desired
 order.

Discussion
Recipe 9.11 shows how to make a
 specific group of rows float to the head of the sort order. To impose a
 specific order on all values in a column, use the
 FIELD() function to map them to a
 list of numeric values and use the numbers for sorting. FIELD() compares its first argument to the
 following arguments and returns an integer indicating which one it
 matches. (This works best when the column contains a small number of
 distinct values.)
The following FIELD() call
 compares value to
 str1, str2,
 str3, and str4
 and returns 1, 2, 3, or 4, depending on which of them
 value is equal to:
FIELD(value,str1,str2,str3,str4)
If value is NULL or none of the values match, FIELD() returns 0.
You can use FIELD() to sort an arbitrary set of
 values into any order you please. For example, to display driver_log rows for Henry, Suzi, and Ben, in
 that order, do this:
mysql> SELECT * FROM driver_log
 -> ORDER BY FIELD(name,'Henry','Suzi','Ben');
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
10	Henry	2014-07-30	203
8	Henry	2014-08-01	197
6	Henry	2014-07-26	115
4	Henry	2014-07-27	96
3	Henry	2014-07-29	300
7	Suzi	2014-08-02	502
2	Suzi	2014-07-29	391
5	Ben	2014-07-29	131
9	Ben	2014-08-02	79
1	Ben	2014-07-30	152
+--------+-------+------------+-------+

9.13 Sorting ENUM Values
Problem
ENUM values don’t sort
 like other string columns, and you want them to retrieve results in the order you expect.

Solution

 Study how ENUM stores data, and use those properties to your advantage. You can, for example, define your own sort order for strings stored in the ENUM column.

Discussion
ENUM is a string data type, but
 ENUM values are actually stored
 numerically with values ordered the same way they are listed in the
 table definition. These numeric values affect how enumerations are
 sorted, which can be very useful. Suppose that a table named weekday contains an enumeration column named
 day that has weekday names as its
 members:
CREATE TABLE weekday
(
 day ENUM('Sunday','Monday','Tuesday','Wednesday',
 'Thursday','Friday','Saturday')
);
Internally, MySQL defines the enumeration values Sunday through Saturday in that definition to have numeric
 values from 1 to 7. To see this for yourself, create the table using the
 definition just shown, and then insert into it a row for each day of the
 week. To make the insertion order differ from the sorted order (so that you
 can see the effect of sorting), add the days in random order:
mysql> INSERT INTO weekday (day) VALUES('Monday'),('Friday'),
 -> ('Tuesday'), ('Sunday'), ('Thursday'), ('Saturday'), ('Wednesday');
Then select the values, both as strings and as the internal
 numeric value (obtain the latter using +0 to force a string-to-number
 conversion):
mysql> SELECT day, day+0 FROM weekday;
+-----------+-------+
| day | day+0 |
+-----------+-------+
Monday	2
Friday	6
Tuesday	3
Sunday	1
Thursday	5
Saturday	7
Wednesday	4
+-----------+-------+
Notice that because the query includes no ORDER BY
 clause, the rows are returned in unsorted order. If you add an ORDER BY
 day clause, it becomes apparent that MySQL uses the internal numeric values for
 sorting:
mysql> SELECT day, day+0 FROM weekday ORDER BY day;
+-----------+-------+
| day | day+0 |
+-----------+-------+
Sunday	1
Monday	2
Tuesday	3
Wednesday	4
Thursday	5
Friday	6
Saturday	7
+-----------+-------+
What about occasions when you want to sort ENUM values in lexical order? Force them to be
 treated as strings for sorting using the CAST()
 function:
mysql> SELECT day, day+0 FROM weekday ORDER BY CAST(day AS CHAR);
+-----------+-------+
| day | day+0 |
+-----------+-------+
Friday	6
Monday	2
Saturday	7
Sunday	1
Thursday	5
Tuesday	3
Wednesday	4
+-----------+-------+
If you always (or nearly always) sort a non-enumeration column in
 a specific nonlexical order, consider changing the data type to ENUM, with its values listed in the desired
 sort order. To see how this works, create a color table containing a string column, and
 populate it with some sample rows:
mysql> CREATE TABLE color (name CHAR(10), PRIMARY KEY(name));
mysql> INSERT INTO color (name) VALUES ('blue'),('green'),
 -> ('indigo'),('orange'),('red'),('violet'),('yellow');
Sorting by the name column at
 this point produces lexical order because the column contains CHAR
 values:
mysql> SELECT name FROM color ORDER BY name;
+--------+
| name |
+--------+
| blue |
| green |
| indigo |
| orange |
| red |
| violet |
| yellow |
+--------+
Now suppose that you want to sort the column by the order in which
 colors occur in the rainbow. (This is Roy G. Biv order;
 successive letters of that name indicate the first letters of the
 corresponding color names.) One way to produce a rainbow sort is to use
 FIELD():
mysql> SELECT name FROM color
 -> ORDER BY
 -> FIELD(name,'red','orange','yellow','green','blue','indigo','violet');
+--------+
| name |
+--------+
| red |
| orange |
| yellow |
| green |
| blue |
| indigo |
| violet |
+--------+
To accomplish the same end without FIELD(), use ALTER TABLE
 to convert the name column to an
 ENUM that lists the colors in the
 desired sort order:
mysql> ALTER TABLE color
 -> MODIFY name
 -> ENUM('red','orange','yellow','green','blue','indigo','violet');
After converting the table, sorting on the name column produces rainbow sorting naturally
 with no special treatment:
mysql> SELECT name FROM color ORDER BY name;
+--------+
| name |
+--------+
| red |
| orange |
| yellow |
| green |
| blue |
| indigo |
| violet |
+--------+

 Note that once you switch to the ENUM data type, you will not be able to insert any value that does not belong to the list. If you need to change the ENUM definition, for example, by adding a new color, you will have to perform one more ALTER command.

Chapter 10. Generating Summaries
10.0 Introduction
Database systems are useful not only for data storage and retrieval, but they can also
 summarize your data in more concise forms. Summaries are useful when you
 want the overall picture, not the details. They’re more readily understood
 than a long list of records. They enable you to answer questions such as
 How many? or What is the total? or
 What is the range of values? If you run a business, you may
 want to know how many customers you have in each state or how much sales
 volume you generate each month.
The preceding examples include two common summary types: counting summaries and content summaries. The first (the
 number of customer records per state) is a counting summary. The content
 of each record is important only for purposes of placing it into the
 proper group or category for counting. Such summaries are essentially
 histograms, where you sort items into a set of bins and count the number
 of items in each bin. The second example (sales volume per month) is a
 content summary, in which sales totals are based on sales values in order
 of items.
Another summary type produces neither counts nor sums but simply a
 list of unique values. This is useful if you care
 which values are present rather than how many of each
 there are. To determine the states in which you have customers, you need a
 list of the distinct state names contained in the records, not a list
 consisting of the state value from every record.
The summary types available to you depend on the nature of your
 data. A counting summary can be generated from all kinds of values,
 whether they be numbers, strings, or dates. Summaries that produce sums or
 averages apply only to numeric values. You can count instances of customer
 state names to produce a demographic analysis of your customer base. And
 sometimes it makes sense to apply one summary technique to the result of
 another. For example, to determine how many states your customers live in,
 generate a list of unique customer states, then count them.
Summary operations in MySQL involve the following SQL
 constructs:
	To compute a summary value from a set of individual values, use
 one of the functions known as aggregate functions. These are so called because they operate on aggregates
 (groups) of values. Aggregate functions include COUNT(), which counts rows or values in a query result; MIN() and MAX(), which find smallest and largest values; and SUM() and AVG(), which produce sums and means of values. These functions can be
 used to compute a value for the entire result set, or with a GROUP BY
 clause to group rows into subsets and obtain an aggregate value
 for each one.

	To obtain a list of unique values, use SELECT DISTINCT rather than SELECT.

	To count unique values, use COUNT(DISTINCT)
 rather than COUNT().

The recipes in this chapter first illustrate basic summary
 techniques and then show how to perform more complex summary operations.
 You’ll find additional examples of summary methods in later chapters,
 particularly those that cover joins and statistical operations. (See Chapters 16 and 17.)
Summary queries sometimes involve complex expressions. For summaries
 that you execute often, keep in mind that views can make queries easier to
 use. Recipe 5.7 demonstrates the basic
 technique of creating a view. Recipe 10.5 shows
 how it applies to summary simplification, and you’ll easily see how it can
 be used in later sections of the chapter as well.
The primary tables used for examples in this chapter are the
 driver_log and mail tables. These were also used in Chapter 9, so they should look familiar. A third table used
 throughout the chapter is states, which
 has rows containing a few columns of information for each of the United
 States:
mysql> SELECT * FROM states ORDER BY name;
+----------------+--------+------------+----------+
| name | abbrev | statehood | pop |
+----------------+--------+------------+----------+
Alabama	AL	1819-12-14	5039877
Alaska	AK	1959-01-03	732673
Arizona	AZ	1912-02-14	7276316
Arkansas	AR	1836-06-15	3025891
California	CA	1850-09-09	39237836
Colorado	CO	1876-08-01	5812069
Connecticut	CT	1788-01-09	3605597
…
The name and abbrev columns list the full state name and the
 corresponding abbreviation. The statehood column indicates the day on which the
 state entered the Union. pop is the
 state population from the 2010 census, as reported by the US Census
 Bureau.
This chapter uses other tables occasionally as well. You can create
 them with scripts found in the tables
 directory of the recipes
 distribution. Recipe 7.15
 describes the reviews table.

10.1 Summarizing with COUNT()
Problem

 You want to count the number of rows in an entire table or that match particular
 conditions.

Solution

 Use the COUNT()
 function.

Discussion
The COUNT()
 function calculates number of rows.

 For example, to display the rows in a table, use a SELECT *
 statement, but to count them instead, use SELECT COUNT(*). Without a WHERE clause, the statement counts all the
 rows in the table, such as in the following statement that shows how
 many rows the driver_log table
 contains:
mysql> SELECT COUNT(*) FROM driver_log;
+----------+
| COUNT(*) |
+----------+
| 10 |
+----------+
If you don’t know how many US states there are (perhaps you
 think there are 57?), this statement tells you:
mysql> SELECT COUNT(*) FROM states;
+----------+
| COUNT(*) |
+----------+
| 50 |
+----------+
COUNT(*) without a WHERE clause performs a full table scan unless the storage engine optimized this function. For
 MyISAM tables that store the exact number of rows, this is very quick. For InnoDB tables that scan all entries in the primary key to perform COUNT(*), you may want to
 avoid using this function because it can be slow for large tables. If an approximate
 row count is good enough, avoid a full scan by extracting the TABLE_ROWS value from the INFORMATION_SCHEMA database:
SELECT TABLE_ROWS FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'states';
To count only the number of rows that match certain conditions,
 include an appropriate WHERE clause
 in a SELECT COUNT(*) statement. The conditions can be
 chosen to make COUNT(*) useful for
 answering many kinds of questions:
	How many times did drivers travel more than 200 miles in a
 day?
mysql> SELECT COUNT(*) FROM driver_log WHERE miles > 200;
+----------+
| COUNT(*) |
+----------+
| 4 |
+----------+

	How many days did Suzi drive?
mysql> SELECT COUNT(*) FROM driver_log WHERE name = 'Suzi';
+----------+
| COUNT(*) |
+----------+
| 2 |
+----------+

	How many of the United States joined the Union in the 19th
 century?
mysql> SELECT COUNT(*) FROM states
 -> WHERE statehood BETWEEN '1800-01-01' AND '1899-12-31';
+----------+
| COUNT(*) |
+----------+
| 29 |
+----------+

The COUNT() function actually
 has two forms. The form we’ve been using, COUNT(*), counts rows. The other form,
 COUNT(expr), takes a column name or expression
 argument and counts the number of non-NULL values. The following statement shows how to produce both a row
 count for a table and a count of the number of non-NULL values in one of its columns:
SELECT COUNT(*), COUNT(mycol) FROM mytbl;
The fact that COUNT(expr) doesn’t count NULL values is useful for producing multiple
 counts from the same set of rows. To count the number of Saturday and
 Sunday trips in the driver_log
 table with a single statement, do this:
mysql> SELECT
 -> COUNT(IF(DAYOFWEEK(trav_date)=7,1,NULL)) AS 'Saturday trips',
 -> COUNT(IF(DAYOFWEEK(trav_date)=1,1,NULL)) AS 'Sunday trips'
 -> FROM driver_log;
+----------------+--------------+
| Saturday trips | Sunday trips |
+----------------+--------------+
| 3 | 1 |
+----------------+--------------+
Or to count weekend versus weekday trips, do this:
mysql> SELECT
 -> COUNT(IF(DAYOFWEEK(trav_date) IN (1,7),1,NULL)) AS 'weekend trips',
 -> COUNT(IF(DAYOFWEEK(trav_date) IN (1,7),NULL,1)) AS 'weekday trips'
 -> FROM driver_log;
+---------------+---------------+
| weekend trips | weekday trips |
+---------------+---------------+
| 4 | 6 |
+---------------+---------------+
The IF() expressions
 determine, for each column value, whether it should be counted. If
 so, the expression evaluates to 1
 and COUNT() counts it. If not, the
 expression evaluates to NULL and
 COUNT() ignores it. The effect is
 to count the number of values that satisfy the condition given as the
 first argument to IF().
Tip

 The COUNT() function calculates the number of elements, so you can replace 1 with any other value. The result will be the same.

See Also

 For further discussion on the difference between COUNT(*) and COUNT(expr), see Recipe 10.9.

10.2 Summarizing with MIN() and MAX()
Problem

 You want to find the smallest or the largest values in the dataset.

Solution

 Use the MIN() and MAX() functions correspondingly.

Discussion
Finding the smallest or largest values in a dataset is somewhat akin to
 sorting, except that instead of producing an entire set of sorted
 values, you select only a single value at one end or the other of the
 sorted range. This operation applies to questions about smallest,
 largest, oldest, newest, most expensive, least expensive, and so
 forth. One way to find such values is to use the MIN() and MAX() functions. (Another way is to use
 LIMIT; see Recipe 5.9.)
Because MIN() and MAX() determine the extreme values in a set,
 they’re useful for characterizing ranges:
	What date range is represented by the rows in the mail table? What are the smallest and
 largest messages sent?
mysql> SELECT
 -> MIN(t) AS earliest, MAX(t) AS latest,
 -> MIN(size) AS smallest, MAX(size) AS largest
 -> FROM mail;
+---------------------+---------------------+----------+---------+
| earliest | latest | smallest | largest |
+---------------------+---------------------+----------+---------+
| 2014-05-11 10:15:08 | 2014-05-19 22:21:51 | 271 | 2394482 |
+---------------------+---------------------+----------+---------+

	What are the smallest and largest US state
 populations?
mysql> SELECT MIN(pop) AS 'fewest people', MAX(pop) AS 'most people'
 -> FROM states;
+---------------+-------------+
| fewest people | most people |
+---------------+-------------+
| 578803 | 39237836 |
+---------------+-------------+

	What are the first and last state names, lexically speaking?
 What is the length of the shortest and longest names?
mysql> SELECT
 -> MIN(name) AS first,
 -> MAX(name) AS last,
 -> MIN(CHAR_LENGTH(name)) AS shortest,
 -> MAX(CHAR_LENGTH(name)) AS longest
 -> FROM states;
+---------+---------+----------+---------+
| first | last | shortest | longest |
+---------+---------+----------+---------+
| Alabama | Wyoming | 4 | 14 |
+---------+---------+----------+---------+

The final query illustrates that MIN() and MAX() need not be applied directly to column
 values; they’re also useful for expressions or values derived from
 column values.

10.3 Summarizing with SUM() and AVG()
Problem

 You want to calculate the total or average (mean) of a set of values.

Solution

 Use the SUM() and AVG() functions.

Discussion
SUM() and AVG() produce the total and average (mean) of a set of values:
	What is the total amount of mail traffic in bytes and the
 average size of each message?
mysql> SELECT
 -> SUM(size) AS 'total traffic',
 -> AVG(size) AS 'average message size'
 -> FROM mail;
+---------------+----------------------+
| total traffic | average message size |
+---------------+----------------------+
| 3798185 | 237386.5625 |
+---------------+----------------------+

	How many miles did the drivers in the driver_log table travel? What was the
 average number of miles traveled per day?
mysql> SELECT
 -> SUM(miles) AS 'total miles',
 -> AVG(miles) AS 'average miles/day'
 -> FROM driver_log;
+-------------+-------------------+
| total miles | average miles/day |
+-------------+-------------------+
| 2166 | 216.6000 |
+-------------+-------------------+

	What is the total population of the United States?
mysql> SELECT SUM(pop) FROM states;
+-----------+
| SUM(pop) |
+-----------+
| 331223695 |
+-----------+
The value represents the population reported for the 2021
 census.

SUM() and AVG() are numeric functions, so they can’t
 be used with strings or temporal values. But sometimes you can convert
 nonnumeric values to useful numeric forms. Suppose that a table
 stores TIME values
 that represent elapsed time:
mysql> SELECT t1 FROM time_val;
+----------+
| t1 |
+----------+
| 15:00:00 |
| 05:01:30 |
| 12:30:20 |
+----------+
To compute the total elapsed time, use TIME_TO_SEC() to
 convert the values to seconds before summing them. The resulting sum
 is also in seconds; pass it to SEC_TO_TIME() to convert it back to TIME format:
mysql> SELECT SUM(TIME_TO_SEC(t1)) AS 'total seconds',
 -> SEC_TO_TIME(SUM(TIME_TO_SEC(t1))) AS 'total time'
 -> FROM time_val;
+---------------+------------+
| total seconds | total time |
+---------------+------------+
| 117110 | 32:31:50 |
+---------------+------------+

See Also
The SUM() and AVG() functions are especially useful in
 statistical applications. They’re explored further in Chapter 17, along with STD(), a related function that calculates standard deviations.

10.4 Using DISTINCT to Eliminate Duplicates
Problem

 You want to skip duplicate values when performing calculations.

Solution

 Use the keyword DISTINCT.

Discussion
A summary operation that uses no aggregate functions is
 determining the unique values or rows in a dataset. Do this with DISTINCT (or
 DISTINCTROW, a synonym). DISTINCT boils down a query result and
 often is combined with ORDER BY to place values in more meaningful order.
 This query lists in lexical order the drivers named in the driver_log table:
mysql> SELECT DISTINCT name FROM driver_log ORDER BY name;
+-------+
| name |
+-------+
| Ben |
| Henry |
| Suzi |
+-------+
Without DISTINCT, the
 statement produces the same names but is not nearly as easy to
 understand, even with a small dataset:
mysql> SELECT name FROM driver_log ORDER BY NAME;
+-------+
| name |
+-------+
| Ben |
| Ben |
| Ben |
| Henry |
| Henry |
| Henry |
| Henry |
| Henry |
| Suzi |
| Suzi |
+-------+
To determine the number of different drivers, use COUNT(DISTINCT):
mysql> SELECT COUNT(DISTINCT name) FROM driver_log;
+----------------------+
| COUNT(DISTINCT name) |
+----------------------+
| 3 |
+----------------------+
COUNT(DISTINCT) ignores
 NULL values. To count NULL as
 one of the values in the set if it’s present, use one of the following
 expressions:
COUNT(DISTINCT val) + IF(COUNT(IF(val IS NULL,1,NULL))=0,0,1)
COUNT(DISTINCT val) + IF(SUM(ISNULL(val))=0,0,1)
COUNT(DISTINCT val) + (SUM(ISNULL(val))<>0);

 In this example, we first calculate the number of distinct NOT NULL values, then add 1 if the sum of NULL values is greater than zero.

DISTINCT queries are often
 useful in conjunction with aggregate functions to more fully
 characterize your data. Suppose that a customer table contains a state column indicating customer location.
 Applying COUNT(*) to the customer table indicates how many customers
 you have, using DISTINCT on the
 state column tells you the number
 of states in which you have customers, and COUNT(DISTINCT) on the state column tells you how many states your
 customer base represents.
When used with multiple columns, DISTINCT shows the different combinations of
 values in the columns, and COUNT(DISTINCT) counts the number of
 combinations. The following statements show the different
 sender/recipient pairs in the mail
 table and the number of such pairs:
mysql> SELECT DISTINCT srcuser, dstuser FROM mail
 -> ORDER BY srcuser, dstuser;
+---------+---------+
| srcuser | dstuser |
+---------+---------+
barb	barb
barb	tricia
gene	barb
gene	gene
gene	tricia
phil	barb
phil	phil
phil	tricia
tricia	gene
tricia	phil
+---------+---------+	
mysql> SELECT COUNT(DISTINCT srcuser, dstuser) FROM mail;	
+----------------------------------+	
COUNT(DISTINCT srcuser, dstuser)	
+----------------------------------+	
10	
+----------------------------------+

10.5 Creating a View to Simplify Using a Summary
Problem
You want to make it easier to perform a summary.

Solution
Create a view that does it for you.

Discussion
If you often need a given summary, a technique that enables you to
 avoid typing the summarizing expressions repeatedly is to use a view
 (see Recipe 5.7). For example, the
 following view implements the weekend versus weekday trip summary discussed in Recipe 10.1:
mysql> CREATE VIEW trip_summary_view AS
 -> SELECT
 -> COUNT(IF(DAYOFWEEK(trav_date) IN (1,7),1,NULL)) AS weekend_trips,
 -> COUNT(IF(DAYOFWEEK(trav_date) IN (1,7),NULL,1)) AS weekday_trips
 -> FROM driver_log;
Selecting from this view is much easier than selecting directly
 from the underlying table:
mysql> SELECT * FROM trip_summary_view;
+---------------+---------------+
| weekend_trips | weekday_trips |
+---------------+---------------+
| 4 | 6 |
+---------------+---------------+

10.6 Finding Values Associated with Minimum and Maximum Values
Problem
You want to know the values for other columns in the row that contains
 a minimum or maximum value.

Solution
Use two statements and a user-defined variable. Or a subquery. Or
 a join. Or a CTE.

Discussion
MIN() and MAX() find an endpoint of a range of values, but you may also be
 interested in other values from the row in which the value occurs. For
 example, you can find the largest state population like this:
mysql> SELECT MAX(pop) FROM states;
+----------+
| MAX(pop) |
+----------+
| 39237836 |
+----------+
But that doesn’t show you which state has this population. The
 obvious attempt at getting that information looks like this:
mysql> SELECT MAX(pop), name FROM states WHERE pop = MAX(pop);
ERROR 1111 (HY000): Invalid use of group function
Probably everyone tries something like that sooner or later, but
 it doesn’t work. Aggregate functions such as MIN() and MAX() cannot be used in WHERE clauses, which
 require expressions that apply to individual rows. The intent of the
 statement is to determine which row has the maximum population value and
 display the associated state name. The problem is that although you and
 I know perfectly well what we mean by writing such a thing, it makes no
 sense at all in SQL. The statement fails because SQL uses the WHERE clause to determine which rows to
 select, but the value of an aggregate function is known only
 after selecting the rows from which the function’s
 value is determined! So, in a sense, the statement is
 self-contradictory. To solve this problem, save the maximum population
 value in a user-defined variable, then compare rows to the variable
 value:
mysql> SET @max = (SELECT MAX(pop) FROM states);
mysql> SELECT pop AS 'highest population', name FROM states WHERE pop = @max;
+--------------------+------------+
| highest population | name |
+--------------------+------------+
| 39237836 | California |
+--------------------+------------+
Alternatively, for a single-statement solution, use a subquery in the WHERE
 clause that returns the maximum population value:
SELECT pop AS 'highest population', name FROM states
WHERE pop = (SELECT MAX(pop) FROM states);
This technique also works even if the minimum or maximum value
 itself isn’t actually contained in the row but is only derived from it.
 To determine the length of the shortest review in the sample Amazon reviews
 data, do this:
mysql> SELECT MAX(CHAR_LENGTH(reviews_virtual)) FROM reviews;
+-----------------------------------+
| MIN(CHAR_LENGTH(reviews_virtual)) |
+-----------------------------------+
| 2 |
+-----------------------------------+
If you want to know Which review is that? do this
 instead:
mysql> SELECT JSON_EXTRACT(appliances_review, "$. reviewTime") as ReviewTime,
 -> JSON_EXTRACT(appliances_review, "$.reviewerID") as ReviewerID,
 -> JSON_EXTRACT(appliances_review, "$.asin") as ProductID
 -> JSON_EXTRACT(appliances_review, "$.overall") as Rating FROM
 -> reviews WHERE CHAR_LENGTH(reviews_virtual) =
 -> (SELECT MIN(CHAR_LENGTH(reviews_virtual)) FROM reviews);
+---------------+-------------------+--------------+--------+
| ReviewTime | ReviewerID | ProductID | Rating |
+---------------+-------------------+--------------+--------+
"03 8, 2015"	"A3B1B4E184FSUZ"	"B000VL060M"	5.0
"03 8, 2015"	"A3B1B4E184FSUZ"	"B0015UGPWQ"	5.0
"03 8, 2015"	"A3B1B4E184FSUZ"	"B000VL060M"	5.0
"03 8, 2015"	"A3B1B4E184FSUZ"	"B0015UGPWQ"	5.0
"02 9, 2015"	"A3B1B4E184FSUZ"	"B0042U16YI"	5.0
"07 25, 2016"	"AJPRN1TD1A0SD"	"B00BIZDI0A"	3.0
+---------------+-------------------+--------------+--------+
Yet another way to select other columns from rows containing a
 minimum or maximum value is to use a join. Select the value into another table, then join it to
 the original table to select the row that matches the value. To find the
 row for the state with the highest population, use a join like
 this:
mysql> CREATE TEMPORARY TABLE tmp SELECT MAX(pop) as maxpop FROM states;
mysql> SELECT states.* FROM states INNER JOIN tmp
 -> ON states.pop = tmp.maxpop;
+------------+--------+------------+----------+
| name | abbrev | statehood | pop |
+------------+--------+------------+----------+
| California | CA | 1850-09-09 | 39237836 |
+------------+--------+------------+----------+

 As of MySQL 8.0, you can use Common Table Expressions (CTEs) to perform the same search:

mysql> WITH maxpop
 -> AS (SELECT MAX(pop) as maxpop FROM states)
 -> SELECT states.* FROM states
 -> JOIN maxpop ON states.pop = maxpop.maxpop;
+------------+--------+------------+----------+
| name | abbrev | statehood | pop |
+------------+--------+------------+----------+
| California | CA | 1850-09-09 | 39237836 |
+------------+--------+------------+----------+
1 row in set (0.00 sec)

 The preceding code snippets use the same idea: create a temporary table to store the maximum population number and join it with the original table. But the latter performs this operation in the single query, so you don’t need to worry about destroying the temporary table after getting the result. We discuss CTEs in detail in Recipe 10.18.

See Also
Recipe 16.7 extends the
 discussion here to the problem of finding rows that contain minimum or
 maximum values for multiple groups in a dataset.

10.7 Controlling String Case Sensitivity for MIN() and MAX()
Problem
MIN() and MAX() select strings in case-sensitive fashion when you don’t want them
 to, or vice versa.

Solution
Use different comparison characteristics of the strings.

Discussion
Recipe 7.1 discusses how
 string-comparison properties depend on whether the strings are binary or
 nonbinary:
	Binary strings are sequences of bytes. They are compared byte
 by byte using numeric byte values. Character set and lettercase have
 no meaning for comparisons.

	Nonbinary strings are sequences of characters. They have a character set and
 collation and are compared character by character using the order
 defined by the collation.

These properties also apply to string columns used as the argument
 to the MIN() or MAX() function because they are based on
 comparison. To alter how these functions work with a string column,
 alter the column’s comparison properties. Recipe 7.7 discusses how to control these
 properties, and Recipe 9.4 shows how they
 apply to string sorts. The same principles apply to finding minimum and
 maximum string values, so we’ll just summarize here; read Recipe 9.4 for additional details.
	To compare case-insensitive strings in case-sensitive fashion,
 order the values using a case-sensitive collation:
SELECT
MIN(str_col COLLATE utf8mb4_0900_as_cs) AS min,
MAX(str_col COLLATE utf8mb4_0900_as_cs) AS max
FROM tbl;

	To compare case-sensitive strings in case-insensitive fashion,
 order the values using a case-insensitive collation:
SELECT
MIN(str_col COLLATE utf8mb4_0900_ai_ci) AS min,
MAX(str_col COLLATE utf8mb4_0900_ai_ci) AS max
FROM tbl;
Another possibility is to compare values that have all been
 converted to the same lettercase, which makes lettercase irrelevant.
 However, that also changes the retrieved values:
SELECT
MIN(UPPER(str_col)) AS min,
MAX(UPPER(str_col)) AS max
FROM tbl;

	Binary strings compare using numeric byte values, so there is
 no concept of lettercase involved. However, because letters in
 different cases have different byte values, comparisons of binary
 strings effectively are case sensitive (that is, a and A
 are unequal). To compare binary strings using a case-insensitive
 ordering, convert them to nonbinary strings and apply an appropriate
 collation:
SELECT
MIN(CONVERT(str_col USING utf8mb4) COLLATE utf8mb4_0900_ai_ci) AS min,
MAX(CONVERT(str_col USING utf8mb4) COLLATE utf8mb4_0900_ai_ci) AS max
FROM tbl;
If the default collation is case insensitive (as is true for
 utf8mb4), you can omit the
 COLLATE clause.

10.8 Dividing a Summary into Subgroups
Problem
You want a summary for each subgroup of a set of rows, not an overall summary
 value.

Solution
Use a GROUP BY clause to arrange rows into groups.

Discussion
The summary statements shown so far calculate summary values over
 all rows in the result set. For example, the following statement
 determines the number of records in the mail table, and thus the total number of mail
 messages sent:
mysql> SELECT COUNT(*) FROM mail;
+----------+
| COUNT(*) |
+----------+
| 16 |
+----------+
To arrange a set of rows into subgroups and summarize each group,
 use aggregate functions in conjunction with a GROUP BY
 clause. To determine the number of messages per sender, group the rows
 by sender name, count how many times each name occurs, and display the
 names with the counts:
mysql> SELECT srcuser, COUNT(*) FROM mail GROUP BY srcuser;
+---------+----------+
| srcuser | COUNT(*) |
+---------+----------+
barb	3
gene	6
phil	5
tricia	2
+---------+----------+
That query summarizes the same column that is used for grouping
 (srcuser), but that’s not always
 necessary. Suppose that you want a quick characterization of the
 mail table, showing for each sender
 listed in it the total amount of traffic sent (in bytes) and the average
 number of bytes per message. In this case, you still use the srcuser column to group the rows but
 summarize the size values:
mysql> SELECT srcuser,
 -> SUM(size) AS 'total bytes',
 -> AVG(size) AS 'bytes per message'
 -> FROM mail GROUP BY srcuser;
+---------+-------------+-------------------+
| srcuser | total bytes | bytes per message |
+---------+-------------+-------------------+
barb	156696	52232.0000
gene	1033108	172184.6667
phil	18974	3794.8000
tricia	2589407	1294703.5000
+---------+-------------+-------------------+
Use as many grouping columns as necessary to achieve a grouping as
 fine-grained as you require. The earlier query that shows the number of
 messages per sender is a coarse summary. To be more specific and find
 out how many messages each sender sent from each host, use two grouping
 columns. This produces a result with nested groups (groups within groups):
mysql> SELECT srcuser, srchost, COUNT(srcuser) FROM mail
 -> GROUP BY srcuser, srchost;
+---------+---------+----------------+
| srcuser | srchost | COUNT(srcuser) |
+---------+---------+----------------+
barb	saturn	2
barb	venus	1
gene	mars	2
gene	saturn	2
gene	venus	2
phil	mars	3
phil	venus	2
tricia	mars	1
tricia	saturn	1
+---------+---------+----------------+
The preceding examples in this section used COUNT(), SUM(), and AVG() for per-group summaries. You can
 use MIN() or MAX(), too. With a GROUP BY
 clause, they return the smallest or largest value per group. The
 following query groups mail table
 rows by message sender, displaying for each the size of the largest
 message sent and the date of the most recent message:
mysql> SELECT srcuser, MAX(size), MAX(t) FROM mail GROUP BY srcuser;
+---------+-----------+---------------------+
| srcuser | MAX(size) | MAX(t) |
+---------+-----------+---------------------+
barb	98151	2014-05-14 14:42:21
gene	998532	2014-05-19 22:21:51
phil	10294	2014-05-19 12:49:23
tricia	2394482	2014-05-14 17:03:01
+---------+-----------+---------------------+
You can group by multiple columns and display a maximum for each
 combination of values in those columns. This query finds the size of the
 largest message sent between each pair of sender and recipient values
 listed in the mail table:
mysql> SELECT srcuser, dstuser, MAX(size) FROM mail GROUP BY srcuser, dstuser;
+---------+---------+-----------+
| srcuser | dstuser | MAX(size) |
+---------+---------+-----------+
barb	barb	98151
barb	tricia	58274
gene	barb	2291
gene	gene	23992
gene	tricia	998532
phil	barb	10294
phil	phil	1048
phil	tricia	5781
tricia	gene	194925
tricia	phil	2394482
+---------+---------+-----------+
When using aggregate functions to produce per-group summary
 values, watch out for the following trap, which involves selecting
 nonsummary table columns not related to the grouping columns. Suppose
 that you want to know the longest trip per driver in the driver_log table:
mysql> SELECT name, MAX(miles) AS 'longest trip'
 -> FROM driver_log GROUP BY name;
+-------+--------------+
| name | longest trip |
+-------+--------------+
Ben	152
Henry	300
Suzi	502
+-------+--------------+
But what if you also want to show the date on which each driver’s
 longest trip occurred? Can you just add trav_date to the output column list? Sorry,
 that doesn’t work:
mysql> SELECT name, trav_date, MAX(miles) AS 'longest trip'
 -> FROM driver_log GROUP BY name;
+-------+------------+--------------+
| name | trav_date | longest trip |
+-------+------------+--------------+
Ben	2014-07-30	152
Henry	2014-07-29	300
Suzi	2014-07-29	502
+-------+------------+--------------+
The query does produce a result, but if you compare it to the full
 table (shown here), you’ll see that although the dates for Ben and Henry
 are correct, the date for Suzi is not:
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
| 1 | Ben | 2014-07-30 | 152 | ← Ben's longest trip
| 2 | Suzi | 2014-07-29 | 391 |
| 3 | Henry | 2014-07-29 | 300 | ← Henry's longest trip
4	Henry	2014-07-27	96
5	Ben	2014-07-29	131
6	Henry	2014-07-26	115
7	Suzi	2014-08-02	502
8	Henry	2014-08-01	197
9	Ben	2014-08-02	79
10	Henry	2014-07-30	203
+--------+-------+------------+-------+
So what’s going on? Why does the summary statement produce
 incorrect results? This happens because when you include a GROUP BY
 clause in a query, the only values that you can meaningfully select are
 the grouping columns or summary values calculated from the groups. If
 you display additional table columns, they’re not tied to the grouped
 columns, and the values displayed for them are indeterminate. (For the
 statement just shown, it appears that MySQL may simply be picking the
 first date for each driver, regardless of whether it matches the
 driver’s maximum mileage value.)
To make queries that pick indeterminate values illegal so that you
 won’t inadvertently suppose that the trav_date values are correct, set the ONLY_FULL_GROUP_BY
 SQL mode:
mysql> SET sql_mode = 'ONLY_FULL_GROUP_BY';
mysql> SELECT name, trav_date, MAX(miles) AS 'longest trip'
 -> FROM driver_log GROUP BY name;
ERROR 1055 (42000): 'cookbook.driver_log.trav_date' isn't in GROUP BY

 The ONLY_FULL_GROUP_BY SQL mode has been part of the default settings since MySQL 5.7. However, we have seen many legacy applications that disable this option. We suggest that you always have ONLY_FULL_GROUP_BY enabled and fix queries that return an error otherwise.

The general solution to the problem of displaying contents of rows
 associated with minimum or maximum group values involves a join. The
 technique is described in Recipe 16.7.
 For the problem at hand, produce the required results as follows:
mysql> CREATE TEMPORARY TABLE t
 -> SELECT name, MAX(miles) AS miles FROM driver_log GROUP BY name;
mysql> SELECT d.name, d.trav_date, d.miles AS 'longest trip'
 -> FROM driver_log AS d INNER JOIN t USING (name, miles) ORDER BY name;
+-------+------------+--------------+
| name | trav_date | longest trip |
+-------+------------+--------------+
Ben	2014-07-30	152
Henry	2014-07-29	300
Suzi	2014-08-02	502
+-------+------------+--------------+

 Or, by using a CTE:

mysql> WITH t AS
 -> (SELECT name, MAX(miles) AS miles FROM driver_log GROUP BY name)
 -> SELECT d.name, d.trav_date, d.miles AS 'longest trip'
 -> FROM driver_log AS d INNER JOIN t USING (name, miles) ORDER BY name;
+-------+------------+--------------+
| name | trav_date | longest trip |
+-------+------------+--------------+
Ben	2014-07-30	152
Henry	2014-07-29	300
Suzi	2014-08-02	502
+-------+------------+--------------+
3 rows in set (0.01 sec)

10.9 Handling NULL Values with Aggregate Functions
Problem
You’re summarizing a set of values that may include NULL values, and you need to know how to
 interpret the results.

Solution
Understand how aggregate functions handle NULL values.

Discussion
Most aggregate functions ignore NULL values.
 COUNT() is different: COUNT(expr) ignores NULL instances of
 expr, but COUNT(*) counts rows, regardless of
 content.
Suppose that an expt table
 contains experimental results for subjects who are to be given four
 tests each and that lists the test score as NULL for tests not yet administered:
mysql> SELECT subject, test, score FROM expt ORDER BY subject, test;
+---------+------+-------+
| subject | test | score |
+---------+------+-------+
Jane	A	47
Jane	B	50
Jane	C	NULL
Jane	D	NULL
Marvin	A	52
Marvin	B	45
Marvin	C	53
Marvin	D	NULL
+---------+------+-------+
By using a GROUP BY clause to arrange the rows by subject name, the number of tests
 taken by each subject, as well as the total, average, lowest, and
 highest scores, can be calculated like this:
mysql> SELECT subject,
 -> COUNT(score) AS n,
 -> SUM(score) AS total,
 -> AVG(score) AS average,
 -> MIN(score) AS lowest,
 -> MAX(score) AS highest
 -> FROM expt GROUP BY subject;
+---------+---+-------+---------+--------+---------+
| subject | n | total | average | lowest | highest |
+---------+---+-------+---------+--------+---------+
| Jane | 2 | 97 | 48.5000 | 47 | 50 |
| Marvin | 3 | 150 | 50.0000 | 45 | 53 |
+---------+---+-------+---------+--------+---------+
You can see from the results in the column labeled n (number of tests) that the query counts only
 five values, even though the table contains eight. Why? Because the
 values in that column correspond to the number of non-NULL test scores for each subject. The other
 summary columns display results that are calculated only from the
 non-NULL scores as well.
It makes a lot of sense for aggregate functions to ignore NULL values. If they followed the usual SQL
 arithmetic rules, adding NULL to any
 other value would produce a NULL
 result. That would make aggregate functions really difficult to use: to
 avoid getting a NULL result, you’d
 have to filter out NULL values every
 time you performed a summary. By ignoring NULL values, aggregate functions become a lot
 more convenient.
However, be aware that even though aggregate functions may ignore
 NULL values, some of them can still
 produce NULL as a result. This
 happens if there’s nothing to summarize, which occurs if the set of
 values is empty or contains only NULL
 values. The following query is the same as the previous one, with one
 small difference. It selects only NULL test scores to illustrate what happens
 when there’s nothing for the aggregate functions to operate on:
mysql> SELECT subject,
 -> COUNT(score) AS n,
 -> SUM(score) AS total,
 -> AVG(score) AS average,
 -> MIN(score) AS lowest,
 -> MAX(score) AS highest
 -> FROM expt WHERE score IS NULL GROUP BY subject;
+---------+---+-------+---------+--------+---------+
| subject | n | total | average | lowest | highest |
+---------+---+-------+---------+--------+---------+
| Jane | 0 | NULL | NULL | NULL | NULL |
| Marvin | 0 | NULL | NULL | NULL | NULL |
+---------+---+-------+---------+--------+---------+
For COUNT(), the number of
 scores per subject is zero and is reported that way. On the other hand,
 SUM(), AVG(), MIN(), and MAX() return NULL when there are no values to summarize. If you don’t want an
 aggregate value of NULL to display as
 NULL, use IFNULL() to map it
 appropriately:
mysql> SELECT subject,
 -> COUNT(score) AS n,
 -> IFNULL(SUM(score),0) AS total,
 -> IFNULL(AVG(score),0) AS average,
 -> IFNULL(MIN(score),'Unknown') AS lowest,
 -> IFNULL(MAX(score),'Unknown') AS highest
 -> FROM expt WHERE score IS NULL GROUP BY subject;
+---------+---+-------+---------+---------+---------+
| subject | n | total | average | lowest | highest |
+---------+---+-------+---------+---------+---------+
| Jane | 0 | 0 | 0.0000 | Unknown | Unknown |
| Marvin | 0 | 0 | 0.0000 | Unknown | Unknown |
+---------+---+-------+---------+---------+---------+
COUNT() is somewhat different
 with regard to NULL values than the
 other aggregate functions. Like other aggregate functions, COUNT(expr) counts only non-NULL values, but COUNT(*) counts rows, no matter what they
 contain. You can see the difference between the forms of COUNT() like this:
mysql> SELECT COUNT(*), COUNT(score) FROM expt;
+----------+--------------+
| COUNT(*) | COUNT(score) |
+----------+--------------+
| 8 | 5 |
+----------+--------------+
This tells us that there are eight rows in the expt table but that only five of them have the
 score value filled in. The different
 forms of COUNT() can be very useful
 for counting missing values. Just take the difference:
mysql> SELECT COUNT(*) - COUNT(score) AS missing FROM expt;
+---------+
| missing |
+---------+
| 3 |
+---------+
Missing and nonmissing counts can be determined for subgroups as
 well. The following query does so for each subject, providing an easy
 way to assess the extent to which the experiment has been completed:
mysql> SELECT subject,
 -> COUNT(*) AS total,
 -> COUNT(score) AS 'nonmissing',
 -> COUNT(*) - COUNT(score) AS missing
 -> FROM expt GROUP BY subject;
+---------+-------+------------+---------+
| subject | total | nonmissing | missing |
+---------+-------+------------+---------+
| Jane | 4 | 2 | 2 |
| Marvin | 4 | 3 | 1 |
+---------+-------+------------+---------+

10.10 Selecting Only Groups with Certain Characteristics
Problem
You want to calculate group summaries but display results only for groups that
 match certain criteria.

Solution
Use a HAVING clause.

Discussion
You’re familiar with the use of WHERE to specify
 conditions that rows must satisfy to be selected by a statement. It’s
 natural, therefore, to use WHERE to
 write conditions that involve summary values. The only trouble is that
 it doesn’t work. To identify drivers in the driver_log table who drove more than three
 days, you might write the statement like this:
mysql> SELECT COUNT(*), name FROM driver_log
 -> WHERE COUNT(*) > 3
 -> GROUP BY name;
ERROR 1111 (HY000): Invalid use of group function
The problem is that WHERE
 specifies the initial constraints that determine which rows to select,
 but the value of COUNT() can
 be determined only after the rows have been selected. The
 solution is to put the COUNT()
 expression in a HAVING clause
 instead. HAVING is analogous to
 WHERE, but it applies to group
 characteristics rather than to single rows. That is, HAVING operates on the
 already-selected-and-grouped set of rows, applying additional
 constraints based on aggregate function results that aren’t known during
 the initial selection process. The preceding query therefore should be
 written like this:
mysql> SELECT COUNT(*), name FROM driver_log
 -> GROUP BY name
 -> HAVING COUNT(*) > 3;
+----------+-------+
| COUNT(*) | name |
+----------+-------+
| 5 | Henry |
+----------+-------+
When you use HAVING, you can
 still include a WHERE clause but
 only to select rows to be summarized, not to test already-calculated
 summary values.
HAVING can refer to aliases, so the previous query can be rewritten like
 this:
mysql> SELECT COUNT(*) AS count, name FROM driver_log
 -> GROUP BY name
 -> HAVING count > 3;
+-------+-------+
| count | name |
+-------+-------+
| 5 | Henry |
+-------+-------+

10.11 Using Counts to Determine Whether Values Are Unique
Problem
You want to know whether values in a table are unique.

Solution
Use HAVING in conjunction with
 COUNT().

Discussion
DISTINCT eliminates duplicates
 but doesn’t show which values actually were duplicated in the
 original data. You can use HAVING to
 find unique values in situations to which DISTINCT does not apply. HAVING can tell you which values were unique
 or nonunique.
The following statements show the days on which only one driver
 was active and the days on which more than one driver was active.
 They’re based on using HAVING and
 COUNT() to determine which trav_date values are unique or
 nonunique:
mysql> SELECT trav_date, COUNT(trav_date) FROM driver_log
 -> GROUP BY trav_date HAVING COUNT(trav_date) = 1;
+------------+------------------+
| trav_date | COUNT(trav_date) |
+------------+------------------+
2014-07-26	1
2014-07-27	1
2014-08-01	1
+------------+------------------+
mysql> SELECT trav_date, COUNT(trav_date) FROM driver_log
 -> GROUP BY trav_date HAVING COUNT(trav_date) > 1;
+------------+------------------+
| trav_date | COUNT(trav_date) |
+------------+------------------+
2014-07-29	3
2014-07-30	2
2014-08-02	2
+------------+------------------+
This technique works for combinations of values, too. For example,
 to find message sender/recipient pairs between whom only one message was
 sent, look for combinations that occur only once in the mail table:
mysql> SELECT srcuser, dstuser FROM mail
 -> GROUP BY srcuser, dstuser HAVING COUNT(*) = 1;
+---------+---------+
| srcuser | dstuser |
+---------+---------+
barb	barb
gene	tricia
phil	barb
tricia	gene
tricia	phil
+---------+---------+
Note that this query doesn’t print the count. The previous
 examples did so, to show that the counts were being used properly, but
 you can refer to an aggregate value in a HAVING clause without including it in the
 output column list.

10.12 Grouping by Expression Results
Problem
You want to group rows into subgroups based on values calculated from an
 expression.

Solution
In the GROUP BY clause, use an expression that categorizes values.

Discussion
GROUP BY, like ORDER BY,
 can refer to expressions. This means you can use calculations as the
 basis for grouping. As with ORDER
 BY, you can write the grouping
 expression directly in the GROUP
 BY clause or use an alias for the
 expression (if it appears in the output column list) and refer to the
 alias in the GROUP BY.
To find days of the year on which more than one state joined the
 Union, group by statehood month and day, and then use HAVING and COUNT() to find the nonunique combinations:
mysql> SELECT
 -> MONTHNAME(statehood) AS month,
 -> DAYOFMONTH(statehood) AS day,
 -> COUNT(*) AS count
 -> FROM states GROUP BY month, day HAVING count > 1;
+----------+------+-------+
| month | day | count |
+----------+------+-------+
February	14	2
June	1	2
March	1	2
May	29	2
November	2	2
+----------+------+-------+

10.13 Summarizing Noncategorical Data
Problem
You want to summarize a set of values that are not naturally
 categorical.

Solution
Use an expression to group the values into categories.

Discussion
Recipe 10.12 shows how to group rows by expression results. One
 important application for this is to categorize values that are not
 categorical. This is useful because GROUP BY
 works best for columns with repetitive values. For example, you might
 attempt to perform a population analysis by grouping rows in the
 states table using values in the
 pop column. That doesn’t work very
 well due to the high number of distinct values in the column. In fact,
 they’re all distinct:
mysql> SELECT COUNT(pop), COUNT(DISTINCT pop) FROM states;
+------------+---------------------+
| COUNT(pop) | COUNT(DISTINCT pop) |
+------------+---------------------+
| 50 | 50 |
+------------+---------------------+
In situations like this, in which values do not group nicely into
 a small number of sets, use a transformation that forces them into
 categories. Begin by determining the range of population values:
mysql> SELECT MIN(pop), MAX(pop) FROM states;
+----------+----------+
| MIN(pop) | MAX(pop) |
+----------+----------+
| 578803 | 39237836 |
+----------+----------+
You can see from that result that if you divide the pop values by five million, they’ll group into
 eight categories—a reasonable number. (The category ranges will be 1 to
 5,000,000, 5,000,001 to 10,000,000, and so forth.) To put each
 population value in the proper category, divide by five million and use
 the integer result:
mysql> SELECT FLOOR(pop/5000000) AS `max population (millions)`,
 -> COUNT(*) AS `number of states`
 -> FROM states GROUP BY `max population (millions)`
 -> ORDER BY `max population (millions)`;
+---------------------------+------------------+
| max population (millions) | number of states |
+---------------------------+------------------+
0	26
1	14
2	6
3	1
4	1
5	1
7	1
+---------------------------+------------------+
Hmm. That’s not quite right. The expression groups the population
 values into a small number of categories but doesn’t report the
 category values properly. Let’s try multiplying the FLOOR() results by
 five:
mysql> SELECT FLOOR(pop/5000000)*5 AS `max population (millions)`,
 -> COUNT(*) AS `number of states`
 -> FROM states GROUP BY `max population (millions)`
 -> ORDER BY `max population (millions)`;
+---------------------------+------------------+
| max population (millions) | number of states |
+---------------------------+------------------+
0	26
5	14
10	6
15	1
20	1
25	1
35	1
+---------------------------+------------------+
That still isn’t correct. The maximum state population was
 35,893,799, which should go into a category for 40 million, not one for
 35 million. The problem here is that the category-generating expression
 groups values toward the lower bound of each category. To group values
 toward the upper bound instead, use the following technique. For
 categories of size n, place a value
 x into the proper category using this
 expression:
FLOOR((x+(n-1))/n)
So the final form of our query looks like this:
mysql> SELECT FLOOR((pop+4999999)/5000000)*5 AS `max population (millions)`,
 -> COUNT(*) AS `number of states`
 -> FROM states GROUP BY `max population (millions)`
 -> ORDER BY `max population (millions)`;
+---------------------------+------------------+
| max population (millions) | number of states |
+---------------------------+------------------+
5	26
10	14
15	6
20	1
25	1
30	1
40	1
+---------------------------+------------------+
The result shows clearly that the majority of US states have a
 population of five million or less.
In some instances, it may be more appropriate to categorize groups
 on a logarithmic scale. For example, treat the state population values
 that way as follows:
mysql> SELECT FLOOR(LOG10(pop)) AS `log10(population)`,
 -> COUNT(*) AS `number of states`
 -> FROM states GROUP BY `log10(population)`;
+-------------------+------------------+
| log10(population) | number of states |
+-------------------+------------------+
5	5
6	35
7	10
+-------------------+------------------+
The query shows the number of states that have populations
 measured in hundreds of thousands, millions, and tens of millions,
 respectively.
You may have noticed that aliases in the preceding queries are
 written using backticks (identifier quoting) rather than single
 quotes (string quoting). Quoted aliases in the GROUP
 BY clause must use identifier quoting
 or the alias is treated as a constant string expression and the grouping
 produces the wrong result. Identifier quoting clarifies to MySQL that
 the alias refers to an output column. The aliases in the output column
 list could have been written using string quoting; we used backticks
 there to avoid mixing alias quoting styles within a given query.
How Repetitive Is a Set of Values?
To assess how much repetition is present in a set of values,
 use the ratio of COUNT(DISTINCT) and COUNT(). If all values are unique, both
 counts are the same and the ratio is 1. This is the case for the
 t values in the mail table and the pop values in the states table:
mysql> SELECT COUNT(DISTINCT t) / COUNT(t) FROM mail;
+------------------------------+
| COUNT(DISTINCT t) / COUNT(t) |
+------------------------------+
| 1.0000 |
+------------------------------+
mysql> SELECT COUNT(DISTINCT pop) / COUNT(pop) FROM states;
+----------------------------------+
| COUNT(DISTINCT pop) / COUNT(pop) |
+----------------------------------+
| 1.0000 |
+----------------------------------+
For a more repetitive set of values, COUNT(DISTINCT) is less than COUNT(), and the ratio is smaller:
mysql> SELECT COUNT(DISTINCT name) / COUNT(name) FROM driver_log;
+------------------------------------+
| COUNT(DISTINCT name) / COUNT(name) |
+------------------------------------+
| 0.3000 |
+------------------------------------+
What’s the practical use for this ratio? A result close to zero
 indicates a high degree of repetition, which means the values will
 group into a small number of categories naturally. A result of 1 or
 close to it indicates many unique values, with the consequence that
 GROUP BY won’t be very efficient for grouping the
 values into categories. (That is, there will be a lot of categories,
 relative to the number of values.) This tells you that, to generate a
 summary, you’ll probably find it necessary to impose an artificial
 categorization on the values, using the techniques described in this
 recipe.

10.14 Finding Smallest or Largest Summary Values
Problem
You want to compute per-group summary values but display only the
 smallest or largest of them.

Solution
Add a LIMIT clause to the statement. Or use a user-defined variable or
 subquery to pick the appropriate summary.

Discussion
MIN() and MAX() find the values at the endpoints of a
 set of values, but to find the endpoints of a set of summary values,
 those functions won’t work. Their argument cannot be another aggregate
 function. For example, you can easily find per-driver mileage
 totals:
mysql> SELECT name, SUM(miles)
 -> FROM driver_log
 -> GROUP BY name;
+-------+------------+
| name | SUM(miles) |
+-------+------------+
Ben	362
Henry	911
Suzi	893
+-------+------------+
To select only the row for the driver with the most miles, the
 following doesn’t work:
mysql> SELECT name, SUM(miles)
 -> FROM driver_log
 -> GROUP BY name
 -> HAVING SUM(miles) = MAX(SUM(miles));
ERROR 1111 (HY000): Invalid use of group function
Instead, order the rows with the largest SUM() values first, and use LIMIT to select the first row:
mysql> SELECT name, SUM(miles)
 -> FROM driver_log
 -> GROUP BY name
 -> ORDER BY SUM(miles) DESC LIMIT 1;
+-------+------------+
| name | SUM(miles) |
+-------+------------+
| Henry | 911 |
+-------+------------+
However, if more than one row has the given summary value, a
 LIMIT 1 query won’t tell you that. For example, you
 might attempt to ascertain the most common initial letter for state
 names like this:
mysql> SELECT LEFT(name,1) AS letter, COUNT(*) FROM states
 -> GROUP BY letter ORDER BY COUNT(*) DESC LIMIT 1;
+--------+----------+
| letter | COUNT(*) |
+--------+----------+
| M | 8 |
+--------+----------+
But eight state names also begin with N. To find all most-frequent values when there
 may be more than one, use a user-defined variable or subquery to
 determine the maximum count, then select those values with a count equal
 to the maximum:
mysql> SET @max = (SELECT COUNT(*) FROM states
 -> GROUP BY LEFT(name,1) ORDER BY COUNT(*) DESC LIMIT 1);
mysql> SELECT LEFT(name,1) AS letter, COUNT(*) FROM states
 -> GROUP BY letter HAVING COUNT(*) = @max;
+--------+----------+
| letter | COUNT(*) |
+--------+----------+
| M | 8 |
| N | 8 |
+--------+----------+
mysql> SELECT LEFT(name,1) AS letter, COUNT(*) FROM states
 -> GROUP BY letter HAVING COUNT(*) =
 -> (SELECT COUNT(*) FROM states
 -> GROUP BY LEFT(name,1) ORDER BY COUNT(*) DESC LIMIT 1);
+--------+----------+
| letter | COUNT(*) |
+--------+----------+
| M | 8 |
| N | 8 |
+--------+----------+

10.15 Producing Date-Based Summaries
Problem
You want to produce a summary based on date or time values.

Solution
Use GROUP BY to place temporal values into categories of the appropriate
 duration. Often this involves using expressions that extract the
 significant parts of dates or times.

Discussion
To sort rows temporally, use ORDER BY
 with a temporal column. To summarize rows instead, based on
 groupings into time intervals, determine how to categorize rows into the
 proper intervals, and use GROUP
 BY to group them accordingly.
For example, to determine how many drivers were on the road and how many miles were driven each day, group
 the rows in the driver_log table by
 date:1
mysql> SELECT trav_date,
 -> COUNT(*) AS 'number of drivers', SUM(miles) As 'miles logged'
 -> FROM driver_log GROUP BY trav_date;
+------------+-------------------+--------------+
| trav_date | number of drivers | miles logged |
+------------+-------------------+--------------+
2014-07-26	1	115
2014-07-27	1	96
2014-07-29	3	822
2014-07-30	2	355
2014-08-01	1	197
2014-08-02	2	581
+------------+-------------------+--------------+
However, this per-day summary grows lengthier as you add more rows
 to the table. Over time, the number of distinct dates will become so
 large that the summary fails to be useful, and you’d probably decide to
 increase the category size. For example, this query categorizes by
 month:
mysql> SELECT YEAR(trav_date) AS year, MONTH(trav_date) AS month,
 -> COUNT(*) AS 'number of drivers', SUM(miles) As 'miles logged'
 -> FROM driver_log GROUP BY year, month;
+------+-------+-------------------+--------------+
| year | month | number of drivers | miles logged |
+------+-------+-------------------+--------------+
| 2014 | 7 | 7 | 1388 |
| 2014 | 8 | 3 | 778 |
+------+-------+-------------------+--------------+
Now the number of summary rows grows much more slowly over time.
 Eventually, you could summarize based only on year to collapse rows even
 more.
Uses for temporal categorizations are numerous:
	To produce daily summaries from DATETIME or TIMESTAMP columns that have the potential to contain many unique values,
 strip the time-of-day part to collapse all values occurring within a
 given day to the same value. Any of the following GROUP BY clauses will do this, although the last
 one is likely to be slowest:
GROUP BY DATE(col_name)
GROUP BY FROM_DAYS(TO_DAYS(col_name))
GROUP BY YEAR(col_name), MONTH(col_name), DAYOFMONTH(col_name)
GROUP BY DATE_FORMAT(col_name,'%Y-%m-%e')

	To produce monthly or quarterly sales reports, group
 by MONTH(col_name) or QUARTER(col_name) to place dates into the correct part of
 the year.

10.16 Working with Per-Group and Overall Summary Values
 Simultaneously
Problem
You want to produce a report that requires different levels of summary
 detail. Or you want to compare per-group summary values to an overall
 summary value.

Solution
Use two statements that retrieve different levels of summary
 information. Or use a subquery to retrieve one summary value and refer
 to it in the outer query that refers to other summary values. For
 applications that only display multiple summary levels (rather than
 perform additional calculations on them), WITH ROLLUP might be sufficient.

Discussion
Some reports involve multiple levels of summary information. The
 following report displays the total number of miles per driver from the
 driver_log table, along with each
 driver’s miles as a percentage of the total miles in the entire
 table:
+-------+--------------+------------------------+
| name | miles/driver | percent of total miles |
+-------+--------------+------------------------+
Ben	362	16.7128
Henry	911	42.0591
Suzi	893	41.2281
+-------+--------------+------------------------+
The percentages represent the ratio of each driver’s miles to the
 total miles for all drivers. To perform the percentage calculation, you
 need a per-group summary to get each driver’s miles and also an overall
 summary to get the total miles. First, run a query to get the overall
 mileage total:
mysql> SELECT @total := SUM(miles) AS 'total miles' FROM driver_log;
+-------------+
| total miles |
+-------------+
| 2166 |
+-------------+
Then calculate the per-group values and use the overall total to
 compute the percentages:
mysql> SELECT name,
 -> SUM(miles) AS 'miles/driver',
 -> (SUM(miles)*100)/@total AS 'percent of total miles'
 -> FROM driver_log GROUP BY name;
+-------+--------------+------------------------+
| name | miles/driver | percent of total miles |
+-------+--------------+------------------------+
Ben	362	16.7128
Henry	911	42.0591
Suzi	893	41.2281
+-------+--------------+------------------------+
To combine the two statements into one, use a subquery that
 computes the total miles:
SELECT name,
SUM(miles) AS 'miles/driver',
(SUM(miles)*100)/(SELECT SUM(miles) FROM driver_log)
 AS 'percent of total miles'
FROM driver_log GROUP BY name;
A similar problem uses multiple summary levels to compare
 per-group summary values with the corresponding overall summary value.
 Suppose that you want to display drivers who had a lower average miles
 per day than the group average. Calculate the overall average in a
 subquery, and then compare each driver’s average to the overall average
 using a HAVING clause:
mysql> SELECT name, AVG(miles) AS driver_avg FROM driver_log
 -> GROUP BY name
 -> HAVING driver_avg < (SELECT AVG(miles) FROM driver_log);
+-------+------------+
| name | driver_avg |
+-------+------------+
| Ben | 120.6667 |
| Henry | 182.2000 |
+-------+------------+
To display different summary-level values (and not perform
 calculations involving one summary level against another), add WITH ROLLUP
 to the GROUP BY clause:
mysql> SELECT name, SUM(miles) AS 'miles/driver'
 -> FROM driver_log GROUP BY name WITH ROLLUP;
+-------+--------------+
| name | miles/driver |
+-------+--------------+
Ben	362
Henry	911
Suzi	893
NULL	2166
+-------+--------------+
mysql> SELECT name, AVG(miles) AS driver_avg FROM driver_log
 -> GROUP BY name WITH ROLLUP;
+-------+------------+
| name | driver_avg |
+-------+------------+
Ben	120.6667
Henry	182.2000
Suzi	446.5000
NULL	216.6000
+-------+------------+
In each case, the output row with NULL in the
 name column represents the overall
 sum or average calculated over all drivers.
WITH ROLLUP produces multiple summary levels if you
 group by more than one column. The following statement shows the number
 of mail messages sent between each pair of users:
mysql> SELECT srcuser, dstuser, COUNT(*)
 -> FROM mail GROUP BY srcuser, dstuser;
+---------+---------+----------+
| srcuser | dstuser | COUNT(*) |
+---------+---------+----------+
barb	barb	1
barb	tricia	2
gene	barb	2
gene	gene	3
gene	tricia	1
phil	barb	1
phil	phil	2
phil	tricia	2
tricia	gene	1
tricia	phil	1
+---------+---------+----------+
Adding WITH ROLLUP causes the output to include an
 intermediate count for each srcuser
 value (these are the lines with NULL
 in the dstuser column), plus an
 overall count at the end:
mysql> SELECT srcuser, dstuser, COUNT(*)
 -> FROM mail GROUP BY srcuser, dstuser WITH ROLLUP;
+---------+---------+----------+
| srcuser | dstuser | COUNT(*) |
+---------+---------+----------+
barb	barb	1
barb	tricia	2
barb	NULL	3
gene	barb	2
gene	gene	3
gene	tricia	1
gene	NULL	6
phil	barb	1
phil	phil	2
phil	tricia	2
phil	NULL	5
tricia	gene	1
tricia	phil	1
tricia	NULL	2
NULL	NULL	16
+---------+---------+----------+

10.17 Generating a Report that Includes a Summary and a List
Problem
You want to create a report that displays a summary, together with the list of
 rows associated with each summary value.

Solution
Use two statements that retrieve different levels of summary
 information. Or use a programming language to do some of the work so
 that you can use a single statement.

Discussion
Suppose that you want to produce a report that looks like
 this:
Name: Ben; days on road: 3; miles driven: 362
 date: 2014-07-29, trip length: 131
 date: 2014-07-30, trip length: 152
 date: 2014-08-02, trip length: 79
Name: Henry; days on road: 5; miles driven: 911
 date: 2014-07-26, trip length: 115
 date: 2014-07-27, trip length: 96
 date: 2014-07-29, trip length: 300
 date: 2014-07-30, trip length: 203
 date: 2014-08-01, trip length: 197
Name: Suzi; days on road: 2; miles driven: 893
 date: 2014-07-29, trip length: 391
 date: 2014-08-02, trip length: 502
For each driver in the driver_log table, the report shows the
 following information:
	A summary line showing the driver name, the number of days on
 the road, and the number of miles driven

	A list that details dates and mileages for the individual
 trips from which the summary values are calculated

This scenario is a variation on the different levels of
 summary information problem discussed in Recipe 10.16. It may not seem like it at first because
 one of the types of information is a list rather than a summary. But
 that’s really just a level zero summary. This kind of
 problem appears in many other forms:
	You have a database that lists contributions to candidates in
 your political party. The party chair requests a printout that
 shows, for each candidate, the number of contributions and total
 amount contributed, as well as a list of contributor names and
 addresses.

	You want to create a handout for a company presentation that
 summarizes total sales per sales region with a list under each
 region showing the sales for each state in the region.

Such problems have multiple solutions:
	Run separate statements to get the information for each level
 of detail that you require. (A single query won’t produce per-group
 summary values and a list of each group’s individual rows.)

	Fetch the rows that make up the lists and perform the summary
 calculations yourself to eliminate the summary statement.

Let’s use each approach to produce the driver report shown at the
 beginning of this section. The following implementation (in Python)
 generates the report using one query to summarize the days and miles per
 driver and another to fetch the individual trip rows for each
 driver:
select total miles per driver and construct a dictionary that
maps each driver name to days on the road and miles driven
name_map = {}
cursor = conn.cursor()
cursor.execute('''
 SELECT name, COUNT(name), SUM(miles)
 FROM driver_log GROUP BY name
 ''')
for (name, days, miles) in cursor:
 name_map[name] = (days, miles)

select trips for each driver and print the report, displaying the
summary entry for each driver prior to the list of trips
cursor.execute('''
 SELECT name, trav_date, miles
 FROM driver_log ORDER BY name, trav_date
 ''')
cur_name = ""
for (name, trav_date, miles) in cursor:
 if cur_name != name: # new driver; print driver's summary info
 print("Name: %s; days on road: %d; miles driven: %d" %
 (name, name_map[name][0], name_map[name][1]))
 cur_name = name
 print(" date: %s, trip length: %d" % (trav_date, miles))
cursor.close()
An alternative implementation performs summary calculations within
 the program, which reduces the number of queries required. If you
 iterate through the trip list and calculate the per-driver day counts
 and mileage totals yourself, a single query suffices:
get list of trips for the drivers
cursor = conn.cursor()
cursor.execute('''
 SELECT name, trav_date, miles FROM driver_log
 ORDER BY name, trav_date
 ''')
fetch rows into data structure because we
must iterate through them multiple times
rows = cursor.fetchall()
cursor.close()

iterate through rows once to construct a dictionary that
maps each driver name to days on the road and miles driven
(the dictionary entries are lists rather than tuples because
we need mutable values that can be modified in the loop)
name_map = {}
for (name, trav_date, miles) in rows:
 if name not in name_map: # initialize entry if nonexistent
 name_map[name] = [0, 0]
 name_map[name][0] += 1 # count days
 name_map[name][1] += miles # sum miles

iterate through rows again to print the report, displaying the
summary entry for each driver prior to the list of trips
cur_name = ""
for (name, trav_date, miles) in rows:
 if cur_name != name: # new driver; print driver's summary info
 print("Name: %s; days on road: %d; miles driven: %d" %
 (name, name_map[name][0], name_map[name][1]))
 cur_name = name
 print(" date: %s, trip length: %d" % (trav_date, miles))
Should you require more levels of summary information, this type
 of problem gets more difficult. For example, you might want to precede
 the report that shows driver summaries and trip logs with a line that
 shows the total miles for all drivers:
Total miles driven by all drivers combined: 2166

Name: Ben; days on road: 3; miles driven: 362
 date: 2014-07-29, trip length: 131
 date: 2014-07-30, trip length: 152
 date: 2014-08-02, trip length: 79
Name: Henry; days on road: 5; miles driven: 911
 date: 2014-07-26, trip length: 115
 date: 2014-07-27, trip length: 96
 date: 2014-07-29, trip length: 300
 date: 2014-07-30, trip length: 203
 date: 2014-08-01, trip length: 197
Name: Suzi; days on road: 2; miles driven: 893
 date: 2014-07-29, trip length: 391
 date: 2014-08-02, trip length: 502
In this case, you need either another query to produce the total
 mileage or another calculation in your program that computes the
 overall total.

10.18 Generating Summaries from Temporary Result Sets
Problem

 You want to generate summaries but cannot do so without using temporary result sets.

Solution

 Use CTEs with the WITH clause.

Discussion

 We already discussed situations when a temporary table, holding results from a query, helps to create a summary. In these cases, we referred to the temporary table from the query, generating a resulting summary. See Recipes 10.6 and 10.8 for examples.

 Temporary tables are not always the best solution for such a task. They have a number of disadvantages, particularly the following:

	You need to maintain the table: delete all of the content when you’re going to reuse it and drop it once you’re finished working with it.

	The CREATE [TEMPORARY] TABLE...SELECT statement implicitly commits transactions, therefore it cannot be used when there is a possibility that the content of the original table will change after the data is inserted into the temporary table. You have to create the table first, then insert data into it and generate the summary in the multiple-statement transaction. For example, finding the longest trip per driver that we discussed in Recipe 10.8 may end up with the following code:

CREATE TEMPORARY TABLE t LIKE driver_log;
START TRANSACTION;
INSERT INTO t SELECT name, MAX(miles) AS miles FROM driver_log GROUP BY name;
SELECT d.name, d.trav_date, d.miles AS 'longest trip'
FROM driver_log AS d INNER JOIN t USING (name, miles) ORDER BY name;
COMMIT;
DROP TABLE t;

	The optimizer has fewer options to improve performance of the query.

 CTEs allow you to create a named temporary result set inside the query. Following is the CTE syntax:

WITH result_name AS (SELECT ...)
SELECT ...

 Then you can refer to the named result in the following query as if it were a regular table. You can define multiple CTEs and refer to the same named result multiple times when needed.

 Thus, the example in Recipe 10.17 shows the number of trips per driver and the total mileage, together with trip details that can be resolved with a CTE:

mysql> WITH [image: 1]
 -> trips AS (SELECT name, trav_date, miles FROM driver_log), [image: 2]
 -> summaries AS (
 -> SELECT name, COUNT(name) AS days_on_road, SUM(miles) AS miles_driven [image: 3]
 -> FROM driver_log GROUP BY name)
 -> SELECT trips.name, days_on_road, miles_driven, trav_date, miles [image: 4]
 -> FROM summaries LEFT JOIN trips USING(name);
+-------+--------------+--------------+------------+-------+
| name | days_on_road | miles_driven | trav_date | miles |
+-------+--------------+--------------+------------+-------+
| Ben | 3 | 362 | 2014-08-02 | 79 | [image: 5]
Ben	3	362	2014-07-29	131
Ben	3	362	2014-07-30	152
Suzi	2	893	2014-08-02	502
Suzi	2	893	2014-07-29	391
Henry	5	911	2014-07-30	203
Henry	5	911	2014-08-01	197
Henry	5	911	2014-07-26	115
Henry	5	911	2014-07-27	96
Henry	5	911	2014-07-29	300
+-------+--------------+--------------+------------+-------+
10 rows in set (0.00 sec)

	[image: 1]
	The keyword WITH starts the CTE.

	[image: 2]
	Assign the name trips to the SELECT statement, retrieving travel data.

	[image: 3]
	The second statement named SELECT, generates a summary of the number of trips and total mileage per driver.

	[image: 4]
	The main query refers to two named result sets and joins them using LEFT JOIN as if they were regular tables.

	[image: 5]
	Each resulting row contains the number of trips, the total amount of miles driven, and details of the individual trip.

1 The result includes an entry only for dates actually
 represented in the table. To generate a summary with an entry for
 the range of dates in the table, use a join to fill in the
 missing values. See Recipe 16.8.

Chapter 11. Using Stored Routines, Triggers, and Scheduled Events
11.0 Introduction
In this book, the term stored
 program refers collectively to stored routines, triggers, and
 events, and stored routine refers
 collectively to stored functions and procedures.
This chapter discusses stored programs, which come in
 several varieties:
	Stored functions and procedures
	A stored function or procedure object encapsulates the code
 for performing an operation, enabling you to invoke the object
 easily by name rather than repeat all its code each time it’s
 needed. A stored function performs a calculation and returns a value that can be
 used in expressions just like a built-in function such as RAND(), NOW(), or LEFT(). A stored procedure performs operations for which no
 return value is needed. Procedures are invoked with the CALL statement, not used in expressions. A
 procedure might update rows in a table or produce a result set that
 is sent to the client program.

	Triggers
	A trigger is an object that activates when a table is modified by an
 INSERT, UPDATE, or DELETE statement. For example, you can check values before they are
 inserted into a table or specify that any row deleted from a table
 should be logged to another table that serves as a journal of data
 changes. Triggers automate these actions.

	Scheduled events
	An event is an object that executes SQL statements at a scheduled
 time or times. Think of a scheduled event as something like a Unix
 cron job that runs within MySQL.
 For example, events can help you perform administrative tasks such
 as deleting old table rows periodically or creating nightly
 summaries.

Stored programs are database objects that are user-defined but stored on the
 server side for later execution. This differs from sending a SQL
 statement from the client to the server for immediate execution. Each
 object also has the property in which it is defined in terms of other SQL statements
 to be executed when the object is invoked. The object body is a single SQL
 statement, but that statement can use compound-statement syntax (a
 BEGIN…END block) that contains multiple statements.
 Thus, the body can range from very simple to extremely complex. The
 following stored procedure is a trivial routine that does nothing but
 display the current MySQL version, using a body that consists of a single
 SELECT statement:
CREATE PROCEDURE show_version()
SELECT VERSION() AS 'MySQL Version';
More complex operations use a BEGIN…END compound statement:
CREATE PROCEDURE show_part_of_day()
BEGIN
 DECLARE cur_time, day_part TEXT;
 SET cur_time = CURTIME();
 IF cur_time < '12:00:00' THEN
 SET day_part = 'morning';
 ELSEIF cur_time = '12:00:00' THEN
 SET day_part = 'noon';
 ELSE
 SET day_part = 'afternoon or night';
 END IF;
 SELECT cur_time, day_part;
END;
Here, the BEGIN…END block contains multiple statements but is
 itself considered to constitute a single statement. Compound statements
 enable you to declare local variables and to use conditional logic and
 looping constructs. These capabilities provide considerably more
 flexibility for algorithmic expression than when you write inline
 expressions in noncompound statements such as SELECT or UPDATE.
Each statement within a compound statement must be terminated by a
 ; character. That requirement causes a
 problem if you use the mysql client to
 define an object that uses compound statements because
 mysql itself interprets ; to determine statement boundaries. The
 solution is to redefine mysql’s
 statement delimiter while you define a compound-statement object. Recipe 11.1 covers how to do
 this; be sure to read that recipe before proceeding to those that follow
 it.
This chapter illustrates stored routines, triggers, and events by
 example but due to space limitations does not otherwise go into much
 detail about their extensive syntax. For complete syntax descriptions, see
 the MySQL Reference Manual.
Scripts for the examples shown in this chapter are located in the
 routines, triggers, and events directories of the recipes distribution. Scripts to create example
 tables are located in the tables
 directory.
In addition to the stored programs shown in this chapter, others can
 be found elsewhere in this book. See, for example, Recipes 7.6, 8.3, 16.8, and 24.2.
Stored programs used here are created and invoked under the
 assumption that cookbook is the default
 database. To invoke a program from another database, qualify its name with
 the database name:
CALL cookbook.show_version();
Alternatively, create a database specifically for your stored
 programs, create them in that database, and always invoke them qualified
 with that name. Remember to grant users who will use them the EXECUTE privilege for that database.
Privileges for Stored Programs
When you create a stored routine (function or procedure), the following
 privilege requirements must be satisfied or you will have
 problems:
	To create or execute the routine, you must have the CREATE
 ROUTINE or EXECUTE privilege, respectively.

	If binary logging is enabled for your MySQL server, as is the default since version 8.0,
 there are additional requirements for creating stored functions (but
 not stored procedures). These requirements are necessary to ensure
 that if you use the binary log for replication or for restoring
 backups, function invocations cause the same effect when re-executed
 as they do when originally executed:
	You must have the SUPER or, since version 8.0, SET_USER_ID
 privilege, and you must declare either that the function is
 deterministic or does not modify data by using one of the
 DETERMINISTIC, NO SQL, or READS SQL DATA characteristics. (It’s possible
 to create functions that are not deterministic or that modify
 data, but they might not be safe for replication or for use in
 backups.)

	Alternatively, if you enable the log_bin_trust_function_creators system
 variable, the server waives both of the preceding requirements.
 You can do this at server startup, or at runtime if you have the
 SUPER privilege.

To create a trigger, you must have the TRIGGER privilege
 for the table associated with the trigger.
To create a scheduled event, you must have the EVENT privilege for
 the database in which the event is created.
For information about granting privileges, see Recipe 24.2.

11.1 Creating Compound-Statement Objects
Problem
You want to define a stored program, but its bodycontains instances of the ; statement terminator. The mysql client program uses the same terminator
 by default, so mysql misinterprets
 the definition and produces an error.

Solution
Redefine the mysql statement
 terminator with the delimiter
 command.

Discussion
Each stored program is an object with a body that must be a single
 SQL statement. However, these objects often perform complex operations
 that require several statements. To handle this, write the statements
 within a BEGIN…END block that forms a compound statement. That is, the block is
 itself a single statement but can contain multiple statements, each
 terminated by a ; character. The
 BEGIN…END block can contain statements such
 as SELECT or INSERT, but compound statements also permit
 conditional statements such as IF or CASE, looping constructs such as WHILE or REPEAT, or other BEGIN…END blocks.
Compound-statement syntax provides flexibility, but if you define
 compound-statement objects within the mysql client, you quickly encounter a problem:
 each statement within a compound statement must be terminated by a
 ; character, but mysql itself interprets ; to figure out where statements end so that
 it can send them one at a time to the server to be executed.
 Consequently, mysql stops reading the
 compound statement when it sees the first ; character, which is too early. To handle
 this, tell mysql to recognize a
 different statement delimiter so that it ignores ; characters within the object body. Terminate
 the object itself with the new delimiter, which mysql recognizes and then sends the entire
 object definition to the server. You can restore the mysql delimiter to its original value after
 defining the compound-statement object.
The following example uses a stored function to illustrate how to change the delimiter, but
 the principles apply to defining any type of stored program.
Suppose that you want to create a stored function that calculates
 and returns the average size in bytes of mail messages listed in the
 mail table. The function can be
 defined like this, where the body consists of a single SQL
 statement:
CREATE FUNCTION avg_mail_size()
RETURNS FLOAT READS SQL DATA
RETURN (SELECT AVG(size) FROM mail);
The RETURNS FLOAT clause indicates the type of the function’s return value, and
 READS SQL DATA
 indicates that the function reads but does not modify data. The function
 body follows those clauses: a single RETURN statement that executes a subquery and
 returns the resulting value to the caller. (Every stored function must
 have at least one RETURN
 statement.)
In mysql, you can enter that
 statement as shown and there is no problem. The definition requires just
 the single terminator at the end and none internally, so no ambiguity
 arises. But suppose instead that you want the function to take an
 argument naming a user that it interprets as follows:
	If the argument is NULL,
 the function returns the average size for all messages (as
 before).

	If the argument is non-NULL, the function returns the average
 size for messages sent by that user.

To accomplish this, the function has a more complex body that uses
 a BEGIN…END block:
CREATE FUNCTION avg_mail_size(user VARCHAR(8))
RETURNS FLOAT READS SQL DATA
BEGIN
 DECLARE avg FLOAT;
 IF user IS NULL
 THEN # average message size over all users
 SET avg = (SELECT AVG(size) FROM mail);
 ELSE # average message size for given user
 SET avg = (SELECT AVG(size) FROM mail WHERE srcuser = user);
 END IF;
 RETURN avg;
END;
If you try to define the function within mysql by entering that definition as just
 shown, mysql improperly interprets
 the first semicolon in the function body as ending the definition.
 Instead, use the delimiter command to
 change the mysql delimiter, then
 restore the delimiter to its default value:
mysql> delimiter $$
mysql> CREATE FUNCTION avg_mail_size(user VARCHAR(8))
 -> RETURNS FLOAT READS SQL DATA
 -> BEGIN
 -> DECLARE avg FLOAT;
 -> IF user IS NULL
 -> THEN # average message size over all users
 -> SET avg = (SELECT AVG(size) FROM mail);
 -> ELSE # average message size for given user
 -> SET avg = (SELECT AVG(size) FROM mail WHERE srcuser = user);
 -> END IF;
 -> RETURN avg;
 -> END;
 -> $$
Query OK, 0 rows affected (0.02 sec)
mysql> delimiter ;
After defining the stored function, invoke it the same way as a
 built-in function:
mysql> SELECT avg_mail_size(NULL), avg_mail_size('barb');
+---------------------+-----------------------+
| avg_mail_size(NULL) | avg_mail_size('barb') |
+---------------------+-----------------------+
| 237386.5625 | 52232 |
+---------------------+-----------------------+

11.2 Using Stored Functions to Simplify Calculations
Problem
A particular calculation to produce a value must be performed
 frequently by different applications, but you don’t want to write the
 expression for it each time it’s needed. Or a calculation is difficult
 to perform inline within an expression because it requires conditional
 or looping logic. Or, if a calculation logic changes, you do not want to perform changes in each application that uses it.

Solution
Use a stored function to have these details defined in a single place and make the
 calculation easy to perform.

Discussion
Stored functions enable you to simplify your applications. Write
 the code that produces a calculation result once in a function
 definition, then simply invoke the function whenever you need to perform
 the calculation. Stored functions also enable you to use more complex
 algorithmic constructs than are available when you write a calculation
 inline within an expression. This section illustrates how stored
 functions can be useful in these ways. (Granted, the example is not
 that complex, but the principles used here apply to
 writing much more elaborate functions.)
Different states in the US charge different rates for sales tax.
 If you sell goods to people from different states, you must charge tax
 using the rate appropriate for the customer’s state of residence. To handle
 tax computations, use a table that lists the sales tax rate for each
 state, and a stored function that looks up the tax rate for each state.
To set up the sales_tax_rate
 table, use the sales_tax_rate.sql
 script in the tables directory of
 the recipes distribution. The table
 has two columns: state (a two-letter
 abbreviation) and tax_rate (a
 DECIMAL value rather than a FLOAT, to preserve accuracy).

Define the rate-lookup function, sales_tax_rate(), as follows:
CREATE FUNCTION sales_tax_rate(state_code CHAR(2))
RETURNS DECIMAL(3,2) READS SQL DATA
BEGIN
 DECLARE rate DECIMAL(3,2);
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET rate = 0;
 SELECT tax_rate INTO rate FROM sales_tax_rate WHERE state = state_code;
 RETURN rate;
END;
Suppose that the tax rates for Vermont and New York are 1% and 9%, respectively. Try the function to check whether the tax rate is
 returned correctly:
mysql> SELECT sales_tax_rate('VT'), sales_tax_rate('NY');
+----------------------+----------------------+
| sales_tax_rate('VT') | sales_tax_rate('NY') |
+----------------------+----------------------+
| 0.01 | 0.09 |
+----------------------+----------------------+
If you take sales from a location not listed in the table, the
 function cannot determine the rate for it. In this case, the function
 assumes a tax rate of 0%:
mysql> SELECT sales_tax_rate('ZZ');
+----------------------+
| sales_tax_rate('ZZ') |
+----------------------+
| 0.00 |
+----------------------+
The function handles states not listed using a CONTINUE
 handler for NOT FOUND, which executes if a “No Data” condition
 occurs: if there is no row for the given state_param value, the SELECT statement fails to find a sales tax
 rate, and the CONTINUE handler sets the
 rate to 0 and continues execution with the next statement after the
 SELECT. (This handler is an example
 of stored routine logic not available in inline expressions. “Handling Errors Within Stored Programs” discusses handlers
 further.)
To compute sales tax for a purchase, multiply the purchase price
 by the tax rate. For example, for Vermont and New York, tax on a $150
 purchase is as follows:
mysql> SELECT 150*sales_tax_rate('VT'), 150*sales_tax_rate('NY');
+--------------------------+--------------------------+
| 150*sales_tax_rate('VT') | 150*sales_tax_rate('NY') |
+--------------------------+--------------------------+
| 1.50 | 13.50 |
+--------------------------+--------------------------+
Or write another function that computes the tax for you:
CREATE FUNCTION sales_tax(state_code CHAR(2), sales_amount DECIMAL(10,2))
RETURNS DECIMAL(10,2) READS SQL DATA
RETURN sales_amount * sales_tax_rate(state_code);
And use it like this:
mysql> SELECT sales_tax('VT',150), sales_tax('NY',150);
+---------------------+---------------------+
| sales_tax('VT',150) | sales_tax('NY',150) |
+---------------------+---------------------+
| 1.50 | 13.50 |
+---------------------+---------------------+

11.3 Using Stored Procedures to Produce Multiple
 Values
Problem
You want to produce multiple values for an operation, but a stored function can only return a single value.

Solution
Use a stored procedure that has OUT or INOUT parameters, and pass user-defined variables for those parameters when
 you invoke the procedure. A procedure does not return a
 value the way a function does, but it can assign values to those
 parameters so that the user-defined variables have the desired values
 when the procedure returns.

Discussion
Unlike stored function parameters, which are input values only, a
 stored procedure parameter can be any of three types:
	An IN parameter is for
 input only. This is the default if you specify no type.

	An INOUT parameter is used
 to pass a value in and can also pass a value out.

	An OUT parameter is used to
 pass a value out.

Thus, to produce multiple values from an operation, you can use
 INOUT or OUT parameters. The following example
 illustrates this, using an IN
 parameter for input and passing back three values via OUT parameters.
Recipe 11.1 shows
 an avg_mail_size() function that
 returns the average mail message size for a given sender. The function
 returns a single value. To produce additional information, such as the
 number of messages and total message size, a function will not work. You
 could write three separate functions, but that is cumbersome. Instead,
 use a single procedure that retrieves multiple values about a given mail
 sender. The following procedure, mail_sender_stats(), runs a query on the
 mail table to retrieve mail-sending
 statistics about a given username, which is the input value. The
 procedure determines how many messages that user sent, and the total and
 average sizes of the messages in bytes, which it returns through three
 OUT parameters:
CREATE PROCEDURE mail_sender_stats(IN user VARCHAR(8),
 OUT messages INT,
 OUT total_size INT,
 OUT avg_size INT)
BEGIN
 # Use IFNULL() to return 0 for SUM() and AVG() in case there are
 # no rows for the user (those functions return NULL in that case).
 SELECT COUNT(*), IFNULL(SUM(size),0), IFNULL(AVG(size),0)
 INTO messages, total_size, avg_size
 FROM mail WHERE srcuser = user;
END;
To use the procedure, pass a string containing the username and
 three user-defined variables to receive the OUT values. After the procedure returns,
 access the variable values:
mysql> CALL mail_sender_stats('barb',@messages,@total_size,@avg_size);
mysql> SELECT @messages, @total_size, @avg_size;
+-----------+-------------+-----------+
| @messages | @total_size | @avg_size |
+-----------+-------------+-----------+
| 3 | 156696 | 52232 |
+-----------+-------------+-----------+
This routine passes back calculation results. It’s also common to
 use OUT parameters for diagnostic
 purposes, such as status or error indicators.
If you call mail_sender_stats()
 from within a stored program, you can pass variables to it using routine
 parameters or program local variables, not just user-defined
 variables.

11.4 Using Triggers to Log Changes to a Table
Problem
You have a table that maintains current values of items that you track
 (such as auctions being bid on), but you’d also like to maintain a
 journal (history) of changes to the table.

Solution
Use triggers to catch table changes and write them
 to a separate log table.

Discussion
Suppose that you conduct online auctions and that you maintain
 information about each currently active auction in a table that looks
 like this:
CREATE TABLE auction
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 item VARCHAR(30) NOT NULL,
 bid DECIMAL(10,2) NOT NULL,
 PRIMARY KEY (id)
);
The auction table contains
 information about the currently active auctions (items being bid on and
 the current bid for each auction). When an auction begins, insert a row
 into the table. For each bid on an item, update its bid column so that as the auction proceeds,
 the ts column updates to reflect the
 most recent bid time. When the auction ends, the bid value is the final price and the row can
 be removed from the table.
To maintain a journal that shows all changes to auctions as they
 progress from creation to removal, set up another table that serves to
 record a history of changes to the auctions. This strategy can be
 implemented with triggers.
To maintain a history of how each auction progresses, use an
 auction_log table with the following
 columns:
CREATE TABLE auction_log
(
 action ENUM('create','update','delete'),
 id INT UNSIGNED NOT NULL,
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 item VARCHAR(30) NOT NULL,
 bid DECIMAL(10,2) NOT NULL,
 INDEX (id)
);
The auction_log table differs
 from the auction table in two
 ways:
	It contains an action
 column to indicate for each row what kind of change was made.

	The id column has a
 nonunique index (rather than a primary key, which requires unique
 values). This permits multiple rows per id value because a given auction can
 generate many rows in the log table.

To ensure that changes to the auction table are logged to the auction_log table, create a set of triggers.
 The triggers write information to the auction_log table as follows:
	For inserts, log a row-creation operation showing the values
 in the new row.

	For updates, log a row-update operation showing the new values
 in the updated row.

	For deletes, log a row-removal operation showing the values in
 the deleted row.

For this application, AFTER
 triggers are used because they activate only after successful changes to
 the auction table. (BEFORE triggers might activate even if the
 row-change operation fails for some reason.) The trigger definitions
 look like this:
CREATE TRIGGER ai_auction AFTER INSERT ON auction
FOR EACH ROW
INSERT INTO auction_log (action,id,ts,item,bid)
VALUES('create',NEW.id,NOW(),NEW.item,NEW.bid);

CREATE TRIGGER au_auction AFTER UPDATE ON auction
FOR EACH ROW
INSERT INTO auction_log (action,id,ts,item,bid)
VALUES('update',NEW.id,NOW(),NEW.item,NEW.bid);

CREATE TRIGGER ad_auction AFTER DELETE ON auction
FOR EACH ROW
INSERT INTO auction_log (action,id,ts,item,bid)
VALUES('delete',OLD.id,OLD.ts,OLD.item,OLD.bid);
The INSERT and UPDATE triggers use NEW.col_name to
 access the new values being stored in rows. The DELETE trigger uses
 OLD.col_name to
 access the existing values from the deleted row. The INSERT and UPDATE triggers use NOW() to get the row-modification times; the
 ts column is initialized
 automatically to the current date and time, but NEW.ts will not contain that value.
Suppose that an auction is created with an initial bid of $5:
mysql> INSERT INTO auction (item,bid) VALUES('chintz pillows',5.00);
mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 792 |
+------------------+
The SELECT statement fetches the auction ID value to use for subsequent actions
 on the auction. Then the item receives three more bids before the
 auction ends and is removed:
mysql> UPDATE auction SET bid = 7.50 WHERE id = 792;
... time passes ...
mysql> UPDATE auction SET bid = 9.00 WHERE id = 792;
... time passes ...
mysql> UPDATE auction SET bid = 10.00 WHERE id = 792;
... time passes ...
mysql> DELETE FROM auction WHERE id = 792;
At this point, no trace of the auction remains in the auction table, but the auction_log table contains a complete history
 of what occurred:
mysql> SELECT * FROM auction_log WHERE id = 792 ORDER BY ts;
+--------+-----+---------------------+----------------+-------+
| action | id | ts | item | bid |
+--------+-----+---------------------+----------------+-------+
create	792	2014-01-09 14:57:41	chintz pillows	5.00
update	792	2014-01-09 14:57:50	chintz pillows	7.50
update	792	2014-01-09 14:57:57	chintz pillows	9.00
update	792	2014-01-09 14:58:03	chintz pillows	10.00
delete	792	2014-01-09 14:58:03	chintz pillows	10.00
+--------+-----+---------------------+----------------+-------+
With the strategy just outlined, the auction table remains relatively small, and
 you can always find information about auction histories as necessary by
 looking in the auction_log table.

11.5 Using Events to Schedule Database Actions
Problem
You want to set up a database operation that runs periodically without user
 intervention.

Solution
MySQL provides an event scheduler that enables you to set up
 database operations that run at times that you define. Create an event that executes according to a schedule.

Discussion
This section
 describes what you must do to use events, beginning with a simple event
 that writes a row to a table at regular intervals.

Begin with a table to hold the mark rows. It contains a TIMESTAMP column
 (which MySQL will initialize automatically) and a column to store a
 message:
CREATE TABLE mark_log
(
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 message VARCHAR(100)
);
Our logging event will write a string to a new row. To set it up,
 use a CREATE EVENT statement:
CREATE EVENT mark_insert
ON SCHEDULE EVERY 5 MINUTE
DO INSERT INTO mark_log (message) VALUES('-- MARK --');
The mark_insert event causes
 the message '-- MARK --' to be logged
 to the mark_log table every five
 minutes. Use a different interval for more or less frequent
 logging.
This event is simple, and its body contains only a single SQL
 statement. For an event body that executes multiple statements, use
 BEGIN…END compound-statement syntax. In that case, if you use mysql to create the event, change the
 statement delimiter while you define the event, as discussed in Recipe 11.1.
At this point, you should wait a few minutes and then select the
 contents of the mark_log table to
 verify that new rows are being written on schedule. However, if this is
 the first event that you’ve set up, you might find that the table
 remains empty no matter how long you wait:
mysql> SELECT * FROM mark_log;
Empty set (0.00 sec)
If that’s the case, very likely the event scheduler isn’t running
 (which was its default state until version 8.0). Check the scheduler
 status by examining the value of the event_scheduler system variable:
mysql> SHOW VARIABLES LIKE 'event_scheduler';
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| event_scheduler | OFF |
+-----------------+-------+
To enable the scheduler interactively if it’s not running, execute
 the following statement (which requires the SYSTEM_VARIABLES_ADMIN or, before version 8.0, SUPER
 privilege):
SET GLOBAL event_scheduler = 1;
That statement enables the scheduler but only until the server
 shuts down. To start the scheduler each time the server starts, enable
 the system variable in your my.cnf option
 file:
[mysqld]
event_scheduler=1

 Or use a SET PERSIST statement to store the modified value of the variable:

SET PERSIST event_scheduler = 1;
When the event scheduler is enabled, the mark_insert event eventually creates many rows
 in the table. There are several ways that you can affect event execution
 to prevent the table from growing forever:
	Drop the event:
DROP EVENT mark_insert;
This is the simplest way to stop an event from occurring. But
 if you want it to resume later, you must re-create it.

	Disable event execution:
ALTER EVENT mark_insert DISABLE;
That leaves the event in place but causes it not to run until
 you reactivate it:
ALTER EVENT mark_insert ENABLE;

	Let the event continue to run, but set up another event that
 expires old mark_log rows. This second event need not
 run so frequently (perhaps once a day). Its body should remove rows
 older than a given threshold. The following definition creates an event that
 deletes rows that are more than two days old:
CREATE EVENT mark_expire
ON SCHEDULE EVERY 1 DAY
DO DELETE FROM mark_log WHERE ts < NOW() - INTERVAL 2 DAY;
If you adopt this strategy, you have cooperating events: one
 event that adds rows to the mark_log table and another that removes
 them. They act together to maintain a log that contains recent rows
 but does not become too large.

11.6 Writing Helper Routines for Executing Dynamic SQL
Problem
Prepared SQL statements enable you to construct and execute SQL statements on the
 fly, but you want to run them in one step instead of executing three commands: PREPARE, EXECUTE and DEALLOCATE PREPARE.

Solution
Write a helper procedure that handles the drudgery.

Discussion
Using a prepared SQL statement involves three steps: preparation,
 execution, and deallocation. For example, if the @tbl_name and @val variables hold a table name and a value
 to insert into the table, you can create the table and insert the value
 like this:
SET @stmt = CONCAT('CREATE TABLE ',@tbl_name,' (i INT)');
PREPARE stmt FROM @stmt;
EXECUTE stmt;
DEALLOCATE PREPARE stmt;
SET @stmt = CONCAT('INSERT INTO ',@tbl_name,' (i) VALUES(',@val,')');
PREPARE stmt FROM @stmt;
EXECUTE stmt;
DEALLOCATE PREPARE stmt;
To ease the burden of going through those steps for each
 dynamically created statement, use a helper routine that, given a
 statement string, prepares, executes, and deallocates it:
CREATE PROCEDURE exec_stmt(stmt_str TEXT)
BEGIN
 SET @_stmt_str = stmt_str;
 PREPARE stmt FROM @_stmt_str;
 EXECUTE stmt;
 DEALLOCATE PREPARE stmt;
END;
The exec_stmt() routine enables
 the same statements to be executed much more simply:
CALL exec_stmt(CONCAT('CREATE TABLE ',@tbl_name,' (i INT)'));
CALL exec_stmt(CONCAT('INSERT INTO ',@tbl_name,' (i) VALUES(',@val,')'));
exec_stmt() uses an
 intermediary user-defined variable, @_stmt_str, because PREPARE accepts a statement only when
 specified using either a literal string or a user-defined variable. A
 statement stored in a routine parameter does not work. (Avoid using
 @_stmt_str for your own purposes, at
 least if you expect its value to persist across exec_stmt() invocations.)
Now, how about making it safer to construct statement strings that
 incorporate values that might come from external sources, such as
 web-form input or command-line arguments? Such information cannot be
 trusted and should be treated as a potential SQL injection attack
 vector:
	The QUOTE() function is
 available for quoting data values.

	There is no corresponding function for identifiers, but it’s
 easy to write one that doubles internal backticks and adds a backtick at the
 beginning and end:
CREATE FUNCTION quote_identifier(id TEXT)
RETURNS TEXT DETERMINISTIC
RETURN CONCAT('`',REPLACE(id,'`','``'),'`');

Revising the preceding example to ensure the safety of data values
 and identifiers, we have the following:
SET @tbl_name = quote_identifier(@tbl_name);
SET @val = QUOTE(@val);
CALL exec_stmt(CONCAT('CREATE TABLE ',@tbl_name,' (i INT)'));
CALL exec_stmt(CONCAT('INSERT INTO ',@tbl_name,' (i) VALUES(',@val,')'));
A constraint on the use of exec_stmt() is that not all SQL statements are
 eligible for execution as prepared statements. See the MySQL
 Reference Manual for the limitations.
Handling Errors Within Stored Programs
Within stored programs, you can catch errors or exceptional conditions
 using condition handlers. A handler activates under specific
 circumstances, causing the code associated with it to execute. The code
 takes suitable action, such as performing cleanup processing or setting a
 variable that can be tested elsewhere in the program to determine whether
 the condition occurred. A handler might even ignore an error if it occurs
 under certain permitted conditions and you want to catch it rather than
 have it terminate your program.
Stored programs can also produce their own errors or warnings to
 signal that something has gone wrong.
Recipes 11.7, 11.8, and 11.9 illustrate these techniques. For complete
 lists of available condition names, SQLSTATE values, and error codes,
 consult the MySQL Reference Manual.

11.7 Detecting “No More Rows” Conditions Using Condition Handlers
Problem
You want to detect no more rows conditions and gracefully handle them instead of interrupting the stored program execution.

Solution
One common use of condition handlers is to detect no more
 rows conditions. To process a query result one row at a time,
 use a cursor-based fetch loop in conjunction with a condition handler
 that catches the end-of-data condition. The technique has these
 essential elements:
	A cursor associated with a SELECT statement that reads rows. Open the cursor to start reading, and
 close it to stop.

	A condition handler that activates when the cursor reaches the
 end of the result set and raises an end-of-data condition (NOT FOUND). We used a similar handler in Recipe 11.2.

	A variable that indicates loop termination. Initialize the
 variable to FALSE, then set it to
 TRUE within the condition handler
 when the end-of-data condition occurs.

	A loop that uses the cursor to fetch each row and exits when
 the loop-termination variable becomes TRUE.

Discussion
The following example implements a fetch loop that processes the _ch
 states table row by row to calculate
 the total US population:
CREATE PROCEDURE us_population()
BEGIN
 DECLARE done BOOLEAN DEFAULT FALSE; [image: 1]
 DECLARE state_pop, total_pop BIGINT DEFAULT 0;
 DECLARE cur CURSOR FOR SELECT pop FROM states; [image: 2]
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE; [image: 3]

 OPEN cur;
 fetch_loop: LOOP
 FETCH cur INTO state_pop; [image: 4]
 IF done THEN [image: 5]
 LEAVE fetch_loop;
 END IF;
 SET total_pop = total_pop + state_pop; [image: 6]
 END LOOP;
 CLOSE cur;
 SELECT total_pop AS 'Total U.S. Population'; [image: 7]
END;
	[image: 1]
	The done variable is used as a flag that checks when the procedure decides if it needs to continue executing or stop.

	[image: 2]
	The cursor for the query that fetches each state population.

	[image: 3]
	When MySQL encounters a “not found” error, it stops execution. To prevent this, we declared a CONTINUE handler that sets the value of the done variable to TRUE.

	[image: 4]
	We fetch each state population into the state_pop variable.

	[image: 5]
	If the done variable is not true, we continue the loop, otherwise leaving it.

	[image: 6]
	We add the value of the state_pop variable to the total_pop variable, which represents the population of the United States.

	[image: 7]
	After leaving the loop, we print the value of the total_pop variable.

This example is mostly for illustration, because in any
 real application, you’d use an aggregate function to calculate the total.
 But that also gives us an independent check on whether the fetch loop
 calculates the correct value:
mysql> CALL us_population();
+-----------------------+
| Total U.S. Population |
+-----------------------+
| 331223695 |
+-----------------------+
mysql> SELECT SUM(pop) AS 'Total U.S. Population' FROM states;
+-----------------------+
| Total U.S. Population |
+-----------------------+
| 331223695 |
+-----------------------+
NOT FOUND handlers are also useful for checking
 whether SELECT…INTO var_name
 statements return any results. Recipe 11.2 shows an
 example.

11.8 Catching and Ignoring Errors with Condition Handlers
Problem

 You want to ignore benign errors or prevent errors from occurring for nonexistent users.

Solution

 Use a condition handler to catch and handle the error you want to ignore.

Discussion
If you consider an error benign, you can use a handler to ignore
 it. For example, many DROP statements
 in MySQL have an IF EXISTS clause to suppress errors if objects to be dropped do not exist.
 But some DROP statements have no such
 clause and thus no way to suppress errors. DROP INDEX is one of these:
mysql> DROP INDEX bad_index ON limbs;
ERROR 1091 (42000): Can't DROP 'bad_index'; check that column/key exists
To prevent errors from occurring for nonexistent users, invoke
 DROP INDEX within a stored procedure that catches
 code 1091 and ignores it:
CREATE PROCEDURE drop_index(index_name VARCHAR(64), table_name VARCHAR(64))
BEGIN
 DECLARE CONTINUE HANDLER FOR 1091
 SELECT CONCAT('Unknown index: ', index_name) AS Message;
 CALL exec_stmt(CONCAT('DROP INDEX ', index_name, ' ON ', table_name));
END;
If the index does not exist, drop_index() writes a message within the
 condition handler, but no error occurs:
mysql> CALL drop_index('bad_index', 'limbs');
+--------------------------+
| Message |
+--------------------------+
| Unknown index: bad_index |
+--------------------------+
To ignore the error completely, write the handler using an
 empty BEGIN…END block:
DECLARE CONTINUE HANDLER FOR 1091 BEGIN END;
Another approach is to generate a warning, as demonstrated in the
 next recipe.

11.9 Raising Errors and Warnings
Problem

 You want to raise an error for statements that are valid for MySQL but not valid for the application you are working on.

Solution
To produce your own errors within a stored program when you detect something awry,
 use the SIGNAL statement.

Discussion
This
 recipe shows some examples, and Recipe 11.11 demonstrates the use of SIGNAL within a trigger to reject bad
 data.
Suppose that an application performs a division operation for
 which you expect that the divisor will never be zero, and that you want
 to produce an error otherwise. You might expect that since version 5.7.4 ERROR_FOR_DIVISION_BY_ZERO SQL mode is enabled, by default you will get this behavior automatically. But that works only within the
 context of data-modification operations such as INSERT. In other contexts, division by zero
 produces only a warning:
mysql> SELECT @@sql_mode\G
*************************** 1. row ***************************
@@sql_mode: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,↩
 ERROR_FOR_DIVISION_BY_ZERO,NO_ENGINE_SUBSTITUTION
1 row in set (0,00 sec)
	
mysql> SELECT 1/0;
+------+
| 1/0 |
+------+
| NULL |
+------+
1 row in set, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+---------+------+---------------+
| Level | Code | Message |
+---------+------+---------------+
| Warning | 1365 | Division by 0 |
+---------+------+---------------+
To ensure a divide-by-zero error in any context, write a function
 that performs the division but checks the divisor first and uses
 SIGNAL to raise an error if the
 can’t happen condition occurs:
CREATE FUNCTION divide(numerator FLOAT, divisor FLOAT)
RETURNS FLOAT DETERMINISTIC
BEGIN
 IF divisor = 0 THEN
 SIGNAL SQLSTATE '22012'
 SET MYSQL_ERRNO = 1365, MESSAGE_TEXT = 'unexpected 0 divisor';
 END IF;
 RETURN numerator / divisor;
END;
Test the function in a nonmodification context to verify that it
 produces an error:
mysql> SELECT divide(1,0);
ERROR 1365 (22012): unexpected 0 divisor
The SIGNAL statement specifies
 a SQLSTATE value plus an optional SET
 clause you can use to assign values to error attributes. MYSQL_ERRNO corresponds to the MySQL-specific
 error code, and MESSAGE_TEXT is a
 string of your choice.
SIGNAL can also raise warning
 conditions, not just errors. The following routine, drop_user_warn(), is similar to the drop_user() routine shown earlier, but instead
 of printing a message for nonexistent users, it generates a warning that
 can be displayed with SHOW WARNINGS. SQLSTATE value 01000 and error 1642 indicate a user-defined
 unhandled exception, which the routine signals along with an appropriate
 message:
CREATE PROCEDURE drop_user_warn(user TEXT, host TEXT)
BEGIN
 DECLARE account TEXT;
 DECLARE CONTINUE HANDLER FOR 1396
 BEGIN
 DECLARE msg TEXT;
 SET msg = CONCAT('Unknown user: ', account);
 SIGNAL SQLSTATE '01000' SET MYSQL_ERRNO = 1642, MESSAGE_TEXT = msg;
 END;
 SET account = CONCAT(QUOTE(user),'@',QUOTE(host));
 CALL exec_stmt(CONCAT('DROP USER ',account));
END;
Give it a test:
mysql> CALL drop_user_warn('bad-user','localhost');
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+---------+------+--------------------------------------+
| Level | Code | Message |
+---------+------+--------------------------------------+
| Warning | 1642 | Unknown user: 'bad-user'@'localhost' |
+---------+------+--------------------------------------+

11.10 Logging Errors by Accessing the Diagnostic Area
Problem

 You want to log all errors that your stored routine hits.

Solution

 Access the diagnostic area using the GET DIAGNOSTICS statement. Then, save the error information into variables, and use them to log errors.

Discussion

 You can not only gracefully handle errors inside the stored routine but also log them, so you can examine them and fix your application to prevent similar errors in the future.

 The movies_actors_link table is used in Recipe 16.6 to demonstrate many-to-many relationships. It contains the id of the movies and movie actors that are stored in the movies and movies_actors tables. Both columns are defined with the NOT NULL property. Each combination of movie_id and actor_id should be unique. While Recipe 16.6 does not define foreign keys (see “Using Foreign Keys to Enforce Referential Integrity and Prevent Mismatches”), we can define them, so MySQL will reject values that do not have corresponding entries in the referenced tables:
ALTER TABLE movies_actors_link ADD FOREIGN KEY(movie_id) REFERENCES movies(id);
ALTER TABLE movies_actors_link ADD FOREIGN KEY(actor_id) REFERENCES actors(id);

 Next we execute the INSERT statement from the MySQL CLI:

mysql> INSERT INTO movies_actors_link VALUES(7, 1);
ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint
fails (`cookbook`.`movies_actors_link`, CONSTRAINT `movies_actors_link_ibfk_1`
FOREIGN KEY (`movie_id`) REFERENCES `movies` (`id`))

 Additionally, MySQL provides access to the diagnostic area, so you can store values from it in the user-defined variables. Use the GET DIAGNOSTICS command to access the diagnostic area:

mysql> GET DIAGNOSTICS CONDITION 1
 -> @err_number = MYSQL_ERRNO,
 -> @err_sqlstate = RETURNED_SQLSTATE,
 -> @err_message = MESSAGE_TEXT;
Query OK, 0 rows affected (0.01 sec)

 Clause CONDITION specifies the condition number. Our query returned only one condition; therefore, we used number 1. If a query returns multiple conditions, the diagnostic area would contain data for each of the conditions. For example, a query could produce multiple warnings.

 To access data retrieved by the GET DIAGNOSTICS command, simply select the values of the user-defined variables:

mysql> SELECT @err_number, @err_sqlstate, @err_message\G
*************************** 1. row ***************************
 @err_number: 1452
@err_sqlstate: 23000
 @err_message: Cannot add or update a child row: a foreign key constraint
 fails (`cookbook`.`movies_actors_link`,
 CONSTRAINT `movies_actors_link_ibfk_1`
 FOREIGN KEY (`movie_id`) REFERENCES `movies` (`id`))
1 row in set (0.00 sec)

 To record all such errors that users make when inserting data into the movies_actors_link table, create a procedure that takes two arguments, movie_id and actor_id, and stores the error information in the log table.

 First, we’ll create the table that will store information about the errors:

CREATE TABLE `movies_actors_log` (
 `err_ts` timestamp NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 `err_number` int DEFAULT NULL,
 `err_sqlstate` char(5) DEFAULT NULL,
 `err_message` TEXT DEFAULT NULL,
 `movie_id` int unsigned DEFAULT NULL,
 `actor_id` int unsigned DEFAULT NULL
);

 Then, define the procedure that will insert a row into the movies_actors_link table and, in case of an error, will log details into the movies_actors_log table:

CREATE PROCEDURE insert_movies_actors_link(movie INT, actor INT)
BEGIN
 DECLARE e_number INT; [image: 1]
 DECLARE e_sqlstate CHAR(5);
 DECLARE e_message TEXT;

 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION [image: 2]
 BEGIN
 GET DIAGNOSTICS CONDITION 1
 e_number = MYSQL_ERRNO, [image: 3]
 e_sqlstate = RETURNED_SQLSTATE,
 e_message = MESSAGE_TEXT;
 INSERT INTO movies_actors_log(err_number, err_sqlstate, err_message, [image: 4]
 movie_id, actor_id)
 VALUES(e_number, e_sqlstate, e_message, movie, actor);
 RESIGNAL; [image: 5]
 END;

 INSERT INTO movies_actors_link VALUES(movie, actor); [image: 6]
END

	[image: 1]
	Declare variables that will store the error number, SQLSTATE, and the error message.

	[image: 2]
	Create a CONTINUE HANDLER for SQLEXCEPTION, so the procedure will first log the error, then continue executing.

	[image: 3]
	Store diagnostic information in the variables.

	[image: 4]
	Log details about the error into the movies_actors_log table.

	[image: 5]
	Use the RESIGNAL command to raise the error for the client that called the procedure.

	[image: 6]
	Run the INSERT into the movies_actors_link table that will either succeed or raise an error.

 To test the procedure, call it few times with different parameters:

mysql> CALL insert_movies_actors_link(7, 11);
ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint
fails (`cookbook`.`movies_actors_link`, CONSTRAINT `movies_actors_link_ibfk_1`
FOREIGN KEY (`movie_id`) REFERENCES `movies` (`id`))
mysql> CALL insert_movies_actors_link(6, 11);
ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint
fails (`cookbook`.`movies_actors_link`, CONSTRAINT `movies_actors_link_ibfk_2`
FOREIGN KEY (`actor_id`) REFERENCES `actors` (`id`))
mysql> CALL insert_movies_actors_link(null, 10);
ERROR 1048 (23000): Column 'movie_id' cannot be null
mysql> CALL insert_movies_actors_link(6, null);
ERROR 1048 (23000): Column 'actor_id' cannot be null
mysql> CALL insert_movies_actors_link(6, 9);
ERROR 1062 (23000): Duplicate entry '6-9' for key 'movies_actors_link.movie_id'

 As expected, because we used RESIGNAL, the procedure failed with errors. Still, all the errors were logged into the movies_actors_log table along with the values that we tried and failed to insert and a timestamp when the try happened:

mysql> SELECT * FROM movies_actors_log\G
*************************** 1. row ***************************
 err_ts: 2021-03-12 21:11:30
 err_number: 1452
err_sqlstate: 23000
 err_message: Cannot add or update a child row: a foreign key constraint fails
 (`cookbook`.`movies_actors_link`,
 CONSTRAINT `movies_actors_link_ibfk_1`
 FOREIGN KEY (`movie_id`) REFERENCES `movies` (`id`))
 movie_id: 7
 actor_id: 11
*************************** 2. row ***************************
 err_ts: 2021-03-12 21:11:38
 err_number: 1452
err_sqlstate: 23000
 err_message: Cannot add or update a child row: a foreign key constraint fails
 (`cookbook`.`movies_actors_link`,
 CONSTRAINT `movies_actors_link_ibfk_2`
 FOREIGN KEY (`actor_id`) REFERENCES `actors` (`id`))
 movie_id: 6
 actor_id: 11
*************************** 3. row ***************************
 err_ts: 2021-03-12 21:11:49
 err_number: 1048
err_sqlstate: 23000
 err_message: Column 'movie_id' cannot be null
 movie_id: NULL
 actor_id: 10
*************************** 4. row ***************************
 err_ts: 2021-03-12 21:11:56
 err_number: 1048
err_sqlstate: 23000
 err_message: Column 'actor_id' cannot be null
 movie_id: 6
 actor_id: NULL
*************************** 5. row ***************************
 err_ts: 2021-03-12 21:12:00
 err_number: 1062
err_sqlstate: 23000
 err_message: Duplicate entry '6-9' for key 'movies_actors_link.movie_id'
 movie_id: 6
 actor_id: 9
5 rows in set (0.00 sec)

See Also
For additional information about the diagnostic area,
 see “GET DIAGNOSTICS Statement”.

11.11 Using Triggers to Preprocess or Reject Data
Problem
There are conditions wherein you want to check for data entered into a table, but you
 don’t want to write the validation logic for every INSERT.

Solution
Centralize the input-testing logic into a BEFORE
 INSERT trigger.

Discussion
You can use triggers to perform several types of input
 checks:
	Reject bad data by raising a signal. This gives you access to
 stored program logic for more latitude in checking values than is
 possible with static constraints such as NOT NULL.

	Preprocess values and modify them, if you don’t want to reject
 them outright. For example, map out-of-range values to be in range
 or sanitize values to put them in canonical form, if you permit
 entry of close variants.

Suppose that you have a table of contact information, such as name,
 state of residence, email address, and website URL:
CREATE TABLE contact_info
(
 id INT NOT NULL AUTO_INCREMENT,
 name VARCHAR(30), # name of person
 state CHAR(2), # state of residence
 email VARCHAR(50), # email address
 url VARCHAR(255), # web address
 PRIMARY KEY (id)
);
If you want to enforce constraints or perform preprocessing when entering new rows, ensure the following:
	State-of-residence values are two-letter US state codes, valid
 only if present in the states
 table. (In this case, you could declare the column as an ENUM with 50 members, so it’s more likely
 you’d use this lookup-table technique with columns for which the set
 of valid values is arbitrarily large or changes over time.)

	Email address values must contain an @ character to be valid.

	For website URLs, strip any leading http:// or https:// to save space.

To handle these requirements, create a BEFORE INSERT trigger:
CREATE TRIGGER bi_contact_info BEFORE INSERT ON contact_info
FOR EACH ROW
BEGIN
 IF (SELECT COUNT(*) FROM states WHERE abbrev = NEW.state) = 0 THEN
 SIGNAL SQLSTATE 'HY000'
 SET MYSQL_ERRNO = 1525, MESSAGE_TEXT = 'invalid state code';
 END IF;
 IF INSTR(NEW.email,'@') = 0 THEN
 SIGNAL SQLSTATE 'HY000'
 SET MYSQL_ERRNO = 1525, MESSAGE_TEXT = 'invalid email address';
 END IF;
 SET NEW.url = TRIM(LEADING 'http://' FROM NEW.url);
 SET NEW.url = TRIM(LEADING 'https://' FROM NEW.url);
END;
To also handle updates, define a BEFORE UPDATE trigger with the same body as bi_contact_info.
Test the trigger by executing some INSERT statements to verify that it accepts
 valid values, rejects bad ones, and trims URLs:
mysql> INSERT INTO contact_info (name,state,email,url)
 -> VALUES('Jen','NY','jen@example.com','http://www.example.com');
mysql> INSERT INTO contact_info (name,state,email,url)
 -> VALUES('Jen','XX','jen@example.com','http://www.example.com');
ERROR 1525 (HY000): invalid state code
mysql> INSERT INTO contact_info (name,state,email,url)
 -> VALUES('Jen','NY','jen','http://www.example.com');
ERROR 1525 (HY000): invalid email address
mysql> SELECT * FROM contact_info;
+----+------+-------+-----------------+-----------------+
| id | name | state | email | url |
+----+------+-------+-----------------+-----------------+
| 1 | Jen | NY | jen@example.com | www.example.com |
+----+------+-------+-----------------+-----------------+

Chapter 12. Working with Metadata
12.0 Introduction
Most of the SQL statements we’ve used so far have been written to work
 with the data stored in the database. That is, after all, what the
 database is designed to hold. But sometimes you need more than just data
 values. You need information that characterizes or describes those
 values—the statement metadata. Metadata is used most often to process result sets but also
 applies to other aspects of your interaction with MySQL. This chapter
 describes how to obtain and use several types of metadata:
	Information about statement results
	For statements that delete or update rows, you can determine how many
 rows were changed. For a SELECT
 statement, you can obtain the number of columns in the result set,
 as well as information about each column in the result set, such as
 the column name and its display width. For example, to format a
 tabular display, you can determine how wide to make each column and
 whether to justify values to the left or right.

	Information about databases and tables
	A MySQL server can be queried to determine which databases and tables it
 manages. This is useful for existence tests or producing lists. For
 example, an application might present a display enabling the user to
 select one of the available databases. Table metadata can be
 examined to determine column definitions, for example, to determine
 the legal values for ENUM or
 SET columns to generate web form
 elements corresponding to the available choices.

	Information about the MySQL server
	The database server provides information about itself and about the status
 of your current session with it. Knowing the server version can be
 useful for determining whether it supports a given feature, which
 helps you build adaptive applications.

Metadata is closely tied to the implementation of the database
 system, so it tends to be database system−dependent. This means that if an
 application uses techniques shown in this chapter, it might need some
 modification if you port it to other database systems. For example, lists
 of tables and databases in MySQL are available by executing SHOW statements. However, SHOW is a MySQL-specific extension to SQL, so
 even for APIs like Perl DBI, PHP PDO, Python DB API, and JDBC that give you a
 database-independent way of executing statements, the SQL itself is
 MySQL-specific and must be changed to work with other database
 systems.
A more portable source of metadata is INFORMATION_SCHEMA, a database that contains
 information about databases, tables, columns, character sets, and so
 forth. INFORMATION_SCHEMA has some
 advantages over SHOW:
	Other database systems support INFORMATION_SCHEMA, so applications that use
 it are likely to be more portable than those that use SHOW statements.

	INFORMATION_SCHEMA is used
 with standard SELECT
 syntax, so it’s more similar to other data-retrieval operations than
 SHOW statements.

Because of those advantages, recipes in this chapter use INFORMATION_SCHEMA rather than SHOW in most
 cases.
A disadvantage of INFORMATION_SCHEMA is that statements to access
 it are more verbose than the corresponding SHOW statements. That doesn’t matter so much
 when you’re writing programs, but for interactive use, SHOW statements can be more attractive because
 they require less typing.

Note
The results retrieved from INFORMATION_SCHEMA or SHOW depend on your privileges. You’ll see
 information only for those databases or tables for which you have some
 privileges. Thus, an existence test for an object returns false if it
 exists, but you have no privileges for accessing it. You may need to use a user with administrative privileges to be able to repeat all code examples that we provide in this chapter.

Scripts that create the tables used in this chapter are located in the
 tables directory of the recipes distribution. Scripts containing code
 for the examples are located in the metadata directory. (Some of them use utility
 functions located in the lib
 directory.) The distribution often provides implementations in languages
 other than those shown.

12.1 Determining the Number of Rows Affected by a Statement
Problem
You want to know how many rows have been changed by a SQL statement.

Solution
Some APIs return the row count as a return value of the function that
 executes the statement. Others provide a separate
 function that you call after executing the statement. Use the method available in the programming language you use.

Discussion
For statements that affect rows (UPDATE, DELETE, INSERT, REPLACE), each API provides a way to determine
 the number of rows involved. For MySQL, the default meaning of
 affected by is changed by, not
 matched by. That is, rows not changed by a statement are
 not counted, even if they match the conditions specified in the
 statement. For example, the following UPDATE statement results in an affected
 by value of zero because it changes no columns from their
 current values, no matter how many rows the WHERE clause matches:
UPDATE profile SET cats = 0 WHERE cats = 0;
The MySQL server permits a client to set a connect-time flag to
 indicate that it wants rows-matched counts, not rows-changed counts. In
 this case, the row count for the preceding statement would be equal to
 the number of rows with a cats value
 of 0, even though the statement results in no net change to the table.
 However, not all MySQL APIs expose this flag. The following discussion
 indicates which APIs enable you to select the type of count you want and
 which use the rows-matched count by default rather than the rows-changed
 count.
Perl
In Perl DBI scripts, do()
 returns the row count for statements that modify rows:
my $count = $dbh->do ($stmt);
report 0 rows if an error occurred
printf "Number of rows affected: %d\n", (defined ($count) ? $count : 0);
If you prepare a statement first and then execute it, execute() returns the row count:
my $sth = $dbh->prepare ($stmt);
my $count = $sth->execute ();
printf "Number of rows affected: %d\n", (defined ($count) ? $count : 0);
To tell MySQL whether to return rows-changed or rows-matched
 counts, specify mysql_client_found_rows in the options part of the Data Source Name (DSN) argument of
 the connect() call
 when you connect to the MySQL server. Set the option to 0 for
 rows-changed counts and 1 for rows-matched counts. Here’s an
 example:
my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit => 1};
my $dsn = "DBI:mysql:cookbook:localhost;mysql_client_found_rows=1";
my $dbh = DBI->connect ($dsn, "cbuser", "cbpass", $conn_attrs);
mysql_client_found_rows
 changes the row-reporting behavior for the duration of the
 session.
Although the default behavior for MySQL itself is to return
 rows-changed counts, current versions of the Perl DBI driver for MySQL
 automatically request rows-matched counts unless you specify
 otherwise. For applications that depend on a particular behavior, it’s
 best to explicitly set the mysql_client_found_rows option in the DSN to
 the appropriate value.

Ruby
In Ruby Mysql2 scripts, the affected_rows
 method returns the row count for statements that modify
 rows:
client.query(stmt)
puts "Number of rows affected: #{client.affected_rows}"
If you use the prepared statements execute method to execute
 a statement, use the statement handle affected_rows method to get the count
 afterward:
sth = client.prepare(stmt)
sth.execute()
puts "Number of rows affected: #{sth.affected_rows}"
The Ruby driver for MySQL returns rows-changed counts by
 default, but the driver supports a Mysql2::Client::FOUND_ROWS option that enables
 you to control whether the server returns rows-changed or rows-matched
 counts. For example, to request
 rows-matched counts, do this:
client = Mysql2::Client.new(:flags=>Mysql2::Client::FOUND_ROWS, :database=>'cookbook')

PHP
In PDO, the database handle exec() method returns the rows-affected count:
$count = $dbh->exec ($stmt);
printf ("Number of rows updated: %d\n", $count);
If you use prepare() plus
 execute() instead, the rows-affected count is available from the statement
 handle rowCount()
 method:
$sth = $dbh->prepare ($stmt);
$sth->execute ();
printf ("Number of rows updated: %d\n", $sth->rowCount ());
The PDO driver for MySQL returns rows-changed counts by default,
 but the driver supports a PDO::MYSQL_ATTR_FOUND_ROWS attribute
 that you can specify at connect time to control whether
 the server returns rows-changed or rows-matched counts. The new PDO class constructor takes an optional
 key/value array following the password argument. Pass PDO::MYSQL_ATTR_FOUND_ROWS => 1
 in this array to request rows-matched counts:
$dsn = "mysql:host=localhost;dbname=cookbook";
$dbh = new PDO ($dsn, "cbuser", "cbpass",
 array (PDO::MYSQL_ATTR_FOUND_ROWS => 1));

Python
Python’s DB API makes the rows-changed count available as the value of the
 statement cursor’s rowcount
 attribute:
cursor = conn.cursor()
cursor.execute(stmt)
print("Number of rows affected: %d" % cursor.rowcount)
cursor.close()
To obtain rows-matched counts instead, import the
 Connector/Python client-flag constants and pass the FOUND_ROWS flag in the client_flags parameter of the connect()
 method:
from mysql.connector.constants import ClientFlag

conn = mysql.connector.connect(
 database="cookbook",
 host="localhost",
 user="cbuser",
 password="cbpass",
 client_flags=[ClientFlag.FOUND_ROWS]
)

Go

 The Go SQL driver provides a RowsAffected method of the Result type that returns the number of changed rows:

res, err := db.Exec(sql)
// Check and handle err
affectedRows, err := res.RowsAffected()
// Check and handle err
fmt.Printf("The statement affected %d rows\n", affectedRows)

 To retrieve the row-matched count instead, add a clientFoundRows=true parameter to the connection string:

db, err := ↩
sql.Open("mysql", "cbuser:cbpass@tcp(127.0.0.1:3306)/cookbook?clientFoundRows=true")

Java
For statements that modify rows, the Connector/J driver provides
 rows-matched counts rather than rows-changed counts, for conformance
 with the Java JDBC specification.
The JDBC interface provides row counts two different ways, depending on the
 method you invoke to execute the statement. If you use executeUpdate(), the row count is its return value:
Statement s = conn.createStatement ();
int count = s.executeUpdate (stmt);
s.close ();
System.out.println ("Number of rows affected: " + count);
If you use execute(), that
 method returns true or false to indicate whether the
 statement produces a result set. For statements such as UPDATE or DELETE that return no result set, execute() returns false, and the row count is
 available by calling the getUpdateCount()
 method:
Statement s = conn.createStatement ();
if (!s.execute (stmt))
{
 // there is no result set, print the row count
 System.out.println ("Number of rows affected: " + s.getUpdateCount ());
}
s.close ();

12.2 Obtaining Result Set Metadata
Problem
After retrieving the rows (see Recipe 4.4), you want to know other details
 about the result set, such as the column names and
 data types or how many rows and columns there are.

Solution
Use the capabilities provided by your API.

Discussion
Statements such as SELECT that
 generate a result set produce several types of metadata.
 This section discusses the information available through each API, using
 programs that show how to display the result-set metadata available
 after executing a sample statement (SELECT name, birth
 FROM profile). The example programs illustrate one
 of the simplest uses for this information: when you retrieve a row from
 a result set and you want to process the column values in a loop, the
 column count stored in the metadata serves as the upper bound on the
 loop iterator.
Perl
The scope of result-set metadata available from Perl DBI depends on how you process queries:
	Using a statement handle
	In this case, invoke prepare() to get the statement handle. This handle has an execute() method. Invoke it to generate
 the result set, then fetch the rows in a loop. With this approach,
 access to the metadata is available while the result set is
 active—that is, after the call to execute() and until the end of the
 result set is reached. When the row-fetching method finds that
 there are no more rows, it invokes finish()
 implicitly, which causes the metadata to become unavailable. (That
 also happens if you explicitly call finish() yourself.) Thus, normally it’s
 best to access the metadata immediately after calling execute(), making a copy of any values
 that you’ll need to use beyond the end of the fetch loop.

	Using a database-handle method that returns the result set
 in a single operation
	With this approach, any metadata generated while processing
 the statement will have been disposed of by the time the method
 returns. You can still determine the number of rows and columns
 from the size of the result set.

When you use a statement handle to process a query, DBI makes
 result-set metadata available after you invoke the handle’s execute() method. This information is
 available primarily in the form of references to arrays. For each such
 type of metadata, the array has one element per column in the result
 set. Access these array references as attributes of the statement
 handle. For example, $sth->{NAME} points to the column name
 array, with individual column names available as elements of this
 array:
$name = $sth->{NAME}->[$i];
Or access the entire array like this:
@names = @{$sth->{NAME}};
Table 12-1 lists the attribute names through which you
 access array-based metadata and the meaning of values in each array.
 Names that begin with uppercase are standard DBI attributes and should
 be available for most database engines. Attribute names that begin
 with mysql_ are MySQL-specific and
 nonportable.
Table 12-1. Metadata in Perl	Attribute name	Array element meaning
	NAME 	Column name
	NAME_lc 	Column name in lowercase
	NAME_uc 	Column name in uppercase
	NULLABLE 	0 or empty string = column
 values cannot be NULL
		1 = column values can be
 NULL
		2 = unknown
	PRECISION 	Column width
	SCALE 	Number of decimal places (for numeric columns)
	TYPE 	Data type (numeric DBI code)
	mysql_is_blob 	True if column has a BLOB (or TEXT) type
	mysql_is_key 	True if column is part of a key
	mysql_is_num 	True if column has a numeric type
	mysql_is_pri_key 	True if column is part of a primary key
	mysql_max_length 	Actual maximum length of column values in result
 set
	mysql_table 	Name of table the column is part of
	mysql_type 	Data type (numeric internal MySQL code)
	mysql_type_name 	Data type name

Some types of metadata, listed in Table 12-2, are
 accessed as references to hashes rather than arrays. These hashes have
 one element per column value. The element key is the column name, and
 its value is the position of the column within the result set, for
 example:
$col_pos = $sth->{NAME_hash}->{col_name};
Table 12-2. Metadata in Perl, accessible as references to hashes	Attribute name	Hash element meaning
	NAME_hash 	Column name
	NAME_hash_lc 	Column name in lowercase
	NAME_hash_uc 	Column name in uppercase

The number of columns in a result set is available as a scalar
 value:
$num_cols = $sth->{NUM_OF_FIELDS};
This example code shows how to execute a statement and display
 result-set metadata:
my $stmt = "SELECT name, birth FROM profile";
printf "Statement: %s\n", $stmt;
my $sth = $dbh->prepare ($stmt);
$sth->execute();
metadata information becomes available at this point ...
printf "NUM_OF_FIELDS: %d\n", $sth->{NUM_OF_FIELDS};
print "Note: statement has no result set\n" if $sth->{NUM_OF_FIELDS} == 0;
for my $i (0 .. $sth->{NUM_OF_FIELDS}-1)
{
 printf "--- Column %d (%s) ---\n", $i, $sth->{NAME}->[$i];
 printf "NAME_lc: %s\n", $sth->{NAME_lc}->[$i];
 printf "NAME_uc: %s\n", $sth->{NAME_uc}->[$i];
 printf "NULLABLE: %s\n", $sth->{NULLABLE}->[$i];
 printf "PRECISION: %d\n", $sth->{PRECISION}->[$i];
 printf "SCALE: %d\n", $sth->{SCALE}->[$i];
 printf "TYPE: %d\n", $sth->{TYPE}->[$i];
 printf "mysql_is_blob: %s\n", $sth->{mysql_is_blob}->[$i];
 printf "mysql_is_key: %s\n", $sth->{mysql_is_key}->[$i];
 printf "mysql_is_num: %s\n", $sth->{mysql_is_num}->[$i];
 printf "mysql_is_pri_key: %s\n", $sth->{mysql_is_pri_key}->[$i];
 printf "mysql_max_length: %d\n", $sth->{mysql_max_length}->[$i];
 printf "mysql_table: %s\n", $sth->{mysql_table}->[$i];
 printf "mysql_type: %d\n", $sth->{mysql_type}->[$i];
 printf "mysql_type_name: %s\n", $sth->{mysql_type_name}->[$i];
}
$sth->finish (); # release result set because we didn't fetch its rows
The program produces this output:
Statement: SELECT name, birth FROM profile
NUM_OF_FIELDS: 2
--- Column 0 (name) ---
NAME_lc: name
NAME_uc: NAME
NULLABLE:
PRECISION: 20
SCALE: 0
TYPE: 12
mysql_is_blob:
mysql_is_key:
mysql_is_num: 0
mysql_is_pri_key:
mysql_max_length: 7
mysql_table: profile
mysql_type: 253
mysql_type_name: varchar
--- Column 1 (birth) ---
NAME_lc: birth
NAME_uc: BIRTH
NULLABLE: 1
PRECISION: 10
SCALE: 0
TYPE: 9
mysql_is_blob:
mysql_is_key:
mysql_is_num: 0
mysql_is_pri_key:
mysql_max_length: 10
mysql_table: profile
mysql_type: 10
mysql_type_name: date
To get a row count from a result set generated by calling
 execute(), fetch the rows and count
 them yourself. Using $sth->rows() to get a count for SELECT statements is expressly deprecated in
 the DBI documentation.
You can also obtain a result set by calling one of the DBI
 methods that uses a database handle rather than a statement handle,
 such as selectall_arrayref() or selectall_hashref(). These methods provide no access to column metadata. That
 information already will have been disposed of by the time the method
 returns, and is unavailable to your scripts. However, you can derive
 column and row counts by examining the result set itself. Recipe 4.4 discusses the result-set structures
 produced by several methods and how to use them to obtain row and
 column counts.

Ruby

 Ruby Mysql2 gem does not provide its own methods to access result-set metadata after you execute a statement. You can get column names only by calling the fields method of the Mysql2::Result class:

stmt = "SELECT name, birth FROM profile"
puts "Statement: #{stmt}"
sth = client.prepare(stmt)
res = sth.execute()
metadata information becomes available at this point ...
puts "Number of columns: #{res.fields.size}"
puts "Note: statement has no result set" if res.count == 0
puts "Columns names: #{res.fields.join(", ")}"
res.free

 To obtain other column metadata, query the Information Schema as we suggest in Recipe 12.5

PHP
In PHP, metadata for SELECT
 statements is available from PDO after a successful call to
 query(). If you execute a
 statement using prepare() plus execute() instead (which can be used for SELECT or non-SELECT statements), metadata becomes
 available after execute().
To determine metadata availability, check whether the statement
 handle columnCount()
 method returns a value greater than zero. If so, the handle’s getColumnMeta() method returns an
 associative array containing metadata for a single column. Table 12-3 shows the elements of this array. (The format of the
 flags value might differ for other
 database systems.)
Table 12-3. Metadata in PHP	Name	Value
	pdo_type 	Column type (corresponds
 to a PDO::PARAM_XXX
 value)
	native_type 	PHP native type for the
 column value
	name 	Column name
	len 	Column length
	precision 	Column precision
	flags 	Array of flags describing
 the column attributes
	table 	Name of table the column
 is part of

This example code shows how to execute a statement and display
 result-set metadata:
$stmt = "SELECT name, birth FROM profile";
print ("Statement: $stmt\n");
$sth = $dbh->prepare ($stmt);
$sth->execute ();
metadata information becomes available at this point ...
$ncols = $sth->columnCount ();
print ("Number of columns: $ncols\n");
if ($ncols == 0)
 print ("Note: statement has no result set\n");
for ($i = 0; $i < $ncols; $i++)
{
 $col_info = $sth->getColumnMeta ($i);
 $flags = implode (",", array_values ($col_info["flags"]));
 printf ("--- Column %d (%s) ---\n", $i, $col_info["name"]);
 printf ("pdo_type: %d\n", $col_info["pdo_type"]);
 printf ("native_type: %s\n", $col_info["native_type"]);
 printf ("len: %d\n", $col_info["len"]);
 printf ("precision: %d\n", $col_info["precision"]);
 printf ("flags: %s\n", $flags);
 printf ("table: %s\n", $col_info["table"]);
}
The program produces this output:
Statement: SELECT name, birth FROM profile
Number of columns: 2
--- Column 0 (name) ---
PDO type: 2
native type: VAR_STRING
len: 20
precision: 0
flags: not_null
table: profile
--- Column 1 (birth) ---
PDO type: 2
native type: DATE
len: 10
precision: 0
flags:
table: profile
To get a row count from a statement that returns rows, fetch the
 rows and count them yourself. The rowCount() method is not guaranteed to work
 for result sets.

Python
For statements that produce a result set, Python’s DB API makes row and
 column counts available, as well as a few information items about
 individual columns.
To get the row count for a result set, access the cursor’s rowcount
 attribute. This requires that the cursor be buffered so that it
 fetches query results immediately; otherwise, you must count the rows
 as you fetch them. The column count is not available directly, but
 after calling fetchone() or
 fetchall(), you can determine the
 count as the length of any result-set row tuple. It’s also possible to
 determine the column count without fetching any rows by using cursor.description. This is a tuple
 containing one element per column in the result set, so its length
 tells you how many columns are in the set. (If the statement generates
 no result set, such as for UPDATE,
 the value of description is
 None.) Each element of the description tuple is another tuple that
 represents the metadata for the corresponding column of the result.
 For Connector/Python, only a few description values are meaningful. The
 following code shows how to access them:
stmt = "SELECT name, birth FROM profile"
print("Statement: %s" % stmt)
buffer cursor so that rowcount has usable value
cursor = conn.cursor(buffered=True)
cursor.execute(stmt)
metadata information becomes available at this point...
print("Number of rows: %d" % cursor.rowcount)
if cursor.description is None: # no result set
 ncols = 0
else:
 ncols = len(cursor.description)
print("Number of columns: %d" % ncols)
if ncols == 0:
 print("Note: statement has no result set")
for i, col_info in enumerate(cursor.description):
 # print name, then other information
 name, type, _, _, _, _, nullable, flags, _ = col_info
 print("--- Column %d (%s) ---" % (i, name))
 print("Type: %d (%s)" % (type, FieldType.get_info(type)))
 print("Nullable: %d" % (nullable))
 print("Flags: %d" % (flags))
cursor.close()
The code uses the FieldType
 class, imported as follows:
from mysql.connector import FieldType
The program produces this output:
Statement: SELECT name, birth FROM profile
Number of rows: 10
Number of columns: 2
--- Column 0 (name) ---
Type: 253 (VAR_STRING)
Nullable: 0
Flags: 4097
--- Column 1 (birth) ---
Type: 10 (DATE)
Nullable: 1
Flags: 128

Go

 Go provides column metadata as array of ColumnType values, returned by the Rows.ColumnTypes method. You can query each of the array members to obtain specific characteristic of the column.

 Table 12-4 contains methods that the ColumnType supports.

Table 12-4. Metadata in Go	Method name	Description
	DatabaseTypeName	Database type, such as INT or VARCHAR.
	DecimalSize	Scale and precision for the decimal type.
	Length	Column type length for the variable length text and binary columns. Not supported by the MySQL driver.
	Name	The name or the alias of the column.
	Nullable	Whenever column is nullable.
	ScanType	The native Go type, suitable for scanning into Rows.Scan.

 You may also get the list of column names if you use the Rows.Columns method. It returns an array of strings that contain column names or aliases.

 The example code demonstrates how to obtain column names and metadata in the Go application:

package main

import (
 "fmt"
 "log"
 "github.com/svetasmirnova/mysqlcookbook/recipes/lib/cookbook"
)

func main() {
 db := cookbook.Connect()
 defer db.Close()

 stmt := "SELECT name, birth FROM profile"
 fmt.Printf("Statement: %s\n", stmt)

 rows, err := db.Query(stmt)
 if err != nil {
 log.Fatal(err)
 }
 defer rows.Close()

 // metadata information becomes available at this point ...
 cols, err := rows.ColumnTypes()
 if err != nil {
 log.Fatal(err)
 }

 ncols := len(cols)
 fmt.Printf("Number of columns: %d\n", ncols)
 if (ncols == 0) {
 fmt.Println("Note: statement has no result set")
 }

 for i := 0; i < ncols; i++ {
 fmt.Printf("---- Column %d (%s) ----\n", i, cols[i].Name())
 fmt.Printf("DatabaseTypeName: %s\n", cols[i].DatabaseTypeName())

 collen, ok := cols[i].Length()
 if ok {
 fmt.Printf("Length: %d\n", collen)
 }

 precision, scale, ok := cols[i].DecimalSize()
 if ok {
 fmt.Printf("DecimalSize precision: %d, scale: %d\n", precision, scale)
 }

 colnull, ok := cols[i].Nullable()
 if ok {
 fmt.Printf("Nullable: %t\n", colnull)
 }

 fmt.Printf("ScanType: %s\n", cols[i].ScanType())
 }
}

 The program produces this output:

Statement: SELECT name, birth FROM profile
Number of columns: 2
---- Column 0 (name) ----
DatabaseTypeName: VARCHAR
Nullable: false
ScanType: sql.RawBytes
---- Column 1 (birth) ----
DatabaseTypeName: DATE
Nullable: true
ScanType: sql.NullTime

Java
JDBC makes result-set metadata available through a ResultSetMetaData
 object, obtained by calling the getMetaData()
 method of your ResultSet object.
 The metadata object provides access to several kinds of information. Its
 getColumnCount() method returns the number of columns in the result set. Other
 types of metadata, illustrated by the following code, provide
 information about individual columns and take a column index as their
 argument. For JDBC, column indexes begin at 1 rather than 0, unlike
 our other APIs:
String stmt = "SELECT name, birth FROM profile";
System.out.println("Statement: " + stmt);
Statement s = conn.createStatement();
s.executeQuery(stmt);
ResultSet rs = s.getResultSet();
ResultSetMetaData md = rs.getMetaData();
// metadata information becomes available at this point...
int ncols = md.getColumnCount();
System.out.println("Number of columns: " + ncols);
if (ncols == 0)
 System.out.println ("Note: statement has no result set");
for (int i = 1; i <= ncols; i++) { // column index values are 1-based
 System.out.println("--- Column " + i
 + " (" + md.getColumnName (i) + ") ---");
 System.out.println("getColumnDisplaySize: " + md.getColumnDisplaySize (i));
 System.out.println("getColumnLabel: " + md.getColumnLabel (i));
 System.out.println("getColumnType: " + md.getColumnType (i));
 System.out.println("getColumnTypeName: " + md.getColumnTypeName (i));
 System.out.println("getPrecision: " + md.getPrecision (i));
 System.out.println("getScale: " + md.getScale (i));
 System.out.println("getTableName: " + md.getTableName (i));
 System.out.println("isAutoIncrement: " + md.isAutoIncrement (i));
 System.out.println("isNullable: " + md.isNullable (i));
 System.out.println("isCaseSensitive: " + md.isCaseSensitive (i));
 System.out.println("isSigned: " + md.isSigned (i));
}
rs.close();
s.close();
The program produces this output:
Statement: SELECT name, birth FROM profile
Number of columns: 2
--- Column 1 (name) ---
getColumnDisplaySize: 20
getColumnLabel: name
getColumnType: 12
getColumnTypeName: VARCHAR
getPrecision: 20
getScale: 0
getTableName: profile
isAutoIncrement: false
isNullable: 0
isCaseSensitive: false
isSigned: false
--- Column 2 (birth) ---
getColumnDisplaySize: 10
getColumnLabel: birth
getColumnType: 91
getColumnTypeName: DATE
getPrecision: 10
getScale: 0
getTableName: profile
isAutoIncrement: false
isNullable: 1
isCaseSensitive: false
isSigned: false
The row count of the result set is not available directly; you
 must fetch the rows and count them.
JDBC has several other result-set metadata calls, but many of
 them provide no useful information for MySQL. To try them, consult a JDBC
 reference to see what the calls are, and modify the program to see
 what, if anything, they return.

12.3 Listing or Checking the Existence of Databases or Tables
Problem
You want to list the databases hosted by the MySQL server or the tables in a
 database. Or you want to check whether a particular database or table
 exists.

Solution
Use INFORMATION_SCHEMA to get
 this information. The SCHEMATA table contains a row for each
 database, and the TABLES table
 contains a row for each table or view in each database.

Discussion
To retrieve the list of databases hosted by the server, use this
 statement:
SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA;
To sort the result, add an ORDER BY SCHEMA_NAME clause.
To check whether a specific database exists, use a WHERE clause with a condition that names the
 database. If you get a row back, the database exists. The following
 Ruby method shows how to perform an existence test for a
 database:
def database_exists(client, db_name)
 sth = client.prepare("SELECT SCHEMA_NAME
 FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = ?")
 return sth.execute(db_name).count > 0
end
To obtain the list of tables in a database, name the database in
 the WHERE clause of a statement that
 selects from the TABLES table:
SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'cookbook';
To sort the result, add an ORDER BY
 TABLE_NAME clause.
To obtain a list of tables in the default database, use this
 statement instead:
SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = DATABASE();
If no database has been selected, DATABASE() returns NULL and no rows match, which is the correct
 result.
To check whether a specific table exists, use a WHERE clause with a
 condition that names the table. Here’s a Ruby method that performs an existence test for a table in
 a given database:
def table_exists(client, db_name, tbl_name)
 sth = client.prepare("SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = ? AND TABLE_NAME = ?")
 return sth.execute(db_name, tbl_name).count > 0
end
Some APIs provide a database-independent way to get database or
 table lists. In Perl DBI, the database handle tables() method returns a list of tables in the default database:
@tables = $dbh->tables ();
For Java, there are JDBC methods designed to return lists of databases or
 tables. For each method, invoke your connection object’s getMetaData()
 method and use the resulting DatabaseMetaData object to retrieve the
 information you want. Here’s how to produce a list of databases:
// get list of databases
DatabaseMetaData md = conn.getMetaData ();
ResultSet rs = md.getCatalogs ();
while (rs.next ())
 System.out.println (rs.getString (1)); // column 1 = database name
rs.close ();
To list the tables in a database, do this:
// get list of tables in database named by dbName; if
// dbName is the empty string, the default database is used
DatabaseMetaData md = conn.getMetaData ();
ResultSet rs = md.getTables (dbName, "", "%", null);
while (rs.next ())
 System.out.println (rs.getString (3)); // column 3 = table name
rs.close ();

12.4 Listing or Checking the Existence of Views
Problem

 You want to check if your database contains views.

Solution

 Select only those tables from the INFORMATION_SCHEMA.TABLES table that have TABLE_TYPE equal to VIEW.

Discussion

 The method used in the Recipe 12.3 shows both physical tables and views. If you need to distinguish them from one another, use the WHERE TABLE_TYPE='VIEW' clause to list only views:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, TABLE_TYPE
 -> FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_TYPE='VIEW' AND TABLE_SCHEMA='cookbook';
+--------------+---------------------+------------+
| TABLE_SCHEMA | TABLE_NAME | TABLE_TYPE |
+--------------+---------------------+------------+
| cookbook | patients_statistics | VIEW |
+--------------+---------------------+------------+
1 row in set (0,00 sec)

 If you want, instead, to list only physical tables, use the TABLE_TYPE='BASE TABLE' condition:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, TABLE_TYPE
 -> FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_TYPE='BASE TABLE' AND TABLE_SCHEMA='cookbook'
 -> AND TABLE_NAME LIKE 'trip%';
+--------------+------------+------------+
| TABLE_SCHEMA | TABLE_NAME | TABLE_TYPE |
+--------------+------------+------------+
| cookbook | trip_leg | BASE TABLE |
| cookbook | trip_log | BASE TABLE |
+--------------+------------+------------+
2 rows in set (0,00 sec)

12.5 Accessing Table Column Definitions
Problem
You want to find out what columns a table has and how they are defined.

Solution
There are several ways to do this. You can obtain column
 definitions from INFORMATION_SCHEMA, from SHOW statements, or from mysqldump.

Discussion
Information about the structure of tables enables you to answer
 questions such as What columns does a table contain and what are
 their types? or What are the legal values for an ENUM or SET
 column? Here are some applications for that kind of
 information:
	Displaying column lists
	A simple use of table information is presenting a list of
 the table’s columns. This is common in web-based or Graphical User Interface (GUI)
 applications that enable users to construct statements
 interactively by selecting a table column from a list and entering
 a value against which to compare column values.

	Interactive record editing
	Knowledge of a table’s structure can be very useful for
 applications that modify data interactively. Suppose that an
 application retrieves a record from the database, displays a form
 containing the record’s content so a user can edit it, and then
 updates the record in the database after the user modifies the
 form and submits it. You can use table structure information for
 validating column values, so you would not try to insert invalid values into a database. If a column is an ENUM, you can find out the valid
 enumeration values and check the value submitted by the user
 against them to determine whether it’s legal. If the column is an
 integer type, check the submitted value to make sure that it
 consists entirely of digits, possibly preceded by a + or − character. If the column contains
 dates, look for a legal date format.
But what if the user leaves a field empty? If the field
 corresponds to, say, a CHAR
 column in the table, do you set the column value to NULL or to the empty string? This too is
 a question that can be answered by checking the table’s structure.
 Determine whether the column
 can contain NULL values. If it
 can, set the column to NULL;
 otherwise, set it to the empty string.

	Mapping column definitions onto web page elements
	Some data types such as ENUM and SET correspond naturally to elements of
 web forms:
	An ENUM has a fixed
 set of values from which you choose a single value.
 This is analogous to a group of radio buttons, a pop-up menu,
 or a single-pick scrolling list.

	A SET column is
 similar, except that you can select multiple values; this
 corresponds to a group of checkboxes or a multiple-pick
 scrolling list.

By using table metadata to access definitions for these
 types of columns, you can easily determine a column’s legal values
 and map them onto an appropriate form element. Recipe 12.6 discusses how to get definitions
 for these types of columns.

MySQL provides several ways to find out about a table’s
 structure:
	Retrieve the information from INFORMATION_SCHEMA. The COLUMNS table contains the column
 definitions.

	Use a SHOW COLUMNS statement.

	Use the SHOW CREATE TABLE statement or the mysqldump
 command-line program to obtain a CREATE TABLE statement that displays the table’s
 structure.

The following discussion shows how to ask MySQL for table
 information using each method. To try the examples, create an item table that lists item IDs, names, and
 colors in which each item is available:
CREATE TABLE item
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 name CHAR(20),
 colors ENUM('chartreuse','mauve','lime green','puce') DEFAULT 'puce',
 PRIMARY KEY (id)
);
Using INFORMATION_SCHEMA to get table structure information
To obtain information about a single column in a table, query
 the INFORMATION_SCHEMA.COLUMNS table:
mysql> SELECT * FROM INFORMATION_SCHEMA.COLUMNS
 -> WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'item'
 -> AND COLUMN_NAME = 'colors'\G
*************************** 1. row ***************************
 TABLE_CATALOG: def
 TABLE_SCHEMA: cookbook
 TABLE_NAME: item
 COLUMN_NAME: colors
 ORDINAL_POSITION: 3
 COLUMN_DEFAULT: puce
 IS_NULLABLE: YES
 DATA_TYPE: enum
CHARACTER_MAXIMUM_LENGTH: 10
 CHARACTER_OCTET_LENGTH: 10
 NUMERIC_PRECISION: NULL
 NUMERIC_SCALE: NULL
 DATETIME_PRECISION: NULL
 CHARACTER_SET_NAME: utf8mb4
 COLLATION_NAME: utf8mb4_0900_ai_ci
 COLUMN_TYPE: enum('chartreuse','mauve','lime green','puce')
 COLUMN_KEY:
 EXTRA:
 PRIVILEGES: select,insert,update,references
 COLUMN_COMMENT:
To obtain information about all columns, omit the COLUMN_NAME condition from the WHERE
 clause.
Here are some COLUMNS table
 columns likely to be of most use:
	COLUMN_NAME
	The column
 name.

	ORDINAL_POSITION
	The
 position of the column within the table definition.

	COLUMN_DEFAULT
	The
 column’s default value.

	IS_NULLABLE
	YES or NO to indicate whether the column can
 contain NULL values.

	DATA_TYPE, COLUMN_TYPE
	Data type information.
 DATA_TYPE is the data-type
 keyword, and COLUMN_TYPE
 contains additional information such as type attributes.

	CHARACTER_SET_NAME,
 COLLATION_NAME
	The character
 set and collation for string columns. They are NULL for nonstring columns.

	COLUMN_KEY
	Information
 about whether the column is indexed.

INFORMATION_SCHEMA content is
 easy to use from within programs. Here’s a PHP function that illustrates this process. It takes
 database and table name arguments, selects from INFORMATION_SCHEMA to obtain a list of the
 table’s column names, and returns the names as an array. The ORDER BY ORDINAL_POSITION clause ensures that names
 in the array are returned in table-definition order:
function get_column_names ($dbh, $db_name, $tbl_name)
{
 $stmt = "SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS
 WHERE TABLE_SCHEMA = ? AND TABLE_NAME = ?
 ORDER BY ORDINAL_POSITION";
 $sth = $dbh->prepare ($stmt);
 $sth->execute (array ($db_name, $tbl_name));
 return ($sth->fetchAll (PDO::FETCH_COLUMN, 0));
}
get_column_names() returns an
 array containing only column names. If you require additional column
 information, it’s possible to write a more general get_column_info() routine that returns an
 array of column information structures. For implementations of both
 routines in PHP as well as other languages, check the library files in
 the lib directory of the recipes
 distribution.

Using SHOW COLUMNS to get table structure information
The SHOW COLUMNS statement produces one row of output for each column in the table,
 with each row providing various pieces of information about the
 corresponding column. The following example demonstrates SHOW COLUMNS output for the item table colors column:
mysql> SHOW COLUMNS FROM item LIKE 'colors'\G
*************************** 1. row ***************************
 Field: colors
 Type: enum('chartreuse','mauve','lime green','puce')
 Null: YES
 Key:
Default: puce
 Extra:
SHOW COLUMNS displays information for all columns
 having a name that matches the LIKE
 pattern. To obtain information about all columns, omit the LIKE clause.
The values displayed by SHOW
 COLUMNS correspond to these columns
 of the INFORMATION_SCHEMA COLUMNS table: COLUMN_NAME, COLUMN_TYPE, COLUMN_KEY, IS_NULLABLE, COLUMN_DEFAULT, EXTRA.
SHOW FULL COLUMNS displays additional Collation, Privileges, and Comment fields for each column. These
 correspond to the COLUMNS table
 COLLATION_NAME, PRIVILEGES, and COLUMN_COMMENT columns.
SHOW interprets the pattern
 the same way as for the LIKE operator in
 the WHERE clause of a SELECT statement. (For information about
 pattern matching, see Recipe 7.10.)
 If you specify a literal column name, the string matches only that
 name, and SHOW COLUMNS displays information only for that
 column. If your column name
 contains SQL pattern characters (% or
 _) that you want to match
 literally, you must escape them with a backslash in the pattern string to avoid matching other
 names as well.
The need to escape % and
 _ characters to match a LIKE pattern literally also applies to other
 SHOW statements that permit a name
 pattern in the LIKE clause, such as
 SHOW TABLES and SHOW DATABASES.
Within a program, you can use your API language’s
 pattern-matching capabilities to escape SQL pattern characters before
 putting the column name into a SHOW
 statement. In Perl, Ruby, and PHP, use the following
 expressions:
Perl:
$name =~ s/([%_])/\\$1/g;
Ruby:
name = name.gsub(/([%_])/, '\\\\\1')
PHP:
$name = preg_replace ('/([%_])/', '\\\\$1', $name);
For Python, import the re module,
 and use its sub() method:
name = re.sub(r'([%_])', r'\\\1', name)

 For Go, use methods from the regexp package:

import "regexp"
// ...
 re := regexp.MustCompile(`([_%])`)
 name = re.ReplaceAllString(name, "\\\\$1")
For Java, use methods from the java.util.regex
 package:
import java.util.regex.*;

Pattern p = Pattern.compile("([_%])");
Matcher m = p.matcher(name);
name = m.replaceAll ("\\\\$1");
If these expressions appear to have too many backslashes,
 remember that the API language processor itself interprets backslashes
 and strips off a level before performing the pattern match. To get a
 literal backslash into the result, it must be doubled in the pattern.
 Another level on top of that is needed if the pattern processor strips a set.

Using SHOW CREATE TABLE to get table structure information
Another way to obtain table structure information from MySQL is from the CREATE TABLE statement that defines the table. To
 get this information, use the SHOW
 CREATE TABLE statement:
mysql> SHOW CREATE TABLE item\G
*************************** 1. row ***************************
 Table: item
Create Table: CREATE TABLE `item` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `name` char(20) DEFAULT NULL,
 `colors` enum('chartreuse','mauve','lime green','puce') DEFAULT 'puce',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
From the command line, the same CREATE TABLE information is available from mysqldump if you use the
 --no-data option, which tells mysqldump
 to dump only the structure of the table and not its data.
The CREATE TABLE format is highly informative and easy
 to read because it shows column information in a format similar to the
 one you used to create the table in the first place. It also shows the
 index structure clearly, whereas the other methods do not. However,
 you’ll probably find this method of checking table structure more
 useful interactively than within programs. The information isn’t
 provided in regular row-and-column format, so it’s more difficult to
 parse. Also, the format is subject to change whenever the CREATE TABLE statement is enhanced, which happens
 from time to time as MySQL’s capabilities are extended.

12.6 Getting ENUM and SET Column Information
Problem
You want to know the members of an ENUM or SET column.

Solution
This problem is a subset of getting table structure metadata.
 Obtain the column definition from the table metadata, then extract the
 member list from the definition.

Discussion
It’s often useful to know the list of allowed values for an ENUM or SET
 column. Suppose that you want to present a web form containing a pop-up
 menu that has options corresponding to each legal value of an ENUM column, such as the sizes in which a
 garment can be ordered or the available shipping methods for delivering
 a package. You could hardwire the choices into the script that generates
 the form, but if you alter the column later (for example, to add a new
 enumeration value), you introduce a discrepancy between the column and
 the script that uses it. If instead you look up the legal values using
 the table metadata, the script can always produce a pop-up that contains
 the proper set of values. A similar approach applies to SET columns.
To determine the permitted values for an ENUM or SET
 column, get its definition using one of the techniques described in
 Recipe 12.5. For example, if you select
 from the INFORMATION_SCHEMA COLUMNS table, the COLUMN_TYPE value for the colors column of the item table looks like this:
enum('chartreuse','mauve','lime green','puce')
SET columns are similar, except
 that they say set rather than
 enum. For either data type, extract
 the permitted values by stripping the initial word and the parentheses,
 splitting at the commas, and removing the enclosing quotes from the
 individual values.

Let’s write a get_enumorset_info() routine to extract
 these values from the data-type definition. While we’re at it, we can
 have the routine return the column’s type, its default value, and
 whether values can be NULL. Then the
 routine can be used by scripts that may need more than just the list of
 values. Here is a version in Ruby. Its arguments are a database handle, a database
 name, a table name, and a column name. It returns a hash with entries
 corresponding to the various aspects of the column definition (or nil if the column does not exist):
def get_enumorset_info(client, db_name, tbl_name, col_name)
 sth = client.prepare(
 "SELECT COLUMN_NAME, COLUMN_TYPE, IS_NULLABLE, COLUMN_DEFAULT
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE TABLE_SCHEMA = ? AND TABLE_NAME = ? AND COLUMN_NAME = ?")
 res = sth.execute(db_name, tbl_name, col_name)
 return nil if res.count == 0 # no such column
 row = res.first
 info = {}
 info["name"] = row.values[0]
 return nil unless row.values[1] =~ /^(ENUM|SET)\((.*)\)$/i # not ENUM or SET
 info["type"] = $1
 # split value list on commas, trim quotes from end of each word
 info["values"] = $2.split(",").collect { |val| val.sub(/^'(.*)'$/, "\\1") }
 # determine whether column can contain NULL values
 info["nullable"] = (row.values[2].upcase == "YES")
 # get default value (nil represents NULL)
 info["default"] = row.values[3]
 return info
end
The routine uses case-insensitive matching when checking the data
 type and nullable attributes. This guards against future lettercase
 changes in metadata results.
The following example shows how to access and display each element
 of the hash returned by get_enumorset_info():
info = get_enumorset_info(client, db_name, tbl_name, col_name)
puts "Information for #{db_name}.#{tbl_name}.#{col_name}:"
if info.nil?
 puts "No information available (not an ENUM or SET column?)"
else
 puts "Name: " + info["name"]
 puts "Type: " + info["type"]
 puts "Legal values: " + info["values"].join(",")
 puts "Nullable: " + (info["nullable"] ? "yes" : "no")
 puts "Default value: " + (info["default"].nil? ? "NULL" : info["default"])
end
That code produces the following output for the profile table color column:
Information for cookbook.profile.color:
Name: color
Type: enum
Legal values: blue,red,green,brown,black,white
Nullable: yes
Default value: NULL
Equivalent routines for other APIs are similar. You can find
 implementations in the lib
 directory of the recipes
 distribution. Such routines are useful for validation of input values
 (see Recipe 14.11).

12.7 Getting Server Metadata
Problem
You want to get information about the MySQL server itself, such as its version, configuration, and the current status of its components.

Solution
Several SQL functions and SHOW
 statements return information about the server.

Discussion
MySQL has several SQL functions and statements that provide you
 with information about the server itself and about your current client
 session. Table 12-5 shows a few that you may find useful. Both
 SHOW statements permit a GLOBAL or SESSION keyword to select global server values or values specific to your
 session, and a LIKE 'pattern' clause for limiting the results to variable
 names matching the pattern.
Table 12-5. SQL functions and statements to obtain server metadata	Statement	Information produced by statement
	SELECT VERSION() 	Server version string
	SELECT DATABASE() 	Default database name (NULL if none)
	SELECT USER() 	Current user as given by client when connecting
	SELECT CURRENT_USER() 	User used for checking client privileges
	SHOW [GLOBAL|SESSION] STATUS 	Server global or session status indicators
	SHOW [GLOBAL|SESSION] VARIABLES	Server global or status configuration variables

To obtain the information provided by any statement in the table,
 execute it and process its result set. For example, SELECT DATABASE() returns the name of the default
 database or NULL if no database has
 been selected. The following Ruby code uses the statement to present a
 status display containing information about the current session:
db = client.query("SELECT DATABASE()").first.values[0]
puts "Default database: " + (db.nil? ? "(no database selected)" : db)
A given API might provide alternatives to executing SQL statements
 to access these types of information. For example, JDBC has several database-independent methods for obtaining server
 metadata. Use your connection object to obtain the database metadata,
 then invoke the appropriate methods to get the information in which
 you’re interested. Consult a JDBC reference for a complete list, but
 here are a few representative examples:
DatabaseMetaData md = conn.getMetaData();
// can also get this with SELECT VERSION()
System.out.println("Product version: " + md.getDatabaseProductVersion());
// this is similar to SELECT USER() but doesn't include the hostname
System.out.println("Username: " + md.getUserName());

See Also
For more discussion about the use of SHOW (and INFORMATION_SCHEMA) in the context of server
 monitoring, see Recipe 23.2.

12.8 Writing Applications That Adapt to the MySQL Server Version
Problem
You want to use a given feature that is available only in a particular
 version of MySQL.

Solution
Ask the server for its version number. If the server is too old to
 support a given feature, maybe you can fall back to a workaround, if one
 exists. Or ask your user to upgrade.

Discussion
 With each new release of MySQL, new features are added.
 If you’re writing an application that requires certain features, check
 the server version to determine whether they are present; if not, you
 must perform some sort of workaround (assuming there is one).
To get the server version, invoke the VERSION() function. The result is a string that looks something like 5.7.33-debug-log or 8.0.25. In other words, it returns a string
 consisting of major, minor, and patch version numbers;
 possibly some nondigits at the end of the patch version;
 and possibly some suffix. The version string can be used as is for
 presentation purposes, but for comparisons, it’s simpler to work with a
 number—in particular, a five-digit number in
 Mmmtt format, in which
 M, mm,
 tt are the major, minor, and patch version
 numbers. Perform the conversion by splitting the string at the periods,
 stripping from the third piece the suffix that begins with the first
 nonnumeric character, and joining the pieces. For example, 5.7.33-debug-log becomes 50733, and 8.0.25 becomes 80025.
Here’s a Perl DBI function that takes a database-handle argument and returns a
 two-element list that contains both the string and numeric forms of the
 server version. The code assumes that the minor and patch version parts
 are less than 100 and thus no more than two digits each. That should be
 a valid assumption because the source code for MySQL itself uses the
 same format:
sub get_server_version
{
my $dbh = shift;
my ($ver_str, $ver_num);
my ($major, $minor, $patch);

 # fetch result into scalar string
 $ver_str = $dbh->selectrow_array ("SELECT VERSION()");
 return undef unless defined ($ver_str);
 ($major, $minor, $patch) = split (/\./, $ver_str);
 $patch =~ s/\D.*$//; # strip nonnumeric suffix if present
 $ver_num = $major*10000 + $minor*100 + $patch;
 return ($ver_str, $ver_num);
}
To get both forms of the version information at once, call the
 function like this:
my ($ver_str, $ver_num) = get_server_version ($dbh);
To get just one of the values, call it as follows:
my $ver_str = (get_server_version ($dbh))[0]; # string form
my $ver_num = (get_server_version ($dbh))[1]; # numeric form
The following examples demonstrate how to use the numeric version
 value to check whether the server supports certain features:
my $ver_num = (get_server_version ($dbh))[1];
printf "Event scheduler: %s\n", ($ver_num >= 50106 ? "yes" : "no");
printf "4-byte Unicode: %s\n", ($ver_num >= 50503 ? "yes" : "no");
printf "Fractional seconds: %s\n", ($ver_num >= 50604 ? "yes" : "no");
printf "SHA-256 passwords: %s\n", ($ver_num >= 50606 ? "yes" : "no");
printf "ALTER USER: %s\n", ($ver_num >= 50607 ? "yes" : "no");
printf "INSERT DELAYED: %s\n", ($ver_num >= 50700 ? "no" : "yes");
The recipes distribution
 metadata directory contains
 get_server_version() implementations
 in other API languages, and the routines directory contains a server_version() stored function for use in
 SQL statements. The latter function returns only the numeric value
 because VERSION() already produces
 the string value. The following example shows how to use it to implement
 a stored procedure that enables password locking for N failed login attempts if the server is
 recent enough to support the ALTER USER...FAILED_LOGIN_ATTEMPTS statement (MySQL 8.0.19 or
 later):
CREATE PROCEDURE enable_failed_login_attempts(
 user TEXT, host TEXT, failed_attempts INT)
BEGIN
 DECLARE account TEXT;
 SET account = CONCAT(QUOTE(user),'@',QUOTE(host));
 IF server_version() >= 80019 AND user <> '' THEN
 CALL exec_stmt(CONCAT('ALTER USER ',account,'
 FAILED_LOGIN_ATTEMPTS ', failed_attempts));
 END IF;
END;
expire_password() requires the
 exec_stmt() helper routine (see Recipe 11.6). Both are available in
 the routines directory. For more
 information about password expiration, see Recipe 24.5.

12.9 Getting Child Tables That Reference a Specific Table via Foreign Key Constraints
Problem

 You want to know which other tables refer to your table as the parent via foreign key constraints.

Solution

 Query the INFORMATION_SCHEMA.TABLE_CONSTRAINTS and⁠ INFORMA⁠TION_SCHEMA.⁠KEY_​COLUMN_USAGE tables.

Discussion

 Foreign key constraints provide integrity checks, as we discuss in “Using Foreign Keys to Enforce Referential Integrity and Prevent Mismatches”. They do it by preventing statements that modify data, referenced by the linked table, to execute if the result of the statement can break integrity. Foreign keys help keeping the data correct, but at the same time they can raise SQL errors that are hard to troubleshoot. And while it is easy to figure out which table is a parent for the particular child, it is not easy to find which table is a child of the particular parent. Still it would be good to know if a table is referenced by a child in case you plan to modify it.

 The INFORMATION_SCHEMA.TABLE_CONSTRAINTS table contains all the constraints created for your MySQL installation. To select foreign key constraints, narrow your search with the WHERE CONSTRAINT_TYPE='FOREIGN KEY' clause:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, CONSTRAINT_NAME
 -> FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS
 -> WHERE CONSTRAINT_TYPE='FOREIGN KEY' AND TABLE_SCHEMA='cookbook';
+--------------+--------------------+---------------------------+
| TABLE_SCHEMA | TABLE_NAME | CONSTRAINT_NAME |
+--------------+--------------------+---------------------------+
| cookbook | movies_actors_link | movies_actors_link_ibfk_1 |
| cookbook | movies_actors_link | movies_actors_link_ibfk_2 |
+--------------+--------------------+---------------------------+
2 rows in set (0,00 sec)

 The preceding listing prints the foreign keys we created for the example in Recipe 11.10. However, this output still lists only the child table. To find out which table is the parent, we need to join INFORMATION_SCHEMA.TABLE_CONSTRAINTS with the INFORMATION_SCHEMA.KEY_COLUMN_USAGE table:

mysql> SELECT ku.CONSTRAINT_NAME, ku.TABLE_NAME, ku.COLUMN_NAME,
 -> ku.REFERENCED_TABLE_NAME, ku.REFERENCED_COLUMN_NAME
 -> FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS tc
 -> JOIN INFORMATION_SCHEMA.KEY_COLUMN_USAGE ku
 -> USING (CONSTRAINT_NAME, TABLE_SCHEMA, TABLE_NAME)
 -> WHERE CONSTRAINT_TYPE='FOREIGN KEY' AND ku.TABLE_SCHEMA='cookbook'\G
*************************** 1. row ***************************
 CONSTRAINT_NAME: movies_actors_link_ibfk_1
 TABLE_NAME: movies_actors_link
 COLUMN_NAME: movie_id
 REFERENCED_TABLE_NAME: movies
REFERENCED_COLUMN_NAME: id
*************************** 2. row ***************************
 CONSTRAINT_NAME: movies_actors_link_ibfk_2
 TABLE_NAME: movies_actors_link
 COLUMN_NAME: actor_id
 REFERENCED_TABLE_NAME: actors
REFERENCED_COLUMN_NAME: id
2 rows in set (0,00 sec)

 In the preceding listing, the TABLE_NAME and COLUMN_NAME columns refer to the child table, and the REFERENCED_TABLE_NAME and REFERENCED_COLUMN_NAME tables refer to the parent table.

 For InnoDB tables, you can also query the INNODB_FOREIGN and INNODB_FOREIGN_COLS tables:

mysql> SELECT ID, FOR_NAME, FOR_COL_NAME, REF_NAME, REF_COL_NAME
 -> FROM INFORMATION_SCHEMA.INNODB_FOREIGN JOIN
 -> INFORMATION_SCHEMA.INNODB_FOREIGN_COLS USING(ID)
 -> WHERE ID LIKE 'cookbook%'\G
*************************** 1. row ***************************
 ID: cookbook/movies_actors_link_ibfk_1
 FOR_NAME: cookbook/movies_actors_link
FOR_COL_NAME: movie_id
 REF_NAME: cookbook/movies
REF_COL_NAME: id
*************************** 2. row ***************************
 ID: cookbook/movies_actors_link_ibfk_2
 FOR_NAME: cookbook/movies_actors_link
FOR_COL_NAME: actor_id
 REF_NAME: cookbook/actors
REF_COL_NAME: id
2 rows in set (0,01 sec)

 Note that these tables take data from the internal InnoDB data dictionary that stores database and table names in one field. Therefore, you need to use the LIKE operator to limit results to the specific database or table.

12.10 Listing Triggers
Problem

 You want to list triggers defined for your table.

Solution

 Query the INFORMATION_SCHEMA.TRIGGERS table.

Discussion

 Knowing which triggers are defined for specific tables is very useful when you tune performance, especially in the following situations:

	A simple update, affecting a couple of rows, runs much longer than you expect.

	Tables, not participating in the application load and not visible in the processlist, wait for or hold the locks.

	Disk IO is high.

 For example, to list triggers created for the auction table, use the following query:

mysql> SELECT EVENT_MANIPULATION, ACTION_TIMING, TRIGGER_NAME, ACTION_STATEMENT
 -> FROM INFORMATION_SCHEMA.TRIGGERS
 -> WHERE TRIGGER_SCHEMA='cookbook' AND EVENT_OBJECT_TABLE = 'auction'\G
*************************** 1. row ***************************
EVENT_MANIPULATION: INSERT
 ACTION_TIMING: AFTER
 TRIGGER_NAME: ai_auction
 ACTION_STATEMENT: INSERT INTO auction_log (action,id,ts,item,bid)
VALUES('create',NEW.id,NOW(),NEW.item,NEW.bid)
*************************** 2. row ***************************
EVENT_MANIPULATION: UPDATE
 ACTION_TIMING: AFTER
 TRIGGER_NAME: au_auction
 ACTION_STATEMENT: INSERT INTO auction_log (action,id,ts,item,bid)
VALUES('update',NEW.id,NOW(),NEW.item,NEW.bid)
*************************** 3. row ***************************
EVENT_MANIPULATION: DELETE
 ACTION_TIMING: AFTER
 TRIGGER_NAME: ad_auction
 ACTION_STATEMENT: INSERT INTO auction_log (action,id,ts,item,bid)
VALUES('delete',OLD.id,OLD.ts,OLD.item,OLD.bid)
3 rows in set (0,01 sec)

 This way, you can get information such as when a trigger is fired and its body definition. If there is more than one trigger, you’ll see all of them.

12.11 Listing Stored Routines and Scheduled Events
Problem

 You want to know which stored procedures, functions, and scheduled events are created in your database.

Solution

 Query the INFORMATION_SCHEMA.ROUTINES and INFORMATION_SCHEMA.EVENTS tables.

Discussion

 To list both stored functions and stored procedures, query the INFORMATION_SCHEMA.ROUTINES table. If you want to distinguish which kind of routine it is, narrow your search by specifying ROUTINE_TYPE, either FUNCTION or PROCEDURE, by the WHERE condition.

 For example, to list all routines that participate in sequence generation, as we discuss in Recipe 15.17, use the following code:

mysql> SELECT ROUTINE_NAME, ROUTINE_TYPE FROM INFORMATION_SCHEMA.ROUTINES
 -> WHERE ROUTINE_SCHEMA='cookbook' AND ROUTINE_NAME LIKE '%sequence%';
+---------------------+--------------+
| ROUTINE_NAME | ROUTINE_TYPE |
+---------------------+--------------+
sequence_next_value	FUNCTION
create_sequence	PROCEDURE
delete_sequence	PROCEDURE
+---------------------+--------------+
3 rows in set (0,01 sec)

 You may additionally select the ROUTINE_DEFINITION column to obtain the routine body.

 To get a list of scheduled events, query the INFORMATION_SCHEMA.EVENTS table:

mysql> SELECT EVENT_NAME, EVENT_TYPE, INTERVAL_VALUE, INTERVAL_FIELD, LAST_EXECUTED,
 -> STATUS, ON_COMPLETION, EVENT_DEFINITION FROM INFORMATION_SCHEMA.EVENTS\G
*************************** 1. row ***************************
 EVENT_NAME: mark_insert
 EVENT_TYPE: RECURRING
 INTERVAL_VALUE: 5
 INTERVAL_FIELD: MINUTE
 LAST_EXECUTED: 2021-07-07 05:10:45
 STATUS: ENABLED
 ON_COMPLETION: NOT PRESERVE
EVENT_DEFINITION: INSERT INTO mark_log (message) VALUES('-- MARK --')
*************************** 2. row ***************************
 EVENT_NAME: mark_expire
 EVENT_TYPE: RECURRING
 INTERVAL_VALUE: 1
 INTERVAL_FIELD: DAY
 LAST_EXECUTED: 2021-07-07 02:56:14
 STATUS: ENABLED
 ON_COMPLETION: NOT PRESERVE
EVENT_DEFINITION: DELETE FROM mark_log WHERE ts < NOW() - INTERVAL 2 DAY
2 rows in set (0,00 sec)

 This table holds not only event definitions but also metadata, such as when it was last executed, its scheduled interval, and whether it is enabled or disabled.

12.12 Listing Installed Plug-Ins
Problem

 You want to know which plug-ins are installed for your MySQL server.

Solution

 Query the INFORMATION_SCHEMA.PLUGINS table.

Discussion

 MySQL is a highly modular system. Many of its parts are pluggable. For example, all storage engines are also plug-ins. Therefore, it is important to know which are available on your server. To get information about installed plug-ins, query the INFORMATION_SCHEMA.PLUGINS table, or run the SHOW PLUGINS command. While the latter is convenient for interactive use, the former provides more information:

mysql> SELECT * FROM INFORMATION_SCHEMA.PLUGINS
 -> WHERE PLUGIN_NAME IN ('caching_sha2_password', 'InnoDB', 'Rewriter')\G
*************************** 1. row ***************************
 PLUGIN_NAME: caching_sha2_password
 PLUGIN_VERSION: 1.0
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: AUTHENTICATION
 PLUGIN_TYPE_VERSION: 2.0
 PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
 PLUGIN_AUTHOR: Oracle Corporation
 PLUGIN_DESCRIPTION: Caching sha2 authentication
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: FORCE
*************************** 2. row ***************************
 PLUGIN_NAME: InnoDB
 PLUGIN_VERSION: 8.0
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: STORAGE ENGINE
 PLUGIN_TYPE_VERSION: 80025.0
 PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
 PLUGIN_AUTHOR: Oracle Corporation
 PLUGIN_DESCRIPTION: Supports transactions, row-level locking, and foreign keys
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: FORCE
*************************** 3. row ***************************
 PLUGIN_NAME: Rewriter
 PLUGIN_VERSION: 0.2
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: AUDIT
 PLUGIN_TYPE_VERSION: 4.1
 PLUGIN_LIBRARY: rewriter.so
PLUGIN_LIBRARY_VERSION: 1.10
 PLUGIN_AUTHOR: Oracle Corporation
 PLUGIN_DESCRIPTION: A query rewrite plug-in that rewrites queries using the parse tree.
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: ON
3 rows in set (0,01 sec)

 For storage engines, you can obtain even more details by querying the INFORMATION_SCHEMA.ENGINES table, or running the SHOW ENGINES command. Here is the table content for the InnoDB storage engine:

mysql> SELECT * FROM INFORMATION_SCHEMA.ENGINES WHERE ENGINE = 'InnoDB'\G
*************************** 1. row ***************************
 ENGINE: InnoDB
 SUPPORT: DEFAULT
 COMMENT: Supports transactions, row-level locking, and foreign keys
TRANSACTIONS: YES
 XA: YES
 SAVEPOINTS: YES
1 row in set (0,00 sec)

12.13 Listing Character Sets and Collations
Problem

 Sort order, defining which letters are equal, doesn’t work for you, and you want to determine what other options you have.

Solution

 Obtain a list of characters sets, their default collation, and available collations by querying the INFORMATION_SCHEMA.CHARACTER_SETS and INFORMATION_SCHEMA.​COLLATIONS tables.

Discussion

 In Recipe 7.5, we discussed how to change or set a string’s character set and collation. But how do you choose the one that best suits your application requirements?

 Fortunately, MySQL itself can help you find the answer. Inside MySQL client, select from the INFORMATION_SCHEMA.CHARACTER_SETS table to get a list of all available character sets, their default collations, and the maximum character length they can store.
For example, to list all Unicode character sets, run the following query:

mysql> SELECT * FROM INFORMATION_SCHEMA.CHARACTER_SETS
 -> WHERE DESCRIPTION LIKE '%Unicode%' ORDER BY MAXLEN DESC;
+--------------------+----------------------+------------------+--------+
| CHARACTER_SET_NAME | DEFAULT_COLLATE_NAME | DESCRIPTION | MAXLEN |
+--------------------+----------------------+------------------+--------+
utf16	utf16_general_ci	UTF-16 Unicode	4
utf16le	utf16le_general_ci	UTF-16LE Unicode	4
utf32	utf32_general_ci	UTF-32 Unicode	4
utf8mb4	utf8mb4_0900_ai_ci	UTF-8 Unicode	4
utf8	utf8_general_ci	UTF-8 Unicode	3
ucs2	ucs2_general_ci	UCS-2 Unicode	2
+--------------------+----------------------+------------------+--------+
6 rows in set (0,00 sec)

 Each character set may have not only default collation but other collations that allow you to adjust sort order. For example, the Turkish capital letters I and İ, as well as S and Ş are considered equal by the utf8mb4 character set with the default collation. This leads to a situation in which MySQL thinks that the Turkish words ISSIZ (deserted) and İŞSİZ (unemployed) are the same:

mysql> CREATE TABLE two_words(deserted VARCHAR(100), unemployed VARCHAR(100));
Query OK, 0 rows affected (0,03 sec)

mysql> INSERT INTO two_words VALUES('ISSIZ', 'İŞSİZ');
Query OK, 1 row affected (0,00 sec)

mysql> SELECT deserted=unemployed FROM two_words;
+---------------------+
| deserted=unemployed |
+---------------------+
| 1 |
+---------------------+
1 row in set (0,00 sec)

 To resolve this situation, let’s check the INFORMATION_SCHEMA.COLLATIONS table for the collations of the utf8mb4 character set, applicable for the Turkish language:

mysql> SELECT COLLATION_NAME, CHARACTER_SET_NAME
 -> FROM INFORMATION_SCHEMA.COLLATIONS
 -> WHERE CHARACTER_SET_NAME='utf8mb4' AND COLLATION_NAME LIKE '%_tr_%';
+-----------------------+--------------------+
| COLLATION_NAME | CHARACTER_SET_NAME |
+-----------------------+--------------------+
| utf8mb4_tr_0900_ai_ci | utf8mb4 |
| utf8mb4_tr_0900_as_cs | utf8mb4 |
+-----------------------+--------------------+
2 rows in set (0,00 sec)

 If we try them, we’ll receive the correct result: the words deserted and unemployed are no longer considered equal:

mysql> SELECT deserted=unemployed COLLATE utf8mb4_tr_0900_ai_ci FROM two_words;
+---+
| deserted=unemployed COLLATE utf8mb4_tr_0900_ai_ci |
+---+
| 0 |
+---+
1 row in set (0,00 sec)

mysql> SELECT deserted=unemployed COLLATE utf8mb4_tr_0900_as_cs FROM two_words;
+---+
| deserted=unemployed COLLATE utf8mb4_tr_0900_as_cs |
+---+
| 0 |
+---+
1 row in set (0,00 sec)

 The utf8mb4 character set is the default and works well for most setups. However, you may be in a situation where this is not the case. For example, if you store the Russian words совершенный (perfect) and совершённый (accomplished) in a utf8mb4 column with default collation, MySQL will consider these two words equal:

mysql > CREATE TABLE `two_words` (
 -> `perfect` varchar(100) DEFAULT NULL,
 -> `accomplished` varchar(100) DEFAULT NULL
 ->) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;
Query OK, 0 rows affected (0,04 sec)

mysql> INSERT INTO two_words VALUES('совершенный', 'совершённый');
Query OK, 1 row affected (0,01 sec)

mysql> SELECT perfect = accomplished FROM two_words;
+------------------------+
| perfect = accomplished |
+------------------------+
| 1 |
+------------------------+
1 row in set (0,00 sec)

 An intuitive way to solve this issue is to use available collations for the Russian language: utf8mb4_ru_0900_ai_ci. Unfortunately, this does not work:

mysql> SELECT perfect = accomplished COLLATE utf8mb4_ru_0900_ai_ci FROM two_words;
+--+
| perfect = accomplished COLLATE utf8mb4_ru_0900_ai_ci |
+--+
| 1 |
+--+
1 row in set (0,00 sec)

 The reason for this is that the utf8mb4_ru_0900_ai_ci collation is accent insensitive. The case sensitive and accent sensitive utf8mb4_ru_0900_as_cs variation solves the issue:

mysql> SELECT perfect = accomplished COLLATE utf8mb4_ru_0900_as_cs FROM two_words;
+--+
| perfect = accomplished COLLATE utf8mb4_ru_0900_as_cs |
+--+
| 0 |
+--+
1 row in set (0,00 sec)

 The utf8mb4_ru_0900_ai_ci and utf8mb4_ru_0900_as_cs collations were added in version 8.0. If you’re still using version 5.7 and are working on the application where this difference is critical, you can also examine the INFORMATION_SCHEMA.CHARACTER_SETS table for a character set that supports the Cyrillic alphabet and try it:

mysql> SELECT * FROM INFORMATION_SCHEMA.CHARACTER_SETS
 -> WHERE DESCRIPTION LIKE '%Russian%' OR DESCRIPTION LIKE '%Cyrillic%';
+--------------------+----------------------+-----------------------+--------+
| CHARACTER_SET_NAME | DEFAULT_COLLATE_NAME | DESCRIPTION | MAXLEN |
+--------------------+----------------------+-----------------------+--------+
koi8r	koi8r_general_ci	KOI8-R Relcom Russian	1
cp866	cp866_general_ci	DOS Russian	1
cp1251	cp1251_general_ci	Windows Cyrillic	1
+--------------------+----------------------+-----------------------+--------+
3 rows in set (0,00 sec)

mysql> drop table two_words;
Query OK, 0 rows affected (0,02 sec)

mysql> CREATE TABLE two_words(perfect VARCHAR(100), accomplished VARCHAR(100))
 -> CHARACTER SET cp1251;
Query OK, 0 rows affected (0,04 sec)

mysql> INSERT INTO two_words VALUES('совершенный', 'совершённый');
Query OK, 1 row affected (0,00 sec)

mysql> SELECT perfect = accomplished FROM two_words;
+------------------------+
| perfect = accomplished |
+------------------------+
| 0 |
+------------------------+
1 row in set (0,00 sec)

 We’ve chosen the cp1251 character set for our example, but all of them resolve this comparison issue.

12.14 Listing CHECK Constraints
Problem

 You want to examine which CHECK constraints are defined for your database.

Solution

 Query the INFORMATION_SCHEMA.CHECK_CONSTRAINTS and INFORMA⁠TION_SCHEMA​.TABLE_CONSTRAINTS tables.

Discussion

 The INFORMATION_SCHEMA.CHECK_CONSTRAINTS table contains a list of all constraints, the schema for which they are defined, and the CHECK_CLAUSE that is practically the constraint definition. However, the table does not store information about which table the constraint is created in. To list both constraints and tables for which they are defined, join the INFORMATION_SCHEMA.CHECK_CONSTRAINTS table with the INFORMATION_SCHEMA.TABLE_CONSTRAINTS table:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, CONSTRAINT_NAME, ENFORCED, CHECK_CLAUSE
 -> FROM INFORMATION_SCHEMA.CHECK_CONSTRAINTS
 -> JOIN INFORMATION_SCHEMA.TABLE_CONSTRAINTS
 -> USING(CONSTRAINT_NAME)
 -> WHERE CONSTRAINT_TYPE='CHECK' ORDER BY CONSTRAINT_NAME DESC LIMIT 2\G
*************************** 1. row ***************************
 TABLE_SCHEMA: cookbook
 TABLE_NAME: even
CONSTRAINT_NAME: even_chk_1
 ENFORCED: YES
 CHECK_CLAUSE: ((`even_value` % 2) = 0)
*************************** 2. row ***************************
 TABLE_SCHEMA: cookbook
 TABLE_NAME: book_authors
CONSTRAINT_NAME: book_authors_chk_1
 ENFORCED: YES
 CHECK_CLAUSE: json_schema_valid(_utf8mb4\'{"id": ↩
 "http://www.oreilly.com/mysqlcookbook", "$schema": ↩
 "http://json-schema.org/draft-04/schema#", "description": ↩
 "Schema for the table book_authors", "type": "object", "properties": ↩
 {"name": {"type": "string"}, "lastname": {"type": "string"}, ↩
 "books": {"type": "array"}}, "required":["name", "lastname"]} \',`author`)
2 rows in set (0,01 sec)

Chapter 13. Importing and Exporting Data
13.0 Introduction
Suppose that a file named somedata.csv
 contains 12 data columns in comma-separated values (CSV) format. From this
 file you want to extract only columns 2, 11, 5, and 9 and use them to
 create database rows in a MySQL table that contains name, birth,
 height, and weight columns. You must make sure that the
 height and weight are positive integers, and convert the birth dates from
 MM/DD/YY format to
 YYYY-MM-DD format. How can you do this?
Data transfer problems with specific requirements occur
 frequently when you transfer data into MySQL. Datafiles are not always
 formatted for being ready to load into MySQL with no preparation. As a
 result, it’s often necessary to preprocess information to put it into a
 format acceptable for MySQL. The reverse also is true; data exported from
 MySQL may need massaging to be useful for other programs.
Although some data preparation operations
 require a great deal of hand checking and reformatting, in most cases you
 can do at least part of the job automatically. Virtually all such problems
 involve at least some elements of a common set of conversion issues. This
 chapter and the next discuss what these issues are, how to deal with them
 by taking advantage of the existing tools at your disposal, and how to
 write your own tools when necessary. The idea is not to cover all possible
 situations (an impossible task) but to show representative techniques and
 utilities. Use them as is or adapt them. (There are commercial data-handling tools, but our purpose here is
 to enable you to do things yourself.) With respect to the problem posed at
 the beginning of this Introduction, see Recipe 14.18 for the solution we arrived
 at.
The discussion on how to transfer data to and from MySQL begins with native MySQL facilities for importing
 data (the LOAD DATA statement and the mysqlimport command-line program) and for
 exporting data (the SELECT…INTO OUTFILE
 statement). For situations where the native facilities do not suffice, we
 move on to cover techniques for using external supporting utilities (such
 as sed and tr) and for writing your own. There are two
 broad sets of issues to consider:
	How to manipulate the structure of
 datafiles. When a file is in a format not suitable for import, you
 must convert it to a different format. This may involve issues such as
 changing the column delimiters or line-ending sequences, or removing
 or rearranging columns in the file. This chapter covers such
 techniques.

	How to manipulate the content of datafiles.
 If you don’t know whether the values contained in a file are legal,
 you may want to preprocess it to check or reformat them. Numeric
 values may need verification as lying within a specific range, dates
 may need conversion to or from ISO format, and so forth. Chapter 14 covers those techniques.

Source code for program fragments and scripts discussed in this
 chapter is located in the transfer
 directory of the recipes
 distribution.
General Import and Export Issues
Incompatible datafile formats and differing rules for interpreting various kinds
 of values cause headaches when transferring data between programs.
 Nevertheless, certain issues recur frequently. Be aware of them and you
 can identify more easily what must be done to solve particular import or
 export problems.
In its most basic form, an input stream is just a set of bytes
 with no particular meaning. Successful import into MySQL requires
 recognizing which bytes represent structural information and which
 represent the data values framed by that structure. Because such
 recognition is key to decomposing the input into appropriate units, the
 most fundamental import issues are these:
	What is the record separator? Knowing this enables you to
 partition the input stream into records.

	What is the field delimiter? Knowing this enables you to
 partition each record into field values. Identifying the data values
 also might include stripping quotes from around the values or
 recognizing escape sequences within them.

The ability to break the input into records and fields is
 important for extracting the data values from it. If the values are
 still not in a form that can be used directly, you may need to consider
 other issues:
	Do the order and number of columns match the structure of the
 database table? Mismatches require rearranging or skipping
 columns.

	How should NULL or empty
 values be handled? Are they permitted? Can NULL values even be detected? (Some
 systems export NULL values as
 empty strings, making it impossible to distinguish them.)

	Do data values require validation or reformatting? If the
 values are in a format that matches MySQL’s expectations, no further
 processing is necessary. Otherwise, they must be checked and
 possibly rewritten.

For export from MySQL, the issues are somewhat the reverse. You
 can assume that values stored in the database are valid, but it’s
 necessary to add column and record delimiters to form an output stream
 that has a structure other programs can recognize, and values may
 require reformatting for use by other programs.

File Formats
Datafiles come in many formats, two of which appear frequently in this
 chapter:
	Tab-delimited or tab-separated values (TSV) format
	This is one of the simplest file structures; lines contain values separated by
 tab characters. A short tab-delimited file might look like this,
 where the whitespace between column values represents single tab
 characters:
a b c
a,b,c d e f

	Comma-separated values (CSV) format
	Files written in CSV format vary somewhat; there is apparently no formal
 standard describing the format. However, the general idea is that
 lines consist of values separated by commas, and values containing
 internal commas are enclosed within quotes to prevent the commas
 from being interpreted as value delimiters. It’s also common for
 values containing spaces to be quoted as well. In this example,
 each line contains three values:
a,b,c
"a,b,c","d e",f
It’s trickier to process CSV files than tab-delimited files
 because characters like quotes and commas have a dual meaning:
 they may represent file structure or be included in the content of
 data values.

Another important datafile characteristic is the line-ending
 sequence. The most common sequences are carriage return (CR), linefeed (LF) and carriage return/linefeed (CRLF) pair.
Datafiles often begin with a row of column labels. For some import
 operations, the row of labels must be discarded to avoid having it be
 loaded into your table as data. In other cases, the labels are quite
 useful:
	For import into existing tables, the labels help you match
 datafile columns with the table columns if they are not necessarily
 in the same order.

	The labels can be used for column names when creating a new
 table automatically or semiautomatically from a datafile. For
 example, Recipe 13.20 discusses a utility
 that examines a datafile and guesses the CREATE TABLE statement to use to create a table
 from the file. If a label row is present, the utility uses the
 labels for column names.

Tab-Delimited, Linefeed-Terminated Format
Although datafiles may be written in many formats, it’s unwieldy
 to include machinery for reading multiple formats within each
 file-processing utility you write. For that reason, many of the
 utilities described in this chapter assume for simplicity that their
 input is in tab-delimited, linefeed-terminated format. (This is also
 the default format for MySQL’s LOAD DATA statement.) By making this assumption,
 it becomes easier to write programs that read files.
On the other hand, something has to be able
 to read data in other formats. To handle that problem, we’ll develop a
 cvt_file.pl script that can read
 several types of files. The script is based on the Perl
 Text::CSV_XS module, which despite its name is useful for much more than just
 CSV data. cvt_file.pl can convert
 between many file types, making it possible for other programs that
 require tab-delimited lines to be used with files not originally
 written in that format. In other words, you can use cvt_file.pl to convert a file to
 tab-delimited, linefeed-terminated format, and then any program that
 expects that format can process the file. The file is available in the recipes distribution.

Notes on Invoking Shell Commands
This chapter shows a number of programs that you invoke from the
 command line using a shell like bash
 or tcsh under Unix or cmd.exe
 (the command prompt) under Windows. Many of the example
 commands for these programs use quotes around option values, and
 sometimes an option value is itself a quote character. Quoting
 conventions vary from one shell to another, but the following rules seem
 to work with most of them (including cmd.exe under Windows):
	For an argument that contains spaces, enclose it within
 double quotes to prevent the shell from interpreting
 it as multiple separate arguments. The shell strips the quotes and
 passes the argument to the command intact.

	To include a double-quote character in the argument itself,
 precede it with a backslash.

Some shell commands in this chapter are so long that they’re shown
 as you would enter them using several lines, with a backslash character
 as the line-continuation character:
$ prog_name \
 argument1 \
 argument2 ...
That works for Unix. On Windows, the continuation character is ^ (or
 ` for PowerShell). Alternatively, on
 any platform, enter the entire command on one line:
C:\> prog_name argument1 argument2 ...

13.1 Importing Data with LOAD DATA and mysqlimport
Problem
You want to load a datafile into a table using MySQL’s built-in import
 capabilities.

Solution
Use the LOAD DATA statement or the mysqlimport command-line program.

Discussion
MySQL provides a LOAD DATA statement that acts as a bulk data
 loader. Here’s an example statement that reads a file, mytbl.txt, from your current directory (the directory from which you call mysql client) and
 loads it into the mytbl table in the
 default database:
mysql> LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl;
Warning

 Since MySQL 8.0, the LOCAL loading capability is
 disabled by default for security reasons.

 To enable it on the test server, set the local_infile to ON variable:

SET GLOBAL local_infile = 1;
 and start mysql client with the --local-infile option:

mysql -ucbuser -p --local-infile

 Alternatively, omit
 LOCAL from the statement and specify
 the full pathname to the file, which must be readable by the server.
 Local versus nonlocal data loading is discussed shortly.

The MySQL utility program mysqlimport acts as a wrapper around LOAD DATA
 so that you can load input files directly from the command line. The
 mysqlimport command that is
 equivalent to the preceding LOAD
 DATA statement looks like this,
 assuming that mytbl is in the
 cookbook database:
$ mysqlimport --local cookbook mytbl.txt
For mysqlimport, as with other
 MySQL programs, you may need to specify connection parameter options
 such as --user or --host (see Recipe 1.4).
LOAD DATA provides options to address many of the
 import issues mentioned in the chapter introduction, such as the
 line-ending sequence for recognizing how to break input into records,
 the column value delimiter that permits records to be broken into
 separate values, the quoting character that may enclose column values,
 quoting and escaping conventions within values, and NULL value representation.
The following list describes LOAD DATA’s
 general characteristics and capabilities; mysqlimport shares most of these behaviors.
 We’ll note some differences as we go along, but for the most, what can
 be done with LOAD DATA can be done with mysqlimport as well:
	By default, LOAD DATA expects the datafile to have the same
 number of columns as the table into which you load it, with the
 columns present in the same order as in the table. If the file
 column number or order differ from the table, you can specify which
 columns are present and their order. If the datafile contains fewer
 columns than the table, MySQL assigns default values for the missing
 columns.

	LOAD DATA assumes that data values are
 separated by tab characters and that lines end with linefeeds
 (newlines). If a file doesn’t conform to these conventions, you can
 specify its format explicitly.

	You can indicate that data values may have quotes around them
 that should be stripped, and you can specify the quote
 character.

	Several special escape sequences are recognized and converted during input
 processing. The default escape character is the backslash (\), but you can change it. The \N sequence is interpreted as a NULL value. The \b, \n,
 \r, \t, \\,
 and \0 sequences are interpreted
 as backspace, linefeed, carriage return, tab, backslash, and
 ASCII NUL characters. (NUL is a zero-valued byte; it
 differs from the SQL NULL
 value.)

	LOAD DATA provides diagnostic information about
 which input values cause problems. To display this information,
 execute a SHOW
 WARNINGS statement after the
 LOAD DATA statement.

This and the following eight recipes describe how to handle these issues
 using LOAD DATA or mysqlimport. It’s lengthy because there’s a
 lot to cover.
Specifying the datafile location
You can load files located either on the server host or on the client host
 from which you issue the LOAD
 DATA statement. Telling MySQL where
 to find your datafile is a matter of knowing the rules that determine
 where it looks for the file (particularly important for files not in
 your current directory).
By default, the MySQL server assumes that the datafile is
 located on the server host. You can load local files that are located
 on the client host using LOAD
 DATA LOCAL rather than LOAD DATA, unless LOCAL capability is disabled by default.
Note
Many of the examples in this chapter assume that LOCAL can be used. If that’s not true for
 your system, adapt the examples: omit LOCAL from the statement, and make sure that
 the file is located on the MySQL server host and readable to the
 server.

If the LOAD DATA statement includes no LOCAL keyword, the
 MySQL server looks for the file on the server host using the following
 rules:
	Your MySQL account must have the FILE
 privilege, and the file to be loaded must be either located in the
 data directory for the default database or world readable.

	An absolute pathname fully specifies the location of the file in
 the filesystem and the server reads it from the given
 location.

	A relative pathname is interpreted two ways, depending on whether it has a
 single component or multiple components. For a single-component
 filename such as mytbl.txt,
 the server looks for the file in the database directory for the
 default database. (The operation fails if you have not selected a
 default database.) For a multiple-component filename such as
 xyz/mytbl.txt, the server
 looks for the file beginning in the MySQL data directory. That is,
 it expects to find mytbl.txt
 in a directory named xyz.

	
 If the secure_file_priv option is set to a directory path, MySQL is able to access import and export files only in this directory. Specify absolute path if you use secure_file_priv.

Database directories are located directly under the server’s
 data directory, so these two statements are equivalent if the default
 database is cookbook:
mysql> LOAD DATA INFILE 'mytbl.txt' INTO TABLE mytbl;
mysql> LOAD DATA INFILE 'cookbook/mytbl.txt' INTO TABLE mytbl;
If the LOAD DATA statement includes the LOCAL keyword, your client program reads the
 file on the client host and sends its contents to the server. The
 client interprets the pathname like this:
	An absolute pathname fully specifies the location of the
 file in the filesystem.

	A relative pathname specifies the file location relative to
 the directory from which you stated the mysql client.

If your file is located on the client host, but you forget to
 indicate that it’s local, an error occurs:
mysql> LOAD DATA 'mytbl.txt' INTO TABLE mytbl;
ERROR 1045 (28000): Access denied for user: 'user_name@host_name'
(Using password: YES)
That Access denied message can be confusing: if you’re able to connect to the
 server and issue the LOAD DATA statement, it would seem that you’ve
 already gained access to MySQL, right? The error message means the
 server (not the client) tried to open mytbl.txt on the server host and could not
 access it.
If your MySQL server runs on the host from which you issue the
 LOAD DATA statement, remote and
 local refer to the same host. But the rules just
 discussed for locating datafiles still apply. Without LOCAL, the server reads the datafile
 directly. With LOCAL, the client
 program reads the file and sends its contents to the server.
mysqlimport uses the same
 rules for finding files as LOAD
 DATA. By default, it assumes that
 the datafile is located on the server host. To indicate that the file
 is local to the client host, specify the --local (or
 -L) option on the command line.
LOAD DATA assumes that the table is located in
 the default database. To load a file into a specific database, qualify
 the table name with the database name. The following statement
 indicates that the mytbl table is
 located in the other_db
 database:
mysql> LOAD DATA LOCAL 'mytbl.txt' INTO TABLE other_db.mytbl;
mysqlimport always requires a
 database argument:
$ mysqlimport --local cookbook mytbl.txt
LOAD DATA assumes no relationship between the
 name of the datafile and the name of the table into which you load the
 file’s contents. mysqlimport
 assumes a fixed relationship between the datafile name and the table
 name. Specifically, it uses the last component of the filename to
 determine the table name. For example, mysqlimport interprets mytbl, mytbl.dat, /home/paul/mytbl.csv, and C:\projects\mytbl.txt all as files
 containing data for the mytbl table.
Naming Datafiles Under Windows
Windows systems use \ as
 the pathname separator in filenames. That’s a bit of a
 problem because MySQL interprets the backslash as the escape character
 in string values. To specify a Windows pathname, use either doubled
 backslashes or forward slashes. These two statements show two ways
 of referring to the same Windows file:
mysql> LOAD DATA LOCAL INFILE 'C:\\projects\\mydata.txt' INTO mytbl;
mysql> LOAD DATA LOCAL INFILE 'C:/projects/mydata.txt' INTO mytbl;
If the NO_BACKSLASH_ESCAPES
 SQL mode is enabled, the backslash is not special, and you do not
 double it:
mysql> SET sql_mode = CONCAT('NO_BACKSLASH_ESCAPES,', @@sql_mode);
mysql> LOAD DATA LOCAL INFILE 'C:\projects\mydata.txt' INTO mytbl;

13.2 Specifying Column and Line Delimiters
Problem

 Your datafile uses nonstandard column or line delimiters.

Solution

 Use the FIELDS TERMINATED BY and LINES TERMINATED BY clauses for the LOAD DATA INFILE statement and the --fields-terminated-by and --lines-terminated-by options for mysqlimport.

Discussion
By default, LOAD DATA assumes that datafile lines are terminated by linefeed (newline)
 characters and that values within a line are separated by tab
 characters. To provide explicit information about datafile format, use
 a FIELDS clause to
 describe the characteristics of fields within a line, and a LINES clause to
 specify the line-ending sequence. The following LOAD DATA
 statement indicates that the input file contains data values separated
 by colons and lines terminated by carriage returns:
mysql> LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl
 -> FIELDS TERMINATED BY ':' LINES TERMINATED BY '\r';
Each clause follows the table name. If both are present,
 FIELDS must precede LINES. The line and field termination
 indicators can contain multiple characters. For example, \r\n indicates that lines are terminated by
 carriage return/linefeed pairs.
The LINES clause also
 has a STARTING
 BY subclause. It specifies the
 sequence to be stripped from each input record. (Everything
 up to the given sequence is
 stripped. If you specify STARTING
 BY 'X' and a record begins with abcX, all four leading characters are
 stripped.) Like TERMINATED BY, the sequence can have multiple characters. If TERMINATED BY and STARTING BY both are present in the LINES clause, they can appear in any
 order.
For mysqlimport, command
 options provide the format specifiers. Commands that correspond to the
 preceding two LOAD DATA statements look like this:
$ mysqlimport --local cookbook mytbl.txt
$ mysqlimport --local --fields-terminated-by=":" --lines-terminated-by="\r" \
 cookbook mytbl.txt
Option order doesn’t matter for mysqlimport.
The FIELDS and LINES clauses understand hex notation to
 specify arbitrary format characters, which is useful for loading
 datafiles that use binary format codes. Suppose that a datafile has
 lines with Ctrl-A between fields and Ctrl-B at the end of lines. The
 ASCII values for Ctrl-A and Ctrl-B are 1 and 2, so you represent them
 as 0x01 and 0x02:
FIELDS TERMINATED BY 0x01 LINES TERMINATED BY 0x02
mysqlimport also understands
 hex constants for format specifiers. You may find this capability
 helpful if you don’t like remembering how to type escape sequences on
 the command line or when it’s necessary to use quotes around them. Tab
 is 0x09, linefeed is 0x0a, and carriage return is 0x0d. This command indicates that the
 datafile contains tab-delimited lines terminated by CRLF pairs:
$ mysqlimport --local --fields-terminated-by=0x09 \
 --lines-terminated-by=0x0d0a cookbook mytbl.txt
When you import datafiles, don’t assume that LOAD DATA
 (or mysqlimport) knows more than it
 does. Some LOAD DATA frustrations occur because people
 expect MySQL to know more than it possibly can. Keep in mind that
 LOAD DATA has no idea at all about the format of
 your datafile. It makes certain assumptions about the input structure,
 represented as the default settings for the line and field
 terminators, and for the quote and escape character settings. If your
 input differs from those assumptions, you must tell MySQL so.
The line-ending sequence used in a datafile typically is
 determined by the system from which the file originated. Unix files
 normally have lines terminated by linefeeds, which you indicate
 like this:
LINES TERMINATED BY '\n'
Because \n happens to be the
 default line terminator, you need not specify that clause in this case
 unless you want to indicate the line-ending sequence explicitly. If
 files on your system don’t use the Unix default (linefeed), you must
 specify the line terminator explicitly. For files that have lines
 ending in carriage returns or carriage return/linefeed pairs,
 respectively, use the appropriate LINES TERMINATED BY clause:
LINES TERMINATED BY '\r'
LINES TERMINATED BY '\r\n'
For example, to load a Windows file that contains tab-delimited fields and lines ending
 with CRLF pairs, use this LOAD
 DATA statement:
mysql> LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl
 -> LINES TERMINATED BY '\r\n';
The corresponding mysqlimport
 command is:
$ mysqlimport --local --lines-terminated-by="\r\n" cookbook mytbl.txt
If the file has been transferred from one machine to another,
 its contents may have been changed in subtle ways of which you’re not
 aware. For example, a file transfer protocol (FTP) transfer between machines running different
 operating systems typically translates line endings to those that are
 appropriate for the destination machine if the transfer is performed
 in text mode rather than in binary (image) mode.
When in doubt, check the contents of your datafile using a hex
 dump program or other utility that displays a visible representation
 of whitespace characters like tab, carriage return, and linefeed.
 Under Unix, programs such as od or
 hexdump can display file contents
 in a variety of formats. If you don’t have these or some comparable
 utility, the transfer directory
 of the recipes distribution
 contains hex dumpers written in Perl, Ruby, and Python (hexdump.pl, hexdump.rb, and hexdump.py), as well as programs that
 display printable representations of all characters of a file
 (see.pl, see.rb, and see.py). You may find them useful for
 examining files to see what they really contain.

13.3 Dealing with Quotes and Special Characters
Problem

 Your datafile contains quotes or special characters and therefore cannot be loaded with default options.

Solution

 Use the FIELDS clause for LOAD DATA INFILE with a combination of TERMINATED BY, ENCLOSED BY and ESCAPED BY. For mysqlimport, use the --fields-enclosed-by and --fields-escaped-by options.

Discussion
If your datafile contains quoted values or escaped characters, tell
 LOAD DATA to be aware of them so that it doesn’t
 load uninterpreted data values into the database.
The FIELDS clause can
 specify other format options besides TERMINATED BY. By default, LOAD DATA
 assumes that values are unquoted, and it interprets the backslash
 (\) as an escape character for special characters. To indicate the
 value-quoting character explicitly, use ENCLOSED BY; MySQL will strip that character from the
 ends of data values during input processing. To change the default
 escape character, use ESCAPED
 BY.
You can use the
 ENCLOSED BY, ESCAPED BY, and TERMINATED BY subclauses in any order.

 For example, these FIELDS clauses are equivalent:
FIELDS TERMINATED BY ',' ENCLOSED BY '"'
FIELDS ENCLOSED BY '"' TERMINATED BY ','
The TERMINATED BY value can consist of multiple characters.
 If data values are separated within input lines by *@*, sequences, indicate that like
 this:
FIELDS TERMINATED BY '*@*'
To disable escape processing entirely, specify an empty escape
 sequence:
FIELDS ESCAPED BY ''
When you specify ENCLOSED
 BY to indicate which quote
 character should be stripped from data values, it’s possible to
 include the quote character literally within data values by doubling
 it or by preceding it with the escape character. For example, if the
 quote character is " and the escape character is \, the input value "a""b\"c" is interpreted as a"b"c.
For mysqlimport, the
 corresponding command options for specifying quote and escape values
 are --fields-enclosed-by and
 --fields-escaped-by. (When using mysqlimport
 options that include quotes or backslashes or other characters that
 are special to your command interpreter, you may need to quote or
 escape the quote or escape characters.)

13.4 Handling Duplicate Key Values
Problem

 You have duplicates in your datafile, and import fails with an error.

Solution

 Instruct LOAD DATA INFILE and mysqlimport to either ignore or replace duplicates.

Discussion
By default, an error occurs if an input record duplicates an existing
 row in the column or columns that form a PRIMARY KEY or UNIQUE index. To control this behavior,
 specify IGNORE or
 REPLACE after the filename to tell
 MySQL to either ignore duplicate rows or replace old rows with the new
 ones.
Suppose that you periodically receive meteorological data about
 current weather conditions from various monitoring stations and that
 you store various measurements from these stations in a table that
 looks like this:
CREATE TABLE weatherdata
(
 station INT UNSIGNED NOT NULL,
 type ENUM('precip','temp','cloudiness','humidity','barometer') NOT NULL,
 value FLOAT,
 PRIMARY KEY (station, type)
);
The table includes a primary key on the combination of station
 ID and measurement type to ensure that it contains only one row per
 station per type of measurement. The table is intended to hold only
 current conditions, so when new measurements for a given station are
 loaded into the table, they should kick out the station’s previous
 measurements. To accomplish this, use the REPLACE keyword:
mysql> LOAD DATA LOCAL INFILE 'data.txt' REPLACE INTO TABLE weatherdata;
mysqlimport has
 --ignore and --replace options that
 correspond to the IGNORE and REPLACE keywords for LOAD DATA.

13.5 Obtaining Diagnostics About Bad Input Data
Problem

 You found differences between the datafile and data loaded into the database and want to know why import failed for those values.

Solution

 Use the SHOW WARNINGS statement.

Discussion
LOAD DATA displays an information line to indicate whether there are any
 problematic input values. If so, use SHOW WARNINGS to find where they are and what the problems are.
When a LOAD DATA statement finishes, it returns a line
 of information that tells you how many errors or data conversion
 problems occurred, for example:
Records: 134 Deleted: 0 Skipped: 2 Warnings: 13
These values provide general information about the import
 operation:
	Records indicates the
 number of records found in the file.

	Deleted and Skipped are related to the treatment of
 input records that duplicate existing table rows on unique index
 values. Deleted indicates how
 many rows were deleted from the table and replaced by input
 records, and Skipped indicates
 how many input records were ignored in favor of existing
 rows.

	Warnings is something of
 a catchall that indicates the number of problems found while
 loading data values into columns. Either a value stores into a
 column properly or it doesn’t. In the latter case, the value ends
 up in MySQL as something different, and MySQL counts it as a
 warning. (Storing a string abc
 into a numeric column results in a stored value of 0, for example.)

What do these values tell you? The Records value normally should match the
 number of lines in the input file. If it doesn’t, that’s a sign that
 MySQL interprets the file as having a different format than it
 actually has. In this case, you’ll likely also see a high Warnings value, which indicates that many
 values had to be converted because they didn’t match the expected data
 type. The solution to this problem often is to specify the proper
 FIELDS and LINES clauses.
Assuming that your FIELDS and
 LINES format specifiers are correct, a nonzero Warnings count indicates the presence of bad
 input values. You can’t tell from the numbers in the LOAD DATA
 information line which input records had problems or which columns
 were bad. To get that information, issue a SHOW WARNINGS statement.
Suppose that a table t has
 this structure:
CREATE TABLE t
(
 i INT,
 c CHAR(3),
 d DATE
);
And suppose that a datafile data.txt looks like this:
1 1 1
abc abc abc
2010-10-10 2010-10-10 2010-10-10
Loading the file into the table causes a number, a string, and a
 date to be loaded into each of the three columns. Doing so results in
 several data conversions and warnings, which you can see using
 SHOW WARNINGS immediately following LOAD DATA:
mysql> LOAD DATA LOCAL INFILE 'data.txt' INTO TABLE t;
Query OK, 3 rows affected, 5 warnings (0.01 sec)
Records: 3 Deleted: 0 Skipped: 0 Warnings: 5
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
Warning	1265	Data truncated for column 'd' at row 1
Warning	1366	Incorrect integer value: 'abc' for column 'i' at row 2
Warning	1265	Data truncated for column 'd' at row 2
Warning	1265	Data truncated for column 'i' at row 3
Warning	1265	Data truncated for column 'c' at row 3
+---------+------+--+
5 rows in set (0.00 sec)
The SHOW WARNINGS output helps you determine which
 values were converted and why. The resulting table looks like this:
mysql> SELECT * FROM t;
+------+------+------------+
| i | c | d |
+------+------+------------+
1	1	0000-00-00
0	abc	0000-00-00
2010	201	2010-10-10
+------+------+------------+

13.6 Skipping Datafile Lines
Problem

 You want to skip the few first lines from a datafile.

Solution

 Use an IGNORE...LINES clause for LOAD DATA INFILE and the --ignore-lines option for mysqlimport.

Discussion
To skip the first n lines of a datafile, add an IGNORE
 n LINES
 clause to the LOAD DATA statement. For example, a file might
 include an initial line of column labels. You can skip it like
 this:
mysql> LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl
 -> IGNORE 1 LINES;
mysqlimport supports an
 --ignore-lines=n option
 that corresponds to IGNORE n LINES.

13.7 Specifying Input Column Order
Problem

 Column order in the datafile and the table is different, and you need to change it for the import.

Solution

 Specify the order of the columns when importing.

Discussion
LOAD DATA assumes that columns in the datafile have the same order as the
 columns in the table. If that’s not true, specify a list to indicate
 the table columns into which to load the datafile columns. Suppose
 that your table has columns a,
 b, and c, but successive columns in the datafile
 correspond to columns b, c, and a.
 Load the file like this:
mysql> LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl (b,c,a);
mysqlimport has a
 corresponding --columns option to specify the column list:
$ mysqlimport --local --columns=b,c,a cookbook mytbl.txt

13.8 Preprocessing Input Values Before Inserting Them
Problem

 Values in the datafile cannot be inserted into the database as is. You need to modify them before inserting.

Solution

 Use a SET clause for LOAD DATA INFILE and MySQL functions to modify values.

Discussion
LOAD DATA can perform limited preprocessing of input values before inserting
 them, which sometimes enables you to map input data onto more
 appropriate values before loading them into your table. This is useful
 when values are not in a format suitable for loading into a table (for
 example, they are in the wrong units, or two input fields must be
 combined and inserted into a single column).
The previous section shows how to specify a column list for
 LOAD DATA to indicate how input fields correspond
 to table columns. The column list also can name user-defined
 variables such that for each input record, the input fields are
 assigned to the variables. You can then perform calculations with
 those variables before inserting the result into the table. Specify
 these calculations in a SET
 clause that names one or more col_name
 = expr
 assignments, separated by commas.
Suppose that a datafile has the following columns, with the
 first line providing column labels:
Date Time Name Weight State
2006-09-01 12:00:00 Bill Wills 200 Nevada
2006-09-02 09:00:00 Jeff Deft 150 Oklahoma
2006-09-04 03:00:00 Bob Hobbs 225 Utah
2006-09-07 08:00:00 Hank Banks 175 Texas
Suppose also that the file is to be loaded into a table that has
 these columns:
CREATE TABLE t
(
 dt DATETIME,
 last_name CHAR(10),
 first_name CHAR(10),
 weight_kg FLOAT,
 st_abbrev CHAR(2)
);
To import the file, you must address several mismatches between
 its fields and the table columns:
	The file contains separate date and time fields that must be
 combined into date-and-time values for insertion into the DATETIME column.

	The file contains a name field, which must be split into
 separate first and last name values for insertion into the
 first_name and last_name columns.

	The file contains a weight in pounds, which must be
 converted to kilograms for insertion into the weight_kg column (1 lb. equals .454
 kg.).

	The file contains state names, but the table contains
 two-letter abbreviations. The name can be mapped to the
 abbreviation by performing a lookup in the states table.

To handle these conversions, skip the first line that contains
 the column labels, assign each input column to a user-defined
 variable, and write a SET clause to
 perform the calculations:
mysql> LOAD DATA LOCAL INFILE 'data.txt' INTO TABLE t
 -> IGNORE 1 LINES
 -> (@date,@time,@name,@weight_lb,@state)
 -> SET dt = CONCAT(@date,' ',@time),
 -> first_name = SUBSTRING_INDEX(@name,' ',1),
 -> last_name = SUBSTRING_INDEX(@name,' ',-1),
 -> weight_kg = @weight_lb * .454,
 -> st_abbrev = (SELECT abbrev FROM states WHERE name = @state);
After the import operation, the table contains these
 rows:
mysql> SELECT * FROM t;
+---------------------+-----------+------------+-----------+-----------+
| dt | last_name | first_name | weight_kg | st_abbrev |
+---------------------+-----------+------------+-----------+-----------+
2006-09-01 12:00:00	Wills	Bill	90.8	NV
2006-09-02 09:00:00	Deft	Jeff	68.1	OK
2006-09-04 03:00:00	Hobbs	Bob	102.15	UT
2006-09-07 08:00:00	Banks	Hank	79.45	TX
+---------------------+-----------+------------+-----------+-----------+
LOAD DATA can perform data value reformatting, as
 just shown. Other examples showing uses for this capability occur
 elsewhere. (For example, Recipe 13.12 uses it
 to map NULL values, and Recipe 14.16 rewrites non-ISO dates to
 ISO format during data import.) However, although LOAD DATA
 can map input values to other values, it cannot outright reject an
 input record that is found to contain unsuitable values. To do that,
 either preprocess the input file to remove these records or issue a
 DELETE statement after loading the
 file.

13.9 Ignoring Datafile Columns
Problem

 Your datafile contains extra fields that should not be added to the database.

Solution

 Specify column order when importing data. In place of the columns that need to be ignored, specify a user-defined variable.

Discussion
Extra columns at the end of input lines are easy to handle. If a line
 contains more columns than are in the table, LOAD DATA
 just ignores them (although it might produce a nonzero warning
 count).
Skipping columns in the middle of lines is a bit more involved.
 To handle this, use a column list with LOAD DATA
 that assigns the columns to be ignored to a dummy user-defined
 variable. Suppose that you want to load information from a Unix
 password file /etc/passwd, which
 contains lines in the following format:
account:password:UID:GID:GECOS:directory:shell
Suppose also that you don’t want to load the password and
 directory columns. A table to hold the information in the remaining
 columns looks like this:
CREATE TABLE passwd
(
 account CHAR(8), # login name
 uid INT, # user ID
 gid INT, # group ID
 gecos CHAR(60), # name, phone, office, etc.
 shell CHAR(60), # command interpreter
 PRIMARY KEY(account)
);
To load the file, specify that the column delimiter is a colon. Also, tell LOAD DATA
 to skip the second and sixth fields that contain the password and
 directory. To do this, add a column list in the statement. The list
 should include the name of each column to load into the table and a
 dummy user-defined variable for columns to be ignored (you can use the
 same variable for all of them). The resulting statement looks like
 this:
mysql> LOAD DATA LOCAL INFILE '/etc/passwd' INTO TABLE passwd
 -> FIELDS TERMINATED BY ':'
 -> (account,@dummy,uid,gid,gecos,@dummy,shell);
The corresponding mysqlimport
 command includes a --columns option:
$ mysqlimport --local \
 --columns="account,@dummy,uid,gid,gecos,@dummy,shell" \
 --fields-terminated-by=":" cookbook /etc/passwd

See Also
Another approach to ignoring columns is to preprocess the input
 file to remove columns. The yank_col.pl utility, included in the recipes distribution,
 can extract and display datafile columns in any order.

13.10 Importing CSV Files
Problem
You want to load a file that is in CSV format.

Solution
Use the appropriate format specifiers with LOAD
 DATA or mysqlimport.

Discussion
Datafiles in CSV format contain values that are delimited by
 commas rather than tabs and that may be quoted with double-quote
 characters. A CSV file, mytbl.txt,
 containing lines that end with carriage return/linefeed pairs can be
 loaded into mytbl using LOAD DATA:
mysql> LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl
 -> FIELDS TERMINATED BY ',' ENCLOSED BY '"'
 -> LINES TERMINATED BY '\r\n';
Or like this using mysqlimport:
$ mysqlimport --local --lines-terminated-by="\r\n" \
 --fields-terminated-by="," --fields-enclosed-by="\"" \
 cookbook mytbl.txt

13.11 Exporting Query Results from MySQL
Problem
You want to export the result of a query from MySQL into a file or another
 program.

Solution
Use the SELECT…INTO OUTFILE statement, or redirect the output of the mysql program.

Discussion
The SELECT…INTO OUTFILE statement exports a query result
 directly into a file on the server host. To capture the result on the
 client host instead, redirect the output of the mysql program. These methods have different
 strengths and weaknesses; get to know them both, and apply whichever one
 best suits a given situation.
Exporting using the SELECT...INTO OUTFILE statement
The syntax for the SELECT...INTO OUTFILE statement combines a regular SELECT with INTO OUTFILE
 file_name. The default output format is the
 same as for LOAD DATA, so the following statement exports the
 passwd table into /tmp/passwd.txt as a tab-delimited,
 linefeed-terminated file:
mysql> SELECT * FROM passwd INTO OUTFILE '/tmp/passwd.txt';
To change the output format, use options similar to those used
 with LOAD DATA that indicate how to quote and delimit
 columns and records. For example, to export the passwd table (created earlier in Recipe 13.1) in CSV format with
 CRLF-terminated lines, use this statement:
mysql> SELECT * FROM passwd INTO OUTFILE '/tmp/passwd.txt'
 -> FIELDS TERMINATED BY ',' ENCLOSED BY '"'
 -> LINES TERMINATED BY '\r\n';
SELECT…INTO OUTFILE has these properties:
	The output file is created directly by the MySQL server, so
 the filename should indicate where to write the file on the server
 host. The file location is determined using the same rules as for
 LOAD DATA without LOCAL, as described in Recipe 13.1. (There is no LOCAL version of the statement analogous
 to the LOCAL version of
 LOAD DATA.)

	You must have the MySQL FILE privilege to execute the SELECT…INTO OUTFILE statement.

	The output file must not already exist. (This prevents MySQL
 from overwriting files that may be important.)

	You should have a login account on the server host or some
 way to access files on that host. SELECT…INTO OUTFILE is of no value to you if you
 cannot retrieve the output file.

	Under Unix, before MySQL 8.0.17, the file is created world readable and is owned
 by the account used for running the MySQL server. This means that
 although you can read the file, you may not be able to delete it
 unless you can log in using that account. As of MySQL 8.0.17, the file is world writable.

	
 If the secure_file_priv option is set, you can only export into the specified directory.

Exporting using the mysql client program
Because SELECT…INTO OUTFILE writes the datafile on the server host, you cannot use it
 unless your MySQL account has the FILE privilege. To export data into a local
 file that you own, use another strategy. If all you require is
 tab-delimited output, do a poor-man’s export by
 executing a SELECT statement with
 the mysql program and redirecting
 the output to a file. That way you can write query results into a file
 on your local host without the FILE
 privilege. Here’s an example that exports the login name and command
 interpreter columns from the passwd
 table:
$ mysql -e "SELECT account, shell FROM passwd" --skip-column-names \
 cookbook > shells.txt
The -e option specifies the statement to execute (see Recipe 1.5), and
 --skip-column-names tells MySQL not to write the row of column names that normally
 precedes statement output (see Recipe 1.7).
 The > operator instructs mysql to redirect output into the file. Otherwise, the result will be printed onto the screen.

Note that MySQL writes NULL
 values as the string NULL. Some postprocessing to
 convert them may be needed, depending on what you want to do with the
 output file. We discuss how to handle NULL values during export and import in Recipe 13.12.
It’s possible to produce output in formats other than
 tab-delimited by sending the query result into a postprocessing filter
 that converts tabs to something else. For example, to use hash marks
 as delimiters, convert all tabs to # characters (TAB
 indicates where you type a tab character in the command):
$ mysql --skip-column-names -e "your statement here" db_name \
 | sed -e "s/TAB/#/g" > output_file
You can also use tr for this
 purpose, although the syntax varies for different implementations of
 this utility. For macOS or Linux, the command looks like
 this:
$ mysql --skip-column-names -e "your statement here" db_name \
 | tr "\t" "#" > output_file
The mysql commands just shown
 use --skip-column-names to suppress column labels
 from appearing in the output. Under some circumstances, it may be
 useful to include the labels (for example, if they will be useful when
 importing the file later). In this
 respect, exporting query results with mysql is more flexible than SELECT…INTO OUTFILE because the latter cannot produce
 output that includes column labels.
Another way to export query results to a file on the client host
 is to use the mysql_to_text.pl
 utility, available in the recipes distribution. That
 program has options that enable you to specify the output format
 explicitly. To export a query result as an Excel spreadsheet or XML
 document, use mysql_to_excel.pl and mysql_to_xml.pl utilities.

13.12 Importing and Exporting NULL Values
Problem
You need to represent NULL values
 in a datafile.

Solution
Use a value not otherwise present so that you can distinguish
 NULL from all other legitimate
 non-NULL values. When you import the
 file, convert instances of that value to NULL.

Discussion
There’s no standard for representing NULL values in datafiles, which makes them
 problematic for import and export operations. The difficulty arises from
 the fact that NULL indicates the
 absence of a value, and that’s not easy to
 represent literally in a datafile. Using an empty column value is the
 most obvious thing to do, but that’s ambiguous for string-valued columns
 because there is no way to distinguish a NULL represented that way from a true empty
 string. Empty values can be a problem for other data types as well. For
 example, if you load an empty value with LOAD DATA
 into a numeric column, it is stored as 0 rather than as NULL and thus becomes indistinguishable from a
 true 0 in the input.
The usual solution to this problem is to represent NULL using a value not otherwise present in
 the data. This is how LOAD DATA and mysqlimport handle the issue: they understand
 the value of \N by convention to mean
 NULL. (\N is interpreted as NULL only when it occurs by itself, not as
 part of a larger value such as x\N or
 \Nx.) For example, if you load the
 following datafile with LOAD DATA, it treats the instances of \N as NULL:
str1 13 1997-10-14
str2 \N 2009-05-07
\N 15 \N
\N \N 1973-07-14
But you might want to interpret values other than \N as signifying NULL, and you might have different conventions
 in different columns. Consider the following datafile:
str1 13 1997-10-14
str2 -1 2009-05-07
Unknown 15
Unknown -1 1973-07-15
The first column contains strings, and Unknown signifies NULL. The second column contains integers, and
 -1 signifies NULL. The third column contains dates, and an
 empty value signifies NULL. What to
 do?
To handle situations like this, use LOAD DATA’s
 input preprocessing capability: specify a column list that assigns input
 values to user-defined variables, and use a SET clause that maps the special values to true NULL values. If the datafile is named
 has_nulls.txt, the following
 LOAD DATA statement properly interprets its
 contents:
mysql> LOAD DATA LOCAL INFILE 'has_nulls.txt'
 -> INTO TABLE t (@c1,@c2,@c3)
 -> SET c1 = IF(@c1='Unknown',NULL,@c1),
 -> c2 = IF(@c2=-1,NULL,@c2),
 -> c3 = IF(@c3='',NULL,@c3);
The resulting data after import looks like this:
+------+------+------------+
| c1 | c2 | c3 |
+------+------+------------+
str1	13	1997-10-14
str2	NULL	2009-05-07
NULL	15	NULL
NULL	NULL	1973-07-15
+------+------+------------+
The preceding discussion pertains to interpreting NULL values for import into MySQL, but it’s
 also necessary to think about NULL
 values when transferring data in the other direction—from MySQL into
 other programs. Here are some examples:
	SELECT…INTO OUTFILE writes NULL values as \N. Will another
 program understand that convention? If not, convert \N to something the program understands.
 For example, the SELECT statement
 can export the column using an expression like this:
IFNULL(col_name,'Unknown')

	You can use mysql in batch
 mode as an easy way to produce tab-delimited output (see Recipe 13.11), but then NULL values appear in the output as
 instances of the word NULL. If that word occurs
 nowhere else in the output, you may be able to postprocess it to
 convert instances of it to something more appropriate. For example,
 you can use a one-line sed
 command:
$ sed -e "s/NULL/\\N/g" data.txt > tmp
If the word NULL appears where it represents
 something other than a NULL
 value, it’s ambiguous, and you should probably export your data
 differently. For example, use IFNULL() to map
 NULL values to something
 else.

13.13 Exporting Data in SQL Format
Problem

 You want to export data in SQL format.

Solution

 Use mysqldump or mysqlpump.

Discussion

 SQL format is widely used for exporting and importing data. It has such advantages that it could be executed inside the MySQL clients, as we discuss in Recipes 1.6 and 13.14. SQL files can also have special information, such as replication source position (Recipe 3.3), default character set, and so on. SQL files can contain data for all tables, triggers, events, and stored routines on the server, so you can use them to copy your MySQL installation.

 Since the very first versions of MySQL, MySQL distribution has contained a mysqldump utility that allows you to export (dump) data into a SQL file. mysqldump is very easy to use. For example, to dump all databases, run it with the --all-databases option:

$ mysqldump --all-databases > all-databases.sql

 To copy all tables in the cookbook database, use its name as a mysqldump parameter:

$ mysqldump cookbook > cookbook.sql

 To export just a few tables in the cookbook database, specify their names after the database name. Thus, to copy the limbs and patients tables, run the following:

$ mysqldump cookbook limbs patients > limbs_patients.sql

 The shell command > redirects output of the mysqldump into a file. You can also specify a --result-file option to instruct mysqldump to store the result in the named file.

 The resulting file will contain SQL instructions that allow you to re-create a database and tables in it and then fill them with data.

 Normally, MySQL works in high-concurrent environments. Therefore, mysqldump supports the following options to ensure consistency of the resulting backup file:

	--lock-all-tables
	
 Locks all tables across all databases with a read lock, preventing writes to any of the tables until the dump is finished.

	--lock-tables
	
 Locks all tables for each dumped database separately. This protection prevents writes only into a database being exported, but it does not guarantee consistency of the resulting dump for multiple-database backups.

	--single-transaction
	
 Starts a transaction before dumping. This option does not prevent any write and still guarantees consistency of the backup. This is the recommended option for backups of tables that use transactional storage engines.

Tip

 Since ensuring consistency may affect performance of the high-concurrent writes, it is advisable to run mysqldump on the read-only replica.

 mysqldump is a mature tool, but it exports data in a single thread. This may not be as performant as we expect nowadays. Therefore, since version 5.7, MySQL distribution includes one more backup tool: mysqlpump.

 mysqlpump works similarly to mysqldump. You can use the same options as for mysqldump to export all databases, a single database, or just a few tables. But mysqlpump also supports parallel processing to speed up the dump process, progress indicators, smarter dumping of the user accounts, filters, and other features that mysqldump lacks.

 Thus, to create a dump of the whole MySQL instance in four threads, protect the dump with the --single-transaction option and see the progress bar use command:

$ mysqlpump --default-parallelism=4 --single-transaction \
 > --watch-progress > all-databases.sql
Dump progress: 1/2 tables, 0/7 rows
Dump progress: 142/143 tables, 2574113/4076473 rows
Dump completed in 1837

Note

 mysqlpump supports the --single-transaction option, but does not support --lock-all-tables and --lock-tables. It has the --add-locks option instead that surrounds each dumped table with LOCK TABLES and UNLOCK TABLES statements.

See Also
For additional information about mysqldump, see “mysqldump—A Database Backup Program”, and for additional information about mysqlpump, see “mysqlpump—A Database Backup Program” in the MySQL Reference Manual.

13.14 Importing SQL Data
Problem

 You have a SQL dump file and want to import it.

Solution

 Process the file using mysql client or MySQL Shell.

Discussion

 A SQL dump is just a file with SQL commands. Therefore, you can read it with mysql client, as we discussed in Recipe 1.6:

$ mysql -ucbuser -p cookbook < cookbook.sql

 MySQL Shell supports similar functionality in SQL mode.

 To load a dump from the command line, specify the --sql option for the mysqlsh client and redirect input into it:

$ mysqlsh cbuser:cbpass@127.0.0.1:33060/cookbook --sql < all-databases.sql

 To load a dump while in the interactive session, switch to SQL mode and use the \source command, or its shortcut, \:

MySQL cookbook SQL > \source cookbook.sql

13.15 Exporting Query Results as XML
Problem
You want to export the result of a query as an XML document.

Solution
Use the mysql client or mysqldump with the --xml option.

Discussion
The mysql client can produce
 XML-format output from a query result (see Recipe 1.7).
Suppose that a table named expt
 contains test scores from an experiment:
mysql> SELECT * FROM expt;
+---------+------+-------+
| subject | test | score |
+---------+------+-------+
Jane	A	47
Jane	B	50
Jane	C	NULL
Jane	D	NULL
Marvin	A	52
Marvin	B	45
Marvin	C	53
Marvin	D	NULL
+---------+------+-------+

 Run mysql client with the --xml option:

$ mysql --xml cookbook -e "SELECT * FROM expt;" < expt.xml

The resulting XML document, expt.xml, looks like this:
<?xml version="1.0"?>

<resultset statement="SELECT * FROM expt"↩
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <row>
	<field name="subject">Jane</field>
	<field name="test">A</field>
	<field name="score">47</field>
 </row>
…
 <row>
	<field name="subject">Marvin</field>
	<field name="test">D</field>
	<field name="score" xsi:nil="true" />
 </row>
</resultset>

 To produce similar output with mysqldump, run it with the --xml option. The resulting file will contain the table definition unless you specify the --no-create-info option:

$ mysqldump --xml cookbook expt
<?xml version="1.0"?>
<mysqldump xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
SET @MYSQLDUMP_TEMP_LOG_BIN = @@SESSION.SQL_LOG_BIN;
SET @@SESSION.SQL_LOG_BIN= 0;
SET @@GLOBAL.GTID_PURGED=/*!80000 '+'*/ '910c760a-0751-11eb-9da8-0242dc638c6c:1-385,
9113f6b1-0751-11eb-9e7d-0242dc638c6c:1-385,
abf2d315-fb9a-11ea-9815-02421e8c78f1:1-52911';
<database name="cookbook">
	<table_structure name="expt">
		<field Field="subject" Type="varchar(10)"↩
		 Null="YES" Key="" Extra="" Comment="" />
		<field Field="test" Type="varchar(5)"↩
		 Null="YES" Key="" Extra="" Comment="" />
		<field Field="score" Type="int"↩
		 Null="YES" Key="" Extra="" Comment="" />
		<options Name="expt" Engine="InnoDB" Version="10" Row_format="Dynamic"↩
		 Rows="8" Avg_row_length="2048" Data_length="16384" Max_data_length="0"↩
		 Index_length="0" Data_free="0" Create_time="2022-02-06 13:06:35"↩
		 Update_time="2022-02-06 13:06:35" Collation="utf8mb4_0900_ai_ci"↩
		 Create_options="" Comment="" />
	</table_structure>
	<table_data name="expt">
	<row>
		<field name="subject">Jane</field>
		<field name="test">A</field>
		<field name="score">47</field>
	</row>
...
	<row>
		<field name="subject">Marvin</field>
		<field name="test">D</field>
		<field name="score" xsi:nil="true" />
	</row>
	</table_data>
</database>
SET @@SESSION.SQL_LOG_BIN = @MYSQLDUMP_TEMP_LOG_BIN;

13.16 Importing XML into MySQL
Problem
You want to import an XML document into a MySQL table.

Solution
Use the LOAD XML statement.

Discussion
Importing an XML document depends on being able to parse the
 document and extract record contents from it. How you do that depends on
 how the document is written. To read XML files created by the mysql client, use the LOAD XML statement.

 To load the expt.xml file that we created in Recipe 13.15, run the following:

LOAD XML LOCAL INFILE 'expt.xml' INTO TABLE expt;

 The LOAD XML statement automatically recognizes three different XML formats:

	Column names as attributes and column values as attribute values.
	<row subject="Jane" test="A" score=47 />

	Column names as tags and column values as tag values.
	<row>
 <subject>Jane</subject>
 <test>B</test>
 <score>50</score>
 </row>

	Column names as values of the attribute name of the tag field, and column values as their values.
	<row>
 <field name="subject">Jane</field>
 <field name="test">C</field>
 <field name="score" xsi:nil="true" />
 </row>

 This is the same format that mysql, mysqldump, and other MySQL utilities use.

 If your XML file uses a different tag name, specify it with a ROWS IDENTIFIED BY clause. For example, if rows for the table expt are defined as follows:

<test>
 <field name="subject">Jane</field>
 <field name="test">D</field>
 <field name="score" xsi:nil="true" />
 </test>

 Load them with the following statement:

LOAD XML LOCAL INFILE 'expt.xml' INTO TABLE expt ROWS IDENTIFIED BY '<test>';

13.17 Importing Data in JSON Format
Problem

 You have a JSON file and want to import it into a MySQL database.

Solution

 Use the MySQL Shell importJson utility.

Discussion

 JSON is a popular format for storing data so it can be application generated or directly exported from the MongoDB database.

 The importJson utility takes the path to the JSON file and dictionary of options as arguments. You can import JSON either into a collection or into a table. In the latter case, you need to specify the tableColumn in which to store the document unless the default value, doc, works for you.

 The document should contain a list of JSON objects, separated by a new line. This list should not be a member of a JSON array or another object:

{"arms": 2, "legs": 2, "thing": "human" }
{"arms": 0, "legs": 6, "thing": "insect" }
{"arms": 10, "legs": 0, "thing": "squid" }
{"arms": 0, "legs": 0, "thing": "fish" }
{"arms": 0, "legs": 99, "thing": "centipede" }
{"arms": 0, "legs": 4, "thing": "table" }
{"arms": 2, "legs": 4, "thing": "armchair" }
{"arms": 1, "legs": 0, "thing": "phonograph" }
{"arms": 0, "legs": 3, "thing": "tripod" }
{"arms": 2, "legs": 1, "thing": "Peg Leg Pete" }
{"arms": null, "legs": null, "thing": "space alien" }

 You will find a JSON dump of the CollectionLimbs collection in the collections/limbs.json file of the recipes distribution.

 To insert data from the JSON file into the CollectionLimbs collection, run following code:

 MySQL cookbook JS > options = {[image: 1]
 -> schema: "cookbook",
 -> collection: "CollectionLimbs"
 -> }
 ->
{
 "collection": "CollectionLimbs",
 "schema": "cookbook"
}
 MySQL cookbook JS > util.importJson("limbs.json", options)[image: 2]
Importing from file "limbscol.json" to collection `cookbook`.`CollectionLimbs` ↩
in MySQL Server at 127.0.0.1:33060

.. 11.. 11
Processed 1.42 KB in 11 documents in 0.0070 sec (11.00 documents/s)
Total successfully imported documents 11 (11.00 documents/s)

	[image: 1]
	First, create a dictionary object with options. At the minimum, you need to specify the collection name and the schema.

	[image: 2]
	Then call util.importJson with the path to the JSON file and options dictionary as arguments.

 You can also call the importJson utility from the command line without entering an interactive MySQL Shell session. To do it, use the --import option of the mysqlsh command, and specify the path to the JSON file and target collection as parameters:

$ mysqlsh cbuser:cbpass@127.0.0.1:33060/cookbook \
> --import limbs.json CollectionLimbs
WARNING: Using a password on the command-line interface can be insecure.
Importing from file "limbs.json" to collection `cookbook`.`CollectionLimbs` ↩
in MySQL Server at 127.0.0.1:33060

.. 11.. 11
Processed 506 bytes in 11 documents in 0.0067 sec (11.00 documents/s)
Total successfully imported documents 11 (11.00 documents/s)

Tip

 If no collection or a table with the specific name exists in the database, the importJson utility will create it for you.

13.18 Importing Data from MongoDB
Problem

 You want to import data from a MongoDB collection.

Solution

 Export the collection from MongoDB into a file with the help of the mongoexport utility, and use importJson with the "convertBsonTypes": true option to import the collection into MySQL.

Solution

 importJson can import documents exported from MongoDB with the help of the mongoexport utility. Additionally, it can convert BSON data types into MySQL format. To explore this feature, put "convertBsonTypes": true into the options dictionary and perform the import:

 MySQL cookbook JS > options = {
 -> "schema": "cookbook",
 -> "collection": "blogs",
 -> "convertBsonTypes": true
 -> }
 ->
{
 "collection": "blogs",
 "convertBsonTypes": true,
 "schema": "cookbook"
}
 MySQL cookbook JS > util.importJson("blogs.json", options)
Importing from file "blogs.json" to collection `cookbook`.`blogs` ↩
in MySQL Server at 127.0.0.1:33060

.. 2.. 2
Processed 240 bytes in 2 documents in 0.0070 sec (2.00 documents/s)
Total successfully imported documents 2 (2.00 documents/s)

 The resulting blogs collection uses data in MySQL format. We can check it if selected all documents from the collection using MySQL Shell:

 MySQL cookbook JS > shell.getSession().
 -> getSchema('cookbook').
 -> getCollection('blogs').
 -> find()
 ->
{
 "_id": "6029abb942e2e9c45760eabc", [image: 1]
 "author": "Ann Smith",
 "comment": "That's Awesome!",
 "date_created": "2021-02-13T23:01:13.154Z" [image: 2]
}
{
 "_id": "6029abd842e2e9c45760eabd",
 "author": "John Doe",
 "comment": "Love it!",
 "date_created": "2021-02-14T11:20:03Z"
}
2 documents in set (0.0006 sec)

	[image: 1]
	The BSON object identification (OID) value, "_id":⁠{"$oid":"6029abb94​2e2e9c45760eabc"}, converted to MySQL ID format.

	[image: 2]
	The BSON Date value, "date_created":⁠{"$date":"2021-02-13T23:​01:13.154Z"}, converted to MySQL Date format.

 You will find a JSON dump of the blogs collection in the collections/blogs.json file of the recipes distribution.

13.19 Exporting Data in JSON Format
Problem

 You want to export a MySQL collection into a JSON file.

Solution

 Use MySQL Shell to retrieve the result in the JSON format. Redirect the output into a file if needed.

Discussion

 MySQL Shell allows you to retrieve data in JSON format. The following code snippet dumps the CollectionLimbs collection and redirects result into a file:

$ mysqlsh cbuser:cbpass@127.0.0.1:33060/cookbook \
> -e "limbs=shell.getSession().getSchema('cookbook').
> getCollection('CollectionLimbs'). [image: 1]
> find().execute().fetchAll(); [image: 2]
> println(limbs);" > limbs.json [image: 3]

	[image: 1]
	Select the collection.

	[image: 2]
	Fetch all rows from the collection.

	[image: 3]
	Print the result and redirect command output into a file.

 The resulting file will contain an array of JSON documents. This is not the same format that the MySQL Shell importJson utility can use. If you want to import the data back into MySQL, modify the resulting file. You can do it with help of the jq utility:

$ jq '.[]' limbs.json > limbs_fixed.json

 jq reads the limbs.json file and prints each of its array elements into standard output. Then, we redirect the result into a limbs_fixed.json file.

See Also
For additional information about the jq utility,
 see the jq Manual.

13.20 Guessing Table Structure from a Datafile
Problem
Someone gives you a datafile and says, Here, put this into MySQL
 for me. But no table yet exists to hold the data. You need to create a table that will hold data from the file.

Solution
Use a utility that guesses the table structure by examining the
 datafile contents.

Discussion
Sometimes you must import data into MySQL for which no table has
 yet been set up. You can create the table yourself, based on any
 knowledge you have about the contents of the file. Or you might be able
 to avoid some of the work by using guess_table.pl, a utility located in the
 transfer directory of the recipes distribution. guess_table.pl reads the datafile to see what
 kind of information it contains, then attempts to produce an appropriate
 CREATE TABLE statement that matches the contents of
 the file. This script is necessarily imperfect because column contents
 sometimes are ambiguous. (For example, a column containing a small
 number of distinct strings might be a VARCHAR column or an ENUM.) Still, it may be easier to tweak the
 CREATE TABLE statement that guess_table.pl produces than to write the
 statement from scratch. This utility also has diagnostic value, although
 that’s not its primary purpose. For example, if you believe a column
 contains only numbers, but guess_table.pl indicates that it should be a
 VARCHAR column, that tells you the
 column contains at least one nonnumeric value.
guess_table.pl assumes that its
 input is in tab-delimited, linefeed-terminated format. It also assumes
 valid input because any attempt to guess data types based on possibly
 flawed data is doomed to failure. This means, for example, that if a
 date column is to be recognized as such, it should be in ISO format.
 Otherwise, guess_table.pl may
 characterize it as a VARCHAR column.
 If a datafile doesn’t satisfy these assumptions, you may be able to
 reformat it first using the cvt_file.pl and cvt_date.pl utilities, available in the recipes distribution.
guess_table.pl understands the
 following options:
	--labels
	Interpret the first input line as a row of column labels, and use
 them for table column names. Without this option, guess_table.pl uses default column names
 of c1, c2, and so forth.
If the file contains a row of labels and you omit this
 option, guess_table.pl treats
 the labels as data values. The likely result is that the script
 will characterize all columns as VARCHAR columns (even those that
 otherwise contain only numeric or temporal values), due to the
 presence of a nonnumeric or nontemporal value in the
 column.

	--lower, --upper
	Force column names in the CREATE TABLE statement to be lowercase or
 uppercase.

	--quote-names,
 --skip-quote-names
	Quote or do not quote table and column identifiers in the CREATE TABLE statement with ` characters (for example, `mytbl`). This can be useful if an
 identifier is a reserved word. The default is to quote
 identifiers.

	--report
	Generate a report rather than a CREATE TABLE statement. The script displays the
 information that it gathers about each column.

	--table=tbl_name
	Specify the table name to use in the CREATE TABLE statement. The default name is
 t.

Here’s an example of how guess_table.pl works. Suppose that a file
 named commodities.csv is in CSV
 format and has the following contents:
commodity,trade_date,shares,price,change
sugar,12-14-2014,1000000,10.50,-.125
oil,12-14-2014,96000,60.25,.25
wheat,12-14-2014,2500000,8.75,0
gold,12-14-2014,13000,103.25,2.25
sugar,12-15-2014,970000,10.60,.1
oil,12-15-2014,105000,60.5,.25
wheat,12-15-2014,2370000,8.65,-.1
gold,12-15-2014,11000,101,-2.25
The first row indicates the column labels, and the following rows
 contain data records, one per line. The values in the trade_date column are dates, but they are in
 MM-DD-YYYY format rather than the ISO format
 that MySQL expects. cvt_date.pl can
 convert these dates to ISO format. However, both cvt_date.pl and guess_table.pl require input in tab-delimited,
 linefeed-terminated format, so first use cvt_file.pl to convert the input to
 tab-delimited, linefeed-terminated format, and cvt_date.pl to convert the dates:
$ cvt_file.pl --iformat=csv commodities.csv > tmp1.txt
$ cvt_date.pl --iformat=us tmp1.txt > tmp2.txt
Feed the resulting file, tmp2.txt, to guess_table.pl:
$ guess_table.pl --labels --table=commodities tmp2.txt > commodities.sql
The CREATE TABLE statement that guess_table.pl writes to commodities.sql looks like this:
CREATE TABLE `commodities`
(
 `commodity` VARCHAR(5) NOT NULL,
 `trade_date` DATE NOT NULL,
 `shares` BIGINT UNSIGNED NOT NULL,
 `price` DOUBLE UNSIGNED NOT NULL,
 `change` DOUBLE NOT NULL
);
guess_table.pl produces that
 statement based on heuristics such as these:
	A column that contains only numeric values is assumed to be a
 BIGINT if no values contain a
 decimal point, and DOUBLE
 otherwise.

	A numeric column that contains no negative values is likely to
 be UNSIGNED.

	If a column contains no empty values, guess_table.pl assumes that it’s probably
 NOT NULL.

	Columns that cannot be classified as numbers or dates are
 taken to be VARCHAR columns, with
 a length equal to the longest value present in the column.

You might want to edit the CREATE TABLE statement that guess_table.pl produces, to make modifications
 such as using smaller integer types, increasing the size of character
 fields, changing VARCHAR to CHAR, adding indexes, or changing a column
 name that is a reserved word in MySQL.
To create the table, use the statement produced by guess_table.pl:
$ mysql cookbook < commodities.sql
Then load the datafile into the table (skipping the initial row of
 labels):
mysql> LOAD DATA LOCAL INFILE 'tmp2.txt' INTO TABLE commodities
 -> IGNORE 1 LINES;
The resulting table contents after import look like this:
mysql> SELECT * FROM commodities;
+-----------+------------+---------+--------+--------+
| commodity | trade_date | shares | price | change |
+-----------+------------+---------+--------+--------+
sugar	2014-12-14	1000000	10.5	-0.125
oil	2014-12-14	96000	60.25	0.25
wheat	2014-12-14	2500000	8.75	0
gold	2014-12-14	13000	103.25	2.25
sugar	2014-12-15	970000	10.6	0.1
oil	2014-12-15	105000	60.5	0.25
wheat	2014-12-15	2370000	8.65	-0.1
gold	2014-12-15	11000	101	-2.25
+-----------+------------+---------+--------+--------+

Chapter 14. Validating and Reformatting Data
14.0 Introduction
The previous chapter, Chapter 13, focused on
 methods for moving data into and out of MySQL, by reading lines and breaking them
 into separate columns. In this chapter, we’ll focus on the content rather than structure issues.
 For example, if you don’t know whether the
 values contained in a file or received via web form are legal, preprocess them to check or reformat
 them:
	It’s often a good idea to validate data values to make sure
 they’re legal for the data types into which you store them. For example, you
 can make sure that values intended for INT, DATE, and ENUM columns are integers, dates in ISO
 format (YYYY-MM-DD), and legal enumeration
 values, respectively.

	Data values may need reformatting. You might store credit card
 values as a string of digits but permit users of a web application
 to separate blocks of digits by spaces or dashes. These values must
 be rewritten before storing them. Rewriting dates from one format to
 another is especially common, for example, if a program writes dates
 in MM-DD-YY format to ISO format for import into MySQL. If a program
 understands only date and time formats and not a combined
 date-and-time format (such as MySQL uses for the DATETIME and TIMESTAMP data types), you must split
 date-and-time values into separate date and time values.

The chapter deals with formatting and validation issues primarily
 within the context of checking entire files, but many of the techniques
 discussed here can be applied to one-time validations as well. Consider a
 web-based application that presents a form for a user to fill in and then
 processes its contents to create a new row in the database. Web APIs
 generally make form contents available as a set of already-parsed discrete
 values, so the application may not need to deal with record and column
 delimiters. On the other hand, validation issues remain paramount. You
 really have no idea what kind of values a user is sending your script, so
 it’s important to check them.

 The first three recipes introduce data validation capabilities available in MySQL. Starting from Recipe 14.4, we focus on validating and preprocessing data on the application side. We introduce techniques that allow you to process large bulks of data effectively.

Server-Side Versus Client-Side Validation
As described in Recipes 14.1, 14.2, and 14.3,
 you can cause data validation to be done on the server side to be restrictive about accepting bad input data. In this
 case, the MySQL server raises an error for values that are invalid for
 the data types of the columns into which you insert them.
In the next few recipes, the focus is on validation on the client
 side rather than on the server side. Client-side validation can be
 useful when you require more control over validation than simply
 receiving an error from the server. (For example, if you test values
 yourself, it’s often easier to provide more informative messages to
 users about the exact nature of problems with the values.) Also, it
 might be necessary to couple validation with reformatting to transform
 complex values so that they are compatible with MySQL data types. You
 have more flexibility to do this on the client side.

Source code for program fragments and scripts discussed in this
 chapter is located in the transfer
 directory of the recipes distribution,
 with the exception that some utility functions are contained in library
 files located in the lib
 directory.

14.1 Using the SQL Mode to Reject Bad Input Values
Problem
MySQL accepts data values that are invalid,
 out of range, or otherwise unsuitable for the data types of the columns
 into which you insert them. You want the server to be more
 restrictive and not accept bad data.

Solution
Check the SQL mode and make sure it is not empty. There are several modes that you can use to control how strict the server is on data values. Some modes apply generally to all input values.
 Others apply to specific data types such as dates.

Discussion
When the SQL mode is not set or is set to an empty value, MySQL allows all input values for your table columns, even if the input data types do not match the column’s data type. Consider the following table,
 which has integer, string, and date columns:
mysql> SELECT @@sql_mode;
+------------+
| @@sql_mode |
+------------+
| |
+------------+
1 row in set (0,00 sec)
mysql> CREATE TABLE t (i INT, c CHAR(6), d DATE);
Inserting a row with unsuitable data values into the table causes
 warnings (which you can see with SHOW
 WARNINGS), but the server loads the values into the table after converting
 them to some value that fits the column:
mysql> INSERT INTO t (i,c,d) VALUES('-1x','too-long string!','1999-02-31');
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
Warning	1265	Data truncated for column 'i' at row 1
Warning	1265	Data truncated for column 'c' at row 1
Warning	1264	Out of range value for column 'd' at row 1
+---------+------+--+		
mysql> SELECT * FROM t;		
+------+--------+------------+		
i	c	d
+------+--------+------------+		
-1	too-lo	0000-00-00
+------+--------+------------+
One way to prevent these conversions is to check the input data on
 the client side to make sure that it’s legal. This is a
 reasonable strategy in certain circumstances (see the sidebar in Recipe 14.0), but there is an alternative:
 let the server check data values on the server side and reject them with an error if
 they’re invalid.
To do this, set the sql_mode system
 variable to enable server restrictions on input data acceptance. With
 the proper restrictions in place, data values that would otherwise
 result in conversions and warnings result in errors instead. Try the
 INSERT statement from the previous example again
 after enabling strict SQL mode:
mysql> SET sql_mode = 'STRICT_ALL_TABLES';
mysql> INSERT INTO t (i,c,d) VALUES('-1x','too-long string!','1999-02-31');
ERROR 1265 (01000): Data truncated for column 'i' at row 1
Here the statement doesn’t even progress to the second and third
 data values because the first is invalid for an integer column and the
 server raises an error.
Without input restrictions enabled, the server checks that the
 month part of date values is in the range from 1 to 12 and that the day
 value is legal for the given month. This means that '2005-02-31' generates a warning by default
 (with conversion to zero date '0000-00-00'). In
 strict mode, an error occurs.
MySQL still permits dates such as '1999-11-00' or '1999-00-00' that have zero parts, or the
 zero date ('0000-00-00'). To restrict these kinds of date values, enable
 the NO_ZERO_IN_DATE and NO_ZERO_DATE SQL modes to cause warnings, or errors in strict mode. For example,
 to prohibit dates with zero parts or zero dates, set the
 SQL mode like this:
mysql> SET sql_mode = 'STRICT_ALL_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE';
A simpler way to enable these restrictions, and a few more
 besides, is to enable TRADITIONAL SQL mode. TRADITIONAL mode is actually a constellation
 of modes, as you can see by setting and displaying the sql_mode value:
mysql> SET sql_mode = 'TRADITIONAL';
mysql> SELECT @@sql_mode\G
*************************** 1. row ***************************
@@sql_mode: STRICT_TRANS_TABLES,STRICT_ALL_TABLES,NO_ZERO_IN_DATE,
 NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,TRADITIONAL,
 NO_ENGINE_SUBSTITUTION
You can read more about the various SQL modes in the
 MySQL Reference Manual.
The examples shown set the session value of the sql_mode system variable, so they change the
 SQL mode only for your current session. To set the mode globally for all
 clients, start the server with a
 --sql_mode=mode_value
 option. Alternatively, if you have the SYSTEM_VARIABLES_ADMIN or SUPER privilege,
 you can set the global mode at runtime:
mysql> SET GLOBAL sql_mode = 'mode_value';
Note

 Before MySQL 5.7, the SQL mode was forgiving by default. Newer versions are much more restrictive, and SQL mode is set to ONLY_FULL_GROUP_BY,⁠ STRICT_TRANS_​TABLES, NO_ZERO_IN_DATE, NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ZERO, NO_AUTO_CREATE_USER, NO_ENGINE_SUBSTITUTION. Therefore, if you want to have a restrictive server, you don’t need to do anything extra, unless you intentionally relaxed the SQL mode earlier.

14.2 Using CHECK Constraints to Reject Invalid Values
Problem

 You want to validate data so it follows the business logic of your application and rejects values if they do not satisfy requirements.

Solution

 Use CHECK constraints.

Discussion

 If a value matches the MySQL data type format, it does not mean it matches the logic of the application. For example, if you want to store only even numbers, you cannot simply use a data type integer, because both odd and even numbers are valid integers.

 CHECK constraints, introduced in version 8.0, allow you to set up a custom condition on the table column and reject the statement if the value does not satisfy it. Thus, to create a table that will store only even values, you would need to use CHECK to check if the number can be divided by two without a reminder:

mysql> CREATE TABLE even (
 -> even_value INT CHECK(even_value % 2 = 0)
 ->) ENGINE=InnoDB;
Query OK, 0 rows affected (0.03 sec)

 Now we can successfully insert even numbers into this table:

mysql> INSERT INTO even VALUES(2);
Query OK, 1 row affected (0.01 sec)

 Odd values would be rejected:

mysql> INSERT INTO even VALUES(1);
ERROR 3819 (HY000): Check constraint 'even_chk_1' is violated.

 You can also create multiple CHECK constraints for a single column. For example, to accept only even values that are less than 100, create two constraints:

mysql> CREATE TABLE even_100 (
 -> even_value INT CHECK(even_value % 2 = 0) CHECK(even_value < 100)
 ->) ENGINE=InnoDB;
Query OK, 0 rows affected (0.02 sec)

 In this case, MySQL will check the first condition, and if it is satisfied it will process the second one:

mysql> INSERT INTO even_100 VALUES(101);
ERROR 3819 (HY000): Check constraint 'even_100_chk_1' is violated.
mysql> INSERT INTO even_100 VALUES(102);
ERROR 3819 (HY000): Check constraint 'even_100_chk_2' is violated.

 If you specify a CHECK constraint when defining a column, it will validate only this column. If you want to check two or more columns in the single constraint, you will need to specify it separately.

 A common validation task is to check if the departure date is later than the arrival date. We can add such a check to the patients table:

ALTER TABLE patients ADD CONSTRAINT date_check
CHECK((date_departed IS NULL) OR (date_departed >= date_arrived));

 Now, it will not allow you to insert records when the departure date is earlier than the arrival date:

mysql> INSERT INTO patients (national_id, name, surname, gender, age, diagnosis,
 -> date_arrived, date_departed)
 -> VALUES('34GD429520', 'John', 'Doe', 'M', 45, 'Data Phobia',
 -> '2020-07-20', '2020-05-31');
ERROR 3819 (HY000): Check constraint 'date_check' is violated.

14.3 Using Triggers to Reject Input Values
Problem

 You want to validate if data to be inserted into the table follows business logic, but your logic is more complicated than CHECK constraints can handle. You may also need to rewrite the data instead of rejecting it. Or you are using an earlier version of MySQL where CHECK constraints are not available.

Solution

 Use BEFORE triggers.

Discussion

 CHECK constraints have certain limitations. They do not allow you to use stored or user-defined functions, subqueries, or user-defined variables. They also do not allow you to modify inserted data. If you want to format an inserted value to satisfy your business standards, you may want to explore another solution, such as validation on the application side or BEFORE triggers on the MySQL side.

 To perform more complicated validation on the MySQL side, create a trigger and raise a SQL exception in it.

 Let’s take a look at an example. Suppose that a groceries table stores details about the products in a supermarket. In some countries, alcohol can’t be sold in supermarkets between certain hours. For example, in Turkey, you wouldn’t be able to buy alcohol in a supermarket between 10 p.m. and 6 a.m. If you are working with such limitations, you may want to limit times when users can place orders.

 Suppose that a groceries table stores details about groceries in the supermarket:

CREATE TABLE `groceries` (
 `id` int NOT NULL,
 `name` varchar(255) DEFAULT NULL,
 `forbidden_after` time DEFAULT NULL,
 `forbidden_before` time DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;

 The forbidden_after and forbidden_before columns define the time range when a particular item can’t be sold.

 Another table, named groceries_order_items, contains information about purchases:

CREATE TABLE groceries_order_items
(
 order_id INT NOT NULL,
 groceries_id INT NOT NULL,
 quantity INT DEFAULT 0,
 PRIMARY KEY (order_id,groceries_id)
) ENGINE=InnoDB;

 To disallow the purchase of items during certain times, you could create a trigger that checks the current time and if there are any restrictions to a selected product. If restrictions exist, the purchase will be rejected:

CREATE TRIGGER check_time
BEFORE INSERT ON groceries_order_items
FOR EACH ROW BEGIN
DECLARE forbidden_after_val TIME; [image: 1]
DECLARE forbidden_before_val TIME;
DECLARE name_val VARCHAR(255);
DECLARE message VARCHAR(400);

SELECT forbidden_after, forbidden_before, name [image: 2]
INTO forbidden_after_val, forbidden_before_val, name_val
FROM groceries WHERE id = NEW.groceries_id;

IF (forbidden_after_val IS NOT NULL AND TIME(NOW()) >= forbidden_after_val) [image: 3]
 OR (forbidden_before_val IS NOT NULL AND TIME(NOW()) <= forbidden_before_val)
THEN
 SET message=CONCAT('It is forbidden to buy ', name_val,
 ' between ', forbidden_after_val, ' and ', forbidden_before_val); [image: 4]
 SIGNAL SQLSTATE '45000' [image: 5]
 SET MESSAGE_TEXT = message;
END IF;
END;

	[image: 1]
	Declare variables to store the time range when the purchase is forbidden, the name of the product, and an error message.

	[image: 2]
	Select the restricted time range and name of the product into variables.

	[image: 3]
	Check if the current time falls into the forbidden range for the selected product.

	[image: 4]
	If the time falls into the forbidden range, craft a message explaining restrictions for the product.

	[image: 5]
	Raise an error and reject the insert.

 As a result, you can purchase cheese or water at 3 a.m., but you cannot purchase beer or wine at that time:

mysql> SELECT CURRENT_TIME();
+----------------+
| CURRENT_TIME() |
+----------------+
| 03:01:40 |
+----------------+
1 row in set (0.00 sec)
mysql> INSERT INTO groceries_order_items VALUES(1,3,1); -- cheese
Query OK, 1 row affected (0.03 sec)

mysql> INSERT INTO groceries_order_items VALUES(1,8,3); -- water
Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO groceries_order_items VALUES(1,7,6); -- beer
ERROR 1644 (45000): It is forbidden to buy beer between 22:00:00 and 06:00:00
mysql> INSERT INTO groceries_order_items VALUES(1,6,1); -- wine
ERROR 1644 (45000): It is forbidden to buy wine between 22:00:00 and 06:00:00

 The purchase limitation is relaxed during the day:

mysql> SELECT CURRENT_TIME();
+----------------+
| CURRENT_TIME() |
+----------------+
| 14:00:35 |
+----------------+
1 row in set (0.00 sec)

mysql> INSERT INTO groceries_order_items VALUES(1,7,6); -- beer
Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO groceries_order_items VALUES(1,6,1); -- wine
Query OK, 1 row affected (0.01 sec)

See Also
For additional information about using triggers to reject or modify invalid values,
 see Recipe 11.11.

14.4 Writing an Input-Processing Loop
Problem
You want to make sure that the data values in a file are legal.

Solution
Write an input-processing loop that will check them, possibly rewriting them into a more suitable
 format.

Discussion
Many of the validation recipes shown in this chapter are typical of those that
 you perform within the context of a program that reads a file and
 checks individual column values. The general framework for such a
 file-processing utility looks like this:
#!/usr/bin/python3
loop.py: Typical input-processing loop.

Assumes tab-delimited, linefeed-terminated input lines.

import sys

for line in sys.stdin:
 line = line.rstrip()
 # split line at tabs, preserving all fields
 values = line.split("\t")
 for val in values: # iterate through fields in line
 # ... test val here ...
 pass
The for loop reads each
 input line. Within the loop, each line is broken into fields. The inner
 for loop iterates through the
 fields, enabling each to be processed in sequence. If you don’t apply
 a given test uniformly to all the fields, replace the for loop with separate column-specific
 tests.
This loop assumes tab-delimited, linefeed-terminated input, an
 assumption shared by most of the utilities discussed throughout this
 chapter. To use these utilities with datafiles in other formats, you
 may be able to convert such files to tab-delimited format using the
 cvt_file.pl script, available in the recipes distribution.

14.5 Putting Common Tests in Libraries
Problem

 You want to do repeated validation operations.

Solution

 Package validation operations as library routines.

Discussion
It’s not unusual for
 certain validation operations to occur repeatedly, in which case you’ll
 probably find it useful to construct a library of functions. By
 packaging validation operations as library routines, it is easier to
 write utilities based on them, and the utilities make it easier to
 perform command-line operations on entire files so that you can avoid
 editing them yourself. This also gives the operation a
 name that’s likely to make the meaning of it clearer than
 the comparison code itself. The following test in Python language performs a pattern
 match to check that val consists
 entirely of digits (optionally preceded by a plus sign), and then
 makes sure the value is greater than zero:
p = re.compile('^\+?\d+$')
 s = p.search(val)
 valid = s and (s.group(0) != '0')
In other words, the test looks for strings that represent
 positive integers. To make the test easier to use and its intent
 clearer, package it as a function that is used like this:
valid = is_positive_integer (val);
Define the function as follows:
def is_positive_integer(val):
 p = re.compile('^\+?\d+$')
 s = p.search(val)
 return s and (s.group(0) != '0')
Now put the function definition into a library file so that
 multiple scripts can use it easily. The cookbook_utils.py module file in the
 lib directory of the recipes distribution is an example of a
 library file that contains a number of validation functions. Take a
 look through it to see which functions may be useful in your own
 programs (or as a model for writing your own library files). To gain
 access to this module from within a script, include a use statement like this:
import cookbook_utils as cu
You must, of course, install the module file in a directory where
 Python will find it (see Recipe 4.3).
A significant benefit of putting a collection of utility
 routines into a library file is that you can use it for all kinds of
 programs. It’s rare for a data manipulation problem to be completely
 unique. If you can pick and choose at least a few validation routines
 from a library, it reduces the amount of code you must write, even for
 highly specialized programs.
Tip
To avoid writing your own library routines, look around to see if
 someone else has already written suitable routines that you can use. For
 example, if you check the Perl CPAN (cpan.perl.org), you’ll find a Data::Validate
 module hierarchy. The modules there provide library routines that
 standardize a number of common validation tasks.
 Data::Validate::MySQL deals specifically with MySQL data types.

14.6 Using Pattern Matching to Validate Data
Problem
You want to compare a value to a set of values that is difficult to
 specify without writing a really ugly expression.

Solution
Use pattern matching.

Discussion
Pattern matching is a powerful validation tool that enables you to
 test entire classes of values with a single expression. You can also use
 pattern tests to break matched values into subparts for further
 individual testing or in substitution operations to rewrite matched
 values. For example, you might break a matched date into pieces to
 verify that the month is in the range from 1 to 12, and the day is
 within the number of days in the month. You might use a substitution to
 reorder MM-DD-YYYY or
 DD-MM-YYYY values into
 YYYY-MM-DD format.
The next few sections describe how to use patterns to test several
 types of values, but first let’s review some general pattern-matching
 principles. The following discussion focuses on Python’s
 regular-expression capabilities. Pattern matching in Ruby, PHP, Go, and Perl is similar, although you should
 consult the relevant documentation for any differences. For Java,
 use the java.util.regex
 package.
In Python, regular expressions are part of the module re. The pattern constructor is re.compile(pat):
pattern = re.compile(pat)

 To find if a value matches a pattern, use the match method:

it_matched = pattern.match(val) # pattern match

 You can construct a regular expression in the match method:

it_matched = re.match(pat, val) # pattern match
Put an re.I flag as the second argument to the regular expression constructor to make the pattern match
 case insensitive:
it_matched = re.match(pat, val, re.I) # case-insensitive match
To look for a nonmatch, replace the = operator with the combination of the = and not operators:
no_match = not re.match(pat, val) # negated pattern match
To perform a substitution in val based on a pattern match, use re.sub(/pat, replacement, val)replacement/. If pat occurs
 within val, it’s replaced by
 replacement. For a case-insensitive
 match, put an re.I flag.
 To conduct a substitution that replaces only a few instances of
 pat rather than all of them, add a
 count option:
val = re.sub(pat, replacement, val) # substitution
val = re.sub(pat, replacement, val, flags = re.I) # case-insensitive substitution
val = re.sub(pat, replacement, val, count = 1) # substitution of the first match
val = re.sub(pat, replacement, val, count = 1, flags = re.I)
 # case-insensitive and the first match
Table 14-1 shows some of the special pattern elements available in Python regular expressions.
Table 14-1. Pattern elements in Python regular expressions	Pattern	What the pattern matches
	^	Beginning of string
	$	End of string
	.	Any character except a newline
	\s, \S	Whitespace or nonwhitespace character
	\d, \D	Digit or nondigit character
	\w, \W	Word (alphanumeric or underscore) or nonword
 character
	[...]	Any character listed between
 the square brackets
	[^...]	Any character not listed
 between the square brackets
	p1|p2|p3	Alternation; matches any of
 the patterns p1,
 p2, or
 p3
	*	Zero or more instances of preceding element
	+	One or more instances of preceding element
	{n}	n
 instances of preceding element
	{m,n}	m
 through n instances of preceding
 element

Many of these pattern elements are the same as those available for MySQL’s REGEXP regular-expression operator (see Recipe 7.11).
To match a literal instance of a character that is special within
 patterns, such as *, ^, or $,
 precede it with a backslash. Similarly, to include a character within a
 character class construction that is special in character classes
 ([,], or -),
 precede it with a backslash. To include a literal ^ in a character class, list it somewhere
 other than as the first character between the parentheses.
Many of the validation patterns shown in the following recipes
 are of the form ^pat$. Beginning and ending a pattern with
 ^ and $ has the effect of requiring
 pat to match the entire string that you test.
 This is common in data validation contexts because it’s generally
 desirable to know that a pattern matches an entire input value, not only
 part of it. (To be sure that a value represents an integer, for example,
 it does no good to know only that it contains an integer somewhere.)
 This is not a hard-and-fast rule, however, and sometimes it’s useful to
 perform a more relaxed test by omitting the ^ and $
 characters as appropriate. For example, if you want to strip leading and trailing whitespace from a value, use one
 pattern anchored only to the beginning of the string and another
 anchored only to the end:
val = re.sub('^\s+', '', val) # trim leading whitespace
val = re.sub('\s+$', '', val) # trim trailing whitespace
That’s such a common operation, in fact, that it’s a good
 candidate for being written as a utility function. The cookbook_utils.py file contains a function trim_whitespace() that performs both
 substitutions and returns the result:
val = trim_whitespace (val)
To remember subsections of a string matched by a pattern, use
 parentheses around the relevant pattern parts. After a successful match,
 you can refer to the matched substrings using the variables \1, \2, and
 so forth inside the regular expression or using the match number as an argument of the method group:
match = re.match('^(\d+)(.*)$', '2021-04-25')
if match:
 first_part = match.group(1) # this is the year, 2021
 the_rest = match.group(2) # this is the rest of the date, -04-25
If you want to indicate that an element within a pattern is optional, follow
 it with a ? character.
 To match values consisting of a sequence of digits, optionally beginning
 with a minus sign and optionally ending with a period, use this
 pattern:
^-?\d+\.?$
Use parentheses to group alternations within a pattern. The following pattern
 matches time values in hh:mm format,
 optionally followed by AM or PM:
^\d{1,2}:\d{2}\s*(AM|PM)?$
The use of parentheses in that pattern also has the side effect of
 remembering the optional part in \1.
 To suppress that side effect, use (?:pat) instead:
^\d{1,2}:\d{2}\s*(?:AM|PM)?$
You now have sufficient background in Python pattern matching to enable
 the construction of useful validation tests for several types of data
 values. The following recipes provide patterns that can be used to test
 for broad content types, numbers, temporal values, and email addresses
 or URLs.
The transfer directory of the
 recipes distribution contains a
 test_pat.py script that reads input
 values, matches them against several patterns, and reports which
 patterns each value matches. The script is easily extensible, so you can
 use it as a test harness to try your own patterns.

14.7 Using Patterns to Match Broad Content Types
Problem
You want to classify values into categories.

Solution
Use a pattern that uses similarly broad categories.

Discussion
To check whether values are empty or nonempty, or consist only of
 certain types of characters, the patterns listed in Table 14-2
 may suffice.
Table 14-2. Commonly used categories of characters	Pattern	Type of value the pattern matches
	^$ 	Empty value
	.	Nonempty value
	^\s*$ 	Whitespace, possibly empty
	^\s+$ 	Nonempty whitespace
	\S 	Nonempty, and not
 whitespace
	^\d+$ 	Digits only,
 nonempty
	^[a-zA-Z]+$ 	Alphabetic characters only (case insensitive),
 nonempty
	^\w+$ 	Alphanumeric or underscore
 characters only, nonempty

14.8 Using Patterns to Match Numeric Values
Problem
You want to make sure a string looks like a number.

Solution
Use a pattern that matches the type of number you’re looking
 for.

Discussion
Patterns can be used to classify values into several types of
 numbers, as shown in Table 14-3.
Table 14-3. Patterns that match numbers	Pattern	Type of value the pattern matches
	^\d+$ 	Unsigned integer
	^-?\d+$ 	Negative or unsigned
 integer
	^[-+]?\d+$ 	Signed or unsigned
 integer
	^[-+]?(\d+(\.\d*)?|\.\d+)$ 	Floating-point
 number

The pattern ^\d+$ matches
 unsigned integers by requiring a nonempty value that consists only of
 digits from the beginning to the end of the value. If you care only that
 a value begins with an integer, you can match an initial numeric part
 and extract it. To do this, match only the initial part of the string
 (omit the $ that requires the pattern
 to match to the end of the string), and place parentheses around the
 \d+ part. Then refer to the matched
 number as group(1) after a successful
 match:
match = re.match('^(\d+)', val)
if match:
 val = match.group(1)
Some kinds of numeric values have a special format or other
 unusual constraints. Here are a few examples and how to deal with
 them:
	ZIP codes
	ZIP and ZIP+4 codes are postal codes used for mail delivery in the United
 States. They have values like 12345 or 12345-6789 (that is, five digits,
 possibly followed by a dash and four more digits). To match one
 form or the other, or both forms, use the patterns shown in
 Table 14-4.
Table 14-4. Patterns that match ZIP codes	Pattern	Type of value the pattern matches
	^\d{5}$ 	ZIP code, five digits
 only
	^\d{5}-\d{4}$ 	ZIP+4 code
	^\d{5}(-\d{4})?$ 	ZIP or ZIP+4
 code

	Credit card numbers
	Credit card numbers typically consist of digits, but it’s common for
 values to be written with spaces, dashes, or other characters
 between groups of digits. For example, the following numbers are
 equivalent:
0123456789012345
0123 4567 8901 2345
0123-4567-8901-2345
To match such values, use this pattern:
^[- \d]+
(Python permits the \d
 digit specifier within character classes.) However, that pattern
 doesn’t identify values of the wrong length, and it may be useful
 to remove extraneous characters before storing values in MySQL. To
 require credit card values to contain 16 digits, use a
 substitution that removes all nondigits, then check the length of
 the result:
val = re.sub('\D', '', val)
valid = len(val) == 16

14.9 Using Patterns to Match Dates or Times
Problem
You want to make sure a string looks like a date or time.

Solution
Use a pattern that matches the type of temporal value you expect.
 Be sure to consider issues such as how strict to be about delimiters
 between subparts and the lengths of the subparts.

Discussion
Dates are a validation headache because they come in so many
 formats. Pattern tests are extremely useful for weeding out illegal
 values but are often insufficient for full verification: a date might have
 a number where you expect a month, but the date isn’t valid if the
 number is 13. This section introduces some patterns that match a few
 common date formats. Recipe 14.14
 revisits this topic in more detail and discusses combining pattern tests
 with content verification.
To require values to be dates in ISO (YYYY-MM-DD)
 format, use this pattern:
^\d{4}-\d{2}-\d{2}$
The pattern requires the -
 character as the delimiter between date parts. To permit either - or / as
 the delimiter, use a character class between the numeric parts:
^\d{4}[-/]\d{2}[-/]\d{2}$

 This pattern will match dates in the formats YYYY-MM-DD, YYYY/MM/DD, YYYY/MM-DD, and YYYY-MM/DD.

To permit any nondigit delimiter (which corresponds to how MySQL
 operates when it interprets strings as dates), use this pattern:
^\d{4}\D\d{2}\D\d{2}$
To permit leading zeros in values like 03 to be missing, just look for three nonempty
 digit sequences:
^\d+\D\d+\D\d+$
Of course, that pattern is so general that it also matches other
 values such as US Social Security numbers (which have the format
 012-34-5678). To constrain the subpart lengths by requiring two to four
 digits in the year part and one or two digits in the month and day
 parts, use this pattern:
^\d{2,4}?\D\d{1,2}\D\d{1,2}$
For dates in other formats such as MM-DD-YY or
 DD-MM-YY, similar patterns apply, but the
 subparts are arranged in a different order. This pattern matches both of
 those formats:
^\d{2}-\d{2}-\d{2}$
To check the values of individual date parts, use parentheses in the pattern and extract the substrings
 after a successful match. If you expect dates to be in ISO format, for
 example, do this:
match = re.match('^(\d{2,4})\D(\d{1,2})\D(\d{1,2})$', val)
if match:
 (year, month, day) = (match.group(1), match.group(2), match.group(3))
The library file lib/cookbook_utils.py in the recipes distribution contains several of these
 pattern tests, packaged as function calls. If the date doesn’t match the
 pattern, they return None.
 Otherwise, they return a reference to an array containing the broken-out
 values for the year, month, and day. This can be useful for performing
 further checking on the components of the date. For example, is_iso_date() looks for dates that match ISO format. It’s defined as follows:
def is_iso_date(val):
 m = re.match('^(\d{2,4})\D(\d{1,2})\D(\d{1,2})$', val)
 return [int(m.group(1)), int(m.group(2)), int(m.group(3))] if m else None
The function could be used as follows:
ref = cu.is_iso_date(val)
if ref is not None:
 # val matched ISO format pattern;
 # check its subparts using ref[0] through ref[2]
 pass
else:
 # val didn't match ISO format pattern
 pass
You’ll often find additional processing necessary with dates
 because date-matching patterns help to weed out values that are
 syntactically malformed but don’t assess whether the individual
 components contain legal values. To do that, some range checking is
 necessary. Recipe 14.14 covers that
 topic.
If you’re willing to skip subpart testing and just want to rewrite
 the pieces, use a substitution.
 For example, to rewrite values assumed to be in
 MM-DD-YY format into YY-MM-DD format, do
 this:
val = re.sub('^(\d+)\D(\d+)\D(\d+)$', r'\3-\1-\2', val)
Time values are somewhat more orderly than dates, usually being
 written with hours first and seconds last, with two digits per
 part:
^\d{2}:\d{2}:\d{2}$
To be more lenient, permit the hours part to have a single digit,
 or the seconds part to be missing:
^\d{1,2}:\d{2}(:\d{2})?$
Mark parts of the time with parentheses if you want to range-check
 the individual parts, or perhaps to reformat the value to include a
 seconds part of 00 if it happens to
 be missing. However, this requires some care with the parentheses and
 the ? characters in the pattern if
 the seconds part is optional. You want to permit the entire :\d{2} at the end of the pattern to be
 optional but not to save the :
 character in \3 if the third time
 section is present. To accomplish that, use (?:pat), a grouping notation that doesn’t save the
 matched substring. Within that notation, use parentheses around the
 digits to save them. Then \3 is
 None if the seconds part is not
 present, and contains the seconds digits otherwise:
m = re.match('^(\d{1,2}):(\d{2})(?::(\d{2}))?$', val)
(hour, min, sec) = (m.group(1), m.group(2), m.group(3))
sec = '00' if sec is None else sec # seconds missing; use 00
val = hour + ':' + min + ':' + sec
To rewrite times from a 12-hour format with AM and PM suffixes to
 a 24-hour format, do this:
m = re.match('^(\d{1,2})\D(\d{2})\D(\d{2})(?:\s*(AM|PM))?$', val, flags = re.I)
(hour, min, sec) = (m.group(1), m.group(2), m.group(3))
supply missing seconds
sec = '00' if sec is None else sec
if int(hour) == 12 and (m.group(4) is None or m.group(4).upper() == "AM"):
 hour = '00' # 12:xx:xx AM times are 00:xx:xx
elif int(hour) < 12 and (m.group(4) is not None) and m.group(4).upper() == "PM":
 hour = int(hour) + 12 # PM times other than 12:xx:xx
return [hour, min, sec] # return hour, minute, second
The time parts are placed into groups 1, 2, and
 3, with 3 set to None if the seconds part is missing. The
 suffix goes into group 	4 if it’s present.
 If the suffix is AM or missing
 (None), the value is interpreted as
 an AM time. If the suffix is PM, the
 value is interpreted as a PM time.

See Also
This recipe shows just the beginning of what you can do when
 processing dates for data-transfer purposes. Date and time testing and
 conversion can be highly idiosyncratic, and the sheer number of issues
 to consider is mind-boggling:
	What is the basic date format? Dates come in several common
 styles, such as ISO (YYYY-MM-DD), US
 (MM-DD-YY), and British
 (DD-MM-YY) formats. And these are just
 some of the more standard formats. Many more are possible. For
 example, a datafile may contain dates written as June 17, 1959 or as 17 Jun
 '59.

	Are trailing times permitted on dates, or perhaps required?
 When times are expected, is the full time required or just the hour
 and minute?

	Do you permit special values like now or today?

	Are date parts required to be delimited by a particular
 character, such as - or /, or are other delimiters
 permitted?

	Are date parts required to have a specific number of digits?
 Or are leading zeros on month and year values permitted to be
 missing?

	Are months written numerically or represented as month names
 like January or Jan?

	How should two-digit year values be converted
 to have four digits? What is the transition point within the
 range 00 to 99 at which values change from one century
 to another?

	Should date parts be checked to ensure their validity?
 Patterns can recognize strings that look like dates or times, but
 while they’re extremely useful for detecting malformed values, they
 may not be sufficient. A value like 1947-15-99 may match a pattern but isn’t a
 legal date. Pattern testing is thus most useful in conjunction with
 range checks on the individual parts of the date.

The prevalence of these issues in data-transfer problems means
 that you’ll probably end up writing some of your own validators on
 occasion to handle very specific date formats. Other sections of this
 chapter can provide additional assistance. For example, Recipe 14.13 covers conversion of two-digit year
 values to four-digit form, and Recipe 14.14 discusses how to perform
 validity checking on components of date or time values.
You might be able to save yourself some work by using existing
 date-checking modules for your API language. Some possibilities: the
 Perl Date module, the Ruby date module, the Python datetime module, the PHP DateTime class,
 and the Java GregorianCalendar and
 SimpleDateTime classes.

14.10 Using Patterns to Match Email Addresses or URLs
Problem
You want to determine if a value looks like an email address or a
 URL.

Solution
In your application, use a pattern tuned to the desired level of strictness on which addresses you accept and which you do not.

Discussion
The immediately preceding recipes use patterns to identify
 classes of values such as numbers and dates, which are fairly typical
 applications for regular expressions. But pattern matching has much more
 widespread applicability for data validation. To give some idea of a few
 other types of values for which pattern matching can be used, this
 recipe shows a few tests for email addresses and URLs.
To check values that are expected to be email addresses, the
 pattern should require at least an @
 character with nonempty strings on either side:
.@.
Note

			Full email address specification is defined by RFC5322 and contains many parts. Regular expression that rejects all invalid addresses and accepts all valid addresses is pretty complicated to write. Check http://emailregex.com for examples in popular programming languages to have an idea.
		

		 In this recipe, we’ll show you a pretty minimal test that is sufficient to help correct most innocent user errors, such as typos when they enter addresses into a web form.
		

It’s difficult to come up with a
 fully general pattern that covers all the legal values and rejects all
 the illegal ones, but it’s easy to write a pattern that’s at least a
 little more restrictive. For example, in addition to being nonempty,
 the username and the domain name should consist entirely
 of characters other than @ characters
 or spaces:
^[^@]+@[^@]+$
You may also want to require that the domain name part contain at
 least two parts separated by a dot:
^[^@]+@[^@ .]+\.[^@ .]+
To look for URL values that begin with a protocol specifier of
 http://, https://, ftp://, or mailto:, use an alternation that matches any
 of them at the beginning of the string:
re.compile('^(https?://|ftp://|mailto:)', flags=re.I)
The alternatives in the pattern are grouped within parentheses
 because otherwise the ^ anchors only
 the first of them to the beginning of the string. The re.I flag follows the pattern because
 protocol specifiers in URLs are not case sensitive. The pattern is otherwise fairly
 unrestrictive because it permits anything to follow the protocol
 specifier. Add further restrictions as necessary.

14.11 Using Table Metadata to Validate Data
Problem
You want to check input values against the legal members of an ENUM or SET
 column.

Solution
Get the column definition, extract the list of members from it,
 and check data values against the list.

Discussion
Some forms of validation involve checking input values against
 information stored in a database. This includes values to be stored in
 an ENUM or SET column, which can be checked against the
 valid members stored in the column definition. Database-backed
 validation also applies to values that must match those listed in a
 lookup table to be considered legal. For example, input records that
 contain customer IDs can be required to match a row in a customers table, and state abbreviations in
 addresses can be verified against a table that lists each state. This
 recipe describes ENUM- and SET-based validation, and Recipe 14.12 discusses how to use lookup
 tables.
One way to check input values that correspond to the legal values
 of ENUM or SET columns is to get the list of legal column
 values into an array using the information in INFORMATION_SCHEMA,
 then perform an array membership test. For example, the favorite-color
 column color from the profile table is an ENUM defined as follows:
mysql> SELECT COLUMN_TYPE FROM INFORMATION_SCHEMA.COLUMNS
 -> WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'profile'
 -> AND COLUMN_NAME = 'color';
+--+
| COLUMN_TYPE |
+--+
| enum('blue','red','green','brown','black','white') |
+--+
If you extract the list of enumeration members from the COLUMN_TYPE value and store them in a members list, you can perform the
 membership test like this:
valid = True ↩
if list(map(lambda v: v.upper(), members)).count(val.upper()) > 0 ↩
else False
We can convert the members list and val to uppercase to perform a case-insensitive
 comparison because the default collation is utf8mb4_0900_ai_ci, which is case insensitive.
 (If you have a column with a different collation, adjust
 accordingly. We discussed how to change column collation in Recipe 7.5.)
In Recipe 12.6, we wrote a get_enumorset_info() function that returns
 ENUM or SET column metadata. This includes the list of
 members, so it’s easy to use that function to write another utility
 routine, check_enum_value(), that gets the legal
 enumeration values and performs the membership test. The routine takes
 four arguments: a database handle, the table name and column name for
 the ENUM column, and the value to
 check. It returns true or false to indicate whether the value is
 legal:
def check_enum_value(conn, db_name, tbl_name, col_name, val):
 valid = 0
 info = get_enumorset_info(conn, db_name, tbl_name, col_name)
 if info is not None and info['type'].upper() == 'ENUM':
 # use case-insensitive comparison because default collation
 # (utf8mb4_0900_ai_ci) is case insensitive (adjust if you use
 # a different collation)
 valid = 1 ↩
 if list(map(lambda v: v.upper(), info['values'])).count(val.upper()) > 0 ↩
 else 0
 return valid
For single-value testing, such as to validate a value submitted in
 a web form, list lookup for each value works well. However, to test a lot of
 values (like an entire column in a datafile), it’s better to read the
 enumeration values into memory once, then use them repeatedly to check
 each data value. Furthermore, it’s a lot more efficient to perform dictionary
 lookups than list lookups (in Python at least). To do so, retrieve the
 legal enumeration values and store them as keys of a dictionary. Then test
 each input value by checking whether it exists as a dictionary key. It’s a
 little more effort to construct the dictionary, which is why check_enum_value() doesn’t do so. But for bulk
 validation, the improved lookup speed more than makes up for the dictionary
 construction overhead. (To check for yourself the relative efficiency of
 list membership tests versus dictionary lookups, try the lookup_time.py script in the transfer directory of the recipes distribution.)
Begin by getting the metadata for the column, then convert the list
 of legal enumeration members to a dictionary:
info = get_enumorset_info(conn, db_name, tbl_name, col_name)
members={}
convert dictionary key to consistent lettercase
for v in info['values']:
 members[v.lower()] = 1
The for loop makes each
 enumeration member exist as the key of a dictionary element. The dictionary key is
 what’s important here; the value associated with it is irrelevant. (The
 example shown sets the value to 1,
 but you could use None, 0, or any other value.) Note that the code
 converts the dictionary keys to lowercase before storing them. This is done
 because dictionary key lookups in Python are case sensitive. That’s fine if the
 values that you check also are case sensitive, but ENUM columns by default are not. By converting
 the enumeration values to a given lettercase before storing them in the
 dictionary, and then converting the values you want to check similarly, you
 perform, in effect, a case-insensitive key existence test:
valid = 1 if val.lower() in members else 0
The example converts enumeration values and input values
 to lowercase. You could just as well use uppercase, as long as you do so
 for all values consistently.
Note that the existence test may fail if the input value is the
 empty string. You must decide how to handle that case on a
 column-by-column basis. For example, if the column permits NULL values, you might interpret the empty
 string as equivalent to NULL and thus
 as being a legal value.
The validation procedure for SET values is similar to that for ENUM values, except that an input value might
 consist of any number of SET members,
 separated by commas. For the value to be legal, each element in it must
 be legal. In addition, because any number of members
 includes none, the empty string is a legal value for any
 SET column.
For one-shot testing of individual input values, use a check_set_value() utility function that is similar to check_enum_value():
def check_set_value(conn, db_name, tbl_name, col_name, val):
 valid = 0
 info = get_enumorset_info(conn, db_name, tbl_name, col_name)
 if info is not None and info['type'].upper() == 'SET':
 if val == "":
 return 1 # empty string is legal element
 # use case-insensitive comparison because default collation
 # (utf8mb4_0900_ai_ci) is case insensitive (adjust if you use
 # a different collation)
 valid = 1 # assume valid until we find out otherwise
 for v in val.split(','):
 if list(map(lambda x: x.upper(), info['values'])).count(v.upper()) <= 0:
 valid = 0
 break
 return valid
For bulk testing, construct a dictionary from the legal SET members. The procedure is the same as
 shown previously for producing a dictionary from ENUM elements.
To validate a given input value against the SET member dictionary, convert it to the same
 lettercase as the hash keys, split it at commas to get a list of the
 individual elements of the value, and then check each one. If any of the
 elements are invalid, the entire value is invalid:
valid = 1 # assume valid until we find out otherwise
for v in val.split(","):
 if v.lower() not in members:
 valid = 0
 break
After the loop terminates, valid is true if the value is legal for the
 SET column, and false otherwise.
 Empty strings are always legal SET
 values, but this code performs no special-case test for an empty string.
 No such test is necessary because in that case the split() operation returns an empty list, the
 loop never executes, and valid
 remains true.

14.12 Using a Lookup Table to Validate Data
Problem
You want to check values to make sure they’re listed in a lookup
 table.

Solution
Issue statements to check whether the values are in the table. The best way to do
 this depends on the number of input values and the table size.
 In this recipe, we will start our discussion with issuing individual statements, then create a hash from the entire lookup table, and, finally, improve our algorithm by remembering already-seen values to avoid querying the database several times for large datasets.

Discussion
To validate input values against the contents of a lookup table,
 the techniques are somewhat similar to those shown in Recipe 14.11 for checking ENUM and SET columns. However, whereas ENUM and SET columns usually have a small number of
 member values, a lookup table can have an essentially unlimited number
 of values. You might not want to read them all into memory.
Validation of input values against the contents of a lookup table
 can be done several ways, as illustrated in the following discussion.
 The tests shown in the examples perform comparisons against values
 exactly as they are stored in the lookup table. To perform case-insensitive comparisons, convert all values to a
 consistent lettercase. (See the discussion of case conversion in Recipe 14.11.)
Issue individual statements
For one-shot operations, test a value by checking whether it’s
 listed in the lookup table. The following query returns true (nonzero)
 for a value that is present and false otherwise:
cursor.execute("select count(*) from tbl_name where val = %(val)s", {'val': value})
valid = cursor.fetchone()[0]
This kind of test may be suitable for purposes such as checking a
 value submitted in a web form but is inefficient for validating large
 datasets. It has no memory for the results of previous tests for
 values that have been seen before; consequently, you execute a query
 for every input value.

Construct a hash from the entire lookup table
To validate a large number of values, it’s better to pull the lookup
 values into memory, save them in a data structure, and check each
 input value against the contents of that structure. Using an in-memory
 lookup avoids the overhead of executing a query for each value.
First, run a query to retrieve all the lookup table values and
 construct a dictionary from them:
members = {} # dictionary for lookup values
cursor.execute("SELECT val FROM tbl_name");
rows = cursor.fetchall()
for row in rows:
 members[row[0]] = 1
Then, perform a dictionary key existence test to check a given value:
valid = True if val in members else False
This technique reduces database traffic to a single query.
 However, for a large lookup table, that could still be a lot of
 traffic, and you might not want to hold the entire table in
 memory.
Performing Lookups with Other Languages
The lookup example shown in this recipe uses a Python dictionary to determine whether a given
 value is present in a set of values.
Similar data structures exist for other languages. In Ruby,
 use a hash, and check input values using the has_key?
 method:
valid = members.has_key?(val)
In PHP, use an associative array, and perform a key lookup with
 isset():
$valid = isset ($members[$val]);
In Perl, use a hash, and check input values using the exists
 function:
$valid = exists ($members{$val});
For lookups in Java, use a HashMap, and
 test values with the containsKey()
 method:
valid = members.containsKey (val);
In Go, use a map, and access its keys directly:
valid := members[val]
The transfer directory of
 the recipes distribution contains
 some sample code for lookup operations in each language.

Remember already-seen values to avoid database lookups
Another lookup technique mixes individual statements with a dictionary that
 stores lookup value existence information. This approach can be useful
 if you have a very large lookup table. Begin with an empty
 dictionary:
members = {} # dictionary for lookup values
Then, for each value to be tested, check whether it’s present in
 the dictionary. If not, execute a query to check whether the value is
 present in the lookup table, and record the result of the query in the
 dictionary. The validity of the input value is determined by the value
 associated with the key, not by the existence of the key:
if val not in members: # haven't seen this value yet
 cursor.execute(f"SELECT COUNT(*) FROM {tbl_name} WHERE val = %(val)s",↩
 {'val': val})
 count = cursor.fetchone()[0]
 # store true/false to indicate whether value was found
 members[val] = True if count > 0 else False
valid = members[val]
For this method, the dictionary acts as a cache so that you execute a
 lookup query for any given value only once, no matter how many times
 it occurs in the input. For datasets that have repeated values, this
 approach avoids issuing a separate query for every single test, while
 requiring an entry in the dictionary only for each unique value. It thus
 stands between the other two approaches in terms of the trade-off
 between database traffic and program memory requirements for the
 dictionary.
Note that the dictionary is used in a different manner for this method
 than for the previous method. Previously, the existence of the input
 value as a key in the dictionary determined the validity of the value, and
 the value associated with the dictionary key was irrelevant. For the
 dictionary-as-cache method, the meaning of key existence in the dictionary changes
 from it’s valid to it’s been tested
 before. For each key, the value associated with it indicates
 whether the input value is present in the lookup table. (If you store
 as keys only those values that are found to be in the lookup table,
 you issue a query for each instance of an invalid value in the input
 dataset, which is inefficient.)

14.13 Converting Two-Digit Year Values to Four-Digit Form
Problem
You want to convert years in date values from two digits to four
 digits.

Solution
Let MySQL do this for you, or perform the operation yourself if
 MySQL’s conversion rules aren’t appropriate.

Discussion
Two-digit year values are a problem because the century is not
 explicit in the data values. If you know the range of years spanned by
 your input, you can add the century without ambiguity. Otherwise, you
 can only guess. For example, the date 10/2/69 would be interpreted by
 most people in the US as October 2, 1969. But if it represents
 Mahatma Gandhi’s birth date, the year is actually 1869.
One way to convert years to four digits is to let MySQL do it. If
 you try to insert into the YEAR column a date containing a two-digit year, MySQL automatically
 converts it to four-digit form. MySQL uses a transition point of 1970;
 it interprets values from 00 to 69 as the years 2000 to 2069, and values
 from 70 to 99 as the years 1970 to 1999. These rules are appropriate for
 year values in the range from 1970 to 2069. If your values lie outside
 this range, add the proper century yourself before storing them into
 MySQL:
mysql> SELECT CAST(69 AS YEAR) AS `69`,
 -> CAST(70 AS YEAR) AS `70`,
 -> CAST(22 AS YEAR) AS `22`;
+------+------+------+
| 69 | 70 | 22 |
+------+------+------+
| 2069 | 1970 | 2022 |
+------+------+------+
To use a different transition point, convert years to four-digit
 form yourself. Here’s a general-purpose routine that converts two-digit
 years to four digits and supports an arbitrary transition
 point:
def yy_to_yyyy(year, transition_point = 70):
 if year < 100:
 year += 1900 if year >= transition_point else 2000
 return year
The function uses MySQL’s transition point (70) by default. An
 optional second argument may be given to provide a different transition
 point. yy_to_yyyy() also verifies
 that the year actually is less than 100 and needs converting before
 modifying it. That way you can pass year values regardless of whether
 they include the century. Some sample invocations using the default
 transition point have the following results:
val = yy_to_yyyy (60) # returns 2060
val = yy_to_yyyy (1960) # returns 1960 (no conversion done)
Suppose that you want to convert year values as follows, using a
 transition point of 50:
00 .. 49 -> 2000 .. 2049
50 .. 99 -> 1950 .. 1999
To do this, pass an explicit transition point argument to yy_to_yyyy():
val = yy_to_yyyy (60, 50) # returns 1960
val = yy_to_yyyy (1960, 50) # returns 1960 (no conversion done)
The yy_to_yyyy() function is
 included in the cookbook_utils.py library file of the recipes distribution.

14.14 Performing Validity Checking on Date or Time Subparts
Problem
A string passes a pattern test as a date or time, but you want to perform
 further validity checking.

Solution
Break the value into parts, and perform the appropriate range
 checking on each part.

Discussion
Pattern matching may not be sufficient for date or time checking.
 For example, a value like 1947-15-19
 might match a date pattern, but it’s not a legal date. To perform more
 rigorous value testing, combine pattern matching with range checking.
 Break out the year, month, and day values, then check whether each is
 within the proper range. Years should be less than 9999 (MySQL
 represents dates to an upper limit of 9999-12-31), month values must be in the range
 from 1 to 12, and days must be in the range from 1 to the number of days
 in the month. That last part is the trickiest: it’s month-dependent, and
 also year-dependent for February because it changes for leap
 years.
Suppose that you’re checking input dates in ISO format. In Recipe 14.9, we used the is_iso_date() function from the cookbook_utils.py library file to perform a
 pattern match on a date string and break it into component values. is_iso_date() returns None if the value doesn’t satisfy a pattern
 that matches ISO date format. Otherwise, it returns a reference to an
 array containing the year, month, and day values. The cookbook_utils.py file also contains is_mmddyy_date() and is_ddmmyy_date() routines that match dates in
 US or British format and return None
 or a reference to a list of date parts. (The parts returned are always
 in year, month, day order, not the order in which the parts appear in
 the input date string.)
To perform additional checking on the result returned by any of
 those routines (assuming that the result is not None), pass the date parts to is_valid_date(),
 another library function:
valid = is_valid_date(ref[0], ref[1], ref[2])
is_valid_date() returns nonzero
 if the date is valid, 0 otherwise. It checks the parts of a date like
 this:
def is_valid_date(year, month, day):
 print(year, month, day)
 if year < 0: # or (month < 0) or (day < 1):
 return 0
 if year > 9999 or month > 12 or day > days_in_month(year, month):
 return 0
 return 1
is_valid_date() requires
 separate year, month, and day values, not a date string. This requires
 that you break candidate values into components before invoking it but
 makes it applicable in more contexts. For example, you can use it to
 check dates like 12 February 2003 by mapping the month to its numeric value
 before calling is_valid_date(). If
 is_valid_date() took a string
 argument assumed to be in a specific date format, it would be much less
 general.
is_valid_date() uses a
 subsidiary days_in_month() function to determine the number of
 days in the month represented by the date. days_in_month() requires both the year and the
 month as arguments because if the month is 2 (February), the number of
 days depends on whether the year is a leap year. This means you
 must pass a four-digit year value; two-digit years are ambiguous
 with respect to the century, which makes proper leap-year testing
 impossible. The days_in_month() and
 is_leap_year() functions are based on
 techniques taken from that recipe:
def is_leap_year(year):
 return ((year % 4 == 0) and ((year % 100 != 0) or (year % 400 == 0)))

def days_in_month(year, month):
 day_tbl = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
 days = day_tbl[month - 1]

 if month == 2 and is_leap_year(year):
 days += 1
 return days
To perform validity checking on time values, a similar procedure
 applies: verify that the value matches a time pattern and break it into
 components, then perform range-testing on the components. For times, the
 ranges are 0 to 23 for the hour and 0 to 59 for the minute and second.
 Here is a is_24hr_time() function that checks for values in 24-hour format and returns the
 components:
def is_24hr_time(val):
 m = re.match('^(\d{1,2})\D(\d{2})\D(\d{2})$', val)
 if m is None:
 return None
 return[int(m.group(1)), int(m.group(2)), int(m.group(3))]
The following is_ampm_time() function is similar but looks
 for times in 12-hour format with an optional AM or PM suffix, converting
 PM times to 24-hour values:
def is_ampm_time(val):
 m = re.match('^(\d{1,2})\D(\d{2})\D(\d{2})(?:\s*(AM|PM))?$', val, flags = re.I)
 if m is None:
 return None
 (hour, min, sec) = (int(m.group(1)), (m.group(2)), (m.group(3)))
 # supply missing seconds
 sec = '00' if sec is None else sec
 if hour == 12 and (m.group(4) is None or m.group(4).upper() == "AM"):
 hour = '00' # 12:xx:xx AM times are 00:xx:xx
 elif int(hour) < 12 and (m.group(4) is not None) and m.group(4).upper() == "PM":
 hour = hour + 12 # PM times other than 12:xx:xx
 return [hour, min, sec] # return hour, minute, second
Both functions return None for
 values that don’t match the pattern. Otherwise, they return a reference
 to a three-element array containing the hour, minute, and second
 values.
After you obtain the time components, pass them to is_valid_time(), another utility routine, to
 perform range checks.

14.15 Writing Date-Processing Utilities
Problem
There is a date-processing operation that you want to perform frequently.

Solution
Write a utility that performs the date-processing operation for you.

Discussion
Due to the idiosyncratic nature of dates, you might occasionally
 find it necessary to write date converters. This section shows some
 sample converters that serve various purposes:
	isoize_date.py reads a file
 looking for dates in US format (MM-DD-YY)
 and converts them to ISO format.

	cvt_date.py converts dates
 to and from ISO, US, or British formats. It is more general
 than isoize_date.py but requires
 that you tell it what kind of input to expect and what kind of
 output to produce.

	monddyyyy_to_iso.py looks

 for dates like Feb. 6, 1788
 and converts them to ISO format. It illustrates how to map dates
 with nonnumeric parts to a format that MySQL understands.

All three scripts are located in the transfer directory of the recipes distribution. They assume datafiles
 are in tab-delimited, linefeed-terminated format. To work with files
 that have a different format, use cvt_file.pl, available in the recipes distribution.
Our first date-processing utility, isoize_date.py, looks for dates in US format
 and rewrites them into ISO format. You’ll recognize that it’s modeled
 after the general input-processing loop, with some extra stuff thrown in
 to perform a specific type of conversion:
#!/usr/bin/python3
isoize_date.py: Read input data, look for values that match
a date pattern, convert them to ISO format. Also converts
2-digit years to 4-digit years, using a transition point of 70.
By default, this looks for dates in MM-DD-[CC]YY format.
Does not check whether dates actually are valid (for example,
won't complain about 13-49-1928).

Assumes tab-delimited, linefeed-terminated input lines.

import sys
import re
import fileinput

transition point at which 2-digit XX year values are assumed to be
19XX (below that, they are treated as 20XX)
transition = 70

for line in fileinput.input(sys.argv[1:]):
 val = line.split("\t", 10000); # split, preserving all fields
 for i in range(0, len(val)):
 # look for strings in MM-DD-[CC]YY format
 m = re.match('^(\d{1,2})\D(\d{1,2})\D(\d{2,4})$', val[i])
 if not m:
 continue

 (month, day, year) = (int(m.group(1)), int(m.group(2)), int(m.group(3)))
 # to interpret dates as DD-MM-[CC]YY instead, replace preceding
 # line with the following one:
 # (day, month, year) = (int(m.group(1)), int(m.group(2)), int(m.group(3)))

 # convert 2-digit years to 4 digits, then update value in array
 if year < 100:
 year += 1900 if year >= transition else 2000
 val[i] = "%04d-%02d-%02d" % (year, month, day)
 print("\t".join (val))
If you feed isoize_date.py an
 input file that looks like this:
Sybil 04-13-70
Nancy 09-30-69
Ralph 11-02-73
Lothair 07-04-63
Henry 02-14-65
Aaron 09-17-68
Joanna 08-20-52
Stephen 05-01-60
It produces the following output:
Sybil 1970-04-13
Nancy 2069-09-30
Ralph 1973-11-02
Lothair 2063-07-04
Henry 2065-02-14
Aaron 2068-09-17
Joanna 2052-08-20
Stephen 2060-05-01
isoize_date.py serves a
 specific purpose: it converts only from US to ISO format. It does not
 perform validity checking on date subparts or permit the transition
 point for adding the century to be specified. A more general tool would
 be more useful. The next script, cvt_date.py, extends the capabilities of
 isoize_date.py; it recognizes input
 dates in ISO, US, or British formats and converts any of them to any
 other. It also can convert two-digit years to four digits, enable you to
 specify the conversion transition point, and warn about bad dates. As
 such, it can be used to preprocess input for loading into MySQL or
 postprocess data exported from MySQL for use by other programs.
cvt_date.py understands the
 following options:
	--iformat=format,
 --oformat=format,
 --format=format
	Set the date format for input, output, or both. The default
 format value is iso; cvt_date.py also recognizes any string
 beginning with us or br as indicating US or British date
 format.

	--add-century
	Convert two-digit years to four digits.

	--columns=column_list
	Convert dates only in the named columns. By default, cvt_date.py looks for dates in all
 columns. If this option is given,
 column_list should be a list of one or
 more column positions or ranges separated by commas. (Ranges can
 be given as m-n to specify columns
 m through
 n.) Positions begin at 1.

	--transition=n
	Specify the transition point for two-digit to four-digit year conversions.
 The default transition point is 70. This option turns on
 --add-century.

	--warn
	Warn about bad dates. (This option can produce spurious
 warnings if the dates have two-digit years and you don’t specify
 --add-century, because leap-year testing won’t
 always be accurate in that case.)

We won’t show the code for cvt_date.py here (most of it is taken up with
 processing command-line options), but you can examine the source for
 yourself if you like. As an example of how cvt_date.py works, suppose that you have a
 newdata.txt file with the following
 contents:
name1 01/01/99 38
name2 12/31/00 40
name3 02/28/13 42
name4 01/02/18 44
Running the file through cvt_date.py with options indicating that the
 dates are in US format and that the century should be added produces
 this result:
$ cvt_date.pl --iformat=us --add-century newdata.txt
name1 1999-01-01 38
name2 2000-12-31 40
name3 2013-02-28 42
name4 2018-01-02 44
To produce dates in British format instead with no year
 conversion, do this:
$ cvt_date.pl --iformat=us --oformat=br newdata.txt
name1 01-01-99 38
name2 31-12-00 40
name3 28-02-13 42
name4 02-01-18 44
cvt_date.py has no knowledge of
 the meaning of each data column, of course. If you have a nondate column
 with values that match the pattern, it rewrites that column, too. To
 deal with that, specify a --columns option to limit the
 columns that cvt_date.py
 converts.
isoize_date.py and cvt_date.py both operate on dates written in
 all-numeric formats. But dates in datafiles often are written
 differently, and it may be necessary to write a special-purpose script
 to process them. Suppose an input file contains dates in the following
 format (these represent the dates on which US states were admitted to
 the Union):
Delaware Dec. 7, 1787
Pennsylvania Dec 12, 1787
New Jersey Dec. 18, 1787
Georgia Jan. 2, 1788
Connecticut Jan. 9, 1788
Massachusetts Feb. 6, 1788
…
The dates consist of a three-character month abbreviation
 (possibly followed by a period), a numeric day of the month, a comma,
 and a numeric year. To import this file into MySQL, you must convert the
 dates to ISO format, resulting in a file that looks like this:
Delaware 1787-12-07
Pennsylvania 1787-12-12
New Jersey 1787-12-18
Georgia 1788-01-02
Connecticut 1788-01-09
Massachusetts 1788-02-06
…
That’s a somewhat specialized kind of transformation, although
 this general type of problem (converting a particular date format to ISO
 format) is hardly uncommon. To perform the conversion, identify the
 dates as those values matching an appropriate pattern, map month names
 to the corresponding numeric values, and reformat the result. The
 following script, monddyyyy_to_iso.py, illustrates how:
#!/usr/bin/python3
monddyyyy_to_iso.py: Convert dates from mon[.] dd, yyyy to ISO format.

Assumes tab-delimited, linefeed-terminated input

import re
import sys
import fileinput
import warnings

map = {"jan": 1, "feb": 2, "mar": 3, "apr": 4, "may": 5, "jun": 6,
 "jul": 7, "aug": 8, "sep": 9, "oct": 10, "nov": 11, "dec": 12
 } # map 3-char month abbreviations to numeric month

for line in fileinput.input(sys.argv[1:]):
 values = line.rstrip().split("\t", 10000) # split, preserving all fields
 for i in range(0, len(values)):
 # reformat the value if it matches the pattern, otherwise assume
 # that it's not a date in the required format and leave it alone
 m = re.match('^([^.]+)\.? (\d+), (\d+)$', values[i])
 if m:
 # use lowercase month name
 (month, day, year) = (m.group(1).lower(), int(m.group(2)), int(m.group(3)))
#@ _CHECK_VALIDITY_
 if month in map:
#@ _CHECK_VALIDITY_
 values[i] = "%04d-%02d-%02d" % (year, map[month], day)
 else:
 # warn, but don't reformat
 warnings.warn("%s bad date?" % (values[i]))
 print("\t".join(values))
The script only does reformatting; it doesn’t validate the dates.
 To do that, modify the script to use the cookbook_utils.py module by adding this
 statement in the beginning of the script:
from cookbook_utils import *
That gives the script access to the module’s is_valid_date() routine. To use it, change
 this line:
if month in map:
To this:
if month in map and is_valid_date(year, map[month], day)):

14.16 Importing Non-ISO Date Values
Problem
You want to import date values, but they are not in the ISO (YYYY-MM-DD) format that
 MySQL expects.

Solution
Use an external utility to convert the dates to ISO format before
 importing the data into MySQL (cvt_date.py is useful here). Or use LOAD DATA’s
 capability for preprocessing input data prior to loading it into the
 database.

Discussion
Suppose that a table contains three columns, name, date,
 and value, where date is a DATE column requiring values in ISO format
 (YYYY-MM-DD). Suppose also that you’re given
 a newdata.txt datafile to be
 imported into the table, but its contents look like this:
name1 01/01/99 38
name2 12/31/00 40
name3 02/28/13 42
name4 01/02/18 44
The dates are in MM/DD/YY format and
 must be converted to ISO format to be stored as DATE values in MySQL. One way to do this is to
 run the file through the cvt_date.py
 script from Recipe 14.15:
$ cvt_date.py --iformat=us --add-century newdata.txt > tmp.txt
Then load the tmp.txt file
 into the table. This task also can be accomplished entirely in MySQL
 with no external utilities by using SQL to perform the reformatting
 operation. As discussed in Recipe 13.1,
 LOAD DATA can preprocess input values before
 inserting them. Applying that capability to the present problem, the
 date-rewriting LOAD DATA statement looks like this, using the STR_TO_DATE()
 function (see Recipe 8.3) to interpret
 the input dates:
mysql> LOAD DATA LOCAL INFILE 'newdata.txt'
 -> INTO TABLE t (name,@date,value)
 -> SET date = STR_TO_DATE(@date,'%m/%d/%y');
With the %y format specifier in
 STR_TO_DATE(), MySQL converts the
 two-digit years to four-digit years automatically, so the original
 MM/DD/YY values end up as ISO values in
 YYYY-MM-DD format. The resulting data after
 import looks like this:
+-------+------------+-------+
| name | date | value |
+-------+------------+-------+
name1	1999-01-01	38
name2	2000-12-31	40
name3	2013-02-28	42
name4	2018-01-02	44
+-------+------------+-------+
This procedure assumes that MySQL’s automatic conversion of
 two-digit years to four digits produces the correct century values. This
 means that the year part of the values must correspond to years in the
 range from 1970 to 2069. If that’s not true, you must convert the year
 values some other way. (For some ideas on how to do this, see Recipe 14.14.)
If the dates are not in a format that STR_TO_DATE() can interpret, perhaps you can
 write a stored function to handle them and return ISO date values. In
 that case, the LOAD DATA statement looks like this, where my_date_interp() is your stored function
 name:
mysql> LOAD DATA LOCAL INFILE 'newdata.txt'
 -> INTO TABLE t (name,@date,value)
 -> SET date = my_date_interp(@date);

14.17 Exporting Dates Using Non-ISO Formats
Problem
You want to export date values using a format other than MySQL’s
 default ISO (YYYY-MM-DD) format. This might
 be a requirement when exporting dates from MySQL to applications that
 don’t use ISO format.

Solution
Use an external utility to rewrite the dates to non-ISO format
 after exporting the data from MySQL (cvt_date.py is useful here). Or use the DATE_FORMAT()
 function to rewrite the values during the export operation.

Discussion
Suppose that you want to export data from MySQL into an
 application that doesn’t understand ISO-format dates. One way to do this
 is to export the data into a file, leaving the dates in ISO format. Then
 run the file through a utility such as cvt_date.py that rewrites the dates into the
 required format (see Recipe 14.15).
Another approach is to export the dates directly in the required
 format by rewriting them with DATE_FORMAT(). Suppose that you have the
 following table:
CREATE TABLE datetbl
(
 i INT,
 c CHAR(10),
 d DATE,
 dt DATETIME,
 ts TIMESTAMP,
 PRIMARY KEY(i)
);
Suppose also that you need to export data from this table but
 with the dates in any DATE, DATETIME, or TIMESTAMP columns rewritten in US format
 (MM-DD-YYYY). A SELECT statement that uses the DATE_FORMAT() function to rewrite the dates as
 required looks like this:
SELECT
 i,
 c,
 DATE_FORMAT(d, '%m-%d-%Y') AS d,
 DATE_FORMAT(dt, '%m-%d-%Y %T') AS dt,
 DATE_FORMAT(ts, '%m-%d-%Y %T') AS ts
FROM datetbl;
If datetbl contains the
 following rows:
3 abc 2005-12-31 2005-12-31 12:05:03 2005-12-31 12:05:03
4 xyz 2006-01-31 2006-01-31 12:05:03 2006-01-31 12:05:03
The statement generates output that looks like this:
3 abc 12-31-2005 12-31-2005 12:05:03 12-31-2005 12:05:03
4 xyz 01-31-2006 01-31-2006 12:05:03 01-31-2006 12:05:03

14.18 Preprocessing and Importing a File
Problem
Recall the scenario presented at the beginning of Chapter 13:
Suppose that a file named somedata.csv contains 12 data columns in
 comma-separated values (CSV) format. From this file you want to extract
 only columns 2, 11, 5, and 9 and use them to create database rows in a
 MySQL table that contains name,birth,height, and weight columns. You must make sure that the
 height and weight are positive integers, and convert the birth dates fromMM/DD/YY format to
 YYYY-MM-DD format.

Solution

 Combine techniques that we discussed in Chapter 13 and this chapter.

Discussion
Much of the work can be done using the utility programs developed
 in this chapter. Convert the file to tab-delimited format with cvt_file.pl, extract the columns in the desired
 order with yank_col.pl, and rewrite the date column to ISO
 format with cvt_date.py (see Recipe 14.15):
$ cvt_file.pl --iformat=csv somedata.csv \
 | yank_col.pl --columns=2,11,5,9 \
 | cvt_date.py --columns=2 --iformat=us --add-century > tmp
The resulting file, tmp, has
 four columns representing the name,
 birth, height, and weight values, in that order. It needs only to
 have its height and weight columns checked to make sure they contain
 positive integers. Using the is_positive_integer()
 library function from the cookbook_utils.py module file, that task can be
 achieved using a short special-purpose script that is little more than an
 input loop:
#!/usr/bin/python3
validate_htwt.py: Height/weight validation example.

Assumes tab-delimited, linefeed-terminated input lines.

Input columns and the actions to perform on them are as follows:
1: name; echo as given
2: birth; echo as given
3: height; validate as positive integer
4: weight; validate as positive integer

import sys
import fileinput
import warnings
from cookbook_utils import *

line_num = 0
for line in fileinput.input(sys.argv[1:]):
 line_num += 1
 (name, birth, height, weight) = line.rstrip().split ("\t", 4)
 if not is_positive_integer(height):
 warnings.warn(f"line {line_num}:height {height} is not a positive integer")
 if not is_positive_integer(weight):
 warnings.warn(f"line {line_num}:weight {weight} is not a positive integer")
The validate_htwt.py script
 produces no output (except for warning messages) because it need not
 reformat any of the input values. If tmp passes validation with no errors, it can be
 loaded into MySQL with a simple LOAD
 DATA statement:
mysql> LOAD DATA LOCAL INFILE 'tmp' INTO TABLE tbl_name;

Chapter 15. Generating and Using Sequences
15.0 Introduction
A sequence is a set of integers (1, 2, 3, …) generated in order on
 demand. Sequences see frequent use in databases because many applications
 require each row in a table to contain a unique value, and sequences
 provide an easy way to generate them. This chapter describes how to use
 sequences in MySQL in the following five ways:
	Using AUTO_INCREMENT
 columns
	The AUTO_INCREMENT column
 is MySQL’s mechanism for generating a sequence over a set of
 rows. Each time you create a row in a table that contains an
 AUTO_INCREMENT column, MySQL
 automatically generates the next value in the sequence as the
 column’s value. This value serves as a unique identifier, making
 sequences an easy way to create items such as customer ID numbers,
 shipping package waybill numbers, invoice or purchase order numbers,
 bug report IDs, ticket numbers, or product serial numbers.

	Retrieving sequence values
	For many applications, it’s not enough just to create sequence values. It’s
 also necessary to determine the sequence value for a just-inserted
 row. A web application may need to redisplay to a user the contents
 of a row created from the contents of a form just submitted by the
 user. The value may need to be retrieved so it can be stored in rows
 of a related table.

	Resequencing techniques
	It’s possible to renumber a sequence that has holes in it due to row
 deletions, reuse deleted values at the top of a sequence, or add a
 sequence column to a table that has none.

	Managing multiple simultaneous sequences
	Special care is necessary when you need to keep track of multiple sequence
 values, such as when you create rows in multiple tables that each
 have an AUTO_INCREMENT
 column.

	Using single-row sequence generators
	Sequences can be used as counters. For example, to count votes in a
 poll, you might increment a counter each time a candidate receives a
 vote. The counts for a given candidate form a sequence, but because
 the count itself is the only value of interest, there is no need to
 generate a new row to record each vote. MySQL provides a solution
 for this problem using a mechanism that enables a sequence to be
 easily generated within a single table row over time. To store
 multiple counters in the table, use a column that identifies each
 counter uniquely. The same mechanism also enables creation of
 sequences that increase by values other than 1 or by nonuniform
 values.

The engines for most database systems provide sequence-generation
 capabilities, although the implementations tend to be engine-dependent.
 That’s true for MySQL as well, so the material in this section is almost
 completely MySQL-specific, even at the SQL level. In other words, the SQL
 for generating sequences is itself nonportable, even if you use an API
 such as DBI or JDBC that provides an abstraction layer. Abstract
 interfaces may help you process SQL statements portably, but they don’t
 make nonportable SQL portable.
Scripts related to the examples shown in this chapter are located in
 the sequences directory of the
 recipes distribution. For scripts that
 create the tables used here, look in the tables directory.

15.1 Generating a Sequence with AUTO_INCREMENT Columns
Problem
Your table includes a column that should contain only unique IDs, and you need to insert values into this column, ensuring they are part of the sequence.

Solution
Use an AUTO_INCREMENT column to
 generate a sequence.

Discussion
This recipe provides the essential background on using AUTO_INCREMENT columns, beginning with an
 example that demonstrates the sequence-generation mechanism. The
 example centers around a bug-collection scenario: your
 eight-year-old son, Junior, is assigned the task of collecting insects for
 a class project at school. For each insect, Junior is to record its name
 (ant, bee, and so forth) and its date and
 location of collection. You have expounded the benefits of MySQL for
 record-keeping to Junior since his early days, so upon your arrival home
 from work that day, he immediately announces the necessity of completing
 this project and then, looking you straight in the eye, declares that
 it’s clearly a task for which MySQL is well-suited. Who are you to
 argue? So the two of you get to work. Junior already collected some
 specimens after school while waiting for you to come home and has
 recorded the following information in his notebook:
	Name	Date	Origin
	millipede	2014-09-10	driveway
	housefly	2014-09-10	kitchen
	grasshopper	2014-09-10	front yard
	stink bug	2014-09-10	front yard
	cabbage butterfly	2014-09-10	garden
	ant	2014-09-10	backyard
	ant	2014-09-10	backyard
	termite	2014-09-10	kitchen woodwork

Looking over Junior’s notes, you’re pleased to see that even at
 his tender age, he has learned to write dates in ISO format. However,
 you also notice that he’s collected a millipede and a termite, neither
 of which actually are insects. You decide to let this pass for the
 moment; Junior forgot to bring home the written instructions for the
 project, so at this point it’s unclear whether these specimens are
 acceptable. (You also note with some alarm Junior’s discovery of
 termites in the house and make a mental note to call the
 exterminator.)
As you consider how to create a table to store this information,
 it’s apparent that you need at least name, date,
 and origin columns corresponding to
 the types of information that Junior is required to record:
CREATE TABLE insect
(
 name VARCHAR(30) NOT NULL, # type of insect
 date DATE NOT NULL, # date collected
 origin VARCHAR(30) NOT NULL # where collected
);
However, those columns are insufficient to make the table easy to
 use. Note that the records collected thus far are not unique; both ants
 were collected at the same time and place. If you put the information
 into an insect table that has the
 structure just shown, neither ant row can be referred to individually
 because there’s nothing to distinguish one from another. Unique IDs
 would be helpful to make the rows distinct and to provide values that
 make each row easy to refer to. An AUTO_INCREMENT column is good for this
 purpose, so a better insect table has
 a structure like this:
CREATE TABLE insect
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (id),
 name VARCHAR(30) NOT NULL, # type of insect
 date DATE NOT NULL, # date collected
 origin VARCHAR(30) NOT NULL # where collected
);
Go ahead and create the insect
 table using this second CREATE TABLE statement. (Recipe 15.2 discusses the particulars of the
 id column definition.)
Now that you have an AUTO_INCREMENT column, use it to generate new
 sequence values. One of the useful properties of an AUTO_INCREMENT column is that you need not
 assign its values yourself: MySQL does so for you. There are two ways to
 generate new AUTO_INCREMENT values in
 the id column. One is to explicitly
 set the id column to NULL. The following statement inserts the first four of Junior’s specimens
 into the insect table that
 way:
mysql> INSERT INTO insect (id,name,date,origin) VALUES
 -> (NULL,'housefly','2014-09-10','kitchen'),
 -> (NULL,'millipede','2014-09-10','driveway'),
 -> (NULL,'grasshopper','2014-09-10','front yard'),
 -> (NULL,'stink bug','2014-09-10','front yard');
Alternatively, omit the id
 column from the INSERT statement
 entirely. MySQL permits creating rows without explicitly
 specifying values for columns that have a default value. MySQL assigns
 each missing column its default value, and the default for an AUTO_INCREMENT column is its next sequence
 number. Thus, this statement adds Junior’s other four specimens to the
 insect table and generates sequence
 values without naming the id column
 at all:
mysql> INSERT INTO insect (name,date,origin) VALUES
 -> ('cabbage butterfly','2014-09-10','garden'),
 -> ('ant','2014-09-10','backyard'),
 -> ('ant','2014-09-10','backyard'),
 -> ('termite','2014-09-10','kitchen woodwork');
Whichever method you use, MySQL determines the sequence number for
 each row and assigns it to the id
 column, as you can verify:
mysql> SELECT * FROM insect ORDER BY id;
+----+-------------------+------------+------------------+
| id | name | date | origin |
+----+-------------------+------------+------------------+
1	housefly	2014-09-10	kitchen
2	millipede	2014-09-10	driveway
3	grasshopper	2014-09-10	front yard
4	stink bug	2014-09-10	front yard
5	cabbage butterfly	2014-09-10	garden
6	ant	2014-09-10	backyard
7	ant	2014-09-10	backyard
8	termite	2014-09-10	kitchen woodwork
+----+-------------------+------------+------------------+
As Junior collects more specimens, add more rows to the table and
 they’ll be assigned the next values in the sequence (9, 10, …).
The concept underlying AUTO_INCREMENT columns is simple enough in
 principle: each time you create a new row, MySQL generates the next
 number in the sequence and assigns it to the row. But there are certain
 subtleties to know about, as well as differences in how different
 storage engines handle AUTO_INCREMENT
 sequences. Awareness of these issues enables you to use sequences more
 effectively and avoid surprises. For example, if you explicitly set the
 id column to a non-NULL value, one of two things happens:
	If the value is already present in the table, an error occurs
 if the column cannot contain duplicates. For the insect table, the id column is a PRIMARY KEY, which prohibits duplicates:
mysql> INSERT INTO insect (id,name,date,origin) VALUES
 -> (3,'cricket','2014-09-11','basement');
ERROR 1062 (23000): Duplicate entry '3' for key 'PRIMARY'

	If the value is not present in the table, MySQL inserts the
 row using that value. In addition, if the value is larger than the
 current sequence counter, the table’s counter is reset to the value
 plus 1. The insect table at
 this point has sequence values 1 through 8. If you insert a new row
 with the id column set to 20,
 that becomes the new maximum value. Subsequent inserts that
 automatically generate id values
 will begin at 21. The values 9 through 19 become unused, resulting
 in a gap in the sequence.

The next recipe looks in more detail at how to define AUTO_INCREMENT columns and how they behave.

15.2 Choosing the Data Type for a Sequence Column
Problem
You want to choose the correct data type to define a sequence column.

Solution
Consider how many unique values your sequence should hold, and choose the data type accordingly.

Discussion
You should follow certain principles when creating AUTO_INCREMENT
 columns. As an illustration, consider how Recipe 15.1 declared the id column in the insect table:
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
PRIMARY KEY (id)
The AUTO_INCREMENT keyword
 informs MySQL that it should generate successive sequence numbers for
 the column’s values, but the other information is important, too:
	INT is the column’s base
 data type. You need not necessarily use INT, but the column should be one of the
 integer types: TINYINT,
 SMALLINT, MEDIUMINT, INT, or BIGINT.

	UNSIGNED prohibits
 negative column values. This is not a required
 attribute for AUTO_INCREMENT
 columns, but sequences consist only of positive integers (normally
 beginning at 1), so there is no reason to permit negative values.
 Furthermore, not declaring the column to be
 UNSIGNED cuts the range of your
 sequence in half. For example, TINYINT has a range of –128 to 127.
 Because sequences include only positive values, the effective range
 of a TINYINT sequence is 1 to
 127. TINYINT UNSIGNED has a range of 0 to 255, which
 increases the upper end of the sequence to 255. The specific integer
 type determines the maximum sequence value. The following table
 shows the maximum unsigned value of each type; use this information
 to choose a type big enough to hold the largest value you’ll
 need:
	Data type	Maximum unsigned value
	TINYINT 	255
	SMALLINT 	65,535
	MEDIUMINT 	16,777,215
	INT 	4,294,967,295
	BIGINT 	18,446,744,073,709,551,615

Sometimes people omit UNSIGNED so that they can create rows that
 contain negative numbers in the sequence column (using –1 to signify
 has no ID, for example.) This is a bad idea. MySQL
 makes no guarantees about how negative numbers will be treated in an
 AUTO_INCREMENT column, so by
 using them you’re playing with fire. For example, if you resequence
 the column, all your negative values get turned into positive
 sequence numbers.

	AUTO_INCREMENT columns
 cannot contain NULL
 values, so id is declared as
 NOT NULL. (It’s true that you can specify
 NULL as the column value when you
 insert a new row, but for an AUTO_INCREMENT column, that really means
 generate the next sequence value.) MySQL
 automatically defines AUTO_INCREMENT columns as NOT NULL if you forget.

	AUTO_INCREMENT columns must
 be indexed. Normally, because a sequence column exists to provide
 unique identifiers, you use a PRIMARY
 KEY or UNIQUE index to enforce uniqueness. Tables
 can have only one PRIMARY
 KEY, so if the table already has
 some other PRIMARY KEY column, you can declare an AUTO_INCREMENT column to have a UNIQUE index instead:
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
UNIQUE (id)

When you create a table that contains an AUTO_INCREMENT column, it’s also important to
 consider which storage engine to use (InnoDB, MyISAM, and so forth). The engine affects
 behaviors such as reuse of values deleted from the top of the sequence (see Recipe 15.3).

15.3 Deleting Rows Without Changing a Sequence
Problem
You want to delete a few rows from the table that contains an AUTO_INCREMENT
 column.

Solution
Use a regular DELETE statement. MySQL would not change the generated sequence numbers for the existing rows.

Discussion
We have thus far considered how MySQL generates sequence values in
 an AUTO_INCREMENT column under
 circumstances where rows are only added to a table. But it’s unrealistic
 to assume that rows will never be deleted. What happens to the sequence
 then?
Refer again to Junior’s bug-collection project, for which you
 currently have an insect table that
 looks like this:
mysql> SELECT * FROM insect ORDER BY id;
+----+-------------------+------------+------------------+
| id | name | date | origin |
+----+-------------------+------------+------------------+
1	housefly	2014-09-10	kitchen
2	millipede	2014-09-10	driveway
3	grasshopper	2014-09-10	front yard
4	stink bug	2014-09-10	front yard
5	cabbage butterfly	2014-09-10	garden
6	ant	2014-09-10	backyard
7	ant	2014-09-10	backyard
8	termite	2014-09-10	kitchen woodwork
+----+-------------------+------------+------------------+
That’s about to change because after Junior remembers to bring
 home the written instructions for the project, you read through them and
 discover two things that affect the table contents:
	Specimens should include only insects, not insect-like
 creatures such as millipedes and termites.

	The purpose of the project is to collect as many
 different specimens as possible, not just as
 many specimens as possible. This means that
 only one ant row is permitted.

These instructions dictate that a few rows be removed from
 the table—specifically those with id
 values 2 (millipede), 8 (termite), and 7 (duplicate ant). Thus, despite
 Junior’s evident disappointment at the reduction in the size of his
 collection, you instruct him to remove those rows by issuing a DELETE
 statement:
mysql> DELETE FROM insect WHERE id IN (2,8,7);
This statement illustrates why it’s useful to have unique ID
 values: they enable you to specify any row unambiguously. The ant rows
 are identical except for the id
 value. Without that column in the table, it would be more difficult to
 delete just one of them (though not impossible; see Recipe 18.5).
After removing the unsuitable rows, the table has these
 remaining:
mysql> SELECT * FROM insect ORDER BY id;
+----+-------------------+------------+------------+
| id | name | date | origin |
+----+-------------------+------------+------------+
1	housefly	2014-09-10	kitchen
3	grasshopper	2014-09-10	front yard
4	stink bug	2014-09-10	front yard
5	cabbage butterfly	2014-09-10	garden
6	ant	2014-09-10	backyard
+----+-------------------+------------+------------+
The id column sequence now has
 a hole (row 2 is missing), and the values 7 and 8 at the top of the
 sequence are no longer present. How do these deletions affect future
 insert operations? What sequence number will the next new row
 get?
Removing row 2 creates a gap in the middle of the sequence. This
 has no effect on subsequent inserts, because MySQL makes no attempt to
 fill in holes in a sequence. On the other hand, deleting rows 7 and 8
 removes values at the top of the sequence. For InnoDB or MyISAM tables, values are not reused. The next
 sequence number is the smallest positive integer that has not previously
 been used. (For a sequence that stands at 8, the next row gets a value
 of 9 even if you delete rows 7 and 8 first.) If you require strictly
 monotonic sequences, you can use one of these storage engines. For other
 storage engines, values removed at the top of the sequence may or may
 not be reused. Check the properties of the engine before using
 it.
If a table uses an engine that differs in value-reuse behavior
 from the behavior you require, use ALTER TABLE to change the table to a more
 appropriate engine. For example, to change a table to use InnoDB (to
 prevent sequence values from being reused after rows are deleted), do
 this:
ALTER TABLE tbl_name ENGINE = InnoDB;
If you don’t know what engine a table uses, consult INFORMATION_SCHEMA or use SHOW TABLE STATUS or SHOW CREATE
 TABLE to find out. For example, the
 following statement indicates that insect is an InnoDB table:
mysql> SELECT ENGINE FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'insect';
+--------+
| ENGINE |
+--------+
| InnoDB |
+--------+
To empty a table and reset the sequence counter (even for engines
 that normally do not reuse values), use TRUNCATE TABLE:
TRUNCATE TABLE tbl_name;

15.4 Retrieving Sequence Values
Problem
After creating a row that includes a new sequence number, you want to know what that number
 is.

Solution
Invoke the LAST_INSERT_ID()
 function. If you’re writing a program, your MySQL API may provide a
 way to get the value directly without issuing a SQL statement.

Discussion
It’s common for applications to need to know the AUTO_INCREMENT
 value of a newly created row. For example, if you write a web-based
 frontend for entering rows into Junior’s insect table, you might have the application
 display each new row nicely formatted in a new page immediately after
 you hit the Submit button. To do this, you must know the new id value so that you can retrieve the proper
 row. Another situation in which the AUTO_INCREMENT value is needed occurs when you
 use multiple tables: after inserting a row in a main table, you need
 its ID to create rows in other related tables that refer to the
 row in the main table. (Recipe 15.11 shows how to do
 this.)
When you generate a new AUTO_INCREMENT value, one way to get the value
 from the server is to execute a statement that invokes the LAST_INSERT_ID() function. In addition, many
 MySQL APIs provide a client-side mechanism for making the value
 available without issuing another statement. This recipe discusses both
 methods and compares their characteristics.
Using LAST_INSERT_ID() to obtain AUTO_INCREMENT values
The obvious (but incorrect) way to determine a new row’s
 AUTO_INCREMENT value uses the fact
 that when MySQL generates the value, it becomes the largest sequence
 number in the column. Thus, you might try using the MAX() function to retrieve it:
SELECT MAX(id) FROM insect;
This is unreliable; if another client inserts a row before you
 issue the SELECT statement,
 MAX(id) returns that client’s ID,
 not yours. It’s possible to solve this problem by grouping the INSERT
 and SELECT statements as a
 transaction or locking the table, but MySQL provides a simpler way to
 obtain the proper value: invoke the LAST_INSERT_ID() function. It returns the
 most recent AUTO_INCREMENT value
 generated within your session, regardless of what other clients are
 doing. For example, to insert a row into the insect table and retrieve its id value, do this:
mysql> INSERT INTO insect (name,date,origin)
 -> VALUES('cricket','2014-09-11','basement');
mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 9 |
+------------------+
Or you can use the new value to retrieve the entire row, without
 even knowing what it is:
mysql> INSERT INTO insect (name,date,origin)
 -> VALUES('moth','2014-09-14','windowsill');
mysql> SELECT * FROM insect WHERE id = LAST_INSERT_ID();
+----+------+------------+------------+
| id | name | date | origin |
+----+------+------------+------------+
| 10 | moth | 2014-09-14 | windowsill |
+----+------+------------+------------+
The server maintains the value returned by LAST_INSERT_ID() on a session-specific
 basis. This property is by design, and it’s important because it
 prevents clients from interfering with one another. When you generate
 an AUTO_INCREMENT value, LAST_INSERT_ID() returns that specific
 value, even when other clients generate new rows in the same table in
 the meantime.

Using API-specific methods to obtain AUTO_INCREMENT
 values
LAST_INSERT_ID() is a SQL
 function, so you can use it from within any client that can execute
 SQL statements. On the other hand, you do have to execute a separate
 statement to get its value. When you write your own programs, you may
 have another choice. Many MySQL interfaces include an API-specific
 extension that returns the AUTO_INCREMENT value without executing an
 additional statement. Most of our APIs have this capability:
	Perl
	Use the mysql_insertid attribute to obtain the AUTO_INCREMENT value generated by a
 statement. This attribute is accessed through either a database
 handle or a statement handle, depending on how you issue the
 statement. The following example references it through the
 database handle:
$dbh->do ("INSERT INTO insect (name,date,origin)
 VALUES('moth','2014-09-14','windowsill')");
my $seq = $dbh->{mysql_insertid};
To access mysql_insertid as a statement-handle
 attribute, use prepare()
 and execute():
my $sth = $dbh->prepare ("INSERT INTO insect (name,date,origin)
 VALUES('moth','2014-09-14','windowsill')");
$sth->execute ();
my $seq = $sth->{mysql_insertid};

	Ruby
	The Ruby Mysql2 gem exposes the client-side AUTO_INCREMENT value using the
 last_id
 method:
client.query("INSERT INTO insect (name,date,origin)
 VALUES('moth','2014-09-14','windowsill')")
seq = client.last_id

	PHP
	The PDO interface for MySQL has a lastInsertId() database-handle method that returns the most recent
 AUTO_INCREMENT value:
$dbh->exec ("INSERT INTO insect (name,date,origin)
 VALUES('moth','2014-09-14','windowsill')");
$seq = $dbh->lastInsertId ();

	Python
	The Connector/Python driver for DB API provides a lastrowid cursor object attribute that returns the most recent
 AUTO_INCREMENT value:
cursor = conn.cursor()
cursor.execute('''
 INSERT INTO insect (name,date,origin)
 VALUES('moth','2014-09-14','windowsill')
 ''')
seq = cursor.lastrowid

	Java
	The Connector/J JDBC driver getGeneratedKeys() method returns AUTO_INCREMENT values. It can be used
 with a Statement or PreparedStatement object if you supply
 an additional Statement.RETURN_GENERATED_KEYS
 argument during the statement-execution process to indicate that
 you want to retrieve the sequence value.
For a Statement:
Statement s = conn.createStatement ();
s.executeUpdate ("INSERT INTO insect (name,date,origin)"
 + " VALUES('moth','2014-09-14','windowsill')",
 Statement.RETURN_GENERATED_KEYS);
For a PreparedStatement:
PreparedStatement s = conn.prepareStatement (
 "INSERT INTO insect (name,date,origin)"
 + " VALUES('moth','2014-09-14','windowsill')",
 Statement.RETURN_GENERATED_KEYS);
s.executeUpdate ();
Then generate a new result set from getGeneratedKeys() to access the
 sequence value:
long seq;
ResultSet rs = s.getGeneratedKeys ();
if (rs.next ())
{
 seq = rs.getLong (1);
}
else
{
 throw new SQLException ("getGeneratedKeys() produced no value");
}
rs.close ();
s.close ();

	Go
	
 The Go MySQL driver provides the LastInsertId method of the Result interface that returns the latest AUTO_INCREMENT value:

res, err := db.Exec(`INSERT INTO insect (name,date,origin)
 VALUES ('moth','2014-09-14','windowsill')`)
seq, err := res.LastInsertId()

Server-side and client-side sequence value retrieval
 compared
As mentioned earlier, the server maintains the value of LAST_INSERT_ID() on a session-specific
 basis. By contrast, the API-specific methods for accessing AUTO_INCREMENT values directly are
 implemented on the client side. Server-side and client-side sequence
 value retrieval methods have some similarities but also some
 differences.
All methods, both server-side and client-side, require that you
 access an AUTO_INCREMENT value
 within the same MySQL session that generated it. If you generate an
 AUTO_INCREMENT value, then
 disconnect from the server and reconnect before attempting to access
 the value, you’ll get zero. Within a given session, the persistence of
 AUTO_INCREMENT values can be much
 longer on the server side of the session:
	After you execute a statement that generates an AUTO_INCREMENT value, the value remains
 available through LAST_INSERT_ID() even if you execute
 other statements, as long as none of those statements generate an
 AUTO_INCREMENT value.

	The sequence value available using client-side API methods
 typically is set for every statement, not
 only those that generate AUTO_INCREMENT values. If you execute an INSERT
 statement that generates a new value and then execute some other
 statement before accessing the client-side sequence value, it
 probably will have been set to zero. The precise behavior varies
 among APIs, but to be safe, you can do this: when a statement
 generates a sequence value that you won’t use immediately, save
 the value in a variable that you can refer to later. Otherwise,
 you may find the sequence value wiped out by the time you try to
 access it. (For more on this topic, see Recipe 15.10.)

15.5 Renumbering an Existing Sequence
Problem
You have gaps in a sequence column, and you want to resequence it.

Solution
First, consider whether resequencing is necessary. In many cases it is not. But if you have to, resequence the AUTO_INCREMENT columns periodically.

Discussion
If you insert rows into a table that has an AUTO_INCREMENT column and never delete any of
 them, values in the column form an unbroken sequence. If you delete
 rows, the sequence begins to have holes in it. For example, Junior’s
 insect table currently looks
 something like this, with gaps in the sequence (assuming that you’ve
 inserted the cricket and moth rows shown in Recipe 15.4):
mysql> SELECT * FROM insect ORDER BY id;
+----+-------------------+------------+------------+
| id | name | date | origin |
+----+-------------------+------------+------------+
1	housefly	2014-09-10	kitchen
3	grasshopper	2014-09-10	front yard
4	stink bug	2014-09-10	front yard
5	cabbage butterfly	2014-09-10	garden
6	ant	2014-09-10	backyard
9	cricket	2014-09-11	basement
10	moth	2014-09-14	windowsill
+----+-------------------+------------+------------+
MySQL won’t attempt to eliminate these gaps by filling in the
 unused values when you insert new rows. People who dislike this behavior
 tend to resequence AUTO_INCREMENT
 columns periodically to eliminate the holes. The examples in this
 recipe show how to do that. It’s also possible to extend the range of
 an existing sequence (see Recipe 15.6),
 force deleted values at the top of a sequence to be reused (see Recipe 15.7), number rows in a particular
 order (see Recipe 15.8), or add a
 sequence column to a table that doesn’t currently have one (see Recipe 15.9).
Before you decide to resequence an AUTO_INCREMENT column, consider whether that’s
 really necessary. It usually isn’t and in some cases can cause you real
 problems. For example, you should not resequence a
 column containing values that are referenced by another table.
 Renumbering the values destroys their correspondence to values in the
 other table, making it impossible to properly relate rows in the two
 tables to one another.
Here are reasons we have seen advanced for resequencing a
 column:
	Aesthetics
	Some people prefer unbroken sequences to sequences with
 holes in them. If this is why you want to resequence, there’s
 probably not much we can say to convince you otherwise.
 Nevertheless, it’s not a particularly good reason.

	Performance
	The impetus for resequencing may stem from the notion that
 doing so compacts a sequence column by removing
 gaps and enables MySQL to run statements more quickly. This is not
 true. MySQL doesn’t care whether there are holes, and there is no
 performance gain to be had by renumbering an AUTO_INCREMENT column. In fact,
 resequencing affects performance negatively in the sense that the
 table remains locked while MySQL performs the operation—which may
 take a nontrivial amount of time for a large table. Other clients
 can read from the table while this is happening, but clients
 trying to insert new rows are blocked until the operation is
 complete.

	Running out of numbers
	The sequence column’s data type and signedness determine its
 upper limit (see Recipe 15.2). If an
 AUTO_INCREMENT sequence is
 approaching the upper limit of its data type, renumbering packs
 the sequence and frees up more values at the top. This may be a
 legitimate reason to resequence a column, but it is still
 unnecessary in many cases. You may be able to change the column
 data type to increase its upper limit without changing the values
 stored in the column; see Recipe 15.6.

If you’re still determined to resequence a column, it’s easy to
 do: drop the column from the table, then put it back. MySQL renumbers
 the values in the column in an unbroken sequence. The following example
 shows how to renumber the id values
 in the insect table using this
 technique:
mysql> ALTER TABLE insect DROP id;
mysql> ALTER TABLE insect
 -> ADD id INT UNSIGNED NOT NULL AUTO_INCREMENT FIRST,
 -> ADD PRIMARY KEY (id);
The first ALTER TABLE statement gets rid of the id
 column (and as a result also drops the PRIMARY KEY, because the column to which it refers is
 no longer present). The second statement restores the column to the
 table and establishes it as the PRIMARY KEY. (The FIRST keyword places the column first in the table, which is where it
 was originally. Normally, ADD puts
 columns at the end of the table.)
When you add an AUTO_INCREMENT
 column to a table, MySQL automatically numbers all the rows
 consecutively, so the resulting contents of the insect table look like this:
mysql> SELECT * FROM insect ORDER BY id;
+----+-------------------+------------+------------+
| id | name | date | origin |
+----+-------------------+------------+------------+
1	housefly	2014-09-10	kitchen
2	grasshopper	2014-09-10	front yard
3	stink bug	2014-09-10	front yard
4	cabbage butterfly	2014-09-10	garden
5	ant	2014-09-10	backyard
6	cricket	2014-09-11	basement
7	moth	2014-09-14	windowsill
+----+-------------------+------------+------------+
One problem with resequencing a column using separate ALTER TABLE
 statements is that the table is without that column for the interval
 between the two operations. This might cause difficulties for other
 clients that try to access the table during that time. To prevent this
 from happening, perform both operations with a single ALTER TABLE
 statement:
mysql> ALTER TABLE insect
 -> DROP id,
 -> ADD id INT UNSIGNED NOT NULL AUTO_INCREMENT FIRST;
MySQL permits multiple actions to be done with ALTER TABLE
 (something not true for all database systems). However, notice that this
 multiple-action statement is not simply a concatenation of the two
 single-action ALTER TABLE statements. The difference is that it is
 unnecessary to reestablish the PRIMARY KEY: MySQL doesn’t drop it unless the indexed
 column is missing after all the actions specified in the ALTER TABLE
 statement have been performed.

15.6 Extending the Range of a Sequence Column
Problem
You want to avoid resequencing a column, but you’re running out of room for
 new sequence numbers.

Solution
Check whether you can make the column UNSIGNED or
 change it to use a larger integer type.

Discussion
Resequencing an AUTO_INCREMENT
 column changes the contents of potentially every row in the table. It’s
 often possible to avoid this by extending the range of the column, which
 changes the table’s structure rather than its contents:
	If the data type is signed, make it UNSIGNED to double the range of available
 values. Suppose that an id column
 currently is defined like this:
id MEDIUMINT NOT NULL AUTO_INCREMENT
The upper range of a signed MEDIUMINT
 column is 8,388,607. To increase this to 16,777,215, make the column UNSIGNED
 with ALTER TABLE:
ALTER TABLE tbl_name MODIFY id MEDIUMINT UNSIGNED NOT NULL AUTO_INCREMENT;

	If your column is already UNSIGNED and it is not already the largest
 integer type (BIGINT), converting it to a larger type
 increases its range. Use ALTER
 TABLE for this, too. Convert the
 id column in the previous example
 from MEDIUMINT to BIGINT like so:
ALTER TABLE tbl_name MODIFY id BIGINT UNSIGNED NOT NULL AUTO_INCREMENT;

Recipe 15.2 shows the ranges for
 each integer data type, which can help you choose an appropriate
 type.

15.7 Reusing Values at the Top of a Sequence
Problem
You’ve deleted rows at the top end of your sequence, and you want to avoid resequencing the column but still reuse the values.

Solution
Use ALTER TABLE to reset the sequence counter. New sequence numbers will begin with the
 value one larger than the current maximum in the table.

Discussion
If you have removed rows only from the top of the sequence, those
 that remain are still in order with no gaps. (For example, if you have
 rows numbered 1 to 100 and you remove the rows with numbers 91 to 100,
 the remaining rows are still in unbroken sequence from 1 to 90.) In this
 special case, it’s unnecessary to renumber the column. Instead, tell
 MySQL to resume the sequence beginning with the value one larger than
 the highest existing sequence number by executing this statement, which
 causes MySQL to reset the sequence counter down as far as it can for new
 rows:
ALTER TABLE tbl_name AUTO_INCREMENT = 1;
You can use ALTER TABLE to reset the sequence counter if a
 sequence column contains gaps in the middle, but doing so still reuses
 only values deleted from the top of the sequence. It does not eliminate
 the gaps. Suppose that a table contains sequence values from 1 to 10,
 from which you delete the rows for values 3, 4, 5, 9, and 10. The
 maximum remaining value is 8, so if you use ALTER TABLE
 to reset the sequence counter, the next row is given a value of 9, not
 3. To resequence a table to eliminate the gaps, see Recipe 15.5.

15.8 Ensuring That Rows Are Renumbered in a Particular Order
Problem
You resequenced a column, but MySQL didn’t number the rows the way you want.

Solution
Select the rows into another table, using an ORDER BY clause to place them in the order you want,
 and let MySQL number them according to the sort order as it performs the
 operation.

Discussion
When you resequence an AUTO_INCREMENT column, MySQL is free to pick the rows from the table in any
 order, so it doesn’t necessarily renumber them in the order that you
 expect. This doesn’t matter at all if your only requirement is that each
 row have a unique identifier. But you might have an application for
 which it’s important that the rows be assigned sequence numbers in a
 particular order. For example, you may want the sequence to correspond
 to the order in which rows were created, as indicated by a TIMESTAMP column.
 To assign numbers in a particular order, use this procedure:
	Create an empty clone of the table (see Recipe 6.1).

	Copy rows from the original into the clone using INSERT
 INTO…SELECT. Copy all columns except the
 AUTO_INCREMENT column, using an
 ORDER BY clause to specify the order in which
 rows are copied (and thus the order in which MySQL assigns numbers
 to the AUTO_INCREMENT
 column).

	Drop the original table, and rename the clone to have the
 original table’s name.

	If the table is a large MyISAM table and has multiple indexes, it is more
 efficient to create the new table initially with no indexes except
 the one on the AUTO_INCREMENT
 column. Then copy the original table into the new table and
 use ALTER TABLE to add the remaining indexes
 afterward.

 This applies to InnoDB as well. But InnoDB Change Buffer caches changes to the secondary indexes in memory and then flushes them to the disk in the background. This allows you to keep insert performance at a good speed.

An alternative procedure also works:
	Create a new table that contains all the columns of the
 original table except the AUTO_INCREMENT column.

	Use INSERT INTO…SELECT to copy the non-AUTO_INCREMENT columns from the original
 table into the new table.

	Use TRUNCATE TABLE on the original table to empty it; this also resets the
 sequence counter to 1.

	Copy rows from the new table back to the original table, using
 an ORDER BY clause to sort rows into the order in
 which you want sequence numbers assigned. MySQL assigns sequence
 values to the AUTO_INCREMENT
 column.

15.9 Sequencing an Unsequenced Table
Problem
You forgot to include a sequence column when you created a table. Is it too late
 to sequence the table rows?

Solution
No. Add an AUTO_INCREMENT
 column using ALTER TABLE; MySQL creates the column and numbers
 its rows.

Discussion
Suppose that a table
 contains name and age columns but no sequence column:
mysql> SELECT * FROM t;
+----------+------+
| name | age |
+----------+------+
boris	47
clarence	62
abner	53
+----------+------+
Add a sequence column named id
 to the table as follows:
mysql> ALTER TABLE t
 -> ADD id INT NOT NULL AUTO_INCREMENT,
 -> ADD PRIMARY KEY (id);
mysql> SELECT * FROM t ORDER BY id;
+----------+------+----+
| name | age | id |
+----------+------+----+
boris	47	1
clarence	62	2
abner	53	3
+----------+------+----+
MySQL numbers the rows for you; it’s unnecessary to assign the
 values yourself. Very handy.
By default, ALTER TABLE adds new columns to the end of the
 table. To place a column at a specific position, use FIRST or AFTER at the end of the ADD clause.
 The following ALTER TABLE statements are similar to the one just
 shown but place the id column first
 in the table or after the name
 column, respectively:
ALTER TABLE t
 ADD id INT NOT NULL AUTO_INCREMENT FIRST,
 ADD PRIMARY KEY (id);
ALTER TABLE t
 ADD id INT NOT NULL AUTO_INCREMENT AFTER name,
 ADD PRIMARY KEY (id);

15.10 Managing Multiple Auto-Increment Values Simultaneously
Problem
You’re executing multiple statements that generate AUTO_INCREMENT values, and it’s necessary to
 keep track of them independently. For example, you’re inserting rows
 into multiple tables, each of which has its own AUTO_INCREMENT column.

Solution
Save the sequence values in variables for later use.
 Alternatively, if you execute sequence-generating statements from within
 a program, you might be able to issue the statements using separate
 connection or statement objects to keep them from getting mixed
 up.

Discussion
As described in Recipe 15.4, the
 LAST_INSERT_ID() server-side
 sequence value function is set each time a statement
 generates an AUTO_INCREMENT value,
 whereas client-side sequence indicators may be reset for every
 statement. What if you issue a statement that generates an AUTO_INCREMENT value, but you don’t want to
 refer to that value until after issuing a second statement that also
 generates an AUTO_INCREMENT value? In
 this case, the original value is no longer accessible, either through
 LAST_INSERT_ID() or as a client-side
 value. To retain access to it, save the value first before issuing the
 second statement. There are several ways to do this:
	At the SQL level, save the value in a user-defined variable
 after issuing a statement that generates an AUTO_INCREMENT value:
INSERT INTO tbl_name (id,...) VALUES(NULL,...);
SET @saved_id = LAST_INSERT_ID();
Then you can issue other statements without regard to their
 effect on LAST_INSERT_ID(). To
 use the original AUTO_INCREMENT
 value in a subsequent statement, refer to the @saved_id variable.

	At the API level, save the AUTO_INCREMENT value in an API language
 variable. This can be done by saving the value returned from either
 LAST_INSERT_ID() or any
 API-specific extension that is available.

	Some APIs enable you to maintain separate client-side AUTO_INCREMENT values. For example, Perl
 DBI statement handles have a mysql_insertid attribute, and the
 attribute value for one handle is unaffected by activity on another.
 In Java, use separate Statement
 or PreparedStatement
 objects.

See Recipe 15.11 for application of
 these techniques to situations in which you must insert rows into
 multiple tables that each contain an AUTO_INCREMENT column.

15.11 Using Auto-Increment Values to Associate Tables
Problem
You use sequence values from one table as keys in a second table so that
 you can associate rows in the two tables with one another. But the
 associations aren’t being set up properly.

Solution
You’re probably not inserting rows in the proper order, or you’re
 losing track of the sequence values. Change the insertion order, or save
 the sequence values so that you can refer to them when you need
 them.

Discussion
Be careful with an AUTO_INCREMENT value used as an ID value in a
 source table if you also store the value in detail table rows for the
 purpose of linking the detail rows to the proper source table row.
 Suppose that an invoice table lists
 invoice information for customer orders, and an inv_item table lists the individual items
 associated with each invoice. Here, invoice is the source table and inv_item is the detail table. To uniquely
 identify each order, include an AUTO_INCREMENT column, inv_id, in the invoice table. You’d also store the
 appropriate invoice number in each inv_item table row so that you can tell which
 invoice it goes with. The tables might look something like this:
CREATE TABLE invoice
(
 inv_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (inv_id),
 date DATE NOT NULL
 # ... other columns could go here
 # ... (customer ID, shipping address, etc.)
);
CREATE TABLE inv_item
(
 inv_id INT UNSIGNED NOT NULL, # invoice ID (from invoice table)
 INDEX (inv_id),
 qty INT, # quantity
 description VARCHAR(40) # description
);
For this kind of table relationship, it’s typical to insert a row
 into the source table first (to generate the AUTO_INCREMENT value that identifies the row)
 and then insert the detail rows using LAST_INSERT_ID()
 to obtain the source row ID. If a customer buys a hammer, three boxes of
 nails, and (in anticipation of finger-bashing with the hammer) a dozen
 bandages, the rows pertaining to the order can be inserted into the two
 tables like so:
INSERT INTO invoice (inv_id,date)
 VALUES(NULL,CURDATE());
INSERT INTO inv_item (inv_id,qty,description)
 VALUES(LAST_INSERT_ID(),1,'hammer');
INSERT INTO inv_item (inv_id,qty,description)
 VALUES(LAST_INSERT_ID(),3,'nails, box');
INSERT INTO inv_item (inv_id,qty,description)
 VALUES(LAST_INSERT_ID(),12,'bandage');
The first INSERT adds a
 row to the invoice
 source table and generates a new AUTO_INCREMENT value for its inv_id column. The following INSERT statements each add a row to the
 inv_item detail table, using LAST_INSERT_ID() to get the invoice number.
 This associates the detail rows with the proper source row.
What if you have multiple invoices to process? There’s a right way
 and a wrong way to enter the information. The right way is to insert all
 the information for the first invoice, then proceed to the next. The
 wrong way is to add all the source rows into the invoice table, then add all the detail rows to
 the inv_item table. If you do that,
 all the new detail rows in the inv_item table have the AUTO_INCREMENT value from the most recently
 entered invoice row. Thus, all items
 appear to be part of that invoice, and rows in the two tables don’t have
 the proper associations.
If the detail table contains its own AUTO_INCREMENT column, you must be even more
 careful about how you add rows to the tables. Suppose that you want each
 row in the inv_item table to have a
 unique identifier. To do that, create the inv_item table as follows with an AUTO_INCREMENT column named item_id:
CREATE TABLE inv_item
(
 inv_id INT UNSIGNED NOT NULL, # invoice ID (from invoice table)
 item_id INT UNSIGNED NOT NULL AUTO_INCREMENT, # item ID
 PRIMARY KEY (item_id),
 qty INT, # quantity
 description VARCHAR(40) # description
);
The inv_id column enables each
 inv_item row to be associated with
 the proper invoice table row, just as
 with the original table structure. In addition, item_id uniquely identifies each item row.
 However, now that both tables contain an AUTO_INCREMENT column, you cannot enter
 information for an invoice the same way as before. If you execute the
 INSERT statements shown previously,
 they now produce a different result due to the change in the inv_item table structure. The INSERT into the invoice table works properly. So does the
 first INSERT into the inv_item table; LAST_INSERT_ID() returns the inv_id value from the source row in the
 invoice table. However, this INSERT also generates its own AUTO_INCREMENT value (for the item_id column), which changes the value of
 LAST_INSERT_ID() and causes the
 source row inv_id value to be
 lost. As a result, each of the remaining inserts into the
 inv_item table stores the preceding
 row’s item_id value into the inv_id column. This causes the second and
 following rows to have incorrect inv_id values.
To avoid this difficulty, save the sequence value generated by the
 insert into the source table, and use the saved value for the inserts
 into the detail table. To save the value, use a user-defined SQL
 variable or a variable maintained by your program. Recipe 15.10 describes those techniques,
 which apply here as follows:
	Use a user-defined variable
	Save the source row AUTO_INCREMENT value in a user-defined
 variable for use when inserting the detail rows:
INSERT INTO invoice (inv_id,date)
 VALUES(NULL,CURDATE());
SET @inv_id = LAST_INSERT_ID();
INSERT INTO inv_item (inv_id,qty,description)
 VALUES(@inv_id,1,'hammer');
INSERT INTO inv_item (inv_id,qty,description)
 VALUES(@inv_id,3,'nails, box');
INSERT INTO inv_item (inv_id,qty,description)
 VALUES(@inv_id,12,'bandage');

	Use a variable maintained by your program
	This method is
 similar to the previous one but applies only from within an API.
 Insert the source row, and then save the AUTO_INCREMENT value into an API variable
 for use when inserting detail rows. For example, in Ruby, access the
 AUTO_INCREMENT value using the
 last_id method:
client.query("INSERT INTO invoice (inv_id,date) VALUES(NULL,CURDATE())")
inv_id = client.last_id
sth = client.prepare("INSERT INTO inv_item (inv_id,qty,description)
 VALUES(?,?,?)")
sth.execute(inv_id, 1, "hammer")
sth.execute(inv_id, 3, "nails, box")
sth.execute(inv_id, 12, "bandage")

15.12 Using Sequence Generators as Counters
Problem
You’re interested only in counting events, so you want to avoid having to create a new table row for each sequence value.

Solution
Increment a single row per counter.

Discussion
AUTO_INCREMENT columns are
 useful for generating sequences across a set of individual rows. But
 some applications require only a count of the number of times an event
 occurs, and there’s no benefit from creating a separate row for each
 event. Instances include web page or banner ad hit counters, a count of
 items sold, or the number of votes in a poll. Such applications need
 only a single row to hold the count as it changes over time. MySQL
 provides a mechanism for this that enables counts to be treated like
 AUTO_INCREMENT values so that you can
 not only increment the count, but also retrieve the updated value
 easily.
To count a single type of event, use a trivial table with a single
 row and column. For example, to record copies sold of a book, create a
 table like this:
CREATE TABLE booksales (copies INT UNSIGNED);
However, if you’re counting sales for multiple book titles, that
 method doesn’t work well. You certainly don’t want to create a separate
 single-row counting table per book. Instead, count them all within a
 single table by including a column that uniquely identifies each book.
 The following table does this using a title column for the book title in addition to
 a copies column that records the
 number of copies sold:
CREATE TABLE booksales
(
 title VARCHAR(60) NOT NULL, # book title
 copies INT UNSIGNED NOT NULL, # number of copies sold
 PRIMARY KEY (title)
);
To record sales for a given book, different approaches are
 possible:
	Initialize a row for the book with a copies value of 0:
INSERT INTO booksales (title,copies) VALUES('The Greater Trumps',0);
Then increment the copies
 value for each sale:
UPDATE booksales SET copies = copies+1 WHERE title = 'The Greater Trumps';
This method requires that you remember to initialize a row for
 each book or the UPDATE will
 fail.

	Use INSERT with ON DUPLICATE KEY UPDATE, which initializes the row with a count of 1 for the first
 sale and increments the count for subsequent sales:
INSERT INTO booksales (title,copies)
VALUES('The Greater Trumps',1)
ON DUPLICATE KEY UPDATE copies = copies+1;
This is simpler because the same statement works to initialize
 and update the sales count.

To retrieve the sales count (for example, to display a message to
 customers such as You just purchased copy
 n of this book), issue a SELECT query for the same book title:
SELECT copies FROM booksales WHERE title = 'The Greater Trumps';
Unfortunately, this is not quite correct. Suppose that between the
 times when you update and retrieve the count, some other person buys a
 copy of the book (and thus increments the copies value). Then the SELECT statement won’t actually produce the
 value you incremented the sales count to, but
 rather its most recent value. In other words, other clients can affect
 the value before you have time to retrieve it. This is similar to the
 problem discussed in Recipe 15.4 that
 can occur if you try to retrieve the most recent AUTO_INCREMENT value from a column by invoking
 MAX(col_name) rather than LAST_INSERT_ID().
There are ways around this (such as by grouping the two statements
 as a transaction or by locking the table), but MySQL provides a simpler
 solution based on LAST_INSERT_ID(). If
 you call LAST_INSERT_ID() with an
 expression argument, MySQL treats it like an AUTO_INCREMENT value. To use this feature with
 the booksales table, modify the
 count-incrementing statement slightly:
INSERT INTO booksales (title,copies)
VALUES('The Greater Trumps',LAST_INSERT_ID(1))
ON DUPLICATE KEY UPDATE copies = LAST_INSERT_ID(copies+1);
The statement uses the LAST_INSERT_ID(expr) construct both to initialize and to
 increment the count. MySQL treats the expression argument like an
 AUTO_INCREMENT value so that you can
 invoke LAST_INSERT_ID() later with no
 argument to retrieve the value:
SELECT LAST_INSERT_ID();
By setting and retrieving the copies column this way, you always get back
 the value you set it to, even if some other client updated it in the
 meantime. If you issue the INSERT
 statement from within an API that provides a mechanism for fetching the
 most recent AUTO_INCREMENT value
 directly, you need not even issue the SELECT query. For example, using Connector/Python, update a count and get the new value
 using the lastrowid
 attribute:
cursor = conn.cursor()
cursor.execute('''
 INSERT INTO booksales (title,copies)
 VALUES('The Greater Trumps',LAST_INSERT_ID(1))
 ON DUPLICATE KEY UPDATE copies = LAST_INSERT_ID(copies+1)
 ''')
count = cursor.lastrowid
cursor.close()
conn.commit()
In Java, the operation looks like this:
Statement s = conn.createStatement ();
s.executeUpdate (
 "INSERT INTO booksales (title,copies)"
 + "VALUES('The Greater Trumps',LAST_INSERT_ID(1))"
 + "ON DUPLICATE KEY UPDATE copies = LAST_INSERT_ID(copies+1)",
 Statement.RETURN_GENERATED_KEYS);
long count;
ResultSet rs = s.getGeneratedKeys ();
if (rs.next ())
{
 count = rs.getLong (1);
}
else
{
 throw new SQLException ("getGeneratedKeys() produced no value");
}
rs.close ();
s.close ();
Use of LAST_INSERT_ID(expr) for sequence generation has certain other
 properties that differ from true AUTO_INCREMENT sequences:
	AUTO_INCREMENT values
 increment by one each time, whereas values generated by LAST_INSERT_ID(expr) can be any nonnegative value you want.
 For example, to produce the sequence 10, 20, 30, …, increment the
 count by 10 each time. You need not even increment the counter by
 the same value each time. If you sell a dozen copies of a book
 rather than a single copy, update its sales count as follows:
INSERT INTO booksales (title,copies)
VALUES('The Greater Trumps',LAST_INSERT_ID(12))
ON DUPLICATE KEY UPDATE copies = LAST_INSERT_ID(copies+12);

	To reset a counter, simply set it to the desired value.
 Suppose that you want to report to book buyers the sales for the
 current month, rather than the total sales (for example, to display
 messages like You’re the nth buyer
 this month). To clear the counters to zero at the beginning
 of each month, use this statement:
UPDATE booksales SET copies = 0;

	One property that’s not so desirable is that the value
 generated by LAST_INSERT_ID(expr) is not uniformly available via
 client-side retrieval methods under all circumstances. You can get
 it after UPDATE or INSERT statements but not for SET statements. If you generate a value as
 follows (in Ruby), the client-side value returned by insert_id is 0, not 48:
client.query("SET @x = LAST_INSERT_ID(48)")
seq = client.last_id
To get the value in this case, ask the server for it:
seq = client.query("SELECT LAST_INSERT_ID()").first.values[0]

15.13 Generating Repeating Sequences
Problem
You require a sequence that contains cycles.

Solution
Make cycles in the sequence with
 division and modulo operations.

Discussion
Some sequence-generation problems require values that go through
 cycles. Suppose that you manufacture items such as pharmaceutical
 products or automobile parts, and you must be able to track them by lot
 number if manufacturing problems are discovered later that require items
 sold within a particular lot to be recalled. Suppose also that you pack
 and distribute items 12 units to a box and 6 boxes to a case. In this
 situation, item identifiers are three-part values: the unit number (with
 a value from 1 to 12), the box number (with a value from 1 to 6), and a
 lot number (with a value from 1 to the highest current case
 number).
This item-tracking problem appears to require that you maintain
 three counters, so you might generate the next identifier value using an
 algorithm like this:
retrieve most recently used case, box, and unit numbers
unit = unit + 1 # increment unit number
if (unit > 12) # need to start a new box?
{
 unit = 1 # go to first unit of next box
 box = box + 1
}
if (box > 6) # need to start a new case?
{
 box = 1 # go to first box of next case
 case = case + 1
}
store new case, box, and unit numbers
Alternatively, it’s possible simply to assign each item a sequence
 number identifier and derive the corresponding case, box, and unit
 numbers from it. The identifier can come from an AUTO_INCREMENT column or a single-row sequence
 generator. The formulas for determining the case, box, and unit numbers
 for any item from its sequence number look like this:
unit_num = ((seq - 1) % 12) + 1
box_num = (int ((seq - 1) / 12) % 6) + 1
case_num = int ((seq - 1)/(6 * 12)) + 1
The following table illustrates the relationship between some
 sample sequence numbers and the corresponding case, box, and unit
 numbers:
	seq	case	box	unit
	1	1	1	1
	12	1	1	12
	13	1	2	1
	72	1	6	12
	73	2	1	1
	144	2	6	12

15.14 Using Custom Increment Values
Problem

 You want to increment sequences not by one but by a different number.

Solution

 Use the auto_increment_increment and auto_increment_offset system variables.

Discussion

 By default, MySQL increases values in a column, having an AUTO_INCREMENT option, by one. This is not always desirable. Suppose you have a replication chain (Recipe 3.9) of three servers—Venus, Mars, Saturn—and want to distinguish from which server the inserted value is originated.

 The simplest solution for this issue would be to assign a sequence of 1, 4, 7, 10, ... values to the rows inserted on Venus; a sequence of 2, 5, 8, 11, ... to the rows inserted on Mars and a sequence of 3, 6, 9, 12, ... for the rows inserted on Saturn.

 To do it, set the value of the auto_increment_increment system variable to the number of servers: in our case 3, so MySQL will increment sequence value by three. Then set auto_increment_offset to 1 on Venus, to 2 on Mars and to 3 on Saturn. This will instruct MySQL to start new sequences from the specified values:

Venus> SET auto_increment_offset=1;
Query OK, 0 rows affected (0.00 sec)

Venus> SET auto_increment_increment=3;
Query OK, 0 rows affected (0.00 sec)

Mars> SET auto_increment_offset=2;
Query OK, 0 rows affected (0.00 sec)

Mars> SET auto_increment_increment=3;
Query OK, 0 rows affected (0.00 sec)

Saturn> SET auto_increment_offset=3;
Query OK, 0 rows affected (0.00 sec)

Saturn> SET auto_increment_increment=3;
Query OK, 0 rows affected (0.00 sec)
Warning

 We set session variables for our example, but if you want to affect not only your own session, but all connections on the server, you need to use SET GLOBAL. To preserve a configuration change after restart, set these value in the configuration file, or, starting from version 8.0, use the SET PERSIST command.

 If you already have tables with an AUTO-INCREMENT column, specify the offset using this statement:

ALTER TABLE mytable AUTO_INCREMENT = N;

Warning

 Not all engines support the AUTO_INCREMENT option for CREATE TABLE and ALTER TABLE. In this case, you can set the starting value for the auto-incremented column by inserting a row with the desired value, then removing it.

 After preparations are done, MySQL will use the auto_increment_increment value to generate the next sequence number:

Venus> CREATE TABLE offset(
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> host CHAR(32)
 ->);
Query OK, 0 rows affected (0.03 sec)

Venus> INSERT INTO offset(host) VALUES(@@hostname); [image: 1]
Query OK, 1 row affected (0.01 sec)

Venus> INSERT INTO offset(host) VALUES(@@hostname);
Query OK, 1 row affected (0.01 sec)

Venus> INSERT INTO offset(host) VALUES(@@hostname);
Query OK, 1 row affected (0.01 sec)

Venus> SELECT * FROM offset; [image: 2]
+----+-------+
| id | host |
+----+-------+
1	Venus
4	Venus
7	Venus
+----+-------+
3 rows in set (0.00 sec)

Mars> ALTER TABLE offset AUTO_INCREMENT=2; [image: 3]
Query OK, 0 rows affected (0.36 sec)
Records: 0 Duplicates: 0 Warnings: 0

Mars> INSERT INTO offset(host) VALUES('Mars');
Query OK, 1 row affected (0.00 sec)

Mars> INSERT INTO offset(host) VALUES('Mars');
Query OK, 1 row affected (0.01 sec)

Mars> SELECT * FROM offset;
+----+-------+
| id | host |
+----+-------+
1	Venus
4	Venus
7	Venus
8	Mars
11	Mars
+----+-------+
5 rows in set (0.00 sec)

	[image: 1]
	The hostname system variable contains the value of the MySQL host. We use it to distinguish machines.

	[image: 2]
	On Venus, the sequence starts from 1, and we have the expected values: 1, 4, 7.

	[image: 3]
	The table on Mars already existed. The ALTER TABLE command sets offset for the AUTO_INCREMENT sequence to the desired value.

	[image: 4]
	Since the offset table already had rows on Mars, the new AUTO_INCREMENT value started from 8 that belongs to the sequence 2, 5, 8, 11,

15.15 Using Window Functions to Number Rows in the Result Set
Problem

 You want to enumerate the result of a SELECT query.

Solution

 Use the ROW_NUMBER() window function.

Discussion

 Sequences are useful not only when you store data in tables but also when you work with results of queries.

 Suppose you’re running a singing competition. Each singer should have a turn. To provide everyone an equal chance, the position in the queue should be defined randomly.

 The singers’ names are stored in the name table. To retrieve them in random order, use the RAND() function:

mysql> SELECT first_name, last_name FROM name ORDER BY RAND();
+------------+-----------+
| first_name | last_name |
+------------+-----------+
Pete	Gray
Vida	Blue
Rondell	White
Kevin	Brown
Devon	White
+------------+-----------+
5 rows in set (0.00 sec)

 This query will return the list of names in different orders each time it is called.

 Window functions can perform calculations per each row in the result set, and we can use them to create a new column with the order in which the singers will perform.

 Window functions work over a specific window that in our case is a SELECT query. They may access multiple rows while they are executing but produce results for each row in the window:

mysql> SELECT
 -> ROW_NUMBER() OVER win AS turn, [image: 1]
 -> first_name, last_name FROM name [image: 2]
 -> WINDOW win [image: 3]
 -> AS (ORDER BY RAND()); [image: 4]
+------+------------+-----------+
| turn | first_name | last_name |
+------+------------+-----------+
1	Devon	White
2	Kevin	Brown
3	Rondell	White
4	Vida	Blue
5	Pete	Gray
+------+------------+-----------+
5 rows in set (0.00 sec)

	[image: 1]
	The ROW_NUMBER() function defines the position in the singing schedule.

	[image: 2]
	Other columns in the name table that we want to see in the query result.

	[image: 3]
	The keyword WINDOW defines the named window over which we will use the ROW_NUMBER function.

	[image: 4]
	Sort the window in random order to get fair queue distribution.

 Another common use of the ROW_NUMBER() function is to generate a sequence of identifiers that later could be used to join the SELECT result with another table. We discuss this approach in one of the examples in Recipe 15.16.

See Also
For additional information about window functions,
 see “Window Function Concepts and Syntax”.

15.16 Generating Series with Recursive CTEs
Problem

 You want to create a custom sequence, such as a geometric progression or Fibonacci number.

Solution

 Use recursive Common Table Expressions (CTEs) to create the sequence from the custom formula.

Discussion

 Sequences should not always be an arithmetic progression. They could be any kind of progression and even random numbers or strings.

 One way to create custom sequences is recursive CTEs. They are named temporary result sets that allow self-referencing. Basic recursive CTE syntax is as follows:

WITH RECURSIVE name(column[, column])
(SELECT expressin[, expression]
UNION ALL
SELECT expressin[, expression]
FROM name WHERE ...)
SELECT * FROM name;

 Thus, to generate a geometric progression starting from 2 with a common ratio 2, use a CTE as follows:

mysql> WITH RECURSIVE geometric_progression(id) AS
 -> (SELECT 2 [image: 1]
 -> UNION ALL
 -> SELECT id * 2 [image: 2]
 -> FROM geometric_progression
 -> LIMIT 5) [image: 3]
 -> SELECT * FROM geometric_progression;
+------+
| id |
+------+
| 2 |
| 4 |
| 8 |
| 16 |
| 32 |
+------+
5 rows in set (0.00 sec)

	[image: 1]
	Starting value for the sequence.

	[image: 2]
	All subsequent values in the geometric progression are the previous number multiplied by the common ratio.

	[image: 3]
	To limit the number of the generated numbers and avoid infinite loops, use either a LIMIT clause or any valid WHERE condition.

 Recursive CTEs allow you to create multiple sequences at the same time. For example, we can use them to create the following:

	An id that will use regular arithmetic progression, starting from 1 with a common difference 1
	A geometric progression, starting from 3 with a common ratio 4
	A random number between 1 and 5

 To create all these in a single query, use a recursive CTE as follows:

mysql> WITH RECURSIVE sequences(id, geo, random) AS
 -> (SELECT 1, 3, FLOOR(1+RAND()*5)
 -> UNION ALL
 -> SELECT id + 1, geo * 4, FLOOR(1+RAND()*5)
 -> FROM sequences
 -> WHERE id < 5)
 -> SELECT * FROM sequences;
+------+------+--------+
| id | geo | random |
+------+------+--------+
1	3	4
2	12	4
3	48	2
4	192	2
5	768	3
+------+------+--------+
5 rows in set (0.00 sec)

 To illustrate the use of the custom sequence, suppose that we are working on a new Data Phobia vaccine and want to start phase III trials on it. Phase III includes testing the real vaccine and a placebo. Doses are distributed randomly between volunteers. To perform this trial, we will use a patients table with participants who do not already have a diagnosis of Data Phobia. We generate a sequence of two random values and assign either a real vaccine or a placebo based on that:

mysql> WITH RECURSIVE trial(id, dose) AS
 -> (SELECT 1, IF(1=FLOOR(1+RAND()*2), 'Vaccine', 'Placebo') [image: 1]
 -> UNION ALL
 -> SELECT id+1, IF(1=FLOOR(1+RAND()*2), 'Vaccine', 'Placebo')
 -> FROM trial
 -> WHERE id < (SELECT COUNT(*) FROM patients
 -> WHERE diagnosis != 'Data Phobia' and result != 'D')), [image: 2]
 -> volunteers AS [image: 3]
 -> (SELECT ROW_NUMBER() OVER win AS id, [image: 4]
 -> national_id, name, surname
 -> FROM patients WHERE diagnosis != 'Data Phobia' and result != 'D'
 -> WINDOW win AS (ORDER BY surname))
 -> SELECT national_id, name, surname, dose [image: 5]
 -> FROM trial JOIN volunteers USING(id);
+-------------+-----------+-----------+---------+
| national_id | name | surname | dose |
+-------------+-----------+-----------+---------+
84DC051879	William	Brown	Vaccine
78FS043029	David	Davis	Vaccine
38BP394037	Catherine	Hernandez	Placebo
28VU492728	Alice	Jackson	Vaccine
71GE601633	John	Johnson	Vaccine
09SK434607	Richard	Martin	Placebo
30NC108735	Robert	Martinez	Placebo
02WS884704	Sarah	Miller	Placebo
45MY529190	Patricia	Rodriguez	Vaccine
89AR642465	Mary	Smith	Placebo
99XC682639	Emma	Taylor	Vaccine
04WT954962	Peter	Wilson	Vaccine
+-------------+-----------+-----------+---------+
12 rows in set (0.00 sec)

	[image: 1]
	The FLOOR(1+RAND()*2) function generates two random numbers: 1 or 2. The IF function works as a ternary operator: if the first argument is true, it returns the second one; otherwise, it returns the third argument.

	[image: 2]
	We do not want patients who have already been diagnosed with Data Phobia to participate in our tests, and we cannot test our vaccine on patients who did not recover.

	[image: 3]
	While the patients table has an AUTO_INCREMENT column id, we cannot use it, because we couldn’t exclude patients that won’t participate in our tests this way. Therefore, we use a CTE to create a named result set, volunteers, and generate its own sequence for it.

	[image: 4]
	The ROW_NUMBER() function generates a new sequence for the patients who participate in the tests.

	[image: 5]
	Join the generated sequence of random values for the dose and the named result set, volunteers, using a generated id without including it into the final result set.

See Also
For additional information about CTEs, see Recipe 10.18.

15.17 Creating and Storing Custom Sequences
Problem

 You want to use a custom sequence as a stored id column in the table.

Solution

 Create a table that will hold sequence values and a function that will update and select these values.

Discussion

 Although MySQL does not support the SQL SEQUENCE object, it is pretty easy to imitate one.

 First, you need to create a table that will hold sequences:

CREATE TABLE `sequences` (
 `sequence_name` varchar(64) NOT NULL,
 `maximum_value` bigint NOT NULL DEFAULT '9223372036854775807',
 `minimum_value` bigint NOT NULL DEFAULT '-9223372036854775808',
 `increment` bigint NOT NULL DEFAULT '1',
 `start_value` bigint NOT NULL DEFAULT '-9223372036854775808',
 `current_base_value` bigint NOT NULL DEFAULT '-9223372036854775808',
 `cycle_option` enum('yes','no') NOT NULL DEFAULT 'no',
 PRIMARY KEY (`sequence_name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;

 For this recipe, we used the same table definition that the MySQL Engineering Team is planning to implement as part of WL#827: SEQUENCE object as in Oracle, PostgreSQL, and/or SQL:2003. This definition is not required for real-life sequence implementation that could be either simpler or have more options.

 Columns in the sequences table all have special meanings (see Table 15-1).

Table 15-1. Columns in the sequences table	Column	Description	Comments
	sequence_name	Name of the sequence.	Required field, should be unique.
	maximum_value	Maximum value that the sequence can generate.	We allow negative values in our custom sequence; therefore, the maximum possible value is 9223372036854775807, which is the maximum value for the BIGINT SIGNED datatype. If you make this column BIGINT UNSIGNED, the sequence could have twice the values. This option is not critical for the sequence generation and can be skipped.
	minimum_value	Minimum value for the sequence.	In our case, the default is -9223372036854775808, which is the minimum for the BIGINT SIGNED type. Depending on how you want to create custom sequences, this column could be skipped or have different types or default values.
	increment	Increment for the sequence.	
 The SQL standard defines the sequence that uses arithmetic progression. This column contains a common difference for the progression. This is a required field.

 If you create custom sequence, such as geometric progression, you may have a common ratio in this field or any other value that allows you to generate the next one.

	start_value	The value from which the sequence will start.	This is not an essential field for implementing sentences. In our case, it is minimum_value by default.
	current_base_value	The value that the sequence needs to return when asked for the next value. Once returned, it should be replaced with the newly generated one.	This is a required field. The default is the same as start_value.
	cycle_option	Does the sequence support cycles?	If enabled, the sequence will reset back to start_value when it reaches either its minimum_value or maximum_value.

 Then, we need to create a stored procedure that will update the sequences table:

CREATE PROCEDURE create_sequence(
 sequence_name VARCHAR(64), start_value BIGINT, increment BIGINT,
 cycle_option ENUM('yes','no'), maximum_value BIGINT, minimum_value BIGINT)
BEGIN
 INSERT INTO sequences
 (sequence_name, maximum_value, minimum_value, increment, start_value,
 current_base_value, cycle_option)
 VALUES(
 sequence_name,
 COALESCE(maximum_value, 9223372036854775807),
 COALESCE(minimum_value, -9223372036854775808),
 COALESCE(increment, 1),
 COALESCE(start_value, -9223372036854775808),
 COALESCE(start_value, -9223372036854775808),
 COALESCE(cycle_option, 'no'));
END;

Note

 Using stored routines, rather than updating the sequences table directly, has a number of advantages:
	You don’t need to worry about updating the current_base_value each time you use the sequence.

	If the cycle_option value is enabled, the sequence will reset back to start_value when it reaches either its minimum_value or maximum_value.

	You may restrict direct access to the sequences table for anyone, except the administrator, and still allow application users to use sequences. See Recipe 24.13 for details.

 MySQL does not allow us to call a stored function with a variable number of arguments. The COALESCE function allows you to put defaults if NULL values are passed in place of the arguments for which you want to have default values:

mysql> CALL create_sequence('bar', 1, 1, 'no', 9223372036854775807, -9223372036854775808);
Query OK, 1 row affected (0.01 sec)

mysql> CALL create_sequence('baz', 1, 1, 'yes', 10, 1);
Query OK, 1 row affected (0.01 sec)

mysql> call create_sequence('foo',null,null,null, null, null);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM sequences\G
*************************** 1. row ***************************
 sequence_name: bar
 maximum_value: 9223372036854775807
 minimum_value: 1
 increment: 1
 start_value: 1
current_base_value: 1
 cycle_option: no
*************************** 2. row ***************************
 sequence_name: baz
 maximum_value: 10
 minimum_value: 1
 increment: 1
 start_value: 1
current_base_value: 1
 cycle_option: yes
*************************** 3. row ***************************
 sequence_name: foo
 maximum_value: 9223372036854775807
 minimum_value: -9223372036854775808
 increment: 1
 start_value: -9223372036854775808
current_base_value: -9223372036854775808
 cycle_option: no
3 rows in set (0.00 sec)

 In the preceding example, we first created a bar sequence that starts from 1, increments by 1, does not have a cycle option, and has a default maximum_value of 9223372036854775807. Then, we created the baz sequence that also starts from 1 and increments by 1 but has cycle_option enabled and a maximum_value 10, so it cycles quite fast. Finally, we created a foo sequence that has only custom name and all other defaults.

 To get the next sequence value and update the sequence table at the same time, we will use a stored function:

CREATE FUNCTION sequence_next_value(name varchar(64)) RETURNS BIGINT
BEGIN
 DECLARE retval BIGINT;
 SELECT current_base_value INTO retval FROM sequences
 WHERE sequence_name=name FOR UPDATE;
 UPDATE sequences SET current_base_value=
 IF((current_base_value+increment <= maximum_value
 AND current_base_value+increment >= minimum_value),
 current_base_value+increment,
 IF('yes' = cycle_option, start_value, NULL)
) WHERE sequence_name=name;
 RETURN retval;
END;

 The function first retrieves current_base_value of the sequence using the SELECT...FOR UPDATE statement, so other connections won’t modify the sequence until we return the value.

 Our function supports cycles. In cases where cycle_option is enabled, and the next sequence value exceeds the boundaries, it sets current_base_value to the value, defined by the start_value. If cycle_option is disabled and the next sequence value exceeds the boundaries, we insert NULL value into the current_base_value column, which MySQL will reject with an error. You may consider raising a custom exception instead.

 To demonstrate how cycle_option option works, let’s see how the baz sequence behaves when its boundaries are reached:

mysql> SELECT sequence_next_value('baz');
+----------------------------+
| sequence_next_value('baz') |
+----------------------------+
| 10 |
+----------------------------+
1 row in set (0.00 sec)

mysql> SELECT sequence_next_value('baz');
+----------------------------+
| sequence_next_value('baz') |
+----------------------------+
| 1 |
+----------------------------+
1 row in set (0.01 sec)

mysql> SELECT sequence_next_value('baz');
+----------------------------+
| sequence_next_value('baz') |
+----------------------------+
| 2 |
+----------------------------+
1 row in set (0.01 sec)

 To demonstrate function behavior when the boundaries are reached while cycle_option is not enabled, we created a sequence that has a small maximum value:

mysql> CALL create_sequence('boo', 1, 1, 'no', 3, 1);
Query OK, 1 row affected (0.01 sec)

mysql> SELECT sequence_next_value('boo');
+----------------------------+
| sequence_next_value('boo') |
+----------------------------+
| 1 |
+----------------------------+
1 row in set (0.01 sec)

mysql> SELECT sequence_next_value('boo');
+----------------------------+
| sequence_next_value('boo') |
+----------------------------+
| 2 |
+----------------------------+
1 row in set (0.01 sec)

mysql> SELECT sequence_next_value('boo');
ERROR 1048 (23000): Column 'current_base_value' cannot be null

 To use custom sequences with tables, simply call sequence_next_value each time you need the next sequence value:

mysql> CREATE TABLE sequence_test(
 -> id BIGINT NOT NULL PRIMARY KEY,
 -> -- other fields
 ->);
Query OK, 0 rows affected (0.04 sec)

mysql> CALL create_sequence('sequence_test', 10, 5, 'no', null, null);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO sequence_test VALUES(sequence_next_value('sequence_test'));
Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO sequence_test VALUES(sequence_next_value('sequence_test'));
Query OK, 1 row affected (0.01 sec)

mysql> select * from sequence_test;
+----+
| id |
+----+
| 10 |
| 15 |
+----+
2 rows in set (0.00 sec)

 You can automate sequence-value generation for your tables by using triggers.

CREATE TRIGGER sequence_test_bi BEFORE INSERT ON sequence_test
FOR EACH ROW SET NEW.id=IFNULL(NEW.id, sequence_next_value('sequence_test'));

 In this example, we generate a new sequence value when a user tries to insert NULL into the id column of the sequence_test table. If the user, instead, decides to specify the value explicitly, the trigger would not change it:

mysql> INSERT INTO sequence_test VALUES();
Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO sequence_test VALUES(13);
Query OK, 1 row affected (0.00 sec)

mysql> select * from sequence_test;
+----+
| id |
+----+
| 10 |
| 13 |
| 15 |
| 20 |
+----+
4 rows in set (0.00 sec)

 Finally, we need to define a stored procedure to delete the sequence when we don’t need it:

CREATE PROCEDURE delete_sequence(name VARCHAR(64))
DELETE FROM sequences WHERE sequence_name=name;

 You will find code for maintaining custom sequences in the sequences/custom_sequences.sql file of the recipes distribution.

Chapter 16. Using Joins and Subqueries
16.0 Introduction
Most queries in earlier chapters used a single table, but for any
 application of even moderate complexity, you’ll likely need to use
 multiple tables. Some questions simply cannot be answered using a single
 table, and the real power of a relational database comes into play when
 you combine the information from multiple sources:
	Combine rows from tables to obtain more comprehensive
 information than can be obtained from individual tables alone

	Hold intermediate results for a multiple-stage
 operation

	Modify rows in one table based on information from
 another

This chapter focuses on two types of statements that use multiple
 tables: joins between tables and subqueries that nest one SELECT within another. It covers the following
 topics:
	Comparing tables to find matches or mismatches
	To solve such problems, you should know which types of joins
 apply. Inner joins show which rows in one table match rows in
 another. Outer joins show matching rows but also find rows in one
 table not matched by rows in another.

	Deleting unmatched rows
	If two datasets are related, but imperfectly, you can
 determine which rows are unmatched and remove them as
 necessary.

	Comparing a table to itself
	Some problems require comparing a table to itself. This is
 similar to performing a join between different tables, except that
 you must use table aliases to disambiguate table references.

	Producing candidate-detail and many-to-many relationships
	Joins enable the production of lists or summaries when each item
 in one table can match many items in the other table, or when each item in
 either table can match many items in the other table.

The scripts that create the tables used in this chapter are located in the
 tables directory of the recipes distribution. For scripts that implement
 the techniques discussed here, look in the joins directory.

16.1 Finding Matches Between Tables
Problem
You need to perform a task that requires information from more than
 one table.

Solution
Use a join—that is, a query that lists multiple tables in its FROM clause and
 tells MySQL how to match information from them.

Discussion
The essential idea behind a join is that it matches rows in one
 table with rows in one or more other tables. Joins enable you to combine
 information from multiple tables when each one answers only part of the
 question in which you’re interested.
A complete join that produces all possible row combinations is
 called a Cartesian product. For example, joining each row in a 100-row
 table to each row in a 200-row table produces a result containing 100 ×
 200 = 20,000 rows. With larger tables, or joins between more than two
 tables, the result set for a Cartesian product easily becomes immense,
 so a join normally includes an ON or
 USING comparison clause to produce only the desired matches between tables.
 (This requires that each table have one or more columns of common
 information that link them together logically.) You can also include a WHERE clause
 that restricts which of the joined rows to select. Each clause narrows
 the focus of the query.
This recipe introduces join syntax and demonstrates how joins
 answer specific types of questions when you are looking for matches
 between tables. Other sections show how to identify mismatches between
 tables (see Recipe 16.2) and how to
 compare a table to itself (see Recipe 16.4). The examples assume that you
 have an art collection and use the following two tables to record your
 acquisitions. artist lists those
 painters whose works you want to collect, and painting lists each painting you’ve actually
 purchased:
CREATE TABLE artist
(
 a_id INT UNSIGNED NOT NULL AUTO_INCREMENT, # artist ID
 name VARCHAR(30) NOT NULL, # artist name
 PRIMARY KEY (a_id),
 UNIQUE (name)
);

CREATE TABLE painting
(
 a_id INT UNSIGNED NOT NULL, # artist ID
 p_id INT UNSIGNED NOT NULL AUTO_INCREMENT, # painting ID
 title VARCHAR(100) NOT NULL, # title of painting
 state VARCHAR(2) NOT NULL, # state where purchased
 price INT UNSIGNED, # purchase price (dollars)
 INDEX (a_id),
 PRIMARY KEY (p_id)
);
You’ve just begun the collection, so the tables contain only a few
 rows:
mysql> SELECT * FROM artist ORDER BY a_id;
+------+----------+
| a_id | name |
+------+----------+
1	Da Vinci
2	Monet
3	Van Gogh
4	Renoir
+------+----------+	
mysql> SELECT * FROM painting ORDER BY a_id, p_id;	
+------+------+-------------------+-------+-------+	
a_id	p_id
+------+------+-------------------+-------+-------+	
1	1
1	2
3	3
3	4
4	5
+------+------+-------------------+-------+-------+
The low values in the price
 column of the painting table betray
 the fact that your collection actually contains only cheap imitations,
 not the originals. Well, that’s all right: who can afford the
 originals?
Each table contains partial information about your collection. For
 example, the artist table doesn’t
 tell you which paintings each artist produced, and the painting table lists artist IDs but not their
 names. To use the information in both tables, write a query that
 performs a join. A join names two or more tables after the FROM keyword. In the output column list, use
 * to select all columns from all
 tables (i.e., tbl_name.*) to select all columns from a given table
 or name specific columns from the joined tables or expressions based on
 those columns.
The simplest join involves two tables and selects all columns from
 each. The following join between the artist and painting tables shows this (the ORDER BY
 clause makes the result easier to read):
mysql> SELECT * FROM artist INNER JOIN painting ORDER BY artist.a_id;
+------+----------+------+------+-------------------+-------+-------+
| a_id | name | a_id | p_id | title | state | price |
+------+----------+------+------+-------------------+-------+-------+
1	Da Vinci	1	1	The Last Supper	IN	34
1	Da Vinci	3	3	Starry Night	KY	48
1	Da Vinci	4	5	Les Deux Soeurs	NE	64
1	Da Vinci	1	2	Mona Lisa	MI	87
1	Da Vinci	3	4	The Potato Eaters	KY	67
2	Monet	1	2	Mona Lisa	MI	87
2	Monet	3	4	The Potato Eaters	KY	67
2	Monet	1	1	The Last Supper	IN	34
2	Monet	3	3	Starry Night	KY	48
2	Monet	4	5	Les Deux Soeurs	NE	64
3	Van Gogh	1	2	Mona Lisa	MI	87
3	Van Gogh	3	4	The Potato Eaters	KY	67
3	Van Gogh	1	1	The Last Supper	IN	34
3	Van Gogh	3	3	Starry Night	KY	48
3	Van Gogh	4	5	Les Deux Soeurs	NE	64
4	Renoir	1	1	The Last Supper	IN	34
4	Renoir	3	3	Starry Night	KY	48
4	Renoir	4	5	Les Deux Soeurs	NE	64
4	Renoir	1	2	Mona Lisa	MI	87
4	Renoir	3	4	The Potato Eaters	KY	67
+------+----------+------+------+-------------------+-------+-------+
An INNER JOIN produces results that combine values in one table with values in
 another table. The preceding query specifies no restrictions on row
 matching, so the join generates all row combinations (that is, the
 Cartesian product). This result illustrates why such a join generally is
 not useful: it produces a lot of unmeaningful output. Clearly, you don’t
 maintain these tables to match every artist with every painting.
Tip

 In MySQL, JOIN, CROSS JOIN, and INNER JOIN are syntactic equivalents and can replace one another. You can use CROSS JOIN, or simply JOIN, in all places where we use INNER JOIN.

To answer questions meaningfully, produce only the relevant
 matches by including appropriate join conditions. For example, to
 produce a list of paintings together with the artist names, associate
 rows from the two tables using a simple WHERE clause that matches values based on the
 artist ID column that is common to both tables and serves to link
 them:
mysql> SELECT * FROM artist INNER JOIN painting
 -> WHERE artist.a_id = painting.a_id
 -> ORDER BY artist.a_id;
+------+----------+------+------+-------------------+-------+-------+
| a_id | name | a_id | p_id | title | state | price |
+------+----------+------+------+-------------------+-------+-------+
1	Da Vinci	1	1	The Last Supper	IN	34
1	Da Vinci	1	2	Mona Lisa	MI	87
3	Van Gogh	3	3	Starry Night	KY	48
3	Van Gogh	3	4	The Potato Eaters	KY	67
4	Renoir	4	5	Les Deux Soeurs	NE	64
+------+----------+------+------+-------------------+-------+-------+
The column names in the WHERE
 clause include table qualifiers to make it clear which a_id values to compare. The result indicates
 who painted each painting and, conversely, which paintings by each
 artist are in your collection.
Joins and Indexes
A join can easily cause MySQL to process large numbers of row combinations, so it’s a
 good idea to index the comparison columns. Otherwise, performance
 drops off quickly as table sizes increase. For the artist and painting tables, joins are made by comparing
 the a_id columns. If you look back
 at the CREATE TABLE statements for those tables, you see
 that a_id is indexed in each
 table.

Another way to write the same join indicates the matching
 conditions with an ON clause:
SELECT * FROM artist INNER JOIN painting
ON artist.a_id = painting.a_id
ORDER BY artist.a_id;
In the special case of equality comparisons between columns with
 the same name in both tables, you can use an INNER JOIN
 with a USING clause instead. This requires no table qualifiers and names each
 joined column only once:
SELECT * FROM artist INNER JOIN painting
USING (a_id)
ORDER BY a_id;
For SELECT * queries, the USING form produces a result that differs from
 the ON form: it returns only one
 instance of each join column, so a_id
 appears once, not twice.
Any of ON, USING, or WHERE can include comparisons, so how do you
 know which join conditions to put in each clause? As a rule of thumb,
 it’s conventional to use ON or
 USING to specify how to join the
 tables and the WHERE clause to
 restrict which of the joined rows to select. For example, to join tables
 based on the a_id column, but select
 only rows for paintings obtained in Kentucky, use an ON (or USING) clause to match the rows in the two
 tables, and a WHERE clause to test
 the state column:
mysql> SELECT * FROM artist INNER JOIN painting
 -> ON artist.a_id = painting.a_id
 -> WHERE painting.state = 'KY';
+------+----------+------+------+-------------------+-------+-------+
| a_id | name | a_id | p_id | title | state | price |
+------+----------+------+------+-------------------+-------+-------+
| 3 | Van Gogh | 3 | 3 | Starry Night | KY | 48 |
| 3 | Van Gogh | 3 | 4 | The Potato Eaters | KY | 67 |
+------+----------+------+------+-------------------+-------+-------+
The preceding queries use SELECT * to display all columns. To be more
 selective, name only those columns in which you’re interested:
mysql> SELECT artist.name, painting.title, painting.state, painting.price
 -> FROM artist INNER JOIN painting
 -> ON artist.a_id = painting.a_id
 -> WHERE painting.state = 'KY';
+----------+-------------------+-------+-------+
| name | title | state | price |
+----------+-------------------+-------+-------+
| Van Gogh | Starry Night | KY | 48 |
| Van Gogh | The Potato Eaters | KY | 67 |
+----------+-------------------+-------+-------+
Joins can use more than two tables. Suppose that you prefer to see
 complete state names rather than abbreviations in the preceding query
 result. The states table used in
 earlier chapters maps state abbreviations to names; add it to the
 previous query to display the name rather than the abbreviation:
mysql> SELECT artist.name, painting.title, states.name, painting.price
 -> FROM artist INNER JOIN painting INNER JOIN states
 -> ON artist.a_id = painting.a_id AND painting.state = states.abbrev
 -> WHERE painting.state = 'KY';
+----------+-------------------+----------+-------+
| name | title | name | price |
+----------+-------------------+----------+-------+
| Van Gogh | Starry Night | Kentucky | 48 |
| Van Gogh | The Potato Eaters | Kentucky | 67 |
+----------+-------------------+----------+-------+
Another common use of three-way joins is enumerating many-to-many
 relationships (see Recipe 16.6).
By including appropriate conditions in your joins, you can answer
 very specific questions:
	Which paintings did Van Gogh paint? Use the a_id value to find matching rows, add a
 WHERE clause to restrict output
 to rows that contain the artist name, and select the title from
 those rows:
mysql> SELECT painting.title
 -> FROM artist INNER JOIN painting ON artist.a_id = painting.a_id
 -> WHERE artist.name = 'Van Gogh';
+-------------------+
| title |
+-------------------+
| Starry Night |
| The Potato Eaters |
+-------------------+

	Who painted the Mona Lisa? Again, use the
 a_id column to join the rows, but
 this time use the WHERE clause to
 restrict output to rows that contain the title, and select the
 artist name from those rows:
mysql> SELECT artist.name
 -> FROM artist INNER JOIN painting ON artist.a_id = painting.a_id
 -> WHERE painting.title = 'Mona Lisa';
+----------+
| name |
+----------+
| Da Vinci |
+----------+

	For which artists did you purchase paintings in Kentucky or
 Indiana? This is similar to the previous statement but tests a
 different column in the painting
 table (state) to restrict output
 to rows for KY or IN:
mysql> SELECT DISTINCT artist.name
 -> FROM artist INNER JOIN painting ON artist.a_id = painting.a_id
 -> WHERE painting.state IN ('KY','IN');
+----------+
| name |
+----------+
| Da Vinci |
| Van Gogh |
+----------+
The statement also uses DISTINCT to display each artist name just once. Try it without DISTINCT; Van Gogh appears twice because
 you obtained two Van Goghs in Kentucky.

	Joins used with aggregate functions produce summaries. This statement
 shows how many paintings you have per artist:
mysql> SELECT artist.name, COUNT(*) AS 'number of paintings'
 -> FROM artist INNER JOIN painting ON artist.a_id = painting.a_id
 -> GROUP BY artist.name;
+----------+---------------------+
| name | number of paintings |
+----------+---------------------+
Da Vinci	2
Renoir	1
Van Gogh	2
+----------+---------------------+
A more elaborate statement uses aggregates to also show how
 much you paid for each artist’s paintings, in total and on
 average:
mysql> SELECT artist.name,
 -> COUNT(*) AS 'number of paintings',
 -> SUM(painting.price) AS 'total price',
 -> AVG(painting.price) AS 'average price'
 -> FROM artist INNER JOIN painting ON artist.a_id = painting.a_id
 -> GROUP BY artist.name;
+----------+---------------------+-------------+---------------+
| name | number of paintings | total price | average price |
+----------+---------------------+-------------+---------------+
Da Vinci	2	121	60.5000
Renoir	1	64	64.0000
Van Gogh	2	115	57.5000
+----------+---------------------+-------------+---------------+

The preceding summary statements produce output only for those
 artists in the artist table for whom
 you actually have acquired paintings. (For example, Monet is listed in
 the artist table but is not present
 in the summary because you have none of his paintings yet.) To summarize
 all artists, including those for whom you have no paintings, you must
 use a different kind of join—specifically, an outer join:
	Joins written with INNER
 JOIN are inner joins. They
 produce a result only for values in one table that match values in
 another table.

	An outer join can produce those matches as well but also can show you
 which values in one table are missing from the other. Recipe 16.2 introduces outer
 joins.

The tbl_name.col_name notation that
 qualifies a column name with a table name is always permitted in a join
 but can be shortened to just col_name if the
 name appears in only one of the joined tables. In that case, MySQL can
 determine without ambiguity which table the column comes from, and no
 table name qualifier is necessary. We can’t do that for the following
 join. Both tables have an a_id
 column, so the ON clause column
 references are ambiguous:
mysql> SELECT * FROM artist INNER JOIN painting ON a_id = a_id;
ERROR 1052 (23000): Column 'a_id' in on clause is ambiguous
By contrast, the following query is unambiguous. Each instance of
 a_id is qualified with the
 appropriate table name, only artist
 has a name column, and only painting has title and state columns:
mysql> SELECT name, title, state FROM artist INNER JOIN painting
 -> ON artist.a_id = painting.a_id
 -> ORDER BY name;
+----------+-------------------+-------+
| name | title | state |
+----------+-------------------+-------+
Da Vinci	The Last Supper	IN
Da Vinci	Mona Lisa	MI
Renoir	Les Deux Soeurs	NE
Van Gogh	Starry Night	KY
Van Gogh	The Potato Eaters	KY
+----------+-------------------+-------+
To make the meaning of a statement clearer to human readers, it’s
 often useful to qualify column names even when that’s not strictly
 necessary as far as MySQL is concerned. We tend to use qualified names in
 join examples for that reason.
To avoid writing complete table names when qualifying column
 references, give each table a short alias and refer to its columns using
 the alias. The following two statements are equivalent:
SELECT artist.name, painting.title, states.name, painting.price
FROM artist INNER JOIN painting INNER JOIN states
ON artist.a_id = painting.a_id AND painting.state = states.abbrev;

SELECT a.name, p.title, s.name, p.price
FROM artist AS a INNER JOIN painting AS p INNER JOIN states AS s
ON a.a_id = p.a_id AND p.state = s.abbrev;
In AS
 alias_name clauses, the AS is optional.
For complicated statements that select many columns, aliases
 can save a lot of typing. In addition, for some types of
 statements, aliases are not only convenient but necessary, as will
 become evident when we get to the topic of self-joins (see Recipe 16.4).
Joining Tables from Different Databases
To perform a join between tables located in different databases, qualify table and
 column names sufficiently that MySQL knows what you’re referring to.
 Thus far, we have used the artist
 and painting tables with the
 implicit understanding that both are in the cookbook database, so we can simply refer to
 the tables without specifying any database name when cookbook is the default database. For
 example, the following statement uses the two tables to associate
 artists with their paintings:
SELECT artist.name, painting.title
FROM artist INNER JOIN painting
ON artist.a_id = painting.a_id;
But suppose instead that artist is in the db1 database and painting is in the db2 database. To indicate this, qualify each
 table name with a prefix that specifies which database it’s in. The
 fully qualified form of the join looks like this:
SELECT db1.artist.name, db2.painting.title
FROM db1.artist INNER JOIN db2.painting
ON db1.artist.a_id = db2.painting.a_id;
Table aliases can simplify that considerably:
SELECT a.name, p.title
FROM db1.artist AS a INNER JOIN db2.painting AS p
ON a.a_id = p.a_id;
If there is no default database, or it is neither db1 nor db2, it’s necessary to fully qualify both
 table names. If the default database is either db1 or db2, you can dispense with the corresponding
 qualifiers. If the default database is db1, you can omit the db1 qualifiers. Conversely, if the default
 database is db2, no db2 qualifiers are necessary.

16.2 Finding Mismatches Between Tables
Problem
You want to find rows in one table that have no match in another. Or you want to
 produce a list on the basis of a join between tables, and you want the
 list to include an entry for every row in the first table, including
 those for which no match occurs in the second table.

Solution
Use an outer join (a LEFT
 JOIN or a RIGHT JOIN)
 or a NOT IN subquery.

Discussion
Recipe 16.1 focuses on inner
 joins, which find matches between two tables. However, the answers to
 some questions require determining which rows do
 not have a match (or, stated another way, which
 rows have values missing from the other table). For example, you might
 want to know artists in the artist
 table for whom you have no paintings yet. Similar questions occur in
 other contexts:
	You have a list of potential customers and another list of
 people who have placed orders. To focus sales efforts on people who
 are not yet actual customers, produce the set of people who are in
 the first list but not the second.

	You have one list of baseball players and another list of
 players who have hit home runs. To determine which players in the
 first list have not hit a home run, produce the
 set of players who are in the first list but not the second.

These types of questions require use of an outer join. Like inner
 joins, an outer join finds matches between tables. But unlike an inner
 join, an outer join also determines which rows in one table have no
 match in another. Two types of outer joins are LEFT JOIN
 and RIGHT JOIN.
To see how outer joins are useful, consider the problem of
 determining which artists in the artist table are missing from the painting table. At present, the tables are
 small, so it’s easy to examine them visually and see that you have no
 paintings by Monet (there are no painting rows with an a_id value of 2):
mysql> SELECT * FROM artist ORDER BY a_id;
+------+----------+
| a_id | name |
+------+----------+
1	Da Vinci
2	Monet
3	Van Gogh
4	Renoir
+------+----------+	
mysql> SELECT * FROM painting ORDER BY a_id, p_id;	
+------+------+-------------------+-------+-------+	
a_id	p_id
+------+------+-------------------+-------+-------+	
1	1
1	2
3	3
3	4
4	5
+------+------+-------------------+-------+-------+
As you acquire more paintings and the tables get larger, it won’t
 be so easy to eyeball them and answer questions by inspection. Can you
 answer it using SQL? Sure, although first attempts at a solution often
 look something like the following statement, which uses a not-equal
 condition to look for mismatches between the two tables:
mysql> SELECT * FROM artist INNER JOIN painting
 -> ON artist.a_id <> painting.a_id
 -> ORDER BY artist.a_id;
+------+----------+------+------+-------------------+-------+-------+
| a_id | name | a_id | p_id | title | state | price |
+------+----------+------+------+-------------------+-------+-------+
1	Da Vinci	4	5	Les Deux Soeurs	NE	64
1	Da Vinci	3	4	The Potato Eaters	KY	67
1	Da Vinci	3	3	Starry Night	KY	48
2	Monet	1	1	The Last Supper	IN	34
2	Monet	4	5	Les Deux Soeurs	NE	64
2	Monet	3	4	The Potato Eaters	KY	67
2	Monet	3	3	Starry Night	KY	48
2	Monet	1	2	Mona Lisa	MI	87
3	Van Gogh	1	2	Mona Lisa	MI	87
3	Van Gogh	1	1	The Last Supper	IN	34
3	Van Gogh	4	5	Les Deux Soeurs	NE	64
4	Renoir	3	3	Starry Night	KY	48
4	Renoir	1	2	Mona Lisa	MI	87
4	Renoir	1	1	The Last Supper	IN	34
4	Renoir	3	4	The Potato Eaters	KY	67
+------+----------+------+------+-------------------+-------+-------+
The query may look plausible but its result obviously is not. For
 example, it falsely indicates that each painting was painted by several
 different artists. The problem is that the statement lists all
 combinations of values from the two tables in which the artist ID values
 aren’t the same. What you really need is a list of values in artist that aren’t present
 at all in painting, but an inner join can only produce
 results based on values that are present in both tables. It can’t tell
 you anything about values that are missing from one of them.
When faced with the need to find values in one table with no match
 in (or missing from) another table, you should get in the habit of
 thinking, Aha, that’s a LEFT
 JOIN problem. A LEFT JOIN
 is one type of outer join: it’s similar to an inner join in that it
 matches rows in the first (left) table with rows in the second (right)
 table. In addition, if a left table row has no match in the right table,
 a LEFT JOIN still produces a row—one in which all the
 columns from the right table are set to NULL. This means you
 can find values that are missing from the right table by looking for
 NULL. It’s easier to understand how
 this happens by working in stages. Begin with an inner join that
 displays matching rows:
mysql> SELECT * FROM artist INNER JOIN painting
 -> ON artist.a_id = painting.a_id
 -> ORDER BY artist.a_id;
+------+----------+------+------+-------------------+-------+-------+
| a_id | name | a_id | p_id | title | state | price |
+------+----------+------+------+-------------------+-------+-------+
1	Da Vinci	1	1	The Last Supper	IN	34
1	Da Vinci	1	2	Mona Lisa	MI	87
3	Van Gogh	3	3	Starry Night	KY	48
3	Van Gogh	3	4	The Potato Eaters	KY	67
4	Renoir	4	5	Les Deux Soeurs	NE	64
+------+----------+------+------+-------------------+-------+-------+
In this output, the first a_id
 column comes from the artist table,
 and the second one comes from the painting table.
Now substitute LEFT for
 INNER to see the result you get from
 an outer join:
mysql> SELECT * FROM artist LEFT JOIN painting
 -> ON artist.a_id = painting.a_id
 -> ORDER BY artist.a_id;
+------+----------+------+------+-------------------+-------+-------+
| a_id | name | a_id | p_id | title | state | price |
+------+----------+------+------+-------------------+-------+-------+
1	Da Vinci	1	1	The Last Supper	IN	34
1	Da Vinci	1	2	Mona Lisa	MI	87
2	Monet	NULL	NULL	NULL	NULL	NULL
3	Van Gogh	3	3	Starry Night	KY	48
3	Van Gogh	3	4	The Potato Eaters	KY	67
4	Renoir	4	5	Les Deux Soeurs	NE	64
+------+----------+------+------+-------------------+-------+-------+
Compared to the inner join, the outer join produces an additional
 row for every artist row that has no
 painting table match, with all
 painting columns set to NULL.
Next, to restrict the output only to the unmatched artist rows, add a WHERE clause that looks for NULL
 values in any painting column that
 cannot otherwise contain NULL. This
 filters out the rows that the inner join produces, leaving those
 produced only by the outer join:
mysql> SELECT * FROM artist LEFT JOIN painting
 -> ON artist.a_id = painting.a_id
 -> WHERE painting.a_id IS NULL;
+------+-------+------+------+-------+-------+-------+
| a_id | name | a_id | p_id | title | state | price |
+------+-------+------+------+-------+-------+-------+
| 2 | Monet | NULL | NULL | NULL | NULL | NULL |
+------+-------+------+------+-------+-------+-------+
Finally, to show only the artist table values that are missing from the
 painting table, write the output
 column list to name only columns from the artist table. The result is that the LEFT JOIN
 lists those left-table rows containing a_id values not present in the right
 table:
mysql> SELECT artist.* FROM artist LEFT JOIN painting
 -> ON artist.a_id = painting.a_id
 -> WHERE painting.a_id IS NULL;
+------+-------+
| a_id | name |
+------+-------+
| 2 | Monet |
+------+-------+
A similar kind of operation reports each left-table value along
 with an indicator as to whether it’s present in the right table. To do
 this, perform a LEFT JOIN that counts the number of times each
 left-table value occurs in the right table. A count of zero indicates
 that the value is not present. The following statement lists each artist
 from the artist table and shows
 whether you have any paintings by the artist:
mysql> SELECT artist.name,
 -> IF(COUNT(painting.a_id)>0,'yes','no') AS 'in collection?'
 -> FROM artist LEFT JOIN painting ON artist.a_id = painting.a_id
 -> GROUP BY artist.name;
+----------+----------------+
| name | in collection? |
+----------+----------------+
Da Vinci	yes
Monet	no
Renoir	yes
Van Gogh	yes
+----------+----------------+
A RIGHT JOIN is an outer join that is like LEFT JOIN
 but reverses the roles of the left and right tables. Semantically,
 RIGHT JOIN forces the matching process to produce a row from each table in
 the right table, even in the absence of a corresponding row in the left
 table. Syntactically, tbl1 LEFT JOIN
 tbl2 is equivalent to
 tbl2 RIGHT
 JOIN tbl1.
 Therefore, references to LEFT
 JOIN in this book apply to RIGHT JOIN
 as well if you reverse the roles of the tables.
Another way to identify values present in one table but missing
 from another is to use a NOT IN subquery. The following example finds
 artists not represented in the painting table; compare it to the earlier
 LEFT JOIN that answers the same question:
mysql> SELECT * FROM artist
 -> WHERE a_id NOT IN (SELECT a_id FROM painting);

+------+-------+
| a_id | name |
+------+-------+
| 2 | Monet |
+------+-------+
Other Ways to Write LEFT JOIN and RIGHT JOIN Queries
As with INNER JOIN, if the names of the columns to be
 matched in an outer join are the same in both tables and you compare
 them with the = operator, you can
 use a USING clause
 rather than ON. For example, the
 following two statements are equivalent:
SELECT * FROM t1 LEFT JOIN t2 ON t1.n = t2.n;
SELECT * FROM t1 LEFT JOIN t2 USING (n);
As are these:
SELECT * FROM t1 RIGHT JOIN t2 ON t1.n = t2.n;
SELECT * FROM t1 RIGHT JOIN t2 USING (n);
In the special case that you want to base the comparison on
 every column that appears in both tables, you can use NATURAL LEFT JOIN
 or NATURAL RIGHT JOIN and omit the ON or USING clause:
SELECT * FROM t1 NATURAL LEFT JOIN t2;
SELECT * FROM t1 NATURAL RIGHT JOIN t2;

See Also
As shown in this section, LEFT
 JOIN is useful for finding values
 with no match in another table or for showing whether each value is
 matched. LEFT JOIN may also be used to produce a summary
 that includes all items in a list, even those for which there’s nothing
 to summarize. This is very common for relationships between a candidate
 table and a detail table. For example, a LEFT JOIN
 can produce total sales per customer reports that list
 all customers, even those who bought nothing during the summary period.
 (For information about candidate-detail lists, see Recipe 16.5.)
LEFT JOIN is also useful for consistency checking
 when you receive two datafiles that are supposed to be related, and you
 want to determine whether they really are. (That is, you want to check
 the integrity of their relationship.) Import each file into a MySQL
 table, and then run a couple of LEFT
 JOIN statements to determine whether
 there are unattached rows in one table or the other—that is, rows that
 have no match in the other table. Recipe 16.3 discusses how to identify
 (and optionally delete) these unattached rows.

16.3 Identifying and Removing Mismatched or Unattached Rows
Problem
You have two datasets that are related but possibly imperfectly so. You want to
 determine whether there are records in either dataset that are
 unattached (not matched by any record in the other
 dataset) and perhaps remove them if so.

Solution
To identify unmatched values in each table, use a LEFT JOIN or a NOT IN
 subquery. To remove them, use DELETE with a
 NOT IN subquery.

Discussion
Inner joins are useful for identifying matches, and outer joins
 are useful for identifying mismatches. This property of outer joins is
 valuable when you have related datasets for which the relationship might
 be imperfect. Mismatches might be found, for example, when you must
 verify the integrity of two datafiles received from an external
 source.
When you have related tables with unmatched rows, you can analyze
 and modify them using SQL statements. Specifically, restoring their
 relationship is a matter of identifying the unattached rows and then
 deleting them:
	To identify unattached rows, use a LEFT JOIN, because this is a find
 unmatched rows problem; alternatively, use a NOT IN
 subquery (see Recipe 16.2).

	To delete rows that are unmatched, use DELETE with a NOT IN
 subquery.

It’s useful to know about unmatched data because you can alert
 whoever gave you the data. The data collection method might have a flaw
 that must be corrected. For example, with sales data, a missing region
 might mean that some regional manager didn’t report in and the omission
 was overlooked.
The following example shows how to identify and remove mismatched
 rows using two datasets that describe sales regions and volume of sales
 per region. One dataset contains the ID and location of each
 region:
mysql> SELECT * FROM sales_region ORDER BY region_id;
+-----------+------------------------+
| region_id | name |
+-----------+------------------------+
1	London, United Kingdom
2	Madrid, Spain
3	Berlin, Germany
4	Athens, Greece
+-----------+------------------------+
The other dataset contains sales volume figures. Each row contains
 the amount of sales for a given quarter of a year and indicates the
 sales region to which the row applies:
mysql> SELECT region_id, year, quarter, volume
 -> FROM sales_volume ORDER BY region_id, year, quarter;
+-----------+------+---------+--------+
| region_id | year | quarter | volume |
+-----------+------+---------+--------+
1	2014	1	100400
1	2014	2	120000
3	2014	1	280000
3	2014	2	250000
5	2014	1	18000
5	2014	2	32000
+-----------+------+---------+--------+
A little visual inspection reveals that neither table is fully
 matched by the other. Sales regions 2 and 4 are not represented in the
 sales volume table, and the sales volume table contains rows for region
 5, which is not in the sales region table. But we don’t want to check
 the tables by inspection. We want to find unmatched rows by using SQL
 statements that do the work.
Mismatch identification is a matter of using outer joins. For
 example, to find sales regions for which there are no sales volume rows,
 use the following LEFT JOIN:
mysql> SELECT sales_region.region_id AS 'unmatched region row IDs'
 -> FROM sales_region LEFT JOIN sales_volume
 -> ON sales_region.region_id = sales_volume.region_id
 -> WHERE sales_volume.region_id IS NULL;
+--------------------------+
| unmatched region row IDs |
+--------------------------+
| 2 |
| 4 |
+--------------------------+
Conversely, to find sales volume rows that are not associated with
 any known region, reverse the roles of the two tables:
mysql> SELECT sales_volume.region_id AS 'unmatched volume row IDs'
 -> FROM sales_volume LEFT JOIN sales_region
 -> ON sales_volume.region_id = sales_region.region_id
 -> WHERE sales_region.region_id IS NULL;
+--------------------------+
| unmatched volume row IDs |
+--------------------------+
| 5 |
| 5 |
+--------------------------+
In this case, an ID appears more than once in the list if there are
 multiple volume rows for a missing region. To see each unmatched ID only
 once, use SELECT DISTINCT:
mysql> SELECT DISTINCT sales_volume.region_id AS 'unmatched volume row IDs'
 -> FROM sales_volume LEFT JOIN sales_region
 -> ON sales_volume.region_id = sales_region.region_id
 -> WHERE sales_region.region_id IS NULL
+--------------------------+
| unmatched volume row IDs |
+--------------------------+
| 5 |
+--------------------------+
You can also identify mismatches using NOT IN
 subqueries:
mysql> SELECT region_id AS 'unmatched region row IDs'
 -> FROM sales_region
 -> WHERE region_id NOT IN (SELECT region_id FROM sales_volume);
+--------------------------+
| unmatched region row IDs |
+--------------------------+
| 2 |
| 4 |
+--------------------------+
mysql> SELECT region_id AS 'unmatched volume row IDs'
 -> FROM sales_volume
 -> WHERE region_id NOT IN (SELECT region_id FROM sales_region);
+--------------------------+
| unmatched volume row IDs |
+--------------------------+
| 5 |
| 5 |
+--------------------------+
To get rid of unmatched rows, use a NOT IN
 subquery in a DELETE statement. To
 remove sales_region rows that match
 no sales_volume rows, do this:
DELETE FROM sales_region
WHERE region_id NOT IN (SELECT region_id FROM sales_volume);
To remove mismatched sales_volume rows that match no sales_region rows, the statement is similar
 but with the table roles reversed:
DELETE FROM sales_volume
WHERE region_id NOT IN (SELECT region_id FROM sales_region);
Using Foreign Keys to Enforce Referential Integrity and Prevent Mismatches
One feature a database system offers to help you maintain consistency
 between tables is the ability to define foreign key relationships.
 This means you can specify explicitly in the table definition that a
 primary key in a parent table (such as the region_id column of the sales_region table) is a parent to a key in
 another table (the region_id column
 in the sales_volume table).
By defining the ID column in the child table as a foreign key to
 the ID column in the parent, the database system can enforce certain
 constraints against illegal operations. For example, it can prevent
 you from creating a child row with an ID not present in the parent or
 from deleting parent rows without also deleting the corresponding
 child rows first. A foreign key implementation may also offer cascaded
 delete and update: if you delete or update a parent row, the database
 engine cascades the effect of the delete or update to any child tables
 and automatically deletes or updates the child rows for you. The
 InnoDB storage engine in MySQL supports foreign keys and
 cascaded deletes and updates.

16.4 Comparing a Table to Itself
Problem
You want to compare rows in a table to other rows in the same table.
 For example, you want to find all paintings in your collection by the
 artist who painted The Potato Eaters. Or you want
 to know which states listed in the states table joined the Union in the same year
 as New York. Or you want to know which states did not join the Union in
 the same year as any other state.

Solution
Problems that require comparing a table to itself involve an operation known as a self-join.
 It’s performed much like other joins, except that you must use table
 aliases so that you can refer to the same table different ways within
 the statement.

Discussion
A special case of joining one table to another occurs when both
 tables are the same. This is called a self-join. This may be confusing or strange to think about at first, but
 it’s perfectly legal. You’ll likely find yourself using self-joins quite
 often because they are so important.
A tip-off that a self-join is required is that you want to know
 which pairs of rows in a table satisfy some condition. Suppose that your
 favorite painting is The Potato Eaters and you
 want to identify all items in your collection that were painted by the
 same artist. The artist ID and painting titles that we begin with look
 like this:
mysql> SELECT a_id, title FROM painting ORDER BY a_id;
+------+-------------------+
| a_id | title |
+------+-------------------+
1	The Last Supper
1	Mona Lisa
3	Starry Night
3	The Potato Eaters
4	Les Deux Soeurs
+------+-------------------+
Solve the problem as follows:
	Identify which painting
 table row contains the title The Potato Eaters
 so that you can refer to its a_id
 value.

	Match other rows in the table that have the same a_id value.

	Display the titles from those matching rows.

The trick lies in using the proper notation. First attempts at
 joining a table to itself often look something like this:
mysql> SELECT title
 -> FROM painting INNER JOIN painting
 -> ON a_id = a_id
 -> WHERE title = 'The Potato Eaters';
ERROR 1066 (42000): Not unique table/alias: 'painting'
The column references in that statement are ambiguous because
 MySQL cannot tell which instance of the painting table any given column name refers
 to. The solution is to alias at least one instance of the table so that
 you can distinguish column references by using different table
 qualifiers. The following statement shows how to do this, using the
 aliases p1 and p2 to refer to the painting table different ways:
mysql> SELECT p2.title
 -> FROM painting AS p1 INNER JOIN painting AS p2
 -> ON p1.a_id = p2.a_id
 -> WHERE p1.title = 'The Potato Eaters';
+-------------------+
| title |
+-------------------+
| Starry Night |
| The Potato Eaters |
+-------------------+
The statement output illustrates something typical of self-joins:
 when you begin with a reference value in one table instance
 (The Potato Eaters) to find matching rows in a
 second table instance (paintings by the same artist), the output
 includes the reference value. That makes sense: after all, the reference
 matches itself. To find only other paintings by the
 same artist, explicitly exclude the reference value from the
 output:
mysql> SELECT p2.title
 -> FROM painting AS p1 INNER JOIN painting AS p2
 -> ON p1.a_id = p2.a_id
 -> WHERE p1.title = 'The Potato Eaters' AND p2.title <> p1.title
+--------------+
| title |
+--------------+
| Starry Night |
+--------------+
The preceding statements use ID value comparisons to match rows in
 the two table instances, but any kind of value can be used. For example,
 to use the states table to answer the
 question Which states joined the Union in the same year as New
 York? perform a temporal pairwise comparison based on the year
 part of the dates in the table’s statehood column:
mysql> SELECT s2.name, s2.statehood
 -> FROM states AS s1 INNER JOIN states AS s2
 -> ON YEAR(s1.statehood) = YEAR(s2.statehood) AND s1.name <> s2.name
 -> WHERE s1.name = 'New York'
 -> ORDER BY s2.name;
+----------------+------------+
| name | statehood |
+----------------+------------+
Connecticut	1788-01-09
Georgia	1788-01-02
Maryland	1788-04-28
Massachusetts	1788-02-06
New Hampshire	1788-06-21
South Carolina	1788-05-23
Virginia	1788-06-25
+----------------+------------+
Note

 In the preceding example, we do not specify the year when New York joined the Union. Instead, we compare the value of the statehood column for the row where state name is “New York” and the same statehood column for other states.

Now suppose that you want to find every pair
 of states that joined the Union in the same year. In this case, the
 output potentially can include any pair of rows from the states table.
A self-join is perfect for this
 problem:
mysql> SELECT YEAR(s1.statehood) AS year,
 -> s1.name AS name1, s1.statehood AS statehood1,
 -> s2.name AS name2, s2.statehood AS statehood2
 -> FROM states AS s1 INNER JOIN states AS s2
 -> ON YEAR(s1.statehood) = YEAR(s2.statehood) AND s1.name <> s2.name
 -> ORDER BY year, name1, name2;
+------+----------------+------------+----------------+------------+
| year | name1 | statehood1 | name2 | statehood2 |
+------+----------------+------------+----------------+------------+
1787	Delaware	1787-12-07	New Jersey	1787-12-18
1787	Delaware	1787-12-07	Pennsylvania	1787-12-12
1787	New Jersey	1787-12-18	Delaware	1787-12-07
1787	New Jersey	1787-12-18	Pennsylvania	1787-12-12
1787	Pennsylvania	1787-12-12	Delaware	1787-12-07
1787	Pennsylvania	1787-12-12	New Jersey	1787-12-18
…				
1912	Arizona	1912-02-14	New Mexico	1912-01-06
1912	New Mexico	1912-01-06	Arizona	1912-02-14
1959	Alaska	1959-01-03	Hawaii	1959-08-21
1959	Hawaii	1959-08-21	Alaska	1959-01-03
+------+----------------+------------+----------------+------------+
The condition in the ON clause
 that requires state pair names not to be identical
 eliminates the trivially duplicate rows showing that each state joined
 the Union in the same year as itself. But you’ll notice that each
 remaining pair of states still appears twice. For example, there is one
 row that lists Delaware and New Jersey, and another that lists New
 Jersey and Delaware. This is often the case with self-joins: they
 produce pairs of rows that contain the same values but for which the
 values are not in the same order.
Because the values are not listed in the same order within the
 rows, they are not identical, and you can’t get rid of these near
 duplicates by adding DISTINCT to the
 statement. To solve this problem, select rows in such a way that only
 one row from each pair ever appears in the query result. Slightly modify
 the ON clause, from:
ON YEAR(s1.statehood) = YEAR(s2.statehood) AND s1.name <> s2.name
to:
ON YEAR(s1.statehood) = YEAR(s2.statehood) AND s1.name < s2.name
Using < rather than <> selects only those rows in which the
 first state name is lexically less than the second, and eliminates rows
 in which the names appear in opposite order (as well as rows in which
 the state names are identical). The resulting query produces the desired
 output without duplicates:
mysql> SELECT YEAR(s1.statehood) AS year,
 -> s1.name AS name1, s1.statehood AS statehood1,
 -> s2.name AS name2, s2.statehood AS statehood2
 -> FROM states AS s1 INNER JOIN states AS s2
 -> ON YEAR(s1.statehood) = YEAR(s2.statehood) AND s1.name < s2.name
 -> ORDER BY year, name1, name2;
+------+----------------+------------+----------------+------------+
| year | name1 | statehood1 | name2 | statehood2 |
+------+----------------+------------+----------------+------------+
1787	Delaware	1787-12-07	New Jersey	1787-12-18
1787	Delaware	1787-12-07	Pennsylvania	1787-12-12
1787	New Jersey	1787-12-18	Pennsylvania	1787-12-12
…				
1912	Arizona	1912-02-14	New Mexico	1912-01-06
1959	Alaska	1959-01-03	Hawaii	1959-08-21
+------+----------------+------------+----------------+------------+
For self-join problems of the Which values are
 not matched by other rows in the table?
 variety, use a LEFT JOIN rather than an INNER JOIN.
 An instance of this is the question Which states did
 not join the Union in the same year as any other state? In this
 case, the solution uses a LEFT
 JOIN of the states table to itself:
mysql> SELECT s1.name, s1.statehood
 -> FROM states AS s1 LEFT JOIN states AS s2
 -> ON YEAR(s1.statehood) = YEAR(s2.statehood) AND s1.name <> s2.name
 -> WHERE s2.name IS NULL
 -> ORDER BY s1.name;
+----------------+------------+
| name | statehood |
+----------------+------------+
Alabama	1819-12-14
Arkansas	1836-06-15
California	1850-09-09
Colorado	1876-08-01
Illinois	1818-12-03
Indiana	1816-12-11
Iowa	1846-12-28
Kansas	1861-01-29
Kentucky	1792-06-01
…	
Tennessee	1796-06-01
Utah	1896-01-04
Vermont	1791-03-04
West Virginia	1863-06-20
Wisconsin	1848-05-29
+----------------+------------+
For each row in the states
 table, the statement selects rows for which the state has a statehood value in the same year, not
 including that state itself. For rows having no such match, the LEFT JOIN
 forces the output to contain a row anyway, with all the s2 columns set to NULL. Those rows identify the states with no
 other state that joined the Union in the same year.

16.5 Producing Candidate-Detail Lists and Summaries
Problem
Two tables have a relationship such that a row in one table, usually called the parent table with a candidate key, is referenced by one or more rows in another table, usually called the child table with a detail row. In this situation, you want to produce a list
 that shows each parent row with its detail rows or a list that produces
 a summary of the detail rows for each parent row.

Solution
This is a one-to-many relationship. The solution to this problem involves a join, but the type
 of join depends on the question you want answered. To produce a list
 containing only parent rows for which some detail row exists, use an
 inner join based on the primary key in the parent table. To produce a
 list that includes all parent rows, even those with no detail rows, use
 an outer join.

Discussion
To produce a list from two tables that have a candidate-detail or
 parent-child relationship, a given row in one table might be matched by
 several rows in the other. These relationships occur frequently. For
 example, in business contexts, one-to-many relationships involve
 invoices per customer or items per invoice.
This recipe suggests some candidate-detail questions that you can
 ask (and answer) using the artist and
 painting tables from earlier in the
 chapter.
One form of candidate-detail question for these tables is
 Which paintings did each artist paint? This is a simple
 inner join (see Recipe 16.1). Match
 each artist row to its corresponding
 painting rows based on the artist ID
 values:
mysql> SELECT artist.name, painting.title
 -> FROM artist INNER JOIN painting ON artist.a_id = painting.a_id
 -> ORDER BY name, title;
+----------+-------------------+
| name | title |
+----------+-------------------+
Da Vinci	Mona Lisa
Da Vinci	The Last Supper
Renoir	Les Deux Soeurs
Van Gogh	Starry Night
Van Gogh	The Potato Eaters
+----------+-------------------+
To also list artists for whom you have no paintings, the join
 output should include rows in one table that have no match in the other.
 That’s a form of find the nonmatching rows problem that
 requires an outer join (see Recipe 16.2). Thus, to list each artist row, whether or not any painting rows match, use a LEFT JOIN:
mysql> SELECT artist.name, painting.title
 -> FROM artist LEFT JOIN painting ON artist.a_id = painting.a_id
 -> ORDER BY name, title;
+----------+-------------------+
| name | title |
+----------+-------------------+
Da Vinci	Mona Lisa
Da Vinci	The Last Supper
Monet	NULL
Renoir	Les Deux Soeurs
Van Gogh	Starry Night
Van Gogh	The Potato Eaters
+----------+-------------------+
Rows in the result that have NULL in the title column correspond to artists listed in
 the artist table for whom you have no
 paintings.
The same principles apply when producing summaries using candidate
 and detail tables. For example, to summarize your art collection by
 number of paintings per artist, you might ask, How many paintings
 are there per artist in the painting
 table? To find the answer based on artist ID but displaying the artist’s
 name (from the artist table), count
 the paintings with this statement:
mysql> SELECT artist.name, COUNT(painting.a_id) AS paintings
 -> FROM artist INNER JOIN painting ON artist.a_id = painting.a_id
 -> GROUP BY artist.name;
+----------+-----------+
| name | paintings |
+----------+-----------+
Da Vinci	2
Renoir	1
Van Gogh	2
+----------+-----------+
On the other hand, you might ask, How many paintings did
 each artist paint? This is the same question as the previous one
 (and the same statement answers it), as long as every artist in the
 artist table has at least one
 corresponding painting table row. But
 if you have artists in the artist
 table not yet represented by any paintings in your collection, they do
 not appear in the statement output. To produce a summary that also
 includes artists with no paintings in the painting table, use a LEFT JOIN:
mysql> SELECT artist.name, COUNT(painting.a_id) AS paintings
 -> FROM artist LEFT JOIN painting ON artist.a_id = painting.a_id
 -> GROUP BY artist.name;
+----------+-----------+
| name | paintings |
+----------+-----------+
Da Vinci	2
Monet	0
Renoir	1
Van Gogh	2
+----------+-----------+
Beware of a subtle error that is easy to make when writing that
 kind of statement. Suppose that you write the COUNT() function slightly differently, like so:
mysql> SELECT artist.name, COUNT(*) AS paintings
 -> FROM artist LEFT JOIN painting ON artist.a_id = painting.a_id
 -> GROUP BY artist.name;
+----------+-----------+
| name | paintings |
+----------+-----------+
Da Vinci	2
Monet	1
Renoir	1
Van Gogh	2
+----------+-----------+
Now every artist appears to have at least one painting. Why the
 difference? The problem is the use of COUNT(*) rather than COUNT(painting.a_id). The way LEFT JOIN
 works for unmatched rows in the left table is that it generates a row
 with all the columns from the right table set to NULL. In the example, the right table is
 painting. The statement that uses
 COUNT(painting.a_id) works correctly
 because COUNT(expr) counts only non-NULL values. The statement that uses COUNT(*) is incorrect because it counts
 rows, including those containing NULL that correspond to missing
 artists.
LEFT JOIN is suitable for other types of summaries
 as well. To produce additional columns showing the total and average
 prices of the paintings for each artist in the artist table, use this statement:
mysql> SELECT artist.name,
 -> COUNT(painting.a_id) AS 'number of paintings',
 -> SUM(painting.price) AS 'total price',
 -> AVG(painting.price) AS 'average price'
 -> FROM artist LEFT JOIN painting ON artist.a_id = painting.a_id
 -> GROUP BY artist.name;
+----------+---------------------+-------------+---------------+
| name | number of paintings | total price | average price |
+----------+---------------------+-------------+---------------+
Da Vinci	2	121	60.5000
Monet	0	NULL	NULL
Renoir	1	64	64.0000
Van Gogh	2	115	57.5000
+----------+---------------------+-------------+---------------+
Note that COUNT() is zero for
 artists that are not represented, but SUM() and AVG() are NULL. The latter two functions return NULL when applied to a set of values with no
 non-NULL values. To display a sum or
 average value of zero in that case, replace SUM(expr) and AVG(expr) with IFNULL(SUM(expr),0) and IFNULL(AVG(expr),0).
Using Subqueries in the Select List

 To generate master details, you may use subqueries in the select list. For example, to answer the question Which paintings did each artist paint? you can use JOIN as we discussed in the beginning of this recipe, or a subquery in the SELECT list:

mysql> SELECT title,
 -> (SELECT name FROM artist
 -> WHERE artist.a_id=painting.a_id) AS name
 -> FROM painting;
+-------------------+----------+
| title | name |
+-------------------+----------+
The Last Supper	Da Vinci
Mona Lisa	Da Vinci
Starry Night	Van Gogh
The Potato Eaters	Van Gogh
Les Deux Soeurs	Renoir
+-------------------+----------+
5 rows in set (0,00 sec)

 You can use as many subqueries in the SELECT list as you wish. For example, to print the artist name and the name of the state where the painting was acquired instead of its abbreviation, use the following query:

SELECT title,
(SELECT name FROM artist WHERE artist.a_id=painting.a_id) AS name,
(SELECT name FROM states WHERE states.abbrev = painting.state) AS state
FROM painting;

 This approach is useful when you join many tables that do not have referenced values that you want to use in the resulting output. At the same time, such details are stored in the separate small tables. In all other cases, using an explicit JOIN is more preferable for performance reasons.

16.6 Enumerating a Many-to-Many Relationship
Problem
You want to display a relationship between tables when any row in either table
 might be matched by multiple rows in the other.

Solution
This is a many-to-many relationship. It requires a third table for
 associating your two primary tables and a three-way join to produce the correspondences between them.

Discussion
The artist and painting tables used in earlier sections have
 a one-to-many relationship: a given artist may have produced many
 paintings, but each painting was created by only one artist. One-to-many
 relationships are relatively simple, and the two related tables can be
 joined using a column that is common to both.
A many-to-many relationship between tables is more complex. It
 occurs when a row in one table may have many matches in the other, and
 vice versa. An example is the relationship between movies and actors:
 each movie may have multiple actors, and each actor may have appeared in
 multiple movies. One way to represent this relationship uses a table
 structured as follows, with a row for each movie-actor
 combination:
mysql> SELECT * FROM movies_actors ORDER BY year, movie, actor;
+------+----------------------------+---------------+
| year | movie | actor |
+------+----------------------------+---------------+
1997	The Fifth Element	Bruce Willis
1997	The Fifth Element	Gary Oldman
1997	The Fifth Element	Ian Holm
1999	The Phantom Menace	Ewan McGregor
1999	The Phantom Menace	Liam Neeson
2001	The Fellowship of the Ring	Elijah Wood
2001	The Fellowship of the Ring	Ian Holm
2001	The Fellowship of the Ring	Ian McKellen
2001	The Fellowship of the Ring	Orlando Bloom
2005	Kingdom of Heaven	Liam Neeson
2005	Kingdom of Heaven	Orlando Bloom
2010	Red	Bruce Willis
2010	Red	Helen Mirren
2011	Unknown	Diane Kruger
2011	Unknown	Liam Neeson
+------+----------------------------+---------------+
The table captures the nature of this many-to-many relationship,
 but it’s also in non-normal form because it unnecessarily stores
 repetitive information. For example, information for each movie is
 recorded multiple times. To better represent this many-to-many
 relationship, use multiple tables:
	Store each movie year and name once in a table named movies.

	Store each actor name once in a table named actors.

	Create a third table, movies_actors_link, that stores
 movie-actor associations and serves as a link, or bridge, between
 the two primary tables. To minimize the information stored in this
 table, assign unique IDs to each movie and actor within their
 respective tables, and store only those IDs in the movies_actors_link table.

The resulting movie and
 actor tables look like this:
mysql> SELECT * FROM movies ORDER BY id;
+----+------+----------------------------+
| id | year | movie |
+----+------+----------------------------+
1	1997	The Fifth Element
2	1999	The Phantom Menace
3	2001	The Fellowship of the Ring
4	2005	Kingdom of Heaven
5	2010	Red
6	2011	Unknown
+----+------+----------------------------+		
mysql> SELECT * FROM actors ORDER BY id;		
+----+---------------+		
id	actor	
+----+---------------+		
1	Bruce Willis	
2	Diane Kruger	
3	Elijah Wood	
4	Ewan McGregor	
5	Gary Oldman	
6	Helen Mirren	
7	Ian Holm	
8	Ian McKellen	
9	Liam Neeson	
10	Orlando Bloom	
+----+---------------+
The movies_actors_link table
 associates movies and actors as follows:
mysql> SELECT * FROM movies_actors_link ORDER BY movie_id, actor_id;
+----------+----------+
| movie_id | actor_id |
+----------+----------+
1	1
1	5
1	7
2	4
2	9
3	3
3	7
3	8
3	10
4	9
4	10
5	1
5	6
6	2
6	9
+----------+----------+
You’ll surely notice that the content of the movies_actors_link table is entirely
 meaningless from a human perspective. That’s okay: we need never display
 it explicitly. Its utility derives from its ability to link the two
 primary tables in queries, without appearing in query output itself. The
 next few examples illustrate this principle. They answer questions about
 the movies or actors, using three-way joins that relate the two primary
 tables using the link table:
	List all the pairings that show each movie and who acted in
 it. This statement enumerates all the correspondences between the
 movie and actor tables and reproduces the
 information that was originally in the non-normal movies_actors table:
mysql> SELECT m.year, m.movie, a.actor
 -> FROM movies AS m INNER JOIN movies_actors_link AS l
 -> INNER JOIN actors AS a
 -> ON m.id = l.movie_id AND a.id = l.actor_id
 -> ORDER BY m.year, m.movie, a.actor;
+------+----------------------------+---------------+
| year | movie | actor |
+------+----------------------------+---------------+
1997	The Fifth Element	Bruce Willis
1997	The Fifth Element	Gary Oldman
1997	The Fifth Element	Ian Holm
1999	The Phantom Menace	Ewan McGregor
1999	The Phantom Menace	Liam Neeson
2001	The Fellowship of the Ring	Elijah Wood
2001	The Fellowship of the Ring	Ian Holm
2001	The Fellowship of the Ring	Ian McKellen
2001	The Fellowship of the Ring	Orlando Bloom
2005	Kingdom of Heaven	Liam Neeson
2005	Kingdom of Heaven	Orlando Bloom
2010	Red	Bruce Willis
2010	Red	Helen Mirren
2011	Unknown	Diane Kruger
2011	Unknown	Liam Neeson
+------+----------------------------+---------------+

	List the actors in a given movie:
mysql> SELECT a.actor
 -> FROM movies AS m INNER JOIN movies_actors_link AS l
 -> INNER JOIN actors AS a
 -> ON m.id = l.movie_id AND a.id = l.actor_id
 -> WHERE m.movie = 'The Fellowship of the Ring'
 -> ORDER BY a.actor;
+---------------+
| actor |
+---------------+
| Elijah Wood |
| Ian Holm |
| Ian McKellen |
| Orlando Bloom |
+---------------+

	List the movies in which a given actor has acted:
mysql> SELECT m.year, m.movie
 -> FROM movies AS m INNER JOIN movies_actors_link AS l
 -> INNER JOIN actors AS a
 -> ON m.id = l.movie_id AND a.id = l.actor_id
 -> WHERE a.actor = 'Liam Neeson'
 -> ORDER BY m.year, m.movie;
+------+--------------------+
| year | movie |
+------+--------------------+
1999	The Phantom Menace
2005	Kingdom of Heaven
2011	Unknown
+------+--------------------+

16.7 Finding Per-Group Minimum or Maximum Values
Problem
You want to find which row within each group of rows in a table contains the maximum
 or minimum value for a given column. For example, you want to determine
 the most expensive painting in your collection for each artist.

Solution
Create a temporary table to hold the per-group maximum or minimum
 values, then join the temporary table with the original one to pull out
 the matching row for each group. If you prefer a single-query solution,
 use a subquery in the FROM
 clause rather than a temporary table.

Discussion
Many questions involve finding largest or smallest values in a
 particular table column, but it’s also common to want to know other
 values in the row that contains the value. For example, using the
 artist and painting tables with the techniques from Recipe 10.6, it’s possible to answer questions such
 as What is the most expensive painting in the collection, and who
 painted it? One solution is to store the highest price in a
 user-defined variable, then use the variable to identify the row
 containing the price so that you can retrieve other columns from
 it:
mysql> SET @max_price = (SELECT MAX(price) FROM painting);
mysql> SELECT artist.name, painting.title, painting.price
 -> FROM artist INNER JOIN painting
 -> ON painting.a_id = artist.a_id
 -> WHERE painting.price = @max_price;
+----------+-----------+-------+
| name | title | price |
+----------+-----------+-------+
| Da Vinci | Mona Lisa | 87 |
+----------+-----------+-------+
The same thing can be done by creating a temporary table to hold
 the maximum price and joining it with the other tables:
CREATE TABLE tmp SELECT MAX(price) AS max_price FROM painting;
SELECT artist.name, painting.title, painting.price
FROM artist INNER JOIN painting INNER JOIN tmp
ON painting.a_id = artist.a_id
AND painting.price = tmp.max_price;
On the face of it, using a temporary table and a join is just a
 more complicated way of answering the question than with a user-defined
 variable. Does this technique have any practical value? Yes, it does,
 because it leads to a more general technique for answering more
 difficult questions. The previous statements show information only for
 the single most expensive painting in the entire painting table. What if your question is
 What is the most expensive painting for each
 artist? You can’t use a user-defined variable to
 answer that question because the answer requires finding one price per
 artist, and a variable holds only a single value. But the technique of
 using a temporary table works well because the table can hold multiple
 rows, and a join can find matches for all of them.
To answer the question, select each artist ID and the
 corresponding maximum painting price into a temporary table. This table
 contains not only the maximum painting price but the maximum within each
 group, where group is defined as paintings by a
 given artist. Then use the artist IDs and prices stored in the
 temporary table to match rows in the painting table, and join the result with the
 artist table to get the artist
 names:
mysql> CREATE TABLE tmp
 -> SELECT a_id, MAX(price) AS max_price FROM painting GROUP BY a_id;
mysql> SELECT artist.name, painting.title, painting.price
 -> FROM artist INNER JOIN painting INNER JOIN tmp
 -> ON painting.a_id = artist.a_id
 -> AND painting.a_id = tmp.a_id
 -> AND painting.price = tmp.max_price;

+----------+-------------------+-------+
| name | title | price |
+----------+-------------------+-------+
Da Vinci	Mona Lisa	87
Van Gogh	The Potato Eaters	67
Renoir	Les Deux Soeurs	64
+----------+-------------------+-------+

 To avoid explicitly creating temporary tables and obtain the same result with a single statement, use CTEs:

WITH tmp AS (SELECT a_id, MAX(price) AS max_price FROM painting GROUP BY a_id)
SELECT artist.name, painting.title, painting.price
FROM artist INNER JOIN painting INNER JOIN tmp
ON painting.a_id = artist.a_id AND
painting.a_id = tmp.a_id AND painting.price = tmp.max_price;

 We discuss CTEs in detail in Recipe 10.18.

Another way to obtain the same result with a single statement is to use a subquery in
 the FROM clause that retrieves the
 same rows contained in the temporary table:
SELECT artist.name, painting.title, painting.price
FROM artist INNER JOIN painting INNER JOIN
(SELECT a_id, MAX(price) AS max_price FROM painting GROUP BY a_id) AS tmp
ON painting.a_id = artist.a_id
AND painting.a_id = tmp.a_id
AND painting.price = tmp.max_price;
Yet another way to answer maximum-per-group questions is to use a
 LEFT JOIN that joins a table to itself. The following statement
 identifies the highest-priced painting per artist ID (use IS NULL to
 select all the rows from p1
 for which there is no row in p2 with a higher price):
mysql> SELECT p1.a_id, p1.title, p1.price
 -> FROM painting AS p1 LEFT JOIN painting AS p2
 -> ON p1.a_id = p2.a_id AND p1.price < p2.price
 -> WHERE p2.a_id IS NULL;
+------+-------------------+-------+
| a_id | title | price |
+------+-------------------+-------+
1	Mona Lisa	87
3	The Potato Eaters	67
4	Les Deux Soeurs	64
+------+-------------------+-------+
To display artist names rather than ID values, join the result of
 the LEFT JOIN to the artist table:
mysql> SELECT artist.name, p1.title, p1.price
 -> FROM painting AS p1 LEFT JOIN painting AS p2
 -> ON p1.a_id = p2.a_id AND p1.price < p2.price
 -> INNER JOIN artist ON p1.a_id = artist.a_id
 -> WHERE p2.a_id IS NULL;
+----------+-------------------+-------+
| name | title | price |
+----------+-------------------+-------+
Da Vinci	Mona Lisa	87
Van Gogh	The Potato Eaters	67
Renoir	Les Deux Soeurs	64
+----------+-------------------+-------+
The self-LEFT JOIN method is perhaps less intuitive than
 using a temporary table, a CTE, or a subquery.

See Also
This recipe showed how to answer maximum-per-group questions by
 selecting summary information into a temporary table and joining that
 table to the original one or by using a subquery in the FROM clause. These techniques have applications
 in many contexts. One of them is calculating team standings, where
 the standings for each group of teams are determined by comparing each
 team in the group to the team with the best record. Recipe 17.12 discusses how to do this.

16.8 Using a Join to Fill or Identify Holes in a List
Problem
You want to produce a summary by category, but some categories are missing from
 the data to be summarized. Consequently, the summary has missing
 categories as well.

Solution
Create a reference table that lists each category, and produce the
 summary based on a LEFT JOIN between the list and the table containing
 your data. Every category in the reference table will appear in the
 result, even those not present in the data to be summarized.

Discussion
A summary query normally produces entries only for categories
 actually present in the data. Suppose that you want to summarize the
 driver_log table (introduced in Chapter 9), to determine how many drivers were on the road
 each day. The table has these rows:
mysql> SELECT * FROM driver_log ORDER BY rec_id;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
1	Ben	2014-07-30	152
2	Suzi	2014-07-29	391
3	Henry	2014-07-29	300
4	Henry	2014-07-27	96
5	Ben	2014-07-29	131
6	Henry	2014-07-26	115
7	Suzi	2014-08-02	502
8	Henry	2014-08-01	197
9	Ben	2014-08-02	79
10	Henry	2014-07-30	203
+--------+-------+------------+-------+
A simple summary showing the number of active drivers per day looks
 like this:
mysql> SELECT trav_date, COUNT(trav_date) AS drivers
 -> FROM driver_log GROUP BY trav_date ORDER BY trav_date;
+------------+---------+
| trav_date | drivers |
+------------+---------+
2014-07-26	1
2014-07-27	1
2014-07-29	3
2014-07-30	2
2014-08-01	1
2014-08-02	2
+------------+---------+
Here, the summary category is date, but the summary is
 incomplete in the sense that it includes entries only for
 dates represented in the driver_log
 table. To produce a summary that includes all categories (all dates
 within the date range represented in the table), including those for
 which no driver was active, create a reference table that lists each
 date:
mysql> CREATE TABLE dates (d DATE);
mysql> INSERT INTO dates (d)
 -> VALUES('2014-07-26'),('2014-07-27'),('2014-07-28'),
 -> ('2014-07-29'),('2014-07-30'),('2014-07-31'),
 -> ('2014-08-01'),('2014-08-02');
Then join the reference table to the driver_log table using a LEFT JOIN:
mysql> SELECT dates.d, COUNT(driver_log.trav_date) AS drivers
 -> FROM dates LEFT JOIN driver_log ON dates.d = driver_log.trav_date
 -> GROUP BY d ORDER BY d;
+------------+---------+
| d | drivers |
+------------+---------+
2014-07-26	1
2014-07-27	1
2014-07-28	0
2014-07-29	3
2014-07-30	2
2014-07-31	0
2014-08-01	1
2014-08-02	2
+------------+---------+
Now the summary includes a row for every date in the range because
 the LEFT JOIN forces the output to include a row for
 every date in the reference table, even those missing from the driver_log table.
The example just shown uses the reference table with a LEFT JOIN
 to fill holes in the summary. It’s also possible to use the reference
 table to detect holes in the dataset—that is, to
 determine which categories are not present in the data to be summarized.
 The following statement shows those dates on which no driver was active
 by looking for reference rows for which no driver_log table rows have a matching category
 value:
mysql> SELECT dates.d
 -> FROM dates LEFT JOIN driver_log ON dates.d = driver_log.trav_date
 -> WHERE driver_log.trav_date IS NULL;
+------------+
| d |
+------------+
| 2014-07-28 |
| 2014-07-31 |
+------------+
Reference tables that contain a list of categories are quite useful in
 summary context, as just shown. But creating such tables manually is
 mind-numbing and error-prone. It is much easier to use a recursive CTE for this purpose:

WITH RECURSIVE dates (d) AS (
 SELECT '2014-07-26'
 UNION ALL
 SELECT d + INTERVAL 1 day
 FROM dates
 WHERE d < '2014-08-02')
SELECT dates.d, COUNT(driver_log.trav_date) AS drivers
FROM dates LEFT JOIN driver_log ON dates.d = driver_log.trav_date
GROUP BY d ORDER BY d;

 We discuss recursive CTEs in more detail in Recipe 15.16.
If you need a very long list of dates that you expect to reuse often, you may prefer to store them in a table instead of generating series each time you need them. In this case, a stored procedure that uses the endpoints
 of the range of category values to generate the reference table for you
 helps automate the process. In essence, this type of procedure acts as
 an iterator that generates a row for each value in the range.
The
 following procedure, make_date_list(), shows an example of this
 approach. It creates a reference table containing a row for every date
 in a particular date range. It also indexes the table so that it
 will be fast in large joins:
CREATE PROCEDURE make_date_list(db_name TEXT, tbl_name TEXT, col_name TEXT,
 min_date DATE, max_date DATE)
BEGIN
 DECLARE i, days INT;
 SET i = 0, days = DATEDIFF(max_date,min_date)+1;

 # Make identifiers safe for insertion into SQL statements. Use db_name
 # and tbl_name to create qualified table name.
 SET tbl_name = CONCAT(quote_identifier(db_name),'.',
 quote_identifier(tbl_name));
 SET col_name = quote_identifier(col_name);
 CALL exec_stmt(CONCAT('DROP TABLE IF EXISTS ',tbl_name));
 CALL exec_stmt(CONCAT('CREATE TABLE ',tbl_name,'(',
 col_name,' DATE NOT NULL, PRIMARY KEY(',
 col_name,'))'));
 WHILE i < days DO
 CALL exec_stmt(CONCAT('INSERT INTO ',tbl_name,'(',col_name,') VALUES(',
 QUOTE(min_date),' + INTERVAL ',i,' DAY)'));
 SET i = i + 1;
 END WHILE;
END;
Use make_date_list() to
 generate the reference table, dates,
 like this:
CALL make_date_list('cookbook', 'dates', 'd', '2014-07-26', '2014-08-02');
Then use the dates table as
 shown earlier in this section to fill holes in the summary or to detect
 holes in the dataset.
You can find the make_date_list() procedure in the joins directory of the recipes distribution. It requires the exec_stmt() and
 quote_identifier() helper routines
 (see Recipe 11.6), located in
 the routines directory. The
 joins directory also contains a
 Perl script, make_date_list.pl, that
 implements an alternate approach; it generates date reference tables
 from the command line.

16.9 Using a Join to Control Query Sort Order
Problem
You want to sort a statement’s output using a characteristic of the output
 that cannot be specified using ORDER
 BY. For example, you want to sort a
 set of rows by subgroups, putting first those groups with the most rows
 and last those groups with the fewest rows. But number of rows in
 each group is not a property of individual rows, so you can’t
 use it for sorting.

Solution
Derive the ordering information and store it in an auxiliary
 table. Then join the original table to the auxiliary table, using the
 auxiliary table to control the sort order.

Discussion
Most of the time you sort a query result using an ORDER BY clause that names which column or columns
 to use for sorting. But sometimes the values you want to sort by aren’t
 present in the rows to be sorted. This is the case when you want to use
 group characteristics to order the rows. The following example uses the
 driver_log table to illustrate this.
 The following query sorts the table using the ID column, which is
 present in the rows:
mysql> SELECT * FROM driver_log ORDER BY rec_id;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
1	Ben	2014-07-30	152
2	Suzi	2014-07-29	391
3	Henry	2014-07-29	300
4	Henry	2014-07-27	96
5	Ben	2014-07-29	131
6	Henry	2014-07-26	115
7	Suzi	2014-08-02	502
8	Henry	2014-08-01	197
9	Ben	2014-08-02	79
10	Henry	2014-07-30	203
+--------+-------+------------+-------+
But what if you want to display a list and sort it on the basis of
 a summary value not present in the rows? That’s a little trickier.
 Suppose that you want to show each driver’s rows by date but place
 those drivers who drive the most miles first. You can’t do this with a
 summary query because then you wouldn’t get back the individual driver
 rows. But you can’t do it without a summary query, either, because the
 summary values are required for sorting. The way out of the dilemma is
 to create another table containing the summary value per driver and join
 it to the original table. That way you can produce the individual rows
 and also sort them by the summary values.
To summarize the driver totals into another table, do this:
mysql> CREATE TABLE tmp
 -> SELECT name, SUM(miles) AS driver_miles FROM driver_log GROUP BY name;
That produces the values we need to put the names in the proper
 total-miles order:
mysql> SELECT * FROM tmp ORDER BY driver_miles DESC;
+-------+--------------+
| name | driver_miles |
+-------+--------------+
Henry	911
Suzi	893
Ben	362
+-------+--------------+
Then use the name values to
 join the summary table to the driver_log table, and use the driver_miles values to sort the result:
mysql> SELECT tmp.driver_miles, driver_log.*
 -> FROM driver_log INNER JOIN tmp ON driver_log.name = tmp.name
 -> ORDER BY tmp.driver_miles DESC, driver_log.trav_date;
+--------------+--------+-------+------------+-------+
| driver_miles | rec_id | name | trav_date | miles |
+--------------+--------+-------+------------+-------+
911	6	Henry	2014-07-26	115
911	4	Henry	2014-07-27	96
911	3	Henry	2014-07-29	300
911	10	Henry	2014-07-30	203
911	8	Henry	2014-08-01	197
893	2	Suzi	2014-07-29	391
893	7	Suzi	2014-08-02	502
362	5	Ben	2014-07-29	131
362	1	Ben	2014-07-30	152
362	9	Ben	2014-08-02	79
+--------------+--------+-------+------------+-------+
The preceding statement shows the mileage totals in the result.
 That’s only to clarify how the values are being sorted. It’s not
 actually necessary to display them; they’re needed only for the ORDER BY
 clause.
To avoid using the temporary table, use a CTE:
WITH tmp AS
(SELECT name, SUM(miles) AS driver_miles FROM driver_log GROUP BY name)
SELECT tmp.driver_miles, driver_log.*
FROM driver_log INNER JOIN tmp ON driver_log.name = tmp.name
ORDER BY tmp.driver_miles DESC, driver_log.trav_date;
Alternatively, select the same rows using a
 subquery in the FROM clause:
SELECT tmp.driver_miles, driver_log.*
FROM driver_log INNER JOIN
(SELECT name, SUM(miles) AS driver_miles
FROM driver_log GROUP BY name) AS tmp
ON driver_log.name = tmp.name
ORDER BY tmp.driver_miles DESC, driver_log.trav_date;

16.10 Joining Results of Multiple Queries
Problem

 You want to join results of two or more queries.

Solution

 Run the queries and store results in the temporary tables, then access those temporary tables to obtain the final results. Or, use named subqueries, then join their results. Or, use our favorite method: CTEs that will help you to perform this task in the easiest and clearest manner.

Discussion

 You may need to join not only tables but results of other queries. Assume you are working with the city and states tables from the recipes distribution and want to find capital names of the states that belong to the 10 states with the highest populations. At the same time, you want to include into your search results only those states where the largest city is the same as the capital.

 This task is very easy to solve if you first split it into three parts:

	
 Find all states where the capital and the largest city are the same. You can do it with a query:

SELECT * FROM city WHERE capital=largest;

	
 Find 10 states with the highest population:

SELECT * FROM states ORDER BY pop DESC LIMIT 10;

	
 Join the results to select rows that exist in both.

 There are three ways to do this: by creating intermediate temporary tables, by joining subquery results, and by using CTEs.

Using intermediate temporary tables

 Store results of the queries into temporary tables, then select from them:

mysql> CREATE TEMPORARY TABLE large_capitals
 -> SELECT * FROM city WHERE capital=largest;
Query OK, 17 rows affected (0,00 sec)
Records: 17 Duplicates: 0 Warnings: 0

mysql> CREATE TEMPORARY TABLE top10states
 -> SELECT * FROM states ORDER BY pop DESC LIMIT 10;
Query OK, 10 rows affected (0,00 sec)
Records: 10 Duplicates: 0 Warnings: 0

mysql> SELECT state, capital, pop FROM
 -> large_capitals JOIN top10states
 -> ON(large_capitals.state = top10states.name);
+---------+----------+----------+
| state | capital | pop |
+---------+----------+----------+
| Georgia | Atlanta | 10799566 |
| Ohio | Columbus | 11780017 |
+---------+----------+----------+
2 rows in set (0,00 sec)
Tip

 The keyword TEMPORARY for the CREATE TABLE statement instructs MySQL to create a table, visible for the current session only and which will be destroyed after you close the session. See Recipe 6.3 for further details.

Using named subqueries

 If you need to access the intermediate results only once, you can avoid creating temporary tables by using subqueries and joining their results.

mysql> SELECT state, capital, pop FROM [image: 1]
 -> (SELECT * FROM city WHERE capital=largest) AS large_capitals, [image: 2]
 -> (SELECT * FROM states ORDER BY pop DESC LIMIT 10) AS top10states [image: 3]
 -> WHERE large_capitals.state = top10states.name; [image: 4]
+---------+----------+----------+
| state | capital | pop |
+---------+----------+----------+
| Georgia | Atlanta | 10799566 |
| Ohio | Columbus | 11780017 |
+---------+----------+----------+
2 rows in set (0,00 sec)

	[image: 1]
	Start the query by selecting the columns you need in the final result.

	[image: 2]
	Put the first subquery into brackets, and assign it a unique name.

	[image: 3]
	Do the same for the second subquery.

	[image: 4]
	Narrow the search with a WHERE clause.

Using CTEs

 With CTEs, start by naming your subqueries, then join their results as if they were regular MySQL tables:

mysql> WITH
 -> large_capitals AS (SELECT * FROM city WHERE capital=largest),
 -> top10states AS (SELECT * FROM states ORDER BY pop DESC LIMIT 10)
 -> SELECT state, capital, pop
 -> FROM large_capitals JOIN top10states
 -> ON (large_capitals.state = top10states.name);
+---------+----------+----------+
| state | capital | pop |
+---------+----------+----------+
| Georgia | Atlanta | 10799566 |
| Ohio | Columbus | 11780017 |
+---------+----------+----------+
2 rows in set (0,00 sec)

16.11 Referring to Join Output Column Names in Programs
Problem
You need to process the result of a join from within a program, but column names
 in the result set aren’t unique.

Solution
Rewrite the query using column aliases so that each column has a unique name.
 Alternatively, refer to the columns by position.

Discussion
Joins typically retrieve columns from related tables, and it’s not
 unusual for columns selected from different tables to have the same
 names. Consider the following join that shows the items in your art
 collection. For each painting, it displays artist name, painting title,
 the state in which you acquired the item, and its price:
mysql> SELECT artist.name, painting.title, states.name, painting.price
 -> FROM artist INNER JOIN painting INNER JOIN states
 -> ON artist.a_id = painting.a_id AND painting.state = states.abbrev;
+----------+-------------------+----------+-------+
| name | title | name | price |
+----------+-------------------+----------+-------+
Da Vinci	The Last Supper	Indiana	34
Da Vinci	Mona Lisa	Michigan	87
Van Gogh	Starry Night	Kentucky	48
Van Gogh	The Potato Eaters	Kentucky	67
Renoir	Les Deux Soeurs	Nebraska	64
+----------+-------------------+----------+-------+
The statement uses table qualifiers for each output column, but
 MySQL doesn’t include table names in the column headings, so not all
 column names in the output are distinct. If you process the join result
 from within a program and fetch rows into a data structure that
 references column values by name, nonunique column names cause values to
 become inaccessible. Suppose that you fetch rows in a Perl DBI script
 like this:
while (my $ref = $sth->fetchrow_hashref ())
{
 ... process row hash here ...
}
Fetching rows into the hash yields three hash elements (name, title, price); one of the name elements is lost. To solve this problem,
 supply aliases that make the column names unique:
SELECT artist.name AS painter, painting.title,
 states.name AS state, painting.price
FROM artist INNER JOIN painting INNER JOIN states
ON artist.a_id = painting.a_id AND painting.state = states.abbrev;
Now fetching rows into a hash yields four hash elements (painter, title, state, price).
To address the problem without column renaming, fetch the row into
 something other than a hash. For example, fetch the row into an array
 and refer to the columns by ordinal position within the array:
while (my @val = $sth->fetchrow_array ())
{
 print "painter: $val[0], title: $val[1], "
 . "state: $val[2], price: $val[3]\n";
}

Chapter 17. Statistical Techniques
17.0 Introduction
This chapter covers several topics that relate to basic statistical
 techniques. For the most part, these recipes build on those described in
 earlier chapters, such as the summary techniques discussed in Chapter 10 and join techniques from Chapter 16. The examples here thus show additional ways to
 apply the material from those chapters. Broadly speaking, the topics
 discussed in this chapter include the following:
	Techniques for characterizing a dataset, such as calculating
 descriptive statistics, generating frequency distributions, counting
 missing values, and calculating least-squares regressions or
 correlation coefficients

	Randomization methods, such as how to generate random numbers
 and apply them to randomizing a set of rows or to selecting individual
 items randomly from the rows

	Techniques for calculating successive-observation differences,
 cumulative sums, and running averages

	Methods for producing rank assignments and generating team
 standings

Statistics covers such a large and diverse array of topics that this
 chapter necessarily only scratches the surface and simply illustrates a
 few of the potential areas in which MySQL may be applied to statistical
 analysis. Note that some statistical measures can be defined in different
 ways (for example, do you calculate standard deviation based on
 n degrees of freedom or
 n–1?). If the definition we use for a given term
 doesn’t match the one you prefer, adapt the queries or algorithms shown
 here appropriately.
You can find scripts related to the examples discussed here in the
 stats directory of the recipes distribution, and scripts for creating
 example tables in the tables
 directory.

17.1 Calculating Descriptive Statistics
Problem
You want to characterize a dataset by computing general descriptive or
 summary statistics.

Solution
Many common descriptive statistics, such as mean and standard
 deviation, are obtained by applying aggregate functions to your data. Others, such as median
 or mode, are calculated based on counting queries.

Discussion
Suppose that a testscore table
 contains observations representing subject ID, age, sex, and test
 score:
mysql> SELECT subject, age, sex, score FROM testscore ORDER BY subject;
+---------+-----+-----+-------+
| subject | age | sex | score |
+---------+-----+-----+-------+
1	5	M	5
2	5	M	4
3	5	F	6
4	5	F	7
5	6	M	8
6	6	M	9
7	6	F	4
8	6	F	6
9	7	M	8
10	7	M	6
11	7	F	9
12	7	F	7
13	8	M	9
14	8	M	6
15	8	F	7
16	8	F	10
17	9	M	9
18	9	M	7
19	9	F	10
20	9	F	9
+---------+-----+-----+-------+
A good first step in analyzing a set of observations is to
 generate some descriptive statistics that summarize their general
 characteristics as a whole. Common statistical values of this kind
 include:
	The number of observations, their sum, and their range (minimum and maximum)

	Measures of central tendency, such as mean, median, and mode

	Measures of variation, such as standard deviation and variance

Aside from the median and mode, all of these can be calculated
 easily by invoking aggregate functions:
mysql> SELECT COUNT(score) AS n,
 -> SUM(score) AS sum,
 -> MIN(score) AS minimum,
 -> MAX(score) AS maximum,
 -> AVG(score) AS mean,
 -> STDDEV_SAMP(score) AS 'std. dev.',
 -> VAR_SAMP(score) AS 'variance'
 -> FROM testscore;
+----+------+---------+---------+--------+-----------+----------+
| n | sum | minimum | maximum | mean | std. dev. | variance |
+----+------+---------+---------+--------+-----------+----------+
| 20 | 146 | 4 | 10 | 7.3000 | 1.8382 | 3.3789 |
+----+------+---------+---------+--------+-----------+----------+
The STDDEV_SAMP() and VAR_SAMP() functions produce sample measures rather than population measures.
 That is, for a set of n values, they produce
 a result that is based on n–1 degrees of
 freedom. For the population measures, which are based on
 n degrees of freedom, use STDDEV_POP() and
 VAR_POP() instead. STDDEV() and VARIANCE() are synonyms for STDDEV_POP() and VAR_POP().
Standard deviation can be used to identify outliers—values that are uncharacteristically far from the
 mean. For example, to select values that lie more than
 a standard deviation from the mean, do this:
SELECT AVG(score), STDDEV_SAMP(score) INTO @mean, @std FROM testscore;
SELECT score FROM testscore WHERE ABS(score-@mean) > @std;
MySQL has no built-in function for computing the mode or median of a set of values, but you can compute
 them yourself. To determine the mode (the value that occurs most
 frequently), count each value and see which is most common:
mysql> SELECT score, COUNT(score) AS frequency
 -> FROM testscore GROUP BY score ORDER BY frequency DESC;
+-------+-----------+
| score | frequency |
+-------+-----------+
9	5
6	4
7	4
4	2
8	2
10	2
5	1
+-------+-----------+
In this case, 9 is the modal score value.
The median of a set of ordered values can be calculated like
 this:1
	If the number of values is odd, the median is the middle
 value.

	If the number of values is even, the median is the average of
 the two middle values.

Based on that definition, use the following procedure to determine
 the median of a set of observations stored in the database:
	Issue a query to count the number of observations. From the
 count, you can determine whether the median calculation requires one
 or two values and what their indexes are within the ordered set of
 observations.

	Issue a query that includes an ORDER BY clause to sort the observations and
 a LIMIT clause to
 pull out the middle value or values.

	If there is a single middle value, it is the median.
 Otherwise, take the average of the middle values.

Suppose that a table t contains
 a score column with 37 values (an odd
 number). To get the median, select a single value using a statement like
 this:
SELECT score FROM t ORDER BY score LIMIT 18,1;
If the column contains 38 values (an even number), select two
 values:
SELECT score FROM t ORDER BY score LIMIT 18,2;
Then take the values returned by the statement and compute the
 median from their average.
The following Perl function implements a median calculation. It
 takes a database handle and the names of the database, table, and column
 that contain the set of observations. Then it generates the statement
 that retrieves the relevant values and returns their average:
sub median
{
my ($dbh, $db_name, $tbl_name, $col_name) = @_;
my ($count, $limit);

 $db_name = $dbh->quote_identifier ($db_name);
 $tbl_name = $dbh->quote_identifier ($tbl_name);
 $col_name = $dbh->quote_identifier ($col_name);

 $count = $dbh->selectrow_array (qq{
 SELECT COUNT($col_name) FROM $db_name.$tbl_name
 });
 return undef unless $count > 0;
 if ($count % 2 == 1) # odd number of values; select middle value
 {
 $limit = sprintf ("LIMIT %d,1", ($count-1)/2);
 }
 else # even number of values; select middle two values
 {
 $limit = sprintf ("LIMIT %d,2", $count/2 - 1);
 }

 my $sth = $dbh->prepare (qq{
 SELECT $col_name FROM $db_name.$tbl_name ORDER BY $col_name $limit
 });
 $sth->execute ();
 my ($n, $sum) = (0, 0);
 while (my $ref = $sth->fetchrow_arrayref ())
 {
 ++$n;
 $sum += $ref->[0];
 }
 return $sum / $n;
}
The preceding technique works for a set of values stored in the
 database. If you have already fetched an ordered set of values into an
 array @val, compute the median like
 this instead:
if (@val == 0) # array is empty, median is undefined
{
 $median = undef;
}
elsif (@val % 2 == 1) # array size is odd, median is middle number
{
 $median = $val[(@val-1)/2];
}
else # array size is even; median is average
{ # of two middle numbers
 $median = ($val[@val/2 - 1] + $val[@val/2]) / 2;
}
The code works for arrays that have an initial subscript of 0; for
 languages that use 1-based array indexes, adjust the algorithm
 accordingly.

17.2 Calculating Descriptive Statistics for Groups
Problem
You want to produce descriptive statistics for each subgroup of a set of
 observations.

Solution
Use aggregate functions but employ a GROUP BY clause to arrange observations into the
 appropriate groups.

Discussion
Recipe 17.1 shows how to
 compute descriptive statistics for the entire set of scores in the
 testscore table. To be more specific,
 use GROUP BY to divide the observations into groups and
 calculate statistics for each of them. For example, the subjects in the
 testscore table are listed by age and
 sex, so it’s possible to calculate similar statistics by age or sex (or
 both) by application of appropriate GROUP BY
 clauses.
Here’s how to calculate by age:
mysql> SELECT age, COUNT(score) AS n,
 -> SUM(score) AS sum,
 -> MIN(score) AS minimum,
 -> MAX(score) AS maximum,
 -> AVG(score) AS mean,
 -> STDDEV_SAMP(score) AS 'std. dev.',
 -> VAR_SAMP(score) AS 'variance'
 -> FROM testscore
 -> GROUP BY age;
+-----+---+------+---------+---------+--------+-----------+----------+
| age | n | sum | minimum | maximum | mean | std. dev. | variance |
+-----+---+------+---------+---------+--------+-----------+----------+
5	4	22	4	7	5.5000	1.2910	1.6667
6	4	27	4	9	6.7500	2.2174	4.9167
7	4	30	6	9	7.5000	1.2910	1.6667
8	4	32	6	10	8.0000	1.8257	3.3333
9	4	35	7	10	8.7500	1.2583	1.5833
+-----+---+------+---------+---------+--------+-----------+----------+
By sex:
mysql> SELECT sex, COUNT(score) AS n,
 -> SUM(score) AS sum,
 -> MIN(score) AS minimum,
 -> MAX(score) AS maximum,
 -> AVG(score) AS mean,
 -> STDDEV_SAMP(score) AS 'std. dev.',
 -> VAR_SAMP(score) AS 'variance'
 -> FROM testscore
 -> GROUP BY sex;
+-----+----+------+---------+---------+--------+-----------+----------+
| sex | n | sum | minimum | maximum | mean | std. dev. | variance |
+-----+----+------+---------+---------+--------+-----------+----------+
| M | 10 | 71 | 4 | 9 | 7.1000 | 1.7920 | 3.2111 |
| F | 10 | 75 | 4 | 10 | 7.5000 | 1.9579 | 3.8333 |
+-----+----+------+---------+---------+--------+-----------+----------+
By age and sex:
mysql> SELECT age, sex, COUNT(score) AS n,
 -> SUM(score) AS sum,
 -> MIN(score) AS minimum,
 -> MAX(score) AS maximum,
 -> AVG(score) AS mean,
 -> STDDEV_SAMP(score) AS 'std. dev.',
 -> VAR_SAMP(score) AS 'variance'
 -> FROM testscore
 -> GROUP BY age, sex;
+-----+-----+---+------+---------+---------+--------+-----------+----------+
| age | sex | n | sum | minimum | maximum | mean | std. dev. | variance |
+-----+-----+---+------+---------+---------+--------+-----------+----------+
5	M	2	9	4	5	4.5000	0.7071	0.5000
5	F	2	13	6	7	6.5000	0.7071	0.5000
6	M	2	17	8	9	8.5000	0.7071	0.5000
6	F	2	10	4	6	5.0000	1.4142	2.0000
7	M	2	14	6	8	7.0000	1.4142	2.0000
7	F	2	16	7	9	8.0000	1.4142	2.0000
8	M	2	15	6	9	7.5000	2.1213	4.5000
8	F	2	17	7	10	8.5000	2.1213	4.5000
9	M	2	16	7	9	8.0000	1.4142	2.0000
9	F	2	19	9	10	9.5000	0.7071	0.5000
+-----+-----+---+------+---------+---------+--------+-----------+----------+

17.3 Generating Frequency Distributions
Problem
You want to know the frequency of occurrence for each value in a
 table.

Solution
Derive a frequency distribution that summarizes the contents of
 your dataset.

Discussion
A common application for per-group summary techniques is to
 generate a frequency distribution that shows how
 often each value occurs. For the testscore table, the frequency distribution
 looks like this:
mysql> SELECT score, COUNT(score) AS counts
 -> FROM testscore GROUP BY score;
+-------+--------+
| score | counts |
+-------+--------+
4	2
5	1
6	4
7	4
8	2
9	5
10	2
+-------+--------+
Expressing the results in percentages rather than counts yields
 relative frequency distribution. To show each count as a percentage of
 the total, use one query to get the total number of observations and
 another to calculate the percentages for each group:
mysql> SET @n = (SELECT COUNT(score) FROM testscore);
mysql> SELECT score, (COUNT(score)*100)/@n AS percent
 -> FROM testscore GROUP BY score;

+-------+---------+
| score | percent |
+-------+---------+
4	10.0000
5	5.0000
6	20.0000
7	20.0000
8	10.0000
9	25.0000
10	10.0000
+-------+---------+
The distributions just shown summarize the number of values for
 individual scores. However, if the dataset contains a large number of
 distinct values and you want a distribution that shows only a small
 number of categories, you may want to lump values into categories and
 produce a count for each category. Recipe 10.13
 discusses lumping techniques.
One typical use of frequency distributions is to export the
 results for use in a graphing program. But MySQL itself can generate a
 simple ASCII chart as a visual representation of the distribution. To
 display an ASCII bar chart of the test score counts, convert the counts
 to strings of * characters:
mysql> SELECT score, REPEAT('*',COUNT(score)) AS 'count histogram'
 -> FROM testscore GROUP BY score;
+-------+-----------------+
| score | count histogram |
+-------+-----------------+
4	**
5	*
6	****
7	****
8	**
9	*****
10	**
+-------+-----------------+
To chart the relative frequency distribution instead, use the
 percentage values:
mysql> SET @n = (SELECT COUNT(score) FROM testscore);
mysql> SELECT score,
 -> REPEAT('*',(COUNT(score)*100)/@n) AS 'percent histogram'
 -> FROM testscore GROUP BY score;
+-------+---------------------------+
| score | percent histogram |
+-------+---------------------------+
4	**********
5	*****
6	********************
7	********************
8	**********
9	*************************
10	**********
+-------+---------------------------+
The ASCII chart method is crude, obviously, but it’s a quick way
 to get a picture of the distribution of observations and requires no
 other tools.
If you generate a frequency distribution for a range of categories
 where some of the categories are not represented in your observations,
 the missing categories do not appear in the output. To force each
 category to be displayed, use a reference table and a LEFT JOIN
 (a technique discussed in Recipe 16.8).
 For the testscore table, the possible
 scores range from 0 to 10, so a reference table should contain each of
 those values:
mysql> CREATE TABLE ref (score INT);
mysql> INSERT INTO ref (score)
 -> VALUES(0),(1),(2),(3),(4),(5),(6),(7),(8),(9),(10);
Then join the reference table to the test scores to generate the
 frequency distribution. This query shows the counts as well as the
 histogram:
mysql> SELECT ref.score, COUNT(testscore.score) AS counts,
 -> REPEAT('*',COUNT(testscore.score)) AS 'count histogram'
 -> FROM ref LEFT JOIN testscore ON ref.score = testscore.score
 -> GROUP BY ref.score;
+-------+--------+-----------+
| score | counts | histogram |
+-------+--------+-----------+
0	0	
1	0	
2	0	
3	0	
4	2	**
5	1	*
6	4	****
7	4	****
8	2	**
9	5	*****
10	2	**
+-------+--------+-----------+
This distribution includes rows for scores 0 through 3, none of
 which appear in the frequency distribution shown earlier.
The same principle applies to relative frequency distributions:
mysql> SET @n = (SELECT COUNT(score) FROM testscore);
mysql> SELECT ref.score, (COUNT(testscore.score)*100)/@n AS percent,
 -> REPEAT('*',(COUNT(testscore.score)*100)/@n) AS 'percent histogram'
 -> FROM ref LEFT JOIN testscore ON ref.score = testscore.score
 -> GROUP BY ref.score;
+-------+---------+---------------------------+
| score | percent | percent histogram |
+-------+---------+---------------------------+
0	0.0000	
1	0.0000	
2	0.0000	
3	0.0000	
4	10.0000	**********
5	5.0000	*****
6	20.0000	********************
7	20.0000	********************
8	10.0000	**********
9	25.0000	*************************
10	10.0000	**********
+-------+---------+---------------------------+

17.4 Counting Missing Values
Problem
A set of observations is incomplete. You want to find out how many values are missing.

Solution
Count the number of NULL values
 in the set.

Discussion
Values can be missing from a set of observations for any number of
 reasons: a test may not yet have been administered, something may have
 gone wrong during the test that requires invalidating the observation,
 and so forth. You can represent such observations in a dataset as
 NULL values to signify that they’re
 missing or otherwise invalid, then use summary statements to
 characterize the completeness of the dataset.
If a table, testscore_withmisses, contains values to
 be summarized along a single dimension, a simple summary suffices to
 characterize the missing values. Suppose that testscore_withmisses looks like this:
mysql> SELECT subject, score FROM testscore_withmisses ORDER BY subject;
+---------+-------+
| subject | score |
+---------+-------+
1	38
2	NULL
3	47
4	NULL
5	37
6	45
7	54
8	NULL
9	40
10	49
+---------+-------+
COUNT(*) counts the total number of rows, and COUNT(score) counts the number of nonmissing
 scores. The difference between the two values is the number of missing
 scores, and that difference in relation to the total provides the
 percentage of missing scores. Perform these calculations as
 follows:
mysql> SELECT COUNT(*) AS 'n (total)',
 -> COUNT(score) AS 'n (nonmissing)',
 -> COUNT(*) - COUNT(score) AS 'n (missing)',
 -> ((COUNT(*) - COUNT(score)) * 100) / COUNT(*) AS '% missing'
 -> FROM testscore_withmisses;
+-----------+----------------+-------------+-----------+
| n (total) | n (nonmissing) | n (missing) | % missing |
+-----------+----------------+-------------+-----------+
| 10 | 7 | 3 | 30.0000 |
+-----------+----------------+-------------+-----------+
As an alternative to counting NULL values as the difference between counts,
 count them directly using SUM(ISNULL(score)). The ISNULL() function
 returns 1 if its argument is NULL and zero otherwise:
mysql> SELECT COUNT(*) AS 'n (total)',
 -> COUNT(score) AS 'n (nonmissing)',
 -> SUM(ISNULL(score)) AS 'n (missing)',
 -> (SUM(ISNULL(score)) * 100) / COUNT(*) AS '% missing'
 -> FROM testscore_withmisses;
+-----------+----------------+-------------+-----------+
| n (total) | n (nonmissing) | n (missing) | % missing |
+-----------+----------------+-------------+-----------+
| 10 | 7 | 3 | 30.0000 |
+-----------+----------------+-------------+-----------+
If values are arranged in groups, occurrences of NULL values can be assessed on a per-group
 basis. Suppose that testscore_withmisses2 contains scores
 for subjects that are distributed among conditions for two factors, A and
 B, each of which has two levels:
mysql> SELECT subject, A, B, score FROM testscore_withmisses2 ORDER BY subject;
+---------+------+------+-------+
| subject | A | B | score |
+---------+------+------+-------+
1	1	1	18
2	1	1	NULL
3	1	1	23
4	1	1	24
5	1	2	17
6	1	2	23
7	1	2	29
8	1	2	32
9	2	1	17
10	2	1	NULL
11	2	1	NULL
12	2	1	25
13	2	2	NULL
14	2	2	33
15	2	2	34
16	2	2	37
+---------+------+------+-------+
To produce a summary for each combination of conditions,
 use a GROUP BY clause:
mysql> SELECT A, B, COUNT(*) AS 'n (total)',
 -> COUNT(score) AS 'n (nonmissing)',
 -> COUNT(*) - COUNT(score) AS 'n (missing)',
 -> ((COUNT(*) - COUNT(score)) * 100) / COUNT(*) AS '% missing'
 -> FROM testscore_withmisses2
 -> GROUP BY A, B;
+------+------+-----------+----------------+-------------+-----------+
| A | B | n (total) | n (nonmissing) | n (missing) | % missing |
+------+------+-----------+----------------+-------------+-----------+
1	1	4	3	1	25.0000
1	2	4	4	0	0.0000
2	1	4	2	2	50.0000
2	2	4	3	1	25.0000
+------+------+-----------+----------------+-------------+-----------+

17.5 Calculating Linear Regressions or Correlation Coefficients
Problem
You want to calculate the least-squares regression line for two
 variables or the correlation coefficient that expresses the strength of
 the relationship between them.

Solution
Apply summary functions to make these calculations.

Discussion
When the data values for two variables, X and Y, are stored in a
 database, the least-squares regression for them can be calculated easily
 using aggregate functions. The same is true for the correlation
 coefficient. The two calculations are actually fairly similar, and many
 terms for performing the computations are common to the two
 procedures.
Suppose that you want to calculate a least-squares regression
 using the age and test score values for the observations in the testscore table:
mysql> SELECT age, score FROM testscore;
+-----+-------+
| age | score |
+-----+-------+
5	5
5	4
5	6
5	7
6	8
6	9
6	4
6	6
7	8
7	6
7	9
7	7
8	9
8	6
8	7
8	10
9	9
9	7
9	10
9	9
+-----+-------+
The following equation expresses the regression line, where
 a and b are the intercept and slope of the
 line:
Y = bX + a
Letting age be
 X and score be Y, begin
 by computing the terms needed for the regression equation. These include
 the number of observations; the means, sums, and sums of squares for
 each variable; and the sum of the products of each variable:2
mysql> SELECT COUNT(score), AVG(age), SUM(age), SUM(age*age),
 -> AVG(score), SUM(score), SUM(score*score), SUM(age*score)
 -> INTO @n, @meanX, @sumX, @sumXX, @meanY, @sumY, @sumYY, @sumXY
 -> FROM testscore;
Query OK, 1 row affected (0,00 sec)

mysql> SELECT
 -> @n AS N,
 -> @meanX AS 'X mean',
 -> @sumX AS 'X sum',
 -> @sumXX AS 'X sum of squares',
 -> @meanY AS 'Y mean',
 -> @sumY AS 'Y sum',
 -> @sumYY AS 'Y sum of squares',
 -> @sumXY AS 'X*Y sum'
 -> FROM testscore\G
*************************** 1. row ***************************
 N: 20
 X mean: 7.000000000
 X sum: 140
X sum of squares: 1020
 Y mean: 7.300000000
 Y sum: 146
Y sum of squares: 1130
 X*Y sum: 1053
From those terms, calculate the regression slope and intercept as
 follows:
mysql> SET @b := (@n*@sumXY - @sumX*@sumY) / (@n*@sumXX - @sumX*@sumX);
mysql> SET @a := (@meanY - @b*@meanX);
mysql> SELECT @b AS slope, @a AS intercept;
+-------------+----------------------+
| slope | intercept |
+-------------+----------------------+
| 0.775000000 | 1.875000000000000000 |
+-------------+----------------------+
The regression equation then is:
mysql> SELECT CONCAT('Y = ',@b,'X + ',@a) AS 'least-squares regression';
+---+
| least-squares regression |
+---+
| Y = 0.775000000X + 1.875000000000000000 |
+---+
To compute the correlation coefficient, use many of the same terms:
mysql> SELECT
 -> (@n*@sumXY - @sumX*@sumY)
 -> / SQRT((@n*@sumXX - @sumX*@sumX) * (@n*@sumYY - @sumY*@sumY))
 -> AS correlation;
+--------------------+
| correlation |
+--------------------+
| 0.6117362044219903 |
+--------------------+

17.6 Generating Random Numbers
Problem
You need a source of random numbers.

Solution
Use the RAND() function.

Discussion
MySQL has a RAND() function
 that produces random numbers between 0 and 1:
mysql> SELECT RAND(), RAND(), RAND();
+---------------------+--------------------+---------------------+
| RAND() | RAND() | RAND() |
+---------------------+--------------------+---------------------+
| 0.37415416573561183 | 0.9068914557871329 | 0.41199481246247405 |
+---------------------+--------------------+---------------------+
When invoked with an integer argument, RAND() uses that value to seed the random
 number generator. You can use this feature to produce a repeatable
 series of numbers for a column of a query result. The following example
 shows that RAND() without an argument
 produces a different column of values per query, whereas RAND(N) produces a repeatable column:
mysql> SELECT i, RAND(), RAND(10), RAND(20) FROM numbers;
+------+---------------------+---------------------+---------------------+
| i | RAND() | RAND(10) | RAND(20) |
+------+---------------------+---------------------+---------------------+
1	0.00708185882035816	0.6570515219653505	0.15888261251047497
2	0.5417692908474889	0.12820613023657923	0.6355305003333189
3	0.6876009085100152	0.6698761160204896	0.7010046948688149
4	0.8126967007412544	0.9647622201263553	0.5984320040777623
+------+---------------------+---------------------+---------------------+			
mysql> SELECT i, RAND(), RAND(10), RAND(20) FROM numbers;			
+------+----------------------+---------------------+---------------------+			
i	RAND()	RAND(10)	RAND(20)
+------+----------------------+---------------------+---------------------+			
1	0.059957268703689115	0.6570515219653505	0.15888261251047497
2	0.9068000166740269	0.12820613023657923	0.6355305003333189
3	0.35412830799271194	0.6698761160204896	0.7010046948688149
4	0.050241520675124156	0.9647622201263553	0.5984320040777623
+------+----------------------+---------------------+---------------------+
To seed RAND() randomly, pick a
 seed value based on a source of entropy. Possible sources are the
 current timestamp or connection identifier, alone or perhaps in
 combination:
RAND(UNIX_TIMESTAMP())
RAND(CONNECTION_ID())
RAND(UNIX_TIMESTAMP()+CONNECTION_ID())
However, it’s probably better to use other seed value sources if
 you have them. For example, if your system has a /dev/random or /dev/urandom device, read the device and use
 it to generate a value for seeding RAND().
How Random Is RAND()?
Does the RAND() function
 generate evenly distributed numbers? Check it out for yourself with
 the following Python script, rand_test.py, from the stats directory of the recipes distribution. (That directory also
 contains equivalent scripts in other languages.) The script uses
 RAND() to generate random numbers
 and constructs a frequency distribution from them, using 10 categories
 (buckets). This provides a means of assessing how
 evenly distributed the values are:
#!/usr/bin/python
rand_test.pl: create a frequency distribution of RAND() values.
This provides a test of the randomness of RAND().

Method: Draw random numbers in the range from 0 to 1.0,
and count how many of them occur in .1-sized intervals

import cookbook

npicks = 1000 # number of times to pick a number
bucket = [0] * 10 # buckets for counting picks in each interval

conn = cookbook.connect()
cursor = conn.cursor()

for i in range(0, npicks):
 cursor.execute("SELECT RAND()")
 (val,) = cursor.fetchone()
 slot = int(val * 10)
 if slot > 9:
 slot = 9 # put 1.0 in last slot
 bucket[slot] += 1

cursor.close()
conn.close()

Print the resulting frequency distribution

for slot, val in enumerate(bucket):
 print("%2d %d" % (slot+1, val))

17.7 Randomizing a Set of Rows
Problem
You want to randomize a set of rows or values.

Solution
Use ORDER BY RAND().

Discussion
MySQL’s RAND() function
 can be used to randomize the order in which a query
 returns its rows. Somewhat paradoxically, this randomization is achieved
 by adding an ORDER BY clause to the query. The technique is
 roughly equivalent to a spreadsheet randomization method. Suppose that a
 spreadsheet contains this set of values:
Patrick
Penelope
Pertinax
Polly
To place these in random order, first add another column that
 contains randomly chosen numbers:
Patrick .73
Penelope .37
Pertinax .16
Polly .48
Then sort the rows according to the values of the random
 numbers:
Pertinax .16
Penelope .37
Polly .48
Patrick .73
At this point, the original values have been placed in random
 order; the effect of sorting the random numbers is to randomize the
 values associated with them. To rerandomize the values, choose another
 set of random numbers, and sort the rows again.
In MySQL, achieve a similar effect by associating a set of random
 numbers with a query result and sorting the result by those numbers. To
 do this, add an ORDER BY RAND()
 clause:
mysql> SELECT name FROM rand_names ORDER BY RAND();
+----------+
| name |
+----------+
| Pertinax |
| Patrick |
| Polly |
| Penelope |
+----------+
mysql> SELECT name FROM rand_names ORDER BY RAND();
+----------+
| name |
+----------+
| Polly |
| Pertinax |
| Penelope |
| Patrick |
+----------+
Applications for randomizing a set of rows include any scenario
 that uses selection without replacement (choosing each item from a set
 of items until there are no more items left). Some examples of this
 are the following:
	Determining the starting order for participants in an event.
 List the participants in a table, and select them in random
 order.

	Assigning starting lanes or gates to participants in a race.
 List the lanes in a table, and select a random lane order.

	Choosing the order in which to present a set of quiz
 questions.

	Shuffling a deck of cards. Represent each card by a row in a
 table, and shuffle the deck by selecting the rows in random order.
 Deal them one by one until the deck is exhausted.

To use the last example as an illustration, let’s implement a card
 deck–shuffling algorithm. Shuffling and dealing cards is randomization
 plus selection without replacement: each card is dealt once before any
 is dealt twice; when the deck is used up, it is reshuffled to
 rerandomize it for a new dealing order. Within a program, this task can
 be performed with MySQL using a table named deck that has 52 rows, assuming a set of cards
 with each combination of 13 face values and 4 suits:
	Select the entire table, and store it into an array.

	Each time a card is needed, take the next element from the
 array.

	When the array is exhausted, all the cards have been dealt.
 Reshuffle the table to generate a new card
 order.

Setting up the deck table is a
 tedious task if you insert the 52 card records by writing all the
 INSERT statements manually. The
 deck contents can be generated more
 easily in combinatorial fashion within a program by generating each
 pairing of face value with suit. Here’s some PHP code that creates a deck table with face and suit columns, then populates the table using
 nested loops to generate the pairings for the INSERT statements:
$sth = $dbh->exec ("DROP TABLE IF EXISTS deck");

$sth = $dbh->exec ("
 CREATE TABLE deck
 (
 face ENUM('A', 'K', 'Q', 'J', '10', '9', '8',
 '7', '6', '5', '4', '3', '2') NOT NULL,
 suit ENUM('hearts', 'diamonds', 'clubs', 'spades') NOT NULL
)
");

$face_array = array ("A", "K", "Q", "J", "10", "9", "8",
 "7", "6", "5", "4", "3", "2");
$suit_array = array ("hearts", "diamonds", "clubs", "spades");

insert a "card" into the deck for each combination of suit and face

$sth = $dbh->prepare ("INSERT INTO deck (face,suit) VALUES(?,?)");
foreach ($face_array as $face)
 foreach ($suit_array as $suit)
 $sth->execute (array ($face, $suit));
Shuffling the cards is a matter of issuing this statement:
SELECT face, suit FROM deck ORDER BY RAND();
To do that and store the results in an array within a script,
 write a shuffle_deck() function that
 issues the query and returns the resulting values in an array (again
 shown in PHP):
function shuffle_deck ($dbh)
{
 $sth = $dbh->query ("SELECT face, suit FROM deck ORDER BY RAND()");
 $sth->setFetchMode (PDO::FETCH_OBJ);
 return ($sth->fetchAll ());
}
Deal the cards by keeping a counter that ranges from 0 to 51 to
 indicate which card to select. When the counter reaches 52, the deck is
 exhausted and should be shuffled again.
Warning

 Use this method only for tables with small numbers of rows. Ordering by RAND() does not allow MySQL to use indexes to resolve ORDER BY; therefore, such queries will be slow on large tables.

17.8 Selecting Random Items from a Set of Rows
Problem
You want to pick an item or items randomly from a set of values.

Solution
Randomize the values, then pick the first one (or the first few,
 if you need more than one).

Discussion
If a set of items is stored in MySQL, choose one at random as
 follows:
	Select the items in the set in random order, using ORDER
 BY RAND() as described in Recipe 17.7.

	Add LIMIT 1 to the query to pick the first item.

For example, to perform a simple simulation of tossing a die,
 create a die table containing rows
 with values from 1 to 6 corresponding to the six faces of a die
 cube:
CREATE TABLE die (n INT\);
Then pick rows from the table at random:
mysql> SELECT n FROM die ORDER BY RAND() LIMIT 1;
+------+
| n |
+------+
| 6 |
+------+
mysql> SELECT n FROM die ORDER BY RAND() LIMIT 1;
+------+
| n |
+------+
| 4 |
+------+
mysql> SELECT n FROM die ORDER BY RAND() LIMIT 1;
+------+
| n |
+------+
| 5 |
+------+
mysql> SELECT n FROM die ORDER BY RAND() LIMIT 1;
+------+
| n |
+------+
| 4 |
+------+
As you repeat this operation, you pick a random sequence of items
 from the set. This is a form of selection with replacement: an item is
 chosen from a pool of items and then returned to the pool for the next
 pick. Because items are replaced, it’s possible to pick the same item
 multiple times when making successive choices this way. Other examples
 of selection with replacement include:
	Selecting a banner ad to display on a web page

	Picking a row for a quote of the day
 application

	Pick a card, any card magic tricks that begin
 with a full deck of cards each time

To pick more than one item, change the LIMIT argument. For example, to draw five
 winning entries at random from a table named drawing that contains contest entries, use
 RAND() in combination with LIMIT:
SELECT * FROM drawing ORDER BY RAND() LIMIT 5;
A special case occurs when you pick a single row from a table that
 you know contains a column with values in the range from 1 to
 n in unbroken sequence. Under these
 circumstances, it’s possible to avoid performing an ORDER BY
 operation on the entire table. Pick a random number in that range and
 select the matching row:
SET @id = FLOOR(RAND()*n)+1;
SELECT ... FROM tbl_name WHERE id = @id;
This is much quicker than ORDER
 BY RAND() LIMIT 1 as
 the table size increases.

17.9 Calculating Successive-Row Differences
Problem
A table contains successive cumulative values in its rows, and you want to compute the
 differences between pairs of successive rows.

Solution
Use a self-join that matches pairs of adjacent rows and calculates the
 differences between members of each pair.

Discussion
Self-joins are useful when you have a set of absolute (or cumulative) values that you want to convert
 to relative values representing the differences between successive pairs
 of rows. For example, if you take an automobile trip and write down the
 total miles traveled at each stopping point, you can compute the
 difference between successive points to determine the distance from one
 stop to the next. Here is such a table that shows the stops for a trip
 from San Antonio, Texas, to Madison, Wisconsin. Each row shows the total
 miles driven as of each stop:
mysql> SELECT seq, city, miles FROM trip_log ORDER BY seq;
+-----+------------------+-------+
| seq | city | miles |
+-----+------------------+-------+
1	San Antonio, TX	0
2	Dallas, TX	263
3	Benton, AR	566
4	Memphis, TN	745
5	Portageville, MO	878
6	Champaign, IL	1164
7	Madison, WI	1412
+-----+------------------+-------+
A self-join can convert these cumulative values to successive
 differences that represent the distances from each city to the next. The
 following statement shows how to use the sequence numbers in the rows to
 match pairs of successive rows and compute the differences between each
 pair of mileage values:
mysql> SELECT t1.seq AS seq1, t2.seq AS seq2,
 -> t1.city AS city1, t2.city AS city2,
 -> t1.miles AS miles1, t2.miles AS miles2,
 -> t2.miles-t1.miles AS dist
 -> FROM trip_log AS t1 INNER JOIN trip_log AS t2
 -> ON t1.seq+1 = t2.seq
 -> ORDER BY t1.seq;
+------+------+------------------+------------------+--------+--------+------+
| seq1 | seq2 | city1 | city2 | miles1 | miles2 | dist |
+------+------+------------------+------------------+--------+--------+------+
1	2	San Antonio, TX	Dallas, TX	0	263	263
2	3	Dallas, TX	Benton, AR	263	566	303
3	4	Benton, AR	Memphis, TN	566	745	179
4	5	Memphis, TN	Portageville, MO	745	878	133
5	6	Portageville, MO	Champaign, IL	878	1164	286
6	7	Champaign, IL	Madison, WI	1164	1412	248
+------+------+------------------+------------------+--------+--------+------+
The presence of the seq column
 in the trip_log table is important
 for calculating successive difference values. It’s needed for
 establishing which row precedes another and matching each row
 n with row
 n+1. The
 implication is that to perform relative-difference calculations using a
 table of absolute or cumulative values, it must include a sequence
 column that has no gaps. If the table contains a sequence column but
 there are gaps, renumber it (see Recipe 15.5). If the table contains no such
 column, add one (see Recipe 15.9).
A more complex situation occurs when you compute successive
 differences for more than one column and use the results in a
 calculation. The following table, player_stats, shows some cumulative numbers
 for a baseball player at the end of each month of his season. ab indicates the total at-bats, and h the total hits the player has had as of a
 given date. (The first row indicates the starting point of the player’s
 season, which is why the ab and
 h values are zero.)
mysql> SELECT id, date, ab, h, TRUNCATE(IFNULL(h/ab,0),3) AS ba
 -> FROM player_stats ORDER BY id;
+----+------------+-----+----+-------+
| id | date | ab | h | ba |
+----+------------+-----+----+-------+
1	2013-04-30	0	0	0.000
2	2013-05-31	38	13	0.342
3	2013-06-30	109	31	0.284
4	2013-07-31	196	49	0.250
5	2013-08-31	304	98	0.322
+----+------------+-----+----+-------+
The last column of the query result also shows the player’s
 batting average as of each date. This column is not stored in the table
 but is easily computed as the ratio of hits to at-bats. The result
 provides a general idea of how the player’s hitting performance changed
 over the course of the season, but it provides no picture of how the
 player did during each individual month. To determine that, calculate
 relative differences between pairs of rows. This is easily done with a
 self-join that matches row n with row
 n+1 to
 calculate differences between pairs of at-bats and hits values. These
 differences enable computation of batting average during each
 month:
mysql> SELECT
 -> t1.id AS id1, t2.id AS id2,
 -> t2.date,
 -> t1.ab AS ab1, t2.ab AS ab2,
 -> t1.h AS h1, t2.h AS h2,
 -> t2.ab-t1.ab AS abdiff,
 -> t2.h-t1.h AS hdiff,
 -> TRUNCATE(IFNULL((t2.h-t1.h)/(t2.ab-t1.ab),0),3) AS ba
 -> FROM player_stats AS t1 INNER JOIN player_stats AS t2
 -> ON t1.id+1 = t2.id
 -> ORDER BY t1.id;
+-----+-----+------------+-----+-----+----+----+--------+-------+-------+
| id1 | id2 | date | ab1 | ab2 | h1 | h2 | abdiff | hdiff | ba |
+-----+-----+------------+-----+-----+----+----+--------+-------+-------+
1	2	2013-05-31	0	38	0	13	38	13	0.342
2	3	2013-06-30	38	109	13	31	71	18	0.253
3	4	2013-07-31	109	196	31	49	87	18	0.206
4	5	2013-08-31	196	304	49	98	108	49	0.453
+-----+-----+------------+-----+-----+----+----+--------+-------+-------+
These results show much more clearly than the original table that
 the player started off well but had a slump in the middle of the season,
 particularly in July. They also indicate just how strong his performance
 was in August.

17.10 Finding Cumulative Sums and Running Averages
Problem
You have a set of observations measured over time and want to compute the
 cumulative sum of the observations at each measurement point. Or you
 want to compute a running average at each point.

Solution
Use a self-join to produce the sets of successive observations at each
 measurement point, then apply aggregate functions to each set of values
 to compute its sum or average.

Discussion
Recipe 17.9 illustrates how a
 self-join can produce relative values from absolute values. A self-join can do
 the opposite as well, producing cumulative values at each successive
 stage of a set of observations. The following table shows a set of
 rainfall measurements taken over a series of days. The values in each
 row show the observation date and precipitation in inches:
mysql> SELECT date, precip FROM rainfall ORDER BY date;
+------------+--------+
| date | precip |
+------------+--------+
2014-06-01	1.50
2014-06-02	0.00
2014-06-03	0.50
2014-06-04	0.00
2014-06-05	1.00
+------------+--------+
To calculate cumulative rainfall for a given day, add that day’s
 precipitation value to the values for all the previous days. For
 example, determine the cumulative rainfall as of 2014-06-03 like this:
mysql> SELECT SUM(precip) FROM rainfall WHERE date <= '2014-06-03';
+-------------+
| SUM(precip) |
+-------------+
| 2.00 |
+-------------+
To get the cumulative figures for all days represented in the
 table, it’s tedious to compute the value separately for each day. A
 self-join can do this for all days with a single statement. Use one
 instance of the rainfall table as a
 reference, and determine for the date in each row the sum of the
 precip values in all rows occurring
 up through that date in another instance of the table. The following
 statement shows the daily and cumulative precipitation for each
 day:
mysql> SELECT t1.date, t1.precip AS 'daily precip',
 -> SUM(t2.precip) AS 'cum. precip'
 -> FROM rainfall AS t1 INNER JOIN rainfall AS t2
 -> ON t1.date >= t2.date
 -> GROUP BY t1.date;
+------------+--------------+-------------+
| date | daily precip | cum. precip |
+------------+--------------+-------------+
2014-06-01	1.50	1.50
2014-06-02	0.00	1.50
2014-06-03	0.50	2.00
2014-06-04	0.00	2.00
2014-06-05	1.00	3.00
+------------+--------------+-------------+
The self-join can be extended to display the number of days
 elapsed at each date, as well as the running averages for amount of
 precipitation each day:
mysql> SELECT t1.date, t1.precip AS 'daily precip',
 -> SUM(t2.precip) AS 'cum. precip',
 -> COUNT(t2.precip) AS 'days elapsed',
 -> AVG(t2.precip) AS 'avg. precip'
 -> FROM rainfall AS t1 INNER JOIN rainfall AS t2
 -> ON t1.date >= t2.date
 -> GROUP BY t1.date;
+------------+--------------+-------------+--------------+-------------+
| date | daily precip | cum. precip | days elapsed | avg. precip |
+------------+--------------+-------------+--------------+-------------+
2014-06-01	1.50	1.50	1	1.500000
2014-06-02	0.00	1.50	2	0.750000
2014-06-03	0.50	2.00	3	0.666667
2014-06-04	0.00	2.00	4	0.500000
2014-06-05	1.00	3.00	5	0.600000
+------------+--------------+-------------+--------------+-------------+
In the preceding statement, the number of days elapsed and the
 precipitation running averages can be computed easily using COUNT() and AVG() because there are no missing days in the
 table. If missing days are permitted, the calculation becomes more
 complicated because the number of days elapsed for each calculation is
 no longer the same as the number of rows.
You can see this by deleting
 the rows for the days that had no precipitation to produce
 holes in the table:
mysql> DELETE FROM rainfall WHERE precip = 0;
mysql> SELECT date, precip FROM rainfall ORDER BY date;
+------------+--------+
| date | precip |
+------------+--------+
2014-06-01	1.50
2014-06-03	0.50
2014-06-05	1.00
+------------+--------+
Deleting those rows doesn’t change the cumulative sum or running
 average for the dates that remain, but it does change how they must be
 calculated. If you execute the self-join again, it yields incorrect
 results for the days-elapsed and average precipitation columns:
mysql> SELECT t1.date, t1.precip AS 'daily precip',
 -> SUM(t2.precip) AS 'cum. precip',
 -> COUNT(t2.precip) AS 'days elapsed',
 -> AVG(t2.precip) AS 'avg. precip'
 -> FROM rainfall AS t1 INNER JOIN rainfall AS t2
 -> ON t1.date >= t2.date
 -> GROUP BY t1.date;

+------------+--------------+-------------+--------------+-------------+
| date | daily precip | cum. precip | days elapsed | avg. precip |
+------------+--------------+-------------+--------------+-------------+
2014-06-01	1.50	1.50	1	1.500000
2014-06-03	0.50	2.00	2	1.000000
2014-06-05	1.00	3.00	3	1.000000
+------------+--------------+-------------+--------------+-------------+
To fix the problem, determine the number of days elapsed a
 different way. Take the minimum and maximum date involved in each sum
 and calculate a days-elapsed value from them:
DATEDIFF(MAX(t2.date),MIN(t2.date)) + 1
That value must be used for the days-elapsed column and for
 computing the running averages. The resulting statement is as
 follows:
mysql> SELECT t1.date, t1.precip AS 'daily precip',
 -> SUM(t2.precip) AS 'cum. precip',
 -> DATEDIFF(MAX(t2.date),MIN(t2.date)) + 1 AS 'days elapsed',
 -> SUM(t2.precip) / (DATEDIFF(MAX(t2.date),MIN(t2.date)) + 1)
 -> AS 'avg. precip'
 -> FROM rainfall AS t1 INNER JOIN rainfall AS t2
 -> ON t1.date >= t2.date
 -> GROUP BY t1.date;
+------------+--------------+-------------+--------------+-------------+
| date | daily precip | cum. precip | days elapsed | avg. precip |
+------------+--------------+-------------+--------------+-------------+
2014-06-01	1.50	1.50	1	1.500000
2014-06-03	0.50	2.00	3	0.666667
2014-06-05	1.00	3.00	5	0.600000
+------------+--------------+-------------+--------------+-------------+
As this example illustrates, calculation of cumulative values from
 relative values requires only a column that enables rows to be placed
 into the proper order. (For the rainfall table, that’s the date column.) Values in the column need not be
 sequential, or even numeric. This differs from calculations that produce
 difference values from cumulative values (see Recipe 17.9), which require a table that has
 a column containing an unbroken sequence.
The running averages in the rainfall examples are based on
 dividing cumulative precipitation sums by number of days elapsed as of
 each day. When the table has no gaps, the number of days is the same as
 the number of values summed, making it easy to find successive averages.
 When rows are missing, the calculations become more complex. This
 demonstrates that it’s necessary to consider the nature of your data and
 calculate averages appropriately. The next example is conceptually
 similar to the previous ones in that it calculates cumulative sums and
 running averages but performs the computations yet another way.
The following table shows a marathon runner’s performance at each
 stage of a 26-kilometer run. The values in each row show the length of
 each stage in kilometers and how long the runner took to complete the
 stage. In other words, the values pertain to intervals within the
 marathon and thus are relative to the whole:
mysql> SELECT stage, km, t FROM marathon ORDER BY stage;
+-------+----+----------+
| stage | km | t |
+-------+----+----------+
1	5	00:15:00
2	7	00:19:30
3	9	00:29:20
4	5	00:17:50
+-------+----+----------+
To calculate cumulative distance in kilometers at each stage, use
 a self-join like this:
mysql> SELECT t1.stage, t1.km, SUM(t2.km) AS 'cum. km'
 -> FROM marathon AS t1 INNER JOIN marathon AS t2
 -> ON t1.stage >= t2.stage
 -> GROUP BY t1.stage;
+-------+----+---------+
| stage | km | cum. km |
+-------+----+---------+
1	5	5
2	7	12
3	9	21
4	5	26
+-------+----+---------+
Cumulative distances are easy to compute because they can be
 summed directly. The calculation for accumulating time values is more
 involved: convert times to seconds, total the resulting values, and
 convert the sum back to a time value. To compute the runner’s average
 speed at the end of each stage, take the ratio of cumulative distance
 over cumulative time. Putting all this together yields the following
 statement:
mysql> SELECT t1.stage, t1.km, t1.t,
 -> SUM(t2.km) AS 'cum. km',
 -> SEC_TO_TIME(SUM(TIME_TO_SEC(t2.t))) AS 'cum. t',
 -> SUM(t2.km)/(SUM(TIME_TO_SEC(t2.t))/(60*60)) AS 'avg. km/hour'
 -> FROM marathon AS t1 INNER JOIN marathon AS t2
 -> ON t1.stage >= t2.stage
 -> GROUP BY t1.stage;
+-------+----+----------+---------+----------+--------------+
| stage | km | t | cum. km | cum. t | avg. km/hour |
+-------+----+----------+---------+----------+--------------+
1	5	00:15:00	5	00:15:00	20.0000
2	7	00:19:30	12	00:34:30	20.8696
3	9	00:29:20	21	01:03:50	19.7389
4	5	00:17:50	26	01:21:40	19.1020
+-------+----+----------+---------+----------+--------------+
We can see from this that the runner’s average pace increased a
 little during the second stage of the race but then decreased
 thereafter, presumably as a result of fatigue.

17.11 Assigning Ranks
Problem
You want to assign ranks to a set of values.

Solution
Decide on a ranking method, then put the values in the desired
 order and apply the method to them.

Discussion
Some kinds of statistical tests require assignment of ranks. This
 section describes three ranking methods and shows how each can be
 implemented by using window functions. The examples assume that a
 ranks table contains the following
 scores, which are to be ranked with the values in descending
 order:
mysql> SELECT score FROM ranks ORDER BY score DESC;
+-------+
| score |
+-------+
| 5 |
| 4 |
| 4 |
| 3 |
| 2 |
| 2 |
| 2 |
| 1 |
+-------+
One type of ranking simply assigns each value its row number
 within the ordered set of values. To produce such rankings, use the ROW_NUMBER() window function:
mysql> SELECT ROW_NUMBER() OVER win AS 'rank',
 -> score FROM ranks WINDOW win AS (ORDER BY score DESC);
+------+-------+
| rank | score |
+------+-------+
1	5
2	4
3	4
4	3
5	2
6	2
7	2
8	1
+------+-------+
8 rows in set (0,00 sec)
That kind of ranking doesn’t take into account the possibility of
 ties (instances of values that are the same). The DENSE_RANK() window function does so by advancing the rank only when values change:
mysql> SELECT DENSE_RANK() OVER win AS 'rank',
 > score FROM ranks WINDOW win AS (ORDER BY score DESC);
+------+-------+
| rank | score |
+------+-------+
1	5
2	4
2	4
3	3
4	2
4	2
4	2
5	1
+------+-------+
The RANK() window function is something of a combination of the other
 two methods. It ranks values by row number, except when ties occur. In
 that case, the tied values each get a rank equal to the row number of
 the first of the values:
mysql> SELECT ROW_NUMBER() OVER win AS 'row',
 -> RANK() OVER win AS 'rank',
 -> score FROM ranks WINDOW win AS (ORDER BY score DESC);
+------+------+-------+
| row | rank | score |
+------+------+-------+
1	1	5
2	2	4
3	2	4
4	4	3
5	5	2
6	5	2
7	5	2
8	8	1
+------+------+-------+
Ranks are easy to assign within a program as well. For example,
 the following Ruby fragment ranks the scores in ranks using the third ranking method:
res = client.query("SELECT score FROM ranks ORDER BY score DESC")
 rownum = 0
 rank = 0
 prev_score = nil
 puts "Row\tRank\tScore\n"
 res.each do |row|
 score = row.values[0]
 rownum += 1
 rank = rownum if rownum == 1 || prev_score != score
 prev_score = score
 puts "#{rownum}\t#{rank}\t#{score}"
 end
The third type of ranking is commonly used for sporting events.
 The following table contains the American League pitchers who won 15 or
 more games during the 2001 baseball season:
mysql> SELECT name, wins FROM al_winner ORDER BY wins DESC, name;
+----------------+------+
| name | wins |
+----------------+------+
Mulder, Mark	21
Clemens, Roger	20
Moyer, Jamie	20
Garcia, Freddy	18
Hudson, Tim	18
Abbott, Paul	17
Mays, Joe	17
Mussina, Mike	17
Sabathia, C.C.	17
Zito, Barry	17
Buehrle, Mark	16
Milton, Eric	15
Pettitte, Andy	15
Radke, Brad	15
Sele, Aaron	15
+----------------+------+
These pitchers can be assigned ranks using the third method as
 follows:
mysql> SELECT ROW_NUMBER() OVER win AS 'row',
 -> RANK() OVER win AS 'rank',
 -> name, wins
 -> FROM al_winner WINDOW win AS (ORDER BY wins DESC);
+------+------+----------------+------+
| row | rank | name | wins |
+------+------+----------------+------+
1	1	Mulder, Mark	21
2	2	Clemens, Roger	20
3	2	Moyer, Jamie	20
4	4	Garcia, Freddy	18
5	4	Hudson, Tim	18
6	6	Zito, Barry	17
7	6	Sabathia, C.C.	17
8	6	Mussina, Mike	17
9	6	Mays, Joe	17
10	6	Abbott, Paul	17
11	11	Buehrle, Mark	16
12	12	Milton, Eric	15
13	12	Pettitte, Andy	15
14	12	Radke, Brad	15
15	12	Sele, Aaron	15
+------+------+----------------+------+

See Also
For additional information about window functions, see Recipe 15.15.

17.12 Computing Team Standings
Problem
You want to compute team standings from their win-loss records,
 including the games-behind (GB) values.

Solution
Determine which team is in first place, then join that result to
 the original rows.

Discussion
Standings for sports teams that compete against one another is a
 ranking problem, but ranks are not based on a single measure, as in Recipe 17.11. Standings are based on two values:
 wins and losses. Teams are ranked according to which has the best
 win-loss record, and teams not in first place are assigned a
 games-behind value indicating how many games out of first
 place they are. This section shows how to calculate those values. The
 first example uses a table containing a single set of team records to
 illustrate the logic of the calculations. The second example uses a
 table containing several sets of records (that is, the records for all
 teams in both divisions of a league, for both halves of the season). In
 this case, it’s necessary to use a join to perform the calculations
 independently for each group of teams.
Consider the following table, standings1, which contains a single set of
 baseball team records representing the final standings for the Northern
 League in the year 1902:
mysql> SELECT team, wins, losses FROM standings1
 -> ORDER BY wins-losses DESC;
+-------------+------+--------+
| team | wins | losses |
+-------------+------+--------+
Winnipeg	37	20
Crookston	31	25
Fargo	30	26
Grand Forks	28	26
Devils Lake	19	31
Cavalier	15	32
+-------------+------+--------+
The rows are sorted by the win-loss differential, which is how to
 place teams in order from first place to last place. But displays of
 team standings typically include each team’s winning percentage and a
 figure indicating how many games behind the leader all the other teams
 are. So let’s add that information to the output. Calculating the
 percentage is easy. It’s the ratio of wins to total games played and can
 be determined using this expression:
wins / (wins + losses)
This expression involves division by zero when a team has not
 played any games yet. For simplicity, I’ll assume a nonzero number of
 games. To handle this condition, you’d use a more general
 expression:
IF(wins=0,0,wins/(wins+losses))
This expression relies on the fact that no division operation is
 necessary unless the team has won at least one game.
Determining the games-behind value is a little trickier. It’s
 based on the relationship of the win-loss records for two teams,
 calculated as the average of two values:
	How many more wins the first-place team has than the
 second-place team

	How many fewer losses the first-place team has than the
 second-place team

Suppose that two teams, A and B, have the following win-loss
 records:
+------+------+--------+
| team | wins | losses |
+------+------+--------+
| A | 17 | 11 |
| B | 14 | 12 |
+------+------+--------+
Here, team B has to win three more games, and team A has to lose
 one more game for the teams to be even. The average of three and one is
 two, thus B is two games behind A. Mathematically, the games-behind
 calculation for the two teams is as follows:
((winsA - winsB) + (lossesB - lossesA)) / 2
With a little rearrangement of terms, the expression
 becomes the following:
((winsA - lossesA) - (winsB - lossesB)) / 2
The second expression is equivalent to the first, but it has each
 factor written as a single team’s win-loss differential, rather than as
 a comparison between teams. That makes it easier to work with because
 each factor can be determined independently from a single team record.
 The first factor represents the first-place team’s win-loss
 differential, so if we calculate that value first, the other team GB
 values can be determined in relation to it.
The first-place team is the one with the largest win-loss
 differential. To find that value and save it in a variable, use this
 statement:
mysql> SET @wl_diff = (SELECT MAX(wins-losses) FROM standings1);
Then use the differential as follows to produce team standings
 that include winning percentage and GB values:
mysql> SELECT team, wins AS W, losses AS L,
 -> wins/(wins+losses) AS PCT,
 -> (@wl_diff - (wins-losses)) / 2 AS GB
 -> FROM standings1
 -> ORDER BY wins-losses DESC, PCT DESC;
+-------------+------+------+--------+---------+
| team | W | L | PCT | GB |
+-------------+------+------+--------+---------+
Winnipeg	37	20	0.6491	0.0000
Crookston	31	25	0.5536	5.5000
Fargo	30	26	0.5357	6.5000
Grand Forks	28	26	0.5185	7.5000
Devils Lake	19	31	0.3800	14.5000
Cavalier	15	32	0.3191	17.0000
+-------------+------+------+--------+---------+
There are a couple of minor formatting issues to address at this
 point. Typically, standings list display percentages to three
 decimal places, and the GB value to one decimal place (except that the
 GB value for the first-place team is displayed as -). To display n
 decimal places, use TRUNCATE(expr,n). To display the GB value for the first-place
 team appropriately, use an IF() expression that
 maps 0 to a dash:
mysql> SELECT team, wins AS W, losses AS L,
 -> TRUNCATE(wins/(wins+losses),3) AS PCT,
 -> IF(@wl_diff = wins-losses,
 -> '-',TRUNCATE((@wl_diff - (wins-losses))/2,1)) AS GB
 -> FROM standings1
 -> ORDER BY wins-losses DESC, PCT DESC;
+-------------+------+------+-------+------+
| team | W | L | PCT | GB |
+-------------+------+------+-------+------+
Winnipeg	37	20	0.649	-
Crookston	31	25	0.553	5.5
Fargo	30	26	0.535	6.5
Grand Forks	28	26	0.518	7.5
Devils Lake	19	31	0.380	14.5
Cavalier	15	32	0.319	17.0
+-------------+------+------+-------+------+
These statements order the teams by win-loss differential, using
 winning percentage as a tie-breaker in case there are teams with the
 same differential value. It’s simpler to sort by percentage, of course,
 but then you wouldn’t always get the correct ordering. It’s a curious
 fact that a team with a lower winning percentage can actually be higher
 in the standings than a team with a higher percentage. (This generally
 occurs early in the season, when teams may have played highly disparate
 numbers of games, relatively speaking.) Consider the case in which two
 teams, A and B, have the following rows:
+------+------+--------+
| team | wins | losses |
+------+------+--------+
| A | 4 | 1 |
| B | 2 | 0 |
+------+------+--------+
Applying the GB and percentage calculations to these team records
 yields the following result, in which the first-place team actually has
 a lower winning percentage than the second-place team:
+------+------+------+-------+------+
| team | W | L | PCT | GB |
+------+------+------+-------+------+
| A | 4 | 1 | 0.800 | - |
| B | 2 | 0 | 1.000 | 0.5 |
+------+------+------+-------+------+
The standings calculations shown thus far can be done without a
 join. They involve only a single set of team records, so the first-place
 team’s win-loss differential can be stored in a variable. A more complex
 situation occurs when a dataset includes several sets of team records.
 For example, the 1997 Northern League had two divisions (Eastern and
 Western). In addition, separate standings were maintained for the first
 and second halves of the season because season-half winners in each
 division played one another for the right to compete in the league
 championship. The following table, standings2, shows what these rows look like,
 ordered by season half, division, and win-loss differential:
mysql> SELECT half, division, team, wins, losses FROM standings2
 -> ORDER BY half, division, wins-losses DESC;
+------+----------+-----------------+------+--------+
| half | division | team | wins | losses |
+------+----------+-----------------+------+--------+
1	Eastern	St. Paul	24	18
1	Eastern	Thunder Bay	18	24
1	Eastern	Duluth-Superior	17	24
1	Eastern	Madison	15	27
1	Western	Winnipeg	29	12
1	Western	Sioux City	28	14
1	Western	Fargo-Moorhead	21	21
1	Western	Sioux Falls	15	27
2	Eastern	Duluth-Superior	22	20
2	Eastern	St. Paul	21	21
2	Eastern	Madison	19	23
2	Eastern	Thunder Bay	18	24
2	Western	Fargo-Moorhead	26	16
2	Western	Winnipeg	24	18
2	Western	Sioux City	22	20
2	Western	Sioux Falls	16	26
+------+----------+-----------------+------+--------+
Generating the standings for these rows requires computing the GB
 values separately for each of the four combinations of season half and
 division. First, calculate the win-loss differential for the first-place
 team in each group and save the values into a separate firstplace table:
mysql> CREATE TEMPORARY TABLE firstplace
 -> SELECT half, division, MAX(wins-losses) AS wl_diff
 -> FROM standings2
 -> GROUP BY half, division;
Then join the firstplace table
 to the original standings, associating each team record with the proper
 win-loss differential to compute its GB value:
mysql> SELECT wl.half, wl.division, wl.team, wl.wins AS W, wl.losses AS L,
 -> TRUNCATE(wl.wins/(wl.wins+wl.losses),3) AS PCT,
 -> IF(fp.wl_diff = wl.wins-wl.losses,
 -> '-',TRUNCATE((fp.wl_diff - (wl.wins-wl.losses)) / 2,1)) AS GB
 -> FROM standings2 AS wl INNER JOIN firstplace AS fp
 -> ON wl.half = fp.half AND wl.division = fp.division
 -> ORDER BY wl.half, wl.division, wl.wins-wl.losses DESC, PCT DESC;
+------+----------+-----------------+------+------+-------+------+
| half | division | team | W | L | PCT | GB |
+------+----------+-----------------+------+------+-------+------+
1	Eastern	St. Paul	24	18	0.571	-
1	Eastern	Thunder Bay	18	24	0.428	6.0
1	Eastern	Duluth-Superior	17	24	0.414	6.5
1	Eastern	Madison	15	27	0.357	9.0
1	Western	Winnipeg	29	12	0.707	-
1	Western	Sioux City	28	14	0.666	1.5
1	Western	Fargo-Moorhead	21	21	0.500	8.5
1	Western	Sioux Falls	15	27	0.357	14.5
2	Eastern	Duluth-Superior	22	20	0.523	-
2	Eastern	St. Paul	21	21	0.500	1.0
2	Eastern	Madison	19	23	0.452	3.0
2	Eastern	Thunder Bay	18	24	0.428	4.0
2	Western	Fargo-Moorhead	26	16	0.619	-
2	Western	Winnipeg	24	18	0.571	2.0
2	Western	Sioux City	22	20	0.523	4.0
2	Western	Sioux Falls	16	26	0.380	10.0
+------+----------+-----------------+------+------+-------+------+
That output is difficult to read, however. To make it easier to
 understand, you might execute the statement from within a program and
 reformat its results to display each set of team records separately.
 Here’s some Perl code that does that by beginning a new output group
 each time it encounters a new group of standings. The code assumes that
 the join statement has just been executed and that its results are
 available through the statement handle $sth:
my ($cur_half, $cur_div) = ("", "");
while (my ($half, $div, $team, $wins, $losses, $pct, $gb)
 = $sth->fetchrow_array ())
{
 if ($cur_half ne $half || $cur_div ne $div) # new group of standings?
 {
 # print standings header and remember new half/division values
 print "\n$div Division, season half $half\n";
 printf "%-20s %3s %3s %5s %s\n", "Team", "W", "L", "PCT", "GB";
 $cur_half = $half;
 $cur_div = $div;
 }
 printf "%-20s %3d %3d %5s %s\n", $team, $wins, $losses, $pct, $gb;
}
The reformatted output looks like this:
Eastern Division, season half 1
Team W L PCT GB
St. Paul 24 18 0.571 -
Thunder Bay 18 24 0.428 6.0
Duluth-Superior 17 24 0.414 6.5
Madison 15 27 0.357 9.0

Western Division, season half 1
Team W L PCT GB
Winnipeg 29 12 0.707 -
Sioux City 28 14 0.666 1.5
Fargo-Moorhead 21 21 0.500 8.5
Sioux Falls 15 27 0.357 14.5

Eastern Division, season half 2
Team W L PCT GB
Duluth-Superior 22 20 0.523 -
St. Paul 21 21 0.500 1.0
Madison 19 23 0.452 3.0
Thunder Bay 18 24 0.428 4.0

Western Division, season half 2
Team W L PCT GB
Fargo-Moorhead 26 16 0.619 -
Winnipeg 24 18 0.571 2.0
Sioux City 22 20 0.523 4.0
Sioux Falls 16 26 0.380 10.0
The code just shown comes from the calc_standings.pl script in the stats directory of the recipes distribution. That directory also
 contains a PHP script, calc_standings.php, that produces output in
 the form of HTML tables, which you might prefer for generating standings
 in a web environment.

1 The definition of median given here isn’t fully general; it
 doesn’t address what to do if the middle values in the dataset are
 duplicated.
2 To see where these terms come from, consult any standard
 statistics text.

Chapter 18. Handling Duplicates
18.0 Introduction
Tables or result sets sometimes contain duplicate rows. In some cases, this is
 acceptable. For example, if you conduct a web poll that records the date and
 client IP number along with the votes, duplicate rows may be permitted
 because it’s possible for large numbers of votes to appear to originate
 from the same IP number for an internet service that routes traffic from
 its customers through a single proxy host. In other cases, duplicates are
 unacceptable, and you’ll want to take steps to avoid them. Operations
 involved in handling duplicate rows include the following:
	Preventing duplicates from being created in the first place. If
 each row in a table is intended to represent a single entity (such as
 a person, an item in a catalog, or a specific observation in an
 experiment), the occurrence of duplicates makes it impossible to
 refer to each row unambiguously, so it’s best to make sure duplicates
 never occur.

	Counting the number of duplicates to determine whether they are
 present and to what extent.

	Identifying duplicated values (or the rows containing them) so
 you can see where they occur.

	Eliminating duplicates to ensure that each row is unique. This
 may involve removing rows from a table to leave only unique rows or
 selecting a result set in such a way that no duplicates appear in the
 output. For example, to display a list of the states in which you have
 customers, you probably don’t want a long list of state names from all
 customer records. A list showing each state name only once suffices
 and is easier to understand.

Several tools are at your disposal for dealing with duplicate rows.
 Choose them according to the objective that you want to achieve:
	When you create a table, include a primary key or unique index
 to prevent duplicates from being added to the table. MySQL uses the
 index as a constraint to enforce the requirement that each row in the
 table contains a unique key in the indexed column or columns.

	In conjunction with a unique index, the INSERT IGNORE and REPLACE statements enable you to handle
 insertion of duplicate rows gracefully without generating errors. For
 bulk-loading operations, the same options are available in the form of
 the IGNORE or REPLACE modifiers for the LOAD DATA
 statement.

	To determine whether a table contains duplicates, use GROUP BY
 to categorize rows into groups and COUNT() to see how many rows are in each
 group. Chapter 10 describes these techniques in the
 context of producing summaries, but they’re useful for duplicate
 counting and identification as well. A counting summary groups values
 into categories to determine how frequently each one occurs.

	SELECT DISTINCT removes duplicate rows from a
 result set (see Recipe 5.4 for more
 information). For an existing table that already contains duplicates,
 you can select unique rows into a second table and use it to replace
 the original table. Or, if you determine that there are
 n identical rows in a table, you can use
 DELETE…LIMIT to eliminate
 n–1 instances from that specific set of
 rows.

Scripts related to the examples shown in this chapter are located in
 the dups directory of the recipes distribution. For scripts that create
 the tables used here, look in the tables
 directory.

18.1 Preventing Duplicates from Occurring in a Table
Problem
You want to prevent a table from ever containing duplicates.

Solution
Use a PRIMARY KEY or a UNIQUE index.

Discussion
To ensure that rows in a table are unique, some column or
 combination of columns must be required to contain unique values in each
 row. When this requirement is satisfied, you can refer to any row in the
 table unambiguously by using its unique identifier. To make sure a table
 has this characteristic, include a PRIMARY KEY
 or UNIQUE index in the table
 structure. The following table contains no such index, so it permits
 duplicate rows:
CREATE TABLE person
(
 last_name CHAR(20),
 first_name CHAR(20),
 address CHAR(40)
);
To prevent multiple rows with the same first and last name values
 from being created in this table, add a PRIMARY KEY
 to its definition. When you do this, the indexed columns must be
 NOT NULL, because a PRIMARY KEY prohibits NULL values:
CREATE TABLE person
(
 last_name CHAR(20) NOT NULL,
 first_name CHAR(20) NOT NULL,
 address CHAR(40),
 PRIMARY KEY (last_name, first_name)
);
The presence of a unique index in a table normally causes an error
 to occur if you insert a row into the table that duplicates an existing
 row in the column or columns that define the index. Recipe 18.3 discusses how to handle such errors or
 modify MySQL’s duplicate-handling behavior.
Another way to enforce uniqueness is to add a UNIQUE index rather than a PRIMARY KEY
 to a table. The two types of indexes are similar, but a UNIQUE index can be created on columns that
 permit NULL values. For the person table, it’s likely that you’d require
 both the first and last names to be filled in. If so, you still declare
 the columns as NOT NULL, and the following table definition is effectively equivalent
 to the preceding one:
CREATE TABLE person
(
 last_name CHAR(20) NOT NULL,
 first_name CHAR(20) NOT NULL,
 address CHAR(40),
 UNIQUE (last_name, first_name)
);
If a UNIQUE index does happen
 to permit NULL values, NULL is special because it is the one value
 that can occur multiple times. The rationale for this is that it is not
 possible to know whether one unknown value is the same as another, so
 multiple unknown values are permitted.
Of course, you might want the person table to reflect the real world, in
 which people do sometimes have the same name. In this case, you cannot
 set up a unique index based on the name columns, because duplicate names
 must be permitted. Instead, each person must be assigned some sort of
 unique identifier, which becomes the value that distinguishes one row
 from another. In MySQL, it’s common to accomplish this by using an AUTO_INCREMENT column:
CREATE TABLE person
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 last_name CHAR(20),
 first_name CHAR(20),
 address CHAR(40),
 PRIMARY KEY (id)
);
In this case, when you create a row with an id value of NULL, MySQL assigns that column a unique ID
 automatically. Another possibility is to assign identifiers externally
 and use those IDs as unique keys. For example, citizens in a given
 country might have unique taxpayer ID numbers. If so, those numbers can
 serve as the basis for a unique index:
CREATE TABLE person
(
 tax_id INT UNSIGNED NOT NULL,
 last_name CHAR(20),
 first_name CHAR(20),
 address CHAR(40),
 PRIMARY KEY (tax_id)
);

See Also
If an existing table already contains duplicate rows that you want
 to remove, see Recipe 18.5. Chapter 15 further discusses AUTO_INCREMENT columns.

18.2 Having More Than One Unique Key in the Table
Problem

 You need two or more column sets in the table to have unique values.

Solution

 Define as many unique keys as needed.

Discussion

 It may be possible that two or more column combinations need to have unique values independently from one another. For example, the person table from the last example in Recipe 18.1 has a tax_id column representing a taxpayer ID and thus needs to store unique values. You may still want to keep a unique index on (last_name, first_name). This way you can be sure that each person has their own taxpayer ID and that any taxpayer ID belongs to only one person.

 Any table can have at most one primary key. Therefore, you need to choose which key will be the primary key and which will be the secondary unique key. As we describe in Recipe 21.2, primary keys for the InnoDB storage engine are included in all secondary indexes, and it is critical for performance to define them using the smallest data type possible. Therefore, it is straightforward to define a primary key for the tax_id column and a key on (last_name, first_name) as a secondary unique index.

 The resulting table definition will look like this:

CREATE TABLE `person` (
 `tax_id` INT UNSIGNED NOT NULL,
 `last_name` CHAR(20) DEFAULT NULL,
 `first_name` CHAR(20) DEFAULT NULL,
 `address` CHAR(40) DEFAULT NULL,
 PRIMARY KEY (`tax_id`),
 UNIQUE KEY `last_name` (`last_name`,`first_name`)
);

18.3 Dealing with Duplicates When Loading Rows into a Table
Problem
You’ve created a table with a unique index to prevent duplicate values in the indexed
 column or columns. But this results in an error if you attempt to insert
 a duplicate row, and you want to avoid having to deal with such
 errors.

Solution
One approach is to just ignore the error. Another is to use
 an INSERT IGNORE, REPLACE, or INSERT…ON
 DUPLICATE KEY UPDATE
 statement, each of which modifies MySQL’s duplicate-handling
 behavior. For bulk-loading operations, LOAD DATA
 has modifiers that enable you to specify how to handle
 duplicates.

Discussion
By default, MySQL generates an error when you insert a row that
 duplicates an existing unique key value. Suppose that the person table has the following structure, with
 a unique index on the last_name and
 first_name columns:
CREATE TABLE person
(
 last_name CHAR(20) NOT NULL,
 first_name CHAR(20) NOT NULL,
 address CHAR(40),
 PRIMARY KEY (last_name, first_name)
);
An attempt to insert a row with duplicate values in the indexed
 columns results in an error:
mysql> INSERT INTO person (last_name, first_name)
 -> VALUES('Pinter', 'Marlene');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO person (last_name, first_name)
 -> VALUES('Pinter', 'Marlene');
ERROR 1062 (23000): Duplicate entry 'Pinter-Marlene' for key 'person.PRIMARY'
If you issue the statements from the mysql program interactively, you can simply
 say, Okay, that didn’t work, ignore the error, and
 continue. But if you write a program to insert the rows, an error may
 terminate the program. One way to avoid this is to modify the program’s
 error-handling behavior to trap the error and then ignore it. See Recipe 4.2 for information about error-handling
 techniques.
To prevent the error from occurring in the first place, you might
 consider using a two-query method to solve the duplicate-row
 problem:
	Issue a SELECT to check
 whether the row is already present.

	Issue an INSERT if the row
 is not present.

But that doesn’t really work: another client might insert the same
 row after the SELECT and before the
 INSERT, in which case the error would
 still occur for your INSERT. To make
 sure that doesn’t happen, you could use a transaction or lock the
 tables, but then you’ve gone from two statements to four. MySQL provides
 three single-query solutions to the problem of handling duplicate rows.
 Choose from among them depending on the duplicate-handling behavior you
 want:
	To keep the original row when a duplicate occurs, use INSERT IGNORE rather than INSERT. If the row duplicates no existing
 row, MySQL inserts it as usual. If the row is a duplicate, the
 IGNORE keyword tells MySQL to
 discard it silently without generating an error:
mysql> INSERT IGNORE INTO person (last_name, first_name)
 -> VALUES('Brown', 'Bartholomew');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT IGNORE INTO person (last_name, first_name)
 -> VALUES('Brown', 'Bartholomew');
Query OK, 0 rows affected, 1 warning (0.00 sec)
The row count value indicates whether the row was inserted or
 ignored. From within a program, you can obtain this value by
 checking the rows-affected function provided by your API (see
 Recipes 4.4 and 12.1).

	To replace the original row with the new one when a duplicate
 occurs, use REPLACE rather than
 INSERT. If the row is new, it’s
 inserted just as with INSERT. If
 it’s a duplicate, the new row replaces the old one:
mysql> REPLACE INTO person (last_name, first_name, address)
 -> VALUES('Baxter', 'Wallace', '57 3rd Ave.');
Query OK, 1 row affected (0.00 sec)
mysql> REPLACE INTO person (last_name, first_name, address)
 -> VALUES('Baxter', 'Wallace', '57 3rd Ave., Apt 102');
Query OK, 2 rows affected (0.00 sec)
The rows-affected value in the second case is 2 because the
 original row is deleted and the new row is inserted in its
 place.

	To modify columns of an existing row when a duplicate occurs,
 use INSERT…ON DUPLICATE KEY UPDATE. If the row is new, it’s inserted.
 If it’s a duplicate, the ON
 DUPLICATE KEY UPDATE clause indicates how to modify the
 existing row in the table. In other words, this statement can insert
 or update a row as necessary. The rows-affected count indicates what
 happened: 1 for an insert, 2 for an update.

INSERT IGNORE is more efficient than REPLACE because it doesn’t actually insert
 duplicates. Thus, it’s most applicable when you just want to make sure a
 copy of a given row is present in a table. REPLACE, on the other hand, is often more
 appropriate for tables in which other nonkey columns need to be
 replaced. INSERT…ON DUPLICATE KEY UPDATE
 is appropriate when you must insert a record if it doesn’t exist but
 just update some of its columns if the new record is a duplicate in the
 indexed columns.
Suppose that you maintain a table named passtbl for a web application that contains
 email addresses and password hash values, and that is indexed by email
 address:
CREATE TABLE passtbl
(
 email VARCHAR(60) NOT NULL,
 password VARBINARY(60) NOT NULL,
 PRIMARY KEY (email)
);
How do you create new rows for new users but change passwords of
 existing rows for existing users? Here’s a typical algorithm for
 handling row maintenance:
	Issue a SELECT to check
 whether a row already exists with a given email value.

	If no such row exists, add a new one with INSERT.

	If the row does exist, update it with UPDATE.

These steps must be performed within a transaction or with the
 tables locked to prevent other users from changing the tables while
 you’re using them. In MySQL, you can use REPLACE to simplify both cases to the same
 single-statement operation:
REPLACE INTO passtbl (email,password) VALUES(address,hash_value);
If no row with the given email address exists, MySQL creates a new
 one. Otherwise, MySQL replaces it, in effect updating the password column of the row associated with the
 address.
INSERT IGNORE and REPLACE are useful when you know exactly what
 values should be stored in the table when you attempt to insert a row.
 That’s not always the case. For example, you might want to insert a row
 if it doesn’t exist but update only certain parts of it otherwise. This
 commonly occurs when you use a table for counting. Suppose that you
 record votes for candidates in polls, using the following table:
CREATE TABLE poll_vote
(
 poll_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 candidate_id INT UNSIGNED,
 vote_count INT UNSIGNED,
 PRIMARY KEY (poll_id, candidate_id)
);
The primary key is the combination of poll and candidate number.
 The table should be used like this:
	For the first vote received for a given poll candidate, insert
 a new row with a vote count of 1.

	For subsequent votes for that candidate, increment the vote
 count of the existing record.

Neither INSERT IGNORE nor REPLACE are appropriate here because for all
 votes except the first, you don’t know what the vote count should be.
 INSERT…ON DUPLICATE KEY UPDATE
 works better here. The following example shows how it works, beginning
 with an empty table:
mysql> SELECT * FROM poll_vote;
Empty set (0.00 sec)
mysql> INSERT INTO poll_vote (poll_id,candidate_id,vote_count) VALUES(14,3,1)
 -> ON DUPLICATE KEY UPDATE vote_count = vote_count + 1;
Query OK, 1 row affected (0.00 sec)
mysql> SELECT * FROM poll_vote;
+---------+--------------+------------+
| poll_id | candidate_id | vote_count |
+---------+--------------+------------+
| 14 | 3 | 1 |
+---------+--------------+------------+
1 row in set (0.00 sec)
mysql> INSERT INTO poll_vote (poll_id,candidate_id,vote_count) VALUES(14,3,1)
 -> ON DUPLICATE KEY UPDATE vote_count = vote_count + 1;
Query OK, 2 rows affected (0.00 sec)
mysql> SELECT * FROM poll_vote;
+---------+--------------+------------+
| poll_id | candidate_id | vote_count |
+---------+--------------+------------+
| 14 | 3 | 2 |
+---------+--------------+------------+
1 row in set (0.00 sec)
For the first INSERT, no row
 for the candidate exists, so the row is inserted. For the second
 INSERT, the row exists, so MySQL just
 updates the vote count. With INSERT…ON DUPLICATE KEY UPDATE,
 you need not check whether the row exists; MySQL does it for you. The
 row count indicates what action the INSERT statement performs: 1 for a new row and
 2 for an update to an existing row.
The techniques just described have the benefit of eliminating
 overhead that might otherwise be required for a transaction. But this
 benefit comes at the price of portability because they all involve
 MySQL-specific syntax. If portability is a high priority, you might
 prefer to use a transactional approach, as we discuss in Chapter 20.
Using INSERT...ON DUPLICATE KEY UPDATE on a Table with Two or More Unique Keys

 When a table has two or more unique keys, INSERT...ON DUPLICATE KEY UPDATE can update any row that violates the unique constraint.

 Assume that the person table from Recipe 18.2 has two rows:

mysql> SELECT * FROM person;
+--------+-----------+------------+--------------------------+
| tax_id | last_name | first_name | address |
+--------+-----------+------------+--------------------------+
| 12345 | Isaacson | Jim | 515 Fordam St., Apt. 917 |
| 23941 | Baxter | Wallace | 57 3rd Ave. |
+--------+-----------+------------+--------------------------+
2 rows in set (0,00 sec)

 And we want to add a new row for Taylor McTavish:

INSERT INTO person VALUES(12345, 'McTavish', 'Taylor', '432 River Run')
ON DUPLICATE KEY UPDATE address = '432 River Run';

 We expect that if no record for Taylor McTavish exists in the table, a new row will be inserted. Otherwise, the address will be updated. However, this is not exactly the case:

mysql> INSERT INTO person VALUES(12345, 'McTavish', 'Taylor',
 -> '432 River Run')
 -> ON DUPLICATE KEY UPDATE address = '432 River Run';
Query OK, 2 rows affected (0,00 sec)

mysql> SELECT * FROM person;
+--------+-----------+------------+---------------+
| tax_id | last_name | first_name | address |
+--------+-----------+------------+---------------+
| 12345 | Isaacson | Jim | 432 River Run |
| 23941 | Baxter | Wallace | 57 3rd Ave. |
+--------+-----------+------------+---------------+
2 rows in set (0,00 sec)

 A new row was not inserted even though a record for Taylor McTavish does not exist in the table. Instead, the row with tax_id=12345, belonging to Jim Isaacson, was modified and now stores the address of Taylor McTavish.

 MySQL does not allow you to specify if the row should be updated only if a particular unique key was violated. When the table has two or more unique keys, it is easy to make a mistake and update the wrong row. We recommend that you avoid using INSERT...ON DUPLICATE KEY UPDATE for modifying tables that have more than one unique key. You may consider using stored routines instead, which we discussed in Chapter 11.

See Also
For bulk record-loading operations in which you use the LOAD DATA
 statement to load a set of rows from a file into a table, control
 duplicate-row handling using the statement’s IGNORE and REPLACE modifiers. These produce behavior
 analogous to that of the INSERT
 IGNORE and REPLACE statements. For more information, see
 Recipe 13.1.
Recipe 15.12 further demonstrates the use of
 INSERT…ON DUPLICATE KEY UPDATE
 for initializing and updating counts.

18.4 Counting and Identifying Duplicates
Problem
You want to determine whether a table contains duplicates and to what extent
 they occur. Or you want to see the rows that contain the duplicated
 values.

Solution
Use a counting summary that displays duplicated values. To see the rows in which
 the duplicated values occur, join the summary to the original table to
 display the matching rows.

Discussion
Suppose that your website has a sign-up page that enables visitors
 to add themselves to your mailing list to receive periodic product
 catalog mailings. But you forgot to include a unique index in the table
 when you created it, and now you suspect that some people are signed up
 multiple times. Perhaps they forgot they were already on the list, or
 perhaps people added friends to the list who were already signed up.
 Either way, the result of having duplicate rows is that you mail out
 duplicate catalogs. This is an additional expense to you, and it annoys
 the recipients. This section discusses how to determine whether there
 are duplicate rows in a table, how prevalent they are, and how to
 display them. (For tables that do contain duplicates, Recipe 18.5 describes how to eliminate
 them.)
To determine whether duplicates occur in a table, use a counting
 summary (a topic covered in Chapter 10). Summary
 techniques can be applied to identifying and counting duplicates by
 grouping rows with GROUP
 BY and counting the rows in each
 group using COUNT(). For the examples here, assume that catalog recipients are
 listed in a table named catalog_list
 that has the following contents:
+-----------+-------------+--------------------------+
| last_name | first_name | street |
+-----------+-------------+--------------------------+
Isaacson	Jim	515 Fordam St., Apt. 917
Baxter	Wallace	57 3rd Ave.
McTavish	Taylor	432 River Run
Pinter	Marlene	9 Sunset Trail
BAXTER	WALLACE	57 3rd Ave.
Brown	Bartholomew	432 River Run
Pinter	Marlene	9 Sunset Trail
Baxter	Wallace	57 3rd Ave., Apt 102
+-----------+-------------+--------------------------+
Suppose that you define duplicate using the
 last_name and first_name columns. That is, recipients with
 the same name are assumed to be the same person. The following
 statements characterize the table and assess the existence and extent of
 duplicate values:
	The total number of rows in the table:
mysql> SELECT COUNT(*) AS rows FROM catalog_list;
+------+
| rows |
+------+
| 8 |
+------+

	The number of distinct names:
mysql> SELECT COUNT(DISTINCT last_name, first_name) AS 'distinct names'
 -> FROM catalog_list;
+----------------+
| distinct names |
+----------------+
| 5 |
+----------------+

	The number of rows containing duplicated names:
mysql> SELECT COUNT(*) - COUNT(DISTINCT last_name, first_name)
 -> AS 'duplicate names'
 -> FROM catalog_list;
+-----------------+
| duplicate names |
+-----------------+
| 3 |
+-----------------+

	The fraction of the rows that contain unique or nonunique
 names:
mysql> SELECT COUNT(DISTINCT last_name, first_name) / COUNT(*)
 -> AS 'unique',
 -> 1 - (COUNT(DISTINCT last_name, first_name) / COUNT(*))
 -> AS 'nonunique'
 -> FROM catalog_list;
+--------+-----------+
| unique | nonunique |
+--------+-----------+
| 0.6250 | 0.3750 |
+--------+-----------+

Those statements help you characterize the extent of duplicates,
 but they don’t show you which values are duplicated. To see the
 duplicated names in the catalog_list
 table, use a summary statement that displays the nonunique values along
 with the counts:
mysql> SELECT COUNT(*), last_name, first_name
 -> FROM catalog_list
 -> GROUP BY last_name, first_name
 -> HAVING COUNT(*) > 1;
+----------+-----------+------------+
| COUNT(*) | last_name | first_name |
+----------+-----------+------------+
| 3 | Baxter | Wallace |
| 2 | Pinter | Marlene |
+----------+-----------+------------+
The statement includes a HAVING
 clause that restricts the output to include only those names that
 occur more than once. In general, to identify sets of values that are
 duplicated, do the following:
	Determine which columns contain the values that may be
 duplicated.

	List those columns in the column selection list, along with
 COUNT(*).

	List the columns in the GROUP BY clause as well.

	Add a HAVING clause that
 eliminates unique values by requiring group counts to be greater
 than one.

Queries constructed that way have the following form:
SELECT COUNT(*), column_list
FROM tbl_name
GROUP BY column_list
HAVING COUNT(*) > 1;
It’s easy to generate duplicate-finding queries like that within a
 program, given database and table names and a nonempty set of column
 names. For example, here is a make_dup_count_query() Perl function that generates the
 proper query for finding and counting duplicated values in the specified
 columns:
sub make_dup_count_query
{
my ($db_name, $tbl_name, @col_name) = @_;

 return "SELECT COUNT(*)," . join (",", @col_name)
 . "\nFROM $db_name.$tbl_name"
 . "\nGROUP BY " . join (",", @col_name)
 . "\nHAVING COUNT(*) > 1";
}
make_dup_count_query() returns
 the query as a string. If you invoke it like this:
$str = make_dup_count_query ("cookbook", "catalog_list",
 "last_name", "first_name");
the resulting value of $str
 is as follows:
SELECT COUNT(*),last_name,first_name
FROM cookbook.catalog_list
GROUP BY last_name,first_name
HAVING COUNT(*) > 1;
What you do with the query string is up to you. You can execute it
 from within the script that creates it, pass it to another program, or
 write it to a file for execution later. The dups directory of the recipes distribution contains a script named
 dup_count.pl that you can use to try
 the function (as well as some translations into other languages). Recipe 18.5 discusses the use of make_dup_count_query() to implement a
 duplicate-removal technique.
Summary techniques are useful for assessing the existence of
 duplicates, how often they occur, and displaying which values are
 duplicated. But if duplicates are determined using only a subset of a
 table’s columns, a summary in itself cannot display the entire content
 of the rows that contain the duplicate values. (For example, the
 summaries shown thus far display counts of duplicated names in the
 catalog_list table or the names
 themselves but don’t show the addresses associated with those names.)
 To see the original rows containing the duplicate names, join the
 summary information to the table from which it’s generated. The
 following example shows how to do this to display the catalog_list rows that contain duplicated
 names. The summary is written to a temporary table, which then is joined
 to the catalog_list table to produce
 the rows that match those names:
mysql> CREATE TABLE tmp
 -> SELECT COUNT(*) AS count, last_name, first_name FROM catalog_list
 -> GROUP BY last_name, first_name HAVING count > 1;
mysql> SELECT catalog_list.*
 -> FROM tmp INNER JOIN catalog_list USING (last_name, first_name)
 -> ORDER BY last_name, first_name;

+-----------+------------+----------------------+
| last_name | first_name | street |
+-----------+------------+----------------------+
Baxter	Wallace	57 3rd Ave.
BAXTER	WALLACE	57 3rd Ave.
Baxter	Wallace	57 3rd Ave., Apt 102
Pinter	Marlene	9 Sunset Trail
Pinter	Marlene	9 Sunset Trail
+-----------+------------+----------------------+
Duplicate Identification and String Case Sensitivity
For strings that have a case-insensitive collation, values that differ only in
 lettercase are considered the same for comparison purposes. To treat
 them as distinct values, compare them using a case-sensitive or binary
 collation. Recipe 7.7 shows how to
 do this.

18.5 Eliminating Duplicates from a Table
Problem
You want to remove duplicate rows from a table, leaving only unique
 rows.

Solution
Select the unique rows from the table into a second table, then
 use that table to replace the original one. Or use DELETE…LIMIT n to remove
 all but one instance of a specific set of duplicate
 rows.

Discussion
Recipe 18.1 discusses how to prevent
 duplicates from being added to a table by creating it with a unique
 index. However, if you forget to include the index when you create a
 table, you may discover later that it contains duplicates and that it’s
 necessary to apply some sort of duplicate-removal technique. The
 catalog_list table used earlier is an
 example of this because it contains several instances in which the same
 person appears multiple times:
mysql> SELECT * FROM catalog_list ORDER BY last_name, first_name;
+-----------+-------------+--------------------------+
| last_name | first_name | street |
+-----------+-------------+--------------------------+
Baxter	Wallace	57 3rd Ave.
BAXTER	WALLACE	57 3rd Ave.
Baxter	Wallace	57 3rd Ave., Apt 102
Brown	Bartholomew	432 River Run
Isaacson	Jim	515 Fordam St., Apt. 917
McTavish	Taylor	432 River Run
Pinter	Marlene	9 Sunset Trail
Pinter	Marlene	9 Sunset Trail
+-----------+-------------+--------------------------+
To eliminate duplicates, you can use one of these two options:
	Select the table’s unique rows into another table, then use
 that table to replace the original one. This works when
 duplicate means the entire row is the same as
 another.

	To remove duplicates for a specific set of duplicate rows, use
 DELETE…LIMIT n to
 remove all but one row.

This recipe discusses each duplicate-removal method. When deciding upon which method to choose for your circumstance, consider these questions:
	Does the method require the table to have a unique
 index?

	If the columns in which duplicate values occur may contain
 NULL, will the method remove
 duplicate NULL values?

	Does the method prevent duplicates from occurring in the
 future?

Removing duplicates using table replacement
If a row is considered to duplicate another only if the entire
 row is the same, one way to eliminate duplicates from a table is to
 select its unique rows into a new table that has the same structure,
 and then replace the original table with the new one:
	Create a new table that has the same structure as the original one. CREATE TABLE…LIKE is useful for this (see Recipe 6.1):
mysql> CREATE TABLE tmp LIKE catalog_list;

	Use INSERT INTO…SELECT DISTINCT to select the unique rows from the original table into
 the new one:
mysql> INSERT INTO tmp SELECT DISTINCT * FROM catalog_list;
Select rows from the tmp
 table to verify that the new table contains no duplicates:
mysql> SELECT * FROM tmp ORDER BY last_name, first_name;
+-----------+-------------+--------------------------+
| last_name | first_name | street |
+-----------+-------------+--------------------------+
Baxter	Wallace	57 3rd Ave.
Baxter	Wallace	57 3rd Ave., Apt 102
Brown	Bartholomew	432 River Run
Isaacson	Jim	515 Fordam St., Apt. 917
McTavish	Taylor	432 River Run
Pinter	Marlene	9 Sunset Trail
+-----------+-------------+--------------------------+

	After creating the new tmp table that contains unique rows, use
 it to replace the original catalog_list table:
mysql> DROP TABLE catalog_list;
mysql> RENAME TABLE tmp TO catalog_list;

The effective result of this procedure is that catalog_list no longer contains
 duplicates.
This table-replacement method works in the absence of an index
 (although it might be slow for large tables). For tables that contain
 duplicate NULL values, it removes
 those duplicates. It does not prevent the occurrence of duplicates in
 the future.
This method requires rows to be completely identical to be
 considered duplicates. Thus, it treats as distinct those rows for
 Wallace Baxter that have slightly different street values.
If duplicates are defined only with respect to a subset of the
 columns in the table, create a new table that has a unique index for
 those columns, select rows into it using INSERT IGNORE, and replace the original table with
 the new one:
mysql> CREATE TABLE tmp LIKE catalog_list;
mysql> ALTER TABLE tmp ADD PRIMARY KEY (last_name, first_name);
mysql> INSERT IGNORE INTO tmp SELECT * FROM catalog_list;
mysql> SELECT * FROM tmp ORDER BY last_name, first_name;
+-----------+-------------+--------------------------+
| last_name | first_name | street |
+-----------+-------------+--------------------------+
Baxter	Wallace	57 3rd Ave.
Brown	Bartholomew	432 River Run
Isaacson	Jim	515 Fordam St., Apt. 917
McTavish	Taylor	432 River Run
Pinter	Marlene	9 Sunset Trail
+-----------+-------------+--------------------------+
mysql> DROP TABLE catalog_list;
mysql> RENAME TABLE tmp TO catalog_list;
The unique index prevents rows with duplicate key values from
 being inserted into tmp, and
 IGNORE tells MySQL not to stop with
 an error if a duplicate is found. One shortcoming of this method is
 that if the indexed columns can contain NULL values, you must use a UNIQUE index rather than a PRIMARY KEY, in which case the index will not remove
 duplicate NULL keys. (UNIQUE indexes permit multiple NULL values.) This method does prevent
 occurrence of duplicates in the future.

Removing duplicates of a particular row
You can use LIMIT to restrict
 the effect of a DELETE statement to
 a subset of the rows that it otherwise would delete. This makes the
 statement applicable to removing duplicate rows. Suppose that the
 original unindexed catalog_list
 table contains duplicates:
mysql> SELECT COUNT(*), last_name, first_name
 -> FROM catalog_list
 -> GROUP BY last_name, first_name
 -> HAVING COUNT(*) > 1;
+----------+-----------+------------+
| COUNT(*) | last_name | first_name |
+----------+-----------+------------+
| 3 | Baxter | Wallace |
| 2 | Pinter | Marlene |
+----------+-----------+------------+
To remove the extra instances of each name, do this:
mysql> DELETE FROM catalog_list WHERE last_name = 'Baxter'
 -> AND first_name = 'Wallace' LIMIT 2;
mysql> DELETE FROM catalog_list WHERE last_name = 'Pinter'
 -> AND first_name = 'Marlene' LIMIT 1;
mysql> SELECT * FROM catalog_list;
+-----------+-------------+--------------------------+
| last_name | first_name | street |
+-----------+-------------+--------------------------+
Isaacson	Jim	515 Fordam St., Apt. 917
McTavish	Taylor	432 River Run
Brown	Bartholomew	432 River Run
Pinter	Marlene	9 Sunset Trail
Baxter	Wallace	57 3rd Ave., Apt 102
+-----------+-------------+--------------------------+
This technique works in the absence of a unique index, and it
 eliminates duplicate NULL values.
 It’s handy for removing duplicates only for a specific set of rows
 within a table. However, if there are many different sets of
 duplicates to remove, this is not a procedure you’d want to carry out
 by hand. The process can be automated by using the techniques
 discussed earlier in Recipe 18.4 for
 determining which values are duplicated. There, we wrote a make_dup_count_query() function to generate
 the statement needed to count the number of duplicate values in a
 given set of columns in a table. The result of that statement can be
 used to generate a set of DELETE…LIMIT n
 statements that remove duplicate rows and leave only unique rows. The
 dups directory of the recipes distribution contains code that
 shows how to generate these statements.
In general, using DELETE…LIMIT n
 is likely to be slower than removing duplicates by using a second
 table or by adding a unique index. Those methods keep the data on the
 server side and let the server do all the work. DELETE…LIMIT n involves
 a lot of client-server interaction because it uses a SELECT statement to retrieve information
 about duplicates, followed by several DELETE statements to remove instances of
 duplicated rows. Also, this technique does not prevent duplicates from
 occurring in the future.

Chapter 19. Working with JSON
19.0 Introduction

 Relational databases have proven to be effective for decades. They prevent duplicates and misses of data and enable fast access to stored values. However, business continually invents new scenarios in which data needs to be more flexible than the relational model allows.

 For example, let’s consider a record for a user who can access subscription-only digital content and leave comments. For such a user, having only basic information—their name, email address, and password—is enough to get started. However, once the users start exploring more options (for example, requiring delivery), they may need their mailing address to be stored. The mailing address could be different from the billing address. The user may want to add a social network account or a few of them.

 One way of storing flexible data in the relational database is to store additional pieces of data in the referenced table that shares details for each user. We discussed this technique in Recipes 16.5 and 16.6.

 However, this technique may be not the best in the following situations:

	When only a few items in the main table have details in the referenced table
	
 If you still need to know about these details, when you query the required fields in the main table, you will need to join it with the referencing table every time. This will complicate queries and affect performance.

	When most of the specific details could be missed
	
 Details such as a user’s district or building number are necessary only for users who requested physical delivery of items. For everyone else, these fields could be empty, but you still need to reserve space in the database for those empty fields. This adds significant cost once the database grows.

	When you may not know which additional data you need in the future
	
 You may need to add additional details to the data collections based on your needs. Appending such details in the relational model means creating new tables and columns to the existent table. This requires schema redesign and maintenance windows to implement the changes. This is not always possible or space/cost effective.

 To resolve these issues, flexible data structures, such as JSON, are the best fit. MySQL allows you to store JSON values in text fields using string data types. Since version 5.7, MySQL also supports JSON data types and functions that allow you to manipulate JSON values in an effective manner. MySQL combines the advantages of both SQL and NoSQL worlds.

19.1 Choosing the Right Data Type
Problem

 You want to store JSON values and don’t know which data type to choose.

Solution

 Use the JSON data type.

Discussion

 JSON data can be stored in any text or binary column. JSON functions will work without issues, but the special JSON data type has numerous advantages, particularly the following:

	Optimized performance
	
 JSON data is converted into a format that allows quick lookup for values in the document.

	Partial updates
	
 Updates to JSON elements happen in place, without the need to rewrite a full document.

	Automatic data validation
	
 When a value is inserted into a column of JSON data type, MySQL automatically validates it and produces an error if the document is invalid JSON.

 The following will create a table with a JSON author column:

CREATE TABLE book_authors (
 id INT NOT NULL AUTO_INCREMENT,
 author JSON NOT NULL,
 PRIMARY KEY (id)
);

See Also
For additional information about the JSON data type,
 see “The JSON Data Type” in the MySQL Reference Manual.

19.2 Inserting JSON Values
Problem

 You want to store JSON documents in MySQL.

Solution

 Use regular INSERT statements.

Discussion

 JSON is not different from other data types. Use regular INSERT statements to add your documents into the tables:

mysql> INSERT INTO `book_authors` VALUES
 -> (1,'{"id": 1, "name": "Paul",
 '> "books": [
 '> "Software Portability with imake: Practical Software Engineering",
 '> "Mysql: The Definitive Guide to Using, Programming, ↩
 and Administering Mysql 4 (Developer\'s Library)",
 '> "MySQL Certification Study Guide",
 '> "MySQL (OTHER NEW RIDERS)",
 '> "MySQL Cookbook",
 '> "MySQL 5.0 Certification Study Guide",
 '> "Using csh & tcsh: Type Less, Accomplish More ↩
 (Nutshell Handbooks)",
 '> "MySQL (Developer\'s Library)"],
 '> "lastname": "DuBois"}'),
 -> (2,'{"id": 2, "name": "Alkin",
 '> "books": ["MySQL Cookbook"],
 '> "lastname": "Tezuysal"}'),
 -> (3,'{"id": 3, "name": "Sveta",
 '> "books": ["MySQL Troubleshooting", "MySQL Cookbook"],
 '> "lastname": "Smirnova"}');
Query OK, 3 rows affected (0,01 sec)
Records: 3 Duplicates: 0 Warnings: 0

19.3 Validating JSON
Problem

 You want to ensure that a given string is a valid JSON.

Solution

 Use the JSON data type to perform automatic validation. Use the JSON_VALID function to validate strings. Use the JSON Schema to define the schema for the JSON documents.

Discussion

 The JSON_VALID function checks if a given document is valid JSON:

mysql> SELECT JSON_VALID('"name": "Sveta"');
+-------------------------------+
| JSON_VALID('"name": "Sveta"') |
+-------------------------------+
| 0 |
+-------------------------------+
1 row in set (0,00 sec)

mysql> SELECT JSON_VALID('{"name": "Sveta"}');
+---------------------------------+
| JSON_VALID('{"name": "Sveta"}') |
+---------------------------------+
| 1 |
+---------------------------------+
1 row in set (0,00 sec)

 If a column definition is a JSON data type, MySQL will not allow you to insert invalid values. Additionally, an error message will locate the first error, so you can fix it faster:

mysql> INSERT INTO book_authors(author)
 -> VALUES ('{"name": "Sveta" "lastname": "Smirnova"');
ERROR 3140 (22032): Invalid JSON text: "Missing a comma or '}' after an object↩
member." at position 17 in value for column 'book_authors.author'.

 If you want to validate a JSON document and also want it to satisfy a schema, use the JSON_SCHEMA_VALID function. This function supports the JSON Schema as described in Draft 4 of the JSON Schema specification. To use it, you need to define a schema first and compare the JSON value with it.

 The JSON_SCHEMA_VALIDATION_REPORT function not only checks a given document against the schema but also reports which particular part of the schema is violated.

 For the book_authors table, we can define a schema with name and lastname as required fields and an array of book titles as optional books element. We can use the following code for the schema:

{
"id": "http://www.oreilly.com/mysqlcookbook", [image: 1]
"$schema": "http://json-schema.org/draft-04/schema#", [image: 2]
"description": "Schema for the table book_authors", [image: 3]
"type": "object", [image: 4]
"properties": { [image: 5]
 "name": {"type": "string"},
 "lastname": {"type": "string"},
 "books": {"type": "array"}
},
"required":["name", "lastname"] [image: 6]
}

	[image: 1]
	Unique identifier of the schema.

	[image: 2]
	JSON schema specification. Should always be http://json-schema.org/draft-04/schema#.

	[image: 3]
	Description of the schema.

	[image: 4]
	Type of the root element.

	[image: 5]
	List of properties. Each of the properties should be described. They should have a defined type and can specify other validations, such as minimum and maximum.

	[image: 6]
	List of required fields.

 If we assign just the defined schema to a variable, say, @schema, we can check JSON data against this schema:

mysql> SET @schema = '{
 '> "id": "http://www.oreilly.com/mysqlcookbook",
 '> "$schema": "http://json-schema.org/draft-04/schema#",
 '> "description": "Schema for the table book_authors",
 '> "type": "object",
 '> "properties": {
 '> "name": {"type": "string"},
 '> "lastname": {"type": "string"},
 '> "books": {"type": "array"}
 '> },
 '> "required":["name", "lastname"]
 '> }';
Query OK, 0 rows affected (0,00 sec)

mysql> SELECT JSON_SCHEMA_VALIDATION_REPORT(@schema,
 -> '{"name": "Sveta"}') AS 'Valid?'\G
*************************** 1. row ***************************
Valid?: {"valid": false, "reason": "The JSON document location '#' failed requirement ↩
'required' at JSON Schema location '#'", "schema-location": "#", ↩
"document-location": "#", "schema-failed-keyword": "required"}
1 row in set (0,00 sec)

 In this case, validation failed, because the document contains only the name field and does not contain another required field, lastname:

mysql> SELECT JSON_SCHEMA_VALIDATION_REPORT(@schema,
 -> '{"name": "Sveta", "lastname": "Smirnova"}') AS 'Valid?';
+-----------------+
| Valid? |
+-----------------+
| {"valid": true} |
+-----------------+
1 row in set (0,00 sec)

 In this case, the document is valid, because it contains all required fields. The books field is optional and not required:

mysql> SELECT JSON_SCHEMA_VALIDATION_REPORT(@schema,
 -> '{"name": "Sveta", "lastname": "Smirnova",
 -> "books": "MySQL Cookbook"}') AS 'Valid?'\G
*************************** 1. row ***************************
Valid?: {"valid": false, "reason": "The JSON document location '#/books' failed ↩
requirement 'type' at JSON Schema location '#/properties/books'", ↩
"schema-location": "#/properties/books", "document-location": "#/books", ↩
"schema-failed-keyword": "type"}
1 row in set (0,00 sec)

 In this case, the document is not valid, because the books member has a string type and not an array as defined in the schema:

mysql> SELECT JSON_SCHEMA_VALIDATION_REPORT(@schema,
 -> '{"name": "Sveta", "lastname": "Smirnova",
 -> "books": ["MySQL Troubleshooting", "MySQL Cookbook"]}') AS 'Valid?';
+-----------------+
| Valid? |
+-----------------+
| {"valid": true} |
+-----------------+
1 row in set (0,00 sec)

 This document fixes the type error for the books element and thus is valid:

mysql> SELECT JSON_SCHEMA_VALID(@schema, '{"name": "Sveta", "lastname": "Smirnova",
 -> "vehicles": ["Honda CRF 250L"]}') AS 'Valid 1?',
 -> JSON_SCHEMA_VALID(@schema, '{"name": "Alkin", "lastname": "Tezuysal",
 -> "vehicles": "boat"}') AS 'Valid 2?';
+----------+----------+
| Valid 1? | Valid 2? |
+----------+----------+
| 1 | 1 |
+----------+----------+
1 row in set (0,00 sec)

 These documents are also valid, because there is no requirement for the vehicles property: it may exist or it may not exist and can be of any type.

 If you want to automatically validate a JSON field in a table against a defined schema, use CHECK constraints:

ALTER TABLE book_authors
ADD CONSTRAINT CHECK(JSON_SCHEMA_VALID('
{"id": "http://www.oreilly.com/mysqlcookbook",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Schema for the table book_authors",
 "type": "object",
 "properties": {
 "name": {"type": "string"},
 "lastname": {"type": "string"},
 "books": {"type": "array"}},
 "required":["name", "lastname"]} ',
 author));

19.4 Formatting JSON Values
Problem

 You want to print JSON in a nice format.

Solution

 Use the JSON_PRETTY function.

Discussion

 By default, JSON is printed as a long string that can be hard to read. If you want MySQL to print it in human-readable format, use the JSON_PRETTY function:

mysql> SELECT JSON_PRETTY(author) FROM book_authors\G
*************************** 1. row ***************************
JSON_PRETTY(author): {
 "id": 1,
 "name": "Paul",
 "books": [
 "Software Portability with imake: Practical Software Engineering",
 "Mysql: The Definitive Guide to Using, Programming, ↩
 and Administering Mysql 4 (Developer's Library)",
 "MySQL Certification Study Guide",
 "MySQL (OTHER NEW RIDERS)",
 "MySQL Cookbook",
 "MySQL 5.0 Certification Study Guide",
 "Using csh & tcsh: Type Less, Accomplish More (Nutshell Handbooks)",
 "MySQL (Developer's Library)"
],
 "lastname": "DuBois"
}
*************************** 2. row ***************************
JSON_PRETTY(author): {
 "id": 2,
 "name": "Alkin",
 "books": [
 "MySQL Cookbook"
],
 "lastname": "Tezuysal"
}
*************************** 3. row ***************************
JSON_PRETTY(author): {
 "id": 3,
 "name": "Sveta",
 "books": [
 "MySQL Troubleshooting",
 "MySQL Cookbook"
],
 "lastname": "Smirnova"
}
3 rows in set (0,00 sec)

19.5 Extracting Values from JSON
Problem

 You want to extract values from the JSON document.

Solution

 Use the JSON_EXTRACT function or the operators -> and ->>.

Discussion

 JSON by itself is no use if you cannot extract values from the documents. JSON in MySQL supports the JSON path that can be used to point to the specific element in JSON. The root element of the JSON document is represented by a $ sign. Object members are accessed by the . operator, and array members are accessed by an index, enclosed in square brackets. Indexes start from zero. You can refer to multiple array elements with the keyword to (e.g. $.[3 to 5]. The last keyword is a synonym of the last element in the array.

 The wildcard * represents either all values of all object members if used after a dot, .*, or all array elements if enclosed in the square brackets, [*].

 The [prefix]**suffix expression represents all paths, beginning with the prefix and ending with the suffix. Note that while the suffix part is required, prefix is optional. In other words, a JSON path expression should not end with a double asterisk sign.

 To access JSON elements, use the JSON_EXTRACT function.

 For example, to select names of the authors, use the following SQL:

mysql> SELECT JSON_EXTRACT(author, '$.name') AS author FROM book_authors;
+---------+
| author |
+---------+
| "Paul" |
| "Alkin" |
| "Sveta" |
+---------+
3 rows in set (0,00 sec)

 To remove quotes from the values, use the JSON_UNQUOTE function.

mysql> SELECT JSON_UNQUOTE(JSON_EXTRACT(author, '$.name')) AS author FROM book_authors;
+--------+
| author |
+--------+
| Paul |
| Alkin |
| Sveta |
+--------+
3 rows in set (0,00 sec)

 The -> operator is an alias of the JSON_EXTRACT function.

mysql> SELECT author->'$.name' AS author FROM book_authors;
+---------+
| author |
+---------+
| "Paul" |
| "Alkin" |
| "Sveta" |
+---------+
3 rows in set (0,00 sec)
The ->> operator is an alias of JSON_UNQUOTE(JSON_EXTRACT(...)):
mysql> SELECT author->>'$.name' AS author FROM book_authors;
+--------+
| author |
+--------+
| Paul |
| Alkin |
| Sveta |
+--------+
3 rows in set (0,00 sec)

 To extract the first and last books by the authors, use the 0 and last array indexes, respectively:

mysql> SELECT CONCAT(author->>'$.name', ' ', author->>'$.lastname') AS author,
 -> author->>'$.books[0]' AS `First Book`,
 -> author->>'$.books[last]' AS `Last Book` FROM book_authors\G
*************************** 1. row ***************************
 author: Paul DuBois
First Book: Software Portability with imake: Practical Software Engineering
 Last Book: MySQL (Developer's Library)
*************************** 2. row ***************************
 author: Alkin Tezuysal
First Book: MySQL Cookbook
 Last Book: MySQL Cookbook
*************************** 3. row ***************************
 author: Sveta Smirnova
First Book: MySQL Troubleshooting
 Last Book: MySQL Cookbook
3 rows in set (0,00 sec)

 The JSON path $.books[*] will return the full array of books. The same will happen if you omit a wildcard and simply refer to the books array as $.books. The $.* expression will return all elements of the JSON object as an array:

mysql> SELECT author->'$.*' FROM book_authors WHERE author->>'$.name' = 'Sveta';
+---+
| author->'$.*' |
+---+
| [3, "Sveta", ["MySQL Troubleshooting", "MySQL Cookbook"], "Smirnova"] |
+---+
1 row in set (0,00 sec)

See Also
For additional information about JSON Path,
 see “JSON Path Syntax” in the MySQL Reference Manual.

19.6 Searching Inside JSON
Problem

 You want to search for JSON documents containing particular values.

Solution

 Use the JSON_SEARCH function.

Discussion

 Accessing by key works great, but you may want to search for particular values in JSON documents. MySQL allows you to do this. For example, to find all authors of the book MySQL Cookbook, run the following query:

mysql> SELECT author->>'$.name' AS author FROM book_authors
 -> WHERE JSON_SEARCH(author, 'one', 'MySQL Cookbook');
+--------+
| author |
+--------+
| Paul |
| Alkin |
| Sveta |
+--------+
3 rows in set, 1 warning (0,00 sec)

 The JSON_SEARCH function takes a JSON document keyword, one or all, and a search string as required arguments and returns the found path of the element or elements that contain the searched value. It also supports the optional escape character and JSON path arguments.

 Similarly to the operator LIKE function, JSON_SEARCH supports wildcards % and _.

 Thus, to search all books with names that start with MySQL, use the following expression:

mysql> SELECT author->>'$.name' AS author,
 -> JSON_SEARCH(author, 'all', 'MySQL%') AS books
 -> FROM book_authors\G
*************************** 1. row ***************************
author: Paul
 books: ["$.books[2]", "$.books[3]", "$.books[4]", "$.books[5]", "$.books[7]"]
*************************** 2. row ***************************
author: Alkin
 books: "$.books[0]"
*************************** 3. row ***************************
author: Sveta
 books: ["$.books[0]", "$.books[1]"]
3 rows in set (0,00 sec)

 When searching for a single match, you can use the return value of the JSON_SEARCH function as an argument for the JSON_EXTRACT function:

mysql> SELECT author->>'$.name' AS author,
 -> JSON_EXTRACT(author,
 -> JSON_UNQUOTE(JSON_SEARCH(author, 'one', 'MySQL%'))) AS book
 -> FROM book_authors;
+--------+-----------------------------------+
| author | book |
+--------+-----------------------------------+
Paul	"MySQL Certification Study Guide"
Alkin	"MySQL Cookbook"
Sveta	"MySQL Troubleshooting"
+--------+-----------------------------------+
3 rows in set (0,00 sec)

19.7 Inserting New Elements into a JSON Document
Problem

 You want to insert new elements into a JSON document.

Solution

 Use the JSON_INSERT, JSON_ARRAY_APPEND, and JSON_ARRAY_INSERT functions.

Discussion

 You may want to not only search inside JSON values but also modify them. MySQL supports a number of functions that can modify JSON. The most wonderful thing about them is that they do not replace the JSON document as regular string functions do. Rather, they perform updates in place. This allows you to modify JSON values effectively.

 MySQL functions allow you to append, remove, and replace parts of JSON as well as merge two or more documents into one. They all take the original document as an argument, a path that needs to be modified, and a new value.

 To insert a new value into a JSON object, use the JSON_INSERT function. Thus, to add information about a current author’s work, call the function as follows:

UPDATE book_authors SET author = JSON_INSERT(author, '$.work', 'Percona')
WHERE author->>'$.name' IN ('Sveta', 'Alkin');

 To add a book into the end of the book array, use the JSON_ARRAY_APPEND function:

UPDATE book_authors SET author = JSON_ARRAY_APPEND(author, '$.books',
'MySQL Performance Schema in Action') WHERE author->>'$.name' = 'Sveta';

 This will add a new book into the end of the array:

mysql> SELECT JSON_PRETTY(author) FROM book_authors
 -> WHERE author->>'$.name' = 'Sveta'\G
*************************** 1. row ***************************
JSON_PRETTY(author): {
 "id": 3,
 "name": "Sveta",
 "work": "Percona",
 "books": [
 "MySQL Troubleshooting",
 "MySQL Cookbook",
 "MySQL Performance Schema in Action"
],
 "lastname": "Smirnova"
}
1 row in set (0,00 sec)

 To add an element into a specific place, use the JSON_ARRAY_INSERT function:

UPDATE book_authors SET author = JSON_ARRAY_INSERT(author, '$.books[0]',
'MySQL for Absolute Beginners') WHERE author->>'$.name' = 'Alkin';

 This will insert a new book into the beginning of the array:

mysql> SELECT JSON_PRETTY(author)
 -> FROM book_authors WHERE author->>'$.name' = 'Alkin'\G
*************************** 1. row ***************************
JSON_PRETTY(author): {
 "id": 2,
 "name": "Alkin",
 "work": "Percona",
 "books": [
 "MySQL for Absolute Beginners",
 "MySQL Cookbook"
],
 "lastname": "Tezuysal"
}
1 row in set (0,00 sec)

19.8 Updating JSON
Problem

 You want to update a JSON value.

Solution

 Use the JSON_REPLACE and JSON_SET functions.

Discussion

 While we were working on this book, Alkin changed jobs, so the content of the table needs to be updated. The JSON_REPLACE function replaces a given path with the new value:

UPDATE book_authors SET author = JSON_REPLACE(author, '$.work', 'PlanetScale')
WHERE author->>'$.name' = 'Alkin';

 However, the JSON_REPLACE function will do nothing if a record that needs to be replaced does not exist in the document:

mysql> UPDATE book_authors SET author = JSON_REPLACE(author, '$.work', 'Oracle')
 -> WHERE author->>'$.name' = 'Paul';
Query OK, 0 rows affected (0,00 sec)
Rows matched: 1 Changed: 0 Warnings: 0

mysql> SELECT author->>'$.work' FROM book_authors WHERE author->>'$.name' = 'Paul';
+-------------------+
| author->>'$.work' |
+-------------------+
| NULL |
+-------------------+
1 row in set (0,00 sec)

 To resolve this problem, use the JSON_SET function to update the document if the path exists or to insert a new value if the path does not exist:

mysql> UPDATE book_authors SET author = JSON_SET(author, '$.work', 'MySQL')
 -> WHERE author->>'$.name' = 'Paul';
Query OK, 1 row affected (0,01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT author->>'$.work' FROM book_authors WHERE author->>'$.name' = 'Paul';
+-------------------+
| author->>'$.work' |
+-------------------+
| MySQL |
+-------------------+
1 row in set (0,00 sec)

mysql> UPDATE book_authors SET author = JSON_SET(author, '$.work', 'Oracle')
 -> WHERE author->>'$.name' = 'Paul';
Query OK, 1 row affected (0,00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT author->>'$.work' FROM book_authors WHERE author->>'$.name' = 'Paul';
+-------------------+
| author->>'$.work' |
+-------------------+
| Oracle |
+-------------------+
1 row in set (0,00 sec)

19.9 Removing Elements from JSON
Problem

 You want to remove elements from a JSON document.

Solution

 Use the JSON_REMOVE function.

Discussion

 The JSON_REMOVE function removes specified elements from JSON.

 For example, to remove unpublished books from the book_authors table, use the following code:

UPDATE book_authors SET author = JSON_REMOVE(author, '$.books[0]')
WHERE author->>'$.name' = 'Alkin';
UPDATE book_authors SET author = JSON_REMOVE(author, '$.books[last]')
WHERE author->>'$.name' = 'Sveta';

19.10 Merging Two or More JSON Documents into One
Problem

 You want to combine two or more JSON documents into one.

Solution

 Use the family of JSON_MERGE_* functions.

Discussion

 Two functions, JSON_MERGE_PATCH and JSON_MERGE_PRESERVE, are available for combining multiple JSON documents into one. JSON_MERGE_PATCH removes duplicates when merging two documents, whereas JSON_MERGE_PRESERVE keeps them. Both functions take two or more arguments that should be valid JSON text.

 For example, in this recipe we will store values of the author column in the book_authors table into user-defined variables: one for each author. Additionally, we will store arrays of books for Sveta in a sveta_books variable:

SELECT author INTO @paul FROM book_authors WHERE author->>'$.name'='Paul';
SELECT author INTO @sveta FROM book_authors WHERE author->>'$.name'='Sveta';
SELECT author INTO @alkin FROM book_authors WHERE author->>'$.name'='Alkin';
SELECT author->>'$.books' INTO @sveta_books FROM book_authors
 WHERE author->>'$.name'='Sveta';

 JSON_MERGE_PRESERVE combines documents, provided by its arguments, into a single object. You can use this function to add new elements to your objects or arrays. Thus, to add an array of countries where the author has lived, you can just provide an object containing such an array as an argument:

mysql> SELECT JSON_PRETTY(JSON_MERGE_PRESERVE(@sveta,
 -> '{"places lived": ["Russia", "Turkey"]}'))\G
*************************** 1. row ***************************
JSON_PRETTY(JSON_MERGE_PRESERVE(@sveta, '{"places lived": ["Russia", "Turkey"]}')): {
 "id": 3,
 "name": "Sveta",
 "work": "Percona",
 "books": [
 "MySQL Troubleshooting",
 "MySQL Cookbook"
],
 "lastname": "Smirnova",
 "places lived": [
 "Russia",
 "Turkey"
]
}
1 row in set (0,00 sec)

 To add a new book into the books array, pass it as a part of the books array in the object as a second argument:

mysql> SELECT JSON_PRETTY(JSON_MERGE_PRESERVE(@sveta,
 -> '{"books": ["MySQL Performance Schema in Action"]}'))\G
*************************** 1. row ***************************
JSON_PRETTY(JSON_MERGE_PRESERVE(@sveta, ↩
'{"books": ["MySQL Performance Schema in Action"]}')): {
 "id": 3,
 "name": "Sveta",
 "work": "Percona",
 "books": [
 "MySQL Troubleshooting",
 "MySQL Cookbook",
 "MySQL Performance Schema in Action"
],
 "lastname": "Smirnova"
}
1 row in set (0,00 sec)

 The content of the books array in the second argument will be added to the end of the array with the same name in the first argument.

 If two objects have scalar values with the same key, they will be merged into an array:

mysql> SELECT JSON_PRETTY(JSON_MERGE_PRESERVE(@paul, @sveta, @alkin)) AS authors\G
*************************** 1. row ***************************
authors: {
 "id": [
 1,
 3,
 2
],
 "name": [
 "Paul",
 "Sveta",
 "Alkin"
],
 "work": [
 "Oracle",
 "Percona",
 "PlanetScale"
],
 "books": [
 "Software Portability with imake: Practical Software Engineering",
 "Mysql: The Definitive Guide to Using, Programming, ↩
 and Administering Mysql 4 (Developer's Library)",
 "MySQL Certification Study Guide",
 "MySQL (OTHER NEW RIDERS)",
 "MySQL Cookbook",
 "MySQL 5.0 Certification Study Guide",
 "Using csh & tcsh: Type Less, Accomplish More (Nutshell Handbooks)",
 "MySQL (Developer's Library)",
 "MySQL Troubleshooting",
 "MySQL Cookbook",
 "MySQL Cookbook"
],
 "lastname": [
 "DuBois",
 "Smirnova",
 "Tezuysal"
]
}
1 row in set (0,00 sec)

Note

 Note that the JSON_MERGE_PRESERVE function does not try to handle duplicates, so the book title MySQL Cookbook repeats in the resulting array three times.

 The JSON_MERGE_PATCH function, instead, removes duplicates in favor of its latest argument. The same combination of merging three authors will just return the one, specified as the last argument:
mysql> SELECT JSON_PRETTY(JSON_MERGE_PATCH(@paul, @sveta, @alkin)) AS authors\G
*************************** 1. row ***************************
authors: {
 "id": 2,
 "name": "Alkin",
 "work": "PlanetScale",
 "books": [
 "MySQL Cookbook"
],
 "lastname": "Tezuysal"
}
1 row in set (0,00 sec)

 This feature could be used to remove unneeded elements from JSON. For example, if we decide that it doesn’t matter which company the author works for, we can remove the work element by passing it as an object with the value null:

mysql> SELECT JSON_PRETTY(JSON_MERGE_PATCH(@sveta, '{"work": null}'))\G
*************************** 1. row ***************************
JSON_PRETTY(JSON_MERGE_PATCH(@sveta, '{"work": null}')): {
 "id": 3,
 "name": "Sveta",
 "books": [
 "MySQL Troubleshooting",
 "MySQL Cookbook"
],
 "lastname": "Smirnova"
}
1 row in set (0,00 sec)

 When the latest document of the function is not an object, JSON_MERGE_PRESERVE will add it as the latest element of an array. For example, to add a new book to the array of books by Sveta, you can use following code:

mysql> SELECT JSON_PRETTY(JSON_MERGE_PRESERVE(@sveta_books,
 -> '"MySQL Performance Schema in Action"')) AS 'Books by Sveta'\G
*************************** 1. row ***************************
Books by Sveta: [
 "MySQL Troubleshooting",
 "MySQL Cookbook",
 "MySQL Performance Schema in Action"
]
1 row in set (0,00 sec)

 JSON_MERGE_PATCH, instead, will replace the elements in the original document with the new one:

mysql> SELECT JSON_PRETTY(JSON_MERGE_PATCH(@sveta_books,
 -> '"MySQL Performance Schema in Action"')) AS 'Books by Sveta';
+--------------------------------------+
| Books by Sveta |
+--------------------------------------+
| "MySQL Performance Schema in Action" |
+--------------------------------------+
1 row in set (0,00 sec)

19.11 Creating JSON from Relational Data
Problem

 You have relational data and want to create JSON from it.

Solution

 Use the JSON_OBJECT and JSON_ARRAY functions and their aggregate variants JSON_OBJECTAGG and JSON_ARRAYAGG.

Discussion

 It can be useful to create JSON out of relational data. MySQL provides the JSON_OBJECT function that combines pairs of values into a JSON object:

mysql> SELECT JSON_PRETTY(
 -> JSON_OBJECT("string", "Some String", "number", 42, "null", NULL)) AS my_object\G
*************************** 1. row ***************************
my_object: {
 "null": null,
 "number": 42,
 "string": "Some String"
}
1 row in set (0,00 sec)

 The JSON_ARRAY function creates a JSON array from its arguments:

mysql> SELECT JSON_PRETTY(JSON_ARRAY("one", "two", "three", 4, 5)) AS my_array\G
*************************** 1. row ***************************
my_array: [
 "one",
 "two",
 "three",
 4,
 5
]
1 row in set (0,00 sec)

 You can combine both functions to make nesting objects and arrays:

mysql> SELECT JSON_PRETTY(JSON_OBJECT("Example", "Nesting object and array",
 -> "Human", JSON_OBJECT("name", "Sveta", "lastname", "Smirnova"),
 -> "Numbers", JSON_ARRAY("one", "two", "three"))) AS my_object\G
*************************** 1. row ***************************
my_object: {
 "Human": {
 "name": "Sveta",
 "lastname": "Smirnova"
 },
 "Example": "Nesting object and array",
 "Numbers": [
 "one",
 "two",
 "three"
]
}
1 row in set (0,00 sec)

 The JSON_OBJECTAGG and JSON_ARRAYAGG functions are aggregate versions of JSON_OBJECT and JSON_ARRAY that allow you to create JSON objects and arrays out of data, returned by GROUP BY queries.

 The cookbook database has a movies_actors table that contains a list of movies and actors that starred in them. The table has a few rows for each movie and a few others for each actor.

 If you want to have a JSON object that will list a movie and all the actors who starred in that movie in an array, combine the JSON_OBJECT and JSON_ARRAYAGG functions:

mysql> SELECT JSON_PRETTY(JSON_OBJECT('Movie', movie,
 -> 'Starred', JSON_ARRAYAGG(actor))) AS starred
 -> FROM movies_actors GROUP BY movie\G
*************************** 1. row ***************************
starred: {
 "Movie": "Kingdom of Heaven",
 "Starred": [
 "Liam Neeson",
 "Orlando Bloom"
]
}
*************************** 2. row ***************************
starred: {
 "Movie": "Red",
 "Starred": [
 "Helen Mirren",
 "Bruce Willis"
]
}
*************************** 3. row ***************************
starred: {
 "Movie": "The Fellowship of the Ring",
 "Starred": [
 "Ian McKellen",
 "Ian Holm",
 "Orlando Bloom",
 "Elijah Wood"
]
}
*************************** 4. row ***************************
starred: {
 "Movie": "The Fifth Element",
 "Starred": [
 "Bruce Willis",
 "Gary Oldman",
 "Ian Holm"
]
}
*************************** 5. row ***************************
starred: {
 "Movie": "The Phantom Menace",
 "Starred": [
 "Ewan McGregor",
 "Liam Neeson"
]
}
*************************** 6. row ***************************
starred: {
 "Movie": "Unknown",
 "Starred": [
 "Diane Kruger",
 "Liam Neeson"
]
}
6 rows in set (0,00 sec)

 The JSON_OBJECTAGG function can take table values in one column as member names and values in another column as their arguments:

mysql> SELECT JSON_PRETTY(JSON_OBJECTAGG(name, website)) AS websites
 -> FROM book_vendor\G
*************************** 1. row ***************************
websites: {
 "Amazon.com": "www.amazon.com",
 "Barnes & Noble": "www.barnesandnoble.com",
 "O'Reilly Media": "www.oreilly.com"
}
1 row in set (0,00 sec)

19.12 Converting JSON into Relational Format
Problem

 You have JSON data and want to work with it the same way as you do with relational structure data.

Solution

 Use the JSON_TABLE function.

Discussion

 In the previous recipe, we converted relational data into JSON. You may need to do the opposite: convert JSON into relational format. In this case, the JSON_TABLE function will help.

 The JSON_TABLE function takes a JSON document and a list of columns with paths as its arguments. It returns a table as a result.

 For example, for the following document:

{
 "null": null,
 "number": 42,
 "string": "Some String"
}

 JSON_TABLE can be called as follows:

mysql> SELECT * [image: 1]
 -> FROM JSON_TABLE([image: 2]
 -> '{"null": null, "number": 42, "string": "Some String"}', [image: 3]
 -> '$' [image: 4]
 -> COLUMNS([image: 5]
 -> number INT PATH '$.number', [image: 6]
 -> string VARCHAR(255) PATH '$.string' ERROR ON ERROR [image: 7]
 ->)) AS jt; [image: 8]
+--------+-------------+
| number | string |
+--------+-------------+
| 42 | Some String |
+--------+-------------+
1 row in set (0,00 sec)
	[image: 1]
	Start the query by selecting everything from the resulting table.

	[image: 2]
	The JSON_TABLE function can be used only in the FROM clause.

	[image: 3]
	The first argument to the function is a JSON document. In this example, the function takes a string. If you want to pass a column name into another table, you need to specify this table prior to the JSON_TABLE call:

SELECT * FROM mytable, JSON_TABLE(mytable.mycolumn...

	[image: 4]
	A path that will be used as a document root. In this example, we’re using the whole document, but you can simplify expressions for the columns if you specify the path to the part of the JSON document here.

	[image: 5]
	Definition of columns.

	[image: 6]
	The number column has a INT type and default error handling: the column is set to NULL in case an error happens. We use JSON path $.number to set a value for this column.

	[image: 7]
	For the column string, we decided to raise an error; therefore, we used the ERROR ON ERROR clause.

	[image: 8]
	Any function in the FROM clause should have an alias, so we used jt as an alias.

 To call the JSON_TABLE function on an existing table, add it to the query prior to calling the function. In practice, perform a CROSS JOIN of two tables. The COLUMNS clause also supports nested paths, so you can expand arrays into multiple rows.

 The author column in the book_authors table contains a list of books in the books array. To expand each row into its own row, use the NESTED PATH clause:

mysql> SELECT jt.* FROM book_authors ba, [image: 1]
 -> JSON_TABLE(ba.author,
 -> '$' COLUMNS (
 -> name VARCHAR(255) PATH '$.name',
 -> lastname VARCHAR(255) PATH '$.lastname',
 -> NESTED PATH '$.books[*]' COLUMNS ([image: 2]
 -> book VARCHAR(255) PATH '$') [image: 3]
 ->)) AS jt;
+-------+----------+---+
| name | lastname | book |
+-------+----------+---+
| Paul | DuBois | Software Portability with imake: Practical Software Engineering |
| Paul | DuBois | Mysql: The Definitive Guide to Using, Programming, ↩
 and Administering Mysql 4 (Developer's Library) |
Paul	DuBois	MySQL Certification Study Guide
Paul	DuBois	MySQL (OTHER NEW RIDERS)
Paul	DuBois	MySQL Cookbook
Paul	DuBois	MySQL 5.0 Certification Study Guide
Paul	DuBois	Using csh & tcsh: Type Less, Accomplish More ↩
 (Nutshell Handbooks) |
Paul	DuBois	MySQL (Developer's Library)
Alkin	Tezuysal	MySQL Cookbook
Sveta	Smirnova	MySQL Troubleshooting
Sveta	Smirnova	MySQL Cookbook
+-------+----------+---+
11 rows in set (0,01 sec)
	[image: 1]
	To use a column in the existing table, put the table name before the JSON_TABLE call.

	[image: 2]
	The NESTED PATH clause expands the following path pattern into several columns. In our case, the path is $.books[*] that points to each element of the books array.

	[image: 3]
	Define the nested column as any other column. Note that PATH should be relative to the NESTED PATH.

See Also
For additional information about the JSON_TABLE function,
 see “JSON Table Functions” in the MySQL Reference Manual.

19.13 Investigating JSON
Problem

 You want to know details about your JSON data structure, such as how deep the value is, how many children a particular element has, and so on.

Solution

 Use JSON attribute functions.

Discussion

 The JSON_LENGTH function returns a number of elements in the JSON document or the path, if specified. For scalars, it is always 1, and for objects and arrays, it is the number of elements. You can use this function to perform such tasks as calculating the number of books written by a particular author:

mysql> SELECT CONCAT(author->>'$.name', ' ', author->>'$.lastname') AS 'author',
 -> JSON_LENGTH(author->>'$.books') AS 'Number of Books' FROM book_authors;
+----------------+-----------------+
| author | Number of Books |
+----------------+-----------------+
Paul DuBois	8
Alkin Tezuysal	1
Sveta Smirnova	2
+----------------+-----------------+
3 rows in set (0,01 sec)

 The JSON_DEPTH function returns the maximum depth of the JSON document. It returns one for a scalar, empty object, or empty array. For objects and arrays with inner elements, it counts all nested levels. For the author column in the book_authors table, it returns three:

mysql> SELECT JSON_DEPTH(author) FROM book_authors WHERE author->>'$.name' = 'Sveta';
+--------------------+
| JSON_DEPTH(author) |
+--------------------+
| 3 |
+--------------------+
1 row in set (0,00 sec)

 To understand why this is, let’s examine an example value in detail:

{ [image: 1]
 "id": 3,
 "name": "Sveta",
 "work": "Percona", [image: 2]
 "books": [
 "MySQL Troubleshooting", [image: 3]
 "MySQL Cookbook"
],
 "lastname": "Smirnova"
}

	[image: 1]
	Level one: the object that contains all the elements.

	[image: 2]
	Level two: the object element.

	[image: 3]
	Level three: the element of the nested array.

 The JSON_DEPTH function is useful when you need to understand how complex your JSON data is.

 The JSON_STORAGE_SIZE function returns the number of bytes that the JSON data takes. It is useful to plan storage use for your data:

mysql> SELECT JSON_STORAGE_SIZE(author) FROM book_authors;
+---------------------------+
| JSON_STORAGE_SIZE(author) |
+---------------------------+
| 475 |
| 144 |
| 171 |
+---------------------------+
3 rows in set (0,00 sec)

 The JSON_TYPE function returns the type of the JSON element. Thus, for the author column in the book_authors table, the types are as shown:

mysql> SELECT JSON_TYPE(author), JSON_TYPE(author->'$.id'),
 -> JSON_TYPE(author->'$.name'), JSON_TYPE(author->'$.books')
 -> FROM book_authors WHERE author->>'$.name' = 'Sveta'\G
*************************** 1. row ***************************
 JSON_TYPE(author): OBJECT
 JSON_TYPE(author->'$.id'): INTEGER
 JSON_TYPE(author->'$.name'): STRING
JSON_TYPE(author->'$.books'): ARRAY
1 row in set (0,00 sec)

Warning

 Note that we used the -> operator instead of ->> to preserve quotes in scalar values.

19.14 Working with JSON in MySQL as a Document Store
Problem

 You want to work with JSON in MySQL in the same way as NoSQL databases do.

Solution

 Use X DevAPI. The following clients and connectors support X DevAPI and can work with JSON as a Document Store:

	MySQL Shell in JavaScript and Python mode
	Connector/C++
	Connector/J
	Connector/Node.js
	Connector/NET
	Connector/Python

Discussion

 We’ll use MySQL Shell for the examples in this recipe. We assume that you are connected to the MySQL server and thus have the default objects available. See Recipe 2.1 for instructions on how to connect to the MySQL server via MySQL Shell.

 MySQL Document Store is a collection, stored in a table, defined as follows:

CREATE TABLE `MyCollection` (
 `doc` json DEFAULT NULL,
 `_id` varbinary(32) GENERATED ALWAYS AS (json_unquote(
 json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL,
 `_json_schema` json GENERATED ALWAYS AS (_utf8mb4'{"type":"object"}') VIRTUAL,
 PRIMARY KEY (`_id`),
 CONSTRAINT `$val_strict_2190F99D7C6BE98E2C1EFE4E110B46A3D43C9751`
 CHECK (json_schema_valid(`_json_schema`,`doc`)) /*!80016 NOT ENFORCED */
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;

 where doc is a JSON column, storing the document. _id is a unique identifier, generated by extracting the value of the _id member, and the optional _json_schema is a schema that you can enforce when creating a collection. See Recipe 2.9 for the details and an example.

 X DevAPI will create such a table when you call the createCollection method:

 MySQL cookbook JS > session.getDefaultSchema().createCollection('MyCollection')
<Collection:MyCollection>
Tip

 We use syntax that MySQL Shell in JavaScript mode understands for examples in this recipe. Syntax for different languages differs slightly. Refer to your implementation documentation for details.

 Once the collection is created, you can insert documents into it and update, remove, and search them.

 It is handy to store a collection object in a variable:

MySQL cookbook JS > MyCollection = session.getDefaultSchema().
 -> getCollection('MyCollection')
<Collection:MyCollection>

 The Collection class in X DevAPI supports four basic CRUD (Create, Read, Update, Delete) operations:

	add
	find
	modify
	remove

 We already showed them in action when we discussed MySQL Shell in Recipes 2.9 and 2.10. In this recipe, we’ll cover details we didn’t cover there.

Adding documents to the collection

 To add documents into the collection, use the add method, which accepts either a JSON object or an array of JSON objects, or a mysqlx.expr as an argument. The following code snippet demonstrates all three flavors of the syntax:

 MySQL cookbook JS > MyCollection.add({"document": "one"}).
 -> add([{"document": "two"}, {"document": "three"}]).
 -> add(mysqlx.expr('{"document": "four"}'))
 ->
Query OK, 4 items affected (0.0083 sec)

Records: 4 Duplicates: 0 Warnings: 0

Searching for documents

 To search for documents, use the find method. If called without arguments, it will return a list of all documents in the collection:

 MySQL cookbook JS > MyCollection.find()
{
 "_id": "000060d5ab750000000000000012",
 "document": "one"
}
{
 "_id": "000060d5ab750000000000000013",
 "document": "two"
}
{
 "_id": "000060d5ab750000000000000014",
 "document": "three"
}
{
 "_id": "000060d5ab750000000000000015",
 "document": "four"
}
4 documents in set (0.0007 sec)

 Each of the documents contains an automatically generated _id that is also a primary key for the collection.

 The find method narrows a result set by using search conditions, limiting the number of the documents, and grouping, sorting, and modifying the resulting values. These are basic methods, available to modify the result of any SQL SELECT operation. However, it is not possible to join two collections like you can do with SQL tables.

 To search for a particular document, pass a condition as an argument of the find method. You can use the LIKE operator and others to perform creative comparisons:

 MySQL cookbook JS > MyCollection.find("document LIKE 't%'")
{
 "_id": "000060d5ab750000000000000013",
 "document": "two"
}
{
 "_id": "000060d5ab750000000000000014",
 "document": "three"
}
2 documents in set (0.0009 sec)

 To modify the result, pass the expression to the fields method:

 MySQL cookbook JS > MyCollection.find("document LIKE 't%'").
 -> fields(mysqlx.expr('{"Document": upper(document)}'))
 ->
{
 "Document": "TWO"
}
{
 "Document": "THREE"
}
2 documents in set (0.0009 sec)

 To group documents, use the groupBy method, and narrow the result with the having method. To illustrate how they work, we’ll use the CollectionLimbs collection:

 MySQL cookbook JS > limbs = session.getDefaultSchema().getCollection('CollectionLimbs')
<Collection:CollectionLimbs>

 MySQL cookbook JS > limbs.find().fields('arms', 'COUNT(thing)').groupBy('arms')
{
 "arms": 2,
 "COUNT(thing)": 3
}
{
 "arms": 0,
 "COUNT(thing)": 5
}
{
 "arms": 10,
 "COUNT(thing)": 1
}
{
 "arms": 1,
 "COUNT(thing)": 1
}
{
 "arms": null,
 "COUNT(thing)": 1
}
5 documents in set (0.0010 sec)

 The preceding code prints the number of things with a specific number of arms. To limit this list to only things that have both arms and legs, we can use the having method:

 MySQL cookbook JS > limbs.find().fields('arms', 'COUNT(thing)').
 -> groupBy('arms').having('MIN(legs) > 0')
{
 "arms": 2,
 "COUNT(thing)": 3
}
1 document in set (0.0006 sec)

 To print the three things with the highest number of legs, use the sort method with the keywords DESC and limit:

 MySQL cookbook JS > limbs.find().sort('legs DESC').limit(3)
{
 "_id": "000060d5ab75000000000000001a",
 "arms": 0,
 "legs": 99,
 "thing": "centipede"
}
{
 "_id": "000060d5ab750000000000000017",
 "arms": 0,
 "legs": 6,
 "thing": "insect"
}
{
 "_id": "000060d5ab75000000000000001b",
 "arms": 0,
 "legs": 4,
 "thing": "table"
}
3 documents in set (0.0006 sec)

 You may also bind values if you pass the parameter name after a colon sign in the find method and pass values in the bind method. You may bind as many arguments as you want:

 MySQL cookbook JS > limbs.find('legs = :legs').bind('legs', 4)
{
 "_id": "000060d5ab75000000000000001b",
 "arms": 0,
 "legs": 4,
 "thing": "table"
}
{
 "_id": "000060d5ab75000000000000001c",
 "arms": 2,
 "legs": 4,
 "thing": "armchair"
}
2 documents in set (0.0008 sec)

 MySQL cookbook JS > limbs.find('legs = :legs and arms = :arms').
 -> bind('legs', 4).bind('arms', 2)
{
 "_id": "000060d5ab75000000000000001c",
 "arms": 2,
 "legs": 4,
 "thing": "armchair"
}
1 document in set (0.0005 sec)

Modifying documents

 To modify documents in the collection, use the modify method. It accepts a search condition and allows you to bind parameters similarly to the find method. To modify found elements, use the set and unset methods to set or unset values of the object member. Use the arrayInsert, arrayAppend, and arrayDelete methods to modify arrays, and use the patch method to merge JSON documents.

 In our examples, we’ll use the MyCollection collection:

 MySQL cookbook JS > MyCollection.find('document = "one"') [image: 1]
{
 "_id": "000060d5ab750000000000000012",
 "document": "one"
}
1 document in set (0.0005 sec)
 MySQL cookbook JS > MyCollection.modify('document = "one"').
 -> set('array', [2, 3, 4])[image: 2]
Query OK, 1 item affected (0.0054 sec)

Rows matched: 1 Changed: 1 Warnings: 0
 MySQL cookbook JS > MyCollection.find('document = "one"')
{
 "_id": "000060d5ab750000000000000012",
 "array": [
 2,
 3,
 4
],
 "document": "one"
}
1 document in set (0.0005 sec)
 MySQL cookbook JS > MyCollection.modify('document = "one"').arrayAppend('array', 5)[image: 3]
Query OK, 1 item affected (0.0073 sec)

Rows matched: 1 Changed: 1 Warnings: 0
 MySQL cookbook JS > MyCollection.find('document = "one"')
{
 "_id": "000060d5ab750000000000000012",
 "array": [
 2,
 3,
 4,
 5
],
 "document": "one"
}
1 document in set (0.0007 sec)
 MySQL cookbook JS > MyCollection.modify('document = "one"').
 -> arrayInsert('array[0]', 1)[image: 4]
Query OK, 1 item affected (0.0072 sec)

Rows matched: 1 Changed: 1 Warnings: 0
 MySQL cookbook JS > MyCollection.find('document = "one"')
{
 "_id": "000060d5ab750000000000000012",
 "array": [
 1,
 2,
 3,
 4,
 5
],
 "document": "one"
}
1 document in set (0.0008 sec)
 MySQL cookbook JS > MyCollection.modify('document = "one"').arrayDelete('array[2]')[image: 5]
Query OK, 1 item affected (0.0059 sec)

Rows matched: 1 Changed: 1 Warnings: 0
 MySQL cookbook JS > MyCollection.find('document = "one"')
{
 "_id": "000060d5ab750000000000000012",
 "array": [
 1,
 2,
 4,
 5
],
 "document": "one"
}
1 document in set (0.0009 sec)
 MySQL cookbook JS > MyCollection.modify('document = "one"').unset('array')[image: 6]
Query OK, 1 item affected (0.0080 sec)

Rows matched: 1 Changed: 1 Warnings: 0
 MySQL cookbook JS > MyCollection.find('document = "one"')
{
 "_id": "000060d5ab750000000000000012",
 "document": "one"
}
1 document in set (0.0007 sec)

 MySQL cookbook JS > MyCollection.modify('document = "one"').
 -> patch({'number': 42, 'array': [1,2,3]}).
 -> patch({'array': [4,5]})[image: 7]
Query OK, 1 item affected (0.0063 sec)

Rows matched: 1 Changed: 1 Warnings: 0
 MySQL cookbook JS > MyCollection.find('document = "one"')
{
 "_id": "000060d5ab750000000000000012",
 "array": [
 4,
 5
],
 "number": 42,
 "document": "one"
}
1 document in set (0.0007 sec)

	[image: 1]
	We’ll experiment with this document from the collection.

	[image: 2]
	The set method adds or changes an element in the object.

	[image: 3]
	The arrayAppend method adds a new element to the end of the array.

	[image: 4]
	For the arrayInsert method, you can specify the position in the array where you want to add the new element.

	[image: 5]
	The arrayDelete method removes an element from the specified position.

	[image: 6]
	The unset method removes an element from the object.

	[image: 7]
	The patch method works similarly to the JSON function JSON_MERGE_PATCH. In our case, it first added two elements, number and array, to the original document, then replaced the content of the array element with the content of the element with the same name in the object, passed as a parameter to the second invocation of the patch method.

Removing documents and collections

 To remove documents, use the remove method:

MyCollection.remove('document = :number').bind('number', 'one')

 To drop a collection, use the dropCollection method in your API:

session.getSchema('cookbook').dropCollection('MyCollection')

See Also
For additional information about X DevAPI,
 see the X DevAPI Reference Manual.

Chapter 20. Performing Transactions
20.0 Introduction
The MySQL server can handle multiple clients at the same time
 because it is multithreaded. To deal with contention among clients, the
 server performs any necessary locking so that two clients cannot modify
 the same data at once. However, as the server executes SQL statements,
 it’s very possible that successive statements received from a given client
 will be interleaved with statements from other clients. If a client
 executes multiple statements that are dependent on one another, the fact
 that other clients may be updating tables in between those statements can
 cause difficulties.

Statement failures can be problematic, too, if a
 multiple-statement operation does not run to completion. Suppose that a
 flight table contains information about
 airline flight schedules, and you want to update the row for Flight 578 by
 choosing a pilot from among those available. You might do so using three
 statements as follows:
SET @p_val = (SELECT pilot_id FROM pilot WHERE available = 'yes' LIMIT 1);
UPDATE pilot SET available = 'no' WHERE pilot_id = @p_val;
UPDATE flight SET pilot_id = @p_val WHERE flight_id = 578;
The first statement chooses an available pilot, the second marks the
 pilot as unavailable, and the third assigns the pilot to the flight.
 That’s straightforward enough in principle, but in practice there are
 significant difficulties:
	Concurrency issues
	If two clients want to schedule pilots, it’s possible for
 both to run the initial SELECT
 query and retrieve the same pilot ID number before either has a
 chance to set the pilot’s status to unavailable. If that happens,
 the same pilot is scheduled for two flights at once.

	Integrity issues
	All three statements must execute successfully as a unit.
 For example, if the SELECT and
 the first UPDATE run
 successfully, but the second UPDATE fails, the pilot’s status is set to
 unavailable without the pilot being assigned a flight. The database
 becomes inconsistent.

To prevent concurrency and integrity problems in these types of
 situations, transactions are helpful. A transaction groups a set of
 statements and guarantees the following properties:
	No other client can update the data used in the transaction
 while the transaction is in progress; it’s as though you have the
 server all to yourself. For example, other clients cannot modify the
 pilot or flight records while you’re booking a pilot for a flight.
 Transactions solve concurrency problems arising from the
 multiple-client nature of the MySQL server. In effect, transactions
 serialize access to a shared resource across multiple-statement
 operations.

	Statements grouped within a transaction are committed (take
 effect) as a unit, but only if they all succeed. If an error occurs,
 any actions that occurred prior to the error are rolled back, leaving
 the relevant tables unaffected as though none of the statements had
 been executed. This keeps the database from becoming inconsistent. For
 example, if an update to the flights table fails, rollback causes the
 change to the pilots table to be
 undone, leaving the pilot still available. Rollback frees you from
 having to figure out how to undo a partially completed operation
 yourself.

This chapter shows the syntax for the SQL statements that begin and
 end transactions. It also describes how to implement transactional
 operations from within programs, using error detection to determine
 whether to commit or roll back.
Scripts related to the examples shown here are located in the
 transactions directory of the
 recipes distribution.

20.1 Choosing a Transactional Storage Engine
Problem
You want to use transactions.

Solution
To use transactions, you must use a transaction-safe engine. Check your MySQL server to determine which transactional storage engines it
 supports.

Discussion
MySQL supports several storage engines. Currently, the transactional
 engines, shipped with the standard distribution, include InnoDB and NDB. To see which your MySQL server supports, use this
 statement:
mysql> SELECT ENGINE FROM INFORMATION_SCHEMA.ENGINES
 -> WHERE SUPPORT IN ('YES','DEFAULT') AND TRANSACTIONS='YES';
+--------+
| ENGINE |
+--------+
| InnoDB |
+--------+
If MySQL Cluster is enabled, you’ll also see a line that says
 ndbcluster.
Transactional engines are those that have a TRANSACTIONS value of YES; those actually usable have a SUPPORT value of YES or DEFAULT.
After determining which transactional storage engines are
 available, to create a table that uses a given engine, add an ENGINE =
 tbl_engine clause to your CREATE TABLE statement:
CREATE TABLE t (i INT) ENGINE = InnoDB;
If you need to modify an existing application to perform
 transactions, but it uses nontransactional tables, you can alter the
 tables to use a transactional storage engine. For example, MyISAM tables are nontransactional, and trying to use them
 for transactions will yield incorrect results because they do not
 support rollback. In this case, you can use ALTER TABLE
 to convert the tables to a transactional type. Suppose that
 t is a MyISAM table. To make it an
 InnoDB table, do this:
ALTER TABLE t ENGINE = InnoDB;
One thing to consider before altering a table is that changing it
 to use a transactional storage engine may affect its behavior in other
 ways. For example, the MyISAM engine provides more flexible handling of
 AUTO_INCREMENT columns than do other storage engines. If you rely on MyISAM-only
 sequence features, changing the storage engine will cause
 problems.

20.2 Performing Transactions Using SQL
Problem
A set of statements must succeed or fail as a unit—that is, you require a
 transaction.

Solution
Manipulate MySQL’s auto-commit mode to enable multiple-statement
 transactions, and then commit or roll back the statements depending on
 whether they succeed or fail.

Discussion
This recipe describes the SQL statements that control
 transactional behavior in MySQL. The immediately following recipes
 discuss how to perform transactions from within programs. Some APIs
 require that you implement transactions by executing the SQL statements
 discussed in this recipe; others provide a special mechanism that
 enables transaction management without writing SQL directly. However,
 even in the latter case, the API mechanism maps program operations onto
 transactional SQL statements, so reading this recipe will give you a
 better understanding of what the API does on your behalf.
MySQL normally operates in auto-commit mode, which commits the
 effect of each statement as soon as it executes. (In effect, each
 statement is its own transaction.) To perform a transaction, you must
 disable auto-commit mode, execute the statements that make up the
 transaction, and then either commit or roll back your changes. In MySQL,
 you can do this two ways:
	Execute a START TRANSACTION (or BEGIN) statement to suspend auto-commit mode, then execute the statements
 that make up the transaction. If the statements succeed, record
 their effect in the database and terminate the transaction by
 executing a COMMIT
 statement:
mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;
mysql> START TRANSACTION;
mysql> INSERT INTO t (i) VALUES(1);
mysql> INSERT INTO t (i) VALUES(2);
mysql> COMMIT;
mysql> SELECT * FROM t;
+------+
| i |
+------+
| 1 |
| 2 |
+------+
If an error occurs, don’t use COMMIT. Instead, cancel the transaction by
 executing a ROLLBACK statement. In the following
 example, t remains empty after
 the transaction because the effects of the INSERT statements are rolled back:
mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;
mysql> START TRANSACTION;
mysql> INSERT INTO t (i) VALUES(1);
mysql> INSERT INTO t (x) VALUES(2);
ERROR 1054 (42S22): Unknown column 'x' in 'field list'
mysql> ROLLBACK;
mysql> SELECT * FROM t;
Empty set (0.00 sec)

	Another way to group statements is to turn off auto-commit mode explicitly by setting the autocommit
 session variable to 0. After that, each statement you execute
 becomes part of the current transaction. To end the transaction and
 begin the next one, execute a COMMIT or ROLLBACK statement:
mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;
mysql> SET autocommit = 0;
mysql> INSERT INTO t (i) VALUES(1);
mysql> INSERT INTO t (i) VALUES(2);
mysql> COMMIT;
mysql> SELECT * FROM t;
+------+
| i |
+------+
| 1 |
| 2 |
+------+
To turn auto-commit mode back on, use this statement:
mysql> SET autocommit = 1;

Warning
Transactions have their limits because not all statements can be
 part of a transaction. For example, if you execute a DROP DATABASE statement, don’t expect to restore the database by executing a
 ROLLBACK.

20.3 Performing Transactions from Within Programs
Problem
You’re writing a program that must implement transactional operations.

Solution
Use the transaction abstraction provided by your language API, if
 it has such a thing. If it doesn’t, use the API’s usual
 statement-execution mechanism to execute the transactional SQL
 statements directly.

Discussion
To perform transactional processing from within a program, use
 your API language to detect errors and take appropriate action. This
 recipe provides general background on doing this. The next recipes
 provide language-specific details for the MySQL APIs for Perl, Ruby,
 PHP, Python, Go, and Java.
Every MySQL API supports transactions, even if only in the sense
 that you can explicitly execute transaction-related SQL statements such
 as START TRANSACTION and COMMIT. However, some APIs also provide a
 transaction abstraction that enables control over transactional behavior
 without working directly with SQL. That approach hides the details and
 provides better portability to other database engines that have
 different underlying transaction SQL syntax. An API abstraction is
 available for each language that we use in this book.
The next few recipes each implement the same example to illustrate
 how to perform program-based transactions. They use a money table containing the following initial rows that
 show how much money two people have:
+------+------+
| name | amt |
+------+------+
| Eve | 10 |
| Ida | 0 |
+------+------+
The sample transaction is a simple financial transfer that uses
 two UPDATE statements to give six
 dollars of Eve’s money to Ida:
UPDATE money SET amt = amt - 6 WHERE name = 'Eve';
UPDATE money SET amt = amt + 6 WHERE name = 'Ida';
The intended result is that the table should look like
 this:
+------+------+
| name | amt |
+------+------+
| Eve | 4 |
| Ida | 6 |
+------+------+
It’s necessary to execute both statements within a transaction to
 ensure that both of them take effect at once. Without a transaction,
 Eve’s money disappears without being credited to Ida if the second
 statement fails. By using a transaction, the table is left unchanged if
 statement failure occurs.
The sample programs for each language are located in the transactions directory of the recipes distribution. If you compare them,
 you’ll see that they all employ a similar framework for performing
 transactional processing:
	The transaction statements are grouped within a control
 structure, along with a commit operation.

	If the status of the control structure indicates that it did
 not execute successfully to completion, the transaction is rolled
 back.

That logic can be expressed as follows, where block represents the control structure used to
 group statements:
block:
 statement 1
 statement 2
 ...
 statement n
 commit
if the block failed:
 roll back
If the statements in the block succeed, you reach the end of the
 block and perform a commit. Otherwise, occurrence of an error raises an
 exception that triggers execution of the error-handling code where you
 roll back the transaction.
The benefit of structuring your code as just described is that it
 minimizes the number of tests needed to determine whether to roll back.
 The alternative—checking the result of each statement within the
 transaction and rolling back on individual statement errors—quickly
 turns your code into an unreadable mess.
A subtle point to be aware of when rolling back within languages
 that raise exceptions is that it may be possible for the rollback itself
 to fail, causing another exception to be raised. If you don’t deal with
 that, your program itself may terminate. To handle this, execute the
 rollback within another block that has an empty exception handler. The
 sample programs do this as necessary.
Those sample programs that disable auto-commit mode explicitly
 when performing a transaction enable auto-commit afterward. In
 applications that perform all database processing in transactional
 fashion, it’s unnecessary to do this. Just disable auto-commit mode once
 after you connect to the database server, and leave it off.
Checking How API Transaction Abstractions Map onto SQL
 Statements
For APIs that provide a transaction abstraction, you can see how the interface
 maps onto the underlying SQL statements: enable the general query log
 for your MySQL server, then watch the log to see what statements the
 API executes when you run a transactional program. For instructions on
 enabling the log, see Recipe 22.3.

20.4 Performing Transactions in Perl Programs
Problem
You want to perform a transaction in a Perl DBI script.

Solution
Use the standard DBI transaction support mechanism.

Discussion
The Perl DBI transaction mechanism is based on explicit
 manipulation of auto-commit mode:
	Turn on the RaiseError
 attribute if it’s not enabled, and disable PrintError if it’s on. You want errors to raise exceptions without printing
 anything, and leaving PrintError
 enabled can interfere with failure detection in some cases.

	Disable the AutoCommit
 attribute so that a commit will be done only when you say
 so.

	Execute the statements that make up the transaction within an
 eval block so that errors raise
 an exception and terminate the block. The last thing in the block
 should be a call to commit(),
 which commits the transaction if all its statements completed
 successfully.

	After the eval executes,
 check the $@ variable. If
 $@ contains the empty string, the
 transaction succeeded. Otherwise, the eval will have failed due to the
 occurrence of some error, and $@
 will contain an error message. Invoke rollback()
 to cancel the transaction. To display an error message, print
 $@ before calling rollback().

	If desired, restore the original values of the RaiseError and PrintError attributes.

Because it can be messy to change and restore the error-handling
 and auto-commit attributes if an application performs multiple
 transactions, let’s put the code to begin and end a transaction into
 convenience functions that handle the processing that occurs before and
 after the eval:
sub transaction_init
{
my $dbh = shift;
my $attr_ref = {}; # create hash in which to save attributes

 $attr_ref->{RaiseError} = $dbh->{RaiseError};
 $attr_ref->{PrintError} = $dbh->{PrintError};
 $attr_ref->{AutoCommit} = $dbh->{AutoCommit};
 $dbh->{RaiseError} = 1; # raise exception if an error occurs
 $dbh->{PrintError} = 0; # don't print an error message
 $dbh->{AutoCommit} = 0; # disable auto-commit
 return $attr_ref; # return attributes to caller
}

sub transaction_finish
{
my ($dbh, $attr_ref, $error) = @_;

 if ($error) # an error occurred
 {
 print "Transaction failed, rolling back. Error was:\n$error\n";
 # roll back within eval to prevent rollback
 # failure from terminating the script
 eval { $dbh->rollback (); };
 }
 # restore error-handling and auto-commit attributes
 $dbh->{AutoCommit} = $attr_ref->{AutoCommit};
 $dbh->{PrintError} = $attr_ref->{PrintError};
 $dbh->{RaiseError} = $attr_ref->{RaiseError};
}
By using those two functions, our sample transaction can be
 performed easily as follows:
$ref = transaction_init ($dbh);
eval
{
 # move some money from one person to the other
 $dbh->do ("UPDATE money SET amt = amt - 6 WHERE name = 'Eve'");
 $dbh->do ("UPDATE money SET amt = amt + 6 WHERE name = 'Ida'");
 # all statements succeeded; commit transaction
 $dbh->commit ();
};
transaction_finish ($dbh, $ref, $@);
In Perl DBI, an alternative to manipulating the AutoCommit attribute manually is to begin a
 transaction by invoking begin_work().
 This method disables AutoCommit and
 causes it to be enabled again automatically when you invoke commit() or
 rollback() later.

20.5 Performing Transactions in Ruby Programs
Problem
You want to perform a transaction in a Ruby Mysql2 script.

Solution
Send transaction management statements, such as START TRANSACTIONS, BEGIN, COMMIT, and ROLLBACK, as regular queries.

Discussion

 The Ruby Mysql2 module does not have built-in functions for the transaction support. Instead, it expects its users to run transaction management statements as regular queries.

 To start transaction, execute client.query("START TRANSACTION"), then execute required updates, and finish the block with client.query("COMMIT").

 Put your transaction into a begin...rescue block, so you can call ROLLBACK if something goes wrong:

begin
 client.query("START TRANSACTION")
 client.query("UPDATE money SET amt = amt - 6 WHERE name = 'Eve'")
 client.query("UPDATE money SET amt = amt + 6 WHERE name = 'Ida'")
 client.query("COMMIT")
rescue Mysql2::Error => e
 puts "Transaction failed, rolling back. Error was:"
 puts "#{e.errno}: #{e.message}"
 begin # empty exception handler in case rollback fails
 client.query("ROLLBACK")
 rescue
 end
end

20.6 Performing Transactions in PHP Programs
Problem
You want to perform a transaction in a PHP script.

Solution
Use the standard PDO transaction support mechanism.

Discussion
The PDO extension supports a transaction abstraction that can be
 used to perform transactions. To begin a transaction, use the beginTransaction() method. Then, after
 executing your statements, invoke either commit() or
 rollback() to commit or roll back the
 transaction. The following code illustrates this. It uses exceptions to
 detect transaction failure, so it assumes that exceptions are enabled
 for PDO errors:
try
{
 $dbh->beginTransaction ();
 $dbh->exec ("UPDATE money SET amt = amt - 6 WHERE name = 'Eve'");
 $dbh->exec ("UPDATE money SET amt = amt + 6 WHERE name = 'Ida'");
 $dbh->commit ();
}
catch (Exception $e)
{
 print ("Transaction failed, rolling back. Error was:\n");
 print ($e->getMessage () . "\n");
 # empty exception handler in case rollback fails
 try
 {
 $dbh->rollback ();
 }
 catch (Exception $e2) { }
}

20.7 Performing Transactions in Python Programs
Problem
You want to perform a transaction in a Python DB API script.

Solution
Use the standard DB API transaction support mechanism.

Discussion
The Python DB API abstraction provides transaction processing
 control through connection object methods. The DB API specification
 indicates that database connections should begin with auto-commit mode
 disabled. Therefore, when you open a connection to the database server,
 Connector/Python disables auto-commit mode, which implicitly begins a
 transaction. End each transaction with either commit() or
 rollback(). The commit() call occurs within a try statement, and the rollback() occurs within the except clause to cancel the transaction if an
 error occurs:
try:
 cursor = conn.cursor()
 # move some money from one person to the other
 cursor.execute("UPDATE money SET amt = amt - 6 WHERE name = 'Eve'")
 cursor.execute("UPDATE money SET amt = amt + 6 WHERE name = 'Ida'")
 cursor.close()
 conn.commit()
except mysql.connector.Error as e:
 print("Transaction failed, rolling back. Error was:")
 print(e)
 try: # empty exception handler in case rollback fails
 conn.rollback()
 except:
 pass

20.8 Performing Transactions in Go Programs
Problem

 You want to perform a transaction in a Go program.

Solution

 Use the standard transaction support mechanism, provided by the database/sql package.

Discussion

 The Go sql interface supports a transaction abstraction that could be used to perform transactions. To begin a transaction, use the DB.Begin() function. Then, after executing your statements, invoke either Tx.Commit() or Tx.Rollback() to commit or roll back the transaction. The following code illustrates this.

var queries = []string{
 "UPDATE money SET amt = amt - 6 WHERE name = 'Eve'",
 "UPDATE money SET amt = amt + 6 WHERE name = 'Ida'",
}

tx, err := db.Begin()
if err != nil {
 log.Fatal(err)
}

for _, query := range queries {
 _, err := tx.Exec(query)
 if err != nil {
 fmt.Printf("Transaction failed, rolling back.\nError was: %s\n",
 err.Error())
 if txerr := tx.Rollback(); txerr != nil {
 fmt.Println("Rollback failed")
 log.Fatal(txerr)
 }
 }
}

if err := tx.Commit(); err != nil {
 log.Fatal(err)
}

20.9 Using Context-Aware Functions to Handle Transactions in Go
Problem

 You want to roll back transactions automatically in your Go program.

Solution

 The Go-MySQL-Driver supports context cancellation. This means that you can cancel database operations, such as running a query, if you cancel the context.

Discussion

 To use the package context with SQL, you need to create the object of the Context type first, then pass it to the database function. Function names of the sql interface that support context are similar to ones that do not, but have the prefix Context. For example, the Query() function does not support Context, whereas the QueryContext() function does.

 The following example uses Context to handle database transactions. You will find code for it in the transaction_context.go file in the transactions directory of the recipes distribution:

// transaction_context.go: simple transaction demonstration
// with use of Context

// By default, this creates an InnoDB table. If you specify a storage
// engine on the command line, that will be used instead. Normally,
// this should be a transaction-safe engine that is supported by your
// server. However, you can pass a nontransactional storage engine
// to verify that rollback doesn't work properly for such engines.

// The script uses a table named "money" and drops it if necessary.
// Change the name if you have a valuable table with that name. :-)
package main

import (
 "log"
 "fmt"
 "flag"
 "context" [image: 1]
 "database/sql"
 "github.com/svetasmirnova/mysqlcookbook/recipes/lib"
)

func initTable(ctx context.Context, db *sql.DB, tblEngine string) (error) { [image: 2]
 queries := [4]string {
 "DROP TABLE IF EXISTS money",
 "CREATE TABLE money (name CHAR(5), amt INT, PRIMARY KEY(name)) ENGINE = " + tblEngine,
 "INSERT INTO money (name, amt) VALUES('Eve', 10)",
 "INSERT INTO money (name, amt) VALUES('Ida', 0)",
 }

 for _, query := range queries {
 _, err = db.ExecContext(ctx, query) [image: 3]
 if err != nil {
 fmt.Println("Cannot initialize test table")
 fmt.Printf("Error: %s\n", err.Error())
 return err
 }
 }

 return nil
}

func displayTable(ctx context.Context, db *sql.DB) (error) {
 rows, err := db.QueryContext(ctx, "SELECT name, amt FROM money") [image: 4]
 if err != nil {
 return err
 }
 defer rows.Close()

 for rows.Next() {
 var (
 name string
 amt int32
)
 if err := rows.Scan(&name, &amt); err != nil {
 fmt.Println("Cannot display contents of test table")
 fmt.Printf("Error: %s\n", err.Error())
 return err
 }

 fmt.Printf("%s has $%d\n", name, amt)
 }

 return nil
}

func runTransaction(ctx context.Context,
 db *sql.DB, queries []string) (error) {
 tx, err := db.BeginTx(ctx, nil) [image: 5]
 if err != nil {
 return err
 }

 for _, query := range queries {
 _, err := tx.ExecContext(ctx, query) [image: 6]
 if err != nil {
 fmt.Printf("Transaction failed, rolling back.\nError was: %s\n",
 err.Error())
 if txerr := tx.Rollback(); err != nil {
 return txerr
 }
 return err
 }
 }

 if err := tx.Commit(); err != nil {
 return err
 }

 return nil
}

func main() {
 db, err := cookbook.Connect()
 if err != nil {
 log.Fatal(err)
 }
 defer db.Close()

 var tblEngine string = "InnoDB"
 flag.Parse()
 values := flag.Args()
 if len(values) > 0 {
 tblEngine = values[0]
 }
 fmt.Printf("Using storage engine %s to test transactions\n", tblEngine)

 ctx, cancel := context.WithCancel(context.Background()) [image: 7]
 defer cancel()

 fmt.Println("----------")
 fmt.Println("This transaction should succeed.")
 fmt.Println("Table contents before transaction:")

 if err := initTable(ctx, db, tblEngine); err != nil {
 log.Fatal(err)
 }

 if err = displayTable(ctx, db); err != nil {
 log.Fatal(err)
 }

 var trx = []string{
 "UPDATE money SET amt = amt - 6 WHERE name = 'Eve'",
 "UPDATE money SET amt = amt + 6 WHERE name = 'Ida'",
 }

 if err = runTransaction(ctx, db, trx); err != nil {
 log.Fatal(err)
 }

 fmt.Println("Table contents after transaction:")
 if err = displayTable(ctx, db); err != nil {
 log.Fatal(err)
 }

 fmt.Println("----------")
 fmt.Println("This transaction should fail.")
 fmt.Println("Table contents before transaction:")

 if err := initTable(ctx, db, tblEngine); err != nil {
 log.Fatal(err)
 }

 if err = displayTable(ctx, db); err != nil {
 log.Fatal(err)
 }

 trx = []string{
 "UPDATE money SET amt = amt - 6 WHERE name = 'Eve'",
 "UPDATE money SET xamt = amt + 6 WHERE name = 'Ida'",
 }

 if err = runTransaction(ctx, db, trx); err != nil {
 log.Fatal(err)
 }

 fmt.Println("Table contents after transaction:")
 if err = displayTable(ctx, db); err != nil {
 log.Fatal(err)
 }
}

	[image: 1]
	Import statement for the context support.

	[image: 2]
	Our user-defined functions take context.Context as a parameter.

	[image: 3]
	To execute statements that do not return a result set, use the context-aware function ExecContext().

	[image: 4]
	To execute queries that do return a result set, use the context-aware function QueryContext().

	[image: 5]
	To start a transaction that will automatically roll back if context is canceled, use the context-aware function BeginTx().

	[image: 6]
	To execute a statement that could be canceled inside the transaction, use the context-aware function Tx.ExecContext().

	[image: 7]
	Before using context, you need to create it. In our example, we created a cancellable context. The context.WithCancel() function takes parent context as a parameter and returns just-created context, and a cancel() function. We deferred its call to the end of the main() function execution. You have options to call the cancel() function in any appropriate place in the code. You may prefer to use context.WithDeadline() or context.WithTimeout(), so your SQL execution code will be canceled if runs longer than a certain amount of time.

20.10 Performing Transactions in Java Programs
Problem
You want to perform a transaction in a JDBC application.

Solution
Use the standard JDBC transaction support mechanism.

Discussion
To perform transactions in Java, use your Connection
 object to turn off auto-commit mode. Then, after executing your
 statements, use the object’s commit()
 method to commit the transaction or rollback() to cancel it. Typically, you
 execute the statements for the transaction in a try block, with commit() at the end of the block. To handle
 failures, invoke rollback() in the
 corresponding exception handler:
try
{
 conn.setAutoCommit (false);
 Statement s = conn.createStatement ();
 // move some money from one person to the other
 s.executeUpdate ("UPDATE money SET amt = amt - 6 WHERE name = 'Eve'");
 s.executeUpdate ("UPDATE money SET amt = amt + 6 WHERE name = 'Ida'");
 s.close ();
 conn.commit ();
 conn.setAutoCommit (true);
}
catch (SQLException e)
{
 System.err.println ("Transaction failed, rolling back. Error was:");
 Cookbook.printErrorMessage (e);
 // empty exception handler in case rollback fails
 try
 {
 conn.rollback ();
 conn.setAutoCommit (true);
 }
 catch (Exception e2) { }
}

Chapter 21. Query Performance
21.0 Introduction

 Indexes are utilized to find rows quickly if they are created and used as
intended. Here are the main reasons to use indexes:

	
Utilize a WHERE clause in a SELECT statement to efficiently find rows.

	
Find the best query execution plan by the index’s uniqueness of values stored
in a given column, known as cardinality, and the least number of rows returned.

	
Enable the join operations between different tables.

 Indexes are vital to efficiently scanning and searching for values
 in tables. Without them, MySQL would need to read all of the rows in a
 given table when performing a query. Due to
 different table sizes, MySQL has to bring all the data read from the
 table to memory, and it can sort, filter, and return values only of the
 selected data. This operation may require additional resources to copy
 data to a new temporary table to perform sort operations. Indexes are
 crucial to query performance; hence, nonindexed tables are a considerable
 overhead to a database unless they are small reference tables.

For fast query performance, a primary key for each table representing one
or more columns is required. While using the InnoDB storage engine, the table’s
data is physically ordered to do fast lookups and sorts using primary key
columns. The ideal table design uses a covering index where the query results are
computed using index columns. Most of the indexes used by MySQL are stored in B-trees, which allow fast data access due to reduced data access time.
If the table is big in data size and does not have any keys, creating
an extra field like table_name_id as a primary key can bring a considerable
benefit in setting unique pointers doing join operations. InnoDB tables always
have a clustered index representing a primary key, if not already created by
a user. A clustered index is a table where the data and the rows are stored
in the table’s order on the key values in one direction.
Note
If no WHERE clause is used in a query, it’s a full table scan for MySQL
optimizer. For example:
SELECT * FROM customer;
 This does not change whether
the index exists or not for the customer table.

The following are some key terms you’ll need to know before getting started with index strategies:
	Table scan
	
A table scan reads all rows in the given table while performing a query. A developer should avoid full table scans as much as possible,
including doing COUNT(*) operations.

	Tree traversal
	
Tree traversal is a method that indexes use to access data in hops. The goal of the index is
to make minimum hops via traversal to fetch data. The fewer the number of
leaf nodes, the faster the index traversal.

	Leaf nodes
	
Leaf nodes are part of the B-tree index structure. They maintain the changes
in the index as data changes and establish a doubly linked list to connect
index leaf nodes.

	B-tree structure
	
B-tree is a self-balancing tree data structure that keeps data sorted and
allows searches, sequential access, insertions, and deletions in logarithmic
time. The B-tree is a generalization of a binary search tree in that a node
can have more than two children.

While the B-tree index is commonly used among MySQL storage engines,
different kinds of data structures are used for hash indexes.
Hash indexes have different characteristics and their own use cases.
Consult “Comparison of B-Tree and Hash Indexes” in the MySQL Reference Manual for further details.

Warning
While indexes help you retrieve rows faster, over-creating or keeping
unused indexes is a burden to the database’s I/O operation.
Every index leaf page (the lowest level of the index where all of the keys for
the index appear in sorted order) must be maintained for all
UPDATE/INSERT/DELETE
operations, hence creating extra overhead.

21.1 Creating Indexes
Problem
Your query is very slow to respond.

Solution
Create an index on your column to retrieve just the rows you
 are seeking.

Discussion
Tables without indexes are just logbook
 data written randomly with no reference to look up. As a result, most
 of the queries to such tables are slow. The exception
 applies only to reference tables with a limited number of rows depending on
 schema design.

MySQL recommends giving each table a primary key column
 with NOT NULL characteristic for each row.
We have a table called top_names from Names_2010Census.csv data:
mysql> CREATE TABLE `top_names` (
 `top_name` varchar(25) DEFAULT NULL,
 `name_rank` smallint DEFAULT NULL,
 `name_count` int DEFAULT NULL,
 `prop100k` decimal(8,2) DEFAULT NULL,
 `cum_prop100k` decimal(8,2) DEFAULT NULL,
 `pctwhite` decimal(5,2) DEFAULT NULL,
 `pctblack` decimal(5,2) DEFAULT NULL,
 `pctapi` decimal(5,2) DEFAULT NULL,
 `pctaian` decimal(5,2) DEFAULT NULL,
 `pct2prace` decimal(5,2) DEFAULT NULL,
 `pcthispanic` decimal(5,2) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;
And you load the data:
mysql> LOAD DATA LOCAL INFILE 'Names_2010Census.csv' into table top_names
 -> FIELDS TERMINATED BY ',' ENCLOSED BY '"' LINES TERMINATED BY '\n';
Query OK, 162255 rows affected, 65535 warnings (0.93 sec)
Records: 162255 Deleted: 0 Skipped: 0 Warnings: 444813
Now that we have created and loaded our table, we can proceed with
	the following query:
mysql> SELECT names_id,top_name,name_rank
	-> FROM top_names WHERE top_name = "BROWN";
+----------+----------+-----------+
| names_id | top_name | name_rank |
+----------+----------+-----------+
| 5 | BROWN | 4 |
+----------+----------+-----------+
1 row in set (0.04 sec)
As you can see here, MySQL has to do a full table scan to find any rows in
	this table outside of its PRIMARY KEY:
mysql> EXPLAIN SELECT names_id,top_name,name_rank
	-> FROM top_names WHERE top_name = "BROWN"\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 161533
 filtered: 10.00
 Extra: Using where
1 row in set, 1 warning (0.01 sec)
Our sample query seeks a string match on the top_name field; hence,
	having an index on this type of data will increase query performance.
	First, we create an index to meet the WHERE
	clause of this query:
mysql> CREATE INDEX idx_names ON top_names(top_name);

Query OK, 0 rows affected (0.28 sec)
Records: 0 Duplicates: 0 Warnings: 0
We then check if the optimizer has chosen this new index for the same query:

mysql> EXPLAIN SELECT names_id,top_name,name_rank
-> FROM top_names WHERE top_name = "BROWN"\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: ref
possible_keys: idx_names
 key: idx_names
 key_len: 103
 ref: const
 rows: 1
 filtered: 100.00
 Extra: NULL
1 row in set, 1 warning (0.00 sec)
Dropping indexes may be required for a few reasons. After you make sure
the index is no longer needed or needs to be re-created, you can drop it
using the following syntax:
DROP INDEX index_name ON tbl_name;

21.2 Creating a Surrogate Primary Key
Problem
A table without a primary key is not performant enough.

Solution

 Add a primary key to all InnoDB tables.

Discussion

A primary key gives you a way to uniquely identify a row in a table. In
case of InnoDB, a primary key is synonymous with a clustered index: a special
index that stores row data. When an InnoDB table is created by a user without
explicitly defining a primary key, InnoDB takes the first unique index in
an index where a B-Tree structure exists in the table and makes
it the clustered index. A clustered index is also often referred to as
a physical order of the records on disk. A clustered index is a table
stored in a table, and if no unique index exists, InnoDB creates a surrogate key,
called GEN_CLUST_INDEX, on an automatically generated unique 6-bytes identifier.

When InnoDB creates secondary indexes, it is useful to resolve queries because
it copies primary key columns to each secondary index row. If the primary key is
unnecessarily large, all secondary indexes would be large as well. Therefore, it
is very important to choose a suitable column for the primary key.

In our example in Recipe 21.1, the natural
primary key is top_name, which takes 26 bytes. Defining top_name as a
primary key will increase the size of every row in the secondary index by 26 bytes.
Therefore, we show here a technique for creating 4-byte integer surrogate keys with
the AUTO_INCREMENT property, so it increases
monotonically. It is also better than the surrogate key that InnoDB creates
explicitly, because it’s smaller, and we have full control over its values.

Our table is comparatively small, but for large tables, this difference could be
critical. Besides space, larger indexes require more time to search through.

This table is missing a field with a PRIMARY KEY. The best
	 way to include one in this table is to add an id field with AUTO INCREMENT NOT NULL properties.
	 Ideally, you would create this in advance of loading any data to the table to order
	 the table in the tablespace physically:
mysql> ALTER TABLE `top_names`
 -> ADD COLUMN `names_id` int unsigned NOT NULL
 -> AUTO_INCREMENT PRIMARY KEY FIRST;
Query OK, 0 rows affected (0.44 sec)
Records: 0 Duplicates: 0 Warnings: 0
Although the following is a complete index scan, it will use the new
	PRIMARY KEY field we have created to count the number of rows in
	the table:
mysql> SELECT COUNT(names_id) FROM top_names;
+-----------------+
| count(names_id) |
+-----------------+
| 162255 |
+-----------------+
1 row in set (0.04 sec)

mysql> EXPLAIN SELECT COUNT(names_id) FROM top_names\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: index
possible_keys: NULL
 key: idx_name_rank_count
 key_len: 8
 ref: NULL
 rows: 161533
 filtered: 100.00
 Extra: Using index
1 row in set, 1 warning (0.00 sec)

See Also
For additional information,
 see the MySQL documentation for further details
on Primary Key Optimization.

21.3 Maintaining Indexes
Problem
You want to know if existing indexes are effective for your queries and drop those that are not.

Solution
Learn basic index operations.

Discussion
To better control your data, use indexes efficiently by studying the data and access types of your schema. To continue our example from the previous recipe,
 we’ll examine existing indexes for the top_names
 table:

mysql> SHOW INDEXES FROM top_names \G
*************************** 1. row ***************************
 Table: top_names
 Non_unique: 0
 Key_name: PRIMARY
 Seq_in_index: 1
 Column_name: names_id
 Collation: A
 Cardinality: 161807
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:
Index_comment:
 Visible: YES
 Expression: NULL
*************************** 2. row ***************************
 Table: top_names
 Non_unique: 1
 Key_name: idx_names
 Seq_in_index: 1
 Column_name: top_name
 Collation: A
 Cardinality: 161708
 Sub_part: NULL
 Packed: NULL
 Null: YES
 Index_type: BTREE
 Comment:
Index_comment:
 Visible: YES
 Expression: NULL
2 rows in set (0.00 sec)
Here, what matters most is the cardinality of the index. Indexes are
	better utilized if the column has many different values. So, in short,
	indexes are inefficient on Boolean and redundant values.

 In our case, the cardinality of the idx_names index is close to the cardinality of the primary key. This shows that the index
 has good selectivity. Actually, this index could also be unique, which we can
 confirm by querying the number of distinct values in this column:

mysql> SELECT COUNT(DISTINCT top_name), COUNT(*) FROM top_names;
+--------------------------+----------+
| count(distinct top_name) | count(*) |
+--------------------------+----------+
| 162254 | 162254 |
+--------------------------+----------+
1 row in set (0,18 sec)

Since we’ve already created an index on the top_name column, we can
 drop that index, then create a new, unique one. First, to drop the index, execute the following command:
mysql> DROP INDEX idx_names ON top_names;
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0
Alternatively, ALTER TABLE syntax can also be used:
ALTER TABLE tbl_name DROP INDEX name;

	 To create a unique index, specify the keyword UNIQUE for the CREATE INDEX command:
	
CREATE UNIQUE INDEX idx_names ON top_names(top_name);

	

You can rename an existing index created on the table:

mysql> ALTER TABLE top_names RENAME
 -> INDEX idx_names to idx_top_name, ALGORITHM=INPLACE, LOCK=NONE;
Warning
Not all index operations are in place; some
	index operations will cause table rebuild, which may negatively impact the
	server’s performance for large data sizes. Care must be taken before
	executing DDL operations. DDL (Data Definition Language) implies changing
	the structure of a table definition, known as the database schema.
	For further details, please consult the MySQL
 Documentation.

21.4 Deciding When a Query Can Use an Index
Problem
Your table has an index, but queries are still slow.

Solution
Check the query plan using EXPLAIN to make sure the right index has been used.

Discussion

 Indexes are part of query plans to access data faster by using the
 shortest possible path. When MySQL optimizer makes a decision, it
 considers indexes, cardinality, number of rows, and more.
 Here’s an example of a query where an index exists for a column but
 MySQL can’t utilize it:

mysql> EXPLAIN SELECT name_rank,top_name,name_count FROM top_names
 -> WHERE name_rank < 10 ORDER BY name_count\G
 *************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 161604
 filtered: 33.33
 Extra: Using where; Using filesort
1 row in set, 1 warning (0.00 sec)

From the Explain plan output, we have no index that matches the key criteria of the query.
There are indexes on this table, and it looks like we’ll need another index on the name_rank field:
	
mysql> CREATE INDEX idx_name_rank ON top_names(name_rank);
	Query OK, 0 rows affected (0.16 sec)
Records: 0 Duplicates: 0 Warnings: 0

Check the query plan again after creating the new index:

mysql> EXPLAIN SELECT name_rank,top_name,name_count FROM top_names
 -> WHERE name_rank < 10 ORDER BY name_count\G
 *************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: range
possible_keys: idx_name_rank
 key: idx_name_rank
 key_len: 3
 ref: NULL
 rows: 11
 filtered: 100.00
 Extra: Using index condition; Using filesort
1 row in set, 1 warning (0.00 sec)

Our query is seeking for a name_rank that is less than 10 from the
 top_names table. Without the newly
 created idx_name_rank on the name_rank
 column, the optimizer has to evaluate all 161,604 rows in the table
 to filter 11 rows in return. With the index in place, it accesses just those 11 rows.

21.5 Deciding the Order for Multiple Column Indexes
Problem
You want to speed up your multiple column query.

Solution
Use a covering index with multiple columns.

Discussion
The best query performance can be achieved if query results are
 computed entirely from the index pages without reading the actual
 table data. A covering index is a solution for queries referencing
 more than one column. This type of index contains the required data;
 hence, it does not need to execute additional reads on the table.
In the following example, we have a query that requires having a filter on
 one column (name_rank) and sort by another column (name_count):

mysql> SELECT name_rank,top_name,name_count FROM top_names
 -> WHERE name_rank < 10 ORDER BY name_count\G

We’ll create an index on the columns that we think are required for
 the optimizer to choose the fastest path:

mysql> CREATE INDEX idx_name_rank_count ON top_names(name_count,name_rank);
Query OK, 0 rows affected (0.18 sec)
Records: 0 Duplicates: 0 Warnings: 0

In this case, MySQL cannot use the index against the following
 query, and it ends up needing to do a full table scan again. The reason is that
 despite having both columns of the query in the filter, the index is ordered
 in reverse:

mysql> EXPLAIN SELECT name_rank,top_name,name_count FROM top_names
 -> WHERE name_rank < 10 ORDER BY name_count\G
 *************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 161604
 filtered: 33.33
 Extra: Using where; Using filesort
1 row in set, 1 warning (0.00 sec)

	
To demonstrate why the order of index columns matters, let’s look at the following example.
For KEY `idx_name_rank_count` (`name_rank`,`name_count`), first drop the previous index in reverse order and create a new one:
mysql> DROP INDEX idx_name_rank_count ON top_names;
Query OK, 0 rows affected (0.01 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> CREATE INDEX idx_name_rank_count ON top_names(name_rank,name_count);
Query OK, 0 rows affected (0.15 sec)
Records: 0 Duplicates: 0 Warnings: 0
We have created a covering index for both columns our SELECT
	statement proposes on the name_rank and name_count filters:
mysql> EXPLAIN SELECT name_rank,top_name,name_count FROM top_names
 -> WHERE name_rank < 10 ORDER BY name_count\G
	*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: range
possible_keys: idx_name_rank_count
 key: idx_name_rank_count
 key_len: 3
 ref: NULL
 rows: 11
 filtered: 100.00
 Extra: Using index condition; Using filesort
1 row in set, 1 warning (0.00 sec)
As you can see from the EXPLAIN output, the optimizer
	chooses idx_name_rank_count for this query with a new covering index.

21.6 Using Ascending and Descending Indexes
Problem
You want to scan your data in ascending or descending order
 without a performance penalty.

Solution
Use ascending and descending indexes.

Discussion
MySQL can scan indexes in reverse order with a performance
 penalty due to index pages being physically ordered. To create
 a matching index for the ORDER BY clause, use DESC for descending and ASC
 for ascending index types.

The ideal query performance results from avoiding scanning an
 index backward. It’s also a combination of sorting and filtering with the
 DESC indexes. When MySQL optimizer chooses a query plan, it evaluates
 if it can take advantage of these when the query needs descending order.
Remember, descending indexes are supported for the InnoDB
 storage engine, and there are some limitations to its use.
 Also, descending indexes have the following properties:
	
 They are supported by all data types.

	
 The DISTINCT clause can use any index with a matching column.

	
 They can be used for MIN()/MAX() optimization when not used in
 conjunction with the GROUP BY clause.

	
 They are only limited to BTREE and HASH indexes.

	
 They are not supported for FULLTEXT or
 SPATIAL index types.

The following example starts with creating a covering index for our desired
 sorting for fields:
CREATE INDEX idx_desc_01 ON top_names(top_name, prop100k ASC, cum_prop100K DESC);

mysql> SELECT top_name,prop100k,cum_prop100k FROM top_names
 -> ORDER BY `top_name`,`prop100k`,`cum_prop100k` DESC LIMIT 10;
+----------+----------+--------------+
| top_name | prop100k | cum_prop100k |
+----------+----------+--------------+
NULL	2.43	60231.65
AAB	0.05	88770.96
AABERG	0.16	82003.18
AABY	0.07	86239.41
AADLAND	0.13	83329.35
AAFEDT	0.05	88567.34
AAGAARD	0.10	84574.52
AAGARD	0.12	83769.42
AAGESEN	0.06	87383.27
AAKER	0.12	83574.66
+----------+----------+--------------+
10 rows in set (0.00 sec)

After creating the covering index for all ORDER BY clauses, optimizer columns choose the idx_desc_01.
This is particularly good for index optimization and sorting:
mysql> EXPLAIN SELECT top_name,prop100k,cum_prop100k FROM top_names
 -> ORDER BY `top_name`,`prop100k`,`cum_prop100k` DESC LIMIT 10\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: index
possible_keys: NULL
 key: idx_desc_01
 key_len: 113
 ref: NULL
 rows: 10
 filtered: 100.00
 Extra: Using index
1 row in set, 1 warning (0.00 sec)

When we do SELECT * FROM top_names, instead of specifying column order by the top_name field, it uses the previously created index, and by default, it is in ascending order:

mysql> EXPLAIN SELECT * FROM top_names ORDER BY top_name ASC LIMIT 10 \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: index
possible_keys: NULL
 key: idx_top_name
 key_len: 103
 ref: NULL
 rows: 10
 filtered: 100.00
 Extra: NULL
1 row in set, 1 warning (0.00 sec)

To demonstrate the use of descending indexes, we’ll create a new index and
use DESC to apply it:

mysql> CREATE INDEX idx_desc_02 ON top_names(top_name DESC, prop100k, cum_prop100K);
Query OK, 0 rows affected (0.38 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> EXPLAIN SELECT * FROM top_names ORDER BY top_name DESC LIMIT 10\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: index
possible_keys: NULL
 key: idx_desc_02
 key_len: 113
 ref: NULL
 rows: 10
 filtered: 100.00
 Extra: NULL
1 row in set, 1 warning (0.00 sec)

Again, we’ll use top_name with another column, prop100k, to illustrate the use of the DESC index on the top_name column:

mysql> EXPLAIN SELECT top_name FROM top_names
 -> ORDER BY top_name DESC,prop100k ASC LIMIT 10 \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: index
possible_keys: NULL
 key: idx_desc_02
 key_len: 113
 ref: NULL
 rows: 10
 filtered: 100.00
 Extra: Using index
1 row in set, 1 warning (0.00 sec)
Note
Order matters, as MySQL uses the leftmost order rule for the indexes
compared to the ORDER BY clause. Changing the order of columns in the composite
index will change the behavior of the query result. Also, be careful using
SELECT * FROM when sorting by multiple fields, as * will use the
column order from the table definition,
which may end up with different fields than the ORDER BY clause intends.

21.7 Using Function-Based Indexes
Problem
You need to search or sort by an expression, but MySQL calculates the result of the expression for each row and therefore cannot use indexes. Performance of the query is poor.

Solution
Use functional indexes.

Discussion
Some types of information are more easily analyzed using not the
 original values but an expression computed from them. For example, the size column in the mail table stores size in bytes that is hard to interpret on first glance. It would be much easier to work with by using kilobytes (KB) instead. However, you may not want to lose the precision that storage in bytes provides.

 You can have both precision and usability if you store data in bytes and use expressions to query the table. For example, to find messages that are larger than 100 KB, use the following query:

mysql> SELECT t, srcuser, srchost, size, ROUND(size/1024) AS size_KB
 -> FROM mail WHERE ROUND(size/1024) > 100;
+---------------------+---------+---------+---------+---------+
| t | srcuser | srchost | size | size_KB |
+---------------------+---------+---------+---------+---------+
2014-05-12 12:48:13	tricia	mars	194925	190
2014-05-14 17:03:01	tricia	saturn	2394482	2338
2014-05-15 10:25:52	gene	mars	998532	975
+---------------------+---------+---------+---------+---------+
3 rows in set (0.00 sec)

 However, MySQL won’t be able to use an index on the size column to resolve this query, because it calculates an expression for each row. To resolve this issue, use function-based indexes.

 The syntax of the function-based index is as follows:

CREATE INDEX index_name ON table_name ((expression));

 Mind the double brackets: if you omit one pair, MySQL will think you’re passing a column name instead of the expression and will return an error.

 Let’s create an index on ROUND(size/1024) and check if MySQL will use it to resolve the query:

mysql> CREATE INDEX size_KB ON mail ((ROUND(size/1024)));
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> EXPLAIN SELECT t, srcuser, srchost, size, ROUND(size/1024) AS size_KB
 -> FROM mail WHERE ROUND(size/1024) > 100\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: mail
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 16
 filtered: 100.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

 The index will not be used to resolve the query because the ROUND function returns data in the NEWDECIMAL type for values that have a floating point and 100 is LONGLONG. You can examine the result if you start mysql client with the --column-type-info option:

$ unbuffer mysql --column-type-info -e "SELECT ROUND(10.5)" | grep Type
Type: NEWDECIMAL
$ unbuffer mysql --column-type-info -e "SELECT 100" | grep Type
Type: LONGLONG
Tip

 We need to use the unbuffer command, because mysql buffers the --column-type-info result, and it cannot be piped to grep otherwise.

 To clarify, to force MySQL to use the index, you need to compare the result of the expression with a floating-point value:

mysql> EXPLAIN SELECT t, srcuser, srchost, size, ROUND(size/1024) AS size_KB
 -> FROM mail WHERE ROUND(size/1024) > 100.0\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: mail
 partitions: NULL
 type: range
possible_keys: size_KB
 key: size_KB
 key_len: 10
 ref: NULL
 rows: 3
 filtered: 100.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

 Alternatively, cast the result of the ROUND function to the integer value when creating the index.
 This also forces MySQL to use the index to resolve the query:

mysql> DROP INDEX size_KB ON mail;
Query OK, 0 rows affected (0.01 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> CREATE INDEX size_KB ON mail ((CAST(ROUND(size/1024) AS SIGNED)));
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> EXPLAIN SELECT t, srcuser, srchost, size, ROUND(size/1024) AS size_KB
 -> FROM mail WHERE ROUND(size/1024) > 100\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: mail
 partitions: NULL
 type: range
possible_keys: size_KB
 key: size_KB
 key_len: 9
 ref: NULL
 rows: 3
 filtered: 100.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

21.8 Using Indexes on Generated Columns with JSON Data
Problem

 You want to perform a search inside JSON data, but it is slow.

Solution

 Use a generated column, created from an expression that searches for a JSON value and an index on this column.

Discussion

 In this recipe, we’ll discuss a book_authors table:

CREATE TABLE `book_authors` (
 `id` int NOT NULL AUTO_INCREMENT,
 `author` json NOT NULL,
 PRIMARY KEY (`id`)
);

 The table contains book records per author in the JSON column:

mysql> SELECT * FROM book_authors\G
*************************** 1. row ***************************
 id: 1
 author: {"id": 1, "name": "Paul", ↩
 "books": [↩
 "Software Portability with imake: Practical Software Engineering", ↩
 "Mysql: The Definitive Guide to Using, Programming, ↩
 and Administering Mysql 4 (Developer's Library)", ↩
 "MYSQL Certification Study Guide", ↩
 "MySQL (OTHER NEW RIDERS)", ↩
 "MySQL Cookbook", ↩
 "MySQL 5.0 Certification Study Guide", ↩
 "Using csh & tcsh: Type Less, Accomplish More (Nutshell Handbooks)", ↩
 "MySQL (Developer's Library)"], ↩
 "lastname": "DuBois"}
lastname: "DuBois"
*************************** 2. row ***************************
 id: 2
 author: {"id": 2, "name": "Alkin", "books": ["MySQL Cookbook"],↩
 "lastname": "Tezuysal"}
lastname: "Tezuysal"
*************************** 3. row ***************************
 id: 3
 author: {"id": 3, "name": "Sveta", ↩
 "books": ["MySQL Troubleshooting", "MySQL Cookbook"], ↩
 "lastname": "Smirnova"}
lastname: "Smirnova"
3 rows in set (0,00 sec)

 If you want to search for a specific author, you may consider searching by their name and last name.

 The CREATE INDEX command creates an index on a column in the table. JSON data stored in a single column, therefore any index created with the simple CREATE INDEX command, would index the whole JSON document while you may need to search only part of it.

 Moreover, the CREATE INDEX command will fail for the JSON column:

mysql> CREATE INDEX author_name ON book_authors(author);
ERROR 3152 (42000): JSON column 'author' supports indexing only ↩
via generated columns on a specified JSON path.

 A solution for this issue would be using a generated column and creating an index on it. Values in generated columns are created using an expression defined at the time of column creation:

ALTER TABLE book_authors ADD COLUMN lastname VARCHAR(255)
GENERATED ALWAYS AS(JSON_UNQUOTE(JSON_EXTRACT(author, '$.lastname')));

 In this example, we created a column, generated from the expression JSON_EXTRACT(author, '$.lastname'). We can also use the -> and ->> operators to extract the JSON value:

ALTER TABLE book_authors ADD COLUMN name VARCHAR(255)
GENERATED ALWAYS AS (author->>'$.name');

 We used the JSON_UNQUOTE function and the ->> operator in our expressions to remove trailing quotes in the authors’ names if they exist.

 Two new columns, name and lastname, do not take any space and are generated each time a query accesses the table.

Tip

 If you want to improve the performance of your SELECT queries at the cost of additional storage and slowness at the write time, define generated columns with the keyword STORED. In this case, the expression would be executed only once: when values used in the expression are inserted or modified and then physically stored on the disk.

 Now we can create an index on our new generated columns:

CREATE INDEX author_name ON book_authors(lastname, name);

 To access data using the newly created index, refer to the new columns as you do any other column:

mysql> SELECT author->'$.books' FROM book_authors
 -> WHERE name = 'Sveta' AND lastname='Smirnova';
+---+
| author->'$.books' |
+---+
| ["MySQL Troubleshooting", "MySQL Cookbook"] |
+---+
1 row in set (0,00 sec)

 EXPLAIN confirms that the new index has been used:

mysql> EXPLAIN SELECT author->'$.books' FROM book_authors
 -> WHERE name = 'Sveta' AND lastname='Smirnova'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: book_authors
 partitions: NULL
 type: ref
possible_keys: author_name
 key: author_name
 key_len: 2046
 ref: const,const
 rows: 1
 filtered: 100.00
 Extra: NULL
1 row in set, 1 warning (0,00 sec)

See Also
For additional information about using JSON in MySQL, see Chapter 19.

21.9 Using Full Text Indexes
Problem

 You want to take advantage of a keyword search, but queries on text
 fields are slow.

Solution

 Use FULLTEXT indexes for full-text searches.

Discussion

 MySQL supports FULLTEXT indexes on popular storage
 engines such as InnoDB and MyISAM. Although neither of the storage
 engines were originally designed to index large text operations, you can
 still use them to comb performance for specific queries.

FULLTEXT indexes have two other conditions:
	They can be used only for CHAR, VARCHAR, or TEXT columns.

	They can be used only when there is a MATCH() or AGAINST() clause in a SELECT statement.

In MySQL, the MATCH() function
 performs a full-text search by accepting a comma-separated list of
 columns, where AGAINST() takes a
 string to search.
Note
A FULLTEXT index can be used with a combination of B-tree indexes on
 the same column, as their purposes are different. FULLTEXT is for finding
 keywords versus matching values in the field.

FULLTEXT text searches also have three different modes:
	
 Natural language mode (default) is the search mode for simple phrases.

SELECT top_name,name_rank FROM top_names WHERE MATCH(top_name)
 AGAINST("ANDREW" IN NATURAL LANGUAGE MODE) \G

	
 Boolean mode is for using Boolean operators in search mode. Recall that the strategy discussed in Recipe 7.17 makes similar use of operators here:

SELECT top_name,name_rank FROM top_names WHERE MATCH(top_name)
 AGAINST("+ANDREW +ANDY -ANN" IN BOOLEAN MODE) \G

	
 Query expansion mode is the search mode for similar or related values in a search expression. In short,
 this mode will return relevant matches against a searched keyword:

SELECT top_name,name_rank FROM top_names WHERE MATCH(top_name)
 AGAINST("ANDY" WITH QUERY EXPANSION) \G

The InnoDB storage engine can take advantage of the following
 optimizations:

	
 Queries that return only the ID field of the search rank.
 Search rank is defined as relevance rank as a measure to show how good a match is.

	
 Queries that sort the matching rows in descending order.

The optimizer will not choose the fulltext index on the top_name column.
 For more information, see Recipe 7.10.
 This type of query is very efficient given the data type we have in this
 example with indexed unique string values in the top_name column:
mysql> EXPLAIN SELECT top_name,name_rank FROM top_names
 -> WHERE top_name="ANDREW" \G
 *************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: ref
possible_keys: idx_top_name,idx_desc_01,idx_desc_02
 key: idx_top_name
 key_len: 103
 ref: const
 rows: 1
 filtered: 100.00
 Extra: NULL
1 row in set, 1 warning (0.00 sec)
mysql> CREATE FULLTEXT INDEX idx_fulltext ON top_names(top_name);
 Query OK, 0 rows affected, 1 warning (1.94 sec)
 Records: 0 Duplicates: 0 Warnings: 1
mysql> EXPLAIN SELECT top_name,name_rank FROM top_names
 -> WHERE top_name="ANDREW" \G
 *************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: ref
possible_keys: idx_top_name,idx_desc_01,idx_desc_02,idx_fulltext
 key: idx_top_name
 key_len: 103
 ref: const
 rows: 1
 filtered: 100.00
 Extra: NULL
1 row in set, 1 warning (0.00 sec)
Now, if we try a pattern match against the same column, we will be able to utilize a full text index for the given column:
mysql> EXPLAIN SELECT top_name,name_rank FROM top_names
 -> MATCH(top_name) AGAINST("ANDREW") \G
 *************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: fulltext
possible_keys: idx_fulltext
 key: idx_fulltext
 key_len: 0
 ref: const
 rows: 1
 filtered: 100.00
 Extra: Using where; Ft_hints: sorted
1 row in set, 1 warning (0.01 sec)
In this case, we can see that MySQL chooses to use the FULLTEXT index.
Although it’s useful to have FULLTEXT index availability in MySQL, it comes
with many restrictions. Please refer to the MySQL documentation for further details
about Full-Text Restrictions.
Note
Despite the availability of full-text indexes in the InnoDB storage engine,
there may be better alternatives in the market to take this off of MySQL’s workload and
put it on another optimized storage system.

21.10 Utilizing Spatial Indexes and Geographical Data
Problem

 You want to store and query geographic coordinates effectively.

Solution

 Use MySQL’s improved Spatial Reference System.

Discussion

 MySQL 8 contains all Spatial Reference System (SRS) identifications
 from the European Petroleum Survey Group (EPSG) agency. These SRS identifications are
 stored with a unique name and spatial reference identification (SRID) in information_schema.
These systems represent different variations of geographic data references.
 You can query details of these from information_schema:

mysql> SELECT * FROM INFORMATION_SCHEMA.ST_SPATIAL_REFERENCE_SYSTEMS
 -> WHERE SRS_ID=4326 OR SRS_ID=3857 ORDER BY SRS_ID DESC\G
 *************************** 1. row ***************************
 SRS_NAME: WGS 84
 SRS_ID: 4326
 ORGANIZATION: EPSG
ORGANIZATION_COORDSYS_ID: 4326
 DEFINITION: GEOGCS["WGS 84",DATUM["World Geodetic System 1984",
 SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],
 AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.017453292519943278,AUTHORITY["EPSG","9122"]],
 AXIS["Lat",NORTH],AXIS["Lon",EAST],AUTHORITY["EPSG","4326"]]
 DESCRIPTION: NULL
*************************** 2. row ***************************
 SRS_NAME: WGS 84 / Pseudo-Mercator
 SRS_ID: 3857
 ORGANIZATION: EPSG
ORGANIZATION_COORDSYS_ID: 3857
 DEFINITION: PROJCS["WGS 84 / Pseudo-Mercator",GEOGCS["WGS 84",
 DATUM["World Geodetic System 1984",SPHEROID["WGS 84",6378137,
 298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],
 PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",
 0.017453292519943278,AUTHORITY["EPSG","9122"]],AXIS["Lat",NORTH]
 ,AXIS["Lon",EAST],AUTHORITY["EPSG","4326"]],PROJECTION["Popular
 Visualization Pseudo Mercator",AUTHORITY["EPSG","1024"]],
 PARAMETER["Latitude of natural origin",0,AUTHORITY["EPSG","8801"]],
 PARAMETER["Longitude of natural origin",0,AUTHORITY["EPSG","8802"]],
 PARAMETER["False easting",0,AUTHORITY["EPSG","8806"]],↩
 PARAMETER["False northing",
 0,AUTHORITY["EPSG","8807"]],UNIT["metre",1,AUTHORITY["EPSG","9001"]],↩
 AXIS["X",EAST],
 AXIS["Y",NORTH],AUTHORITY["EPSG","3857"]]
 DESCRIPTION: NULL
2 rows in set (0.00 sec)
SRS_ID 4326 represents the widespread web map projections used in
	Google Maps, OpenStreetMap, etc., whereas 4326 represents the GPS coordinates used
	for tracking locations.
Let’s say we have point-of-interest data that we keep in our database.
	We’ll create a table and load sample data to it using SRID 4326:
mysql> CREATE TABLE poi
 -> (poi_id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 -> position POINT NOT NULL SRID 4326, name VARCHAR(200));
Query OK, 0 rows affected (0.02 sec)

mysql> INSERT INTO poi VALUES (1, ST_GeomFromText('POINT(41.0211 29.0041)', 4326),
 -> 'Maiden\'s Tower');
Query OK, 1 row affected (0.00 sec)
msyql> INSERT INTO poi VALUES (2, ST_GeomFromText('POINT(41.0256 28.9742)', 4326),
 -> 'Galata Tower');
Query OK, 1 row affected (0.00 sec)
Now we’ll create an index on the geometry column:
mysql> CREATE SPATIAL INDEX position ON poi (position);
Query OK, 0 rows affected (0.01 sec)
Records: 0 Duplicates: 0 Warnings: 0
We’ll demonstrate how to measure the distance between these two points of interest:
mysql> SELECT ST_AsText(position) FROM poi WHERE poi_id = 1 INTO @tower1;
Query OK, 1 row affected (0.00 sec)
mysql> SELECT ST_AsText(position) FROM poi WHERE poi_id = 2 INTO @tower2;
Query OK, 1 row affected (0.00 sec)
mysql> SELECT ST_Distance(ST_GeomFromText(@tower1, 4326),
 -> ST_GeomFromText(@tower2, 4326)) AS distance;
+--------------------+
| distance |
+--------------------+
| 2563.9276036976544 |
+--------------------+
1 row in set (0.00 sec)
This is a representation of a straight line between these two
	points of interest. Of course, this isn’t a car route–planning example;
	this is more like a bird’s flight from point A to B in meters.
Let’s check what MySQL used as query optimization:
mysql> EXPLAIN SELECT ST_Distance(ST_GeomFromText(@tower1, 4326),
-> ST_GeomFromText(@tower2, 4326)) AS dist \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: NULL
 partitions: NULL
 type: NULL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 filtered: NULL
 Extra: No tables used
1 row in set, 1 warning (0.00 sec)
Since the ST_Distance function doesn’t use a table to calculate
	the distance between these two locations, it doesn’t use a table in the
	query; hence, there’s no index optimization allowed.
You can further improve on the distance calculation about what Earth’s	spherical shape should be using ST_Distance_Sphere, which will result in
	slightly different results:
mysql> SELECT ST_Distance_Sphere(ST_GeomFromText(@tower1, 4326),
 -> ST_GeomFromText(@tower2, 4326)) AS dist;
+--------------------+
| dist |
+--------------------+
| 2557.7412439442496 |
+--------------------+
1 row in set (0.00 sec)
Let’s say we have a polygon around Istanbul for covering our target search area.
	The required polygon coordinates can be generated via another application:
mysql> SET @poly := ST_GeomFromText ('POLYGON((41.104897239651905 28.876082545638166,
 -> 41.05727989444261 29.183699733138166,
 -> 40.90384226781947 29.137007838606916,
 -> 40.94119778455447 28.865096217513166,
 -> 41.104897239651905 28.876082545638166))', 4326);
This time we’ll search points of interest using the ST_Within function from that polygon area.
	There are many functions built in to MySQL’s spatial reference implementation. For details, please refer to MySQL documentation’s “Spatial Analysis Functions”.
Spatial functions can be grouped into a few categories:
	Creating geometries in various formats

	Converting geometries between formats

	Accessing qualitative and quantitative properties of geometry

	Describing relations between two geometries

	Creating new geometries from existing ones

These functions allow developers to get faster access to the data and better utilize spatial analysis within MySQL.
In the following query, we’re utilizing both ST_AsText and ST_Within functions at the same time:
mysql> SELECT poi_id, name, ST_AsText(`position`)
 -> AS `towers` FROM poi WHERE ST_Within(`position`, @poly) ;
+--------+----------------+------------------------+
| poi_id | name | towers |
+--------+----------------+------------------------+
| 1 | Maiden's Tower | POINT(41.0211 29.0041) |
| 2 | Galata Tower | POINT(41.0256 28.9742) |
+--------+----------------+------------------------+
2 rows in set (0.00 sec)
Check whether the spatial index is used or not:
mysql> EXPLAIN SELECT poi_id, name,
 -> ST_AsText(`position`) AS `towers` FROM poi WHERE ST_Within(`position`, @poly) \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: poi
 partitions: NULL
 type: range
possible_keys: position
 key: position
 key_len: 34
 ref: NULL
 rows: 2
 filtered: 100.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

21.11 Creating and Using Histograms
Problem
You want to join two or more tables, but MySQL’s optimizer does not choose the right query plan.

Solution
Use optimizer histograms to aid decision making.

Discussion

 Indexes are helpful for resolving query plans, but they don’t always create the best query execution plan. This applies to situations when the optimizer needs to identify the order in which to join two or more tables.

 Assume you have two tables. One stores product categories in a shop, and another stores sales data. The number of categories is small, but the number of sold items is huge. You may have a dozen categories and millions of sold items. When you join the two tables, MySQL has to decide which table to query first. If, however, MySQL queries the large table first, the query would be effective because it only processes a small number of sold items that satisfy the search condition. On the other hand, you may need items from the single category while the condition you used to select from the larger table returns many rows from all categories. In this case, you will have to discard all returned rows not belonging to the selected category. Such a query would run faster if you select from the small table first.

 A solution to this issue is to have a combined index that takes a category ID and condition in the larger table. But this solution may not work for complicated queries when such a combined index is not applicable to the combination of the WHERE condition and JOIN clause.

 Another issue with indexes is that they operate by cardinality: the number of unique values in the index. But when data distribution is not even, the optimizer can make false conclusions when it uses only cardinality. Assume you have one million items with a certain characteristic and 10 items with another characteristic. If the optimizer decides to select data that satisfy the first condition, the query would take much more time than if it first selects items that satisfy the second condition. Unfortunately it isn’t possible to make the correct conclusion using information about cardinality only.

 To resolve this issue, MySQL 8.0 introduces optimizer histograms. These are a lightweight data structures that store information about how many unique values exist in each data bucket.

 To illustrate how optimizer histograms work, let’s consider a table of six rows:

mysql> CREATE TABLE histograms(f1 INT);
Query OK, 0 rows affected (0,03 sec)

mysql> INSERT INTO histograms VALUES(1),(2),(2),(3),(3),(3);
Query OK, 6 rows affected (0,00 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT f1, COUNT(f1) FROM histograms GROUP BY f1;
+------+-----------+
| f1 | COUNT(f1) |
+------+-----------+
1	1
2	2
3	3
+------+-----------+
3 rows in set (0,00 sec)

 As you can see, the table contains one row with the value 1, two rows with the value 2, and three rows with the value 3.

 If we run EXPLAIN on queries, selecting different rows in this table, we’ll notice that the number of rows filtered from the result is the same no matter which value we’re looking for:

mysql> \P grep filtered
PAGER set to 'grep filtered'
mysql> EXPLAIN SELECT * FROM histograms WHERE f1=1\G
 filtered: 16.67
1 row in set, 1 warning (0,00 sec)

mysql> EXPLAIN SELECT * FROM histograms WHERE f1=2\G
 filtered: 16.67
1 row in set, 1 warning (0,00 sec)

mysql> EXPLAIN SELECT * FROM histograms WHERE f1=3\G
 filtered: 16.67
1 row in set, 1 warning (0,00 sec)

 The number of filtered rows shows how many rows would be filtered from the retrieved result. Since our table does not have indexes, MySQL first retrieves all the rows from the table, then filters those that satisfy the condition. Without any hint, the optimizer thinks that MySQL will leave only one row from the result no matter which condition we use.

 Let’s create a histogram and check if it changes anything:

mysql> ANALYZE TABLE histograms UPDATE HISTOGRAM ON f1\G
*************************** 1. row ***************************
 Table: cookbook.histograms
 Op: histogram
Msg_type: status
Msg_text: Histogram statistics created for column 'f1'.
1 row in set (0,01 sec)

 Histograms are stored in the data dictionary column_statistics table and can be examined by querying the COLUMN_STATISTICS table in the Information Schema:

mysql> SELECT * FROM information_schema.column_statistics
 -> WHERE table_name='histograms'\G
*************************** 1. row ***************************
SCHEMA_NAME: cookbook
 TABLE_NAME: histograms
COLUMN_NAME: f1
 HISTOGRAM: {"buckets": [[1, 0.16666666666666666], [2, 0.5], [3, 1.0]],
 "data-type": "int",
 "null-values": 0.0,
 "collation-id": 8,
 "last-updated": "2021-05-23 17:29:46.595599",
 "sampling-rate": 1.0,
 "histogram-type": "singleton",
 "number-of-buckets-specified": 100}
1 row in set (0,00 sec)

 Three buckets contain information about data ranges. Value 1 takes 1/6 of the table (one row out of six), values 1 and 2 both take a half (0.5) of the table, and together with value 3 they fill the table. The number of items in each bucket stored is a fraction of one. The number-of-buckets-specified field contains the number of buckets specified at the histogram-creation time. The default value is 100, but you’re free to specify any number between 1 and 1,024. If the number of unique elements in the column exceeds the number of buckets, histogram-type will change from singleton to equi-height, and each bucket can contain a range of values instead of only one in case of singleton.

 Histograms affect the value for the filtered field in the EXPLAIN output.

 In the following example, values for the filtered rows correct and reflect the content of the table. If we search value 1, five of six table rows are predicted to be removed from the result set, which is correct. For value 2, only two rows (33.33%) would be left in the result, and in the case of value 3, half of the table will be filtered:

mysql> \P grep filtered
PAGER set to 'grep filtered'
mysql> EXPLAIN SELECT * FROM histograms WHERE f1=1\G
 filtered: 16.67
1 row in set, 1 warning (0,00 sec)

mysql> EXPLAIN SELECT * FROM histograms WHERE f1=2\G
 filtered: 33.33
1 row in set, 1 warning (0,00 sec)

mysql> EXPLAIN SELECT * FROM histograms WHERE f1=3\G
 filtered: 50.00
1 row in set, 1 warning (0,00 sec)

 Histograms do not help to access data: they are statistical only, not a physical structure like indexes. They, instead, affect the query execution plan and, particularly, the order of the tables joined. For example, if we decide to join the histograms table with itself, the order will be different depending on the condition:

mysql> \P grep -B 3 table
PAGER set to 'grep -B 3 table'
mysql> EXPLAIN SELECT * FROM histograms h1 JOIN histograms h2
 -> WHERE h1.f1=1 and h2.f1=3\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: h1
--
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: h2
2 rows in set, 1 warning (0,00 sec)

mysql> EXPLAIN SELECT * FROM histograms h1 JOIN histograms h2
 -> WHERE h1.f1=3 and h2.f1=1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: h2
--
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: h1
2 rows in set, 1 warning (0,00 sec)

 The true power of histograms is demonstrated in large tables. The companion GitHub repository has data for two tables: goods_shops and goods_characteristics. They are created without histograms by default while having indexes:

CREATE TABLE `goods_shops` (
 `id` int NOT NULL AUTO_INCREMENT,
 `good_id` varchar(30) DEFAULT NULL,
 `location` varchar(30) DEFAULT NULL,
 `delivery_options` varchar(30) DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `good_id` (`good_id`,`location`,`delivery_options`),
 KEY `location` (`location`,`delivery_options`)
);

CREATE TABLE `goods_characteristics` (
 `id` int NOT NULL AUTO_INCREMENT,
 `good_id` varchar(30) DEFAULT NULL,
 `size` int DEFAULT NULL,
 `manufacturer` varchar(30) DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `good_id` (`good_id`,`size`,`manufacturer`),
 KEY `size` (`size`,`manufacturer`)
);

 If we want to find the number of laptops with a screen size that is less than 13 inches; is manufactured by Lenovo, Dell, Toshiba, Samsung, or Acer; and is available by Premium or Urgent delivery in Moscow or Kiev, we can use the following query:

mysql> SELECT COUNT(*) FROM goods_shops
 -> JOIN goods_characteristics USING (good_id)
 -> WHERE size < 13 AND manufacturer
 -> IN ('Lenovo', 'Dell', 'Toshiba', 'Samsung', 'Acer')
 -> AND (location IN ('Moscow', 'Kiev')
 -> OR delivery_options IN ('Premium', 'Urgent'));
+----------+
| count(*) |
+----------+
| 816640 |
+----------+
1 row in set (6 min 31,75 sec)

 The query took over six minutes, which is quite long for two tables of less than half a million rows. The reason for this is that the goods_shops table contains just a few rows that satisfy the condition for the shop location and delivery options, while the goods_characteristics table has many more rows that satisfy the laptop size and manufacturer conditions. In such a situation, it’s better to select data from the goods_shops table first; however, the optimizer may create a different query execution plan:

mysql> EXPLAIN SELECT COUNT(*) FROM goods_shops JOIN goods_characteristics
 -> USING(good_id) WHERE size < 13 AND
 -> manufacturer IN ('Lenovo', 'Dell', 'Toshiba', 'Samsung', 'Acer') AND
 -> (location IN ('Moscow', 'Kiev') OR delivery_options IN ('Premium', 'Urgent'))\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: goods_characteristics
 partitions: NULL
 type: index
possible_keys: good_id,size
 key: good_id
 key_len: 251
 ref: NULL
 rows: 137026
 filtered: 25.00
 Extra: Using where; Using index
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: goods_shops
 partitions: NULL
 type: ref
possible_keys: good_id,location
 key: good_id
 key_len: 123
 ref: cookbook.goods_characteristics.good_id
 rows: 66422
 filtered: 36.00
 Extra: Using where; Using index
2 rows in set, 1 warning (0,00 sec)

 Indexes would not help here, because they use cardinality that is the same for any value in the indexed column. Here is where histograms can show their power:

mysql> ANALYZE TABLE goods_shops UPDATE HISTOGRAM ON location, delivery_options\G
*************************** 1. row ***************************
 Table: cookbook.goods_shops
 Op: histogram
Msg_type: status
Msg_text: Histogram statistics created for column 'delivery_options'.
*************************** 2. row ***************************
 Table: cookbook.goods_shops
 Op: histogram
Msg_type: status
Msg_text: Histogram statistics created for column 'location'.
2 rows in set (0,24 sec)

mysql> SELECT COUNT(*) FROM goods_shops JOIN goods_characteristics
 -> USING(good_id) WHERE size < 13 AND
 -> manufacturer IN ('Lenovo', 'Dell', 'Toshiba', 'Samsung', 'Acer') AND
 -> (location IN ('Moscow', 'Kiev') OR delivery_options IN ('Premium', 'Urgent'));
+----------+
| COUNT(*) |
+----------+
| 816640 |
+----------+
1 row in set (1,42 sec)

mysql> EXPLAIN SELECT COUNT(*) FROM goods_shops JOIN goods_characteristics
 -> USING(good_id) WHERE size < 13 AND
 -> manufacturer IN ('Lenovo', 'Dell', 'Toshiba', 'Samsung', 'Acer') AND
 -> (location IN ('Moscow', 'Kiev') OR delivery_options IN ('Premium', 'Urgent'))\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: goods_shops
 partitions: NULL
 type: index
possible_keys: good_id,location
 key: good_id
 key_len: 369
 ref: NULL
 rows: 66422
 filtered: 0.09
 Extra: Using where; Using index
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: goods_characteristics
 partitions: NULL
 type: ref
possible_keys: good_id,size
 key: good_id
 key_len: 123
 ref: cookbook.goods_shops.good_id
 rows: 137026
 filtered: 25.00
 Extra: Using where; Using index
2 rows in set, 1 warning (0,00 sec)

 Once a histogram is created, the optimizer joins tables in the effective order, and the query takes slightly more than one second instead of six minutes, as in the previous run.

See Also
For additional information about using histograms in MySQL, see “Billion Goods in Few Categories: How Histograms Save a Life?”.

21.12 Writing Performant Queries
Problem
You want to write efficient queries.

Solution
Study how MySQL accesses data, and adjust your queries to help MySQL perform its job faster.

Discussion
As we’ve seen in this chapter, there are many iterations of index
 implementation in MySQL. While we take advantage of these
 index types, we also need to know how MySQL accesses data. The optimizer
 is a very advanced part of MySQL but still does not always make correct
 decisions. When it doesn’t choose the right path, we’ll end up with poor
 query performance, which may lead to degraded service or outage in our
 applications at production. The best way to write performant queries is
 to know how MySQL accesses data.

The other point here is being at scale is different than using
 the application in a monolith environment. As the concurrency increases
 with data size, the decision optimizer will choose the fastest data
 route that will be more complex to handle.
MySQL uses a cost-based model to estimate the cost of various operations during query execution in the following order:
	Find the optimal method.

	Check if the access method is useful.

	Estimate the cost of using the access method.

	Select the lowest-cost access method possible.

Here’s the order of query execution that MySQL chooses:
	Table scan

	Index scan

	Index lookup

	Range scan

	Index merge

	Loose index scan

The following are some known reasons for slow index lookups for those still using an
index with poor performance outcomes:

	Low cardinality
	
When data is not diverse enough to identify a
fast traversal, MySQL will end up doing a full table scan.

	Large datasets
	Returning large datasets often causes problems. Even if they
are correctly filtered, they may be useless, as your application can’t process them fast
enough. Only target data that are needed in your query, and filter the rest
out.

	Multiple index traversal
	If you have a query hitting multiple indexes, the extra
I/O operation hopping through pages will lead to slow query performance.

	Nonleading column lookup
	If you do not use the leading column for a covering index, a covering index cannot be used.

	Data type mismatch
	Indexes cannot help if data types don’t match when
querying columns.

	 Character set collation mismatch
	Data access should be unified around
the character set and collation of the query.

	Suffix lookup
	Looking for a suffix will degrade performance significantly.

	Index as argument
	Using an indexed column as an argument will not
efficiently use the index.

	Stale statistics
	MySQL updates statistics based on the index cardinality.
This helps the optimizer to make decisions for the fastest path possible.

	MySQL bug
	It’s rare but possible. A MySQL bug can cause slow index lookups.

Query types

 When designing the application, it’s useful to recognize common query patterns and when they can be applied and when they can’t.

	Point select
	
One of the fastest methods to access your data is to do a point select
targeting indexed column directly. In this case, the optimizer already knows
the page that your data sits on if the index exists in that column:

mysql> SELECT names_id,top_name,name_rank FROM top_names
 -> WHERE names_id=699 \G
*************************** 1. row ***************************
 names_id: 699
 top_name: KOCH
name_rank: 698
1 row in set (0.00 sec)
In this case, the names_id column is the primary
 key column of the table, so the access is straight to that page’s path
 by the optimizer.

	Range select
	
This type of SELECT is for when you need a range of rows from your dataset.
MySQL can still use an index to access the data directly using the index on
the same column as the WHERE clause of the query.
This type of access method uses a single index or subset of values from an index or indexes.
The range index is also known for using single or multipart index utilization. In the following example,
the optimizer uses comparison on the name_rank field with < and > operators. Also, for all index types,
AND or OR combinations will be a range condition.
For MySQL, the fastest lookup is the primary key. Remember, this is also the physical order of the table:
mysql> EXPLAIN SELECT names_id,top_name,name_rank FROM top_names
 -> WHERE names_id>800 AND names_id < 900 \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: range
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 99
 filtered: 100.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

	Covering indexes
	
Covering indexes are indexes that can be used to resolve the query without accessing rows’ data.

To make sure other supporting indexes cover your query, we can use
secondary indexes. An index should be leftmost first, and each
additional field should be in a composite key. A query should not access columns that do not exist in the index (see Recipe 21.5).

 In the following example, the index is used to resolve the query condition without accessing that table data, but in the end, the table data is accessed, because we asked for the top_name column that doesn’t exist in the index. The Using index condition statement in the Extra field of the EXPLAIN output confirms that:

mysql> EXPLAIN SELECT name_rank,top_name,name_count
 -> FROM top_names WHERE name_rank < 10 ORDER BY name_count\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: range
possible_keys: idx_name_rank_count
 key: idx_name_rank_count
 key_len: 3
 ref: NULL
 rows: 10
 filtered: 100.00
 Extra: Using index condition; Using filesort
1 row in set, 1 warning (0.00 sec)

 This query uses a covering index. The Using index statement confirms that. A primary key is already part of the covering index; hence, there’s no need
 to include names_id in the covering index:
mysql> EXPLAIN SELECT names_id, name_rank, name_count FROM top_names
 -> WHERE name_rank < 10 ORDER BY name_count\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: range
possible_keys: idx_name_rank_count
 key: idx_name_rank_count
 key_len: 3
 ref: NULL
 rows: 10
 filtered: 100.00
 Extra: Using where; Using index; Using filesort
1 row in set, 1 warning (0,00 sec)

	Data type matching
	
Data types are also crucial for using indexes efficiently.
Using numerics for numeric comparison is essential for the optimizer. The
following query is an example of how MySQL doesn’t like this data type conversion when it comes to names_id—an INTEGER field with a string value in it. This is the warning message we get:
mysql> EXPLAIN SELECT names_id,top_name,name_rank FROM
 -> top_names WHERE names_id= '123 names' \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: const
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: const
 rows: 1
 filtered: 100.00
 Extra: NULL
1 row in set, 1 warning (0,00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1292
Message: Truncated incorrect DOUBLE value: '123 names'
*************************** 2. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select '123' AS `names_id`,'WALLACE' AS `top_name`, ↩
 '123' AS `name_rank` from `cookbook`.`top_names` where true
2 rows in set (0,00 sec)

 While the query may return results, MySQL has to perform a job to convert the string into a number and thus loses precision.

	Negative conditions
	Often, the most efficient indexes can’t be used for these types of
queries. The reason is that MySQL has to select all rows from the table or index, then filter those that aren’t in the list.
Avoid negative clauses if possible, as they are inefficient:
	
IS NOT

	
IS NOT NULL

	
NOT IN

	
NOT LIKE

mysql> EXPLAIN SELECT names_id,name_rank, top_name FROM
 -> top_names WHERE top_name NOT IN ("LARA","ILAYDA","ASLIHAN") \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: ALL
possible_keys: idx_top_name,idx_desc_01,idx_desc_02,idx_fulltext
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 161533
 filtered: 100.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

	ORDER BY operations
	Sorting operations can be expensive as the dataset grows, especially if the query cannot use the index to resolve ORDER BY:
mysql> EXPLAIN SELECT names_id,name_rank, top_name FROM
 -> top_names WHERE name_rank > 15000 ORDER BY top_name \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 161533
 filtered: 33.33
 Extra: Using where; Using filesort
1 row in set, 1 warning (0.00 sec)
The same applies to LIMIT operations. These type of queries
usually return a small set of data with a high cost:
mysql> EXPLAIN SELECT names_id,name_rank, top_name FROM top_names WHERE
 -> name_rank > 15000 ORDER BY name_rank LIMIT 10\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: top_names
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 161533
 filtered: 33.33
 Extra: Using where; Using filesort
1 row in set, 1 warning (0.00 sec)

 The preceding query selects a large number of rows and then discards most of them.

	JOINs
	
Join operations are an original way of combining or referencing data from
two or more tables. While SQL joins serve a particular purpose, they can
create a cartesian product on query results if not used properly. Using
INNER joins to filter only the intersection of tables in the SELECT statement
is highly advised versus using LEFT JOINs. Using
INNER JOINs is not always possible to ensure compliance with the required business logic.
In those cases, targeting indexed fields will still benefit the query execution time:
SELECT a.col_a, a.col_b, b.col_a FROM table_a a
INNER JOIN table_b b
ON a.key = b.key;
Tip

 In MySQL, JOIN is synonymous with INNER JOIN.

Help the optimizer choose the best possible path to
access your data by creating correct indexes and writing efficient queries.
This type of approach will improve your throughput overall.
Add only the indexes you need, and don’t over-index tables. Avoiding duplicate
indexes is another best practice to achieve performant queries. Identify if
the same indexes in your table may cause a slow-down on both reads and writes.

Chapter 22. Server Administration
22.0 Introduction
This chapter covers how to perform operations involved in
 administering a MySQL server:
	General server configuration

	The plug-in interface

	Controlling server logging

	Configuring storage engines

The chapter doesn’t cover managing MySQL user accounts. That is an
 administrative task and is covered in Chapter 24.
Note
Many of the techniques shown here require administrative access,
 such as the ability to modify tables in the mysql system database or use statements that
 require the SUPER privilege. For this
 reason, to carry out the operations described here, you’ll likely need
 to connect to the server as root
 rather than as cbuser.

22.1 Configuring the Server
Problem
You want to change the server settings and also verify that your changes
 took effect.

Solution
To change settings, specify them at server startup or at runtime.
 To verify the changes, examine the relevant system variables at
 runtime.

Discussion
The MySQL server places many configuration parameters under your
 control. For example, resources that require memory can be adjusted up
 or down to tailor resource usage. A heavily used server requires more
 memory; a lightly used one, less. You can set command options and system
 variables at server startup, and many system variables are settable at
 runtime as well. You can also examine your settings at runtime to verify
 that the configuration is as you intend.
Configuration control at server startup
To configure the server at startup time, specify options on the
 command line or in an option file. The latter is usually preferable
 because you can specify settings once and they’ll apply at each
 startup. (For background on using command-line options and option
 files, see Recipe 1.4.)
Command option names typically use dashes, whereas system
 variable names use underscores. However, the server is more permissive
 at startup and recognizes command options and system variables written
 using dashes or underscores interchangeably. For example, sql_mode and sql-mode are equivalent on the command line
 or in an option file. This differs from runtime, when references to
 system variables must be written using
 underscores.
To specify server parameters in an option file, list them in the
 [mysqld] group of a file the server
 reads. To illustrate, here are some parameters you might set:
	The default character set is utf8mb4 starting from MySQL 8.0. This character set comes with utf8mb4_0900_ai_ci as the default collation.

	The default SQL mode is STRICT_TRANS_TABLES (after
 MySQL 5.7). To be more permissive by default, remove strict SQL
 mode, which is not recommended.

	The event scheduler is enabled by default after MySQL 8.0.
 If you plan to use scheduled events (see Recipe 11.5), you must enable
 it on prior releases.

	For InnoDB engine, buffer pool size defaults to 128 MB, which
 is not sufficient beyond development and testing. Consider increasing
 to a size for running the dataset in memory.

	Time zone is set to SYSTEM unless specified at startup.
 If you aren’t intending to use SYSTEM time zone, you need to set it at startup
 by setting --timezone=​time⁠zone_​name.

To implement these configuration ideas, write the [mysqld] group in your option file like
 this:
[mysqld]
character_set_server=utf8mb4
sql_mode=STRICT_TRANS_TABLES
event_scheduler=1
innodb_buffer_pool_size=512M
Those are just suggestions; adjust the server configuration for
 your own requirements. For information about plug-in and logging
 options in particular, see Recipes 22.2 and 23.0.

Configuration control and verification at runtime
After the server starts, you can make runtime adjustments by changing
 system variables using the SET
 statement:
SET GLOBAL var_name = value;
That statement sets the global value of
 var_name; that is, the value that applies
 to all clients by default. Changes to the global value at runtime
 require the SUPER
 privilege. Many system variables also have a session value, which is
 the value specific to a particular client session. The session value
 of a given variable is initialized from the global value when the
 client connects, but the client can change it thereafter. For example,
 the database administrator (DBA) might set the max connections at server startup:
[mysqld]
max_connections=1000
That sets the global value. A DBA with the SUPER privilege can change the global value
 at runtime:
SET GLOBAL max_connections = 1000;
Each client that connects subsequently has its session variable
 initialized to the same value but can change the value as it likes. A
 DBA may increase this value for troubleshooting connectivity issues:

SET SESSION max_connections = 1000;
A SET statement that includes
 no GLOBAL or SESSION modifier changes the session value,
 if there is one.
After MySQL 8.0, you can set and persist global variables. Many
 of the global variables are dynamic and can be set at runtime. A PERSIST clause
 will help set this value permanently even if the server is restarted without saving to the configuration file:

SET PERSISTS max_connections = 1000;

SET PERSISTS_ONLY max_connections = 1000;

mysql> SELECT @@GLOBAL.max_connections;
+--------------------------+
| @@GLOBAL.max_connections |
+--------------------------+
| 1000 |
+--------------------------+
To reset persisted values, use the following:
		
RESET PERSIST;

		
RESET PERSIST max_connections;

There is alternative syntax for writing system variable
 references:
SET @@GLOBAL.var_name = value;
SET @@SESSION.var_name = value;
The @@ syntax is more
 flexible. It can be used in statements other than SET, enabling you to retrieve or examine
 individual system variables:
mysql> SELECT @@GLOBAL.max_connections;
+--------------------------+
| @@GLOBAL.max_connections |
+--------------------------+
| 1000 |
+--------------------------+
References to system variables using @@ syntax with no GLOBAL.
 or SESSION. modifier access the session value if
 there is one, or the global value otherwise.
Other ways to access system variables include the SHOW VARIABLES statement and selecting from the INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES tables.
If a setting exists only as a command option with no
 corresponding system variable, you cannot check its value at runtime.
 Fortunately, such options are rare. Nowadays, most new settings are
 created as system variables that can be examined at runtime.

22.2 Managing the Plug-In Interface
Problem
You want to exploit the capabilities offered by certain server
 plug-ins.

Solution
Learn how to control the plug-in interface.

Discussion
MySQL supports the use of plug-ins that extend server
 capabilities. There are plug-ins that implement storage engines,
 authentication methods, password policy, PERFORMANCE_SCHEMA tables, and more. The
 server enables you to specify which plug-ins to use so that you can
 load just those you want, with no memory or processing overhead incurred
 for plug-ins you don’t want.
This section provides the general background on controlling which
 plug-ins the server loads. Discussion elsewhere describes specific
 plug-ins and what they can do for you, including the authentication
 plug-ins (see Recipe 24.1) and validate_​pass⁠word (see Recipes 24.3 and 24.4).
The examples here refer to plug-in files using the .so (shared object) filename
 suffix. If the suffix differs on your system, adjust the names
 accordingly (for example, use .dll
 on Windows). If you don’t know the name of a given plug-in file, look in
 the directory named by the plugin_dir
 system variable, which is where the server expects to find plug-in
 files. For example:
mysql> SELECT @@plugin_dir;
+------------------------------+
| @@plugin_dir |
+------------------------------+
| /usr/local/mysql/lib/plugin/ |
+------------------------------+
To see which plug-ins are installed, use SHOW PLUGINS or query the INFORMA⁠TION_​SCHEMA PLUGINS table.
Note
Some plug-ins are built in, need not be enabled explicitly,
 and cannot be disabled. The mysql_native_password and sha256_password authentication plug-ins fall
 into this category.

Plug-in control at server startup
To install a plug-in only for a given server invocation, use the
 --plugin-load-add option at server startup, naming
 the file that contains the plug-in. To name multiple plug-ins as the
 option value, separate them with semicolons. Alternatively, use the
 option multiple times, with each instance naming a single plug-in.
 That makes it easy to enable or disable individual plug-ins by using
 the # character to selectively
 comment the corresponding lines:
[mysqld]
plugin-load-add=caching_sha2_password.so
plugin-load-add=adt_null.so
#plugin-load-add=semisync_master.so
#plugin-load-add=semisync_slave.so
The --plugin-load-add option was introduced in MySQL 5.6. In MySQL 8.0, you can use
 a single --plugin-load option that names all the plug-ins to be loaded in a
 semicolon-separated list:
[mysqld]
plugin-load=validate_password.so;caching_sha2_password.so
Clearly, for dealing with more than one plug-in,
 --plugin-load-add is superior for ease of
 administration.

Plug-in control at runtime
To install a plug-in at runtime and make it persistent,
 use INSTALL PLUGIN. The server loads the plug-in (which
 becomes available immediately) and registers it in the mysql.plugin system table to cause it to
 load automatically for subsequent restarts. For example:
INSTALL PLUGIN caching_sha2_password SONAME 'caching_sha2_password.so';
The SONAME (shared
 object name) clause specifies the file that contains the
 plug-in.
To disable a plug-in at runtime, use UNINSTALL PLUGIN. The server unloads the plug-in and
 removes its registration from the mysql.plugin table:
UNINSTALL PLUGIN caching_sha2_password;
INSTALL PLUGIN and UNINSTALL PLUGIN require the INSERT and
 DELETE privilege, respectively, for the mysql.plugin table.

22.3 Controlling Server Logging
Problem
You want to take advantage of log information the server can
 provide.

Solution
Learn the server options that control logging.

Discussion
The MySQL server can produce several logs:
	The error log
	The error log contains information about problems or
 exceptional conditions the server encounters. This is useful
 information for debugging. In particular, if the server exits,
 check the error log for the reason. For example, if an exit occurs
 immediately after startup, it’s likely that some setting in the
 server option file is misspelled or was set to an invalid value.
 The error log will contain a message to that effect.

	The general query log
	The general query log indicates when each client connected and
 disconnected and what SQL statements it executed. This tells you
 how much and what activity each client is engaged in.

	The slow query log
	The slow query log records statements that took a long time to execute
 (see the MySQL Reference Manual
 for the
 meaning of a long time because it can be influenced
 by several options). Queries that appear repeatedly in this log
 may be bottlenecks worth investigating to see whether they can be
 made more efficient.

	The binary log
	The binary log contains a record of data changes made by the
 server. To set up replication, you must enable the binary log on
 the source server: it serves as the storage medium for changes to
 be sent to replica servers. The binary log is also used, together
 with backup files, during data recovery operations.

Each log serves a different purpose, and most can be turned on at
 your discretion, enabling you to use those that suit your administrative
 requirements. Each log can be written to a file, and some can be written
 to other destinations. The error log can be sent to your terminal or to
 the syslog facility.
 The general and slow query logs can be written to a file, to a table in
 the mysql database, or both.
To control server logging, add lines to your server option file
 that specify the desired types of logging. (Some settings can also be
 changed at runtime.) For example, the following
 lines in a server option file send the error log to the err.log file in the data directory, enable
 writing the general query and slow query logs to tables in the mysql database, and enable writing the binary
 log to the /var/mysql-logs
 directory using files having names beginning with binlog:
[mysqld]
log_error=err.log
log_output=TABLE
general_log=1
slow_query_log=1
log-bin=/var/mysql-logs/binlog
For filenames in options that produce log output to files,
 logfiles are written under the data directory unless specified using
 full pathnames. The usual reason to use full pathnames is to write
 logfiles to a filesystem different from the one containing the data
 directory, which is a useful technique for dividing disk space use and I/O
 activity among physical devices.
The rest of this section provides details specific to controlling
 individual logs. The examples show the lines to include in your server
 option file to produce specific logging behavior. For some ideas about
 using the logs for diagnostic or activity assessment purposes, see Recipe 22.6.
Warning
For any log that you enable, see also Recipes 22.4 and 22.5 for log maintenance techniques.
 Logs increase in size over time, so you’ll want to have a plan for
 managing them.

The error log
The error log cannot be disabled, but you can control where it’s
 written. By default, on Unix, the error output goes to your terminal or to host_name.err in the data directory if you start the
 server using mysqld_safe. On
 Windows, the default is host_name.err in the data directory. To specify the
 error log filename, set the log_error
 system variable.
Examples:
	Write the error log to the err.log file in the data
 directory:
[mysqld]
log_error=err.log

	As of MySQL 5.7.2, you can influence the amount of error log
 output by setting the log_error_verbosity system variable.
 Permitted values range from 1 (errors only) to 3
 (errors, warnings, notes; the default). To see errors only, do
 this:
[mysqld]
log_error=err.log
log_error_verbosity=1

	On Unix, if you start the server using mysqld_safe, it’s possible to redirect
 the error log to the syslog
 facility:
[mysqld_safe]
syslog

The general query and slow query logs
Several system variables control the general query and slow query logs.
 Each variable can be set at server startup or changed at
 runtime:
	log_output controls
 the log destinations. The value is FILE (log to files, the default),
 TABLE (log to tables), NONE (disable logging), or a
 comma-separated combination of values, in any order. NONE overrides any other value. If the
 value is NONE, other settings
 for these logs have no effect. Destination control applies to the
 general query and slow query logs together; you cannot write one
 to a file and the other to a table.

	general_log and slow_query_log enable or disable the respective logs. By default, each log
 is disabled. If you enable either of them, the server writes the
 log to the destinations specified by log_output, unless that variable is
 NONE.

	general_log_file and
 slow_query_log_file specify
 log filenames. The default names are
 host_name.log and
 host_name-slow.log; however, these settings have
 no effect unless log_output
 specifies FILE logging.

Examples:
	Write the general query log to the query.log file in the data
 directory:
[mysqld]
log_output=FILE
general_log=1
general_log_file=query.log

	Write the general and slow query logs to tables in the
 mysql database (the table names
 are general_log and slow_log and cannot be changed):
[mysqld]
log_output=TABLE
general_log=1
slow_query_log=1

	Write the general query log to a file named query.log and to the general_log table:
[mysqld]
log_output=FILE,TABLE
general_log=1
general_log_file=query.log

The binary log
Prior to MySQL 8, binary logging was disabled by default.
 To enable the binary log, use the --log-bin option,
 optionally specifying the logfile basename as the option
 value. To disable binary logging in MySQL 8.0, you can use
 the --skip-log-bin option or
 the --disable-log-bin option.
 The default basename is
 binlog. The value for this option is a
 basename because the server creates binary logfiles in numbered
 sequence, automatically adding to the basename suffixes of .000001, .000002, and so forth. The server advances
 to the next file in the sequence when it starts, when the logs are
 flushed, and when the current file reaches the maximum logfile size
 (controlled by the max_binlog_size
 system variable). In MySQL 8.0, expire_logs_days is deprecated and
 replaced with binlog_expire_logs_seconds. To have the server expire
 logfiles for you,
 set the binlog_expire_logs_seconds system variable
 to the age in seconds at which files become eligible for removal. The
 default value for binlog_expire_logs_seconds is
 30 days (30 * 24 * 60 * 60 seconds). To disable automatic purging of binary
 logs, set binlog_expire_logs_seconds to 0.

Examples:
	Enable the binary log, writing numbered files in the data
 directory having names beginning with binlog. Additionally, expire logfiles
 after a week:
[mysqld]
max_binlog_size=4G
binlog_expire_logs_seconds=604800

The binary log is an essential component for the MySQL server,
 and the administrator needs to approach it carefully. Binary logs
 contain events for all data changes and hence are used for the following areas:

	Replication setup

	Point-in-time recovery

	Debugging a specific event

22.4 Rotating or Expiring Logfiles
Problem
Files used for logging grow indefinitely unless managed.

Solution
Available strategies for managing log files include rotating a
 logfile through a set of names and expiring files by age. But different
 strategies apply to different logs, so consider the log type before
 choosing a strategy.

Discussion
Logfile rotation is a technique that renames a logfile through a
 series of one or more names. This maintains the file for a certain
 number of rotations, at which point it reaches the end of the sequence
 and its contents are discarded by being overwritten. Rotation can be
 applied to the error log, general query log, or slow query log.
Logfile expiration removes files when they reach a certain age.
 This technique applies to the binary log.
Both log management methods rely on log flushing to make sure that
 the current logfile has been closed properly. When you flush the logs,
 the server closes and reopens whichever of the files it is writing. If
 you rename the error, general query, or slow query logfile first, the
 server closes the current file and reopens a new one using the original
 name; this is what enables rotation of the current file while the server
 runs. The server also closes the current binary logfile and opens a new
 one with the next number in the sequence.
To flush the server logs, execute a FLUSH
 LOGS statement or use the mysqladmin
 flush-logs command. (Log flushing requires the RELOAD
 privilege.) The following discussion shows maintenance operations as
 performed at the command line, so it uses mysqladmin. The examples use mv as the file renaming command, which is
 applicable on Unix. On Windows, use rename instead.
Rotating the error, general query, or slow query log
To maintain a single file in a log rotation, rename the current
 logfile and flush the logs. Suppose that the error logfile is named
 err.log in the data directory. To
 rotate it, change location to the data directory, then execute these
 commands:
$ mv err.log err.log.old
$ mysqladmin flush-logs
When you flush the logs, the server opens a new err.log file. You can remove err.log.old at your leisure. To maintain an
 archive copy, include it in your filesystem backups before removing
 it.
To maintain a set of multiple rotated files, it’s convenient to
 use a sequence of numbered suffixes. For example, to maintain a set of
 three old general query logfiles, do this:
$ mv query.log.2 query.log.3
$ mv query.log.1 query.log.2
$ mv query.log query.log.1
$ mysqladmin flush-logs
The first few times you execute the command sequence, the
 initial commands are unneeded until the respective query.log.N
 files exist.
Successive executions of that command sequence rotate query.log through the names query.log.1, query.log.2, and query.log.3; then query.log.3 is overwritten and its contents
 lost. To maintain an archive copy, include the rotated files in your
 filesystem backups before removing them.

Rotating the binary log
The server creates binary logfiles in numbered sequence. To expire them,
 you need only arrange that it removes files when they’re old enough.
 Several factors affect how many files the server creates and
 maintains:
	The frequency of server restarts and log flushing
 operations: one new file is generated each time either of those
 occurs.

	The size to which files can grow: larger sizes lead to fewer
 files. To control this size, set the max_binlog_size system variable.

	How old files are permitted to become: longer expiration
 times lead to more files. To control this age, set the binlog_expire_logs_seconds system variable.
 The server makes expiration checks at server startup
 and when it opens a new binary logfile.

The following settings enable the binary log, set the maximum
 file size to 4GB, and expire files after four days:
[mysqld]
log-bin=binlog
max_binlog_size=4G
binlog_expire_logs_seconds=4
You can also remove binary logfiles manually with the PURGE BINARY LOGS statement. For example, to remove all
 files up to and including the one named binlog.001028, do this:
PURGE BINARY LOGS TO 'binlog.001028';
If your server is a replication source, don’t be too aggressive
 about removing binary logfiles. No file should be removed until you’re
 certain its contents have been completely transmitted to all
 replicas.

Automating logfile rotation
To make it easier to perform a rotation operation, put the
 commands that implement it in a file to create a shell script. To
 perform the rotation automatically, arrange to execute the script from
 a job scheduler such as cron. The
 script will need to access connection parameters that enable it to
 connect to the server to flush the logs, using an account that has the
 RELOAD privilege. One strategy is
 to put the parameters in an option file and pass the file to mysqladmin using a
 --defaults-file=file_name
 option, for example:
#!/bin/sh
mv err.log err.log.old
mysqladmin --defaults-file=/usr/local/mysql/data/flush-opts.cnf flush-logs

22.5 Rotating Log Tables or Expiring Log Table Rows
Problem
Tables used for logging grow indefinitely unless managed.

Solution
Rotate the tables or expire rows within them.

Discussion
Recipe 22.4 discussed rotation
 and expiration of logfiles. Analogous techniques apply to log
 tables:
	To rotate a log table, rename it and open a new table with the
 original name.

	To expire log table contents, remove rows older than a certain
 age.

The examples here demonstrate how to implement these methods using
 the general query log table, mysql.general_log. The same methods apply to
 the slow query log table, mysql.slow_log, or to any other table
 containing rows that have a timestamp.
To employ log table rotation, create an empty copy of the original
 table to serve as the new table (see Recipe 6.1), then rename the original table
 and rename the new one to take its place:
DROP TABLE IF EXISTS mysql.general_log_old, mysql.general_log_new;
CREATE TABLE mysql.general_log_new LIKE mysql.general_log;
RENAME TABLE mysql.general_log TO mysql.general_log_old,
 mysql.general_log_new TO mysql.general_log;
To employ log row expiration, you can either empty the table
 completely or selectively:
	To empty a log table completely, truncate it:
TRUNCATE TABLE mysql.general_log;

	To expire a table selectively, removing only rows older than a
 given age, you must know the name of the column that indicates
 row-creation time:
DELETE FROM mysql.general_log WHERE event_time < NOW() - INTERVAL 1 WEEK;

For automatic expiration, the statements for any of the techniques
 just described can be executed within a scheduled event (see Recipe 11.5), for example:
CREATE EVENT expire_general_log
 ON SCHEDULE EVERY 1 WEEK
 DO DELETE FROM mysql.general_log
 WHERE event_time < NOW() - INTERVAL 1 WEEK;

22.6 Configuring Storage Engines
Problem
You want to make sure the engine of your choice is configured
 properly.

Solution
Understand and configure each storage engine according to its use
 case.

Discussion
MySQL comes with several storage engines by default, such as
 MyISAM and InnoDB. MySQL 8.0 and onward use InnoDB as the default database engine.
 Along with this popular storage engine, there are
 some others you might want to explore. Each of these
 storage engine will use shared resources as well as dedicated resources
 from the operating system. Care must be taken not to give too many
 resources while mixing and matching:
	InnoDB
	Supports transactions and row-level locking
 with full ACID (atomicity, consistency, isolation, durability) compliancy engine.

	MyISAM
	Table-level locking and simple engine.

	MyRocks
	LSM-based B-tree key/value storage engine.1

	CSV
	Comma-separated values engine.

	Blackhole
	All writes are sent to /dev/null no data
 storage engine.

	Memory
	Optimized for in-memory workload storage
 engine.

	Archive
	Write-only engine for archival data in
 compressed format storage engine.

Warning
Using multiple storage engines at the same time can cause issues
 and may lead to data loss if used in the same transaction. Also, be
 careful about the compatibility of your application and tooling around
 it.

 As each of the previously mentioned engines store data differently, we must configure
 them accordingly.
 InnoDB utilizes redo and undo log spaces for modified data. This allows
 both recovery and point-in-time restore with minimal data loss
 in the event of hardware or server failures.
 MyRocks is another advanced storage engine that writes to recovery log
 Write Ahead Log (WAL) first and supports rollback for each transaction.
 MyISAM and CSV-type storage engines write directly to datafiles. While
 it’s easier to make binary backups and transport them, these engines will
 not support rollback operations.

 To check the default storage engine using MySQL 8.0, do the following:

mysql> SELECT @@default_storage_engine;
+--------------------------+
| @@default_storage_engine |
+--------------------------+
| InnoDB |
+--------------------------+

We can see the table storage engine type by checking the schema definition:

mysql> SHOW CREATE TABLE limbs\G
 Table: limbs
Create Table: CREATE TABLE `limbs` (
 `thing` varchar(20) DEFAULT NULL,
 `legs` int DEFAULT NULL,
 `arms` int DEFAULT NULL,
 PRIMARY KEY(thing)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci

If you want to change the storage engine type after you’ve created the table,
issue an ALTER statement:

mysql> ALTER TABLE cookbook.limbs ENGINE=MYISAM;
Query OK, 11 rows affected (0.16 sec)
Records: 11 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE limbs\G
*************************** 1. row ***************************
 Table: limbs
Create Table: CREATE TABLE `limbs` (
 `thing` varchar(20) DEFAULT NULL,
 `legs` int DEFAULT NULL,
 `arms` int DEFAULT NULL,
 PRIMARY KEY(thing)
) ENGINE=MyISAM DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)

Note
While you can swap between storage engines after a table has been
 created and data loaded, the ALTER TABLE operation locks
 for all storage engines. For large datasets, consider
 utilizing online schema change utilities such as pt-online-schema-change
 or gh-ost. These
 tools allow schema migrations to complete without creating a metadata
 lock, and apply changes in a controlled way.

 Other storage engine settings can be checked as follows:

mysql> SHOW GLOBAL VARIABLES LIKE "%engine%" ;
+---------------------------------+---------------+
| Variable_name | Value |
+---------------------------------+---------------+
default_storage_engine	InnoDB
default_tmp_storage_engine	InnoDB
disabled_storage_engines	
internal_tmp_mem_storage_engine	TempTable
secondary_engine_cost_threshold	100000.000000
+---------------------------------+---------------+

1 The third-party storage
 engine via Percona and MariaDB is designed to handle write-intensive
 workloads with space-saving benefits.

Chapter 23. Monitoring the MySQL Server
23.0 Introduction
This chapter covers how to monitor the MySQL server using various
 command-line tools:
	The mysqladmin interface

	System variables

	Status variables

	Information and Performance Schemas

	Storage engines diagnostics

	Logfiles

This chapter doesn’t cover managing administrative tasks. Instead,
 it focuses on the server’s observability. Administrators or developers
 should evaluate outcomes from various command-line tools on the MySQL server
 carefully before taking action and modifying configuration changes listed
 in Chapter 22. Rather, this chapter discusses what you can find out,
 and how, by surveying the types of information available and how to use
 that information to answer questions. The purpose is not so much to
 consider specific monitoring problems, but to illustrate your options so you
 can begin to answer your questions, whatever they are. In the case of reactive
 monitoring on an issue, follow one of the following options:
	Determine which of the available information sources pertain
 to the problem at hand.

	Choose an approach for using the information: Are you asking a
 one-time question? If so, maybe a few interactive queries are
 sufficient. If you’re trying to solve an issue that may recur or for
 which you need continuous monitoring, a program-oriented approach is
 better. Will a script written entirely in SQL do the job, or do you
 need to write a program that queries the server and performs
 additional manipulation of the information obtained? (This is
 typical for operations that cannot be done in pure SQL, that have
 special output formatting requirements, and so forth.) If a task
 must run periodically, you may need to set up a scheduled event or
 cron job. For browser display,
 write a web script.

Note
Some of the techniques shown here require administrative access,
 such as accessing log files in operating system MySQL or using statements that require the
 SUPER privilege. For this reason, to
 carry out the operations described here, you’ll likely need to connect
 to the server as root rather than as
 cbuser, or grant SUPER to cbuser.
 MySQL installation created a “root'@'localhost” superuser account that
 has all privileges the database user has.

23.1 Why Monitor the MySQL Server?
Problem
You want to monitor the server to capture its state, which allows
 you to verify or change settings explained in Chapter 22. Knowing the state of the MySQL server’s wait events
 and status counters reveals so much information about the server limits.
 Wait events are performance indicators of the server. Monitoring can be
 utilized in two different areas. The most common reasons for monitoring
 are troubleshooting errors, crashes, and failures. The others may
 include better utilization of the hardware layer used for available
 resources such as memory, I/O subsystem, CPU utilization, and network
 bandwidth. Due to hardware limitations, MySQL can suffer significant
 degradation in performance; hence, hardware plays an important role in
 database operations.

Solution
To monitor the MySQL server, use the built-in functionality of MySQL client
 with the power of other built-in tools like mysqladmin.

Discussion
As your MySQL server runs, you want to learn if the underlying
 hardware is performing well for your needs.
Operating System
Before getting into MySQL-specific monitoring and
 troubleshooting, it’s recommended that you verify Operating System (OS)
 vitals accordingly. Four main categories—memory, input/output
 (I/O), CPU, and network resources—can have a major impact on
 MySQL’s operational behavior.
Memory utilization
The memory utilization of mysqld can be
 checked via the OS command line. It’s essential to have a dedicated
 MySQL host for each server; hence, there’s no race for OS resources,
 including memory. The rule of thumb is to have up to 80% of your memory
 allocated for a dedicated MySQL server, but you must check your
 workload and data size to calculate the memory needed:
$ sudo pmap $(pidof mysqld) |grep total
 total 1292476K
You can confirm this via the sys schema using
 mysql client:
mysql> USE sys
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> SELECT * FROM memory_global_total;
+-----------------+
| total_allocated |
+-----------------+
| 476.81 MiB |
+-----------------+
1 row in set (0.00 sec)
Also watch out for virtual memory utilization, and make sure
 your host OS is not swapping in the first place:
$ free -m
 total used free shared buff/cache available
Mem: 1993 453 755 5 784 1382
Swap: 979 0 979

$ cat /proc/$(pidof mysqld)/status | grep Swap
VmSwap:	 0 kB
The following OS configuration regarding memory utilization is
 crucial to MySQL’s memory allocation. Make sure these have been
 configured accordingly:
	Swappiness
	This is the concept of allowing physical memory
 to be moved to a swap area by the kernel. It’s recommended to set this
 value to 1 and hence allow the kernel to perform the minimum amount of
 swapping:
$ sudo sysctl vm.swappiness=1
vm.swappiness = 1

	Non-uniform memory access (NUMA)
	This is the concept of balancing memory between each
 CPU core. MySQL 8 supports enabling NUMA interleaved mode
 when multiple cores are available. This value
 is OFF by default. Enabling NUMA to interleave the mode operating
 system allows allocated memory to be balanced among the CPU cores for
 better utilization:
mysql> SHOW GLOBAL VARIABLES LIKE "innodb_numa_interleave";
+------------------------+-------+
| Variable_name | Value |
+------------------------+-------+
| innodb_numa_interleave | ON |
+------------------------+-------+
1 row in set (0.00 sec)

	OOM killer
	In Linux systems, MySQL generally has a concept
 called out of memory killer controlled by the kernel. This is to
 prevent possible runaway processes in operating systems to avoid
 race conditions and a server crash. Since MySQL and its optimized
 memory buffers are memory hogs, the operating system may often kill
 the mysqld process to avert a system-wide crash if not adjusted. As we
 mentioned earlier, we can control how much memory MySQL should allocate
 from the operating system. Still, if OOM kicks in, it’s possible to
 configure on the system level or disable it altogether (not recommended):
$ pidof mysqld
25046
$ sudo cat /proc/25046/oom_score
34
$ sudo echo -100 > /proc/24633/oom_score_adj
$ sudo cat /proc/24633/oom_score
0

	File system cache
	Operating systems use caches for
 all memory operations, whereas MySQL has its own optimized caches,
 including the InnoDB Buffer Pool. Since there is no need to cache
 data twice, we opt out of using the file system cache by setting
 innodb_flush_method to O_DIRECT; in addition, its
 value needs to be changed at startup:
mysql> SHOW GLOBAL VARIABLES LIKE "innodb_flush_method";
+---------------------+-------+
| Variable_name | Value |
+---------------------+-------+
| innodb_flush_method | fsync |
+---------------------+-------+
1 row in set (0.00 sec)
Warning
While the O_DIRECT flush method works with most
 installations, it does not work well with all storages
 subsystems. You may need to test it before setting this
 value.

I/O utilization
I/O performance is vital for the MySQL database. The data that is read from database (aka SELECT statements) and is written back to data (UPDATE, INSERT, DELETE statements) causes input/output operation to happen to disks (aka physical storage). Depending on the
 available buffers’ sizes, all the data processed within buffers will
 eventually be flushed to a disk, which is a very costly operation in
 terms of data transfer. Although the data is cached, it
 has to be flushed to the disk regularly. Also, large datasets that
 don’t fit in the memory will have to be read from disks. In modern
 hardware, Solid State Disks (SSD) offer better
 performance, but it’s beneficial to know where the underlying
 bottlenecks are. You can use iotop to observe the I/O impact per
 process on the system; hence, you can drill down into each method for a
 specific operation.
Note
You can use the iotop utility
 interactively to monitor I/O operations. In this example, we see
 disk activity for one of the MySQL threads.

$ sudo iotop --only
Total DISK READ : 2.93 M/s | Total DISK WRITE : 9.24 M/s
Actual DISK READ: 2.93 M/s | Actual DISK WRITE: 12.01 M/s
TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND
10692 be/4 vagrant 0.00 B/s 0.00 B/s 0.00 % 56.11 % mysqld --defaults-file=/home/sandboxes
~-socket=/tmp/mysql_sandbox8021.sock --port=8021
10684 be/4 vagrant 0.00 B/s 0.00 B/s 0.00 % 53.33 % mysqld --defaults-file=/home/sandboxes
~-socket=/tmp/mysql_sandbox8021.sock --port=8021
10688 be/4 vagrant 0.00 B/s 6.96 M/s 0.00 % 30.12 % mysqld --defaults-file=/home/sandboxes
~-socket=/tmp/mysql_sandbox8021.sock --port=8021
10685 be/4 vagrant 0.00 B/s 0.00 B/s 0.00 % 26.89 % mysqld --defaults-file=/home/sandboxes
~-socket=/tmp/mysql_sandbox8021.sock --port=8021
 ...
In the meantime, we can check the process list from the MySQL
 command-line interface to see what’s taking priority over other
 threads:
mysql> SELECT THREAD_OS_ID, PROCESSLIST_ID, PROCESSLIST_USER,
 -> PROCESSLIST_DB, PROCESSLIST_COMMAND
 -> FROM performance_schema.threads WHERE PROCESSLIST_COMMAND IS NOT NULL;
+-------+-----+----------+--------------------+---------+
| TOSID | PID | PUSR | PDB | PCMD |
+-------+-----+----------+--------------------+---------+
1964	5	NULL	NULL	Sleep
1968	7	NULL	NULL	Daemon
1971	8	msandbox	performance_schema	Query
2003	9	root	test	Execute
2002	10	root	test	Execute
2004	11	root	test	Execute
2001	12	root	test	Execute
2000	13	root	test	Execute
+-------+-----+----------+--------------------+---------+
8 rows in set (0.00 sec)
 We can pinpoint the process id to identify details
 about the query for this example:
mysql> EXPLAIN FOR CONNECTION 10\G
*************************** 1. row ***************************
 id: 1
 select_type: INSERT
 table: sbtest25
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 filtered: NULL
 Extra: NULL
1 row in set (0.00 sec)
We can also gather further information about this
 thread from performance_schema by querying
 table_io_waits_summary_by_table, which aggregates all table I/O
 wait events, as generated by the wait/io/table/sql/handler
 instrument.

 The table_io_waits_summary_by_table table has the following columns to indicate how the table aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME.
 These columns have the same meaning as in the events_waits_current table. They identify the table to which the row applies.

 This table also contains information about the following groups:

	COUNT_*
	How many times a user requested reads/writes/waits from this table.

	SUM_*
	How many reads/writes in total requests from this table.

	MIN_*/MAX_*/AVG_*
	Minimum, maximum, and average values for this table:

 mysql> SELECT * FROM performance_schema.table_io_waits_summary_by_table
 -> WHERE object_schema='test' AND object_name='sbtest25'\G
*************************** 1. row ***************************
 OBJECT_TYPE: TABLE
 OBJECT_SCHEMA: test
 OBJECT_NAME: sbtest25
 COUNT_STAR: 3200367
 SUM_TIMER_WAIT: 1970633326256
 MIN_TIMER_WAIT: 1505980
 AVG_TIMER_WAIT: 615412
 MAX_TIMER_WAIT: 2759234856
 COUNT_READ: 3200367
 SUM_TIMER_READ: 1970633326256
 MIN_TIMER_READ: 1505980
 AVG_TIMER_READ: 615412
 MAX_TIMER_READ: 2759234856
 COUNT_WRITE: 0
 SUM_TIMER_WRITE: 0
 MIN_TIMER_WRITE: 0
 AVG_TIMER_WRITE: 0
 MAX_TIMER_WRITE: 0
 COUNT_FETCH: 3200367
 SUM_TIMER_FETCH: 1970633326256
 MIN_TIMER_FETCH: 1505980
 AVG_TIMER_FETCH: 615412
 MAX_TIMER_FETCH: 2759234856
 COUNT_INSERT: 0
...
This table is also used by the schema_table_statistics% views in sys schema. (For further reading, please refer to the documentation at
 “table_io_waits_summary_by_table”):
mysql> SELECT * FROM sys.schema_table_statistics
 -> WHERE table_schema="test" AND table_name="sbtest23"\G
*************************** 1. row ***************************
 table_schema: test
 table_name: sbtest23
 total_latency: 14.46 s
 rows_fetched: 8389964
 fetch_latency: 14.46 s
 rows_inserted: 0
 insert_latency: 0 ps
 rows_updated: 0
 update_latency: 0 ps
 rows_deleted: 0
 delete_latency: 0 ps
 io_read_requests: 3006
 io_read: 46.97 MiB
 io_read_latency: 19.48 ms
io_write_requests: 737
 io_write: 11.61 MiB
 io_write_latency: 21.09 ms
 io_misc_requests: 284
 io_misc_latency: 1.72 s
1 row in set (0.01 sec)

Network utilization
The network is also a very important part of database configuration.
 Often, test and development systems run on local configuration,
 which omits network hops between the nodes. If MySQL is
 running on a dedicated host, all requests to the database will be coming
 via the application layer or proxy server. Since monitoring requires
 continuous data flow, it’s better to utilize a tool that has at least 30 days’ worth
 of time-series, historical data to analyze. For this, we highly recommend Percona
 Monitoring and Management (PMM)
 for monitoring network utilization, as shown in Figure 23-1.
Figure 23-1. Percona Monitoring and Management—MySQL instance summary

23.2 Discovering Sources of MySQL Monitoring Information
Problem
You want to check how the server is operating with the available resources.

Solution
Let the server tell you about itself using built-in
 utilities.

Discussion
As your MySQL server runs, you’ll have questions about aspects of its operation
 or performance. Or maybe it’s not running and you
 want to know why.
To find out what information sources are available so that
 you can evaluate which are applicable and how usable they are for
 particular questions, here are a few built-in utilities and information
 resources to check:
	System variables tell you how the server is configured. (Recipe 22.1 covers how to check these
 values.)

	Status variables provide information about operations the server is
 performing, such as the number of statements executed, number of disk
 accesses, memory use, or cache efficiency. Status information can
 help indicate when configuration changes are needed, such as
 increasing the size of a too-small buffer to improve performance, or
 decreasing the size of an underused resource to reduce the server’s
 memory footprint.

	The Performance Schema is designed for monitoring and provides
 a wealth of measurements, from high-level information such as which
 clients are connected, down to fine-grained information, such as which
 locks a statement holds or which files it has open. The Performance
 Schema is enabled by default since MySQL 5.7. To
 use the Performance Schema in prior versions, you must enable it. To enable it
 explicitly at server startup, use this configuration setting:
[mysqld]
performance_schema=1

	Performance Schema
 focuses on the performance data of the MySQL server and can be used
 similarly for highly specific or complex queries, including joins. It
 also helps to clarify everything at runtime:
mysql> SELECT EVENT_NAME, COUNT_STAR
 -> FROM performance_schema.events_waits_summary_global_by_event_name
 -> ORDER BY COUNT_STAR DESC LIMIT 10;
+---------------------------------------+------------+
| EVENT_NAME | COUNT_STAR |
+---------------------------------------+------------+
wait/io/file/innodb/innodb_log_file	6439
wait/io/file/innodb/innodb_data_file	5994
idle	5309
wait/io/table/sql/handler	3263
wait/io/file/innodb/innodb_dblwr_file	1356
wait/io/file/sql/binlog	798
wait/lock/table/sql/handler	683
wait/io/file/innodb/innodb_temp_file	471
wait/io/file/sql/io_cache	203
wait/io/file/sql/binlog_index	75
+---------------------------------------+------------+
10 rows in set (0.16 sec)

	Sys schema is a unique schema that does not contain physical
 tables but contains views and stored routines over Performance Schema tables.
 Performance Schema provides memory instrumentation information that
 can be accessed much more easily by using views in sys
 schema. For memory usage, it is much easier to use sys
 schema; therefore, we recommend using five views that provide
 memory allocation details:
mysql> SHOW TABLES like "memory%";	
+-----------------------------------+
| Tables_in_sys (memory%) |
+-----------------------------------+
| memory_by_host_by_current_bytes |
| memory_by_thread_by_current_bytes |
| memory_by_user_by_current_bytes |
| memory_global_by_current_bytes |
| memory_global_total |
+-----------------------------------+
5 rows in set (0.00 sec)

	SHOW statements and tables in the PERFORMANCE_SCHEMA database provide information ranging from processes running in
 the server to active storage engines and plug-ins to system and
 status variables. In many cases, these two sources provide the same
 or similar information but in different display formats. (For
 example, the SHOW PLUGINS statement and the PLUGINS
 table are related.) Familiarity with both sources helps you choose
 which is more usable in a given situation:
	For interactive use, SHOW is often more convenient because
 it involves less typing than PERFORMANCE_SCHEMA queries. Compare
 these two statements, which produce the same result:
SHOW GLOBAL STATUS LIKE 'Threads_connected';
SELECT VARIABLE_VALUE FROM PERFORMANCE_SCHEMA.GLOBAL_STATUS
WHERE VARIABLE_NAME = 'Threads_connected';

	INFORMATION_SCHEMA
 queries use SELECT,
 which is more expressive than SHOW and can be used for highly
 specific or complex queries, including joins:
SELECT t.table_schema, t.table_name, c.column_name
 FROM information_schema.tables t,
 information_schema.columns c
 WHERE t.table_schema = c.table_schema
 AND t.table_name = c.table_name
 AND t.engine='InnoDB';

	SHOW output cannot be
 saved using only SQL. Should you require further processing of
 a PERFORMANCE_SCHEMA query
 result, you can use INSERT
 INTO…SELECT to save the results in a table
 for further analysis (see Recipe 6.2). To obtain an
 individual value, assign a scalar subquery result to a
 variable:
mysql> SET @queries =
 -> (SELECT VARIABLE_VALUE FROM PERFORMANCE_SCHEMA.GLOBAL_STATUS
 -> WHERE VARIABLE_NAME = 'Queries');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @queries;
+----------+
| @queries |
+----------+
| 5338 |
+----------+
1 row in set (0.00 sec)

	Some storage engines make information available about
 themselves. InnoDB, for example, has its own system and status
 variables. It also provides its own INFORMATION_SCHEMA tables and a set of
 InnoDB Monitors. The INFORMATION_SCHEMA tables provide more
 structured information and are thus more amenable to analysis using SQL, if
 they contain the information you want. To see which InnoDB-related
 tables are available, use this statement:
SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'innodb%';
The Monitors produce unstructured output. You can eyeball it,
 but for programmatic use, you must parse or extract the information
 somehow. In some cases, a simple grep command might suffice:
$ mysql -E -e "SHOW ENGINE INNODB STATUS" | grep "Free buffers"
Free buffers 4733

	Server logs provide several types of information. Here are
 some suggestions for using them:
	The error log alerts you to severe problems the server
 encounters. It’s most suited to visual inspection because
 messages can originate from anywhere in the server, and there is
 no fixed format to aid programmatic analysis. It’s often only
 the last part of the file that’s of interest anyway, because
 you typically check this file to find the reason for the most
 recent problems. These problems may include a corrupted table
 causing a crash or may even be related to mysql_upgrade not being run, causing further issues.

	The general query log indicates what queries clients are running. It
 can aid in assessing the nature of the server’s workload. It is
 the only log that captures everything; hence, care must be taken
 when enabling this log. Depending on the server’s activity, it
 may fill up disk space quickly and cause very heavy I/O, making
 things worse while monitoring MySQL. A suggestion is to enable
 it online when needed and disable afterward.

	The slow log contains queries that may be inefficient. It can
 help you find candidates for optimization.

The server is able to write the general query and slow query
 logs to files, tables, or both. Log tables facilitate analysis
 better than the files; they are more structured and hence are subject to
 analysis using SQL statements. The contents are also easier to
 interpret. Each query row in the general_log table shows the user
 associated with it. With the logfile, users are named only on
 connection lines. To identify a user’s queries, you must extract the
 connection ID from the connection line and look for subsequent query
 lines with the same ID.
In addition, log tables are managed by the CSV storage engine,
 so the table datafiles are written in comma-separated values format.
 Look in the mysql directory
 under the server’s data directory for files named general_log.CSV and slow_log.CSV. You can process them with
 tools that read CSV files.
To get information from a log, it must be enabled (see Recipe 22.3 for instructions).

	The EXPLAIN statement
 can be useful for checking long-running queries.
 Although EXPLAIN is most often
 used to see execution plans for prospective queries, MySQL 5.7.2 and
 up has the capability of using EXPLAIN to examine queries currently
 executing in other sessions. If a query seems to be stuck, this may
 help you understand why. Use SHOW PROCESSLIST or the INFORMATION_SCHEMA PROCESSLIST table to determine the
 connection ID of the session running the problem query, then point
 EXPLAIN at it:
EXPLAIN FOR CONNECTION connection_id;
EXPLAIN can produce output
 in tabular, tree, or JSON format.
 The latter can be parsed and manipulated by standard JSON modules in
 your programming language of choice.

23.3 Checking Server Uptime and Progress
Problem
You want to know if the server is running, and if so, how long it has been up.

Solution
Use mysqladmin and MySQL CLI utilities to find out if it’s
 up.

Discussion
To tell whether the server is running, just try connecting to it.
 If the connection succeeds or you get an error that’s from the server
 itself, the server is up. mysqladmin
 ping is a good choice here for interactive use or from
 within shell scripts. This result indicates the server is running,
 although you should be alerted by the monitoring system that the server is
 down:

$ mysqladmin ping
mysqld is alive
This connection attempt fails, but the server itself returns the
 second error message, so it’s not down:
$ mysqladmin -u baduser ping
mysqladmin: connect to server at '127.0.0.1' failed
error: 'Access denied for user 'baduser'@'localhost' (using password: YES)'
This result indicates a complete connection failure; the server is
 down:
$ mysqladmin ping
mysqladmin: connect to server at '127.0.0.1' failed
error: 'Can't connect to MySQL server on '127.0.0.1' (61)'
If the server is not up, check the error log to find out
 why.
If the server is up, its uptime (in seconds) can be determined
 multiple ways:
	Use mysqladmin
 status:
$ mysqladmin status
Uptime: 22158655 Threads: 2 Questions: 65733141 Slow queries: 34
Opens: 6570 Flush tables: 1 Open tables: 95 Queries per second
avg: 2.966
A disadvantage of this approach for programmatic use is that
 you must parse the output to extract the value of interest.

	Examine the Uptime status
 variable:
mysql> SHOW GLOBAL STATUS LIKE 'Uptime';
+---------------+---------+
| Variable_name | Value |
+---------------+---------+
| Uptime | 1640724 |
+---------------+---------+
1 row in set (0.00 sec)
 Use the built-in CLI command to show the status of the current connection:
mysql> \status
...
Uptime:			18 days 23 hours 45 min 43 sec
...

A server not running is obviously a cause for concern. But there may
 be issues even if it is running. If you frequently find that server
 uptime resets in the absence of scheduled restarts, something may be
 causing the server to exit, and you should investigate. Again, check the
 error log to see why.
As your MySQL server runs, you’ll have questions about aspects of its operation
 or performance. Or maybe it’s not running and you
 want to know why.

23.4 Troubleshooting Server Start Problems
Problem
The server quits shortly after it’s started, and you want to
 know what caused it and what you can do about it.

Solution
Check the error log for details.

Discussion
If the server stops shortly after you start it, a likely cause
 is a misconfiguration in the server options file. The error log
 helps you here. But don’t be misled by mere warnings, which do not
 signify that the server quit. For example, the following message
 means only that innodb_ft_min_token_size
 needs to be corrected to make the warning go away:
2022-02-17T15:05:25.482596Z 0 [Warning] [MY-013746]
 [Server] A deprecated TLS version TLSv1.1 is enabled for channel
 mysql_main 2022-02-17T15:05:25.487543Z 0 [Warning] [MY-010068]
 [Server] CA certificate ca.pem is self-signed.
Instead, check for [ERROR] lines, such as this:
2022-02-17T15:05:25.495461Z 0 [ERROR] [MY-000067]
 [Server] unknown variable 'innodb_ft_min_toke_size=2'.

 As you can see, the server is complaining about a typo in innodb_ft_min_token_size
 that is preventing it from starting properly.
Other server start problems include the following:
	 Misconfiguration of my.cnf variables

	 Multiple configuration files

	 Missing operating system permissions

	 Incorrect path setting

	Over-allocating available memory

	Missing mysql_upgrade step after version upgrade

Note

 As of version 8.0.16, mysql_upgrade is not needed anymore. But when upgrading to any version prior to 8.0.16, you must run this utility.

23.5 Determining the IO Utilization of the MySQL Server
Problem
You want to know the number of queries hitting the MySQL server.

Solution
Check utilization status variables for details.

Discussion
This question might be prompted by simple curiosity, or
 there might be a performance issue. Monitoring statement execution over
 time and summarizing the results can reveal patterns, such as a time of
 day or day of the week when activity is cumbersome. Perhaps several
 report generators are configured to start at the same time. Staggering
 them will help your server by spreading the load. It is crucial to
 capture baseline data to compare several reads for a given period.

In programmatic context, you might write a
 long-running application that probes the server periodically for the
 Queries and Uptime values to determine a running display
 of statement-execution activity. To avoid reconnecting each time you
 issue the statements, ask the server for its session timeout period, and
 probe it at intervals shorter than that value. To get the session
 timeout value (in seconds), use this statement:
SELECT @@wait_timeout;
The
 default value is 28,800 (eight hours). If it’s configured to a value shorter
 than your desired probe interval, set it higher:
SET wait_timeout = seconds;
The
 preceding discussion uses Queries,
 which indicates the total number of statements executed. Options for
 more fine-grained analysis are available.
The server maintains a set of Com_xxx
 status variables that count executions of particular statements.
 For example, Com_insert and
 Com_update count INSERT and UPDATE statements, respectively:
 mysql> SHOW GLOBAL STATUS LIKE "Com_select";
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Com_select | 100 |
+---------------+-------+
1 row in set (0.00 sec)

mysql> SHOW GLOBAL STATUS LIKE "Com_insert";
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Com_insert | 3922 |
+---------------+-------+
1 row in set (0.00 sec)
After MySQL version 5.7, some of the instruments in
 information_schema migrated to performance_schema; hence, querying
 performance_schema was advised for such monitoring.
Note
Since the Performance Schema has comprehensive details about events,
 it no longer has Com Stats values.

mysql> SELECT EVENT_NAME, COUNT_STAR
 -> FROM performance_schema.events_statements_summary_global_by_event_name
 -> WHERE EVENT_NAME LIKE 'statement/sql/%';
+---+------------+
| EVENT_NAME | COUNT_STAR |
+---+------------+
| statement/sql/select | 106 |
...

 You also may want to calculate the InnoDB Buffer Pool Cache hit ratio to determine how many requests to InnoDB could be resolved without disk access.
To answer this
 question, use status variable information:
mysql> SHOW GLOBAL STATUS LIKE 'innodb_buffer_pool_read%s';
+----------------------------------+----------+
| Variable_name | Value |
+----------------------------------+----------+
| Innodb_buffer_pool_read_requests | 50350973 |
| Innodb_buffer_pool_reads | 1622447 |
+----------------------------------+----------+
2 rows in set (0.00 sec)

 The Innodb_buffer_pool_read_requests status variable holds the value of how many times SQL queries requested data from the InnoDB Buffer Pool. This value could also be understood as a number of queries to InnoDB. The Innodb_buffer_pool_reads variable holds the metric on how many such queries were resolved from the InnoDB Buffer Pool without touching tablespace files on the disk.

SHOW GLOBAL STATUS counts the number of
 queries since server startup, but it’s a variable value. If you
 wait for a certain amount of time and rerun the same query, you’ll have a
 hit ratio:
mysql> SHOW GLOBAL STATUS LIKE 'innodb_buffer_pool_read%s';↩
SELECT SLEEP(60); SHOW GLOBAL STATUS LIKE 'innodb_buffer_pool_read%s';
+----------------------------------+----------+
| Variable_name | Value |
+----------------------------------+----------+
| Innodb_buffer_pool_read_requests | 51504330 |
| Innodb_buffer_pool_reads | 1830647 |
+----------------------------------+----------+
2 rows in set (0.00 sec)

+-----------+
| sleep(60) |
+-----------+
| 0 |
+-----------+
1 row in set (1 min 0.00 sec)

+----------------------------------+----------+
| Variable_name | Value |
+----------------------------------+----------+
| Innodb_buffer_pool_read_requests | 53626254 |
| Innodb_buffer_pool_reads | 2214763 |
+----------------------------------+----------+
2 rows in set (0.00 sec)

 In this example, InnoDB received 53626254 – 51504330 = 2121924 requests for data and was able to resolve 2214763 – 1830647 = 384116 requests using the buffer only. Thus, the InnoDB Buffer Pool hit ratio is 384116 / 2121924 = 0.18. This means that the server either just started and the InnoDB Buffer Pool does not contain an active dataset yet, or it is too small and InnoDB has to purge pages from the buffer pool too often and then re-read them back. Ideally, the InnoDB Buffer Pool hit ratio should be near 1.

Warning
If you have online transaction processing (OLTP) in-memory workload, you may have 100% of
 your queries in memory. The profile of the queries may change
 significantly, which can make hit ratio metric surrogate. It’s
 insufficient to just monitor hit ratio for in-memory
 operations.

23.6 Determining MySQL Thread’s CPU Utilization
Problem

 You want to find the process causing high CPU utilization on your server.

Solution

 Use the THREAD_OS_ID value to correlate with the
 Performance Schema’s threads table.

Discussion

 The CPU utilization of the process is somewhat problematic in finding
 slowness caused by an individual query. Sometimes this can be a runaway job
 or a running process for a large dataset. You may see this type of
 behavior on month-ends where a query or a job runs only once a month to
 process quarterly or statistical computation.

 The threads table contains information about each
 thread created after server start as well as whether the thread is
 historical (if instrumented, see “Pre-Filtering by Thread”):
mysql> DESC performance_schema.threads;
+---------------------+------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------------+------------------+------+-----+---------+-------+
THREAD_ID	bigint unsigned	NO	PRI	NULL	
NAME	varchar(128)	NO	MUL	NULL	
TYPE	varchar(10)	NO		NULL	
PROCESSLIST_ID	bigint unsigned	YES	MUL	NULL	
PROCESSLIST_USER	varchar(32)	YES	MUL	NULL	
PROCESSLIST_HOST	varchar(255)	YES	MUL	NULL	
PROCESSLIST_DB	varchar(64)	YES		NULL	
PROCESSLIST_COMMAND	varchar(16)	YES		NULL	
PROCESSLIST_TIME	bigint	YES		NULL	
PROCESSLIST_STATE	varchar(64)	YES		NULL	
PROCESSLIST_INFO	longtext	YES		NULL	
PARENT_THREAD_ID	bigint unsigned	YES		NULL	
ROLE	varchar(64)	YES		NULL	
INSTRUMENTED	enum('YES','NO')	NO		NULL	
HISTORY	enum('YES','NO')	NO		NULL	
CONNECTION_TYPE	varchar(16)	YES		NULL	
THREAD_OS_ID	bigint unsigned	YES	MUL	NULL	
RESOURCE_GROUP	varchar(64)	YES	MUL	NULL	
+---------------------+------------------+------+-----+---------+-------+

 On Linux systems, THREAD_OS_ID corresponds to the value
 of the gettid() function. This value is exposed to
 the top or proc file system
 (/proc/[pid]/task/[tid]). To help identify the related THREAD_OS_ID,
 there are a few methods outside of scraping the proc file
 system by using built-in command-line utilities. ps -L aux
 gives enough detail about the corresponding thread that is higher CPU then others. The parent ID of MySQL, mysqld_pid, can also
 be identified with pidof mysqld, in conjunction with
 the ps command:

$ ps -L aux |grep -e PID -e `pidof mysqld`
USER PID LWP %CPU NLWP %MEM VSZ RSS TTY STAT START↩ TIME COMMAND
mysql 740282 740282 0.0 68 20.9 1336272 209440 ? Rsl 2021 0:05 ↩ /usr/sbin/mysqld
mysql 740282 740285 0.0 68 20.9 1336272 209440 ? Ssl 2021 1:50 ↩ /usr/sbin/mysqld
mysql 740282 740286 0.0 68 20.9 1336272 209440 ? Ssl 2021 1:52 ↩ /usr/sbin/mysqld
mysql 740282 740287 0.0 68 20.9 1336272 209440 ? Ssl 2021 1:53 ↩ /usr/sbin/mysqld
mysql 740282 740288 0.0 68 20.9 1336272 209440 ? Ssl 2021 1:50 ↩ /usr/sbin/mysqld
....
mysql 740282 1353650 0.0 48 21.0 1336272 210456 ? Ssl 09:35 0:00 ↩ /usr/sbin/mysqld
mysql 740282 1533749 6.6 48 21.0 1336272 210456 ? Dsl 10:11 0:18 ↩ /usr/sbin/mysqld
mysql 740282 1558301 0.8 48 21.0 1336272 210456 ? Ssl 10:15 0:00 ↩ /usr/sbin/mysqld
mysql 740282 1558459 1.0 48 21.0 1336272 210456 ? Ssl 10:15 0:00 ↩ /usr/sbin/mysqld
mysql 740282 1559291 0.7 48 21.0 1336272 210456 ? Ssl 10:15 0:00 ↩ /usr/sbin/mysqld
This will give us the thread_os_id hint that we can use
 to figure out what it is doing:
mysql> SELECT * from performance_schema.threads
 -> WHERE THREAD_OS_ID = 1533749 \G
mysql> SELECT * FROM performance_schema.threads where THREAD_OS_ID = 1533749 \G
*************************** 1. row ***************************
 THREAD_ID: 213957
 NAME: thread/sql/one_connection
 TYPE: FOREGROUND
 PROCESSLIST_ID: 213905
 PROCESSLIST_USER: root
 PROCESSLIST_HOST: localhost
 PROCESSLIST_DB: mysqlslap
PROCESSLIST_COMMAND: Query
 PROCESSLIST_TIME: 0
 PROCESSLIST_STATE: waiting for handler commit
 PROCESSLIST_INFO: INSERT INTO t1 VALUES (964445884,
 'DPh7kD1E6f4MMQk1ioopsoIIcoD83DD8Wu7689K6oHTAjD3Hts6lYGv8x9G0EL0k87q8G2ExJ
 jz2o3KhnIJBbEJYFROTpO5pNvxgyBT9nSCbNO9AiKL9QYhi0x3hL9')
 PARENT_THREAD_ID: NULL
 ROLE: NULL
 INSTRUMENTED: YES
 HISTORY: YES
 CONNECTION_TYPE: Socket
 THREAD_OS_ID: 1533749
 RESOURCE_GROUP: USR_default
The other alternative is using
 the pidstat command (requires sysstat package).
 First, find the process id of mysqld and execute
 the following:
$ pidstat -t -p 740282
 Linux 5.8.0-63-generic (localhost) 01/02/2022 _x86_64_ (1 CPU)

06:57:13 PM UID TGID TID %usr %system %guest %wait %CPU CPU
06:57:14 PM 113 740282 - 24.75 11.88 0.00 0.00 36.63 0
06:57:14 PM 113 - 740282 0.00 0.00 0.00 0.00 0.00 0
06:57:14 PM 113 - 740285 0.00 0.00 0.00 0.00 0.00 0
....
06:57:19 PM 113 - 759641 0.00 0.00 0.00 0.00 0.00 0
06:57:19 PM 113 - 839592 1.00 0.00 0.00 1.00 1.00 0
06:57:19 PM 113 - 839647 17.00 4.00 0.00 14.00 21.00 0
06:57:20 PM 113 740282 - 24.00 14.00 0.00 0.00 38.00 0
06:57:20 PM 113 - 740282 0.00 0.00 0.00 0.00 0.00 0
06:57:20 PM 113 - 740285 0.00 0.00 0.00 0.00 0.00 0

 From this output, can see in our test run that thread_os_id is consuming
 21% of the CPU. To co-relate this with MySQL running
 threads, we follow the Performance Schema Query:

mysql> SELECT * from performance_schema.threads
where THREAD_OS_ID = 839647 \G
*************************** 1. row ***************************
 THREAD_ID: 2326
 NAME: thread/sql/one_connection
 TYPE: FOREGROUND
 PROCESSLIST_ID: 2282
 PROCESSLIST_USER: root
 PROCESSLIST_HOST: localhost
 PROCESSLIST_DB: mysqlslap
PROCESSLIST_COMMAND: Query
 PROCESSLIST_TIME: 0
 PROCESSLIST_STATE: waiting for handler commit
 PROCESSLIST_INFO: INSERT INTO t1 VALUES (964445884,'DPh7kD1E6f4MMQk1ioopso
 IIcoD83DD8Wu7689K6oHTAjD3Hts6lYGv8x9G0EL0k87q8G2ExJjz2o3KhnIJBbEJYFROTpO5pN
 vxgyBT9nSCbNO9AiKL9QYhi0x3hL9')
 PARENT_THREAD_ID: NULL
 ROLE: NULL
 INSTRUMENTED: YES
 HISTORY: YES
 CONNECTION_TYPE: Socket
 THREAD_OS_ID: 839647
 RESOURCE_GROUP: USR_default

See Also
For additional information about the THREADS table,
 please refer to the threads table.

23.7 Determining if MySQL Has Reached Its Connection Limits
Problem
You want to know the limits of the MySQL server handling
 connections.

Solution
Check the configuration parameters.

Discussion
It’s often the case that a server function is assessed
 using a combination of configuration settings plus current operational
 status. Typically, the former comes from system variables, whereas the
 latter comes from status variables. Connection management is an example
 of this concept. The max_connections
 system variable indicates the maximum number of simultaneous connections the server
 permits, and the threads_connected status variable shows how
 many clients are currently connected. The threads_running status variable shows how
 many clients are currently active. Furthermore, threads_running is
 a very important value for the following reasons:
	If the number of running threads increases above the number of CPU cores,
 they start to compete for CPU resources.

	If two threads (no matter how many threads are connected)
 compete for the same row, table, or other database object,
 the engine-level table lock set at the server level or metadata (MD) lock is in place.

Since MySQL is a single process application with
 multithreaded architecture, each connection creates a
 thread. To monitor the maximum connections reached, issue the following
 command:
mysql> SHOW GLOBAL STATUS LIKE 'Max_used_connections';
+----------------------+-------+
| Variable_name | Value |
+----------------------+-------+
| Max_used_connections | 6 |
+----------------------+-------+
1 row in set (0.00 sec)

mysql> SHOW GLOBAL STATUS LIKE 'Max_used_connections_time';
+---------------------------+---------------------+
| Variable_name | Value |
+---------------------------+---------------------+
| Max_used_connections_time | 2020-12-27 17:09:59 |
+---------------------------+---------------------+
1 row in set (0.00 sec)

mysql > SHOW GLOBAL STATUS LIKE 'threads_connected';
+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| Threads_connected | 6 |
+-------------------+-------+
1 row in set (0.00 sec)
If threads_connected is regularly close to
 the value of max_connections, you
 might need to bump up the value of the latter. If there is always a wide
 gap, you can decrease max_connections.
 For further reading, “MySQL
 Connection Handling and Scaling” explains how MySQL handles connections and its capabilities.
One area that also impacts performance of MySQL is Mutex and metadata locks on highly concurrent environments. As seen previously, at some point running threads will start competing with one another when the same resources
 are requested from the database. The way InnoDB handles this is to put an
 exclusive lock on a particular memory resource so that the other thread will have
 to wait for it. While this is handled with the Mutex operation
 in MySQL, all Data Definition Language (DDL) as known as table structure
 change operations handled with metadata locks.

23.8 Verifying That the Buffer Pool Is Sized Properly
Problem
You want to know the limits of the MySQL server handling
 connections.

Solution
Determine storage engine memory allocation.

Discussion
The InnoDB storage engine has a data buffer. To keep physical I/O minimal, DBA should
 make sure to utilize server memory efficiently. InnoDB Buffer
 Pool cache improves index key lookups and data read operations; hence, most data access will occur in memory.
To determine the cache sizes, check the relevant system
 variables:
mysql> SELECT @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 134217728 |
+---------------------------+
1 row in set (0.00 sec)
You can also use SHOW VARIABLES or the PERFORMANCE_SCHEMA GLOBAL_VARIABLES table, for
 example:
mysql> SELECT * from performance_schema.global_variables
 -> WHERE variable_name='innodb_buffer_pool_size';
+-------------------------+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+-------------------------+----------------+
| innodb_buffer_pool_size | 134217728 |
+-------------------------+----------------+
1 row in set (0.00 sec)
The efficiency measure that determines how well the read
 ratio is operating is its hit rate: the rate at which read requests
 from the InnoDB Buffer Pool are satisfied from the Buffer Pool
 without reading data from disk. If data is in the cache, it’s a hit;
 if not, it’s a miss. The hit ratio is a high correlation but not a
 guaranteed metric; hence, the OLTP rate
 is more important. It’s also possible to verify how well the InnoDB
 Buffer Pool is utilized from data via the Performance Schema:
mysql> SELECT CONCAT(FORMAT(A.num * 100.0 / B.num,2),"%") BufferPoolFullPct FROM
 -> (SELECT variable_value num FROM performance_schema.GLOBAL_STATUS
 -> WHERE variable_name = 'Innodb_buffer_pool_pages_data') A,
 -> (SELECT variable_value num FROM performance_schema.GLOBAL_STATUS
 -> WHERE variable_name = 'Innodb_buffer_pool_pages_total') B;
+-------------------+
| BufferPoolFullPct |
+-------------------+
| 23.46% |
+-------------------+
1 row in set (0.02 sec)
We can also determine memory allocation for the Buffer Pool
 using the sys schema. It’s crucial to configure the Buffer Pool at startup
 to allocate memory resources appropriately:
mysql> SELECT * FROM sys.memory_global_by_current_bytes
 -> WHERE event_name like 'memory/innodb_buf_buf_pool'\G
*************************** 1. row ***************************
 event_name: memory/innodb/buf_buf_pool
 current_count: 1
 current_alloc: 131.00 MiB
current_avg_alloc: 131.00 MiB
 high_count: 1
 high_alloc: 131.00 MiB
 high_avg_alloc: 131.00 MiB
1 row in set (0.00 sec)
The required information can be obtained from either SHOW STATUS or the GLOBAL_STATUS table. However, when
 executing queries within a program and saving the results, we must
 account for differences between SHOW statements and selecting from performance_schema tables. The following
 queries retrieve similar information, but the column headings differ
 in lettercase and sometimes in name, and variable names differ in
 lettercase:
mysql> SHOW GLOBAL STATUS;
+---+-------------+
| Variable_name | Value |
+---+-------------+
| Aborted_clients | 1 |
| Aborted_connects | 6 |
…
…
To enable applications to be agnostic with respect to whether
 the variable information comes from SHOW or information_schema, force variable names
 to a consistent lettercase and use that case in expressions that
 reference the variables. It doesn’t matter which lettercase you
 choose as long as you use it consistently. The following discussion
 uses uppercase.
Here’s a simple routine (in Ruby) that takes a database
 handle, fetches the status variables, and returns them as a hash of
 values keyed by names:
def get_status_variables(client)
 vars = {}
 query = "SELECT VARIABLE_NAME, VARIABLE_VALUE FROM
 performance_schema.global_status"
 client.query(query).each { |row| vars[row["VARIABLE_NAME"]↩
 .upcase] = row["VARIABLE_VALUE"] }
 return vars
end
To get the information using a SHOW statement instead, replace the query
 with this one:
query = "SHOW GLOBAL STATUS"
The code applies the upcase
 method to the variable names. That way, no matter whether the
 routine uses GLOBAL_STATUS or
 SHOW to obtain the information,
 the resulting hash has elements accessed by uppercase variable
 names.
To calculate a hit rate, pass the variable hash and the names
 of the reads and requests variables to this routine:
def cache_hit_rate(vars,reads_name,requests_name)
 reads = vars[reads_name].to_f
 requests = vars[requests_name].to_f
 hit_rate = requests == 0 ? 0 : 1 - (reads/requests)
 printf " Key reads: %12d (%s)\n", reads, reads_name
 printf "Key read requests: %12d (%s)\n", requests, requests_name
 printf " Hit rate: %12.4f\n", hit_rate
end
Now we’re all set. Call the routines that fetch status
 information, and calculate the hit rates like this:
statvars = get_status_variables(client)
cache_hit_rate(statvars,
 "INNODB_BUFFER_POOL_READS",
 "INNODB_BUFFER_POOL_READ_REQUESTS")
cache_hit_rate(statvars,
 "KEY_READS",
 "KEY_READ_REQUESTS")
Run the script to see your server’s hit rates:
$ hitrate.rb
 Key reads: 6280 (INNODB_BUFFER_POOL_READS)
Key read requests: 70138276 (INNODB_BUFFER_POOL_READ_REQUESTS)
 Hit rate: 0.9999
 Key reads: 23269 (KEY_READS)
Key read requests: 8902674 (KEY_READ_REQUESTS)
 Hit rate: 0.9974
For tasks involving system variables, code similar to get_status_variables() suffices. This
 implementation uses the GLOBAL_VARIABLES table:
def get_system_variables(client)
 vars = {}
 query = "SELECT VARIABLE_NAME, VARIABLE_VALUE FROM
 performance_schema.global_variables"
 client.query(query).each { |row| vars[row["VARIABLE_NAME"].upcase]↩
 = row["VARIABLE_VALUE"] }
 return vars
end
To use SHOW instead,
 replace the query with this one:
query = "SHOW GLOBAL VARIABLES"

23.9 Finding Information About the Storage Engine
Problem
You want to pin specific problems with MySQL’s pluggable storage
 engine architecture.

Solution
Use MySQL’s mysql client, and interact with the storage engine directly.

Discussion
Now we’re all set. Call the SHOW ENGINE command from
 mysql client:
mysql> help show engine
Name: 'SHOW ENGINE'
Description:
Syntax:
SHOW ENGINE engine_name {STATUS | MUTEX}
SHOW ENGINE
SHOW ENGINE displays operational information about a storage
 engine. It requires the PROCESS privilege. The statement has these
 variants for InnoDB:
SHOW ENGINE INNODB STATUS;
SHOW ENGINE INNODB MUTEX;
The first command, SHOW ENGINE INNODB STATUS, shows extensive
 information about the InnoDB storage engine in sections. To digest this information, it’s possible to capture the output of this
 command and parse it via the command line:
mysql> SHOW ENGINE INNODB STATUS\G
*************************** 1. row ***************************
 Type: InnoDB
 Name:
Status:
=====================================
2020-10-28 23:43:12 0x70000d0ae000 INNODB MONITOR OUTPUT
=====================================
Per second averages calculated from the last 6 seconds

BACKGROUND THREAD

srv_master_thread loops: 34 srv_active, 0 srv_shutdown, 768286 srv_idle
srv_master_thread log flush and writes: 0

SEMAPHORES

For example, it can reach the Buffer Pool
 information easily with the same command. This information is very
 useful when you need to acquire information fast, accurately, and
 without any impact to running the server:

BUFFER POOL AND MEMORY

Total large memory allocated 137363456
Dictionary memory allocated 1539651
Buffer pool size 8191
Free buffers 6250
Database pages 1924
Old database pages 725
Modified db pages 0
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 131, not young 1806
0.00 youngs/s, 0.00 non-youngs/s
Pages read 913, created 1105, written 3138
0.00 reads/s, 0.00 creates/s, 0.00 writes/s
No buffer pool page gets since the last printout
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead 0.00/s
LRU len: 1924, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]
If you are monitoring a single event, you can set the pager and
 repeatedly monitor its value:
mysql> PAGER grep -i history
PAGER set to 'grep -i history'
mysql> SHOW ENGINE INNODB STATUS\G
History list length 0
1 row in set (0.00 sec)
Let’s have a look at the Mutex information on the idle system.
 The resulting SHOW statement would be much longer if threads are
 competing for the resources:
mysql> SHOW ENGINE INNODB MUTEX;
+--------+----------------------------+---------+
| Type | Name | Status |
+--------+----------------------------+---------+
| InnoDB | rwlock: fil0fil.cc:3206 | waits=4 |
| InnoDB | sum rwlock: buf0buf.cc:778 | waits=3 |
+--------+----------------------------+---------+
2 rows in set (0.00 sec)
As you can see in Figure 23-2, InnoDB consists of two types of
 structures: In-memory and On-disk.
 InnoDB utilizes the host OS memory efficiently using its internal memory
 management protocol. As mentioned in the introduction of this
 chapter, memory utilization is an important factor in MySQL
 monitoring.

Figure 23-2. The diagram shows in-memory and on-disk structures that comprise the InnoDB storage engine architecture (adapted from © 2021, Oracle Corporation and/or its affiliates (2021); https://oreil.ly/JEzqW)

As InnoDB is by far the most complex and most adopted storage engine
 in the MySQL ecosystem, it also comes with components
 that can be used to debug internals of its system. Although this is an
 advanced topic it’s good know that you can add plug-ins to the
 MySQL server. For additional reading, please refer to the MySQL
 Documentation.

23.10 Using the Error Log File to Troubleshoot MySQL Server Crashes
Problem
The application reports, “MySQL Server has gone away” (error
 2006).

Solution
There are a few possible scenarios for this very common error, including the following:
	OOM (out of memory) killer

	MySQL signals

	Crashing bug

	Various other reasons, such as server timeout, removed system
 files, etc.

 Sometimes, while troubleshooting, information in the error log can be misleading. So we also
 advise that you check the system logs, such as /var/log/messages.

Discussion
An error log is one of the most critical monitoring MySQL server
 statuses. From startup to shutdown, it will log all events to this file.
 Proactively monitoring this file will give you sufficient information about
 current and past events.
Note
The error log is tunable in MySQL 8.0 and can be fine-tuned to log
 and filter events by given criteria. For details, please refer to the MySQL documentation.

Here are some pointers for monitoring and finding a solution for
 this error.
Server crash
The server may have disconnected while executing a large query.
 In this case, the client has timed out during a long running query:

$ (echo -n "SELECT '" ; for i in `seq 1 110000` ; \
 do echo -n "1234567890" ; done ; echo -n "' a") | mysql | wc

ERROR 2006 (HY000) at line 1: MySQL server has gone away
 0 0 0
This may be one of the few reasons to check. Often, the
 max_allowed_packet size is too small for a large query like the preceding
 crashing for loop:
$ mysql -e "SHOW GLOBAL VARIABLES LIKE 'max_allowed_packet'"
+--------------------+---------+
| Variable_name | Value |
+--------------------+---------+
| max_allowed_packet | 1048576 |
+--------------------+---------+
$ mysql -e "SET GLOBAL max_allowed_packet=67108864"
$ mysql -e "SHOW GLOBAL VARIABLES LIKE 'max_allowed_packet'"
+--------------------+----------+
| Variable_name | Value |
+--------------------+----------+
| max_allowed_packet | 67108864 |
+--------------------+----------+
$ (echo -n "SELECT '" ; for i in `seq 1 110000` ; do echo -n "1234567890" ; done ; \
> echo -n "' a") | mysql | wc
 2 2 1100003

Server timeout
The connection between the application and the results of the
 query returning for each request has a timeout variable. One of the
 most common timeout variables to monitor is wait_timeout:
$ mysql -e "SHOW GLOBAL VARIABLES LIKE 'wait_timeout'"
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| wait_timeout | 28800 |
+---------------+-------+
To demonstrate this, we’ll set the
 wait_timeout value to a very low four seconds and
 rerun the same query:
$ mysql -e "SET GLOBAL wait_timeout=4"
$ time (echo -n "SELECT '" ; for i in `seq 1 1100000` ; do echo -n "1234567890" ; done ; \
> echo -n "' a") | mysql | wc
ERROR 2006 (HY000) at line 1: MySQL server has gone away
 0 0 0
real	0m8.062s
user	0m7.506s
sys	0m2.581s
$ mysql -e "SHOW GLOBAL VARIABLES LIKE 'wait_timeout'"
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| wait_timeout | 4 |
+---------------+-------+

23.11 Slow Query Log File
Problem
You want to use the slow query log to identify slow queries.

Solution
Enable the slow query log and set threshold to filter queries to
 address them.

Discussion
MySQL can log all queries. By adjusting how slow queries are
 recorded, it’s possible to capture all queries and digest them. The
 default slow query logging is set to 10 seconds, which means any query
 taking longer than 10 seconds is shown only in the log file.

 You can control the behavior of the slow query log using a number of variables:

mysql> SHOW GLOBAL VARIABLES LIKE '%slow%';
+---------------------------+---------------------------------------+
| Variable_name | Value |
+---------------------------+---------------------------------------+
log_slow_admin_statements	OFF
log_slow_extra	OFF
log_slow_slave_statements	OFF
slow_launch_time	2
slow_query_log	OFF
slow_query_log_file	/usr/local/mysql/data/askdba-slow.log
+---------------------------+---------------------------------------+
6 rows in set (0.01 sec)

 The most essential among them is slow_query_log, which enables or disables slow query logging. It is OFF by default.

 The slow query log threshold is controlled with the long_query_time variable. You can start tuning your queries that are logged with the default threshold and then decrease it in steps. Finally, set long_query_time to 0 to log all the queries.

Logging all the queries

 It is common practice to run a slow query log with long_query_time set to 0. This way you will have information about the performance of all the queries. Then you can run programs such as pt-query-digest or mysqldumpslow that can create digests of the queries.

 To enable logging of all the queries, set long_query_time to 0:

mysql> SHOW GLOBAL VARIABLES LIKE 'long_query_time';
+-----------------+-----------+
| Variable_name | Value |
+-----------------+-----------+
| long_query_time | 10.000000 |
+-----------------+-----------+
1 row in set (0.00 sec)

mysql> SET GLOBAL LONG_QUERY_TIME=0;
Query OK, 0 rows affected (0.00 sec)

mysql> SET GLOBAL SLOW_QUERY_LOG=1;
Query OK, 0 rows affected (0.02 sec)

Now we’re ready to test a simple query, as it will log everything by
 having long_query_time equal 0:

mysql> SELECT thing,legs,arms FROM limbs WHERE legs>=2;

$ sudo tail -f /usr/local/mysql/data/askdba-slow.log
Time: 2020-11-21T15:15:12.873279Z
User@Host: root[root] @ localhost [127.0.0.1] Id: 326
Query_time: 0.000239 Lock_time: 0.000098 Rows_sent: 6 Rows_examined: 11
SET timestamp=1605971712;
SELECT thing,legs,arms FROM limbs WHERE legs>=2;

In this example, we may see that Query_time is pretty small; that is expected, because the table itself is small. But the number of rows that MySQL had to examine to resolve this query (Rows_examined) is greater (11) than the number of rows that the query sent to the client (Rows_sent: 6). This means that there is a very good chance that the query needs to be optimized.

We can start optimizing the query by running EXPLAIN:

mysql> EXPLAIN SELECT thing,legs,arms FROM limbs WHERE legs>=2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: limbs
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 11
 filtered: 33.33
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

Warning
Setting the value of long_query_time to 0 enables you to log every single query. You need to be
 careful on a busy system where your file system either can be filled or
 slowed down due to I/O operation.

 Don’t log into the table when setting long_query_time to 0, because the CSV storage engine isn’t designed for working in high-concurrent environments and can affect performance.

23.12 Monitoring with the General Query Log
Problem
You want to identify what activity each client is engaged in.

Solution
Enable the general query log to investigate them.

Discussion
The MySQL general query log is proof of record for what mysqld is
 doing. By enabling this log, it allows the administrator to monitor how the
 life of the user connection interacts with mysqld.
mysql> SHOW GLOBAL VARIABLES LIKE 'general%';
+------------------+---+
| Variable_name | Value |
+------------------+---+
| general_log | OFF |
| general_log_file | /home/vagrant/sandboxes/msb_8_0_21/data/vagrant.log |
+------------------+---+
2 rows in set (0.01 sec)
Warning
By enabling the general query log, you instruct the MySQL server to log all the queries it receives. You need to be
 careful on a busy system where your file system either can be filled or
 slowed down due to increased I/O operation.

To enable general_log in runtime, use the SET command:
mysql> SET GLOBAL general_log = 'ON';
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW GLOBAL VARIABLES LIKE 'general_log';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| general_log | ON |
+---------------+-------+
1 row in set (0.00 sec)
Query OK, 0 rows affected (0.00 sec)

 Now we’re ready to monitor everything. This value is dynamic, and we set it at runtime. If you want it to set it persistently at startup, see Recipe 22.1:

$ tail -f /home/vagrant/sandboxes/msb_8_0_21/data/vagrant.log
/home/vagrant/opt/mysql/8.0.21/bin/mysqld, Version: 8.0.21 (MySQL Community Server - GPL). ↩
started with:
Tcp port: 8021 Unix socket: /tmp/mysql_sandbox8021.sock
Time Id Command Argument
2020-12-06T14:27:26.739541Z	 8 Query	show global variables like "general_log"
2020-12-06T14:51:08.660453Z	 8 Quit
Connect another session and run the following command while tailing
 the general query log file:
mysql> SHOW PROCESSLIST \G
*************************** 1. row ***************************
 Id: 5
 User: event_scheduler
 Host: localhost
 db: NULL
Command: Daemon
 Time: 2015
 State: Waiting on empty queue
 Info: NULL
*************************** 2. row ***************************
 Id: 10
 User: msandbox
 Host: localhost
 db: NULL
Command: Query
 Time: 0
 State: starting
 Info: show processlist
2 rows in set (0.00 sec)

$ tail -f /home/vagrant/sandboxes/msb_8_0_21/data/vagrant.log
2020-12-06T14:51:45.765019Z	 10 Connect	msandbox@localhost on using Socket
2020-12-06T14:51:45.765785Z	 10 Query	select @@version_comment limit 1
2020-12-06T14:51:45.769113Z	 10 Query	select USER()
2020-12-06T14:52:29.130072Z	 10 Query	show processlist
Note
Unlike the MySQL slow query log, the general query log does not log
 query execution time. Instead, it logs an end-to-end clean record of
 what happens for each session in sequential order. This information
 may be useful for debugging MySQL crashes or figuring out what
 queries the application is sending.

23.13 Using the Binary Log to Identify Changes
Problem
You want to track data changes for a given
 period.

Solution
Enable the binary log to investigate them.

Discussion
MySQL can log all data changes to a binary log format, which has
 three purposes:
	Configuring primary and
 replica setup. By enabling this feature, we can set up MySQL-replicated
 topology, explained in Chapter 3.

	
 Point-in-time recovery after a full physical backup is performed.

	
 Troubleshooting or investigating an event for a specific time period.

The binary log is enabled by setting --log-bin at startup.
 Setting this value allows MySQL to track data changes to a binary
 log file. This logfile contains a set of sequential log files along with
 an index file.

To read binary logs, we must use the --verbose or -v option
 by using the mysqlbinlog command.
$ /usr/bin/mysqlbinlog binlog.000003 -v |more
#210208 19:39:03 server id 1 end_log_pos 517272 CRC32 0x043a9ff4 ↩
 Write_rows: table id 112 flags: STMT_END_F
INSERT INTO `test`.`sbtest1`
SET
@1=1
@2=21417
@3='83868641912-28773972837-60736120486-75162659906-27563526494-↩
 20381887404-41576422241-93426793964-56405065102-33518432330'
@4='67847967377-48000963322-62604785301-91415491898-96926520291'
Note

 To see a statement representation of row events, use the --verbose (-v) option.
 To see metadata of columns, specify --verbose twice: --verbose --verbose
 or -vv. To suppress the output of row events, specify the
 --base64-output=DECODE-ROWS option.

To give a specific start time, do the following:
 /usr/bin/mysqlbinlog --start-datetime="2020-11-29 10:50:32"
 binlog.000003 -v |more
To filter a specific data manipulation language (DML) type, do the following:
 $ /usr/bin/mysqlbinlog --start-datetime="2020-11-29 10:50:32" binlog.000003 \
 > -v| grep -i -e "update" -e "insert"
 > -e "delete" -e "drop" -e "alter" |cut -c1-100 | tr '[A-Z]' '[a-z]'
 > | sed -e "s/\t/ /g;s/\`//g;s/(.*$//;s/ set .*$//;s/ as .*$//"
 > | sed -e "s/ where .*$//" | sort | uniq -c | sort -nr

 50000 ### insert into test.sbtest9
 50000 ### insert into test.sbtest9
 50000 ### insert into test.sbtest8
 50000 ### insert into test.sbtest7
 ...

Chapter 24. Security
24.0 Introduction
This chapter covers the following security-related topics:
	The mysql.user table that
 contains MySQL account information

	Statements for managing MySQL user accounts

	Password-strength checking and policy

	Password expiration

	Finding and removing anonymous accounts and accounts that permit
 connections from many hosts

If you like, you can skip over the initial section that describes
 the mysql.user table, but we think
 you’ll find that reading it will help you better understand later
 sections, which often discuss how SQL operations map onto underlying
 changes in that table.
Scripts shown in this chapter are located in the routines directory of the recipes distribution.
Note
Whether you use the MySQL 5.7 or 8.0 release series, it’s
 best to use a recent version within the series. Changes to the
 authentication system that occurred in early development versions that may
 produce results that differ from the descriptions here.

Tip
Many of the techniques shown here require administrative access,
 such as the ability to modify tables in the mysql system database or use statements that
 require the privileges that allow you to administer the MySQL server. For this
 reason, to carry out the operations described here, connect to the
 server as root rather than as
 cbuser.

24.1 Understanding the mysql.user Table
MySQL stores user account information in tables in the mysql
 system database. The user table is the
 most important because it contains account names and credentials. To see
 its structure, use this statement:
SHOW CREATE TABLE mysql.user;
The user table columns that
 concern us here specify account names and authentication
 information:
	The User and Host columns identify the account. MySQL
 account names comprise a combination of username and hostname values.
 For example, in the user table row
 for a 'cbuser'@'localhost' account,
 the User and Host column values are cbuser and localhost, respectively. For a 'myuser'@'myhost.example.com' account, those
 columns are myuser and myhost.example.com.

	The plugin and authentication_string columns store
 authentication credentials. MySQL does not store literal passwords in
 the user system table because that
 is insecure. Instead, the server computes a hash value from the
 password and stores the hash string.
	The plugin column
 indicates which authentication plug-in the server uses to check
 credentials for clients that attempt to use the account. Different
 plug-ins implement password hashing methods of varying encryption
 strength. Table 24-1 shows the plug-ins this chapter
 discusses.
Table 24-1. Authentication plug-ins	Plug-in	Authentication method
	mysql_native_password 	Native password
 hashing
	sha256_password 	SHA-256 password hashing (from MySQL 5.6.6 to
 MySQL 8.0)
	
 caching_sha2_password
 	
 SHA-256 password hashing with server-side caching (MySQL 5.7 or later)

MySQL Enterprise, the commercial version of MySQL, includes
 additional plug-ins for authenticating using pluggable authentication module (PAM) or Windows
 credentials. These enable the use of passwords external to MySQL, such
 as Unix login passwords or native Windows services.

	The authentication_string
 column represents a hashed password
 in the format required by the respective plug-in. For example, sha256_​pass⁠word uses authentication_string to store SHA-256
 password hash values, which are cryptographically superior to
 native hashing, used by the mysql_native_password plug-in.
 An empty authentication_string value means “no password,” which is insecure.

Before MySQL 5.7.2, the server permits the plugin value to be empty. As of MySQL 5.7.2, the
 plugin column must
 be nonempty, and the server disables any empty plug-in account until a
 nonempty plug-in is assigned.

24.2 Managing User Accounts
Problem
You are responsible for setting up accounts on your MySQL server.

Solution
Learn to use the account-management SQL statements.

Discussion
It’s possible to modify the grant tables in the mysql database directly with SQL statements
 such as INSERT or UPDATE, but the MySQL account-management
 statements are more convenient. This section describes their use and
 covers these topics:
	Creating accounts (CREATE
 USER, SET PASSWORD ALTER USER)

	Assigning and checking privileges (GRANT, REVOKE, SHOW GRANTS)

	Removing and renaming accounts (DROP USER, RENAME USER)

Creating accounts
To create an account, use the CREATE USER statement, which creates a row in the
 mysql.user table. But before you do
 so, decide these three things:
	The account name, expressed in 'user_name'@'host_name' format naming the user and the host
 from which the user will connect

	The account password

	The authentication plug-in the server should execute when
 clients attempt to use the account

Authentication plug-ins use hashing to encrypt passwords for
 storage and transmission. MySQL has several built-in plug-ins from
 which to choose:
	mysql_native_password
 implements the default password hashing method before version 8.0.

	sha256_password
 authenticates using SHA-256 password hash values, which are
 cryptographically more secure than hashes generated by mysql_​native_​pass⁠word. This plug-in is
 available as of MySQL 5.6.6 and is deprecated in version 8.0 in favor of its improved version, caching_sha2_password. It provides security beyond that
 afforded by mysql_native_password, but additional
 setup is required to use it. (Clients must connect using SSL or
 provide an RSA certificate.)

	
 caching_sha2_password is similar to sha256_password but uses caching on the server side for better performance. This is the default authentication plug-in since MySQL 8.0.

The CREATE USER statement is commonly used in one of these forms:
CREATE USER 'user_name'@'host_name' IDENTIFIED BY 'password';
CREATE USER 'user_name'@'host_name' IDENTIFIED WITH 'auth_plugin' BY 'auth_string';
The first syntax creates the account and sets its password with
 a single statement. It also assigns an authentication plug-in
 implicitly to the plug-in named by the
 --default-authentication-plugin setting (which is
 caching_sha2_password, unless
 you change it at server startup).

To assign privileges to the new account, which has none
 initially, use the GRANT statement
 described later in this section.
CREATE USER fails if the account already exists.

Assigning and checking privileges
Suppose that you have just created an account named 'user1'@'localhost'. You can assign
 privileges to it with GRANT, remove
 privileges from it with REVOKE, and
 check its privileges with SHOW
 GRANTS.
GRANT has this syntax:
GRANT privileges ON scope TO account;
Here, account names the account to be
 granted the privileges, privileges
 indicates what they are, and scope
 indicates the privilege scope, or level at which they apply. The
 privileges value can be ALL (or ALL PRIVILEGES) to specify all privileges
 available at the given level, or a comma-separated list of one or more
 privilege names such as SELECT or
 CREATE. (For a full discussion of
 available privileges and GRANT
 syntax not shown here, see the MySQL Reference
 Manual.)
The following examples illustrate the syntax for granting
 privileges at each level:
	Granting privileges globally enables the account to perform
 administrative operations or operations on any database:
GRANT FILE ON *.* TO 'user1'@'localhost';
GRANT CREATE TEMPORARY TABLES, LOCK TABLES ON *.* TO 'user1'@'localhost';

	Granting privileges at the database level enables the
 account to perform operations on objects within the named
 database:
GRANT ALL ON cookbook.* TO 'user1'@'localhost';

	Granting privileges at the table level enables the account
 to perform operations on the named table:
GRANT SELECT ON mysql.user TO 'user1'@'localhost';

	Granting privileges at the column level enables the account
 to perform operations on the named table column:
GRANT SELECT(User,Host), UPDATE(password_expired)
ON mysql.user TO 'user1'@'localhost';

	Granting privileges at the procedure level enables the
 account to perform operations on the named stored
 procedure:
GRANT EXECUTE ON PROCEDURE cookbook.exec_stmt TO 'user1'@'localhost';
Use FUNCTION rather than
 PROCEDURE if the routine is a
 stored function.

To verify the privilege assignments, use SHOW GRANTS:
mysql> SHOW GRANTS FOR 'user1'@'localhost';
+--+
| Grants for user1@localhost |
+--+
| GRANT FILE, CREATE TEMPORARY TABLES, LOCK TABLES |
| ON *.* TO 'user1'@'localhost' |
| GRANT ALL PRIVILEGES ON `cookbook`.* TO 'user1'@'localhost' |
| GRANT SELECT, SELECT (User, Host), UPDATE (password_expired) |
| ON `mysql`.`user` TO 'user1'@'localhost' |
| GRANT EXECUTE ON PROCEDURE `cookbook`.`exec_stmt` TO 'user1'@'localhost' |
+--+
To see your own privileges, omit the FOR clause.
REVOKE syntax is generally
 similar to GRANT but uses FROM rather than TO:
REVOKE privileges ON scope FROM account;
Thus, to remove the privileges just granted to 'user1'@'localhost', use these REVOKE
 statements (and SHOW GRANTS to verify that they were
 removed):
mysql> REVOKE FILE ON *.* FROM 'user1'@'localhost';
mysql> REVOKE CREATE TEMPORARY TABLES, LOCK TABLES
 -> ON *.* FROM 'user1'@'localhost';
mysql> REVOKE ALL ON cookbook.* FROM 'user1'@'localhost';
mysql> REVOKE SELECT ON mysql.user FROM 'user1'@'localhost';
mysql> REVOKE SELECT(User,Host), UPDATE(password_expired)
 -> ON mysql.user FROM 'user1'@'localhost';
mysql> REVOKE EXECUTE ON PROCEDURE cookbook.exec_stmt
 -> FROM 'user1'@'localhost';
mysql> SHOW GRANTS FOR 'user1'@'localhost';
+---+
| Grants for user1@localhost |
+---+
| GRANT USAGE ON *.* TO 'user1'@'localhost' |
+---+

Removing accounts
To get rid of an account, use the DROP USER statement:
DROP USER 'user1'@'localhost';
The statement removes all rows associated with the account in
 all grant tables; you need not use REVOKE to remove its privileges first. An
 error occurs if the account does not exist.

Renaming accounts
To change an account name, use RENAME USER, specifying the current and new
 names:
RENAME USER 'currentuser'@'localhost' TO 'newuser'@'localhost';
An error occurs if the current account does not exist or the new
 account already exists.

24.3 Implementing a Password Policy
Problem
You want to ensure that MySQL accounts do not use weak passwords.

Solution
Use the validate_password
 plug-in to implement a password policy. New passwords must satisfy
 the policy, whether those chosen by the DBA for new accounts or by
 existing users changing their password.

Discussion
This technique requires the validate_password plug-in to be enabled. For
 plug-in installation instructions, see Recipe 22.2.
When validate_password is
 enabled, it exposes a set of system variables that enable you to
 configure it. These are the default values:
mysql> SHOW VARIABLES LIKE 'validate_password%';
+--------------------------------------+--------+
| Variable_name | Value |
+--------------------------------------+--------+
validate_password_dictionary_file	
validate_password_length	8
validate_password_mixed_case_count	1
validate_password_number_count	1
validate_password_policy	MEDIUM
validate_password_special_char_count	1
+--------------------------------------+--------+
Suppose that you want to implement a policy that enforces these
 requirements for passwords:
	At least 10 characters long

	Contains uppercase and lowercase characters

	Contains at least two digits

	Contains at least one special (nonalphanumeric)
 character

To put that policy in place, start the server with options that
 enable the plug-in, and set the values of the system variables that
 configure the policy requirements. For example, put these lines in your
 server option file:
[mysqld]
plugin-load-add=validate_password.so
validate_password_length=10
validate_password_mixed_case_count=1
validate_password_number_count=2
validate_password_special_char_count=1
After starting the server, verify the settings:
mysql> SHOW VARIABLES LIKE 'validate_password%';
+--------------------------------------+--------+
| Variable_name | Value |
+--------------------------------------+--------+
validate_password_dictionary_file	
validate_password_length	10
validate_password_mixed_case_count	1
validate_password_number_count	2
validate_password_policy	MEDIUM
validate_password_special_char_count	1
+--------------------------------------+--------+
Now the validate_password
 plug-in prevents assigning passwords too weak for the policy:
mysql> SET PASSWORD = 'weak-password';
ERROR 1819 (HY000): Your password does not satisfy the current
policy requirements
mysql> SET PASSWORD = 'Str0ng-Pa33w@rd';
Query OK, 0 rows affected (0.00 sec)
The preceding instructions leave the validate_password_policy system variable set
 to its default value (MEDIUM), but
 you can change it to control how the server tests passwords:
	MEDIUM enables tests for
 password length and the number of numeric, uppercase/lowercase, and
 special characters.

	To be less rigorous, set the policy to LOW, which enables only the length test.
 To also permit shorter passwords, decrease the required length
 (validate_password_length).

	To be more rigorous, set the policy to STRONG, which is like MEDIUM but also enables you to have
 passwords checked against a dictionary file, to prevent use of
 passwords that match any word in the file. Comparisons are not case
 sensitive.
To use a dictionary file, set the value of validate_password_dictionary_file to the
 filename at server startup. The file should contain lowercase words,
 one per line. MySQL distributions include a dictionary.txt file in the share directory that you can use, and
 Unix systems often have a /usr/share/dict/words file.

Putting a password policy in place has no effect on existing
 passwords. To require users to choose a new password that satisfies the
 policy, expire their current password (see Recipe 24.5).

24.4 Checking Password Strength
Problem
You want to assign or change a password but verify first that it’s not
 weak.

Solution
Use the VALIDATE_PASSWORD_STRENGTH() function.

Discussion
The validate_password plug-in
 not only implements policy for new passwords, but it also provides a SQL
 function, VALIDATE_PASSWORD_STRENGTH(), that enables
 strength testing of prospective passwords. Uses for this function
 include the following:
	An administrator wants to check passwords to be assigned to
 new accounts.

	An individual user wants to choose a new password but seeks
 assurance in advance about how strong it is.

To use VALIDATE_PASSWORD_STRENGTH(), the validate_password plug-in must be enabled. For
 plug-in installation instructions, see Recipe 22.2.
VALIDATE_PASSWORD_STRENGTH()
 returns a value from 0 (weak) to 100 (strong):
mysql> SELECT VALIDATE_PASSWORD_STRENGTH('abc') ;
+-----------------------------------+
| VALIDATE_PASSWORD_STRENGTH('abc') |
+-----------------------------------+
| 0 |
+-----------------------------------+
mysql> SELECT VALIDATE_PASSWORD_STRENGTH('weak-password');
+---+
| VALIDATE_PASSWORD_STRENGTH('weak-password') |
+---+
| 50 |
+---+
mysql> SELECT VALIDATE_PASSWORD_STRENGTH('Str0ng-Pa33w@rd');
+---+
| VALIDATE_PASSWORD_STRENGTH('Str0ng-Pa33w@rd') |
+---+
| 100 |
+---+

24.5 Expiring Passwords
Problem
You want users to pick a new MySQL password.

Solution
The ALTER USER statement expires passwords.

Discussion
MySQL 5.6.7 and up provides an ALTER USER
 statement that enables an administrator to expire an account’s
 password:
ALTER USER 'cbuser'@'localhost' PASSWORD EXPIRE;
Here are some uses for password expiration:
	You can implement a policy that new users must select a new
 password when first connecting: immediately expire the password for
 each new account you create.

	If you impose a stricter policy on acceptable passwords (see
 Recipe 24.3), you can expire all
 existing passwords to require each user to choose a new one that
 meets the more stringent requirements.

ALTER USER affects a single account. It works by
 setting the password_expired column
 to Y for the appropriate mysql.user row. To cheat and
 expire passwords for all nonanonymous accounts at once, do this
 (anonymous users cannot reset their password, so expiring those would have the same effect as removing these accounts from the MySQL system):

UPDATE mysql.user SET password_expired = 'Y' WHERE User <> '';
FLUSH PRIVILEGES;
Alternatively, to affect all accounts but avoid modifying the
 grant tables directly, use a stored procedure that loops through all
 accounts and executes ALTER USER for each:
CREATE PROCEDURE expire_all_passwords()
BEGIN
 DECLARE done BOOLEAN DEFAULT FALSE;
 DECLARE account TEXT;
 DECLARE cur CURSOR FOR
 SELECT CONCAT(QUOTE(User),'@',QUOTE(Host)) AS account
 FROM mysql.user WHERE User <> '';
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;

 OPEN cur;
 expire_loop: LOOP
 FETCH cur INTO account;
 IF done THEN
 LEAVE expire_loop;
 END IF;
 CALL exec_stmt(CONCAT('ALTER USER ',account,' PASSWORD EXPIRE'));
 END LOOP;
 CLOSE cur;
END;
The procedure requires the exec_stmt()
 helper routine (see Recipe 11.6). Scripts to create these
 routines are located in the routines directory of the recipes distribution.

24.6 Assigning Yourself a New Password
Problem
You want to change your password.

Solution
Use ALTER USER or SET PASSWORD statements.

Discussion
To assign yourself a new password, use the SET PASSWORD statement:
SET PASSWORD = 'my-new-password';
SET PASSWORD permits a FOR clause that enables you to specify which
 account gets the new password:
SET PASSWORD FOR 'user_name'@'host_name' = 'my-new-password';
This latter syntax is primarily for DBAs because it requires
 the UPDATE privilege
 for the mysql database.

 Alternatively, use the ALTER USER statement:

ALTER USER 'user_name'@'host_name' IDENTIFIED BY 'my-new-password';

 If you want to use the ALTER USER statement to assign yourself a password, you can check your account name first by running the CURRENT_USER function:

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| cbuser@% |
+----------------+
1 row in set (0.00 sec)

To check the strength of a password you’re considering, use the VALIDATE_PASSWORD_STRENGTH() function (see
 Recipe 24.4).

24.7 Resetting an Expired Password
Problem
You cannot use MySQL because your DBA expired your password.

Solution
Assign yourself a new password.

Discussion
If the MySQL administrator has expired your password, MySQL will
 let you connect but not do much of anything else:
$ mysql --user=cbuser --password
Enter password: ******
mysql> SELECT CURRENT_USER();
ERROR 1820 (HY000): You must SET PASSWORD before executing this statement
If you see that message, reset your password so that you can work
 normally again:
mysql> SET PASSWORD = 'my-new-password';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT CURRENT_USER(); -- now you can work again
+------------------+
| CURRENT_USER() |
+------------------+
| cbuser@localhost |
+------------------+
1 row in set (0.00 sec)
Technically, MySQL does not require a new
 password to replace an expired password, so you can assign yourself your
 current password to unexpire it. The exception is that if the password
 policy has become more restrictive and your current password no longer
 satisfies it, a stronger password must be chosen.
For more information about changing your password, see Recipe 24.6.

24.8 Finding and Removing Anonymous Accounts
Problem
You want to ensure that your MySQL server can be used only by accounts associated with
 specific usernames.

Solution
Identify and remove anonymous accounts.

Discussion
An anonymous account is one that has an empty user
 part in the account name, such as ''@'localhost'. An empty user matches any name
 because the purpose of an anonymous account is to permit anyone who
 knows its password to connect from the named host (localhost in this case). This is a convenience
 because the DBA need not set up individual accounts for separate users.
 But there are security implications as well:
	Such accounts often are given no password, enabling their use
 with no authentication at all.

	You cannot associate database activity with specific users
 (for example, by checking the server query log or examining SHOW
 PROCESSLIST output), making it
 more difficult to tell who is doing what.

If the preceding points persuade you that anonymous accounts are
 not a good thing, use the following instructions to identify and remove
 them:
	The User column is empty in
 the mysql.user rows for anonymous
 accounts, so you can identify them like this:
mysql> SELECT User, Host FROM mysql.user WHERE User = '';
+------+---------------+
| User | Host |
+------+---------------+
| | %.example.com |
| | localhost |
+------+---------------+

	The SELECT output shows two
 anonymous accounts. Remove each using a DROP
 USER statement with the
 corresponding account name:
mysql> DROP USER ''@'localhost';
mysql> DROP USER ''@'%.example.com';

24.9 Modifying “Any Host” and “Many Host”
 Accounts
Problem
You want to ensure that MySQL accounts cannot be used from an overly broad set of
 hosts.

Solution
Find and fix accounts containing % or _ in
 the host part.

Discussion
The host part of MySQL account names can contain the SQL pattern

 characters % and _ (see Recipe 7.10). These names match client
 connection attempts from any host that matches the pattern. For example,
 the account 'user1'@'%' permits
 user1 to connect from any host
 whatsoever, and 'user2'@'%.example.com' permits user2 to connect from any host in the example.com domain.
Patterns in the host part of account names provide a convenience
 that enables a DBA to create an account that permits connections from
 multiple hosts. They correspondingly increase security risks by
 increasing the number of hosts from which intruders can attempt to
 connect. If you consider this a concern, identify the accounts and
 either remove them or change the host part to be more specific.
There are several ways to find accounts with % or _ in
 the host part. Here are two:
WHERE Host LIKE '%\%%' OR Host LIKE '%_%';
WHERE Host REGEXP '[%_]';
The LIKE expression is more
 complex because we must look for each pattern character separately and
 escape it to search for literal instances. The REGEXP expression requires no escaping because those characters are not
 special in regular expressions, and a character class permits both to be
 found with a single pattern. So let’s use that expression:
	Identify pattern-host accounts in the mysql.user table like this:
mysql> SELECT User, Host FROM mysql.user WHERE Host REGEXP '[%_]';
+-------+---------------+
| User | Host |
+-------+---------------+
user1	%
user2	%.example.com
user3	_.example.com
+-------+---------------+

	To remove an identified account, use DROP USER:
mysql> DROP USER 'user1'@'%';
mysql> DROP USER 'user3'@'_.example.com';
Alternatively, rename an account to make the host part more
 specific:
mysql> RENAME USER 'user2'@'%.example.com' TO 'user2'@'host17.example.com';

24.10 Using TLS (SSL)
Problem

 You want to encrypt traffic between MySQL client and the server.

Solution

 Use Transport Layer Security (TLS) protocol.

Discussion

 MySQL does not use anything in addition to the standard Transmission Control Protocol (TCP) to encrypt traffic between the client and the server. Therefore, if someone wants to read data, sent in either direction, they can easily do it with help of tcpdump and similar tools. Any sensitive information, such as user passwords or stored credit card numbers, could be exposed. To prevent this, MySQL supports TLS protocol to secure communications.

Note

 Modern versions of MySQL use TLS protocol to encrypt traffic between the client and the server. However, due to historical reasons, configuration options and the Reference Manual often refer to TLS as SSL (Secure Socket Layer) even though the latter is not used anymore, because its encryption is weak. In this book, we use the term TLS in the text whenever possible.

 To secure traffic between the MySQL client and the server, you need the following:

	On the server
		
 The ssl option enabled. This is the default value, and you only need to ensure that it isn’t disabled in the configuration file.

	
 The Certificate Authority (CA) file that could be used to verify certificates. It could be a single file, specified by the ssl_ca option, or a path to a directory containing multiple such files, specified by the ssl_capath option.

	
 The public key certificate file, specified by the ssl_cert option. This certificate will be sent to the client to authenticate against the client’s CA.

	
 The private key, specified by the option ssl_key.

	On the client
		
 For the ssl-mode option, specify one of the following values:

	PREFERRED
	To establish an encrypted connection if the server supports TLS and fail back to the unencrypted if it does not. This is the default value.

	REQUIRED
	To establish an encrypted connection if the server supports TLS and fail connection attempt if it does not.

	VERIFY_CA
	Performs the same check as REQUIRED and additionally verifies the server CA file against the configured CA certificates.

	VERIFY_IDENTITY
	Performs the same check as VERIFY_CA and additionally performs host name verification. That said, the server certificate should have the client’s host name either in the "Subject Alternative Name" or the "Common Name" fields.

 The DISABLED value disables TLS connections and should not be used if you want to encrypt client-server traffic.

	
 The CA file that could be used to verify certificates. It could be a single file, specified by the option ssl_ca, or a path to a directory containing multiple such files, specified by the ssl_capath option.

	
 The public key certificate file, specified by the ssl_cert option. This certificate will be sent to the server to authenticate against the server’s CA.

	
 The private key, specified by the ssl_key option.

Note

 The CA, certificate, and key files should be in PEM (Privacy Enhanced Mail) format.

 If the MySQL server started with the ssl option enabled, but with empty values for other encryption-related options, it will search for the TLS keys and certificates in the data directory. If found, they will be used. Otherwise, TLS support will be disabled.

 Once you have all of these prerequisites, you can test the TLS connection:

$ mysql
mysql> \s

../bin/mysql Ver 8.0.21 for Linux on x86_64 (Source distribution)

Connection id:		534
Current database:	
Current user:		root@localhost
SSL:			Cipher in use is TLS_AES_256_GCM_SHA384
...
mysql> SHOW VARIABLES LIKE 'have_ssl';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_ssl | YES |
+---------------+-------+
1 row in set (0.01 sec)

 MySQL supports options to further restrict TLS connections, such as ssl-cipher, which requires you to use only specified ciphers. Consult “Configuring MySQL to Use Encrypted Connections” in the MySQL Reference Manual for further details.

Creating self-signed certificates

 MySQL distribution includes a mysql_ssl_rsa_setup command that can create self-signed keys and certificates. It invokes the openssl command and can be used as follows:
$ mysql_ssl_rsa_setup --datadir=./data
Ignoring -days; not generating a certificate
Generating a RSA private key
..+++++
..............+++++
writing new private key to 'ca-key.pem'

Ignoring -days; not generating a certificate
Generating a RSA private key
....................................+++++
...+++++
writing new private key to 'server-key.pem'

Ignoring -days; not generating a certificate
Generating a RSA private key
..+++++
.....................................+++++
writing new private key to 'client-key.pem'

Upon completion, it creates in the data directory files as listed in Table 24-2.
Table 24-2. Files created by mysql_ssl_rsa_setup	File	Description
	ca.pem	Self-signed CA
	ca-key.pem	CA private key
	server-cert.pem	Server certificate
	server-key.pem	Server key
	client-cert.pem	Client certificate
	client-key.pem	Client key
	private_key.pem	RSA private key to use over unencrypted connection for accounts, authenticated by either sha256_password or caching_sha2_password plug-ins
	public_key.pem	RSA public key to use over unencrypted connection for accounts, authenticated by either sha256_password or caching_sha2_password plug-ins

 Keys and certificates, created by the mysql_ssl_rsa_setup, are very basic and do not contain fields such as "Common Name". If you want to add these custom values to your TLS files, you need to create them manually. We don’t include instructions on how to do so in the book, because there is plenty of documentation available online, including “Creating SSL and RSA Certificates and Keys” in the MySQL Reference Manual. Alternatively, you may perform a test run of the mysql_ssl_rsa_setup command with the --verbose option that will print the openssl commands it executes. You will only need to repeat them with custom options.

Tip

 If you simply want to test how MySQL TLS connections work and do not want to create any new keys and certificates, you can use standard keys and certificates from the MySQL Test Suite, located inside the mysql-test/std_data directory of your MySQL installation.

24.11 Using Roles
Problem

 You want to grant the same set of privileges to different users but do not want them to share the same user account.

Solution

 Use roles.

Discussion

 When MySQL installation is used by multiple people, you may need to give similar privileges to some of them. For example, application users may need access to tables in their application database, while administrators may need to execute administrative commands. When you have a single application user or single database administrator, you can simply create two user accounts. But when your organization and MySQL usage grows, you may need to allow different people to perform the same tasks.

 You may resolve such a problem by sharing a single user account between different people. But this is insecure for various reasons, including when a user leaves the company and should lose access to the database. Or, if someone from the group leaks their access credentials, all the database users are compromised.

 Another solution is to duplicate privilege lists for individual user accounts. While it is more secure, it becomes error-prone when you need to add or remove a privilege. Doing it manually for dozens of users may easily lead to mistakes.

 To resolve these drawbacks, MySQL 8.0 introduced roles that are, practically, the named collections of privileges.

 You can create a role like any other user account. You just do not need to specify access credentials for it:
mysql> CREATE ROLE cookbook, admin;
Query OK, 0 rows affected (0.00 sec)
 In the preceding listing, we created a role cookbook that will have access to the cookbook database and an admin role that will be used for the database administration.

 The next step is to assign privileges to our new roles:
mysql> GRANT SELECT, INSERT, UPDATE, DELETE, EXECUTE ON cookbook.* TO 'cookbook';
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT GROUP_REPLICATION_ADMIN, PERSIST_RO_VARIABLES_ADMIN,
 -> REPLICATION_SLAVE_ADMIN, RESOURCE_GROUP_ADMIN,
 -> ROLE_ADMIN, SYSTEM_VARIABLES_ADMIN, SYSTEM_USER,
 -> RELOAD, SHUTDOWN ON *.* to 'admin';
Query OK, 0 rows affected (0.01 sec)

 Once roles are set up, we can assign them to different users. For example, to give access to the cookbook database to users cbuser, sveta, and alkin, use these commands:

mysql> GRANT cookbook TO cbuser;
Query OK, 0 rows affected (0.01 sec)

mysql> GRANT cookbook TO sveta;
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT cookbook TO alkin;
Query OK, 0 rows affected (0.00 sec)

 To grant administrator access to users paul and amelia, use the commands:

mysql> GRANT admin TO paul;
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT admin TO amelia;
Query OK, 0 rows affected (0.01 sec)

 Revoking role access is as easy as granting it:

mysql> REVOKE cookbook FROM sveta;
Query OK, 0 rows affected (0.01 sec)

See Also
MySQL supports other operations with roles, such as setting the default role for the newly added users or activating and deactivating roles. For additional information about roles in MySQL,
 see Using Roles in the MySQL Reference Manual.

24.12 Using Views to Secure Data Access
Problem

 You want to give users access only to certain query results but do not want them to see the actual data stored in the tables.

Solution

 Use views.

Discussion

 You may want certain users to be able to get access to the query results but want to cover real data stored in the tables. For example, the statistical department may want to know the number of patients in the hospital, their gender and age distribution, and how this data correlates to the recovery rate, but the department shouldn’t have access to actual patient data, such as their names or ID numbers, or be able to correlate their identity and diagnosis.

 To achieve this goal, you can create a view querying for certain data and grant specific users access only to this view.

 Consider a patients table:

mysql> SHOW CREATE TABLE patients\G
*************************** 1. row ***************************
 Table: patients
Create Table: CREATE TABLE `patients` (
 `id` int NOT NULL AUTO_INCREMENT,
 `national_id` char(32) DEFAULT NULL,
 `name` varchar(255) DEFAULT NULL,
 `surname` varchar(255) DEFAULT NULL,
 `gender` enum('F','M') DEFAULT NULL,
 `age` tinyint unsigned DEFAULT NULL,
 `additional_data` json DEFAULT NULL,
 `diagnosis` varchar(255) DEFAULT NULL,
 `result` enum('R','N','D') DEFAULT NULL ↩
 COMMENT 'R=Recovered, N=Not Recovered, D=Dead',
 `date_arrived` date NOT NULL,
 `date_departed` date DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=21 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)

 If you want to give the statistical department access to this data, you may want to give access to the gender, age, diagnosis, and result columns but restrict access to national_id, name, surname, and additional_data. You also may want to let them know how many days a patient spent in the hospital and in which month and year they arrived but do not want to let them explore actual arriving and departing dates. In other words, you want to restrict access to date_arrived and date_departed but still provide data that could be calculated based on the values stored in these columns.

 You can do this by creating a view:

mysql> CREATE VIEW patients_statistics AS
 -> SELECT age, gender, diagnosis, result,
 -> datediff(date_departed, date_arrived) as recovered_time,
 -> MONTH(date_arrived) AS month_arrived,
 -> YEAR(date_arrived) AS year_arrived
 -> FROM patients;
Query OK, 0 rows affected (0.03 sec)

 Then create a user for the statistics department that has read-only access to this view and does not have access to the underlying table:

mysql> CREATE USER statistics;
Query OK, 0 rows affected (0.03 sec)

mysql> GRANT SELECT ON cookbook.patients_statistics TO statistics;
Query OK, 0 rows affected (0.02 sec)

 Now the statistics department can log in and run analytical queries, such as finding the most frequent diagnosis, or how many patients with such a diagnosis arrived per month:

mysql cookbook -A -ustatistics
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 17
...
mysql> SELECT diagnosis, AVG(recovered_time) AS recovered_time_avg, COUNT(*) AS cases
 -> FROM patients_statistics WHERE year_arrived='2020'
 -> GROUP BY diagnosis ORDER BY cases DESC;
+---------------+--------------------+-------+
| diagnosis | recovered_time_avg | cases |
+---------------+--------------------+-------+
Data Phobia	24.8333	6
Diabetes	10.0000	4
Asthma	10.3333	3
Arthritis	22.0000	3
Appendicitis	5.5000	2
Breast Cancer	75.0000	2
+---------------+--------------------+-------+
6 rows in set (0.00 sec)

mysql> SELECT diagnosis, month_arrived, COUNT(*) AS month_cases
 -> FROM patients_statistics WHERE diagnosis='Data Phobia' AND year_arrived='2020'
 -> GROUP BY diagnosis, month_arrived ORDER BY month_arrived;
+--------------+---------------+-------------+
| diagnosis | month_arrived | month_cases |
+--------------+---------------+-------------+
Data Phobia	4	1
Data Phobia	9	2
Data Phobia	10	2
Data Phobia	11	1
+--------------+---------------+-------------+
4 rows in set (0.00 sec)

 But they would not be able to access the table data directly:

mysql> SELECT * FROM patients;
ERROR 1142 (42000): SELECT command denied to user 'statistics'@'localhost' ↩
 for table 'patients'

mysql> SELECT diagnosis, result, date_arrived FROM patients;
ERROR 1142 (42000): SELECT command denied to user 'statistics'@'localhost' ↩
 for table 'patients'

Note

 Views support the SQL SECURITY clause, allowing you to specify security context when executing a view. This clause is discussed in detail in Recipe 24.13.

See Also
For additional information about using views,
 see Recipe 5.7.

24.13 Using Stored Routines to Secure Data Modifications
Problem

 You want to let users modify their personal data but want to prevent them from accessing similar data for others.

Solution

 Use stored routines.

Discussion

 You may want to let users view and change their own personal information. For example, patients may marry and change their surnames or decide to add new additional information about themselves, such as address, weight, and so on. But you do not want them to see similar information for other patients. In this case, restricting access only on the column level wouldn’t work.

 Stored routines support the SQL SECURITY clause that allows you to specify if you want to execute the routine with access privileges for the DEFINER, the user that created the procedure, or the INVOKER, the user that is currently executing the procedure.

 In our case, we do not want to grant the INVOKER any privilege that allows them to access data stored in the sensitive columns. Therefore, we need to grant such privileges to the DEFINER of the procedure and specify the argument SQL SECURITY DEFINER.

Tip

 The default value for SQL SECURITY is DEFINER; therefore, this clause could be omitted.

 To illustrate this, let’s take the patients table from the previous recipe. But now we’ll access only columns containing sensitive data:

mysql> SHOW CREATE TABLE patients\G
*************************** 1. row ***************************
 Table: patients
Create Table: CREATE TABLE `patients` (
 ...
 `national_id` char(32) DEFAULT NULL,
 `name` varchar(255) DEFAULT NULL,
 `surname` varchar(255) DEFAULT NULL,
 ...
 `additional_data` json DEFAULT NULL,
 ...

 First, let’s prepare a user that will be a DEFINER for our procedure. We do not want this account to be used by anyone except the stored routine, so first let’s install the mysql_no_login authentication plug-in:

mysql> INSTALL PLUGIN mysql_no_login SONAME 'mysql_no_login.so';
Query OK, 0 rows affected (0.01 sec)

 Then let’s create the user account and grant it access to the patients table:

mysql> CREATE USER sp_access IDENTIFIED WITH mysql_no_login;
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT SELECT, UPDATE ON cookbook.patients TO sp_access;
Query OK, 0 rows affected (0.01 sec)

 Now let’s create a procedure that will return sensitive data for a patient, identified by national_id:

mysql> delimiter $$
mysql> CREATE DEFINER='sp_access'@'%' PROCEDURE get_patient_data(IN nat_id CHAR(32))
 -> SQL SECURITY DEFINER
 -> BEGIN
 -> SELECT name, surname, gender, age, additional_data
 -> FROM patients WHERE national_id=nat_id;
 -> END
 -> $$
Query OK, 0 rows affected (0.01 sec)

mysql> delimiter ;

 And a procedure that will update the record:

mysql> delimiter $$
mysql> CREATE DEFINER='sp_access'@'%' PROCEDURE update_patient_data(
 -> IN nat_id CHAR(32),
 -> IN new_name varchar(255),
 -> IN new_surname varchar(255),
 -> IN new_additional_data JSON)
 -> SQL SECURITY DEFINER
 -> BEGIN
 -> UPDATE patients
 -> SET name=COALESCE(new_name, name),
 -> surname=COALESCE(new_surname, surname),
 -> additional_data=JSON_MERGE_PATCH(COALESCE(additional_data, '{}'),
 -> COALESCE(new_additional_data, '{}'))
 -> WHERE national_id=nat_id;
 -> END
 -> $$
Query OK, 0 rows affected (0.01 sec)

mysql> delimiter ;

 Then, add privileges to execute these procedures to our DEFINER:

mysql> GRANT EXECUTE ON PROCEDURE cookbook.get_patient_data TO sp_access;
Query OK, 0 rows affected (0.01 sec)

mysql> GRANT EXECUTE ON PROCEDURE cookbook.update_patient_data TO sp_access;
Query OK, 0 rows affected (0.00 sec)

 Finally, let’s create a user that will use these procedures without any additional privileges:

mysql> CREATE USER patient;
Query OK, 0 rows affected (0.01 sec)

mysql> GRANT EXECUTE ON PROCEDURE cookbook.get_patient_data TO patient;
Query OK, 0 rows affected (0.02 sec)

mysql> GRANT EXECUTE ON PROCEDURE cookbook.update_patient_data TO patient;
Query OK, 0 rows affected (0.01 sec)

 Now let’s log in as this user and check how our procedures work:

mysql> SHOW GRANTS;
+--+
| Grants for patient@% |
+--+
| GRANT USAGE ON *.* TO `patient`@`%` |
| GRANT EXECUTE ON PROCEDURE `cookbook`.`get_patient_data` TO `patient`@`%` |
| GRANT EXECUTE ON PROCEDURE `cookbook`.`update_patient_data` TO `patient`@`%` |
+--+
3 rows in set (0.00 sec)

mysql> CALL update_patient_data('89AR642465', NULL, 'Johnson',
 -> ' {"Height": 165, "Weight": 55, "Hair color": "Blonde"}');
Query OK, 1 row affected (0.00 sec)

mysql> CALL get_patient_data('89AR642465')\G
*************************** 1. row ***************************
 name: Mary
 surname: Johnson
 gender: F
 age: 24
additional_data: {"Height": 165, "Weight": 55, "Hair color": "Blonde"}
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

 As you can see, we can change details for the specific patient, identifying them by a national ID, while having no access to the data of other patients.

See Also
For additional information about stored routines,
 see Chapter 11.

Index
Symbols
	" (double quote)	escaping in command line arguments, Notes on Invoking Shell Commands
	escaping in data values, Discussion
	identifier quoting if ANSI_QUOTES, Discussion, Discussion
	importing data, Problem
	shell command arguments, Notes on Invoking Shell Commands
	writing string literals, Problem

	$ (dollar sign)	JSON root element, Discussion
	prompt, Discussion
	regexp end of string, Discussion, Discussion

	% (percent)	formatting for date and time values, Discussion
	hostname containing, Problem
	matching sequence of characters, Filtering on the replica, Discussion

	' (single quote)	escaping in data values, Discussion
	exporting data, Exporting using the SELECT...INTO OUTFILE statement
	importing CSV files, Problem
	writing string literals, Problem

	() parentheses	function-based indexes, Discussion
	regexp pattern matches, Discussion

	* (asterisk)	COUNT rows including NULLs, Discussion, Discussion
	JSON all values, Discussion
	regexp pattern matching, Discussion, Discussion	matching empty string, Discussion

	SELECT all columns, Discussion

	+ (plus) regexp pattern matching, Discussion, Discussion	avoiding empty string match, Discussion

	- (dash)	option file underscores and, Specifying connection parameters using option files, Configuration control at server startup
	single versus double, Discussion

	-> (JSON_EXTRACT()), Discussion
	->> (JSON_UNQUOTE()), Discussion
	. (dot)	JSON object members, Discussion
	regexp matching single character, Discussion, Discussion

	/ (slash) pathname separator, Specifying connection parameters using option files
	/dev/null, Discussion	Blackhole “storage” engine, Discussion

	/dev/random for seed, Discussion
	/var/log/messages system log, Solution
	:= as variable assignment operator, Discussion
	; (semicolon)	end of SQL statement, Discussion, Discussion	multiple SQL statements executed, Discussion
	none in API SQL statements, SQL statement categories
	\G for vertical output, Discussion, Discussion
	\g synonym, Discussion, Discussion

	redefining mysql terminator for BEGIN...END, Problem

	< (left angle bracket) to redirect input, Discussion, Discussion
	<=> for NULL comparison, Problem
	= (equal sign)	spaces around, Specifying connection parameters using option files
	variable assignment operator, Discussion	:= synonym, Discussion

	> (right angle bracket) redirecting output, Exporting using the mysql client program
	? (question mark) optional regexp element, Discussion
	@ (at sign)	account names, Discussion, Creating accounts	anonymous accounts, Discussion
	hostnames with pattern characters, Discussion

	variable assignment, Discussion

	@@ (double at sign)	examples of use	buffer pool size, Discussion
	data directory, Discussion
	global variable read, Configuration control and verification at runtime
	GTID, Discussion
	mysqlx_socket value, Discussion
	plugin_dir system variable, Discussion
	Ruby, Ruby
	session and global specified, Discussion, Discussion
	showing default storage engine, Discussion

	sql_mode, Discussion, Specifying the datafile location, Problem
	writing or reading system variables, Configuration control and verification at runtime	no GLOBAL. or SESSION. modifier, Configuration control and verification at runtime

	[] (square brackets)	regexp pattern matching, Discussion, Discussion, Discussion, Discussion	JSON array members, Discussion
	POSIX character classes, Discussion
	[^] not version, Discussion, Discussion

	\ (backslash)	escape sequences, Discussion	LOAD DATA escape sequences, Discussion

	escaping double quotes, Notes on Invoking Shell Commands
	escaping identifier quoted strings, Discussion
	escaping in data values, Discussion
	line-continuation character in Unix, Notes on Invoking Shell Commands
	literal matches of characters, Using SHOW COLUMNS to get table structure information, Discussion
	option file pathnames, Specifying connection parameters using option files
	Windows pathname separator, Specifying the datafile location	LOAD DATA pathnames, Specifying the datafile location

	\! for system command, Discussion
	\. for source command, Discussion
	\0 for ASCII NUL, Discussion, Discussion
	\1, \2, ... in regexp pattern matches, Discussion
	\b for backspace, Discussion
	\c for \connect command, Discussion-See Also
	\d for regexp digit character, Discussion, Discussion
	\D for regexp nondigit character, Discussion
	\g at end of SQL statement, Discussion, Discussion
	\G for vertical output, Discussion, Discussion
	\n for linefeed or newline, Discussion	line-ending sequence in files, File Formats, Discussion

	\n for nopager to reset pager, Discussion
	\r for carriage return, Discussion	line-ending sequence in files, File Formats, Discussion

	\R to customize mysql prompt, Problem
	\S for regexp nonwhitespace character, Discussion, Discussion
	\s for regexp whitespace character, Discussion, Discussion
	\t for tab, Discussion
	\W for regexp nonword character, Discussion
	\w for regexp word character, Discussion, Discussion
	^ (caret)	line-continuation in Windows, Notes on Invoking Shell Commands
	regexp beginning of string, Discussion, Discussion
	regexp empty and nonempty values, Discussion

	_ (underscore)	character set for string literal, Discussion
	hostname containing, Problem
	option file dashes interchangeable, Specifying connection parameters using option files, Configuration control at server startup
	pattern matching single character, Filtering on the replica, Discussion

	` (backtick)	around identifier in SQL statement, Discussion
	GROUP BY identifier quoting, Discussion
	line-continuation in PowerShell, Notes on Invoking Shell Commands
	SQL injection attack prevention, Discussion

	{ } (curly braces)	multiline code, Discussion
	regexp pattern matching, Discussion, Discussion

	| (pipe) output as input, Discussion, Discussion
	| (vertical bar) regexp pattern matching, Discussion, Discussion, Discussion

A
	access denied error	built-in report privileges, Discussion
	importing data, Specifying the datafile location
	invoking mysql, Problem

	access privileges (see privileges)
	access to option files by other users, Protecting option files from other users
	accounts (see user account for MySQL)
	add() to Python mode collections, Discussion
	add_or_replace_one() in Python mode collections, Discussion
	adjacent words in specific order, Problem
	Admin API, Discussion	automated replication setup, Problem

	administration of server (see server administration)
	administrative privileges	CREATE USER and GRANT, Discussion
	mysqladmin, Discussion
	security, Introduction
	server administration, Introduction
	server monitoring, Introduction
	server shutdown, Discussion
	SUPER privileges, Configuration control and verification at runtime

	AGAINST(), Problem
	age calculations, Problem
	aggregate functions	descriptive statistics calculations, Problem
	JSON object and array functions, Problem
	NULL values ignored, Discussion
	query result rows numbered, Problem
	summary values via, Introduction	(see also summaries)
	caution: nonsummary columns, Discussion

	WHERE clause not allowing, Discussion

	aliases for tables, Discussion
	aliasing column names in results, Problem	benefits for programming, Discussion
	DATE_FORMAT() results, Discussion
	expressions for sorting, Discussion
	GROUP BY referring to, Discussion	identifier quoting in backticks, Discussion

	HAVING referring to, Discussion
	join output column names, Problem
	restrictions on, Discussion
	saving query results to a table, Discussion
	UNION using, Discussion

	ALTER EVENT to disable or enable, Discussion
	ALTER TABLE	adding AUTO_INCREMENT column, Problem
	changing storage engine, Solution, Discussion, Discussion
	column names in results, Discussion
	dropping column to renumber sequence, Discussion
	foreign keys added, Discussion
	general tablespaces to individual, Discussion
	index renamed, Discussion
	query results saved as a table, Discussion
	resetting sequence counter, Problem
	tablespace discarded, Discussion

	ALTER USER	changing your password, Problem
	expiring passwords, Problem

	Amazon review data for download, Amazon Review Data (2018), Discussion	script to load data, Discussion

	anonymous account management, Problem
	ANSI_QUOTES, Discussion, Discussion
	APIs	about book use, MySQL APIs Used in This Book	recipes distribution, Recipe Source Code and Data, Introduction

	about object orientation, MySQL Client API Architecture
	architecture of, MySQL Client API Architecture	portability of SQL code, MySQL Client API Architecture

	AUTO_INCREMENT values via, Using API-specific methods to obtain AUTO_INCREMENT
 values
	character set for client connections, Discussion
	connecting to MySQL server, Introduction, Problem-Java	disconnecting from, Discussion
	obtaining connection parameters, Problem-Java

	creating tables via scripts	about recipes distribution, Recipe Source Code and Data, Introduction
	recipes distribution script files, Discussion

	date calculations, Date or date-and-time interval calculation using basic
 units
	error handling by scripts, Introduction, Problem-Java	Go connection script, Go, Go
	Java connection script, Java, Java
	Perl connection script, Perl, Perl
	PHP connection script, PHP, PHP
	Python connection script, Python, Python
	Ruby connection script, Ruby, Ruby

	executing SQL, Introduction, Problem-Java	categories of SQL statements, Discussion, SQL statement categories
	error handling, SQL statement categories
	no SQL statement terminators, SQL statement categories

	languages supported by MySQL, MySQL APIs Used in This Book, Introduction	MySQL Shell, Introduction
	recipes distribution on GitHub, Recipe Source Code and Data, Introduction

	library file writing, Introduction, Problem-Java	data validation tests, Problem
	Go, Go
	location of library file, Choosing a library-file installation location
	Perl, Perl
	PHP, PHP
	Python, Python
	recipes distribution lib directory, Introduction, Discussion
	Ruby, Ruby
	test harness, Discussion

	metadata	listing databases or tables, Discussion
	matched versus changed, Discussion
	number of rows changed by SQL, Solution
	result set metadata obtained, Problem
	server and database metadata, Discussion
	server version, Discussion

	NULL data values, Introduction, Problem-Java	identifying in result sets, Problem-Java

	persistent connections and temporary tables, Discussion
	resetting the profile table, Problem
	special character handling, Introduction
	special characters in data values, Problem-Java
	special characters in identifiers, Problem	quoted string with same quote character, Discussion

	test data via Python, Problem-See Also
	transactions, Problem	APIs mapped onto SQL, Discussion

	architecture of APIs, MySQL Client API Architecture	portability of SQL code, MySQL Client API Architecture

	architecture of InnoDB storage engine, SHOW ENGINE
	Archive storage engine, Discussion
	arrays	card deck–shuffling algorithm, Discussion
	JSON array from relational data, Problem
	JSON array members accessed, Discussion
	JSON new array members, Problem
	PHP associative arrays, Construct a hash from the entire lookup table
	result-set metadata	Go, Go
	Perl, Perl

	AS to specify column name alias, Discussion	alias benefits in programming, Discussion

	ASCII NUL (\0), Discussion, Discussion
	ASCII() to convert string format, Problem
	asterisk (*)	COUNT rows including NULLs, Discussion, Discussion
	JSON all values, Discussion
	regexp pattern matching, Discussion, Discussion	matching empty string, Discussion

	SELECT all columns, Discussion

	asynchronous API of X protocol, Introduction
	at sign (@)	account names, Discussion, Creating accounts	anonymous accounts, Discussion
	hostnames with pattern characters, Discussion

	variable assignment, Discussion

	authentication	caching_sha2_password plug-in, Discussion
	database access, Discussion	(see also privileges)

	mysql.user table, Understanding the mysql.user Table	anonymous accounts, Discussion

	replication user, Discussion

	auto-commit mode of MySQL, Solution
	auto-vertical-output, Discussion
	autocommit session variable, Discussion
	AUTO_INCREMENT column	counting with, Problem
	custom increment values, Problem
	data type for, Problem	extending range of sequence, Problem

	deleting rows, Problem	renumbering an existing sequence, Problem
	reusing values at top of sequence, Problem

	duplicate rows prevented, Discussion
	extending range of, Problem
	id column, Discussion, Problem
	LAST_INSERT_ID() value, Discussion, Discussion
	managing multiple simultaneously, Problem
	renumbering an existing, Problem	particular order, Problem

	retrieving values, Problem	APIs, Using API-specific methods to obtain AUTO_INCREMENT
 values
	server-side versus client-side, Server-side and client-side sequence value retrieval
 compared

	sequences via, Problem	emptying table, resetting counter, Discussion
	repeating sequences, Problem
	sequencing an unsequenced table, Problem

	storage engines and, Discussion, Discussion
	tables associated via, Problem

	AVG(), Problem

B
	B (batch) option for output, Producing tabular or tab-delimited output
	B-tree indexes, Introduction	FULLTEXT index on same column, Discussion
	hash indexes versus, Introduction

	backslash (\)	escape sequences, Discussion	LOAD DATA escape sequences, Discussion

	escaping double quotes, Notes on Invoking Shell Commands
	escaping identifier quoted strings, Discussion
	escaping in data values, Discussion
	line-continuation character in Unix, Notes on Invoking Shell Commands
	literal matches of characters, Using SHOW COLUMNS to get table structure information, Discussion
	option file pathnames, Specifying connection parameters using option files
	Windows pathname separator, Specifying the datafile location	LOAD DATA pathnames, Specifying the datafile location

	\! for system command, Discussion
	\. for source command, Discussion
	\0 for ASCII NUL, Discussion, Discussion
	\1, \2, ... in regexp pattern matches, Discussion
	\b for backspace, Discussion
	\g at end of SQL statement, Discussion, Discussion
	\G for vertical output, Discussion, Discussion
	\n for linefeed or newline, Discussion	line-ending sequence in files, File Formats, Discussion

	\n for nopager to reset pager, Discussion
	\P for pager command, Discussion
	\r for carriage return, Discussion	line-ending sequence in files, File Formats, Discussion

	\R to customize mysql prompt, Problem
	\t for tab, Discussion

	backspace (\b), Discussion
	backtick (`)	around identifier in SQL statement, Discussion
	GROUP BY identifier quoting, Discussion
	line-continuation in PowerShell, Notes on Invoking Shell Commands
	SQL injection attack prevention, Discussion

	backups	backup server via replication, Introduction
	binary versus logical, Discussion
	cp for binary backups, Discussion
	MySQL backup tools, Discussion
	mysqldump for, Discussion	backing up server for replication, Discussion
	mysql client to load dump, Discussion, Discussion
	renaming database, Discussion

	replication server, Discussion	multisource replication, Discussion

	table copying via, Problem

	Basic Multilingual Plane (BMP), String Properties
	batch (B) option for output, Producing tabular or tab-delimited output
	batch mode in mysql	about mysql, Introduction	(see also scripts)

	creating tables	about recipes distribution, Recipe Source Code and Data, Introduction
	recipes distribution script files, Discussion

	distributing SQL via script files, Discussion
	executing SQL from file, Discussion
	output format default, Discussion, Producing tabular or tab-delimited output

	BEGIN...END block, Introduction	redefining mysql ; terminator, Problem

	BIN() for binary format conversion, Problem
	binary collations, String Properties	comparisons, String Properties

	binary log files	configuring, The binary log
	configuring format, Problem	format of replica binary log, Discussion

	enabling, Discussion
	GTIDs, Introduction, Discussion
	point-in-time recovery, Filtering on the source server, Discussion
	position via SHOW MASTER STATUS, Solution	stopping writes for in-use future source, Discussion

	reading, Troubleshooting Group Replication, Discussion
	record of data changes, Discussion, Problem
	recording prevented by filters, Discussion
	rotating, Rotating the binary log
	source replication server, Introduction, Discussion

	binary output as hexadecimal notation, Discussion
	BINARY string data type, Discussion
	binary strings, String Properties, Discussion	bit operations, Discussion
	comparisons, String Properties, Problem, Discussion, Discussion	case sensitivity controlled, Discussion
	sorting of binary strings, Discussion

	hexadecimal notation treated as, Discussion
	UUID converted to binary, Discussion

	binlog-do-db configuration option, Filtering on the source server	binlog-ignore-db, Filtering on the source server

	binlog_rows_query_log_events, Introduction
	binlog_transaction_dependency_tracking, Discussion, Discussion
	bit operations, Discussion
	BIT_COUNT(), Discussion
	BIT_LENGTH() to convert string format, Problem
	BIT_OR(), Discussion
	Blackhole “storage” engine, Discussion
	BLOB string data type, Discussion
	book GitHub repository, The MySQL Cookbook Companion GitHub Repository	email address for problems with code examples, Using Code Examples
	web page for errata, examples, and information, How to Contact Us

	Boolean-mode full-text searches, Problem

C
	ca-key.pem, Creating self-signed certificates
	ca.pem, Creating self-signed certificates
	caching_sha2_password plug-in, Discussion
	calendar operations	date values (see date values)
	number of holidays, Discussion
	number of Sundays, Discussion
	sorting by calendar day, Sorting by calendar day
	time values (see time values)

	CALL to invoke stored programs, Introduction, Discussion
	Camel-case syntax, Discussion
	candidate keys, Problem
	candidate-detail lists and summaries, Problem
	card deck–shuffling algorithm, Discussion
	cardinality of index, Discussion, Discussion
	caret (^)	line-continuation in Windows, Notes on Invoking Shell Commands
	regexp beginning of string, Discussion, Discussion
	regexp empty and nonempty values, Discussion

	carriage return (\r), Discussion	line-ending sequence in files, File Formats, Discussion

	Cartesian products, Discussion
	case conversion for strings, Problem
	case sensitivity	collation name ending, String Properties
	duplicate identification, Discussion
	keywords, Discussion
	regular expressions, Discussion
	sorting strings, Problem
	user variable names, Discussion

	central tendency, Discussion
	certificates	Certificate Authority (CA) file, Discussion
	creating self-signed, Creating self-signed certificates
	public key certificate file, Discussion

	CHANGE MASTER, Discussion
	CHANGE REPLICATION FILTER, Discussion
	CHANGE REPLICATION SOURCE, Solution	replication user credential security, Problem
	TLS for replication security, Problem
	two or more source servers, Problem

	changing your password, Problem
	CHAR string data type, Discussion
	CHAR() to convert string format, Problem
	character classes in regexp, Discussion	POSIX character classes, Discussion

	character sets for nonbinary strings, String Properties	changing, Problem
	checking, Problem
	client connection, Problem	some cannot be used as connection character sets, Discussion

	default (MySQL 8), String Properties
	listing character sets and collations, Problem
	multibyte characters determination, String Properties
	table columns, Discussion
	Unicode, String Properties

	CHARSET(), Problem
	charting frequency distributions, Discussion
	CHAR_LENGTH(), String Properties
	CHECK constraints, Problem	listing defined CHECK constraints, Problem

	checking if server is up, Problem	“MySQL Server has gone away”, Problem

	chmod command	library file access privileges, Setting library-file access privileges
	protecting option files, Protecting option files from other users

	Classic MySQL protocol, Introduction	import_table requiring, Discussion

	CLASSPATH environment variable, Choosing a library-file installation location, Java
	clear screen via cls parameter	nocls to not clear screen, Discussion

	client for MySQL, Obtaining MySQL and Related Software, Introduction	timeout of client, Server crash

	client-cert.pem, Creating self-signed certificates
	client-key.pem, Creating self-signed certificates
	client-server architecture of MySQL, Introduction
	cloning a table, Problem
	Cluster (InnoDB) managed by Admin API, Discussion	automating Group Replication, InnoDB Cluster

	clustered index, Discussion
	cmdline.pdf	environment variables, Choosing a library-file installation location
	running programs, Introduction, Perl, Ruby, Python, Java

	cmdline.pl, Perl
	COALESCE(), Discussion
	COLLATE to change collation, Problem
	collation of strings	changing, Problem
	checking, Problem
	COLLATE example, String Properties
	comparisons, String Properties
	duplicate identification and case sensitivity, Discussion
	listing character sets and collations, Problem
	sort order affected by, String Properties	listing character sets and collations, Problem

	table columns, Discussion
	_ci, _cs, _bin for case sensitivity and binary, String Properties

	COLLATION(), Problem
	collections	about, Discussion	schema validation, Discussion

	CookbookCollection object, Solution-Discussion
	JavaScript mode Document Store, Problem
	Python mode Document Store, Problem

	column definitions accessed, Problem
	column headings suppressed in output, Suppressing column headings in query
 output
	column names aliased in results, Problem	alias restrictions, Discussion
	benefits for programming, Discussion
	DATE_FORMAT() results, Discussion
	expression for original name, Discussion
	expressions for sorting, Discussion
	GROUP BY identifier quoting in backticks, Discussion
	GROUP BY referring to aliases, Discussion
	HAVING referring to aliases, Discussion
	join output column names, Problem
	UNION using, Discussion

	columns specified in SELECT, Problem	column order, Discussion

	columns with date and timestamps, Problem
	comma-separated values (see CSV)
	command line	cmdline.pdf, Introduction
	dba global object, Discussion
	executing SQL statements directly, Discussion	reading from script file, Discussion

	invoking commands overview, Notes on Invoking Shell Commands	line-continuation characters, Notes on Invoking Shell Commands

	invoking mysql	command not found, Problem
	specifying command options, Problem

	json/array for passing data, Discussion
	mixing option file parameters and, Mixing command-line and option-file parameters
	MySQL Shell client, Introduction
	parameters in short or long form, Getting parameters from the command line
	process list, I/O utilization
	processing arguments to obtain parameters, Getting parameters from the command line
	running MySQL Shell utilities, Discussion
	security issues, Discussion
	server configuration, Configuration control at server startup
	“Executing Programs from the Command Line” document	GitHub repository, MySQL Cookbook Companion Documents
	PATH variable, Discussion

	command not found, Problem
	command options	default values, Discussion
	invoking mysql, Problem
	MySQL Shell output formatting, Solution
	mysqldump, Discussion
	single versus double dash, Discussion
	vertical output for session, Discussion

	comments in option files, Specifying connection parameters using option files
	COMMIT, Discussion
	commit()	Perl transactions, Discussion
	Python mode table modifications, Discussion

	Common Table Expressions (CTEs)	data from MIN or MAX rows, Discussion
	Formula 1 fractional seconds example, Discussion
	query results joined, Using CTEs
	recursive CTEs, Discussion
	sequence generation, Problem
	summaries from temporary result sets, Problem

	comparison operators	binary string comparisons, String Properties, Problem, Discussion, Discussion	case sensitivity controlled, Discussion
	sorting of binary strings, Discussion

	date values, Problem	dates to calendar days, Comparing dates to calendar days

	NULL values	<=>, Discussion
	IFNULL(), Discussion, Discussion
	IS NULL or IS NOT NULL, Problem
	ISNULL(), Discussion
	programming, Problem

	string values, Problem	regexp patterns equivalent to substring comparisons, Discussion
	SQL patterns equivalent to substring comparisons, Discussion

	time values, Comparing times to one another

	CONCAT(), Discussion	date and time values synthesized, Problem	ISO date format, Problem

	email address format produced, Discussion

	concurrency in transactions, Introduction
	condition handlers	about error handling, Discussion
	benign errors ignored, Problem
	No More Rows conditions, Solution
	sales tax example, Discussion

	configuration files	global configuration file mysqlshrc, Discussion
	library file installation location, Choosing a library-file installation location
	option files (see option files)
	personal configuration file, Discussion
	replication	binary log enabled, Discussion
	GTID-based replication, Solution, Discussion
	server_id, Discussion

	\connect command (\c), Discussion-See Also
	connect.go, Go
	Connect.java, Java
	connect.php, PHP
	connect.pl, Perl
	connect.py, Python
	connect.rb, Ruby
	connection limits of MySQL server, Problem	buffer pool sizing, Problem

	connection objects (conn)	Java, Java
	Python, Python

	connection parameters	character set, Problem
	command line, Discussion
	Go connection script, Go
	Java connection script, Java
	obtaining via script, Problem-Java	parameters from command line, Getting parameters from the command line
	security issues, Discussion

	option file, Specifying connection parameters using option files	mysql_config_editor for credential security, Specifying connection parameters using option files

	Perl connection script, Perl
	PHP connection script, PHP
	Python connection script, Python
	Ruby connection script, Ruby

	context cancellation support of Go, Go
	CONTINUE handler for NOT FOUND, Discussion
	CONV() to convert between numeric bases, Problem
	CONVERT() to change character set, Problem
	CONVERT_TZ() for time zones, Problem
	cookbook database, Introduction	creating, Problem, Problem	PRIMARY KEY clause, Discussion
	rows inserted, Problem
	tables created, Problem

	user account privileges, Discussion-See Also

	cookbook.py module, Discussion
	CookbookCollection object, Solution-Discussion
	CookbookCollectionModule.js, Discussion
	cookbook_utils.py library module file, Discussion	regexp date patterns, Discussion, Discussion
	regexp time patterns, Discussion
	trim_whitespace(), Discussion
	year from two digits to four, Discussion

	copying database to another MySQL server, Discussion
	correlation coefficients, Problem, Discussion
	COUNT()	displaying results in groups, Discussion
	DISTINCT for unique values, Discussion, Introduction	repetitiveness of a set of values, Discussion

	missing values counted, Problem
	non-NULL values versus rows, Discussion, Discussion
	summarizing with, Problem

	covering index, Problem
	cp for binary backups, Discussion
	CPU monitoring	high-utilization process on server, Problem	thread-filtering documentation, Discussion

	monitoring the operating system, Operating System
	non-uniform memory access (NUMA), Memory utilization

	CREATE DATABASE, Problem	renaming database, Discussion

	CREATE EVENT, Discussion	about events, Introduction	(see also events)

	log maintenance, Discussion

	CREATE FUNCTION, Discussion	about stored functions, Introduction	(see also stored functions)

	READS clause, Discussion
	RETURN statement, Discussion
	RETURNS clause, Discussion

	CREATE INDEX, Problem
	CREATE PROCEDURE	about stored procedures, Introduction	(see also stored procedures)

	about stored programs, Introduction	BEGIN...END compound statement, Introduction
	redefining mysql ; terminator, Problem

	IN parameters, Problem
	INOUT parameters, Problem
	OUT parameters, Problem

	CREATE TABLE, Problem	column names in results, Discussion
	CREATE TEMPORARY TABLE, Problem	caveats, Discussion
	same name hides permanent, Discussion
	same table names do not clash, Discussion
	summary results via, Discussion, Discussion, Discussion

	LIKE to clone existing structure, Problem
	LIKE to clone existing table structure, Removing duplicates using table replacement
	mysqldump output file containing, Discussion
	saving results of query to a table, Solution
	scripts in recipes distribution, Recipe Source Code and Data, Introduction, Discussion, Discussion, Introduction
	transaction engine specified, Discussion	(see also transactions)

	CREATE TEMPORARY TABLE, Problem	caveats, Discussion
	same name hides permanent, Discussion
	same table names do not clash, Discussion
	summary results via, Discussion, Discussion, Discussion

	CREATE USER, Solution-See Also, Creating accounts	administrative privileges needed, Discussion
	GRANT, Solution-See Also	replication user, Discussion

	replication user, Discussion

	CREATE VIEW	summaries simplified, Problem
	table access simplified, Discussion

	createCollection, Discussion
	credit card number regexp patterns, Discussion
	cron jobs in batch mode	batch mode in mysql, Introduction

	CSV (comma separated values) files	about file format, File Formats
	exporting, Specifying the output column delimiter, Exporting using the SELECT...INTO OUTFILE statement
	importing, Problem
	MySQL Shell utility, Discussion
	read_csv() (pandas), Names and genders

	CSV storage engine, Discussion	log table management, Discussion

	CTEs (see Common Table Expressions)
	Ctrl-C to terminate running query, Discussion
	Ctrl-D (Unix) to terminate mysql session, Discussion
	cumulative sums, Problem
	cumulative values to relative values, Problem
	CURDATE(), Problem	extracting components, Decomposing dates or times using component-extraction
 functions

	curly braces ({ })	multiline code, Discussion
	regexp pattern matching, Discussion, Discussion

	current date and time, Problem	extracting components, Decomposing dates or times using component-extraction
 functions

	CURRENT_USER(), Discussion
	CURTIME(), Problem	extracting components, Decomposing dates or times using component-extraction
 functions

	custom_sequences.sql, Discussion
	cvt_date.py, Discussion
	cvt_file.pl utility, Specifying the output column delimiter, File Formats, Discussion, Discussion

D
	dash (-)	option file underscores and, Specifying connection parameters using option files, Configuration control at server startup
	single versus double, Discussion

	data	access security via stored routines, Problem
	access security via views, Problem
	incomplete	counting missing values, Problem
	frequency distribution range of categories, Discussion

	JSON data type, Problem	(see also JSON data format)

	reformatting (see reformatting data)
	special characters, Problem-Java
	test data via Python data science modules, Problem-See Also
	tracking changes, Problem
	transferring to and from MySQL, Introduction	exporting data (see exporting data)
	importing data (see importing data)
	source code in recipes distribution, Introduction

	validating (see validating data)

	data dictionary holding table definitions, Discussion
	data source name (DSN) in Perl connection script, Perl
	database handles	Perl ($dbh), Perl, Perl, Discussion
	PHP ($dbh), PHP
	Python connection objects (conn), Python
	Ruby (client), Ruby

	databases	APIs selecting, Problem-Java	Go connection script, Go
	Java connection script, Java
	Perl connection script, Perl
	PHP connection script, PHP
	Python connection script, Python
	Ruby connection script, Ruby

	automated operations via events, Problem
	backing up via mysqldump, Discussion
	CHECK constraints, Problem	listing defined CHECK constraints, Problem

	checking if database exists, Problem
	cookbook database, Introduction
	copying to another MySQL server, Discussion
	creating, Problem	PRIMARY KEY clause, Discussion
	rows inserted, Problem
	table data from program output, Discussion
	tables created, Problem
	tables created via scripts, Discussion

	foreign keys preventing mismatches, Discussion
	JSON data structure versus, Introduction	(see also JSON data format)

	listing databases hosted by server, Problem
	listing tables in a database, Problem
	metadata, Introduction	default database name, Discussion

	prompt showing current default, Discussion
	renaming databases, Discussion
	user account privileges, Discussion-See Also
	views listed or checked for existence, Problem

	DATE data type, Discussion	(see also date values)

	date showing in prompt, Discussion
	date values	about capabilities, Introduction
	about scripts in recipes distribution, Introduction
	age calculations, Problem
	combining components, Problem
	converting basic units (days, seconds), Problem
	current date determined, Problem	extracting components, Decomposing dates or times using component-extraction
 functions

	data type to use, Problem
	date of any given weekday, Problem
	date processing utility, Solution
	day of week for a date, Problem
	extracting part of, Problem
	format of date, Problem	date processing utility, Solution
	ISO to non-ISO, Problem
	non-ISO to ISO, Problem
	year from two digits to four, Problem

	interval calculations, Problem	interval or span, Date or date-and-time interval calculation using basic
 units

	ISO format for, Problem	exporting to non-ISO, Problem
	reformatting to, Problem

	patterns with nonstring values, Discussion
	regexp patterns for, Problem, See Also
	row insertion and last modification timestamps, Problem	NULL values not allowed, Discussion, Discussion

	selecting rows based on, Problem	calendar days, Comparing dates to calendar days

	sorting by, Problem	calendar day, Sorting by calendar day
	day of week, Sorting by day of week

	sum of, Problem
	summaries grouped by date, Problem
	synthesizing a date value, Problem	ISO format for, Problem

	validity checking of subparts, Problem

	DATE() extracting date component, Decomposing dates or times using component-extraction
 functions
	DATEDIFF(), Calculating intervals with temporal-difference
 functions
	DATETIME data type, Discussion	daily summaries, Discussion
	DEFAULT CURRENT_TIME STAMP, Problem
	fractional seconds, Problem
	ON UPDATE CURRENT_TIME STAMP, Problem
	row creation and last modification timestamps, Problem

	DATE_FORMAT(), Problem	combining components, Problem
	exporting dates to non-ISO formats, Discussion
	extracting part of a date value, Decomposing dates or times using formatting functions

	day of week for a date, Problem
	day of week sorted on, Sorting by day of week
	DAYNAME(), Decomposing dates or times using component-extraction
 functions, Problem
	DAYOFMONTH()	extracting component from date value, Decomposing dates or times using component-extraction
 functions
	number of days in a month, Solution
	pattern matching with nonstring values, Discussion

	DAYOFWEEK(), Decomposing dates or times using component-extraction
 functions	Sunday as first day, Discussion

	DAYOFYEAR(), Decomposing dates or times using component-extraction
 functions
	dba global object of DBA class, Discussion	command line, Discussion

	DDL (Data Definition Language) operations caution, Discussion	documentation online, Discussion

	debugging InnoDB storage engine, SHOW ENGINE
	decimal values converted between octal and hexadecimal, Problem
	delayed copying to replica, Introduction
	DELETE	about SQL statement categories, SQL statement categories
	duplicate rows eliminated, Problem
	rows with AUTO_INCREMENT column, Problem	renumbering an existing sequence, Problem
	reusing values at top of sequence, Problem

	“unattached” rows removed, Problem

	delete()	JavaScript mode table queries, Discussion
	Python mode table queries, Discussion

	delimiter command, Discussion	redefining mysql ; terminator for BEGIN...END, Problem

	delimiter for output columns, Specifying the output column delimiter
	DENSE_RANK(), Discussion
	deploying a sandbox instance, Discussion	stopping instance, Discussion

	DESCRIBE, SQL statement categories
	descriptive statistics calculations, Problem
	/dev/null, Discussion	Blackhole “storage” engine, Discussion

	/dev/random for seed, Discussion
	dictionaries	data validation lookup table into, Construct a hash from the entire lookup table, Remember already-seen values to avoid database lookups
	Python connection script, Python

	DISTINCT for unique values, Introduction, Problem	HAVING instead, Problem
	remove duplicate rows, Problem

	distributing SQL via script files, Discussion
	division by zero error, Discussion
	Document Store	JavaScript mode collections, Problem
	JSON and X DevAPI, Problem
	Python mode collections, Problem

	documentation online for MySQL	B-tree versus hash indexes, Introduction
	Boolean full-text operators, Discussion
	date and time value component extraction, Decomposing dates or times using component-extraction
 functions, Decomposing dates or times using component-extraction
 functions
	date and time values, Introduction, Discussion
	DDL operations, Discussion
	encryption, Discussion
	error log configuration, Discussion
	full-text index restrictions, Discussion
	I/O utilization, I/O utilization
	JSON data type, See Also
	JSON Path syntax, See Also
	memory usage, Discussion
	mysql prompt customization, Discussion
	prepared SQL statements, Discussion
	roles, See Also
	SELECT statements, Introduction
	server plug-ins, SHOW ENGINE
	sql_mode, Discussion
	stored program error handling, Discussion
	stored routines, triggers, and events, Introduction
	time zones, Discussion
	TO_DAYS() and Gregorian calendar, Converting between dates and days
	window functions, See Also

	dollar sign ($)	JSON root element, Discussion
	prompt, Discussion
	regexp end of string, Discussion, Discussion

	domain socket file (Unix), Discussion
	domain-order sort of hostnames, Problem
	dot (.)	JSON object members, Discussion
	regexp matching single character, Discussion, Discussion

	dotted quad IP values (see IP addresses)
	double at sign (@@)	examples of use	buffer pool size, Discussion
	data directory, Discussion
	global variable read, Configuration control and verification at runtime
	GTID, Discussion
	mysqlx_socket value, Discussion
	plugin_dir system variable, Discussion
	Ruby, Ruby
	session and global specified, Discussion, Discussion
	showing default storage engine, Discussion

	sql_mode, Discussion, Specifying the datafile location, Problem
	writing or reading system variables, Configuration control and verification at runtime	no GLOBAL. or SESSION. modifier, Configuration control and verification at runtime

	double quote (")	escaping in command line arguments, Notes on Invoking Shell Commands
	escaping in data values, Discussion
	identifier quoting if ANSI_QUOTES, Discussion, Discussion
	importing data, Problem
	shell command arguments, Notes on Invoking Shell Commands
	writing string literals, Problem

	DROP a column to renumber sequence, Discussion
	DROP EVENT to stop, Discussion
	DROP INDEX, Discussion	benign errors ignored, Discussion
	unused indexes should be dropped, Introduction

	DROP TABLE	mysqldump output file containing, Discussion
	scripts for creating tables containing, Discussion
	SQL injection, Discussion

	DROP USER, Removing accounts	anonymous accounts, Discussion
	hostnames containing pattern characters, Discussion

	duplicates handled	about, Introduction
	counting duplicates, Problem
	duplicate key values on import, Problem
	duplicate rows in results removed, Problem
	eliminating from table, Problem
	identifying duplicates, Problem
	loading rows into table, Problem
	more than one unique key in table, Problem	ON DUPLICATE KEY UPDATE, Discussion

	NULL values occurring multiple times, Discussion
	preventing duplicates from occurring, Problem
	strings with case-insensitive collation, Discussion
	UNION clause	ALL to not remove duplicates, Discussion
	DISTINCT default removing duplicates, Discussion

	unique identifiers via UUID(), Discussion

	dup_count.pl, Discussion
	dynamic variables	binlog_transaction_dependency_tracking, Discussion
	server_id, Discussion
	SET PERSIST since MySQL v8, Discussion

E
	e (execute) option, Discussion
	E (vertical) option, Discussion
	email address validity	regexp pattern matching, Problem	patterns online, Discussion

	specification in RFC, Discussion
	trigger for, Discussion

	encrypted replication setup, Problem
	encryption of network traffic, Problem
	ENUM values	CONCAT(), Discussion
	data validation using table metadata, Solution	for loop, Discussion

	ENUM column members determined, Problem
	sorting, Problem
	US state codes, Discussion

	environment variables	CLASSPATH for Java scripting, Java, Java
	CLASSPATH for library location, Choosing a library-file installation location
	GOPATH for library location, Choosing a library-file installation location, Go
	JAVA_HOME, Java
	library file installation location, Choosing a library-file installation location
	MYSQL_PS1 to customize prompt, Discussion
	PATH, Problem
	PERL5LIB, Choosing a library-file installation location, Perl
	PYTHONPATH for library location, Choosing a library-file installation location, Python
	RUBYLIB for library location, Choosing a library-file installation location, Ruby
	security issues, Discussion
	setting environment variables link, MySQL Cookbook Companion Documents
	setting for programming examples, Assumptions

	equal sign (=)	spaces around, Specifying connection parameters using option files
	variable assignment operator, Discussion	:= synonym, Discussion

	errors	access denied	built-in report privileges, Discussion
	importing data, Specifying the datafile location
	invoking mysql, Problem

	API script connection error, Discussion
	API scripts handling, Introduction, Problem-Java, SQL statement categories	Go connection script, Go, Go
	Java connection script, Java, Java
	Perl connection script, Perl, Perl
	PHP connection script, PHP, PHP
	Python connection script, Python, Python
	Ruby connection script, Ruby, Ruby
	SQL statements, SQL statement categories

	command not found, Problem
	condition handlers for stored programs, Discussion	(see also condition handlers)

	CREATE USER on existing account, Creating accounts
	division by zero, Discussion
	dropping a user that does not exist, Removing accounts
	duplicate row in table, Problem
	ERROR 2006 “MySQL Server has gone away”, Problem
	error log, Discussion, The error log	configuration documentation, Discussion
	monitoring the server, Discussion
	rotating, Rotating the error, general query, or slow query log
	server crash troubleshooting, Problem
	server startup problems, Problem

	foreign key constraint, Discussion
	importing data	access denied, Specifying the datafile location
	data file and loaded database differ, Problem
	duplicate key values, Problem

	import_table requiring Classic protocol, Discussion
	invalid use of group function, Discussion
	invoking mysql	access denied, Problem
	command not found, Problem

	local_infile error, Discussion
	“MySQL Server has gone away”, Problem
	No Data condition of stored function, Discussion
	password expired, Discussion
	Perl	access denied, Perl
	RaiseError, Perl
	use warnings, Perl

	raising own errors, Problem
	renaming user accounts, Renaming accounts
	result consisted of more than one row, Discussion
	semisynchronous replication failing back to asynchronous, Discussion
	SHOW WARNINGS command, Discussion
	stored routine GET DIAGNOSTICS, Problem
	Unknown column, Discussion
	unknown option, Specifying connection parameters using option files

	escaping special characters, Problem-Java	escape sequences, Discussion	hex constants, Discussion

	LOAD DATA escape sequences, Discussion
	quoted strings, Discussion

	events	about, Introduction
	ALTER EVENT to disable or enable, Discussion
	checking status of scheduler, Discussion	enabling scheduler, Discussion

	DROP EVENT to stop, Discussion
	listing, Problem
	log maintenance, Discussion
	privileges	enabling scheduler, Discussion
	EVENT privilege, Introduction

	scheduling automatic database operations, Problem	cooperating events, Discussion

	execute (e) option, Discussion
	execute()	Java SQL statement execution, Java, Java	result-set-produced Boolean, Java

	not needed interactively, Discussion
	Perl SQL statement execution, Perl, Perl	result-set metadata available, Perl
	row count returned, Perl

	PHP SQL statement execution, PHP, PHP	result-set metadata available, PHP
	row count returned, PHP

	Python SQL statement execution, Python, Python
	Ruby returning row counts, Ruby
	sql() or runSQL() methods, Discussion

	“Executing Programs from the Command Line” document	GitHub repository, MySQL Cookbook Companion Documents
	PATH variable, Discussion

	executing SQL statements	directly from command line, Discussion
	interactively, Problem	output format default, Discussion, Producing tabular or tab-delimited output

	read from a file or program, Problem-Discussion
	scripting, Introduction, Problem-Java

	exit command to terminate mysql session, Discussion
	EXPLAIN	about SQL statement categories, SQL statement categories
	checking long-running queries, Discussion
	connection ID via SHOW PROCESSLIST, Discussion
	query plan for index suitability, Solution
	verify FULLTEXT index used, Discussion

	exporting data, Problem	about, Introduction	file formats, File Formats
	general issues, General Import and Export Issues
	source code in recipes distribution, Introduction

	CSV format, Exporting using the SELECT...INTO OUTFILE statement
	dates to non-ISO format, Problem
	file location, Exporting using the SELECT...INTO OUTFILE statement
	FILE privilege to write outfile, Exporting using the SELECT...INTO OUTFILE statement, Exporting using the mysql client program
	JSON file format, Problem
	mysql_to_text.pl utility, Exporting using the mysql client program
	NULL as string “NULL”, Exporting using the mysql client program, Discussion
	postprocessing filter, Exporting using the mysql client program
	SQL format, Problem
	tab-delimited, linefeed-terminated default, Problem
	XML format, Problem

	exportTable() utility, Discussion
	external programs from mysql prompt, Problem
	EXTRACT() date and time components, Decomposing dates or times using component-extraction
 functions

F
	FIELD() for custom sort orders, Problem
	FILE privilege	exporting, Exporting using the SELECT...INTO OUTFILE statement, Exporting using the mysql client program
	importing, Specifying the datafile location

	file system cache, Memory utilization
	files	batch mode in mysql, Introduction	(see also scripts)

	executing SQL from a file, Problem-Discussion
	html output to web browser, Producing HTML or XML output
	mysqldump output redirected, Discussion
	saving output to (see redirecting output)

	filtering and processing output, Problem	postprocessing filter of export, Exporting using the mysql client program

	filters preventing binary log file recording, Discussion
	find()	JavaScript mode collections, Discussion
	Python mode collections, Discussion

	finish() making metadata unavailable, Perl
	FLOOR() for integers, Converting between times and seconds, Date or date-and-time interval calculation using basic
 units
	FLUSH TABLES	copying via sdi file, Discussion
	copying via transportable tablespaces, Discussion

	flushing log files, Discussion
	for loops	data file check, Problem
	enumeration members, Discussion
	execute() method, Discussion, Discussion

	foreign keys	adding to table, Discussion
	constraints providing integrity checks, Discussion
	error handling with GET DIAGNOSTICS, Discussion
	identifying table as parent, Problem
	referential integrity preventing mismatches, Discussion

	Formula 1 fractional seconds example, Discussion
	fractional seconds in time values, Problem	Formula 1 example, Discussion

	frequency distributions, Problem	charting, Discussion
	randomness of RAND(), Discussion

	FROM_DAYS(), Solution
	FROM_UNIXTIME(), Solution
	full-text searches	Amazon review data for download, Amazon Review Data (2018), Discussion	script to load data, Discussion

	EXPLAIN to verify, Discussion
	FULLTEXT index, Problem, Problem	B-tree index on same column, Discussion

	modes	Boolean mode, Discussion
	natural language mode, Discussion
	query expansion mode, Discussion

	non-FULLTEXT column regular indexes, Discussion
	phrase searches, Problem
	requiring or prohibiting specific words, Problem
	short words return no rows, Problem

G
	games-behind in team standings, Problem
	general query log, Discussion, The general query and slow query logs	enabling, Discussion
	log table rotation, Discussion
	monitoring client activity, Problem
	monitoring the server, Discussion
	rotating, Rotating the error, general query, or slow query log

	generated column index, Problem
	generate_patients_data JavaScript code, Putting it all together
	geographic data and spatial indexes, Problem
	GET DIAGNOSTICS to log all stored routine errors, Problem
	getCurrentSchema() (JavaScript), Discussion
	getDefaultSchema()	JavaScript mode table querying, Discussion

	getTable() (JavaScript), Problem
	get_collection() (Python), Discussion
	get_current_schema() (Python), Discussion
	get_schema() (Python), Discussion
	get_table() (Python), Discussion
	GitHub repository for MySQL	Amazon review data for download, Amazon Review Data (2018), Discussion	script to load data, Discussion

	appendices from previous editions, MySQL Cookbook Companion Documents
	“Executing Programs from the Command Line” document, MySQL Cookbook Companion Documents
	large tables for histograms, Discussion
	recipes distribution, Recipe Source Code and Data	(see also recipes distribution)

	global objects, Discussion	dba object of DBA class, Discussion	command line, Discussion

	util object of MySQL Shell, Problem

	global transaction identifiers (GTIDs)	about, Introduction, Discussion
	replica set up using, Problem	configuration options, Solution, Discussion

	SHOW MASTER STATUS for GTIDs, Discussion
	source replication server binary log files, Introduction, Discussion

	global variables	server_uuid, Discussion
	time_zone, Problem, Solution

	Go-MySQL-Driver API support, MySQL APIs Used in This Book, Introduction	about scripting requirements, Go
	AUTO_INCREMENT value, Using API-specific methods to obtain AUTO_INCREMENT
 values
	character set for client connections, Discussion
	context cancellation support, Go
	download links, Go Support
	error handling, Go, Problem, Go, Go
	library file writing, Go	library path, Choosing a library-file installation location, Go

	map to check input values, Construct a hash from the entire lookup table
	metadata	result set metadata retrieved, Go
	row count of matched versus changed, Go

	NULL values identified in result sets, Problem, Go
	option files for connection parameters, Getting parameters from option files, Go
	scripts	connecting to server, Problem, Go
	executing SQL statements, Problem-SQL statement categories, Go

	special characters and NULL in data values, Problem-Using a quoting function, Go
	special characters in identifiers, Problem
	transactions, Problem	context-aware functions, Problem

	GOPATH environment variable, Choosing a library-file installation location, Go
	GRANT, Solution-See Also, Assigning and checking privileges	replication user, Discussion
	roles, Problem

	Gregorian calendar and TO_DAYS(), Converting between dates and days, Date or date-and-time interval calculation using basic
 units
	GROUP BY clause	date categories, Problem
	descriptive statistics per subgroups, Problem
	expression results for groupings, Problem
	summary for each subgroup, Problem
	time categories, Problem
	WITH ROLLUP, Discussion

	Group Communication Engine, Discussion
	Group Replication plug-in, Problem	existent data, Discussion
	writing on multiple nodes, Discussion

	GTIDs (see global transaction identifiers)
	gtid_executed variable, Discussion
	guess_table.pl, Problem

H
	H (html) option for output, Producing HTML or XML output
	Handler_* session status variable, Discussion
	handles	Java connection objects (conn), Java
	Perl	database handles ($dbh), Perl, Perl, Discussion
	statement handles ($sth), Perl, Perl

	PHP database handles ($dbh), PHP
	Python connection objects (conn), Python
	Ruby database handles (client), Ruby

	hashes	B-tree versus hash indexes, Introduction
	lookup table for data validation, Construct a hash from the entire lookup table
	Perl result-set metadata, Perl

	HAVING clause, Problem	COUNT() determining if values unique, Problem

	help command (mysql), Discussion	permitted option-file locations, Specifying connection parameters using option files

	help options for all MySQL Shell commands, Discussion
	HEX() for hexadecimal format conversion, Problem
	hexadecimal notation	binary output as, Discussion
	converting between ASCII and BIT, Problem
	converting between decimal and octal, Problem
	format specifiers, Discussion
	treated as binary strings, Discussion
	writing string literals, Discussion

	histograms for optimizing, Problem	large table data for, Discussion

	host as URI parameter, Discussion
	hostname	% (percent) character within, Problem
	_ (underscore) character within, Problem
	command options for invoking mysql, Problem
	granting database privileges, Discussion
	localhost, Discussion	API connection scripts, Discussion
	database privileges, Discussion
	default host, Discussion, Perl
	IP address, Discussion, Discussion

	prompt showing hostname, Discussion
	sorting in domain order, Problem

	hot standby, Introduction
	HOUR(), Decomposing dates or times using component-extraction
 functions
	how old someone is, Problem
	html (H) option for output, Producing HTML or XML output
	HTML output, Producing HTML or XML output	web browser opened to read, Producing HTML or XML output

I
	id column in table, Discussion	AUTO_INCREMENT, Discussion, Problem	(see also AUTO_INCREMENT column)

	custom sequence as, Problem
	duplicate rows prevented, Discussion
	multiple tables in query, Discussion
	retrieving column values, Problem
	saving query results to a table, Discussion

	identifiers containing special characters, Problem
	IFNULL(), Discussion, Discussion
	importing data, Problem	about, Introduction	file formats, File Formats
	general issues, General Import and Export Issues
	source code in recipes distribution, Introduction

	column input order specified, Problem
	converting imported data via cvt_file.pl, File Formats
	CSV files, Problem
	datafile and loaded database differ, Problem
	datafile columns skipped deliberately, Problem
	datafile lines skipped deliberately, Problem
	datafile location, Specifying the datafile location
	date values from non-ISO to ISO, Problem
	delimiters for columns and lines specified, Problem
	duplicate key values, Problem
	errors	access denied, Specifying the datafile location
	data file and loaded database differ, Problem
	duplicate key values, Problem

	FILE privilege for datafile, Specifying the datafile location
	JSON documents, Problem	extracting values, Problem

	JSON format, Problem
	LOCAL data loading disabled by default, Discussion, Specifying the datafile location
	MongoDB, Problem
	NULL values, Problem
	preprocessing values before inserting, Problem
	quotes and special characters, Problem
	SQL data, Problem
	tab-delimited, linefeed-terminated default, File Formats, Discussion, Discussion	delimiters specified, Problem

	XML format, Problem

	importJson utility	JSON format, Problem
	MongoDB format, Problem

	import_table() utility, Discussion
	indexes	about, Introduction	not too many, Introduction

	ascending and descending, Problem
	AUTO_INCREMENT columns, Discussion
	cardinality of index, Discussion, Discussion
	clustered index, Discussion
	covering index, Problem
	dropping, Discussion
	duplicate key values handled, Problem
	duplicate rows prevented, Problem
	FULLTEXT index, Problem, Problem	B-tree index on same column, Discussion
	Boolean mode, Discussion
	natural language mode, Discussion
	non-FULLTEXT column regular indexes, Discussion
	query expansion mode, Discussion
	short words return no rows, Problem

	function-based, Problem
	generated columns, Problem
	INSERT INTO...SELECT does not copy, Discussion
	joins and, Discussion
	JSON data, Problem
	maintaining, Problem	not too many, Introduction
	renaming, Discussion

	more than one unique key in table, Problem
	multiple column queries, Problem
	NULLs permitted, Discussion
	optimizer histograms, Problem
	primary key created for slow queries, Problem	primary key optimization, Problem

	query plans, Solution
	query results saved as a table, Discussion
	query slow with index, Solution
	spatial indexes and geographic data, Problem
	WHERE clause indexed column, Comparing dates to one another

	INET_ATON(), Discussion, Problem
	INFORMATION_SCHEMA	character sets and their collations listed, Problem
	listing databases or tables in database, Discussion
	metadata source for portability, Introduction
	plug-ins installed, Problem, Discussion
	results depend on privileges, Introduction
	stored routines listed, Problem
	table CHECK constraints listed, Problem
	table column definitions, Solution
	table engines, Discussion, Discussion
	table identified as parent via foreign key, Problem
	table in system or general tablespaces, Discussion
	transaction storage engine support, Discussion
	triggers listed, Problem
	views listed or checked for existence, Problem

	inner joins, Introduction, Discussion
	InnoDB buffer pool, Memory utilization
	InnoDB Buffer Pool	architecture of storage engine, SHOW ENGINE
	SHOW ENGINE INNODB STATUS, SHOW ENGINE
	sizing properly, Problem

	InnoDB Cluster managed by Admin API, Discussion	automating Group Replication, InnoDB Cluster

	InnoDB ReplicaSet managed by Admin API, Discussion	automating replication setup, Discussion

	InnoDB storage engine	about, Discussion	query performance, Introduction

	about primary keys, Discussion
	architecture, SHOW ENGINE
	auto-generated primary key, Discussion
	buffer pool sizing, Problem
	configuration, Problem
	copying tables via transportable tablespaces, Problem
	debugging with plug-in Components, SHOW ENGINE
	full-text searches, Discussion, Discussion, Discussion
	Group Replication plug-in, Discussion
	identifying table as parent via foreign key, Discussion
	monitoring, Discussion
	primary keys, Discussion
	SHOW ENGINE	INNODB MUTEX, SHOW ENGINE
	INNODB STATUS, Discussion, SHOW ENGINE

	transaction support, Discussion

	input redirected to execute SQL, Problem-Discussion
	input-testing logic into BEFORE INSERT trigger, Problem
	input/output monitoring (see I/O (input/output) monitoring)
	INSERT INTO	about SQL statement categories, SQL statement categories
	adding table rows, Problem
	copying rows from existing table, Solution	duplicates removed, Removing duplicates using table replacement

	duplicate rows prevented, Problem, Problem	(see also duplicates handled)

	IGNORE, Problem
	JSON data, Problem
	ON DUPLICATE KEY UPDATE, Problem	two or more unique keys, Discussion

	saving results of query to a table, Solution	indexes not copied from source table, Discussion

	tables created via scripts, Discussion
	timestamping row creation, Problem
	user-defined variables, Discussion

	insert()	JavaScript mode table queries, Discussion
	Python mode table queries, Discussion

	INSTALL PLUGIN, Plug-in control at runtime
	integrity in transactions, Introduction
	interactively executing SQL statements, Problem	directly from command line, Discussion
	mysqlsh -i option, Discussion
	output format default, Discussion, Producing tabular or tab-delimited output

	INTERVAL, Date or date-and-time interval calculation using basic
 units, Solution
	intervals calculated for dates and times, Problem	age calculations, Problem
	interval or span, Date or date-and-time interval calculation using basic
 units
	summing date and time values, Problem

	introducers for character sets, Discussion
	I/O (input/output) monitoring, I/O utilization	connection limits, Problem	buffer pool sizing, Problem

	iotop utility, I/O utilization
	monitoring the operating system, Operating System
	number of queries hitting server, Problem

	iotop utility, I/O utilization
	IP addresses	localhost, Discussion, Discussion
	sorted numerically, Problem
	strings, Discussion	INET_ATON() to numeric, Discussion, Problem

	IPv6 and IPv4 network addresses as strings, Discussion
	IS NULL comparison operator, Problem
	ISNULL(), Discussion
	ISO format for date values, Problem, Problem, Discussion	reformatting to, Problem

	isoize_date.py, Discussion

J
	Java Development Kit (JDK), Java Support, Java
	Java MySQL Connector/J API support, MySQL APIs Used in This Book, Introduction	about scripting requirements, Java
	AUTO_INCREMENT value, Using API-specific methods to obtain AUTO_INCREMENT
 values
	character set for client connections, Discussion
	CLASSPATH environment variable, Java, Choosing a library-file installation location
	download links, Java Support
	error handling, Java, Java, Java
	HashMap to check input values, Construct a hash from the entire lookup table
	Java Development Kit, Java Support, Java
	javac compiler, Java
	JAVA_HOME environment variable, Java
	library file writing, Java	library path, Choosing a library-file installation location

	metadata	listing databases or tables, Discussion
	result set metadata retrieved, Java
	row count of matched versus changed, Java
	server and database metadata, Discussion

	namespaces, Java	book packages, Java

	NULL values identified in result sets, Problem, Java
	option files for connection parameters, Getting parameters from option files, Java
	regular expressions package, Discussion
	running Java programs link, MySQL Cookbook Companion Documents
	scripts	connecting to server, Problem, Java
	executing SQL statements, Problem-SQL statement categories, Java

	special characters and NULL in data values, Problem-Using a quoting function, Java
	special characters in identifiers, Problem
	transactions, Problem

	JavaScript mode of MySQL Shell, Problem	about inheritance support, Discussion
	collections, Problem
	curly braces for multiline code, Discussion
	deploySandboxInstance, Discussion
	objects, Solution-Discussion	exporting to preload, Discussion

	\source command, Problem	scripts executed at startup, Discussion

	SQL session, Problem
	table querying, Problem
	util object, Problem

	JDBC interface support, MySQL APIs Used in This Book, Introduction, Java	download links, Java Support

	JDK (Java Development Kit), Java Support, Java
	JOIN	about joins, Discussion, Introduction, Discussion	scripts in recipes distribution, Introduction

	aliases for tables, Discussion
	candidate-detail lists and summaries, Problem
	Cartesian products, Discussion
	comparing table to itself, Problem
	finding matches between tables, Problem-Discussion
	finding mismatches between tables, Problem	“unattached” rows removed, Problem

	frequency distribution range of categories, Discussion
	holes in list filled or identified, Problem
	indexes and joins, Discussion
	inner joins, Introduction, Discussion
	many-to-many relationships, Problem
	multiple tables in query, Problem
	one-to-many relationships, Problem
	optimizer histograms, Problem
	outer joins, Introduction, Discussion	LEFT JOIN, Discussion, Discussion
	mismatches between tables, Problem
	other ways to write, Discussion
	RIGHT JOIN, Discussion

	output column names referred to, Problem
	parent rows with child detail rows, Problem
	per-group minimum or maximum values, Problem
	Python mode table queries, Discussion
	query sort order control, Problem
	results of multiple queries joined, Problem
	self-joins, Problem	cumulative sums, Problem
	running averages, Problem
	successive-row differences, Problem

	successive-row differences calculated, Problem
	summary results via, Discussion, Discussion
	table aliases, Discussion
	tables from different databases, Discussion

	json command-line parameter, Discussion	diagnostic information printed, Discussion

	JSON data format	about, Introduction
	Amazon review data, Discussion
	attribute functions, Problem
	data structure details, Problem
	Document Store, Problem
	EXPLAIN output, Discussion
	exporting, Problem
	extracting values from, Problem
	formatting JSON values, Problem
	importing, Problem
	indexes for query performance, Problem
	inserting into MySQL, Problem
	inserting new elements into document, Problem
	JSON data type, Problem
	JSON Schema, Solution
	merging two or more documents into one, Problem
	relational data from JSON, Problem
	relational data to JSON, Problem
	removing elements, Problem
	searching inside, Problem
	updating a JSON value, Problem
	validating, Problem

	JSON Schema, Solution
	JSON_ARRAY(), Problem
	JSON_ARRAY_APPEND(), Problem
	JSON_ARRAY_INSERT(), Problem
	JSON_DEPTH(), Problem
	JSON_EXTRACT() (->), Discussion
	JSON_INSERT(), Problem
	JSON_LENGTH(), Problem
	JSON_MERGE functions, Problem
	JSON_OBJECT(), Problem
	JSON_PRETTY(), Problem
	JSON_REMOVE(), Problem
	JSON_REPLACE(), Problem
	JSON_SCHEMA_VALID(), Discussion
	JSON_SCHEMA_VALIDATION_REPORT(), Discussion
	JSON_SEARCH(), Problem
	JSON_SET(), Problem
	JSON_STORAGE_SIZE(), Problem
	JSON_TABLE(), Problem
	JSON_TYPE(), Problem
	JSON_UNQUOTE() (->>), Discussion
	JSON_VALID(), Problem

K
	Kebab-case syntax, Discussion
	keyword case insensitivity, Discussion

L
	languages supported by MySQL, MySQL APIs Used in This Book, Introduction	APIs (see APIs)
	error handling, Problem-Java
	MySQL Shell, Introduction
	recipes distribution on GitHub, Recipe Source Code and Data, Introduction
	scripting (see scripts)

	LAST_DAY(), Solution
	LAST_INSERT_ID()	AUTO_INCREMENT values via, Discussion	server-side versus client-side retrieval, Server-side and client-side sequence value retrieval
 compared

	managing multiple sequences simultaneously, Problem
	saving value of, Discussion

	leaf nodes, Introduction
	least-squares regression line, Problem
	left angle bracket (<) to redirect input, Discussion, Discussion
	LEFT JOIN, Discussion	frequency distribution range of categories, Discussion
	other ways to write, Discussion

	LEFT(), Discussion	pattern matches similar to, Discussion, Discussion
	sorting on substrings, Problem

	LENGTH(), String Properties
	less utility as pager, Discussion
	library file writing, Introduction, Problem-Java	access privileges, Setting library-file access privileges
	data validation tests, Problem
	Go, Go
	Java, Java
	location of library file, Choosing a library-file installation location
	Perl, Perl
	PHP, PHP
	Python, Python
	recipes distribution lib directory, Introduction, Discussion
	Ruby, Ruby
	test harness, Discussion

	LIKE	SQL pattern matching, Problem
	table cloned, Problem
	WHERE clause using, Discussion

	LIMIT clause, Problem	ORDER BY clause with, Problem	results in different sort order, Problem

	smallest or largest summary values, Problem
	value from expression, Problem

	line-ending sequence in files, File Formats, Discussion	tab-delimited, linefeed-terminated, File Formats, Discussion
	terminators and delimiters specified, Problem

	linear regressions, Problem
	linefeed (\n), Discussion	line-ending sequence in files, File Formats, Discussion

	literal strings, Problem
	LOAD DATA, Problem	column input order specified, Problem
	CSV files, Problem
	datafile and loaded database differ, Problem
	datafile columns skipped deliberately, Problem
	datafile lines skipped deliberately, Problem
	datafile location, Specifying the datafile location
	date values from non-ISO to ISO, Problem
	delimiters for columns and lines specified, Problem
	duplicate key values, Problem
	FIELDS clause, Discussion, Problem
	LINES clause, Discussion
	name of datafile and name of table, Specifying the datafile location
	NULL values, Problem
	preprocessing values before inserting, Problem
	quotes and special characters, Problem
	tab-delimited, linefeed-terminated default, File Formats, Discussion, Discussion

	LOAD XML, Problem
	localhost, Discussion	API connection scripts, Discussion
	database privileges, Discussion
	default host, Discussion	Perl connection script, Perl

	IP address, Discussion, Discussion

	local_infile for data loading, Discussion
	LOCATE() string function, Problem
	log files	digests of query logs, Logging all the queries
	InnoDB storage engine architecture, SHOW ENGINE
	replica server relay log files, Introduction
	server log files, Problem	binary log, Discussion, The binary log
	error log, Discussion, The error log, Discussion, Problem, Problem
	expiring log files, Problem
	flushing log files, Discussion
	general query log, Discussion, The general query and slow query logs, Discussion, Problem
	log maintenance needed, Discussion, Problem
	monitoring the server, Discussion
	rotating log files, Problem
	rotation automated, Automating logfile rotation
	slow query log, Discussion, The general query and slow query logs, Discussion, Problem

	source replication server binary log files, Introduction	enabling via log-bin option, Discussion
	global transaction identifiers (GTIDs), Discussion
	GTIDs, Introduction

	triggers logging table changes, Problem
	/var/log/messages system log, Solution

	log tables	CSV storage engine managing, Discussion
	expiring rows within, Problem
	rotating, Problem

	log-bin option to enable binary log, Discussion
	logarithmic scale in summary results, Discussion
	login account versus user account for MySQL, Discussion
	log_output, The general query and slow query logs
	LONGBLOB string data type, Discussion
	LONGTEXT string data type, Discussion
	lookup table to validate data, Problem
	lookup_time.py, Discussion
	LOWER() to convert string to lowercase, Problem
	LPAD() for leading zeros, Discussion

M
	mail table for chapter examples, Introduction, Introduction
	MAKETIME(), Problem
	make_date_list(), Discussion
	make_date_list.pl, Discussion
	many-to-many relationships, Problem
	master and slave terminology, Introduction
	MASTER_DELAY option, Introduction
	master_info_repository variable, Introduction, Discussion
	MATCH() for FULLTEXT index, Problem, Discussion, Discussion
	MAX(), Problem	case sensitivity controlled, Problem
	per-group maximum values, Problem
	range of values, Discussion
	unreliable method for last ID, Using LAST_INSERT_ID() to obtain AUTO_INCREMENT values
	value from another column, Problem

	max_binlog_size, Introduction
	mean, Discussion
	median, Discussion
	MEDIUMBLOB string data type, Discussion
	MEDIUMTEXT string data type, Discussion
	Memory storage engine, Discussion	changing to, Discussion

	memory usage	file system cache, Memory utilization
	InnoDB storage engine architecture, SHOW ENGINE
	monitoring usage of mysqld, Memory utilization
	non-uniform memory access (NUMA), Memory utilization
	OOM killer (out of memory killer), Memory utilization
	Performance Schema to monitor, Discussion
	server configuration, Discussion
	swappiness, Memory utilization
	virtual memory, Memory utilization

	metacharacters	filtering on replica, Filtering on the replica
	regular expression pattern matching, Discussion
	SQL pattern matching, Discussion

	metadata	about, Introduction	scripts for code in recipes distribution, Introduction, Discussion

	checking if database exists, Problem
	checking if table exists, Problem
	data validation using table metadata, Solution
	ENUM column members, Problem
	finish() making unavailable in Perl program, Perl
	identifying table as parent via foreign key, Problem
	listing databases hosted by server, Problem
	listing tables in a database, Problem
	number of rows affected by a statement, Problem
	result set metadata retrieved, Problem	Go, Go
	Java, Java
	Perl, Perl
	PHP, PHP
	Python, Python
	Ruby, Ruby

	server metadata obtained, Problem	version-specific applications, Problem

	SET column members, Problem
	table column definitions, Problem
	views listed or existence checked for, Problem

	MICROSECOND(), Decomposing dates or times using component-extraction
 functions
	MID(), Discussion	sorting on substrings, Problem

	MIN(), Problem	case sensitivity controlled, Problem
	per-group minimum values, Problem
	range of values, Discussion
	value from another column, Problem

	MINUTE() to extract part of time value, Problem
	mode, Discussion
	modify() Python mode collections, Discussion
	monddyyy_to_iso.py, Discussion
	MongoDB	importing data, Problem
	mongoexport utility, Solution

	monitoring MySQL server	about, Introduction	reactive monitoring, Introduction

	binary log, Problem
	buffer pool sizing, Problem
	checking if server is up, Problem
	client activity, Problem
	connection limits of MySQL server, Problem	buffer pool sizing, Problem

	CPU monitoring	finding high-utilization process, Problem
	thread-filtering documentation, Discussion

	error log for troubleshooting, Problem
	general query log, Problem
	number of queries hitting server, Problem
	operating system, Operating System	I/O (input/output) monitoring, I/O utilization
	memory utilization, Memory utilization
	network resource monitoring, Network utilization

	server startup problems, Problem
	slow query log, Problem
	sources of monitoring information, Problem
	storage engine operational information, Problem
	tracking data changes, Problem
	why monitor, Problem

	month first day, last day, length, Problem
	MONTH()	extracting part of a date value, Problem
	monthly summaries, Discussion
	pattern matching with nonstring values, Discussion

	MONTHNAME(), Decomposing dates or times using component-extraction
 functions
	more utility as pager, Discussion
	multiline code via curly braces, Discussion
	multiple replication applier threads, Problem
	my.cnf or my.ini personal option file, Specifying connection parameters using option files	event scheduler enabled, Discussion

	MyISAM storage engine	about, Discussion
	configuration, Problem
	copying via sdi file, Problem
	full-text searches, Discussion
	FULLTEXT indexing, Discussion	full-text indexing engine, Discussion
	REPAIR TABLE command, Discussion

	mylogin.cnf file, Specifying connection parameters using option files
	MyRocks storage engine, Discussion
	MySQL	about, Preface	companion GitHub repository, The MySQL Cookbook Companion GitHub Repository
	distributions, MySQL
	obtaining MySQL, Obtaining MySQL and Related Software
	platforms supported, Version and Platform Notes
	versions used in book, Version and Platform Notes

	backups, Discussion	binary versus logical, Discussion
	mysqldump for, Discussion, Discussion
	server for replication, Discussion

	case insensitivity of keywords, Discussion
	client software, Obtaining MySQL and Related Software, Introduction	timeout of client, Server crash

	client-server architecture, Introduction	assumptions made in book, Introduction

	languages supported, MySQL APIs Used in This Book, Introduction	APIs (see APIs)
	error handling, Problem-Java
	MySQL Shell modes, Introduction
	recipes distribution on GitHub, Recipe Source Code and Data, Introduction
	scripting (see scripts)

	master and slave terminology, Introduction
	memory usage via Performance Schema, Discussion	(see also memory usage)

	option files, Discussion-Protecting option files from other users
	plug-ins, Discussion	(see also plug-ins)

	Spatial Reference System, Problem
	user account, Introduction, Discussion	default values, Discussion
	setting up, Problem, Problem

	User Reference Manual link (see documentation online for MySQL)
	writing efficient queries, Problem	(see also query performance)

	mysql client program	about, Introduction
	alternatives to, Introduction
	Ctrl-D (Unix) to terminate session, Discussion
	distributions, MySQL
	error when invoking mysql, Discussion, Problem
	executing SQL statements	directly from command line, Discussion
	interactively, Problem
	output format defaults, Discussion, Producing tabular or tab-delimited output
	read from file or program, Problem-Discussion
	scripting, Introduction, Problem-Java

	exit to terminate session, Discussion
	exporting data (see exporting data)
	help command, Discussion	option-file permitted locations, Specifying connection parameters using option files

	importing data (see importing data)
	invoking, Discussion	error when invoking, Discussion, Problem
	option files, Discussion-Protecting option files from other users
	specifying command options, Problem

	mysql> prompt, Discussion, Discussion	customizing, Problem
	external programs from, Problem
	resetting to default value, Discussion
	user account in prompt, Discussion

	option-file permitted locations, Specifying connection parameters using option files
	print-defaults parameter, Specifying connection parameters using option files
	program variables, Specifying connection parameters using option files
	quit to terminate session, Discussion
	semicolon terminator redefined for BEGIN...END, Problem
	timeout of client, Server crash
	user account default values, Discussion
	User Reference Manual link, Discussion
	verbosity level, Controlling mysql’s verbosity level

	MySQL Enterprise Backup, Discussion
	MySQL server	about, Obtaining MySQL and Related Software, Introduction	assumed to be running locally, Introduction

	administration, Introduction	(see also server administration)

	APIs connecting to, Introduction, Problem-Java	disconnecting from, Discussion
	obtaining connection parameters script, Problem-Java

	character set for client connection, Problem
	checking if database exists, Problem
	checking if server is up, Problem	“MySQL Server has gone away”, Problem

	connecting MySQL Shell, Problem	selecting protocol, Problem

	connection limits, Problem	buffer pool sizing, Problem

	connection parameters when invoking mysql, Problem
	copying database to, Discussion
	copying tables	between servers, Problem, Copying tables between MySQL servers
	within a single server, Problem

	data validity via sql_mode, Discussion
	executing SQL statements	directly from command line, Discussion
	interactively, Problem
	output format defaults, Discussion, Producing tabular or tab-delimited output
	read from file or program, Problem-Discussion
	scripting, Introduction, Problem-Java

	listing databases hosted by server, Problem
	logging, Problem	(see also log files)

	metadata, Introduction	obtaining, Problem
	version-specific applications, Problem

	monitoring, Introduction	(see also monitoring MySQL server)

	multithreaded, Discussion
	plug-ins	about, Discussion
	listing installed plug-ins, Problem
	plug-in interface, Discussion
	plugin_dir system variable, Discussion
	runtime installation, Plug-in control at runtime
	server startup, Plug-in control at server startup

	server startup problems, Problem
	shutting down requiring privileges, Discussion
	storage engine support determination, Discussion
	timeout of server, Server timeout	timeout of client, Server crash

	transactions, Introduction	(see also transactions)

	uptime, Discussion
	user account for MySQL	about, Introduction, Discussion
	default values, Discussion
	login account versus, Discussion
	mysql.user table, Understanding the mysql.user Table	(see also user account for MySQL)

	setting up, Problem, Problem

	validation, server- versus client-side, Introduction	(see also validating data)

	MySQL Shell	about, Introduction, Introduction
	connecting to MySQL server, Problem	selecting protocol, Problem

	downloading, Introduction
	exit or quit session, Discussion	history lost, Discussion

	exporting to JSON format, Problem
	help options for all commands, Discussion
	import JSON format, Problem
	import MongoDB format, Problem
	interactive -i option, Discussion
	JavaScript mode default, Problem	collections, Problem
	curly braces for multiline code, Discussion
	objects, Solution-Discussion
	\source command, Problem
	SQL session, Problem
	table querying, Problem
	util object, Problem

	mysqlsh command, Introduction
	output format control, Problem
	pandas module, Discussion
	prompt customization, Discussion
	protocols	Classic MySQL protocol, Introduction
	X protocol, Introduction

	Python mode, Problem	collections, Problem
	\source command, Problem
	SQL session, Problem
	table querying, Problem
	util object, Problem

	reports, Problem	thread report on all threads, Discussion

	sandbox deployment, Discussion
	shell.status() command, Discussion
	SQL mode, Problem	\source command, Problem
	SQL session, Problem

	transactions, Discussion	(see also transactions)

	utilities, Problem	\? for utilities supported, Discussion
	CSV export from table, Discussion

	MySQL Workbench graphical interface, Introduction
	mysql.user table, Understanding the mysql.user Table	anonymous accounts, Discussion

	mysqladmin	checking if server is up, Problem
	option file [client] group, Specifying connection parameters using option files
	server uptime, Discussion

	mysqladmin for administrative privileges, Discussion
	mysqlbinlog verbose option, Troubleshooting Group Replication, Discussion
	mysqld	about, Introduction
	data directory, Discussion
	general query log to monitor, Problem
	monitoring memory usage, Memory utilization
	program variables, Specifying connection parameters using option files

	mysqldump	backing up databases, Discussion	backing up server for replication, Discussion
	mysql client to load dump, Discussion, Discussion

	command options, Discussion
	CREATE TABLE information, Using SHOW CREATE TABLE to get table structure information
	exporting data in SQL format, Problem	importing SQL format, Problem

	exporting data in XML format, Problem	importing XML format, Problem

	my_print_defaults utility, Specifying connection parameters using option files
	option file [client] group, Specifying connection parameters using option files
	redirecting output, Discussion
	renaming database, Discussion
	table copying, Problem	between MySQL servers, Copying tables between MySQL servers
	dropping table if exists, Discussion
	triggers copied, Discussion

	mysqld_safe and error log, The error log
	mysqlimport command-line program, Problem	datafile location, Specifying the datafile location
	delimiters for columns and lines specified, Discussion
	importing CSV files, Problem
	name of datafile and name of table, Specifying the datafile location
	quotes and special characters, Problem

	mysqlpump to export with parallel processing, Problem
	mysqlsh, Introduction	about MySQL Shell, Introduction, Introduction	downloading, Introduction

	connecting to MySQL server, Problem	selecting protocol, Problem

	exit or quit session, Discussion	history, Discussion

	exporting to JSON format, Problem
	help options for all commands, Discussion
	import JSON format, Problem
	import MongoDB format, Problem
	interactive -i option, Discussion
	JavaScript mode default, Problem	collections, Problem
	curly braces for multiline code, Discussion
	objects, Solution-Discussion
	\source command, Problem
	SQL session, Problem
	table querying, Problem
	util object, Problem

	output format control, Problem
	pandas module, Discussion
	prompt customization, Discussion
	Python mode, Problem	collections, Problem
	\source command, Problem
	SQL session, Problem
	table querying, Problem
	util object, Problem

	reports, Problem	thread report on all threads, Discussion

	sandbox deployment, Discussion
	shell.status() command, Discussion
	SQL mode, Problem	\source command, Problem
	SQL session, Problem

	transactions, Discussion	(see also transactions)

	utilities, Problem	\? for utilities supported, Discussion
	CSV export from table, Discussion

	mysqlshrc.js for scripts executed at startup, Discussion
	mysqlshrc.py for scripts executed at startup, Discussion
	MYSQLSH_HOME variable, Discussion
	mysqlx URI scheme, Discussion
	mysql_config_editor for credential security, Specifying connection parameters using option files
	MYSQL_PS1 to customize prompt, Discussion
	mysql_to_excel.pl utility, Exporting using the mysql client program
	mysql_to_text.pl utility, Exporting using the mysql client program
	mysql_to_xml.pl utility, Exporting using the mysql client program
	my_print_defaults utility, Specifying connection parameters using option files

N
	name generator for tables, Problem
	name test data via Python, Problem-See Also
	naming files under Windows, Specifying the datafile location
	network resource monitoring, Network utilization	connection limits, Problem	buffer pool sizing, Problem

	monitoring the operating system, Operating System

	network traffic encryption, Problem
	newline (\n), Discussion, Discussion
	nocls parameter to not clear screen, Discussion
	non-uniform memory access (NUMA), Memory utilization
	nonbinary strings, String Properties, Discussion	character sets, String Properties
	comparisons, Problem, Discussion

	noncategorical data summaries, Problem
	nopager (\n) to reset pager, Discussion
	NoSQL	collections queried, Discussion	table queries (see SQL)

	JavaScript mode Document Store, Problem
	MySQL Shell, Introduction, Introduction
	Python mode Document Store, Problem
	X protocol for, Introduction

	not	CONTINUE handler for NOT FOUND, Discussion
	NOT LIKE, Problem
	NOT REGEXP, Discussion	NULL not matched, Discussion

	[^] regexp pattern matching, Discussion, Discussion
	\D for regexp nondigit character, Discussion
	\S for regexp nonwhitespace character, Discussion, Discussion
	\W for regexp nonword character, Discussion

	NOW(), Problem
	NUL (ASCII; \0), Discussion, Discussion
	NULL	about, Discussion
	aggregate functions ignoring NULL values, Discussion
	APIs handling, Introduction
	AUTO_INCREMENT columns cannot contain, Discussion
	COALESCE(), Discussion
	comparison operators	<=>, Discussion
	IFNULL(), Discussion, Discussion
	IS NULL or IS NOT NULL, Problem
	ISNULL(), Discussion
	programming, Problem

	COUNT of non-NULL values versus rows, Discussion, Discussion
	counting missing values, Problem
	date and timestamp columns not allowing, Discussion, Discussion
	/dev/null, Discussion	Blackhole “storage” engine, Discussion

	exporting data to file, Discussion	string “NULL”, Exporting using the mysql client program, Discussion

	forced sorting to end of sort, Discussion
	identifying in result sets, Problem-Java
	importing data, Problem
	LOAD DATA \N sequence, Discussion
	NOT NULL declaration, Discussion
	NULL data values, Problem-Java
	PRIMARY KEY versus UNIQUE index, Discussion
	regular expressions not matching, Discussion
	UNIQUE indexes allowing multiple, Discussion
	unknown value, Discussion, Discussion	mapping to string “Unknown”, Discussion, Discussion
	user-defined variables, Discussion

	NUMA (non-uniform memory access), Memory utilization
	numeric data	AUTO_INCREMENT column data types, Problem
	converting between decimal, octal, and hexadecimal, Problem
	FLOOR() for integers, Converting between times and seconds, Date or date-and-time interval calculation using basic
 units
	maximum unsigned values, Discussion
	patterns with nonstring values, Discussion
	random number generator, Problem
	regexp patterns for strings of numbers, Problem
	REVERSE() dropping leading zero, Discussion

O
	objects in JavaScript mode of MySQL Shell, Solution-Discussion	exporting to preload, Discussion

	observability of server, Introduction	(see also monitoring MySQL server)

	OCT() for octal format conversion, Problem
	octal values converted between decimal and hexadecimal, Problem
	one-to-many relationships, Problem
	online backup tools, Discussion
	online resources (see resources online)
	OOM killer (out of memory killer), Memory utilization	“MySQL Server has gone away”, Problem

	openssl system tool, Discussion
	operating system	monitoring, Operating System
	physical resource usage, Discussion
	tools from mysql prompt, Discussion

	optimizer histograms, Problem	large table data for, Discussion

	option as URI parameter, Discussion
	\option command, Discussion
	option files	comments, Specifying connection parameters using option files
	customizing mysql prompt, Discussion
	format of, Specifying connection parameters using option files-Specifying connection parameters using option files
	invoking mysql, Discussion	connection parameters, Specifying connection parameters using option files
	localhost, Discussion

	mixing command line parameters and, Mixing command-line and option-file parameters
	pathname separator character, Specifying connection parameters using option files
	personal option file, Specifying connection parameters using option files
	program variables, Specifying connection parameters using option files
	protecting from other users, Protecting option files from other users
	scripts reading for connection parameters, Getting parameters from option files
	server configuration, Configuration control at server startup	log files, Discussion
	[mysqld] group, Configuration control at server startup

	unknown option error, Specifying connection parameters using option files

	options member of Shell class, Discussion
	Oracle Java site, Java Support
	ORDER BY clause to sort results, Problem, Problem-Discussion	case sensitivity issues, Problem
	custom sort order defined, Problem
	date information, Problem
	displaying values, sorting on another, Problem
	ENUM values, Problem
	expressions for sorting, Problem
	INET_ATON() for IP addresses, Discussion, Problem
	joins to control sort order, Problem
	LIMIT clause with, Problem	results in different sort order, Problem

	RAND(), Problem, Discussion
	special values to head or tail of sort, Problem
	time information, Problem

	out of memory killer (OOM killer), Memory utilization	“MySQL Server has gone away”, Problem

	outer joins, Introduction, Discussion	LEFT JOIN, Discussion, Discussion
	mismatches between tables, Problem	“unattached” rows removed, Problem

	other ways to write, Discussion
	RIGHT JOIN, Discussion

	output	binary output as hexadecimal notation, Discussion
	filtering and processing, Problem
	format control, Discussion-Controlling mysql’s verbosity level	about, Problem
	column headings suppressed, Suppressing column headings in query
 output
	comma-separated values (CSV), Specifying the output column delimiter
	HTML or XML, Producing HTML or XML output
	JSON values, Problem
	MySQL Shell, Problem
	output column delimiter changed, Specifying the output column delimiter
	tabular or tab-delimited, Producing tabular or tab-delimited output

	I/O monitoring (see I/O (input/output) monitoring)
	interactive versus batch mode, Discussion, Producing tabular or tab-delimited output
	pager command (\P), Discussion	sending output nowhere, Discussion

	redirecting, Problem	exporting to a file, Exporting using the mysql client program
	exporting to JSON file, Problem
	exporting to XML format, Discussion
	mysqldump, Discussion
	pager with redirection, Discussion
	pipe from program, Discussion
	sending output nowhere, Discussion

	screen as default, Discussion
	verbosity level of mysql, Controlling mysql’s verbosity level
	vertical in MySQL Shell JavaScript mode, Discussion
	vertical via \G, Discussion	all statements within session, Discussion

P
	\P (pager command), Discussion
	pager command (\P), Discussion	nopager (\n) to reset, Discussion
	sending output nowhere, Discussion
	sending output to a file, Discussion
	set to grep Running, Discussion
	SHOW ENGINE INNODB STATUS, Discussion, SHOW ENGINE

	pager option, Discussion
	pandas	about, Discussion	installing in MySQL Shell, Discussion

	read_csv method, Names and genders

	parallelization	multiple replication applier threads, Problem
	replication performance, Problem

	parameters for mysql command, Problem	single versus double dash before, Discussion

	parent tables and child tables, Problem	candidate keys, Problem

	parentheses ()	function-based indexes, Discussion
	regexp pattern matches, Discussion

	password	anonymous accounts without, Discussion
	changing your password, Problem
	command line option, Discussion	no default value, Discussion

	connection parameters from command line, Getting parameters from the command line
	default for user account, Introduction
	expiring, Problem	resetting an expired, Problem

	policy via validate_password plug-in, Problem
	pwgen system tool, Discussion
	replication user credential security, Problem
	resetting an expired, Problem
	security	command line option, Discussion
	option file plain text format, Specifying connection parameters using option files
	PHP library files, PHP
	strength check, Problem

	setting up user account, Discussion	database privileges, Discussion

	URI parameter, Discussion

	PATH environment variable	error when invoking mysql, Discussion	solution, Problem

	library file location, Choosing a library-file installation location
	option file separator character, Specifying connection parameters using option files

	patient test data via Python, Problem-See Also
	pattern matching	about, Discussion
	data validation via, Problem	Python regexp overview, Discussion
	script for testing patterns, Discussion

	full-text searching, Problem	short words return no rows, Problem

	hostnames with % or _ within, Problem
	nonstring values, Discussion
	regular expressions (see regular expressions)
	SQL patterns, Problem-Discussion
	substrings within strings, Problem

	Paxos algorithm, Discussion
	pem files for TLS, Creating self-signed certificates
	percent (%)	formatting for date and time values, Discussion
	hostname containing, Problem
	matching sequence of characters, Filtering on the replica, Discussion

	Percona Monitoring and Management (PMM), Network utilization
	Percona XtraBackup, Discussion
	Performance Schema	built-in reports, Discussion
	I/O utilization, I/O utilization
	memory usage, Discussion
	monitoring the server, Discussion
	replication performance, Problem
	replication troubleshooting, Problem, Replication tables in the Performance Schema-Troubleshooting Group Replication
	sys schema for information, Discussion
	threads table, Discussion, Discussion

	performance tuning	indexes, Introduction
	query performance (see query performance)
	triggers listed, Discussion

	period (.)	JSON object members, Discussion
	regexp matching single character, Discussion, Discussion

	Perl DBI module API support, MySQL APIs Used in This Book, Introduction	“0E0” return value, Perl
	about scripting requirements, Perl
	AUTO_INCREMENT value, Using API-specific methods to obtain AUTO_INCREMENT
 values
	date calculations, Date or date-and-time interval calculation using basic
 units
	error handling, Perl, Problem-Perl, Perl, Perl	access denied, Perl

	handles	database handles ($dbh), Perl, Perl, Discussion
	statement handles ($sth), Perl, Perl

	hash to check input values, Construct a hash from the entire lookup table
	@INC array, Perl
	library file writing, Perl	library path, Choosing a library-file installation location, Perl

	metadata	listing tables, Discussion
	result set metadata retrieved, Perl
	row count of matched versus changed, Perl
	server version, Discussion

	NULL values identified in result sets, Problem-Perl
	option files for connection parameters, Getting parameters from option files
	running Perl programs link, MySQL Cookbook Companion Documents
	scripts	connecting to server, Problem-Perl
	cvt_file.pl for converting imported data, Specifying the output column delimiter, File Formats
	executing SQL statements, Problem-Perl
	export utilities, Exporting using the mysql client program
	Perl CPAN site for, Discussion

	special characters and NULL in data values, Problem-Perl
	special characters in identifiers, Problem
	transactions, Problem
	use strict, Perl
	use warnings, Perl

	PERL5LIB environment variable, Choosing a library-file installation location, Perl
	PHP PDO API support, MySQL APIs Used in This Book, Introduction	about PHP scripting, PHP	scripting requirements, PHP

	AUTO_INCREMENT value, Using API-specific methods to obtain AUTO_INCREMENT
 values
	character set for client connections, Discussion
	download links, PHP Support
	error handling, PHP, Problem, PHP, PHP
	input values checked via associative array, Construct a hash from the entire lookup table
	library file writing, PHP	library path, Choosing a library-file installation location, PHP

	metadata	result set metadata retrieved, PHP
	row count of matched versus changed, PHP

	NULL values identified in result sets, Problem, PHP
	option files for connection parameters, Getting parameters from option files, PHP
	running PHP programs link, MySQL Cookbook Companion Documents
	scripts	connecting to server, Problem, PHP
	executing SQL statements, Problem-SQL statement categories, PHP

	special characters and NULL in data values, Problem-Using a quoting function, PHP
	special characters in identifiers, Problem
	transactions, Problem

	phpMyAdmin, Introduction
	phrase searches in full-text, Problem
	pipe (|)	output as input, Discussion, Discussion
	regexp pattern matching, Discussion, Discussion, Discussion

	placeholders in data values, Discussion	generating a list of, Using a quoting function

	platforms supported by MySQL, Version and Platform Notes
	plug-ins	authentication, Understanding the mysql.user Table
	built in, Discussion
	debugging InnoDB storage engine, SHOW ENGINE
	filename suffix on plug-ins, Discussion
	listing installed plug-ins in server, Problem
	plug-in interface, Problem
	runtime installation, Plug-in control at runtime
	server startup, Plug-in control at server startup

	plugin_dir system variable, Discussion
	plus (+) regexp pattern matching, Discussion, Discussion	avoiding empty string match, Discussion

	point-in-time recovery (PITR) via binary log files, Filtering on the source server, Discussion, Discussion
	port numbers	default 3306 for TCP/IP, Discussion	X protocol, Introduction

	URI parameter, Discussion

	portability	date format, Discussion
	metadata, Introduction
	regular expression syntax, Discussion
	sequences, Introduction
	SHOW versus INFORMATION_SCHEMA, Introduction
	SQL code and APIs, MySQL Client API Architecture
	SQL patterns, Discussion
	user-defined variables, Discussion

	POSIX character classes of regexp, Discussion
	postprocessing filter of export, Exporting using the mysql client program
	prepare() for statement handle	Go, Go
	Perl, Perl, Perl, Perl
	PHP, PHP

	prepared SQL statements	about, Discussion
	helper routines to simplify, Problem
	MySQL Reference Manual link, Discussion

	preprocessing data, Problem, Problem	converting imported data via cvt_file.pl, File Formats, Discussion
	importing data	about, Introduction
	about file formats, File Formats
	about general issues, General Import and Export Issues
	source code in recipes distribution, Introduction

	triggers for, Problem

	PRIMARY KEY clause, Discussion, Discussion	about primary keys, Discussion
	about query performance, Introduction
	cardinality of index, Discussion
	creating, Problem	primary key optimization, Problem

	duplicate rows prevented, Problem
	handling duplicate key values, Problem
	if already assigned, UNIQUE index, Discussion
	maintaining indexes, Problem
	more than one unique key in table, Problem
	NULLs not permitted, Discussion
	primary key optimization, Problem

	print-defaults parameter to mysql, Specifying connection parameters using option files
	printing (see output)
	private key for TLS, Discussion
	private_key.pem, Creating self-signed certificates
	privileges	built-in reports, Discussion
	database access, Discussion
	events, Introduction, Discussion
	FILE privilege	exporting, Exporting using the SELECT...INTO OUTFILE statement, Exporting using the mysql client program
	importing, Specifying the datafile location

	INFORMATION_SCHEMA results, Introduction
	library files, Setting library-file access privileges
	PROCESS privilege, Discussion
	roles, Problem
	security, Introduction	account management, Assigning and checking privileges

	SELECT CURRENT_USER() for client privileges, Discussion
	server administration, Introduction	runtime changes to global values, Configuration control and verification at runtime

	server monitoring, Introduction
	server shutdown, Discussion
	SHOW ENGINE, Problem
	SHOW GRANTS, Assigning and checking privileges
	stored programs, Introduction
	stored routine access privileges, Setting library-file access privileges	security via, Discussion

	SUPER privileges, Configuration control and verification at runtime
	triggers for tables, Introduction

	process list displayed, I/O utilization
	PROCESS privilege, Discussion
	PROCESSLIST versus thread report, Discussion
	profile table for chapter examples, Introduction	resetting the profile table, Problem

	profile.sql, Discussion
	program variables, Specifying connection parameters using option files
	programs (see APIs; scripts)
	prompt command, Discussion	resetting prompt to default value, Discussion
	user account in prompt, Discussion

	prompt option, Problem
	prompt.json file, Discussion
	prompts	commands shown in text, Discussion
	customizing mysql prompt, Problem	resetting prompt to default value, Discussion
	user account in prompt, Discussion

	external programs from, Problem
	interactively executing SQL, Problem	directly from command line, Discussion
	semicolon (;) at end, Discussion

	MySQL Shell customization, Discussion

	protocol=tcp to force TCP/IP, Discussion
	protocols	Classic MySQL protocol, Introduction	import_table requiring, Discussion

	MySQL Shell connected to MySQL server, Problem
	URI scheme, Discussion
	X protocol, Introduction

	public key certificate file, Discussion
	public_key.pem, Creating self-signed certificates
	pwgen system tool, Discussion
	Python DB API support, MySQL APIs Used in This Book, Introduction	about, Discussion
	about scripting requirements, Python	connection objects, Python
	database connections with auto-commit disabled, Python

	AUTO_INCREMENT value, Using API-specific methods to obtain AUTO_INCREMENT
 values
	character set for client connections, Discussion
	dictionaries, Python	data validation lookup table into, Construct a hash from the entire lookup table, Remember already-seen values to avoid database lookups

	download links, Python Support
	error handling, Python, Problem, Python, Python
	library file writing, Python	data validation tests, Problem
	library path, Choosing a library-file installation location, Python

	metadata	result set metadata retrieved, Python
	row count of matched versus changed, Python

	NULL values identified in result sets, Problem, Python
	Python mode (see Python mode of MySQL Shell)
	regular expressions overview, Discussion	table of pattern elements, Discussion
	validating data, Discussion

	running Python programs link, MySQL Cookbook Companion Documents
	scripts	Amazon review data load, Discussion
	connecting to server, Problem, Python
	executing SQL statements, Problem-SQL statement categories, Python
	library file of data validation tests, Discussion
	regular expression pattern tester, Discussion

	special characters and NULL in data values, Problem-Using a quoting function, Python
	special characters in identifiers, Problem
	test data via data science modules, Problem-See Also
	transactions, Problem

	Python mode of MySQL Shell, Problem	collections, Problem
	deploy_sandbox_instance, Discussion
	\source command, Problem	scripts executed at startup, Discussion

	SQL session, Problem
	table queries, Problem
	util object, Problem

	PYTHONPATH environment variable, Choosing a library-file installation location, Python

Q
	QUARTER() for quarterly sales reports, Discussion
	query logs, Discussion, The general query and slow query logs	digests of query logs, Logging all the queries
	log table rotation, Discussion
	monitoring client activity, Problem
	monitoring the server, Discussion
	rotating, Rotating the error, general query, or slow query log
	troubleshooting with slow query log, Problem

	query performance	about, Introduction	terms to know, Introduction

	full-text indexes, Problem
	function-based indexes, Problem
	geographic data and spatial indexes, Problem
	JSON data, Problem
	long-running queries	EXPLAIN checking, Discussion
	server crash, Server crash

	maintaining indexes, Problem
	multiple column queries, Problem
	number of queries hitting server, Problem
	optimizer histograms, Problem
	primary key created for slow queries, Problem	primary key optimization, Problem

	query slow with index, Solution
	scanning data in ascending and descending order, Problem
	stuck queries, Discussion
	trouble shooting with slow query log, Problem
	writing efficient queries, Problem

	query plans	about, Discussion
	EXPLAIN statement, Discussion
	optimizer histograms, Problem
	prepared statements and, Using placeholders
	right index used, Solution

	query report, Discussion
	query result rows numbered, Problem
	query results joined, Problem
	query results sorted, Problem	joins to control sort order, Problem
	randomized, Problem

	question mark (?) optional regexp element, Discussion
	quit command to terminate mysql session, Discussion
	quote mark, double (")	escaping in command line arguments, Notes on Invoking Shell Commands
	escaping in data values, Discussion
	identifier quoting if ANSI_QUOTES, Discussion, Discussion
	importing data, Problem
	shell command arguments, Notes on Invoking Shell Commands
	writing string literals, Problem

	quote mark, single (')	escaping in data values, Discussion
	exporting data, Exporting using the SELECT...INTO OUTFILE statement
	importing CSV files, Problem
	writing string literals, Problem

	QUOTE() for SQL injection attack prevention, Discussion
	quoting functions converting data values, Discussion, Using a quoting function

R
	RAND() for random numbers, Problem	card deck–shuffling algorithm, Discussion
	how random is RAND(), Discussion
	return result rows randomized, Problem
	seed value sources, Discussion
	selecting randomly from set of values, Problem

	rand_test.py, Discussion
	range of values, Discussion
	RANK(), Discussion
	ranks assigned to set of values, Problem
	read scale, Introduction
	read_csv() (pandas), Names and genders
	recipes distribution from GitHub, Recipe Source Code and Data	additional languages, Recipe Source Code and Data, Introduction
	batch files, Recipe Source Code and Data
	cmdline.pdf, Introduction, Perl, Ruby, Python, Java	environment variables, Choosing a library-file installation location

	CookbookCollection code, Discussion
	cookbook_utils.py library module file, Discussion, Discussion
	lib directory for library files, Introduction, Discussion	column information structures, Using INFORMATION_SCHEMA to get table structure information, Discussion

	patient name test data generator code, Data filling step-by-step	datasets for, Data filling step-by-step

	scripts	APIs, Introduction
	connecting to MySQL server, Perl, Ruby, PHP, Python, Go, Java
	connection parameters, Getting parameters from the command line, Getting parameters from option files
	converting imported data, Specifying the output column delimiter, File Formats, Discussion, Discussion, Discussion
	datafile columns in any order, See Also, Discussion
	date processing utilities, Solution, Discussion, Discussion, Discussion
	date values, Introduction
	duplicates counted, Discussion
	events, Introduction
	exporting query results, Exporting using the mysql client program
	guess table structure from datafile, Discussion
	hex dumpers, Discussion
	importing and exporting, Introduction
	joins, Introduction
	metadata, Introduction, Discussion
	mysql, Introduction
	parsing command-line arguments, Perl
	printable representations of file characters, Discussion
	randomness of RAND(), Discussion
	regular expression pattern tester, Discussion
	routines, Introduction
	security, Introduction
	sequences, Introduction
	statistical techniques, Introduction
	strings, Introduction
	table lookup for data validation, Construct a hash from the entire lookup table
	tables created, Recipe Source Code and Data, Introduction, Discussion, Discussion, Introduction
	time values, Introduction
	transactions, Introduction, Discussion
	triggers, Introduction
	validating data, Introduction

	redirecting input to execute SQL from file or program, Problem-Discussion
	redirecting output, Problem	exporting to a file, Exporting using the mysql client program	JSON format, Problem
	XML format, Discussion

	mysqldump, Discussion
	pager with redirection, Discussion
	pipe from program, Discussion
	sending output nowhere, Discussion

	reformatting data	about, Introduction
	date processing utility, Solution
	non-ISO date values, Problem
	source code in recipes distribution, Introduction
	year values from two digits to four, Problem

	REGEXP(), Problem-Discussion
	regular expressions (regexp)	data validation via, Problem	Python regexp overview, Discussion
	Python validating data, Discussion
	script for testing patterns, Discussion

	pattern matching, Problem-Discussion	overview, Discussion
	broad content types matched, Problem
	case sensitivity, Discussion
	date strings, Problem, See Also
	email address validity, Problem
	multibyte character sets, Discussion
	NULL values not matched, Discussion
	numeric values matched, Problem
	POSIX character classes, Discussion
	script for testing patterns, Discussion
	table of pattern elements, Discussion, Discussion, Discussion
	time strings, Discussion
	URL validity, Problem

	rejecting bad data via BEFORE INSERT trigger, Problem
	relative values from cumulative values, Problem
	relay log files of replica server, Introduction
	relay_log_info_repository, Discussion
	remove() from collection (Python), Discussion
	removing duplicate rows in results, Problem
	RENAME USER, Renaming accounts
	renaming database, Discussion
	ReplicaSet automation via Admin API, Discussion	automating replication setup, Discussion

	replicate-do-db configuration option, Filtering on the replica	replicate-ignore-db, Filtering on the replica

	replication	about, Introduction	asynchronous, Discussion
	master and slave terminology, Introduction
	source and replica terminology, Introduction

	automated replication setup, Problem
	binary log format configuration, Problem
	circular via chain of servers, Problem
	credential security, Problem
	data transfer security via TLS, Problem
	Group Replication plug-in, Problem	existent data, Discussion
	troubleshooting, Troubleshooting Group Replication
	writing on multiple nodes, Discussion

	IO and SQL threads, Discussion	troubleshooting IO thread, Troubleshooting an IO thread
	troubleshooting SQL thread, Troubleshooting a SQL thread

	metadata repositories	relay log status, Discussion
	replication credential security, Problem
	source server information, Discussion

	multithreaded replica, Problem
	one source, one replica, Problem	about position-based replication, Discussion
	in-use position-based configuration, Problem
	new position-based configuration, Problem
	replica via global transaction identifiers, Problem

	performance tools, Problem
	replica server, Introduction	check if running, Discussion
	replication filters, Problem, Filtering on the replica
	start the replica, Discussion
	start the replica with secure credentials, Problem
	STOP REPLICA on parameter change, Filtering on the replica
	update before COMMIT declared success, Problem

	replication filters, Problem	replica database with different name, Problem

	semisynchronous replication plug-in, Problem	failing back to asynchronous, Discussion
	variables that control behavior, Discussion

	source server, Introduction	metadata repositories, Discussion
	replication filters, Problem

	troubleshooting, Problem-Troubleshooting Group Replication	Group Replication, Troubleshooting Group Replication
	IO thread, Troubleshooting an IO thread
	Performance Schema, Replication tables in the Performance Schema-Troubleshooting Group Replication
	SHOW REPLICA STATUS, Discussion-SHOW REPLICA STATUS
	SQL thread, Troubleshooting a SQL thread

	tuning for safety and performance, Discussion
	two or more source servers, Problem

	replication-rewrite-db replication filter, Problem
	replication_applier_status_by_worker table, Discussion
	replica_parallel_type variable, Discussion
	replica_parallel_workers variable, Discussion, Discussion
	reports, Problem	built-in reports, Discussion
	\show, Discussion	thread built-in report, Discussion

	\watch, Discussion

	resetting profile table, Problem
	RESIGNAL command to raise error, Discussion
	resources online	book web page for errata and information, How to Contact Us
	companion GitHub repository, The MySQL Cookbook Companion GitHub Repository
	email address regexp patterns, Discussion
	email address specifications, Discussion
	MySQL distributions, MySQL
	MySQL Shell download page, Introduction
	MySQL User Reference Manual link	B-tree versus hash indexes, Introduction
	Boolean full-text operators, Discussion
	date and time value component extraction, Decomposing dates or times using component-extraction
 functions, Decomposing dates or times using component-extraction
 functions
	date and time values, Introduction, Discussion
	DDL operations, Discussion
	encryption, Discussion
	error log configuration, Discussion
	full-text index restrictions, Discussion
	I/O utilization, I/O utilization
	JSON data type, See Also
	JSON Path syntax, See Also
	memory usage, Discussion
	mysql prompt customization, Discussion
	prepared SQL statements, Discussion
	roles, See Also
	SELECT statements, Introduction
	server plug-ins, SHOW ENGINE
	sql_mode, Discussion
	stored program error handling, Discussion
	stored routines, triggers, and events, Introduction
	time zones, Discussion
	window functions, See Also

	Perl CPAN site, Discussion
	User Reference Manual link	TO_DAYS() and Gregorian calendar, Converting between dates and days

	X DevAPI reference manual, See Also

	Result consisted of more than one row error, Discussion
	result set duplicate data, Introduction	(see also duplicates handled)

	result set metadata, Introduction	number of rows changed by SQL, Problem	matched versus changed, Discussion

	retrieving, Problem

	result set row numbering, Problem
	result-format command-line parameter, Solution
	resultFormat configuration option, Solution
	REVERSE(), Problem
	REVOKE, Assigning and checking privileges
	right angle bracket (>) redirecting output, Exporting using the mysql client program
	RIGHT JOIN, Discussion	other ways to write, Discussion

	RIGHT(), Discussion	pattern matches similar to, Discussion, Discussion
	sorting on substrings, Problem

	roles for user accounts, Problem
	ROLLBACK, Discussion
	rollback() (JavaScript), Discussion
	rolling back transactions, Discussion
	root account	CREATE USER and GRANT, Discussion
	mysqladmin, Discussion
	security, Introduction
	server administration, Introduction

	rows inserted into tables, Problem	duplicates prevented, Problem, Problem	(see also duplicates handled)

	tables created via scripts, Discussion
	timestamping row creation, Problem

	rows specified in SELECT, Problem	COUNT() for count summary, Discussion
	date condition in WHERE clause, Problem
	metadata	how many rows changed by SQL, Problem
	matched versus changed, Discussion
	result set metadata, Problem

	multiple SELECTs via subqueries, Problem
	portion of results, Problem
	removing duplicate rows, Problem
	sorting the query results, Problem
	subgroup summaries for sets of rows, Problem
	time condition in WHERE clause, Comparing times to one another
	two or more SELECTs combined, Problem

	ROW_NUMBER(), Problem	ranks assigned to set of values, Discussion

	Ruby Mysql2 API support, MySQL APIs Used in This Book, Introduction	about scripting requirements, Ruby
	AUTO_INCREMENT value, Using API-specific methods to obtain AUTO_INCREMENT
 values
	download links, Ruby Support
	error handling, Ruby, Problem, Ruby, Ruby
	hash for checking input values, Construct a hash from the entire lookup table
	library file writing, Ruby	library path, Choosing a library-file installation location, Ruby

	metadata	current session status display, Discussion
	result set metadata retrieved, Ruby
	row count of matched versus changed, Ruby

	NULL values identified in result sets, Problem, Ruby
	option files for connection parameters, Getting parameters from option files, Ruby
	running Ruby programs link, MySQL Cookbook Companion Documents
	scripts	connecting to server, Problem, Ruby
	executing SQL statements, Problem-SQL statement categories, Ruby

	special characters and NULL in data values, Problem-Using a quoting function, Ruby
	special characters in identifiers, Problem
	transactions, Problem

	Ruby Mysql2 gem, Ruby Support	required for running scripts, Ruby

	RUBYLIB environment variable, Choosing a library-file installation location, Ruby
	running averages, Problem
	runSQL() (JavaScript), Problem
	run_SQL() (Python), Problem
	Russian word sort order, Discussion

S
	s (silent) option, Controlling mysql’s verbosity level	suppressing column headings, Suppressing column headings in query
 output

	sales tax computation via stored function, Discussion
	sandbox instance via Admin API, Discussion	stopping instance, Discussion

	save() (JavaScript), Discussion
	scheduled events (see events)
	schema	getDefaultSchema() (JavaScript), Discussion
	URI parameter, Discussion
	validation supported by collections, Discussion

	Schema class	createCollection (JavaScript), Discussion
	get_collection (Python), Discussion

	scheme as URI parameter, Discussion
	screen output as default, Discussion
	scripts	about object orientation, MySQL Client API Architecture
	Amazon reviews data script, Discussion
	API architecture, MySQL Client API Architecture	(see also APIs)

	api directory in recipes distribution, Introduction
	batch mode in mysql, Introduction
	column aliases, Discussion
	connecting to MySQL server, Introduction, Problem-Java	disconnecting from, Discussion
	obtaining connection parameters, Problem-Java

	converting imported data via cvt_file.pl, Specifying the output column delimiter, File Formats, Discussion	guess_table.pl to guess structure, Problem

	distributing SQL, Discussion
	error handling, Introduction, Problem-Java	SQL statements, SQL statement categories

	executed at startup, Discussion
	executing code from a file, Problem	source command for mysql, Discussion
	\source command for mysqlsh, Problem

	executing SQL, Introduction	categories of SQL statements, Discussion, SQL statement categories
	error handling, SQL statement categories
	no SQL statement terminators, SQL statement categories

	executing SQL statements and retrieving results, Problem-Java
	languages supported by MySQL, MySQL APIs Used in This Book, Introduction	MySQL Shell, Introduction
	recipes distribution on GitHub, Recipe Source Code and Data, Introduction

	library file writing, Introduction, Problem-Java	access privileges, Setting library-file access privileges
	data validation tests, Problem
	Go, Go
	location of library file, Choosing a library-file installation location
	Perl, Perl
	PHP, PHP
	Python, Python
	recipes distribution lib directory, Introduction, Discussion
	Ruby, Ruby
	test harness, Discussion

	metadata directory of recipes distribution, Introduction
	NULL data values, Introduction, Problem-Java	comparisons involving NULL, Problem
	identifying in result sets, Problem-Java

	persistent connections and temporary tables, Discussion
	recipes distribution (see recipes distribution from GitHub)
	resetting the profile table, Problem
	special character handling, Introduction	data values, Problem-Java
	identifiers, Problem, Discussion
	quoted string with same quote character, Discussion

	tables created via recipes distribution scripts, Recipe Source Code and Data, Discussion, Introduction, Introduction, Introduction
	test data via Python, Problem-See Also

	sdi file for copying MyISAM table, Problem
	searching in JSON documents, Problem
	searching in strings	Boolean-mode searches, Problem
	full-text searches, Problem	Amazon review data for download, Amazon Review Data (2018), Discussion
	phrase searches, Problem
	requiring or prohibiting words, Problem
	script to load Amazon data, Discussion
	short words return no rows, Problem

	substrings searched for, Problem

	SECOND(), Decomposing dates or times using component-extraction
 functions
	secondary indexes created, Problem
	seconds resolution in time values, Problem
	Seconds_Behind_Source inaccuracy, Discussion
	Secure Socket Layer (SSL), Discussion
	security	about administrative access required, Introduction
	about MySQL version, Introduction
	about scripts in recipes distribution, Introduction
	certificates	Certificate Authority (CA) file, Discussion
	creating self-signed, Creating self-signed certificates
	public key certificate file, Discussion

	connection parameters via script, Discussion
	encryption of network traffic, Problem
	LOCAL data loading disabled, Discussion
	option files protected from other users, Protecting option files from other users
	passwords	changing your password, Problem
	command line option, Discussion
	expiring, Problem
	option file plain text format, Specifying connection parameters using option files
	PHP library files, PHP
	policy for passwords, Problem
	resetting an expired, Problem
	strength check, Problem

	replication credential security, Problem
	roles, Problem
	SQL injection attack prevention, Problem-Java	about SQL injection, Discussion
	prepared SQL in stored procedures, Discussion

	stored routines for data security, Problem
	user account management	anonymous accounts, Problem
	creating user account, Problem
	mysql.user table, Understanding the mysql.user Table
	privileges, Assigning and checking privileges
	removing accounts, Removing accounts
	renaming accounts, Renaming accounts

	views to secure data access, Problem

	SEC_TO_TIME(), Solution
	sed utility to change column delimiters, Specifying the output column delimiter
	SELECT	about, Introduction	documentation online, Introduction

	about SQL statement categories, SQL statement categories
	column names in results, Problem	alias benefits in programming, Discussion
	alias restrictions, Discussion
	choosing own names, Discussion

	columns specified, Problem	all columns via asterisk (*), Discussion
	all columns via TABLE, Discussion

	creating database and setting up tables, Discussion
	CURRENT_USER() for client privileges, Discussion
	DATABASE() for default database name, Discussion
	DISTINCT for unique values, Introduction, Problem
	ENGINE for storage engines, Discussion
	INTO OUTFILE to export to file, Problem	NULL as \N, Discussion

	mail table for chapter examples, Introduction
	multiple result sets via subqueries, Problem
	multiple tables, Problem
	result set metadata, Introduction	matched versus changed, Discussion
	number of rows changed by SQL, Problem
	retrieving, Problem

	results assigned to variable, Problem, Discussion
	results by default returned to client, Discussion
	rows from multiple SELECTs combined, Problem
	rows from multiple SELECTs via subqueries, Problem
	rows from portion of results, Problem	LIMIT value from expression, Problem
	results in different sort order, Problem

	rows specified, Problem	date and time conditions, Problem
	removing duplicate rows, Problem

	saving query results in a table, Problem	columns in different order from source, Discussion

	sorting query results, Problem
	@@sql_mode	ANSI_QUOTES, Discussion

	table storage engine identification, Discussion
	USER() for current user, Discussion
	VERSION() for server version string, Discussion
	VIEW simplifying table access, Problem

	select()	JavaScript mode table queries, Discussion
	Python mode table queries, Discussion

	self-joins, Problem	cumulative sums, Problem
	running averages, Problem
	successive-row differences, Problem

	semicolon (;)	end of SQL statement, Discussion, Discussion	BEGIN...END blocks, Introduction
	multiple SQL statements executed, Discussion
	none in API SQL statements, SQL statement categories
	\G for vertical output, Discussion, Discussion
	\g synonym, Discussion, Discussion

	redefining mysql terminator for BEGIN...END, Problem

	semisynchronous replication plug-in, Problem	failing back to asynchronous, Discussion
	variables that control behavior, Discussion

	sequences	about, Introduction	portability, Introduction
	scripts in recipes distribution, Introduction

	AUTO_INCREMENT columns, Problem	emptying table, resetting counter, Discussion

	counting with, Problem
	custom increment values, Problem
	custom sequence as id column, Problem
	data type for, Problem	extending range of sequence, Problem

	deleting rows without changing, Problem	renumbering an existing sequence, Problem
	reusing values at top of, Problem

	duplicate rows prevented, Discussion
	extending range of, Problem
	managing multiple simultaneously, Problem
	recursive Common Table Expressions, Problem
	renumbering an existing, Problem	particular order, Problem

	repeating sequences generated, Problem
	result set row numbering, Problem
	retrieving values, Problem	APIs, Using API-specific methods to obtain AUTO_INCREMENT
 values
	server-side versus client-side, Server-side and client-side sequence value retrieval
 compared

	sequencing an unsequenced table, Problem
	successive-row differences calculated, Problem
	tables associated via, Problem

	server administration	about, Introduction	administrative access, Introduction
	SUPER access, Configuration control and verification at runtime

	checking if server is up, Problem	“MySQL Server has gone away”, Problem

	configuring server, Problem	runtime, Configuration control and verification at runtime
	server startup, Configuration control at server startup

	error log for troubleshooting, Problem
	log files, Problem	binary log, Discussion, The binary log
	error log, Discussion, The error log, Discussion, Problem, Solution
	expiring log files, Problem
	flushing log files, Discussion
	general query log, Discussion, The general query and slow query logs, Discussion
	log maintenance needed, Discussion, Problem
	monitoring the server, Discussion
	rotating log files, Problem
	rotation automated, Automating logfile rotation
	slow query log, Discussion, The general query and slow query logs, Discussion

	log tables	expiring rows within, Problem
	rotating, Problem

	monitoring the server, Introduction	(see also monitoring MySQL server)

	plug-in interface, Problem	built-in plug-ins, Discussion
	filename suffix on plug-ins, Discussion
	plugin_dir system variable, Discussion
	runtime installation, Plug-in control at runtime
	server startup, Plug-in control at server startup

	server startup problems, Problem
	storage engine configuration, Problem

	server-cert.pem, Creating self-signed certificates
	server-key.pem, Creating self-signed certificates
	server_id for replication servers, Discussion
	server_uuid global variable, Discussion
	Session class sql() and runSQL()	JavaScript mode, Problem, Discussion
	Python mode, Problem

	session status Handler_* variable, Discussion
	SET	assigning values for SIGNAL statement, Discussion
	GLOBAL	event scheduler enabled, Discussion
	general query log enabled, Discussion
	global time zone, Discussion
	LOCAL data loading, Discussion
	server administration system variables, Configuration control and verification at runtime

	NAMES for connection character set, Problem
	no GLOBAL or SESSION modifier, Configuration control and verification at runtime
	PASSWORD, Problem
	PERSIST	event scheduler, Discussion
	RESET PERSIST, Configuration control and verification at runtime
	server administration at runtime, Configuration control and verification at runtime
	since MySQL v8, Discussion

	preprocessing LOAD DATA input, Problem
	SESSION versus GLOBAL, Configuration control and verification at runtime
	variable assignments, Discussion

	SET columns	concatenating element to existing, Discussion
	data validation using table metadata, Discussion
	members determined, Problem

	set() (JavaScript), Discussion
	Shell class (JavaScript), Discussion
	shell commands (see command line)
	shell.status() command, Discussion
	shortcuts (Windows), Discussion
	SHOW	about SQL statement categories, SQL statement categories
	CHARACTER SET, String Properties	default collations, String Properties

	COLUMNS for column definitions, Solution
	CREATE TABLE for table definition, Discussion, Solution, Discussion	mysql.user, Understanding the mysql.user Table
	NULL values for timestamp columns, Discussion
	table engine used, Discussion

	ENGINE, Problem	INNODB MUTEX, SHOW ENGINE
	INNODB STATUS, Discussion, SHOW ENGINE

	GLOBAL STATUS, Discussion	Buffer Pool allocation, Discussion
	connection limit, Discussion
	monitoring the server, Discussion

	GLOBAL VARIABLES	Buffer Pool allocation, Discussion
	indexing engine minimum word length, Discussion
	server global configuration variables, Discussion
	slow query log settings, Discussion
	storage engine settings, Discussion
	time_zone, Discussion

	GRANTS, Assigning and checking privileges
	INDEXES for maintaining, Discussion
	INFORMATION_SCHEMA instead, Introduction
	MASTER STATUS	binary log filters, Filtering on the source server
	binary log position, Solution
	CHANGE REPLICATION SOURCE, Solution
	File and Position values, Discussion
	GTIDs, Discussion
	Seconds_Behind_Source inaccuracy, Discussion
	stopping writes for in-use source, Discussion

	PLUGINS, Discussion
	portability of command, Introduction
	PROCESSLIST for connection ID, Discussion
	REPLICA STATUS	replica filters, Filtering on the replica
	to troubleshoot, Problem-SHOW REPLICA STATUS

	SESSION STATUS, Discussion
	SESSION VARIABLES, Discussion
	TABLE STATUS, Discussion
	VARIABLES	event_scheduler, Discussion
	system variables, Configuration control and verification at runtime

	WARNINGS, Discussion	LOAD DATA diagnostic information, Discussion, Problem

	\show for report, Problem	thread built-in report, Discussion	help for options, Discussion

	shutdown command requiring administrative privileges, Discussion
	SIGNAL statement to raise own errors, Problem	warning conditions, Discussion

	silent (s) option, Controlling mysql’s verbosity level	suppressing column headings, Suppressing column headings in query
 output

	single quote (')	escaping in data values, Discussion
	exporting data, Exporting using the SELECT...INTO OUTFILE statement
	importing CSV files, Problem
	writing string literals, Problem

	skip-column-names option, Suppressing column headings in query
 output
	slash (/) pathname separator, Specifying connection parameters using option files
	slave and master terminology, Introduction
	slow query log, Discussion, The general query and slow query logs	enabling, Discussion
	log table rotation, Discussion
	monitoring queries, Problem
	monitoring the server, Discussion
	rotating, Rotating the error, general query, or slow query log

	Snake-case syntax, Discussion
	socket parameter, Discussion	URI parameter, Discussion

	sorting query results	about, Introduction	as comparison, Discussion

	case sensitivity issues, Problem
	collation affecting sort order, String Properties	listing character sets and collations, Problem

	custom sort order defined, Problem
	date information, Problem	calendar day, Sorting by calendar day
	day of week, Sorting by day of week

	displaying values, sorting on another, Problem
	ENUM values, Problem
	expressions for sorting, Problem
	hostnames in domain order, Problem
	IP addresses in numeric order, Problem
	joins to control sort order, Problem
	ORDER BY, Problem, Problem-Discussion
	randomizing, Problem
	special values to head or tail, Problem
	substrings from values, Problem	given position within string, Problem
	not given position in string, Problem

	time information, Problem	time of day, Sorting by time of day

	source and replica terminology, Introduction
	source command (\.) for mysql, Discussion	importing SQL data, Problem

	\source command for mysqlsh, Problem	importing SQL data, Problem

	SOURCE_DELAY option, Introduction
	span of time versus interval, Date or date-and-time interval calculation using basic
 units
	spatial indexes and geographic data, Problem
	Spatial Reference System (SRS) of MySQL, Problem
	special characters	APIs handling, Introduction
	data values containing, Problem-Java
	identifiers containing, Problem	quoted string with same quote character, Discussion

	importing data, Problem
	NULL data values, Problem-Java

	SQL	case insensitivity of keywords, Discussion
	distributing via script files, Discussion
	executing statements and retrieving results script, Problem-Java	categories of SQL statements, Discussion, SQL statement categories
	error handling, SQL statement categories

	exporting data in SQL format, Problem
	injection attack prevention, Problem-Java	about SQL injection, Discussion
	prepared SQL in stored procedures, Discussion

	NULL data values, Problem-Java
	script for executing statements and retrieving results, Introduction
	special characters in data values, Problem-Java
	statement categories, Discussion, SQL statement categories
	statement terminators, Discussion, Discussion	BEGIN...END blocks, Introduction
	multiple SQL statements executed, Discussion
	none in API SQL statements, SQL statement categories
	redefining terminator for BEGIN...END, Problem
	\G for vertical output, Discussion, Discussion

	table queries, Discussion	collections (see NoSQL)

	transactions, Problem
	writing efficient queries, Problem	(see also query performance)

	X protocol, Introduction

	\sql command	JavaScript mode, Problem
	Python mode, Problem

	SQL injection attack prevention, Problem-Java	about SQL injection, Discussion
	prepared SQL in stored procedures, Discussion

	SQL mode (see SQL mode of MySQL Shell; sql_mode)
	SQL mode of MySQL Shell, Problem	escaping backslashes in pathnames, Specifying the datafile location
	\source command, Problem
	SQL session, Problem

	sql()	JavaScript mode table queries, Problem
	Python mode table queries, Problem, Discussion

	sql_mode	--sql_mode, Discussion
	\G, Discussion
	data validity, Problem
	SET GLOBAL at runtime, Discussion
	setting backslash escape mode, Specifying the datafile location
	sql-mode equivalent at server startup, Configuration control at server startup

	square brackets ([])	regexp pattern matching, Discussion, Discussion, Discussion, Discussion	JSON array members, Discussion
	POSIX character classes, Discussion
	[^] not version, Discussion, Discussion

	ssh for copying tables, Copying tables between MySQL servers
	SSL (Secure Socket Layer), Discussion
	standard deviation, Discussion
	START REPLICA, Discussion	replication credential security, Problem

	START TRANSACTION, Discussion
	startup execution of scripts, Discussion
	statement handles in Perl ($sth), Perl	result set metadata retrieved, Perl

	statistical techniques	correlation coefficients, Problem, Discussion
	counting missing values, Problem
	cumulative sums, Problem
	descriptive statistics calculations, Problem	sample versus population functions, Discussion
	subgroups of observations, Problem

	frequency distributions, Problem	randomness of RAND(), Discussion

	linear regressions, Problem
	random number generation, Problem	card deck–shuffling algorithm, Discussion
	how random is RAND(), Discussion
	seed value sources, Discussion
	selecting randomly from set of values, Problem
	set of rows randomized, Problem

	ranks assigned, Problem
	running averages, Problem
	scripts in recipes distribution, Introduction
	successive-row differences calculated, Problem
	team standings including games-behind, Problem

	status variables	monitoring the server, Discussion
	session status Handler_*, Discussion

	STDDEV_POP(), Discussion
	STDDEV_SAMP(), Discussion
	storage engines for tables	AUTO_INCREMENT columns and, Discussion, Discussion
	available storage engines, Discussion
	buffer pool sizing, Problem
	changing, Solution, Discussion, Discussion
	configuring, Problem
	identifying, Solution
	InnoDB architecture, SHOW ENGINE
	multiple in use, Discussion
	operational information, Problem
	plug-ins installed listed, Discussion
	showing default, Discussion

	stored functions	about, Introduction
	about stored programs, Introduction	BEGIN...END compound statement, Introduction
	redefining mysql ; terminator, Problem

	data security, Problem
	error handling, Discussion	benign errors ignored, Problem
	GET DIAGNOSTICS to log all, Problem
	No Data condition, Discussion
	No More Rows conditions, Solution
	raising own errors, Problem
	sales tax example, Discussion

	invoking, Discussion
	listing, Problem
	READS clause, Discussion
	RETURN statement, Discussion	returning only a single value, Problem

	RETURNS clause, Discussion
	sales tax computation example, Discussion
	simplifying calculations with, Problem

	stored procedures	about, Introduction
	about stored programs, Introduction	BEGIN...END compound statement, Introduction
	redefining mysql ; terminator, Problem

	data security, Problem
	error handling, Discussion	benign errors ignored, Problem
	GET DIAGNOSTICS to log all, Problem
	No More Rows conditions, Solution
	raising own errors, Problem

	IN parameters, Problem
	INOUT parameters, Problem
	invoking, Discussion
	listing, Problem
	OUT parameters, Problem
	prepared SQL helper function, Problem	MySQL Reference Manual link, Discussion

	“returning” multiple values, Problem

	stored programs	about, Introduction	database objects, Introduction
	default database, Introduction

	CALL to invoke, Introduction
	error handling, Discussion	benign errors ignored, Problem
	No More Rows conditions, Solution
	raising own errors, Problem
	sales tax example, Discussion

	privileges, Introduction
	redefining mysql ; terminator, Problem
	stored functions (see stored functions)

	stored routines defined, Introduction	(see also stored functions; stored procedures)

	strings	about, Introduction
	APIs quoting all non-NULL values as, Using a quoting function
	Boolean-mode full-text searches, Problem
	character sets (see character sets)
	collation (see collation of strings)
	combining strings into one, Problem
	comparisons	binary strings versus binary collations, String Properties
	string values compared, Problem

	CONCAT(), Discussion	generating a unique table name, Discussion

	converting between ASCII, BIT, and hexadecimal, Problem
	converting lettercase, Problem
	converting to dates, Discussion	ISO format for, Problem

	data types, Introduction	choosing which to use, Problem

	extracting a substring, Problem
	full-text searches, Problem, Problem	Amazon review data for download, Amazon Review Data (2018), Discussion
	phrase searches, Problem
	requiring or prohibiting words, Problem
	script to load Amazon data, Discussion
	short words return no rows, Problem

	IP addresses as, Discussion	INET_ATON() to numeric, Discussion

	length in bytes or characters, String Properties	multibyte characters determination, String Properties

	LIMIT value from expression, Problem
	NULL values mapped to “Unknown”, Discussion
	pattern matching (see pattern matching)
	properties, Introduction	binary or nonbinary, String Properties, Discussion
	collation, String Properties

	regexp patterns that match numbers, Problem
	reversing, Problem
	scripts in recipes distribution, Introduction
	searching for substrings, Problem
	searching long text, Problem	Amazon review data for download, Amazon Review Data (2018), Discussion
	phrase searches, Problem
	requiring or prohibiting words, Problem
	script to load Amazon data, Discussion
	short words return no rows, Problem

	server version, Discussion
	sorting	case sensitivity and, Problem
	collation affecting order, String Properties
	IP addresses in numeric order, Problem
	numeric order, Discussion
	substrings given position in string, Problem
	substrings of values, Problem, Problem

	special characters in data values, Problem-Java
	special characters in identifiers, Discussion
	writing string literals, Problem

	STR_TO_DATE(), Discussion
	subqueries	about, Discussion, Introduction
	LIMIT with results in different sort order, Problem
	multiple tables in query, Problem
	query results joined, Using named subqueries
	SELECT list subqueries, Discussion

	SUBSTRING(), Discussion	sorting on substrings, Problem	given position in string, Problem
	not given position in string, Problem

	substrings located within strings, Problem
	substrings of values sorted on, Problem, Problem	given position within string, Problem

	SUBSTRING_INDEX(), Discussion	hostname component extraction, Discussion

	SUM(), Problem
	summaries	about, Introduction
	AVG(), Problem
	candidate-detail lists and summaries, Problem
	COUNT(), Problem	(see also COUNT())
	whether values unique, Problem

	date-based or time-based, Problem
	frequency distributions, Problem	(see also statistical techniques)

	grouping by expression results, Problem	logarithmic scale, Discussion
	noncategorical data summaries, Problem

	holes in list filled or identified, Problem
	MAX(), Problem	case sensitivity controlled, Problem
	value from another column, Problem

	MIN(), Problem	case sensitivity controlled, Problem
	value from another column, Problem

	noncategorical data, Problem
	only groups with certain characteristics, Problem
	per-group and overall together, Problem
	query log digests, Logging all the queries
	repetitiveness of a set of values, Discussion
	report with summary and list, Problem
	smallest or largest of per-group summary values, Problem
	subgroup summaries for sets of rows, Problem
	SUM(), Problem
	temporary result sets for, Problem
	views simplifying, Problem

	SUPER privileges, Configuration control and verification at runtime
	swappiness, Memory utilization
	sys schema	Buffer Pool allocation, Discussion
	built-in reports, Discussion
	memory usage, Discussion, Memory utilization
	monitoring the server, Discussion

	system command (\!), Discussion
	system variables	about how server configured, Discussion
	local_infile error, Discussion
	local_infile for data loading, Discussion
	time_zone, Problem, Solution

	system_time_zone variable, Solution

T
	t (table) option for output, Producing tabular or tab-delimited output
	tab (\t), Discussion
	tab character column delimiter changed, Specifying the output column delimiter
	tab-delimited or tab-separated (TSV) file format, File Formats	converting imported data via cvt_file.pl, File Formats, Discussion
	export tab-delimited, linefeed-terminated, Problem
	import tab-delimited, linefeed-terminated, File Formats, Discussion, Discussion	delimiters for specified, Problem

	tabbed command-line parameter, Solution
	table (t) option for output, Producing tabular or tab-delimited output
	Table class	JavaScript mode queries, Problem
	Python mode queries, Problem

	table command-line parameter, Solution
	table scan, Introduction
	TABLE to select all columns, Discussion
	tables	aliases, Discussion
	AUTO_INCREMENT column	associating tables, Problem
	emptying table, resetting counter, Discussion
	LAST_INSERT_ID() value, Discussion, Discussion
	retrieving values, Problem	(see also AUTO_INCREMENT column)

	changes logged via triggers, Problem
	CHECK constraints, Problem	listing defined CHECK constraints, Problem

	checking if a table exists, Problem
	column names in results, Problem	(see also column names aliased)

	Common Table Expressions	data from MIN or MAX rows, Discussion
	Formula 1 fractional seconds, Discussion
	query results joined, Using CTEs
	recursive CTEs, Discussion
	sequence generation, Problem
	summaries from temporary result sets, Problem

	copying a MyISAM table via sdi file, Problem
	copying an InnoDB table via transportable tablespaces, Problem
	copying via mysqldump, Problem	dropping table if exists, Discussion
	triggers copied, Discussion

	creating, Problem	guessing structure from data file, Problem
	PRIMARY KEY clause, Discussion
	rows inserted, Problem
	same structure as existing table, Problem
	scripts in recipes distribution, Recipe Source Code and Data, Introduction, Discussion, Introduction
	temporary tables, Problem
	transaction engine specified, Discussion	(see also transactions)

	data from program via pipe, Discussion
	data from Python data science modules, Problem-See Also
	data imported (see importing data)
	DDL operations caution, Discussion
	definitions	data dictionary holding, Discussion
	DDL operations caution, Discussion
	SHOW CREATE TABLE, Discussion
	SHOW CREATE TABLE to show, Solution, Discussion

	duplicate rows prevented, Problem, Problem	(see also duplicates handled)

	foreign keys	adding to table, Discussion
	error handling with GET DIAGNOSTICS, Discussion

	generating unique names, Problem
	guessing structure from datafile, Problem
	id column, Discussion	AUTO_INCREMENT, Discussion, Problem	(see also AUTO_INCREMENT column)

	custom sequence as, Problem
	multiple tables in query, Discussion
	retrieving values, Problem
	saving query results to a table, Discussion

	indexes for query performance, Problem
	JavaScript mode queries, Problem
	joins	Cartesian products, Discussion
	comparing table to itself, Problem
	finding matches between tables, Problem-Discussion
	finding mismatches between tables, Problem
	indexes and, Discussion
	inner joins, Introduction, Discussion
	many-to-many relationships, Problem
	multiple tables in query, Problem
	one-to-many relationships, Problem
	outer joins, Introduction, Discussion, Problem
	Python mode table queries, Discussion
	self-joins, Problem
	tables from different databases, Discussion
	“unattached” rows removed, Problem

	JSON data to relational structure, Problem
	listing tables in a database, Problem
	mail table for chapter examples, Introduction
	metadata, Introduction	column definitions, Problem
	data validation using, Solution
	identifying as parent via foreign key, Problem

	multiple tables in query, Problem
	names as variables, Discussion
	NULL data values, Problem-Java
	parent tables and child tables, Problem
	profile table for chapter examples, Introduction	resetting the profile table, Problem

	Python mode queries, Problem
	saving query results in a table, Problem
	special character data values, Problem-Java
	special characters in identifiers, Problem
	storage engine	available storage engines, Discussion
	buffer pool sizing, Problem
	changing, Solution, Discussion, Discussion
	configuring, Problem
	identifying, Solution
	InnoDB architecture, SHOW ENGINE
	multiple in use, Discussion
	operational information, Problem

	string columns	binary and nonbinary, Discussion
	CHARACTER SET and COLLATE, Discussion

	temporary tables created, Problem	caveats, Discussion
	query results joined, Problem
	same name hides permanent, Discussion
	summary results via, Discussion, Discussion

	timestamping last modification, Problem
	triggers (see triggers for tables)
	VIEW simplifying access, Problem

	tablespace	converting general to individual, Discussion
	discarding, Discussion
	FLUSH TABLES, Discussion
	importing, Discussion
	Information Schema query, Discussion
	InnoDB storage engine architecture, SHOW ENGINE
	InnoDB tables copied via, Problem

	tabular or tab-delimited output, Producing tabular or tab-delimited output
	TCP/IP	default 3306 port number, Discussion
	forcing a TCP/IP connection to local server, Discussion

	team standings including games-behind, Problem
	temporal values (see date values; time values)
	temporary tables created, Problem	caveats, Discussion
	query results joined, Problem
	same name hides permanent, Discussion
	summary results via, Discussion, Discussion

	terminators and delimiters to datafile lines, File Formats, Discussion	tab-delimited, linefeed-terminated, File Formats, Discussion
	terminators and delimiters specified, Problem

	terminators to SQL statements, Discussion, Discussion	BEGIN...END blocks, Introduction	redefining mysql terminator, Problem

	test data via Python data science modules, Problem-See Also
	test harness, Discussion
	test_pat.py, Discussion
	TEXT string data type, Discussion
	thread built-in report, Discussion	help for options, Discussion

	threads table in Performance Schema, Discussion, Discussion
	TIME data type, Discussion	(see also time values)
	fractional seconds, Problem

	time showing in prompt, Discussion
	time values, Discussion	about capabilities, Introduction
	about scripts in recipes distribution, Introduction
	age calculations, Problem
	combining components, Problem
	converting 24-hour to 12-hour format, Discussion
	converting basic units (days, seconds), Problem
	current time determined, Problem	extracting components, Decomposing dates or times using component-extraction
 functions

	data type to use, Problem
	extracting part of, Problem, Converting between times and seconds
	fractional seconds, Problem	Formula 1 example, Discussion

	interval calculations, Problem	interval or span, Date or date-and-time interval calculation using basic
 units

	pattern matching for temporal data types, Discussion
	regexp patterns for, Discussion
	row creation and last modification timestamps, Problem
	row insertion and last modification timestamps	NULL values not allowed, Discussion, Discussion

	selecting rows based on, Comparing times to one another
	sorting by, Problem	time of day, Sorting by time of day

	sum of, Problem
	summaries grouped by time, Problem
	synthesizing a time value, Problem
	time zones	client, Problem
	converting from one to another, Problem
	current date and time functions, Discussion
	server, Problem

	validity checking of subparts, Discussion

	time zones	client time zone, Problem
	converting from one to another, Problem
	current date and time functions, Discussion
	server time zone, Problem

	TIME() component extracted, Decomposing dates or times using component-extraction
 functions
	TIMEDIFF(), Calculating intervals with temporal-difference
 functions
	timeouts	client timing out, Server crash
	server timing out, Server timeout

	TIMESTAMP data type, Discussion	1970 through 2038 validity, Discussion, Converting between date-and-time values and seconds
	daily summaries, Discussion
	DEFAULT CURRENT_TIME STAMP, Problem
	fractional seconds, Problem
	ON UPDATE CURRENT_TIME STAMP, Problem
	renumbering sequence according to, Discussion
	row creation and last modification timestamps, Problem
	time zone for client, Problem
	UTC_TIMESTAMP(), Problem

	TIMESTAMPDIFF(), Calculating intervals with temporal-difference
 functions	age calculations, Discussion

	TIME_FORMAT(), Discussion	combining components, Problem
	extracting part of a time value, Decomposing dates or times using formatting functions

	TIME_TO_SEC(), Solution	interval calculation, Time interval calculation using basic units

	time_zone global variable, Problem, Solution
	TINYBLOB string data type, Discussion
	TINYTEXT string data type, Discussion
	TLS (Transport Layer Security), Problem	replication data transfer security, Problem	checking if enabled, Discussion

	TLS connection for caching_sha2_password, Discussion

	TO_DAYS(), Solution	Gregorian calendar and later, Converting between dates and days
	only dates after Gregorian calendar, Date or date-and-time interval calculation using basic
 units

	tr utility	postprocessing then redirecting to file, Exporting using the mysql client program
	tab column delimiters changed, Specifying the output column delimiter

	transactions	about, Introduction	scripts in recipes distribution, Introduction, Discussion

	commit synchronization between storage engine and filesystem, Discussion
	concurrency, Introduction
	global transaction identifiers, Introduction, Discussion	replica set up using, Problem

	integrity, Introduction
	JavaScript mode, Discussion
	mysqlbinlog verbose option, Troubleshooting Group Replication
	performing	API overview, Problem
	APIs mapped onto SQL, Discussion
	Go, Problem
	Go context-aware functions, Problem
	Java, Problem
	Perl programs, Problem
	PHP programs, Problem
	Python programs, Problem
	Ruby programs, Problem
	SQL, Problem

	Python mode applying to both tables or none, Discussion
	replica update before COMMIT success, Problem
	storage engines	choosing, Problem
	InnoDB supporting transactions, Discussion

	table altered specifying engine, Discussion
	table created specifying engine, Discussion
	thread built-in report, Discussion
	transaction dependency, Discussion

	Transport Layer Security (TLS), Problem
	transportable tablespaces to copy InnoDB tables, Problem
	tree traversal, Introduction
	triggers for tables	about, Introduction
	AFTER triggers, Discussion
	BEFORE triggers, Discussion, Problem
	input-testing logic into BEFORE INSERT, Problem
	listing defined triggers, Problem
	logging changes to a table, Problem
	mysqldump copying to dump file, Discussion
	TRIGGER privilege, Introduction

	trim_whitespace() utility, Discussion
	TRUNCATE TABLE, Discussion
	Turkish word sort order, Discussion

U
	underscore (_)	character set for string literal, Discussion
	hostname containing, Problem
	option file dashes interchangeable, Specifying connection parameters using option files, Configuration control at server startup
	pattern matching single character, Filtering on the replica, Discussion

	Unicode character sets, String Properties	some cannot be used as connection character sets, Discussion
	USER() returning Unicode string, Discussion

	UNION clause, Problem	ALL to not remove duplicates, Discussion
	column name aliases work, Discussion
	DISTINCT default removing duplicates, Discussion

	unique identifiers via UUID(), Discussion	(see also duplicates handled)

	Unix	1970 as start of Unix epoch, Converting between date-and-time values and seconds
	backslash as line-continuation character, Notes on Invoking Shell Commands
	Ctrl-D to terminate mysql session, Discussion
	domain socket file, Discussion
	output column delimiter via postprocessing, Specifying the output column delimiter
	user-specific options in .my.cnf file, Getting parameters from option files

	UNIX_TIMESTAMP(), Solution
	unknown option error, Specifying connection parameters using option files
	UPDATE	about SQL statement categories, SQL statement categories
	timestamping modifications, Problem

	update()	JavaScript mode table queries, Discussion
	Python mode table queries, Discussion

	updating replica with delay, Introduction
	UPPER() to convert string to uppercase, Problem
	uptime of server, Discussion
	URI for connection options, Discussion	protocol selection, Problem

	URLs	preprocessing via trigger, Discussion
	validity check via regexp pattern, Problem

	user account for MySQL	about, Introduction, Discussion
	anonymous account management, Problem
	connection parameters from command line, Getting parameters from the command line
	creating, Problem, Problem
	mysql.user table, Understanding the mysql.user Table	anonymous accounts, Discussion

	privileges to create and modify database, Discussion-See Also
	prompt showing user account, Discussion
	removing accounts, Removing accounts
	renaming accounts, Renaming accounts
	replication user, Discussion	credential security, Problem

	roles, Problem
	security, Problem
	SELECT USER() for current user, Discussion

	user as URI parameter, Discussion
	User Reference Manual link (see documentation online for MySQL)
	USER() returning Unicode string, Discussion
	user-defined variables, Problem	case insensitivity of names, Discussion
	error if more than one row assigned, Discussion
	GET DIAGNOSTICS error information, Discussion
	NULL before assignment, Discussion
	permitted where expressions permitted, Discussion
	SELECT results assigned to, Discussion
	SET statement, Discussion

	username in user account, Discussion
	UTC value for TIMESTAMP, Discussion	client time zone, Problem
	UNIX_TIMESTAMP and time zone, Converting between date-and-time values and seconds

	UTC_DATE(), Problem
	UTC_TIME(), Problem
	UTC_TIMESTAMP(), Problem
	utf8mb4 default character set	SET NAMES, Discussion
	utf8mb4_0900_ai_ci collation, String Properties

	util object of MySQL Shell, Problem	\? for utilities supported, Discussion

	utilities in MySQL Shell, Problem	\? for help, Discussion

	UUID()	returning Universal Unique Identifier, Discussion
	unique table name generator, Discussion
	UUID in human-readable format, Discussion

	UUID_TO_BIN(), Discussion

V
	v (verbose) option for mysql, Controlling mysql’s verbosity level
	validate_password plug-in, Problem
	VALIDATE_PASSWORD_STRENGTH(), Problem
	validating data	about, Introduction	source code in recipes distribution, Introduction

	CHECK constraints, Problem	listing defined CHECK constraints, Problem

	datafile checked via input-processing loop, Problem
	date subparts, Problem
	JSON data, Problem
	libraries of common tests, Problem	cookbook_utils.py module in distribution, Discussion, Discussion, Discussion
	Perl CPAN site, Discussion

	lookup table for, Problem
	pattern matching for, Problem	broad content types, Problem
	credit card numbers, Discussion
	date values, Problem
	email addresses, Problem
	numeric values, Problem
	time values, Discussion
	URLs, Problem
	ZIP codes, Discussion

	server side versus client side, Introduction
	sql_mode, Problem
	table metadata for, Solution
	time subparts, Discussion
	triggers, Problem	(see also triggers)

	values()	JavaScript mode table queries, Discussion
	Python mode table queries, Discussion

	VARBINARY string data type, Discussion
	VARCHAR string data type, Discussion
	variables	autocommit session variable, Discussion
	case insensitivity of names, Discussion
	data types for strings, Introduction
	dynamic	binlog_transaction_dependency_tracking, Discussion
	server_id for replication servers, Discussion
	SET PERSIST since MySQL v8, Discussion

	Handler_* session status variable, Discussion
	local_infile	data loading, Discussion
	enabling, Discussion
	error, Discussion

	master_info_repository variable, Introduction, Discussion
	MYSQLSH_HOME variable, Discussion
	NULL before assignment, Discussion
	plugin_dir system variable, Discussion
	relay_log_info_repository, Discussion
	replica_parallel_type variable, Discussion
	replica_parallel_workers variable, Discussion, Discussion
	SELECT results assigned to, Discussion
	semisynchronous replication plug-in behavior, Discussion
	server administration, Problem
	server_uuid, Discussion
	SET statement, Discussion
	slow query log settings, Discussion
	sql_mode	data validity, Problem
	setting backslash escape mode, Specifying the datafile location
	\G, Discussion

	status variable Handler_*, Discussion
	time_zone, Problem, Solution
	user-defined variables, Problem

	variance, Discussion
	/var/log/messages system log, Solution
	VAR_POP(), Discussion
	VAR_SAMP(), Discussion
	verbose (v) option for mysql, Controlling mysql’s verbosity level
	verbosity level of mysql, Controlling mysql’s verbosity level
	VERSION() for server version, Discussion
	version-specific applications for server, Problem
	vertical (E) option, Discussion
	vertical bar (|) regexp pattern matching, Discussion, Discussion, Discussion
	vertical command-line parameter, Solution
	vertical output	MySQL Shell JavaScript mode, Discussion
	\G, Discussion	all statements within session, Discussion

	VIEW	data access security via, Problem
	listed or checked for existence, Problem
	summaries simplified with, Problem
	table access simplified with, Problem

	virtual memory utilization, Memory utilization

W
	warnings shown, Discussion
	\watch for repeated reports, Problem, Discussion
	web browsers	opened to read HTML output file, Producing HTML or XML output
	phpMyAdmin interface, Introduction
	special characters in form input, Discussion

	WEEKDAY(), Decomposing dates or times using component-extraction
 functions	Monday as first day, Discussion

	WHERE clause	aggregate functions not allowed, Discussion
	checking whether database exists, Discussion
	column aliases illegal, Discussion
	date and time conditions, Problem
	listing tables in a database, Discussion
	rows specified in SELECT, Problem
	user-defined variables, Discussion

	wildcard syntax	Boolean-mode searches, Discussion
	hostnames with % or _ within, Problem
	JSON searches, Discussion
	JSON value extraction, Discussion
	replication filters on replica, Filtering on the replica
	SQL pattern matching, Discussion

	window functions	DENSE_RANK(), Discussion
	RANK(), Discussion
	ROW_NUMBER()	query result rows numbered, Problem
	ranks assigned to set of values, Discussion

	WINDOW keyword, Discussion

	Windows	backslash as pathname separator, Specifying the datafile location	LOAD DATA pathnames, Specifying the datafile location

	caret (^) line continuation character, Notes on Invoking Shell Commands
	naming files, Specifying the datafile location

	writing library file (see library file writing)

X
	X (xml) option for output, Producing HTML or XML output
	X DevAPI, Discussion	JSON as Document Store, Problem
	reference manual online, See Also

	X protocol, Introduction	mysqlx for, Discussion

	xml (X) option for output, Producing HTML or XML output
	XML format	exporting data, Problem
	importing data, Problem
	output, Producing HTML or XML output

Y
	yank_col.pl utility, See Also
	year values from two digits to four, Problem	MySQL automatically from 1970 to 2069, Discussion

	YEAR()	extracting component from date value, Decomposing dates or times using component-extraction
 functions
	pattern matching with nonstring values, Discussion

Z
	ZIP code regexp pattern matching, Discussion

 About the Authors

 Sveta Smirnova is principal support escalation specialist at Percona. Her main professional interests include problem-solving, working with tricky issues, and teaching others how to effectively deal with MySQL problems, bugs, and gotchas. She’s the author of MySQL Troubleshooting and has spoken at many events, including Fosdem, Percona Live, and Oracle Open World.

 Alkin Tezuysal is executive vice president of global services at ChistaDATA, Inc. He has extensive experience in open source relational databases, working in various sectors, and large functions. With over 25 years of industry experience, he has led global operations teams for MySQL customers and users. He’s a known speaker at worldwide open source database events.

 Colophon

 The animal on the cover of MySQL Cookbook, Fourth
 Edition is a green anole (Anolis carolinensis). These common lizards can be found in
 the southeastern United States, the Caribbean, and South America. Green
 anoles dwell in moist, shady environments, such as inside trees and shrubs.
 They subsist on small insects like crickets, roaches, moths, grubs, and
 spiders.

 Green anoles are slight in build, with narrow heads and long, slender
 tails that can be twice as long as their bodies. The special padding on
 their feet enables them to climb, cling to, and run on any surface. They
 range in size from six to eight inches long. Though, as their name implies,
 green anoles are usually bright green, their color can change to match their
 surroundings, varying among gray-brown, brown, and green. Male anoles have
 pink dewlaps that they extend when courting or protecting their territory.

 Many of the animals on O’Reilly covers are endangered; all of them are important to the world.

 The cover illustration is by Karen Montgomery, based on an antique line engraving from Dover Pictorial Archive. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

OEBPS/assets/msc4_2302.png
In-memory structures On-disk structures

File-per-table tablespaces

Buffer pool System tablespace innodb_file_per table=ON
O_DIRECT (ibdatal)

flibd 5 bd

Doublewrite General tablespaces
buffer files

lib_16384_0.dblwr|
l ib_16384.1.dblwr I

[: Undo Temporary
E'I‘O.ggjﬁr--—b tablespaces tablespaces
i undo_OOﬂfundo_OO&ibu]

Xapuiysel| aAndepy

ayoed wajlsAs Sunessdo

—(

ibtmpl

undo_002 || undo_004.ibu (global)
(system) (user-defined) w
=5

! Redolog !
' ib_logfile0 : !
! 1
: q ib_logfilet |
[}

S, ——— -

(session)

OEBPS/assets/10.png

OEBPS/assets/6.png

OEBPS/assets/cover.png
OREILLY" &2,

MySQL
Cookbook

Solutions for Database Developers
and Administrators

Sveta Smirnova
& Alkin Tezuysal

Foreword by Sugu Sougoumarane

OEBPS/assets/7.png

OEBPS/assets/5.png

OEBPS/assets/msc4_2301.png
MySQL Network Traffic
100.00 kB/s

75.00K8/s
50.00k8/s
25.00k8/s

oBss
06:00 08:00 1000 1200 1400 16:00
min max avg
5022kB/s 7324KB/s 62538/

13.62kB/s 1640KB/s 15.22K8/s

— Inbound

OEBPS/assets/3.png

OEBPS/assets/1.png

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/css_assets/titlepage_footer_ebook.png
Beijing + Boston + Farnham - Sebastopol + Tokyo

OEBPS/assets/4.png

OEBPS/DejaVuSans-Bold.otf

OEBPS/DejaVuSerif.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/assets/9.png

OEBPS/toc01.html
		Foreword

		Preface		Who This Book Is For

		What’s in This Book

		MySQL APIs Used in This Book

		Version and Platform Notes

		Conventions Used in This Book

		The MySQL Cookbook Companion GitHub Repository

		Obtaining MySQL and Related Software

		Using Code Examples

		O’Reilly Online Learning

		How to Contact Us

		Acknowledgments

		1. Using the mysql Client Program		1.0. Introduction

		1.1. Setting Up a MySQL User Account

		1.2. Creating a Database and a Sample Table

		1.3. Finding mysql Client

		1.4. Specifying mysql Command Options

		1.5. Executing SQL Statements Interactively

		1.6. Executing SQL Statements Read from a File or Program

		1.7. Controlling mysql Output Destination and Format

		1.8. Using User-Defined Variables in SQL Statements

		1.9. Customizing a mysql Prompt

		1.10. Using External Programs

		1.11. Filtering and Processing Output

		2. Using MySQL Shell		2.0. Introduction

		2.1. Connecting to MySQL Server with MySQL Shell

		2.2. Selecting the Protocol

		2.3. Selecting SQL, JavaScript, or Python Mode

		2.4. Running SQL Session

		2.5. Running SQL in JavaScript Mode

		2.6. Running SQL in Python Mode

		2.7. Working with Tables in JavaScript Mode

		2.8. Working with Tables in Python Mode

		2.9. Working with Collections in JavaScript Mode

		2.10. Working with Collections in Python Mode

		2.11. Controlling the Output Format

		2.12. Running Reports with MySQL Shell

		2.13. Using MySQL Shell Utilities

		2.14. Using the Admin API to Automate Replication Management

		2.15. Working with JavaScript Objects

		2.16. Filling Test Data Using Python’s Data Science Modules

		2.17. Reusing Your Scripts for MySQL Shell

		3. MySQL Replication		3.0. Introduction

		3.1. Configuring Basic Replication Between One Source and One Replica

		3.2. Position-Based Replication in the New Installation Environment

		3.3. Setting Up a Position-Based Replica of a MySQL Installation that Is Already in Use

		3.4. Setting Up GTID-Based Replication

		3.5. Configuring a Binary Log Format

		3.6. Using Replication Filters

		3.7. Rewriting a Database on the Replica

		3.8. Using a Multithreaded Replica

		3.9. Setting Up Circular Replication

		3.10. Using Multisource Replication

		3.11. Using a Semisynchronous Replication Plug-In

		3.12. Using Group Replication

		3.13. Storing Replication Credentials Securely

		3.14. Using TLS (SSL) for Replication

		3.15. Replication Troubleshooting

		3.16. Using Processlist to Understand Replication Performance

		3.17. Setting Up Automated Replication

		4. Writing MySQL-Based Programs		4.0. Introduction

		4.1. Connecting, Selecting a Database, and Disconnecting

		4.2. Checking for Errors

		4.3. Writing Library Files

		4.4. Executing Statements and Retrieving Results

		4.5. Handling Special Characters and NULL Values in Statements

		4.6. Handling Special Characters in Identifiers

		4.7. Identifying NULL Values in Result Sets

		4.8. Obtaining Connection Parameters

		4.9. Resetting the profile Table

		5. Selecting Data from Tables		5.0. Introduction

		5.1. Specifying Which Columns and Rows to Select

		5.2. Naming Query Result Columns

		5.3. Sorting Query Results

		5.4. Removing Duplicate Rows

		5.5. Working with NULL Values

		5.6. Writing Comparisons Involving NULL in Programs

		5.7. Using Views to Simplify Table Access

		5.8. Selecting Data from Multiple Tables

		5.9. Selecting Rows from the Beginning, End, or Middle of Query
 Results

		5.10. What to Do When LIMIT and the Final Result Require a Different Sort Order

		5.11. Calculating LIMIT Values from Expressions

		5.12. Combining Two or More SELECT Results

		5.13. Selecting Results of Subqueries

		6. Table Management		6.0. Introduction

		6.1. Cloning a Table

		6.2. Saving a Query Result in a Table

		6.3. Creating Temporary Tables

		6.4. Generating Unique Table Names

		6.5. Checking or Changing a Table Storage Engine

		6.6. Copying a Table Using mysqldump

		6.7. Copying an InnoDB Table Using Transportable Tablespaces

		6.8. Copying a MyISAM Table Using an sdi File

		7. Working with Strings		7.0. Introduction

		7.1. String Properties

		7.2. Choosing a String Data Type

		7.3. Setting the Client Connection Character Set

		7.4. Writing String Literals

		7.5. Checking or Changing a String’s Character Set or Collation

		7.6. Converting the Lettercase of a String

		7.7. Comparing String Values

		7.8. Converting Between Decimal, Octal, and Hexadecimal Formats

		7.9. Converting Between ASCII, BIT, and Hexadecimal Formats

		7.10. Pattern Matching with SQL Patterns

		7.11. Pattern Matching with Regular Expressions

		7.12. Reversing the String Content

		7.13. Searching for Substrings

		7.14. Breaking Apart or Combining Strings

		7.15. Using Full-Text Searches

		7.16. Using a Full-Text Search with Short Words

		7.17. Requiring or Prohibiting Full-Text Search Words

		7.18. Performing Full-Text Phrase Searches

		8. Working with Dates and Times		8.0. Introduction

		8.1. Choosing a Temporal Data Type

		8.2. Using Fractional Seconds Support

		8.3. Changing MySQL’s Date Format

		8.4. Setting the Client Time Zone

		8.5. Setting the Server Time Zone

		8.6. Shifting Temporal Values Between Time Zones

		8.7. Determining the Current Date or Time

		8.8. Using TIMESTAMP or DATETIME to Track Row-Modification Times

		8.9. Extracting Parts of Dates or Times

		8.10. Synthesizing Dates or Times from Component Values

		8.11. Converting Between Temporal Values and Basic Units

		8.12. Calculating Intervals Between Dates or Times

		8.13. Adding Date or Time Values

		8.14. Calculating Ages

		8.15. Finding the First Day, Last Day, or Length of a Month

		8.16. Finding the Day of the Week for a Date

		8.17. Finding Dates for Any Weekday of a Given Week

		8.18. Canonizing Not-Quite-ISO Date Strings

		8.19. Selecting Rows Based on Temporal Characteristics

		9. Sorting Query Results		9.0. Introduction

		9.1. Using ORDER BY to Sort Query Results

		9.2. Using Expressions for Sorting

		9.3. Displaying One Set of Values While Sorting by Another

		9.4. Controlling Case Sensitivity of String Sorts

		9.5. Sorting in Temporal Order

		9.6. Sorting by Substrings of Column Values

		9.7. Sorting by Fixed-Length Substrings

		9.8. Sorting by Variable-Length Substrings

		9.9. Sorting Hostnames in Domain Order

		9.10. Sorting Dotted-Quad IP Values in Numeric Order

		9.11. Floating Values to the Head or Tail of the Sort Order

		9.12. Defining a Custom Sort Order

		9.13. Sorting ENUM Values

		10. Generating Summaries		10.0. Introduction

		10.1. Summarizing with COUNT()

		10.2. Summarizing with MIN() and MAX()

		10.3. Summarizing with SUM() and AVG()

		10.4. Using DISTINCT to Eliminate Duplicates

		10.5. Creating a View to Simplify Using a Summary

		10.6. Finding Values Associated with Minimum and Maximum Values

		10.7. Controlling String Case Sensitivity for MIN() and MAX()

		10.8. Dividing a Summary into Subgroups

		10.9. Handling NULL Values with Aggregate Functions

		10.10. Selecting Only Groups with Certain Characteristics

		10.11. Using Counts to Determine Whether Values Are Unique

		10.12. Grouping by Expression Results

		10.13. Summarizing Noncategorical Data

		10.14. Finding Smallest or Largest Summary Values

		10.15. Producing Date-Based Summaries

		10.16. Working with Per-Group and Overall Summary Values
 Simultaneously

		10.17. Generating a Report that Includes a Summary and a List

		10.18. Generating Summaries from Temporary Result Sets

		11. Using Stored Routines, Triggers, and Scheduled Events		11.0. Introduction

		11.1. Creating Compound-Statement Objects

		11.2. Using Stored Functions to Simplify Calculations

		11.3. Using Stored Procedures to Produce Multiple
 Values

		11.4. Using Triggers to Log Changes to a Table

		11.5. Using Events to Schedule Database Actions

		11.6. Writing Helper Routines for Executing Dynamic SQL

		11.7. Detecting “No More Rows” Conditions Using Condition Handlers

		11.8. Catching and Ignoring Errors with Condition Handlers

		11.9. Raising Errors and Warnings

		11.10. Logging Errors by Accessing the Diagnostic Area

		11.11. Using Triggers to Preprocess or Reject Data

		12. Working with Metadata		12.0. Introduction

		12.1. Determining the Number of Rows Affected by a Statement

		12.2. Obtaining Result Set Metadata

		12.3. Listing or Checking the Existence of Databases or Tables

		12.4. Listing or Checking the Existence of Views

		12.5. Accessing Table Column Definitions

		12.6. Getting ENUM and SET Column Information

		12.7. Getting Server Metadata

		12.8. Writing Applications That Adapt to the MySQL Server Version

		12.9. Getting Child Tables That Reference a Specific Table via Foreign Key Constraints

		12.10. Listing Triggers

		12.11. Listing Stored Routines and Scheduled Events

		12.12. Listing Installed Plug-Ins

		12.13. Listing Character Sets and Collations

		12.14. Listing CHECK Constraints

		13. Importing and Exporting Data		13.0. Introduction

		13.1. Importing Data with LOAD DATA and mysqlimport

		13.2. Specifying Column and Line Delimiters

		13.3. Dealing with Quotes and Special Characters

		13.4. Handling Duplicate Key Values

		13.5. Obtaining Diagnostics About Bad Input Data

		13.6. Skipping Datafile Lines

		13.7. Specifying Input Column Order

		13.8. Preprocessing Input Values Before Inserting Them

		13.9. Ignoring Datafile Columns

		13.10. Importing CSV Files

		13.11. Exporting Query Results from MySQL

		13.12. Importing and Exporting NULL Values

		13.13. Exporting Data in SQL Format

		13.14. Importing SQL Data

		13.15. Exporting Query Results as XML

		13.16. Importing XML into MySQL

		13.17. Importing Data in JSON Format

		13.18. Importing Data from MongoDB

		13.19. Exporting Data in JSON Format

		13.20. Guessing Table Structure from a Datafile

		14. Validating and Reformatting Data		14.0. Introduction

		14.1. Using the SQL Mode to Reject Bad Input Values

		14.2. Using CHECK Constraints to Reject Invalid Values

		14.3. Using Triggers to Reject Input Values

		14.4. Writing an Input-Processing Loop

		14.5. Putting Common Tests in Libraries

		14.6. Using Pattern Matching to Validate Data

		14.7. Using Patterns to Match Broad Content Types

		14.8. Using Patterns to Match Numeric Values

		14.9. Using Patterns to Match Dates or Times

		14.10. Using Patterns to Match Email Addresses or URLs

		14.11. Using Table Metadata to Validate Data

		14.12. Using a Lookup Table to Validate Data

		14.13. Converting Two-Digit Year Values to Four-Digit Form

		14.14. Performing Validity Checking on Date or Time Subparts

		14.15. Writing Date-Processing Utilities

		14.16. Importing Non-ISO Date Values

		14.17. Exporting Dates Using Non-ISO Formats

		14.18. Preprocessing and Importing a File

		15. Generating and Using Sequences		15.0. Introduction

		15.1. Generating a Sequence with AUTO_INCREMENT Columns

		15.2. Choosing the Data Type for a Sequence Column

		15.3. Deleting Rows Without Changing a Sequence

		15.4. Retrieving Sequence Values

		15.5. Renumbering an Existing Sequence

		15.6. Extending the Range of a Sequence Column

		15.7. Reusing Values at the Top of a Sequence

		15.8. Ensuring That Rows Are Renumbered in a Particular Order

		15.9. Sequencing an Unsequenced Table

		15.10. Managing Multiple Auto-Increment Values Simultaneously

		15.11. Using Auto-Increment Values to Associate Tables

		15.12. Using Sequence Generators as Counters

		15.13. Generating Repeating Sequences

		15.14. Using Custom Increment Values

		15.15. Using Window Functions to Number Rows in the Result Set

		15.16. Generating Series with Recursive CTEs

		15.17. Creating and Storing Custom Sequences

		16. Using Joins and Subqueries		16.0. Introduction

		16.1. Finding Matches Between Tables

		16.2. Finding Mismatches Between Tables

		16.3. Identifying and Removing Mismatched or Unattached Rows

		16.4. Comparing a Table to Itself

		16.5. Producing Candidate-Detail Lists and Summaries

		16.6. Enumerating a Many-to-Many Relationship

		16.7. Finding Per-Group Minimum or Maximum Values

		16.8. Using a Join to Fill or Identify Holes in a List

		16.9. Using a Join to Control Query Sort Order

		16.10. Joining Results of Multiple Queries

		16.11. Referring to Join Output Column Names in Programs

		17. Statistical Techniques		17.0. Introduction

		17.1. Calculating Descriptive Statistics

		17.2. Calculating Descriptive Statistics for Groups

		17.3. Generating Frequency Distributions

		17.4. Counting Missing Values

		17.5. Calculating Linear Regressions or Correlation Coefficients

		17.6. Generating Random Numbers

		17.7. Randomizing a Set of Rows

		17.8. Selecting Random Items from a Set of Rows

		17.9. Calculating Successive-Row Differences

		17.10. Finding Cumulative Sums and Running Averages

		17.11. Assigning Ranks

		17.12. Computing Team Standings

		18. Handling Duplicates		18.0. Introduction

		18.1. Preventing Duplicates from Occurring in a Table

		18.2. Having More Than One Unique Key in the Table

		18.3. Dealing with Duplicates When Loading Rows into a Table

		18.4. Counting and Identifying Duplicates

		18.5. Eliminating Duplicates from a Table

		19. Working with JSON		19.0. Introduction

		19.1. Choosing the Right Data Type

		19.2. Inserting JSON Values

		19.3. Validating JSON

		19.4. Formatting JSON Values

		19.5. Extracting Values from JSON

		19.6. Searching Inside JSON

		19.7. Inserting New Elements into a JSON Document

		19.8. Updating JSON

		19.9. Removing Elements from JSON

		19.10. Merging Two or More JSON Documents into One

		19.11. Creating JSON from Relational Data

		19.12. Converting JSON into Relational Format

		19.13. Investigating JSON

		19.14. Working with JSON in MySQL as a Document Store

		20. Performing Transactions		20.0. Introduction

		20.1. Choosing a Transactional Storage Engine

		20.2. Performing Transactions Using SQL

		20.3. Performing Transactions from Within Programs

		20.4. Performing Transactions in Perl Programs

		20.5. Performing Transactions in Ruby Programs

		20.6. Performing Transactions in PHP Programs

		20.7. Performing Transactions in Python Programs

		20.8. Performing Transactions in Go Programs

		20.9. Using Context-Aware Functions to Handle Transactions in Go

		20.10. Performing Transactions in Java Programs

		21. Query Performance		21.0. Introduction

		21.1. Creating Indexes

		21.2. Creating a Surrogate Primary Key

		21.3. Maintaining Indexes

		21.4. Deciding When a Query Can Use an Index

		21.5. Deciding the Order for Multiple Column Indexes

		21.6. Using Ascending and Descending Indexes

		21.7. Using Function-Based Indexes

		21.8. Using Indexes on Generated Columns with JSON Data

		21.9. Using Full Text Indexes

		21.10. Utilizing Spatial Indexes and Geographical Data

		21.11. Creating and Using Histograms

		21.12. Writing Performant Queries

		22. Server Administration		22.0. Introduction

		22.1. Configuring the Server

		22.2. Managing the Plug-In Interface

		22.3. Controlling Server Logging

		22.4. Rotating or Expiring Logfiles

		22.5. Rotating Log Tables or Expiring Log Table Rows

		22.6. Configuring Storage Engines

		23. Monitoring the MySQL Server		23.0. Introduction

		23.1. Why Monitor the MySQL Server?

		23.2. Discovering Sources of MySQL Monitoring Information

		23.3. Checking Server Uptime and Progress

		23.4. Troubleshooting Server Start Problems

		23.5. Determining the IO Utilization of the MySQL Server

		23.6. Determining MySQL Thread’s CPU Utilization

		23.7. Determining if MySQL Has Reached Its Connection Limits

		23.8. Verifying That the Buffer Pool Is Sized Properly

		23.9. Finding Information About the Storage Engine

		23.10. Using the Error Log File to Troubleshoot MySQL Server Crashes

		23.11. Slow Query Log File

		23.12. Monitoring with the General Query Log

		23.13. Using the Binary Log to Identify Changes

		24. Security		24.0. Introduction

		24.1. Understanding the mysql.user Table

		24.2. Managing User Accounts

		24.3. Implementing a Password Policy

		24.4. Checking Password Strength

		24.5. Expiring Passwords

		24.6. Assigning Yourself a New Password

		24.7. Resetting an Expired Password

		24.8. Finding and Removing Anonymous Accounts

		24.9. Modifying “Any Host” and “Many Host”
 Accounts

		24.10. Using TLS (SSL)

		24.11. Using Roles

		24.12. Using Views to Secure Data Access

		24.13. Using Stored Routines to Secure Data Modifications

		Index

		About the Authors

OEBPS/assets/8.png

OEBPS/assets/2.png

