

Modern Data

Engineering with

Apache Spark

A Hands-On Guide for Building

Mission-Critical Streaming Applications

—

Scott Haines

Modern Data Engineering

with Apache Spark

A Hands-On Guide for Building

Mission-Critical Streaming

Applications

Scott Haines

 Modern Data Engineering with Apache Spark: A Hands-On Guide for Building

 Mission-Critical Streaming Applications

Scott Haines

San Jose, CA, USA

ISBN-13 (pbk): 978-1-4842-7451-4

ISBN-13 (electronic): 978-1-4842-7452-1

https://doi.org/10.1007/978-1-4842-7452-1

Copyright © 2022 by Scott Haines

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr

Acquisitions Editor: Jonathan Gennick

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Copyeditor: Kezia Endsley

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite 4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.

com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub.

Printed on acid-free paper

 To my wife Lacey, thanks for putting up with me during the long nights

 and weekends, and for being my rock during the ups and downs of the

 writing process. Thanks for always supporting my wild ideas.

Table of Contents

About the Author ���xvii

About the Technical Reviewer ��xix

Acknowledgments ��xxi

Introduction ��xxiii

Part I: The Fundamentals of Data Engineering with Spark ����������������������������� 1

Chapter 1: Introduction to Modern Data Engineering ��� 3

The Emergence of Data Engineering ��� 4

Before the Cloud �� 4

Automation as a Catalyst ��� 5

The Cloud Age �� 6

The Public Cloud �� 6

The Origins of the Data Engineer �� 7

The Many Flavors of Databases �� 9

OLTP and the OLAP Database �� 9

No Schema� No Problem� The NoSQL Database �� 11

The NewSQL Database �� 12

Thinking about Tradeoffs ��� 13

Cloud Storage�� 13

Data Warehouses and the Data Lake �� 14

The Data Warehouse �� 14

The Data Lake �� 15

v

Table of ConTenTs

The Data Pipeline Architecture �� 20

The Data Pipeline��� 21

Stream Processing �� 24

Kafka’s Distributed Architecture �� 26

Summary��� 28

Chapter 2: Getting Started with Apache Spark ��� 31

The Apache Spark Architecture ��� 32

The MapReduce Paradigm �� 32

From Data Isolation to Distributed Datasets �� 35

The Spark Programming Model ��� 36

The Spark Application Architecture ��� 40

The Role of the Driver Program ��� 41

The Role of the Cluster Manager ��� 42

Bring Your Own Cluster �� 43

The Role of the Spark Executors ��� 44

The Modular Spark Ecosystem �� 45

Getting Up and Running with Spark �� 46

Installing Spark�� 46

Taking Spark for a Test Ride �� 49

The Spark Shell ��� 50

Exercise 2-1: Revisiting the Business Intelligence Use Case �� 50

Defining the Problem ��� 51

Solving the Problem �� 51

Problem 1: Find the Daily Active Users for a Given Day ��� 53

Problem 2: Calculate the Daily Average Number of Items Across All User Carts ������������������� 54

Problem 3: Generate the Top Ten Most Added Items Across All User Carts ��������������������������� 55

Exercise 2-1: Summary ��� 56

Summary��� 57

vi

Table of ConTenTs

Chapter 3: Working with Data �� 59

Docker ��� 60

Containers ��� 60

Docker Desktop ��� 61

Configuring Docker �� 61

Apache Zeppelin ��� 63

Interpreters �� 63

Notebooks ��� 63

Preparing Your Zeppelin Environment ��� 64

Running Apache Zeppelin with Docker �� 65

Docker Network ��� 66

Docker Compose ��� 67

Using Apache Zeppelin �� 70

Binding Interpreters ��� 72

Exercise 3-1: Reading Plain Text Files and Transforming DataFrames ���������������������������������� 73

Working with Structured Data ��� 77

Exercise 3-2: DataFrames and Semi-Structured Data ��� 77

Using Interpreted Spark SQL ��� 84

Exercise 3-3: A Quick Introduction to SparkSQL �� 85

Your First Spark ETL �� 88

Exercise 3-4: An End-to-End Spark ETL �� 88

Summary��� 90

Chapter 4: Transforming Data with Spark SQL and the DataFrame API ����������������� 93

Data Transformations �� 93

Basic Data Transformations ��� 94

Exercise 4-1: Selections and Projections �� 94

Joins ��� 99

Exercise 4-2: Expanding Data Through Joins �� 99

Putting It All Together �� 111

Exercise 4-3: Problem Solving with SQL Expressions and Conditional Queries ������������������ 111

Summary��� 114

vii

Table of ConTenTs

Chapter 5: Bridging Spark SQL with JDBC�� 117

Overview ��� 117

MySQL on Docker Crash Course ��� 118

Starting Up the Docker Environment ��� 118

Docker MySQL Config �� 119

Exercise 5-1: Exploring MySQL 8 on Docker�� 121

Using RDBMS with Spark SQL and JDBC �� 124

Managing Dependencies ��� 125

Exercise 5-2: Config-Driven Development with the Spark Shell and JDBC ������������������������� 126

Continued Explorations ��� 145

Good Schemas Lead to Better Designs ��� 145

Write Customer Records with Minimal Schema �� 146

Deduplicate, Reorder, and Truncate Your Table �� 149

Summary��� 151

Chapter 6: Data Discovery and the Spark SQL Catalog ��� 153

Data Discovery and Data Catalogs �� 154

Why Data Catalogs Matter ��� 154

Data Wishful Thinking �� 155

Data Catalogs to the Rescue ��� 156

The Apache Hive Metastore �� 156

Metadata with a Modern Twist �� 157

Exercise 6-1: Enhancing Spark SQL with the Hive Metastore ��� 157

Exercise 6-1: Summary ��� 167

The Spark SQL Catalog ��� 167

Exercise 6-2: Using the Spark SQL Catalog ��� 167

Exercise 6-2: Summary ��� 191

The Spark Catalyst Optimizer �� 191

Introspecting Spark’s Catalyst Optimizer with Explain �� 192

Logical Plan Parsing �� 193

Logical Plan Analysis ��� 194

viii

Table of ConTenTs

Logical Plan Optimization �� 195

Physical Planning �� 195

Java Bytecode Generation ��� 196

Datasets �� 197

Exercise 6-3: Converting DataFrames to Datasets �� 198

Dataset Aliasing ��� 199

Mixing Catalyst and Scala Functionality �� 200

Summary��� 201

Chapter 7: Data Pipelines and Structured Spark Applications ����������������������������� 203

Data Pipelines ��� 203

Pipeline Foundations ��� 205

Spark Applications: Form and Function �� 206

Interactive Applications ��� 206

Batch Applications ��� 207

Streaming Applications�� 210

Designing Spark Applications ��� 211

Use Case: CoffeeCo and the Ritual of Coffee �� 213

Thinking about Data �� 213

Data Storytelling and Modeling Data ��� 214

Exercise 7-1: Data Modeling �� 214

Exercise 7-1: Summary ��� 219

From Data Model to Data Application ��� 220

Every Application Begins with an Idea �� 220

The Idea ��� 220

Exercise 7-2: Spark Application Blueprint ��� 221

Connecting the Dots �� 232

Application Goals ��� 232

Exercise 7-3: The SparkEventExtractor Application ��� 233

Testing Apache Spark Applications ��� 244

Adding Test Dependencies �� 244

Summary��� 251

ix

Table of ConTenTs

Part II: The Streaming Pipeline Ecosystem ��� 253

Chapter 8: Workflow Orchestration with Apache Airflow ������������������������������������� 255

Workflow Orchestration �� 256

Apache Airflow �� 257

When Orchestration Matters �� 258

Working Together ��� 258

Exercise 8-1: Getting Airflow Up and Running ��� 259

The Core Components of Apache Airflow �� 268

Tasks ��� 268

Operators ��� 268

Schedulers and Executors ��� 270

Scheduling Spark Batch Jobs with Airflow ��� 272

Exercise 8-2: Installing the Spark Airflow Provider and Running a Spark DAG ������������������� 272

Exercise 8-2: Summary ��� 283

Running the SparkEventExtractorApp using Airflow ��� 283

Starting with a Working Spark Submit �� 283

Exercise 8-3: Writing and Running the Customer Ratings Airflow DAG ������������������������������� 284

Looking at the Hybrid Architecture �� 289

Continued Explorations ��� 293

Creating a User �� 293

Summary��� 295

Chapter 9: A Gentle Introduction to Stream Processing ��������������������������������������� 297

Stream Processing �� 299

Use Case: Real-Time Parking Availability �� 299

Time Series Data and Event Streams �� 301

The Trouble with Time ��� 303

Priority Ordered Event Processing Patterns �� 305

Foundations of Stream Processing ��� 307

Building Reliable Streaming Data Systems ��� 308

Managing Streaming Data Accountability ��� 308

x

Table of ConTenTs

Dealing with Data Problems in Flight �� 308

Selecting the Right Data Protocol for the Job ��� 313

Remote Procedure Calls �� 319

Summary��� 322

Chapter 10: Patterns for Writing Structured Streaming Applications ������������������ 323

What Is Apache Spark Structured Streaming? �� 324

Unbounded Tables and the Spark Structured Streaming Programming Model ������������������������� 324

Processing Modes ��� 326

Exercise Overview ��� 330

The Challenge �� 330

The OrderEvent Format ��� 331

Exercise 10-1: Using Redis Streams to Drive Spark Structured Streaming ������������������������ 332

Exercise 10-2: Breaking Down the Redis Streams Application ��� 344

DataStreamReader �� 345

DataStreamWriter �� 347

Application Entry Point �� 349

Exercise 10-2: Summary ��� 350

Exercise 10-3: Reliable Stateful Stream Processing with Checkpoints ������������������������������� 350

Exercise 10-3: Summary ��� 354

Exercise 10-4: Using Triggers to Control Application Runtime Behavior ����������������������������� 354

Exercise 10-4: Summary ��� 362

Summary��� 363

Chapter 11: Apache Kafka and Spark Structured Streaming ������������������������������� 365

Apache Kafka in a Nutshell ��� 365

Asynchronous Communication �� 365

Horizontal Scalability ��� 366

High Service Availability and Consistency ��� 366

Disaster Recovery�� 367

Event Streams and Data Pipelines Ecosystem �� 367

Chapter Exercises ��� 369

xi

Table of ConTenTs

Exercise 11-1: Getting Up and Running with Apache Kafka �� 369

Exercise 11-1: Materials �� 369

Spinning Up Your Local Environment ��� 369

Creating Your First Kafka Topic �� 370

Kafka Topic Management �� 373

Truncating Topics ��� 378

Deleting Kafka Topics �� 379

Securing Access to Topics ��� 380

Exercise 11-1: Summary ��� 382

Exercise 11-2: Generating Binary Serializable Event Data with Spark and

Publishing to Kafka ��� 382

Exercise 11-2: Materials �� 383

CoffeeOrder Event Format ��� 383

Compiling Protobuf Messages ��� 384

Protobuf Message Interoperability with Spark and Kafka ��� 385

Exercise 11-2: Summary ��� 394

Exercise 11-3: Consuming Streams of Serializable Structured Data with Spark ���������������������� 395

Exercise 11-3: Materials �� 395

Consuming Binary Data from Apache Kafka �� 397

From Kafka Rows to Datasets ��� 400

Running the Consumer Application ��� 402

Exercise 11-3: Summary ��� 404

Summary��� 404

Chapter 12: Analytical Processing and Insights ��� 405

Exercises and Materials �� 405

Setting Up the Environment ��� 406

Spinning Up the Local Environment �� 408

Using Common Spark Functions for Analytical Preprocessing ��� 408

Exercise 12-1: Preprocessing Datasets for Analytics �� 408

Working with Timestamps and Dates �� 409

Time Zones and the Spark SQL Session �� 414

xii

Table of ConTenTs

Seasonality, Time Zones, and Insights ��� 415

Timestamps and Dates Summary ��� 416

Preparing Data for Analysis ��� 417

Replacing Null Values on a DataFrame �� 417

Labeling Data Using Case Statements��� 419

User-Defined Functions in Spark ��� 422

Regarding User-Defined Functions �� 428

Exercise 12-1: Summary ��� 429

Analytical Processing and Insights Engineering ��� 429

Data Aggregation ��� 429

Exercise 12-2: Grouped Data, Aggregations, Analytics, and Insights����������������������������������� 430

Relational Grouped Datasets ��� 430

Columnar Aggregations with Grouping �� 430

Analytical Window Functions ��� 445

Exercise 12-2: Summary ��� 449

Summary��� 449

Part III: Advanced Techniques �� 451

Chapter 13: Advanced Analytics with Spark Stateful Structured Streaming ������� 453

Exercises and Materials �� 453

Stateful Aggregations with Structured Streaming �� 454

Creating Windowed Aggregations Over Time��� 454

Window Functions vs� Windowing ��� 455

Windowing and Controlling Output �� 459

Streaming Output Modes ��� 460

Watermarks for Streaming Data �� 463

Chapter Exercises Overview ��� 464

Input Data Format (CoffeeOrder) ��� 464

Output Windowed Store Revenue Aggregates ��� 465

xiii

Table of ConTenTs

Exercise 13-1: Store Revenue Aggregations ��� 465

Structured Streaming Application Trait �� 465

Spark Stateful Aggregations App ��� 469

Streaming Aggregations �� 470

Exercise 13-1: Summary ��� 472

Typed Arbitrary Stateful Computations ��� 472

KeyValueGroupedDataset �� 472

Iterative Computation with *mapGroupsWithState �� 473

Exercise 13-2: Arbitrary Stateful Computations on Typed Datasets �� 474

SparkTypedStatefulAggregationsApp �� 474

TypedRevenueAggregates ��� 475

TypedStoreRevenueAggregates State Function �� 478

Exercise 13-2: Summary ��� 483

Exercise 13-3: Testing Structured Streaming Applications ��� 484

MemoryStream �� 484

Exercise 13-3: Summary ��� 487

Summary��� 487

Chapter 14: Deploying Mission-Critical Spark Applications on Spark

Standalone �� 489

Deployment Patterns��� 489

Running Spark Applications �� 490

Deploying Spark Applications �� 491

Spark Cluster Modes and Resource Managers ��� 491

Spark Standalone Mode �� 492

Spark Standalone: High Availability Mode ��� 493

Deploy Modes: Client vs� Cluster Mode ��� 495

Client Mode ��� 495

Cluster Mode ��� 497

Distributed Shared Resources and Resource Scheduling for Multi-Tenancy ���������������������� 499

Controlling Resource Allocations, Application Behavior, and Scheduling ���������������������������� 500

Elastically Scaling Spark Applications with Dynamic Resource Allocation ������������������������� 505

xiv

Table of ConTenTs

Spark Listeners and Application Monitoring ��� 510

Spark Listener ��� 510

Observing Structured Streaming Behavior with the StreamingQueryListener �������������������� 514

Monitoring Patterns ��� 518

Spark Standalone Cluster and Application Migration Strategies ��� 519

Regarding Containers and Spark Standalone �� 520

Managed Spark ��� 520

Summary��� 521

Chapter 15: Deploying Mission-Critical Spark Applications on Kubernetes ��������� 523

Kubernetes 101 ��� 524

Part 1: Getting Up and Running on Kubernetes ��� 525

Using Minikube to Power Local Kubernetes �� 525

A Hands-On Tour of the Kubernetes APIs��� 527

Nodes �� 527

Common Node Services and Responsibilities ��� 528

Viewing All Cluster Nodes �� 528

Namespaces �� 529

Creating a Namespace �� 530

Deleting a Namespace��� 530

Creating Kubernetes Resources with Apply �� 530

Pods, Containers, and Deployments �� 531

What Is a Pod? ��� 532

Creating a Redis Pod Spec �� 533

Scheduling the Redis Pod �� 535

Listing, Describing, and Locating Pods �� 536

Executing Commands on the Redis Pod �� 537

Deleting the Redis Pod �� 537

Deployments and Handling Automatic Recovery on Failure �� 538

Creating a Kubernetes Deployment ��� 538

Deployments and Resource Management ��� 540

Persisting Data Between Deploys �� 542

xv

Table of ConTenTs

Kubernetes Services and DNS ��� 547

Creating a Service ��� 547

Viewing Services (SVC) �� 548

Part 1: Summary �� 548

Part 2: Deploying Spark Structured Streaming Applications on Kubernetes����������������������������� 549

Spark Namespace, Application Environment, and Role-Based Access Controls ����������������� 549

Redis Streams K8s Application �� 554

Building the Redis Streams Application �� 554

Building the Application Container �� 555

Deploying the Redis Streams Application on Kubernetes�� 556

Part 2: Summary �� 569

Conclusion �� 569

After Thoughts ��� 570

Index ��� 573

xvi

About the Author

Scott Haines is a seasoned software engineer with over

20 years of experience. He has worn many hats during his

career, across the entire software stack, from front to back.

He has worked for a wide variety of companies, from startups

to global corporations, and across various industries, from

video and telecommunications, to news, sports, and gaming,

as well as data, insights, and analytics. He has held positions

at notable companies, including Hitachi Data Systems,

Convo Communications, Yahoo!, Twilio, and joined Nike in

early 2022. Scott most recently a senior principal software engineer at Twilio, where he

split his time between architecture and applied data systems and platform engineering.

Scott has enjoyed working on distributed systems, real-time communications platforms,

and enterprise- scale data platforms for over a decade and was foundational in helping to

drive Apache Spark adoption for stream processing at Twilio. He is an active member of

the Apache Spark community, a Databricks Beacon, and speaks regularly at conferences

like the Data+AI Summit, Open Data Science Conference, and others.

In his free time, Scott enjoys reading, learning, writing, teaching, and mentoring.

Follow him on Twitter (@newfront) to get tips and tricks for working with data systems

at scale.

xvii

About the Technical Reviewer

Ed Elliott is a data engineer who has been working in IT for

20 years, the last 15 years focused on data. He uses Apache

Spark at work and has been contributing to the Microsoft

.NET for Apache Spark open source project since it was

released in 2019. Ed has been blogging and writing since

2014 on his own blog as well as for SQL Server Central and

Redgate. He has spoken at a number of events, such as

SQLBits, SQL Saturday, and the GroupBy conference.

xix

Acknowledgments

There are so many people who have helped me in my career and enabled me to learn

and thrive. There are also many people who helped shape the contents of this book,

implicitly and explicitly. First off, I want to thank the folks who helped build the Voice

Insights product and the Insights Platform over the years at Twilio (Marek Radonsky,

Rohit Gupta, Nivedita Muska, Harshit Rastogi, Amogh Rao, Bhargav Kumar, Maruthi

Kuchi, Kenny Law, Monica Ravichandran, Pavan Kotikalapudi, Jason Dielman, and Vijay

Jagannathan). Thanks for taking an early chance with Apache Spark, and for adopting

Protobuf (even though it was counterculture at the time). Thanks to Oliver Pedersen and

the Yahoo! Games team (Henrik, Arash, Alex, David, Dan, Sal, and Yuan) for introducing

me to C# and Google Protocol Buffers, and for letting me choose my own adventure.

Without your support, I wouldn’t have learned to love streaming systems and wouldn’t

have ever talked with the Boson/Tachyon team (thanks Satish and Shushant for your

patience), where I discovered Apache Storm and learned to love and trust Redis.

A special thanks to Nivedita and Angela (at Twilio) for helping to workshop the

hands-on material in this book, and for making suggestions and telling me what was

confusing. Thanks to the Apache Spark community, for continuing to make Spark such

a joy to use and to Databricks for helping to keep the spirit and community alive. A

special thanks to Holden Karau for all you’ve done to help make Spark approachable

and testable, and to Denny Lee, Jules Damji, and Karen Bajza-Terlouw, for helping me

feel like part of the Spark community and for the many conversations we’ve had over

the years. I want to also give a special thank you to Ed Elliot for putting up with endless

chapters and still providing a great technical review. Your comments and suggestions

have helped bring things together. Thanks as well to the folks at Apress (Jill Balzano and

Jonathan Gennick) for the advice and help while I was stuck overthinking things on my

first complete book. Thanks for everything.

xxi

Introduction

I set out to write this book during the uncertainty of the COVID-19 pandemic. It was at a

time where we, as a people, spent more and more time indoors (if we could) distracting

ourselves from the outside world in the form of increased digital connectivity and

entertainment. In the place of social interactions in real-life, we went online. It became

routine to meet up with friends and family for calls over Zoom and we focused on the

people (and things) that mattered most to us. We shared our lives and worlds the only

way we could: digitally. Fast forward to today, more than a year later, and while the

pandemic is still here, there is hope now. I am hopeful.

This is definitely not the way I imagined I would start my first book, with a

retrospective, but as we look toward the future, it is hard not to see the lasting impact the

last two years (2020-2022) has had on the very way humanity interacts with the world. As

more experiences shift to virtual and more and more collaboration takes place online,

we need to take a fundamentally different approach to how we architect our next-

generation platforms, frameworks, and technologies. The magnitude shifts in system

scale and processing power require evolutionary thinking, revolutionary data platforms,

and data-centric ecosystems to emerge to power this digital future. Hyper connectivity

and intelligent automation will power real-time, consistent data systems at an incredible

scale and today is just the beginning.

This book is not about the future, but rather it teaches you how to build reliable

data systems today, harnessing the incredible power of Apache Spark to orchestrate

consistent scalable streaming applications built from the fundamental building blocks

of the modern data ecosystem, by you, the modern data engineer. Using a hands-on

approach, you learn to leverage many of the best practices and problem-solving skills

necessary to make it in the exciting field of data engineering.

xxiii

InTroduCTIon

 About the Book

This book is an introduction to building consistent, “mission-critical” streaming

applications using Apache Spark. You will not immediately start writing streaming

applications on page 1, but rather you will work hands-on, solving small problems using

Spark and a wide array of tools to help you along the way. Each chapter introduces

a critical foundation, a new tool in your data engineering toolbox, and as the book

progresses, you will gain exposure to many of the common data systems and services

that work well with Apache Spark. By the end of the book, you will have written and

deployed a fully tested Spark Structured Streaming application on Kubernetes. You will

have an entire containerized local data platform at your disposal, to take the ideas and

implementations covered in this book with you to your next project. For some readers,

what you learn throughout this book may be a refresher, and for others the lessons

learned next may feel like a glimpse into the future of data. Either way, the journey of

discovery will be worth it.

 Who Should Read this Book?

You should read this book if you are a software engineer looking to transition your

career toward data engineering, or if you are a data scientist or analyst, looking to get

ramped up in using Apache Spark. This book teaches you the core APIs and common

components of Spark, with a focus on using Spark SQL and writing reusable, compiled

applications. This book also acts as a gentle introduction to writing Scala to build

reliable Apache Spark applications. This book can be used as a resource by data

platform engineers or software architects who are looking to understand how to build

reliable streaming systems using open-source software, and as a primer for how to build

composable distributed data systems. Finally, this book is a hands-on journey, and

can be experienced by anyone with an interest in data systems, as long as you have a

computer and are curious about learning new things.

xxiv

InTroduCTIon

 Hands-On Material and Setup

This book contains hands-on exercises from Chapter 3 to Chapter 15. To follow along and get the most from the book, you need to download the book materials from GitHub.

Once you have downloaded the materials, the chapters will be much more fun and feel

more interactive.

 GitHub Location for the Book

https://github.com/newfront/spark-moderndataengineering

 Caveats

The contents of this book are written with macOS and Linux systems in mind. Although

you can run a good amount of the book material using Docker on Windows, the

examples and runtime scripts are written for Bash execution, and have not been fully

tested on Windows.

xxv

PART I

The Fundamentals of Data

Engineering with Spark

CHAPTER 1

Introduction to Modern

Data Engineering

Given you now have this book in hand, I can make two predictions about you. My first

prediction is that you are currently working as a data engineer and want to understand

how to hone your craft and take full advantage of the Apache Spark ecosystem to do so.

However, if my first prediction fell flat then I believe you are interested in what it takes to

become a data engineer and would like a friendly hands-on guide to get you there.

Regardless of the accuracy of my predictions, our journey begins in the same place—

on this very page with the same goal in mind. The goal is that, by the end of this book,

you’ll have grown in new and hopefully unexpected ways. It is my honest hope that the

additional knowledge, tricks, tips, and hands-on material will have a profound impact on

your career as a data engineer.

This first chapter is simply a history and an introduction to data engineering. You’ll

discover the origins of the specialization, the foundational technologies, and evolutions

that helped shape and steer the modern data revolution. Together, we’ll identify the

common tools and emerging technologies that will be part of your foundational data

engineering toolbox. There is of course a special emphasis on technologies that work

well inside the Apache Spark ecosystem. However, along the way, you’ll discover the

common roles, responsibilities, and challenges required of the modern data engineer

and you’ll see how these essential skills knit together to paint a picture of the modern

data engineering ecosystem.

Note Over time I’ve learned that the best way to remember anything is through

stories. Let’s start from the beginning and rewind (remember VCRs!) to where

data engineering began. This will establish a foundation from which we can fast-

forward to cover the current (and ever-evolving) umbrella we call data engineering.

3

© Scott Haines 2022

S. Haines, Modern Data Engineering with Apache Spark, https://doi.org/10.1007/978-1-4842-7452-1_1

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

 The Emergence of Data Engineering

I started my career in software almost 20 years ago. I remember reading books and

articles written by engineers reminiscing about when they started their careers and how

the very landscape of software had transformed and evolved during their careers for

the better. This was often due to evolving best practices and design patterns, as well as

emerging technologies and programming languages that simplified common problems

across the board.

My history lesson begins with how things were and then moves to catalog how things

have changed over time. It reveals the technological waypoints, novel innovations, and

seemingly simple improvements that make our jobs today more enjoyable, while also

providing new challenges and thrills that we all tend to seek in our careers. So, without

further ado, let’s rewind our clocks and go back to a critical point in time—the dawn of

the data engineer.

 Before the Cloud

I was both fortunate and unfortunate to start my career in what I like to call the awkward

 pre-cloud phase. I feel fortunate because I can appreciate the modern conveniences

introduced with good version control, simplified and reliable cloud orchestration,

remote debuggers (debuggers in general), log aggregators, rich unit and integration test

frameworks, the general availability of the cloud, and so much more. With that said, let’s

look at where things were pre-cloud.

Before the general availability of cloud computing, the world looked a bit different,

and the pace of things was a bit slower. In fact, that would be an understatement—things

were many orders of magnitude slower. Rewinding back to early 2000s, we had servers

and spinning disk hard drives (HDDs) and decent Internet connectivity between data

centers (or at least within racks at the data center). However, the pace of most projects

felt glacial from the initial idea and proof-of-concept, through development, testing,

manual quality assurance (QA) sign-offs, until that special point in the future when you

finally got your service fully deployed. Today, what used to take multiple months, if not

years, can be done in a matter of weeks and sometimes days.

Back in the early 2000s, the server-side stack looked similar running the Linux or

Windows operating systems, but the biggest difference came with disk space, compute

(CPU), and memory (RAM); these were contented resources. I remember waiting for

six months to complete the process of purchasing new hardware. These things always

4

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

started with proposals, specifications, purchase orders, shipping, waiting, getting the

servers installed (in the data/colocation center), IP address allocations, and finally

the result was network addressable computers . However, people made the most of the

simple tools in their toolboxes, piecing things together by using the general availability

of websites, text-based messaging, text-based email, and fancy early HTML-based email.

They also used other forms of connected communications, from text to audio, and even

low- resolution video.

It was also not uncommon at the time for companies to host their services in a single

location, on servers they owned and maintained, using network hardware they also

owned, while paying mainly for reliable power, secured connections to the Internet, and

a safe facility that had staff around to restart servers, or do minor diagnostics and triage.

This may feel like a far cry from what we’re used to today, but it was not uncommon

back then for large teams to work on large yearly software releases, instead of the

sometimes-daily continuous releases we see today. This time was a mere steppingstone,

or waypoint, on the journey toward the platforms we run today.

 Automation as a Catalyst

Around this time (late 90s-early 2000s), there was a second option for hosting websites

and running databases (rather than doing it yourself), and that was to use hosting

providers. Companies like Rackspace, GoDaddy, and Media Temple reigned supreme and helped paved the way for the foundational cloud computing powerhouses of today.

They essentially did this by simplifying the steps necessary to take a service online,

which reduced the complexity of running systems and services for their customers.

These providers offered a slew of packaged solutions, making it simple to allocate

server space on dedicated virtual machines, assign static IP addresses, register for

domain names, and easily apply and modify the DNS settings to point a domain name to

the services running in these hosted environments.

These are all things that were much harder to do when running your own hardware,

and these providers enabled smaller companies without a dedicated IT staff to get online

and have a web presence. These companies provided essential services, which sped up

the time it took from ideation to having a web experience running online. This would

also become the blueprint for cloud-hosting providers as companies looked to reduce

the complexity of running their systems further, given most still had to operate and

maintain full developer operations teams (DevOps).

5

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

As more and more companies were taking their businesses online, there was a rapid

rise in the quality and demand for better design and overall aesthetic, and a push toward

more feature-rich web experiences. These richer experiences helped to mold more

cutting-edge offerings, as we will see in the next section.

 The Cloud Age

With the rise in better online experiences, there was also a demand for more

personalization and customization of content tailored for the users of a particular

website or web application. The demand for better, smarter experiences also meant a

need for more compute power, more uptime and better reliability, and what would also

end up being massive amounts of data to track the key metrics of these experiences.

Note For those of you wondering, web applications were all the rage in the

mid-2000s. For simplicity, they can be compared to mobile applications or

standard desktop software. There was a time when adobe Flash and hTML5

existed in harmony and enabled unified experiences to be experienced on most

 web browsers.

 The Public Cloud

The company that changed the game and helped start the cloud era was Amazon. They

envisioned and built one of the most widely known and successful cloud infrastructure-

as- a-service offerings, known today as Amazon Web Services (AWS). With the public

debut of AWS in 2006, the modern cloud was born. This was the propellant that fueled the rapid rise of data-first and data-centric ways of thinking. Now anyone and any

company could build on top of Amazon’s foundation.

Netflix is probably the best known for taking a risk and going all in on their AWS bet. As

you probably know, their bet paid off, but at the time no one could possibly have fathomed

what Netflix would be able to achieve today. By shifting focus away from managing

infrastructure, they could focus instead on building a compelling product that today has

achieved fully AI driven personalization, a unique viewing experience available from

almost any device, all without the viewers having to do more than just watch content. What

they built today would have felt like it was science fiction not so long ago.

6

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

At the time, Netflix was in its infancy. It was shipping DVDs to their customers

in the mail and had just launched an initial streaming service using Adobe Flash

and Microsoft’s Silverlight (relics of the web media players of yesteryear) for a small

selection of their films. Netflix however was working on rich analytics systems capable of

collecting, analyzing, and harnessing the power of their customer’s usage data. In order

to analyze and understand the behavior of their customers and generate personalized

recommendations, Netflix leaned on some cutting-edge data stacks and also played

an integral role in the success of Cassandra, which was one of the main players in the NoSQL revolution.

Note We’ll review noSQL databases later in this chapter, but it is important to

state now that data comes in all shapes and sizes. It is very important for data

engineers to be knowledgeable about many alternative database technologies, and

to understand the pros, cons, and risks associated with the different offers.

The thing that Amazon, Netflix, and other successful companies have in common

is that none of their business ventures would have been successful without teams of

dedicated data engineers, data analysts, and data scientists working together to solve

complex problems at massive scale.

In the next section, we look at how data engineering played a critical role, if

sometimes behind the scenes, in the rise of these massively successful companies. You’ll

learn how the roles, responsibilities, and even titles changed over time.

 The Origins of the Data Engineer

Strictly speaking, data engineers have been around for some time. They just went

by different names and were associated with different supporting pillars of the data

umbrella. As a specialization, data engineering emerged from the roots of traditional

 software engineering, data analytics, and machine learning due to an ever-increasing demand for data and the evolving data needs by companies and organizations over time.

The need to bridge these disciplines led to a new engineering specialization focusing on

data quality, availability, accessibility, governance, maintainability, and observability

at scale.

7

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

Back in the day, access to data was a more complex process, and one that required

very specialized skills, especially since databases, at the time, were typically single points

of failure. Given the dependence and importance of data to most organizations, data

access hurdles were lined up, leading to the data finish line. Anyone requesting data, say

for a quarterly report, had to go through a good deal of effort to get some answers to their

data questions (queries). This was done to defend the scarce and fragile data resources

and to protect these data investments, as compute and storage space were much more

expensive. I’m sure you’ve heard horror stories or maybe you’ve even been the one who

took out a database with a single bad query. While this is harder to do today, it wasn’t so

hard just a decade ago.

Data engineering today is essentially all about controlling the flow of data through

services and between different databases, data streams, data lakes, and warehouses. This

flow of data through these data networks supports different access and processing styles

that can be applied to the captured data, ranging from historic data analysis, insight

generation, model training for machine learning and intelligence, as well as fast access

to data for metric serving, operational insights and monitoring, and for real-time model

serving and intelligence.

To be successful and meet the current data demands, data engineers must

understand how to reliably capture, process, and scale the torrents of data that are

generated across the entire data platform, and within the full data ecosystem at large.

This requires a solid understanding of software engineering best practices, distributed

systems, a concrete understanding of SQL (including data modeling, querying, and

query optimization), as well as knowledge pertaining to analytical processing and

querying, and even the basics of statistics and machine learning.

While data engineering overlaps many pillars of the data umbrella, the need to hire

specialists across the board remains. The key difference I’ve seen over time is that the

specialists work to automate processes and remove redundancies. They’re tuned into

and understand how to solve complex problems generically within their domain of

expertise, and as a result these optimizations reduce the need for as many specialists.

Seemingly, the one thing that has remained constant over the years has been these

cycles of evolution and innovation that continuously improved on the prior technology,

software, best practices, and solutions. With respect to data, this means that every year it

is easier to store, access, process, and learn from our data in a safe and secure way.

8

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

Do you remember the last time you talked to a database administrator (DBA)? Or

interacted directly with a data analyst? How about the last time you needed to pull or

schedule a report? Did you use tools that automated some of these processes?

Having a firm grasp of the myriad technologies, operating systems, cloud vendors,

services, frameworks, CPUs, GPUs, or insert the container technology of the week, can

be a Herculean task. All the while, you’re trying to work, study, and learn everything,

or even simply trying to keep up with regular, on-going changes. So, for simplicity, I

am going to let you cheat, and we’ll go through a curated set of core technologies and

concepts that are integral to the data ecosystem at large. They will, of course, be viewed

through the lens of what is important to know for use later in the book, as well as what

works especially well with Apache Spark.

 The Many Flavors of Databases

The database has been around for almost as long as computers have had storage devices.

We can thank Edgar F. Codd for pioneering the relational database (while at IBM), and for providing us with a means to describe our data world through connections and

their relationships. While there are many types of databases out in the wild these days, I

believe there are essentially four flavors of database you will commonly encounter.

 OLTP and the OLAP Database

I am willing to bet that the online transactional processor (OLTP) style database is what most people first associate with the notion of a database. This style of database is used

for bank account transactions, for booking a seat on an airline, and so on. It is especially

well suited to deal with small, isolated (atomic) transactions within the system. These

transactions are inserts, updates, and deletions, to data. Atomic transactions aim to

achieve the smallest isolated change possible, such as decrementing or incrementing a

number, such as the number of seats left on a flight, or the account balance in someone’s

account.

OLTP databases are traditionally architected and optimized for handling

transactions. This means there is a single centralized process running, which achieves

atomicity, consistency, and durability, using write-ahead logging (WAL). The WAL

enables the database to accurately track changes to each tabular row of data so that a

9

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

consistent state can be guaranteed. To achieve fast, durable transactions, this style of

database is non-distributed and runs in a single location. By removing any network IO

(distributed communication/transfer), each transaction can run incredibly fast.

The only problem with running as a non-distributed database is that if you want to

increase the size of the database, with respect to hard drive space or working memory

(RAM), then the only option is to go find a bigger box and migrate to the new server.

Given the OLTP database is a vertically scaling database, it can get expensive to scale to

meet increasing demands.

 The Trouble with Transactions

The online analytical processor (OLAP) style database is built from the same core

technology as the OLTP database, the key difference being the way in which the database

is optimized. There is a cost to transactions, which means that the database needs to

lock table rows that are being written to during a transaction. This process is good for

consistency, as it ensures that concurrent modifications, or possible out-of-order writes,

don’t screw up the integrity of the data.

However, analytical queries are traditionally done against an append-only style

database, which means that data can never be mutated, so there is no need for

transactions. When you remove transactions from the equation, you also remove the

need for row-level locking, since each row of data in the database will always be in its

immutable, or final, form. This is especially important when dealing with analytical

queries, which we look at next.

 Analytical Queries

 Analytical queries got their start under the umbrella of business intelligence (BI). These queries typically involve multiple phases of processing to provide data in the form that

can be used to answer analytical queries. We’ll explore roll ups, pivots, and windowing in Chapter 12, which are common analytical and aggregations computations necessary for analytical processing.

For example, say you were asked to write a query to determine the top sales numbers per

day of the week over the past year, broken down across key geographic regions, and you also

needed to provide the top five categories of goods sold for each day. This query may require

the database to process all rows (data) across all target tables to produce multiple datasets,

defined as views or temporary tables, that would need to be stored as intermediary results,

from each logical phase of the query execution, in memory for fast results.

10

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

A large, analytical query can be an operational burden that consumes a lot of the

database resources (CPU/RAM). These queries can also be hard to maintain (given their

complexity), and difficult to scale up due to the law of large numbers. The law of large

numbers in a nutshell states that as the number of rows and scale of the data (number

of columns) being queried increases (which is normal in the world of Big Data), the

response time of the query will increase proportionally to the number of rows queried

(linearly) in the best case and (exponentially) in worst case. While being slow, these

queries would have a chance to eventually complete; however with the overhead of row-

level locking, due to transactions, a large analytical query may not even be possible.

While relational databases capable of running these OLTP/OLAP queries like

 MySQL, PostgreSQL, DB2, SQL Server, and Oracle are popular for asking questions across large, related/connected data, there is another style of database that handles

independent/denormalized data that’s accessed through keys rather than queries across

indexed tables. This next database flavor that’s important to know about is called the

 NoSQL database.

 No Schema. No Problem. The NoSQL Database

I remember going to a meetup at Carnegie Mellon in California (with the Silicon Valley

Cloud Computing Meetup Group) and the folks presenting were all excitedly geeking out

on the pros/cons of this new style of database. It was optimized for incredible speed (fast

random access) and horizontal scalability (enabling the database to be distributed over

many machines storing previously unseen amounts of data with a hive of machines).

The last bit of icing on the cake was that these databases removed the need for explicit

schemas, or table definitions, prior to writing your first record.

For me, this was day one of the NoSQL revolution. This notion that data didn’t only

have to be relational, or even adhere to a concrete schema, spoke to me. It still speaks

to me but not in the same way as it did at first. No schema also means that the guard

rails are removed, enabling data to be written in non-consistent ways. Without a semi-

defensive system in place to validate and maintain some kind of data consistency, it

can be difficult to build the foundation required for running reliable data systems at

scale. This means you can easily have large sets of corrupt data sitting in this hyper-fast,

scalable, NoSQL database. However, the NoSQL databases also enabled new access

patterns, including the ability for data readers to essentially discover the structure of the

data on-the-fly using schema inference (which we’ll see in Chapter 3) and other schemas on read techniques (which Apache Spark supports as well).

11

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

The NoSQL database is a distributed database. This means that a cluster of one or

more machines encapsulates the database. While this enables the database to scale

horizontally, this also means that some tradeoffs need to be made regarding how to

handle common problems that arise due to the distributed network. These tradeoffs

are encapsulated by CAP Theorem, which declares that any distributed system can deliver on only two of the following three traits at any given point in time: consistency, availability, and partition tolerance.

This means that the database needs to sacrifice something since we can’t have our

cake and eat it too. It is common to see a database described as being Cp (consistent

and partition tolerant), or Ap (available and partition tolerant). You won’t see a system

described as being Ca (consistent and available) since distributed systems are subject

to network partitioning. Network partitioning is like a road closure with no alternative

routes and is also referred to as split brain since a subset of the distributed system is

cut off and can’t communicate with the rest of the system. In order for systems to be

described as Cp, it means that sometimes the data in the database isn’t available, and

the alternative is for systems to be Ap, meaning they may not be completely up to date

(consistent), but they are still available and can serve data (which may be stale).

The most well-known databases from that meetup still in use today are MongoDB,

 Redis, and Cassandra. You’ll be using Redis with Spark later in the book (Chapter 10).

The exercise there uses the best of NoSQL combined with the best of the ridged

structures that make for reliable systems at scale (aka schemas).

Along the line of combining the best of two worlds, we come to the NewSQL

database. This is a hybrid of the traditional relational database (OLTP/OLAP) with the

benefits of the fault-tolerance and elasticity of the NoSQL database.

 The NewSQL Database

The NewSQL database is a hybrid of the best of both SQL worlds, marrying the

consistency, reliability, and durability of OLTP transactions, with the fault-tolerance

and horizontal scalability of NoSQL, with a minimal (and usually configurable) tradeoff

between availability and consistency (Cp|Ap).

These databases were rearchitected from the ground up to run well inside the cloud,

where network in-availability can take nodes offline, out of view via network partitioning,

and where servers can go offline with little notice, making replication of data across

12

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

nodes a first-class necessity of these systems at scale. These databases replicate data

across nodes in order to ensure consistency and availability in the case of node failures

or network partitioning.

CockroachDB and Google Spanner are two of the heavy hitters in the NewSQL

market, and while we won’t be working directly with any NewSQL services in this book,

it was worth mentioning these technologies. You can connect and interoperate with

these services using Apache Spark by adding a library dependency.

 Thinking about Tradeoffs

Working with data almost universally means you will be working with databases at one

point or another, and knowing what your options are, and why to choose one kind of

technology over another, is always a big win in terms of a successful project. I tend to go

with the golden oldies and select a technology that is firmly established in the market.

Also, since it tends to work out in your best interest, it is wise to use a technology that

your company supports. That way, there is a community of people to engage regarding

any growing pains or for support along the way.

 Cloud Storage

Amazon’s Simple Storage Service (S3) is probably the most widely known cloud storage solution in use today. Microsoft’s Azure Blob Storage and Google GCP’s Cloud Storage

are similar solutions available from these other cloud providers. Regardless of the cloud

provider you use, the technology aims to achieve the same results.

At the heart of the general cloud storage paradigm is the promise of a simple to use,

inexpensive data storage solution that provides high availability and reliability, alongside

almost unbounded elastic scalability, meeting the ever-increasing data storage needs of

any sized company.

Prior to scalable cloud storage offerings, companies were forced to run, maintain,

scale, and operate large Hadoop clusters to achieve the same sort of elastic scalability using the Hadoop Distributed File System (HDFS). Today, armed with almost unlimited elastic data storage, companies have found more and more reasons to store more data

than ever before. There are pros and cons to just storing everything, and there are

even more challenges related to working with blindly stored data, especially since data

formats evolve regularly over time.

13

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

 Data Warehouses and the Data Lake

You likely will have already come across or at least heard of the concepts of the data

warehouse and the data lake. While similar in name, the conventions and utilities

provided by these two data storages and serving technologies are on two separate sides

of the data platform. On one side, you have the data lake, which is a distributed elastic

file system, and on the other side, you have an analytics database that solves the issues of

siloed data. However, they can still play well off each other in practice.

 The Data Warehouse

The data warehouse was born from the common problem of siloed data. Data silos

literally just mean that the data is distributed across multiple, logical SQL tables

that reside in different databases or data stores, making it difficult to access the data

necessary to answer queries from the context of a single database system.

 The ETL Job

Given that data was siloed across many individual databases, a common technique

emerged alongside the data warehouse, and that was the extract-transform-load (ETL)

job. Figure 1-1 shows at a high-level the sequence of steps required to move data out of a siloed database and into the common data warehouse.

 Figure 1-1. The extract-transform-load (ETL) Job

14

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

ETL jobs are usually configured to run as batch jobs. These batch jobs can be

scheduled to run once, which is common in the case of doing a one-time data import,

or they can also be scheduled to run on a recurring, time-based schedule. This means

that each job (the work of moving data from one database and loading it into the data

warehouse) is isolated, and for a job to be successful. it is expected to run to completion.

The ETL job shown in Figure 1-1 starts by connecting to a remote database and running a query that extracts, or reads, rows of data as specified by the given query. It is worth mentioning that these queries are not bound to the simple task of moving data

from one place to another; this step can also include more complex queries that join

data across many tables to produce wide tables that can be used in the data warehouse

for analytical querying.

The next step, which is the transform step, prepares the data for insertion into the

data warehouse. It is common at this step to apply a specific schema, or format, to the

data to match common naming conventions (taxonomy), and to improve joinability

across different tables in the data warehouse. This step is optional, since data doesn’t

always need to be transformed when being replicated into the data warehouse.

The final step in the job is the load, or write, process. It concludes the process of

moving data from a siloed source into a table in the main data warehouse.

The data warehouse acts as the much-needed central database (typically a relational,

non-transactional database), where data analysts or different personas would go to run

their business intelligence queries and generate insights or explore the data looking for

interesting trends and patterns.

While the data warehouse was this centralized, relational database, the data lake

emerged to become the centralized staging ground for data. Companies could offload

the scalability and operations work necessary to manage these large, distributed file

systems to the cloud vendors, at a cost much lower than owning and operating the

servers, disks, and staff necessary to maintain these data infrastructures. The data lake

rose as a unified location for storing literally everything. Let’s look at that now.

 The Data Lake

The data lake emerged to solve a common problem associated with the siloed storage

of raw, source-of-truth, data. Source-of-truth data just means data that has not been

cleaned up, or joined with any other data. It exists exactly how it was initially emitted, or

provided by, a data source, which we’ll cover more in Figure 1-2. Similar in spirit to the 15

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

data warehouse, which emerged to alleviate the issue of data silos and fragmentation

within an organization, the data lake stepped in to provide a solution to the problem

of fragmented and siloed “raw” data. It is a centralized staging location for any kind of

 data, from raw binary data (images, audio, video files) called unstructured data, to semi-structured data (CSV, JSON data), and even fully structured data (data that has explicit types and guarantees).

At its core, the data lake is simply an elastic, distributed file system. This is important because elasticity enables the data lake to scale (stretch) horizontally to meet the size

and storage requirements of your current data demands today, while simultaneously

being able to flex and increase the underlying total storage allocation, in order to

handle the storage demands of the future with zero downtime. Using commodity cloud

storage (Amazon S3, etc.), or by running Apache Hadoop’s HDFS, you can provide the

foundation for running your own data lake. Ultimately, files (also referred to as objects

within the cloud stores) are stored across multiple servers for reliability (fault-tolerance),

and to reduce contention across many concurrent readers and writers. You’ll read more

about the uses of the data lake when you read about MapReduce and get into using

Apache Spark in Chapter 2.

Data Formats as you know, data comes in all shapes and sizes, and “raw” data

spans many styles and structures, from semi-structured text-based data formats

like log data, CSV files, and newline separated JSOn, to fully unstructured binary

data, including image and video data, sensor data emitted from the Internet of

things (IOT), and even fully structured data protocols like apache avro and google’s

protocol Buffers, which you learn to use in Chapter 9.

Figure 1-2 shows a high-level overview of the data lake. Starting on the left side, you’ll see many external data sources, which are the initial upstream data sources. They

represent the different providers of the source-of-truth data. While each upstream data

source is responsible for providing its own datasets and data formats, all the disparate

data sources can take advantage of the same underlying “data lake” to provide a unified,

or central, location for downstream systems to get their data. Downstream systems can

be thought of for now as any number of systems or services that ultimately rely on the

data generated by one or more (if joined) of the upstream (source-of-truth) data sources.

16

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

 Figure 1-2. The data lake architecture. Data flows (in from the left) into the

 data lake, through any number of automatic or manual processes and can be

 reliably used to generate new sources of data to meet the demands of the company,

 product, or feature. Once data lands in the data lake, it can hang out for as long as

 it needs to before being used, or eventually deleted

The data lake itself is nothing more than a reliable elastic file system capable

of scaling horizontally to meet the storage needs of many datasets. It is common to

organize the data stored in the Data Lake using directories. Just like with a file system,

or a package in Java, these directories exist for contextual purposes and to create

namespaces so that tables don’t collide or become corrupted accidently. In Listing 1-1,

you can see how distributed SQL tables are defined using hierarchical trees. These tables

are examples of some of the tables you’ll create in the chapters to come.

 Listing 1-1. File System Layout of Three Distributed SQL Tables

(customerratings, customers, and coffee_orders) Inside a Data Lake

.

├── bronze

│ └── customerratings

│ ├── _SUCCESS

│ └── part-00000-5607f490.snappy.parquet

17

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

├── common

│ └── customers

│ ├── _SUCCESS

│ └── part-00000-042d86a2.snappy.parquet

└── silver

├── coffee_orders

│ ├── _spark_metadata

│ │ └── 0

│ ├── date=2021-09-05

│ │ ├── part-00000-0cdf37bd.snappy.parquet

│ │ ├── part-00001-ffe1784b.snappy.parquet

│ │ ├── part-00002-3b79a605.snappy.parquet

│ │ └── part-00003-8b42fa49.snappy.parquet

│ ├── date=2021-09-06

│ │ ├── part-00000-83e42c85.snappy.parquet

│ │ ├── part-00001-0c4daaa2.snappy.parquet

│ │ ├── part-00002-1c63b2ef.snappy.parquet

│ │ └── part-00003-e8262e72.snappy.parquet

As shown in Listing 1-1, the data lake on its own is simply a way of organizing source-of- truth data. To process (or query) the data stored in the data lake, you must first read

the data (represented by one or more files in the distributed table layout) into a system

capable of querying the data directly (such as Apache Spark SQL, Amazon Athena,

and others), with the caveat being that the underlying storage format must be directly

queryable (such as Apache Avro or Apache Parquet). In Listing 1-1, the distributed tables shown are stored in the Apache Parquet columnar format using Snappy compression.

You’ll learn more about Apache Parquet as the chapters unfold.

If the data is unfortunately in a format that can’t be queried easily, there is still hope.

These are many technologies supported by myriad programming languages that carry

out the process of initially reading (opening), parsing (translating), and transforming the

raw source-of-truth data into a format capable of being loaded into a physical database,

or more commonly, into a managed cloud-based data warehouse.

18

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

Note You will use apache Spark to process simple workloads in Chapter 3,

involving reading, transforming, and querying data stored on the file system. By

Chapter 6, you use managed tables, which allow apache Spark SQL to handle the operations required to manage the distributed table’s metadata. This, for

example, contains the distributed database locations, table names, ownership and

permissions, and the metadata annotating the tables and databases to assist in the

process of data discovery.

Aside from simply loading the data from the data lake into external data systems,

the process of reading and transforming the raw source-of-truth datasets can also be

used to produce more specialized datasets, which can be saved back into the data lake

as children of the upstream datasets, or dependent datasets of the parent(s). These

specialized data subsets (views) are like child nodes, with common upstream parent(s)

acting like the relationship between a universal dataset (raw), and the many forking

child subset(s) and their decedents.

A dependent dataset can be as simple as a subset of one parent dataset, or can be

more complicated, as in the case where data from many datasets are joined to create

more complex children. Adding to the complexity is also the fact that each child dataset

also becomes a source-of-truth data for any new downstream forking from it, and each

child dataset can also be the output of joining one or more additional datasets (nodes)

from alternative “data family trees.” This is where the concept of data lineage comes

from, and for the mental model it is easier to think of a tree structure rather than what

ends up often becoming a larger graph-like structured of inter-dependent datasets. Just

think of this all as a family tree, but with a larger number of potential parents, and of

course, data rather than people!

Considering that all possible datasets can be derived (or rederived) from the myriad

source-of-truth datasets, things can quickly go from simple to complex. It is for this

reason that distributed SQL tables became a popular way of working the large amounts

of data. Large data quickly became “Big Data” which was eclipsed again with the notion

of “Unbounded Data,” but the metadata and storage mechanics have remained mostly

static, using cloud data lakes for unbounded storage, reinforced with metadata stored in

the popular Apache Hive Metastore.

19

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

As you will see later in the book, Apache Spark SQL makes it simple to scale out

these common SQL workloads, connecting to data stored in one, or many, locations, in

many different processing and access modes, from near real-time continuous streams

to realer-time structured micro-batches, to simple based batch processing, on-demand,

and even ad-hoc. This process often begins with the first step of moving raw data out of

the data lake and into a more usable data store using traditional ETL (extract-transform-

load) jobs, as well as ELT (extract-load-transform), which you learn about later. You’ll see

how simple it can be to run your workloads directly against this source-of-truth data with

 Apache SparkSQL.

Tip having source-of-truth data stored in a central place can be one of your

more critical data assets. not only can you use the data to solve many problems

and answer many questions, but you can also use this data if you need to rebuild

tables or recover from problematic issues (such as a bad deployment or other

downstream corruption) within your data infrastructure. You learn more about how

to set yourself up for data success as you venture into the second half of the book.

Data lakes and data warehouses have their roles to play in the fabric of the modern

data ecosystem. They are like the data yin and yang. Using these different data

capabilities together encapsulates a holistic data continuum and caters to the many

needs of the data platform.

 The Data Pipeline Architecture

One of the key responsibilities of data engineers is very simple in theory—they are

responsible for the infrastructure and management of data pipelines. The data pipeline

is just a fancy name encapsulating the reliable movement and transformation of data,

at scale, between sources and sinks. This idea of sources and sinks is a mental model for thinking about systems that move and transform data, and you can also think about this

in terms of upstreams and downstreams.

If you zoom out and look at things at a high enough level, data is essentially passing

through a directed lineage of jobs and through function transformations in a journey

across a large network graph. The source is a reference to an upstream source of data, for example, a database. The sink is a reference that can be mapped physically to a real-life sink. This is an outlet, or egress point, where a flow of data is collected.

20

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

Tip data flows are commonly represented by water, since this is something

people can easily understand. Consider how water functions in nature. drops of

water collect and coalesce to create puddles and pools of water. depending on

the rate of collection and the container in which the water is being collected, small

pools of water can easily become streams. These streams flow and join to create

rivers, spread out across deltas, into lakes, and even oceans. at a micro level, each

molecule of water is comprised of a structure, and can be represented by a data

point, and from here the analogy starts to become overkill. however, as a mental

model, it just works.

I like to think about how each job in the lineage of a data pipeline works in a

similar fashion as one would describe an API. An API has an agreed upon contract

that specifies what data must be included in an API request, and the API owner makes

strong guarantees about how to handle and respond to good and bad requests, as well

as how it handles errors and how these errors can propagate to back to the callee (client)

when something goes wrong. An API that doesn’t act in the way it is documented will

make internal or external customers very angry, and in the same way, data that was

“supposed” to look a certain way or have specific fields, but doesn’t, will anger anyone

working with the data downstream to a pipeline job owned by you or your team.

 The Data Pipeline

A data pipeline can be defined in a few separate ways. In the simplest form, a pipeline

can be defined as a job or function that reads from a single upstream data source and

moves (writes) a dataset in its original, or transformed form, to another location (sink).

On the extreme side, a data pipeline can also be used to describe a complex network

of distributed data transformations over time, which we will look at when we cover

workflow orchestration in the next section.

If you consider the case of the ETL jobs from earlier in the chapter, they were

introduced as playing an essential role in the reliable movement of data between a

source database table and a destination database sink. A modified example is presented

in Figure 1-3. It showcases how the ETL job plays a foundational role in defining the data pipeline.

21

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

 Figure 1-3. A simple ETL pipeline job

Things start to get more exciting as these simple jobs are joined across a series of

pipeline steps and multiple phases of execution. These multistep jobs have become so

common that workflow orchestrators like Airflow have become commonplace with the

data platform.

 Workflow Orchestration

Workflow orchestration is an essential way of controlling the reliable movement of

data across a large data network, as defined by a series of inter-dependent jobs and

data pipelines. Figure 1-4 shows a multi-step distributed network of directed data transformation jobs. Jobs can be triggered within the workflow manager at a specific

time, such as in the case of scheduled cron jobs, and they can also be triggered by the

completion of an upstream job. Using upstream job completion as a trigger to kick off

the next job (or jobs) in a series of data transformation stages is typically defined as a

directed acyclic graph (DAG), or network of upstream and downstream jobs. Chapter 8 is dedicated to workflow and covers setting up and running Apache Airflow.

22

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

 Figure 1-4. A multi-step directed data transformation pipeline

Figure 1-4 is a high-level view of a directed acyclic graph (DAG) of pipeline jobs with a common upstream initial trigger. If you only have a few jobs to run and most of those

jobs can run independently (without the knowledge of the successful completion of any

upstream job), then workflow orchestration may be overkill and can be delegated to

simpler cron mechanisms.

The benefit of operating data pipelines, either as simple transformations or as a

series of inter-dependent pipeline jobs defined through DAGs, comes in the form of

a single source-of-truth for the location (source), format or schema, and expected of

behavior of the data being emitted at each stage (sink) of execution within the data

pipeline. Having sources-of-truth data is not just beneficial, it is critical for operating

large networks of data dependencies. Just as workflow management and orchestration

services steps in to help reliably run distributed data transformation jobs and pipelines,

data catalogs step in to provide a mechanism for discovering sources or data, the

upstream and downstream dependencies of those data sources, as well as the schemas,

versions, owners, and even the data lineage and access policies of the data.

23

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

 The Data Catalog

Data catalogs provide essential views into the data available within an organization

and can be extended to encapsulate ownership, as defined by metadata describing the

producer of the data (the person, team, or organization). These are sometimes referred

to as the data stewards. The data catalog can also act to define a public data contract that can be used to established rules to govern the timeliness of the data, the availability of

each field (such as when it will be default or null), as well as rules around the governance

and access to each field, and more.

We explore data catalogs in Chapter 6 with an introduction to the Spark SQL Catalog.

You learn to use the Apache Hive Metastore and Spark SQL in Chapter 5 to create and manage SQL tables that can be easily discovered and utilized directly in Apache Spark.

 Data Lineage

This high-level view of how the data flows through the myriad data pipelines within

an organization, as defined by the logical data sources and sinks, creates the means to

publish the data lineage represented as a series of data transformations across the data

pipeline.

Knowing and understanding how data flows through these data pipelines is one of

the harder things to manage holistically and taking these steps early on can help with the

common problems that arise when building a reliable data platform. Without the right

common tools in place, managing data can become a nightmare as things become more

and more complex.

We look at data catalogs and data lineage and introduce the notion of data

governance in more detail later in this book. Next, we look at stream processing, which

enables the pipeline architecture to move in a more fluid fashion that acts as a push-

based system based on data availability rather than the pull-based systems common to

batch-based systems.

 Stream Processing

Stream processing evolved from the simple mechanism of messages passing between

operating system (OS) processes across buses. They were more popularly known simply

as pub/sub systems, as system processes would publish or subscribe to messages in a

form of cross-application communication within a single machine.

24

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

 Interprocess Communication

This simple, albeit useful, construct allowed for magnitude gains in parallel processing

by allowing processes (applications and kernel tasks) within a single computer OS to

take part in a conversation. The beauty of this was that processes could participate

in conversations in either synchronous or asynchronous fashion and distribute

work among many applications without the necessary overhead of locking and

synchronization.

 Network Queues

This approach to parallel processing via pub/sub message buses on a single system

allowed engineers to expand and evolve these systems in a distributed-first approach.

This led to the advent of the network message queue.

The basic message queue allowed for one or many channels, or named queues, to

be created in a distributed first-in, first-out (FIFO) style queue that ran as a service on top of a network addressable location (e.g., ip-address:port). This enabled network-based applications and services to communicate asynchronously, which meant that

the producers of the messages didn’t need to know about the subscribers (consumers)

directly. Instead this was offloaded to the network queue, which simplified distributed

systems greatly.

 From Distributed Queues to Repayable Message Queues

Apache Kafka is a household name within the tech community and is as common a component in the data platform as boutique seltzer and ping pong are to any startup.

Kafka started at LinkedIn, and was later gifted to the Apache Foundation, with the goal

was to create a distributed, fault-tolerant platform for handling low-latency data feeds, or

 streams of data.

Kafka was built with a fresh approach to the distributed network queue. However,

it had a different approach to handling partial failures from consumers. As you may

imagine, if we have a distributed queue and we take a message from that queue, then we

could assume that the queue would purge that message and life would go on.

However, in the face of failure, no matter where you point the blame, there would be

data loss associated with a message that has been purged from the queue if the process

that took the message was lost due to a fault in the application code. It is common for

25

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

systems reading messages to come across bad data, and without the appropriate defense

mechanisms in place to handle corrupt data, the process could terminate unexpectedly.

Without a means of recovering. Now as you can imagine, this was not good for business.

 Fault-Tolerance and Reliability

To protect consumers from the inevitable, Kafka was architected to ensure that

downstream failures would not immediately lead to data loss. The solution was to treat

the messages in a similar fashion to how databases handle reliability. That is, through

durable writes. Like magic, the distributed write-ahead log (WAL) emerged. We go over

the key terminology, architectural components, and Kafka nomenclature now. If you

have experience with Kafka, you can skip ahead to how Spark comes into play as the final

piece of the modern data puzzle.

 Kafka’s Distributed Architecture

Kafka stores data emitted by producers in what are called topics. A Kafka topic is further

broken down into one or more logical partitions, which enable each topic to be scaled

to handle variable read and write throughputs. Each partition is guaranteed to store the

data it receives (known as a Kafka record) in time based sequential order. See Figure 1-5.

 Figure 1-5. The Kafka architecture

Given that each partition maintains this synchronous stream of records, Kafka is

commonly used to store event streams from contiguous timeseries events (such as users

placing items into their shopping carts or transactions being made across a credit card).

These timeseries event streams enables the system to analyze data that would otherwise

be hard to group efficiently.

26

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

Since you can guarantee the ordering of the events within each partition, and events

being written into each partition are distributed based on each record’s key, this kind of

distribution helps to solve common problems associated with timeseries analysis. The

problem of out-of-order data, stored across many locations and across different data

stores, feels like the data silo conversation from earlier in the chapter.

Instead of first running a job to collect all the data by key, across all partitions or

across different data stores, an application can work across individual partitions, or

slices, of the Kafka topic without having to shuffle data around first.

This can greatly reduce the stress on a system processing credit card fraud or

handling recommendations based on a user’s real-time activity. With the right selection

of keys for each record, you can guarantee how the data lands within each topic.

 Kafka Records

Records are simple rows of data, written out to disk in a durable fashion, like with the

write-ahead log (WAL). Each record is identified by a key, which helps Kafka pass the

data to the correct partition for the topic being written to. The record carries a main

message, or payload, which is called the message value. In addition to the key/value

pair, there is an internal timestamp (UNIX epoch milliseconds) stamped when the

message is received and written into the topics log. This ensures that the insert order is

maintained without issues with time (clock drift, time zone differences, etc.). Lastly, in

more recent versions of Kafka, each record has an optional map of headers that can be

used to annotate the data further. It can apply metadata about the producer, the payload

schema, and just about anything you can dream up.

 Brokers

Kafka manages producers and consumers of data in a similar fashion to that of a

common pub/sub system. Data stored in each partition of a topic is managed by an

active broker within the Kafka cluster.

These brokers manage the replicas of each record written into the topic and are

kept in sync so that if a broker is lost due to the server going offline, or from network

partitioning, that there is zero data loss. The next available in-sync replica quickly takes

over the serving of the data, and Kafka will find another available broker to assign as the

next backup to prevent a data loss scenario.

27

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

 Why Stream Processing Matters

Kafka is the most widely used stream-processing framework and given the flexible,

low-latency, highly available nature of the framework it isn’t difficult to see why. Kafka

however isn’t the only player in the field. Apache Pulsar, which evolved from an internal

project at Yahoo!, is another open-source alternative to Kafka. While we won’t be using

Apache Pulsar in this book, it is always good to know there are alternatives out there.

Chapter 11 introduces using Apache Kafka with Spark.

 Summary

In this first chapter I set out to talk to you about what steps had to be taken and what

technology had to advance for us to be able to be successful in the exciting field of data

engineering right now.

You saw how the rise in cloud first-solutions enables us to focus on what we really

want to work on and prioritize. Having operated Hadoop clusters, and having used

Amazon S3, I have to say that not having to worry about disk and host failures, data

replication, backups, or recovery and disaster mitigation has allowed me to focus on

using the data and create more useful tools that work with the data, versus working on

the operations of what the data runs on.

We looked at how databases evolved over time and discussed some of the basic

concepts and paradigms with respect to the traditional OLTP/OLAP style databases,

the NoSQL database, and lastly the NewSQL databases. One thing that is interesting

here is that there was this monumental move away from SQL during the days of NoSQL,

and while document stores (fully denormalized datasets) have immense value to

organizations, being able to express how we work with data through SQL-style queries

and operations has returned to dominate the market.

Given the myriad styles of database available, and the fragmentation within these

data siloes, we looked at the rise of the ETL job and the data pipeline architecture. This

notion of being able to move data efficiently from one source to another was a catalyst

that brought on the data warehouse, but also which spawned the invention of the unified

data lake. As companies were working with more and more data, and as pipelines

increased in size and complexity, workflow managers like Apache Airflow came into

existence. These technologies were like the missing pieces in the data orchestra and the

workflow manager became the conductor assisting in bringing harmony to the full data

platform.

28

ChapTeR 1 InTROduCTIOn TO MOdeRn daTa engIneeRIng

We wrapped up the chapter by talking about the evolution of message queues and

brokers. We talked about stream processing and how this distributed game of telephone

established a basis for the exciting step from batch-based processing to more real-time,

stream-based processing with the birth of Kafka.

Over the course of the rest of the book, we’ll dive deeply into the Apache Spark

ecosystem, taking a hands-on, step-by-step, approach to solving real-world data

engineering problems. You’ll progress through the many layers and technologies

supporting the data engineering umbrella as you solve foundational problems and build

your own fully containerized, working data platform along the way.

29

CHAPTER 2

Getting Started with

Apache Spark

Apache Spark is the data engineer’s Swiss Army knife. As a unified framework, it provides

essential libraries to effectively connect and establish a common data narrative for

engineers to work together cross-discipline. From ingestion and validation of raw data

to data cleansing, transformation, and aggregation, as well as analytical exploration

of trends and generation of insights, Spark connects the dots between the various

constituents in any successful data operation. It also supports consistent (serializable)

pipelines for feature engineering and robust machine learning.

In this chapter, you learn how Apache Spark acts as the centralizing core component

within the data platform. Much in the same way that the data warehouses and data lakes

solved the central problem of common access to data, Spark solves the problem of both

centralizing and unifying how data can be processed, at scale, across the entire data

platform. This simplifies the number of tools you need to use, so you can focus on less

and work more efficiently. As a side-effect, Spark presents a wonderful opportunity to

streamline many systems and processes in your organization.

The goal of this chapter is simple; together we will build a solid foundational

understanding of the Spark ecosystem and firmly establish the role that Spark plays

for the modern data engineer. We begin with the foundational concept of the Spark

programming model, explore the core fundamentals and components within the Spark

Application Architecture, and see how Spark elegantly handles separation of concerns

via delegation.

This chapter is also a primer including the necessary steps to get up and running

with Spark locally. You will complete your first hands-on exercise with Spark. The

exercise is useful to build on your understanding of how to approach some basic

problems in the realm of business intelligence, using the spark-shell (or the Spark

31

© Scott Haines 2022

S. Haines, Modern Data Engineering with Apache Spark, https://doi.org/10.1007/978-1-4842-7452-1_2

Chapter 2 GettinG Started with apaChe Spark

 playground, as I like to call it). By the end of this chapter, you’ll have run your first Spark application, and for those more seasoned with Spark, this exercise may provide a

different perspective on how you work with Spark.

 The Apache Spark Architecture

Apache Spark evolved from the MapReduce programming model. To understand how

this evolution occurred, let’s begin by looking at what MapReduce is. MapReduce was

made infamous by Jeffrey Dean and Sanjay Ghemawat (Google) in their seminal 2004

paper, “MapReduce: Simplified Data Processing on Large Clusters.” This programming model led to the success of Google’s search engine, and the paper helped pave the way

for open-source MapReduce frameworks like Hadoop to come into existence. This

enabled companies other than Google to begin working efficiently on large cluster-

compute data problems, aka Big Data, in standardized ways.

 The MapReduce Paradigm

MapReduce, at a very high level, shares some parallels to the ETL job example from

Chapter 1. Each job begins with a specific set of input data (files stored on a distributed file system), and a workflow is written using the MapReduce APIs in two (or more)

distinct parts.

A typical workflow begins with some transformational logic (mapping phase). This

process essentially extracts information from the distributed file system, as defined by

the encoding of the file(s) being read and is responsible for the conversion of the input

data into collections of key/value map data. You can say the input data is parsed and

 mapped to specific known types. Next, the output of the mapping phase is then handed

off to the reducers, which processes the resulting sorted collections of data from the

mapping phase, as organized by common grouping keys.

Essentially the whole process effectively maps a large amount of data (larger than

could reliably fit into memory), using a network of interconnected servers (cluster), to

sort and group data into distributed sets of data. These datasets are then further reduced

to accomplish a given outcome, such as counting the number of inbound references to

a given website, which is what helped Google generate their PageRank algorithm. The

output of the whole process is then written again to reliable storage for reuse elsewhere.

32

Chapter 2 GettinG Started with apaChe Spark

Rather than reading directly from a database, like with the traditional ETL job,

MapReduce jobs required access to more data than could fit into any database in existence

at the time (2004). To reliably process these gigantic amounts of data, a distributed execution

model was born. It could process these huge datasets using data stored on reliable,

distributed file systems and could automatically track complex distributed workflows.

The MapReduce programming model is introduced in Figure 2-1. By look at MapReduce conceptually, it will be easier for you to see how Spark evolved from this

programming model.

 Figure 2-1. The MapReduce programming model as conceptualized by Jeff

 Dean and Sanjay Ghemawat. Data moves from left to right through an acyclic,

 distributed workflow

 Mappers

The MapReduce programming model is built around jobs, which are essentially encoded

routines that read and process data in a horizontally distributed way . Each job can

process large amounts of data (sourced from the file system) by taking a divide-and-

conquer approach that begins with a finite set of input files. These input files (stored

in the distributed file system) are then distributed within the MapReduce cluster for

processing as a series of partitions named splits (shown on left side of Figure 2-1).

33

Chapter 2 GettinG Started with apaChe Spark

All the required splits are then converted into Map Phase tasks by the MapReduce

engine through assignment to task. Each mapping task then runs in complete isolation,

enabling each task to work toward completion in a loosely coupled way.

Mental Model the Mapreduce execution pattern can be thought of as a

distributed divide-and-conquer approach, as to handle increasingly large datasets,

more machines can be added to share the work horizontally. each task can be

conceptually treated as a black box that takes its assigned input and writes the

results of its work to a specific output location.

 Durable and Safe Acyclic Execution

After each isolated task completes, the resulting output is written back to the distributed

file system for durability and to acknowledge the completed task.

Note durability, consistency, and reliability tend to go hand in hand in distributed

systems. when talking about the durability of data systems, you can almost always

distill this line of questioning down to fault-tolerance and consistent data behavior.

From the MapReduce side, durably writing all intermediate files (seen in Figure 2-1) to disk establishes a concrete barrier between data being processed at each phase of job

execution, much like the series of jobs defined in the example multi-step data pipeline

(Figure 1-4 in Chapter 1). Lastly, durably writing the intermediate files also ensures that large, complex jobs can handle disk failure or network partitioning, without having

to restart the whole job again. By default, data stored between stages of execution has

implicit availability guarantees, thanks to the replication and fault-tolerance of the

backing distributed file system (HDFS).

As you can image, the MapReduce jobs running to update the Google’s search index

(in 2004 and now as well) would need to run to completion, with consistent guarantees,

across all phases of execution, to ensure that the result of each job is deterministic and

trustworthy.

34

Chapter 2 GettinG Started with apaChe Spark

 Reducers

We conclude this quick tour of MapReduce with the reducers (reduce phase tasks) seen

on the right side of Figure 2-1. Each reducer task reads the output from the mapper task (you can consider this the upstream data preparation phase), which were written as

intermediate key/value maps, and for each key, the map values are grouped, sorted, and

then fed as input into a reducer task.

The reducer task receives as input a key and an Iterator<value> and processes

the collection of data to achieve a desired result. Lastly, the output of each task is then

written back to disk, and when all work has been processed, the job is considered a

success.

MapReduce was a success because the programming model enabled large cluster-

compute jobs to run without the engineers needing to understand the low-level

complexities of writing large distributed systems and applications. I am not saying it was

simple to build intuitive MapReduce programs; there was always some friction when it

came to easily adopting the mental model. I guess you can say there was a need for more

flexibility or creativity in the APIs. This is where Spark comes into the picture.

Apache Spark takes the best of the MapReduce paradigm while also enabling

engineers to intuitively control how data is accessed, processed, and cached within the

context of each job or series of jobs. Next, we explore how Spark set out to enable parallel

computations that could use the standard distributed (disk based) file system, but that

could also store (cache) intermediary data in memory as well. This greatly speeds up

distributed data processing, analytics, and iterative algorithms as we know them today.

 From Data Isolation to Distributed Datasets

Apache Spark evolved from the seeds of MapReduce, introducing a revolutionary new

way for working with distributed data. It took the best of the MapReduce paradigm and

introduced an entirely new programming model by enabling parallel computations and

iteration across shared, distributed, sets of data.

In 2010, the seminal paper, “Spark: Cluster Computing with Working Sets,”

introduced the Spark programming model to the world and focused on improvements

to common problems experienced when working with MapReduce. The novel idea was

to reuse working sets of data across multiple parallel operations (in memory), removing

the need to continuously go back to disk (and incur additional IO/file system open costs)

between each phase of execution and processing. So how does it work?

35

Chapter 2 GettinG Started with apaChe Spark

 The Spark Programming Model

To understand the Spark programming model, you need to adopt the good parts of

MapReduce. The core design principle for MapReduce is that of isolated data access

within the working memory of loosely coupled tasks. Due to the fact that MapReduce

jobs divide and conquer work using an acyclic data flow model, similar to the flow of

common data processes tasks encapsulated by a data pipeline, this enables MapReduce

jobs to focus on the decomposition of large data problems across smaller functional

black box stages. However, it also means that to process the same dataset across multiple

jobs, each job has to repeat work, loading the same data into working memory. This is

efficient but can also cause other side-effects like increased pressure on the MapReduce

cluster’s finite resources.

 Did You Never Learn to Share?

To understand the drawbacks commonly associated with MapReduce, consider the

following. Say you are tasked with writing a routine that needs to count all unique users

who visited your company’s web store, on a particular day. You also calculate the average

number of products added to each customer’s cart, while finding the top ten most

common products added across all carts for the day. How would you go about answering

these questions? Questions like this are common for analysists working in business

intelligence (BI). Figure 2-2 shows a solution using MapReduce.

 Figure 2-2. Getting answers from MapReduce requires multiple trips to the

 origin dataset

36

Chapter 2 GettinG Started with apaChe Spark

To solve each of the three problems presented in Figure 2-2, you need to create three distinct jobs:

• The first job in Figure 2-2, Unique Users, reads the data from the records stored in the activity directory of the distributed file

system. For simplicity, let’s assume that this directory exists in a daily

directory like /YYYYmmdd/activity. This job loads the daily user

activity event data and transforms it into a map, which can be used

in the reducer stage, simply as a means of fetching the unique users

for the day by key. These IDs would then be summed to calculate the

daily unique users.

• The second job from Figure 2-2, Avg Cart Items, reads the data stored in the activity directory as well. It maps the user id to the item id

for each split, then these maps are sorted and grouped to feed into

the reducers. The reducers then sum the cart items, for each unique

user, and output this data as a map of the user to the sum of their

daily cart items. This data would be written to another location where

an additional MapReduce job could read the data and generate the

average cart items for all users. It finishes by writing these results to

the daily/cart/avg directory.

• The last job from Figure 2-2, Top 10 Cart Items, again reads the origin data from the activity directory, maps the data as item id to

total counts of that item per cart, and writes to intermediate reliable

storage. It’s sorted and grouped by item ID and fed into the reducers

so they can compute the total count of each item. These running

daily total counts are then written into reliable storage, and yet

another job picks up from here and can select the top ten from this

dataset.

The solution to common iterative problems like this are commonplace nowadays

within the realm of analytics, and within other more complex data domains like Machine

Learning.

37

Chapter 2 GettinG Started with apaChe Spark

Note if the total number of steps required to solve the problems in Figure 2-2

using Mapreduce felt like too many steps, you wouldn’t be wrong. in retrospect,

there is a good deal of unnecessary complexity and many moving parts, and this is

what apache Spark set out to change.

Apache Spark changed the way data is loaded, transformed, and processed across

parallel operations within the same application context (such as with our BI queries

in Figure 2-2). It did so by introducing a flexible programming model that enabled engineers to write code locally that could be distributed when run within the cluster, that

was incredibly fault-tolerant, and that could be written using a functional programming

style. At the heart of the Spark programming model is the Resilient Distributed

 Dataset, or RDD.

 The Resilient Distributed Data Model

At a high level, you can think of the RDD as a read-only, immutable collection of data partitioned across a set of network-connected servers that are bound to a

Spark application, called executors. The RDD object itself encodes the lineage of

transformations required to achieve a desired outcome (such as the queries in

Figure 2-2), beginning with the input data, as represented by a distributed data source and the source metadata, as well as each transformation along the journey from input to

output. The input data can be files physically located on a machine, within a distributed

file system, or partitioned across topics, such as with Apache Kafka.

Note if you are new to the notion of partitions, that is okay. partitions within files

are simply range-based pointers that allow a file to be divided and read by many

parallel processes. if you have a 1GB file and you split it across ten equal-sized

partitions, then each partition would be 100MB. partitionable files typically mean a

file format that makes it easy to split the file. Such as a new line separated JSOn

file where each line is a record. You may not be able to partition the file exactly,

but you can treat this similar to the concept of pagination for search results. each

partition encapsulates a range of data, say from line 0 to line 400 for partition 1,

and so on.

38

Chapter 2 GettinG Started with apaChe Spark

However, the RDD goes beyond the MapReduce paradigm and achieves better

performance (velocity) and fault-tolerance by embedding, or recording, the lineage

of all distributed transformations recorded across a series of explicit steps within the

runtime of a Spark application. This approach means that Spark can handle failures

elegantly during the runtime of a job since there is a lightweight recording or transcript

of everything of note that has occurred within a job. Think of the RDD as the blockchain

ledger. This distributed lineage of transformations (transactions) across all partitions of

an RDD can be used to synchronize access to shared variables and parallel access to data

stored in cache, but it can also be used to recreate lost partitions by traversing the lineage

of a job in reverse from a point of failure. The RDD can be reconstructed at any point of a

Spark job, for any of its partitions, by reading the chain of transformations, back up to the

origin data source again, if need be, or to any other cached waypoint along the way. This

process enables Spark to fill in and recover missing data due to hardware failure, without

having to restart the job or needing to reload all the data all over again. This saves both

time and money!

Additionally, the elements represented by the RDD are not required to be physical

objects like with the MapReduce splits and intermediate file. Rather the RDD acts like a

graph of transformational pointers, so in the case of a partial failure, the RDD representing

a specific phase of processing can be recomputed efficiently. The RDD itself stores no

physical data, simply metadata, making it a means to coordinate data processing across a

distributed cluster of network connected computers.

Lastly, while the RDD isn’t specifically a shared data model, Spark enables

programs to cache RDDs at specific points within the data lineage. This enables parallel

processing, or multiple passes, over the data from that point on, without going back to

the origin data source and needlessly retransforming data or doing costly joins more

than once. We cover caching and checkpointing later in the book, so for now being aware

of the RDD model is enough to get you thinking about how Spark operates.

Note the rdd caching paradigm took me a while to fully grasp. Many programs

don’t need to access a dataset more than once, so storing the contents of the data

in memory does not make sense for these single-pass applications. Spark caches

lazily, so in order to cache the data, Spark needs to do a first pass over the data.

therefore, caching makes sense only if you want to access the data more than once.

39

Chapter 2 GettinG Started with apaChe Spark

We revisit the example BI use case from Figure 2-2 again at the end of this chapter.

It is my hope that you will see how simple it is to use Spark to solve the same problem

more efficiently, and in fewer steps. Before we get to the exercise, let’s go over the Spark

architecture, so we have a reference to circle back to. We will also go over the steps

necessary to install Spark in order to run the sample code in the exercise that follows.

This will be exciting.

 The Spark Application Architecture

Writing distributed software can be a difficult undertaking given the complexities inherent

to designing even simple applications. Why is this so hard? I’m glad you asked! Distributed

computing requires a program to be written by taking specific actions to ensure that

complex portions of the program can be run efficiently across a network of connected

servers, or nodes, in a parallel fashion. All the while, it must coordinate both cross-node

communication and marshal (serialization/deserialization, or simply put conversion to

and from a binary representation) data between different phases of the program’s runtime.

I realize I am hand-waving over the other complexities, such as how you handle

network partitioning, which causes nasty blind spots within the cluster, or how you

handle node failure, and how this gets more complicated due to partial error scenarios.

The nice thing about writing applications with Spark is that you don’t have to spend a lot

of mental cycles strategizing how to write distributed applications. You simply write your

application, and Spark will take it from there (for the most part).

Given the complexities of writing fully distributed applications, the approach

to writing Spark applications simply abstracted away the complexities inherent to

distributed applications so that engineers can focus on solving problems rather

than running and managing complex distributed applications. Essentially, the Spark

framework enables application authors to write programs using Spark that, for all intents

and purposes, look no different than non-distributed software. However, when they run,

the programs operate in a fully distributed, highly parallelizable fashion, with the heavy

lifting being implicitly done behind the scenes.

Spark programs, more commonly just called applications, are made possible due to

the following three main components:

• The driver program

• The cluster manager

• The program executors

40

Chapter 2 GettinG Started with apaChe Spark

The driver program is simply the Apache Spark application. Each application is

supervised by the driver program, and the stages of execution (the work) is divided

and distributed across the program executors using simple RPC communication for

each stage of execution, typically some kind of transformation, along the journey to the application’s desired outcome, which is referred to as an action. Behind the scenes, the cluster manager is hard at work simply keeping tabs on the state of the cluster, checking

in on the running applications, and watching the available compute capacity remaining

in the cluster. We will deep dive further into Spark Standalone and Spark on Kubernetes

in the last half of the book.

Figure 2-3 shows these three main components, and how the Spark application (driver program) interacts with the other distributed components (cluster manager and

executors) at runtime.

 Figure 2-3. The core components of a Spark application and its runtime

 The Role of the Driver Program

The driver program is the heart and brain of any Spark application. Earlier when I

said that distribute software is complicated, well the driver abstracts away most of

these complexities and selflessly works on your applications’ behalf to coordinate the

execution of your app in a highly fault-tolerant way.

Figure 2-3 shows the driver program on the left side. The driver simply acts as a delegate for the application runtime. As a representative of your Spark application,

the driver program wears many hats and manages the complexities of running your

41

Chapter 2 GettinG Started with apaChe Spark

application with the help of the SparkContext. At a high level, the SparkContext controls the following aspects of the driver program:

• Resource management: The Spark driver requests and releases

cluster resources by interfacing with the cluster manager (see

Figure 2-3). This enables your program logic to be distributed

across a sub-cluster of assigned compute nodes, called executors.

Given that the driver also handles the distribution of work across

these nodes, it can also coordinate with the cluster manager in the

case of lost executor nodes (if these machines go offline or become

unreachable), or in the case of task failure. Work can be rescheduled

again on any of the available executors to ensure that partial failures

don’t result in full application failure (within reason).

• Application state management: The SparkContext keeps track of the

active and completed jobs. This way, the application state machine

can control the execution of the driver program while also handling

failures within the application.

• Configuration manager: The SparkContext is also responsible for

synchronizing the initial application configuration within an object, named

the SparkConf. This is an initial snapshot of the configuration of a Spark

application, and it can be modified at runtime in a separate object named

the RuntimeConfig (which we will work with in later chapters as well).

• Job scheduler: The SparkContext controls the scheduling work across

the cluster as a series of jobs, stages, and tasks. We go into much more detail in Chapter 3 as you start to write your first Spark applications.

We could spend the rest of this chapter highlighting the myriad responsibilities of the

 Spark driver program and the SparkContext, but it is easier to peel back the layers as we move through more practical explorations in the chapters to come. We will press pause

for now and become acquainted with the Spark cluster manager.

 The Role of the Cluster Manager

The cluster manager (middle of the diagram in Figure 2-3) has a central role to play, just like the Spark driver. If you consider each abstraction as supporting a pillar of the

Spark architecture, then the cluster manager is the cluster coordinator and the delegate 42

Chapter 2 GettinG Started with apaChe Spark

in charge of managing and maintaining the state of the cluster, as well as the executors

assigned to each active Spark application.

For a Spark application to be started inside a cluster, the driver program must first

request resources from the cluster manager. This is a deliberate separation of concerns

that divides the responsibilities of management of the cluster itself from the control of

the application runtime environment.

 Bring Your Own Cluster

To achieve an even higher level of granular control for the actual Spark cluster itself,

Spark clusters can run across a few popular distributed cluster compute frameworks, in a

pluggable style, which enables organizations to reuse technologies that are already well

established across the industry. Or they can choose to run the cluster on Spark’s native

cluster orchestrator, called Spark Standalone.

The compute frameworks that Spark currently supports are:

• Spark Standalone: The native spark cluster manager. This operating

mode requires specific resources to be carved out to coordinate

the cluster state, including a Spark Master, which acts as the cluster

 manager, and an optional standby master for high availability (HA) in

the case of the active master going offline. This mode requires cluster

compute nodes, which are known as worker nodes and these run one

or more executor JVMs. We look at Spark Standalone in more detail in

Chapter 14.

• Mesos: Mesos is a popular, generic, distributed computation

framework co-started by Matei Zaharia, who is also one of the core

creators of Spark. We don’t look at how to deploy applications using

Mesos in the book but there are plenty of resources online for those

interested.

• Kubernetes: Kubernetes is a household name that has become

incredibly popular over the past few years as a way of managing

infrastructure-as-code. Originally built inside of Google and then

open-sourced, this is the newest addition to the clusters that Spark

can run on top of. We look at Spark on Kubernetes in Chapter 15 as

we look at deployment options.

43

Chapter 2 GettinG Started with apaChe Spark

• Yarn: Hadoop is still very popular in many organizations for running

MapReduce style jobs. The Yarn manager enables Spark Applications

to run executor processes at-the-source or co-located as close to the

data stored within HDFS for a specific task as possible. We don’t look

at how to deploy applications using Yarn in the book, but there are

plenty of resources online for those interested.

Last but certainly not least, we come to the final component of the Spark application

architecture from Figure 2-3, and this is the executor nodes.

 The Role of the Spark Executors

The executors, as seen on the right side of Figure 2-3, have a simple, yet important responsibility, and that is to act as the compute delegate for tasks assigned by the Spark

driver program. Simply speaking, most of your work will be run across the executors and

not the driver program itself.

Each executor instance operates in a disposable (transient) fashion. This means

workloads can easily be rescheduled when a node in the cluster goes offline, or if an

exception is encountered in the runtime of a Spark application, requiring an application

to stop. Because executors are loosely coupled, you can ignore much of what happens

behind the curtains, knowing that Spark applications are resilient and that executors

themselves are easily replaced.

As a side note, because Spark is so resilient that many companies opt to run lower-

priority workloads on lower-cost cloud compute resources like Amazon EC2 Spot

instances (which are inexpensive and highly unreliable) but will still get the job done at

a 90% cost reduction. The reason for this resiliency bubbles back to the RDD, which you

were introduced to earlier in the chapter, and to recap it enables the fast recovery of data

to ensure that a program can continue as soon as a new executor instance is assigned by

the driver program. Remember that the RDD stores a distributed recording of all steps

taken to transform data, for all partitions, and it acts as the catalyst to power fast and

reliable recovery during failures.

Depending on the cluster manager in use for the Spark cluster, the executors will either be

either running within a worker process, as is the case for Spark Standalone, or are controlled by the resource manager, when backed by Yarn, Mesos, or Kubernetes. As mentioned earlier,

we look at deployment strategies for Spark applications later in the book (Chapter 13), and we cover Spark Standalone and Kubernetes deployments specifically at that time.

44

Chapter 2 GettinG Started with apaChe Spark

Tip executors can be run on low-cost or high-cost instances. running your

executors on expensive hardware with good SSds capable of high iOpS, many

CpUs to distribute the tasks, and a large amount of working raM can help jobs

complete faster. But depending on the way your application is configured, bigger

doesn’t always mean better. For some subsets of problems over provisioning, a

Spark application will actually hurt the overall performance.

My hope is that, by covering the core components of the Spark application

architecture (the driver, the cluster manager, and the program executors), and by taking

a look at Spark’s component-based delegation, you are starting to build a cursory

understanding of how Spark works from a high level. As we continue this journey

together, we will continue to revisit these central components as well as widen our view

and understanding of how to use Spark as a central framework for handling the common

problems that come up for the modern data engineer.

To finish this tour of the features and components of Spark, it is important to talk

about the Spark ecosystem and the APIs that extend the core capabilities of Spark.

 The Modular Spark Ecosystem

The core of Spark is written in Scala and Java and is architected to run on the Java Virtual

Machine (JVM), but this doesn’t stop you from using Python, R, or even SQL to run Spark

operations. Each of these alternative ways of writing Spark applications is made possible

through the use of a command interface or gateway. This means that Spark interpreters

can be written to further extend the languages supported by Spark in the future and add

idiomatic functional support for these new languages. This also means that you can

choose how you want to interface with Spark when writing data engineering pipelines

and jobs. As you will see next, you can also choose how to layer additional capabilities on

top of your Spark jobs by mixing in additional modules.

 The Core Spark Modules

The core capabilities of Spark are distributed across a few core modules. These libraries

enhance the capabilities of Spark, thus enabling different ways of working with data

within your Spark applications. From SparkSQL, which enables you to query your

data like you would with a traditional OLTP or OLAP database, to Spark Structured

45

Chapter 2 GettinG Started with apaChe Spark

 Streaming, which enables you to work in either micro-batches or across a true stream of

data in continuous mode, to Spark MLib (for training and embedding machine learning

models), and the querying of graphical relationship through GraphX and the community

driven effort behind GraphFrames. Each of these libraries enhances Spark’s capabilities

and enables you to handle complex use cases, all within the same unified platform. You

get a sneak peek at SparkSQL later in this chapter.

 From RDDs to DataFrames and Datasets

We discussed Resilient Distributed Datasets (RDDs) earlier in the chapter, and although RDDs were critical to the early success of Spark, you will mainly be working with a

higher-level abstraction over the RDD, called the DataFrame, and its strongly typed

sibling the dataset. We explore the DataFrame in more detail during the exercise at the

end of this chapter and see how it also plays nice with SparkSQL to simplify how we ask

questions from our data. We will spend a good amount of time as well with the datasets

later on in the book. Now if you are ready, let’s get up and running with Spark.

 Getting Up and Running with Spark

We’ve covered a lot of ground, and history, in our short time together and in only a few

dozen pages. I think it is safe to say we are all ready to get started with Spark. The goal of

this next section is simple. You’ll see how to install Spark locally and then go through an

introductory exercise to wrap up the chapter.

Note the following installation instructions use homebrew for macOS.

to use homebrew for Linux or the windows subsystem for Linux, refer to

https://docs.brew.sh/Homebrew- on- Linux.

 Installing Spark

Installing Spark is a breeze. We’ll go through the steps for getting up and running on

Spark 3 now. If you want to go through the book using Spark 2.x, you’ll have to stay on

Java 8, but it is worth mentioning that the source code for the book is written and tested

for Spark 3.

46

Chapter 2 GettinG Started with apaChe Spark

The only requirements necessary for running it are as follows:

• The Java Development Kit (JDK)

• Scala 2.12 (the default for Spark 3)

If you have Java and Scala installed, you can skip ahead to downloading Spark.

 Downloading Java JDK

The Java JDK comes in two flavors, the official Oracle Java JDK and OpenJDK. Spark 3

works with both Java 8 and Java 11, and the flavor is up to you. For this book, we will be

running the open-sourced OpenJDK 11. You can download the official JDK by going

to Oracle’s website at https://www.oracle.com/java/technologies/javase- jdk11-

downloads.html and selecting the build for your environment. Or if you are running on a Mac laptop with Homebrew, you can simply run the following command from a

terminal window:

> brew install openjdk@11

You should now have Java installed on your laptop. Now let’s make sure you have

Scala installed as well.

 Downloading Scala

If you are going through these exercises on a Mac laptop, you can use Homebrew and

run the following command to get this requirement out of the way:

> brew install scala@2.12

If you are on planning to work in a different environment (Windows/Linux), refer

to the download instructions at https://www.scala- lang.org/download/ to get Scala installed.

Okay. Now that you have the prerequisites out of the way, it is time to download and

install Spark.

 Downloading Spark

You are ready to download the Spark 3 release. Figure 2-4 shows an example of the download page from the official Spark website.

47

Chapter 2 GettinG Started with apaChe Spark

 Figure 2-4. Download Spark from the stable release packages at https://spark.

 apache.org/downloads.html

The steps are simple:

1. Select the Spark 3.x release.

2. Choose the package type that is built for Apache Hadoop 3.2

and later.

3. Click the Download Spark link.

This will download the compressed Spark release to your laptop. Okay, so far so

good. Now you just need to decompress the package and move Spark into a convenient

home location. Open your favorite terminal application (I’m on a Mac laptop using the

default Terminal app) and execute the following commands;

1. mkdir ~/sources

2. cd ~/sources

3. mv ~/Downloads/spark-3.0.1-bin-hadoop3.2.tgz ~/sources

4. tar -xvzf spark-3.0.1-bin-hadoop3.2.tgz

5. mv spark-3.0.1-bin-hadoop3.2 spark-3.0.1

6. rm spark-3.0.1-bin-hadoop3.2.tgz

If you followed these steps correctly, you should now have Spark installed in the

~/sources/spark-3.0.1/ directory. Let’s test that everything and spin up our local

Apache Spark.

48

Chapter 2 GettinG Started with apaChe Spark

Note the version of Spark available when you read this book will be subject to

the release date of new versions. the book is written for apache Spark 3.x. the

versions used throughout the book might differ slightly, so just keep that in mind as

you follow the exercises.

 Taking Spark for a Test Ride

Now that Spark is installed, you should run a simple test to make sure that things

are working correctly. Open a new terminal window and execute the commands in

Listing 2-1.

 Listing 2-1. Exporting the Required JAVA_HOME and SPARK_HOME

Environment Variables and Launching the Spark Shell to Test the

Installation Process

export JAVA_HOME=/usr/local/opt/openjdk@11/libexec/openjdk.jdk/

Contents/Home/

export SPARK_HOME=~/sources/spark-3.0.1/

$SPARK_HOME/bin/spark-shell

Note the paths on your laptop may be different from those on my setup. refer to

the installation instructions if the Spark shell does not come up.

Given that everything worked out as planned, you should now see some debug

information in the terminal window, including an ASCII version of the Spark logo, the

runtime Java and Scala version information, and the release version of Spark running.

Here is an example from my machine:

Spark context Web UI available at http://192.168.1.18:4041

Spark context available as 'sc' (master = local[*], app id =

local-1609119924108).

49

Chapter 2 GettinG Started with apaChe Spark

Spark session available as 'spark'.

Welcome to

____ __

/ __/__ ___ _____/ /__

_\ \/ _ \/ _ `/ __/ '_/

/___/ .__/_,_/_/ /_/_\ version 3.0.1

/_/

Using Scala version 2.12.10 (OpenJDK 64-Bit Server VM, Java 11.0.9)

Type in expressions to have them evaluated.

Type :help for more information.

scala>

 The Spark Shell

Think of the Spark Shell as a utility for testing ideas quickly, or simply as a Spark

playground. I say this because you don’t need to write a single line of code or compile

anything before getting started with a new idea. The magic of this shell program comes

from the way it handles the dynamic loading of classes. For each new line of input, the

shell saves its prior state, reads and reacts to the input, dynamically compiles and links

new classes and functions, and saves its new state if no errors were thrown. If you are

curious to see exactly how the REPL works, you can look at the SOURCE CODE FOR THE

Spark REPL. However, it is easier to get an idea by building a mental model while doing

something first, and then let your curiosity take you the rest of the way when you are

ready. For now, let’s start with some of the basics to get warmed up with the first of the

hands-on exercises of the book.

 Exercise 2-1: Revisiting the Business Intelligence

Use Case

Do you remember the hypothetical business intelligence problem that was presented in

Figure 2-2? To recap, we needed to create a series of jobs to read event data pertaining to user activity on a fictional ecommerce site, with the goal of coming up with the following

three common daily reports:

50

Chapter 2 GettinG Started with apaChe Spark

• Find the daily active users (or daily unique users).

• Calculate the daily average number of items across all user carts.

• Generate the top ten most added items across all user carts.

 Defining the Problem

Solving most data problems begins with the data and a specification of what we want to

accomplish. In this case, we have a rough idea of what we need to accomplish, as noted

in the introduction to this exercise, and for now we can get started. But in a more formal

setting, you would also want to think about the following:

• What sources of data do you have access to?

• Who owns the data? Do you know who produces the data and

controls the format (or schema) of the dataset?

• Can the data be read natively into Spark?

This is just a sample of some of the questions teams need to ask before starting to

work with data. Luckily for us, we can just plow ahead and solve the problem since we

are going to create the data we work with.

 Solving the Problem

If you are not running the spark-shell, go back to the steps in Listing 2-1 to start up the shell. With the spark-shell spun up, we’ll create a few rows of data to work with.

You can copy and paste the code (if reading on your laptop) by pasting directly into the

spark-shell, or you can simply write each line into the spark-shell.

Tip to enable paste mode, just type :paste and press enter. You should see

// Entering paste mode (ctrl-D to finish). to exit paste mode and

interpret the code block from Listing 2-2, just press Ctrl+d. You should see //

Exiting paste mode, now interpreting.

51

Chapter 2 GettinG Started with apaChe Spark

 Listing 2-2. Importing Spark Helpers, Defining the Activity Case Class, and

Generating Some Data

import spark.implicits._

import org.apache.spark. sql.functions._

case class Activity(

userId: String,

cartId: String,

itemId: String)

val activities = Seq(

Activity("u1", "c1", "i1"),

Activity("u1", "c1", "i2"),

Activity("u2", "c2", "i1"),

Activity("u3", "c3", "i3"),

Activity("u4", "c4", "i3"))

val df = spark. createDataFrame(activities)

.toDF("user_id", "cart_id", "item_id")

// output the tabular rows

df. show()

The code in Listing 2-2 sets the stage for our first micro-application. The example begins by importing some of Spark’s implicit helper functions from the “magic spark

object”. The spark-shell on startup creates what is known as the SparkSession and

assigns it to the variable spark. Next, we import the functions necessary for using

SparkSQL and define our data model using the Activity case class.

Things get more exciting as we generate some Activity data, and finish by using

Spark to interpret our activities and create an initial DataFrame. There is a lot of magic

going on here, but for now just know that spark.implicits._ enables us to convert and

encode our Scala objects into the format needed by Spark for the DataFrame APIs. We’ll

cover DataFrames in much more detail in the chapters to come.

52

Chapter 2 GettinG Started with apaChe Spark

The output of the code block from Listing 2-2 begins when you call df.show(). At this point, Spark will present you with a formatted table view of your activities’ DataFrame.

+-------+-------+-------+

|user_id|cart_id|item_id|

+-------+-------+-------+

| u1| c1| i1|

| u1| c1| i2|

| u2| c2| i1|

| u3| c3| i3|

| u4| c4| i3|

+-------+-------+-------+

Armed with some data, let’s go ahead and walk through a solution to the three

questions proposed at the beginning of this exercise.

Tip if you are new to Scala, then the case class will need some introduction. in a

nutshell, case classes create templated classes extending the Scala product type,

and automatically generate an immutable constructor, a companion object (helper

template), field level accessors, as well as the copy, equals, hashCode, and toString

methods. Case classes save you time when writing new classes and the immutable

objects represented by case classes are important for functional programming as

well as distributed systems. See the Online Scala Book for full details.

 Problem 1: Find the Daily Active Users for a Given Day

Now that we have our DataFrame as defined in Listing 2-1, getting the unique users is as simple as counting the distinct user_ids within the DataFrame. The code snippet from

Listing 2-3 will count the unique users.

 Listing 2-3. Getting the Distinct Users

scala> df.select("user_id").distinct().count()

res1: Long = 4

You should see the number 4. You will notice that you immediately get an answer to

this problem.

53

Chapter 2 GettinG Started with apaChe Spark

 Problem 2: Calculate the Daily Average Number of Items

Across All User Carts

This next problem is a bit more complicated, as it requires the data to be grouped

and aggregated. But as you will see, it can be expressed intuitively as well. Paste the

code from Listing 2-4 into the spark-shell (remember to use :paste, then copy, then interpret with Ctrl+D).

 Listing 2-4. Calculating the Daily Average Number of Items Across All Carts

val avg_cart_items = df.select("cart_id","item_id")

.groupBy("cart_id")

.agg(count(col("item_id")) as "total")

.agg(avg(col("total")) as "avg_cart_items")

When you run the code from Listing 2-4 you will notice that you don’t get an answer as you did in Listing 2-3. This has to do with the way that Spark executes, and it is an explicit design choice, called lazy execution. Spark sets up a plan of attack but doesn’t immediately execute anything unless there is an action (in Listing 2-3, count() was the action). We cover query plans later in the book, but for a sneak peek, use the explain()

method on avg_cart_items, as shown in Listing 2-5.

 Listing 2-5. Using the Explain Function to See What Spark Is Doing Behind

the Scenes

scala> avg_cart_items.explain()

== Physical Plan ==

*(3) HashAggregate(keys=[], functions=[avg(total#87L)])

+- Exchange SinglePartition, true, [id=#109]

+- *(2) HashAggregate(keys=[], functions=[partial_avg(total#87L)])

+- *(2) HashAggregate(keys=[cart_id#57], functions=[count(item_id#58)])

+- Exchange hashpartitioning(cart_id#57, 200), true, [id=#104]

+- *(1) HashAggregate(keys=[cart_id#57], functions=[partial_

count(item_id#58)])

+- *(1) LocalTableScan [cart_id#57, item_id#58]

54

Chapter 2 GettinG Started with apaChe Spark

Note the output from running explain() will probably look like gibberish

at this point. that is expected if you are new to Spark or the dataFrame

api. remember earlier in the chapter when we talked about how the Spark

rdd stores the data lineage for all transformations leading back to the original

data source? well, the dataFrame operates on top of the rdd, and this plan is

an example of that transformational data lineage in a stepwise way. to read

the output, begin at the end of the explain output *(1) LocaltableScan and walk

backwards up to *(3) hashaggregate. You’ll see that Spark automatically analyzes

a query to create an execution plan to achieve an optimal outcome. in this case, it

is a simple (1) local table scan of the activity data from the dataFrame, (1) select

the fields we need, groupBy and aggregate (2) the total item’s per cart, and finally

(3) generate the average of the aggregated cart totals. what a trip!

Now to get the average of the total cart items, we need to add an action. The easiest

thing we can do here is to call show(), which is an action on the DataFrame. This will

execute the statement from Listing 2-4 and is shown in Listing 2-6.

 Listing 2-6. Using the show() Action to See the Results of the Computation

scala> avg_cart_items.show()

+--------------+

|avg_cart_items|

+--------------+

| 1.25|

+--------------+

We will cover SparkSQL, DataFrames, and aggregations more in the chapters to

come, consider this a sneak peek for what’s to come. Now, let’s solve the final problem

for the exercise.

 Problem 3: Generate the Top Ten Most Added Items

Across All User Carts

This problem is like Problem 2 in that it requires us to group and sort results across the

DataFrame. Listing 2-7 shows the full solution.

55

Chapter 2 GettinG Started with apaChe Spark

 Listing 2-7. Grouping, Aggregating, Sorting, and Limiting the Result Set in Order to See the Top N Items in Users’ Carts

scala> :paste

// Entering paste mode (ctrl-D to finish)

df.select("item_id")

.groupBy("item_id")

.agg(count(col("item_id")) as "total")

.sort(desc("total"))

.limit(10)

.show()

// Exiting paste mode, now interpreting.

+-------+-----+

|item_id|total|

+-------+-----+

| i3| 2|

| i1| 2|

| i2| 1|

+-------+-----+

Given there are only three items in the carts (unless you added more) then we only

get three results to our query. However, in the real-world, your Spark job(s) may have

millions of rows of data to process, yet Spark makes it incredibly easy to scale from five

rows of data to millions.

Now that we are finished with this exercise, we can safely stop the spark-shell. To

do so, all you need to do is press Ctrl+C to close the session, or press :q to quit without

any error codes. This will tell the driver application to stop running the spark-shell.

 Exercise 2-1: Summary

This exercise gave you some hands-on experience with Spark using the spark-shell.

While the code in these exercises is simple, my hope is that it got your gears turning and

excited for what is to come.

56

Chapter 2 GettinG Started with apaChe Spark

 Summary

This chapter covered the history of Apache Spark, which came into existence from the

knowledge and learnings of MapReduce. You learned about the Spark programming

model and how it enables greater flexibility than MapReduce, while achieving fault-

tolerance and reliability. It has the bonus of data caching and reuse through the sharing

of in-memory datasets between processes running within Spark applications.

You learned how Spark is architected in a truly modular fashion, enabling a true

separation of concerns between cluster management, the runtime for Spark applications,

and even the pluggable libraries and APIs required by the Spark applications.

It covered how Spark was built to run on the JVM, but how different programming

languages such as Python and R can control the actions of the Spark driver using

command-processing gateways. This means that team members with different skill sets

or language affinities can all cooperate and write programs that run on top of the same

underlying Spark cluster and ecosystem.

We concluded the chapter with your first exercise, where you learned how simple

and expressive Spark makes it to answer common business intelligence problems. In

fact, solving the distinct user counting problem (Listing 2-3) can be further simplified using Spark SQL and temporary inline views, which is shown in Listing 2-8.

 Listing 2-8. Creating a Temporary View to Find the Total Count of Distinct Users df.createOrReplaceTempView("activities")

spark.sql("""

select count(distinct(user_id)) as unique_users

from activities

""").show

As mentioned, Spark enables many ways of accessing and working with data. In fact,

Spark SQL can be run using the Spark Thrift Service, allowing you to connect to Spark

using Tableau or Apache Superset for data analysis and visualization.

The next chapter focuses on the foundational capabilities enabled by the core Spark

APIs that assist you when working across a wide variety of external data sources, and

natively across a wide variety of common files formats, protocols, and compression

types. You’ll learn how the core Spark APIs can be used to solve many problems that

come your way as a data engineer, through reinforcing exercises and examples that help

you gain familiarity with the core Spark APIs. If you are ready, let’s go.

57

CHAPTER 3

Working with Data

The last chapter introduced you to the Spark architecture and programming model.

We took a quick tour of the core Spark components and APIs and finished up with an

exercise that introduced you to the spark-shell and the DataFrame API. You also

saw your first glimpse of the Spark SQL API, which empowers you to express complex

analytical queries quickly and easily in a structured way. It also that cleanly abstracts

away the underlying complexities when composing difficult SQL expressions.

In this chapter, we continue right where we left off and build upon the first two

foundational chapters. We explore the process of reading, transforming, and writing

structured data through the DataFrame API and take another look at using Spark SQL.

Throughout this journey, you’ll be working hands-on across introductory exercises

focused on using Spark’s core data sources capabilities.

As a data engineer, your job hinges on the ability to easily wrangle data, and I am

a firm believer this is one of the most important core skills required for day-to-day

excellence. You will be expected to think quick on your feet and figure out new ways

to ingest, parse, and validate new sources of data that may not always be in the most

optimal or easily ingestible format. But nonetheless it will be your mission to transform

the data into clean, well structured, and above all reliable data. Luckily for us, Apache

Spark supports many of the more commonly used data formats in use today and as you

will soon find out, working across data sources and formats doesn’t need to be a difficult

task at all.

Before you begin, you will be learning about and installing two additional pieces of

infrastructure within the development environment. The first is the Docker runtime, and the second is a notebook environment called Apache Zeppelin. These tools will become instrumental in your journey as a data engineer and that process beings now!

59

© Scott Haines 2022

S. Haines, Modern Data Engineering with Apache Spark, https://doi.org/10.1007/978-1-4842-7452-1_3

Chapter 3 Working With Data

 Docker

For those of you who have yet to work inside a containerized ecosystem, Docker is one

of the more widely used container platforms on the market today. Docker has also

been instrumental in helping to establish the open- container initiative (OCI), which has defined the standard for how container formats and runtimes should work and

interoperate. So what exactly are containers?

 Containers

Let’s start by understanding why containers are so important. If you’ve worked or

have a background with traditional DevOps or have simply tried to bootstrap your

local environment across a few laptops, or a small handful of servers, then you know

the struggle associated with streamlining the steps required to set up and deploy

each physical environment. Even using package managers (such as apt-get, yum, or

homebrew), the necessary steps to get each environment up and running efficiently can

quickly become unruly. The biggest common pain points for this process revolve around

consistency and runtime guarantees. Often, what works locally for you may not operate

with the same level of finesse (or at all) for other engineers. Lastly, and most important,

even when things operate for you and everyone else locally, things can differ significantly

when they're finally deployed.

It is for these reasons that containers have become a must-have for mission critical

applications. With containers, you can focus on writing software, knowing that what runs

for you will also run for everyone else, without having to worry about conflicting runtime

packages, or unmet system requirements, when sharing the same underlying containers

and file system layers.

Docker, and containers in general, solve the common problem of deploying software

by making it easy to run in a lightweight, standalone, executable environment. Your

software is packaged alongside everything necessary to run reliably, regardless of the

underlying operating system and hardware configurations. This is achieved through

virtualization on Macs or PCs to create a Linux environment. Within the Linux OS,

control groups (cgroups) enable these lightweight, isolated environments to be cordoned

off (jailed) with respect to the shared host operating system. CGroups are outside the

scope of this book, but if you are curious to understand how containers work, just take a gander online. It is fascinating.

60

Chapter 3 Working With Data

Lastly, containers enable a unified development experience across Linux, Mac, and

Windows, as well as across different CPUs like the common Intel x64 (64-bit), x86 (32-

bit), and the ARM processors on the market today. Everything will simply run without

the need to compile and maintain multiple targeted builds of your software for the

various release environments.

Installing Docker is as easy as downloading the runtime, or you can take the path of

least resistance and install the Docker Desktop , which is covered in the next section.

 Docker Desktop

Follow the download instructions from https://www.docker.com/products/docker-

desktop and in no time at all you will have all the components necessary to run Docker on your computer. Docker Desktop will automatically keep your system up-to-date and

notify you when new releases or security patches are available for installation. If you are

running on Linux directly, you can install the Docker engine.

Note at the time of writing, Docker Desktop is currently in beta for anyone using

macoS on the M1 chipset. to install the M1 preview, you have to use this link

https://docs.docker.com/docker- for- mac/apple- m1/.

 Configuring Docker

The Docker runtime is used to coordinate and run containers using a shared OS. This

means your system needs to share resources with the Docker runtime and with the

host machine (e.g., your laptop, desktop, or server). To effectively run the Docker

environment, you allocate a slice (subset) of your CPU cores and RAM memory for

Docker upfront.

I recommend allocating the following minimum set of resources for Docker to

effectively run. The more CPU cores and memory, the better.

• CPUs: 4

• Memory: 8GB

• Swap: 2GB

• Disk Image Size: 100GB

61

Chapter 3 Working With Data

Note as a rule of thumb, it is beneficial to leave at least 1gB of raM and at least

one CpU available in order to run the main oS on your host machine.

To reconfigure your Docker preferences, follow these steps:

1. Open Docker Desktop.

2. Click the Config icon (Preferences) and click the Resources menu

item (see Figure 3-1).

 Figure 3-1. Docker Desktop: Preferences ➤ Resources view from the UI

62

Chapter 3 Working With Data

3. Update the configurations.

4. Click Apply & Restart.

Now that you have the Docker runtime installed, you can move onto Apache

Zeppelin. You use Zeppelin to run the chapter’s exercises.

 Apache Zeppelin

 Apache Zeppelin is an open-source notebook environment. If you are not familiar with what a notebook environment is, that is okay, as you will be by the end of this chapter.

You may have heard of Jupyter, which is the standard experimentation environment for data scientists and machine learning engineers alike. Like Jupyter, Zeppelin is a web-based interactive development environment, but it ships with native support for Apache

Spark, as well as many other connectors, which are called interpreters.

 Interpreters

Within Zeppelin, an interpreter is a common interface that allows the Zeppelin runtime

to control local libraries and remote services using a common remote procedure call

 (RPC) framework. RPC enables a software client to make external calls to a backend RPC

service, via a lightweight messaging protocol, which enables the RPC client to run code

on the server in an abstract way that feels no different than if the client were running

the same routine locally. This abstraction makes it easy to create efficient interfaces

for interoperating with many additional services without having to change the way the

client-side calls out to various connected services. In the case of Zeppelin, you can think

of the Zeppelin runtime like a router to many backend services, but with a common user

interface. We use the Markdown, SQL, and Spark interpreters in the exercises to come.

 Notebooks

The magic of the notebook environment is rooted in its ability to dynamically compile

and run code (on-demand). A notebook is a collection of notes. Each note is broken down across a series of one or more paragraphs. Each paragraph contains individual

snippets of code, documentation, graphs, etc. Within each notebook, code can be

interpreted and run either as a procedural cascade, where each paragraph is run in

63

Chapter 3 Working With Data

sequential order, also called playing the notebook, or by running individual paragraphs

in isolation, in an async fashion. Zeppelin works in a similar fashion to the spark-shell,

in that it reads and compiles your code on-the-fly, but it also enables you to go beyond

the terminal. For instance you can:

1. Store the progress of your session within a notebook, so you can

quickly fire your environment back up and pick up where you

left off. Your notebooks auto-save so you will never be caught off

guard if your computer turns off unexpectedly.

2. Visualize the data stored in your DataFrames through the

embedded SparkSQL interpreter. This can be a useful tool since

the human brain isn’t tuned to read text- based output of data

and make sense of it. Graphing your data can be critical to the

success of a project since you can uncover missing data and other

characteristics of your data that may have been missed otherwise.

3. Interact with multiple users in the same notebook in real-time.

*This is available only if you are running hosted Zeppelin or open

an ngrok tunnel to your localhost.

4. Easily import and export notebooks to share common solutions to

problems without requiring anyone to compile any code.

In the next section, we spin up Zeppelin and explore how to make the most of this

valuable tool.

Book Source Code if you have yet to download the source code for the book,

then i suggest doing that now. it is as easy as popping over to https://github.

com/newfront/spark-moderndataengineering and downloading the contents there. You will be using the starting point located at /ch-03/start for

the exercises that follow.

 Preparing Your Zeppelin Environment

To follow along with the exercises, you need to have Spark installed (and working)

locally. This process was covered in Chapter 2.

64

Chapter 3 Working With Data

Assuming everything is installed, and you were able to test the spark-shell in the

previous chapter exercises, then one thing you may remember is that you manually

exported environment variables to the terminal session before starting the spark-shell.

It is a better practice to export these variables into your .bashrc or .zshrc.

Listing 3-1 shows a reference of the environment variables required to run Spark. The same process can be done using a .bashrc or .bash_profile. Adding these parameters

manually each time you want to run Spark will quickly become annoying, so instead you

can copy them into your Bash environment profile. Just make sure the paths are correct

for your local setup. The reason for testing using transient environment variables (like

the ones shown in Chapter 2) is to ensure that the paths are defined correctly and that things work before exporting them.

 Listing 3-1. An Example from a .zshrc Profile

export JAVA_HOME="/Library/Java/JavaVirtualMachines/zulu-11.jdk/

Contents/Home/"

export SPARK_HOME=~/install/spark-3.1.0

Now that you have the environment set up, make sure you call source ~/.zshrc

before continuing to refresh your Bash session (from the terminal). Now you’re ready

to party!

 Running Apache Zeppelin with Docker

Execute the following two simple steps to start the Zeppelin process. This process will

install and then start up Zeppelin. If this is the first time installing the Zeppelin Docker

image, it will take a few minutes depending on your Internet connection. Once this

Docker image is cached locally, starting and stopping the Zeppelin environment will

take no time at all.

1. cd ch-03/start/docker

2. ./run.sh start

At this point you will have Apache Zeppelin running on your laptop.

Peeking at the ch-03/start/docker/run.sh script gives you more complete details

regarding how the environment is set up. The start function is shown in Listing 3-2.

65

Chapter 3 Working With Data

 Listing 3-2. The start Function in the run.sh Script Ensures Your Local

Environment Is Set Up As Expected, then Delegates the Actual Running of the

Zeppelin Container to the Docker Compose Process

function start() {

sparkExists

createNetwork

docker compose -f ${DOCKER_COMPOSE_FILE} up -d --remove-orphans zeppelin

echo "Zeppelin will be running on http://127.0.0.1:8080"

}

We’ll continue with Zeppelin after a brief pause to talk about the Docker runtime.

Note the following section dives further into the processes at work when you

call run.sh start. if you are familiar with Docker and containers, you can

skip ahead.

 Docker Network

The run.sh script creates a network within Docker called mde. This bridged network

allows containers running within the Docker runtime to communicate with one another

only if they also share access to the same Docker network, and the network is also

protected from the external host network. This means that unless further action is done

(using port forwarding to the host machine), you have essentially created a private

network that is protected in the Docker runtime.

docker network create -d bridge mde

Given that Docker runs a self-contained Linux executable, that means that the

containers running inside of Docker are isolated by both their container and within

the Docker runtime. This is good since Docker takes a secure, share-nothing style to

the container runtime, but if you want to establish connections from one container to

many different containers—say for example to run a database, distributed file system,

or streaming data source like Kafka or Redis Streams—you wouldn’t be able to do so

without opening a shared network between the containers.

66

Chapter 3 Working With Data

As we work through the chapters ahead, we will be using the Docker network to

run everything we need for various streaming pipelines and to handle orchestration of

different batch jobs.

Note if you want to use the hostname associated with your container from

your localhost network, you can modify your /etc/hosts file to include a line at

the bottom of the record for Zeppelin. For example: 127.0.0.1 zeppelin will

enable you to view the Zeppelin Ui at http://zeppelin:8080.

 Docker Compose

The process for composing the Zeppelin environment is fairly simple. In this first use

case, the heavy lifting is mostly done via ch-03/start/docker/docker-compose-all.

yaml. The Docker Compose configuration is presented in Listing 3-3. The configuration shown here is a simple example of a single service named zeppelin.

 Listing 3-3. The Docker Compose File docker-compose-all.yaml Creates a

Consistent Configuration to Reliably Run One or More Containers

version: '3'

services:

zeppelin:

image: apache/zeppelin:0.9.0

container_name: zeppelin

volumes:

- ${PWD}/notebook:/notebook

- ${PWD}/logs:/logs

- ${PWD}/data:/learn

- ${SPARK_HOME}:/spark

environment:

- SPARK_HOME=/spark

- ZEPPELIN_LOG_DIR=/logs

- ZEPPELIN_NOTEBOOK_DIR=/notebook

- ZEPPELIN_ADDR=0.0.0.0

67

Chapter 3 Working With Data

- ZEPPELIN_SPARK_MAXRESULT=10000

- ZEPPELIN_INTERPRETER_OUTPUT_LIMIT=204800

healthcheck:

interval: 5s

retries: 10

ports:

- 8080:8080

- 4040:4040

- 4041:4041

networks:

- mde

hostname: "zeppelin"

networks:

mde:

external:

name: mde

The Docker Compose configuration is a declarative resource interpreted by the Docker

Engine to reliably run consistent services. Looking at the services block in Listing 3-3,

you’ll see a series of nested configurations that allow the Docker runtime to assemble the

service. For example, the zeppelin service instructs Docker to use or pull the apache/

zeppelin:0.9.0 image (container) and associate the resulting bound service to the

container named zeppelin. The container_name property can be used as an alias to a

specific name. By default, the docker runtime will create a uniquely named container.

Note 0.9.0 is the image tag and the release version of Zeppelin at the time of

writing this book.

 Volumes

The volumes block is used to mount external volumes into the runtime of the Docker

container. If you look at the configuration of the zeppelin service, you will see we are

forward-mounting specific directories from our host file system into the zeppelin

container. These declarations enables us to automatically import the introductory

68

Chapter 3 Working With Data

Zeppelin notes using relative paths ${PWD}/notebook:notebook. You’ll also see that a

data directory is included in ${PWD}/data:/learn, as well as the output of our Zeppelin

logs via ${PWD}/logs:logs. While all of the resources beginning with ${PWD} are

located in our local file system, the resulting path is the absolute location of the mounted

volumes within the container (Zeppelin, in this case).

Tip Containers are immutable. this is an important tidbit because all files created

in the Docker container are isolated (or trapped) in the container by design. if you

don’t remember to export changes made at runtime, then by design if you stop

and remove a container, all changes made after starting the container will be lost,

including any new notes, changes to any configuration, or anything else done at

runtime. Using volume mounts, you can share fully working experiments, without

modifying the containers themselves. this concept is at the heart of the container

ecosystem, and you’ll be learning many techniques and best practices (and some

interesting hacks) in the chapters to come.

 Environment

Environment variables are a simple way to modify the behavior of Docker containers

at runtime. The environment block enables us to override some of the Zeppelin

defaults to create (or plug) the base container to achieve our desired outcome. This

technique is important since the alternative means of customizing containers results in

creating a new Docker image. In the docker-compose-all.yaml we use the host system

environment variables to reference and mount the local Spark installation path using

$SPARK_HOME. This trick provides a local container-based mount $SPARK_HOME=/spark,

which can be seen under the volumes block. The environment variables in the Docker

container are then updated to point to your mounted Apache Spark, which lets you bring

your own Spark in the Zeppelin runtime. Neat.

 Ports

Each Docker container runs in its own isolated environment. In order to allow access

to the outside world, we must purposefully expose any ports we want to make available

explicitly. Using the ports block, we enable port-forwarding from the internal docker

69

Chapter 3 Working With Data

network to our host system. This allows the Docker runtime to forward external requests

to specific ports to be forwarded to the internal containers. This step is necessary to

expose the Zeppelin UI, and to expose the ports for the Spark UI too.

You’ll be using docker-compose for most exercises in the book. Visit this section

again if you want to go back over the basics of the Docker network or view the structured

of the docker-compose YAML. Now let’s get back to Zeppelin.

 Using Apache Zeppelin

Open the Zeppelin home page (using your favorite web browser) on localhost port 8080

(http://127.0.0.1:8080). This is the result of executing the ch-03/start/docker/run.

sh start command from earlier. Confirm that the home page loads, and then we can

run our first note together. The service home page is shown in Figure 3-2.

 Figure 3-2. Loading the Zeppelin homepage will confirm that everything has

 started up correctly

70

Chapter 3 Working With Data

With the Zeppelin environment running (you should see a similar screen as that of

Figure 3-2), you will see that the home page is separated with a section labeled Notebook on the left. Within this section, you will see that some notes are already loaded for use

in the hands-on exercises. The local notebook directory is volume mounted to your host

system, so you can add new notes and modify existing ones, without worrying if the

changes will persist.

From the Zeppelin home page, click the notebook under ch-03 called 3- 1_

IntroToSparkOnZeppelin. This will open the initial starting note. You’ll notice the

note is broken into individual text blocks. These individual sections of the note are

called paragraphs. Each paragraph can be run individually, or you can choose to run

all paragraphs in a synchronous cascade using the play icon located at the top of the

notebook. Figure 3-3 shows how to run all paragraphs.

 Figure 3-3. Use the Play icon at the top of the note to run all paragraphs

Running all paragraphs is a simple way to ensure that the contents of the note have

been executed, and that the Spark interpreter is working as expected. This initial step

may take a little time, as there are some background processes at work that are readying

the notebook environment.

Tip i prefer to walk through the notebook in the same way that i would scroll

through an article online, and that is using a top-down approach. this just means

that i like to manually run each paragraph in sequence. this exploration tactic can

help you understand how the notebook is architected, what the intentions of the

author are, and to also double-check that there is no destructive code that made

it into the note. if you jumped the gun and already clicked run all paragraphs, that

is completely fine. as a rule of thumb, though, it is always better to look before you

leap, especially when it comes to running a note the first time.

71

Chapter 3 Working With Data

 Binding Interpreters

Apache Zeppelin uses interpreters to enable each paragraph within the note to interact

with different data sources using a single unified UI. Behind the scenes the complexity

of keeping connections alive is delegated to the Zeppelin service itself. It is common

for each note to connect to a smaller subset of services, but as you get used to using

Zeppelin, you may find it more useful to interweave many data sources to create holistic

dashboards or to debug and investigate data from many locations.

The way that Zeppelin denotes which interpreter is associated with each paragraph

is with the initial modulus line, for example %{interpreter} is seen on each paragraph.

We use a mix of Markdown %md and Scala-based Spark %spark in the introductory

note you currently have open. We’ll be focused on using the %spark interpreter for all

new paragraphs for the remainder of this chapter. Figure 3-4 is used as a reference for interpreter binding.

 Figure 3-4. An example of the Spark interpreter in Zeppelin

You can go ahead and click the Play icon on the Read CSV paragraph within the note

now if you haven’t clicked Run All yet.

As a quick recap, we just learned that a note contains one or more paragraphs, and

that each paragraph is bound to an individual interpreter. For example, Spark/Scala

%spark or Markdown %md. Essentially, the separation of concerns handled by the

Zeppelin notebook environment enables a more consistent experience than simply

using the Spark shell directly, as you experienced in the last chapter.

Let’s officially begin the chapter exercises with the goal in mind to learn how

Apache Zeppelin can be used to speed up the process of Apache Spark exploration and

experimentation.

72

Chapter 3 Working With Data

 Exercise 3-1: Reading Plain Text Files and Transforming

DataFrames

As I alluded to at the beginning of this chapter, the work you do as a data engineer is not

always based upon well-defined, well formatted, or well documented data. In some cases, like

this first exercise, you’ll be exploring unknown data, and there will be some custom parsing

required to format the dataset into something that can be efficiently processed and analyzed

with Spark. So, you'll put yourself into the shoes of a new data engineer working at a boutique

coffee company named CoffeeCo. It is day one and you’ve been asked to find a simple way to

process and clean up plain text files for reliable use to downstream data systems.

 Converting Plain Text Files into DataFrames

From the intro Zeppelin note, scroll down to the paragraph titled Read and Analyze. The

contents of the paragraph plain text file go into a DataFrame. The paragraph code will be

prepopulated for you and shown for reference in Listing 3-4. The DataFrame schema is printed to standard out to give you an idea of how Apache Spark interprets plain- text files.

 Listing 3-4. The Code Snippet Generates a DataFrame by Instructing the

SparkSession to Read a Plain Text File

%spark

val df = spark.read.text("file:///learn/raw-coffee.txt")

df.printSchema

The simple snippet from Listing 3-4 uses the DataFrameReader class. The DataFrameReader class enables you to load various datasets into Spark, as DataFrames,

using a simple interface. We’ll use this paragraph (Zeppelin’s term for the runnable

section in the notebook) as the starting point for the exercise. From here on out you’ll be

adding new paragraphs, writing code, and running the notebook as you proceed.

Go ahead and run the paragraph by clicking the Play button located to the top-right

of the paragraph. You’ll see the following output after the Spark engine is initialized.

root

|-- value: string (nullable = true)

The output is the result of calling df.printSchema. Spark associates all data

sources with a schema , which defines the typed structured of the data. In this case,

73

Chapter 3 Working With Data

we are reading a text-based file, so the resulting DataFrame will have a single typed

column called value that is represented by a StringType. We cover schemas, which are

encapsulated by the Spark StructType and underlying StructFields, in more detail

toward the end of the chapter.

You may notice that the output schema is a bit ambiguous. Mainly you may be asking

yourself if the whole file is represented by this single value, or what. To discover what the

schema represents, let’s create a new paragraph and call the show() action on this simple

DataFrame.

 Peeking at the Contents of a DataFrame

Hover underneath the Read and Analyze paragraph with your mouse, and you will see a

prompt show up to Add Paragraph. Click the prompt and you’ll see a add new paragraph

show up. This new paragraph will automatically fill in the interpreter based on the prior

interpreter, which means that the first line will be %spark. Now simply call show() on the

DataFrame (df) like the reference shown in Listing 3-5.

 Listing 3-5. Calling show() on the DataFrame Will Read Up To the First 20 Rows

and Output It in a Simple Console Formatted Table

%spark

df.show()

Now run the code in Listing 3-5. You’ll see that Spark has taken a basic first pass over the unknown text file, splitting each line of the text file based on the newline (\n)

separator. You’ll also notice the output is formatted to represent the tabular structure of

the DataFrame (rows and columns), which in this case, is just a single column (named

value) across a total of five rows.

+--------------+

| value|

+--------------+

| folgers, 10|

| yuban, 10|

|nespresso, 10,|

| ritual, 4,|

|four barrel, 5|

+--------------+

74

Chapter 3 Working With Data

This output gives us better insight into the data itself. We can observe that the value

Column represents a name and a numeric value as a comma-separated pair. It is common

as a data engineer to write custom parsers when you are normalizing and cleaning data.

We’ll walk through how to parse each row of the DataFrame to transform it into a pair of

named columns representing a coffee brand (e.g., Folgers, Yuban) and a corresponding

roast level (or simply how dark the beans are).

 DataFrame Transformation with Pattern Matching

Using what you know of the underlying data format (obtained with Listing 3-5), you can build a custom transformer to format the DataFrame. In a nutshell, this transformation

will convert each raw row of text (from the value column) into a DataFrame representing

a coffee brand (String) and a roast level (Int).

Create a new paragraph just below the paragraph from Listing 3-5. Then copy the contents of Listing 3-6 into the paragraph and run it.

 Listing 3-6. Creating a New DataFrame Using a Series of Transformation

%spark

val converted = df. map { r =>

r. getString(0).split(",") match {

case Array(name:String,roast:String) =>

(name,roast. trim.toInt)

}

}.toDF("name","roast")

converted.printSchema

Listing 3-6 is an example of using Scala to create a functional transformation (map) married with a technique called pattern matching, which results in our custom parser.

In a nutshell, the transformation code in Listing 3-6 does the following: 1. By calling the map function on the DataFrame, you can generate an

inline functional transformation (using Scala) that will be applied

to every row (represented by the r =>) of the DataFrame.

75

Chapter 3 Working With Data

2. Given that a DataFrame is a collection of rows, (represented by

the Row class), and since we know that each row is composed of

one String column, we can explicitly call the r.getString(0)

accessor method. This will provide a String that we can call split

on to manually subdivide the String.

3. Next we use pattern matching to deconstruct, or unapply, the two-item String array to the name and roast variables. This technique

allows us to use named variables that can be dropped into a tuple.

In order to convert the value of roast level to an integer, we first

remove any unintended padding (space) on the String using the

 trim method in order to ensure the conversion to int (roast.

trim.toInt) will succeed. It is worth mentioning that this method

is shown for simplicity and is not fully defensive. This example will

break for any row that has more than two commas. The complete

notebook (in the chapter material) shows how to add defensive

fallback using the catch-all pattern matching case _ =>.

4. Lastly, using the toDF("name","roast") method will convert the

Scala tuple back into a DataFrame. Because we are converting

from a tuple, the default column names of the DataFrame would

be _1, _2, which is not really human readable.

After running this new paragraph (locally via Zeppelin), you’ll see that the resulting

DataFrame (called converted) has the desired schema.

root

|-- name: string (nullable = true)

|-- roast: integer (nullable = false)

Create one additional paragraph and call converted.show() to see the effects of the

custom transformation.

%spark

converted.show()

76

Chapter 3 Working With Data

+-----------+-----+

| name|roast|

+-----------+-----+

| folgers| 10|

| yuban| 10|

| nespresso| 10|

| ritual| 4|

|four barrel| 5|

+-----------+-----+

While this first exercise isn’t necessarily rocket science, it should have gotten you

excited for learning to use Apache Zeppelin to rapidly test ideas, and even to learn the

ins and outs of Apache Spark.

 Exercise 3-1: Summary

This exercise introduced the basics of running Apache Zeppelin on Docker. You

learned to read and parse raw text files using Spark and along the way learned that the

DataFrame is essentially comprised of rows of data with strongly typed columns. Next,

we dive a little deeper into the DataFrame, uncover how schemas work, and learn how

to make Spark work for us so our data engineering lives become easier, and ultimately so

we can work more efficiently.

 Working with Structured Data

Continuing along in the spirit of exploration, we are going to look at how to use Spark to

do the heavy lifting for us when it comes to content parsing and transformation. This will

essentially remove the need for complicated custom parsers and instead you can learn to

lean more on Spark as it reads and applies structure to your data.

 Exercise 3-2: DataFrames and Semi-Structured Data

Head back to the Zeppelin home page. Open the notebook titled 3- 2_

LetSparkWorkForYou, which is the starting point for Exercise 3-2. You learn to use the CSV DataFrameReader , as a follow-up to Exercise 3-1, where you created a simple typed 77

Chapter 3 Working With Data

CSV parser. While you could have used the CSV reader in Exercise 3-1, you wouldn’t have learned the valuable skills that came with manually parsing and transforming the

data. Moving on!

The contents of the paragraph shown in Listing 3-7 create a DataFrame using the CSV

reader. Now you can load the coffee data without needing to manually split the columns.

 Listing 3-7. Augmenting Listing 3-4 by Replacing the Text-Based Reader with the More Powerful CSV Reader

%spark

val coffees = spark.read. csv("file:///learn/raw-coffee.txt").

toDF("name","roast")

coffees.show()

The output after running the paragraph from Listing 3-7 shows us that the coffee data appears to be correctly interpreted (parsed) on the first pass.

+-----------+-----+

| name|roast|

+-----------+-----+

| folgers| 10|

| yuban| 10|

| nespresso| 10|

| ritual| 4|

|four barrel| 5|

+-----------+-----+

Although it seems like everything went well, that isn’t really the case. Let’s see why

by adding a new paragraph to test the schema (printSchema) of the coffees DataFrame.

Use the code snippet from Listing 3-8 as your guide.

 Listing 3-8. A Simple Zeppelin Paragraph That Tests the Schema Generated

Automatically by Spark via the CSV Reader

%spark

coffees.printSchema

78

Chapter 3 Working With Data

Well, it turns out the backing schema of the coffees DataFrame is only simple strings.

root

|-- name: string (nullable = true)

|-- roast: string (nullable = true)

While Spark saves us the effort of manually splitting each line of CSV data into strings

and is more than capable of doing some heavy lifting on our behalf, we are still missing

one important piece of the puzzle, and that is how to coerce Spark into providing the

correct schema for us.

 Schema Inference

By design, Spark ships with a balanced configuration. This means you can get started

quickly and the engine will make decisions based on the collective common needs of

the Spark community. This also means that many options are turned off by default, to

optimize the general performance of the engine. This is the case with schema inference.

If you think about what Spark needs to do when attempting to infer the schema for a

given input dataset, then it isn’t much different than how your brain works when looking

over and scanning the same file. You instinctually look for patterns and can easily say,

just by looking, that a file is string data or numeric data, but Spark isn’t so efficient. Spark must open the file, read, parse, and test the data residing in each column to generate

a consensus, or come to an agreement, regarding the different types to bind to each

columnar row.

For a small file like the one we are using in this exercise, that is not a problem. It

is cost effective to test everything, as there are only a few rows of data. However, if you

wanted to infer the schema of a large file that also happens to contain a very large

number of columns per row, then you could easily find yourself running out of memory.

 Using Inferred Schemas

Add a new paragraph to the notebook (“3-2_LetSparkWorkForYou”), underneath the

paragraph you just added in Listing 3-8. This new paragraph, shown in Listing 3-9, will be used to augment how Spark interprets and infers the schema when loading the

contents of the plain text.

79

Chapter 3 Working With Data

 Listing 3-9. Setting the inferSchema Option on the DataFrameReader

%spark

val coffeeAndSchema = spark.read

. option("inferSchema", true)

.csv("file:///learn/raw-coffee.txt")

.toDF("name","roast")

coffeeAndSchema.printSchema

By adding the optional configuration, you can now unleash the power of the Spark

engine to infer (test and generate) schemas automatically. The resulting DataFrame

(coffeeAndSchema) learned on its own that each row contained a String column and a

Double column. The inference process will select the best possible match when reading

semi-structured data like CSV or JSON.

root

|-- name: string (nullable = true)

|-- roast: double (nullable = true)

Using this technique enables Spark to learn from a smaller subset of your data, say

the first 10,000 rows of a large file. In practice, data can change upstream in unexpected

ways, so often it is in your best interest to use an explicit schema (declarative) when

working with semi-structured data.

 Using Declared Schemas

You can use schema inference to generate and then export a concrete schema for later reuse.

When working with critical datasets, using strict schemas enables you to ignore (skip) corrupt

data, or to fail fast and kick back an exception, when encountering data that doesn’t conform

or parse correctly. Lastly, using specific schemas allows Spark to perform more optimally

since schema inference requires all columns across a subset (sample) of the dataset to be

tested to come to a consensus for each columnar type. I’ll introduce you to a fun technique I

like to call “steal the schema,” which you can use to generate and export strict schemas.

 Steal the Schema Pattern

Create a new paragraph and use Listing 3-10 as your guide. When you are finished, go ahead and run it.

80

Chapter 3 Working With Data

 Listing 3-10. Export an Inferred Schema Using the DDL Method on a DataFrame

%spark

import org.apache.spark.sql.types._

// steal the schema

val coffeeSchema: StructType = coffeeAndSchema.schema

val coffeeSchemaDDL: String = coffeeSchema.toDDL

// `namè STRING,`roast` DOUBLE

// create an explicit schema (from the stolen schema)

val coffeeDDLStruct: StructType = StructType.fromDDL(coffeeSchemaDDL)

// read the coffee csv using the stolen schema directly

val coffees = spark.read

.option("inferSchema", false)

.schema(coffeeDDLStruct)

.csv("file:///learn/raw-coffee.txt")

The steal the schema pattern from Listing 3-10 shows how you can extract an inferred schema as a DDL string. When applying this technique, you would export

the value of coffeeSchemaDDL directly to the file system, or simply copy and paste it

manually into a configuration file. The important part is that you can load the DDL string

directly into the DataFrameReader, which enables you to by-pass schema inference and

ultimately add more explicit strict rules for handling data in your Spark applications.

spark.read

.schema("`namè STRING,`roast` DOUBLE")

.csv("file:///learn/raw-coffee.txt")

This pattern can save time and enable your applications to enforce a strict schema

without having to rely on inference when running in production. While this process isn’t

necessary in the case where you begin with a well-known schema, it is worth understanding

what is possible and how the StructType can easily convert between DDLs and internal

Spark schemas. You can also use the Spark DSL to create data definitions manually.

 Building a Data Definition

Using the steal the schema pattern (Listing 3-10) resulted in an inferred schema that was slightly different from the resulting schema in Exercise 3-1. The difference being the 81

Chapter 3 Working With Data

inferred data type associated with the roast column. We wanted an integer and Spark

interpreted it as a double, aka the Spark DoubleType. We can correct the schema by manually construct the StructType.

Add another paragraph to the Zeppelin notebook and copy the code snippet from

Listing 3-11 into the paragraph; click run. The added benefit of this manual legwork provides documentation to each field in the schema.

 Listing 3-11. Construct a coffeeSchema StructType to Use Directly When

Reading the Coffee Data as a DataFrame

%spark

val coffeeSchema = StructType(

Seq(

StructField("name", StringType,

metadata = new MetadataBuilder()

.putString("comment", "Coffee Brand Name")

.build()),

StructField("roast", DoubleType,

metadata = new MetadataBuilder()

.putString("comment", "Coffee Roast Level (1-10)")

.build())))

val coffees = spark.read

.option("inferSchema", "false")

.schema(coffeeSchema)

.csv("file:///learn/raw-coffee.txt")

Defining the StructType manually opens additional options available directly on the

StructField object, including declaring the DataType of each named column as well

as the all-important metadata option. Let’s look behind the curtain and get to know the

StructType, StructField, DataType, and metadata a little more.

 All About the StructType

As we saw in Listing 3-11, when we compose a schema definition, we are really generating an instance of the StructType class. The StructType is a metadata object storing field-level information for each column represented by a DataFrame. This is

82

Chapter 3 Working With Data

analogous to a table definition in SQL. The StructType itself is just a container object

composed as a sequence of StructFields.

 StructField

The StructField is a simple object associated with a COLUÇMN in a DataFrame. Each

StructField has a unique field name, a DataType, a Boolean declaring if the column is nullable, and the optional, albeit important, metadata.

Spark Data Types

Spark supports many types of data that can be represented within a DataFrame. Each

type can be converted automatically between the Java JVM and native memory. We

dive deeper into the Catalyst engine in Chapter 6, but we can use this section as an introduction to the types available out of the box. Table 3-1 can be used as a quick reference during future exercises. While this table isn’t a comprehensive list of all

available data types, it is more than enough to get started.

 Table 3-1. Apache Spark Can Natively Convert Between Scala

 Types and Native Encoded DataTypes

DataType

Value Type in Scala

Spark API

ByteType

Byte

ByteType

ShortType

Short

ShortType

IntegerType

Int

IntegerType

LongType

Long

LongType

FloatType

Float

FloatType

DoubleType

Double

DoubleType

DecimalType

java.math.BigDecimal

DecimalType

StringType

String

StringType

BinaryType

Array[Byte]

BinaryType

BooleanType

Boolean

BooleanType

TimestampType

java.sql.Timestamp

TimestampType

DateType

java.sql.Date

DateType

83

Chapter 3 Working With Data

You may be familiar with some (or all) of the Scala types from Table 3-1. We’ve even used a few of the native DataTypes. Do you remember which ones? By the end of the

book, you will have worked with most of the native types in this table, albeit implicitly,

in addition to even more complex types as we get into the later chapters of the book. For

now, just keep this table in the back of your mind, as we take a brief moment to discover

how to work with the Metadata class.

 Adding Metadata to Your Structured Schemas

The Metadata class is a simple wrapper over Map[String, Any] and enables you to add descriptive metadata, at the field level, for your schemas. The comment field is a

reserved metadata key name that is automatically carried along to your table definitions.

Ultimately, the use of metadata enables you to document your datasets and fix the

discovery issues that arise with poor data documentation. Using a simple built-in

construct, you can help pay things forward for other engineers, systems, and analysts.

 Exercise 3-2: Summary

At this point, you are probably beginning to understand, and maybe even getting

excited about, what Spark is capable of. I find it is helpful to attack a problem from the

inside out, and in the exercises so far, we have done just that. You learned how to read

and transform plain text into a clean and well-defined DataFrame in Exercise 1, and

you discovered how to take advantage of schema inference to skip the effort of writing

custom, field-level parsers. Then you learned that there are some additional benefits

for manually constructing a schema (StructType) providing field-level metadata and

declarative DataTypes. We’ve covered a lot already, but we still have further to go, so if

you are ready, we are going to get our feet wet with a little Spark SQL.

 Using Interpreted Spark SQL

Who here likes SQL? One of the ways in which Spark makes our lives easier as data

engineers is by enabling us to process data as if we were simply querying a table in a

traditional SQL database. How does this work, you ask? Well, by simply taking advantage

of the structure of the data known to it. This is a roundabout way of saying that Spark

leans on the StructType to materialize views for use in your applications. Let’s see how

with a practical example.

84

Chapter 3 Working With Data

 Exercise 3-3: A Quick Introduction to SparkSQL

For this exercise, you can continue using the Zeppelin note from Exercise 3-2

(“3- 2_LetSparkWorkForYou”). When we left off (see Listing 3-11), you had just created a manual schema and rebuilt the coffees DataFrame.

 Creating SQL Views

Add a new paragraph to the note and enter the contents of Listing 3-12.

 Listing 3-12. Create a SQL View Using a DataFrame with createOrReplaceTempView

%spark

coffees. createOrReplaceTempView("coffees")

spark. sql("desc coffees").show(truncate=false)

In one line (Listing 3-12), you can easily generate a temporary, in-memory view using the coffees DataFrame. This will register a temporary table in the context of your

SparkSession and will exist for the duration of the session, or until you explicitly drop

it. Line 2 of Listing 3-12 introduces the SQL interpreter, which is available through the SparkSession .

spark. sql("desc coffees").show(truncate=false)

The output you’ll see after clicking run on the paragraph (Listing 3-12) will show the table metadata. Do you notice anything interesting?

+--------+---------+-------------------------+

|col_name|data_type|comment |

+--------+---------+-------------------------+

|name |string |Coffee Brand Name |

|roast |double |Coffee Roast Level (1-10)|

+--------+---------+-------------------------+

As mentioned in Exercise 3-2, the metadata has a reserved key named comment, the value of which will be applied to any table you create. One of the main benefits of

defining the metadata for your schemas is to pay things forward to other engineers by

documenting your data. This simple example shows why field-level documentation can

be beneficial. Now anyone describing the coffees table can immediately understand the

intention of each column. That is worth its weight in data gold.

85

Chapter 3 Working With Data

With the temporary view (coffees) available within your active Zeppelin session, it

is time to learn how to use the %sql interpreter.

 Using the Spark SQL Zeppelin Interpreter

Add another new paragraph to your note and then add the simple SQL command from

Listing 3-13.

 Listing 3-13. Using the Spark SQL Interpreter in Apache Zeppelin

%sql

select * from coffees

Click run and you will see the temporary view from Listing 3-12 rendered directly in the Zeppelin UI. The rendered output is presented in Figure 3-5 for reference. Visualizing your datasets can be a helpful tool when exploring new datasets, and even if you are just

viewing the output as a basic table, you can lean on the SQL expression itself to modify

the output or do basic sorting using the Zeppelin UI.

 Figure 3-5. The nicely formatted output for the coffees table via the Zeppelin UI

Behind the scenes, Zeppelin uses the active SparkSession to pass your SQL

command through the SQL interpreter. The SQL entry point on the SparkSession is an

instance of the SQLContext.

Let’s look at a more interesting example. Let’s use the Spark SQL interpreter to

compute the average roast level for the coffees table.

86

Chapter 3 Working With Data

 Computing Averages

The task of computing an average is straightforward with Spark SQL (and SQL). You need

to simply call the avg expression on a column.

Create a new paragraph in the note and enter the Scala code snippet from

Listing 3-14.

 Listing 3-14. Computing the Average of a Column Using Spark SQL

%spark

spark.sql("select avg(roast) as avg_roast from coffees").show

Run the code in Listing 3-14 and you’ll discover the average roast is 7.8. This is a simple analytical query. What other reasons can you see for utilizing Spark SQL?

Depending on your background with SQL and where you are on your Apache

Spark journey, you can use the SQL interpreter while you are gaining familiarity writing

Spark applications. At the end of the day, the SQL parser is powerful enough that you

won’t really see any major difference. In most cases you also won't hinder the overall

performance of your application. It is also worth mentioning that the return type of

calling spark.sql("select * from coffees") is a DataFrame, so you can mix modes

within your applications where you see fit.

 Exercise 3-3: Summary

You learned to generate temporary SQL views, which enabled you to query DataFrames

using SQL. While we only scratched the surface here, the main point of the exercise was

to show you different ways of working with data with Spark. As a recap, a DataFrame has

a schema, and the DDL of the schema is used when generating a table or view within the

context of a SparkSession. While you will be working with richer and more complex sets

of data in the chapters to come, you can continue to explore this first dataset.

I suggest taking some time to try some additional commands with the coffee data

that you loaded. Here are some suggestions for continued explorations:

• Find the min and max roast values in the table. Hint:

min(roast) as min

• Try to sort the table using the ORDER BY clause. Hint: order by

roast desc

• Try sorting the data by coffee name

87

Chapter 3 Working With Data

When you are finished, there is one final exercise left, and that is to construct a

simple end-to-end ETL application.

 Your First Spark ETL

You learned to read, transform, and view data in this chapter. To construct an official

ETL, you will need to write the results of the transformation to a reliable location.

Open the complete ETL example (from the Zeppelin home page, under

“3- 4_EndToEndETL”).

 Exercise 3-4: An End-to-End Spark ETL

Once the note is loaded, you’ll see we defined the coffeeSchema (copied from

Exercise 3-2), and that there is a main paragraph containing the code referenced in Listing 3-15.

 Listing 3-15. The Full ETL Job

%spark

spark

.read

.option("inferSchema", "false")

.schema(coffeeSchema)

.csv("file:///learn/raw-coffee.txt")

.write

.format("parquet")

.mode("overwrite")

.save("file:///learn/coffee.parquet")

The first half of the ETL job should be familiar from Exercise 3-2. The section in bold contains the write flow, which introduces the DataFrameWriter.

88

Chapter 3 Working With Data

 Writing Structured Data

Once we have data loaded into a DataFrame our data story can begin. Each project,

feature, or use case drives the steps and desired data outcomes required by your Spark

applications. In the case of the ETL job from Listing 3-15, there isn’t much going on aside from writing clean, structured data in a format that will make it easier for downstream

processing. In the case of this example, the final output of the job writes parquet data to

the file system, in a simple process that converts the semi-structured CSV data into fully

structured parquet data.

 Parquet Data

Parquet data is a fully structured columnar data format. This means there is no need

to infer any types since the schema itself is encoded within the file. This means you

can simply read a Parquet file, and Spark will automatically apply the schema on the

resulting DataFrame.

 Reading Parquet Data

Working with the results of the ETL job from Listing 3-15 is as easy as referencing the file location. This process is shown in Listing 3-16.

 Listing 3-16. Spark Natively Supports Reading Parquet Using the

DataFrameReader

%spark

spark.read

.parquet("file:///learn/coffee.parquet")

.createOrReplaceTempView("coffee")

Because you went through the effort of cleaning, transforming, and writing the final

transformation as fully structured Parquet (coffee.parquet), you have reduced the

effort of anyone needing to work with the same dataset in the future. While the exercises

this chapter have been simple, there is one more interesting side effect that is worth

pointing out. The Parquet file you generated in the ETL inherited all the metadata of

the StructType, including the field-level comments. You can add another paragraph to

the note and simply describe the coffee table (based on the replaced temp view from

Listing 3-16).

89

Chapter 3 Working With Data

%spark

spark.sql("desc coffee").show(false)

+--------+---------+-------------------------+

|col_name|data_type|comment |

+--------+---------+-------------------------+

|name |string |Coffee Brand Name |

|roast |double |Coffee Roast Level (1-10)|

+--------+---------+-------------------------+

The fact that your field-level descriptions are encoded and preserved even after

writing your data out as Parquet is an effective delivery device. It ensures that anyone

working with this data (presumably written into your data lake) can easily understand

what each field represents.

 Exercise 3-4: Summary

This last exercise was intended to reinforce what you’ve learned over the course of this

chapter. Ultimately, with a little up-front effort it is possible to not only effectively extract, transform, and load data, but it also reduces the effort of anyone working downstream to

your data pipeline.

 Summary

This chapter covered a lot of ground. It introduced you to practical examples for using

Apache Spark as a data engineer and hopefully introduced you to a new style of working,

which is procedurally with data using Notebooks. I have found the techniques presented

in this chapter of incredible use when teaching as well as in my actual day job. Together,

Zeppelin and Docker can save you a lot of time and money, by enabling you to quickly

get gut checks and test ideas. The added benefit of being able to share fully working

environments and applications, which require a few simple steps to get up and running,

can be invaluable, especially when working remotely (like many of us have done during

the pandemic).

This chapter introduced some useful patterns for working with data within the

Apache Spark ecosystem. The intent here was simply to start showing you how to do

something, and then present ways in which you can improve on the earlier solutions.

We could have started off reading the Parquet data from the end of the chapter, but we

90

Chapter 3 Working With Data

would have missed out on learning to read plain text and transforming the DataFrame

by hand. Thinking about how to solve problems while learning about the core Spark

classes and ways of working with data can help you build a solid foundation for the years

to come.

The next chapter looks at data transformations. It is a continuation of the

foundations established in these first three chapters, focused on the core functions and

operations available for structured datasets in Spark.

91

CHAPTER 4

Transforming Data with

Spark SQL and the

DataFrame API

The previous chapter introduced you to using Docker and Apache Zeppelin to power

your Spark explorations. You learned to transform loosely structured data into reliable,

self-documenting, and most importantly, highly structured data through the application

of explicit schemas. You wrote your first end-to-end ETL job, which enabled you to

encode this journey from raw data to structured data in a reliable way. However, the

process we looked at is just the beginning and can be looked at as the first step of

many in a data transformation pipeline. The reason we began by looking at raw data

transformations is simple—there is a high probability that the data you’ll be ingesting

into your data pipelines starts at the data lake.

This chapter continues to focus on the process of data transformation. You’ll begin

with an exercise that explores manipulating data using simple selection and projection as a means of filtering and reshaping data. Afterward, we’ll explore using joins to compose new views of data from multiple sources, without the need for writing complicated code.

Lastly, we’ll look at intuitive ways to problem-solve using nested selects (inner and

outer selections), expression columns, and select expressions. Throughout the chapter,

we will look at how to express these transformations using both Spark SQL and the

DataFrame APIs.

 Data Transformations

As with any tool, the more you use it, the more proficient you become with it. This is

sometimes referred to as honing your skills. We all hone, or sharpen, our skills each and 93

© Scott Haines 2022

S. Haines, Modern Data Engineering with Apache Spark, https://doi.org/10.1007/978-1-4842-7452-1_4

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

every time we write code in our favorite programming languages, learn and memorize

common usage patterns across frameworks and APIs, and solve a new problem. In order

to react to a problem that comes your way, you must know which tools are available to

you and understand how to take advantage of similar problems you have solved in the

past in order to tackle these problems head on.

We are all aware that there is no one-size-fits-all solution to most problems in

life and this is also true when it comes to transforming data. However, many effective

techniques with data problem-solving begin by reducing the size and complexity of

the data. This can happen across many different steps in a data pipeline or even in the

logical stages of a single application. It commonly relies on the basic techniques of

selection and projection to get the job done.

 Basic Data Transformations

In the last chapter, we worked on some introductory tasks on the simple coffee dataset

(coffee brands and roast level) for our job with CoffeeCo. In the spirit of continuity, we

will be continuing to work on problems related to this job at the coffee company (I guess

that means we’re still employed!).

Exercise Content You can find the materials for this chapter under

ch-04/ of the book’s GitHub https://github.com/newfront/spark-

moderndataengineering/tree/main/ch-04. Just start Zeppelin using the run script and head on over to http://localhost:8080.

cd ch-04/docker && ./run.sh start

 Exercise 4-1: Selections and Projections

Begin by opening the note titled “4_1_DataSelectionAndProjection.” You will see a

single paragraph titled Data Generation at the top of the screen. Go ahead and run

this paragraph to get Spark initialized. The remainder of this exercise will follow along

from here.

94

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

Note this exercise can be followed by adding new paragraphs and

running each step inside of Zeppelin, just like we did in Chapter 3. if you want to look at the final notebook, it is available as complete/4_1_

DataSelectionAndProjectionFinal.

 Data Generation

CoffeeCo is small and fortunately for us there are only a few main stores. To begin we’ll

prime a temporary SQL view called stores to represent our company’s flagship stores (see Listing 4-1). If you are following along using the Zeppelin environment, go ahead and run the paragraph.

 Listing 4-1. Generating the Stores Data and Temporary SQL View

%spark

case class Store(

name: String,

capacity: Int,

opens: Int,

closes: Int)

val stores = Seq(

Store("a", 24, 8, 20),

Store("b", 36, 7, 21),

Store("c", 18, 5, 23)

)

val df = spark.createDataFrame(stores)

df.createOrReplaceTempView("stores")

We can see from the code in Listing 4-1 that we are simply generating a sequence (list) of stores. Each store opens and closes between 5am and 11pm on a 24-hour clock

and has some information about occupancy limitation as well. With the data generation

behind us, let’s learn about the process of data selection.

95

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

 Selection

The process of selection is arguably the most fundamental means of reducing the

footprint of the data you are working with. This concept will be familiar to anyone with

working knowledge of SQL. In a nutshell, selection enables us to reduce the set of rows

 returned by a query by way of a condition.

Let’s start with the basics now and we’ll look at the wide array of selection

capabilities later in the chapter, when we get to “Selection Revisited . ” Say we wanted to find all the stores open on or after a specific time of day.

We can approach this problem by using a simple conditional query against the

stores view. The code snippet in Listing 4-2 shows the query.

 Listing 4-2. Returning Only the Rows that Match the Condition closes >= 22 via Simple Selection

%spark

val q = spark.sql("select * from stores where closes >= 22")

q.show()

There is only one answer to this question given that there is only one store that closes

after 10pm (Store C).

 Filtering

If the selection process feels to you a little like filtering, you’d be right. In fact, if you take a look at answering the same question using DataFrames, you’ll see that we can use the

filter or where function interchangeably.

Tip when we select a column in a Dataframe, we have a few options for

identifying the column. there are four distinct ways to provide the target column

for the selection. the symbolic aliases ànd $ are implicit conversations that can

be used by importing the implicit functions from the SparkSession:

df.where(df("closes") >= 22)

df.where(col("closes") >= 22)

df.where('closes >= 22)

df.where($"closes" >= 22)

96

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

Feel free to explore these options using the code snippet in Listing 4-3 from Zeppelin.

 Listing 4-3. The where Clause Is Interchangable with the filter Function of the DataFrame

%spark

import org.apache.spark.sql.functions._

import spark.implicits._

val filter = df.filter($"closes" >= 22)

val where = df.where('closes >= 22)

filter.show()

where.show()

So, if filtering is functionally equivalent to selection and that process enables us to

reduce the number of rows of data returned by a query, then you may be asking yourself

what exactly is going on within the select * in our select * from stores? Well, funny

enough, this process is known as projection!

 Projection

If selection is the process of reducing the total number of rows returned by a query,

then you can think of projection as the process of reducing the total number of columns

returned by a query. This can be used as an optimization technique since there is a

memory cost to returning all columns across all rows when only a subset of columns is

really necessary to relay the results (or answers) provided by a query.

Let’s look at an example of using projection and selection together using the data

available within the stores view.

Say we want to find all stores where the minimum occupancy is greater than 20. In

this case, we can assume we don’t need to worry about when a store opens or closes, but

rather we want to find the name of the store only (see Listing 4-4).

 Listing 4-4. Reducing the Number of Columns Returned by Our Query Using

Projection

%spark

// find all stores with an occupancy greater than 20

val pq = spark.sql(

"select name from stores where capacity > 20")

pq.show()

97

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

The query in Listing 4-4 shows you how to use projection and selection together. The projection dictates which columns will be returned by the query, as seen in the select

name, which directs Spark to return only the column labeled name. The selection portion

of the query, which is a fancy filter or conditional predicate, dictates which rows meet

the criteria to be returned by the query, as seen in where capacity > 20.

Let’s see how we can build the same query using the DataFrame API directly (see

Listing 4-5).

 Listing 4-5. DataFrame Projection and Selection Using Functions

%spark

df

.select("name")

.where('capacity > 20)

.show

The process of mixing projections and selections can be powerful in yielding

performant transformations across your data. What you’ve seen so far are just the basics,

but you can use this foundation as you look at some of the more powerful capabilities

available to you when harnessing the full power of selection.

 Exercise 4-1: Summary

Up until this point in the chapter, we’ve looked at the simple process of reducing the total

number of rows returned by a query through the process of basic selection. We also looked

at how to reduce the columns returned by our query by way of columnar projection. While

many use cases fall into these kinds of simple filter and transform operations, such as basic

reporting. We’ve only scratched the tip of the iceberg in terms of what is possible.

Selection goes well beyond just the conditional examples and empowers you to write

transformative queries using many operators that span both traditional SQL (OLTP) and

more analytical query (OLAP) processing through the use of common operators. As the

chapter continues, we will explore the process of using joins, column, and expression

aliases, as well as conditional select expressions and even nested queries.

98

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

 Joins

In the wild, most datasets don’t arrive in a perfect form to solve the problem you’ve been

assigned. If and when you happen to stumble upon the perfect dataset that fits your

needs to a T, drop everything and immediately thank the people responsible for thinking

ahead and grasping how people would need to work with their data in the future! More

likely, you will have to stitch data from a few different sources together in order to create

the data representation needed to solve the problem at hand.

Joins are common within the data pipeline as a solution to combining data. These

workflows fall under the umbrella of the ETL and can be used whenever you need to

strategically combine and transform multiple sources of data into a single consolidated

view that can be used to answer more targeted problems.

For example, say we were tasked with creating a job that generates the current

available occupancy data for our coffee shops. For the sake of the exercise, let’s say we

already have a source of data that emits the number of occupied seats per coffee shop.

We can use this data to join with our coffee stores data to create a new view that we can

query to find which store can seat a variable sized party.

Later in the book, we’ll be looking at streaming applications and pipelines and we

will go over the process of emitting event data (such as the number of occupied seats

per coffee shop) using Kafka and Redis Streams. We’ll even walk through the process of

reliably reading and composing new materialized views from those event streams!

Note for the purposes of this exercise, we will be generating the occupancy

data in a way that can also showcase the different common join styles available

within spark.

 Exercise 4-2: Expanding Data Through Joins

When joining data, we commonly use one or more columns that can act as a join key (or

selection expression) between the two datasets we want to combine. In this case, we will

be using the coffee store name as our common key.

Create a new paragraph in Zeppelin and enter the code snippet from Listing 4-6. This creates the view you can use to join with the stores data.

99

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

 Listing 4-6. Generating the Occupancy View for Our Joins

%spark

case class StoreOccupants(storename: String, occupants: Int)

val occupants = Seq(

StoreOccupants("a", 8),

StoreOccupants("b", 20),

StoreOccupants("c", 16),

StoreOccupants("d", 55),

StoreOccupants("e", 8)

)

val occupancy = spark.createDataFrame(occupants)

occupancy.createOrReplaceTempView("store_occupants")

The pattern of generating data in Spark should start to feel familiar at this point.

We start by creating a new temporary view based on our occupancy DataFrame in

Listing 4-6. It is worth pointing out that the StoreOccupants class has some unknown stores, identified as d and e. These are only here to showcase the various join capabilities

within Spark. Moving on, let’s explore joining these two data sources (stores and

occupancy) using the following join flavors: Inner, Right, Left, Semi, Anti, and Full. This helps us understand how the different styles of joins work. Selecting the correct type

of join is key to significantly reducing the amount of energy and effort you need to

apply when materializing a new view of data. For each join type, you can create a new

paragraph in the Zeppelin note to work through things live.

 Inner Join

The inner join is the simplest to understand and just so happens to also be the default

join operation in Spark (given this is usually how people want to join data). The inner

join works by selecting only the rows that meet the join selection criteria across both

sides of the data being joined.

 Spark SQL Inner Join

%sql

select * from stores

inner join store_occupants on stores.`namè == store_occupants.`storenamè

100

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

 DataFrame Inner Join

%spark

val inner = df

.join(occupancy)

.where(df("name") === occupancy("storename"))

inner.show()

The result of our join operation is a new DataFrame that combines all the columns

of our two data sources where the join criteria is met. In this case, that’s where there is a

matching store name across both data sources.

The tabular output of the inner join shows how the composition works.

 Results of Our Inner Join Operation

+----+--------+-----+------+---------+---------+

|name|capacity|opens|closes|storename|occupants|

+----+--------+-----+------+---------+---------+

| a| 24| 8| 20| a| 8|

| b| 36| 7| 21| b| 20|

| c| 18| 5| 23| c| 16|

+----+--------+-----+------+---------+---------+

Inner joins simply ignore all rows that don’t have a matching join condition. Next up,

let’s look at the right join.

 Right Join

The right join, or right outer join, returns all rows from the right-side data source

explicitly joining all rows where the selection criteria is met with the left side of the data.

When and the data doesn’t match, it will insert null values instead.

 Spark SQL Right Join

%sql

select stores.*, store_occupants.òccupants` from stores

right join store_occupants on stores.`namè == store_occupants.`storenamè

101

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

 DataFrame Right Join

%spark

// df is our stores data

val rightJoined = df

.join(occupancy,

df("name") === occupancy("storename"),

"right")

rightJoined.show()

The result of our join operation is again a new DataFrame that combines all the

columns of our two data sources, but instead of skipping the missing data between the

two data sources, we have the following output.

 Results of Our Right Join Operation

+----+--------+-----+------+---------+---------+

|name|capacity|opens|closes|storename|occupants|

+----+--------+-----+------+---------+---------+

| a| 24| 8| 20| a| 8|

| b| 36| 7| 21| b| 20|

| c| 18| 5| 23| c| 16|

|null| null| null| null| d| 55|

|null| null| null| null| e| 8|

+----+--------+-----+------+---------+---------+

Right joins can be used when you want to preserve the details of the missing data

between two data sources. The target dataset, in this case occupancy, dictates the total

number of rows returned by the operation. Given we have a higher number of rows in

our right-side data (occupancy) than we do in our stores data (5 rows to 3), the missing

values will be added to the left side as null columns.

Let’s look at using the left join now, which is literally just the left-side equivalent of

the right join.

 Left Join

The left join, or left outer join, returns all rows from the left-side data source explicitly

joining all rows where the selection criteria is met with the right-side side of the data.

When the data doesn’t match, it will insert null values instead.

102

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

 Spark SQL Left Join

%sql

select stores.*, store_occupants.òccupants` from stores

left join store_occupants on stores.`namè == store_occupants.`storenamè

 DataFrame Left Join

%spark

// df is our stores data

val leftJoined = df

.join(occupancy,

df("name") === occupancy("storename"),

"left")

leftJoined.show()

Given the output of the right join operation, what do you think the output of the left

join will be? If you guessed that it would be just three rows, good job!

 Results of Our Left Join Operation

+----+--------+-----+------+---------+---------+

|name|capacity|opens|closes|storename|occupants|

+----+--------+-----+------+---------+---------+

| a| 24| 8| 20| a| 8|

| b| 36| 7| 21| b| 20|

| c| 18| 5| 23| c| 16|

+----+--------+-----+------+---------+---------+

As we saw with the right join operation, the data that is backing the target data

source is critically important to the results of the operation. In this case, we have the

three rows in the stores data against the five rows in the occupancy data, and we can

only ever have the same number of rows as the target data (three) in our result.

 Semi-Join

The semi-join, or left semi-join, filters the set of rows returned on the left side of the join, by finding all rows on the right side that match the selection criteria. Essentially, the

join is done only as a means of selecting which results to return from the left side of the

103

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

join. This process works by finding the intersection of the join selection expression and

returning only the intersecting rows for the left side of the join. I like to think of this as a selection proxy filter, since it uses another data source as its own selection criteria.

Consider the following use case to understand this concept better. Say we want

to identify coffee shops that have fewer than 20 seats and store them in a new view as

boutiques. People enjoy different sized shops, and I for one would rather be in a smaller,

quieter shop.

We have two options for doing this. We can either create a new view by selection, or

we can use what is known as an inline view. Let’s look these processes now.

With the goal in mind of creating a new data source (and to showcase using semi-

joins) we have a few options available to achieve this goal:

• We can use an inline table to manually create the data to use as our

right-side source for the semi-join.

• We can create a new view using selection across an existing

data source.

 Create an Inline Table Called Botiques

%sql

create or replace

temporary view boutiques as (

select * from VALUES ("c") as data(boutiquename)

)

Using an inline table is a simple way to create a temporary data table that can be

used for a slew of different purposes:

• Test a new idea when you find yourself thinking “wouldn’t it be great

if we had this data…”. This can save you time when you are building

applications since you don’t need to create any formal classes or even

come up with column names.

• Simplify SQL selection statements by adding synthetic data that can

assist in filtering or in complex selection.

• Comes in handy when exploring new sources of data or when you

want to add some additional default columns, which can be done

using a full join against the temporary inline view.

104

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

In our case, we can use this table to help filter our data using a semi-join. However,

when considering our use case, we already have nice source-of-truth data located in

our stores view that we could use for this purpose as well. The nice thing about reusing

an existing view is that you don’t have to manage yet another source of truth; you

can instead just apply a filter where capacity < 20 and it becomes easy for others to

understand the concept of the boutiques view.

 Creates the Botiques View Through Selection and Projection Aliasing

%sql

create or replace

temporary view boutiques as (

select stores.`nameàs boutiquename

from stores

where capacity < 20

)

Now that we have created our boutiques view, all we have left to do is apply our

semi-join operation.

 Spark SQL Semi-Join

%sql

select * from stores

semi join botiques

on stores.`namè == botiques.`botiquenamè

 DataFrame Semi-Join

%spark

// semi-join

val botiques = spark.sql("select * from botiques")

val semiJoin = df

.join(botiques,

df("name") === botiques("botiquename"),

"semi")

semiJoin.show()

105

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

The result of the operation is that we find the one coffee shop that is a boutique

coffee shop. It just so happens to be the one row from our stores data that intersects

with the boutiques data. Let’s look now at the reverse of the semi-join, which is the

anti-join.

 Anti-Join

The anti-join, or left anti-join, is the opposite of the semi-join. It uses the set difference

between the left- and right-side data, based on the join selection expression, to reduce

the rows returned for the left-side data.

 Spark SQL Anti-Join

%sql

select * from stores

anti join boutiques

on stores.`namè == boutiques.`boutiquenamè

 DataFrame Anti-Join

%spark

val boutiques = spark.sql("select * from boutiques")

val antiJoin = df

.join(boutiques,

df("name") === boutiques("boutiquename"),

"anti")

antiJoin.show()

The result of this operation is that we find the two coffee shops that are not

boutiques.

 Semi-Join and Anti-Join Aliases

While semi-joins and anti-joins allow you to use another data source as your selection

filter, there is a more understandable way of declaring this same intention. You can use

the IN and NOT IN operators, respectively, rather than using the semi-join or anti-join, to

achieve exactly the same result. In fact, Spark will actually just use a semi-join or anti-

join behind the scenes.

106

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

 Using the IN Operator

 Using the IN Operator as a Semi-Join

%spark

val inOper = spark.sql(

"""

select * from stores

where stores.`nameìn (

select boutiquename from boutiques

)

"""

)

inOper.explain("formatted")

Spark will take the intention of your IN condition and will convert it to use a semi-

join behind the scenes. Given that the semi-join and anti-join may not be commonly

known join types across your team, it is always better to optimize for maintainability

of our code, and this sometimes means going with common conventions (or you can

always document what you are doing in comments).

The output obtained by calling explain on the inOper DataFrame shows the steps

that Spark takes behind the scenes to convert the Spark SQL expression into a series

of transformations and actions. The engine handling things behind the scenes is the

Catalyst engine, which we investigate more in Chapter 6.

 Spark Execution Plan: Shows the Formatted View of the Steps Spark Takes to Parse,

 Optimize, and Generate a Plan of Execution

== Physical Plan ==

* BroadcastHashJoin LeftSemi BuildRight (4)

:- * LocalTableScan (1)

+- BroadcastExchange (3)

+- LocalTableScan (2)

(1) LocalTableScan [codegen id : 1]

Output [4]: [name#0, capacity#1, opens#2, closes#3]

Arguments: [name#0, capacity#1, opens#2, closes#3]

107

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

(2) LocalTableScan

Output [1]: [boutiquename#248]

Arguments: [boutiquename#248]

(3) BroadcastExchange

Input [1]: [boutiquename#248]

Arguments: HashedRelationBroadcastMode(List(input[0, string, true])),

[id=#557]

(4) BroadcastHashJoin [codegen id : 1]

Left keys [1]: [name#0]

Right keys [1]: [boutiquename#248]

Join condition: None

Learning to read the Spark execution plans can help when you are optimizing

complex queries, but for now you can simply use it to discover the behind-the-scenes

processes at work when you use Apache Spark. Now back to joins.

 Negating the IN Operator

Go ahead and create another paragraph to see what is happening when you switch from

using the IN to NOT IN .

 Using the NOT IN Operator as an Anti-Join

%spark

val notInOper = spark.sql(

"""

select * from stores

where stores.`namè

not in (

select boutiquename from boutiques

)

"""

)

We’ve looked at various techniques for joining data sources in Spark. Let’s conclude

this journey now looking at the full join operation.

108

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

 Full Join

The final join operation we’ll explore is called the full join. This operation takes both data sources into account and will join the data where the selection criteria is met, and then

will fill in nulls on either side where there is no match within the two datasets.

To showcase how the full join operation works, we will be adding some additional

records to our stores DataFrame (df), for the purpose of having missing data across

both the left and right DataFrames (see Listing 4-7).

 Listing 4-7. Using Full Join and Union to Combine Your Datasets

%spark

// create 2 new stores

val addStores = spark.createDataFrame(Seq(

("f", 42, 5, 23),

("g", 19, 7, 18)))

.toDF("name","capacity","opens","closes")

val fullJoined = df

.union(addStores)

.join(occupancy,

df("name") === occupancy("storename"),

"full")

fullJoined.show()

The code represented in Listing 4-7 showcases how to do a full outer join. It also shows off another kind of join that Spark has to offer—the union. There is also another

trick that snuck into the top of this code example, and that is a third way to create a

DataFrame. We’ve seen the process of using a case class, how to use an inline table, and

now how to use a sequence of tuples. The inline table and the use of tuples with explicit

column names are similar in style.

Unions Unions are like joins except that both data sources need to have the

same schema (matching column names and order). this process can be achieved

through projection and column aliasing across one or more Dataframes (using

the union or unionAll function) before creating an aggregate temporary view.

109

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

Given the effort required to coerce the underlying schemas of potentially many

different yet related datasets, spark 3 introduces the unionByName method

so you can ignore any missing columns: df.unionByName(addStores,

allowMissingColumns=true)

The full outer join is the most expensive of the joins explored with respect to

complexity. This is because it needs to sort both the left-side and right-side data sources,

in order to do a sort-merge-join operation across the data sources. Let’s take a look at the output of the full join operation to get an idea of how it works.

 The Output After the Full Join Across the stores and store_occupancy Data

+----+--------+-----+------+---------+---------+

|name|capacity|opens|closes|storename|occupants|

+----+--------+-----+------+---------+---------+

| g| 19| 7| 18| null| null|

| f| 42| 5| 23| null| null|

|null| null| null| null| e| 8|

|null| null| null| null| d| 55|

| c| 18| 5| 23| c| 16|

| b| 36| 7| 21| b| 20|

| a| 24| 8| 20| a| 8|

+----+--------+-----+------+---------+---------+

The output shows that the rows have been sorted in a reverse order. More important

is the fact that we have not skipped or ignored any of the missing data between the two

sets. Using the left, right, or full outer joins enables you to understand what is missing

between your two datasets, and then it is up to you to decide how you want to move

ahead. This is an important concept since it can be used tactically to measure corrupt or

missing data from an upstream data producer and tracked as a metric when monitoring

the frequency of missing data in a data pipeline.

 Exercise 4-2: Summary

This exercise explored the many styles of joins available within Apache Spark as a

means of providing you with strategies for joining and transforming data. Next, we put

together everything we learned to solve an interesting seating problem related to our

coffee shops.

110

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

 Putting It All Together

Let’s pull together what we’ve learned in this chapter to solve the initial problem of

finding seating availability for a party of a specific size (based on the available occupancy

data we have at our fingertips). We can break down the steps necessary to solve this

problem into the following phases:

1. Compute the current available seats per store.

2. Find the stores that have at least enough seats for the party.

3. Return the store name that has availability.

We have almost all the pieces in our toolbox to be able to achieve this goal. You may

be wondering how we compute the available seats per store?

 Exercise 4-3: Problem Solving with SQL Expressions

and Conditional Queries

First off, we know we can join the stores and store_occupants data to get the capacity

and occupants columns, but we will still need to subtract these two columns in order to

use the result in our selection. Lucky for us, there just so happens to be a fairly simple

solution to this problem. We can use an expression to achieve this goal. For this exercise, you can continue along in the same note inside of Zeppelin.

 Expressions as Columns

Using an expression column can be done by using the alias operator (as). We can also

use the simple minus operator (-) in conjunction with aliasing to achieve this goal. Let’s

solve the first part of this task by computing just the availability within our stores.

 SparkSQL: Use a Column Expression to Generate the Current Availability

%sql

select name, (capacity-occupants) as availability

from stores

join store_occupants

on stores.`namè == store_occupants.`storenamè

111

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

The result of this operation is a new DataFrame with the column’s name and

availability.

+----+------------+

|name|availability|

+----+------------+

| a| 16|

| b| 16|

| c| 2|

+----+------------+

Now we are getting close to a solution. The next step will be to simply select the rows

where the availability is greater than or equal to that of the party size. We’ve created

these kinds of conditions before, so let’s see what happens if we try to find availability for

a party size of four.

%sql

select name, (capacity-occupants) as availability

from stores

join store_occupants

on stores.`namè == store_occupants.`storenamè

where availability > 4

When you attempt to run this query, you will see that Spark is unable to resolve the

availability column.

org.apache.spark.sql.AnalysisException: cannot resolve 'àvailability`'

given input columns: [stores.capacity, stores.closes, stores.name, store_

occupants.occupants, stores.opens, store_occupants.storename

The reason that Spark cannot resolve this column is because it doesn’t exist until

after the expression is first resolved. There are two approaches to solving this dilemma:

• Use an inner query

• Change the expression column to a selection expression

112

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

 Using an Inner Query

An inner query allows us to resolve the column named availability, by returning the

column through projection for use within an outer query. This just requires us to create a

wrapping select statement where we apply our conditional selection logic.

 Use an Inner Query to Fully Resolved Columns, Including Expressions, in an

 outer Query

%sql

select name, availability from (

select name, (capacity-occupants) as availability

from stores

join store_occupants

on stores.`namè == store_occupants.`storenamè

) where availability > 4

The inner query pattern allows us to use the resulting projected columns within

the scope of the outer query. This is necessary if we want to return the availability

column, but if we only care about the name of the store with availability, then we can

greatly simplify our query by making a slight adjustment to the query syntax.

 Using Conditional Select Expressions

There is a much better way to solve this problem. We just need to change how we express

the availability filter, from a known (resolved) column to a select expression. This also

happens to remove the need for an inner query as well.

 Using a Conditional select Expression to Filter the Results

%sql

select name from stores

join store_occupants

on stores.`namè == store_occupants.`storenamè

where (capacity-occupants) > 4

The optimized query itself is tighter and easier to understand after moving the

position of the expression and removing the inner query. For completeness, let’s also

look at how to solve this same problem using pure DataFrame transformations (see

Listing 4-8).

113

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

 Listing 4-8. Finding Seating Availability at the Coffee Shops Using Pure

DataFrame Transformations

%spark

import spark.implicits._

val partySize = 4

val hasSeats = df

.join(occupancy, df("name") === occupancy("storename"))

.withColumn("availability", $"capacity".minus($"occupants"))

.where($"availability" >= partySize)

.select("name")

hasSeats.show

The DataFrame transformation shown in Listing 4-8 joins the occupancy data with the stores DataFrame (df), and then introduces the withColumn function on the

DataFrame. This operation is functionally equivalent to the process you looked at before

when using the inner query to fully resolve the availability column. In this case, we

are just being more declarative. The result being a series of functional transformations

that read almost exactly like the three steps outlined earlier.

 Exercise 4-3: Summary

This exercise showed you how to create dynamic (derived) columns based on SQL

expressions, and how to use nested (inner) queries with conditionally query derived

columns from an outer query. This enabled us to return a listing of coffee stores with

available seating for an arbitrarily sized group of people.

 Summary

This chapter introduced you to the concepts of data projection and selection. We began

with the basics and honed our skills along the way through practical hands-on examples.

You learned to apply conditional filters, and how to reduce the number of columns in

your DataFrame. You learned a variety of tricks to create DataFrames, from case classes

to inline tables, and even sequences of tuples. Together we learned to join data across a

wide variety of join styles, from inner joins to unions and even the semi-joins and anti-

114

CHapter 4 transforminG Data witH spark sQL anD tHe Dataframe api

joins. We finished up by pulling together concepts from all across the chapter in order to

answer a basic reservations query: “Which stores currently have availability for a party

of four people.” These skills are all transferable to the day job of any data engineer and

you’ll find yourself using most of these techniques on a daily basis.

The next chapter introduces you to working with external databases using

JDBC. You’ll be setting up your local container environment to work with MySQL 8, and

the efforts from Chapter 5 will continue into Chapter 6, as you are introduced to using the Hive Metastore along with the Spark SQL Catalog.

115

CHAPTER 5

Bridging Spark SQL

with JDBC

In the last chapter, we looked at common patterns and techniques for harnessing the

powerful core functionality available to us when transforming data using Spark SQL

and the DataFrame APIs. While we certainly covered a lot of ground, we purposefully

skipped over some of the more exciting capabilities available to us under the Spark

SQL umbrella. Along that line, wouldn’t it seem to only make sense that we should be

capable of connecting to and working directly with remote databases from the comfort of

Apache Spark SQL? Additionally, wouldn’t it also be advantageous to use SQL’s strongly

typed semantics when reading data into Spark? Couldn’t we somehow also marry these

rich type systems (inherent to Java/Scala) with both SQL and the strong internal typing

mechanics of Apache Spark itself? Luckily, that is exactly what you will learn to do in this

chapter.

You will learn to seamlessly read and write data between Spark and

any JDBC- compatible RDBMS database (such as MySQL, PostgreSQL, Microsoft SQL

Server, Azure SQL Database, Oracle, and others). You’ll learn to natively load and

transform data from external database rows into Spark DataFrames and then write back

to the source-of- truth database as well.

 Overview

This book is all about working with data using Apache Spark. In order to extend our

reach and cover as much ground as strictly necessary, we will sometimes find ourselves

working outside of Apache Spark in order to get a 360-degree view of how a process

works. In this chapter, you learn how to spin up, bootstrap, and work with MySQL on

Docker, in order to understand the full end-to-end bridge between Spark and MySQL (or

really any JDBC compatible database). This Docker-based database will be reused again

117

© Scott Haines 2022

S. Haines, Modern Data Engineering with Apache Spark, https://doi.org/10.1007/978-1-4842-7452-1_5

CHapter 5 BridGinG Spark SQL witH JdBC

in order to power your Hive Metastore in the next chapter. For some of you, this might be

an initial crash course into database administration, but I promise it won’t be painful.

It is my hope that through these exercises, you’ll gain a clear understanding of

exactly how Spark connects to and powers applications backed by traditional OLTP

databases and even non-traditional cloud-based distributed databases using JDBC as a

bridge to these relational database mapping services (RDBMS).

This chapter is broken into three fundamental sections and exercises:

• MySQL on Docker crash course

• Connecting the RDBMS world with Spark SQL using JDBC

• Continued exercises

So, without further ado, let’s spin up our development environments and get our

hands dirty!

 MySQL on Docker Crash Course

You’ll begin the chapter by familiarizing yourself with MySQL on Docker.

 Starting Up the Docker Environment

Exercise Content You can find the materials for this chapter under

ch-05/ of the book’s GitHub https://github.com/newfront/spark-

moderndataengineering. Just start the environment using the run script and head on over to http://localhost:8080.

cd ch-05/docker && ./run.sh start

After starting the Docker environment with the run.sh start command, you’ll notice

the output has a reference to mysql now. The output is shown for clarity in Example 5-1.

118

CHapter 5 BridGinG Spark SQL witH JdBC

 Example 5-1. The Output After Starting the Docker Runtime Environment for the Chapter Exercises Now Includes a Reference to MySQL

ch-05/docker/run.sh start

SPARK_HOME is set. location=/Users/me/install/spark-3.0.1-bin-hadoop3.2

1c9d09c28d3d mde bridge local

docker network already exists mde

Creating mysql ... done

Creating zeppelin ... done

Zeppelin will be running on http://127.0.0.1:8080

This additional service was added with a small change to the chapter’s

docker- compose- all.yaml file. Let’s look at the Docker compose service configuration

to see how MySQL was added.

 Docker MySQL Config

The configuration contained in ch-05/docker/docker-compose-all.yaml now includes

a section for mysql under the services area, which is shown in Listing 5-1.

 Listing 5-1. The mysql Service Definition from the Docker Compose Configuration services:

mysql:

image: mysql:8.0.23

container_name: mysql

command: --default-authentication-plugin=mysql_native_password

restart: always

volumes:

- ${PWD}/data/mysqldir:/var/lib/mysql

environment:

- MYSQL_DATABASE=default

- MYSQL_USER=dataeng

- MYSQL_PASSWORD=dataengineering_user

- MYSQL_ROOT_PASSWORD=dataengineering

119

CHapter 5 BridGinG Spark SQL witH JdBC

healthcheck:

interval: 5s

retries: 10

ports:

- 3306:3306

networks:

- mde

hostname: mysql

This new configuration allows us to run MySQL alongside Apache Zeppelin within

our local Docker environment. The configuration overrides the default behavior of the

MySQL container on startup, thereby achieving the following:

• Creates a database named default on startup

• Generates the dataeng MYSQL_USER

• Provides a password for the dataeng user MYSQL_PASSWORD

• Grants all permissions to the dataeng user

• Declares the container port 3306 (the default MySQL port)

This config also adds the mysql hostname to the shared Docker network (mde). This

allows our Zeppelin service to access the MySQL database from within the Notebook

environment (across container boundaries).

Tip Having the MySQL container running locally can come in handy if you want

to bootstrap, or rebuild, an environment consisting of tables and data from another

environment, such as a staging or production one (redacted data or sanitized if it is

coming from production). You can simply import the SQL definitions for the tables

and any data necessary to add some rows to each table.

Optionally, you can also add bootstrap SQL files to CREATE tables and views and

to INSERT data to a prime local test environment. these useful scripts can be

checked into GitHub or your favorite version control system, assuming the data

doesn’t contain any personally identifiable information (pii). By doing so, you allow

other engineers or analysts to import the data definitions (ddL) and example data

to use when they’re getting started with an initial dataset.

120

CHapter 5 BridGinG Spark SQL witH JdBC

 Exercise 5-1: Exploring MySQL 8 on Docker

This first exercise walks you through some administrative tasks in your new MySQL

container. You’ll begin by creating a table and populating some rows using plain old SQL

from the MySQL shell directly in the MySQL Docker container.

 Working with Tables

To create and populate a new table inside the MySQL Docker container, you follow these

four steps:

1. Connect to the Docker container.

2. Authenticate to the MySQL shell as the database user dataeng.

3. Create a new table in the MySQL database named customers.

4. Insert some initial rows into the customers table.

Our first objective is to connect to the mysql Docker container, and then authenticate

yourself onto the mysql command line, so you can create and prime the customers table.

Note there is a note titled “ConnectingtoMySQL” in the apache Zeppelin

instance that you started just a moment ago. You can use the note as a hands-

on guide to walk you through the entire process of connecting to docker,

authenticating to the MySQL shell, creating the customers table, inserting data

into the customers table, and doing some simple selects to ensure the rows

are correct.

 Connecting to the MySQL Docker Container

Open a fresh terminal session. From this session, you can directly connect to your mysql

container using the following docker exec command.

docker exec -it mysql bash

Your terminal prompt will change to root@mysql:/# when you are logged in to

the container. Next, you need to connect to the actual MySQL database through the

mysql shell.

121

CHapter 5 BridGinG Spark SQL witH JdBC

 Using the MySQL Shell

From within the mysql container, you’ll use the mysql shell to authenticate your user

and connect to the database.

mysql -u dataeng -p

Tip the password for the dataeng user is in the ch-05/docker/docker-

compose- all.yaml and is also shown in Listing 5-1. Just look for the servi ces:mysql:environment:MYSQL_PASSWORD, and you’ll see the password is

dataengineering_user.

Once you’re connected, you will see some output telling you about the MySQL version,

followed by a mysql> command prompt. This means you are ready to rock and roll!

 The Default Database

There are two databases created by the container startup process. There is the

information_schema database and the default database. You can switch to the

default database since that is where you will be building your table definitions. The use

command is how you switch database contexts.

mysql> use default;

Now you are ready to create your table definitions.

 Creating the Customers Table

The customers table is a simple table storing customer information. This table

represents a basic registered customer within CoffeeCo, and is shown in Listing 5-2.

 Listing 5-2. The Create Table Syntax for the customers Table

CREATE TABLE IF NOT EXISTS customers (

id VARCHAR(32),

created TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

updated TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

first_name VARCHAR(100),

122

CHapter 5 BridGinG Spark SQL witH JdBC

last_name VARCHAR(100),

email VARCHAR(255)

);

Now the only thing left to do is insert some customer records. We’ll revisit this table

schema again toward the end of the chapter.

 Inserting Customer Records

Now that we have defined our customers table, all that’s left to do is add a few records

so we’ll have something to work with. Type the SQL command in Listing 5-3 and press Enter to execute the command.

 Listing 5-3. Adding Sample CoffeeCo Customers Using the INSERT Syntax

INSERT INTO customers (id, first_name, last_name, email)

VALUES

("1", "Scott", "Haines", "scott@coffeeco.com"),

("2", "John", "Hamm", "john.hamm@acme.com"),

("3", "Milo", "Haines", "mhaines@coffeeco.com");

Let’s do a quick sanity check to make sure things look alright before we exit the

MySQL shell and move over to the Zeppelin.

 Viewing the Customers Table

The customer records we just created can be easily viewed using a simple select query.

For simplicity’s sake, we are only projecting the id, first_name, and email columns. Go

ahead and follow along from the shell to see the rows stored in your new table.

mysql> select id, first_name, email from customers;

+------+------------+----------------------+

| id | first_name | email |

+------+------------+----------------------+

| 1 | Scott | scott@coffeeco.com |

| 2 | John | john.hamm@acme.com |

| 3 | Milo | mhaines@coffeeco.com |

+------+------------+----------------------+

3 rows in set (0.00 sec)

123

CHapter 5 BridGinG Spark SQL witH JdBC

Now that you’ve confirmed the table exists and has some rows, you can exit the

mysql shell.

Tip Selecting a specific database context isn’t strictly necessary, as you can

always prefix your queries with the database selector. if you don’t want to always

run the use {database}; command, you can still query the customers table

by adding the database prefix.

select * from default.customers;

this pattern lets you query from multiple database sources.

 Exercise 5-1: Summary

So far, this exercise has taught you how simple it is to spin up, connect, and work with

MySQL using Docker. This process enables you to compose consistent environments

locally so there are no gotchas after you deploy. This means you can run sanity checks,

test, or try new things, all without the need to spin up and maintain a permanent

environment.

During the next exercise, you’ll learn to connect to MySQL, fetch table (schema)

definitions, read, query, and write data using Apache Spark and Java Database

Connectivity (JDBC).

 Using RDBMS with Spark SQL and JDBC

Connecting to a Relational Database Management System (RDBMS) from Spark requires

two things, a JDBC compatible driver and the database properties. For the sake of simplicity, I may refer to RDBMS as databases interchangeably.

The JDBC SQL driver (JAR) can be added directly to your application (compiled)

or dropped into the Spark JARs directory (included as part of a custom distribution,

requires administrative support), or fetched on-demand. The database properties,

including the hostname (mysql), RDBMS listening port (3306), database name

(default), and credentials (user/pw). Together Apache Spark can make it easy to work

with data stored in external databases.

124

CHapter 5 BridGinG Spark SQL witH JdBC

The process of managing dependencies in your application can be handled at

compile time and even updated or overridden at runtime. For example, the following are

three common ways to handle dependencies with Spark:

1. Provide the necessary JARs as a direct dependency in your

application using maven or sbt to be compiled alongside your application JAR (this can be referred to as building a fat JAR).

2. Download the required packages at runtime using the built-in

runtime dependency support baked into Spark. This means

using the --packages option when submitting an application or

spinning up the spark-shell.

3. Reference a local or remote location where the application can

locate additional dependencies using the --jars option when

submitting an application or spinning up the spark-shell.

In the following section, we look at managing dependencies and providing

additional configuration to the spark-shell. You can use these deploy patterns to

augment the behavior of your application at runtime. Along the way, you’ll learn to

handle dependencies, augment configurations, and importantly how these techniques

can be used to create composite command-line applications.

 Managing Dependencies

We haven’t built or compiled a Spark application locally at this point in our journey.

Instead, we’ve relied on the spark-shell and the Apache Zeppelin notebook

environment to dynamically compile and run these partial applications on our behalf.

In later chapters, you’ll be using the Scala build tool (sbt) to build, package, and manage

your Spark applications dependencies, but rather than taking a long segue now, we’ll

look at other options built into Spark in an exercise that connects to your local MySQL

from the spark-shell.

Note MySQL should be running on localhost on port 3306. You can test if port

3306 is live using the net connection (nc) command from the terminal.

> nc -z localhost 3306

Connection to localhost port 3306 [tcp/mysql] succeeded!

125

CHapter 5 BridGinG Spark SQL witH JdBC

Providing additional JARs to your Spark applications at runtime can be beneficial.

You will learn how this capability enables you to augment the behavior of an application

by mixing in additional dependencies. While runtime modification of your applications

can lead to inconsistent behavior, it is a strategy that is often useful for testing and

debugging, as you don’t need recompile and re-release your application to change some

behaviors. You’ll learn that this process is worth a deeper dive, so we will be doing just

that in this next section.

 Exercise 5-2: Config-Driven Development with the Spark

Shell and JDBC

Let’s say for example that we’ve been asked to write a generic application that relies

in principle on user, or environment, provided configuration, to connect to a remote

database, in a reliable way, for the purpose of doing on-demand ad hoc database

queries. In the process of doing our research, we figure out that Apache Spark already

includes this basic functionality and can connect to any JDBC compatible database, as

long as we include the appropriate dependencies.

We have come up with the following plan of attack:

1. Define our configuration parameter names. This will

create a common config interface that can be shared in the

documentation.

2. Provide common, supported database drivers (connectors) for use

in the application. These can be pulled in automatically without

requiring other engineers to worry about additional dependency

management. However, if they wish to bring their own connectors

as well, that can be done using the --packages option when

starting the application.

3. Prepare and safeguard the application by handling any other

necessary steps that will help others simply use the tool without

needing to become an expert in Spark.

126

CHapter 5 BridGinG Spark SQL witH JdBC

Tip i am a firm believer in the “baby steps” method of learning. as we learn to walk,

often we will trip and fall, but we can learn from our mistakes along the way. the same

can be said when building reliable modules or shared libraries. if you provide guard

rails that don’t create roadblocks, but instead provide a smooth experience that can be

adapted, if necessary, by the users of the library, all parties will be happy campers. For

example, you can add sensible defaults to your code for the benefit of others.

We’ll look at building this behavior into a simple spark-shell flow. We will identify

the configuration needed, write a simple Scala file (shim), and look at how to use local and

remote dependency management for our MySQL connectors. The two MySQL connectors

we will be using have been added to the exercise material and are conveniently located in

the jars directory in the chapter exercise materials at /ch-05/docker/spark/jars/.

 Configuration, Dependency Management, and Runtime File

Interpretation in the Spark Shell

To begin, let’s take a closer look the spark-shell and learn about the available options

for modifying the runtime behavior of this dynamic Apache Spark application. Given we

are using the spark-shell as the starting point of this exercise, you can take advantage

of the following parameters when starting up this Spark application, including those to

augment the runtime configuration, remote and local dependency management, and

dynamic class compilation and interpretation.

Runtime Configuration

Using the runtime property --conf "key=value" on the Spark Shell pushes additional

config into the immutable SparkConf for use within the application at runtime. The value

of any configuration added using the runtime conf properties will override any value of

the key being provided. So be careful and document available runtime overrides.

Local Dependency Management

Using --jars "<file.jar>,<file.jar>" adds additional JARs into the application classpath on startup. The expectation is that the JARs are located on the local file system,

or available to fetch from s3a or HDFS.

127

CHapter 5 BridGinG Spark SQL witH JdBC

Runtime Package Management

Using the --packages "<groupId:artifactId:version>," property provides Spark

with the ivy parameters required to download one or more dependencies at runtime.

You can use the runtime package manager to fetch libraries on-the-fly. Remember that

not all packages will be available when you want them, so use this trick when reliability

isn’t your top priority, since it can lead to broken promises in production.

Dynamic Class Compilation and Loading

Using the -i <file> parameter interprets and loads any Scala files into the context of

the session before returning control of the spark-shell to you. This option exists directly

on the Scala REPL, and therefore is also part of the spark-shell since the Spark REPL

extends the default Scala REPL.

Now, given you are looking to connect to MySQL from within Spark, you’ll need to

create some additional config options, based on the Spark JDBC connector properties, to

be passed into the shell program at runtime.

The Spark JDBC (DataFrameReader) configuration options are shown in Table 5-1.

128

CHapter 5 BridGinG Spark SQL witH JdBC

 Table 5-1. Spark JDBC DataFrameReader Configuration Table

Config

Description

Example

url

the JdBC connection UrL. this string is

jdbc:mysql://

comprised of the JDBC protocol, host or

127.0.0.1:3306/default

server name, port, and database.

dbtable

the optional table to load.

customers

query

the optional query.

select * from customers

driver

the ClassName of the JdBC driver.

com.mysql.cj.jdbc.Driver

user

the database user accessing the db.

dataeng

password

the password for the user accessing the db. *********(secret)

numPartitions

the optional maximum number of

4

partitions to use to split up a series of

conditional queries over your database

table. this defaults to a single connection

[tOdO – check the true default].

partitionColumn the column to use to bucket a query

created

over the numPartitions value. this is

required if you’re using numPartitions.

the column type must be Integer,

Timestamp, or Date.

lowerBound

the lower bound to use when splitting a

2021-02-16

query. this creates a less than (<) condition

on your behalf. this is required if you’re

using numPartitions.

upperBound

the upper bound to use when splitting a

2021-02-21

query. this creates a less than (>) condition

on your behalf. this is required if you’re

using numPartitions.

Armed with the knowledge of what drives (literally!) the behavior of the JDBC

connection, let’s take some time to brainstorm some config names. We came up with the

basic configuration for this application, as shown in Table 5-2.

129

CHapter 5 BridGinG Spark SQL witH JdBC

 Table 5-2. Basic Application Runtime Configuration Options

Config Name

Default Value

spark.jdbc.driver.class

com.mysql.cj.jdbc.Driver

spark.jdbc.host

localhost

spark.jdbc.port

3306

spark.jdbc.default.db

default

spark.jdbc.table

customers

spark.jdbc.user

dataeng

spark.jdbc.password

none. passwords should never exist in your code!

Okay. Things are starting to feel more formalized now. We know how to configure

our connections and have created fallbacks (defaults) to make our application easier to

use. Including specific application config options, and fallbacks that can act as guardrails

(or training wheels), making working with your library code enjoyable.

The startup script is shown in Listing 5-4.

Tip the following code snippets expect that your local working directory is the

root of the docker directory within the chapter’s exercises folder.

/ch-05/docker/

 Listing 5-4. Starting the Spark Shell with Locally Provided JARs, Additional

Runtime Configuration, and Scala Files to Interpret and Load

$SPARK_HOME/bin/spark-shell \

--conf "spark.jdbc.driver.class=com.mysql.cj.jdbc.Driver" \

--conf "spark.jdbc.host=127.0.0.1" \

--conf "spark.jdbc.port=3306" \

--conf "spark.jdbc.default.db=default" \

--conf "spark.jdbc.table=customers" \

--conf "spark.jdbc.user=dataeng" \

--conf "spark.jdbc.password=dataengineering_user" \

--packages=mysql:mysql-connector-java:8.0.23 \

130

CHapter 5 BridGinG Spark SQL witH JdBC

--jars=spark/jars/mariadb-java-client-2.7.2.jar \

-i examples/connect-jdbc.scala

This command starts the spark-shell from Listing 5-4 and does a lot of additional work behind the scenes, in a consistent order, enabling you to augment the runtime

behavior of your spark-shell driven Spark application. These same capabilities are also

available to you when you use the spark-submit command (which you will see more of

in the following chapters).

Figure 5-1 shows the order of events when starting the spark-shell.

 Figure 5-1. The series of steps that execute before control is returned to you within an instance of the Spark Shell

The Spark Shell extends the Scala REPL, enabling you to use Apache Spark specific

parameters and mix in Scala REPL specific commands as well. By the time the Spark

Shell is instantiated, all runtime configuration declared using the --conf option

has been added to the SparkConf and SparkContext, all dependencies have been

downloaded and resolved using the --packages option, and the JARs and relative

131

CHapter 5 BridGinG Spark SQL witH JdBC

class paths are loaded, including any additional local JARs that need to be added to the

application classpath as defined using the --jars option. Lastly, after the spark-shell is

initialized, as a final step, any additional Scala files included using the -i <file> option are loaded due to the behavior of the Scala REPL.

Note in case you were curious, repL stands for Read, Eval, Print, Loop. in the case of the Scala repL, this little console program reads each line of text (as

a standard in), evaluates line by line (dynamically compiling and storing class

information, variables, etc.), and then as long as no exceptions are thrown, prints

the output (if any) for each line processed. it then saves the last line (or lines) to

the stack of commands for the session, finally returning to the first read state

(waiting for your next line). this whole process becomes a loop from r -> e -> p

and back to r.

Armed with the knowledge from Figure 5-1 regarding the behavior of the spark-shell, we can reliably guarantee that the Spark Session (spark) provided by starting up

the spark-shell can reliably be referenced by any of the Scala files (included using -i)

within the context of the spark-shell environment. This order of events is what enables

you to create composite applications from the spark-shell. It is a similar process to

how Spark code is dynamically interpreted within each paragraph in Zeppelin. Each

paragraph is read, evaluated (dynamically compiled), and loaded into the context of the

Spark application context without you having to lift a finger!

Let’s look at the source code from connect-jdbc.scala, which is shown in

Listing 5-5. It includes what is minimally necessary to establish a connection to our MySQL database (container), and in short order, enables us to iteratively query the

database and test our ad hoc queries. This source code is available unabridged inside

the examples directory in ch-05/docker/examples/connect-jdbc.scala, including

configuration fallbacks to default config values where applicable.

 Listing 5-5. The Source Code of connect-jdbc.scala

// spark: SparkSession (from spark-shell)

// assign from spark conf

val jdbcDriver = spark.conf.get("spark.jdbc.driver.class")

val dbHost = spark.conf.get("spark.jdbc.host")

132

CHapter 5 BridGinG Spark SQL witH JdBC

val dbPort = spark.conf.get("spark.jdbc.port")

val defaultDb = spark.conf.get("spark.jdbc.default.db")

val dbTable = spark.conf.get("spark.jdbc.table")

val dbUser = spark.conf.get("spark.jdbc.user")

val dbPass = spark.conf.get("spark.jdbc.password")

val connectionUrl = s"jdbc:mysql://$dbHost:$dbPort/$defaultDb"

// load the remote SQL table

val df = spark

.read

. format("jdbc")

.options(Map[String, String](

"url" -> connectionUrl,

"driver" -> jdbcDriver,

"dbtable" -> dbTable,

"user" -> dbUser,

"password" -> dbPass

)

)

.load()

This partial application shown in Listing 5-4 relies directly on Spark’s core configuration, and the Spark Session created when starting the spark-shell. This is

all conveniently accessible to your code at runtime because of the order in which it is

loaded after the spark-shell has completed all the work necessary to bootstrap the

application (see Figure 5-1).

If you haven’t tried to run the code yet, do so now, and then we will dive deeper

into how we were able to read the configuration from within the scope of this partial

application from Listing 5-5.

 Spark Config: Access Patterns and Runtime Mutation

The Spark configuration is divided into two separate classes at runtime. The first is the

main immutable configuration, the SparkConf. This read-only object is accessible from 133

CHapter 5 BridGinG Spark SQL witH JdBC

the SparkContext, which can be accessed using the SparkSession. This core application

config is assembled from various locations when the application starts up:

1. Default or internal configuration provided by the standard

Spark distribution (either built by you, or downloaded as an

official build).

2. Spark Environment level overrides defined in $SPARK_HOME/conf.

An example is available at /path/to/ch-05/docker/spark/conf/

spark-defaults.conf.

3. Application Submission overrides using the --conf <key=value>

option on application start.

4. Application Internal configs. These configs are specified directly

when constructing the Spark Session. Certain configs like the

spark.sql.warehouse.location.dir and others can only be set

once for the lifetime of an app.

The resulting SparkConf is immutable, and it is used to construct the driver

application’s SparkContext.

The second configuration is the runtime configuration stored in the RuntimeConfig

object. This is a mostly mutable copy of the fully immutable config available in

SparkSession. Figure 5-1 is a good reference for visualizing the duality of the Spark config types.

 Viewing the SparkConf

Given the SparkConf is immutable, we can only read the values within the object.

You can dump the active configuration using the spark-shell that you started in

Listing 5-4. From the spark-shell, you can use the active SparkSession (spark), to get to the SparkContext, and finally the SparkConf itself, which you can use to print the

configuration as a debug string. This process is shown in Listing 5-6.

 Listing 5-6. Accessing and Printing the Immutable SparkConf Using the

spark-shell

scala> spark.sparkContext.getConf.toDebugString

spark.app.id=local-1613941330294

spark.app.name=Spark shell

134

CHapter 5 BridGinG Spark SQL witH JdBC

spark.driver.host=192.168.1.18

spark.driver.port=52829

spark.executor.id=driver

spark.home=/Users/me/install/spark-3.0.1-bin-hadoop3.2

spark.jars=file:///Users/me/git/newfront/spark-moderndataengineering/ch-05/

docker/jars/mariadb-java-client-2.7.2.jar,file:///Users/me/.ivy2/jars/

mysql_mysql-connector-java-8.0.23.jar,file:///Users/me/.ivy2/jars/com.

google.protobuf_protobuf-java-3.11.4.jar

spark.jdbc.default.db=default

spark.jdbc.driver.class=com.mysql.cj.jdbc.Driver

spark.jdbc.host=127.0.0.1

 spark.jdbc.password=*********(redacted)

spark.jdbc.port=3306

spark.jdbc.table=customers

spark.jdbc.user=dataeng

spark.master=local[*]

spark.repl.class.outputDir=/private/var/folder...

You may have noticed that the configuration automatically redacted the value of

spark.jdbc.password. This is one of the guardrails set in place by the Spark engine, and

the value of the redaction regex can be extended or replaced using the property named

spark.redaction.regex. By default, Spark automatically redacts any configuration

properties matching secret|password|token. If you have other patterns or naming

conventions for secrets, you can just override the spark.redaction.regex. To look at

more of the specifics you can look Runtime Environment settings in the official Spark

docs (http://spark.apache.org/docs/latest/configuration.html#runtime-

environment).

 Accessing the Runtime Configuration

You can use the SparkSession object (the spark variable in the spark-shell) to get

(read) and set (write) values of the RuntimeConfig. Try this for yourself, from within your

active spark-shell, by using Listing 5-7 to read the value of spark.jdbc.driver.class.

 Listing 5-7. Get the Runtime Config Value with Fallback

spark.conf.get("spark.jdbc.driver.class", "com.mysql.cj.jdbc.Driver")

135

CHapter 5 BridGinG Spark SQL witH JdBC

This access pattern (with fallback where applicable) is used throughout the partial

application connect-jdbc.scala. We read and assign the JDBC config values into

convenience variables, and then construct the JDBC DataFrameReader.

You can update most values using the runtime configuration by calling set on the

SparkSession. Using the active spark-shell, try setting the spark.jdbc.driver.class

value using the code from Listing 5-8.

 Listing 5-8. Dynamically Setting Values of the RuntimeConfig

spark.conf.set("spark.jdbc.driver.class", "org.mariadb.jdbc.Driver")

By getting and setting values, you can update the behavior of your application at

specific junctures or, to say that a little differently, within specific stages of execution.

Note we’ll see more of the RuntimeConfig along our journey to the book’s

end, but it is worth pointing out that each SparkSession can modify a subset of

the immutable SparkConf without changing the default behavior of the Spark

application. this is because the SparkContext retains the default configuration

(as defined on initial application start), thus ensuring that there is a separation of

concerns between one or more instances of the SparkSession.

Moving back to the running spark-shell (launched in Listing 5-4), let’s look at the process of iterative development with the Spark Shell.

 Iterative Development with the Spark Shell

From within your active spark-shell, try calling printSchema or executing the show()

action on the DataFrame identified as df. You can even try using a selection and limit

clause, which is shown in Listing 5-9.

136

CHapter 5 BridGinG Spark SQL witH JdBC

 Listing 5-9. Interacting with a JDBC Backed DataFrame Abstracts Away the

Complexities of Connecting to a Remote (External) RDBMS

df

.select("id", "first_name", "email")

.limit(3)

.show()

The results of calling show on the JDBC backed DataFrame yields the first three

entries in the customers table from your MySQL database.

+---+----------+--------------------+

| id|first_name| email|

+---+----------+--------------------+

| 1| Scott| scott@coffeeco.com|

| 2| John| john.hamm@acme.com|

| 3| Milo|mhaines@coffeeco.com|

+---+----------+--------------------+

Now let’s learn to describe views and tables.

 Describing Views and Tables

You have learned to use JDBC to connect to your MySQL docker container. Wouldn’t it

make sense that we could describe the schema of the table by doing a simple SQL style

describe? In theory, Spark should be referencing the backing relation—in this case our

customers table so how about you try this out. Follow along using the code fragment in

Listing 5-10.

 Listing 5-10. From the spark-shell, Creating the Customers View and Describing

the Table

df.createOrReplaceTempView("customers")

spark.sql("desc customers").show()

137

CHapter 5 BridGinG Spark SQL witH JdBC

You will see the following output after calling show on the desc customers sql

command.

+----------+---------+-------+

| col_name|data_type|comment|

+----------+---------+-------+

| id| string| null|

| created|timestamp| null|

| updated|timestamp| null|

|first_name| string| null|

| last_name| string| null|

| email| string| null|

+----------+---------+-------+

If this process seems a bit convoluted, that is because it is. If we already have

access to a database, then why would we need to first know about the existence of the

customers table beforehand in order to do a describe? How can a process like this even

scale? How would one discover the location or schema of this table without access to

tribal team-based knowledge?

We’ll simplify the process of data discovery in the next chapter using the Hive

Metastore, but for now remember what this feels like. It should feel like an unnecessary

roadblock in your path to data discovery. But let’s first finish this exercise by using our

JDBC connection information to write back to our customers MySQL table.

 Writing DataFrames to External MySQL Tables

To complete the full roundtrip from MySQL to Spark and back again, we need to go

ahead and write back to the database. You are probably thinking, we need to create a few

more records in order to do that, and yes, we definitely have to increase the number of

records in our table.

 Generate Some New Customers

You have become good at generating data inside of Zeppelin and the Spark Shell and even

directly using the MySQL shell. While we could go ahead and continue to use the MySQL

shell to add some more customers, we wouldn’t have the joy of doing so directly from Spark.

We can reuse the schema of the current customer table, which we

described just a moment ago. For reference, you can run df.printSchema or

138

CHapter 5 BridGinG Spark SQL witH JdBC

df.schema.toDDL to get a quick reference of the data structure. You will see the

following schema.

root

|-- id: string (nullable = true)

|-- created: timestamp (nullable = true)

|-- updated: timestamp (nullable = true)

|-- first_name: string (nullable = true)

|-- last_name: string (nullable = true)

|-- email: string (nullable = true)

Now here comes the first roadblock. In order to add more rows to the database, you’ll

need to create a DataFrame matching the schema of the customers database table. In this

case, that means we need to come up with a way of generating the good ol’ timestamp.

If you remember back in Chapter 3, we discussed schemas and the StructType.

We also went over the Spark data types. As a refresher, the internal Scala type used for a

timestamp is a java.sql.Timestamp. If each row of data contains the appropriate Scala

type, then Spark can do an implicit conversion to the internal TimestampType for us, and

we can go on living our lives.

The code snippet shown in Listing 5-11 shows the code necessary to create our new customers. (The ts and time functions are provided to simplify the customer creation.)

We give Spark exactly what it needs to be able to construct and write more customers!

Tip remember that you can paste multiple lines at a time into the spark-shell

using the :paste command. when you are done pasting in your code, pressing

Cmd+d will run everything you pasted in place.

 Listing 5-11. Creating a DataFrame to Represent Additional Customers

import org.apache.spark.sql._

import java.sql. Timestamp

import java.time._

 // spark: SparkSession (from spark-shell)

assert(spark.isInstanceOf[SparkSession])

def ts(timeStr: String) = Timestamp.valueOf(timeStr)

139

CHapter 5 BridGinG Spark SQL witH JdBC

def time = Timestamp.from(Instant.now())

 // create some new customers

val records = Seq(

Row("4",ts("2021-02-21 21:00:00"),time,"Penny","Haines","penny@coffeeco.com"), Row("5",ts("2021-02-21 22:00:00"),time,"Cloud","Fast","cloud.fast@acme.com"), Row("6",ts("2021-02-21 23:00:00"),time,"Marshal","Haines","paws@coffeeco.com")

)

val newCustomers = spark.createDataFrame(

spark.sparkContext.parallelize(records),

customers.schema

)

The code from Listing 5-11 creates a simple helper function called ts that takes a simple DateTime string, for example 2021-02-21 21:00:00, and converts it into an instance of a

Timestamp class, which Spark can implicitly convert to its internal TimestampType. In addition

to this function, there is a simple function that can be used to get the current time, called time.

Next, we generate three new customers and create a new DataFrame by wrapping

an RDD of our customer records, along with the schema that we lift from the temporary

view customers, from Listing 5-10.

 For those of you keeping track, this is now the fourth method we’ve encountered for

 creating DataFrames!

All that is left is to write our new records to the external customers table.

 Using JDBC DataFrameWriter

We can reuse most of the variables defined by connect-jdbc.scala, which are available

to us through the spark-shell since we initially loaded the connect-jdbc.scala into

the same context. Now let’s learn to write back to the customers table using the code

fragment from Listing 5-12.

 Listing 5-12. Creating an Instance of the JDBC DataFrameWriter and Attempting

to Save the Rows Defined by the DataFrame newCustomers to the Customers

MySQL Table

newCustomers

. write

.format("jdbc")

140

CHapter 5 BridGinG Spark SQL witH JdBC

.options(Map[String, String](

"url" -> connectionUrl,

"driver" -> jdbcDriver,

"dbtable" -> dbTable,

"user" -> dbUser,

"password" -> dbPass

)

)

.save()

If you have been following along with the exercise since the beginning of the chapter,

you will have just seen an error pop up.

Table or view 'customers' already exists.

SaveMode: ErrorIfExists.

This error is thrown because Spark is defensive by default (another guardrail). When

we go to save our three new columns, we could have actually overwritten the database

table or added duplicates of the same rows. Let’s thank our lucky stars since we were just

saved by SaveMode.

SaveMode

Table 5-3 details the modes dictated by the SaveMode enum.

 Table 5-3. SaveMode Options on the DataFrameWriter

SaveMode

Description

Append

if the data or table already exists, then the contents of the dataFrame are

expected to be appended to the existing data.

ErrorIfExists if the data already exists, an exception is thrown.

Ignore

if the data already exists, the save operation is expected to not save the contents

of the dataFrame or change the existing data.

Overwrite

if the data or table already exists, the existing data is expected to be overwritten

by the contents of the dataFrame.

141

CHapter 5 BridGinG Spark SQL witH JdBC

Modify the code from Listing 5-12, and manually specify the save mode and try to save again. The change is shown in Listing 5-13. The full example is located in the Zeppelin notebook (“5-2_MySQLAndSpark”). Just pop over to http://localhost:8080

to load the examples.

 Listing 5-13. Appending New Rows to the Customers Table

newCustomers

.write

.format("jdbc")

. mode("append")

.options(Map[String, String](

"url" -> connectionUrl,

"driver" -> jdbcDriver,

"dbtable" -> dbTable,

"user" -> dbUser,

"password" -> dbPass

)

)

.save()

This time you will not see any exceptions thrown. You can even query the temporary

customers view created earlier (in Listing 5-10) using the following query.

spark.sql("select * from customers").show

Magically, your new rows show up without having to refresh anything. Why is that?

This is because the temporary customers view is just a promise to eventually go and

get the data via our JDBC connection. In fact, if you connect back to the MySQL Docker

instance, docker exec -it mysql bash, and log back into the mysql shell, you can

query the default.customers table and you’ll see your new rows happily sitting inside

the customers table in our default database.

142

CHapter 5 BridGinG Spark SQL witH JdBC

Note the source code for writing to MySQL via JdBC is available in the chapter

exercise materials under /ch-05/docker/examples/save-jdbc.scala. You

can use the Scala repL :load function if the process of using :paste has gotten

a little unruly. Just :load the file. the end result will be similar to using the -i

<file>, which you learned about in Figure 5-1.

You have now officially completed the full roundtrip from MySQL to Spark and

back again! Pat yourself on the back and take a step back to consider all you’ve just

accomplished. Considering we initially set out to create a command-line tool that could

enable users to run ad hoc SQL queries and have done almost everything other than

that, we should probably finish that up now before moving on.

Using all you’ve learned so far in this exercise, you can extend the previous

connect-jdbc.scala example to allow the partial application to take a SQL query via

the command line. Use the application launch command from Listing 5-14 to guide you on creating your command line SQL application. The code for this final exercise is

located in the examples directory at /path/to/ch-05/docker/examples/jdbc-adhoc-

query.scala.

 Listing 5-14. The Command -ine Driven Shell Script for Querying a Table

$SPARK_HOME/bin/spark-shell \

--conf "spark.jdbc.driver.class=com.mysql.cj.jdbc.Driver" \

--conf "spark.jdbc.host=127.0.0.1" \

--conf "spark.jdbc.port=3306" \

--conf "spark.jdbc.default.db=default" \

--conf " spark.sql.query=select id, first_name, email from customers where

email LIKE '%coffeeco%' ORDER BY email ASC LIMIT 3" \

--conf "spark.jdbc.user=dataeng" \

--conf "spark.jdbc.password=dataengineering_user" \

--jars=spark/jars/mariadb-java-client-2.7.2.jar,spark/jars/mysql-

connector- java-8.0.23.jar \

-i examples/jdbc-adhoc-query.scala

The application configuration properties from Listing 5-14 replace the spark.jdbc.

table config property, introduced by connect-jdbc.scala, with spark.sql.query. This

143

CHapter 5 BridGinG Spark SQL witH JdBC

change takes into account the way the JDBC DataFrameReader works in Spark. You can

pass in one of the following two connection properties—dbtable or query—but you

can’t pass in both. For the full list of parameters, return to Table 5-1.

Try creating the working Spark partial application to run the spark-shell based

application from Listing 5-14 . Keep in mind that in the real world, you would want to limit the database user actions to read-only and depending on the table size you will also

probably want to add default limits to the query. You wouldn’t want someone to trigger a

query like DROP DATABASÈdefault`.

Tip any application started with the spark-shell command will wait (or hang)

until you manually exit the application. this is due to the nature of the loop in the

repL. if you want to exit the spark-shell automatically, as a last step in your

application, you can use sys.exit(0) to exit the program normally. if there is

a problem executing, say the query was malformed, then the spark-shell will

throw an exception and exit. For command-line applications it is standard to use a

zero for success and a non-zero value for non-successful operations. think of this

like Http status codes.

 Exercise 5-2: Summary

This exercise covered a lot of ground, introducing you not only to using JDBC with

Apache Spark, but also to the power of iterative development with composite files and

the spark-shell. While using the composite application pattern on the spark-shell is

not intended to power production applications, it does enables you, as an engineer, to

work through a problem as a series of logical steps, with nearly immediate feedback from

within the spark-shell, or other interactive development environments like you’ve seen

with Apache Zeppelin. This process of iteratively decomposing a problem into its logical

parts is critical for data engineers, software engineers, or really anyone working on any

complex problem solving.

In its purest form, we literally separated the concerns between logical Docker

container edges in Exercises 5-1 and 5-2. You learned to create tables directly at the database (MySQL Docker container), and to manually insert rows to create a base

MySQL table for reading and writing from Apache Spark. You learned to use the

spark-shell to your advantage, adding dynamic runtime dependencies and custom

144

CHapter 5 BridGinG Spark SQL witH JdBC

configuration. You can say you even started down the path of writing reusable code, even

if that code was broken up across a few separate files within a composite application

powered by the spark-shell.

 Continued Explorations

Note this section is optional and covers some more advanced processes. You

can skip this section and come back later too.

The chapter exercises all assumed we had to work with the poorly defined customers

database table schema. Yes it wasn’t very good! We can do better. Consider the fact that we can currently add almost unlimited duplicates to our database. That really isn’t a

good design, especially when MySQL supports constraints. I offer up these continued

explorations as additional food for thought, and to go into a some more advanced areas,

including table truncation and column-level deduplication techniques.

Note the note titled “5_2_MySQLandSpark” can be run from the Zeppelin

Ui. this contains additional steps and extended explanations for reading

and writing using the JdBC connector (http://localhost:8080/#/

notebook/2G1SGWZBW).

 Good Schemas Lead to Better Designs

What if we had the option of creating a better schema for our customers table? Could it

have made our lives easier? The create table syntax for the bettercustomers is shown

in Listing 5-15.

 Listing 5-15. The Modified Create Table Syntax for the bettercustomers Table

CREATE TABLE IF NOT EXISTS `bettercustomers` (

ìd` mediumint NOT NULL AUTO_INCREMENT COMMENT 'customer automatic id',

`created` timestamp DEFAULT CURRENT_TIMESTAMP COMMENT 'customer

join date',

145

CHapter 5 BridGinG Spark SQL witH JdBC

ùpdated` timestamp DEFAULT CURRENT_TIMESTAMP COMMENT 'last record

update',

`first_namè varchar(100) NOT NULL,

`last_namè varchar(100) NOT NULL,

èmail` varchar(255) NOT NULL UNIQUE,

PRIMARY KEY (ìd`)

);

Right off the bat, you might be thinking that having a UNIQUE constraint on email

might be a good idea. No? Maybe you are thinking of the fact that we now have

automatically “monotonically” increasing row numbers and that’s a step in the right

direction? Maybe it is the fact that we have column-level comments in our table

definition? All these answers are in fact correct. With a well-defined table definition,

we can rely on the database to handle pieces of our core business logic, like storing the

next customer ID and safeguarding against duplicate data. This can free up more time to

focus on solving other problems in our applications.

Using the Zeppelin note (“5_2_MySQLAndSpark”), you can walk through the

following example. Starting with fixing the customers table. This includes how to

create and write initial rows into the bettercustomers table using only the non-default

columns of the table schema and more. This means that only the first_name,

last_name, and email columns are necessary.

Note You’ll have to create the bettercustomers table using the MySQL

console for these additional exercises. Follow the directions in the notebook, or

use what you’ve learned in the chapter, to create the new table using the table

definition from Listing 5-15.

 Write Customer Records with Minimal Schema

The paragraph shown in Listing 5-16 shows a simplified way of adding customers to your bettercustomers table. The code flow is based on Listing 5-11 and removes the need to manually specify timestamps. This technique is more advanced and explicitly ignores

specific columns, which could always change, causing problems in the future. You can

run this code using Apache Zeppelin as per the section instructions.

146

CHapter 5 BridGinG Spark SQL witH JdBC

 Listing 5-16. Using Database Table Constraints and Default Values Can Enable

You to Write Sparse Rows to a Remote Database Directly from Spark, Cutting

Down on Bandwidth Transfer Costs

%spark

import org.apache.spark.sql.types._

import org.apache.spark.sql._

val simpleFieldNames = Set("first_name", "last_name", "email")

val simpleSchema = StructType(

betterCustomers.schema.fields.filter(sf => simpleFieldNames.

contains(sf.name)))

val saveMode = "append"

// create simplified Rows!

val rows = spark.createDataFrame(

spark.sparkContext.parallelize(

Seq(

Row("Nanna","Haines","nhugs@coffeeco.com"),

Row("The","Rock","djohnson@coffeeco.com"))),

simpleSchema)

rows

.write

.format("jdbc")

.mode(saveMode)

.options(Map[String, String](

"url" -> connectionUrl,

"driver" -> jdbcDriver,

"dbtable" -> "bettercustomers",

"user" -> dbUser,

"password" -> dbPass

))

.save()

Now isn’t this exciting! What is equally exciting is how problematic this query can

become. There is nothing like a good old thorn in the side to hamper the hard work and

effort of what feels like a job well done.

147

CHapter 5 BridGinG Spark SQL witH JdBC

Here is the honest truth—the query you just ran is a disaster waiting to happen. Well,

why is that you ask? The problem stems from the fact that the SaveMode value is sitting

around in a variable. One of the things we love to do as engineers is to simplify problems

and many times that means writing core components in a more config driven, or library-

based approach (very much like how the Spark community wrote the JDBC connector).

With the simple use case from Listing 5-16, this means someone could naively change the value of SaveMode as overwrite, which in the case of the JDBC DataFrameWriter

will drop the current table and rewrite it using the contents of the writing DataFrame.

This would be a disastrous result given the time and effort we just spent defining and

creating the table definition.

Furthermore, the new table would be replaced instead with the three columns

(first_name, last_name, and email) from the rows DataFrame. Essentially, we set out

to make our lives easier, in this case inserting new rows using our minimal schema,

but we’ve potentially just enabled a critical flaw and disaster waiting to happen for any

critical production database table. Yikes! What is worse is that only the two records from

Listing 5-16 would exist in our database afterwards.

The good news is that if your intention really is to overwrite the bettercustomers

table, you can keep the existing table definition, by adding the truncate option on the

JDBC DataFrameWriter. This option maintains the original table syntax from Listing 5-15.

The updated JDBC configuration is shown in Listing 5-17.

 Listing 5-17. Using Truncate to Preserve the Table Definition

rows

.write

.format("jdbc")

.mode(saveMode)

.options(Map[String, String](

"url" -> connectionUrl,

"driver" -> jdbcDriver,

"dbtable" -> "bettercustomers",

"user" -> dbUser,

"password" -> dbPass,

"truncate" -> "true"

))

.save()

148

CHapter 5 BridGinG Spark SQL witH JdBC

Now that is better. In the next exploration, you’ll learn how to deal with the problems

introduced by the poorly defined customers schema. You can rely on truncation to

solve the next problem as well. However, there is an interesting catch. So, read on and

good luck!

 Deduplicate, Reorder, and Truncate Your Table

For this continued exercise, you will need to come up with a way to deduplicate, reorder,

and truncate the records stored within the customers database table. This exercise

teaches you how to deal with fixed and problematic schemas and data in general. For

this use case, you can’t simply modify the table schema for the customers database

table. See there is a slight problem with the save + append operation when applied to the original customers table schema in Listing 5-2. Given there are no constraints declared on the table schema, Spark will happily continue to write duplicate rows again and

again, if you simply command it to. There is no pre-baked method for Spark to ignore

duplicate rows when writing into the database itself using just the JDBC connector and

zero RDBMS based constraints.

As you saw in the “Good Schemas Lead to Better Designs" exploration, duplicate

record rejection can be handled with constraints. However, the simple customers table

can have unlimited duplicates. To get an idea of just how simple it is to create many

duplicates, try running :load examples/save-jdbc.scala a few dozen times in your

active spark-shell you started, in Listing 5-4, to create a ton of duplicates.

Now to solve for this problem. You can use the following techniques to help you

along your way.

 Drop Duplicates

Using the dropDuplicates function, can conditionally remove duplicate rows from

within your DataFrame. This will take only the first row identified by its unique column

value and ignore additional duplicates. For example: df.dropDuplicates("id").

In the case where you want to have more control over which of the duplicates you

select, you can mix a grouping clause and the distinct min/max operators to for example,

select only the row with the earliest creation date, and the latest update date. This

technique of preprocessing with aggregate functions can be helpful when reading and

processing Change Data Capture (CDC) logs. You can look at the Zeppelin paragraph

titled Select Distinct and Sort for an interactive example.

149

CHapter 5 BridGinG Spark SQL witH JdBC

 Sorting with Order By

Using the ORDER BY clause to sort data using the temporary customers view, or using

the sort function directly on your DataFrame, enables you to reorder the records in a

dataset. For example: df.sort(asc("id")).

 Truncating SQL Tables

Truncating a table clears all committed records, which means all rows that have been

written to the database’s write-ahead log (WAL) and acknowledged by the RDBMS. It

is like calling DELETE FROM customers instead of DROP TABLE customers which can be

better than dropping the physical table if you must. You were introduced to the truncate

table JDBC option in Listing 5-17.

Remember that dropping the full table will can break other applications that rely on

the table.

Caution Use table truncation with caution, since when you are doing a full table

 overwrite, you may just find yourself deleting everything in the table by mistake.

 Stash and Replace

Think about how you could store a current snapshot of the table before doing the actual

overwrite if you need to overwrite an entire table, for deduplication or to fix corrupt

entries. Apache Spark enables you to store a persisted snapshot of a dataset using the

saveAsTable function on the DataFrame. This method uses the Hive Metastore and

distributed file system to store a reliable (persistent) backup. The persistent table can

then be used to save your distinctly sorted table before truncating the physical table

itself and replace it with the stashed (persistent) records. You’ll learn how to use the Hive

Metastore in the next chapter.

Note the full solution to the problem is in /ch-05/docker/examples/

deduplicate-reorder-truncate.scala. i recommend trying things out and

exploring possible solutions before looking at the answers. Happy trails!

150

CHapter 5 BridGinG Spark SQL witH JdBC

 Summary

This chapter taught you how to complete a full data roundtrip from MySQL to Spark

and back again, just leaning on native JDBC drivers, the JDBC DataFrameReader,

and DataFrameWriter. If you compare the process you learned for writing composite

applications using the spark-shell to what you’ve experienced with Apache Zeppelin,

then it’s probably clear that composites (partial applications) provide yet another avenue

for rapid development. One that enables you to again reuse the same Docker-based

development environment to choose your own data engineering adventures!

In the next chapter, you’ll learn about using the Apache Hive Metastore. You’ll be

setting up, configuring, and running the Metastore backed entirely by our Docker-based

MySQL database. You will see how the Metastore simplifies the process of data discovery

and enables data exploration within the context of your Spark applications. You will see

how the Hive Metastore introduces new ways of working with database tables, and how

you can even protect your source-of-truth data stores and provide documentation and

shared table definitions between multiple Spark applications.

Are you ready?

151

CHAPTER 6

Data Discovery

and the Spark

SQL Catalog

Being able to connect and work with the data systems and services that are included in

most companies’ modern tech stack is a critical skill for data engineers. Lucky for you,

Spark provides the mechanisms to work with and transform data so you can take action

and solve problems, instead of writing and maintaining yet another piece of custom

infrastructure code. By relying on the core capabilities of Spark, you learned to harness

the power of JDBC to interoperate with data stored in a traditional database. Accessing

any JDBC-compatible RDBMS enables you do write your SQL queries once, which means

you’re not burdened with supporting separate applications with different business logic.

This chapter continues the lessons learned in Chapter 5. This will be our first look at using data lakes and relational databases together to populate the contents of the

 Spark SQL Catalog. This process will enable you to annotate your data sources with

rich metadata about the tables that your Spark applications produce. This contextual

information details the input and output formats for your data pipelines and can also

be extended to auto-generate the data lineage graph or can be used as a general data

discoverability service internally and even as an external data catalog. This is not just invaluable to you and your team, but also to any other member of the data organization

looking to reuse or analyze the data your Spark jobs emit.

We conclude this chapter by looking at how Spark optimizes your transformative

flows, by extending the earlier exercises using Spark’s strongly typed datasets. This final

exercise introduces you to how Spark encodes the intentions of your application code

and magically generates and optimizes the logical phases of execution necessary to run

applications from start to finish, all through the internal Catalyst Optimizer.

153

© Scott Haines 2022

S. Haines, Modern Data Engineering with Apache Spark, https://doi.org/10.1007/978-1-4842-7452-1_6

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

This chapter is broken into the following areas:

• The Hive Metastore and Spark SQL Catalog

• The Catalyst Optimizer

• Spark datasets

Exercise Content You can find the materials for this chapter in the ch-06/

folder of the book’s GitHub at https://github.com/newfront/spark-

moderndataengineering. Just start up the environment using the run script and head on over to http://localhost:8080.

cd ch-06/docker && ./run.sh start

 Data Discovery and Data Catalogs

In the previous chapter, we explored how easy it can be to work with JDBC connections

to your database (RDBMS) from within Apache Spark. While we were able to connect

to the database we spun up for the exercise, there was one main issue that could prove

to be an issue down the road. That hindrance is namely this. Without prior knowledge

of the location of a database, and knowledge of what kind of data is represented in the

physical tables of that database, as well as how that data is represented by its underlying

table schema, the simple act of data discovery is all but nonexistent. But data discovery is

actually the key to success for data-driven companies, and as a data engineer, this should

really matter to you.

 Why Data Catalogs Matter

Data discovery may not seem like an immediate concern for us given that the data we are

currently working with, within the context of the book, represents only a small number

of customers in a fictitious company’s initial customer database, as well as a small

number of coffee brands and some basic metadata (the roast levels as expressed by their

boldness), a small number of stores, and some information about the foot traffic to each

store during the day. However, in the real world, data discovery problems are a much

larger concern. Let me paint that picture.

154

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

 Data Wishful Thinking

As any company grows, small teams naturally expand as new teammates are hired on.

As teams continue to grow, it is only natural at a certain point to fork off and divide into

smaller teams again, with more specific scopes and areas of focus. New teams, made

up of prior members of original teams, continue this cycle of growth and division as the

company continues to grow organically. For a while, teams can rely on tribal knowledge,

or under documented processes learned over time at the company, and cross-team

communication enables teams to continue to share tribal knowledge, data locations,

table schemas, and raw data formats directly.

For some reason many startups, and even some very mature companies, have fallen for

the idea that in the cloud age, teams are able to be more agile, move fast, and even break

things, to keep up with the blinding pace of innovation. In doing so, it is easy for engineers

and PMs to skip, or turn a blind eye to, the ever-important step of thorough documentation

and software testing. The unspoken side-effect of this is that it is easy to watch tech debt

pile up, becoming skeletons in the closet. A necessary risk for the continued forward

progress of the company! Unfortunately, history tends to repeat itself and this high

technical debt can lead to processes and patterns that quickly become unsustainable.

As companies grow, acquire new companies, turn over engineers, reorganize

departments and as other cross-team/cross-initiative data platforms emerge, the old

ways of relying on tribal knowledge, or expecting teams to wait for a core team member

to respond to a Slack message, or join a video conference, or even physically show up, to

walk a new team through an archaic process becomes detrimental to the well-being of

the company and the people working for it. Clear documentation and established ways

of working cross-functionally is of even higher importance when dealing with data.

For data teams, there is a large cost and hinderance to progress, when relying on

manual communication of data schema changes, or the age-old game of telephone (you

know Bob told Alice who told me that Team X is making a change to their data format).

Unreliable processes quickly crack under pressure, and as a side-effect, reduce what

used to be core, reliable data into unreliable, untrustworthy data. Under communicated

changes to the schema of one database table, or the raw format of records within the

data lake, will cause production outages, as teams may not even know who relies on their

data or who is subject to breaking upstream changes. Outages mean people get mad and

the blame game begins. This is a tipping point, a fork in the road, and one of the reasons

that data platforms and centralized processes and other “ways of doing things” emerge

as companies get to a certain size.

155

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

 Data Catalogs to the Rescue

Luckily, there are standard ways of doing things that exist outside of the internal context

of a company, and like most design patterns, people follow them because they can

save time and potential heartache of getting burned when things come crashing down.

The picture I painted before was a worst-case scenario of what can happen when the

trust in core data layers within the company break down. The fact of the matter is that

data documentation is as important as any API documentation. These metadata-based

data definitions represent and act as a centralized contract for how, when, and why to

consume and use the data stored in a table, and one of the most widely used, standard

ways, of achieving this is using the Apache Hive Metastore.

 The Apache Hive Metastore

The Hive Metastore was originally constructed to provide important metadata that

could be used to simplify how various teams worked with the distributed data that lived

inside their data lakes. These pseudo-table definitions mapped key missing information,

including the schema, partitions, encoders, and decoders needed to interoperate with

the data stored in these distributed SQL tables.

This metadata was used at runtime to provide the glue needed for Apache Hive

to run distributed SQL-like queries over the data stored in HDFS. Rewinding back to

Chapter 1, we discussed the emergence of Distributed File Systems, data pipelines, and ETL. Once upon a time, Apache Hive was a godsend to the data engineers who were

writing and maintaining ETL jobs using MapReduce.

Big Data is really just a technique for storing, working with, and querying massively

partitioned and fully distributed data that doesn’t fit in the traditional SQL database.

Hive provided a mechanism to treat these distributed file systems in the same way that

people were accustomed to treating traditional databases, as tables with a schema.

This enabled data engineers to focus on the pipelines that ingested data into HDFS, the

representative data structures and schemas of their data as tables, and the data lineage

information all rolled up into the table definition of each distributed Hive table.

156

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

This table metadata exists in the Hive Metastore and provides the keys to describe

the who, what, where, and why of each Hive table. In addition, the metastore enables

teams with access to the metastore to discover new tables and avenues to reuse the data

available in this distributed data warehouse. All this without having to rely on a lot of

cross-team communication, lengthy meetings, and sharing tribal knowledge to begin to

be productive.

 Metadata with a Modern Twist

Today the Hive Metastore is still alive and well, but just serving a different purpose than

originally intended. It is now typical to run the metastore without ever intending to

use Hive itself. This change can be thought of as an evolution that coincides with other

changes across the new modern data tech stack. The rise in popularity of cloud-based

distributed object stores, such as Amazon S3 and Azure Blob Storage, have seen the

industry shift focus away from Hadoop and HDFS.

A similar migration has also taken place with companies moving away from many

of the older Hadoop technologies like Hive itself. In Chapter 2, you learned how Spark was born from the best of what made MapReduce successful. While changing the core

execution model to reuse computations in-memory and allow for multiple iterations

over the same data without the need to explicitly go back to the source-of-truth data, it

was just a natural technological evolution.

Analogous to the concept of recycling, the ecosystem simply reused components of

MapReduce, but with a twist. The same can be seen with respect to Spark SQL and Hive.

Spark SQL is more than capable of operating as a fully-fledged SQL engine, and as you

will soon experience first-hand, it can also take advantage of the Hive Metastore. While it

can interoperate with Hive, it can also do just fine on its own.

 Exercise 6-1: Enhancing Spark SQL

with the Hive Metastore

The Hive Metastore provides a single source of truth for describing the location, data

encoding (e.g., Parquet, ORC), columnar schema, and statistics of the tables recorded

for the purpose of democratizing data for use by data engineers, analysts, and machine

learning engineers and data scientists alike. Using the Metastore, folk can find datasets

without the need for asking around or going on wild goose chases!

157

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

The next section takes you through the five simple steps required to get the Hive

Metastore up and running. Like the previous chapter’s exercises, you can run everything

using the chapter source material to follow along live.

Bootstrap Option there is a bootstrap option available for the run.sh. if you

simply want to bootstrap this environment and not worry about all the twists

and turns, i promise i will not be offended. the apache Zeppelin note titled

“6_1_HiveMetastore” starts with Bootstrap the Environment, which will walk you

through the commands and setup. You can skip ahead to the spark sQL Catalog

and come back to this section for more information regarding initializing the

database tables, user permissions, and spark configuration.

 Configuring the Hive Metastore

There are a few steps required to configure the Hive Metastore, so let’s begin by getting

things to work in the context of Spark. Fortunately, these steps are fairly straightforward:

1. Create the metastore database.

2. Grant access to the database to your MySQL user.

3. Create the database tables.

4. Configure the Spark environment to access the metastore.

5. Provide the Hive dependencies for the Spark environment.

This shouldn’t feel like too many steps. In fact, Spark is capable of running the Hive

Metastore without the need to run any additional services (or containers). The only real

requirement is that you have the database and tables initialized and have granted access

to the database to your Spark dataeng user.

 Create the Metastore Database

To simplify the process of initializing the Hive Metastore tables after you finish creating

the actual metastore database, the table definition SQL files have been provided inside of

the chapter’s exercise directory. The docker file copy command has been included

158

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

in the run.sh. The command-line parameter hiveInit will copy the necessary files into

the running mysql container on your behalf. Simply execute the command in Listing 6-1.

 Listing 6-1. Start the Chapter Exercises’ Environment and Initialize the Apache Hive Metastore

cd /path/to/ch-06/docker &&

./run.sh start &&

./run.sh hiveInit

The hiveInit command will run the following two Docker copy commands.

docker cp hive/install/hive-schema-2.3.0.mysql.sql mysql:/

docker cp hive/install/hive-txn-schema-2.3.0.mysql.sql mysql:/

Connect to the MySQL Docker Container

Use the following docker exec command to log in to the container context.

docker exec -it mysql bash

Authenticate as the root the MySQL User

After logging in to your local MySQL container, authenticate as the MySQL root user

using the mysql shell.

mysql -u root -p

The MYSQL_ROOT_PASSWORD value can be found in ch-06/docker/docker-compose-

all.yaml.

Create the Hive Metastore Database

Once you are inside the mysql shell, go ahead and create the metastore database.

mysql> CREATE DATABASÈmetastorè;

Now that the database has been created, it is time to grant access to your Spark

mysql user.

159

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

Grant Access to the Metastore

Grant the dataeng user access to the metastore database.

REVOKE ALL PRIVILEGES, GRANT OPTION FROM 'dataeng'@'%';

GRANT ALL PRIVILEGES ON `default`.* TO 'dataeng'@'%';

GRANT ALL PRIVILEGES ON `metastorè.* TO 'dataeng'@'%';

FLUSH PRIVILEGES;

Tip it is common to create use case-specific users to govern access to your

Hive Metastore database. Users should be granted either read/write or read-only

access to the metastore, depending on the access patterns of the application.

Many applications only consume data and copy the table data into different

locations outside the context of the Hive Metastore. remember that data access is

a privilege!

You are done with our root user session for now. You should exit this session and log

back in as the dataeng MySQL user.

mysql> exit

 Create the Metastore Tables

We are almost done setting up the metastore. What we have to do next is create the

underlying Hive Metastore tables themselves. There is a one-time setup cost for

configuring the metastore database tables. Luckily, we can just import the table

definitions into the mysql console.

Authenticate as the dataeng User

From the MySQL container context, change your authenticated MySQL user to dataeng.

mysql -u dataeng -p

Switch Databases to the Metastore

mysql> use metastore;

160

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

Import the Hive Metastore Tables

The SOURCE command can be used to easily read and apply the SQL table configuration

commands for our version of Hive (v2.3.0). This file is available inside the mysql Docker

container because you used the hiveInit command earlier in the setup process.

mysql> SOURCE /hive-schema-2.3.0.mysql.sql;

That’s it. You are now the happy owner of a brand-new installation of the Hive

Metastore. If you want to see which tables were initialized during this process, you can

run the following commands from your current MySQL session.

use metastore;

show tables;

Running the show tables command should yield a laundry list of table names (more

than 50). Feel free to look through the tables by using the DESCRIBE command on any of

the tables for more context, or simply exit the console. For now, your metastore is ready

for action. Next up, we will be adding the configuration needed for Spark to access the

Hive Metastore.

 Configuring Spark to Use the Hive Metastore

The Hive Metastore is traditionally configured through hive-site.xml. Spark will

automatically look for this configuration file inside of the conf directory, located under

the $SPARK_HOME directory. This file, and others, have been preconfigured for you and are

available in the exercise files located within the ch-06/docker/spark/conf/ directory.

If you don’t want to look at the configurations now, you can skip over this section

and move to the Spark SQL Catalog instead.

Configure the Hive Site XML

The hive-site.xml file consists of a mere four properties. They provide Spark with the

default connection properties to the Hive Metastore database that will be used in your

application. These properties are shown in Table 6-1.

161

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

 Table 6-1. The Hive Metastore Configuration Options

Property

Description

javax.jdo.option.

Defines the JDBC connection UrL to your metastore.

ConnectionURL

javax.jdo.option.

Defines the JDBC driver ClassName to use to connect to the

ConnectionDriverName

metastore.

javax.jdo.option.

Defines the metastore database username.

ConnectionUserName

javax.jdo.option.

Defines the password of the metastore user.

ConnectionPassword

There are many more configuration options available in the official Hive

documentation, including different access patterns to the shared Hive Metastore.

These include running the fully standalone Hive Metastore server (v3.x and above)

as well as the Hive Thriftserver, and how to provide multiple thrift URLs for domain

sharding, which helps to reduce congestion from too many connections to any single

Hive Metastore instance. Since the metastore is stateless, meaning there is no physical

state stored on the service itself, you can simply create multiple fronting services for the

sake of load balancing the connections to the thrift server, and then onto the underlying

metastore database.

Configure Apache Spark to Connect to Your External Hive Metastore

You just learned that Apache Spark uses the hive-site.xml file to connect to the Hive

Metastore. What we didn’t cover at the beginning of the exercise was that all required

configurations are provided for you in the exercises conf directory. This directory is then

mounted into the Docker environment, using the docker-compose-all.yaml file.

This means you don’t need to copy any files to your $SPARK_HOME location. Open

the Docker compose file /ch-06/docker/docker-compose-all.yaml and peek at

services:zeppelin:volumes for more details.

From within the context of the ch-06/docker directory, the following three

directories are volume mounted:

162

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

• /spark/conf – This directory includes spark-defaults.conf and

hive-site.xml.

• /spark/jars – This directory includes all the MySQL JDBC driver

JARs that we want to include locally when we spin up Spark.

• /spark/sql – This directory is a mounted so we can use it as the root

directory for what is known as the Spark SQL Warehouse.

The spark-defaults.conf file is an optional file that can be used to override the

default Spark configuration values for all Spark jobs that are run within the context of that Spark installation. For our current use case, we only care about the seven properties

detailed in Table 6-2.

 Table 6-2. The Hive Metastore Configuration Properties

Spark Property Name

Description

Example

spark.sql.warehouse.dir the default location to read and write

hdfs://

distributed sQL tables. this location can be metastores/

located on the local file system and on any

hive/

HDFs compatible file system.

file:///spark/

warehouse/

s3a://your-

bucket/hive/

spark.sql.

Defines the backing sQL catalog for the

hive

catalogImplementation

spark session.

spark.sql.hive.

Defines the Hive version for the metastore.

2.3.7

metastore.version

spark.sql.hive.

Defines the location of the Hive Jars to load builtin, maven,

metastore.jars

into the spark classpath. spark will default

or /path/to/

to using the built-in Jars.

the/jars

spark.sql.hive.

the comma-separated class name prefix’s to com.mysql.

metastore.sharedPrefixs search for and load a specific version of the cj.jdbc,com.

Hive Metastore.

mysql.jdbc,org.

postgresql

(continued)

163

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

 Table 6-2. (continued)

Spark Property Name

Description

Example

spark.sql.hive.

if this is set to true, the spark metastore

true

metastore.schema.

version must match the value of VERSION in

verification

the Hive Metastore.

spark.sql.hive.

if set to true, spark will enforce record-

true

metastore.schema.

level schema verification against what is

verification.record.

published in the Hive Metastore.

version

The configurations described in Table 6-2 have been preconfigured in your spark-defaults.conf file from the chapter’s exercises. For the sake of simplicity, we are using

the standard built-in Hive JARs (v2.3.7 at the time of writing).

Using the Hive Metastore for Schema Enforcement

It is worth pointing out that the Hive Metastore can be used as a reliable arbiter for any

schema disputes between applications writing into a distributed table. This means that

bad data can’t pollute your data lake. This is one of the many reasons for using the Hive

Metastore. This option is configured using the spark.sql.hive.metastore.schema.

verification.record.version setting (described in Table 6-2).

Note You can upgrade the Hive Metastore version to use alongside spark using

the configuration from table 6-2. specifically, using the spark.sql.hive.

metastore.jars and the spark.sql.hive.metastore.version properties.

You can download the required Hive Metastore Jars from the official apache Hive

website to run an alternative version of the Hive Metastore.

164

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

SPARK DEFAULT CONFIGURATION

the default values, defined in the spark-defaults.conf file, enable us to define-once

the specific cluster-wide settings we would like to automatically apply to any spark application that is started in the context of the defaults. in our case, this means any application started in our Zeppelin environment. the default values can be explicitly overridden using application-level overrides, or by providing explicit configuration --conf values on application startup.

Using Spark Defaults to Protect the Cluster

You can think about the default configuration values as important common settings that are provided to your spark applications for the benefit of the application runtime and to protect

any other application running in the cluster.

For instance, if you are managing or running your own spark clusters, you would most likely

need to balance the cost of operations, and it is typical to deploy a fixed cluster size that

considers the needs of the application(s) that will run on a daily or hourly basis. additionally, you would also need to consider whether these are batch or streaming applications, and if

the applications are io bound or CpU bound. then each application that is launched into your

cluster can take a fixed or dynamic number of resources (min/max share) from the total cluster

of resources. if all applications respect the boundaries of the other application resources, this strategy can work out just fine.

Providing Default Limits

Given each application can request a non-fixed number of resources from the shared cluster

resources, cluster management can be difficult, to say the least. especially when you expect

each of the jobs in your data pipeline to run. it then becomes very important to be hyper-

defensive when it comes to setting predefined limitations on the total number of resources an

application can consume, since not every application will need the same number of compute

cores or raM to be able to run successfully. this is where the defaults come into play. the

magic here is that app owners actually need to understand how some configurations work to

override them, and in my experience, many applications can run just fine on a default small

number of cores and raM.

165

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

For example, if you consider a common t-shirt sizing approach (s,m,l,xl), a small application

may consist of the following:

spark.cores.max 8

spark.executor.cores 1

spark.executor.memory 1g

this configuration would pin an application to eight compute cores and eight executors

running with 1GB JvM size.

By making it easier for other application owners to claim a portion of the shared cluster, or

in the case of a more dynamic environment like kubernetes, there are a lot of configuration

options that can be simply abstracted away into the defaults. Chapter 14 covers deploying applications using spark standalone and Chapter 15 covers deploying applications using kubernetes.

 Production Hive Metastore Considerations

The benefit of using an external Hive Metastore means that your table definitions

will persist between Spark SQL sessions. If there is no hive-site.xml provided for

the SparkSession, a local metastore will be created using Derby. The Derby-based

metastore is not intended for production use cases and can only be used with a single

SparkContext, which you should interpret as “one location.”

It is worth also pointing out that the Hive Metastore isn’t tied directly to

MySQL. Most common flavors of RDBMS (MS SQL Server, MariaDB, Oracle, and

Postgres) are also supported. For more information about configuring and using

additional external RDBMS, you can view the Admin Manual online.

Lastly, for running production quality, highly available metastores, it is essential to

protect yourself from any single points of failure, including the backing database itself.

Running a SQL/JDBC-compatible, managed, cloud-based database, such as Amazon

Aurora DB or Google’s Cloud Spanner, provides good options for reducing potential failures incurred when operating databases without a seasoned DBA. Any fully managed

RDBMS that has monitoring, backups, and automatic failover is recommended over

running things in-house, if that isn’t something you are equipped for.

166

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

 Exercise 6-1: Summary

This initial exercise walked you through the process of bootstrapping the Hive Metastore

to create an external, reliable, Hive Metastore. Now that you have the Hive Metastore

bootstrapped, the hive-site.xml file configured, and the spark-defaults.conf file

prepared, it is time to focus on the Spark SQL Catalog and learn how to use the external

Hive Metastore to power a more reliable SQL experience.

 The Spark SQL Catalog

The Spark SQL Catalog is Spark’s internal SQL metadata manager. The functionality

provided by the Spark SQL Catalog provide resources for working with databases,

temporary or managed tables, views, functions, and more. You just learned about the

Hive Metastore; the Spark SQL Catalog provides simple abstractions that enable you

to interoperate with the Hive Metastore easily. As mentioned earlier, it is essential to

the success of your data platform and organizational goals to ensure that the data you

produce is self- documented in a way that makes it easier for other teams to fetch it on

demand, without the need to schedule another meeting in order to understand what

the column wU35 or l2W mean (of course, these mean women under 35 years old and

the last two weeks). Clearly code words don’t make things simple for data teams. If each

table definition is backed by a schema, and each column stores not just the data type,

but also a brief comment, then other engineers working with your tables can use the

Spark SQL Catalog to learn about your data in a self-service way.

 Exercise 6-2: Using the Spark SQL Catalog

The Spark SQL Catalog is available directly off the SparkSession and offers many useful

methods to introspect the available data residing inside of your data warehouse and

data lakes.

Note Follow along with this exercise using the Zeppelin note titled “6_2_

sparksQLCatalog.” Just like in prior chapters, create a new paragraph within the

note and use the %spark code blocks to build up the working note.

167

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

 Creating the Spark Session

Let’s learn to create the SparkSession from scratch. Using the code fragment in

Listing 6-2, create a new paragraph in your Zeppelin note and run it to generate the SparkSession.

 Listing 6-2. Create a New SparkSession with Apache Hive Support

%spark

import org.apache.spark.sql._

val sparkSessionHive = SparkSession.builder

.master(spark.conf.get("spark.master"))

.config(spark.sparkContext.getConf)

.appName("hive-support")

. enableHiveSupport()

.getOrCreate()

The SparkSession we just created can be used to further explore the Spark SQL APIs.

We will use the SparkSession now through a fun process of discovery. Given we have

data in a database (our local MySQL database), the first area of exploration will be listing

and viewing what is available.

 Spark SQL Databases

Just starting out, we know we want to be able to look for and find what databases are

available to use. This process can take advantage of our old friend SQL as we gain our

footing and understand the SQL catalog capabilities.

Listing Available Databases

%spark

sparkSessionHive

.sql("show databases;")

. show

This method allows us to view the available databases. In our case, there is only the

default database. You may have noticed a glaring piece of missing information. Can

you spot it? Maybe ask yourself what default really means? Does this mean our MySQL

database that we named default from the last chapter, or something different?

168

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

To find out more, you have to descend into the Spark SQL Catalog, as shown in

Listing 6-3.

 Listing 6-3. Using the Spark SQL Catalog to List Databases

%spark

sparkSessionHive

. catalog

. listDatabases

. show(truncate=false)

The result of running the listDatabases block from Listing 6-3 is shown in Table 6-3.

 Table 6-3. The Default Spark SQL Database, aka the Warehouse

name

description

locationUri

default Default Hive database file:/spark/sql/warehouse

This makes sense. When we configured the Hive Metastore earlier in the chapter,

we only provided the JDBC information to connect to the Metastore, not to our actual

MySQL database, which just so happened is also called default.

Finding the Current Database

The current database is equivalent to using the SQL use command. This just tells you

which database is currently active within the Spark Session.

%spark

sparkSessionHive

. catalog

.currentDatabase

169

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

We’ve looked at listing and viewing the database stored within our local data lake.

What happens if we want to create a new database in order to organize the tables

underneath, say, a team name or business unit?

Using a database as a means to categorize the tables owned by an individual team is

a nice way to efficiently view ownership across the metastore. There are many reasons

that this pattern is important, but it mainly comes down to common file system best

practices and design patterns.

Within the Hive Metastore, a database is a path prefix associated with a physical

directory within the distributed “warehouse.” The database construct is a means of

restricting access to a collection of tables and identifying the ownership of a set of tables,

or of a table itself, and it doesn’t denote a separate physical database.

If all teams share the common default database location for their tables, then

given enough time, the opportunity for a naming collision in the tables is high. What’s

worse, you could find your table being dropped accidently due to user error and naming

collisions. Therefore, it is important to separate teams, or business units, by database

name. Additionally, database prefixing can also help mitigate issues that arise due to

read/write capacity problems.

Whether you are running on top of HDFS or using a cloud object store like S3 as

the distributed file system for your data lake, scaling out to support higher demands

with respect to read and write capabilities ultimately means file systems should be

composable using path prefixes. With HDFS, you can set up a NameNode (think about this

as the coordinator node, as it understands how the distributed file system routing works)

to use federated routing, to route inbound requests to separate HDFS clusters based on the path prefix for the file system. You can utilize this technique to enabling smart

scaling for large and small workloads (if you are running your own Hadoop cluster). With

S3 and other cloud object stores, it is common to use base64 encoded prefixes, which

enable dynamic sharding (or partitioning) within the S3 file system, where each path

prefix can be looked up and resolved using the metastore or a resolution database.

For now, assume that the performance aspects of the metastore have been taken

care of. You will learn how to create a database, which will map itself as a prefix-bound

directory in the distributed file system.

170

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

Creating a Database

Creating a database in the Metastore can be done by following the example in

Listing 6-4.

 Listing 6-4. Using Spark SQL to Create a Database in the Hive Metastore

%spark

val dbName = "coffee_co_common"

val dbDescription = "This database stores common information regarding

inventory, stores, and customers"

val defaultWarehouse = spark.catalog.getDatabase("default").locationUri

val warehousePrefix = s"$defaultWarehouse/common"

spark.sql(s"""

CREATE DATABASE IF NOT EXISTS $dbName

COMMENT '$dbDescription'

LOCATION '$warehousePrefix'

WITH DBPROPERTIES(TEAM='core', LEAD='scott', TEAM_SLACK='#help_coffee_

common');

""")

The LOCATION property in the SQL query from Listing 6-4 ties the database to the directory, or path prefix, in the distributed file system that is being used to power the

SQL table. The beauty of being able to define team- or organization-based databases

using the Spark SQL Catalog and the Hive Metastore means that you can provide all the

tools necessary for a team to track ownership of a specific database and the underlying

tables. This simple step is useful and enables teams to act as responsible data stewards.

 Loading External Tables Using JDBC

Now that you’ve seen how to create a new database, let’s look at loading the external

database table bettercustomers into our new coffee_co_common database. The first

step is to provide Spark with the connection information to authenticate to our MySQL

database. Then we can read and then write this table into our data lake. Use the code

from Listing 6-5 to connect to the bettercustomers table (created in the continued explorations from Chapter 5).

171

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

 Listing 6-5. Reading the External Bettercustomers Table Using JDBC to Create a

Temporary View in Spark

%spark

val jdbcDriver = spark.conf.get("org.mariadb.jdbc.Driver")

val dbHost = spark.conf.get("mysql")

val dbPort = spark.conf.get("3306")

val defaultDb = spark.conf.get("default")

val dbTable = spark.conf.get("bettercustomers")

val dbUser = spark.conf.get("dataeng")

val dbPass = spark.conf.get("dataengineering_user")

val connectionUrl = s"jdbc:mysql://$dbHost:$dbPort/$defaultDb"

val betterCustomers = sparkSessionHive.read

.format("jdbc")

.option("url", connectionUrl)

.option("driver", jdbcDriver)

.option("dbtable", "bettercustomers")

.option("user", dbUser)

.option("password", dbPass)

.load()

betterCustomers.createOrReplaceTempView("customers")

This initial step simply prepares for the eventual load of our customer’s table.

Given that Spark will not eagerly load the temporary view, you can ensure the table is

accessible to the Spark Session. This is a nice way to interact with your session and

ensure that all the data you expect to be loaded is in fact available.

 Listing Tables

The Spark SQL Catalog enables you list and view all tables available to a particular Spark

Session.

%spark

sparkSessionHive

. catalog

. listTables

.show(truncate=false)

172

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

This will show you the current state stored in the Spark session catalog.

+---------+--------+-----------+---------+-----------+

| name|database|description|tableType|isTemporary|

+---------+--------+-----------+---------+-----------+

|customers| null| null|TEMPORARY| true|

+---------+--------+-----------+---------+-----------+

The customers table has a tableType of TEMPORARY, which just means it is only

available in memory. If we stop our Spark Context (shut down Zeppelin), the table will

no longer be available in the Spark SQL Catalog metadata. We would like this data to be

available in our data lake and accessible using the Hive Metastore. So we need to load

this data into our data lake (warehouse).

If you think back to the ETL flow examples from earlier in the book, this is just another

type of ETL. In this case, we are simply loading the data into the data lake so that other

data teams, or even your own data team, will have an easier time acting on this data.

 Creating Persistent Tables

In the last chapter, we looked at using the saveAsTable method on the DataFrameWriter.

We will be using this method again in order to write our table into our coffee_co_common

database, all stored within the data warehouse.

%spark

val coffeeCoDatabaseName = "coffee_co_common"

sparkSessionHive. catalog

. setCurrentDatabase(coffeeCoDatabaseName)

betterCustomers

. write

.mode("errorIfExists")

. saveAsTable("customers")

Just like when we want to switch the context of the database using traditional SQL,

we have to tell Spark which database to use, unless we want to default back to the

default database. This can be done simply by using the setCurrentDatabase method

on the Spark SQL Catalog. Once the context of our Spark Session is switched to using the

coffee_co_common database, we are free to save our table into the SQL catalog.

173

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

If you go ahead and list the tables available in the SQL Catalog context, you’ll see that

this new table now shows up.

%spark

sparkSessionHive

.catalog

.listTables.show

+---------+----------------+-----------+---------+-----------+

| name| database|description|tableType|isTemporary|

+---------+----------------+-----------+---------+-----------+

|customers|coffee_co_common| null| MANAGED| false|

|customers| null| null|TEMPORARY| true|

+---------+----------------+-----------+---------+-----------+

Under the database column of the customers row, you’ll see that the table was

indeed stored in our new coffee_co_common database, and this table is now fully

 managed by Spark. This means that not only is the metadata managed (in this case,

the data stored in the Hive Metastore), but also the underlying distributed table in the

data lake.

 Finding the Existence of a Table

The last thing that may come in handy is the ability to just check on the existence of a

table in a specific database context in your Spark applications.

%spark

val dbName = "coffee_co_common"

val tableName = "customers"

sparkSessionHive

.catalog

.tableExists(dbName, tableName)

This can be used as a simple Boolean to see if the table you need to work with

exists. This check can also be used as a sanity check if your application is expecting

to write to a specific location for the first time. Ultimately, using the default save

mode (errorIfExists) on your DataFrameWriter is safer than worrying about if your

application is going to overwrite data in a shared location.

174

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

Okay, moving on. We will look at how the Metastore database is laid out and go

through some exercises intended to help you learn enough about the Hive Metastore so

you can go spelunking on your own with confidence. After this slight departure from the

Zeppelin exercises, we will return to the Zeppelin notebook and look at reading (loading)

data from these managed Spark tables. You will see how to enable data discovery options

to your tables and table columns, and you will finish up this section by looking at how to

manage table caching within your Spark application, as well as how to ultimately drop a

table when it is no longer needed.

 Databases and Tables in the Hive Metastore

To understand how the metadata for your database and table is managed, it helps to

understand where the metadata is stored and how to find your way to the Hive Metastore

database. You can use the following steps to view this record:

1. Open a new terminal session or add a new tab to your current

context.

2. From there, create a new Bash session on the MySQL Docker

container, and then log in to the MySQL CLI using the secrets file

on the container.

3. Switch to the metastore database and query the TBLS table.

docker exec -it mysql bash

mysql --defaults-file=./secrets

mysql> use metastore;

Next, we will view the metadata for our new database and managed table.

View Hive Metastore Databases

The databases stored in the Hive Metastore are located in the DBS table. The available

schema for the table is a simple describe away and can help to query it efficiently. In

this case, you have only one entry, but in the real world there can be 100s to 1000s of

database entries and finding your way can be a little complicated.

175

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

mysql> describe DBS;

+-----------------+---------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-----------------+---------------+------+-----+---------+-------+

| DB_ID | bigint | NO | PRI | NULL | |

| DESC | varchar(4000) | YES | | NULL | |

| DB_LOCATION_URI | varchar(4000) | NO | | NULL | |

| NAME | varchar(128) | YES | UNI | NULL | |

| OWNER_NAME | varchar(128) | YES | | NULL | |

| OWNER_TYPE | varchar(10) | YES | | NULL | |

+-----------------+---------------+------+-----+---------+-------+

Given we created a database called coffee_co_common from within Spark, we can use

a simple equality query by NAME to find the database.

mysql> select * from DBS where NAME = 'coffee_co_common';

+-------+--+-------------+

| DB_ID | DESC | DB_LOCATION_URI | NAME | OWNER_NAME | OWNER_TYPE |

+-------+--+-------------+

| 1 | This database stores ... | file:...warehouse/common | coffee_co_

common | zeppelin | USER |

+-------+--+-------------+

The only row you really need to be concerned with for now is the DB_ID row, since

this is the primary key. This will be used to find the managed customers table in the next

section.

View Hive Metastore Tables

The Hive Metastore stores the table metadata in the TBLS table. That is a very meta

sentence! Just like before, let’s begin by describing the TBLS table schema so we

understand which columns are available to us for our query.

176

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

mysql> describe TBLS;

+--------------------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------------------+--------------+------+-----+---------+-------+

| TBL_ID | bigint | NO | PRI | NULL | |

| CREATE_TIME | int | NO | | NULL | |

| DB_ID | bigint | YES | MUL | NULL | |

| LAST_ACCESS_TIME | int | NO | | NULL | |

| OWNER | varchar(767) | YES | | NULL | |

| RETENTION | int | NO | | NULL | |

| SD_ID | bigint | YES | MUL | NULL | |

| TBL_NAME | varchar(256) | YES | MUL | NULL | |

| TBL_TYPE | varchar(128) | YES | | NULL | |

| VIEW_EXPANDED_TEXT | mediumtext | YES | | NULL | |

| VIEW_ORIGINAL_TEXT | mediumtext | YES | | NULL | |

| IS_REWRITE_ENABLED | bit(1) | NO | | b'0' | |

+--------------------+--------------+------+-----+---------+-------+

Now we can query the table we just created using Spark to see what information is

stored at the TBLS level.

select TBL_ID,TBL_TYPE,TBL_NAME,SD_ID

from TBLS where DB_ID = 1;

+--------+---------------+-----------+-------+

| TBL_ID | TBL_TYPE | TBL_NAME | SD_ID |

+--------+---------------+-----------+-------+

| 4 | MANAGED_TABLE | customers | 4 |

+--------+---------------+-----------+-------+

After all of that, we have essentially retrieved mainly the information we already

knew about TBL_NAME and the TBL_TYPE, but this did give us another clue, which is

the TBL_ID. The TABLE_PARAMS table in the Metastore is where we will start to see the

information that is needed for Spark to run.

As we continue down this rabbit hole, you are probably wondering where this ends.

This journey will connect two more dots and then from there you can choose your own

adventure, as the Metastore has a plethora of additional tables that all work together to

enable a powerful discovery layer for your data.

177

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

Hive Table Parameters

The next table that is worth mentioning is the core parameters table, which is akin to the

spark-defaults.conf file or other properties or configuration files. The difference is that

it’s stored in the database versus in a flat file in a distributed file system.

mysql> describe TABLE_PARAMS;

+-------------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------------+--------------+------+-----+---------+-------+

| TBL_ID | bigint | NO | PRI | NULL | |

| PARAM_KEY | varchar(256) | NO | PRI | NULL | |

| PARAM_VALUE | mediumtext | YES | | NULL | |

+-------------+--------------+------+-----+---------+-------+

Using the TBL_ID from before, we can view the table properties of our

customers table.

mysql> select * from TABLE_PARAMS where TBL_ID = 4;

+--------+-----------------------------------+----------------------+

| TBL_ID | PARAM_KEY | PARAM_VALUE |

+--------+-----------------------------------+----------------------+

| 4 | comment | Loyal patrons of... |

| 4 | numFiles | 1 |

| 4 | spark.sql.create.version | 3.1.1 |

| 4 | spark.sql.partitionProvider | filesystem |

| 4 | spark.sql.sources.provider | parquet |

| 4 | spark.sql.sources.schema.numParts | 1 |

| 4 | spark.sql.sources.schema.part.0 | {"type":"struct"...} |

| 4 | totalSize | 1896 |

| 4 | transient_lastDdlTime | 1615756742 |

+--------+-----------------------------------+----------------------+

This last table enables us to view the important configuration that is “automagically”

applied to the managed tables by Spark. This includes all the information needed to

instruct Spark to read our tables. It also simplifies the ways in which we can use the data,

including simplifying how we load or read a table into Spark.

178

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

Switching gears, let’s move back to our Zeppelin environment so we can load the

data we saved into our managed table.

 Working with Tables from the Spark SQL Catalog

Once the metadata is available to the catalog object on the SparkSession, you can use the

table method to load data for use in your application.

%spark

val dbName = "coffee_co_common"

sparkSessionHive

.catalog

.setCurrentDatabase(dbName)

sparkSessionHive

. table("customers")

.show()

Well, now that is a breath of fresh air, isn’t it? Aside from setting the current database

in our session catalog context, there is no special handholding or guidance necessary

when it comes to accessing a table. The Spark SQL Catalog abstracts away all of the

business logic regarding querying the Hive Metastore. As we saw when manually

querying the Hive Metastore, all of the metadata needed to introspect, load, and

transform these distributed tables is essentially right at our fingertips.

 Data Discovery Through Table and Column-Level Annotations

This section has been all about using the Spark SQL Catalog to enable you, your team,

or really any data team to efficiently discover data. You’ve seen how the Hive Metastore

plays a critical role in enabling teams to discover data stored in these hybrid data lake/

data warehouses. We looked at organizing data using the namespace pattern, which

essentially creates a physical directory where table ownership is documented, along with

all the tables’ owners within a specific context. You learned how to query the myriad

tables in the Hive Metastore directly, since mastery of the underlying technology used by

you or your team plays a critical role in the health of any data system.

179

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

Lastly, we will wrap up our deep dive into the Hive Metastore by manually altering

our table and column-level comments so that anyone using the data we produce will be

able to fully understand our intentions. They won’t have to look things up in a separate

wiki or document archive, but rather can use the tools they are most familiar with.

Adding Table-Level Descriptions and Listing Tables

Table-level descriptions help document the intentions of a table. Imagine what would

happen if a new team was looking to understand the customers table and they were met

with the following.

%spark

sparkSessionHive

. catalog

. listTables

. where($" database".equalTo("coffee_co_common"))

. select($"name", $"description", $"tableType")

.show()

+---------+-----------+---------+

| name|description|tableType|

+---------+-----------+---------+

|customers| null | MANAGED|

+---------+-----------+---------+

This table could represent anything. What if there were multiple tables that could

potentially be used, such as customers_current, customers_a, and customers_test?

Now there are many places to look, and this means one of two options. The team or

individual could either set up a meeting to ask you or your team which table to use, or

equally as likely, especially if they’re in a rush to generate some report, the team may flip

a coin and use whichever table seems more up to date. They might even spend hours,

days, or weeks combing through the data to figure things out before finally reaching out

when they have a deadline looming.

We can prevent this problem with a single ALTER TABLE command to add

TBLPROPERTIES to describe the customers table.

180

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

%spark

sparkSessionHive.sql(

"""

ALTER TABLE customers

SET TBLPROPERTIES (

'comment' = 'Production Customers Data',

'active' = 'true'

)

""")

Now when listing the table, the team would have instead seen the Production

 Customers Data descriptor, and this could help them determine that this is the correct

table to use.

+---------+-------------------------+---------+

|name |description |tableType|

+---------+-------------------------+---------+

|customers|Production Customers Data|MANAGED |

+---------+-------------------------+---------+

Adding Column Descriptions and Listing Columns

Now that you’ve applied a description to the table itself, you can repeat this exercise

by applying column-level descriptors. This process is similar to applying table-wide

annotations using the TBLPROPERTIES, but instead we are targeting the comment field

using ALTER COLUMN on the table.

%sql

use coffee_co_common;

ALTER TABLE customers ALTER COLUMN id

COMMENT "Unique identifier for our Customer.";

ALTER TABLE customers ALTER COLUMN created

COMMENT "timestamp when the account became active";

ALTER TABLE customers ALTER COLUMN updated

COMMENT "timestamp when this record last changed";

ALTER TABLE customers ALTER COLUMN first_name

COMMENT "The first name on the account";

181

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

ALTER TABLE customers ALTER COLUMN last_name

COMMENT "The last name on the account";

ALTER TABLE customers ALTER COLUMN email

COMMENT "customers email on file. Unique Constraint. Not to be used for

Marketing";

With the columns updated in the Hive Metastore, it is now easy to understand each

column. If any team needs to list the columns of a table now, they can easily do just that.

%spark

val dbName = "coffee_co_common"

val tableName = "customers"

sparkSessionHive

. catalog

. listColumns(dbName, tableName)

.select($"name", $"description", $"dataType")

.show(truncate=false)

The listColumns method of the Spark SQL Catalog has two variants. For our use case, given we have two tables loaded into the catalog context(a non-managed and

managed table named customers), there is some ambiguity and Spark may end up

providing the wrong information when listing the columns, even if we have the current

database context pointing to the coffee_co_common database. From my experience,

these kinds of use cases don’t usually occur since your jobs will typically be split across

a specific separation of concerns, with one batch job (or streaming job) writing data into

the managed table, while the other job picks up from the managed table and continues

to transform the data necessary to solve the data use case. Regardless, it is always better

to test things first; remember the old adage, “measure twice, cut once.”

The output now provides anyone with the necessary information to understand what

each column is used for. Note: This output was truncated to fit on the page.

+----------+--------------------+---------+

| name| description| dataType|

+----------+--------------------+---------+

| id|Unique identifier...| int|

| created|timestamp when th...|timestamp|

| updated|timestamp when th...|timestamp|

182

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

|first_name|The first name on...| string|

| last_name|The last name on ...| string|

| email|customers email o...| string|

+----------+--------------------+---------+

We have explored most of the features of the Spark SQL Catalog, but we are not done

just yet. There are a few more things that will nicely round out this deep dive. First, we

have yet to discuss table caching, what it means to cache a table, how to clear a cache

(to free up memory), how to update what is cached when another process has modified

the table you are working with. Then comes the fun part, which is how to drop or delete

a table. Given you should keep data around only as long as it needs to exist, it is more

important than ever to keep your workspace clean.

 Caching Tables

There are many reasons to cache that table you are working with. This can help to reduce

the burden on the distributed file system (e.g., S3 or HDFS) by removing many additional

trips back to the data lake in order to process complex queries. A complex query is any

query that has to process and transform the same dataset more than once. In the case of

reporting, or any analytical queries, it is common for example to use self-joins to handle

de-duplication. Or, in the case of complex subsets, it can be easier to use semi-joins, like

you learned earlier in the book when you looked at using joins.

Dropping Temp Views in order to simplify things, we can drop the temporary

customers view so that we only need to concern ourselves with the managed

customers table from here on out.

%spark

sparkSessionHive

. catalog

. dropTempView("customers")

Now onto cache management in the catalog.

183

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

Cache a Table in Spark Memory

Armed with only the catalog on the Spark Session, we can use the cacheTable method to

store the table data in memory (or if the table is too large, we can get to that).

%spark

val tableName = "customers"

spark. catalog.cacheTable(tableName)

That is all there is to it. Well, almost. We haven’t looked at the Spark UI at this point

in the book. We will look at just one of its features now, which is the Storage tab.

The Storage View of the Spark UI

You can open the Storage tab of the Spark UI at http://localhost:4040/storage/. If

you haven’t skipped ahead in the notebook, you will see a lovely blank screen, as shown

in Figure 6-1.

 Figure 6-1. The Storage tab of the Spark UI

Given that we haven’t triggered an action, the data from the customers table, while

being marked for cache, does not actually exist in Spark’s storage. This is because there

is no reason to eagerly run a full load on the table, given the application you are writing

may only need to make a single pass over the data. In this case, Spark loves being lazy

and does so to protect your application from the possibility of running into memory

issues before starting to do any work.

Tip if you applied the mapping 127.0.0.1 spark to your /etc/hosts then you

can also use http://spark:4040/storage/ to view this tab. this process

is covered in the chapter’s materials, and an example can be found in /ch-06/

docker/etc.

184

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

Force Spark to Cache

To force Spark to cache the data from the customers table, you need to call Spark into

action. In this case, you can simply call head to return the first row located in the table.

%spark

val tableName = "customers"

sparkSessionHive. table(tableName). head

This is all that is needed. Now if you refresh the Storage UI, you will see your in-

memory table. The reference UI is shown in Figure 6-2.

 Figure 6-2. Spark Storage UI with a list of cached RDDs

That was fun, wasn’t it? Now you have an alternative way to ensure that the

applications you write are in fact behaving the way you expect them to. With the

customers table living in the cache, it is simple to check the behavior when you want to

remove a table from that cache.

Uncache Tables

When we cache data in the memory of our Spark applications, that means you are

reducing the total usable memory allocated for object storage in your Spark applications.

We won’t go into the nitty gritty regarding how memory is managed, but each Spark

application splits the available memory allocated into two spaces—one space is

dedicated to the memory needed to run the application (from the JVM overhead, IO

connections, etc.) and the other space is dedicated to object storage in the application

(like we see when we cache our in-memory table). This is controlled by spark.memory.

fraction and it defaults to a 60/40 split.

185

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

For now, let’s look at the process of uncaching that table we cached.

%spark

val tableName = "customers"

sparkSessionHive. catalog. uncacheTable(tableName)

Clear All Table Caches

It is possible that there are many tables being cached in different places in your Spark

application. If you want to start with a blank slate, you can use the simple clearCache

catalog method.

%spark

sparkSessionHive. catalog.clearCache

This is easier than having to track down all the tables that are cached. Yes, you can

iterate over all the tables available to the catalog, check the existence of their cache, and

then optionally remove each cache, but sometimes it is better to just nuke everything.

Refresh a Table

In the excitement to clear all of the caches, we skipped over an important concept. When

you cache a table in memory and the upstream data store is updated outside of your

control (e.g., another application is writing to the table location, therefore invalidating

your cache), then to ensure that you have the most up-to-date data, you can use the

refreshTable method on the Spark catalog. This refreshes the metadata regarding the

table, as well as the underlying files composing the table.

%spark

sparkSessionHive

.catalog

.refreshTable("customers")

Here is an interesting fact. If your Spark application is purposefully overwriting a

table you have cached, it will also invalidate your local cache, invalidating the need to

include any table refreshes in your own application logic.

186

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

 Testing Automatic Cache Refresh with Spark Managed Tables

This is a fun one. There are a few steps necessary to fully showcase this use case:

1. Copy the contents of the customers table into a new managed

table called customers_temp.

2. Read from this new managed table customers_temp into a

reference variable called tableCopy and then cache the table.

3. Call

tableCopy.head in order to cache off the table in local

Spark memory.

4. Union the tableCopy with itself to duplicate the data.

5. Write into yet another managed table named union.

6. Now you are free to overwrite the initial customers_temp table

without Spark informing you that you are trying to overwrite a

table you are currently reading from (which it will do, by the way).

7. You have tricked the safety check and now have the duplicates

loaded in customers_temp.

8. Interestingly enough, if you look at the Storage tab in the Spark UI

(http://localhost:4040/storage/), you will see that Spark has

purged the invalid cached table view.

You can follow along in the “6_2_SparkSQLCatalog” notebook under the section

titled “Testing Automatic Cache Refresh in Spark” for this example, or without looking

at the examples, try to leverage what you’ve learned about the Spark SQL Catalog in this

chapter. In the end, you have to create two additional managed tables in order to trick

Spark into overwriting another managed table. When you are done with this exercise,

you can move onto the process of cleaning up the tables you just created.

 Removing Tables

Dropping, aka deleting, tables can be done with the DROP TABLE command. Or, with a

little more effort, you can also use the underlying Spark SQL Catalog Catalyst operations

directly. These operations all fall under the traditional data manipulation language

(DML) category of operations.

187

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

DATA MANIPULATION LANGUAGE

 DML stands for Data Manipulation Language. this is a category of sQL operations

encapsulated by the INSERT, UPDATE, and DELETE commands. earlier in the chapter, when

you set up the Hive Metastore, there was a brief note about read-only, write-only, and read-

write access for spark applications for the Hive Metastore.

Grants

the grants (permissions) that govern traditional rDBMs via DCL grants also apply to governing

access for spark applications that connect to the Hive Metastore. For data security best

practices, you must control access to the data. only the minimum set of privileges should be

set, for example those that enable read-only operations for users like SELECT. add capabilities

based on the actual needs of the application.

For example, if our dataeng user needed to read basic Hive Metastore table metadata in

order to read upstream table data, then transform, and lastly write that data to a new managed

table using saveAsTable, we could have safely used a subset of the grant permissions for

the user.

Read/Write Access

REVOKE ALL PRIVILEGES ON `metastorè.* TÒdataeng`@`%`;

GRANT CREATE, SELECT, INSERT ON `metastorè.* TO 'dataeng'@'%';

FLUSH PRIVILEGES;

Read-Only Access

REVOKE ALL PRIVILEGES ON `metastorè.* TÒdataeng`@`%`;

GRANT SELECT ON `metastorè.* TO 'dataeng'@'%';

FLUSH PRIVILEGES;

Full Access

REVOKE ALL PRIVILEGES ON `metastorè.* FROM `dataeng`@`%`;

GRANT ALL PRIVILEGES ON `metastorè.* TO 'dataeng'@'%';

FLUSH PRIVILEGES;

188

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

Roles

this book doesn’t cover all the ins and outs of security and data access management.

However, some food for thought is to look into the availability of support for role-based grants for user data access. this powerful feature enables efficient governance of access based on

common role names. Here is an example of read/write only access to the Hive Metastore.

Roles

CREATE ROLE readwrite;

GRANT CREATE, SELECT, INSERT, UPDATE, ALTER ON `metastorè.* TO readwrite;

Apply Roles

REVOKE ALL PRIVILEGES ON `metastorè.* FROM `dataeng`@`%`;

GRANT readwrite TÒdataeng`@`%`;

FLUSH PRIVILEGES;

View Grants

mysql> SHOW GRANTS FOR `dataeng`@`%`;

+--+

| Grants for dataeng@% |

+--+

| GRANT USAGE ON *.* TÒdataeng`@`%` |

| GRANT ALL PRIVILEGES ON `default`.* TÒdataeng`@`%` |

| GRANT `readwritè@`%` TÒdataeng`@`%` |

+--+

this can drastically reduce the amount of effort required to grant and revoke common access

to your Hive Metastore.

Drop Table

Using DROP TABLE will do different things depending on if the table is managed or

external. If the table is managed by Spark, the command will delete, entirely, all files

across all partitions of the distributed table, as well as all metadata, and any annotations

provided on the table. if the table is defined as being external, the DROP TABLE command

will only remove the table metadata from the Hive Metastore, and the external table will

be untouched.

189

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

Remember to try things locally, like we are now via Docker, so that you can test

different commands out before running them against real datastores.

%sql

DROP TABLE customers_temp;

DROP TABLE unioned;

As you just experienced, it’s trivial to drop a table using the SQL interpreter on the

SparkSession. If your application tries to drop the same table twice, the operation will

throw an exception. As discussed in the DML sidebar, role-based access or explicit user

privileges can help to safeguard these shared datastores from accidental deletion.

Conditionally Drop a Table

In order to safeguard your application, it is wise to use conditions. The IF EXISTS

condition is a Boolean operation and a false condition will short circuit or stop the

processing of the command.

%sql

DROP TABLE IF EXISTS customers_temp;

DROP TABLE IF EXISTS unioned;

Last but not least, let’s look at how to drop a table using the Spark SQL’s Catalyst

classes directly. This is the functional equivalent of the interpreted SQL DML query you

just ran to conditionally drop the distributed customers table.

Using Spark SQL Catalyst to Remove a Table

This will be our first foray into directly using the Spark Catalyst classes; in the following

section we will be looking more into the Catalyst Optimizer.

%spark

import org.apache.spark.sql. catalyst.TableIdentifier

val catalog = sparkSessionHive. sessionState.catalog

val tableName = "customers_temp"

val tableId = TableIdentifier(tableName)

catalog

.dropTable(tableId,ignoreIfNotExists=true,purge=true)

190

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

Why have we gone through this trouble, you ask? Well, it turns out that there is no

simple method to drop a table using the methods in the Spark SQL Catalog.

This is actually a good thing since this advanced technique requires you, the author

of the application, to be very determined to drop tables using the DSL. There is a reason

that dropTable doesn’t exist in the Spark SQL Catalog after all. Alternatively, yes you

can use the simple DROP TABLE from the Spark SQL interpreter, but let’s imagine a world

where that isn’t possible. If people start misbehaving, you can restrict the operations

available to the Spark applications running inside of your data platform using the role-

based or user grants approach mentioned in the DML sidebar. Special privileges should

be granted to the data stewards, or responsible maintainers of a particular table or

database in your warehouse.

 Exercise 6-2: Summary

Spark SQL and the Hive Metastore work better together, as a team, providing all of your

Spark applications with a centralized metadata service for the data that is generally

available in your organization. As you learned over the last section, there are many

nuances to pick up in order to get a 360 view of this powerful form of data discovery. We

looked at user-based access, how to move data from a traditional RDBMS (MySQL in our

case) into the distributed data warehouse using simple methods on the SparkSession.

We looked at paying things forward by annotating Hive Metastore database ownership,

table columnar descriptions, and table name properties.

Moving on. It is time for a tour of the Spark Catalyst Optimizer. This is the glue

between the interpreted SQL queries and DataFrame functionality you’ve been

introduced to throughout this book.

 The Spark Catalyst Optimizer

Behind the scenes of the functional transformations and powerful DataFrame

operations we’ve encountered throughout the course of this book exists a powerful yet

seemingly transparent engine. It’s silently working to optimize and orchestrate each and

every last job, stage, and task required by your application execution. Essentially, the

Catalyst Optimizer parses your application code and converts it efficiently into a series of

optimized steps, called an execution plan. See Figure 6-3.

191

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

 Figure 6-3. The Catalyst Optimizer resolves the high-level intentions of your Spark

 application and converts each step, across a series of transformations, into a highly

 optimized, distributable, battle plan

This process is broken into four distinct phases:

• Analysis

• Logical optimization

• Physical planning

• Code generation

To full appreciate the work being done by the Catalyst Engine, let’s look at each of

these distinct phases using the baked-in introspection layer of Spark. The following

example analyzes a simple query against the parquet data stored in our data warehouse.

Note Follow along using the Zeppelin note titled “6_3_Catalystoptimizer.” this

final note requires you to have gone through the full chapter exercises to produce

the data required for the section.

 Introspecting Spark’s Catalyst Optimizer with Explain

You can use the explain method at any point up until an action is called on a DataFrame

or by using the EXPLAIN clause in the Spark SQL interpreter.

%spark

sparkSessionHive

. table("customers")

. where(

col("email"). like("scott%")

192

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

)

. select($"id", $"email", $"last_name")

. explain("extended")

This DataFrame query is functionally equivalent to the following SQL query.

%sql

select id, email, last_name from customers

where email like 'scott%'

Regardless of how you decide to craft your query, the Spark Catalyst Optimizer will

begin at the same starting point, which is the query parsing. This first operation marks

the beginning of the Catalyst journey from parsing, through optimization and planning.

 Logical Plan Parsing

The initial phase of execution is responsible for converting the intentions of your query

into a hierarchical tree.

== Parsed Logical Plan ==

'Project [unresolvedalias('id, None), unresolvedalias('email, None),

unresolvedalias('last_name, None)]

+- Filter email#5 LIKE scott%

+- SubqueryAlias spark_catalog.coffee_co_common.customers

+- Relation[id#0,created#1,updated#2,first_name#3,last_

name#4,email#5] parquet

This step is responsible for transforming and building up each query as a tree

of relations and expressions on those relations. This first step lays out the work of

identifying unknown columns (UnresolvedAlias) and, in the case of interpreted Spark

SQL, you will see that the coffee_co_common.customers table, aka relation, is marked

as UnresolvedRelation.

|== Parsed Logical Plan ==

'Project ['id, 'email, 'last_name]

+- 'Filter 'email LIKE scott%

+- ' UnresolvedRelation [coffee_co_common, customers], [], false

This is where the logical analyzer comes into play.

193

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

 Logical Plan Analysis

The Analyzed Logical Plan is tasked with entity resolution (UnresolvedAlias,

UnresolvedRelation, and more) so that the columns and tables can be validated against

the known schema and data source or sink locations.

== Analyzed Logical Plan ==

id: int, email: string, last_name: string

Project [id#0, email#5, last_name#4]

+- Filter email#5 LIKE scott%

+- SubqueryAlias spark_catalog.coffee_co_common.customers

+- Relation[id#0,created#1,updated#2,first_name#3,last_

name#4,email#5] parquet

For each step in the optimizer’s journey, a subset of specific tasks is checked off. In

the above example, this is as simple as resolving columns and validating that the data

source can provide the data requested by a query.

 Unresolvable Errors

Unresolvable columns can happen due to a number of factors, such as column name

spelling errors in freeform SQL queries. Spark will fail fast and tell you why the analysis

phase failed with an AnalysisException.

You can change the query to throw an exception by adding a new, unresolvable field

to your select.

%spark

customersTable

.where(col("email").like("scott%"))

. select($"id", $"email", $"last_name", $"unknown")

.show()

This will trigger an exception, failing fast, before physically executing the actual plan.

org.apache.spark.sql.AnalysisException: cannot resolve 'ùnknown`' given

input columns: [spark_catalog.coffee_co_common.customers.created, spark_

catalog.coffee_co_common.customers.email, spark_catalog.coffee_co_common.

customers.first_name, spark_catalog.coffee_co_common.customers.id, spark_

194

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

catalog.coffee_co_common.customers.last_name, spark_catalog.coffee_co_

common.customers.updated];

'Project [id#0, email#5, last_name#4, 'unknown]

+- Filter email#5 LIKE scott%

+- SubqueryAlias spark_catalog.coffee_co_common.customers

+- Relation[id#0,created#1,updated#2,first_name#3,last_

name#4,email#5] parquet

This short circuit at the analyzer phase is handy, especially when attempting to

debug data-related issues. Next, after resolving all unresolved entities within the plan,

Spark will move on to optimizing the query.

 Logical Plan Optimization

At this phase of planning, Spark introduces optimizations on top of your query, for

example by adding nullability checking and conversions to known static expressions like

the StartsWith in the following optimized plan.

== Optimized Logical Plan ==

Project [id#0, email#5, last_name#4]

+- Filter (isnotnull(email#5) AND StartsWith(email#5, scott))

+- Relation[id#0,created#1,updated#2,first_name#3,last_

name#4,email#5] parquet

This phase of optimization converted the following:

Filter email#5 LIKE scott% became

Filter (isnotnull(email#5) AND StartsWith(email#5, scott))

Now onto the final planning phase. The physical plan.

 Physical Planning

The physical plan is the last step before Spark converts your query into generated Java

bytecode.

== Physical Plan ==

*(1) Project [id#0, email#5, last_name#4]

195

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

+- *(1) Filter (isnotnull(email#5) AND StartsWith(email#5, scott))

+- *(1) ColumnarToRow

+- FileScan parquet coffee_co_common.customers[id#0,last_

name#4,email#5] Batched: true, DataFilters: [isnotnull(email#5),

StartsWith(email#5, scott)], Format: Parquet, Location:

InMemoryFileIndex[file:/spark/sql/warehouse/common/customers],

PartitionFilters: [], PushedFilters: [IsNotNull(email),

StringStartsWith(email,scott)], ReadSchema: struct<id:int,last_

name:string,email:string>

This plan provides Spark with all the necessary information to generate a real plan of

attack for reading, filtering, and loading the projected fields (ID, email, and last_name)

into Spark as a DataFrame. The last and final piece of the puzzle is the code-generation

component.

 Java Bytecode Generation

This final step compiles and converts the physical plan into actual Java bytecode. This

process is called whole stage codegen, and it optimizes your query by inlining all of your Java method calls into a single function optimized for the JVM rather than for a human

(although some humans take pride in being able to read and fully grok the codegen).

%spark

customersTable

.select($"id", $"email", $"last_name")

.where(col("email").like("scott%"))

. explain(" codegen")

This will dump the partially human readable details for analysis.

Found 1 WholeStageCodegen subtrees.

== Subtree 1 / 1 (maxMethodCodeSize:369; maxConstantPoolSize:142(0.22%

used); numInnerClasses:0) ==

*(1) Project [id#0, email#5, last_name#4]

+- *(1) Filter (isnotnull(email#5) AND StartsWith(email#5, scott))

+- *(1) ColumnarToRow

196

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

+- FileScan parquet coffee_co_common.customers[id#0,last_

name#4,email#5] Batched: true, DataFilters: [isnotnull(email#5),

StartsWith(email#5, scott)], Format: Parquet, Location:

InMemoryFileIndex[file:/spark/sql/warehouse/common/customers],

PartitionFilters: [], PushedFilters: [IsNotNull(email),

StringStartsWith(email,scott)], ReadSchema: struct<id:int,last_

name:string,email:string>

Generated code:

/* 001 */ public Object generate(Object[] references) {

/* 002 */ return new GeneratedIteratorForCodegenStage1(references);

/* 003 */ }

/* 004 */

/* 005 */ // codegenStageId=1

/* 006 */ final class GeneratedIteratorForCodegenStage1 extends org.apache.

spark.sql.execution.BufferedRowIterator {

/* 007 */ private Object[] references;

/* 008 */ private scala.collection.Iterator[] inputs;

/* 009 */ private int columnartorow_batchIdx_0;

...

Knowledge of these advanced features isn’t necessary for most Spark engineers, but it

is critical to understanding how Spark operates. Additionally, harnessing Catalyst can be

invaluable for creating extensions to the Spark engine, such as when you would want to

read and write data formats that are unknown/unsupported by the Spark core encoders.

Now that you know the steps that Spark goes through to optimize your application

flow, we will wrap up this extensive chapter by looking at datasets.

 Datasets

A dataset in a nutshell is a strongly typed and efficiently encoded collection of objects residing in native system memory, accessed and orchestrated by the Spark engine.

While similar to a DataFrame conceptually, the Dataset API exposes typed capabilities,

including the ability to create custom stateful aggregations (for streaming applications)

and other strongly typed aggregations to be used with more traditional batch-based

analytics.

197

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

When talking about typed versus untyped, all this means is that Spark is expressly aware, ahead of time, of the format and structure of the data, aka its schema. The other thing worth mentioning is that a dataset has an immutable fixed schema.

RDDs recall that discussed the rDD (resilient distributed data) objects earlier in

the book, when discussing the spark programming model. as a refresher, the rDD

is the intelligent backbone for both the DataFrame and the Dataset. they store a

logical map of the distributed (partitioned) metadata regarding the data lineage

within an application—from the initial loading of data, from a reliable data source

or an in-memory data structure, through each stage of transformation (mutation),

leading up to a terminal action (trigger point) in your spark application. We have

seen actions in action every time we’ve called write, show, or collect.

While the rDD itself stores no physical object data. the spark driver application’s

sparkContext is expressly aware of where the data resides in the memory and

disk space of the spark executors assigned to the live runtime of the application.

at each complete stage of execution, the resulting output data is stored across

immutable data buffers, and a new step in the transformational data lineage is

recorded. although this process happens more or less transparently, we will look a

little closer at this process throughout the book.

Now where were we? Datasets are strongly typed, immutable data collections that

are encoded from JVM objects (Scala or Java classes). They play nicely with the rest of the

Spark ecosystem since they are just a layer on top of the RDD. Because the dataset has

an immutable, or fixed, schema, this means that Spark can take certain liberties when

processing the data in this context of your application. It is also worth mentioning that

the Python and R APIs cannot use datasets, which is a big benefit to using the Scala APIs.

 Exercise 6-3: Converting DataFrames to Datasets

Let’s begin with a practical example. Given you have access to the managed

customer data from before, we can reuse that data for our use case. All we need to do

now is generate a simple case class to act as a proxy to our customer data. Remember

198

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

that we looked at Java type interoperability in the last chapter, in the process of creating

additional rows to insert into our RDBMS. This same technique can be applied to a case

class, which can interoperate implicitly with the catalyst rows.

 Create the Customers Case Class

%spark

import java.sql.Timestamp

import org.apache.spark.sql.Dataset

case class Customer(

id: Integer,

created: Timestamp,

updated: Timestamp,

first_name: String,

last_name: String,

email: String)

With our class defined, we can now convert our DataFrame to a dataset.

 Dataset Aliasing

There is a simple helper method, called as, which converts a DataFrame to a Dataset

using encoders.

%spark

import org.apache.spark.sql._

implicit val customerEnc = Encoders.product[Customer]

val customerData: Dataset[Customer] = customersTable

.as[Customer]

Datasets enable you to use standard functional programming in Scala or use the

catalyst expressions depending on your use cases. This paradigm allows you the most

flexibility in your data engineering tasks, since sometimes complicated tasks can’t be

converted into meaningful SQL operations. Falling back to core engineering chops

can come in handy in these cases. For example, you can use mixed Catalyst and Scala

operations.

199

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

 Mixing Catalyst and Scala Functionality

We can create our own lambda functions that can be inlined and used to filter for an

email string starting with a pattern, my first name for example.

customerData

.filter(_.email.startsWith("scott"))

.explain("formatted")

This method of filtering allows you to write specialized Scala filters that can operate

directly using the Scala Customer class, as opposed to using pure Catalyst expressions

(like we saw earlier in the chapter). This function will be called across each row, as Spark

iterates over the internal Spark rows, encapsulating each batch. For each filter operation,

the row will be converted from the internal Spark format, which is an optimized, native

memory format called Tungsten, into a Java object that can be used with the Scala

lambda function.

Caution this conversion from native memory to JvM memory can cause

garbage collection cycles that will eat away at the performance of your application,

so take heed of this and remember not to ignore the catalyst native functions

whenever possible. the org.apache.spark.sql.functions are optimized for

efficiency and ship for free with apache spark. as a rule of thumb, excess garbage

collection, not to mention support of lambda functions, can weigh down your spark

applications. For example, i’ve seen performance increases of 50-60% when

switching from using lambda expressions to native sQL functions.

The same filter operation can be called using the typed Catalyst expressions easily.

 Using Typed Catalyst Expressions

The following is functionally equivalent to the previous example, except that we are

using a typed Catalyst columnar expression to do our startsWith filter.

%spark

customerData

.filter($"email".startsWith("scott"))

.explain("formatted")

200

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

This allows us to use predicate push down (optimization function), rather than

requiring all parquet data to be read into memory first, and then filtered. You will look

into more optimization techniques later on in your Spark journey, but using Datasets

enables the best of both worlds, where you can leverage Spark or traditional Scala in a

hybrid execution model.

 Exercise 6-3: Summary

Using Datasets is often preferrable when building Spark Structured Streaming

applications, as their ridged structure provides an explicit data contract at compile

type versus running into problems at runtime. Additionally, over time, I’ve preferred

using Datasets to define the ingress and egress (input and output) of the applications

I write. This ensures that I have a solid API boundary for the data I produce. Given

that it is simple to convert from a Dataset to a DataFrame (ds.toDF), applications can

choose how they need to operate. However, being able to share these formats across the

organization (either through the Hive Metastore or within a shared library of common

data formats) helps you reuse data without the worry that data can change out from

under an application.

I’ve also found that datasets can drastically speed up and improve the process

of writing unit tests. With a little upfront effort, it becomes straightforward to write

Spark applications using a more test-driven approach. This can save the long cycles of

compilation and deployment, plus good tests enable engineers to easily debug any style

of Spark application, from standard batch to streaming. We will look at the process of

writing and testing a full end-to-end pipeline application in Chapter 7.

 Summary

In this chapter, you learned all the ins and outs of using the Apache Hive Metastore

alongside the Spark SQL Catalog. You discovered how easy it is to add important rich

metadata about the ownership of hive databases, simple descriptors and definitions

for the tables you produce, and how to provide rich column-level information so that

through your actions you can enable easy data discovery. This simple act of improving

data discovery can assist in paying things forward in your data platform environment.

Now other teams can be empowered to seek out the data they need today to solve the

data problems of tomorrow.

201

CHapter 6 Data DisCoverY anD tHe spark sQL CataLoG

We then took a deeper dive behind the scenes and looked at the optimization

pipeline Spark uses within the Catalyst Optimizer. We saw how it plans and transforms

your query from a parsed plan to an analyzed plan, into an optimized plan and then

on to physical plan. This series of events drastically improves the Java bytecode that is

generated during the codegen stage, and ultimately, your application benefits directly

from this careful compilation.

We finished the chapter looking at the process for converting a case class into a

dataset using explicit encoding. Over the next few chapters, as you tackle building

and running both batch and streaming pipeline jobs, you will lean on the information

from these first six chapters in order to take a pragmatic approach to building the core

components of a modern data engineering environment.

202

CHAPTER 7

Data Pipelines and

Structured Spark

Applications

There is a central processing paradigm that exists behind the scenes and can help

connect just about everything you build as a data engineer. The processing paradigm is a

physical as well as a mental model for effectively moving and processing data, known as

the data pipeline. We first touched on the data pipeline in Chapter 1, while introducing the history and common components driving the modern data stack. This chapter will

teach you how to write, test, and compile reliable Spark applications that can be weaved

directly into the data pipeline.

 Data Pipelines

In Chapter 1, you learned about the origins of data pipelines and how the pipeline job evolved from the well-known extract transform load (ETL) design pattern. Conceptually,

ETL enabled frameworks like MapReduce to grow in popularity, as complex problems could

be defined as workflows, or a series of jobs, that divide and conquer difficult distributed data processing into digestible computations. Data pipelines establish a consistent processing

paradigm for handling batch or stream processing. Given a data pipeline is simply a

conduit for moving data reliably between systems, starting to think about data as it flows

between points within a larger data topology using ETL processing can help to establish

a clear mental model. As you become more familiar with complex data processing where

data flows fan out, forks off from, or rolls up into one or more data-processing pipelines,

your mental model can begin to shift to more of a graph of interdependent jobs being

coordinated through workflow orchestration (which we’ll discuss next chapter).

203

© Scott Haines 2022

S. Haines, Modern Data Engineering with Apache Spark, https://doi.org/10.1007/978-1-4842-7452-1_7

Chapter 7 Data pipelines anD struCtureD spark appliCations

As an analogy, consider a data pipeline as a software-driven automobile or

manufacturing assembly line. Each station along the assembly line does one job really

well, and that makes sense in terms of synchronous data processing, where each job

relies on the success of an upstream job to accomplish its predefined goals. Figure 7-1

shows an example of a more complex data pipeline, where some jobs need to be run

synchronously, following the assembly line style of processing, and others can be run

fully asynchronously.

 Figure 7-1. Hybrid synchronous/asynchronous data pipeline

Figure 7-1 shows that pipeline jobs A through C are dependent on each other completing in a specific synchronous order. This is typically the case of composition-style data processing. You are composing new data objects as a composite, or

combination, of other data available to you. This is observed with the composition of

the data sources A, B, and C. However, after the first three upstream pipeline jobs are

complete, the downstream jobs, D and E, are independent and can run asynchronously.

Given the dynamic nature of data pipelines, new data-processing jobs can be added,

inserted, or removed from the data-processing network as long as the changes to the

data flow don’t disrupt the downstream data requirements of any dependent jobs. While

this flexibility provides an efficient mechanism to reuse data generated from upstream

204

Chapter 7 Data pipelines anD struCtureD spark appliCations

work, data lineage problems or data-processing blind spots can creep in, causing

isolated problems. This can result in stale data, mainly due to broken plumbing (bad

upstream jobs) or system-wide problems caused by data corruption from any critical

point in the data network.

As the complexity of your data pipelines grow, you will see an increasing need for

automation. At first, simpler solutions like crontabs and simple workflows triggered by

webhooks and APIs will keep things running. However, as things expand and scale over

time, it is common to migrate to more specialized workflow orchestration frameworks

to manage the larger data-processing footprint. You learn how to use Apache Airflow

with Spark in detail in Chapter 8, when we look at Workflow Orchestration. This chapter provides the blueprint to create reliable batch-based Spark applications that are ready to

be dropped into Airflow.

 Pipeline Foundations

Over the previous six chapters, you’ve been preparing for your journey to data pipelines

as you’ve learned the important history, concepts, components, and foundations

required by the modern data engineer. As a refresher, the first two chapters introduced

and taught you about what has been and where things have gone and got you up

and running with Apache Spark locally. Chapters 3 and 4 explored reading, parsing, transforming, and writing data, and discussed the importance of data documentation,

strong types, and paying things forward for others.

With the introduction of the JDBC data source in Chapter 5, you learned to interoperate with your existing data stores using Apache Spark in order to work with

external databases. Chapter 6 introduced the Spark SQL Catalog. You learned to power Spark SQL using your external Apache Hive Metastore. This can simplify the process of

working with external or managed tables and can solve some of the common problems

related to data discovery, data ownership, and data access.

Along the way, you’ve been learning to use Spark to solve data problems without

needlessly getting sidetracked thinking about how to write applications that can

be compiled, unit tested, documented, and released following standard software

development best practices. You learn to apply common software engineering best

practices to the work you do as a data engineer in this chapter.

205

Chapter 7 Data pipelines anD struCtureD spark appliCations

 Spark Applications: Form and Function

Until this point in the book, you’ve relied on Apache Zeppelin or the manual process

of using the spark-shell to feed commands and process data interactively. These

 interactive style applications are just one of the many forms a Spark application can take.

The other two forms the Spark application can take are the batch-based application and

the streaming application. Looking at the similarities and differences between these

three styles can help you decide what style of Spark application you want to write. This

process is also a critical decision-making point in the journey from idea to production.

 Interactive Applications

As the name denotes, interactive applications are alive in a sense, as they are waiting

to read, evaluate, and process input from a user. This mechanism provides a nice

immediate feedback loop for many different use cases, including data discovery and

exploratory data analysis, as well as a tool to lean on when learning or trying something

new. The Spark Shell and Apache Zeppelin (notebook environments) provide a gentle

introduction to using Spark without needing to compile code and set up any IDEs. There

are limits to those approaches though.

 Spark Shell

The REPL that comes with Spark (aka, the spark-shell) was covered in detail in

Chapter 5, as we explored how to create quick dynamic applications on top of the Spark runtime environment. Although you can build fairly complex routines with a mix of

dynamic file loading and Spark configuration, the limiting factor is that these shell

applications are not designed to be completely consistent or reliable for the prime-time

needs of production systems. At best, this mode of operating is like a powerful interactive

scripting environment.

 Notebook Environments

We’ve used Apache Zeppelin throughout the book to simplify how we work with Apache

Spark and Scala using notebooks. The notebook environment is a powerful tool. It

brings together the simplicity of the spark-shell, in a consistent runtime, that can

also be shared among your peers by passing notes or working together in real-time

(hosted Zeppelin). Zeppelin enables ideas (heuristics and code flow) to be fully fleshed

206

Chapter 7 Data pipelines anD struCtureD spark appliCations

out, in a cascade of paragraphs that can be run as a synchronous flow (holistically) or

individually, which is commonly the case when debugging a paragraph.

The icing on the cake (at least from my perspective) is the ability to mix inline

documentation with interactive graphs and tables, alongside the data processed in

each note. We return to Zeppelin for analytical processing and insight generation in

Chapter 12.

There is also a healthy mix of pros and cons when using notebook environments

on the job. While it can be straightforward to write a fairly sophisticated series of data-

processing operations against both internal and external data sources, this ease of use

also brings with it the potential to harm production systems. Consider a note that makes

many relatively expensive queries to non-production data systems (in a non-production

environment). While the intention of the engineer writing the notebook is not to cause

harm, it is possible for these expensive queries to take down a service, or database,

causing an incident if the same note is migrated to production or saved accidently.

Tip know the size of your data: understanding the size of the data you are working

with, not only the total number of records/rows, but also the required memory and

io (bandwidth) overhead. understanding the size of the data you are processing is

critical to operating healthy data applications. this is why many applications start

out in the planning phase using notebooks and end up as compiled applications for

stream or batch as a prerequisite for moving to production.

 Batch Applications

Batch applications don’t have to be any more complex than some of the simple

paragraphs you’ve written inside of Zeppelin. The main difference is the process that

goes into creating a compiled batch application as opposed to writing a quick note or

paragraph in Zeppelin. We’ll walk through the process of building a blueprint for batch-

based applications in the next section of this chapter, but before we do, here are some

things to keep in mind.

Like traditional software development best practices, writing solid, reliable data

applications requires you to write code that includes tests (unit and automated),

meets a team’s or company’s standard of excellence, goes through code review, and is

released in a phase-based approach. It must also ensure that downstreams, as well as

207

Chapter 7 Data pipelines anD struCtureD spark appliCations

other dependent systems, are protected. It finally must ensure that each job runs in a

performant way, with the proper metrics and application-level monitoring to ensure

each job fulfills and meets agreed-upon SLAs.

When it comes to writing batch applications with Spark, there are two approaches

that can help as you design your interfaces and configurations. Applications can be

 stateless or stateful.

 Stateless Batch Applications

Stateless batch applications don’t require state management. This approach to writing

batch applications is intended to handle very specific tasks where all necessary

configuration is provided to the application at runtime. This kind of app is well suited

for traditional data pipeline jobs. For example, the pipeline job could be configurable

to import all rows from an external table between a start and end date. Because there

is a clear separation of concerns and no long-term state management, each run of the

batch application can dictate its own boundaries. For instance, if you were required to

backfill data, you could create a series of one or more jobs and trigger these jobs to run in

parallel without any concern of cross-contamination (if the boundaries are specific, such

as loading data partitioned by day). Backfilling is the process of loading missing data into a data source.

Tip Design for reuse: While you can create single serving applications, it is

better to consider how your applications can be built for reuse driven by external

configuration. otherwise, have to repeatedly make minor changes to internal

configuration, release, run, and repeat.

An example of a stateless batch application is a daily reporting job. Reporting

jobs typically run against a specific subset of data, such as a daily or hourly metric or

event rollups. The batch job configuration shown in Listing 7-1 shows how an example application could be configured to run externally.

208

Chapter 7 Data pipelines anD struCtureD spark appliCations

 Listing 7-1. External Configuration Allows Your Batch Applications to be Written Once and Used in Different Ways

$SPARK_HOME/bin/spark-submit \

--class "com.coffeeco.reporting.DailyReport" \

--master "spark://thehost:7077" \

--deploy-mode "client" \

--conf "spark.report.table.source=daily-summaries" \

--conf "spark.report.table.sink=daily-reports" \

--conf "spark.report.range.start=2021-03-01" \

--conf "spark.report.range.end=2021-03-02" \

...

The opposite of the stateless batch application is the stateful batch application.

 Stateful Batch Applications

Stateful batch applications can be designed to use any number of external systems

to reliably manage their configuration and their application state, such as Apache

Zookeeper or HDFS. However, an alternative trick is to use Spark Structured Streaming

configured to run exactly once per trigger. This technique enables you to lean on the

stateful semantics of the powerful Structured Streaming Engine to track and manage the

effective state of everything, from the data source(s) to what data has been processed

and fully committed, for each run of the batch job. All this without having to manually

capture and manage the job metadata from batch to batch in your data pipeline. With

more complex data-processing jobs, which include reading and joining data across

multiple external data sources across a mix of batch and streaming sources, manually

managing the external state can become unwieldly quickly.

Tip if your stateful batch job will be run as a periodic batch job, used to reliably

move data from a streaming source into a reliable data store like hDFs or s3,

determine which aspects of the job can be reused to build generic base applications.

Generic applications can be configuration-driven or be built on top of abstract

classes (libraries) and shared among common interfaces. Base applications enable

common data engineering problems to be solved once, and for the lessons learned

to be reused without the need for long lead times from idea to production.

209

Chapter 7 Data pipelines anD struCtureD spark appliCations

 From Stateful Batch to Streaming Applications

Another common use case for stateful batch applications is the periodic processing of

data from streaming sources, such as Apache Kafka. There is lot of metadata required to

reliably track your application’s position within a stream of data, across all distributed

partitions of a given topic, that simply isn’t well suited for stateless batch jobs.

Lastly, you can use stateful batch applications to help when performance tuning

your applications, before turning them on for full-time streaming. By mixing external

configurations with internal stateful processing, you can turn up the number of records

processed per batch and test how the application performs across a mix of different

CPU/RAM allocations. Applications that can be tested first in batch can be ramped

up to their breaking points or configured for maximum throughput of data. When you

are happy with the results, with the switch of the trigger, your application can run as

a streaming job, picking up right where the last batch left off. You learn how to write

reliable stateful batch jobs in Chapter 10, including the ins and outs of using external configuration to control the processing frequency and rates per micro-batch.

 Streaming Applications

Apache Spark enables you to build applications that process unbounded data sources

without the need to change your mental model too much from that of a batch processing

one. Given that Spark Structured Streaming applications default to running as a series of

micro-batches of data that is continuously processed, it is fairly straightforward to think

about how to tackle things batch by batch. Spark enables you to work with streaming data

across two main processing modes: micro-batch processing and continuous processing.

 Micro-Batch Processing

This processing mode periodically checks a streaming data source (like Apache

Kafka) and triggers a new batch to be processed. This means you can think about your

application as working on periodic sets of finite data across an infinite stream of data.

Working with micro-batches of data is better suited for common analytical

processing needs, like rolling up metrics across windows of time. Remember back to

Chapter 4, when we looked at joining the current store occupants of each of our coffee shops to construct a way to figure out if there were enough seats for a party of a variable

size. This kind of event processing is a great candidate for real-time, as these streams of

210

Chapter 7 Data pipelines anD struCtureD spark appliCations

data can quickly become irrelevant if not processed in a timely way. For instance, this

data could be used to drive a mobile app that helps customers find the closest location to

them that has available seating.

However, considering the stateful batch use case from earlier, this data is also

interesting from a historical perspective, just not with the same fidelity. You may need

to roll this data up into 15-to-30-minute intervals in order to enable other teams to

generate daily/weekly/monthly performance reports on a per store basis.

 Continuous Processing

Rather than working across micro-batches of data, continuous processing enables

individual processing of each record, ensuring that each data point is processed in a

stateful way, exactly once. This kind of processing can be used to enable real-time billing

use cases, where you want to process each transaction individually (and durably). For

billing it is especially important that each operation either succeeds or fails, at the event

level, as opposed to having the possibility of at-least-once processing, which means you

may double-bill a customer. In the case of a partial failure within a micro-batch, Spark

will rewind and reprocess the slice of the dataset, which is a common pitfall with micro-

batch stream processing and billing.

Note We don’t cover continuous processing in this book, but if you are curious,

you can use the environment in Chapter 11 (apache kafka) to test things yourself.

(at the time of writing, the only data source supporting continuous processing is

apache kafka.)

Understanding the various operating modes that a Spark application can take

is the first step to designing reliable data applications. The second step, is of course,

actually writing the application. We’ll go through an exercise now to prepare you for the

application you’ll be writing in the rest of the chapter.

 Designing Spark Applications

As you know, data engineering is essentially the art of moving and transforming data

efficiently and reliably, and to do our jobs well each job, or series of jobs we write to

run in our data pipelines should be the result of a specific data need, encoded into a

211

Chapter 7 Data pipelines anD struCtureD spark appliCations

published data application that goes through the traditional software development

cycle. The software development cycle is shown in Figure 7-2. It encapsulates the seven common conceptual phases of execution required to build and operate software

successfully. The same process can be (and should be) applied to the planning and

successful operations of any data engineering team or data organization.

 Figure 7-2. The software development cycle

Reliable data applications follow a traditional software development cycle. What you

are planning to write, why you need to write it, who the intended audience is, and when

things are required to be completed by—all these questions branch off from traditional

specification-based planning and ideation. These plans lead to work that requires

quick and careful analysis, before setting out to design and write the code required to

accomplish a task. You may find yourself working inside a notebook environment like

Apache Zeppelin during the planning, analyzing, and design phases of the project. You

may also find yourself returning to these interactive environments to debug issues in

production, or to quickly pull up a graph to share with your coworkers.

Tip interactive environments are pure gold for several reasons, but they can be

invaluable for running quick research spikes. they help you find gaps early in the

software cycle, before you end up spending time formulizing the code, writing unit

tests, going through code reviews, and preparing for the production release.

212

Chapter 7 Data pipelines anD struCtureD spark appliCations

We’ll be working through an extended use case in this next section. The purpose

of this exercise it to help you as you think about solving problems with data. Given that

data engineers focus on data, learning to think abstractly about data and modeling data

are essential skills. Data modeling is an essential skill for any data practitioner, and

while conversations about taxonomies, naming conventions, and general theory are

outside the scope of this book, this next use case will introduce you to the art of framing

foundational data problems.

 Use Case: CoffeeCo and the Ritual of Coffee

Not everyone enjoys coffee or tea. However, when it comes to rituals and community,

there have been huge successes behind the business of coffee. Early on in this book, we

touched upon some of the odds and ends of being a new data engineer on the job for a

company called CoffeeCo. Consider this to be any of the major coffee institutions you

routinely visit. Or, if you have a strong aversion to coffee, you are equipped with the tools

to process and transform this data into something that’s more to your liking (and I hope

we can still be friends).

Throughout this chapter and the rest of the book, you’ll be focused on writing Spark

applications to facilitate and coordinate the data needs of CoffeeCo. You’ll be extending

the basic primitives from earlier chapters, like our model for the coffee shops, inventory,

customers, and customer purchasing behavior. You’ll be using this data while writing

purpose-driven applications to drive the CoffeeCo business just like you would on

the job. These lessons can be applied to just about any work you’ll come across when

working horizontally across a data platform, or vertically as a data engineer focused on

a specific feature or business unit. The lessons learned can be used to solve common

problems applied to most businesses.

Consider yourself promoted. You are now the founding data engineer at CoffeeCo.

Your first task is to build the core data models that can be used to represent many facets

of the CoffeeCo business. To do that, you’ll need to understand more about the business.

 Thinking about Data

If you look from a high enough vantage point, you’ll notice that there is a common

thread among most customer-facing businesses. That being the fact that businesses have

some product to sell, places to sell their product (either online or at brick-and-mortar 213

Chapter 7 Data pipelines anD struCtureD spark appliCations

shops), and customers who purchase their products. It is like the notion of a noun:

Business revolve around people, places, and things.

Thinking about the data needs of a company, which aspects of the business need to

be captured to make informed decisions, and how do we extract meaning from the data?

These can be monumental tasks for all new data operations. Tactical strategies differ

from place to place, but you can use one mechanism that can be profoundly helpful, and

it’s taken directly from product management and the process of user stories. To simplify

it, we will use the ever-creative name, data stories.

 Data Storytelling and Modeling Data

No matter where you work, and how you work, all jobs revolve around the notion of

tasks. This is the process of decomposition; you break down large ideas or chores into

smaller tasks that can be completed without the need to think about everything at once.

This is a skill learned over time. Many engineers work for many years learning how to

think about a problem, dissecting it into functional sub-components, and reusable

classes and interfaces. These skills can easily transfer to how we think about data

problems, since data engineering is closely linked to traditional software engineering. It

just takes a little practice. Luckily, you’ll be walking through the high-level data modeling

process now.

 Exercise 7-1: Data Modeling

The process of storytelling can be a useful tool for understanding the data relationships

necessary to break up a complex idea like a company. In this case, our company is

CoffeeCo. We will break it into a hierarchy of ideas, entities, categories, and relationships used to construct the data models. The process can even be useful for strategic planning

and decision making when it comes to what data to capture and integrate. Depending on

your role at the company, you may be helping to drive a lot more outside of your role as a

data engineer. Understanding the big picture or how things fit into place (with respect to

data) is a valuable skill to have. Data modeling, like many things, begins with a story.

 The Story

CoffeeCo is focused on providing people with a unique coffee drinking experience,

custom tailored to their individual needs and tastes. We start off with the best quality

214

Chapter 7 Data pipelines anD struCtureD spark appliCations

coffee sourced through a global network of coffee growers who are like family to us.

These critical relationships ensure that we have a steady stream of seasonal product

that grows naturally and organically. As an added benefit, it ensures that each variety

of coffee comes from a well-known region that supports the growing requirements and

natural flavor profiles we are looking to achieve. Using state-of-the-art personalization

systems, we enable our customers to rate all aspects of the coffee experience, from the

way that their coffee is roasted, to the variety of bean, favorite farms and producers, and

even which shops are their favorite. Each cup, every visit, and each individual experience

increases their customers’ love of their coffee as well as the community they build

around it.

 Breaking Down the Story

You may have found that your brain has already started the process of breaking down

and digesting the CoffeeCo story. You may have started to separate specific relationships

and consider names and overarching entities that could be used to convey a specific

high-level concept, such as vendor(s), location(s), and customer(s). You may have

skipped past the data modeling entirely and focused instead on what the data can be

used for and how. This is all good, as it means the story has your attention. Let’s look

first at breaking out the specific entities, and then we can move on to how the data can

be used.

 Extracting the Data Models

At a high level, you can use the story to dictate the relationships between the core

entities that support the business. Essentially, CoffeeCo provides each customer with a

 product. Products are sourced from vendors. Each vendor operates within one or more specific locations. Products are sold across stores and each product has availability at one or more locations. The customer experience can be tracked through ratings

across physical products consumed by each customer. The experience in each store

can be graded by customer ratings. Ratings as a construct can be used to generate a

personalized experience that adapts and learns over time for each customer.

Once you’ve extracted the high-level entities, you can break down each type further

by telling their story. As you will see, this process can yield a good data model directly

from a story.

215

Chapter 7 Data pipelines anD struCtureD spark appliCations

Customer

A customer is associated with an account identifier. Each account is uniquely identified based on a randomly assigned UUID that is either generated online at account creation

time or alternatively made available to a customer within at the time of purchase in a

store via a QR code. Customer accounts become active when they finish registering and

linking their account identity with the friendly mobile application. This requires their

first and last name as well as their email address.

case class Customer(

active: Boolean,

created: Timestamp,

customerId: String,

firstName: String,

lastName: String,

email: String,

nickname: String,

membership: Membership,

preferences: Preferences

)

This customer data model is used to plan baseline information as well as relationships,

such as in the case of the membership and preferences. These are placeholder relationships to the customer and can be composed later in the data modeling journey.

Store

Customers buy coffee products at the various store locations. Each store is associated

with a unique identifier, and each location has additional information regarding the

date it opened, the physical location (such as the address, longitude, and latitude), and

the hours of operation. Each store also has a maximum occupancy limit and additional

amenities, such as outdoor seating, drive-thru, and many others. In thinking about the

differences between one store and another, there is a daily menu. This is the available

coffees, prices, and all that jazz.

case class Store(

alias: String,

storeId: String,

216

Chapter 7 Data pipelines anD struCtureD spark appliCations

capacity: Int,

openSince: Timestamp,

openNow: Boolean,

opensAt: Int,

closesAt: Int,

storeInfo: StoreInfo,

location: Location

)

Just like with the customer data model, there are breadcrumbs for a follow-up

exercise for the StoreInfo, Location, and Menu data models. We visit these some more in

the next section.

Product, Goods and Items

Each product is a unit of good to be sold. In this case, there are more items that can be

sold than just the coffee. Each type of product sold has a unique identifier, a friendly

name or alias that can be used as a human recognizable name, and a unit cost. Given

you can sell a cup, carafe, instant coffee, freshly roasted coffee, and other bulk items, you

need to think abstractly here. Given each product sold is on the menu, and given Scala

has a core Product class, we will give this model the name Item.

case class Item(

itemId: String,

availability: Availability,

cost: Int,

name: String,

points: Int,

vendor: Vendor

)

Given that items have general availability, seasonal availability, and even geographic

availability, we can model the items’ availability as a sub-resource of the Item case class.

The same is true with the Vendor information. This allows us to work with the data and

allows the data model to evolve over time.

217

Chapter 7 Data pipelines anD struCtureD spark appliCations

Vendor

CoffeeCo works with various vendors from all over the world. The vendors provide

goods and services, like the farms that grow and produce seasonal varieties of coffee, all

the way to the manufacturers of cups and trinkets for sale in each store. We will only be

working with coffee-related data in this book, but it is worth thinking about how data

models can be expanded in the future, so that you aren’t having to juggle tons of different

data models that end up being more or less the same thing.

case class Vendor(

active: Boolean,

name: String,

location: Location,

vendorId: String

)

You may have noticed that each vendor has one or more products, and that each

product only has one vendor. This lets you decide how you want to join data while

processing a specific pipeline. Consider that each vendor may also operate across many

locations, so tying a vendor to a single location can cause problems. You may want to

add the notion of an operation. Vendors can have many operations that exist across

different locations, producing different products. I’ll leave this as food for thought.

Location

The location is an abstract concept that deals with a point of origin. Consider that

businesses operate at specific locations, either online or in the real world, and the same

goes with the Location data model. The data model includes information common to

many locational needs.

case class Location(

locationId: String,

city: String,

state: String,

country: String,

zipcode: String,

218

Chapter 7 Data pipelines anD struCtureD spark appliCations

timezone: String,

longitude: String,

latitude: String

)

Location data is useful for correlating trends and patterns of customer behavior

within a system. In the case of CoffeeCo, this locational data can be used to understand

which vendors produce certain styles of coffee that a customer particularly enjoys. This

data can also be used to understand which stores provide the best experience across

most customers and whether the physical location plays a critical role. Sometimes a

mixture of outdoor seating, a sunny day, and good cross-traffic is all it takes to brighten

someone’s day.

Rating

The last data model from the CoffeeCo story is that of a rating. Given a rating is issued by a customer for a particular store or item, we can track this information generally using

a rating system. For simplicity, we can start with something basic as many systems do.

Remember you can always add complexity later.

case class Rating(

created: Timestamp,

customerId: String,

score: Int,

item: Option[String],

store: Option[String]

)

The data model for ratings is broken down into a flexible format that enables a

framework for ratings. This includes support for product- or store-based ratings that are

scored as individual customer ratings.

 Exercise 7-1: Summary

The process of turning stories into data has been around for as long as people have been

painting in caves. If you think about it, a picture tells 1,000 words (well, not every time,

but you get the idea), and well-defined data models can be used to capture data in the

219

Chapter 7 Data pipelines anD struCtureD spark appliCations

same way, either at a high level of resolution or simply as an outline of what was. This

exercise was intended to help you conceptualize the data modeling process and to think

about data composition.

 From Data Model to Data Application

Now is the time you’ve all been waiting for. It is time to start writing your first major

Spark application. This process will teach you how to architect and write testable

application code that you can use as a blueprint for the myriad apps you’ll write down

the line. The source code for this exercise is available in the chapter materials.

Exercise Materials You can find the materials for this chapter in the ch-07/

folder of the book’s Github resources at https://github.com/newfront/

spark-moderndataengineering.

 Every Application Begins with an Idea

You have been asked to build out a new data pipeline that will ingest customer ratings

and join each rating on the customer’s table, essentially doing a glorified ETL. This data

can then be further processed downstream to create more complex datasets, such as

each customer’s preferences (or a taste profile, or a store profile).

 The Idea

After a little brainstorming, you come up with a simple data model for these rating events

and decide to test things out quickly using the tools you currently have at your disposal.

What are these tools, you ask? Well, you have you IDE (I am partial to IntelliJ) and the ability to reuse your local Docker environment to move fast and test your ideas.

However, you need a plan of attack. You need one so that you can timebox the

amount of work needed to vet your idea. This is where the application blueprint comes

into play. If you think about the work you’ve done within the Zeppelin environment up

until now, then you can think of this next step as a way of solidifying your notebooks or

workflows into a compiled application.

220

Chapter 7 Data pipelines anD struCtureD spark appliCations

 Exercise 7-2: Spark Application Blueprint

The Spark application blueprint is the framework, or boilerplate code, needed to create

an application. This includes the general layout, configuration, and build settings

required to compile and assemble a fully functioning Spark application.

As a general rule of thumb, each of your Spark applications should be laid out

the same way every time. This creates a consistent way of doing things and gives you

and everyone writing applications a similar frame of reference for where to look for

configuration files, as well as the expectations for how to build and run the app.

 Default Application Layout

Open the project code located in ch-07/app. You will see the directory structure and

configuration files in Listing 7-2.

Note Feel free to skip ahead to “Common spark application Components” if

you’ve been writing Java and scala applications for a while. this next section is an

overview of the application directory structure.

 Listing 7-2. The Spark Application Directory Structure

app/

conf/

local.conf

project/

build.properties

plugins.sbt

src/

main/

resources/

application.conf

log4j.properties

scala/

test/

resources/

221

Chapter 7 Data pipelines anD struCtureD spark appliCations

application-test.conf

scala/

build.sbt

README.md

The nested directories and files shown in Listing 7-2 are typical of any application written in Scala and should be familiar to anyone who has written Java applications. Let’s

go over the structure, starting at the root level.

README.md

This is your chance to inform and guide other engineers who will inevitably be

working on applications you worked on down the line. It is important to document the

requirements to build and run your application, as well as any additional information

that can be of use to future engineers. If you use GitHub then your project will automatically render this file when someone goes to check out your code.

build.sbt

This is your application’s build definition. The build.sbt file guides the build, providing variables and rules, including which version of Scala and Spark to compile against. It

also assembles a fat JAR (rolls up all of your dependencies into one JAR, which simplifies

how you deploy your application). This is leans on additional configuration files living

inside the project directory in the project’s root. Together this provides you with the

tools you need to build and release your applications.

conf

The conf directory is where you store your external application overrides. This is

a common pattern for supplying the correct configuration for multi-environment

overrides, such as your development, staging, performance, and production

environments, as well as for regional overrides. Lastly, it is useful to supply a local

testing configuration, which can be used when running your application in your local

development environment.

222

Chapter 7 Data pipelines anD struCtureD spark appliCations

 Multi-Environment Configuration

conf/

local.conf

dev.conf

stage.conf

prod.conf

project

If you are new to sbt, the project directory is your one-stop shop for configuration. The

build.properties tracks which version of sbt you want to use., as well as any declared

plugins and resolvers. Plugins add capabilities to your sbt builds, while the resolvers tell

sbt where to find dependencies, such as Apache Spark and others.

src

The sources (src) directory is where your application code lives. This is your application

root. The directory structure in Listing 7-3 shows the application source code and resources.

 Listing 7-3. The Spark Application Source Code and Runtime Resources

src/

main/

resources/

application.conf

log4j.properties

scala/

com.coffeeco.data/

config/

Configuration.scala

SparkApplication.scala

SparkBatchApplication.scala

...

test/

resources/

application-test.conf

scala/

...

223

Chapter 7 Data pipelines anD struCtureD spark appliCations

Now that you have a general overview of the application layout, let’s go over the

common components you can use in your applications.

 Common Spark Application Components

Each application you write will have common components that can be abstracted away

for reuse. This ensures that there is a simple wireframe for doing initialization and

setting up (bootstrapping) the application runtime. In this chapter, you’re introduced to

the following three common components:

• Configuration.scala. This component is intended to be reusable

across many Spark applications and is a general means of providing

layered configuration for an application. Unless a config value needs

to be overridden at runtime, it is encouraged to provide the lion’s

share of your application config through the application.conf

or within any environment or regional override conf. This way, all

required configuration can be distributed alongside the application

through your CI/CD pipelines.

• SparkApplication.scala. This component is intended to be used

in conjunction with the Configuration.scala. When generating the

SparkSession for your Spark applications, there may be additional

default behaviors that you want all Spark applications to inherit.

For instance, monitoring the application performance, operational

metrics, as well as problems resulting in task failure. Having eyes and

ears on your application ensures that you know when each app is no

longer running in a healthy state. We cover monitoring and revisit

the SparkApplication trait again when we look at “The Road to

Production” in Chapter 12.

• SparkBatchApplication.scala. This trait extends the

SparkApplication trait and is used specifically for batch-based

applications.

Let’s begin by looking at the Configuration object.

224

Chapter 7 Data pipelines anD struCtureD spark appliCations

 Application Configuration

The Configuration object provides the Spark application with a customizable means of

generating explicit settings to supply to the core SparkConf on application initialization.

There are a few different ways that your application arrives at the state of its current

configuration. In Chapter 5, you looked at how to access and modify the SparkConf using the conf parameters on the spark-shell, and in Chapter 6, you learned a little more about the spark-defaults.conf file, which handles the cluster-wide Spark

configuration. Now we are introducing one more way, which we cover in detail.

Let’s start by looking at the Configuration.scala source code (shown in Listing 7-4

and available in the online chapter contents).

 Listing 7-4. Common Configuration Helper

object Configuration {

private lazy val defaultConfig = ConfigFactory.load(" application.conf")

private val config = ConfigFactory.load().withFallback(defaultConfig)

config.checkValid(ConfigFactory.defaultReference(), "default")

private lazy val appConfig = config.getConfig(" default")

lazy val appName: String = appConfig.getString("appName")

object Spark {

private val spark = appConfig.getConfig("spark")

private val _settings = spark.getObject("settings")

lazy val settings: Map[String, String] = _settings.map({ case (k,v) =>

(k, v.unwrapped().toString)

}).toMap

}

}

The Configuration code shown in Listing 7-4 is built on top of the popular Typesafe

Config library. This library plays nicely with Apache Spark and enables your application to create layers of config, which can be lazily loaded, evaluated, and mixed into the

runtime configuration for any of your Apache Spark applications. Let’s take a peek at the

format of the application.conf to understand how the config is generated.

225

Chapter 7 Data pipelines anD struCtureD spark appliCations

Application Default Config

The default application config is compiled along with your Spark application during

app assembly. It provides a guaranteed common base of configs for any instance of your

application. Think of this as a first concrete layer of config foundation. The defaults are

compiled along with your application and can be found in the app source code under

ch-07/app/src/main/resources/application.conf. See Listing 7-5.

 Listing 7-5. Application Default Config (Partial Config Shown)

default {

appName = "spark-event-extractor"

spark {

settings {

"spark.sql.session.timeZone" = "UTC"

"spark.sql.catalogImplementation" = "hive"

"spark.sql.hive.metastore.version" = "2.3.7"

"spark.sql.hive.metastore.jars" = "builtin"

"spark.sql.hive.metastore.sharedPrefixes" = "..."

...

}

}

}

The application.conf is loaded and parsed by the ConfigFactory object in

Listing 7-4. It’s loaded into the default named config. The process from Listing 7-4

also checks the config’s existence and validity, ensuring that a corrupt object doesn’t

exist at the default path. If the config is corrupt, the parsing of the config will fail with a

ConfigException and your application will fail in turn. Recall that failing immediately is

 better than failing later at runtime.

Once the config has been parsed, your custom configuration is available at the

named default config.

private lazy val appConfig = config.getConfig("default")

From this point in Listing 7-4, you have access to the application name appName and the map contained under default.spark.settings. This is really all you need at

226

Chapter 7 Data pipelines anD struCtureD spark appliCations

this point, since you want to have a common way of shipping the application config

alongside the application code.

This base set of configuration values can also be modified at runtime using

an external config file. This will effectively load the application.conf from your

compiled application resources and then overlay (or override) the application

defaults on application start. You will see this pattern used when you have regional

specific configurations or settings based on the runtime environment common with

development, staging, and production environments.

Runtime Config Overrides

Being able to augment your application using additional external configs enables many

capabilities, from simply adding regional or environment overrides to more advanced

automation like automatically augmenting an application CPU core and RAM profile

. Regardless of the case, from the simple to the cutting edge, using explicit overrides

enables you to easily change your application without having to recompile and rerelease

your application. Consider the following use case.

Say you are required to run a reporting job across two separate time zones. If the

application default specifies "spark.sql.session.timeZone"="UTC" then you could simply override the default application.conf and seamlessly handle this use case

with a simple override file named timezone-pst.conf. Now you may have additional

requirements, but in the most simple use case, you can run a consistent job in a specific

time zone.

default {

spark {

settings {

"spark.sql.session. timeZone" = "America/Los_Angeles"

}

}

}

Additionally, you could also achieve the same override using runtime configuration

overrides in your Spark submit (like you learned in Chapter 5).

--conf "spark.sql.session.timeZone= America/Los_Angeles"

227

Chapter 7 Data pipelines anD struCtureD spark appliCations

Note in Chapter 8, you learn how using airflow can add more control to use cases like the time zone shifting reporting job. each DaG represents a workflow in

airflow and ensures that runtime overrides can be set in stone. that means your

downstream dependencies are never left looking for the data you are supposed to

be producing. Consistency and reliability are your top priorities as a data engineer.

With the Configuration object out of the way, it is time to see how this is used

alongside the SparkApplication trait to provide a seamless Spark initialization.

 Common Spark Application Initialization

The SparkApplication trait is a simple module that provides a common way to initialize

your Spark application. It leans on the Configuration object from the last section to

streamline the generation of the immutable SparkConf, which is then feed into the

construction of the SparkSession, which is the entry point into the Spark runtime.

So how exactly is this accomplished? Look at the trait shown in Listing 7-6.

 Listing 7-6. The SparkApplication Trait

trait SparkApplication extends App {

val appName = Configuration.appName

lazy val sparkConf: SparkConf = {

val coreConf = new SparkConf()

.setAppName(appName)

// merge if missing

Configuration.Spark.settings.foreach(tuple =>

coreConf.setIfMissing(tuple._1, tuple._2))

coreConf

}

lazy implicit val sparkSession: SparkSession = {

SparkSession.builder()

.config(sparkConf)

228

Chapter 7 Data pipelines anD struCtureD spark appliCations

.enableHiveSupport()

.getOrCreate()

}

lazy val validationRules: Map[()=>Boolean, String] = Map.empty

def validateConfig()

(implicit sparkSession: SparkSession): Boolean = {

if (validationRules.nonEmpty) {

val results = validationRules.foldLeft(List.empty[String])(

(errs: List[String], rule: (()=>Boolean, String)) => {

if (rule._1()) {

// continue to next rule

errs

} else {

// if the predicate is not true, we have a problem

errs :+ rule._2

}

})

if (results.nonEmpty)

throw new RuntimeException(s"Configuration Issues Encountered:\n

${results.mkString("\n")}")

else true

} else true

}

def run(): Unit = {

validateConfig()

}

}

Listing 7-6 shows the source code for the SparkApplication trait. This trait, or mixin, extends the Scala App trait, which is included in the core Scala library. The App trait

provides functionality to quickly turn any object into an executable, which just so happens

to be a seamless starting point for initializing our Spark applications (since the executable

means that we also have a main class). The other reason we extend the App trait is because

it delays initialization for our Spark application. This means we have guarantees that our

Spark application will be evaluated after all other static classes and objects are initialized.

229

Chapter 7 Data pipelines anD struCtureD spark appliCations

In this first pass of the SparkApplication trait, you’ll probably notice that there is

nothing too complicated happening. What you are doing is ensuring that any application

that mixes in this trait has access to a common interface of commands for config

validation, and generation of the SparkSession and SparkConf, and that all applications

have a run method. Simple in theory, right?

Building an entry point to run each Spark application now only requires a little setup to

get started. You can essentially begin writing every new application without having to worry

about common boilerplate and supporting many ways of doing similar things. Rather you now

have a common framework for running applications holistically. The scaffolding being done

behind the scenes is similar to how the spark-shell and Apache Zeppelin are initialized.

The last common component to look at is the SparkBatchApplication trait, which is

a minor extension to the SparkApplication trait. It provides you with a consistent set of

methods for creating batch applications.

 Dependable Batch Applications

The trick to building common components is to start small and work smart. Also, it is

worth pointing out that common components should be the end result of more than one

application doing exactly the same thing. Many of the best libraries are built by solving

common problems, so let nature run its course and get feedback and input from folks

on your team, in your community, or online. Then watch how things evolve. Finally,

ensure that your libraries simplify a problem and introduce guardrails only when they

are necessary.

With that in mind, Listing 7-7 is an example of starting small and ensuring that all batch applications have some guardrails in place.

 Listing 7-7. The SparkBatchApplication Trait

trait SparkBatchApplication extends SparkApplication {

lazy val saveMode: SaveMode = SaveMode.ErrorIfExists

def runBatch(saveMode: SaveMode = saveMode): Unit

final override def run(): Unit = {

super.run() // will call validate config

runBatch()

}

}

230

Chapter 7 Data pipelines anD struCtureD spark appliCations

Any application inheriting from the SparkBatchApplication trait will need to define

the runBatch method and add any config validations to get started. The trait also helps

guide applications that inherit from it to be defensive by default. While the saveMode

isn’t enforced at the trait level, implementing the runBatch method requires application

engineers to think about the saveMode (even if they weren’t before). This isn’t forcing

batch jobs to do the right thing, but it provides a guide about what is important to think

about for each application.

Thinking about this another way, the run method, which is overridden from the

SparkApplication trait, is marked as final in the SparkBatchApplication trait. This

restricts any implementing class from overriding the run method again, so in other

words, engineers only need to concern themselves with the context of the runBatch

method. Trying to work around the interface will fail. This forcing function enables you

(as a library author) to do interesting things, including powering generic application

launchers that require only a run method. In this way, whether you are launching a batch

job or a streaming job, you only need to concern yourself with a single method. You

should also provide the appropriate guardrails so you leave enough flexibility that people

will continue to use your libraries!

Follow-up Exercise it is only natural to provide these helper libraries as a

common library. this way, all of your team/company applications can be built using

the same common set of utilities, rather than leaving it up to each new application

to reinvent the wheel. this can become tiring fast. if you are feeling up to it, after

this chapter is over, look at extracting these common spark components into a

separate project.

 Exercise 7-2: Summary

This second exercise was a tour of the Spark application layout (directory structure) and

the three common traits provided to help make writing Spark applications simpler. Now

that you’ve been introduced to the common Spark application components, it is time to

write the actual Spark application.

231

Chapter 7 Data pipelines anD struCtureD spark appliCations

 Connecting the Dots

Equipped with the knowledge of how to lay out your Spark application, the common

application initialization components, and the interfaces (traits), the next step is to write

the application. As a precursor to writing your first streaming Spark application, this

application will instead be based on the humble batch job. This process will reinforce

earlier exercises, such as the work done with the containerized database tables and the

distributed file system-based tables. It builds a batch job that can handle joins between

two data sources.

Note this process will help as you transition to working with the exciting concept

of unbounded tables and unbounded streams of structured data, which are covered

in Chapter 10 (after a mental model-building chapter on streaming data systems in Chapter 9).

 Application Goals

The goal of this application is simple: Read all customer ratings from one managed Spark

table and join each rating against the customer data stored in the distributed customer’s

table by customerId. Lastly, write the results of this joined data into a new table location.

Additionally, since this chapter is also leading toward workflow orchestration, we

want to run this application as a pipeline job. This means that the driver application will

require input in the form of runtime config for an input (or a source table) and an output

(or a destination table) when submitting the application to run. This is an example of

a stateless batch-based Spark application, as it requires external influence to fulfill the tasks at hand.

Let’s work from the outside in, starting with modeling our events, designing the

runtime config, determining what the spark-submit command will look like that

launches the application, and then moving from the main application class all the way

down the stack. If you are ready, let’s begin by building the spark-event-extractor app.

232

Chapter 7 Data pipelines anD struCtureD spark appliCations

 Exercise 7-3: The SparkEventExtractor Application

First things first. This application is supposed to take a customer rating event. So we

need to come up with a proposal for such an event.

 The Rating Event

The customer rating event needs to provide our application with the time of the event

(this will become more important down the line for streaming applications), the

customer’s unique identifier, a rating, and any other metadata we can use to further

enhance the rating event in the application.

 The Result of Brainstorming the Customer Rating Event

{

"created": "2021-04-18 16:28:13.198",

"eventType": "CustomerRatingEventType",

"label": "customer.rating",

"customerId": "CUST124",

"rating": 4,

"ratingType": "rating.store",

"storeId": "STOR123"

}

The initial customer rating event is defined as a simple JSON object. JSON data is

simple to serialize and can be a good way to test ideas without a lot of upfront overhead.

After defining the initial event definition, we can model a simple Scala case class to assist

with serialization and deserialization.

 CustomerRatingEventType

The customer rating event allows us to define a wrapper class that can support customer

ratings across stores and items, as shown in Listing 7-8.

 Listing 7-8. Data Modeling with Case Classes Can Save Time

case class CustomerRatingEventType(

override val created: Timestamp,

override val eventType: String = "CustomerRatingEventType",

233

Chapter 7 Data pipelines anD struCtureD spark appliCations

override val label: String,

override val customerId: String,

override val rating: Int,

override val ratingType: String,

override val storeId: Option[String] = None,

override val itemId: Option[String] = None

) extends CustomerEvent with RatingEvent

The beauty of modeling structured data definitions with case classes is that it’s a

flexible way to write unit tests and work with the DataFrame and Dataset APIs in Spark.

Tip You can view all of the data models for this chapter in the models directory,

inside the application root ch-07/app/src/main/scala/com.coffeeco.

data.models.

Now that you’ve defined the data model for this customer rating event, it is time to

move on to configuring the application.

 Designing the Runtime Configuration

Next, we need to come up with the names for the configuration that can be fed to the

application at runtime. Following the convention of namespacing our Spark config as

spark.{app.name}.{key.name}, we’ll use the following names:

• spark.event.extractor.source.table: Provides the name of the

source, or upstream data table.

• spark.event.extractor.destination.table : Provides the name of

the destination, or the final output table.

• spark.event.extractor.save.mode : Provides a way to optionally

overwrite data if it exists in the destination table location.

Remember, we can always add more override configurations to the application as

we go, but it is good to start off with only the bare minimum needed for the functional

requirements of each Spark application. I also find it to be helpful at this planning phase

to understand how things will look when we are ready to launch the application.

234

Chapter 7 Data pipelines anD struCtureD spark appliCations

 Planning to Launch

Writing the spark-submit command first can help you picture how you’d like your

application to behave when you finally go to launch it. This can help you “gut-check”

your config names and solicit feedback regarding your intentions. The spark-submit

command, including the new runtime config settings, is shown in Listing 7-9. (The full spark-submit command is shown in the README.md file in the ch-07/app/ directory.)

 Listing 7-9. The spark-submit Command for the Stateless Batch Application

$SPARK_HOME/bin/spark-submit \

--master "local[*]" \

--class "com.coffeeco.data. SparkEventExtractorApp" \

--conf "spark.event.extractor. source.table=bronze.customerRatings" \

--conf "spark.event.extractor. destination.table=silver.customerRatings" \

--conf "spark.event.extractor. save.mode=Overwrite" \

--driver-java-options "-Dconfig.file=conf/local.conf" \

target/scala-2.12/spark-event-extractor-assembly-0.1-SNAPSHOT.jar

Starting with the spark-submit command may feel counterintuitive, but in practice,

it is helpful to work from the outside in. This is a bit like the test-driven development

(tdd) mindset, since to write tests for your application, you must first understand what

the application needs to do. So, where are we so far?

 Application Recap

You’ve learned what is required to assemble Spark applications, including the general

application layout and structure and the build directives. You were introduced to the

idea of reusable common component helpers, and all of these lessons can now be

bundled into a general Spark application blueprint. Additionally, you were introduced

to the idea behind the app and have a loose set of goals for what it must do, what the

runtime configuration will look like, and what the spark-submit command will look like

that will be used to launch the app.

This is what I refer to as all of the outside concerns needed to build and run the app,

except for the performance tuning, instrumentation, deployment, and monitoring steps,

which will be covered in detail at the end of the book. For now, the next step is to move

down to the next layer and start writing and wiring up the actual classes.

235

Chapter 7 Data pipelines anD struCtureD spark appliCations

 Assembling the SparkEventExtractor

As we know, each Spark application consists of a main class, which initializes the

SparkSession and one or more jobs that are run as a series of stages and tasks. These are

orchestrated through the SparkSession at runtime. In keeping with tradition, we will

build our application in exactly the same fashion. Starting off with the main class, which

is called the SparkEventExtractorApp, and continuing down through the layers of the

application architecture.

Tip open

ch-07/app/main/scala/com.coffeeco.data/

SparkEventExtractorApp in your favorite iDe as we walk through things.

 SparkEventExtractorApp

The main class is using a naming convention based on the name spark-event-

extractor. This pattern was used earlier when we defined the runtime configuration

that would be fed into the app (spark.event.extractor.source.table). Whether you

like convention-based approaches to naming or not, this can help take the burden of

naming things off your mind.

While you can technically have multiple main methods, all nestled neatly into

a single application, each time you deploy an application you can only pick a single

main class.

$SPARK_HOME/bin/spark-submit \

--class "com.coffeeco.data. SparkEventExtractorApp"

...

So, we begin again at the outset and build the app, taking advantage of our

SparkBatchApplication trait. For starters, implement the methods required by the trait.

object SparkEventExtractorApp extends SparkBatchApplication {

override def runBatch(saveMode: SaveMode): Unit = {}

}

236

Chapter 7 Data pipelines anD struCtureD spark appliCations

This starting point will guide us on our way. Let’s start at the top and move down.

This means we can start by validating the Spark configuration needed to properly run

our application.

Validate the Spark Configuration

This process is twofold. First we create some constants to encapsulate our three

expected runtime config values. Second, we need to test that validity to assume that our

application is prepared to execute.

Add a new child object called Conf inside the app and add some constants to

this object.

object SparkEventExtractorApp extends SparkBatchApplication {

object Conf {

 final val SourceTableName: String = " spark.event.extractor.

source.table"

 final val DestinationTableName: String = " spark.event.extractor.

destination.table"

 final val SaveModeName: String = "spark.event.extractor.save.mode"

}

...

}

There is nothing special going on here. We are just ensuring that we have marked the

configuration constants as final. This will allow you to reuse the application constants

throughout your source code or in your unit tests. Next, let’s add variables to store these

three runtime values.

lazy val sourceTable: String = sparkSession

.conf

.get(Conf.SourceTableName, "").trim

lazy val destinationTable: String = sparkSession

.conf

.get(Conf.DestinationTableName, "").trim

override lazy val saveMode: SaveMode = {

sparkSession.conf.get(Conf.SaveModeName, " ErrorIfExists") match {

case "Append" => SaveMode.Append

237

Chapter 7 Data pipelines anD struCtureD spark appliCations

case "Ignore" => SaveMode.Ignore

case "Overwrite" => SaveMode.Overwrite

case _ => SaveMode.ErrorIfExists

}

}

Now we have reliable constants and deterministic fallbacks in place for your

important application configs. The next step is to identify the configuration rules

that will validate the application configuration on startup. Listing 7-10 includes validationRules, which is an immutable map of functions (predicates) and helpful

error messages for malformed configurations.

 Listing 7-10. Validating the Application Config Using Validation Rules

override lazy val validationRules = Map[() => Boolean, String](

(()=> sourceTable.nonEmpty) -> s"${Conf.SourceTableName} can not be an

empty value",

(()=> destinationTable.nonEmpty) -> s"${Conf.DestinationTableName} can

not be an empty value",

(()=> sourceTable != destinationTable) -> s"The source table ${Conf.

SourceTableName}:$sourceTable can not be the same as your destination

table ${Conf.DestinationTableName}:$destinationTable.",

(()=> sparkSession.catalog.tableExists(sourceTable)) -> s"The source

table ${Conf.SourceTableName}:$sourceTable does not exist"

)

The validateConfig method from the SparkApplication trait (see Listing 7-6) provides the mechanics for processing the valiationRules when the application is

initializing. The object encapsulating the rules is a simple map taking a lambda function

(as a predicate) and the exception information if a rule is broken and the application fails

to initialize.

The validation logic (see Listing 7-10) is cut and dried. It does the following:

• Checks that the sourceTable and destinationTable values are not

empty. Given that the configuration falls back to being an empty

string, this is an effective way to test if the variables have been

initialized by real config values.

238

Chapter 7 Data pipelines anD struCtureD spark appliCations

• Checks that the sourceTable and destinationTable are not the

same table. Since reading and writing to the same table is most likely

not the use case we are looking to solve here.

• Checks for the existence of the sourceTable in the spark.sql.catalog.

If any of these validation fail, we throw a runtime exception, and the execution of the

application is halted. The output provides the information needed for anyone looking

to run the batch application to fix their mistakes and move on with their lives. Useful

self-service troubleshooting pays itself forward in strides when other engineers need to

redeploy an application and are unsure of the status of the runbook. Rather everything

they need is provided by the application.

The last thing we need to do is implement the runBatch method.

Write the Batch Job

The runBatch method is the heart of the actual application. Given the goal of this

application is to join customer ratings with their customer records and then write these

records to a secondary table, all you have to do is wire up that request.

Let’s look first at the final implementation (shown in Listing 7-11) and then work backward from there.

 Listing 7-11. Implementing runBatch to Run the SparkEventExtractor

override def runBatch(saveMode: SaveMode): Unit = {

SparkEventExtractor(sparkSession)

.transform(sparkSession.table(sourceTable))

.write

.mode(saveMode)

.saveAsTable(destinationTable)

}

The runBatch method is being used as a runtime delegate. What does this mean

exactly, you ask? In practice, it is much easier to test your application logic when you can

separate the concerns of application initialization from the underlying application logic.

This way, you can use traditional software-testing frameworks, mocking frameworks,

and your favorite IDE to assist in debugging and stepping through your code. The other

reason for this separation of concerns is to handle application serialization. Let’s look at

the Spark delegation pattern.

239

Chapter 7 Data pipelines anD struCtureD spark appliCations

Spark Delegation Pattern

Given that Spark is a distributed processing engine, this ultimately requires application

code to be serializable so it can be shipped around the cluster efficiently. This doesn’t

mean that everything needs to be needlessly serializable though.

We can rely on the fact that your core application (SparkEventExctratorApp) acts

as your Spark driver. As a refresher, this means it’s solely responsible for providing the

immutable SparkConf, initializing the SparkContext, allocating executor instances,

parsing, generating the execution plan of your logical application, and lastly scheduling

work to be done across the executors. This whole process is delegated to the Spark

framework, and it is also nicely abstracted away inside the SparkApplication trait.

This means that only the SparkEventExtractor needs to be serializable. Herein lies

the heart of the Spark delegation pattern. Let’s look at it in action now.

The high-level architecture of the SparkEventExtractorApp in Figure 7-3 is a visual representation of the application’s runtime operation. So, what does the class itself

look like?

240

Chapter 7 Data pipelines anD struCtureD spark appliCations

 Figure 7-3. The separation of concerns between the SparkEventExctractorApp

 (driver) and the work being delegated to the SparkEventExctractor class

SparkEventExtractor

Let’s start by looking at the class definition. Then we’ll dive deeper down. The class

signature in Listing 7-12 shows the Spark Delegate class.

 Listing 7-12. Spark Delegation Pattern: The SparkEventExtractor Delegate Class

case class SparkEventExtractor(spark: SparkSession)

extends DataFrameTransformer {}

The class is designed as a case class. This immutable construct provides inherent

serialization, as well as an autogenerated companion object. The companion object has

exactly one instance that is lazily generated, and the beauty here is that means Spark can

241

Chapter 7 Data pipelines anD struCtureD spark appliCations

rely on a lazy chain of delegation. Given that the SparkSession is our only prerequisite

for constructing the class itself, these details can be again offloaded onto Spark. The

class also extends a trait called DataFrameTransformer. This simple trait is designed to

provide additional structure to your application, mainly just a transform method.

trait DataFrameTransformer {

def transform(df: DataFrame): DataFrame

}

The DataFrameTransformer helps to force your hand, thus requiring our class to

implement the transform method. So, let’s implement the transform method now,

using what we know about the application requirements to do so.

import spark.implicits._

override def transform(df: DataFrame): DataFrame =

df

.filter($"eventType".equalTo("CustomerRatingEventType"))

.transform(withCustomerData)

This transform code filters out any unsupported events based on simple string

comparison and reduces the possible events down to CustomerRatingEventType. We

can now safely pass the events to our withCustomerData transform method. Let’s go

ahead and implement that now.

def withCustomerData(df: DataFrame): DataFrame = {

if (spark.catalog. tableExists("customers")) {

spark.table("customers")

.select(

$"customerId",

$"firstName",

$"lastName",

$"email",

$"created".as("joined")

)

.join(df, usingColumn = "customerId")

} else throw new RuntimeException("Missing Table:customers")

}

242

Chapter 7 Data pipelines anD struCtureD spark appliCations

Now we have a fully functioning application, for the most part. Sure, there are plenty

of opportunities to improve the code, such as adding layers of schema enforcement or

expanding the runtime configuration to include the table name for the customers table

(since hard-coding things can be problematic). But the important thing is that we have a

proof of concept ready, and we are one step closer to getting this application out the door.

 Compiling the Spark Application

At this point you can go ahead and compile your shiny new application using sbt.

> sbt clean assembly

Assuming you are using the provided source code from the chapter, you will see that

in addition to your application building successfully, you also ran a whole suite of unit

tests against the Spark application.

[info] ScalaTest

[info] Run completed in 12 seconds, 279 milliseconds.

[info] Total number of tests run: 4

[info] Suites: completed 1, aborted 0

[info] Tests: succeeded 4, failed 0, canceled 0, ignored 0, pending 0

[info] All tests passed.

 Exercise 7-3: Summary

This first batch application was an introduction to many layers of nuance and many years

of lessons learned writing Apache Spark applications. While the application doesn’t do

a ton of things now, what it does do exceptionally is set you up for future success. As we

move into stateful batch and Spark Structured Streaming in the chapters to come, we will

continue to fall back on the lessons learned in architecting this first batch application.

What you’ll learn next is quite possibly the most important step in the Spark

application development lifecycle. Just like with traditional software development, testing

your code isn’t simply a “nice to have,” it’s a requirement of the job. Furthermore, in the

case of Spark applications, testing your code ensures that you don’t waste valuable time

and money debugging your code at runtime. I also find it invaluable to write tests like

you’ll do in Exercise 7-4, as you will be running Apache Spark in the test environment to power your unit tests, which opens the doors to rapid application development, better

debuggability, and ultimately trustworthy applications that just work.

243

Chapter 7 Data pipelines anD struCtureD spark appliCations

 Testing Apache Spark Applications

Learning to properly test software is an artform. I’m sure you’ve heard the saying that it

can take you much longer to write unit tests than it takes to write the application itself.

This isn’t necessarily true in all cases, but it can certainly feel like it when you are starting out. I’ve found in practice that the right frameworks, libraries, and design patterns make

all the difference in the world. Let’s look at adding the right dependencies now.

 Adding Test Dependencies

The build.sbt located in the application root directory describes all the library

dependencies for our application, including libraries that are only used for testing. Open

the build.sbt file and scroll down to the section starting with libraryDependencies to

see all of the dependencies.

libraryDependencies ++= Seq(

...

"org.apache.spark" %% "spark-sql" % sparkVersion % Test classifier "tests",

"org.apache.spark" %% "spark-sql" % sparkVersion % Test classifier

"test- sources",

"org.scalatest" %% "scalatest" % "3.2.2" % Test,

"org.scalamock" %% "scalamock-scalatest-support" % "3.4.2" % Test,

"com.holdenkarau" %% "spark-testing-base" % "3.0.1_1.0.0" % Test

)

The special syntax Test informs the build process to load the following libraries only

during evaluation of our tests. This way, we don’t ship the additional libraries along with

our application since we won’t be using them again after the test execution.

Spark Testing Base i want to call out the spark- testing- base library by holden karau. holden is a pCM member of the apache spark project. her

dedication to the foundations of spark and to this testing library mean that you can

spend your time focusing on writing great applications.

Let’s look next at writing your first unit test.

244

Chapter 7 Data pipelines anD struCtureD spark appliCations

 Exercise 7-4: Writing Your First Spark Test Suite

Open the test directory of the application, which is located under the application root.

app/src/test/scala/

 com.coffeeco.data/

You’ll see the following files located in the test directory.

com.coffee.data/

SharedSparkSql.scala

SparkEventExtractorSpec.scala

TestHelper.scala

Let’s begin by looking at the SparkEventExtractorSpec. Open the file. You’ll notice

right off the bat that the class constructor extends AnyFlatSpec, which is provided

by the scalatest framework, and mixes in the scalatest Matchers as well as the

SharedSparkSql trait.

class SparkEventExtractorSpec extends AnyFlatSpec

with Matchers with SharedSparkSql

The SharedSparkSql trait enables you to run an embedded, configurable version of

Apache Spark inside your unit tests. This can be easily mixed into any of your unit tests

rather than attempting to mock out everything that you are doing. The SharedSparkSql

trait is shown in Listing 7-13.

 Listing 7-13. The SharedSparkSql Trait Mixes in the SparkContextProvider from

com.holdenkarau.spark.testing

trait SharedSparkSql extends BeforeAndAfterAll with SparkContextProvider {

self: Suite =>

@transient var _sparkSql: SparkSession = _

@transient private var _sc: SparkContext = _

override val sc: SparkContext = _sc

def conf: SparkConf

val sparkSql: SparkSession = _sparkSql

245

Chapter 7 Data pipelines anD struCtureD spark appliCations

override def beforeAll() {

_sparkSql = SparkSession.builder()

.config(conf).getOrCreate()

_sc = _sparkSql.sparkContext

setup(_sc)

super.beforeAll()

}

override def afterAll() {

try {

_sparkSql.close()

_sparkSql = null

LocalSparkContext.stop(_sc)

_sc = null

} finally {

super.afterAll()

}

}

}

The SharedSparkSql trait in Listing 7-13 requires each test suite to provide its own SparkConf. This is important since each test suite, for example the

SparkEventExtractorSpec, may require a certain set of configurations that may not be

necessary, or accurate, in other test suites. This guarantees that there will be exactly one

SparkContext created for each test suite, ensuring that tests can run quickly without

having to wait to spin up and down a local Spark runtime for every test. Now back to the

SparkEventExtractorSpec.

Configure Spark in the SparkEventExtractorSpec

You’ll see that this test suite begins by implementing the conf method of the

SharedSparkSql trait, which is shown in Listing 7-14.

246

Chapter 7 Data pipelines anD struCtureD spark appliCations

 Listing 7-14. Setting a Custom SparkConf for Use Within Your Spark Application

Unit Tests

override def conf: SparkConf = {

val sparkWarehouseDir = fullPath("src/test/resources/spark-warehouse")

val testConfigPath = fullPath("src/test/resources/application-test.conf")

// override the location of the config to our testing config

sys.props += (("config.file", testConfigPath))

// return the SparkConf object

SparkEventExtractorApp.sparkConf

.setMaster("local[*]")

.set("spark.app.id", appID)

.set("spark.sql.warehouse.dir", sparkWarehouseDir)

}

Something interesting is unfolding within the conf method in Listing 7-14. This is the first concrete example of overriding the base application.conf. Given there is only

one SparkContext created per SparkSession and given that the BeforeAndAfterAll

trait enforces this behavior, that means you only have one opportunity to provide these

overrides. Luckily, the SparkApplication trait you created earlier lazily initializes both the SparkConf and the SparkSession as two separate functions, effectively delaying

initialization until each object is required by the application.

When the following block is executed (from Listing 7-14).

SparkEventExtractorApp.sparkConf

.setMaster("local[*]")

.set("spark.app.id", appID)

.set("spark.sql.warehouse.dir", sparkWarehouseDir)

This is being done at the time of SparkSession initialization and this is called once

for each separate test in the test suite. You can see how this is called in the beforeAll

method of the SharedSparkSql trait.

_sparkSql = SparkSession.builder()

.config(conf).getOrCreate()

247

Chapter 7 Data pipelines anD struCtureD spark appliCations

An equally important tidbit is how this works. Given the SparkContext is created

exactly once, and given that the SparkConf is immutable, that means when the

SparkSession builder is called a second time, only the initial configuration will stick.

This is perfect for our testing use case.

 Testing for Success

The test case shown in Listing 7-15 is an example of testing the behavior of the SparkEventExtractor transform method.

 Listing 7-15. Testing the SparkEventExtractor Application Delegate

"SparkEventExtractor" should

"join customerRating events with customers" in {

val testSession = SparkEventExtractorApp.sparkSession

import testSession.implicits._

val ratingEvents = TestHelper

.customerRatingsDataFrame(testSession)

SparkEventExtractor(testSession)

.transform(ratingEvents)

.select(

$"firstName",

$"lastName",

$"rating").head shouldEqual Row("Milo", "Haines", 4)

}

The test case in Listing 7-15 begins by fetching the SparkSession of the SparkEventExtractorApp. Because the SparkSession is a lazily initialized singleton

object, we can guarantee that that all tests will reference the same session (object).

This is the getOrCreate conditional fork seen in the SparkSession builder shown in

Listing 7-16.

248

Chapter 7 Data pipelines anD struCtureD spark appliCations

 Listing 7-16. SparkSession Lazy Initalization from the SparkApplication Trait

lazy implicit val sparkSession: SparkSession = {

SparkSession.builder()

.config(sparkConf)

.enableHiveSupport()

. getOrCreate()

}

Afterward, we create some data for the test using a method on the TestHelper that

returns a DataFrame representing a small number of customer ratings. This data enables

us to test the behavior of the SparkEventExtractor transform method without having

to wire up a full end-to-end test of the application. To run a simple equality test on the

output of our transformation, we can do a simple select and then see if the resulting

row is what we are expecting.

This technique is good for asserting expectations on both success and failure

scenarios. Given that the transform method on the SparkEventExtractor requires the

customers table to exist on the SparkSession, we can simply drop that table from the

current active SparkSession and ensure that we throw the appropriate exception.

 Testing for Failures

Testing for failure is as important as testing for success in your Spark applications, if not

more so. The code block in Listing 7-17 shows you how to test for the not-so-happy path!

 Listing 7-17. Testing for Failures

"SparkEventExtractor" should

"fails to join customerRating events when customer table is missing" in {

val testSession = SparkEventExtractorApp.sparkSession

testSession.sql(" drop table customers")

val ratingEvents = TestHelper.customerRatingsDataFrame(testSession)

assertThrows[RuntimeException](

SparkEventExtractor(testSession)

.transform(ratingEvents))

}

249

Chapter 7 Data pipelines anD struCtureD spark appliCations

This simple unit test ensures that there are no shenanigans at play in the application

logic. Say you end up changing the behavior of the transform method later on down the

road. This will catch your future self, or other future engineers, from having to debug to

determine why things broke down the line.

 Fully Testing Your End-to-End Spark Application

No application is fully complete without a full, hands-off, end-to-end test. This means

that you are testing the full expectations of the application. Listing 7-18 shows a full end-to- end test using the main application as opposed to the application delegate, which was

used in the previous two examples.

 Listing 7-18. Testing the End-to-End Behavior of the Spark Application

"SparkEventExtractor" should

"handle end to end processing" in {

val testSession = SparkEventExtractorApp.sparkSession

TestHelper.customersTable(testSession)

TestHelper.customerRatingsTable(testSession)

val destinationTable = "silver.customerRatings"

testSession.conf

.set(SourceTableName, "bronze.customerRatings")

testSession.conf

.set(DestinationTableName, destinationTable)

testSession.conf

.set(SaveModeName, "Overwrite")

testSession.sql(s"drop table if exists $destinationTable")

SparkEventExtractorApp. run()

testSession.catalog

.tableExists("silver", "customerRatings") shouldBe true

testSession.table(destinationTable).count shouldEqual 1

}

250

Chapter 7 Data pipelines anD struCtureD spark appliCations

The full end-to-end test ensures that the bronze.customerRatings and customers

tables are both initialized in the SparkSQL catalog, since this is a requirement for the

application to run. It also ensures we drop the destination table, if it exists, prior to

calling the run method on the SparkEventExtractorApp. This way we have to have done

something in order for this table to exist. We go one step further and test that the table

does in fact exist, and that the one rating we have provided shows up.

 Exercise 7-4: Summary

Running unit tests is critical for any of your Spark applications. It is especially important

for larger, more complicated Spark applications. The beauty of writing unit tests that

lean on Apache Spark in order to test Apache Spark applications is that you can test all

aspects of your application, from corrupt input data, to missing tables, and everything

under the sun. As a bonus, rich application testing can also help you become better

at your Apache Spark skills. In the same way you test things using Apache Zeppelin,

you can also write your unit tests in a test-driven way, building your applications piece

by piece, while ensuring that your tests capture the end-to-end intentions of your

applications.

 Summary

We covered a ton of ground in this chapter. You learned about the different flavors of

Spark application, from the dynamic interactive applications (spark-shell and Apache

Zeppelin), to the humble batch-mode style apps, which consisted of stateless and

stateful batch processing. We finished the tour with an introduction to the two common

modes of structured streaming that handle all of your stateful stream processing needs—

micro-batch and continuous.

The journey then shifted gears and you turned your attention away from Spark

applications and segued into thinking about how to solve common data modeling

and requirement modeling use cases. Through this process, you were introduced to

CoffeeCo, you learned about the mission statement of this fake company, and you

walked through some thought exercises focused on the data modeling process. Given

that software engineering has established rules and design patterns and given that data

engineering is a subset of software engineering, then by association, we can follow the

same patterns that have resulted in large, reliable, tested, and fault-tolerant applications.

251

Chapter 7 Data pipelines anD struCtureD spark appliCations

Using the lens of traditional software engineering, you walked through a complete

end-to-end use case that started with an idea and resulted in a fully functioning, fairly

well tested Spark application. The important lessons learned here were that you can

easily test your Spark applications in the same way you’ve grown accustomed to testing

any traditional software, and it is only up to your imagination what you can build next.

This simple Spark application is ready to be whisked away to run as a data pipeline

job. That is really great since that is the focus of the next chapter. Are you ready? It is time to shift gears and learn how to drive your data pipelines using the popular workflow

orchestration framework, Airflow.

252

PART II

The Streaming Pipeline

Ecosystem

CHAPTER 8

Workflow Orchestration

with Apache Airflow

Generally speaking, there are two kinds of problems you’ll find yourself running into

more often than not as a data engineer. The first stems from broken promises, aka bad

upstream data sources, and the more general realm of the unknown unknowns with

respect to data movement through your data pipelines. The second problem you’ll find

yourself up against is time. This is not the part in the book where I start to talk to you about life, death, and decision making, but rather time as a boundary or a threshold.

Time exists between the physical runtime of jobs, as well as a very real line in the sand

when it relates to data service level agreements (SLAs). These data contracts revolve

around expectations in terms of the data format (aka schemas) as well as the agreed

upon time when data should be expected to become available. Another way in which

time gets the best of us is at the intersection of both of these common problems, e.g.,

upstream problems married happily with stale data, or missed SLAs.

If you think about these two kinds of problems (bad data and time constraints), you

may start to understand the need for workflow orchestration, as there is this butterfly

effect that stems from missing or stale data problems. Bad upstream data in the pipeline

leads to pipeline traffic jams, which propagate in turn throughout the data pipeline as

a whole. This can be caused by downtime in any APIs and services that feed directly

into your data pipeline, as well as broken or misconfigured jobs at any point in the data

pipeline that cause SLAs to be broken.

I tend to think about data pipelines like the paths, roads, waypoints, and destinations

on a map. Jobs can be thought of as waypoints as well as final destinations, and the data flow itself can be likened to an entity in transit across the map, be it bicycles, trains, cars, and anything in between. When things go wrong, things tend to back up (and in less

extreme cases fall through the cracks). You’ve likely seen this yourself at specific times of

day while commuting, for example during rush hour traffic, and also at random points in

255

© Scott Haines 2022

S. Haines, Modern Data Engineering with Apache Spark, https://doi.org/10.1007/978-1-4842-7452-1_8

Chapter 8 WorkfloW orChestration With apaChe airfloW

time when you find yourself at the whims of unexpected road construction or when you

find yourself with an unexpected flat tire. The solution to fix these problems is to remove

the obstacles from the road, and with time, the normal flow of traffic returns. When

things are running smoothly again, you can sit back and relax (breathe) and just enjoy

the ride.

Workflow orchestration isn’t only used to get unstuck. It is also used to build

blueprints for reliably accomplishing a set of tasks, such as moving and transforming

data through a data pipeline. Let’s talk briefly about workflow orchestration and then

take a look at how Airflow steps up to assist with these all-too-common problems.

 Workflow Orchestration

A workflow is a common set of actionable tasks that need to be executed in a specific

order to achieve a desired effect. In other words, a workflow looks at the big picture. It’s

results oriented, aka it isn’t burdened with the nitty gritty regarding how each task is

completed as long as it is completed on time and doesn’t interfere with the final results.

With respect to data, workflows are traditionally encapsulated by pipeline jobs,

which in turn work as tasks and grant responsibilities to individual operators, which

work together in a continuous, distributed data-processing network. Figure 8-1 shows a zoomed in view of pipeline job (A) to the left of a complete workflow (jobs A-E).

256

Chapter 8 WorkfloW orChestration With apaChe airfloW

 Figure 8-1. From pipelines to workflows. Workflows encapsulate the chain of

 inputs and outputs that makes up the distributed network of jobs being run across

 a data pipeline network

Another way to think about workflow orchestration is to associate it with the typical

hierarchical structure seen at the center of most companies and organizations. A director

works with one or more managers, who in turn manage a group of employees, who

complete the work required of them. How the work is completed according to schedule,

as a cohesive unit, falls under the orchestration side of workflow orchestration. You can

think of this component as the deadlines and demands passed down across the network

from director to manager and onto the teams completing the work.

When you put this all together, you have a unit that acts together, accomplishing

a distributed goal, according to a schedule that optimizes across the total number of

resources available. Now keep this concept in mind as we turn our attention to Apache

Airflow and move from the theoretical to the actionable.

 Apache Airflow

Apache Airflow is the most popular open-source workflow orchestration platform (at

the time of this writing). The project started out as an internal project at Airbnb late in

2014. It materialized from the general need to solve the common problem of increasingly

257

Chapter 8 WorkfloW orChestration With apaChe airfloW

complex workflows in a centralized way, thus enabling programmatic authoring and

scheduling of jobs through a simple UI. Essentially, a job defines its own schedule

and configuration within a simple Python script. This code-driven approach to job

scheduling allows for a level of rich customization that is difficult to achieve with static

configuration alone. You may be thinking to yourself that this is great for a company

the size of Airbnb, but why would you need to use Airflow, or any kind of automated

workflow orchestrator?

 When Orchestration Matters

Consider the following. You and your team can manage an ever-increasing workload up

until a critical tipping point, where each new task requires another task to be abandoned

and left behind or automated to make new room for more tasks. If your team is small,

you can manage the task load manually for a while at least. For example, kicking off daily

batch jobs or running manual reports for different teams in the company. However,

automation almost always plays a key role in the success of the team long- term, and

by removing the work that can be easily automated, the team can turn to new tasks,

accomplish new goals, reap new rewards, and extended their collective reach and

surface area, without needlessly scaling the team linearly with the workload.

How do you know where to start? If you find yourself or others on your team

spending more time on redundant work and toiling mindlessly on repetitive tasks, that

is your catalyst for automation. Make a plan of action to automate the unfulfilling, or

repetitive work, to free up development cycles and make room for whatever comes next.

Funny enough at a certain point you’ll find that even these automated tasks need to be

managed through automation, and that is the point where Apache Airflow and other

orchestration frameworks come into play.

 Working Together

Looking back to last chapter, where you learned the difference between stateless

and stateful batch jobs, Airflow can be used as an intersection of these two modes

of operation. It allows you to define robust workflows that sprinkle in more dynamic

configuration powered by Python helper libraries, additional Airflow plugins, and our

friend, Apache Spark. Let’s pick up from last chapter and work on automating the run of

our Spark application using Airflow.

258

Chapter 8 WorkfloW orChestration With apaChe airfloW

 Exercise 8-1: Getting Airflow Up and Running

Getting up and running with Apache Airflow can be a simple process when you can

manage things using Docker Compose. Head over to your IDE and open the exercise

contents for Chapter 8.

Exercise Materials You can find the materials for this chapter in the ch-08/

folder of the book’s Github resources at https://github.com/newfront/

spark-moderndataengineering.

We will start by simply spinning up Airflow. Open your terminal and change your

working directory to the ch-08 directory to get started.

 Installing Airflow

From the command line, change your working directory to the airflow directory. Run cd

ch-08/airflow. From the airflow directory, there are a few housekeeping chores you

need to do to have a smooth experience.

Add the Directories

The following Airflow directories will be volume-mounted into the Airflow container

runtime, thus enabling you to retain your job definition, and runtime logs all from a

simple local location. Run the command in Listing 8-1 from the airflow directory.

 Listing 8-1. Adding the Dags, Logs, and Plugins Directories Under the airflow

Directory

mkdir ./dags ./logs ./plugins

Now on to the next order of business.

Add Environment Variables for Docker Compose

Did you know you can export environment variables into an .env file that will be used

in the Docker Compose process? The .env file can be used to plug configurable paths,

users, Docker images, passwords, and more into your Docker Compose. This allows you

to reuse docker-compose.yaml definitions while not needing to hard-code usernames,

passwords, or anything that could end up being an eventual security exception.

259

Chapter 8 WorkfloW orChestration With apaChe airfloW

For example, the .env file from the chapter exercises (located at /ch-08/airflow/.

env) is pre-filled. If you wanted to update the user and group ID associated with Airflow

at runtime, or even change the Airflow UI port, you can edit the file directly or append

new variables using the append operator >>, which is shown in Listing 8-2.

 Listing 8-2. Using the Shell (Command Line), Echo, and the Append Operators

to Modify the Airflow .env File

echo -e "AIRFLOW_UID=$(id -u)\nAIRFLOW_GID=0\n _AIRFLOW_WEB_SERVER_

PORT=8088" >> .env

Port Conflicts airflow will bind to port 8080 by default, which is the same port

as your internal Zeppelin host. the update shown in listing 8-2 allows the two services to run together by switching the airflow port to 8088. if you don’t want to

remember the ports where the services run, you could run nginx and route based on hostnames.

Initialize Airflow

It is time to download, set up, and initialize Airflow. From the ch-08/airflow working

directory, execute the command in Listing 8-3 from the command line. This will prepare the environment and will bootstrap database tables, but you won’t start the Airflow

containers just yet.

 Listing 8-3. Using Docker Compose to Initialize Airflow

docker compose up airflow-init

The Docker Compose initialization command in Listing 8-3 may take some time downloading all the dependent Docker containers. Next the airflow-init command

will activate and bootstrap the Airflow metadata database, which stores all your Airflow

job configurations and then sets up the Redis database. That database is used with the job scheduler. Redis is an incredibly fast, performant, and popular key/value and data

structure store used by Airflow to manage scheduling and caching. You will learn to use

Redis to power your first structured streaming application in Chapter 10.

260

Chapter 8 WorkfloW orChestration With apaChe airfloW

You will notice a lot of logging during the initialization process. This process will

run the database migrations, bootstrapping and all other initialization scripts and

procedures. You can scroll through the output if you are interested (or to get ideas for

writing your own initialization routines); otherwise, you are ready to run Airflow.

 Running Airflow

With the initialization complete, you can execute the command in Listing 8-4.

 Listing 8-4. Running the docker compose up Command from the Airflow

Working Directory to Start Your Local Airflow Cluster

docker compose up

The Docker Compose process will spin up a total of seven Docker containers. This is

what is needed to have a fully functioning Airflow cluster up and running on your local

environment. One thing to point out is that—unlike in the prior chapters where we used

the run.sh script to start or stop the Zeppelin environment—the docker-compose up

command will only run for the life of the terminal window. If you want to run things as a

long-lived process, you’ll learn to run Airflow in detached mode next.

 Running Airflow in Detached Mode

Running in detached mode allows you to run each container as a background process,

which continues running until you explicitly stop the container process (or shut down

the machine). There are two things to think about when running in detached mode.

First is the process used to start up and tear down your containers. For example, do you

prefer to use command-line aliases or script files? The second thing to consider is how

you want to manage the composite runtime environments created using multi-service

Docker Compose definitions, and where you want your shared volumes and directories

to be collocated and referenced. Let’s look at running Airflow in detached mode and

then provide a solution for creating a more streamlined local Docker environment.

Start Things Up

The Docker Compose process accepts an explicit file pointer -f, which can be used to

pass an absolute path, as well as the -d flag, which changes the process to run in the

background rather than in the foreground. The difference between these two modes

261

Chapter 8 WorkfloW orChestration With apaChe airfloW

is that in the foreground you will see all the logs (across all containers) controlled by

your docker-compose.yaml definition. In the background, you must reference the

actual container identifier, docker logs -f container_ID, if you want to reattach to

the output of the container and view the output. Listing 8-5 shows the longer docker compose command. You can run this command from the Airflow working directory.

 Listing 8-5. Passing a File Reference to docker compose and Running in

Detached Mode

docker compose \

-f docker-compose.yaml \

up -d

Tear Things Down

When you are ready to shut down your Airflow cluster, you can use docker compose

again to stop all containers. Execute the command in Listing 8-6 to shut your Airflow cluster back down.

 Listing 8-6. Using docker compose to Tear Down All Services Directly Defined in the docker-compose.yaml Definition

docker compose \

-f docker-compose.yaml \

down --remove-orphans

The process of starting up and tearing down Airflow (or any Docker Compose-

controlled services) from within a local directory (such as /ch-08/airflow/) is simple

enough. However, the process is harder than it needs to be in the long term unless you

work to organize your local environments. For example, if you have many environments

controlled by many docker-compose.yaml definitions that support many different local

data engineering use cases, container naming collisions or other environment issues

can creep up. It can be much easier in the long run to create a service hierarchy, nestled

neatly under a root directory. We’ll look at optimizing your local environment now, to

reduce complexity as we move forward.

262

Chapter 8 WorkfloW orChestration With apaChe airfloW

 Optimizing Your Local Data Engineering Environment

As you add more and more technologies to your local data engineering environment,

you may find it useful to create a single location (parent directory) that can be used

to create an organized local data platform, broken down by services, organized along

with specific service volume mounts, docker-compose.yaml definitions, and .env

specifications to create a consistent environment for Docker to run a given technology.

Let’s optimize your environment now. Let’s copy all the hard work you’ve done so

far in this chapter into the dataengineering parent directory. Execute the commands in

Listing 8-7 to add the dataengineering directory to your home directory.

 Listing 8-7. Creating the dataengineering Root Directory and Copying the

airflow Directory and Contents from the Chapter Exercises

mkdir ~/dataengineering &&

cp -R /path/to/ch-08/airflow ~/dataengineering

With Airflow nestled nicely in its new home, the next step is to add a simple alias to

start and stop Airflow. Aliases can be added into your local Bash or shell environment

settings (.bashprofile, .bashrc, or .zshrc), which may differ depending on the

command line you run. Listing 8-8 shows how to add the airflow2_start and airflow2_stop aliases for UNIX-style systems.

 Listing 8-8. Using Bash Aliases to Simplify Starting and Stopping Airflow

Helpers for MDE for Apache Spark

export DATA_ENGINEERING_BASEDIR="~/dataengineering"

alias airflow2_start="docker compose -f ${DATA_ENGINEERING_BASEDIR}/

airflow/docker-compose.yaml up -d"

alias airflow2_stop="docker compose -f ${DATA_ENGINEERING_BASEDIR}/airflow/

docker-compose.yaml down --remove-orphans"

After making the changes to your profile, make sure you run source to load the

changes into your current session. For example, executing the command source

~/.zshrc adds the two Airflow aliases to my current terminal session. Now, whenever

you need to start the local Airflow cluster, you only need to remember airflow2_start,

and likewise when you are finished or want to gain some system resources back, it is as

263

Chapter 8 WorkfloW orChestration With apaChe airfloW

easy as calling airflow2_stop. You’ve made it easier to start and stop Airflow. You are

also probably dying to check things out. Let’s get back to it.

 Sanity Check: Is Airflow Running?

Presuming you have started Airflow using the airflow2_start alias, or with either

command in Listing 8-4 or Listing 8-5, then the simplest way to see if things are running is to open your favorite browser and head on over to http://localhost:8088. You will

be greeted by a login screen, which is shown in Figure 8-2.

 Figure 8-2. Airflow login screen

The login screen is confirmation that at least the Airflow webserver process is up and

running. You can log in with the username (airflow) and the password (airflow). This

should take you to Airflow’s main UI (see Figure 8-3).

264

Chapter 8 WorkfloW orChestration With apaChe airfloW

 Figure 8-3. Airflow’s default UI

Caution Your browser may tell you that the username and password have

been compromised. this is because the username:password combination

airflow:airflow is the airflow default and should never be used for anything

outside of local testing.

From the Airflow main screen, you’ll see all your job definitions, job metadata, and

statistics about the prior runs (if any) across each job. This is also a branching-off point

for general security and common administration tasks. We will spend a little time going

through the user/role controls and look at how to add secure configuration such as

passwords in this chapter.

For starters, your job definitions are officially called DAGs. This is because each job

is defined as a directed acyclic graph (DAG) of one or more operations, and essentially

each DAG is in and of itself a pipeline operation or an entire complex workflow.

265

Chapter 8 WorkfloW orChestration With apaChe airfloW

Note You can choose to keep or delete these default jobs. i recommend keeping

them around so you can look through the examples and get an idea of what is

possible with airflow.

 Running an Airflow DAG

With Airflow running, and while you are already on the DAGs screen, let’s run one of the

example jobs. Click example_bash_operator (at the top of the examples list) to go to the

DAG overview screen (see Figure 8-4).

 Figure 8-4. Airflow’s DAG details UI is where you will do much of your work

The DAG UI in Figure 8-4 gives you a general overview of a multi-step pipeline job. In order to run this example job, you need to do the following two things:

1. Toggle the switch icon (top left of the word DAG in Figure 8-4) to the enabled position. DAGs by default are disabled to save resources in

the cluster. You opt in to running each schedule or one-off execution.

266

Chapter 8 WorkfloW orChestration With apaChe airfloW

2. Click the Play icon (right side, next to the refresh and delete

buttons) to start running the pipeline.

The job will kick off (after confirming the optional JSON configuration) when you

press the Trigger button, and then you will see the job transition into the Running state.

The UI in Figure 8-5 shows the live Airflow job view.

 Figure 8-5. The runtime job view of a live Airflow job

It is worth mentioning that the job will complete almost immediately; however a nice

feature of the updated Airflow 2 UI is the auto-refresh option (shown on the right side of

Figure 8-5). If you turn this option on, you can watch the progress of your pipeline as it is actively switching between stages of operation, which can help you monitor/observe

progress, or faults, as tasks complete or fail in the DAG.

 Exercise 8-1: Summary

Apache Airflow is available to you now whenever you want to spin it up. However, there

is still more that you’ll need to accomplish to kick off Spark batch jobs from Airflow. The

next section teaches you about the components of Airflow, and then we will install the

Spark operator.

267

Chapter 8 WorkfloW orChestration With apaChe airfloW

 The Core Components of Apache Airflow

Now that you’ve run your first Airflow DAG, it is time to discuss the components that

allowed the DAG to run in the first place. Mainly Airflow’s tasks, operators, schedulers,

and executors.

 Tasks

Within each DAG, there exists a series of one or more tasks that are executed to fulfill the obligations set forth by a given DAG. Tasks are the basic unit of execution in Airflow,

which is also the case for Spark applications. The overlap here is that with Spark, you

have jobs, and each job is comprised of stages that distribute tasks. With Airflow, your

DAGs are composed of tasks, which run in a specific pre-defined order, and work is

completed within the context of the Airflow executor managing a specific DAG. Tasks

can execute arbitrary code using operators, and so each DAG can handle many tasks.

Each task can execute local or remotely depending on the operator in use.

 Operators

Airflow operators are templated tasks. Think of this as a blueprint that can be reused

to wrap generic use cases, enabling common Python code to be reused to fulfill a given

operation. In the example DAG (example_bash_operator), you were introduced to two

of the core Airflow operators—BashOperator and DummyOperator.

The BashOperator does exactly what you think it does; it will run a bash (or

command-line) operation. The DummyOperator is used to ensure the DAG has a final

common node in a graph of tasks. The DummyOperator can also be used as a placeholder

while you are building more complicated DAGs. Listing 8-9 shows the Python code for the example_bash_operator DAG.

 Listing 8-9. Creating a DAG of Synchronous and Asynchronous Tasks

from datetime import datetime, timedelta

from airflow import DAG

from airflow.operators.bash import BashOperator

from airflow.operators.dummy import DummyOperator

268

Chapter 8 WorkfloW orChestration With apaChe airfloW

with DAG(

dag_id='example_bash_operator',

schedule_interval='0 0 * * *',

start_date=datetime(2021, 12, 28),

dagrun_timeout=timedelta(minutes=60),

tags=['example', 'example2'],

params={"example_key": "example_value"},

) as dag:

run_this_last = DummyOperator(task_id='run_this_last',)

run_this = BashOperator(

task_id='run_after_loop',

bash_command='echo 1',

)

run_this >> run_this_last

for i in range(3):

task = BashOperator(

task_id='runme_' + str(i),

bash_command='echo "{{ task_instance_key_str }}" && sleep 1',

)

task >> run_this

also_run_this = BashOperator(

task_id='also_run_this',

bash_command='echo "run_id={{ run_id }} | dag_run={{ dag_run }}"',

)

also_run_this >> run_this_last

this_will_skip = BashOperator(

task_id='this_will_skip',

bash_command='echo "hello world"; exit 99;',

dag=dag,

)

this_will_skip >> run_this_last

if __name__ == "__main__":

dag.cli()

269

Chapter 8 WorkfloW orChestration With apaChe airfloW

Each task is defined in Listing 8-9 as an instance of either the DummyOperator or BashOperator. Each task you define acts as a node in the graph and as the engineer

designing the pipeline you establish the processing order by appending tasks (nodes) as

children or parents of each other.

Viewing your DAG in Graph mode (shown in Figure 8-6) can help you as you are planning more complex workflows. Essentially each task can be complex or simple. The

SparkOperator is an example of a complex task that can be added to a workflow.

 Figure 8-6. The graphical view of interconnected and independent tasks making

 up the simple example_bash_operator DAG

We will look at the specialized SparkSubmitOperator and the SparkSQLOperator

in more detail later in this chapter. To round out your working experience with all that

Airflow can do, my recommendation is to have fun and play around in your new local

sandbox environment. Next, we look at the process behind how Airflow runs each task

within a DAG.

 Schedulers and Executors

The executor is the process in Airflow responsible for kicking off the tasks in your DAG

based on a schedule. For example, say you have a job that needs to be run every day at

the end of the day. The properties for scheduling this DAG are shown in Listing 8-10.

 Listing 8-10. An Example DAG Configuring a Daily Cron Job

DAG(

dag_id="daily_active_users_reporting_job",

270

Chapter 8 WorkfloW orChestration With apaChe airfloW

start_date=days_ago(2),

default_args=args,

tags=["coffee_co","core"],

schedule_interval="@daily",

)

DAG definitions are parsed by Airflow initially on startup, and periodically to support

adding DAGs at runtime. When a new dag_id is encountered, the DAG metadata is

written to the RDBMS and the scheduler executor process will trigger the DAG run (if the

job is not disabled) as soon as the threshold of the start_date is crossed.

The schedule configured in Listing 8-10 sets the start_date to days_ago(2) with a schedule_interval of @daily. This is an example of a backfill job. It will look at today’s

date (on the Airflow server) and rewind so that the prior two days run before it begins

running on a daily schedule, which runs at the start of each day (or midnight). For more

information you can look at the Cron Presets section under DAG Runs in the official

Airflow documentation.

The Airflow executor waits for the scheduler to notify it that a DAG is ready to run.

In fact, the executor itself runs within the scheduler process. Due to this relationship,

you can only assign one mode of execution for a given Airflow cluster, given the tight

coupling between scheduling and execution.

Airflow ships with several useful executors, offering local or remote styles of

execution.

 Local Execution

The SequentialExecutor or LocalExecutor can be used if you are running a small

cluster. Local execution means that task execution will be collocated within the executor

process, and the executor process itself runs inside the scheduler process. This process

inception can be good for testing things out, but this pattern won’t scale to run multiple

DAGs in parallel.

 Remote Execution

For production environments where you have critical workflows that must run, you have

no choice but to use remote execution. This enables the workloads of multiple DAGS to

be executed in parallel across a network of Airflow worker nodes. To view what execution

mode your Airflow cluster is running in, execute the command shown in Listing 8-11.

271

Chapter 8 WorkfloW orChestration With apaChe airfloW

 Listing 8-11. Viewing the Airflow Executor Config

docker exec \

-it airflow_airflow-webserver_1 \

airflow config get-value core executor

The output will show you the CeleryExecutor, which is one of the more popular

remote executor options available in Airflow. The CeleryExecutor uses Redis for

scheduling and distributes its work across the Airflow Worker processes. Let’s turn our

attention now to integrating Apache Spark with Airflow.

 Scheduling Spark Batch Jobs with Airflow

Airflow is a robust external scheduler you can rely on to run your mission-critical Apache

Spark batch jobs. Furthermore, workflow orchestration is becoming an essential data

platform component used to automate increasingly complex data pipelines and meet

the needs of many internal and external data customers. As you learned in Exercise 8-1,

running a DAG on Airflow is a piece of cake (once you’ve learned the basics). To get

started with Airflow and Spark, all that is needed is the Spark Airflow Provider, which enables you to use a few different Spark operators.

 Exercise 8-2: Installing the Spark Airflow Provider

and Running a Spark DAG

This exercise will focus on teaching you to install the Apache Spark provider. You will

learn how to install things manually, and then we will turn our attention to using a pre-

built Airflow container that has the things we’ll need neatly packaged. Then you’ll learn

to configure some runtime configuration in Airflow using the Admin UI and finish off by

running the batch application from the last chapter using Airflow.

Let’s begin by using the version of Airflow you set up in Exercise 8-1. You’ll be executing the pip install commands directly on the webserver and worker Airflow

containers because the Spark Python modules must be available locally.

272

Chapter 8 WorkfloW orChestration With apaChe airfloW

 Locating the Airflow Containers

To run the install command, you need to list the full name of the Airflow containers.

Execute the command in Listing 8-12 to view the container names.

 Listing 8-12. Using Docker to Find Your Airflow Container Metadata

docker ps | grep airflow_airflow-w*

Once you have the container names, you can use the Docker CLI to run the install

script (using pip/Python).

 Manually Installing the Spark Provider

The following process shows how to authenticate as the airflow user and install the

Spark provider. Use Listings 8-13 and 8-14 as a guide to install the provider.

Note the example shows how to install the provider on the webserver. You need

to repeat the process on the worker(s) as well, or read on to use the pre-built

container.

 Listing 8-13. Opening a Bash Session as the Airflow (Admin) User to Gain the

Correct Permissions to Install a New Provider

docker exec \

--user airflow \

-it airflow_airflow-webserver_1 \

bash

From the Docker container, execute the pip install command shown in

Listing 8-14.

 Listing 8-14. Install the Spark Provider Using Pip

pip install \

--no-cache-dir \

--user \

apache-airflow-providers-apache-spark

273

Chapter 8 WorkfloW orChestration With apaChe airfloW

You’ve completed the work on the webserver. Unfortunately it is time to start the

process all over again for each worker instance. This will ensure the providers are

installed consistently across the Airflow cluster. Consistency is critical since Airflow

operates as a distributed service and you can’t always guarantee where a DAG will be

scheduled.

Note You can use named queues with the CeleryExecutor to assist in

distributing work across your workers, and you can also distribute tasks across

pre-configured processing pools, but queues and pools are out of the scope of this book.

When the DAG is triggered, for each independent DAG run, all tasks encapsulating

the DAG will run until they have all succeeded or a critical task fails, thereby blocking the

rest of the tasks from completing. In the real-world use, you’ll see worker nodes easily

spanning tens to hundreds of instances, and at an even larger scale within enterprise

clusters. Now imagine that you were tasked at ensuring that this full system was in

sync, keeping in mind that you’d have to repeat this step for each deployment to ensure

consistency. Would you want to be tasked with keeping everything in sync?

Of course not. This is clearly an anti-pattern, especially given we are running things

using containers in the first place. Sure, you could add some scripts to run when the

container is starting up, but that just means you are subject to potential runtime errors

due to failed dependencies. You’ve probably seen such issues when centralized package

repositories (like Pypi or Maven) have outages, or when package locations change (as is

often the case with archived artifact versions).

 Using Containers for Runtime Consistency

A runtime environment based on consistent containers removes the environmental

guesswork when troubleshooting, so you can narrow your focus and get things running

again quickly. For us this means we don’t have to mess with manually installing anything

required for our DAG’s operations.

Note the section titled “advanced operations” in the ch-08/airflow/

README.md includes directions for building a custom airflow docker image with

the apache spark provider and Java 11 (Jre) preinstalled.

274

Chapter 8 WorkfloW orChestration With apaChe airfloW

In order to use the pre-built Docker container (newfrontdocker/apache- airflow-

spark:2.1.0), you have to make a quick adjustment to the environment file located at

~/dataengineering/airflow/.env. Then for the changes to take effect you also need to

restart your Airflow cluster. As a first step, use the airflow_stop alias to shut down your

existing cluster.

Note if you have yet to set up your local environment, go back to listing 8-7 for directions.

Now, edit the .env file (using an editor or the command line) to uncomment the

single line shown in Listing 8-15.

 Listing 8-15. Adding the Custom Airflow Image to the Docker Environment File

AIRFLOW_IMAGE_NAME=newfrontdocker/apache-airflow-spark:2.1.0

When you are finished, save the change and start the cluster back up using your

airflow_start alias. You won’t need to reinitialize anything since you are only switching

out the runtime container (and not switching to a different RDBMS or executor backend).

Now we can move on to running a Spark DAG.

 Running Spark Jobs with Apache Airflow

You’ve taken care of all the required dependencies, and Airflow is now ready to run

your Spark batch jobs. In this next section, you’ll be using the Airflow UI to add some

additional configurations and helpers for running your Spark jobs.

Add Airflow Variables

Airflow variables are similar to environment variables, but they are configured in the

metadata database and accessible through airflow.models Python package. Variables

can be managed directly in Airflow using the Admin UI (Admin ➤ Variables), or by using

the Airflow command line directly. This service allows you to configure key/value pairs

that can be reused in your DAGs.

275

Chapter 8 WorkfloW orChestration With apaChe airfloW

Listing 8-16 adds the SPARK_HOME variable to the set of runtime variables accessible through your Airflow DAGs. Variables can augment your DAGs, and more importantly,

variables are controlled by administrators and require role-based user privileges to add

or remove.

 Listing 8-16. Airflow Variables Enable You to Inject Configuration Directly Into Your DAGs

docker exec \

-it airflow_airflow-webserver_1 \

airflow variables set SPARK_HOME /opt/spark

Now open the Airflow UI (http://localhost:8088) and click the Variables control

(in the Admin menu) to see the new variable in the list (shown in Figure 8-7).

 Figure 8-7. The SPARK_HOME variable is seen in the list

276

Chapter 8 WorkfloW orChestration With apaChe airfloW

You can also edit the metadata for any of the variables you add to Airflow to add

descriptions. This simple action can help to document the usage of a given variable and

clearly relay your intentions.

Note the

admin menu is only available to users with the admin role, so these

variables can’t be edited by just anyone. the “Continued explorations” section of

this chapter shows you how to create a regular user and introduces the notion of

airflow roles (role-based access control).

Add Airflow Connections

Connections enable Airflow to communicate with external services, such as Apache

Spark, and new connections can be set up directly using the Admin UI (Admin ➤

Connections) or with the command line (airflow connections list).

Given the Spark Airflow provider is a module extending Airflow, it would make sense

that there is a simple means to connect to a given Spark cluster (or process). Open the

Airflow UI and go to the Admin ➤ Connections page. Click the + button (on the left side)

to create a new connection for Spark. This action will take you to a new page with an

empty form.

Use the form to create local_spark_connection using the Spark type from the Conn

Type menu. The completed form is shown in Figure 8-8.

277

Chapter 8 WorkfloW orChestration With apaChe airfloW

 Figure 8-8. Using the Airflow UI to add a Apache Spark connection

With the connection created, let’s move on to writing your first Spark DAG. You will

be using the SparkSubmitOperator, which is included in the Spark provider you installed

in your Airflow cluster.

278

Chapter 8 WorkfloW orChestration With apaChe airfloW

 Writing Your First Spark DAG

Spark ships with a few example applications. One of these is called SparkPI. We’ll use

this example Spark application to get familiar with writing a new DAG. Let’s roll with the

idea of having some “daily pi.”

To get started, create a file named daily_spark_pi.py inside the Airflow DAGs

directory (~/dataengineering/airflow/dags/daily_spark_pi.py). Then type (or copy)

the code in Listing 8-17 and save your changes.

 Listing 8-17. Using the SparkSubmitOperator to Get Your Daily Dose of PI

from airflow.providers.apache.spark.operators.spark_submit import

SparkSubmitOperator

from airflow.models import DAG, Variable

from airflow.utils.dates import days_ago

args = {

'owner': 'airflow',

}

spark_home = Variable.get("SPARK_HOME")

with DAG(

dag_id='daily_spark_pi',

default_args=args,

schedule_interval='@daily',

start_date=days_ago(1),

tags=['coffeeco', 'core'],

) as dag:

spark_pi_job = SparkSubmitOperator(

application=f'{spark_home}/examples/jars/spark-

examples_2.12-3.1.1.jar',

conn_id="local_spark_connection",

java_class="org.apache.spark.examples.SparkPi",

task_id="spark_pi_job"

)

279

Chapter 8 WorkfloW orChestration With apaChe airfloW

The DAG in Listing 8-17 starts by importing the SparkSubmitOperator and some helper libraries that enable you to access the Airflow variables, along with some

additional utilities used for scheduling. We then create a dictionary that currently stores

the ownership metadata for the DAG. Next, we fetch the spark_home variable for use in

creating the spark_pi_job. Then we specify the DAG metadata and schedule.

with DAG(

dag_id='daily_spark_pi',

default_args=args,

schedule_interval='@daily',

start_date=days_ago(1),

tags=['coffeeco', 'core'],

) as dag:

And we add a single task to the DAG block using the SparkSubmitOperator.

spark_pi_job = SparkSubmitOperator(

application=f'{spark_home}/examples/jars/spark-examples_2.12-3.1.1.jar',

conn_id="local_spark_connection",

java_class="org.apache.spark.examples.SparkPi",

task_id="spark_pi_job"

)

Now that you have written the DAG, let’s run it.

 Running the Spark DAG

All new DAGs start off in the paused position. This can be configured differently, but

in general it is a good idea since this behavior is used to protect your Airflow cluster

resources from being overwhelmed by many DAGs competing to start up at the same

time. Let’s unpause this DAG using the command line.

docker exec \

-it airflow_airflow-webserver_1 \

airflow dags unpause daily_spark_pi

Dag: daily_spark_pi, paused: False

280

Chapter 8 WorkfloW orChestration With apaChe airfloW

With the DAG unpaused, you can manually trigger it.

docker exec \

-it airflow_airflow-webserver_1 \

airflow dags trigger daily_spark_pi

Assuming everything worked as expected, you should be able to list the successful

runs of this DAG.

docker exec \

-it airflow_airflow-webserver_1 \

airflow dags list-runs \

-d daily_spark_pi \

--state success

Using the Airflow UI, you can also look at the logs that were generated during the run

of the DAG. To do this, follow these steps:

1. Go to the Airflow DAGs home screen and filter by active jobs using

the coffeeco tag (/home?status=active&tags=coffeeco).

2. Click the daily_spark_pi DAG and switch to the Graph View

(/graph?dag_id=daily_spark_pi).

3. Click the spark_pi_job. You will see a button at the top named

Log; click it to view the logs from this run of the task. See

Figure 8-9.

281

Chapter 8 WorkfloW orChestration With apaChe airfloW

 Figure 8-9. Viewing the logs from the run of your Spark PI DAG

The logs will show you the output of the job, including the results of running the

Spark DAG. If you scroll down the page, you will see the following:

{spark_submit.py:526} INFO - Pi is roughly 3.1411757058785295

This now confirms that you are able to run your Spark workflows from Apache

Airflow. Although this is exciting, what you are going to do next is set up a DAG to run the

Spark application you created in Chapter 7.

282

Chapter 8 WorkfloW orChestration With apaChe airfloW

 Exercise 8-2: Summary

This exercise taught you to install the Apache Spark provider, configure variables and

connections, and write and run a simple Spark DAG using the SparkSubmitOperator.

In the final exercise of the chapter, you learn to run the SparkEventExtractorApp from

Chapter 7 using the skills you’ve acquired in the first two exercises.

 Running the SparkEventExtractorApp using Airflow

In the last chapter, you wrote and compiled your first Spark application. You learned

how to create a configuration-driven application that simply joins data from two tables

backed by the local data warehouse. This simple ETL-like process combined data from

the customers table and joined it against the customerRatings table.

For the rest of the chapter, you will be setting up an Airflow DAG to configure and

run this application with Airflow.

 Starting with a Working Spark Submit

Given our goal is to set up a DAG to run our SparkEventExtractorApp, the first place

to start is looking at what is needed to run the application. To recap, we had to provide

a good amount of configuration, the JAR location, and the driver app configuration to

launch the app.

$SPARK_HOME/bin/spark-submit \

--class "com.coffeeco.data.SparkEventExtractorApp" \

--packages=org.mariadb.jdbc:mariadb-java-client:2.7.2 \

--conf "spark.event.extractor.source.table=..." \

--conf "spark.event.extractor.destination.table=... " \

--conf "spark.event.extractor.save.mode=..." \

--conf "spark.sql.warehouse.dir=..." \

--driver-java-options "-Dconfig.file=conf/local.conf" \

target/scala-2.12/spark-event-extractor...jar

When we use the SparkSubmitOperator in Airflow, it is essentially generating a

similar spark-submit command within the Airflow cluster context. This requires us to

modify the Spark submit code slightly in order to run this as a DAG. Let’s start backward

283

Chapter 8 WorkfloW orChestration With apaChe airfloW

and look at the final DAG, and then move the required configurations and JARs into

place so things can work.

 Exercise 8-3: Writing and Running the Customer Ratings

Airflow DAG

Create a new file in the ~/dataengineering/airflow/dags directory named customer_

ratings_etl_dag.py. Then copy (or paste) the following Python code fragments to

assemble the final DAG.

from airflow.providers.apache.spark.operators.spark_submit import

SparkSubmitOperator

from airflow.models import DAG, Variable

from airflow.utils.dates import days_ago

Next, we’ll add our user attribution, and we’ll reuse the Spark home variable from

our last DAG.

args = {

'owner': 'scotteng',

}

spark_home = Variable.get("SPARK_HOME")

So far so good. Next, we’ll create a new dictionary to store the full Spark

configuration for our job.

customer_ratings_conf = {

"spark.sql.warehouse.dir": "s3a://com.coffeeco.data/warehouse",

"spark.hadoop.fs.s3a.impl": "org.apache.hadoop.fs.s3a.S3AFileSystem",

"spark.hadoop.fs.s3a.endpoint": "http://minio:9000",

"spark.hadoop.fs.s3a.access.key": "minio",

"spark.hadoop.fs.s3a.secret.key": "minio_admin",

"spark.hadoop.fs.s3a.path.style.access": "true",

"spark.sql.catalogImplementation": "hive",

"spark.sql.hive.metastore.version": "2.3.7",

"spark.sql.hive.metastore.jars": "builtin",

"spark.sql.hive.metastore.sharedPrefixes": "org.mariadb.jdbc,com.mysql.

cj.jdbc",

284

Chapter 8 WorkfloW orChestration With apaChe airfloW

"spark.sql.hive.metastore.schema.verification": "true",

"spark.sql.hive.metastore.schema.verification.record.version": "true",

"spark.sql.parquet.compression.codec": "snappy",

"spark.sql.parquet.mergeSchema": "false",

"spark.sql.parquet.filterPushdown": "true",

"spark.hadoop.parquet.enable.summary-metadata": "false",

"spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version": "2",

"spark.sql.hive.javax.jdo.option.ConnectionUserName": "dataeng",

"spark.event.extractor.source.table": "bronze.customerRatings",

"spark.event.extractor.destination.table": "silver.customerRatings",

"spark.event.extractor.save.mode": "ErrorIfExists"

}

This dictionary can be used directly in SparkSubmitOperator, reducing the chore

of scanning the configuration inside of the DAG itself. Before you write the actual

DAG, you’ll need to add the following variables (app_jars and driver_class_path) to

increase the readability of the final DAG.

app_jars=f'{spark_home}/user_jars/hadoop-aws-3.2.0.jar,{spark_home}/

user_jars/hadoop-cloud-storage-3.2.0.jar,{spark_home}/user_jars/mariadb-

java- client-2.7.2.jar,{spark_home}/user_jars/mysql-connector-java-8.0.23.

jar,{spark_home}/user_jars/aws-java-sdk-bundle-1.11.375.jar'

driver_class_path=f'{spark_home}/user_jars/mariadb-java-

client-2.7.2.jar:{spark_home}/user_jars/mysql-connector-java-8.0.23.

jar:{spark_home}/user_jars/hadoop-aws-3.2.0.jar:{spark_home}/user_jars/

hadoop-cloud-storage-3.2.0.jar:{spark_home}/user_jars/aws-java-sdk-

bundle-1.11.375.jar'

Finally, we can now use the variables and properties to create our ETL DAG.

with DAG(

dag_id='customer_ratings_etl_dag',

default_args=args,

schedule_interval='@daily',

start_date=days_ago(1),

tags=['coffeeco', 'core'],

) as dag:

285

Chapter 8 WorkfloW orChestration With apaChe airfloW

customer_ratings_etl_job = SparkSubmitOperator(

application=f'{spark_home}/user_jars/spark-event-extractor.jar',

jars=app_jars,

driver_class_path=driver_class_path,

conf=customer_ratings_conf,

conn_id="local_spark_connection",

name='daily-customer_ratings',

verbose=True,

java_class="com.coffeeco.data.SparkEventExtractorApp",

status_poll_interval='20',

task_id="customer_ratings_etl_job"

)

This is it. Save the file and give yourself a quick pat on the back.

The lion’s share of the setup work is all configurations. You probably noticed many

new Spark settings being used to wire up the job. Let’s look first at the Spark SQL

warehouse configurations.

 The Spark Configuration

The job configurations declare the settings for our Spark SQL warehouse.

"spark.sql.warehouse.dir": "s3a://com.coffeeco.data/warehouse",

"spark.hadoop.fs.s3a.impl": "org.apache.hadoop.fs.s3a.S3AFileSystem",

"spark.hadoop.fs.s3a.endpoint": "http://minio:9000",

"spark.hadoop.fs.s3a.access.key": "minio",

"spark.hadoop.fs.s3a.secret.key": "minio_admin",

"spark.hadoop.fs.s3a.path.style.access": "true"

The spark.sql.warehouse.dir property was used in the last chapter. As a refresher,

this is the single immutable warehouse path that is provided for the SparkContext

when your application is starting up. We’ve configured this to point to Amazon S3 using

another service called MinIO. MinIO works like Amazon S3 and can run locally or in

the cloud as a drop-in replacement. We’ll cover how this works in more detail after this

section is complete. However, by moving from a locally mounted directory to an S3

286

Chapter 8 WorkfloW orChestration With apaChe airfloW

clone, we are simplifying future work for ourselves (in the case where we will be using

S3) by introducing a local service that is fully interoperable. This makes it painless to

switch between our local environment and other environments (including production)

without needing to change our mental models too much.

Local Job Configuration

We are also providing the three required configurations to inform our Spark batch

job where to look to find the data we are intending to join. These configurations were

introduced in Chapter 7 and allow you to modify the database tables and names.

"spark.event.extractor.source.table": "bronze.customerRatings",

"spark.event.extractor.destination.table": "silver.customerRatings",

"spark.event.extractor.save.mode": "ErrorIfExists"

Spark Submit Properties

The properties for the SparkSubmitOperator enable us to configure how we launch

a Spark application, with almost the same conventions as the actual spark-submit

command.

SparkSubmitOperator(

application=f'{spark_home}/user_jars/spark-event-extractor.jar',

jars=app_jars,

driver_class_path=driver_class_path,

conf=customer_ratings_conf,

conn_id="local_spark_connection",

name='daily-customer_ratings',

verbose=True,

java_class="com.coffeeco.data.SparkEventExtractorApp",

status_poll_interval='20',

task_id="customer_ratings_etl_job"

)

In the case of running this Spark application, we need to provide some additional

JARs to the runtime. We add the jars and driver_class_path configuration to tell Spark

to load some driver-specific JARs (primarily the hive JDBC JARs), as well as the Amazon

S3 JARs to enable us to communicate with the MinIO S3 client.

287

Chapter 8 WorkfloW orChestration With apaChe airfloW

We also flipped on verbose logging (verbose=True) to monitor the job from the

Airflow side of things. Lastly, we set the job completion polling to every 20 seconds

(status_poll_interval='20'). This allows us to continue to fetch updates from the job

and get fresh log updates every 20 seconds, rather than seeing nothing while the job is

waiting to fail or complete.

Docker Inception Because airflow is running inside of Docker, we must ensure

that the spark Jars and configuration are all available to the airflow workers. as

a recap, this is because we are running the CeleryExecutor, and this means

we are running remotely on the airflow workers. this process can be simplified

by providing a common file system to your Docker instances, or even by using a

Cloud object store (like amazon s3). then your dependencies (Jars) and additional

application configuration can be fetched on-demand by airflow.

Copy the Spark Application JAR into the Shared Spark JARs Location

Since you are reusing the Spark application you created in Chapter 7, you’ll need to copy the JAR into the spark/jars directory referenced in ~/dataengineering/airflow/

docker-compose.yaml.

cp /path/to/ch-07/app/target/scala-2.12/spark-event-extractor-assembly-0.1-

SNAPSHOT.jar ~/dataengineering/airflow/spark/jars/spark-event-extractor.jar

Now, let’s run the DAG.

 Running the Customer Ratings ETL DAG

To run the DAG, you need to go through the extended environment setup. The directions

are available in the main README file located in the chapter materials. The setup process

will give you all the things you need to run your new DAG. Keep in mind that to run

the job more than once, you have to toggle the spark.event.extractor.save.mode to

Overwrite. Alternatively, you can just delete the silver.customerratings directory

from the Spark SQL data warehouse location.

Using the Airflow UI, go to the main DAGs page and click the customer_ratings_

etl_dag DAG. From the UI, click the Trigger Now button. You should see a success status

like the example shown in Figure 8-10.

288

Chapter 8 WorkfloW orChestration With apaChe airfloW

 Figure 8-10. Successfully running the SparkEventExtractorApp from Airflow

You can look at the Spark logs and see how all the moving pieces came together, but

essentially, what you have accomplished this chapter is worth a round of applause.

 Exercise 8-3: Summary

The last exercise of the chapter showed you how to launch a more complex Spark batch

job using an Airflow DAG. There was a good amount of work that went into getting things

set up to use the final docker-compose-chapter-end.yaml, in place of the docker-

compose.yaml that was used in Exercise 8-2. Before we close the chapter, let’s look at the underlying architecture and components required to make running the DAG possible.

 Looking at the Hybrid Architecture

There are now quite a few moving pieces to keep in mind when you run this DAG. For

starters, you have to manage your local MySQL backed (Hive Metastore), as well as the

Airflow Docker containers, and somehow provide additional shared volumes for your Spark

SQL data warehouse as well. All these central data platform components come together to

form the critical pieces of your infrastructure and enable Airflow to run the Spark DAG.

289

Chapter 8 WorkfloW orChestration With apaChe airfloW

Figure 8-11 is an example of the simplified current state of your local data platform.

You have everything running to make Airflow work. You have the MySQL backed Hive

Metastore, which is responsible for storing the metadata for your distributed data tables,

and you also have your new MinIO S3 data lake. You can now reuse shared configuration

from your local Spark installation and reuse the configs and JARs between Zeppelin and

Airflow. This provides you with a Spark UI for interacting with the data you produce from

Airflow. On the opposite side of the table, you have Airflow, which can run jobs to store

data in your data lake or in MySQL as a JDBC table.

 Figure 8-11. The component architecture behind the Customer Ratings ETL DAG

 Setting Up the Extended Environment

The main README in the chapter materials provides you with step-by-step instructions

for getting your extended local environment up and running. There are some additional

points worth going over, with respect to both MinIO as well as migrating your Hive

Metastore.

The extended environment moves all of the key pieces of this hands-on environment

into a single location on your laptop. This will enable you to reuse all of these common

architectural components from here on out, without needing to remember which

chapter exercise we added something. The path is set to your home directory in a folder

named dataengineering.

290

Chapter 8 WorkfloW orChestration With apaChe airfloW

~/dataengineering

-/airflow

-/minio

-/mysql

-/spark

-/zeppelin

 Migrating to MinIO from the Local File System

To help simplify things moving forward, there are instructions for using the MinIO

distributed file system located inside the chapter materials. In a nutshell, MinIO is an

Amazon S3 clone and is fully compatible with the S3 APIs. This will reduce some of the

complexity moving forward in future chapters. One point to keep in mind is that when

first running MinIO, you have to set some permissions on the file system. Luckily, you

can do this via the UI. See Figure 8-12.

 Figure 8-12. Switch the file system from the default Read Only to Read and Write

You’ll need to open the MinIO UI (http://localhost:9001). You can also add

a record in your /etc/hosts folder to make this easier to find. Mine is just http://

minio:9001. From the home screen, you will be prompted to authenticate (the user

and password is stored in the docker-compose.yaml file for MinIO). Or if you haven’t

291

Chapter 8 WorkfloW orChestration With apaChe airfloW

changed anything, it is username: minio, password: minio_admin. This will allow you to

apply your prefix permissions.

 Apply the Bucket Prefix Permissions

On the left side of the screen (shown in Figure 8-13), you will see com.coffeeco.data.

This is the default bucket name, and you just need to hover over the name and click the

little dots that show up to open up the Permissions menu.

 Figure 8-13. Editing inside the MinIO browser

Just add the prefix /warehouse/* and set it to Read and Write, and you will be golden.

The next thing you may want to do is migrate your Hive Metastore tables to a better

common location.

 Bootstrapping MySQL in a Common Location

Your Hive Metastore is most likely located in the ch-06 directory. You can either export

the SQL databases and tables from your current metastore and move the existing

contents into ~/dataengineering/mysql, or you can start from scratch and bootstrap

things in the ~/dataengineering/mysql directory. The mysql directory in the chapter

materials includes a README.md that provides step-by-step directions to start over with a

clean hive installation.

From here on out, we will be reusing this common setup as we traverse the

data waters.

292

Chapter 8 WorkfloW orChestration With apaChe airfloW

 Continued Explorations

This chapter was a complete look at using Airflow to schedule Apache Spark

applications. As you know, there is always much more that you can learn (but not

everything fits into the book). As a continued exploration, I suggest the following:

• You can add DAG override variables when you go to run your DAGs.

This enables you to provide additional changes to the underlying

DAG without needing to go back and change the underlying Python

code. Try adding a variable to change the following variable:

spark.event.extractor.save.mode

The available options are ErrorIfExists, Overwrite, Ignore, and Append.

• Create another Spark application using the common traits from

Chapter 7 and run it using Airflow.

• Try generating a new dataset or thinking about a new problem you

can solve with the data in your local data warehouse.

In addition to the continued explorations, the following section goes over the process

of creating individual users and assigning roles.

 Creating a User

Creating a new user is simple using the Airflow command line. Essentially, all of the user

commands are nestled within the users sub-command.

docker exec \

-it airflow_airflow_webserver-1 \

airflow users [sub-command]

Say, for example, you needed to create a new user and grant them limited access

within Airflow. You can use the User role to assign normal permissions. Execute the

command in Listing 8-18 to generate the scotteng user, for example.

293

Chapter 8 WorkfloW orChestration With apaChe airfloW

 Listing 8-18. Generating a New User with the Airflow Command Line

docker exec \

-it airflow_airflow_webserver-1 \

airflow users create \

--username scotteng \

--firstname Scott \

--lastname Haines \

--role User \

--email scott@coffeeco.com

This command will ask you for a password, so just follow the prompt to finish

creating the new user. When you are finished, log out of Airflow, and then log back in as

the user scotteng. You will notice that the Admin or Security menus are now gone, but

you still have access to run DAGs (see Figure 8-14).

 Figure 8-14. Viewing the Airflow UI as a normal user

That is all for now.

294

Chapter 8 WorkfloW orChestration With apaChe airfloW

 Summary

This chapter covered at a high level the concept of workflow automation and introduced

you to Apache Airflow. While we could easily spend the rest of the book discussing how

to create more and more complex Airflow DAGs, and dive deeper into the additional

nuances of Airflow, that exercise will have to be left to you. While we will touch on

Airflow again as we continue our journey, our next stop will take us to the exciting topic

of writing Structured Streaming applications with Apache Spark. Buckle up, as things are

about to start moving quickly!

295

CHAPTER 9

A Gentle Introduction

to Stream Processing

Learning to tackle and optimize data engineering problems can be challenging due to

the many dimensions each problem can take on. At the outset of each new problem,

you must think about data discovery, wrangling, ingestion, transformation, and data

accountability, which is an umbrella relating to data contracts (strictly defined data

definitions), as well as the need to optimize the data ingestion footprint (since data at

scale can easily eat into operation costs). There are additional concerns relating to data

access, lineage, and governance that need to be back of mind as well. Understanding

how to use your collective knowledge to create quick plans of data attack is a skill that

will get you far as a modern data engineer.

Think about the various ways you have learned to work with data over the course of

this book, whether it was starting off small using the spark-shell to explore initial ideas,

pursuing those ideas further using notebooks (Apache Zeppelin), and finally taking the

lessons you learned and rolling them up into Spark applications. Through this process,

you learned to create reusable, tested, Spark applications, and you also learned the

important skill of problem-solving through exploration. You learned how to work through

the stages of problem identification and decomposition—understanding the problem,

creating a plan of attack, testing and validating your results, and then wrapping up the

solution as a finished application. What is even more important is that you learned, by

doing, the steps to break these end-to-end data questions up by writing transformative

queries with Spark SQL. You learned how to test the behavior of these micro-applications

(using queries) and even how to schedule their periodic running (using Apache Airflow).

These steps have all been leading up to now. As promised at the end of the last

chapter, things are about to start moving a lot faster. Why is that? Because right now we

are starting the journey from batch processing to stream processing, or the processing of

unbounded datasets.

297

© Scott Haines 2022

S. Haines, Modern Data Engineering with Apache Spark, https://doi.org/10.1007/978-1-4842-7452-1_9

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

For many use cases, processing data in-stream, or as it becomes available, can help

reduce a really enormous data problem (due to the scale of the event data) into one

that is much more manageable. Simply by processing a smaller number of data points

more often, you can divide and conquer a data problem that may otherwise be cost-

prohibitive. However, how you transition from a batch mindset to a streaming mindset

can also be tricky.

For example, say you are tasked with creating an application that must process

around 1 billion events (1,000,000,000) a day. While this might feel far-fetched due to

the sheer size of the data, it often helps to step back and think about the intention of

the application/process. If the data can be broken down (partitioned) and processed in

parallel as a streaming operation (aka, in-stream), you only have to create an application

that can ingest, and process, a mere 11.5 thousand (k) events a second (or around 695k

events a minute if the event stream is constant).

Although these numbers may seem out of reach, this is where distributed stream

processing can really shine. Essentially, you are reducing the perspective, or scope, of the

problem to accomplish a goal over time, in a more distributed fashion over a partitioned

dataset. While not all problems can be handled in-stream, a surprising number of

problems do lend themselves to this processing pattern.

This chapter is a gentle introduction to stream processing, making room for you

to jump directly into building your own end-to-end Structured Streaming application

in Chapter 10, without having to backtrack and discuss a lot of the theory behind the decision-making process.

By the end of the chapter, you should understand the following (at a high level):

• How to think about streaming data and streaming data problems

• Why data accountability starts with the producer

• Methods for handling data quality at the API edge

• Why binary serializable structured data is essential

298

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

 Stream Processing

Streaming data is not stationary. In fact, you can think of it as being alive (if even for a short while). This is because streaming data is data that encapsulates the now—it records

 events and actions as they occur in flight. Let’s look at a practical, albeit theoretical, example that begins with a simple event stream of sensor data. Fix into your mind’s eye

the last parking lot (or parking garage) you visited.

 Use Case: Real-Time Parking Availability

Imagine you just found a parking spot all thanks to some helpful signs that pointed you

to an open space. Now let’s say that this was all because of the data being emitted from a

connected network of local parking sensors. Sensors that operate with the sole purpose of

being used to identify the number of available parking spaces at that precise moment in time.

This is a real-time data problem where real-time accuracy is measurable and

physically noticeable by a user of the parking structure. Enabling these capabilities all

began with the declaration of the system scenario.

 “We would like to create a system that keeps track of all available parking

 spaces, identifies when a car parks, and knows how long the car remains in

 a given spot. This process should be automated as much as possible.”

Optimizing a system like this can begin with a simple sensor located in each parking

spot (associated with a sensor.id/spot.id reference). This sensor would be responsible

for emitting data in the form of a spot identifier, timestamp, and simple bit (0 or 1), to

denote if a spot is empty or occupied. This data can be encoded into a compact message

format, as shown in Listing 9-1, which would be efficiently encoded and sent periodically from each device.

 Listing 9-1. An Example Sensor Event (Encapsulated in the Google Protocol

Buffer Message Format)

message ParkingSensorStatus {

uint32 sensor_id = 1;

uint32 space_id = 2;

uint64 timestamp = 3;

bool available = 4;

}

299

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

During the normal flow of traffic throughout the day, the state of each of these

sensors would flip on or off (binary states) in unpredictable ways due to the dynamic

schedules of the individual drivers. This sensor data can inform drivers, in real-time,

that there are now X total number of available spots in the garage. This data can help

to automate the human decision-making process and could even be made available

online, through a simple web service, for real-time status tracking. Additionally, this data

can be used to track when each sensor last checked in, which can be used to diagnosis

faulty sensors, and even track how often sensors go offline or fail. Nowadays, more

technologically advanced garages even go so far as to direct the driver (via directional

signs and cues) to the available spots in the structure. This acts to reduce inter-garage

traffic and congestion, which in turn raises customer satisfaction, all by simply capturing

a live stream of sensor data and processing it in near-real-time.

Given the temporal information gathered from these streams of sensor events, a

savvy garage operation could use prior trends to decrease or increase the daily or hourly

prices, based on the demand for parking spots, with respect to current availability in

real-time. By optimizing the pricing (within realistic limits) an operator could find the

perfect threshold where the price per hour/price per day leads to a full garage. In other

words, “at what price will most people park and spots won’t go unused?”

This is an example of an optimization problem that stems from the collection of real-

time sensor data. It is becoming more common for organizations to look at how they

reuse data to solve multiple problems at the same time. The Internet of Things (IoT) use

cases are just one of the numerous possible streams of data you could be working with

when writing streaming applications. Earlier in the book, we discussed creating a system

that could take information about Coffee store occupancy that would inform folks what

shop nearest to them has seating for a party of their size. At that point in the story, we

simply created a synthetic table that could be joined to showcase this example. However,

this is another problem that can be solved with sensors, or something as simple as a

check-in system that emits relevant event data that can be passed reliably downstream

via streaming data pipelines. Both these examples employ basic analytics and could

benefit from simple machine learning to uncovering new patterns of behavior that could

lead to more optimal operations. Before we get too far ahead of ourselves, let’s take a

short break to dive deeper into the capabilities that streaming data networks provide.

300

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

 Time Series Data and Event Streams

Moving from a stationary data mindset to one that interprets data as it flows over time,

in terms of streams of unbounded data across many views and moments in time, is

an exercise in perspective but also one that can be challenging to adopt. Often when

you think about streaming systems, the notion of streams of continuous events bubble

to the surface. This is one of the more common use cases and can be used as a gentle

introduction to the concept of streaming data. Take for example the abstract time series shown in Figure 9-1.

 Figure 9-1. Events occur at precise moments of time and can be collected and

 processed individually (t1->t4) or can be aggregated across windows of time (w1)

As you can see, data itself exists across various states depending on the perspective

applied by a given system (or application). Each event (T1->T4) individually understands

only what has occurred in its narrow pane of reference, or to put that differently, events capture a limited (relative) perspective of time. When a series of events are processed

together in a bounded collection (window), you have a series of data points (events) that

encapsulate either fully realized or partially realized ideas. When you zoom out and look

at the entire timeline, you can paint a more accurate story of what happened from first

event to last. Let’s take this idea one step further.

 Do Events Stand Alone?

Consider this simple truth. Your event data exists as a complete idea, or as partial ideas

or thoughts. I have found that thinking of data as a story over time helps give life to

these bytes of data. Each data point is therefore responsible for helping to compose a

complete story, as a series of interwoven ideas and thoughts that assemble or materialize

over time.

This data composition concept can be used as a lens as you work on adopting a

distributed data view of things. I also find it lends itself well while building up and

301

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

defining new distributed data models, as well as while working on real-world data

networks at scale. Viewed as a composition, these events come together to tell a specific

story, whose event-based breadcrumbs can inform of the order in which something

came to be and is greatly enhanced with the timestamp of each occurrence. Events

without time paint a flat view of how something occurred while the addition of time

grants you the notion of momentum or speed, or a slowing down and stretching of

the time between events or for a full series of data points. Understanding the behavior

of the data flowing through the many pipelines and data channels is essential to data

operations and requires reliable monitoring to keep data flowing at optimal speeds. Let’s

look at a use case where the dimension of time helps paint a better story of a real-world

scenario.

 Use Case: Tracking Customer Satisfaction

What if I told you two customers came into the coffee shop, ordered drinks, and left the

store with their drinks. You might ask me why I bothered to tell you that since that is

what happens in coffee shops. What if I told you that the two coffee orders were made

around the same and that the first customer in the story was in and out of the coffee shop

in under five minutes. What if I told you that it was a weekday, and this story took place

during morning rush hour? What if I told you that the second customer, who happened

to be next in line, was in the coffee shop for 30 minutes? You might ask if the customer

stayed to read the paper or use the facilities. Both are valid questions.

If I told you that the customer was waiting around because of an error that the

occurred between Steps 3 and 4 of a four-step coffee pipeline, then we’d have a better

understanding of how to streamline the customer’s experience in the future. The four

steps are:

1. Customer orders: {customer.order:initialized}

2. Payment made: {customer.order:payment:processed}

3. Order queued: {customer.order:queued}

4. Order fulfilled: {customer.order:fulfilled}

Whether the error was in the automation, or because of a breakdown in the real-

world system (printer jam, barista missed an order, or any other reason), the result here

is that the customer needed to step in and inform the operation (the coffee pipeline) that

it appears that someone forgot their drink.

302

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

At this point, the discussion could turn toward how to handle the customer’s

emotional response, which could swing widely across both positive and negative

reactions: from happy to help (1), to mild frustration (4), all the way to outright anger

(10) at the delay and breakdown of the coffee pipeline. But by walking through a

hypothetical use case, we are all now more familiar with how the art of capturing good

data can be leveraged for all kinds of things.

 The Event Time, Order of Events Captured, and the Delay

Between Events All Tell a Story

Without the knowledge of how much time elapsed from the first event (customer.

order:initialized) to the terminal event (customer.order:fulfilled), or how long

each step typically takes to accomplish, we’d have no way to score the experience or

really understand what happened, essentially creating a blind spot to abnormal delays or

faults in the system. It pays to know the statistics (average, median, and 99th percentiles)

of the time a customer typically waits for a variable sized order, as these historic data

points can be used via automation to fix a problem preemptively when, for example,

an order is taking longer than expected. It can literally mean the difference between an

annoyed customer and a lifetime customer.

This is one of the big reasons that companies solicit feedback from their customers,

be it a thumbs up/thumbs down on an experience or rewarding application-based

participation (spend your points on free goods and services). This data—collected and

captured through real-world interactions, encoded as events, and processed for your

benefit—is helpful if it positively affects the operations and reputation of the company.

Just be sure to follow data privacy rules and regulations and ultimately don’t creep out

your customers.

This little thought experiment was intended to shed light on the fact that the details

captured in your event data (as well as the lineage of the data story over time) can be a

game changer. Time is the dimension that gives these journeys momentum. There is just

one problem with time.

 The Trouble with Time

While events occur at precise moments in time, the trouble with time is that it is also

subject to the problems of time and space (location). Einstein used his theory of

relativity to explain this problem on a cosmic scale, but this is also a problem on a more

303

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

localized scale as well. For example, I have family living in different parts of the United

States. It can be difficult to coordinate time where everyone’s schedule syncs up. This

happens for simple events like catching up with everyone over video or meeting up in

the real-world for reunions. Even when everything is coordinated, people have a habit of

just running a little bit late.

Zooming out from the perspective of my family, or people in general, with respect

to central coordination of events, you will start to see that the problem isn’t just an issue

relating to synchronization across time zones (east/central/west coast). If you look closer

you can see that time, relative to our local/physical space, is subject to some amount of

temporal drift or clock skew.

Take the modern digital clock. It runs as a process on your smart phone, watch, or

any number of many “smart” connected devices. What remains constant is that time

stays noticeably in sync (even if the drift is on the order of milliseconds). Many people

still have analog, non-digital, clocks. These devices run the full spectrum from incredibly

accurate, in the case of high-end watches (“timepieces”) to cheap clocks that sometimes

need to be reset every few days.

The bottom line here is that it is rare that two systems agree on the precise time in

the same way that people also have trouble coordinating within both time and space.

Therefore, a central reference (or point of view) must be used to synchronize the time

with respect to systems running across many time zones.

Correcting Time Servers running in any modern cloud infrastructures utilize a

process called network time protocol (ntp) to correct the problem of time drift.

the ntp process is charged with synchronizing the local server clock using a

reliable central time server. this process corrects the local time to within a few

milliseconds of the universal Coordinated time (utC). this is an important concept

to keep in mind since an application running in a large network and producing

event data will be responsible for creating timestamps, and these timestamps need

to be precise in order for distributed events to line up. there is also the sneaky

problem of daylight savings, so coordinating data from systems across time zones

as well as across local datetime semantics requires time to be viewed from this

central, synchronized, perspective.

304

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

We’ve looked at time as it theoretically relates to event-based data but to round out

the background we should also look at time as it relates to the priority in which data

needs to be captured and processed in a system (streaming or otherwise).

 Priority Ordered Event Processing Patterns

You may be familiar with this quote. “Time is of the essence.” This is a way of saying

something is important and a top priority. The speed to resolution matters. This sense of

priority can be used as an instrument, or defining metric, to make the case for real-time,

near-real-time, batch or eventual (on-demand) processing when processing critical data.

These four processing patterns handle time in a different way by creating a certain focus

on the data problem at hand. The scope here is based on the speed in which a process

must complete, which in turn limits the complexity of the job as a factor of time. Think

of these styles of processing as being deadline-driven. There is only a certain amount of

time in which to complete an action.

 Real-Time Processing

The expectations of real-time systems are that end-to-end latency from the time an

upstream system emits an event, until the time that event is processed and available to

be used for analytics and insights, occurs in the milliseconds to a few seconds. These

events are emitted directly to an event stream processing service, such as Apache Kafka,

which under normal circumstances enables listeners/consumers to immediately use

that event once it is written. There are many typical use cases for true real-time systems,

including logistics (like the parking space example as well as finding a table at a coffee

shop). Processes impacting a business on a whole new level, such as fraud detection,

active network intrusion detection, or other bad actor detection where a longer mean

time to detection (average milliseconds/seconds to detection) can lead to devastating

consequences in terms of reputation or financial losses.

For other systems, it is more than acceptable to run in near real-time. Given

that answering tough problems requires time, real-time decision-making requires a

performant, pre-computed or low-latency answer to the questions it will ask. This is pure

in-memory stream processing.

305

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

 Near Real-Time Processing

Near real-time is what most people think of when they consider real-time. A similar set

of time based constraints as real-time, the only difference is that the expectations of end-

to-end latency are relaxed from a number of seconds to a handful of minutes. For most

systems, there is no real reason to react immediately to every event as it arrives, so while

time is still of the essence, the priority of the SLA for data availability is extended.

Operational dashboards and metric systems that are kept up to date (refreshing

graphs and checking monitors every 30s to five minutes) are usually fast enough to catch

problems and give a close representation of the world. For all other data systems, you

have the notion of batch or on-demand.

 Batch Processing

We covered batch processing and reoccurring scheduling in the last two chapters, but

for clarity, having periodic jobs that push data from a reliable source of truth (data lake

or database) into other connected systems has been, and continues to be, how much of

the world’s data is processed in the real world. The reason for this is cost. This factors

down to both the cost of operations and the human cost for maintaining large streaming

systems.

Streaming systems demand full-time access to a variable number of resources from

CPUs and GPUs to Network IO and RAM, with an expectation that these resources

won’t be scarce, since delays (blockage) in stream processing can pile up quick. Batch

on the other hand can be easier to maintain in the long run, assuming the consumers

of the data understand that there will always be a gap from the time data is first emitted

upstream, until the data becomes available for use downstream.

The last consideration to keep in mind is on-demand processing (or just-in-time

processing).

 On-Demand or Just-In-Time Processing

Let’s face it. Some questions (aka queries) are asked very rarely or in a way that is just not

suitable to any predefined pattern.

For example, custom reporting jobs and exploratory data analysis are two styles of

data access that lend themselves nicely to these paradigms. Most of the time, the backing

data to answer these queries is loaded directly from the data lake and then processed

306

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

using shared compute resources or isolated compute clusters. The data that is made

available by these queries may be the by-product of other real-time or near-real-time

systems that were processed and stored for batch or historic analysis.

Using this pattern, data can be defrosted and loaded on-demand by importing

records from slower commodity object storage, like Amazon S3 into memory, or across

fast-access solid state drives (SSDs). Depending on the size, format, and layout of the

data, it can be queried directly from the cloud object store. This pattern can be easily

delegated to Apache Spark using Spark SQL. This enables ad hoc analysis via tools like

Apache Zeppelin, or directly in-app through JDBC bindings using the Apache Spark

thrift- server and the Apache Hive Metastore.

The differentiator between these four flavors of processing is time.

Circling back to the notion of views and perspective, each approach or pattern has

its time and place. Stream processing deals with events captured at specific moments in

time and, as we’ve discussed during the first half of this chapter, how we associate time

and how we capture and measure a series of events (as data) all comes together to paint

a picture of what is happening now or what has happened in the past. It’s important

to also talk about the foundations of stream processing. In this next section, we’ll walk

through some of the common problems and solutions for dealing with continuous,

unbounded streams of data. It would only make sense to therefore discuss data as a

central pillar and expand outward from there.

 Foundations of Stream Processing

Foundations are the unshakable, unbreakable base upon which structures are placed.

When it comes to building a successful data architecture, the data is the core central

tenant of the entire system and the principal component of that foundation. The most

popular way that data now makes its way onto the data platforms is through stream

processing platforms like Apache Kafka. This means the data contracts surrounding

data’s schema, availability, and validity become the critical underpinnings of that

data foundation (given the decentralized, distributed stream-processing capabilities

presented by Apache Kafka).

307

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

 Building Reliable Streaming Data Systems

As data engineers, building reliable data systems is literally our job, and this means data

downtime should be measured like any other component of the business. You’ve probably

heard of the terms SLAs, SLOs, and SLIs at one point or another. In a nutshell, these

acronyms are associated to the contracts, promises, and measures in which you grade

a system, and they ultimately hold the service owners accountable for its successes and

failures. For example, Service Level Agreements (SLAs) between your team or organization

and your customers are used to create a binding contract with respect to the service you

are providing. For data teams, this means identifying and capturing metrics (KPMs: key

performance metrics) based on your Service Level Objectives (SLOs). The SLOs are the

promises you intend to keep based on your SLAs, and they can be anything from a promise

of near perfect (99.999%) service uptime or something as simple as a promise of 90-day

data retention for a particular dataset. Lastly, your Service Level Indicators (SLIs) are the

proof that you are operating in accordance with the service level contracts and are typically

presented in the form of operational analytics (dashboards) or reports.

Knowing where we want to go can help establish the plan to get there. This journey

begins at the inset (or ingest point), and with the data. Specifically, with the formal

structure and identity of each data point. Considering the observation that “more and

more data is making its way into the data platform through stream processing platforms

like Apache Kafka” it helps to have compile-time guarantees, backward compatibility,

and fast binary serialization of the data being emitted into these data streams. Data

accountability can be a challenge in and of itself. Let’s look at why.

 Managing Streaming Data Accountability

Streaming systems operate 24 hours a day, 7 days a week, and 365 days a year. This can

complicate things if the upfront effort isn’t applied to the problem, and one of the problems

that tends to rear its head from time to time is corrupt data, aka data problems in flight.

 Dealing with Data Problems in Flight

There are two common ways to reduce data problems in flight. First, you can introduce

gatekeepers at the edge of your data network that negotiate and validate data using

traditional Application Programming Interfaces (APIs), or as a second option, you can

create and compile helper libraries, or Software Development Kits (SDKs), to enforce the

308

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

data protocols and enable distributed writers into your streaming data infrastructure.

You can even use both strategies in tandem.

 Data Gatekeepers

The benefit of adding gateway APIs at the edge of your data network is that you can

enforce authentication (can this system access this API?), authorization (can this system publish data to a specific data stream?), and validation (is this data acceptable or valid?) at the point of data production. Figure 9-2 shows the flow of the data gateway.

 Figure 9-2. Data gateway services can act as the gatekeepers to your data

 network. They provide mechanisms for authenticating API access, authorize which

 upstream services (APIs/services) are allowed to publish data, and can also be

 used to validate data from the publishers before corrupt or bad data makes it into

 the data network (stream processing)

This means that the upstream system producing data can fail fast when producing

data. This stops corrupt data from entering the streaming or stationary data pipelines

at the edge of the data network. It’s a means of establishing a conversation with the

producers regarding exactly why and how things went wrong in a more automatic way

via error codes and helpful messaging.

{

"error": {

"code": 400,

"message": "The event data is missing the userId, and the timestamp is

invalid (expected a string with ISO8601 formatting). Please view the

docs at http://coffeeco.com/docs/apis/customer/order#required-fields to

adjust the payload."

}

}

309

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

This approach has its pros and cons. The pros are that most programming languages

work out of box with HTTP (or HTTP/2) transport protocols (or with the addition of

a tiny library), and JSON data is about as universal a data exchange format that you

can get these days. On the flip side (cons), one can argue that there is yet another

service to manage, and without some form of API automation or adherence to an

open specification like OpenAPI, each new API route could begin to take more time than necessary. The API becomes a central point of failure, and more changes don’t

necessarily mean better functionality! To flip this problem on its head, this is why

unit and functional testing are so important. Ideally, the data itself (schema/format)

could dictate the rules of its own data-level contract by enabling field-level validation

(predicates), producing helpful error messages, and acting in its own self-interest. Hey,

with a little route- or data-level metadata and some creative thinking, the API could

automatically generate self-defining routes and behavior.

Lastly, gateway APIs can be seen as centralized troublemakers, as each failure by

an upstream system to emit valid data (e.g., blocked by the gatekeeper) causes valuable

information (event data or metrics) to be dropped. The problem of blame here also tends

to go both ways, as a bad deployment of the gatekeeper can blind an upstream system

that isn’t set up to handle retries in the event of gateway downtime (if even for a few

seconds).

Putting aside all the pros and cons, using a gateway API to stop the propagation of

corrupt data before it enters the data platform means that there are fewer places to look

to understand what happened. This sure beats debugging a distributed network of data

pipelines, services, and the myriad final data destinations. What about SDKs?

 Software Development Kits

SDKs are libraries (or micro-frameworks) that are imported into a codebase to

streamline an action, activity, or an otherwise complex operation. They are also known

by another name, clients. Take the example from earlier about using good error messages

and error codes. This process is necessary in order to inform a client that their prior

action was invalid. However, it can be advantageous to add appropriate guardrails

directly into an SDK to reduce the surface area of any potential problems. For example,

let’s say we have an API set up to track customer’s coffee-related behavior through event

tracking. A client SDK could theoretically include all the tools necessary to manage the

interactions with the API server, including authentication, authorization, and validation.

310

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

In fact, if the SDK does its job, the validation issues would go out the door. Listing 9-2

shows an example of an SDK that could be used to reliably track customer events.

 Listing 9-2. SDKs Enable Applications to Reliably Emit Event Data in a

Consistent Way

import com.coffeeco.data.sdks.client._

import com.coffeeco.data.sdks.client.protocol._

Customer.fromToken(token)

.track(

eventType=Events.Customer.Order,

status=Status.Order.Initalized,

data=Order.toByteArray

)

With some additional work (aka the client SDK), the problem of data validation

or event corruption can just about go away. Additional problems can be managed in

the SDK itself, such as how to retry sending a request when the server is offline. Rather

than having all requests retry immediately, or in some loop that floods a gateway load

balancer indefinitely, the SDK can take smarter actions like employing exponential

backoff.

The Thundering Herd Problem let’s say you have a single gateway apI server.

You’ve written a fantastic apI and many teams across the company are sending

event data to this apI. things are going well until one day, a new internal team

starts to send invalid data to the server. (Instead of respecting your http status

codes, they treat all non-200 http codes as a reason to retry. they forgot to add

any kind of retry heuristics like exponential backoff, so all requests just retry

indefinitely—across an ever-increasing retry queue.) mind you, before this new

team came on board, there was never a reason to run more than one instance

of the apI server, and there was never a need to use any sort of service-level

rate limiter either, because everything was running smoothly within the agreed-

upon Slas.

311

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

Well, that was before today. now your service is offline. data is backing up,

upstream services are filling their queues, and people are upset because their

services are starting to run into issues because of your single point of failure.

these problems all stem from a form of resource starvation coined “the thundering

herd problem.” this problem occurs when many processes are awaiting an event,

like system resources being available, or in this example, the apI server coming

back online. now there is a scramble as all of the processes compete to attempt to

gain resources, and in many cases the load on the single process (the apI server)

is enough to take the service back offline again. unfortunately, this starts the cycle

of resource starvation over again. this is of course unless you can calm the herd

or distribute the load over a larger number of working processes, which would

decrease the load across the network to the point where the resources have room

to breathe again.

While this initial example is more of an unintentional distributed denial of

service attack (ddoS), these kinds of problems can be solved at the client (with

exponential backoff or self-throttling) and at the apI edge via load balancing and

rate limiting.

Ultimately, without the right set of eyes and ears enabled by operational metrics,

monitors, and system level (SLA/SLO) alerting, data can play the disappearing act, and

this can be a challenge to resolve.

Whether you decide to add a data gateway API to the edge of your data network,

employ a custom SDK for upstream consistency and accountability, or decide to take

an alternative approach when it comes to dealing with getting data into your data

platform, it is good to know what your options are. Regardless of the path in which

data is emitted into your data streams, this introduction to streaming data wouldn’t be

complete without a proper discussion of data formats, protocols, and the topic of binary

serializable data. Who knows, you may just uncover a better approach to handling your

data accountability problem!

312

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

 Selecting the Right Data Protocol for the Job

When you think of structured data, the first thing to come to mind might be JSON data.

JSON data has structure, is a standard web-based data protocol, and if nothing else it

is super easy to work with. These are all benefits in terms of getting started quickly, but

over time, and without the appropriate safeguards in place, you could face problems

when it comes to standardizing on JSON for your streaming systems. The first problem

is that JSON data is mutable. This means as a data structure, it is flexible and therefore

fragile. Data must be consistent to be accountable, and in the case of transferring data

across a network (on-the-wire) the serialized format (binary representation) should

be highly compactable. With JSON data, you must send the keys (for all fields) for each

object represented across the payload. Inevitably this means that you’ll typically be

sending a large amount of additional weight for each additional record (after the first) in

a series of objects.

Luckily, this is not a new problem, and it just so happens that there are best practices

for these kinds of things and multiple schools of thought regarding what is the best

strategy for optimally serializing data. This is not to say that JSON doesn’t have its merits.

Just when it comes to laying a solid data foundation, the more structure the better and

the higher level of compaction the better as long as it doesn’t burn up a lot of CPU cycles.

 Serializable Structured Data

When it comes to efficiently encoding and transferring binary data, two serialization

frameworks tend to come up: Apache Avro and Google Protocol Buffers (protobuf). Both libraries provide CPU efficient techniques for serializing row-based data structures, and

both technologies also provide their own remote procedure call (RPC) frameworks and

capabilities. Let’s look at avro, then protobuf, and we will wrap up looking at remote

procedure calls.

Avro Message Format

With avro, you define declarative schemas for your structured data using the concept of

records. These records are simply JSON-formatted data definitions files (schemas) stored

with the file type avsc. Listing 9-3 shows an example of the coffee schema.

313

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

 Listing 9-3. coffee.avsc: Defining a Schema for Coffee Can Be Done Fairly Easily

{

"namespace": "com.coffeeco.data",

"type": "record",

"name": "Coffee",

"fields": [

("name": "id", "type: "string"},

{"name": "name", "type": "string"},

{"name": "boldness", "type": "int", "doc": "from light to bold. 1

to 10"},

{"name": "available", "type": "boolean"}

]

}

Working with avro data can take two paths that diverge, related to how you want

to work at runtime. You can take the compile-time approach, or the figure things

out on-demand at runtime. This enables a flexibility that can enhance an interactive

data discovery session. For example, avro was originally created as an efficient data-

serialization protocol for storing large collections of data as partitioned files, long-term

within the Hadoop file system. Given data was typically read from one location and

written to another within HDFS, avro could store the schema (used at write time) once

per file.

Avro Binary Format

When you write a collection of avro records to disk the process encodes the schema of

the avro data directly into the file itself (once). There is a similar process when it comes

to Parquet file encoding, where the schema is compressed and written as a binary file

footer. We saw this process firsthand, at the end of Chapter 4, when we went through the process of adding StructField-level documentation to our StructType. This schema

was used to encode our DataFrame, and when we wrote to disk it preserved our inline

documentation on the next read.

314

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

Enable Backward Compatibility and Preventing Data Corruption

In the case of reading multiple files as a single collection, problems can arise in the case

of schema changes between records. Avro encodes binary records as byte arrays and

applies a schema to the data at the time of deserialization.

This means you have to take the extra precaution to preserve backward

compatibility, or you’ll find yourself running into issues with ArrayIndexOutOfBounds

exceptions.

This can happen to the schema in subtle ways. For example, say you need to change

an integer value to a long value for a specific field in your schema. Don’t. This will break

backward compatibility due to the increase in byte size from an int to a long. This is due

to the use of the schema definition for defining the starting and ending position in the

byte array for each field of a record. To maintain backward compatibility, you’ll need to

deprecate the use of the integer field moving forward (while preserving it in your avro

definition) and add (append) a new field to the schema to use moving forward.

Best Practices for Streaming Avro Data

Moving from static avro files, with their useful embedded schemas, to an unbounded

stream of well binary data, the main differentiator is that you need to bring your own

schema to the party. This means that you’ll need to support backward compatibility (in

the case that you need to rewind and reprocess data before and after a schema change),

as well as forward compatibility, in the case that you have existing readers already

consuming from a stream.

The challenge here is support both forms of compatibility given that avro doesn’t

have the ability to ignore unknown fields, which is a requirement for supporting forward

compatibility. In order to support these challenges with avro, the folks at Confluence

open-sourced their schema registry (for use with Kafka), which enables schema versioning at the Kafka topic (data stream) level.

When supporting avro without a schema registry, you’ll have to ensure you’ve

updated any active readers (Spark applications or otherwise) to use the new version of

the schema prior to updating the schema library version on your writers. The moment

you flip the switch, you could find yourself at the start of an incident.

315

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

 Protobuf Message Format

With protobuf, you define your structured data definitions using the concept of

messages. Messages are written in a format that feels more like defining a struct in C.

These message files are written into files with the .proto filename extension. Protocol

buffers have the advantage of using imports. This means you can define common

message types and enumerations that can be used within a large project, or even

imported into external projects, enabling wide-scale reuse. A simple example of creating

the Coffee record (message type) using protobuf is shown in Listing 9-4.

 Listing 9-4. coffee.proto: Defining the Coffee Datatype Using Protobuf

syntax = "proto3";

option java_package="com.coffeeco.protocol";

option java_outer_classname="Common";

message Coffee {

string id = 1;

string name = 2;

uint32 boldness = 3;

bool available = 4;

}

With protobuf, you define your messages once, and then compile down for your

programming language of choice. For example, we can generate code for Scala using

the coffee.proto file from the standalone compiler in the ScalaPB project (created and maintained by Nadav Samet).

Code Generation

Compiling protobuf enables simple code generation. The following example is taken

from the /ch-09/data/protobuf directory. The directions in the chapter’s README cover

how to install ScalaPB and include the steps to set the correct environment variables to

execute the command in Listing 9-5.

 Listing 9-5. Compiling Protobuf Messages for Scala

$SCALAPBC/bin/scalapbc -v3.11.1 \

--scala_out=/Users/`whoamì/Desktop/coffee_protos \

316

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

--proto_path=$SPARK_MDE_HOME/ch-09/data/protobuf/ \

coffee.proto

This process saves time in the long run by freeing you up from having to write

additional code to serialize and deserialize your data objects (across language

boundaries or within different codebases).

Protobuf Binary Format

The serialized (binary wire format) is encoded using the concept of binary field level separators. These separators are used as markers that identify the data types

encapsulated within a serialized protobuf message. In the example, coffee.proto, you

probably noticed that there was an indexed marker next to each field type (string id

= 1;). This is used to assist with encoding/decoding of messages on/off the wire. This

means there is a little additional overhead compared to the avro binary, but if you read

over the encoding specification, you’ll see that other efficiencies more than make up for any additional bytes (such as bit packing, efficient handling of numeric data types, and

special encoding of the first 15 indices for each message). With respect to using protobuf

as your binary protocol of choice for streaming data, the pros far outweigh the cons in

the grand scheme of things. One of the ways that it more than makes up for itself is with

support for both backward and forward compatibility.

Enable Backward Compatibility and Prevent Data Corruption

There are similar rules to keep in mind when it comes to modifying your protobuf

schemas like we discussed with avro. As a rule of thumb, you can change the name of

a field, but you never change the type or change the position (index) unless you want

to break backward compatibility. These rules can be overlooked when it comes to

supporting any kind of data in the long term and can be especially difficult as teams

become more proficient with their use of protobuf. There is this need to rearrange, and

optimize, that can come back to bite you if you are not careful. (See “Maintaining Data

Quality Over Time” for more context.)

Best Practices for Streaming Protobuf Data

Protobuf supports both backward and forward compatibility, which means that you can

deploy new writers without having to worry about updating your readers first, and the

317

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

same is true of your readers. You can update them with newer versions of your protobuf

definitions without worrying about a complex deploy of all your writers. Protobuf

supports forward compatibility using the notion of unknown fields. This is an additional

concept that doesn’t exist in the avro specification, and it is used to track the indexes and

associated bytes it was unable to parse due to the divergence between the local version

of the protobuf and the version it is currently reading. The beneficial point here is that

you can also opt in, at any point, to newer changes in the protobuf definitions.

For example, say you have two streaming applications (a) and (b). Application (a) is

processing streaming data from an upstream Kafka topic (x), enhancing each record with

additional information, and then writing it out to a new Kafka topic (y). Application (b)

reads from (y) and does its thing. Say there is a newer version of the protobuf definition,

and application (a) has yet to be updated to the newest version. The upstream Kafka topic

(x) and application (b) are already updated and are expecting to use some new fields

available from the upgrade. The amazing thing is that it is still possible to pass the unknown

fields through application (a) and onto application (b) without even knowing they exist.

Tip maintaining data Quality over time: When working with either avro or

protobuf, you should treat the schemas no different than you would code you

want to push to production. this means creating a project that can be committed

to your company’s Github (or whatever version control system you are using),

and it also means you should write unit tests for your schemas. not only does

this provide living examples of how to use each message type, but the important

reason for testing your data formats is to ensure that changes to the schema don’t

break backward compatibility. the icing on the cake is that in order to unit test

the schemas, you’ll need to first compile the (.avsc or .proto) files and use the

respective library code generation. this makes it easier to create releasable library

code, and you can also use release versioning (version 1.0.0) to catalog each

change to the schemas.

one simple method to enable this process is to serialize and store a binary copy

of each message across all schema changes as part of the project lifecycle. I

have found success adding this step directly into the unit tests themselves, using

the test suite to create, read, and write these records directly into the project test

resources directory. this way, each binary version, across all schema changes, is

available within the codebase.

318

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

With a little extra upfront effort, you can save yourself a lot of pain in the grand

scheme of things, and rest easy at night knowing your data is safe (at least on the

producing and consuming sides of the table).

You now know that there are benefits to using avro or protobuf when it comes to your

long-term data accountability strategy. By using these language-agnostic, row-based,

structured data formats, you reduce the problem of long-term language lock-in, leaving

the door open to whatever popular programing language is used later down the line.

It can be a thankless task to support legacy libraries and codebases. Additionally, the

serialized formats help reduce the network bandwidth costs and congestion associated

with sending and receiving large amounts of data. This helps reduce the storage

overhead costs for retaining your data long-term as well.

Lastly, let’s look at how these structured data protocols enable additional efficiencies

when it comes to sending and receiving data across the network using remote

procedure calls.

 Remote Procedure Calls

RPC frameworks, in a nutshell, enable client applications to transparently call remote

(server-side) methods via local function calls by passing serialized messages back

and forth. The client and server-side implementations use the same public interface

definition to define the functional RPC methods and services available. The Interface

Definition Language (IDL) defines the protocol and message definitions and acts as

a contract between the client and server-side. Let’s see this in action by looking at the

popular open-source RPC framework, gRPC.

 gRPC

First conceptualized and created at Google, gRPC which stands for “generic” remote

procedure call, is a robust open-source framework used for high-performance services

ranging from distributed database coordination, as seen with CockroachDB, to real-time analytics, as seen with Microsoft’s Azure Video Analytics.

Using protocol buffers for message definitions, serialization, as well as the

declaration and definition of services, gRPC can simplify how you capture data and build

services. For example, let’s say we wanted to continue the exercise of creating a tracking

319

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

API for customer coffee orders. The API contract could be defined in a simple services

file, and from there the server-side implementation and any number of client-side

implementations could be built using the same service definition and message types.

Define a gRPC Service

You can define a service interface, with its request and response objects, as well as the

message types that need to be passed between the client and server, as easily as the

example shown in Listing 9-6.

 Listing 9-6. services.proto: Defining a gRPC Service and Messages

syntax = "proto3";

service CustomerService {

rpc TrackOrder (Order) returns (Response) {}

rpc TrackOrderStatus (OrderStatusTracker) returns (Response) {}

}

message Order {

uint64 timestamp = 1;

string orderId = 2;

string userId = 3;

Status status = 4;

}

enum Status {

unknown_status = 0;

initalized = 1;

started = 2;

progress = 3;

completed = 4;

failed = 5;

canceled = 6;

}

message OrderStatusTracker {

uint64 timestamp = 1;

320

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

Status status = 2;

string orderId = 3;

}

message Response {

uint32 statusCode = 1;

string message = 2;

}

With the addition of gRPC, it can be much easier to implement and maintain the

server-side and client-side code used in your data infrastructure. Given that protobuf

supports backward and forward compatibility, this means that older gRPC clients

can still send valid messages to newer gRPC services without running into common

problems and pain points.

Figure 9-3 shows an example of gRPC at work. The server-side code is written in C++

for speed, while clients written in both Ruby and Java can interoperate with the service

using protobuf messages as their means of communicating.

 Figure 9-3. RPC (in this example gRPC) works by passing serializing messages to

 and from a client and server. The client implements the same Interface Definition

 Language (IDL) interface and this acts as an API contract between the client and

 server. (Credit: https://grpc.io/docs/what- is- grpc/introduction/) 321

Chapter 9 a Gentle IntroduCtIon to Stream proCeSSInG

gRPC Speaks HTTP/2

As a bonus, with respect to modern service stacks, gRPC can use HTTP/2 for its transport

layer. This also means you can take advantage of modern data meshes (such as Envoy) for proxy support, routing, and service-level authentication, all while reducing the

problems of TCP packet congestion seen with standard HTTP over TCP.

Mitigating data problems in flight and achieving success when it comes to data

accountability starts with the data and fans outward from that central point. Putting

processes in place when it comes to how data can enter your data network should be

considered a prerequisite before diving into the torrent of streaming data.

 Summary

The goal of this chapter was to lay out the moving parts, concepts, and nuances with

respect to transitioning from a stationary batch-based mindset to one that considers the

risks and rewards of working with real-time streaming data. Harnessing data in real-time

can lead to fast, actionable insights, and opens the doors to state-of-the-art machine

learning and artificial intelligence. However, distributed data management can also

become a data crisis if the right steps aren’t taken ahead of time. Remember that without

a strong, solid data foundation, built on top of valid (trustworthy) data, the road to real-

time will not be a simple endeavor.

In the next chapter, you build an end-to-end Structured Streaming application based

on the concept of creating a system that processes real-time information about available

occupancy in each of the coffee shops in order to enable people to find the shop nearest

to their current location that has seating for a party of their size. You’ll learn to use Kafka,

as well as Redis (Redis Streams) along the way. There is a nice overlap between these two streaming technologies, as well as differences, which lend themselves nicely when it

comes to Spark Structured Streaming.

322

CHAPTER 10

Patterns for Writing

Structured Streaming

Applications

In the last chapter, we built up a streaming frame of reference for working with data

in-flight. By introducing common problems and pitfalls that tend to occlude the path to

streaming success, you discovered the nuances between local and global coordinated

time, aka the trouble with time. You also learned about the complex problems that arise

when corrupt or invalid data makes its way into your data network, in data problems in

flight. In a perfect world, each event or data point would magically appear in the correct

time-aligned (synchronous) order, but in a world devoid of perfection, there are tools

you can use to lend a helping hand.

In this chapter, you’ll discover effective design patterns used to solve streaming

data problems when working with Spark Structured Streaming. For starters, you’ll

be introduced to the core programming model and concepts that encapsulate Spark

Structured Streaming. Starting small and building up, you’ll be writing a series of

Structured Streaming applications that tackle the necessary core semantics for reading

and writing unbounded data streams.

This chapter teaches you to:

• Process structured steaming data using Redis Streams. This

reenforces the lessons introduced in the last chapter regarding the

necessity of strict schemas for architecting accountable data systems.

• Learn what checkpoints are and how they work to power stateful

structured streaming applications.

323

© Scott Haines 2022

S. Haines, Modern Data Engineering with Apache Spark, https://doi.org/10.1007/978-1-4842-7452-1_10

Chapter 10 patterns for Writing struCtured streaming appliCations

• Control your applications with rate limiting through the marriage of

triggers and Spark configuration.

• Understand how to design Structured Streaming applications.

Let’s begin building the foundation by learning the core tenants of Spark Structured

Streaming.

 What Is Apache Spark Structured Streaming?

In a nutshell, Apache Spark Structured Streaming enables you to tap into the power of

real-time streaming data in an approachable way. It enables you, the engineer, to treat

streaming data as a point-in-time (view) across an unbounded series of micro-batches

(sets of data), or as a continuous stream of individual events (data points), using the

foundation provided by the structured Spark APIs.

At the core of the Spark Structured Streaming programming model sits our friend

SparkSQL. As a unifying process, SparkSQL enables you to apply the same mental model

when writing applications that process streaming data, data at rest (batch data), or a mix

of both. By blurring the lines defining tables and views, Structured Streaming effectively removes the cognitive burden associated with processing data across these two data

access models. In the next section, you learn about how this processing paradigm works,

beginning with the concept of unbounded tables.

 Unbounded Tables and the Spark Structured

Streaming Programming Model

Unbounded tables are a construct that makes it easier to conceptualize the processing

patterns used to transform and query streaming data in the context of your application.

If you were to store a truly unbounded table, eventually the application would collapse

under the weight (number of data points) and pressure (memory and CPU) of all that

data. In most real-world Structured Streaming applications, the data streams being

ingested into your streaming application have a processing deadline, or a data time

to live (TTL), before each data point becomes unnecessary, uninteresting, or useless

for real-time. It is probably safer to say that when you write a Structured Streaming

324

Chapter 10 patterns for Writing struCtured streaming appliCations

application, you are in fact creating an application that processes and stores a bounded

set of data in memory, across an infinite or unbounded stream of eventual data over

time. Figure 10-1 presents the concept of the unbounded table.

 Figure 10-1. Spark Structured Streaming programming model

Figure 10-1 is a high-level sequence illustrating the processes at work that enable the reliable ingestion of structured unbounded streaming data over time within Spark. In the

example, as new data is ingested into the application, a deterministic cycle begins with

each of these ticks, aka micro-batches, of the system. Within each of these batches, Spark

executes a directed series of steps (input --> query --> result --> output) before moving on and repeating the processing for the next set of data. This deterministic series of steps (called a DAG) represents the four essential processing paradigms of Spark Structured Streaming:

• Execution/processing modes (micro-batch or continuous modes)

• Triggers (effective processing windows/boundaries)

• Incremental queries (progressive data processing across time)

• Streaming output modes (complete, update, and append)

325

Chapter 10 patterns for Writing struCtured streaming appliCations

You’ll explore these paradigms next and understand the roles they play in Spark

Structured Streaming.

 Processing Modes

In the beginning, micro-batch processing was introduced as the only mode of execution

for Structured Streaming and today it is still the default. Streaming micro-batch

scheduling and execution enabled application authors to pivot to a reliable, “structured”

stream processing model and away from the do-it-yourself approach introduced by

Spark’s first streaming programming model.

Apache Spark Streaming with Discretized Streams (DStreams)

With dstreams, engineers had to be intimately aware of the rdd api (core data structure and programming model of Apache Spark). this meant engineers had to

learn to work effectively with the lower level rdd apis. this meant understanding

how to recover from failure, implement receivers, efficiently serialize/deserialize

their code and data, and scale out and performance-tune their applications.

these are all things that you still need to learn, just at a higher level, using

the abstractions made available by the dataframes and datasets apis and

sparksQl. You can consider all of this as more of a natural stepping stone along

the way to structured streaming, one that showcased the good, the bad, and the

ugly with respect to design patterns adopted by the community to overcome the

hurdles.

fortunately, this book does not cover apache spark streaming and instead

presents the more approachable, performant, and self-optimizing Apache Spark

 Structured Streaming. i recommend taking a stroll down spark memory lane to

understand where things were and to appreciate how they have evolved. now back

to the structured streaming processing modes.

Continuous execution mode was introduced for true real-time processing with

extremely low end-to-end latency. Both modes of execution enable applications to

manage the complexities of stream processing, while changing only the semantics of

326

Chapter 10 patterns for Writing struCtured streaming appliCations

how data is processed in the application. Figure 10-2 shows how the general flow of data remains consistent between the input sources and output sinks while the main

differentiator resides in triggering.

 Figure 10-2. The processing flow of Structured Streaming

Understanding when to use each processing mode is a critical decision you will have

to make before writing any initial code. Let’s see why.

 Micro-Batch Processing

As stated, micro-batch processing was introduced at the inception of Structured

Streaming. This processing paradigm enables application authors to write streaming

applications with the structured Spark APIs (DataFrames/Datasets). The mechanics

of micro-batch execution relies on the concept of periodic polling for new data. This

allows the Spark Structured Streaming engine to then generate a new batch of data for

processing. It is worth pointing out that these applications are not just structured in

terms of the data, which is bound to a very real structured schema (StructType), but also

in the order of planning and execution surrounding each micro-batch processed.

Batches begin with a plan of execution, which is the result of a chain of

pre-processing steps including: planning, analysis, and optimization by the Spark

engine, which can be seen in Figure 10-3.

327

Chapter 10 patterns for Writing struCtured streaming appliCations

 Figure 10-3. The optimization process for each batch (or micro-batch) of data

 processed through the Spark

After generating a physical plan (the process shown in Figure 10-3 and described in more detail in Chapter 6), the input data source(s) and their relevant metadata is written ahead (write-ahead logging) to create a reference point, called a checkpoint, for each

micro-batch. This enables an application to fail mid-process and still rewind and recover

from the last complete save point, in a deterministic fashion.

On the other side of each micro-batch, the output writer acknowledges the success

of its actions, in what is known as a commit. It is also worth pointing out that each

micro-batch is processed to successful completion before a new micro-batch can

begin processing. This acknowledgment is handled by fully committing all work done

within a micro-batch, or aborting all further execution when a terminal, unrecoverable,

failure occurs.

By combining these tenants, you have an application that processes structured data

from reliable data source(s), as a series of deterministic micro-batches, providing a clear

and consistent pattern across all input and outputs, for the lifecycle of the application,

for a seemingly infinite stream of data. We will see this process in action during the

chapter exercises in the next section.

 Continuous Processing

Shortly after the release of Structured Streaming, the lower-latency (sub-second)

continuous processing execution framework was introduced. Rather than rely on

periodic polling of data sources, the Spark execution framework instead relies on long-

running processes to handle the continuous end-to-end processing of data, from the

data source all the way to the data sink. This means data is processed as fast as possible,

across each event individually, without the overhead required by waiting for all event

data across each batch to be fully committed. A high-level diagram is shown to assist

with the mental model in Figure 10-4.

328

Chapter 10 patterns for Writing struCtured streaming appliCations

 Figure 10-4. Continuous processing execution mode

While this execution mode can be used to achieve extremely low latency (~100ms

end-to-end), it is best suited for the processing of streams of individual events rather

than micro-batches of events that can be grouped, analyzed, or processed holistically.

For example, if you were tasked with building a system that notified an individual that

their coffee order is ready for pickup (like Apple’s push notification service), you could

technically distribute this load across your Spark cluster to send each message exactly

once. You wouldn’t want to annoy your customers and have them opt-out of being

notified.

You’ll be learning to use checkpoints and triggers in the third and fourth exercises. This

will also be an opportunity to experiment with continuous and micro-batch processing.

Exercise Materials the exercise materials for Chapter 10 are located at

https://github.com/newfront/spark-moderndataengineering/tree/

main/ch-10. the README files located within the material will provide you with more context regarding any additional installation or gotchas. these exercises

depend on the extended ~/dataengineering/ setup from Chapter 8, which provides the common mysQl (hive metastore) and minio (s3).

329

Chapter 10 patterns for Writing struCtured streaming appliCations

 Exercise Overview

The following exercises are aimed at teaching you to use the core features of Apache

Spark Structured Streaming. You’ll be using different approach patterns as you progress

through a series of exercises. They are based around the same core challenge and extend

from it.

 The Challenge

You are asked to create a system that ingests real-time event data across all coffee shops

owned by CoffeeCo. This system will be used to track customer usage patterns across the

network, starting with order tracking. For each order, an accountable upstream gateway

(like the examples described in Chapter 9) can be expected to produce reliable events that you will ingest into your Spark application.

 Figure 10-5. The order tracking ingress path. For each order, an event is emitted

 through the event Gateway API and enqueued into an event streaming platform

Figure 10-5 shows the high-level system at work providing the necessary data for our streaming application. For the sake of simplicity, this chapter exercises focus on

the data from the event streaming platform onward. With that in mind, we’ll need an

event format.

330

Chapter 10 patterns for Writing struCtured streaming appliCations

 The OrderEvent Format

Although it isn’t impossible to write an event-based application without having an

agreed-upon data format, it is harder and complicates things in the long term. In this

case, let’s say that the format of each event will need to provide the IDs for the order, the

customer associated with the order, and the store where the transaction took place, as

well as the number of items ordered and the total price of the transaction. This will be

encapsulated in what we will call the OrderEvent. We know what we’ll eventually need to

ingest; we just need to formulize the actual event.

Note in the real world, it’s not uncommon for data engineers to be tasked with

the job of creating the structured data formats and even writing the upstream

systems producing the data fed into their own data domains. this way they own

the data contract for their own domains and therefore understand the data lineage

of other upstream data providers/producers in their network.

As mentioned in the last chapter, events should be consistent and reliable; otherwise

your streaming application can abruptly stop functioning and you’ll have a mess (and

outage) on your hands. This doesn’t mean that you need to spend a lot of time getting

your upstream data ducks in a row before testing an idea. In fact, it is often the right

approach to start off with the rough concept/idea, and then harden things in a phase-

based approach.

Let’s take that approach now. We will start by crafting the data we will be working

with inside of the Spark engine.

 Leaning on the Spark Struct

Given that the structured data transformations you make with Spark SQL rely on the

StructType, you can begin the process of conceptualizing applications with simple

DataFrames. This enables you to move quickly before formalizing the data contracts for

a given application. Remember to always start small and build.

new StructType()

.add(StructField(" timestamp", LongType, false))

.add(StructField(" orderId", StringType, false))

.add(StructField(" storeId", StringType, false))

331

Chapter 10 patterns for Writing struCtured streaming appliCations

.add(StructField(" customerId", StringType, false))

.add(StructField(" numItems", IntegerType, false))

.add(StructField(" price", FloatType, nullable false))

Now that we have a general representation of the structure of the data we will be

using in our application, we can start the first exercise.

 Exercise 10-1: Using Redis Streams to Drive Spark

Structured Streaming

Redis Streams can be used to quickly build and test full end-to-end streaming applications. As you’ll see over the course of this exercise, that can help with the

discovery process associated with constructing applications.

Redis Streams runs with little overhead, thanks to it being a native data structure of

Redis, which is a highly optimized data structure store that is very well known and well liked in the community. If you have never used Redis before, you can still learn from this

exercise.

Exercise 10-1 the exercise materials.

/ch-10

/applications/redis-streams

/exercises/01_redis-streams

 Spinning Up the Local Environment

Use the provided docker-compose file located in exercises/01_redis-streams to get

started. You’ll start the environment again using Docker compose, which means you will

need to have Docker started as well.

docker compose \

-f docker-compose.yaml \

up -d --remove-orphans

This will spin up the external dependencies of the exercise, which are Redis, MinIO,

and MySQL. Then it is time to connect to the new Redis container.

332

Chapter 10 patterns for Writing struCtured streaming appliCations

 Connecting to Redis

Open the terminal or create a new session. You will use the terminal attached to the

Redis Docker container and provide a command-line connection to Redis through the

redis-cli. This connection will be used to push new event data into your event stream.

This is also a convenient way to read, write, and manage the full lifecycle of the data

for your event streams (or other Redis needs). As a bonus, you don’t have to write any

application code to get started.

Connect to the Redis CLI

With the assistance of the Redis container, you can now connect to the redis-cli by

executing the command in Listing 10-1.

 Listing 10-1. Connecting to Redis Container and Using the redis-cli

(Command Line)

docker exec \

-it redis redis-cli

Execute ping in the prompt. You will see PONG returned to you, meaning things are

working.

127.0.0.1:6379> ping

PONG

Next, you’ll learn to monitor the flow of commands into Redis. This is a great way to

see what is happening between the different points in the system.

Enable the Redis Command Monitor

Open another terminal window and execute the command in Listing 10-2. You should be greeted with an OK once you are connected.

 Listing 10-2. Using the redis-cli from the Redis Container to Monitor Commands

Sent to Redis (Locally or Remotely)

docker exec \

-it redis redis-cli monitor

333

Chapter 10 patterns for Writing struCtured streaming appliCations

The monitor process is a useful view into what commands are being sent to Redis

(in real-time). If you wait around for a few seconds, you’ll see a ping message coming

through the monitor from the Redis container’s health checks.

1626138124.541908 [0 127.0.0.1:59704] "ping"

Container Health Checks the

healthcheck block provided in the docker-

compose file (ch-10/exercises/01_redis-streams/) enables a service

to monitor itself using simple commands. in the case of redis, the health check

simply sends a ping through the redis-cli and makes sure it doesn’t time out.

this means that the container is operating as expected.

healthcheck:

test: ["CMD", "redis-cli", "ping"]

interval: 5s

timeout: 30s

retries: 50

Now it is time to create your first stream with Redis.

 Creating the Redis Stream

 A Redis Stream is generated automatically and becomes instantly available as you

add data. Since Redis is an in-memory database, there is minimal process overhead

for stream generation given there are no immediate files to create, new disk space

allocations, or expensive locking associated with stream generation. You simply publish

the first event, and the stream magically comes into existence. Behind the scenes Redis

persists the entire database periodically to the RDB, which is a point-in-time snapshot of

your entire Redis database. If you are familiar with Redis, the stream type is conceptually

a mix of the list, sorted set, and the hashmap data structures.

334

Chapter 10 patterns for Writing struCtured streaming appliCations

Stream Guarantees

Redis guarantees the order of the fields in each event in your stream, as well as the

consistency of the insert order. Each event identifier will always be greater than any

event inserted before it.

Why Field Level Ordering Matters

Field-level ordering is important for more than peace of mind. Each encoded

payload stored as an event encapsulated by the Redis Stream is a pointer to a hashmap.

By design, hashmaps can be randomly accessed by their keys, but they don’t retain any

specific order out of the box. For example, there is a big difference between a HashMap

and a LinkedHashMap in Java. The linked variant is used when you want to maintain

the order of the keys within the EntrySet. For reliability and consistency within an Redis

Stream, Redis takes care of the field-level ordering, but you must still provide a reliable

event. We will look at how this is handled later in the exercise.

Event Identifiers

You add new events using the XADD command. This command includes the option

of using an auto-generated ID rather than providing your own identifier. The valid

event ID format is <number>-<number>. In the case of autogenerated IDs, Redis will use the concatenation of the UNIX epoch milliseconds (timestamp) when the event was

ingested into Redis and the monotonically increasing ID for events received at the same

millisecond.

1625766684875-0

This pattern ensures that each event identity is greater than any event that came

before it. If you decide to bring your own identifiers to the party, you’ll have to keep

this in mind. Otherwise, you’ll get see ERR Invalid stream ID specified as stream

command argument due to the broken expectations of the event ID.

Redis Streams Are Append-Only

It is important to understand that streams in Redis are an append-only streaming data

structure. Append only means you can’t change the insert order. This forces upstream

systems that want to reorganize events (sorting, adding missing data) to read the stream,

reorganize it, and either push events into a new stream, or push these results into a

different reliable datastore. When you have an immutable, append-only streaming

source, you maintain consistency. This reduces the complexity of using this data and

provides you with a reliable data source that is ideal for streaming.

335

Chapter 10 patterns for Writing struCtured streaming appliCations

Let’s publish an event and generate your first stream.

 Event Publishing to a Redis Stream

You create a Redis Stream by publishing an event. Copy the command in Listing 10-3

from xadd onward and paste it into the redis-cli.

 Listing 10-3. Publishing an Event to a Redis Stream

127.0.0.1:6379> xadd com:coffeeco:coffee:v1:orders * timestamp

1625766472513 orderId ord126 storeId st1 customerId ca183 numItems 6

price 48.00

Redis will acknowledge your command by returning the event ID for the event you

published. For example, "1625766684875-0".

Consume Events from a Redis Stream

Now that you have an event published and a stream generated. You can read (consume)

all available published events using the redis-cli. To do this, you’ll use the xrange or

xrevrange commands, which allow you to read the items in the stream. Execute the

command in Listing 10-4 using the redis-cli.

 Listing 10-4. Using xrange to Read Events from the Redis Stream

127.0.0.1:6379> xrange com:coffeeco:coffee:v1:orders - + COUNT 1

This will fetch the first item added to the stream in ascending insert order, which

is based on the tail of the stream (think about how linked lists work with head or tail

pointers). Conceptually this process is the SQL equivalent to an order by asc limit 1.

select * from v1.orders

order by timestamp asc limit 1

The reverse of this is the xrevrange option. It uses descending insert order, reading

from the head of the stream (newest items first). So now that you have a general idea

how Redis Streams operates, it is time to get into the Spark application itself.

336

Chapter 10 patterns for Writing struCtured streaming appliCations

 The SparkRedisStreamsApp

Open the SparkRedisStreamsApp, which is located in the applications directory in

the chapter materials at /ch-10/applications/redis-streams. This application is a

throwback to Chapter 7, when you created your first compiled Spark application in Scala.

The general structure of the application is the same, with the addition of a Dockerfile

and one unmanaged library item (*lib/spark-redis). *At the time of writing, the spark-

redis library was not generally available for Spark 3x.

redis-streams/

conf/

lib/

project/

src/

Dockerfile

build.sbt

This project provides all the necessary building blocks to create your end-to-end

application. Rather than look through the code first, let’s flip this strategy on its head and

compile first, then ask questions later.

Let’s start by compiling the application using sbt.

Compile the Application

From the project root directory (redis-streams), compile the application.

sbt clean assembly

Note Compiling the app requires redis to be running in docker. return to the

start of the exercise and execute the docker compose command in the exercise

directory.

Once the application is compiled, your JAR will be located in target/scala-2.12/

spark-redis-streams-assembly-0.1-SNAPSHOT.jar. We’ll use this resource when we

wrap the application in its own Docker container next.

337

Chapter 10 patterns for Writing struCtured streaming appliCations

Build the Docker Container

With the application compiled, you can now build your Docker container. Open the

Dockerfile located in the project root directory (shown in Listing 10-5).

 Listing 10-5. The Dockerfile Used to Create Our Consistent Redis Streams

Application

FROM newfrontdocker/apache-spark-base:spark-3.1.2-jre-11-scala-2.12

COPY target/scala-2.12/spark-redis-streams-assembly-0.1-SNAPSHOT.jar /opt/

spark/app/spark-redis-streams.jar

EXPOSE 4040

The container definition file (Dockerfile) simply adds a new layer on top of the

apache-spark-base base container, which copies your application JAR to the /opt/

spark/app directory (created by the spark-base container). It also exposes port 4040,

which is the port the Spark UI runs on. From the project root directory, execute the

docker build command in Listing 10-6.

 Listing 10-6. Building the spark-redis-streams Docker Container

docker build . \

-t `whoamì/spark-redis-streams:latest

You’ll see that the container takes any time at all to build (assuming the

apache-spark-base container is cached in your local Docker).

[+] Building 0.4s (7/7) FINISHED

=> [internal] load build definition from Dockerfile

0.0s

=> => transferring dockerfile: 37B

0.0s

=> [internal] load .dockerignore

0.0s

=> => transferring context: 34B

0.0s

338

Chapter 10 patterns for Writing struCtured streaming appliCations

=> [internal] load metadata for docker.io/newfrontdocker/apache-spark-

base:spark-3.1.2-jre-11-scala-2.12

0.0s

=> CACHED [1/2] FROM docker.io/newfrontdocker/apache-spark-

base:spark-3.1.2-jre-11-scala-2.12

0.0s

=> [internal] load build context

0.2s

=> => transferring context: 11.90MB

0.2s

=> [2/2] COPY target/scala-2.12/spark-redis-streams-assembly-0.1-SNAPSHOT.

jar /opt/spark/app/spark-redis-streams.jar

0.1s

=> exporting to image

0.1s

=> => exporting layers

0.1s

=> => writing image sha256:2e542656e6e8c5e165fac6e308c68252f2396152a0078

5c7094c15f55a702939

0.0s

=> => naming to .../spark-redis-streams:latest

0.0s

The build completes quickly because essentially all you are doing is adding one JAR

(which you already compiled locally) and defining one port to be exposed.

Tip think about how you can reuse containers to create stackable environments.

in the example in listing 10-5, the stack starts with apache-spark-base, and you add to the stack with your application Jar.

You are now ready to run the application and consume the Redis Stream.

339

Chapter 10 patterns for Writing struCtured streaming appliCations

 Running the Application

The application acts like a simple echo server. When you add a new event to the Redis

Stream, the application will (almost) immediately process the event and output the

formatted DataFrame and the batch identifier (micro-batch). This application represents

a first pass, ensuring things are wired up correctly. Remember to always start small

and build.

This is the point where the redis-cli monitor (from Listing 10-2) becomes interesting. If you have the screen real estate, bring up the redis-cli and the redis-cli

monitor windows (in Listings 10-1 and 10-2) and then open a third terminal window where you’ll run the application.

Execute the command in Listing 10-7 to start the container and trigger the Spark application to run.

 Listing 10-7. The docker run Command to Launch the Spark Redis Streams

Application (in Container) Running in Your Local Data Platform

docker run \

-p 4040:4040 \

--hostname spark-redis-test \

--network mde \

-v ~/dataengineering/spark/conf:/opt/spark/conf \

-v ~/dataengineering/spark/jars:/opt/spark/user_jars \

-it `whoamì/spark-redis-streams:latest \

/opt/spark/bin/spark-submit \

--master "local[*]" \

--class "com.coffeeco.data.SparkRedisStreamsApp" \

--deploy-mode "client" \

--jars /opt/spark/user_jars/mariadb-java-client-2.7.2.jar \

--driver-class-path /opt/spark/user_jars/mariadb-java-client-2.7.2.jar \

--conf "spark.sql.warehouse.dir=s3a://com.coffeeco.data/warehouse" \

--conf "spark.app.source.stream=com:coffeeco:coffee:v1:orders" \

/opt/spark/app/spark-redis-streams.jar

340

Chapter 10 patterns for Writing struCtured streaming appliCations

The Docker container will start up using the SparkRedisStreamApp JAR you

compiled earlier and wrapped into the container. Inspecting the logs, you will notice a

lot of info-level logs from Spark. You can always reduce this chatter using log4j (changing

the root-level logging to WARN or ERROR or opting into application only logs). For now, the

logs can teach you more about how things work.

 Redis Streams Consumer Groups and Offsets

When the application starts up, it will connect to the Redis Stream identifier provided

in the spark.app.source.stream configuration value. This process can be seen in the

output logs. Just look for the following output.

INFO RedisSource: Getting batch...

start: None

end: {"offsets":{"com:coffeeco:coffee:v1:orders":{"groupName":

"spark-source","offset":"1626552490734-0"}}}

During this process, there is a quick conversation happening between Spark and

Redis, which you can observe using the redis-cli monitor. You’ll see the following

output in the monitor.

"XGROUP" "create" "com:coffeeco:coffee:v1:orders" "spark-source" "$"

"mkstream"

"XINFO" "STREAM" "com:coffeeco:coffee:v1:orders"

"XREADGROUP" "group" "spark-source" "consumer-1" "count" "100" "block"

"500" "noack" "streams" "com:coffeeco:coffee:v1:orders" ">"

"XINFO" "STREAM" "com:coffeeco:coffee:v1:orders"

These commands are part of the handshake process when the application starts

up with no prior state. (You’ll learn to store the application state with checkpoints in

Exercise 10-3.) This information-gathering flow queries the stream and creates new consumer groups for the application.

341

Chapter 10 patterns for Writing struCtured streaming appliCations

 Consumer Groups

To keep track of the position of the stream and to associate the Spark application with a

specific group, the XGROUP command is used. Given that the application has never been

run before, a new group is first created, and then the stream is queried (XINFO) to get all

the metadata related to the stream so Spark can begin to ingest new events.

You can run the xinfo command in the redis-cli to see what data is returned.

xinfo STREAM com:coffeeco:coffee:v1:orders

Then, using XREADGROUP, the application creates an initial position to block and await

new events.

Now that the application understands its initial state, it can move on and begin to do

work. This is the critical first step in any Structured Streaming application. In fact, you’ll

see that this process also creates a first batch.

Batch: 0

+---------+-------+-------+----------+--------+-----+

|timestamp|orderId|storeId|customerId|numItems|price|

+---------+-------+-------+----------+--------+-----+

+---------+-------+-------+----------+--------+-----+

This process will now only repeat when new data arrives from the Redis Stream. Let’s

add another event.

 Creating the Next Batch

You can copy the XADD command from Step 3 and paste it into the redis-cli to trigger a

new batch.

xadd com:coffeeco:coffee:v1:orders * timestamp 1625766472513 orderId

ord126 storeId st1 customerId ca183 numItems 6 price 48.00

From the Spark application container, you’ll see the application react and process

this new event. From the logs, the important piece of output is the acknowledgment of

the batch and the formatted output of the batch.

342

Chapter 10 patterns for Writing struCtured streaming appliCations

Batch: 1

+-------------+-------+-------+----------+--------+-----+

| timestamp|orderId|storeId|customerId|numItems|price|

+-------------+-------+-------+----------+--------+-----+

|1625766472513| ord126| st1| ca183| 6| 48.0|

+-------------+-------+-------+----------+--------+-----+

Try pasting the following events into the redis-cli. What do you notice about the

behavior of the application?

> xadd com:coffeeco:coffee:v1:orders * timestamp 1625766472503 orderId

ord124 storeId st1 customerId ca153 numItems 1 price 10.00

> xadd com:coffeeco:coffee:v1:orders * timestamp 1625766472513 orderId

ord125 storeId st1 customerId ca173 numItems 2 price 7.00

> xadd com:coffeeco:coffee:v1:orders * timestamp 1625766472513 orderId

ord126 storeId st1 customerId ca183 numItems 6 price 48.00

> xadd com:coffeeco:coffee:v1:orders * timestamp 1625766472613 orderId

ord127 storeId st1 customerId ca184 numItems 1 price 3.80

You’ll notice that the application will process each event in its own batch. Well, why

is that, you might be asking? That doesn’t seem to be in line with what we might expect

from micro-batch, which feels more continuous. This is true and this behavior can be

controlled by adding triggers into the control path of the application.

For now, you can stop the docker process (^+C) or just exit the window where it is

running.

We’ll be diving into the application code itself in Exercise 10-2 to see the pieces that make this application tick. You’ll learn some tricks that help make writing applications

simple along the way.

 Exercise 10-1: Summary

This first exercise taught you how Redis Streams work from a high level. You learned to

use the redis - cli and what the redis-cli monitor is used for as you figured out how to

navigate these new streaming waters. You finished up the exercise with a preview of the

Spark Redis Streams application, the contents of which you’ll be looking at next.

343

Chapter 10 patterns for Writing struCtured streaming appliCations

 Exercise 10-2: Breaking Down the Redis Streams

Application

The application you ran in Exercise 10-1 is a partial Structured Streaming application.

This is due to the fact that it doesn’t yet keep track of its own state, making it stateless,

and it also doesn’t do anything productive with the events it consumes. This is all by

design though; the current state of the application is shown in Figure 10-6.

 Figure 10-6. The starting point of Structured Streaming. It connects to Redis and

 continously polls for new events

Figure 10-6 represents the application you just ran in Exercise 10-1. Using this as a mental model, open the redis-streams project in your favorite IDE and navigate

to SparkRedisStreamsApp.scala located at /ch-10/applications/redis-streams/

SparkRedisStreamsApp.scala.

You’ll notice that we are again using the SparkApplication trait that we introduced

in Chapter 7.

object SparkRedisStreamsApp extends SparkApplication

344

Chapter 10 patterns for Writing struCtured streaming appliCations

As a refresher, this trait provides the application with a SparkSession, a handle to

the application name, and the immutable SparkConf that ultimately reduces a lot of the

boilerplate code when setting up each new application.

 DataStreamReader

Using the diagram for reference, let’s begin with the DataStreamReader. This is one of the core Structured Streaming interfaces and it offers a common means to load

streaming datasets into Spark. In the application, you’ll find the following block.

lazy val inputStream: DataStreamReader = {

sparkSession.readStream

.format("redis")

.option("stream.keys", inputStreamName)

.schema(streamStruct)

}

Just like with our batch applications, we use the SparkSession as an interface

to configure our data source and generate a new reader, or ingress point. The only

difference between what we’ve done in the book up until now is that we are specifying

the data source as a streaming data source by using readStream instead of read.

Extending Spark this may also be the first time you are seeing a custom

data source format. spark is a pluggable platform, and it understands that

format("redis") will be provided by the spark-redis library through the use

of the datasourceregistry and streamsourceprovider interfaces. You can create your own source and sink formats to add new capabilities to spark without having

to reinvent the wheel.

Then we fill in the required configuration for the data source. In this case, just the

name of the stream (key name of the stream) and the expected schema from this source.

345

Chapter 10 patterns for Writing struCtured streaming appliCations

 Is the Schema Required?

The schema is required for most streaming data sources. The JSON data source can infer

the schema, but it does that using sampling, which can cause inconsistencies. This means

you won’t have a deterministic schema in the case of sparse event data (e.g., optional

fields). For your own sanity, it is better to provide the schema based on your upstream

data contracts. That way, you are writing your applications with solid expectations.

You were introduced to the order event format in the exercise’s introduction. The

following struct is the formal structured data contract for this application.

 The OrderEvent Schema

lazy val streamStruct = new StructType()

.add(StructField("timestamp", LongType, false))

.add(StructField("orderId", StringType, false))

.add(StructField("storeId", StringType, false))

.add(StructField("customerId", StringType, false))

.add(StructField("numItems", IntegerType, false))

.add(StructField("price", FloatType, false))

It is worth mentioning that the schema builder method of the DataStreamReader

takes either a fully formatted StructType (as seen above) or you can also provide a DDL

string. Spark will parse the DDL string and assemble things for you.

 Generating a StructType from a DDL String. This Is Equivelent to Calling StructType.

 fromDDL(streamStruct.toDDL)

StructType.fromDDL("""

`timestamp` BIGINT,

òrderId` STRING,

`storeId` STRING,

`customerId` STRING,

`numItemsÌNT,

`pricè FLOAT""")

This flexibility enables you to write rich streaming applications that can be config-

driven while still adhering to a strict data contract.

That covers how the application knows where to connect and what schema to expect

from an upstream. Given the simplicity of this first streaming application, we’ll be

moving right along to the DataStreamWriter.

346

Chapter 10 patterns for Writing struCtured streaming appliCations

 DataStreamWriter

The DataStreamWriter is the central interface used to write streaming datasets to external storage in Spark. The interface provides a smaller subset of methods than its batch mode

equivalent, the DataFrameWriter. We’ll cover using outputMode, partitionBy, and

trigger in Exercise 10-3. Looking at the run method will show you this in action.

 The Streaming Implemenetation of the run Method from the SparkApplication Trait

override def run(): Unit = {

...

val writer: DataStreamWriter[Row] = SparkRedisStreams(sparkSession)

.transform(inputStream.load())

.writeStream

.queryName("orders")

.format("console")

startAndAwaitApp(writer.start())

}

The run method takes advantage of some simple application design patterns which

might not be immediately noticeable. We’ll cover the subtle use of lazy invocation and

dependency injection next. These techniques work alongside the Spark delegation

pattern introduced in Chapter 7.

 Lazy Invocation

The run method leans on Scala companion class construction and lazy dependency

injection to reduce the complexity required for Spark to read the intentions of this

application and generate an execution plan.

SparkRedisStreams(sparkSession)

.transform(...)

The DataFrame that’s passed to the transform method is the result of calling load on

our DataStreamReader.

.transform(inputStream.load())

This inputStream is a lazy singleton that acts as a promise to generate a DataFrame

at a future point in time. This is all Spark needs to know at this point.

347

Chapter 10 patterns for Writing struCtured streaming appliCations

 Depending on Dependency Injection

As an aside, this pattern also enables you to use dependency injection to provide the

transform method with a DataFrame. This makes testing easier and provides flexibility

with regard to upstream data sources. At this moment the application is connected

to Redis, but you can just as easily plug Kafka into place and the application doesn’t

change aside from upstream configuration. This pattern also enables you to reuse the

application for either batch or streaming data sources given the interface is bound to the

DataFrame and not a DataStreamReader.

This leaves us with the final piece of the puzzle. To have a Structured Streaming

application, you need to have both a data source as well as a data sink. We’ve covered

the upstream data source, which is Redis. As a quick recap, this streaming data source

is generated using the readSteam method on the Spark Session, which results in a

DataStreamReader. Now to fulfill the last requirement, all we need is a sink.

 Writing Streaming Data

The writeStream method is a member of the Dataset class. A DataFrame is simply a

Dataset[Row] and the application’s transform method returns a DataFrame. Now when

we call writeStream we are transforming our DataFrame to a DataStreamWriter.

In the application, the output format used is "console". This is a special sink that

can be used to observe the output of your application as it doesn’t write any data to a

reliable data store.

.writeStream

.queryName("orders")

.format("console")

With the full application wired up (source --> transform --> sink), all that is left to do is start the app. The start method on the DataStreamWriter creates a StreamingQuery.

startAndAwaitApp(writer. start())

348

Chapter 10 patterns for Writing struCtured streaming appliCations

Streaming Query

The StreamingQuery interface encapsulates the end-to-end structured stream.

It provides methods for introspecting the query while it is running in your Spark

application. It is also thread-safe, so you can observe the stream from anywhere on the

driver. You’ll be using this interface directly as this application is extended and hardened

with tests in Chapter 11.

For now, you need to only concern yourself with one method: awaitTermination.

def startAndAwaitApp(query: StreamingQuery): Unit = {

streamingQuery.awaitTermination()

}

When you call awaitTermination on the streaming query, the application will

continue running until there is an unrecoverable exception thrown, or until the

process is exited, such as in the case of stopping the Docker container or sending a

termination signal.

This end-to-end process is all kicked off by calling run() from within the application

entry point.

 Application Entry Point

The application entry point is the class providing the main method. This application

extends the SparkApplication trait, which extends the App trait from Scala. So, when

you ran this application earlier, you were essentially calling the main method of

SparkRedisStreamsApp, which calls run().

/opt/spark/bin/spark-submit \

--master "local[*]" \

--class "com.coffeeco.data.SparkRedisStreamsApp" \

...

/opt/spark/app/spark-redis-streams.jar

Now that you understand how the initial application works, we can turn things up a

notch and take a second pass over the application. In Exercise 10-3, you’ll be learning to make the application stateful using checkpoints.

349

Chapter 10 patterns for Writing struCtured streaming appliCations

 Exercise 10-2: Summary

In Exercise 10-2, you learned how the application introduced in Exercise 10-1 works. You walked through the steps to connect a streaming data source to a streaming data writer

and learned how the events received (across each batch) flow from source to sink. This

simple exercise introduced you to the core Spark interfaces for Structured Streaming:

the DataStreamReader, DataStreamWriter, and StreamingQuery interfaces. Lastly, you

learned how lazy invocation and dependency injection can be layered to create easy-to-

follow and simple-to-maintain Spark applications.

In this next exercise, you learn to add checkpoints to this application.

 Exercise 10-3: Reliable Stateful Stream Processing

with Checkpoints

In Exercise 10-1, when the application started there was a handshake that occurred between Spark and Redis. This process generated the initial state for our stateful

application. Unfortunately, when you killed the process, all this temporary state was

essentially wiped out. This means that the application skips processing any data added

to the Redis Stream while it is offline.

You probably know what I’m going to say next, and yes this is not an ideal situation,

and no it doesn’t help to build confidence in the application.

 Why Checkpoints Matter

Checkpoints give you a save point. Like in any classic video game, this provides you with

a safe place to return to if you die. Now with our application, if it dies, we need to be able

to start over exactly where we left off.

 Reliable Checkpoints

Reliable checkpoints begin with the concept of consistency and durability. This should

have you thinking about fault tolerance, and it isn’t too difficult a leap to connect this all

to atomicity. Apache Spark enables reliable checkpointing by leaning on the foundations

of the distributed file system (aka HDFS) to store application checkpoints (state) off box,

so that an application can be restarted in the event that the machine it was running on

shuts down.

350

Chapter 10 patterns for Writing struCtured streaming appliCations

 Enabling Reliable Checkpoints

Open the StatefulSparkRedisStreamsApp. This application changes very little to

introduce reliable checkpointing. In fact, there are only two noticeable changes.

The first change is introduced in the run method.

 Adding the checkpointLocation to the DataStreamWriter

SparkRedisStreams(sparkSession)

.transform(inputStream.load())

.writeStream

.queryName("orders")

.option("checkpointLocation", appCheckpointLocation)

.format("console")

The value of the variable passed into this parameter is passed to the application

through the SparkConf.

lazy val appCheckpointLocation: String = sparkConf.get("spark.app.

checkpoint.location")

Now let’s run the application.

 Running the Stateful Application

You can test drive this application using a slight modification to the Docker run script

you used in Exercise 10-1.

docker run \

...

--class "com.coffeeco.data.StatefulSparkRedisStreamsApp" \

--conf "spark.sql.warehouse.dir=s3a://com.coffeeco.data/warehouse" \

--conf "spark.app.source.stream=com:coffeeco:coffee:v1:orders" \

--conf "spark.app.checkpoint.location=s3a://com.coffeeco.data/apps/spark-

redis-streams-app/1.0.0/simple" \

/opt/spark/app/spark-redis-streams.jar

The two highlighted changes correspond to the application entry point and the

additional configuration needed to provide the application checkpoint location.

351

Chapter 10 patterns for Writing struCtured streaming appliCations

 Observing the Stateful Behavior

With the application running, open your redis-cli (if you’ve closed it) and paste in one

of the example OrderEvents from Exercise 10-1.

> xadd com:coffeeco:coffee:v1:orders * timestamp 1625766472503 orderId

ord124 storeId st1 customerId ca153 numItems 1 price 10.00

This will result in the batch being processed. It’s the same behavior as before. So now

for the exciting part. Stop the Spark application (press Control+C). Before you start the

application back up, add three more events to the Redis Stream.

> xadd com:coffeeco:coffee:v1:orders * timestamp 1625766472503 orderId

ord124 storeId st1 customerId ca153 numItems 1 price 10.00

> xadd com:coffeeco:coffee:v1:orders * timestamp 1625766472613 orderId

ord127 storeId st1 customerId ca184 numItems 1 price 3.80

> xadd com:coffeeco:coffee:v1:orders * timestamp 1625766472513 orderId

ord125 storeId st1 customerId ca173 numItems 2 price 7.00

Start the Spark application back up. The first observation you may make (if you scan

the logs) is that the Redis Source output now has a start parameter.

INFO RedisSource: Getting batch...

start: Some({"offsets":{"com:coffeeco:coffee:v1:orders":{"groupName":

"spark-source","offset":"1626658307940-0"}}})

end: {"offsets":{"com:coffeeco:coffee:v1:orders":{"groupName":

"spark-source","offset":"1626658362223-0"}}}

You’ll also see that the application picks right back up, as if it were never offline.

Instead of starting with batch 0 again, you’ll see the next batch is non-zero. For example:

352

Chapter 10 patterns for Writing struCtured streaming appliCations

Batch: 2

+-------------+-------+-------+----------+--------+-----+

| timestamp|orderId|storeId|customerId|numItems|price|

+-------------+-------+-------+----------+--------+-----+

|1625766472503| ord124| st1| ca153| 1| 10.0|

|1625766472613| ord127| st1| ca184| 1| 3.8|

|1625766472513| ord125| st1| ca173| 2| 7.0|

+-------------+-------+-------+----------+--------+-----+

This means you can now survive application downtime without missing a beat.

 How Checkpoints Work

For each batch, the streaming data source will write the explicit offsets used for a batch

to reliable storage, aka the distributed file system. This is called write-ahead logging.

After each successful batch, there is an acknowledgment written to reliable storage in the

form of a commit. You can see the process in Figure 10-7.

 Figure 10-7. The checkpointing process

353

Chapter 10 patterns for Writing struCtured streaming appliCations

This process is repeated for each batch. This means that a failure in a batch won’t

move the cursor so to speak, and your application will restart at its last successful

save point.

You can inspect the application checkpoints using the MinIO browser at

http://127.0.0.1:9000/minio/com.coffeeco.data/apps/spark-redis-streams-

app/1.0.0/simple/ or on the file system under ~/dataengineering/minio/.

 Deleting Checkpoints

You only need to delete checkpoints when an application is end of life, or when an

application is being updated and the underlying DAG has changed. The DAG changes

when you change data sources or sinks, or when you add more data sources to the table,

such as with streaming joins from multiple upstreams.

 Exercise 10-3: Summary

This third exercise introduced you to the process that makes Structured Streaming

reliable—the checkpoint. You learned that each batch is controlled using a write-ahead

log (WAL) and each successful batch is marked complete using commits. This simple

process keeps track of your application state even in the case of a terminal failure of the

physical server or machine where your application is running.

In the final exercise of this chapter, you learn how to control the runtime behavior of

the application by adding processing triggers.

 Exercise 10-4: Using Triggers to Control Application

Runtime Behavior

Triggers can be used to control the behavior of the Structured Streaming application.

During this exercise, you learn how to apply three different flavors of trigger while also

enhancing the application. The changes are shown in Figure 10-8.

354

Chapter 10 patterns for Writing struCtured streaming appliCations

 Figure 10-8. The final updates being made to the Redis Streams application.

 This change will write the contents of the data read through Redis Streams and

 then write those events out into a durable distributed table

Open the file named TriggeredStatefulSparkRedisStreamsApp. Here you’ll find a

few new methods and configurations and an update to the run method. Skip down to the

outputStream method, since this is where we’ll be starting. This method is responsible

for building a partial DataStreamWriter.

lazy val outputStream: DataStreamWriter[Row] = {

SparkRedisStreams(sparkSession)

.transform(inputStream.load())

.writeStream

.queryName("orders")

.format("parquet")

.partitionBy("storeId")

.option("path", streamingSinkLocation)

.outputMode(OutputMode.Append())

}

355

Chapter 10 patterns for Writing struCtured streaming appliCations

The output format of the streaming sink is parquet. This means the application is

converting the data read from the Redis Stream into parquet and then writing these

events out, partitioned by storeid into the path defined by streamingSinkLocation.

When you write out using partitionBy, you are essentially creating key/value named

directories.

/tables/coffee.order.events/storeId={storeId}/

Tip as a rule of thumb, you should partition your tables across lower cardinality

columns. it is common to use the date (date=YYYY-mm-dd) and the parts of the

year (year=YYYY/month=mm/day=dd). to mix it up, you can include columns that

are specific to the queries you’ll be making. in this exercise, that column is the

storeId.

Lastly, we changed the output format to be append only: OutputMode.Append(). This

will only let new rows in the streaming DataFrame/dataset be written to the sink. When

we look at using aggregations in the next chapter, the output modes will make more

sense, as they can help reduce the amount of output for stateful aggregations and other

analytical processing. Let’s look at the triggers now.

 The Updated Run Method with Triggers

The run method now further customizes DataStreamWriter from the outputStream

method using the provided trigger configuration. Let’s look at the two config values.

lazy val triggerEnabled: Boolean = sparkConf.getBoolean(

"spark.app.stream.trigger.enabled", true)

Why would you want to turn triggering on or off? In the case of recovery or replay

of an application, the triggers can get in the way of achieving maximum throughput in

the application. For example, the ProcessingTime trigger enables the Spark application

to execute based on an interval (30 seconds, 5 minutes, or 1 hour). Each time the

application ticks, it will run for as long as it needs to, and then the timer starts counting

down until the next time it can trigger the next batch. If you want the application to

process quickly, it is nice to be able to flip the switch and short-circuit triggering for these kinds of special use cases.

356

Chapter 10 patterns for Writing struCtured streaming appliCations

lazy val triggerType: String = sparkConf.get(

"spark.app.stream.trigger.type", "processing")

The trigger type is associated with the values processing, once, or continuous. These

are the three types of triggers available in Spark Structured Streaming.

Let’s see how these two configs play together to control the configurations used to

generate the final StreamingQuery in the run method.

override def run(): Unit = {

super.run()

val writer: DataStreamWriter[Row] = triggerType match {

case "continuous" if triggerEnabled =>

val checkpointInterval = "30 seconds"

outputStream

.option("checkpointLocation", s"$appCheckpointLocation/trigger/

continuously/")

.trigger(Trigger.Continuous(checkpointInterval))

case "once" if triggerEnabled =>

outputStream

.option("checkpointLocation",

s"$appCheckpointLocation/trigger/once/")

.trigger(Trigger.Once())

case "processing" if triggerEnabled =>

outputStream

.option("checkpointLocation", s"$appCheckpointLocation/trigger/

processing/")

.trigger(Trigger.ProcessingTime("10 seconds"))

case _ => outputStream

.option("checkpointLocation",

s"$appCheckpointLocation/trigger/none/")

}

startAndAwaitApp(writer.toTable(streamingTableName))

}

357

Chapter 10 patterns for Writing struCtured streaming appliCations

We already covered what the DataStreamWriter interface does. We are just using a

more functional approach to generate the final writer using the triggerType match.

triggerType match {

case "continuous" if triggerEnabled =>

case "once" if triggerEnabled =>

case "processing" if triggerEnabled =>

case _ =>

}

Pattern matching makes it easier to check if the triggerType is equal to continuous,

once, or processing. Otherwise, the application will fall through to the default non-

trigger based micro-batch processing mode. Within each of the blocks, something

interesting is at play. Let’s break those down now.

 Continuous Mode Processing

Earlier in the chapter we covered what continuous processing mode is. Essentially it

will process each event from the data source all the way to completion and commit

asynchronously without concerning itself with the status of any other events (since there

is no such thing as a batch).

Trigger.Continuous(checkpointInterval)

Unfortunately, we can only use this mode of execution with Kafka as a data source, so

we have to hold off until the next chapter. (You can use the environment from Chapter 11

to test things out as a continued exploration.)

 Periodic Processing

Sometimes you’ll find yourself needing to control the frequency in which your

application triggers each micro-batch. Say you need to run a job once a minute and you

don’t want to use Airflow to do that.

You can use this trigger to take the place of the Airflow scheduler and run a new

batch every five minutes:

Trigger.ProcessingTime("5 minute").

case "processing" if triggerEnabled =>

outputStream

358

Chapter 10 patterns for Writing struCtured streaming appliCations

.option("checkpointLocation", s"$appCheckpointLocation/trigger/

processing/")

.trigger(Trigger.ProcessingTime("10 seconds"))

In the application this interval has been clamped to ten seconds. You could easily

add a configuration parameter to control the trigger in a more dynamic way.

 Stateful Batch Jobs

Back in Chapter 7 you were introduced to stateful batch jobs. Well, here we are now, and you are looking at the controller used to change the application from a continuous

stateful Structured Streaming application to a stateful batch-based application. While

this is technically still a Structured Streaming application, the fact that it doesn’t

continue after the first run gives us wiggle room to call it what it is.

case "once" if triggerEnabled =>

outputStream

.option("checkpointLocation",

s"$appCheckpointLocation/trigger/once/")

.trigger(Trigger.Once())

 Streaming Table Writer

The last order of business before testing the application is a brief discussion about the

change made to the end of the run method.

startAndAwaitApp(

writer. toTable(streamingTableName)

)

The DataStreamWriter has a method called toTable. This method, like the start

method you saw before, results in a StreamingQuery. The magic going on here is that

the table metadata is now being written to the Hive Metastore (like you learned to do in

Chapter 6), while the rest of the physical partitioned parquet is being written into the distributed file system.

The streamingTableName is stored in the sparkConf, under spark.app.streaming.

table.name. For the example, it is called coffee_orders.

359

Chapter 10 patterns for Writing struCtured streaming appliCations

 Running the Stateful Application with Triggers

There is nothing left to do but run the application. You’ll need your redis-cli open, and

you should also have your order events at hand to start feeding to the application once

it starts.

Run with Trigger Once

The necessary configuration is shown next. You can take the full command directly from

the README in the application directory or make the necessary adjustments to the original

full docker run command shown in Exercise 10-1.

docker run \

...

--class "com.coffeeco.data.TriggeredStatefulSparkRedisStreamsApp" \

--conf "spark.sql.warehouse.dir=s3a://com.coffeeco.data/warehouse" \

--conf "spark.app.source.stream=com:coffeeco:coffee:v1:orders" \

--conf "spark.app.stream.trigger.enabled=true" \

--conf "spark.app.stream.trigger.type=once" \

--conf "spark.app.checkpoint.location=s3a://com.coffeeco.data/apps/

spark-redis-streams-app/canary/" \

--conf "spark.app.streaming.sink.path=s3a://com.coffeeco.data/tables/

coffee.order.events/" \

--conf "spark.app.streaming.table.name=coffee_orders" \

/opt/spark/app/spark-redis-streams.jar

The application will start up. If there are no checkpoints, then it will create an initial

batch 0, and then the application will complete. However, just like with the example

of the stateful application in Exercise 10-3, you can add as many events as you want to the Redis stream and then fire the application back up. It will process all your events

and then stop running again. The beauty here is that you can run this application from

Airflow using the Docker operator and run a fully consistent, reliable stateful batch

jobs. Neat.

360

Chapter 10 patterns for Writing struCtured streaming appliCations

Run with ProcessingTime

This will start the application, giving it fresh checkpoints. You are then free to add as

many new events as you want and watch the behavior of the application. It will pause for

ten seconds between runs.

docker run \

...

--class "com.coffeeco.data.TriggeredStatefulSparkRedisStreamsApp" \

--conf "spark.sql.warehouse.dir=s3a://com.coffeeco.data/warehouse" \

--conf "spark.app.source.stream=com:coffeeco:coffee:v1:orders" \

--conf "spark.app.stream.trigger.enabled=true" \

--conf "spark.app.stream.trigger.type=processing" \

--conf "spark.app.checkpoint.location=s3a://com.coffeeco.data/apps/

spark-redis-streams-app/canary/" \

--conf "spark.app.streaming.sink.path=s3a://com.coffeeco.data/tables/

other.coffee.order.events/" \

--conf "spark.app.streaming.table.name=other_coffee_orders" \

/opt/spark/app/spark-redis-streams.jar

 Running Continuously

For now, we can’t run in continuous mode. We need to add Kafka to the party, which is

coming in the next chapter.

 Viewing the Results

You can inspect the values stored in the Hive Metastore by jumping into the Docker

instance running MySQL and querying the Metastore directly.

docker exec -it mysql bash

mysql -u dataeng -p

use metastore;

select * from TABLE_PARAMS

where TBL_ID =(

select TBL_ID from TBLS

where TBL_NAME = "coffee_orders"

);

361

Chapter 10 patterns for Writing struCtured streaming appliCations

This output will be the metadata related to the coffee_orders table.

 The Hive Metastore Record Generated Using the toTable Method on the

 DataStreamWriter

+--+

| TBL_ID | PARAM_KEY | PARAM_VALUE|

+--------+--------------------------------------+------------+

| 16 | EXTERNAL | TRUE |

| 16 | spark.sql.create.version | 3.1.2 |

| 16 | spark.sql.partitionProvider | catalog |

| 16 | spark.sql.sources.provider | parquet |

| 16 | spark.sql.sources.schema.numPartCols | 1 |

| 16 | spark.sql.sources.schema.numParts | 1 |

| 16 | spark.sql.sources.schema.part.0 | {schema} |

| 16 | spark.sql.sources.schema.partCol.0 | storeId |

| 16 | transient_lastDdlTime | 1626675149 |

+--------+--------------------------------------+------------+

You’ll see the table is an external table. This means you can delete the table from the

Spark catalog but still retain the physical table located in the distributed file system.

 Exercise 10-4: Summary

This final exercise taught you how to wire up multiple modes of execution within your

application and use config-driven feature flags to change the behavior of the application.

While you could take these examples much further, this is a good introduction to using

Apache Spark Structured Streaming.

362

Chapter 10 patterns for Writing struCtured streaming appliCations

 Summary

We covered a lot in this chapter. You were introduced to the core processing tenants of

Spark Structured Streaming.

• Execution/processing modes (micro-batch or continuous modes)

• Triggers (effective processing windows/boundaries)

• Incremental queries (progressive data processing across time)

• Streaming output modes (complete, update, and append)

You learned how to switch between micro-batch execution mode and continuous

execution mode using triggers. While the correct components were not currently

available (aka Kafka), you still have an application that is pluggable for that use case

(which is right around the corner). You used the append-only output mode, which

means only data that Spark hasn’t seen before will be written through the sink, and you

will learn to use the other modes during the next chapter. Lastly, you have a full suite

of tools at your disposal, including new chops when it comes to containerizing your

Apache Spark applications.

In the next chapter, we will be continuing our work with Structured Streaming with a

focus on more advanced data processing, from streaming joins to aggregations and other

analytical processing. You’ll also be getting your hands on Kafka for use in your vast set

of data engineering tools. Let’s go.

363

CHAPTER 11

Apache Kafka and Spark

Structured Streaming

The last chapter was an introduction to using Apache Spark Structured Streaming. You

learned how the popular Redis database can be used to create structured in-memory

event streams and explored how to write stateful streaming applications.

This chapter expands on the skills acquired in the last chapter, which included

an introduction to using the core Structured Streaming APIs—the DataStreamReader

and the DataStreamWriter, how to utilize application checkpoints to create stateful

streaming applications that can handle fault tolerance and restart, how to control the

application processing frequency and operating style using triggers, and lastly how the

flow of an application works in stateful stream and stateful batch. You’ll continue to

explore how Structured Streaming works by focusing on using Apache Kafka as a conduit

between Spark and the rest of the data ecosystem.

 Apache Kafka in a Nutshell

Apache Kafka was introduced in Chapter 1 and is the most widely adopted event and data stream processing framework in use today. The leading role Kafka plays in the data

engineering ecosystem has to do with the stabilizing function it provides. It steps in to

solve common problems related to communication between distributed systems and

services.

 Asynchronous Communication

APIs and other HTTP services require all dependent systems and services to be up and

running for requests to be handled in a synchronous fashion. It is common for backend

services to implement various levels of retry to back off from a non-responsive system

365

© Scott Haines 2022

S. Haines, Modern Data Engineering with Apache Spark, https://doi.org/10.1007/978-1-4842-7452-1_11

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

or service and to retry each request multiple times before giving up and returning an

error to the callee. Chapter 9 introduced the "thundering herd" problem and the trouble that resource scarcity introduces as processes scramble to make up for lost time. Kafka

enables systems (that can handle asynchronous requests) to move away from the

traditional request/response cycle to one where a request identifier can be queried for

completion state or where the success or failure of the operation encapsulated by the API

request notifies its final state through use of a webhook or callback.

 Horizontal Scalability

Kafka efficiently handles the common problems introduced by increasing load on a

system due to an increase in the number of consumers (readers), producers (writers), or

both, of a topic (the durable storage mechanism for a collection of related events/types)

by enabling the system to scale the number of servers in the cluster out (horizontally) as

opposed to scaling the size (CPU/RAM/disk) of the servers themselves.

Unlike traditional databases that could become plagued by too many connections

due to the restrictions and limitations of bounded resources on a single server, Kafka

brokers can be scaled out, thereby increasing the throughput capabilities of the entire

cluster holistically.

A broker is a server-side (cluster member) service responsible for handling a

percentage of all distributed requests in the cluster. Each broker is assigned and

responsible for a percentage of one or many distributed topic partitions (data files),

with the assigned role of either a partition leader (the primary owner of a partition), or a

replica (redundant backup of the current leader’s partition). Brokers can be increased to

distribute a higher load across the cluster with respect to reading, writing, or redundancy

and recovery. This enables the platform to scale up to meet the data demands of a topic

while also managing the quirks that come along with a distributed system’s need to be

available and consistent.

 High Service Availability and Consistency

You were introduced to CAP theorem in Chapter 1, and given that Kafka is a distributed, network connected service, the issues with consistency, availability, and network

partitioning tolerance are important. To maintain distributed consistency, the theorem

states that a service can’t handle network partitioning (blind spots in the cluster) and

366

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

remains fully available. For this reason, Kafka uses partition replication, within topics,

to achieve high availability and consistency. To ensure that there is more than one

complete in-sync replica (ISR) available for redundancy if the broker (server) assigned

as a leader for a partition goes offline (or the server is shut down/dies), each write

is durably written to a write-ahead log and acknowledged to the writer (producer).

The Kafka cluster can use the ISR convention to reliably select the next available ISR

(redundant copy) of a lost partition and promote that broker as the new leader of

the topic partition. This cycle repeats whenever a broker goes offline to restore topic

consistency and availability with minimal interruptions to the consumers and producers

of a given topic.

In the same way that Kafka distributes the contents of a topic across many partitions,

the brokers themselves can be used to issue topic-level commands that propagate

between brokers. For example, to increase the number of partitions of a topic with

zero downtime any broker can be used to spread the word (gossip style). Topic-

level configuration can also be adjusted in real-time, and zero-downtime, to handle

increasing data demands due to increased size of the payload (events) being produced,

or to handle an increase in the number of records being produced and consumed. Why

should you scale out? This concept takes us back to the law of large numbers. All systems

will slow down the larger the load they must handle within a single process, so splitting

partitions of a topic (e.g., an increasing the number of partitions encapsulating the entire

topic) is a way to handle the demands of big data systems at scale.

 Disaster Recovery

By enabling applications to replay events (data) from an earlier point in time, systems

and services can handle some downtime or service interruptions and recover from

scenarios that would have otherwise resulted in data loss. This is especially important for

data pipelines since a dropped event is data loss, but a degraded service with the option

of recovery is still eventually consistent.

 Event Streams and Data Pipelines Ecosystem

Apache Kafka solves a similar problem to that of the data lake (introduced in Chapter 1).

Remember that the data lake provides a unified, elastically scalable source of truth for

raw, unprocessed data from across the organization that acts as a centralized staging

area for data to be reliably re-read, re-processed, and transformed into actionable data

367

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

at a later point in time. This central data staging area solved a problem having to do with

data pipelines and lossy transformation of data made too early in the lineage of a data

pipeline. If you have no way to get back to the original source of truth for an event, then

corrupt data simply flows downstream.

Apache Kafka, on the other hand, provides a unified event streaming solution

that organizes event data across topics, which act in a similar way to the partitioned

distributed file system underpinning the data lake. Topics enable the construction of

data pipelines of encoded binary data that can be tapped into to produce rich data

networks. The key difference between the data lake and Kafka has to do with time,

specifically minimizing the time between when data is produced (written to a topic) and

when it can be consumed (read) downstream.

Kafka enables connected clients to consume data (in near real-time) immediately

after the group (quorum) of server-side brokers assigned to a topic commit and

acknowledge receipt of published events (records) emitted from a connected data

producer. The connected client simply polls a topic on a scheduled interval, fetching any

new data in the form of a collection of records (events). Kafka intentionally minimizes

the time (delta) between event creation and when an event can be processed, which is

important for real-time (live) event streaming and for processing live data.

In this chapter, you learn to do the following:

• Configure and run a Kafka cluster with Docker

• Create and alter Kafka topics

• Connect and configure the Spark Kafka library

• Use the Kafka data source

• Transform binary data from Kafka into DataFrames and datasets

• Use the Kafka data sink

Exercise Materials the exercise materials for Chapter 11 are located at

https://github.com/newfront/spark- moderndataengineering/tree/

main/ch-11. the README file located in each exercise will provide you with more context regarding any additional installation or gotchas.

368

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

 Chapter Exercises

The following exercises will help as you continue to explore the features and capabilities

of Spark’s Structured Streaming framework. You’ll start by getting Kafka running locally

using docker-compose. This is also an opportunity to become acquainted with the

various architectural components that make Kafka tick, before we dive deeper into

patterns to take full advantage of Kafka’s rich streaming ecosystem.

 Exercise 11-1: Getting Up and Running

with Apache Kafka

Open the chapter material and navigate to the directory named ch-11 to start working

through the exercises.

 Exercise 11-1: Materials

The exercise materials are located under ch-11.

ch-11

├── docker

│ └── kafka

│ ├── README.md

│ └── docker-compose.yaml

└── exercises

└── 01_kafka_up_and_running

 Spinning Up Your Local Environment

Use the docker-compose file provided under docker/kafka to get started. Follow the

steps in the README.md file to move Kafka into your data engineering toolbox. Now

you can use the docker compose command to spin up a full Kafka cluster, running

Zookeeper (stateful metadata store) and three Kafka brokers.

docker compose \

-f ~/dataengineering/kafka/docker-compose.yaml \

up -d --remove-orphans

369

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

The docker-compose file wires up a fully functioning Kafka cluster (using the mde

Docker network from previous chapters), thus enabling access from your laptop and

within your docker runtime. Now you can connect to the Kafka cluster from your Spark

applications.

The containers running the Kafka cluster can be viewed using the following

docker ps command. This will filter the running containers to the subset matching the

kafka_ prefix.

docker ps \

--filter "name=kafka_*" \

--filter "network=mde" \

--format "table {{.Names}}¥t{{.Mounts}}¥t{{.Networks}}" \

-s

The output will show the four containers running your shiny new Kafka cluster.

NAMES MOUNTS NETWORKS

kafka_kafka-2_1 kafka_kafka_2_... mde

kafka_kafka-1_1 kafka_kafka_1_... mde

kafka_kafka-0_1 kafka_kafka_0_... mde

kafka_zookeeper_1 kafka_zookeepe... mde

The three containers represent the cluster brokers, and the fourth container is

Apache Zookeeper. Zookeeper is responsible for storing the Kafka cluster metadata

(state) including the broker identifiers, the partition leaders, and replica locations across

the cluster for each topic. You’ll learn more about how topics work and create your first

topic next.

 Creating Your First Kafka Topic

Now that you have your Kafka cluster up and running, you can create your first topic, but before you do so, let’s cover a few more traits, or behaviors, associated with Kafka topics.

Then you can dive into creating your first one.

 How Topics Behave

Topics at a high level behave like tables in a database, but act more like a distributed

commit log of structured key/value pair records.

370

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

The general structure of the key/value-based Kafka record as viewed from Spark’s

perspective is shown in Listing 11-1. The format of the Kafka record (StructType) minimally contains a column named value that is encoded at rest as a byte array

(binary), the topic where the data was read from, as well as the partition where the

record resides at rest, and the offset (think of this as a pointer to the row location within

the partition of a topic) of the individual record.

 Listing 11-1. Kafka Record Structure Data Format

root

|

- key <binary>

- value <binary>

- topic <string>

- partition <int>

- offset <long>

- timestamp <long>

- timestampType <int>

- headers <array<string, binary>>

Kafka records are sharded (or simply distributed) across the total number of

partitions of an associated topic. Since the record key column is optional for each

Kafka record, the default partitioning mechanism for a null key is to insert records in a

round-robin fashion, which means records ends up with non-deterministic partition

assignments for each record produced. This ultimately means that data won’t be

guaranteed to land on the same partitions upon repeated runs across the same dataset.

However, by providing a non-null value for each record key, Kafka will use the key

supplied as a partitioning mechanism (hash partitioning), enabling the deterministic

routing of each record to a specific partition of a given topic.

Tip for event streams, event data is either dependent on other events within

a stream to tell the story of what happened (or is currently happening now), or

each event can exist independently, telling a full story itself. Chapter 9 covered the concept of interdependent and independent event data, and you can use Kafka to

optimize how events are emitted across partitions within each topic, allowing you

to optimize for the interdependent or independent event use cases.

371

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

We’ve established that topics are a collection mechanism that act like a conduit,

or channel, for a stream of events, but we have yet to cover what makes Kafka great.

Each published record is stamped upon insertion with a broker side timestamp (in

milliseconds) and acknowledged only after a successful write (commit). Along with the

acknowledgement comes a guarantee that the topic will maintain a time-synchronous

insert order on a partition-by-partition basis, essentially providing you with a sorted set

of records by insert time.

Since the guarantee on the insert order is on the partition level only, this enables

Kafka to manage the otherwise complicated distributed insert ordering task on a non-

distributed, isolated subset of the topic. The partition-based topic architecture then in

reality acts, at a lower level, more like a distributed file system, and like any file system,

standalone Kafka doesn’t enforce an explicit record schema to be applied for each value

within a record.

By removing schema enforcement, Kafka topics can be incredibly flexible, but

with flexibility comes the opportunity for corrupt or erroneous data to accidently flow

downstream, and as a result it has become a common practice to associate a specific,

binary encoded, event type (or types) to each topic.

 Creating a Kafka Topic

Topic creation can be done using the administrative shell scripts that ship along with

Kafka. Execute the command in Listing 11-2 to create your first topic.

 Listing 11-2. Creating a Kafka Topic Using the Command-Line Utilities That

Ship Out-of-the-Box with Kafka

docker exec \

-it kafka_kafka-0_1 \

/opt/bitnami/kafka/bin/kafka-topics.sh \

--create \

--if-not-exists \

--topic com.coffeeco.coffee.v1.orders \

--bootstrap-server kafka_0:9092,kafka_1:9092,kafka_2:9092 \

--partitions 4 \

--replication-factor 2

372

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

The result of running the command is a new Kafka topic named com.coffeeco.

coffee.v1.orders . This topic will be conditionally created in the cluster (if-not-

exists) and is configured with four partitions. For increased availability, each topic

partition is replicated twice. You’ll learn more about modifying topics in the next section.

Optional now that you’ve created your first topic, i bet you’d like to move

ahead to doing something more with it. feel free to skip ahead to exercise 11-2.

You can always come back here and learn more about how Kafka handles topic

management and security.

 Kafka Topic Management

Managing Kafka topics all boils down to understanding how the system behaves and

learning how to use the admin tools that ship with Kafka. This section introduces you to

some of the common commands and necessary skills required to operate Kafka.

 Listing Kafka Topics

Listing the topics available in a cluster is essential to discovering topics. You can do this

by using the --list operation on the kafka-topics.sh script, as shown in Listing 11-3.

 Listing 11-3. Listing Kafka Topics Returns a Simple List of Topics

docker exec \

-it kafka_kafka-0_1 \

/opt/bitnami/kafka/bin/kafka-topics.sh \

--list \

--bootstrap-server kafka_0:9092,kafka_1:9092,kafka_2:9092

The list operation will print the names of all available topics in the cluster.

373

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

 Describing a Topic

It is helpful from time to time to inspect the metadata associated with a given topic. This

can assist in debugging issues you’ll inevitably run into if you end up operating Kafka

as part of your day-to-day responsibilities. Executing the command in Listing 11-4 will return the metadata associated with the partitions and the role each broker plays, thus

maintaining topic consistency and availability.

 Listing 11-4. Describing a Topic

docker exec \

-it kafka_kafka-0_1 \

/opt/bitnami/kafka/bin/kafka-topics.sh \

--describe \

--topic com.coffeeco.coffee.v1.orders \

--bootstrap-server kafka_0:9092,kafka_1:9092,kafka_2:9092

The output of the describe command will be slightly different than the output

shown next, given your cluster will have different assigned topic leaders and partition

replica locations. Here is the modified output from my environment:

Topic: com.coffeeco.coffee.v1.orders

TopicId: eENgTy01QUWOAe2gJzi_rw

PartitionCount: 4

ReplicationFactor: 2

Configs: segment.bytes=1073741824

Topic: com.coffeeco.coffee.v1.orders

Partition: 0 Leader: 2 Replicas: 2,1 Isr: 1,2

Partition: 1 Leader: 1 Replicas: 1,0 Isr: 1,0

Partition: 2 Leader: 0 Replicas: 0,2 Isr: 0,2

Partition: 3 Leader: 2 Replicas: 2,0 Isr: 0,2

The metadata from the describe command reveals how each partition is distributed

across the three brokers. The broker IDs are 0, 1, and 2 and you can see that for each

partition, there is a leader responsible for storing one copy of the partition, as well as a

replica which is in sync with the leader. This capability allows for a partition leader to be

lost, and for the in-sync replica to take over as the new leader, without missing beat.

374

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

 Modifying a Topic

The configuration of a Kafka topic isn’t set once and forgotten. In most cases, the initial

configuration is only an estimation of the required total number of partitions and

conditional configuration needs of a given topic. Luckily, changing (or altering) a topic

can be done dynamically without interrupting the clients connected to a given topic.

You can modify the topic created earlier to increase its consistency and availability

or general fault-tolerance by increasing the minimum number of topic replicas required

to be considered healthy. The default value for min.insync.replicas is 1 and we will

increase it to 2.

 Altering Topic Configurations

To alter a topic after initial creation, you can use the kafka-configs.sh script to add or

remove (delete) configuration properties for a topic. Execute the command in Listing 11-5

to change the minimum in-sync topic replicas.

 Listing 11-5. Modifying the Configuration of an Existing Topic

docker exec \

-it kafka_kafka-0_1 \

/opt/bitnami/kafka/bin/kafka-configs.sh \

--alter \

--bootstrap-server kafka_0:9092,kafka_1:9092,kafka_2:9092 \

--entity-type topics \

--entity-name com.coffeeco.coffee.v1.orders \

--add-config min.insync.replicas=2

With your topic reconfigured, each partition now requires two in-sync replicas. Can

you see a potential problem here? Maybe having to do with the topic-replication factor?

If a broker is lost (goes offline/unreachable/hosed), there will be additional strain put

on the cluster, as the available brokers work to restore the lost partitions for any topic’s

partitions assigned to the lost broker. Secondary brokers will need to copy the lost topic

partitions to get back to an in-sync (consistent) state with the leaders of those partitions.

This can result in many file transfers, which can add network IO and CPU load across

the cluster and reduce the availability of the affected topics. This can then result in client

backoff for producers writing to the topic while regaining a consistent, available state.

375

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

To ensure your cluster can handle broker loss, you can change the replication factor

of your topic from 2 to 3. This way, you can handle a single lost broker without having to

scramble. This process is easier to do on topic creation, by adding –replication-factor 3,

rather than using manual replica assignments like you will do next.

 Increasing Topic Partition Replication

To ensure your cluster remains healthy with at least two in-sync replicas during the

loss of a broker, you need to create a replication reassignment JSON file. This file can

be produced using the information from the describe topic command. Just take the

current assignments and add another broker ID to the replicas array. This will be used

as a template for Kafka to increase the replication factor from 2 to 3 for the topic. The

example in Listing 11-6 shows the replication reassignment's JSON format.

 Listing 11-6. The Kafka Topic replication-reassignments.json File Format

{

"version": 1,

"partitions": [

{

"topic": "com.coffeeco.coffee.v1.orders",

"partition": 0,

"replicas": [2,1,0]

},

{

"topic": "com.coffeeco.coffee.v1.orders",

"partition": 1,

"replicas": [1,0,2]

},

{

"topic": "com.coffeeco.coffee.v1.orders",

"partition": 2,

"replicas": [0,2,1]

},

376

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

{

"topic": "com.coffeeco.coffee.v1.orders",

"partition": 3,

"replicas": [2, 0, 1]

}

]

}

With the replication file in hand, you’ll need to copy it into one of your Kafka brokers

so you can run the kafka-reassign-partitions.sh script from the broker. The copy

command is shown in Listing 11-7.

 Listing 11-7. Docker Copy Command to Upload the replication-reassignments.

json to the Kafka Broker

docker cp \

./exercises/01_kafka_up_and_running/replication-reassignments.json \

kafka_kafka-0_1:/opt/replication-reassignments.json

With the replication-reassignments.json file on the broker, you can now run the

reassign partitions script. Use the same broker where you uploaded the replication-

reassignments.json and execute the command in Listing 11-8.

 Listing 11-8. Running the kafka-reassign-partitions.sh Script to Increase Topic Replication

docker exec \

-it kafka_kafka-0_1 \

/opt/bitnami/kafka/bin/kafka-reassign-partitions.sh \

--bootstrap-server kafka_0:9092,kafka_1:9092,kafka_2:9092 \

--reassignment-json-file /opt/replication-reassignments.json \

--execute

As a result of running the replication reassignments, you can now handle the loss of

one broker in your Kafka cluster without causing a major disruption in the behavior of

your cluster. In a non-production scenario, it can sometimes be easier to just delete your

topic and start from scratch, but understanding how to modify the behavior of a topic

can teach you to solve problems pragmatically.

377

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

Tip another use case for reassigning partitions can come up in the case of Kafka

broker skew. this is when one or more brokers are overburdened with too many

partitions of a topic. this can slow down the producers and consumers connected

to that broker (leader for their topic partitions) since more data and more

connections are unevenly distributed across the broker.

 Truncating Topics

Topics in Kafka will only retain records up to the configured retention milliseconds.

Knowing this, you can truncate (clear all records) from a topic by altering the topic

configuration. You’ll need to first reduce the topic (record) retention period so Kafka

begins to purge the topic records. After waiting for a minute or two, Kafka won’t

immediately delete the records, so simply add back a retention period that makes sense

for your topic (one or seven days are common).

 Reducing the Topic Retention Period

The first step uses the --alter command, adding the value of 1 second (1000ms) as the

topic retention.ms. Execute the command in Listing 11-9 to change the topic retention.

 Listing 11-9. Truncating a Kafka Topic to Purge All Records

docker exec -it kafka_kafka-0_1 \

/opt/bitnami/kafka/bin/kafka-configs.sh \

--bootstrap-server kafka_0:9092,kafka_1:9092,kafka_2:9092 \

--entity-type topics \

--alter \

--entity-name com.coffeeco.coffee.v1.orders \

--add-config retention.ms=1000

Now that the topic is being cleared, wait a minute or two and then increase the topic

retention period.

378

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

 Increasing the Topic Retention Period

Now that the topic is cleared (assuming you waited for a little while), you can now

change the topic retention config back to a one-day retention period (see Listing 11-10).

 Listing 11-10. Adding a One-Day Retention Period to a Kafka Topic

docker exec -it kafka_kafka-0_1 \

/opt/bitnami/kafka/bin/kafka-configs.sh \

--bootstrap-server kafka_0:9092,kafka_1:9092,kafka_2:9092 \

--entity-type topics \

--alter \

--entity-name com.coffeeco.coffee.v1.orders \

--add-config retention.ms=86400000

This technique can be used when you need to clear all records within a topic. When

you create the CoffeeOrder generator in Exercise 11-2, you might want to clear the topic after testing things. This can also be used to test different failure modes with Kafka.

 Deleting Kafka Topics

There are only two reasons that a Kafka topic should ever be deleted. The first reason is

that the topic is end of life, and there are no producers and consumers of the topic. The

second is because you are in a non-production environment, and there are no other teams

(or services) relying on this topic. In fact, the Kafka brokers are configured by default to not allow topic deletion. This is because accidental topic deletion can be catastrophic to the

network of data pipelines relying on access to the streaming source of data.

With the red tape and warnings out of the way, you can test deleting your topic by

executing the delete command in Listing 11-11.

 Listing 11-11. Kafka Topic Deletion Can Be Done Using kafka-topics.sh

docker exec \

-it kafka_kafka-0_1 \

/opt/bitnami/kafka/bin/kafka-topics.sh \

--delete \

--topic com.coffeeco.coffee.v1.orders \

--bootstrap-server kafka_0:9092,kafka_1:9092,kafka_2:9092

379

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

The delete command will do a soft delete (marked in Zookeeper only) unless the

Kafka brokers are configured with the delete.topic.enable=true on their brokers. You

can modify your Kafka cluster to run with this dangerous configuration by updating the

docker-compose.yaml file used to spin up the cluster. Locate the environment section for

the Kafka brokers and add the environment variable in Listing 11-12.

 Listing 11-12. Enabling Topic Deletion Using the delete.topic.enable=true Flag

on Your Kafka Brokers

services:

kafka-0:

environment:

...

- KAFKA_CFG_DELETE_TOPIC_ENABLE=true

This example shows how to modify the broker configuration in the docker-compose.

yaml file for one of the three brokers. You can modify the other two broker configurations

and then restart your Kafka cluster to have these changes take effect. Now you can do

irreversible deletes, which is not recommended.

 Securing Access to Topics

Securing access to Kafka and the associated cluster metadata, topics, and underlying physical data feels like a no brainer. However, like many things in life, security can

sometimes fall through the cracks as a known issue for another day. In short, there are a

handful of ways to secure access to your Kafka cluster, starting with basic firewall rules,

moving to access control lists (ACLs), and finishing with fully encrypted end-to-end

transport using SSL/TLS.

 Firewall Rules

Firewall rules establish point-to-point connectivity from hosts within your colocation

center or virtual private cloud (VPC) using Linux style iptables, or secure cloud-based access. This includes AWS security groups, which govern inbound and outbound

connectivity and data transfer across IP addresses and between open ports. This is

equivalent to locking your doors at night. It can keep bad actors out of your system

unless they find a way to pick the locks.

380

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

 Access Control Lists

Apache Kafka comes out-of-the-box with its own working ACL implementation called

Authorizer. It can be used to secure Kafka beyond just firewall rules using access control list (ACLs). The ACL rules are stored in Zookeeper by default. ACLs are used to authorize

and govern user (known as principals) access to operations across one or more topics

or to the cluster itself. ACLs in Kafka are used like SQL Data Control Language (DCL)

to grant specific sets of cluster-based operations restricting reads, writes, updates, and

delete capabilities.

Enabling ACLs needs to be done across each broker, which can be done using

docker-compose.yaml. Just like with enabling topic deletion, you can turn on Authorizer

from the environment configs (shown in Listing 11-13).

 Listing 11-13. Enabling Broker ACLs

services:

kafka-0:

environment:

...

- KAFKA_CFG_AUTHORIZER_CLASS_NAME=kafka.security.authorizer.

AclAuthorizer

Once the Authorizer has been turned on (which requires each broker to be

restarted), you can add ACLs using the Kafka command line. Execute the command in

Listing 11-14 to add user-based access control to your topic.

 Listing 11-14. Adding Kafka ACLs for Topic-Level Authorization

docker exec -it kafka_kafka-0_1 \

/opt/bitnami/kafka/bin/kafka-acls.sh \

--bootstrap-server :9092 \

--add \

--allow-principal User:dataengineering \

--operation read \

--operation write \

--topic com.coffeeco.coffee.v1.orders

381

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

Firewall rules, along with well-maintained ACLs, can go a long way to securing

your Kafka cluster. If system-wide access is reviewed to keep things in check, and

administrative super-user or “god-mode” access is not granted to insecure client-side

software, you should be sailing smoothly.

 End-to-End Encryption with Mutual TLS

Apache Kafka supports end-to-end SSL/TLS encryption to handle encrypted data in

flight. This requires a shared certificate and private key pair that can be verified during

the SSL/TLS handshake to ensure that data streaming from either end of the connection

(client or server) is protected from bad actors.

 Exercise 11-1: Summary

This first exercise introduced you to the ins and outs of running a local Kafka cluster.

This exercise was intended to introduce the nomenclature and components of Kafka

itself, and to get you oriented and familiar with operating a Kafka cluster. While we

barely began to scratch the surface of all the various broker configurations, admin/

utility command-line operations, and general security and hardening, you now have a

functioning Kafka cluster to use with Structured Streaming.

In the next exercise, you’ll learn techniques for producing and consuming data from

within Apache Spark using binary structured data (protobuf) as a follow-up to reading

the OrderEvent data from Redis Streams in the last chapter.

 Exercise 11-2: Generating Binary Serializable Event

Data with Spark and Publishing to Kafka

In this exercise, you learn how to generate binary serialized structured data inside of

Apache Spark. This is an essential skill for data engineers focused on interoperability

with systems running outside of the data platform ecosystem. You discovered how data

systems can be architected to be more resilient in Chapter 9 and learned that data is often encoded as binary avro or protobuf before being emitted through various API

gateways. This technique helps to reduce bandwidth overhead (due to transport of

binary data) and the gateways act as a safe and guarded means of routing event data

(payloads) into various Kafka topics. This simple act enables downstream consumers

382

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

to reliably fetch raw event data as it enters the data network with the knowledge that

some checks and balances (aka initial authorization and data validation) have been

completed.

 Exercise 11-2: Materials

The exercise contains a Spark application as well as the Docker environment to run the

application.

ch-11

├── applications

│ └── spark-kafka-coffee-orders

└── exercises

└── 02_binary_serialization_in_spark

In this exercise, you learn to write an event generator that can produce an arbitrary

number of CoffeeOrders that will be encoded using Google’s Protocol Buffers

(protobuf). We’ll start with a look at the CoffeeOrder protobuf and move into the

generator. This exercise concludes with you running the generator, while using Kafka’s

simple console consumer to watch the data as it arrives. This exercise shows the

difference between event production and event consumption using Apache Spark.

 CoffeeOrder Event Format

The CoffeeOrder protobuf definition probably looks familiar. It is essentially the

StructType used in Chapter 10 to read data from com:coffeeco:coffee:v1:orders.

The CoffeeOrder protobuf is shown in Listing 11-15.

 Listing 11-15. The CoffeeOrder Protobuf Data Definition

message CoffeeOrder {

uint64 timestamp = 1;

string order_id = 2;

string store_id = 3;

string customer_id = 4;

uint32 num_items = 5;

float price = 6;

}

383

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

The CoffeeOrder message provides all the event information needed to track coffee

orders for CoffeeCo. This sets the underlying binary data structure represented by the

protobuf record. Interoperability between the Apache Spark DataSource APIs and

Apache Kafka requires three steps:

1. You need to compile the protobuf data definitions into Scala case

classes using the scalapbc compiler.

2. You need to include the scalapb-spark ScalaPB Spark

library in the build.sbt application. This library provides the

interoperability classes to handle the transformation between the

protobuf native binary format and Spark’s native binary format

(Catalyst Rows).

3. You need to include the Apache Kafka Spark SQL library called

spark-sql- kafka-0-10.

We’ll go through these three steps while building the CoffeeOrder event generator.

 Compiling Protobuf Messages

Moving ahead, let’s compile the protobuf. This can be done with the standalone ScalaPB

compiler. The compiler location can be added to your PATH, or exported as a simple

environment variable, for example called SCALAPBC.

Tip there is a longer set of notes in the protobuf directory README file including

how to download and link the standalone ScalapB compiler. Just look in the /

ch-11/applications/spark-kafka-coffee-orders/data/protobuf/

README.md directory.

The compilation command is shown in Listing 11-16. The compiler uses the input path --proto_path, which is the directory where your protobuf definitions exist, and

an output path --scala_out, which is the directory where you want the compiled Scala

code to live. Execute the command in Listing 11-16 using /ch-11/applications/spark-kafka- coffee-orders as your working directory.

384

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

 Listing 11-16. Compiling the CoffeeOrder Protobuf

$SCALAPBC/bin/scalapbc -v3.11.1 \

--proto_path=./data/protobuf/ \

--scala_out=./src/main/scala \

coffee.common.proto

The compiler will parse the file named coffee.common.proto and generate Scala

case classes, along with the deserializers and serializers needed to transform each class

instance between their internal JVM object representation and the binary protobuf (wire

format) representations. Because protobuf can be cross-compiled, the same coffee.

common.proto could be compiled for interoperability among Node.js, Python, C++, Go,

Scala, Java, and many more, using a language specific compiler.

Note in Chapter 9 you learned about grpC and how the framework is built to be interoperable between languages using a common binary data protocol, aka

google protocol Buffers (protobuf). these binary messages interoperate natively

with all the grpC components. for companies already embracing the grpC stack,

it won’t be a hard sell to use the same technology to support the data transport

systems and ingestion services as well. if rich structured data makes it into the

Kafka topics and other data streams, then everyone wins.

With our Scala classes generated, we can move on to the crux of the exercise,

learning how to use Kafka as a transport device with Apache Spark. You’ll use Spark

as a conduit for event generation and you’ll write these records using the Kafka

DataFrameWriter. Given we need to produce data to be able to consume it, we will go

through the process first before moving to consuming these records in Exercise 11-3.

 Protobuf Message Interoperability with Spark and Kafka

You learned to use the Redis command line to generate new coffee orders in the last

chapter. You’ll be building a CoffeeOrder generator that will handle this process of

generating random orders and encoding these records, and then you'll publish them

into the new Kafka topic. It is unlikely you have much experience encoding binary data

manually. It isn’t something most people will need to do, so you can instead lean on

some simple code to do just that.

385

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

Generators are a useful tool to have in your data toolbox and they can be used for

several reasons, from generating stress tests and finding performance bottlenecks, to

producing good and bad data to understand application behavior, and even helping to

reproduce bugs exposed during incidents or investigations.

 Adding the Protobuf and Kafka Spark Dependencies

Open the application named spark-kafka-coffee-orders in your favorite IDE. This

application is set up using the same format as the applications in Chapters 7 and 10, so the layout should start to look familiar at this point in your journey.

Earlier in this section I mentioned there was a three-step process to using the

protobuf. The first step was to compile the message definitions, the second includes the

extension library for Spark called sparksql-scalapb, and the third includes the spark-

sql- kafka library dependency. Open build.sbt in the root of the application directory,

and you’ll also see these Spark dependencies included under the libraryDependencies.

 Listing 11-17. The Additional Application Library Dependencies Enabling

Protobuf Interoperability with Apache Spark with Support for Reading and

Writing to Apache Kafka

"org.apache.spark" %% "spark-sql-kafka-0-10" % sparkVersion

"com.thesamet.scalapb" %% "sparksql-scalapb" % scalaPbVersion

Toward the bottom of the build.sbt, you’ll see two new blocks in the application

sbt. These two blocks are assemblyMergeStrategy and assemblyShadeRules.

 Escaping JAR Hell

When you are building your Spark applications, you will at times find yourself in what

is known as JAR Hell. This is literally a cycle of trying to figure out why your application

won’t compile. To solve conflicts between the dependencies of various libraries, you can

lean on the merge strategy (shown in Listing 11-18) to control how your JAR is built, what class files are added, and what files are deduplicated, removed, or renamed.

386

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

 Listing 11-18. Assembly Rules Include the Ability to Select How to Solve

Conflicts when Constructing a Fat JAR

assembly / assemblyMergeStrategy := {

...

case _ =>

MergeStrategy.deduplicate

}

Merging gets you almost all the way out of JAR Hell; however, at times there are

issues outside of your control and that is where shading comes into play.

Take Apache Spark for instance. When running a Spark application there is already

a process running (literally Spark) that includes its own class dependencies. Given

these classes are loaded when Spark spins up, there is an opportunity to overrule your

application dependencies since your application is loaded into the Spark runtime.

You can use the process of shading (shown in Listing 11-19) to solve the problem with colliding class versions by renaming the conflicting classes. This in turn will resolve the

runtime problems. NoClassDefFoundError’s issues are one of the many warning signs to

watch out for which stem from conflicts in your application classpaths.

 Listing 11-19. Shading Can Be Used To Rename Classes That May Otherwise

Introduce a Conflict at Runtime

assembly / assemblyShadeRules := Seq(

ShadeRule.rename("com.google.protobuf.**" -> "shadeproto.@1").inAll,

ShadeRule.rename("scala.collection.compat.**" -> "scalacompat.@1").inAll

)

When combined, these two techniques come together to ensure your Spark

application can be deployed without the headaches caused by JAR Hell. Now you can

move on to the generator.

387

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

 Writing the CoffeeOrderGenerator

The generator's package in the chapter materials has a working implementation

of CoffeeOrderGenerator Essentially, the generator needs to do three things to be

considered successful. The generator. needs to:

1. Generate a sequence of one or more CoffeeOrder events.

2. Encode the sequence events in a format that Spark understands..

3. Connect to Kafka and write the events to a topic.

Open the file named CoffeeOrderGenerator.scala. This singleton class. extends

the SparkApplication trait from earlier in the book, enabling us to create an entry point

for this new Spark application. In fact, we’ll be reusing the other application helpers,

thereby enabling the application to generate the SparkConf and SparkSession as well.

This means the only thing the application needs to do is follow the three previous steps.

Looking at the basic interface of the generator (shown in Listing 11-20), you can see that there isn’t much going on.

 Listing 11-20. The Core Interface of the CoffeeOrderGenerator

object CoffeeOrderGenerator extends SparkApplication {

...

def generateCoffeeOrder(

from: Instant,

to: Instant,

totalRecords: Int = TotalRecords,

indexOffset: Int = IndexOffset): Seq[CoffeeOrder]

override def run(): Unit

}

The generateCoffeeOrder method is the heart of the generator (see Listing 11-21).

It is responsible for generating the actual CoffeeOrder. The method parameters provide

a simple way to declare a window of time in which to generate your order events.

Using from and to specifies the window boundaries in which to spread the generated

CoffeeOrders across. Think of this like “I want to generate a specific total number

(totalRecords) of order events spread across a time range identified by the bounds of

from and to.”

388

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

 Listing 11-21. The Heart of the CoffeeOrderGenerator Creates an Arbitrary

Number of Orders with a Minimal Amount of User-Provided Override

Capabilities

def generateCoffeeOrder(...): Seq[CoffeeOrder] = {

val random = new Random(totalRecords)

val stepSize = (to.toEpochMilli - from.toEpochMilli)/1000

(0 to totalRecords).map { index =>

CoffeeOrder(

from.plusMillis(index*stepSize).toEpochMilli,

s"orderId${indexOffset+index+1}",

s"store${random.nextInt(4)+1}",

s"cust${random.nextInt(100)+1}",

BoundRandom.nextInt(20)+1,

BoundRandom.nextFloat()+1.0f

)

}

}

The method in Listing 11-21 uses the value of totalRecords as a seed for the random number generator. It enables the application to generate the same pseudo-random

sequence of numbers for a unique seed. This means you can create the same sequence

twice if the value of totalRecords is 15.

The method then uses the difference in seconds between the to and from values as

the stepSize. The stepSize is used to spread the generated orders evenly across the

time range provided to the method. You can see this at work in the lambda function

within the Range iterator (0 to totalRecords). For each iteration, a new CoffeeOrder

is generated using the loop index, the optional index offset, and the random number

generators (random and BoundRandom).

Note notice that the random numbers are also scoped. for example, random.

nextInt(4)+1 will select a random number between 0 (inclusive) and the

specified value (4), exclusively.

389

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

This method returns a Seq[CoffeeOrder]. This checks off the first requirement of

the generator (producing CoffeeOrder events). The generator itself is called in the run

method. Listing 11-22 shows how the generator is incorporated into the run method.

 Listing 11-22. The CoffeeOrderGenerator Calls generateCoffeeOrder to Produce

an Arbitrary Number of CoffeeOrders That Can Be Emitted to Kafka

override def run(): Unit = {

val until = LocalDateTime...

val orders: Seq[CoffeeOrder] = CoffeeOrderGenerator

.generateCoffeeOrder(

from = until.minusHours(8).toInstant(ZoneOffset.UTC),

to = until.toInstant(ZoneOffset.UTC))

...

}

The run method leans on the TotalRecords configuration to limit the number of

orders produced.

lazy val TotalRecords = sparkConf.getInt("spark.data.generator.

totalRecords", 10)

This simple config lets you control how many coffee orders are generated when the

application is run. By default, the generator is set to create records over an eight-hour

window, ending at the current time (when you run the generator) in milliseconds. As

a follow up, you could add another value to modify the window, or even to specify the

from and to values for a specific moment in time.

After generating the sequence of orders, the run method uses the SparkSession

(provided by the SparkApplication trait) to create a Dataset[CoffeeOrder] (see

Listing 11-23). This is where the magic of the ScalaPB library comes into play. There is special import at the top of the generator, called import scalapb.spark.Implicits._

and these implicits provide the interoperability functions that convert between

native protobuf and Spark’s catalyst rows.

390

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

 Listing 11-23. Generating and Transforming CoffeeOrders Between Native

Protobuf to Spark’s Catalyst Engine Can Be Handled Elegantly

val orderEvents = sparkSession.createDataset[CoffeeOrder](orders)

.map { order =>

KafkaRecord(ByteString.copyFrom(order.orderId.getBytes),

order.toByteString, KafkaTopic)

}

After generating the dataset, a map operation immediately occurs. The map function

is used to iterate over each row in the dataset and transform each record into the binary

format needed to write these events as Kafka records. KafkaRecord is another protobuf

message type that was bundled in the coffee.common.proto along with the CoffeeOrder

message.

message KafkaRecord {

bytes key = 1;

bytes value = 2;

string topic = 3;

}

The KafkaRecord message format provides the final piece of the Kafka producing

puzzle, the essential API contract necessary to take the serialized CoffeeOrder into the

Kafka ecosystem.

Note Behind the scenes, Spark is doing some heavy lifting here. When map is

called on the dataset, the value of each of the records is transferred from native

memory (tungsten) and each row is converted back into an JVm object. this

sneaky line in the code generates a new protobuf message called KafkaRecord.

Because we are using protobuf and Spark’s dataset api together, we are simply

mapping (transforming) the CoffeeOrder protobuf into another protobuf named

KafkaRecord. this functionality uses more memory because the Spark engine

needs to allocate memory to serialization and deserialization the values. this

is because Spark can’t optimize the conversion from our CoffeeOrder to the

KafkaRecord directly. this process can be optimized by creating a Spark SQL

udf. this is covered in Chapter 13.

391

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

Now that we have our orders generated and converted into the binary format

required to publish records to Kafka from Spark, all that’s left to do is write the records.

Since the data encapsulated by the orderEvents is a typed dataset and not a DataFrame,

we need to call select on the orderEvents to extract the columns required by the Kafka

DataFrameWriter. This transformation process is shown in Listing 11-24.

 Listing 11-24. Writing the Generated CoffeeOrders to Kafka Can Be Done Using

the Same DataFrameReader Interface from the Spark’s Sructured APIs

orderEvents

.select($"key",$"value",$"topic")

.write

.format("kafka")

.option("kafka.bootstrap.servers", KafkaBootstrapServers)

.save()

Now that all the requirements of the generator are checked off, all that is left to do is

compile the application and run the generator.

 Running the Generator

You can run the generator by first compiling the Spark application, building the Docker

container, and lastly running the generator.

Note to run the end-to-end example, you need to have the Kafka cluster running.

follow the README under ch-11/exercises/02_binary_serialization_

in_spark for extended directions.

Compile the application and create a new Docker container named spark-kafka-

coffee-orders so you can run the generator.

sbt clean assembly &&

docker build . -t `whoamì/spark-kafka-coffee-orders:latest

392

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

To view the end-to-end example, you’ll need to have two terminal windows

open. The first will be running the Kafka console consumer. This is a command-line

application that ships along with Kafka. It simply waits for new data to arrive on a Kafka

topic and it prints the value of each record. You can start the Kafka console consumer

application by executing the command in Listing 11-25.

 Listing 11-25. Running the Kafka Console Consumer Application

docker exec -it kafka_kafka-0_1 \

/opt/bitnami/kafka/bin/kafka-console-consumer.sh \

--bootstrap-server kafka_0:9092,kafka_1:9092,kafka_2:9092 \

--topic com.coffeeco.coffee.v1.orders

With the Kafka console consumer running in one terminal window, open another

terminal window where you can run the Spark CoffeeOrder generator. Execute the

docker run command in Listing 11-26 to run the generator.

 Listing 11-26. Running the Generator to Produce Protobuf Based CoffeeOrders

and Write Them Into Kafka

docker run \

-p 4040:4040 \

--hostname spark-kafka \

--network mde \

-v ~/dataengineering/spark/conf:/opt/spark/conf \

-v ~/dataengineering/spark/jars:/opt/spark/user_jars \

-it `whoamì/spark-kafka-coffee-orders:latest \

/opt/spark/bin/spark-submit \

--master "local[*]" \

--class "com.coffeeco.data.generators.CoffeeOrderGenerator" \

--deploy-mode "client" \

--jars /opt/spark/user_jars/mariadb-java-client-2.7.2.jar \

--driver-class-path /opt/spark/user_jars/mariadb-java-client-2.7.2.jar \

--conf "spark.sql.warehouse.dir=s3a://com.coffeeco.data/warehouse" \

-- conf "spark.app.sink.option.kafka.bootstrap.servers=kafka_0:9092,kafka_

1:9092,kafka_2:9092" \

393

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

--conf "spark.app.sink.kafka.topic=com.coffeeco.coffee.v1.orders" \

--conf "spark.data.generator.totalRecords=100" \

/opt/spark/app/spark-kafka-coffee-orders.jar

The generator will spin up and generate new coffee orders. If you are running the

Kafka console consumer, you will see the binary representation of each order printed

to the terminal window. You will see the binary representation of the CoffeeOrder rows

being printed in the Kafka console consumer application (see Listing 11-27).

 Listing 11-27. Using the kafka-console-consumer Will Enable You to View the

Binary Serialized Records Being Published to Kafka in Real-Time

???orderId5store4"cust15(5,!??

?????orderId8store3"cust815?H??

?????orderId11store1"cust10(5????

Take a moment to pat yourself on the back. You now have a working solution for

writing future event generators (and of course this one as well) using Apache Spark. All

that is left is to connect the dots and learn how to consume the order events.

 Exercise 11-2: Summary

You just learned how to assemble a fully functioning event generator in under 100 lines

of code. While this is a cool exercise, it was intended to teach the important lesson of

writing strictly typed (ridged) events in an interoperable way using Spark as the data

producer. In the final exercise of the chapter, you learn how to reuse everything you

learned during this second exercise to quickly wire up an event consumer that can be

used to transform these CoffeeOrders into parquet data that can live in your data lake or

data warehouse.

394

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

 Exercise 11-3: Consuming Streams of Serializable

Structured Data with Spark

The final missing piece in this 360-degree deep dive into Kafka and Spark is the process

of reading (consuming) the serialized CoffeeOrders generated in Exercise 11-2. You’ll be wading back into familiar territory with Spark’s core APIs for Structured Streaming and

learning how to use the DataStreamReader, with a Kafka twist provided by the spark-

sql- kafka-0-10 library.

 Exercise 11-3: Materials

This exercise continues where Exercise 11-2 left off. To run the end-to-end application, you’ll need to be running your local Kafka cluster as well as the MySQL (Hive Metastore)

and MinIO (distributed data lake).

This exercise is a modified version of the application from Chapter 10. Remember the one that consumed order data from the Redis and wrote to the distributed table

inside your MinIO data lake? The modified application flow for Exercise 11-3 is shown in Figure 11-1.

 Figure 11-1. The Spark application (Exercise 11-3) replaces Redis with Kafka; the rest of the application is just like the one from Chapter 10

395

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

The application streams source data from Kafka by subscribing to a topic (in our

example, it is com.coffeeco.coffee.v1.orders). The source topic is distributed across

four physical partitions (which we configured in Listing 11-2). This means that the default number of partitions in the RDD source backing the Kafka DataFrame will also

be four. Spark retains the partition information from the source to make the lineage of

the data easier to follow back to a specific absolute partition. This is useful to recover all

the data read between the starting and ending offsets for the data lost during a failure in

your Spark application. This kind of recovery is necessary when an executor (node) in

the Spark cluster goes offline. The application will have to recover all data encapsulating

the state of your distributed computation. The way in which the stateful application

operates using Kafka is shown in Figure 11-2.

 Figure 11-2. The flow for each micro-batch in the Structured Streaming

 application

For each micro-batch, the Spark application driver (1) queries Kafka to figure out if

there is any new data to consume, and if there is any new data, the starting and ending

offsets to be assigned for each topic partition are written ahead (2) to the application

checkpoint directory. This process enables the application to pick back up from the

exact location(s) of a Kafka topic if there is any processing failure. The write-ahead log

(WAL) is important for ensuring that all data is processed, and that recovery is done

in a deterministic fashion. The topic offset ranges are then passed to the application

executors (3) as topic assignments. This enables the executors to fetch data in a

distributed way through explicit assignments for a specific micro-batch in your Spark

396

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

application. The application then transforms the Kafka binary data into datasets and

processes the data. When the processing is complete, the results are then written (4) to a

distributed table, and the results of successfully writing the output are committed back

to the checkpoint directory (5). This end-to-end process using the WAL, processing, and

committing back creates a completed micro-batch. Let’s look at the process of building

this now.

 Consuming Binary Data from Apache Kafka

Open the SparkKafkaCoffeeOrdersApp, which is located in the same project as the

CoffeeOrderGenerator. Let’s start with the Kafka DataStreamReader and move

backward from there.

Just like with the Redis Streams application, we are using the inputStream

block (shown in Listing 11-28) to configure and bootstrap an instance of the DataStreamReader.

 Listing 11-28. Creating a Generic Config Driven DataStreamReader

lazy val inputStream: DataStreamReader = {

sparkSession

.readStream

.format(inputStreamFormat)

.options(sparkConf

. getAllWithPrefix(

s"$StreamConfigSourcePrefix.option.").toMap)

}

The result of calling inputStream does in fact bootstrap an instance of the

DataStreamReader for our Kafka connection. This is an example of using the Spark core

APIs with a pure config-driven approach. For example, the settings in Listing 11-29

enable the application to connect from within the Docker network to the Kafka cluster

(as long as the containers are running) and subscribe to the com.coffeeco.coffee.

v1.orders topic, starting at the earliest available offsets per partition within the topic.

397

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

 Listing 11-29. Minimal Configuration to Configure the Kafka DataStreamReader

--conf "spark.app.source.format=kafka" \

--conf "spark.app.source.option.subscribe=com.coffeeco.coffee.v1.orders" \

--conf "spark.app.source.option.kafka.bootstrap.servers=kafka_0:9092" \

--conf "spark.app.source.option.startingOffsets=earliest"

Once the configuration is applied to the inputStream, the resulting object (in

Listing 11-30) is crafted to connect to Kafka, but it's flexible enough to handle any additional configuration needed to customize the Kafka connection or behavior.

 Listing 11-30. The Resulting InputStream Object Created by Reading the

External Application Configuration

sparkSession

.readStream

.format("kafka")

.option("kafka.bootstrap.servers", "kafka_0:9092")

.option("subscribe","com.coffeeco.coffee.v1.orders")

.option("startingOffsets","earliest")

The way this works is all bound to a special method on the SparkConf. The beauty

of using the sparkConf.getAllWithPrefix method is that you can modify the behavior

of the DataStreamReader without needing to go back to the source code for each minor

change. We revisit this pattern again in Chapter 13.

The common Kafka Topic properties are shown next.

 Topic Subscription

For example, you can subscribe to multiple topics at the same time (enabling your

application to read from many locations). This technique can be used to process

multiple streams of events without having to run an application per stream. Just pass in

one or more topic names in a comma-separated list.

.option("subscribe",

"com.coffeeco.coffee.v1.orders,

com.coffeeco.customers.v1.events")

398

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

As an alternative, you can subscribe to a topic pattern. This technique enables your

application to subscribe to all topics matching a prefix-based Regex. For example:

.option("subscribePattern","com.coffeeco.coffee.v1.*")

You can use subscribe, subscribePattern, or assign, which we will look at next.

 Topic Assignment

Subscriptions do a lot of heavy lifting for your application. This includes figuring out

what partitions are available and what offsets are required to assign to tasks during the

operations within the lifecycle of the Spark application. At times you might find yourself

wanting to assign a specific topic partition to an application as opposed to subscribing to

all topic partitions. We won’t cover this use case directly, but it is worth knowing it exists.

For example, some topic partitions can become hot spots because upstream applications

publishing to Kafka have accidently published records using empty strings as the record

key. This will cause all records, keyed using an empty string, to be routed to the same

partition, which can become a hot spot. You can preemptively mitigate this issue by

enforcing non-empty strings, but you can also experience hot spots due to common

behaviors in a system.

 Throttling Kafka

We used the stream.read.batch.size configuration in Chapter 10 to control the rate in which the Spark application read (consumed) data from the Redis Stream. For the Kafka

source, you can throttle the rate by providing a maximum number of records to read for

each micro-batch. This is done using the maxOffsetsPerTrigger option.

"spark.app.source.options.maxOffsetsPerTrigger=1000"

This number is for the entire batch (across all partitions).

 Handling Failures

Failure happens. What you do about it is up to the application. The Kafka source

provides an option to handle this. When an application expects to pick up from the

last successful batch, but the data (offsets of a partition of a topic) is simply missing

399

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

(timed out of became corrupted), then the Spark application can simply fail rather than

continue process data with a gap in it. Use the failOnDataLoss option to control this

behavior.

--conf "spark.app.source.options.failOnDataLoss=false"

 Splitting the Partitions

If you have four partitions, like with the com.coffeeco.coffee.v1.orders topic, but you

want to further divide the dataset being processed by your Spark application, you can

use the minPartitions setting. This means you can divide and conquer and distribute

workloads across a variable number of executors (or processing threads) and achieve a

higher throughput rate for your Spark application.

--conf "spark.app.source.options.minPartitions=8"

This would double the default number of partitions (for our four-partition topic).

You will get a chance to use these additional configurations after going through the

rest of the exercise. Now back to the source code.

 From Kafka Rows to Datasets

The KafkaOrderTransformer class is responsible for deserializing the byte array (value)

from the Kafka DataFrame and transforming it into a CoffeeOrder. This is the reverse

process you went through before, when building out the CoffeeOrderGenerator. The

class is shown in Listing 11-31.

 Listing 11-31. Converting the Kafka DataFrame into a Typed Dataset

class KafkaOrderTransformer(spark: SparkSession)

extends DatasetTransformer[CoffeeOrder]

with Serializable {

import scalapb.spark.Implicits._

override val encoder = typedEncoderToEncoder[CoffeeOrder]

override def transform(df: DataFrame): Dataset[CoffeeOrder] = df

.map(_.getAs[Array[Byte]]("value"))

.map(CoffeeOrder.parseFrom)

.as[CoffeeOrder]

}

400

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

This transformer inherits from a typed version of the DataFrameTransformer from

Chapters 7 and 10.

trait DatasetTransformer[T] {

val encoder: Encoder[T]

def transform(df: DataFrame): Dataset[T]

}

This then provides the glue to inform Spark how to operate with the data coming

from the transformer, in this case the CoffeeOrder itself.

Moving to the run method in Listing 11-32 on the main application, you’ll see how the inputStream and the KafkaOrderTransformer play together to produce the input to

streamingQuery.

 Listing 11-32. Consuming Serializable Structured Data from Kafka with

Apache Spark

override def run(): Unit = {

import scalapb.spark.Implicits._

super.run()

val inputSourceStream = KafkaOrderTransformer(sparkSession)

.transform(inputStream.load())

val writer = outputStream(inputSourceStream)

startAndAwaitApp(writer.start())

}

The only thing left here is a look at the outputStream method. The

startAndAwaitApp method is left over from Chapter 10. The outputStream method is using the configuration pattern shown in the inputStream method (Listing 11-23) from earlier, and is shown in Listing 11-33.

 Listing 11-33. Transforming CoffeeOrders into Parquet Data Partitioned by Date

def outputStream(ds: Dataset[CoffeeOrder]): DataStreamWriter[Row] = {

...

val streamOptions = sparkConf

.getAllWithPrefixs("$StreamConfigSinkPrefix.option.")

val dataStream = ds

401

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

.withColumn("date", to_date(

to_timestamp($"timestamp".divide(1000).cast(LongType)))

)

.writeStream

.format(outputStreamFormat)

.queryName(outputStreamQueryName)

.outputMode(outputStreamMode)

.partitionBy("date")

.options(streamOptions)

triggerType match {

case "continuous" if triggerEnabled =>

dataStream.trigger(

Trigger.Continuous(processingInterval))

case "once" if triggerEnabled =>

dataStream.trigger(Trigger.Once())

case "processing" if triggerEnabled =>

dataStream.trigger(

Trigger.ProcessingTime(processingInterval))

case _ =>

dataStream

}

}

The final piece of the pie here is the transformation from the Dataset[CoffeeOrder]

into a DataStreamWriter, which will write all available rows of data into the data lake,

achieving similar results as the application from Chapter 10. Now all that is left to do is run the application.

 Running the Consumer Application

Now that you have had a chance to go through the application, you can compile the

application if you made any changes. Otherwise the output of building the application

and creating the Docker container will be the same as before, so if you have been

following along with the exercises, you should already have the consumer application

compiled and containerized.

402

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

 Listing 11-34. Running the CoffeeOrder Consumer Application

docker run \

-p 4040:4040 \

--hostname spark-kafka-coffee-consumer \

--network mde \

-v ~/dataengineering/spark/conf/hive-site.xml:/opt/spark/conf/hive-

site.xml \

-v ~/dataengineering/spark/jars:/opt/spark/user_jars \

-it `whoamì/spark-kafka-coffee-orders:latest \

/opt/spark/bin/spark-submit \

--master "local[*]" \

--class "com.coffeeco.data.SparkKafkaCoffeeOrdersApp" \

--deploy-mode "client" \

--jars /opt/spark/user_jars/mariadb-java-client-2.7.2.jar \

--driver-class-path /opt/spark/user_jars/mariadb-java-client-2.7.2.jar \

--driver-java-options " -Dconfig.file=/opt/spark/app/conf/coffee_orders_

 consumer.conf" \

--conf "spark.sql.streaming.kafka.useDeprecatedOffsetFetching=false" \

--conf "spark.app.source.option.startingOffsets=earliest" \

--conf "spark.app.stream.trigger.type=once" \

/opt/spark/app/spark-kafka-coffee-orders.jar

The provided README.md in the spark-kafka-coffee-orders application root

directory provides a more complete version of the run command with all config

overrides provided. The command (11-34) also uses an alternative config alongside the

application which is made possible using the driver-java-options on Spark Submit.

While the Configuration helper was always capable of reading an alternative config

(thanks to the TypeSafe config library), this is the first example of using what I like to call

the bring-your-own-config pattern at work.

--driver-java-options "-Dconfig.file=/opt/spark/app/conf/coffee_orders_

consumer.conf"

403

Chapter 11 apaChe KafKa and SparK StruCtured Streaming

The way this alternative configuration is made available inside the container is

through a small change to the Dockerfile.

FROM newfrontdocker/apache-spark-base:spark-3.1.2-jre-11-scala-2.12

COPY target/scala-2.12/spark-kafka-coffee-orders-assembly-0.1-SNAPSHOT.jar

/opt/spark/app/spark-kafka-coffee-orders.jar

copy the app configs

 COPY conf /opt/spark/app/conf

EXPOSE 4040

The COPY directive simply moves the configuration from the application root

directory into the container at build time. This way you can move any relevant config to

a more final resting place rather than relying on the spark-submit runtime configs. It is

less error prone to do things this way.

 Exercise 11-3: Summary

This exercise was the final step in showing how to work with serializable structured data

within the Apache Spark ecosystem. You have completed the full cycle required to work

with serializable structured data from message (protobuf) definition, to compilation,

to random record generation, to writing (producing) and then reading (consuming) the

messages in an end-to-end modular way. I hope this sparks some new ideas for how you

can work with data in an interoperable way, without falling back to JSON or CSV.

 Summary

Apache Kafka is a Swiss Army knife for the data engineer. It provides a reliable platform

for working with streams of rich data in near real-time. While there are many ways to

work with data within the Kafka and Spark ecosystems, it is worth mentioning that

working with explicit types provides a rich data contract between these separate systems

and can provide a much more solid and stable foundation for building reliable, and

more importantly, interoperable data systems.

In the next chapter, we will be continuing our work with Structured Streaming, with a

focus on more advanced aggregations and analytical processing. If you’re ready, let’s go.

404

CHAPTER 12

Analytical Processing

and Insights

Throughout the book you’ve focused on building your data engineering toolbox and

learning powerful techniques for processing and transforming data, both at rest and

in stream. Parallel to learning Spark, you have also been hands-on learning to use

containers and operate additional technologies that interoperate well in the Apache

Spark ecosystem.

Given that the modern data engineer wears many hats and has many responsibilities

spanning the wide spectrum of the data ecosystem, from data production and ingestion,

data validation and cleaning, data transfer and loading, batch and stream processing

as well as more analytical responsibilities like simple and complex aggregation, and

even streaming analytical processing and insights, this chapter focuses on filling the

knowledge gap related to preprocessing data for analytics and learning to use powerful

aggregation operators.

 Exercises and Materials

The chapter exercises introduce you to Apache Spark’s rich analytical processing

capabilities. To get the most out of this chapter, all the exercises can be run interactively

using Apache Zeppelin.

This chapter is broken into the following two hands-on sections:

• Using common Spark functions for analytical preprocessing

• Analytical processing and insights engineering

Learning to use Spark’s higher order functions interactively will equip you to write

and operate analytical stateful structured streaming applications in Chapter 13.

405

© Scott Haines 2022

S. Haines, Modern Data Engineering with Apache Spark, https://doi.org/10.1007/978-1-4842-7452-1_12

ChapTer 12 analyTiCal proCessing and insighTs

Exercise Materials The exercise materials for Chapter 12 are located at

https://github.com/newfront/spark-moderndataengineering/tree/

main/ch-12. The README file located in the ch-12/exercises directory will provide you with a full set of setup instructions.

 Setting Up the Environment

Once again, we will be leaning on our old friend Apache Zeppelin, but this time you’ll

be building your own Zeppelin container called zeppelin-spark. You might be asking

yourself why you would want to create a different container. I’m glad you asked.

Throughout the book you’ve been required to use volume mounts and environment

 variables to plug your own local Apache Spark into the Zeppelin container at runtime.

Back in Chapter 10, you’ll remember that we migrated to using a base Spark container to build consistent containerized Spark applications. This was necessary given the growing

complexity of the local data platform and to ensure a consistent environment was

available at runtime for our applications. Until now, Zeppelin required you to bring your

own Spark, but this new container will marry the official Zeppelin container with the

same base Spark container you’ve been using in the last few chapters.

 Zeppelin-Spark Directory Layout and Container Dependencies

ch-12

├── docker

│ ├── README.md

│ └── zeppelin-spark

│ ├── Dockerfile

│ ├── conf

│ │ ├── interpreter.json

│ │ └── zeppelin-env.sh

│ └── spark

│ ├── conf

│ └── jars

406

ChapTer 12 analyTiCal proCessing and insighTs

From your terminal, change to the docker/zeppelin-spark directory. The Dockerfile

located directly in the directory showcases the Docker multi-stage build pattern, essentially

cherry-picking resources from the base spark container while also adding resources on top of

the core apache/zeppelin container. The contents of the file are provided in Listing 12-1.

 Listing 12-1. Adding a New File System Layer on Top of the Official Apache

Zeppelin Docker Container That Brings Java 11 and Spark 3.1.2 as Well as Custom

Configs and JARs to the Table

ARG spark_image=spark-3.1.2-jre-11-scala-2.12

FROM newfrontdocker/apache-spark-base:${spark_image} as spark

FROM apache/zeppelin:0.9.0

COPY --from=spark /opt/spark /opt/spark

COPY --from=spark /usr/local/openjdk-11 /opt/openjdk-11

COPY ./spark/conf/hive-site.xml /opt/spark/conf/

COPY ./spark/conf/spark-defaults.conf /opt/spark/conf/

COPY ./spark/jars /opt/spark/user_jars/

add mariadb driver directly to the spark class path

COPY ./spark/jars/mariadb-java-client-2.7.2.jar /opt/spark/jars/

COPY ./conf/interpreter.json /zeppelin/conf/

COPY ./conf/zeppelin-env.sh /zeppelin/conf/

Multi-stage Docker builds allow you to create reliable instances of your favorite

containers without the hassle of more complex builds. In the case of the zeppelin-spark

container, we can extract Java 11 (JRE) as well as the Spark distribution directly from

the apache-spark-base container (see Listing 12-2). In a similar spirit to using modules to build Spark applications, you can stack containers using FROM or use containers as a

provider of resources.

 Listing 12-2. Using the Multi-Stage Build Pattern Helps to Reduce the Final

Weight Of Your Containers and Can Also Be Used to Reduce the Overhead of

Managing Complex Containers

FROM newfrontdocker/apache-spark-base:${spark_image} as spark

FROM apache/zeppelin:0.9.0

COPY --from=spark /opt/spark /opt/spark

COPY --from=spark /usr/local/openjdk-11 /opt/openjdk-11

407

ChapTer 12 analyTiCal proCessing and insighTs

Building the container locally is an optional step. You can use the publicly available

newfrontdocker/zeppelin-spark container, but building your own can be done simply

by running the following build command (from the zeppelin-spark dir).

docker build . -t `whoamì/zeppelin-spark:latest

Next, you can go ahead and spin up the environment.

 Spinning Up the Local Environment

Under the Docker directory, you’ll find another directory named zeppelin. Copy the

directory into ~/dataengineering/zeppelin-spark. As with prior chapters, the docker-

compose.yaml file located in the directory provides you with all the wiring needed to spin

up the environment.

docker compose \

-f ~/dataengineering/zeppelin-spark/docker-compose.yaml up \

-d

The compose process will bring up Apache Zeppelin (localhost:8080), MySQL (:3306),

and the MinIO (localhost:9000) file systems.

 Using Common Spark Functions for

Analytical Preprocessing

This first exercise will be a hands-on tour using the more common higher-order

functions (columnar expressions) available in the org.apache.spark.sql.functions

package, focusing on the functions that will aid in preparing data for analysis.

 Exercise 12-1: Preprocessing Datasets for Analytics

Open Zeppelin in your web browser (Localhost:8080), create a new note, and name it

something memorable like 01_common_dataframe_functions. From this starting point,

you’ll learn to use functions that will help you modify and prepare data for analytical

processing:

• Working with timestamps and dates

• Working with time zones

408

ChapTer 12 analyTiCal proCessing and insighTs

• Handling and replacing null column values

• Using case statements

• Using user-defined functions

 Working with Timestamps and Dates

Working with time can be a difficult thing. You learned in Chapter 9 how clock drift and incorrect time zone information can cause problems and how issues can be generally

resolved simply by standardizing on UTC and synchronizing clock drift on your servers

using NTP. While standardizing can help future projects, you may find yourself needing

to work with time in different ways or to correct and normalize timestamps.

 Common Date and Timestamp Functions

Starting from your empty note (in Zeppelin), copy the code block in Listing 12-3 and run the paragraph. The SQL statement generates a row with columns representing the date

and time information captured by Spark at runtime.

 Listing 12-3. Using Spark SQL to Get a Sense of Time

%spark

spark.sql("""

SELECT current_timestamp() as ts,

current_timezone() as tz,

current_date() as date,

TIMESTAMP 'yesterday' as yesterday,

TIMESTAMP 'today' as today,

TIMESTAMP 'tomorrow' as tomorrow

""").show(6,0,true)

The output of the resulting row will be a snapshot of standard system date and time

information collected when the code is evaluated.

-RECORD 0-------------------------------

ts | 2021-09-12 00:54:03.691464

tz | Etc/UTC

date | 2021-09-12

409

ChapTer 12 analyTiCal proCessing and insighTs

yesterday | 2021-09-11 00:00:00

today | 2021-09-12 00:00:00

tomorrow | 2021-09-13 00:00:00

The current_timestamp, current_timezone, current_date, and the TIMESTAMP

constants yesterday, today, and tomorrow are all higher-order Spark SQL datetime

functions. Next, we re-create the same output use the Spark DSL functions directly.

 Applying Higher-Order Functions Using withColumn

Create a new paragraph. Inside the paragraph we will create a single 1x1 (row/column)

DataFrame storing only a timestamp. Mimicking the current_timestamp expression,

Listing 12-4 shows how you can wrap a simple Java Instant to replicate the current_

timestamp expression.

 Listing 12-4. Create a DataFrame with a Single Row and a Single Column Storing

a Timestamp

%spark

val tsDf = Seq(Instant.now).toDF("ts")

The simple technique in Listing 12-4 takes advantage of implicit conversions to encode a Scala Seq[Instant] as a Catalyst Row (DataFrame) with a TimestampType

column. Using the tsDf DataFrame we can now add columns using the withColumn

method on the DataFrame.

DataFrame.withColumn(colName, col)

The withColumn method adds a new column iteratively across all rows of a

dataFrame. The col (Column) parameter is a powerful primitive that encapsulates

a columnar sQl expression and can be used to enable user-defined functions

to your applications. it is important to keep in mind that withColumn can only

reference data from within adjacent columns of a row. There are other techniques

that can be used to process all rows or a subset of rows to generate derived

aggregates using window functions.

410

ChapTer 12 analyTiCal proCessing and insighTs

The code block in Listing 12-5 adds a column literal (which means “literally this column is exactly what you see”) containing the time zone as well as the derived date

using the column operation to_date.

 Listing 12-5. Using withColumn to Add a Column Literal and a Derived Date

Column Using to_date

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types._

val dtInfoDf = tsDf

.withColumn("tz",

lit(spark.conf.get("spark.sql.session.timeZone"))

)

.withColumn("date", to_date($"ts"))

The result of the transformation is a new DataFrame representing the combination

of two new columns added to the source DataFrame. Remember that because Spark

operates lazily, no actual work will be executed until you arrive at a specific action. The

operation from Listing 12-5 adds the promise to provide the new date column when the time comes to execute on the final series. The first column uses a special column named

lit. The lit column wraps and encodes the underlying data type as a typed column using

an implicit typed encoder (if available). The second column (date) is referred to as a

derived column. When you use the to_date function and pass a source column ($"ts"),

Spark will use the reference column (ts) to generate a DateType.

If you printed the schema of dtInfoDf at this point, you would see the following:

root

|-- ts: timestamp (nullable = true)

|-- tz: string (nullable = false)

|-- date: date (nullable = true)

Tackling the rest of the missing columns needed to recreate the DataFrame from

Listing 12-3 leaves the columns yesterday, today, and tomorrow.

 Using Date Addition and Subtraction

The datetime functions date_sub and date_add, as well as a simple cast expression, can

be combined to derive yesterday, today, and tomorrow, as shown in Listing 12-6.

411

ChapTer 12 analyTiCal proCessing and insighTs

 Listing 12-6. Using Date Subtraction, Addition, and Data Type Casting to Mimic

the Output from Listing 12-3

tsDf

...

.withColumn("yesterday",

date_sub($"date", 1). cast(TimestampType))

.withColumn("today", $"date". cast(TimestampType))

.withColumn("tomorrow",

date_add($"date", 1).cast(TimestampType))

You can now create timestamps, derive dates from timestamps, and add or subtract

dates. Rounding out the tour of datetime functions, we will be looking at the year, month,

dayofmonth, dayofweek, and dayofyear calendar functions.

 Calendar Functions

It is common to compare explicit periods (windows) of time using the calendar for

analytics and insights. Trend analysis and timeseries forecasting are techniques that use

statistics to measure the rate of change over time (deltas) between data points. Datasets

can be partitioned (bucketed) and analyzed using Spark SQL to create aggregations

broken down by seconds, minutes, hours, days, weeks, months, and even years using

 fixed or relative windows.

Fixed and Relative Windows a

 fixed window is defined by an explicit start

and end time. For example, yesterday is a window defined by the 24-hour period

beginning at 00:00:00 and ending at 23:59:59. Fixed windows are typically used

to compute changes across two or more datasets commonly computed hour over

hour, day over day, week over week and month over month.

a relative window uses a non-fixed point in time to define one edge of a time-

based boundary. This boundary can then be used to compute either the beginning

or ending timestamp producing an arbitrary window to observe statistics. For

instance, you can use relative time to isolate a dataset encapsulating the last 30

minutes rather than splitting an hour at a fixed 30-minute interval (06:00:00 –

06:29:59 | 06:30:00 – 06:59:59).

412

ChapTer 12 analyTiCal proCessing and insighTs

Using the code in Listing 12-7 as a reference, we will add five columns to the tsDf DataFrame.

 Listing 12-7. Deriving the Year, Month, Day, the Day Within the Current Week,

and the Day Within the Current Year Using a Single DateTime Column

tsDf

...

.withColumn("year", year($"date"))

.withColumn("month", month($"date"))

.withColumn("day", dayofmonth($"date"))

.withColumn("day_of_week", dayofweek($"date"))

.withColumn("day_of_year", dayofyear($"date"))

The final DataFrame represents the current date with columns expressing different

observations generated from the initial timestamp column.

-RECORD 0--------------------------------

ts | 2021-09-12 01:04:39.04086

tz | Etc/UTC

date | 2021-09-12

yesterday | 2021-09-11 00:00:00

today | 2021-09-12 00:00:00

tomorrow | 2021-09-13 00:00:00

year | 2021

month | 9

day | 12

day_of_week | 1

day_of_year | 255

You now have a solid reference to go back to whenever you need a quick refresher

about working with date and time. But what about the actual time zone?

413

ChapTer 12 analyTiCal proCessing and insighTs

 Time Zones and the Spark SQL Session

Working with time-based data requires conversion between time zones for more reasons

than just adherence to a common time zone like UTC. You can also use a time zone as a

lens to view a dataset from the perspective of observers of specific events. This use case

comes up when producing insights that are tied to specific geolocations and time zones.

 Configuring the Time Zone

Spark defaults to using the local system time of its environment (your laptop or a remote

server). Using the default system time can cause discrepancies when processing data. To

ensure consistent behavior regardless of where the application is run, you can configure

the default time zone using the config spark.sql.session.timeZone.

 Modifying the Spark Time Zone at Runtime

The SparkSession handles timestamp conversions automatically for you globally.

However, there may be times when you want to explicitly change the time zone used by

a specific query. Create a new paragraph in Zeppelin and add the example code block in

Listing 12-8, which shows how to dynamically set the time zone.

 Listing 12-8. Observing Time Zone Changes in Spark’s Output of Time Based on

the SparkSession Time Zone Configuration

%spark

import java.time._

val ts = Seq(Instant.now).toDF("ts")

spark.conf.set("spark.sql.session.timeZone", "UTC")

ts.show(truncate=false) // utc

spark.conf.set("spark.sql.session.timeZone", "America/Los_Angeles")

ts.show(truncate=false) // pst

Running the paragraph, you will see first-hand how Spark’s observation of time

changes in step with the value of the time zone configuration. The output captures the

reference to the single immutable timestamp (ts) as observed through the lens of the

UTC and PST time zones, respectively.

UTC |2021-09-12 03:02:32.434387

PST |2021-09-11 20:02:32.434387

414

ChapTer 12 analyTiCal proCessing and insighTs

The ability to shift the observation of time using the Spark runtime config enables

you to use a single source of immutable truth (UTC timestamps) for your backing data

while simplifying how downstream applications compose queries for specific time

zones. All this without the headache of creating multiple copies of a dataset to handle

the conversion between time zones for timestamps.

 Using Set Time Zone

You can also use SET TIME ZONE (shown in Listing 12-9) to directly set the time zone config using Spark SQL to switch between time zones dynamically.

 Listing 12-9. Using SET TIME ZONE to Configure the Spark Session Time Zone

%sql

SET TIME ZONE 'America/Los_Angeles';

SELECT TIMESTAMP 'now' as now_pst;

%sql

SET TIME ZONE 'UTC';

SELECT TIMESTAMP 'now' as now_utc;

You can now declaratively change the time zone in Spark using the SparkSession.

This simple configuration enables each application to select how time should be

observed while querying and displaying time-based data. Just remember to use a default

time zone for your Spark applications to ensure reliable, repeated results.

 Seasonality, Time Zones, and Insights

Consider the following example. You are tasked with designing a system that

automatically tracks and compares the relative changes in observed customer shopping

behavior across goods being sold at CoffeeCo to produce insights on purchase trends.

While testing that the system is working as expected, you stumble upon what at first

appears to be an anomaly in sales of a particular item. Upon further investigation it turns

out that the item is a pumpkin spice latte, and the sales numbers went from zero average sales per day, to customers buying these pumpkin lattes at records levels, as compared to

all other items in category, in only a few days. Is this an anomaly? What other data might

be necessary?

415

ChapTer 12 analyTiCal proCessing and insighTs

Some goods are only available for a limited amount of time, or at a specific time of

year. A pumpkin spice latte is seasonal since it is considered a fall (season) beverage, but

what is it about the seasons (holidays) that affect sales? What about emotions?

I grew up on the northeast coast of the United States, and for me, October always

marked an observable change in the seasons. Leaves would fall from the trees, and the

colder temperatures meant sweaters and jackets and the peace and quiet reflection of

snow in New England. With this change came anticipation of the winter holidays, which

meant cider (mulling spices) and pumpkin pie, and as an adult pumpkin spice lattes

bring back fond memories. Is this unique only to me? Is there perhaps a correlation to

higher sales on the east coast of the United States? Are sales driven by temperature or

other weather patterns like snowstorms or rain?

While you might not have any emotional connection to fall in New England and you

might hate pumpkin spice lattes, it is important to think about what kind of data can be

useful to generate insights from analytical observations. Bottom line, think like a data

detective or partner with a great data analyst to ensure that the work that goes into data

collection, aggregation, and analysis can produce novel insights that can be used to drive

experiences that make happy customers.

 Timestamps and Dates Summary

Thinking about the different angles, lenses, or views you can derive from a single

timestamp provides you a path toward event-based insights. You can calculate

information about the time of year (seasonality), whether a date falls on a weekend or

weekday (specific to the geolocation of an event, or even the local time zone), or you

can check if the event occurred on a holiday, or even if the date is within proximity to

any other meaningful historic date. Associating what happened and correlating data to

real-world behaviors is a driving factor behind many successful analytics and insight

initiatives. If you want any more proof, search online for “diapers beer correlations”

to see how retailers derive insight from customer transactions to move commonly

purchased items closer together to increase sales across seemingly irrelevant items. We

will now look at some techniques for preparing data for analysis.

416

ChapTer 12 analyTiCal proCessing and insighTs

 Preparing Data for Analysis

Data comes in all shapes and sizes. Unfortunately, that also means that data may be

missing (null) for reasons outside of data corruption or user error. For example, null

values in a dataset don’t necessarily need to be filled in with default values at rest, since

that may only prove to increase the overall footprint of a given dataset.

Additionally, depending on how long a dataset has existed and whether data is

being actively collected and appended to that dataset, there is a high probability that the

underlying schema of the data has changed slowly over time. Slowly changing schemas

are one of the common factors behind null values as older records need to be coerced

into a new common schema (StructType) to be processed side by side with newer data

items from the dataset (table).

Outside of simple missing values, you are also aware that datasets are often

transformed and joined with other datasets to materialize more specific views that cater

to different data domains to assist in answering more specialized questions (queries).

We will look at the process of conditionally filling null values and using case

statements (columnar expressions) to generate derived columns that can be used to

conditionally label (tag), bucket (partition), and generally solve common data problems.

 Replacing Null Values on a DataFrame

Filling in missing data conditionally can be done using na.fill on a DataFrame. Create

a new paragraph (in Zeppelin) and copy the code block in Listing 12-10 into it. Then run it. The example creates a simple DataFrame representing four orders of various prices

from registered and unregistered customers of CoffeeCo. Here I chose to represent

unregistered customers with a null customer_id column.

 Listing 12-10. Creating a DataFrame with Null customer_id to Use na.fill

%spark

val nullOrdersDF = Seq(

(1, null, "decafe", 3.12),

(2, "cust123", "pour_over", 5.15),

(3, "cust234", "latte", 3.89),

(4, "cust345", "special_pour_over", 6.99)

)

.toDF("order_id", "customer_id", "item_name", "price")

nullOrdersDF.show()

417

ChapTer 12 analyTiCal proCessing and insighTs

After running the paragraph, the resulting DataFrame will look like the following:

+--------+-----------+-----------------+-----+

|order_id|customer_id|item_name |price|

+--------+-----------+-----------------+-----+

|1 |null |decafe |3.12 |

|2 |cust123 |pour_over |5.15 |

|3 |cust234 |latte |3.89 |

|4 |cust345 |special_pour_over|6.99 |

+--------+-----------+-----------------+-----+

You can now use the na.fill operation to replace null values with a common value,

across one or more columns, and return a new clean DataFrame. Using Listing 12-11 as a

reference, test filling the column customer_id with the value "unknown".

 Listing 12-11. Replacing Null Values from the Column customer_id with the

Value Unknown

%spark

val nonNullOrdersDF = nullOrdersDF

.na.fill("unknown", Seq("customer_id"))

nonNullOrdersDF.createOrReplaceTempView("order_nonnull")

nonNullOrdersDF.show(truncate=false)

The non-null (cleaned) DataFrame (after using na.fill) created as a result of

calling na.fill Listing 12-11, which is saved into a new reference variable as well as a temporary view named order_nonnull. The result of the operation looks like the

following:

+--------+-----------+-----------------+-----+

|order_id|customer_id|item_name |price|

+--------+-----------+-----------------+-----+

|1 |unknown |decafe |3.12 |

|2 |cust123 |pour_over |5.15 |

|3 |cust234 |latte |3.89 |

|4 |cust345 |special_pour_over|6.99 |

+--------+-----------+-----------------+-----+

418

ChapTer 12 analyTiCal proCessing and insighTs

Filling null values with a specific constant like unknown can help to declare the

meaning of a column rather than requiring other engineers to guess the columns

intentions.

As an alternative, if the table was being managed in the Spark SQL Catalog, then

being the good data steward you are, you could go the extra mile and describe the

intentions of the null column in the Hive Metastore. Then other data teams can

consistently work with the null values in the same way.

When preparing data for analysis, you will more likely than not find yourself needing

to add a derive columns as a function of one or more conditional expressions. Rather

than creating a specialized user-defined function (UDF), you can simply use SQL case

statements and Spark SQL when/then/otherwise expressions. Case statements work in a

similar way to a pattern matching block or a traditional switch statement.

 Labeling Data Using Case Statements

Case statements provide a mechanism for adding new columns based on the result of

one or more chained Boolean expressions (predicates). You can use case statements

to tag, categorize, or label data while it is being processed. The semantics of the case statement changes depending on if you are using the Spark SQL functions on a

DataFrame or if you are using SQL expression on a table or view.

 Case Statements on the Dataset

Create a new paragraph in the Zeppelin notebook. You will be transforming the

target DataFrame nonNullOrdersDF (Listing 12-11) by adding two columns named is_registered and order_label in an effort to create a labeled order. The code block

in Listing 12-12 shows how to use when, otherwise expressions. The first column is_

registered tests if the order has a known or unknown customer_id, while the order_

label expression uses boolean and numeric condition evaluation to conditionally flag

an order as VIP, rush, or normal.

419

ChapTer 12 analyTiCal proCessing and insighTs

 Listing 12-12. Using When, Then, Otherwise to Create Complex Derived

Columns on Your DataFrame

%spark

nonNullOrdersDF

.withColumn("is_registered",

when(col("customer_id").notEqual("unknown"), true)

.otherwise(false)

)

.withColumn("order_label",

when(col("is_registered").equalTo(true).and(col("price") > 6.00), "vip")

.when(col("is_registered").equalTo(true).and(col("price") > 4.00),

"rush").otherwise("normal")

)

.show(truncate=false)

As discussed earlier, the first new column (is_registered) represents the registered

status of a customer. The columnar expression is a predicate that checks that the

evaluation conditions are met. When the value of the column is not equal to unknown

 then we will set the column value to true, otherwise it falls back to setting the column value as false.

The second derived column uses the value of is_registered to conditionally

decorate a customer’s order as a function of their registration status and the price of

their order. The result is a column with three possible values: normal, rush, or vip.

The columnar expression uses more complex conditional branching by introducing

the concept of expression and-ing (which could also have been an or condition). The

easiest way to think about when-then-otherwise expressions is to think about typical

conditional branching.

if (row.is_registered) {

if (row.price > 6.00) "vip" else "rush"

} else "normal"

Let’s look at how to accomplish the same goal using Spark SQL.

420

ChapTer 12 analyTiCal proCessing and insighTs

 Case Statements on a Spark SQL Table

The order_nonull temporary view can be used along with a nested inner select

statement to accomplish the same results shown in Listing 12-12. Create a new Zeppelin paragraph, copy the SQL statement in Listing 12-13, and run it. You will see that the output is the same as Listing 12-12.

 Listing 12-13. Using Interpreted SQL on a Spark SQL Table to Create Complex

Derived Columns

%sql

SELECT *,

CASE

WHEN x.is_registered = TRUE and x.price > 6.00 THEN 'vip'

WHEN x.is_registered = TRUE and x.price > 4.00 THEN 'rush'

ELSE 'normal'

END as order_label

FROM (

SELECT *,

CASE

WHEN customer_id != 'unknown' THEN TRUE

ELSE FALSE

END as is_registered

FROM order_nonnull

) x

The Spark SQL case statement in Listing 12-13 provides you with the general framework for adding complex conditional expressions that can aid in tagging,

bucketing, or in helping to find other patterns in a dataset.

Tip The spark sQl interpreter is a wonderful support tool when you simply

want to let spark do the work rather than providing the full set of functional

transformations that are required to do the same thing on the dataFrame

api. Ultimately, you can mix execution modes easily when you are using the

dataFrame and dataset apis in batch mode (including via Zeppelin) while you are

figuring things out.

421

ChapTer 12 analyTiCal proCessing and insighTs

 The Case for Case Statements

Case statements provide a perfect mechanism for adding conditional expressions

that can be used to declaratively tag, partition, or bucket, your datasets for analysis.

For example, it may be interesting to know which customers spend more than $20

per order, maybe more than $100. Maybe you want to tag customers who purchase

uncommon goods because they may tend to act like the other customers who also

purchase uncommon goods? By adding tags, such as order_type, to your data, you can

provide the input features for the data scientists and machine learning engineers in your

organization to do more with the data. This technique is a lightweight way of testing data

theories. They help explore a dataset by separating data to find patterns and insights.

 User-Defined Functions in Spark

User-defined functions (UDFs) enable you to encode complex procedures using

traditional Scala functions wrapped in a Spark UDF. UDFs can even be registered with

the SparkSession to extend the available functions in the Spark SQL Catalog.

We will walk through the process of converting the order_label expression

introduced in Listing 12-12 into a UDF called coffee_order_label. The base function will take a String and Double and return a String. The Spark SQL UDF function wraps a

traditional Scala function, function literal, or inline literal function.

 Using Scala Functions in UDFs

Listing 12-14 creates a traditional Scala function (labeler) and uses Spark’s udf function to wrap an applied labeler function call.

422

ChapTer 12 analyTiCal proCessing and insighTs

 Listing 12-14. Encoding a Traditional Scala Function for Use with the Structured Spark APIs

%spark

import org.apache.spark.sql.functions.udf

def labeler(customerId: String, price: Double): String = {

if (customerId != "unknown") {

if (price > 6.0) "vip" else "rush"

} else "normal"

}

val coffeeOrderLabeler = udf(labeler(_,_))

Using a traditional function is probably the easiest way to get started with UDFs.

Depending on how you like to work, function literals provide you with another means of

expressing your UDF.

 Using Function Literals in UDFs

Function literals in Scala provide a means of passing a function as an argument to

another function. In the example in Listing 12-14, there was a need to apply the function using the udf(label(_,_)) expression. Listing 12-15 shows how you can use a function literal to simplify using the udf operation at a slight cost to the scanability of the code block (for non-functional programmers).

 Listing 12-15. Passing a Function Literal to the UDF

%spark

import org.apache.spark.sql.functions.udf

// udfs can use function literals

val coffeeOrderLabelerFunc: ((String, Double) => String) =

(customer_id: String, price: Double) => {

if (customer_id != "unknown") {

if (price > 6.0) "vip" else "rush"

} else "normal"

}

val coffeeOrderLabeler = udf(coffeeOrderLabelerFunc)

423

ChapTer 12 analyTiCal proCessing and insighTs

Since function literals can be passed as method parameters, the udf operation can

infer the required function parameter types (String, Double) and generate a lambda

expression automatically. Lastly, we will look at providing an inline function to the udf

operation.

 Using Inline Functions in UDFs

The udf operation will wrap whatever function you pass into the udf method, so you can

simply provide an inline function (as shown in Listing 12-16) and Spark will encode the function without the need to do anything more outside of Spark’s scope.

 Listing 12-16. Using an Inline Function (Lambda Expression) with the Spark

SQL UDF Method

val coffeeOrderLabeler = udf(

(customer_id: String, price: Double) => {

if (customer_id != "unknown") {

if (price > 6.0) "vip" else "rush"

} else "normal"

})

Now that we’ve covered how to create user-defined functions, we should see how

they work and then learn how to use them.

 How User-Defined Functions Work

The type of object returned by the spark.sql.functions.udf method is an instance of

the abstract class UserDefinedFunction. Specifically, an instance of the concrete class SparkUserDefinedFunction. This object is responsible for translating between the JVM

data types and the Spark data types using implicit encoders. What is more interesting is

that the return type of calling apply on your udf is a Column. This is the magic at work

enabling the UDF to interoperate with the structured Spark APIs at the column level. The

UDF just turns out to be another columnar expression.

424

ChapTer 12 analyTiCal proCessing and insighTs

 Using UDFs with the Spark DSL

The newly defined UDF can now be invoked using withColumn. If you haven’t already,

create a paragraph in your notebook and run the code block in Listing 12-16 to create the coffeeOrderLabeler. Then create another new paragraph and copy the block in

Listing 12-17, replacing the when/otherwise statement in Listing 12-12 with the new coffeeOrderLabeler UDF.

 Listing 12-17. Using UDFs and the Structured Spark DSL

nonNullOrdersDF

.withColumn("is_registered", ...)

.withColumn(" order_label", coffeeOrderLabeler(

$"customer_id", $"price"))

If you want to use your new UDF with Spark SQL you will have to register it so that

it becomes part of the Spark SQL Catalog. Then the function can be used like any other

SQL expression.

 Registering UDFs for Spark SQL

Once you have a UDF, you can register it using the SparkSession udf method. This will add the function into the Spark SQL catalog.

// registers the udf for use with Spark SQL

spark. udf.register("coffee_order_label", coffeeOrderLabeler)

You can check that your UDF is registered by using the Spark SQL Catalog methods

from the SparkSession.

 Introspecting UDF Functions

It is useful to search for and test for the existence for your UDFs. After registering a

new function, you can list all the available functions of the SparkSession by calling the

listFunctions method from the Spark SQL Catalog (catalog).

spark.catalog.listFunctions.show()

425

ChapTer 12 analyTiCal proCessing and insighTs

Because the listFunctions method returns a Dataset[Function], you can also

query the dataset for functions by pattern (in case you can’t remember the full name).

spark.catalog.listFunctions

.where($"name".like("%coffee%"))

And if you already know the name of the function, for example with the case of the

coffee_order_label UDF, you can check to see if the function exists on the current

SparkSession.

spark.catalog

.functionExists("coffee_order_label")

 UDF Visibility and Availability

User-defined functions are loaded into the SQL Catalog for each instance of the

SparkSession. For example, if your Spark application forks the SparkSession then there is

no guarantee that a UDF will automatically become available. This is because UDFs, like

temporary views, are only available by default for the lifecycle of the SparkSession that

created them. Checking if a UDF exists before using it can help resolve future problems

today (see Listing 12-18).

 Listing 12-18. Testing for the Presence of a User-Defined Function After Forking a SparkSession

val newSession = spark.newSession

if (!newSession.catalog.functionExists("coffee_order_label")) {

... register the function and use it

}

In the case where UDF functions must be available globally, there is also a pattern for

creating and registering permanent UDFS in the default Spark SQL context.

426

ChapTer 12 analyTiCal proCessing and insighTs

 Creating and Registering Permanent UDFs in the Spark

SQL Catalog

It is common to share a common set of UDFs between Spark applications. To do so,

you must take an additional step to create, package, and distribute your common

UDFs. For instance, Listing 12-19 shows how to create a concreate class named CoffeeOrderLabeler. The class extends the Hive UDF class, thereby enabling the

implementing class to be registered in the Hive Metastore. This capability also allows the

UDF function to be loaded from a distributed file system like HDFS or S3 to provide the

functionality on-demand.

 Listing 12-19. Extending the Hive UDF to Create a Reusable UDF Class

import org.apache.hadoop.hive.ql.exec.UDF;

class CoffeeOrderLabeler extends UDF {

def evaluate(customerId: String, price: Double): String = {

if (customerId != null && customerId != "unknown") {

if (price > 6.0) "vip" else "rush"

} else "normal"

}

}

With the class created, you can register the Hive UDF function by using the CREATE

FUNCTION statement on the Spark SQL DDL. See Listing 12-20.

 Listing 12-20. Registering a Permanent Global Function in the Spark

SQL Catalog

%sql

CREATE FUNCTION native_coffee_order_label

AS 'CoffeeOrderLabeler'

USING JAR 's3a://.../udfs/orders/jars/udfs.jar'

Now the UDF is not only registered in the Hive Metastore but there is also a path to

the JAR location within the shared file system. Now back to using UDFs in Spark SQL.

427

ChapTer 12 analyTiCal proCessing and insighTs

 Using UDFs with Spark SQL

You know the ins and outs of creating, registering, and checking your user-defined

 functions, so all that is left is using the function in your Spark SQL statements. Listing 12-21

shows a modified version of the Spark SQL statement from Listing 12-13.

 Listing 12-21. Using a Registered UDF with Spark SQL

%sql

SELECT *,

coffee_order_label(customer_id, price) as order_label

FROM (

SELECT *,

CASE

WHEN customer_id != 'unknown' THEN TRUE

ELSE FALSE

END as is_registered

FROM order_nonnull

) x

The SQL statement in Listing 12-21 shows the simple usage of the coffee_order_label UDF. UDFs enable you to extend the Spark SQL functionality and add new vocabulary

(expressions and operators) that can be reused for a wide variety of purposes. The

technique can be useful for reusing non-Spark native libraries, but there is also a catch.

 Regarding User-Defined Functions

As you’ve seen, user-defined functions allow you to define new column-based

operations expressed as native functions for use with Spark SQL and the Spark

DSL. UDFs can fill in the blanks for any operations that is hard to express, or simply can’t

be expressed natively using default Spark SQL functions. There is a catch, and it relates

to how Spark encodes UDFs. Simply put, Spark can’t optimize the code block in your

UDF since it treats the internal operation as a black box. Keep in mind the complexity

of your UDF operations so you don’t find yourself unwittingly slowing down your Spark

applications. When performance really matters, it is always better to use native Spark

SQL functions, since they have been optimized for the Catalyst Engine.

428

ChapTer 12 analyTiCal proCessing and insighTs

 Exercise 12-1: Summary

This first exercise was a deep dive into the common SQL functions that are commonly

used when preparing data for aggregation and analytical processing. From working with

timestamps and date functions, to declaring which time zone to use when processing

datasets, to filling null values and using conditional case statements, to finally defining

your own functions (UDFs) to extend the common capabilities available within the Spark

SQL ecosystem. We turn our attention now to using common aggregation and analytical

functions in Spark.

 Analytical Processing and Insights Engineering

Capturing and collecting data is generally only useful when the data can be used

to answer questions, surface trends, analyze customer behavior, assist in decision

automation, or provide an additional set of eyes and ears into complex processes and

operations. Consider the operational data needed to run a coffee startup like the fictious

CoffeeCo. To compete with more established companies in the busy bespoke coffee

space, and to maintain a similar level of customer satisfaction, everything must be

managed well. From the atmosphere of each individual store, to the coffee that is being

served, to the logistics of contracts and vendor negotiations regarding fair trade and

sourcing of coffee beans, essentially all processes that drive the business forward require

multiple points of view across myriad data points that can be analyzed to ensure smooth

operations. This is where analytics, insights, and machine learning get together to create

intelligent systems. This story typically begins with aggregating data.

 Data Aggregation

 Data aggregation is a technique used to analyze large amounts of data to produce

reports or statistics relating to observed patterns within a dataset. Data aggregation

plays an important role in art of exploratory data analysis (EDA), data mining, insight

generation, machine learning, and artificial intelligence. Like so many other things, data

aggregation begins with a dataset and that dataset is the result of data being reliably

captured and consistently processed by data engineers.

429

ChapTer 12 analyTiCal proCessing and insighTs

 Exercise 12-2: Grouped Data, Aggregations, Analytics,

and Insights

Start Zeppelin back up if it isn’t running and create a new note. Give it a name such as

02_grouping_aggregations_analytics. For the rest of the exercise, you’ll use this note

as you learn to use grouping and aggregation functions to create reports and experiment

with complex analytical functions.

Note This exercise reuses data created using the random CoffeeOrder

generator from Chapter 11.

 Relational Grouped Datasets

Analytical processing is enabled using the groupBy, cube, rollup, and pivot DataFrame

methods. These methods transform a DataFrame into a RelationalGroupedDataset

and expose a wide variety of analytical processing functionality. Along with this new

identity comes an important change in Spark’s processes paradigm. Spark will shift the

way it processes data from using row-based iterators, which are primarily concerned

with performing row-wide transformations on individual columns, to instead processing

the data points contained in specific columns across all rows in a subset of the dataset

partitioned by a grouped expression or alternative partitioning logic.

 Columnar Aggregations with Grouping

In this section, you create a simple report that aggregates the total number of items sold

by store (store_id) as a function of the year and the month of each transaction. Begin by

creating a temporary view named coffee_orders and referencing the date partitioned

from the silver.coffee_orders table (from ch-11). Listing 12-22 can be dropped into Zeppelin and run to wire up this relationship.

430

ChapTer 12 analyTiCal proCessing and insighTs

 Listing 12-22. Preparing to Read and Analyze the Partitioned coffee_orders

Table by Creating a View That Can Be Used in Your New Zeppelin Note

%spark

val dbName = "silver"

spark.catalog.setCurrentDatabase(dbName)

val dbUri = spark.catalog.getDatabase(dbName).locationUri

val df = spark.read.parquet(s"$dbUri/coffee_orders/")

df.createOrReplaceTempView("coffee_orders")

Using the coffee_orders view as a starting point, the Spark SQL query in Listing 12-23

will create a new temporary view named coffee_orders_datetime that adds the year,

month , and day derived columns.

 Listing 12-23. Creating a New Temporary View (coffee_orders_datetime) that

Adds the Derived Columns year and month to the coffee_orders View

%sql

CREATE OR REPLACE TEMP VIEW `coffee_orders_datetimeÀS SELECT *, year(date) as year, month(date) as month, day(date) as day FROM coffee_orders

Using the new year and the month columns, you can now compute statistics

pertaining to the monthly (or even yearly) sales totals. The query in Listing 12-24 uses native Spark SQL and the SUM aggregation operator to compute the total number of items

sold. This query can be run without a grouping clause to compute the total number

of items sold globally. With the addition of a grouping expression (group by), you can

easily create multiple distinct subsets based on the grouping columns year, month, and

store_id.

 Listing 12-24. Reporting the Total Items Sold by Store Partitioned by Year

and Month

%sql

SELECT store_id, year, month, sum(num_items) AS total_items_sold

FROM coffee_orders_datetime

GROUP BY year, month, store_id

ORDER BY store_id asc

431

ChapTer 12 analyTiCal proCessing and insighTs

The result of this aggregation will look like the following:

+--------+----+-----+----------------+

|store_id|year|month|total_items_sold|

+--------+----+-----+----------------+

| store1|2021| 10| 61955|

| store1|2021| 9| 197421|

| store2|2021| 9| 199030|

| store2|2021| 10| 63842|

| store3|2021| 9| 202279|

| store3|2021| 10| 62134|

| store4|2021| 9| 200684|

| store4|2021| 10| 62705|

+--------+----+-----+----------------+

Next, we look at using the Spark DSL to create the same aggregation.

 Aggregating Using the Spark DSL

We just looked at using GROUP BY and the column aggregation SUM operator. In this

next example, we use a DataFrame to create the grouped aggregation. Create a new

paragraph in Zeppelin and copy the code from Listing 12-25. This example shows how a DataFrame transforms into a RelationalGroupedDataset and then back into a

DataFrame again, post-aggregation.

 Listing 12-25. Using the RelationalGroupedDataset to Compute a Columnar

SUM Aggregation

%spark

import org.apache.spark.sql.RelationalGroupedDataset

val coffeeOrdersDf = spark.sql("""

SELECT store_id, year, month, num_items

FROM coffee_orders_datetime

""")

val groupedRelation: RelationalGroupedDataset = coffeeOrdersDf

. groupBy($"year",$"month",$"store_id")

432

ChapTer 12 analyTiCal proCessing and insighTs

val aggDf = groupedRelation

. agg(sum($"num_items") as "total_items_sold")

. sort(asc("store_id"))

The code block in Listing 12-25 creates a SUM aggregation to calculate the total sales for each store by year, month exclusively. The interesting difference between Spark SQL

and the Spark DSL is the way the latter exposes each operation to the engineer. Logically

it makes sense that you would need to follow these steps:

1. Using the year, month , and store_id columns, separate all records

into disjoint sets (group by/grouping set).

2. Within each distinct set (year-month-store_id) add all the values

from the column num_items (aggregate).

3. Lastly, reorder the results by ascending store_id.

This simple report observes only the final totals within each distinct group. What

about the worst or best performing days? What about percentile data? It is often

necessary to provide additional information that can help summarize the shape of the

data in an aggregation. We will look at computing summary statistics next and you will

be introduced to the additional aggregation operator’s min, avg, percentile_approx, and

max fields to represent the statistics underlying the final numeric total.

 Computing Summary Statistics for Insights

 Analytics is the practice of capturing key performance metrics (measures) over time,

such as with our total sales numbers from the prior section. Insights is the art of explaining why a metric changed over time. Comparing analytics to observe changes

for better or worse requires additional data to be captured (or derived) along with key

performance metrics over time.

Being able to observe the changes to the shape of a dataset over time requires more

detailed statistical data to be computed per observation (window).

433

ChapTer 12 analyTiCal proCessing and insighTs

 Using Describe to Compute Simple Summary Statistics

The set of aggregation functions comprised of count, mean (avg), stddev (standard

 deviation), min, and max are commonly used to produce summary statistics across

numeric (and even non-numeric) columns. Summary statistics help measure the shape

of an underlying numeric distribution or can let you know the lexicographical min/max

for a character-based column. Spark ships with a simple means of quickly computing

columnar summary statistics using the describe function.

coffeeOrdersDf.describe("num_items").show

+-------+-----------------+

|summary| num_items|

+-------+-----------------+

| count| 100102|

| mean|10.48980040358834|

| stddev|5.772833965567237|

| min| 1|

| max| 20|

+-------+-----------------+

 Using Agg to Compute Complex Summary Statistics

When exploring a dataset, describe can be used to calculate some basic statistics

quickly and inexpensively. However, if you want to capture more advanced statistics like

the median value (50th percentile), the interquartile range (the distance between the 25th

and 75th percentiles), or other counts of the distinct number of values in a column, then

you can move these calculations back into the aggs block. Create a new paragraph and

add the block of code shown in Listing 12-26.

434

ChapTer 12 analyTiCal proCessing and insighTs

 Listing 12-26. Computing Summary Statistics Enables You to Understand the

General Shape of a Dataset with Respect to a Given Measure (num_items)

%spark

val summaryDf = coffeeOrdersDf

.groupBy($"year",$"month",$"store_id")

.agg(

count($"num_items") as "count",

sum($"num_items") as "total_items_sold",

stddev_pop($"num_items") as "sd", //sqrt(variance)

min($"num_items") as "daily_min_items",

ceil(avg($"num_items")) as "daily_avg_items",

max($"num_items") as "max_daily_items",

 percentile_approx($"num_items",

array(lit(0.25),lit(0.50),lit(0.75),lit(0.99)), lit(95)

) as "percentiles"

)

.withColumn("daily_p25_items", $"percentiles"(0))

.withColumn("daily_median_items", $"percentiles"(1))

.withColumn("daily_p75_items", $"percentiles"(2))

.withColumn("daily_p99_items", $"percentiles"(3))

.withColumn("iqr",

floor($"daily_p75_items" - $"daily_p25_items")

)

.sort(asc("year"),asc("month"), asc("store_id"))

The statistical aggregation in the example in Listing 12-26 mixes in all the columns from the describe method along with the addition of the 25th, 50th, and 75th percentiles

using the percentile_approx aggregation function.

435

ChapTer 12 analyTiCal proCessing and insighTs

PERCENTILES

percentiles are used to observe a discrete number that represents a boundary where all

values in the dataset (sorted from least to greatest) fall on or below. The 50th percentile,

which is known as the median, represents the midpoint in a sorted set of numbers where 50%

of all values fall on or below that number. percentiles are used to capture the shape of the

distribution of data and one of the common distributions is the normal distribution, shown in

Figure 12-1.

 Figure 12-1. The normal distribution is represented as what is called a

 “bell- shaped” curve

Calculating a percentile requires you to sort all values from a given column, in ascending

order, before you can use the size (total number of records) of the dataset to calculate the

value for a given percentile. This can be costly in a very large dataset, and that is where the

percentile_approx method comes into play.

percentile_approx(col, percentage, accuracy)

436

ChapTer 12 analyTiCal proCessing and insighTs

The percentile_approx function efficiently calculates the percentile(s) of a sorted

sequence of continuous numeric data based on the provided percentage(s) parameter (which

can be an array of doubles or an individual double). The accuracy parameter lets you define

the acceptable error when generating the percentiles (the lower the number the lower the

memory overhead but greater margin of error).

percentiles can be used to create common bins of data to measure the frequency of a

continuous numeric measure. histograms, for example, are a graphical representation of

the frequency (or tendency) for a data point to fall into a specific bin. Timeseries histogram

analysis can be used to observe the change in the mass (percentage) of specific bins

over time.

The aggregation from Listing 12-26 also introduces the numeric ceil (ceiling) function, which is used to round the average num_items up to the nearest whole number.

If you wanted to round down to nearest whole number, you could use the floor

expression.

Directly following the initial aggregation, we add columns using basic columnar

expressions to extract the percentile data and to compute the interquartile range.

.withColumn("daily_p25_items", $"percentiles"(0))

.withColumn("daily_median_items", $"percentiles"(1))

.withColumn("daily_p75_items", $"percentiles"(2))

.withColumn("daily_p99_items", $"percentiles"(3))

. drop("percentiles")

.withColumn("iqr",

floor($"daily_p75_items" - $"daily_p25_items")

)

The columns representing the 25th, 50th, 75th, and 95th percentiles use a technique that

essentially extracts array values from the percentile’s column in the DataFrame, and then

drops the percentiles array from the final DataFrame since it is no longer of any use (columns

are already extracted). Lastly, the interquartile range is calculated using the p75-p25, and this range helps to identify (statistically) the distance between the 25th and 75th percentiles,

437

ChapTer 12 analyTiCal proCessing and insighTs

which is equal distance in a normal distribution. Being able to observe skews (to the left or

right) in a dataset can be used to understand how measures change over time. The output of

the aggregation in Listing 12-26 will look like the following:

-RECORD 0-------------------------------

year | 2021

month | 9

store_id | store1

count | 18951

total_items_sold | 197421

sd | 5.777909019367008

daily_min_items | 1

daily_avg_items | 11

max_daily_items | 20

daily_p25_items | 5

daily_median_items | 10

daily_p75_items | 15

daily_p99_items | 20

iqr | 10

Moving on. We will be looking at using rollup and pivot, which provide different ways

of analyzing grouped data.

 Using Rollups for Hierarchical Aggregations

Rollups offer another way of creating aggregations that are an extension of the groupBy

known as grouping sets. The difference between a rollup and a groupBy is the way in

which the data is analyzed. To generate a hierarchical aggregation, a rollup will be

computed left to right across all columns represented within the rollup grouping set.

Rollups enable you to create fine-grained reports that are represented as a tree-like

structure. The topmost row represents the global aggregation of all data, and then for

each column (left to right), an additional row is generated representing the subset of the

data sliced by each distinct column value.

The code block in Listing 12-27 shows a concrete example of creating hierarchical aggregations.

438

ChapTer 12 analyTiCal proCessing and insighTs

 Listing 12-27. Aggregating a Dataset Using Rollups Across the Grouping Set

store_id, year, month

%spark

val rollupReport = ordersDf

. rollup($"store_id", $"year", $"month")

.agg(

sum($"num_items") as "total",

min($"num_items") as "min_daily",

ceil(avg($"num_items")) as "avg_daily",

max($"num_items") as "max_daily"

)

.sort(asc("year"),asc("month"),asc("store_id"))

.limit(20)

The difference between the groupBy and the rollup can be seen when outputting the

results of the rollupReport, as shown in Listing 12-28.

 Listing 12-28. Rollups Compute a Hierarchial Aggregation Across a Grouping

Set from Left to Right

+--------+----+-----+-------+---------+---------+---------+

|store_id|year|month|total |min_daily|avg_daily|max_daily|

+--------+----+-----+-------+---------+---------+---------+

|null |null|null |1050050|1 |11 |20 |

|store1 |null|null |259376 |1 |11 |20 |

|store2 |null|null |262872 |1 |11 |20 |

|store1 |2021|null |259376 |1 |11 |20 |

|store2 |2021|null |262872 |1 |11 |20 |

|store1 |2021|9 |197421 |1 |11 |20 |

|store2 |2021|9 |199030 |1 |11 |20 |

|store1 |2021|10 |61955 |1 |11 |20 |

|store2 |2021|10 |63842 |1 |11 |20 |

+--------+----+-----+-------+---------+---------+---------+

439

ChapTer 12 analyTiCal proCessing and insighTs

In the output in Listing 12-28, you will see that the global aggregation is followed by the first grouping column (store_id), then the next level is (store_id and year)

followed by (store_id and year and month). This style of aggregation is good for

exploratory reporting. Next, we look at pivots.

 Using Pivots

Pivoting is a technique that enables complex aggregations across many rows, in a similar

vein to the rollup and groupBy aggregations. The output of the pivot operation is a

new dataset that has been pivoted around a specific column (such as an order_id or a

month or year). This technique can be used for reporting, and for finding patterns across

multiple rows of data to produce novel insights.

We’ll explore creating a dataset that represents each individual items a customer

ordered from the available menu items in a coffee shop. These menu items will then be

associated to the column num_items on a CoffeeOrder. This new dataset will live in a

table named coffee_order_items. This fine-grained order information would typically

be available in a database or data lake for data mining and analysis purposes and could

be used to figure out which category or typical items a customer commonly purchases.

In this case, we will be splitting orders items into two simple categories named

beverage and food, and we will be using these identifiers to create categorical price-

based rollup of the items purchased within an order, all using pivots.

Let’s start by creating the menu_items table. Follow the code in Listing 12-29 to create the Item case class and generate a handful of menu items to complete the pivot tutorial.

 Listing 12-29. Creating the menu_items view

%spark

import org.apache.spark.sql.types._

import org.apache.spark.sql._

case class Item(item_id: Int, name: String, category: String,

price: Double)

val menuItems = Seq(

Item(0, "latte", "beverage", 3.46),

Item(1, "americano", "beverage", 2.59),

Item(2, "cappuccino", "beverage", 3.89),

Item(3, "pour over", "beverage", 5.26),

440

ChapTer 12 analyTiCal proCessing and insighTs

Item(4, "tea", "beverage", 2.99),

Item(5, "water", "beverage", 2.99),

Item(6, "cookie", "food", 2.99),

Item(7, "salad", "food", 4.99),

Item(8, "sandwich", "food", 6.99),

Item(9, "popcorn", "food", 3.49)

)

val df = spark.createDataFrame(menuItems)

df.createOrReplaceTempView("menu_items")

The menu items can be saved for future reuse by using saveAsTable (see

Listing 12-30).

 Listing 12-30. Saving the Menu Items for Later

%spark

df

.repartition(1)

.write

.mode("overwrite")

.saveAsTable("silver.menu_items")

Now that you have some menu items to work with, let’s use these items and

associate them with a series of items (array of integers as menu_item_ids) for a specific

CoffeeOrder. We will create the OrderItems structure to store this dataset.

 Creating the Order Items

We need to create a new case class called OrderItems that stores an orderId, and a

sequence of items purchased in an order. See Listing 12-31.

441

ChapTer 12 analyTiCal proCessing and insighTs

 Listing 12-31. Creating Two Example OrderItem Rows and Saving Them Into a

New View Named coffee_order_items

%spark

case class OrderItems(orderId: String, items: Seq[Int])

spark.createDataFrame(Seq(

OrderItems("orderId1314", Seq(3, 7, 5, 0, 1, 1, 1)),

OrderItems("orderId1696", Seq(3, 7, 7, 5, 0, 1, 1, 1, 2, 2, 8))

)).createOrReplaceTempView("coffee_order_items")

In Listing 12-26 from earlier, we looked at using array positions to extract an array field from our percentiles array ($"percentiles"(0)). This technique can be

streamlined using the explode operation for variable length arrays. The reason I bring

this up is because we will soon be using explode as an exercise to flatten the order items

from a specific order and join each item with its menu item.

 Using Array Explode to Create Many Rows from One

Working with array data isn’t always cut and dried. It is easy to introduce bugs in the

code when working directly with array index pointers, especially without guards in place.

The explode functionality is a useful technique that extracts all data from a nested array,

essentially flattening the nested structure by generating a new row per item. Let’s see

how this can be used to rotate an order across all items.

For reference, a single OrderItem row looks like this.

Row("orderId1314", array(3, 7, 5, 0, 1, 1, 1))

When we apply the explode function, as shown next.

%spark

spark

.sql("select * from coffee_order_items")

.selectExpr("orderId", "explode(items)")

.show

442

ChapTer 12 analyTiCal proCessing and insighTs

We generate a new DataFrame that has a single menu item per row.

+-----------+---+

| orderId|col|

+-----------+---+

|orderId1314| 3|

|orderId1314| 7|

|orderId1314| 5|

|orderId1314| 0|

|orderId1314| 1|

|orderId1314| 1|

|orderId1314| 1|

+-----------+---+

Using explode allows you to unpack data to create many rows from a single row. This

technique is equivalent to using flatMap in Scala to generate a sequence of items from

one. So how can we use explode and join to calculate the total cost of an order?

 Using Array Explode and Join to Calculate the Order Total

Now that you have the pieces of the puzzle, you can mix the transformation (explode) with

a join (order_items with menu_items) to create a new view that combines the order items

with the price of each menu item in the order. Follow the code block in Listing 12-32 to generate the order_items_with_price view.

 Listing 12-32. Using an Inner Join and the Explode Operator to Create a New

View of Each Order That Combines the Price of Each Item in an Order

%spark

val coffeeOrderItemsDf = spark.sql("""

SELECT orderId, EXPLODE(items) as menu_item_id

FROM coffee_order_items

""")

val menuItemsDf = spark.table("silver.menu_items")

443

ChapTer 12 analyTiCal proCessing and insighTs

val joinedDf = coffeeOrderItemsDf

.join(

menuItemsDf,

coffeeOrderItemsDf("menu_item_id") === menuItemsDf("item_id"),

"inner"

)

.sort(asc("orderId"))

.select($"orderId".as("order_id"), $"name", $"category", $"price") joinedDf.createOrReplaceTempView("order_items_with_price")

Now that you have joined the order items along with the category and price of each

item within an order, you will have a new view that looks like the following:

+-----------+----------+--------+-----+

| order_id| name|category|price|

+-----------+----------+--------+-----+

|orderId1314| pour over|beverage| 5.26|

|orderId1314| water|beverage| 2.99|

|orderId1314| americano|beverage| 2.59|

|orderId1314| salad| food| 4.99|

+-----------+----------+--------+-----+

You can use a pivot operation to calculate the cost of items per sub-category of an

order, which can be a useful tactic for observing trends in the purchasing behavior of

customers of CoffeeCo.

 Using Pivots to Calculate Price Aggregates Across Menu Item

Categories on a Per Order Basis

Using the data from the order_items_with_price view (Listing 12-32), you can now run the SQL statement in Listing 12-33 to group by (order_id) and compute categorical sub-totals across the beverage and food menu categories.

444

ChapTer 12 analyTiCal proCessing and insighTs

 Listing 12-33. Using Pivot to Compute Sub-Category Totals Across Orders

%sql

select * from order_items_with_price

pivot (

cast(sum(price) as decimal(4,1)) as category_total,

count(name) as items

for category in (

'beverage', 'food'

)

)

The resulting aggregation pivots the data around the order_id, and then computes

sub-aggregations on a named category. The results look like the following:

-RECORD 0------------------------------

order_id | orderId1314

beverage_category_total | 19.5

beverage_items | 6

food_category_total | 5.0

food_items | 1

-RECORD 1------------------------------

order_id | orderId1696

beverage_category_total | 27.3

beverage_items | 8

food_category_total | 17.0

food_items | 3

Pivoting is a powerful analytical operation that takes group by to the next level and

can be used to create line-item reports across complex subsets of your data. The last and

final operation we will look at is Sparks support of analytical window functions.

 Analytical Window Functions

Spark offers a wide variety of analytical support and operations out of the box. This

chapter has already covered the available grouped aggregations (groupBy, rollup)

and explained how to take advantage of the powerful agg operator to support parallel

aggregations. You learned to generate basic summations, to extract min and max

445

ChapTer 12 analyTiCal proCessing and insighTs

values, and compute percentiles. The last section taught you to use the powerful pivot

operation to transpose (rotate) many rows of data to create complex sub-aggregations,

but the one thing all these prior aggregation functions have in common is that they

create an entirely new dataset. Windowing works a little different.

Windowing functions enable different analysis patterns than aggregation alone.

The key difference is that grouped aggregations (groupBy, rollup, and so on) reduce

many values down to a single value (per grouping set) and a window function adds

an analytical value or aggregated result as a column for each row of the input dataset,

preserving all rows.

For example, say we would like to create an ordered index (running count) of the

orders by hour and across stores. To compose the query, we will be using partitionBy

instead of groupBy since we are not computing a grouped aggregation. PartitionBy

creates a window specification that can be used to optimally split and order a subset

of a dataset for analytical processing. Let’s look at using a Window function. The code

block in Listing 12-34 generates a window that we can use to add new columns to our coffeeOrdersDf.

 Listing 12-34. Creating a Window Specification to Compute the Hourly

Transaction Number and the Cumulative Running Total Number of Items Sold

Within the Window

%spark

import org.apache.spark.sql.expressions.Window

val hourlyOrders = coffeeOrdersDf

.withColumn("timestamp",

to_timestamp($"timestamp"/1000)

)

.withColumn("hour", hour($"timestamp"))

val window = Window

.partitionBy("store_id","date","hour")

.orderBy(asc("timestamp"))

446

ChapTer 12 analyTiCal proCessing and insighTs

hourlyOrders

.withColumn("transaction_number", row_number.over(window))

.withColumn("running_total",sum($"num_items").over(window))

.limit(6)

.show

The window represents a view of the dataset that is partitioned by store_id, date,

and hour, and the resulting subset of the partitioned dataset is then sorted by timestamp

in ascending order. This will let us calculate the total number of items sold, starting at

the first transaction of the hour until the last. See Listing 12-35. For each transaction, we see the total number of items (num_item) increase for each row afterward by the value of

the prior num_items.

 Listing 12-35. The Output After Applying the row_number and sum window

Aggregation Functions

+--------+----------+----+-----------+---------+------+

|store_id| date|hour|transaction|num_items|totals|

+--------+----------+----+-----------+---------+------+

| store1|2021-09-06| 3| 1| 11| 11|

| store1|2021-09-06| 3| 2| 19| 30|

| store1|2021-09-06| 3| 3| 3| 33|

| store1|2021-09-06| 3| 4| 20| 53|

| store1|2021-09-06| 3| 5| 5| 58|

| store1|2021-09-06| 3| 6| 17| 75|

+--------+----------+----+-----------+---------+------+

Being able to add the transaction number (row_number) and a running total (totals)

to the coffee orders is nice for tallying up sales. Other interesting things can also be

accomplished, depending on what you want to analyze.

 Calculating the Cumulative Average Items Purchased Difference

Between Transactions

For example, say you wanted to compute the difference in the number of goods sold

between transactions and simultaneously compute the cumulative rolling average

difference in transactions per hour?

447

ChapTer 12 analyTiCal proCessing and insighTs

This can be done using the lag over window function. Lagging means to fall behind,

and a lag operation uses the current_row and the provided column and the value of rows

behind to look back to fetch a value from an arbitrary row in the dataset. In Listing 12-36,

we use lag($"num_items",1) to look back one row so we can compute the absolute

difference between items purchased between transactions. Lastly, we use the avg($"diff_

last_sale") over the window in order to create our cumulative average.

 Listing 12-36. Using lag(column,step) Over Window to Compute the Difference

Between the Last Number of Items Sold and the Current Number of Items Sold

Per Transaction

%spark

hourlyOrders

.withColumn("transaction", row_number.over(window))

.withColumn("totals", sum($"num_items").over(window))

.withColumn(" diff_last_sale",

abs($"num_items" - lag($"num_items", 1). over(window))

)

.withColumn("avg_diff",

bround(avg($"diff_last_sale"). over(window),2)

)

The result of computing the window functions (Listing 12-36) is the following output.

+-----------+------+--------------+--------+

|transaction|totals|diff_last_sale|avg_diff|

+-----------+------+--------------+--------+

| 1| 11| null| null|

| 2| 30| 8| 8.0|

| 3| 33| 16| 12.0|

| 4| 53| 17| 13.67|

| 5| 58| 15| 14.0|

| 6| 75| 12| 13.6|

| 7| 87| 5| 12.17|

| 8| 99| 0| 10.43|

+-----------+------+--------------+--------+

448

ChapTer 12 analyTiCal proCessing and insighTs

While the output has been truncated to the first eight transactions, you get the

picture. You can achieve a lot by moving from groupBy (grouping sets) and into

partitionBy (window) operations. By mixing and matching the analytical functionality

of the window functions with the powerful aggregation capabilities, you can create

sophisticated reports and generate truly novel insights.

If the last example didn’t feel super relevant, consider that you are tasked with

optimizing the ordering process for the CoffeeCo coffee shops and the data you are

working with is related to finding (isolating) potentially problematic inefficiencies in

the operations of each shop. Using the data captured and measuring the time an order

is created to the time an order is completed, you can use the same lag over techniques,

mixed with pivots, joins, and additional rollups to compute reports on the logistics and

timings of menu items broken down by category and shop. It might be that the longest

lines are due to items that are hard to make (fancy pour overs or food items) and that

removing a single item from the menu could speed up all other transactions.

 Exercise 12-2: Summary

This second chapter exercise exposed you to methods for using grouped aggregations

and explained how to transform your data to create sophisticated reports that assist you

in your data detective work.

 Summary

Understanding how to capture, validate, clean, and store data reliably is one part of the

data engineer’s story. Being able to take advantage of the tools of the trade to efficiently

perform your work is something that comes with time and practice. This chapter was a

dive into using analytical data and learning to process that data to understand some of

the work that goes into more advanced data transformations for analytics. Introducing

you to how to clean data, switch time zones, replace nulls, create, and use user-defined

functions led the charge of the first half of the chapter. We finished off exploring

the aggregation and analytical processing methods and operations available within

Apache Spark.

449

ChapTer 12 analyTiCal proCessing and insighTs

The next chapter is a little shorter and focuses on two simple structured streaming

applications. The first is a coffee order metrics application that produces real-time

reports that can be used for live dashboards and operations. The second application is

more advanced, using the flatMapGroupsWithState operator. This chapter is the last

chapter where we write code before looking at deployment patterns and monitoring.

450

PART III

Advanced Techniques

CHAPTER 13

Advanced Analytics with

Spark Stateful Structured

Streaming

In the last chapter, you learned to use Apache Spark’s powerful aggregation and

analytics functions, from the agg operator that enabled powerful columnar aggregation

capabilities directly off a grouped dataset, to the analytical window functions that

allowed you to partition and analyze datasets using these unique windowing capabilities.

This gave you the ability to look back (lag) or forward (lead) across many rows from your

current position in an active iteration. You learned to use lag over to create row-by-row

average deltas and similar techniques to create running cumulative totals.

This chapter focuses on creating stateful aggregations using Structured Streaming,

continuing along the same grain as the last chapter. It teaches you how to move

analytical processing and insight generation to the stream. It also expands upon the

techniques and foundations established over the previous four chapters for creating

reliable stateful applications, leveraging checkpoints, write-ahead logging, and process

triggering. It also introduces the Spark StateStore for stateful streaming aggregations.

You’ll learn to build advanced streaming analytical applications.

 Exercises and Materials

The chapter exercises and content take you through the following three sections:

• Stateful aggregations with Structured Streaming

• Arbitrary stateful operations using FlatMapGroupsWithState

• Testing stateful streaming applications using MemoryStream

453

© Scott Haines 2022

S. Haines, Modern Data Engineering with Apache Spark, https://doi.org/10.1007/978-1-4842-7452-1_13

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

Exercise Materials The exercise materials for Chapter 13 are located at

https://github.com/newfront/spark-moderndataengineering/tree/

main/ch-13.

Let’s begin with a continuation of the lessons learned in the last chapter, as you layer

stateful aggregations on top of your Spark Structured Streaming knowledge.

 Stateful Aggregations with Structured Streaming

Think for a moment about what you currently know about streaming data sources. You

are likely thinking about the fact that streaming data sources are essentially an infinite

source of data. Like rivers, streaming data sources continue to flow indefinitely into your

application through the DataStreamReader until human or process-based intervention

tamps down the flow or stops the source of data completely.

Now that you are thinking about a never-ending source of data, think for a moment

about what you learned in the last chapter about how grouped aggregations (groupBy)

work. You might be thinking that grouped operations act on a single DataFrame/dataset

that defines the universal dataset (all known data at a particular moment in time) that

is grouped (partitioned conditionally) and aggregated to produce analytical rows of

columnar aggregations across subsets of a dataset. This is indeed correct. But what else

is missing if, for example, you wanted to marry unbounded datasets across conditional

groups over time? How would we group our data by time? What about windowing?

 Creating Windowed Aggregations Over Time

Say you have an unbounded streaming data source like a Redis Stream or Kafka topic,

and you would like to reliably ingest and analyze the data flowing through that data

source continuously using Spark Structured Streaming. You know you can’t store all

data in memory forever, and you would also like to have some processing and accuracy

guarantees. So what do you do?

For starters, you can use a technique called windowing alongside Spark Structured

Streaming. Windowing allows you to automatically slice a static or streaming dataset

into bins based on time-based intervals (such as every 15 minutes), or simply put, data is

grouped into time-based bins automatically defined by a start and end time. Windowing, or

454

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

time-based grouping, differs from the analytical window functions we discussed in the last

chapter. The big difference is that analytical window functions preserve all rows in the dataset and add a new column based on the aggregation function, while windowed aggregations

incrementally merge specific columns in aggregate based on the columns in the

grouping set for the definition of the time-based window. Figure 13-1 shows the bounded data (windows 1-3) regarding the total number of coffee orders placed over time. Note that

the windows are non-overlapping, meaning that the orders made within each 15-minute

window are exclusive to each window. This way, each order is accounted for exactly once.

 Figure 13-1. Using windows to express dynamic groupBy functions for coffee

 orders over time

Let’s take this idea further with a concrete example.

 Window Functions vs. Windowing

In the last chapter, you were introduced to using analytical window functions to process

columnar data. You learned to use row numbers creatively, create cumulative running

455

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

averages, and even compute aggregations based on the results of your analytical

expressions. Listing 13-1 comes from Chapter 12 and is provided for reference. To recap, window functions transform input datasets by adding a new column, to all rows,

representing the results of a specific analytical function. For example, you used these

functions to compute cumulative running totals.

 Listing 13-1. Columnar Window Functions as seen in Chapter 12, Listing 12-32

df.withColumn("running_total"),

sum($"num_items").over(Window

.partitionBy("store_id","date","hour")

.orderBy(asc("timestamp"))))

Windowing is a columnar grouping technique that shares some commonality

with analytical window functions, but under the hood they act differently. While both

share the same name (window) and both work to partition datasets across conditional

boundaries, there is a core differentiator. Mainly, a window expression is passed as an

argument to the groupBy operator to enhance the capabilities of the grouping operator.

Now data will be automatically partitioned into time-based buckets based on a common

timestamp column (TimestampType) of the dataset.

Let’s look at windowing in action. Listing 13-2 creates a tumbling window aggregation. Each window has an inclusive start time and an exclusive end time.

This means that data will be split on specific time-based boundaries, kind of like

boxes moving on a conveyer belt being filled as they move toward the end of the belt.

The example in Listing 13-2 can be run directly in the spark-shell or in a Zeppelin notebook.

 Listing 13-2. Using the window Function as a Grouping Column to Autmatically

Create Windowed Aggregations

import spark.implicits._

import org.apache.spark.sql.functions.{col, window}

spark

.sql("SELECT timestamp('2021-09-25 10:00:00' as ts, 200 as total,

'storeA' as storeId")

. groupBy($" storeId", window($"ts"," 30 minutes"))

.sum(" total")

456

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

.select(

$"storeId", $"window.start".as("start"),

$"window.end".as("end"), $"sum(total)".as("total"))

.show(truncate=false)

The aggregation in Listing 13-2 is grouped by storeId and automatically aggregated into 30-minute windows curtesy of the timestamp column (ts) of the event data and the

 window expression.

The output of the windowed aggregation for reference is shown next. For each

exclusive 30-minute window, order totals are accumulated across the total number of

unique storeIds.

+-------+-------------------+-------------------+-----+

|storeId|start |end |total|

+-------+-------------------+-------------------+-----+

|storeA |2021-09-25 10:00:00|2021-09-25 10:30:00|200 |

|storeB |2021-09-25 10:00:00|2021-09-25 10:30:00|120 |

|storeA |2021-09-25 10:30:00|2021-09-25 11:00:00|350 |

|storeB |2021-09-25 10:30:00|2021-09-25 11:00:00|220 |

+-------+-------------------+-------------------+-----+

The window function used in Listing 13-2 is a columnar expression that transforms a timestamp column and converts it into a derived column for use in the groupBy

operation. This allows us to automatically land data into specific time-based buckets for

aggregation.

USING THE WINDOW FUNCTION

The window function enhances the way the RelationalGroupedDataset operator works

to support automatic bucketing for time-based aggregations using tumbling, sliding, and delayed window capabilities.

 The window Function from the org.apache.spark.sql.functions Package def window(

timeColumn: Column,

windowDuration: String,

slideDuration: String,

457

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

startTime: String): Column {

withExpr {

TimeWindow(timeColumn.expr, windowDuration, slideDuration, startTime)

}

}.as("window")

The function takes four parameters (timeColumn, windowDuration, slideDuration, and

startTime) and provides you with new ways to slide and dice your data across time. you

looked at tumbling windows before, now let’s look at sliding and delayed windows.

Sliding Windows

The slideDuration parameter of the window function enables the creation of sliding

windows. sliding windows are simply overlapping time-based windows evaluated at specific

increments (such as a 30-minute window evaluated every 15 minutes). unlike with tumbling

windows, each row can land inclusively in the overlapping windows.

for example, by changing the groupBy window expression in listing 13-2 to include a 15-minute slide duration, you would create two time-based buckets instead of the one.

groupBy($"storeId", window($"ts","30 minutes", "15 minutes")) now instead of a single row aggregate, you will have two row aggregates from a single

input row.

+-------+-------------------+-------------------+-----+

|storeId|start |end |total|

+-------+-------------------+-------------------+-----+

|storeA |2021-09-25 09:45:00|2021-09-25 10:15:00|200 |

|storeA |2021-09-25 10:00:00|2021-09-25 10:30:00|200 |

+-------+-------------------+-------------------+-----+

since the input row timestamp was 10:00:00, the data lands inside of two sliding 30 minutes.

The first window starts at 09:45 and ends at 10:15. The second window starts at 10:00 and

ends at 10:30. This is also known as a staggered window.

Delayed Windows

The window startTime parameter allows you to delay the computation for your derived

windows. Change the groupBy from listing 13-2 to use the following.

.groupBy($"storeId",

window($"ts","30 minutes", "15 minutes", "5 minutes"))

458

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

This changes the starting offset for each aggregation by five minutes, and then creates a

sliding window every 15 minutes.

+-------+-------------------+-------------------+-----+

|storeId|start |end |total|

+-------+-------------------+-------------------+-----+

|storeA |2021-09-25 09:35:00|2021-09-25 10:05:00|200 |

|storeA |2021-09-25 09:50:00|2021-09-25 10:20:00|200 |

+-------+-------------------+-------------------+-----+

Now that you understand the mechanics of windowing, let’s look at a more complete

example.

 Windowing and Controlling Output

Given you just learned how the windowing process works, the next logical step is to look at

applying this technique to streaming datasets. Given what we know about the unbounded

nature of streaming data, it will also be wise to look at the controlling processes at work

that inform Apache Spark when an aggregation operation is considered complete.

Say for example that you have to create a streaming application that ingests

CoffeeOrder data to compute tumbling store performance metrics every 30 minutes

forever. Listing 13-3 sets up the basic blocks of the StreamingQuery. You create a DataStreamReader (Redis) that aggregates (groupBy + agg) a stores (storeId)

performance as a function of the count of total orders, the sum of the number of items

sold, the total revenue as a function of the sum of the cost of an order, and the number of

average items sold within the window.

 Listing 13-3. Creating a Stateful Streaming Aggregation

spark

. readStream

.format("redis")

...

. groupBy($"storeId", window($"timestamp", "30 minutes"))

. agg(

count($"orderId") as "totalOrders",

sum($"numItems") as "totalItems",

459

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

sum($"price") as "totalRevenue",

avg($"numItems") as "averageNumItems"

)

. writeStream

...

.start()

Consider this example as a blueprint for a stateful aggregations app. Data flows in

from Redis (Chapter 10) and you then transform the input stream data into a grouped aggregation (Chapter 12). The grouping set is now also enhanced with the windowing technique you learned in this chapter.

Essentially, almost everything you need to create this streaming application are

in place, except for two critically important missing pieces that control how Spark will output these windowed aggregates. First, an output mode on the DataStreamWriter

(writeStream) is missing, which defines how the aggregated window data will be

emitted downstream, and secondly, there is also no way to inform Spark to stop

processing data in aggregate (otherwise known as watermarking). Without an output

mode and a watermark, Spark can’t define the end of the conveyer belt, and your

tumbling windows will keep riding in memory until you run out of memory.

Let’s look at these two important processes now.

 Streaming Output Modes

The output behavior of a Structured Streaming application is controlled by the output

mode setting on the streaming sink (DataStreamWriter). There are three available

values: complete, update, and append.

 Complete

All rows of the streaming DataFrame/dataset will be written to the sink every time there

is an update. This mode is commonly used when running tests locally and using the

ConsoleSink (introduced in Chapter 10) or the MemorySink, which you’ll learn more about at the end of this chapter.

460

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

 Update

Only rows that were updated will be written to the sink. If the query does not contain

any aggregations, the update mode acts like append. When writing a new streaming

aggregation, it is helpful to be able to see the end results of each batch as it is merged

(updated) with the prior state. Or for systems where you want to send each significant

update (to a dataset) downstream, you can use this mode of operation to send multiple

versions of each record on change.

 Append

Only new rows will be written to the sink. This mode works in conjunction with the

Structured Streaming state-based checkpoints, write-ahead logging and stage-level

commits. Specific to stateful aggregations, append mode controls the exactly-once

semantics regarding when streaming aggregation is considered complete and can be

effectively sent downstream (when the data tumbles off the state-based conveyor belt

and into the downstream sink).

 Append Output Mode

Changing the example code from Listing 13-3, we can augment the writeStream to use append-only mode.

. writeStream

.format("parquet")

.options(...)

. outputMode(OutputMode.Append)

.start()

Now the streaming aggregation will only emit data when each aggregation is

complete. But how does Spark understand when an aggregation is complete? If you were

to run the code with output mode Append, you would see the following exception raised.

org.apache.spark.sql.AnalysisException: Append output mode not supported

when there are streaming aggregations on streaming DataFrames/DataSets

 without watermark;

What exactly is a watermark?

461

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

CLOSE OF BOOKS AND WATERMARKING

There is a concept in the data industry called “close of books.” given streaming data has

a limited window of time when it is still considered fresh and can be acted upon, there is a threshold (watermark) in which applications processing the event stream (spark structured

streaming or others) can ingest and process new data before calling it quits and dropping (or

ignoring) any late arriving data. The watermarking process is also referred to as the “closing

the books,” since it is the point in time when the system emits its final processed state (for

windowed aggregations) and sends the aggregations to be further refined downstream,

written to reliable storage, distributed tables, or elsewhere.

The watermarking process is shown in figure 13-2. Conceptually, if you consider that an unbounded stream of data is being ingested and processed, then for each micro-batch,

the spark engine will compute the min, max, average, and watermark values based on the

timestamp column. The summary statistics of the entire state of the aggregation is considered

when generating the stats, and each new micro-batch considers the watermark threshold

before deciding to drop data that is considered latent.

 Figure 13-2. The watermarking process can be thought of as a way to create a

 statistical time-based boundary. New event data being ingested that is smaller

 than the current watermark (latent) will be dropped based on the window interval

 plus the watermark interval

for example, the processes in place used to monitor distributed systems in near real-time

can’t wait around for latent data and must act on the available view of the world as defined by the available data. given streaming systems process data from many distributed upstream

processes, data can get clogged just like people get held up in the queue to order or receive

the coffee, or in their daily commutes to and from work (or wherever they are going) due to

random traffic patterns.

462

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

metric data is typically aggregated in the low seconds (on a source system/physical server /

etc.) and emitted for processing in 5-10 second intervals. each individual aggregation is then

merged and joined with other data to compute a statistical view of a distributed system. given

that alerting systems use rules to establish when and how to alert a team or send events to

another autonomous system, watermarking enables these systems to ignore data that no

longer is of any interest and that could potentially trigger a false alarm (say if data shows up 30 minutes late due to bad network or some other problem).

 Watermarks for Streaming Data

You just learned about the close of books and watermarking. We live in a world of

rules and regulations, and the same can be said of Spark. To enable our streaming

aggregations to properly emit new tumbled window aggregates, we need to mark our

own close of books with a watermark (Listing 13-4) that is tied directly to a physical timestamp in our dataset.

Spark will ignore latent data (based on a pre-defined timestamp column) by

automatically dropping it on the floor. In many use cases, dropping latent data is the best

available option, rather than creating a new bucket to aggregate what most likely will

only be a small number of latent records, but what is worse is that latent data can break

any exactly-once semantics of Spark’s append output mode.

Let’s look at adding the watermark to the example from Listing 13-3. We add the watermark to the input stream, and Listing 13-4 shows how to add a 30-minute watermark to the Redis input stream.

 Listing 13-4. Applying a Watermark to the Stateful Aggregation Example

spark

. readStream

.format("redis")

...

. withWatermark(" timestamp", " 30 minutes")

. groupBy($"storeId", window($" timestamp", " 30 minutes"))

...

463

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

The relationship between the watermark (30 minutes) and the tumbling window

(30 minutes) is used by Spark to control the append output mode process with exactly-

once semantics. Essentially, close of books will occur one hour (30m window + 30m

watermark) after the first event arrives, establishing the aggregate bucket.

Next, let’s take the theoretical concepts we just covered and apply watermarking and

windowing alongside a complete end-to-end stateful streaming aggregation application

in Exercise 13-1.

 Chapter Exercises Overview

This chapter’s exercises reuse the CoffeeOrder event from earlier chapters. You will

learn to read a stream of orders and generate store revenue aggregates, which are

essentially store performance numbers across variable-length windows (five minutes in

the examples).

Reading an unbounded stream of CoffeeOrders into your application, you will learn

to transform this input dataset into a format that can be aggregated over time. This will

result in a new dataset that represents tumbling window aggregates.

 Input Data Format (CoffeeOrder)

+-------------+-------+-------+----------+--------+-----+

| timestamp|orderId|storeId|customerId|numItems|price|

+-------------+-------+-------+----------+--------+-----+

|1632549600000| order1| storeA| custA| 2| 9.99|

|1632549660000| order2| storeA| custB| 1| 4.99|

|1632549720000| order3| storeA| custC| 3|14.99|

|1632549730000| order4| storeB| custD| 1| 3.99|

|1632549740000| order5| storeA| custE| 2| 6.99|

+-------------+-------+-------+----------+--------+-----+

464

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

 Output Windowed Store Revenue Aggregates

+--------+---------------+------+---+-------+-------+-------+

|store_id| window|orders|its|revenue|p95_its|avg_its|

+--------+---------------+------+---+-------+-------+-------+

| storeA|{2021-... 06:00| 4| 8| 36.96| 3| 2.0|

| storeB|{2021-... 06:00| 4| 7| 29.96| 3| 1.75|

| storeA|{2021-... 06:05| 2| 4| 9.98| 2| 2.0|

| storeB|{2021-... 06:05| 1| 1| 3.99| 1| 1.0|

+--------+---------------+------+---+-------+-------+-------+

Let’s get started.

 Exercise 13-1: Store Revenue Aggregations

Open the application located at /ch-13/applications/stateful-stream-aggs/ in

your favorite IDE. The first application covered is an example of a stateful Structured

Streaming application that automatically aggregates CoffeeOrder events across

time-based windows to produce buckets of store performance metrics.

Start by opening SparkStatefulAggregationsApp and looking at the object

signature.

object SparkStatefulAggregationsApp extends SparkStructuredStreamingApplication

[DataFrame, Row]

You’ll notice a new application trait is being introduced in this chapter, called

SparkStructuredStreamingApplication. The trait provides additional methods to use

while building your Structured Streaming applications. Let’s look at the new trait, and

then we can return to the application.

 Structured Streaming Application Trait

This new trait is shown next and extends the SparkApplication trait that was introduced

in Chapter 7. There are a few new and noteworthy convenience methods added to speed up how you build your streaming applications, shown in Listing 13-5. This interface provides a reusable framework for simplifying how to write Structured Streaming

applications using the core Spark classes DataStreamReader, DataStreamWriter, and

StreamingQuery.

465

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

 Listing 13-5. The SparkStructuredStreamingApplication Trait Interface Methods

trait SparkStructuredStreamingApplication[T, U]

extends SparkApplication {

def streamReader: DataStreamReader

lazy val inputStream: DataStreamReader = streamReader

def outputStream(writer: DataStreamWriter[U])(implicit sparkSession:

SparkSession): DataStreamWriter[U]

def runApp(): StreamingQuery

def awaitTermination(query: StreamingQuery): Unit

def awaitAnyTermination(): Unit

}

As a refresher, Structured Streaming applications are composed by assembling a

query plan that begins at a streaming data source and ends at a streaming data sink.

With each stateful processing cycle, the application continues to read new batches

of streaming data, transforming and processing each batch and sending results

downstream or into a reliable state store (for aggregations).

The new trait wraps the stream reader and writer (DataStreamReader,

DataStreamWriter) into reusable functions, thus providing additional mechanisms to

use a config-driven approach that lends itself nicely to testing end-to-end applications

(which you will see later in this chapter).

Let’s look a little closer at the streamReader and outputStream functions, as they are

evolutionary step-changes to the inputStream and ouputStream concepts used in earlier

chapters.

 Stream Reader

The streamReader method uses the prefix spark.app.source.* within the Spark config

to be used when dynamically building a new DataStreamReader instance.

def streamReader: DataStreamReader = sparkSession

.readStream

.format(sparkConf.get(sourceFormat, sourceFormatDefault))

.options(sparkConf.getAllWithPrefix(

sparkConf.get(sourceStreamOptions)).toMap)

466

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

This technique enables your applications to easily switch an upstream data source

used by the DataStreamReader. For example, recovery or replay jobs used to regenerate

a final dataset may use a different upstream data source than what is used for the live

application, such as selecting S3 instead of Kafka for the recovery. Additionally, this

strategy can be used as a forcing function to prevent the hard-coding of values in the

application source code. But be careful about reducing the flexibility of an application

too much. This is why the trait provides methods that can be used and further decorated

by the extension class.

 Output Stream Decorator

The ouputStream method is shown in Listing 13-6 and is used to decorate a DataStreamWriter with common behaviors like triggering and partitioning. It

streamlines the way Structured Streaming applications configure outputStreams with

respect to the outputMode, columnar partitioning, and triggering.

 Listing 13-6. The outputStream DataStreamWriter Decorator

def outputStream(writer: DataStreamWriter[U])(implicit sparkSession:

SparkSession): DataStreamWriter[U] = {

import appConfig._

val conf = sparkSession.conf

...

 Seq(OutputModeOption, PartitionByOption, TriggerOption)

. foldLeft[DataStreamWriter[U]](writer)((w, config) => {

...

})

. format(SinkFormat)

. queryName(QueryName)

}

In a nutshell, the outputStream method in Listing 13-6 uses the Spark runtime configuration to decorate an input DataStreamWriter. By opting to use the

DataStreamWriter interface, the outputStream method doesn’t need to concern itself

with data lineage since that is a concern of the application. All the method is required

to do is add a format, queryName, outputMode, and the optional triggers and output

partitioning on top of the provided writer.

467

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

 Conditional Object Decoration

Functional programming languages like Scala are immutable first, designed

to reduce accidental side effects common with pass-by-reference languages.

For this reason, we use the foldLeft operation to conditionally decorate the

DataStreamWriter interface. The foldLeft operation traverses the list of config items

to reliably generate the writer config.

Looking at the inline function from the outputStream method shown in Listing 13-7, you’ll see that each config value from the initial sequence (outputMode, partitionBy,

and trigger) is used to conditionally decorate the input writer object (w) before being

passed along to the next value and the next checks.

 Listing 13-7. The outputStream foldLeft Inline Function

(w, config) => { config match {

case OutputModeOption => w. outputMode(sinkOutputMode)

case PartitionByOption if sinkPartitionBy.nonEmpty =>

val partitionColumns = SinkPartitionBy

.split(SinkPartitionBySeparator).map(_.trim)

if (partitionColumns.nonEmpty) w. partitionBy(partitionColumns:_*) else w

case TriggerOption if triggerEnabled => triggerType match {

case TriggerProcessingTime => w. trigger(Trigger.ProcessingTime

(ProcessTimeInterval))

case TriggerOnce => w. trigger(Trigger.Once())

case TriggerContinuous if sinkFormat.equals("kafka") =>

w. trigger(

Trigger.Continuous(processTimeInterval))

case _ => w

}

}}

Together the code blocks in Listings 13-6 and 13-7 come together to create an extensible DataStreamWriter decorator.

Now let’s move back to the application code and see how the trait is used in action.

468

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

 Spark Stateful Aggregations App

Now that you’ve seen how the trait works, you can see how the application uses the new

capabilities of that trait. Switch back to the SparkStatefulAggregationsApp source code

so you can look at how the new underpinning help simplify the application architecture.

Let’s begin our journey with the runApp method in Listing 13-8 and work our way backward through the app.

 Listing 13-8. The runApp method Returns a StreamingQuery

override def runApp(): StreamingQuery = {

val conf = sparkSession.conf

val processor = StoreRevenueAggregates(sparkSession)

val pipeline: Dataset[Row] = processor

.transform(inputStream.load())

.transform(processor. process)

val w = outputStream(pipeline.writeStream)

conf.get(sinkToTableName, "") match {

case tableName if tableName.nonEmpty =>

w.toTable(tableName)

case _ => w.start()

}

}

The runApp method in Listing 13-8 uses an instance of the StoreRevenueAggregates class as a proxy class to transform and process an input data stream.

val pipeline: Dataset[Row] = processor

.transform(inputStream.load()) // DataFrame

.transform(processor. process) // Dataset[Row]

Let’s unpack the aggregation pipeline steps:

1. processor.transform(inputStream.load). The first

transformation takes a DataFrame and returns a DataFrame.

Behind the scenes, this transform is converting a timestamp

column from UNIX epoch milliseconds into a TimestampType.

469

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

2. DataFrame.transform(processor.process). The second

transform method feeds the transformed DataFrame from Step

1 through the process method of the StoreRevenueAggregates

class using a functional DataFrame transformation. This is where

we add our watermark, groupBy, window, and agg operations to

enable our aggregation stream.

The result of the pipeline is a DataFrame, aka Dataset[Row]), that can be used with

the outputStream decorator function. The output stream is then conditionally started

using toTable or the DataStreamWriter directly based on the application configuration.

Let’s unpack the StoreRevenueAggregates class to see what this application is doing.

 Streaming Aggregations

Open the StoreRevenueAggregates class located in the processors package. The class

in Listing 13-9 is simply a transform and process method which is required by the DataFrameTransformer and WindowedDataFrameProcessor traits.

 Listing 13-9. The StoreRevenueAggregates Class

class StoreRevenueAggregates(val spark: SparkSession) extends

 DataFrameTransformer with WindowedDataFrameProcessor with Serializable {

override def transform(df: DataFrame): DataFrame = df

.withColumn(timestampColumn, to_timestamp(

col(timestampColumn).divide(lit(1000))

.cast(TimestampType)))

override def process(df: DataFrame): DataFrame = {

import spark.implicits._

df

. dropDuplicates("orderId")

. withWatermark(timestampColumn, watermarkDuration)

. groupBy($"storeId", groupingWindow())

470

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

. agg(

count($"orderId") as "totalOrders",

sum($"numItems") as "totalItems",

sum($"price") as "totalRevenue",

percentile_approx($"numItems", lit(0.95), lit(95))

as "numItemsP95",

avg($"numItems") as "averageNumItems"

)

}

}

The class implementation shown in Listing 13-9 is simple to follow. We’ll begin with the transform method and move onto the process method next.

 The Transform Method

The transform method takes an input DataFrame representing a CoffeeOrder

and transforms the value of the input timestamp column from a BigInteger to a

TimestampType. This action is necessary to remove the extra precision (divide(1000))

before casting the value to a timestamp that can be used by Spark with our window and

watermark. If the division doesn’t occur, the timestamp will flip around and become

unusable.

 The Process Method

The process method is where the lion’s share of the application logic takes place.

We begin by dropping any duplicate rows using the dropDuplicates method on the

orderId column. This process ensures that only the first row for each unique orderId

is processed in the final aggregation. It is worth pointing out that the dropDuplicates

method only works while an aggregation is in memory.

Next, we add a watermark to ensure the streaming query will ignore latent data as

defined by our timestampColumn. Remember that the watermark column must match the

 window timestamp column for watermarking to take effect. With this in mind, we apply

the familiar groupBy operator from the last chapter, along with the new window function

introduced earlier in the chapter to produce a streaming grouping set. Afterward, we

apply the aggregation functions introduced in Chapter 12 to the streaming dataset.

471

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

That’s it. The application can now be configured to create arbitrary time-based

aggregations using windows. We will break down what Spark is doing behind the

scenes in Exercise 13-2, as we re-create the aggregation using the powerful typesafe FlatMapGroupsWithState functionality provided on the KeyValueGroupedDataset.

 Exercise 13-1: Summary

This first exercise took you through the process of building an end-to-end application to

reliably process streaming data and generate stateful windowed aggregations. Next, we’ll

be looking at writing an application using arbitrary stateful computations, which are a

set of low-level operators used to extend stateful processing of grouped data to typed

user-defined functions (UDFs).

 Typed Arbitrary Stateful Computations

Apache Spark offers a set of rich low-level capabilities for streaming datasets. The

capabilities are intended to be used to solve more complex problems than Spark SQL

operations and DataFrame DSL alone can handle.

Think back to the user-defined functions (UDFs) you created in the last chapter.

Those functions worked on a row-to-row basis, using one or more columns as input

to a DataFrame UDF to create new columns. Arbitrary stateful computations take the

basic UDF functionality to the next level with the additional capabilities for managed

state and grouping set specific timeouts. All this behavior is hidden behind the

KeyValueGroupedDataset.

 KeyValueGroupedDataset

Recall how the agg operator of a RelationalGroupedDataset is only available after

calling groupBy on a DataFrame. Datasets also have additional operators only available

after calling groupByKey on a KeyValueGroupedDataset.

For example, Listing 13-10 transforms an inputStream into a

KeyValueGroupedDataset grouped by the storeId of the order.

472

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

 Listing 13-10. Converting a Dataset into a KeyValueGroupedDataset to Expose

the Arbitrary Stateful Computation Operators

import spark.implicits._

val encoder = Encoders.product[CoffeeOrder]

val groupedDS: KeyValueGroupedDataset[

String, CoffeeOrder] = inputStream.load(). as[CoffeeOrder]. groupByKey(_.

storeId)

The prior example uses as[CoffeeOrder] to transform a DataFrame into a

specific dataset that’s ready for arbitrary stateful processing. The next step is to use the

mapGroupsWithState or flatMapGroupsWithState operators. Let’s look at these two

operators now.

 Iterative Computation with *mapGroupsWithState

The mapGroupsWithState and flatMapGroupsWithState methods takes a UDF function

and define a key and an input value type. They also define the data types for the stored

 state, and the final output data type resulting from the arbitrary computation. They also take the parameters for the data type encoders for the managed state and the final

output type. The final parameter timeoutConf describes how Spark should manage the

internal state for these iterative computations.

def [flat]mapGroupsWithState[S, U](

 func: MapGroupsWithStateFunction[K, V, S, U],

stateEncoder: Encoder[S],

outputEncoder: Encoder[U],

timeoutConf: GroupStateTimeout): [Dataset[U]|U]

The signatures of the functions you pass into the operators are shown next.

 MapGroupsWithState Function

def func(key: K, values: Iterator[V], state: GroupState[S]): U

The udf function for mapGroupsWithState provides you with a key and an iterator

of values (Iterator[V]) that can be used to create an initial state record or to update a

previous version of a row stored within the state store. The output of the function is a

reduction from one or more input rows (V) down to a single output row (U).

473

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

 FlatMapGroupsWithState Function

The flatMapGroupsWithState function is almost identical to mapGroupsWithState.

The only difference is the output type, which is an Iterator[U] rather than a single

instance of U.

def func(key: K, values: Iterator[V], state: GroupState[S]): Iterator[U]

The UDF function provided to the *mapGroupsWithState operator by your state

function is called for each micro-batch. You can guarantee that all available rows will

be provided to your function split by your grouping key. This enables you to use the

provided iterator of matching row values (V) to create a new state store record or to

merge your new values into the prior state in an iterative fashion.

Exercise 13-2 looks at a practical example.

 Exercise 13-2: Arbitrary Stateful Computations

on Typed Datasets

Open the SparkTypedStatefulAggregationsApp. This application is implemented with

the same trait as the application SparkStatefulAggregationsApp from Exercise 13-1.

 SparkTypedStatefulAggregationsApp

The second application of the chapter yields a similar result to the first. You will produce

store revenue aggregations over time. The difference this time around is that you will be

using the flatMapGroupsWithState operator and defining your own grouping key that

will replace the groupBy(col, window(...)) functionality from the first exercise. The

entire wrapper application is shown in Listing 13-11.

 Listing 13-11. The SparkTypedStatefulAggregationsApp

object SparkTypedStatefulAggregationsApp

extends SparkStructuredStreamingApplication[

 Dataset[CoffeeOrderForAnalysis], CoffeeOrderStats] {

...

override def runApp(): StreamingQuery = {

import sparkSession.implicits._

474

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

val conf = sparkSession.conf

val processor = TypedRevenueAggregates(sparkSession)

val pipeline = processor

.transform(inputStream.load().as[CoffeeOrder])

.transform(processor. process)

conf.get(sinkToTableName, "") match {

case tableName if tableName.nonEmpty =>

outputStream(pipeline.writeStream)

.toTable(tableName)

case _ => outputStream(pipeline.writeStream).start()

}

}

run()

}

Beginning again inside the runApp method, you’ll notice that aside from the proxy

class TypedRevenueAggregates and the transform method taking a typed CoffeeOrder

rather than a DataFrame, there isn’t much difference between the application in

Exercise 13-1. The main differentiator resides in the mechanics surrounding how the aggregations themselves behave, so let’s open the TypedRevenueAggregates class from

the processors package and start walking through the code.

 TypedRevenueAggregates

There is a good amount of boilerplate code in the application, but let’s begin by looking

at the transform method, which is presented in Listing 13-12. The method takes a CoffeeOrder dataset and transforms it into a CoffeeOrderForAnalysis dataset.

 Listing 13-12. Transforming One Dataset into Another in Preparation for

Arbitrary Stateful Computation

override def transform(ds: Dataset[CoffeeOrder]): Dataset[CoffeeOrderFor

 Analysis] = {

ds

. withColumn(timestampColumn,

475

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

 to_timestamp(

col(timestampColumn).divide(lit(1000)).cast(TimestampType)))

.withColumn("window", groupingWindow())

.withColumn("key", sha1(bin(hash(col("storeId"),col("window.start"), col("window.end")))))

. as[CoffeeOrderForAnalysis]

}

There is a lot going on in that function. First things first, we reuse the timestamp

conversion technique from Exercise 13-1 along with the groupingWindow method that was first seen in Exercise 13-1. Rather than adding the window function into our groupBy though, we add the window directly onto the dataset. Lastly, we compute a strong

hashing function on the storeId, window.start, and window.end columns of what is

now a DataFrame. This provides us with a strong composite key that we can use with

groupByKey to process the streaming dataset.

The case class used to encode the transformed dataset is shown next.

 CoffeeOrderForAnalysis

case class CoffeeOrderForAnalysis(

timestamp: java.sql.Timestamp,

window: Window,

key: String,

orderId: String,

storeId: String,

customerId: String,

numItems: Int,

price: Float

) extends Serializable

Given the transform method adds the timestamp, window, and key columns, we can

then convert our updated dataset using .as[CoffeeOrderForAnalysis].

Listing 13-13 looks at the process method and unpacks what it is up to.

476

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

 Listing 13-13. Transforming One Dataset Into Another in Preparation for

Arbitrary Stateful Computation

override def process(ds: Dataset[CoffeeOrderForAnalysis]):

Dataset[CoffeeOrderStats] = {

ds

. dropDuplicates("orderId")

. withWatermark(timestampColumn, watermarkDuration)

. groupByKey(_. key)

. flatMapGroupsWithState[CoffeeOrderStats, CoffeeOrderStats]

(OutputMode. Append(), GroupStateTimeout. EventTimeTimeout)(stateFunc)

}

The process method is where we set up the logical plan for our arbitrary stateful

computation. We begin by dropping duplicates based on the orderId of our coffee

orders. This way we don’t have to concern ourselves with bad aggregations based on an

upstream emitting a second or third event for the same order (which does happen). We

apply our watermark to the timestamp column we added in the transform method of

our class, and unlike Exercise 13-1, we don’t need to use the same timestamp column with our watermark as we use in our window.

This is because Spark enables our application to take over state management via the

state timeout configuration GroupStateTimeout.EventTimeTimeout. Because of how

the watermark is used with flatMapGroupsWithState, we only have the option of using

Append mode (which doesn’t necessarily stop our application from running in update

mode; you will see why later).

CONFIGURING THE STATESTORE WITH GROUPSTATETIMEOUT

spark provides three options for reliably managing your grouped state. The options are

ProcessingTimeTimeout, EventTimeTimeout, and NoTimeout.

ProcessingTimeTimeout

ProcessingTimeTimeout sets the state timeout based on spark’s own internal clock. your

udf function must set the timeout of the GroupedState to initially set, or push the timeout

further, upon each update of the state.

477

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

state. update(storedValue)

state. setTimeoutDuration("5 minutes")

This example will add a timeout of five minutes to the updated state based on the internal

spark clock time.

EventTimeTimeout

EventTimeTimeout sets the state timeout based on the eventTime relative to the current

global watermark of the StateStore. This option requires the withWatermark operator to

function and requires append mode on your StreamingQuery.

state. update(storedValue)

state. setTimeoutTimestamp(state.getCurrentWatermarkMs(), "30 minutes")

This example would give any data stored in the state for this specific group an additional 30

minutes before being timed out.

NoTimeout

This configuration sets no timeout. This option can be used to continuously update state. as

a word of caution, with each new unique key added to the state store, the managed state will

continue to grow. at a certain point, your application may stop performing due to the size of

the backing state.

Let’s look at the state function (stateFunc) that has been passed to the

flatMapGroupsWithState operator.

 TypedStoreRevenueAggregates State Function

The stateFunc method is shown in Listing 13-14. This is the core routine enabling the arbitrary processing of data in your Spark applications. Let’s walk through the main

sections of the state function now, and then drill into things further.

 Listing 13-14. The Function Responsible for Generating Store Revenue Statistics That Incrementally Update

def stateFunc(

 key: String,

 orders: Iterator[CoffeeOrderForAnalysis],

478

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

 state: GroupState[CoffeeOrderStats]): Iterator[CoffeeOrderStats] = {

if (state.hasTimedOut) {

val result = state.getOption

 state.remove()

if (result.isDefined) Iterator(result.get)

else Iterator.empty

} else {

val stats = ordersStats(orders)

val stateHolder = state.getOption match {

 case Some(prior: CoffeeOrderStats) =>

 val avgNumItems = prior.averageNumItems/priorState.totalItems +

 stats.averageNumItems/stats.totalItems

 CoffeeOrderStats(stats.storeId, stats.window,

 stats.totalItems+prior.totalItems,

 stats.totalOrders+prior.totalOrders,

 stats.totalRevenue+prior.totalRevenue,

 avgNumItems)

 case None => stats }

 state.update(stateHolder)

val timeout = stateHolder.window.end

.toInstant.toEpochMilli

 state.setTimeoutTimestamp(timeout, "30 seconds")

Iterator.empty

}

}

Starting at the top of the function shown in Listing 13-14, we check the status of our state to see if it has timed out. As each micro-batch processing cycle is completed, the

StateStore will mark the records to timeout efficiently on the next processing cycle.

The next cycle occurs, and any state rows marked as timedOut will pass through the

flatMapGroupsWithState function one last time. Let’s look at the timeout operation in

more detail in Listing 13-15.

479

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

 Listing 13-15. StateStore records Will Time Out, Enabling Your Application to

Remove the Record from the StateStore and Send it Downstream for Further

Processing

if (state. hasTimedOut) {

val result = state. getOption

state. remove()

Iterator(result.isDefined) Iterator(result.get)

else Iterator.empty

}

It is important to note that if you skip removing the state from the StateStore, Spark

won’t remove it on your behalf. This would allow orphaned state rows to pile up, creating

a healthy memory leak. Always remember to check your state if it is indeed timing out.

Next, in the case where your state isn’t timing out, you need to decide what to do with

the current orders. This is where the ordersStats method comes into play.

val stats = ordersStats(orders)

The orderStats method reduces an Iterator[CoffeeOrderForAnalysis] down to

a single CoffeeOrderStats object. Let’s break down what is happening in the method

shown in Listing 13-16.

 Listing 13-16. The orderStats reduce Function

def orderStats(orders: Iterator[CoffeeOrderForAnalysis]):

CoffeeOrderStats = {

val head = orders.next()

val first = (head.storeId, head.window, 1, head.numItems, head.price,

head.numItems.toFloat)

val reduced = orders.map(o => (o.numItems, o.price))

.foldLeft[(String,Window,Int,Int,Float,Float)](first)(

(orderStats, order) => {

val totalOrders = orderStats._3 + 1

val totalItems = orderStats._4 + order._1

(orderStats._1, // storeId

orderStats._2, // window

totalOrders, // totalOrders

480

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

totalItems, // totalItems

orderStats._5+order._2, //totalRevenue

(orderStats._6+order._1.toFloat)/2) // averageNumItems

})

CoffeeOrderStats(reduced._1, reduced._2, reduced._3, reduced._4,

reduced._5, reduced._6)

}

The reduce operation uses a foldLeft process to reduce an arbitrary number of

orders down into a single merged record using the first item of the orders iterator to act

as the base object for iteration. For each incremental pass through the fold functionality,

the prior stats are merged with each new set of statistics. Finally, when the fold

operation returns, we are left with a tuple (String, Window, Int, Int, Float, Float)

encapsulating the CoffeeOrderStats object.

 Folds might not be your first choice for iterative processing, but I highly

 recommend them, given their flexibility to solve all sorts of problems.

Note The iterative processing in the functional foldLeft operation in the

orderStats method is a good mental model for thinking about how spark

handles aggregations across stateful batches. you essentially take multiple

iterators (one for each stateful batch) and fold the values into each other to create

a single record per batch. depending on the aggregation heuristic at play, enough

data is retained in order to merge the values of each reduce operation across the

lifecycle of the stateful aggregation.

This leaves us with the final piece of the pie, the merge functionality across existing

state, which is shown in Listing 13-17. The stateHolder variable is responsible for testing the GroupState object and looking for some prior state. If there is no prior state

(None), then we simply return the stats object generated by the call to orderStats.

However, if there is prior state kicking around, it is up to us to merge that into our more

recent state.

481

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

 Listing 13-17. Merging the Prior State of Our Aggregations with the Current

Batch of Updates

val stats = orderStats(orders)

val stateHolder = state.getOption match {

case Some(currentState: CoffeeOrderStats) =>

 CoffeeOrderStats(stats.storeId, stats.window,

stats.totalItems + currentState.totalItems,

stats.totalOrders + currentState.totalOrders,

stats.totalRevenue + currentState.totalRevenue,

currentState.averageNumItems/currentState.totalItems +

stats.averageNumItems/stats.totalItems

)

case None => stats

}

In a similar way to how the orderStats method reduces an iterator of orders down

into a single merged CoffeeOrderStats object, the merge process essentially creates

totals through addition and creates an average of averages to ensure the average number

of items sold per order continues to be valid.

 Average of Averages

The one tricky thing here is keeping the average number of items accurate across merged

batches. But using some basic math we can compute the average of averages and retain a

fairly accurate average across many merges.

currentState.averageNumItems/currentState.totalItems +

stats.averageNumItems/stats.totalItems

The trick is to add the average of both sides of averages.

Now that you’ve seen how the TypedStoreRevenueAggregates handles windowed

aggregations across arbitrary stateful computations, let’s look at some sample output for

Exercise 13-2.

482

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

 Final Aggregations: The Window Values Have Been Redacted to Fit the Screen

+-------+-----------+-----------+----------+----------------+

|storeId|totalOrders|totalItems|totalRevenue|averageNumItems|

+-------+-----------+----------+------------+---------------+

|storeA |4 |8 |36.96 |2.25 |

|storeB |6 |3 |23.97 |1.5 |

|storeC |1 |1 |2.99 |1.0 |

|storeA |4 |2 |9.98 |2.0 |

|storeB |2 |2 |9.98 |2.0 |

|storeC |7 |2 |35.55 |2.0 |

|storeB |1 |2 |3.99 |2.0 |

|storeD |1 |9 |39.99 |9.0 |

|storeA |1 |1 |2.99 |1.0 |

|storeF |2 |12 |115.979996 |6.0 |

+-------+-----------+----------+------------+---------------+

 Exercise 13-2: Summary

You were introduced to arbitrary stateful computations for Spark Structured Streaming.

You learned how to use flatMapGroupsWithState to provide low-level incremental

processing to the datasets stored in the state store for your computations. You learned

how to use GroupStateTimeout.EventTimeout and learned about the other options,

GroupStateTimeout.ProcessingTimeTimeout and GroupStateTimeout.NoTimeout, and

you also learned how the watermark affects the way the state store records timeouts

using event time and OutputMode.Append.

While you learned a lot about how to work with analytical data over the past two

chapters, you have yet to learn how to unit test these complex operations. This last and

brief introduction to the topic will leave you with a fully functional testing setup.

483

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

 Exercise 13-3: Testing Structured

Streaming Applications

Like any piece of software, your Structured Streaming applications aren’t complete until

you can prove that the logic works as intended. That can be a tricky situation, especially

when it comes to ensuring code quality and performance while running localized unit

tests. I am going to introduce you to the concept of the MemoryStream and MemorySink

now, which will grant you a huge advantage when it comes to testing how your queries

operate.

 MemoryStream

MemoryStream comes from the org.apache.spark.sql.execution.streaming package

and is intended for local testing.

case class MemoryStream[A : Encoder](

id: Int,

sqlContext: SQLContext,

numPartitions: Option[Int] = None)

The added benefit of using memory streams rather than wiring up conventional test

containers or local environments means your application code can be tested where your

application logic begins. If you are using the Kafka DataSource, you don’t often need to

ensure that Kafka is working as expected, but you should be more concerned with the

data that is being emitted from Kafka for processing in your Apache Spark applications.

Listing 13-18 shows an end-to-end unit test for Exercise 13-1.

 Listing 13-18. Testing End-to-End Structured Streaming Applications Using

MemoryStream

class SparkStatefulAggregationsAppSpec extends StreamingAggregateTestBase {

"StoreRevenueAggregates" should " produce windowed statistics" in {

implicit val testSession: SparkSession = SparkStatefulAggregationsApp

.sparkSession.newSession()

import testSession.implicits._

import org.apache.spark.sql.functions._

484

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

implicit val sqlContext: SQLContext = testSession.sqlContext

testSession.conf.set(AppConfig.sinkQueryName, outputQueryName)

val outputQueryName = "order_aggs"

// Group the iterator into groups every 6 events

val coffeeOrders = TestHelper

.coffeeOrderData()

.grouped(6)

val coffeeOrderStream = MemoryStream[CoffeeOrder]

 coffeeOrderStream. addData(coffeeOrders. next())

val processor = StoreRevenueAggregates(testSession)

val pipeline = processor

.transform(coffeeOrderStream.toDF())

.transform(processor.process)

val streamingQuery = SparkStatefulAggregationsApp

. outputStream(pipeline.writeStream)

. start()

// queue up all the data for processing

coffeeOrders.foreach(orders =>

coffeeOrderStream.addData(orders))

// tell Spark to trigger everything available

 streamingQuery.processAllAvailable()

val row = result

.where($"store_id".equalTo("storeA"))

.sort(desc("orders"))

.collect().head

row.getDouble(row.fieldIndex("avg_items")) shouldBe 2.0d

row.getInt(row.fieldIndex("p95_items")) shouldBe 4d

row.getDouble(row.fieldIndex("revenue")) shouldBe 36.96d

streamingQuery.stop()

}

}

485

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

Breaking down the unit test, we start off by reading in some CoffeeOrders that

have been added to the TestHelper object in the test package. This is a sequence

of orders that have been tuned to test running the same data through both the

traditional groupBy/window-based aggregations of Exercise 13-1 as well as the flatMapGroupsWithState aggregations of Exercise 13-2. This way, we can test the behavior of each, side by side. So, looking at the memory stream:

val coffeeOrderStream = MemoryStream[CoffeeOrder]

 coffeeOrderStream. addData(coffeeOrders. next())

val processor = StoreRevenueAggregates(testSession)

val pipeline = processor

.transform(coffeeOrderStream.toDF())

.transform(processor.process)

The neat thing you’ll notice about the MemoryStream is that you can use the

addData method to add another batch of data to the stream. This is the way you control

how many records you process per artificial tick of the Structured Streaming test.

You can also easily generate the correct “streaming” dataframe by calling toDF() on

the coffeeOrderStream. This saves you the trouble of having to set up and integrate

something like Redis or Kafka just for the sake of unit testing. Next, we add more batches

of data and force Spark to process all available data.

coffeeOrders.foreach(orders =>

coffeeOrderStream.addData(orders))

 streamingQuery.processAllAvailable()

This will force a full processing cycle, write-ahead logging, and committing of the

final state afterward. Now for the testing part:

val row = result

.where($"store_id".equalTo("storeA"))

.sort(desc("orders"))

.collect().head

row.getDouble(row.fieldIndex("avg_items")) shouldBe 2.0d

row.getInt(row.fieldIndex("p95_items")) shouldBe 4

row.getDouble(row.fieldIndex("revenue")) shouldBe 36.96d

486

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

The test itself is simple. I am testing that the result of the aggregations for a specific

record for storeA has the values 2.0d, 4d, and 36.96d for the columns avg_items,

p95_items, and revenue, respectively. You can do a lot more when you test your Spark

applications, from testing the expectations for runtime configuration, to sophisticated

event scenarios that ensure your application will last the test of time. And lastly, we stop

the streaming query and let the test complete.

streamingQuery.stop()

Feel free to run the unit tests and watch how the application processes data and

calculates the aggregations you’ve set up throughout the course of this chapter.

 Exercise 13-3: Summary

There is an art to writing unit tests that catch bugs 9.99 times out of 10. It is always

nice to feel confident in your applications capabilities before pressing the button and

launching an application into production. One of the things I find to be more satisfying

than writing good unit tests is the ability to debug and learn about the many classes at

work that power the transformations and aggregations in the Spark engine itself. Lastly,

unit tests are a great way to test an end-to-end idea using MemoryStreams and quickly

put together a scrappy test application before going too deep into the weeds on a far-out

idea. Remember that you are writing unit tests for yourself, for your application, and for

your future self, or anyone who must maintain your code when you are gone. Remember

to write tests that cover and wrap your application tightly enough that mistakes can be

caught quickly, so that your application can have a life after you are on to your next set of

projects.

 Summary

This chapter covered a lot of ground. It covered many interesting areas with respect to

analytics and streaming stateful aggregations. You learned about the magic window

expression for RelationalGroupedDatasets that partners with the watermark to create

exactly-once semantics for complex streaming aggregations. You also looked at using

arbitrary stateful processing to create a system that worked like the grouping set with

window expression capabilities in Exercise 13-1. The big difference was you got to work manually creating the equivalent of the sum(col) and avg(col) methods in your state

function.

487

ChapTer 13 advanCed analyTiCs wiTh spark sTaTeful sTruCTured sTreaming

Although mapGroupsWithState and flatMapGroupsWithState can process any

kind of data and be used to do things like track people entering or exiting a coffee shop

or figuring out which shop is more congested (as a factor of the delta between orders

being ordered and received, as well as the number of people who have entered but not

exited the coffee shop), I thought it would be neat to showcase how to create windowed

aggregations the hard way. Feel free to use your new knowledge and knowhow to create

any of these two systems:

• Track people entering or exiting a coffee shop to figure out the total

number of people in a shop at any given moment in time.

• Track the shop congestion as a factor of the people currently in the

shop, along with the average delta between orders being ordered and

received.

These projects can be done using the framework we’ve built this chapter. The next

two chapters look at the process of deployments as well as monitoring and a little tuning.

Let’s get ready to release our applications into the wild.

488

CHAPTER 14

Deploying Mission-Critical

Spark Applications on

Spark Standalone

This is day one. You’ve probably heard people talk about day one with mixed emotions, ranging from very real excitement and joy to mild-frustration, and even anger stemming

from high amounts of stress and anxiety. The initial live release of any software is bound

to cause all sorts of feelings, since it’s the first major release milestone. But with the high fives, and words of congratulations aside, the reason people call it day one is because it is

the beginning, the first release of many, in a continuous development and support cycle.

Day one is where the hard work really begins.

This chapter is dedicated to making sure your day one goes smoothly. You will learn

about the various deployment strategies for your Spark applications and as well as some

additional tips, tricks, and techniques to ensure you are prepared for wherever the tide

will take you.

 Deployment Patterns

Let’s begin with the basics. You haven’t technically run many Spark applications during

this book. That doesn’t mean the work you have done up until now is all for not, rather

this yet another natural step in the process readying applications for deployment. To get

to this point where you can deploy Spark applications, you had to first understand how

to build a Spark application, which libraries to use, as well as what design patterns and best practices to weave together.

489

© Scott Haines 2022

S. Haines, Modern Data Engineering with Apache Spark, https://doi.org/10.1007/978-1-4842-7452-1_14

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

Ultimately, we had to come to a common understanding of what processes are at

play (and at work), for instance, to control the runtime behavior of your applications

through configuration, you needed to learn how Spark configuration can be assembled,

merged, and overridden, to augment application behavior without needing to recompile.

This technique enables you to control, for example, an application processing rate,

trigger interval, checkpoint directory, and in a meta way (introduced last chapter), you

can even plug different sources and sinks to leverage reading and writing to alternative

locations.

Tip It is common for debugging and replay (aka data recovery) purposes to run

a second copy of a Structured Streaming application with overridden checkpoint

locations and alternative sink configurations. This technique enables you to analyze

and resolve problems without corrupting any stored state, or without writing

duplicate records that could end up in downstream systems.

Being able to control the behavior of your application externally (config-driven)

grants you more ways to operate mission-critical applications and can also reduce the

mean-time-to-recovery (MTTR). In the case where problems can be solved through

configuration and tuning versus fixing bugs in the source code.

Let’s turn our attention back to the deploy process. To be able to successfully deploy

applications, we needed to look at the core frameworks and build new layers on them.

Essentially allowing us to crawl before we walk, walk before we run, and finally run

before we deploy. So, what is the difference between running and deploying applications?

 Running Spark Applications

Throughout the book you have built numerous nano- and micro-applications using

the spark-shell and Apache Zeppelin. These execution modes encapsulate patterns

for running Spark applications dynamically. By building up from a series of blocks (code) and orchestrating step-based routines (programs), you were able to create

Spark applications on-the-fly through composition. The output (learnings) that can be

converted into fully compiled applications (with tests!). By Chapter 7, we were writing full applications, and running them using a hybrid of containers and hosted local volume mounts (overlays) to run Apache Spark on-a-box (or clusterless) using docker exec and

spark-submit.

490

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

The difference between running and deploying has to do with the presence of a

 physical cluster, or the lack of a single point of failure for the continuity of your mission-critical Spark applications. Let’s look at the cluster mode options and learn to deploy

Spark applications.

 Deploying Spark Applications

 Consistency. Reliability. Dependability. If you depend on something or someone, it can

hurt to be let down. In a similar way, deploying your Spark applications, aka submitting

your driver application, to run across an external compute cluster, provides your

applications with the fault-tolerance and other essential capabilities to navigate the

natural ebbs and flows of the torrents (streams or trickles) of data flowing through your

apps. Need to scale up an application to handle increased traffic? Great, you can allocate

more machine resources (either dynamically, or by bumping the number of cores in your

static application config). The same goes with scaling down. You can deallocate or return

machine resources back to the cluster when your application is sitting more idle.

There are many factors at play even before deciding where, how, and when to

deploy your applications. Let’s begin the process by looking at the Apache Spark

 Resource Managers and the part they play in the lifecycle of your structured streaming

applications.

 Spark Cluster Modes and Resource Managers

Apache Spark ships with many resource managers out of the box. The most popular (at

the time of writing) being Standalone, Kubernetes, and Yarn cluster resource managers.

So, what is a cluster resource manager?

Cluster resource managers are responsible for many things—the most important of

which is the task of maintaining and managing the state of a cluster, as well as providing

common capabilities (APIs) to communicate, schedule, track, assign, and distribute

compute resources to be used by the Spark Driver applications running in the cluster.

At a high level, the resource managers monitor and observe the cluster (one

or more network connected compute nodes), tracking the latest statistics from the

physical compute nodes, checking the status and health of the workers (or executors),

and essentially asking if the nodes (or processes) are still alive. As well as keeping a

stateful ledger of the total schedulable real-estate in terms of physical nodes, CPU cores,

491

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

and memory that is unscheduled enabling the cluster resource manager to control

or delegate the approval or denial decisions when additional compute resources are

requested by the driver applications. Because clusters are dynamic, new nodes (servers

capable of running Spark processes) can be added to the cluster, or nodes can also be

removed if they become unresponsive, fail health checks, or go offline for any other

reason. By ensuring there is a common channel for Spark application(s) to communicate

their needs, the resource manager is prepared to handle new resource allocation

requests when existing resources are lost or the load on the application becomes more

than the existing compute resources can tolerate without scaling outward and the

application signals for help.

This all probably makes you think about CAP theorem and the issues described

in Chapter 9 with the “thundering herd” problem and multi-tenancy. Distributed systems like Kubernetes, Yarn (Hadoop), and Spark Standalone provide mechanisms to

delegate control of systems and services, and the Spark resource managers are all fault-

tolerant, providing capabilities to maintain consistency and be reliable under various

failure scenarios. Everything just boils down to the cluster resource managers being

the foundation enabling your structured streaming applications to withstand a failure

(like a server going offline) and being able to bounce back without the need for human

interference (in most cases).

We’ll look at Spark Standalone this chapter, and we will conclude with Spark on

Kubernetes in the next chapter . If you are interested in the Yarn or Mesos resource

managers , there is a lot of good information online that can help you get up in running in no time, but they are out of scope for the book.

 Spark Standalone Mode

Running a Spark standalone cluster can be done with a minimum of three nodes for a

simple test cluster. There is a cluster coordinator node (the master), and two worker nodes

that can distribute the work of one or more Spark applications. Standalone mode enables

you to submit your Spark Driver application (in client or cluster mode) to run distributed

workloads across a subset of compute resources of the underlying (backing) Spark cluster.

While you can run with a minimum of three nodes, the cluster wouldn’t be fault-

tolerant since the coordinator (master) could go offline and the state of the cluster

would disappear. It is essential for production use cases to run Spark Standalone in High

Availability mode.

492

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

 Spark Standalone: High Availability Mode

To be highly available, you must be fault-tolerant, which essentially means you need to

be reliable and consistent under failure. Spark adopts a similar process as you saw with

checkpointing for the state of the cluster (in Chapters 10, 11, and 13). The active master simply writes the state of the cluster to a reliable (durable) atomic file system (Apache

Zookeeper), and the first Spark Master to come online and connect to Zookeeper wins

the active state. Figure 14-1 shows the high-available (HA) setup for Spark Standalone, including the (1) Spark Masters, (2) the Spark Workers, and (3) Apache Zookeeper.

 Figure 14-1. Spark Standalone cluster mode

493

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

The cluster diagram in Figure 14-1 shows a six-node cluster (not including the Zookeeper (zk) cluster, which would require at least three nodes for high availability

due to the quorum-based architecture of Apache Zookeeper, so around nine servers are

required for full high-availability). Starting at (1), the two Spark Masters are overseeing

(watching) the cluster. One is in an Active state (consider this primary), while the other is

waiting in Standby mode (secondary), on the sideline to be called into action when the

current active (primary) master goes offline. The (2) workers (aka executors) are pictured

at the bottom of Figure 14-1. When the worker services come online and register with the Spark Masters, the process effectively increases the total available compute resources of

the cluster. The cluster can grow and shrink dynamically with workers coming and going,

enabling the Spark cluster to handle network issues, be optimized for performance

and cost, and for continuality of the cluster to survive other faults. Common behaviors

like pushing updates and rolling out new services or replacement hosts (servers) in the

cluster can be done with limited downtime to any running application.

 The Failover Process

As soon as the current active master releases its connection to (3) the Zookeeper, the

 standby master will pick up the torch and switch from a passive to active state to keep the cluster alive (failover to the standby master usually takes around 1-5 minutes depending

on your network and the size of the cluster).

Caution It is worth pointing out that the cluster will only remain highly available

(ha) after a failover event has occurred, for example the current active master goes

offline, and Spark promotes the passive standby master to active. Monitoring for node failure and automating the process of deploying a replacement is important

for the health of the clusters you operate.

If you do lose the cluster state, don’t panic. Spark applications will continue to run

without the need to communicate with the cluster coordinator (master) until the point

where a given Spark application needs to acquire new executors (which run on the

workers in Standalone mode). This gives you time to recover the cluster. So, if you are

running your Spark (and not paying for a managed service), make sure you and your

team experiments with loss of one or both masters and automates the process of keeping

the cluster running under failure.

494

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

Deploying applications in Standalone cluster mode, by default, will allow the first

deployed application to consume all resources in the cluster unless configured to

take a limited number of CPU cores and memory. As you might imagine, individual

applications hogging all the cluster resources can cause problems, but there are

processes in place you can take advantage to ensure applications behave well together.

All starting with the application deployments.

Application deployment begins with the driver application being submitted to a

cluster, and before we go further, it is important to understand how a driver application

runs in a distributed way. There are two main deploy styles available for the driver

application controlled by the spark.submit.deployMode application setting.

 Deploy Modes: Client vs. Cluster Mode

When you deploy a Spark Driver application, there are two options for the deploy style

driven by the spark-submit configuration. We’ll start with the client mode and move to

the cluster mode.

 Client Mode

Deploying a driver in client mode essentially means the Driver program will run locally

on the machine, issuing the spark-submit command to the Spark Masters. For example,

the configuration in Listing 14-1 comes from Chapter 11, and if we were to change the configuration to point to a live standalone cluster (--master "spark://{master-hostname}:7077"), we would in fact be declaring to the cluster resource manager that we

only want to allocate executors to distribute the application workload, but that we’ve got

the Driver program resource allocation already taken care of.

 Listing 14-1. Deploying a Spark Application in Client Mode

docker run \

...

-it `whoamì/spark-kafka-coffee-orders:latest \

/opt/spark/bin/spark-submit \

--master "..." \

--class "com.coffeeco.data.SparkKafkaCoffeeOrdersApp" \

495

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

--deploy-mode "client" \

...

/opt/spark/app/spark-kafka-coffee-orders.jar

Figure 14-2 shows that the Driver program is running outside of the cluster in client mode, and that the executors are assigned to the remote application.

 Figure 14-2. Spark Driver application running in client mode

There are many reasons for running the Driver outside of the Spark cluster. The top

three reasons are to:

• Protect and isolate your Spark applications from disruptions caused

by noisy neighbors or other bad behavior within the cluster.

• Safeguard secrets and credentials from cluster-wide access by

restricting access to the drivers (outside) of the cluster, which is

important for multi-tenant, shared clusters running workloads

generated by many disparate teams with various pipeline needs.

• Provide a known host (endpoint) to connect to a driver application to

view the Spark UI or to generate metrics for monitoring.

496

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

 Cluster Mode

Deploying a Driver program in cluster mode essentially means that the application will

run remotely inside of the Spark cluster being overseen by the Spark Master that received

the inbound spark-submit command. For example, the configuration in Listing 14-2

is a revision of Listing 14-1. It replaces the deploy mode value, while also specifying the runtime resources (driver and executors), and the special supervise flag.

 Listing 14-2. Deploying a Spark Driver Application to be Managed by the Cluster docker run \

...

-it `whoamì/spark-kafka-coffee-orders:latest \

/opt/spark/bin/spark-submit \

--master "..." \

--class "com.coffeeco.data.SparkKafkaCoffeeOrdersApp" \

--deploy-mode "cluster" \

--driver-memory "2g" \

--executor-memory "4g" \

--total-executor-cores 4 \

--supervise \

...

/opt/spark/app/spark-kafka-coffee-orders.jar

As mentioned, when you deploy an application to the cluster, you run the Driver

program collocated on a worker inside of the cluster. Figure 14-3 shows how the Driver application is collocated within the cluster, claiming a portion of the total available

resources available on the assigned worker.

497

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

 Figure 14-3. Spark Driver application running in cluster mode

Understanding the overhead of each collocated application running in a multi-

tenant cluster is an important fact to remember given the SLAs for the Driver application

running within the cluster. If there are no resources to run the Driver program (after a

failure or because it is being deployed for the first time), then the Driver will wait in a

Queued state.

Just like there were benefits to running the driver program outside of the cluster,

there are also benefits to running drivers within the Spark cluster itself. Essentially,

you reduce the surface area (in terms of resources) required to operate your streaming

applications, or pipeline infrastructure, by removing the need to run external hosts or

additional processes outside of the cluster. Additionally, for tested and mature Spark

applications, cluster-based supervision, using the --supervise flag, enables applications

to respawn in the case of death.

On the other side, if the Spark standalone cluster is dedicated to a common

overarching mission, like processing CoffeeCo customer orders or merging store

transactions and customer event data to create windowed analytic streams, then clusters

can be spun up to solve similar problems, reusing approved access (abiding by data

governance rules and regulations) authentication, authorization, and shared data access.

498

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

There are pros and cons of both deployment strategies (client mode and cluster

mode). They allow you to use a strategy that fits the SLIs, SLOs, and SLAs for the

respective application. Therefore, it is critical to understand how to share resources in a

multi-tenant environment. We’ll look at how Spark Driver applications can be deployed

and distributed in a standalone cluster now.

 Distributed Shared Resources and Resource Scheduling

for Multi-Tenancy

Consider the Spark Standalone cluster in a similar fashion to a distributed operating

system. You have a total number of cores (CPU), and a total amount of memory (RAM), as well as disk space on each node, worker (executor), and driver all being shared between

the spark processes (pids), the operating system processes (also pids!), as well as any

other services running on each server in the distributed cluster.

Tip Using the linux top command will allow you to see what processes are

running and what resources they consume on each server. For the resource

overhead on Docker, you can use the docker stats command to view the CpU,

memory, and network consumption by running container.

Why does this matter? Glad you asked. Essentially you can’t realistically expect to

use 100% of the resources on any node within the cluster (master, worker, driver) without coming up empty handed, or resource constrained, either at the OS or at the application

level. A general rule of thumb is to preserve at least 1 CPU core and 1GB of memory for the

 operating system. You must also weigh the cost of any other process being run outside of the scope of Apache Spark. For example, metric collectors, network profilers, and so on.

Once you understand the overhead required for non-Spark processes, you can configure

the worker behavior to play nicely and not be overtly greedy with the resources of a

given server.

499

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

 Controlling Resource Allocations, Application Behavior,

and Scheduling

Controlling the number of resources allocated to each Spark application running in

a multi-tenant (shared) Apache Spark cluster can be done using the Spark settings in

Table 14-1 for your application at the time of deployment.

 Table 14-1. Controlling How to Allocate and Schedule Resources for Your Spark

 Application

Property

Default What This Does

Name

spark.

(not

Sets a limit on the total number of cores that can be schedulable for your

cores.max set)

application at runtime. otherwise, the application will take all available

cores.

spark.

1

Informs the scheduler of the true intentions of your Spark application. If

task.cpus

you have additional CpU bound tasks that require thread pools or other

Io, consider bumping this value to 2, or more depending on real CpU

consumption per task.

spark.

1

Defines how many cores (physical CpUs) are required to run your driver

driver.

application. Set this number higher if your application is doing final

cores

processing on the Driver by way of calling collect() on your DataFrame/

Dataset/rDDs.

spark.

1g

Defines the soft limit for the memory allocated by the JVM process running

executor.

the Spark executor. This value is an allocation for the executor process, and

memory

in Standalone mode, this is not a hard limit: meaning the JVM can allocate

more memory dynamically.

spark.

ALL

This setting is important to note since your Spark application will take all

executor.

available cores unless you specify otherwise. For multi-tenancy, you can

cores

share resources by setting this value to 1, 2, or N cores.

Table 14-1 contains a small subset of the more important values to pay careful attention to when deploying applications into a Standalone, shared (multi-tenant), Spark

cluster.

500

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

Remember that Structured Streaming applications run forever (24/7/365), so setting

resource limitations for each application becomes critically important because each

application will allocate and hold the resources claimed when the application driver

starts up. This means the total number of cores (physical CPUs) and memory (JVM

allocated heap space) will be taken once when the application starts up (if running in

static allocation mode).

For example, Figure 14-4 shows the flow of a new Spark Driver application requesting resources from the cluster. There are four nodes, each running as a Spark Worker

process. Each of the workers has eight cores and 16 gigabytes (GB) of RAM, meaning that

the entire cluster has a total of 32 cores and 64GB of memory to allocate across one or

more Spark Driver applications. If the Spark application (A) had the following config:

spark.cores.max: 16

spark.executor.cores: 8

spark.executor.memory: 16gb

501

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

 Figure 14-4. Flow diagram of the negotiation processes at play when a new Spark

 application is deployed to a Spark cluster

Then the driver would be assigned two executor instances (JVMs) that completely

take over two of the four available worker nodes. Put another way, the configuration says,

“I want to take two entire workers.”

The sequence of events in Figure 14-4 show a Spark application being deployed into a cluster. It first negotiates with the (1) active master to receive executor assignments (2) based on the application settings (or cluster defaults) regarding total requested resources (cores/

memory) to run the distributed workload. In the example, we are using the limit of 16 total

cores, directing the cluster resource manager (active master in standalone mode) to assign

the application two of the four total workers. So now 50% of the Spark cluster is allocated and

50% is free. Once the executors are assigned to a the Spark Driver application, managed via

the SparkContext, the Driver application no longer needs to communicate with the master

unless an executor is lost (server dies, or JVM runs out of memory and exits), or the spark.

dynamic.allocation is enabled and the app requests or returns resources to the cluster.

502

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

This also means that a disruption to the assigned executors (say both workers go offline)

is a failure scenario that the current cluster setup can easily handle. The driver application

(A) needs only to ask the resource manager (spark active master) for new executors—a

request that can be handled given there are two entirely free workers in the cluster.

If we look at the example in Figure 14-5, the diagram shows the process of a second Spark application joining a shared cluster. For the purpose of example, the second

application will have the following application deployment settings.

spark.cores.max: 4

spark.executor.cores: 2

spark.executor.memory: 4gb

 Figure 14-5. Spark Driver application multi-tenancy on a shared cluster

The second driver application will request resources from the two remaining workers

in the cluster (that have schedulable resources to allocate). This will now leave us with

executors scheduled on 100% of the workers. On the upside, there will be fewer wasted

resources (since no core or memory goes wasted), and more than one application is

running in the cluster, but on the flip side what would happen if a worker was lost now?

503

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

In the case where one worker is lost from the cluster in Figure 14-5, it depends on which worker was knocked out. There are two scenarios. In the first, the driver

application (B) would be running solely on one worker because each executor

is configured with the two cores and 4GB memory. To continue operating, new

assignments would be made, and the workload moved to the only other worker with

free resources available. That would be the worker where the application (B) already has

executors running.

In the second scenario, if the driver application (A) loses a worker, then not all cores

or memory required by the config executor (eight cores by 16GB memory) would fit in

the cluster. This would leave application (A) running in a degraded state, but at least it

would still be running.

When it comes to scheduling compute resources, it is also a good rule of thumb

to have some head room to grow in the cluster. You can do this by adding a new node

to the cluster when the cluster is more than 75% scheduled, by adopting auto-scale

groups or cloud-based rules like you see with managed node groups on Amazon Elastic

Kubernetes Service, or by changing the executor settings to be able to fit each executor

in a different configuration. Having a 4-core x 8GB with the same 16 max cores would

spread driver application (A) across more JVMs, but you could handle the loss of a

worker without running in a degraded state.

With enough resources available for failure or scaling up, the process of dynamic

allocation can enable a more elastic scalability. Next, you learn how to control this

process.

Note In the next chapter, you’ll be introduced to the kubernetes (k8s) resource

manager and learn how to launch your Spark applications in an elastically

scalable way, which again uses dynamic allocation. The dynamic allocation

process provides the Spark application driver with a protocol to request and return

additional resources to handle the ebbs and flows of the current of data being

processed.

504

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

 Elastically Scaling Spark Applications with Dynamic

Resource Allocation

Spark applications have variable processing requirements composed of resources at an

executor level (cores/memory/*GPUs) that change (think ebbs and flows) throughout

their lifetime. To manage the variable needs of many applications running in parallel,

dynamic allocation enables each Spark application to opt in and enable dynamic

allocation, and to define appropriate settings to control how to release and reallocate

additional resources. Table 14-2 lists the common spark configurations.

 Table 14-2. Enabling Elastic Scaling for Spark Applications Can Be Done Using

 Dynamic Allocation

Property Name

Default What This Does

spark.

false Conditionally opts into dynamic resource allocation.

dynamicAllocation.

enabled

spark.shuffle.service. false To release executors back to the Spark cluster, the Spark

enabled

Workers must be running the external shuffle service as a

prerequisite for dynamic allocation. This allows an executor

to be released, even if it still holds some shuffle (data)

required by the Spark application.

spark.

0

Set this value to 1 or higher in order to ensure your

dynamicAllocation.

application isn’t resource starved while waiting for

minExecutors

resources to be allocated on available (open) workers.

spark.

INF

Set this value to block an application from requesting all

dynamicAllocation.

(open) executors in the cluster.

maxExecutors

spark.

1s

The driver application will wait up to this value before

dynamicAllocation.

requesting new executors from the master when tasks are

schedulerBacklogTimeout

pending.

505

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

Dynamic allocation enables automatic management for elastically scaling

workloads, which request and return resources from the cluster on-demand based

on need. Depending on the priority or expectations of a job (or application), dynamic

allocation can allow you to effectively manage the cost of running many co-located

(multi-tenant) workloads across a shared compute cluster. However, depending on the

various (dynamic) needs of each application, the priority of the workload needs to be

taken into consideration when enabling dynamic allocation, since you can easily find

yourself in a situation where many applications are waiting in an idle state for resources

to become available in the cluster.

For Spark Structured Streaming applications, each micro-batch tends to process

smaller amounts of data more frequently, which is different than the behavior of the

typical large batch-based applications that read and process large swaths of data in one

go. Yes, you can also run stateful batch jobs that use Trigger.Once, which will require

thinking through the semantics of the application and the SLAs or priorities associated

with the nature of the application.

Given the always-online nature of structured streaming applications, dynamic

allocation and the external shuffle service can at times get in the way and hurt the

performance of your mission-critical streaming applications. Sometimes the only thing

getting in the way of the application performing at top speed is the internal application

scheduler, which controls the parallelism and processing modes of internal (jobs)

running within a Spark Driver application.

SCHEDULING MODES: FIFO VS. FAIR

By default, Spark applications run in FIFO (first-in, first-out) scheduling mode. given that Spark Structured Streaming applications divide and conquer a continuous (unbounded)

stream of one or more data sources, which are chunked and broken down through the

processing paradigm of micro-batches (which yield deterministic, fault-tolerant, datasets), the

Spark Driver application is hard at work ensuring that each stage of transformation across

each micro- batch, which is defined by a StreamingQuery, aka spark.readStream...

writeStream.start(), has priority based on the QueryPlan defining the mission of the

streaming application.

Well, what if an application has more than one StreamingQuery? In the last chapter, you

were introduced to the SparkStructuedStreamingApplication trait, which included the

following two methods: awaitTermination and awaitAnyTermination.

506

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

def awaitTermination(query: StreamingQuery): Unit = {

query.awaitTermination()

}

def awaitAnyTermination(): Unit = {

sparkSession.streams.awaitAnyTermination()

}

In a basic Spark Structured Streaming application, there is commonly only one upstream

source and one downstream sink. Therefore, calling awaitTermination on the main

StreamingQuery will keep the Spark Driver application alive until the StreamingQuery

terminates. This single application concern is perfectly fine for the FIFO mode scheduler,

since there is only one primary concern.

however, the second you decide to introduce a second streaming query to the equation, you’ll

now have to wait in line for resources at each micro-batch, which doesn’t seem fair now

does it?

luckily, Spark ships with a FAIR scheduler. This execution mode allows parallel sharing of

resources. This allows for a more equal distribution of the total resources within an individual Spark application.

FAIR Mode Scheduler

you can opt into using the FAIR scheduler by setting the scheduler mode on the driver

application configuration.

spark.scheduler.mode=FAIR

In addition to setting the scheduler mode, Spark requires your application to define one or

more scheduler pools using an allocation file.

spark.scheduler.allocation.file="s3a:///path/to/fair-scheduler.xml"

The scheduler allocation file is a simple XMl file defining one or more named pools with

options to define schedulingMode, weight, and minShare for the respective pool.

• schedulingMode : This will default to FIFO, but can also be set to FAIR. FIFO

will prioritize the first workload to be scheduled across the pool, letting

additional work stack up in a queue. FAIR will distribute work evenly across

the pool resources.

507

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

• weights : The pool weight declares the priority for scheduling across a given

pool. This priority defaults to 1, and can be set higher to set a priority pool for

scheduling (like a priority queue).

• minShare : Set the core allocations for a given pool. The scheduler will attempt

to allocate a predefined number of cores to ensure each pool has the number of

cores, before distributing any additional CpU core resources across the rest of

the defined pools.

 Listing 14-3. An Example fair-scheduler.xml Allocation File

<?xml version="1.0"?>

<allocations>

<pool name=" default">

<schedulingMode> FAIR</schedulingMode>

<weight>10</weight>

<minShare>4</minShare>

</pool>

<pool name=" queued">

<schedulingMode> FIFO</schedulingMode>

<weight>1</weight>

</pool>

</allocations>

The example configuration in listing 14-3 is intended to further define the way the scheduling modes work within the respective scheduler pools. given the driver application utilizes the

SparkContext for scheduling work, the FAIR scheduler can be used to modify the behavior

of each SparkSession (which reuses the same Spark context) to govern and share the

common pool of cluster resources allocated for a Spark application.

By default, Spark will assign all work to the default pool when spark.scheduler.mode

is set to FAIR. By changing the default pool config, we can change the scheduling weights

to prioritize the default (FAIR) pool, or we can carve out different pools for running lower

priority workloads in FIFO or in FAIR mode. Using the fair-scheduler.xml file, you can

guarantee that higher priority work will be scheduled in a FaIr way.

If there is lower priority work, or in the case of a shared environment (like Zeppelin), where you may have multiple concurrent sessions, you can assign one specific pool to be used for lower

priority work. The example in listing 14-4 shows how an ad hoc job can be spawned from an existing SparkSession.

508

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

 Listing 14-4. Setting a Low-Priority Scheduler Pool for Non-Essential, Nice

to Haves

// spark = SparkSession

new Thread {

val other: SparkSession = spark.newSession()

other.sparkContext. setLocalProperty(

"spark.scheduler.pool", "queued")

other.sparkContext. setJobGroup("batch.job", "runs in thread", true) other.range(100)

.write

.format("console")

.save()

}

you might be wondering why you’d spawn a new session in a new thread. Well, there is

a simple answer to that. The thread that sets the local property (setLocalProperty)

on the SparkContext will use the scheduler pool assigned to it. If we are running a

StreamingQuery on our main thread (current thread), then we’d want to carve out a second

thread to run our non-essential work.

Consider revisiting this sidebar again after reading the “Spark listeners” section. you can use

the SparkSession provided in the SparkApplicationListener or QueryListener

to create and schedule ad hoc queries, as shown in listing 14-4. given the rich capabilities granted to you by apache Spark and the myriad connectors, you can leverage ad hoc

processes to create reactive applications or control event-driven subroutines.

It is essential to have some sort of monitoring and observability for each Spark

application that is running. Without understanding how things ran in the past, it is

difficult to measure how applications change in the cycle of build and release. Hopefully,

you begin capturing metrics for your application before you release them into the

wilds of production for the first time (if they are mission-critical). On that note, there

are myriad metrics available (out of the box) for measuring, recording, and monitoring

the performance and behavior of your Spark applications. You’ll learn about two of the

more common Spark listener interfaces (SparkListener, QueryListener) and about

the Apache Spark REST endpoint for metrics. Combined, these capabilities can be used

to monitor the behavior of your Spark applications and enable reactive event-driven

alerting.

509

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

 Spark Listeners and Application Monitoring

There is a long-standing debate regarding what came first, the chicken or the egg. I can’t

answer that, but there is a subtle art when it comes to monitoring Spark applications

and defining what metrics are essential for measuring the performance of your mission-

critical Spark applications. Identifying the KPIs for each application changes depending

on the SLIs, SLOs, and SLAs defined in your Spark application data contracts. The

metrics help define and shape the performance characteristic of each application, and

they let you understand what behaviors to expect (what is normal). Questions regarding

metrics may be hard to initially answer given the potentially large application surface

area, as well as the constituent parts, including the upstream (sources) and downstream

(sinks), but it can help to break things down into groups, identify the sources of data

necessary, and then go from there.

Broadly speaking, monitoring isn’t just about understanding how your service

operates but it is equally about being able to pin-point where in the system something

goes wrong and to reduce MTTR (mean time to recovery) in the case of an outage or

simply to better understand application to ensure optimal behavior.

Monitoring helps inform other decisions as well. If this is your first monitoring

rodeo, it can also help to understand what we can monitor out of the box, especially

when it comes to Spark. This begins with listening.

 Spark Listener

The SparkListener class can be added to your driver application through the

SparkContext object of the SparkSession, or via your application configuration using

the spark.extraListeners option.

// spark = SparkSession

spark.sparkContext

.addSparkListener(SparkApplicationListener())

The SparkListener is a prime candidate to use to tap into the runtime application

metrics and general behavior of your Spark applications. Furthermore, if you need to

take a more reactive approach to problems in-flight, the listeners can be a jumping off

point to creating ad hoc event-driven controls.

Listing 14-5 extends the SparkListener class with a case class named SparkApplicationListener.

510

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

 Listing 14-5. The SparkApplicationListener Case Class

case class SparkApplicationListener()

extends SparkListener {

val logger: Logger = Logger.getLogger(classOf[SparkApplicationListener])

val session: SparkSession = SparkSession.getDefaultSession.getOrElse {

throw new RuntimeException("There is no SparkSession")

}

override def onApplicationStart(applicationStart:

SparkListenerApplicationStart): Unit = {

super.onApplicationStart(applicationStart)

logger.info(s"app.start app.name=${applicationStart.appName}")

}

override def onJobStart(jobStart: SparkListenerJobStart): Unit = {

super.onJobStart(jobStart)

logger.info(s"job.start jobId=${jobStart.jobId} jobStart.

time=${jobStart.time}")

}

override def onStageSubmitted(stageSubmitted:

SparkListenerStageSubmitted): Unit = {

super.onStageSubmitted(stageSubmitted)

val stageInfo: StageInfo = stageSubmitted.stageInfo

logger.info(s"stage.submitted stage.id=${stageInfo.stageId}")

}

override def onStageExecutorMetrics(executorMetrics:

SparkListenerStageExecutorMetrics): Unit = {

super.onStageExecutorMetrics(executorMetrics)

val em: SparkListenerStageExecutorMetrics = executorMetrics

logger.info(s"stage.executor.metrics stageId=${em.stageId} stage.

attempt.id=${em.stageAttemptId} exec.id=${em.execId}")

}

override def onTaskStart(taskStart: SparkListenerTaskStart): Unit = {

super.onTaskStart(taskStart)

511

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

val ts = taskStart

val taskInfo: TaskInfo = ts.taskInfo

// taskInfo has a wealth of status and timing details

logger.info(s"task.start " +

s"task.id=${taskInfo.taskId} task.status=${taskInfo.status} task.

attempt.number=${taskInfo.attemptNumber} " +

s"stage.id=${ts.stageId} stage.attempt.id=${ts.stageAttemptId}"

)

}

override def onTaskGettingResult(taskGettingResult:

SparkListenerTaskGettingResult): Unit = {

super.onTaskGettingResult(taskGettingResult)

logger.info(s"task.getting.result ${taskGettingResult.taskInfo.

taskId}")

}

override def onTaskEnd(taskEnd: SparkListenerTaskEnd): Unit = {

super.onTaskEnd(taskEnd)

val te = taskEnd

val taskInfo: TaskInfo = te.taskInfo

val taskEndReason: TaskEndReason = te.reason

val taskMetrics: TaskMetrics = te.taskMetrics

logger.info(s"task.end task.type=${taskEnd.taskType} end.

reason=${taskEndReason.toString} task.id=${taskInfo.taskId}" +

s"executor.cpu.time=${taskMetrics.executorCpuTime}")

}

override def onStageCompleted(stageCompleted:

SparkListenerStageCompleted): Unit = {

super.onStageCompleted(stageCompleted)

val stc = stageCompleted

val stageInfo: StageInfo = stc.stageInfo

//val stm: TaskMetrics = stageInfo.taskMetrics

logger.info(s"stage.completed stage.id=${stageInfo.stageId} stage.

completion.time=${stageInfo.completionTime.getOrElse(0)}")

512

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

}

override def onJobEnd(jobEnd: SparkListenerJobEnd): Unit = {

super.onJobEnd(jobEnd)

logger.info(s"job.end job.id=${jobEnd.jobId} end.time=${jobEnd.time}")

}

override def onExecutorAdded(executorAdded: SparkListenerExecutorAdded):

Unit = {

super.onExecutorAdded(executorAdded)

}

override def onExecutorMetricsUpdate(executorMetricsUpdate:

SparkListenerExecutorMetricsUpdate): Unit = {

super.onExecutorMetricsUpdate(executorMetricsUpdate)

}

override def onExecutorRemoved(executorRemoved:

SparkListenerExecutorRemoved): Unit = {

super.onExecutorRemoved(executorRemoved)

}

override def onEnvironmentUpdate(environmentUpdate:

SparkListenerEnvironmentUpdate): Unit = {

super.onEnvironmentUpdate(environmentUpdate)

}

override def onOtherEvent(event: SparkListenerEvent): Unit = {

super.onOtherEvent(event)

}

override def onApplicationEnd(applicationEnd:

SparkListenerApplicationEnd): Unit = {

super.onApplicationEnd(applicationEnd)

logger.info(s"application.ended end.time=${applicationEnd.time}")

}

}

513

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

The case class in Listing 14-5 extends the SparkListener and provides a simple jumping off point for further metric exploration. The order of events matter. Each job

starts and spawns one or more stages, which distribute tasks across the executors

assigned to your application. Being able to track the rate of failed tasks or failed stages

provides you with high-level eyes and ears into the runtime behavior of your application.

For a concrete example, you can observe the SparkApplicationListener directly

from within your Spark unit tests to view the events generated as the application runs.

Try turning on the listener, located in the TypedRevenueAggregatesSpec (from Chapter 13).

Just uncomment the line and run the application unit tests to see things in action.

val testSession = SparkTypedStatefulAggregationsApp

.sparkSession

.newSession()

 testSession.sparkContext

 .addSparkListener(SparkApplicationListener())

The SparkListener can be used to publish metrics using stats.d. Combined with your own in-house metrics systems or using paid services like DataDog, you can store important metrics pertaining to the runtime of your applications.

Tip application metrics are available from the Driver application UI (port 4040 by

default), using the metrics rest apI on the Spark application driver. Use the official

“Spark Monitoring” documentation to see the various apIs available for consuming

metrics through the driver and standalone master processes.

In addition to the main SparkListener, there is another useful class that can be used

to add control flow into your applications, called the StreamingQueryListener.

 Observing Structured Streaming Behavior with the

StreamingQueryListener

The StreamingQueryListener observes the SparkSession.streams object and can be

used to tap into all StreamingQuery instances managed by the driver application. The

three observable states tracked by the StreamingQueryListener correspond to the

started, progress (micro-batch completed), and termination of all streaming queries.

514

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

Listing 14-6 extends the StreamingQueryListener and provides example method implementations, listener interface method names, and event objects. To get you started,

it shows how to tap into some of the event metadata to add enhanced logging.

 Listing 14-6. The StreamingQueryListener Enables You to Observe the Runtime

Behavior of Your Structured Streaming Applications

case class QueryListener() extends StreamingQueryListener {

val logger: Logger = Logger.getLogger(classOf[QueryListener])

val session: SparkSession = SparkSession.getDefaultSession.getOrElse {

throw new RuntimeException("There is no SparkSession")

}

override def onQueryStarted(event: StreamingQueryListener. QueryStartedEvent):

Unit = {

logger.info(s"query.started stream.id=${event.id} stream.name=${event.

name} " +

s"stream.run.id=${event.runId} stream.start.time=${event.timestamp}")

}

override def onQueryProgress(event: StreamingQueryListener. QueryProgress

Event): Unit = {

val queryProgress: StreamingQueryProgress = event.progress

val batchId = queryProgress.batchId

val batchDuration = queryProgress.batchDuration

val inputRowsRate = queryProgress.inputRowsPerSecond

val processedRowsRate = queryProgress.processedRowsPerSecond

val outputRowsPerBatch = queryProgress.sink.numOutputRows

val progressSummary = queryProgress.prettyJson

logger.info(s"query.progress stream.id=${queryProgress.id} stream.

name=${queryProgress.name} " +

s" batch.id=$batchId batch.duration=$batchDuration" +

s" rate: input.rows.per.second=$inputRowsRate processed.rows.per.

second=$processedRowsRate " +

s" sink.output.rows.per.batch=$outputRowsPerBatch " +

s"\n progressSummary=$progressSummary")

515

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

}

override def onQueryTerminated(event: StreamingQueryListener. QueryTerminated

Event): Unit = {

if (event.exception.nonEmpty) {

logger.error(s"query.terminated.with.exception exception=${event.

exception.get}")

// make a decision on what to do

} else {

logger.info(s"query.terminated stream.id=${event.id} stream.run.

id=${event.runId}")

}

}

}

The QueryListener class can be used to monitor any Structured Streaming

application. Just like with the SparkApplicationListener, you can test using the

QueryListener using the TypedRevenueAggregatesSpec from Chapter 13.

testSession. streams.addListener(QueryListener())

You now have a direct means to set breakpoints and insert creative control flow to

react to the various progress or termination events that come your way. By using the test-

driven approach to understanding the capabilities of the QueryListener, you can create

better tests to drive unexpected behavior, all from the comfort of your IDE.

Ultimately, query observation is a capability that helps to ensure your application

continues to operate as expected. By extending the listener you can collect important streaming

metrics (input and processing rates) to help you understand how your application is running.

As a final note, SparkApplicationListener in Listing 14-5 and QueryListener in Listing 14-6 both run directly on the Spark Driver itself. Knowing this you can write hooks to Slack or PagerDuty in the case of bad behavior in your application, or by using the SparkSession handle (available in both example Listener classes), you can trigger

event-based subroutines. For example, using the QueryListener you could actively

halt all running queries and gracefully stop a bad Driver application, depending on

the reason (exception) on the active query a process. The QueryListener hooks are

shown in Listing 14-7 to provide you with an idea of how to tap into the events to control your applications. Exceptions that terminate the StreamingQuery may be recoverable.

Otherwise, you may want to shut down the application.

516

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

 Listing 14-7. Using the QueryListener to React to an Exception Received in a

StreamingQuery

// QueryListener

def resetTerminated(): Unit = {

session.streams.resetTerminated()

}

def haltAllStreams(): Unit = {

session.streams.active.foreach { query =>

logger.info(s"stream.stop name=${query.name} stream.id=${query.id}")

query.stop()

}

}

def shutdown(): Unit = {

haltAllStreams()

session.sparkContext.cancelAllJobs()

session.stop()

}

override def onQueryTerminated(event: StreamingQueryListener.

QueryTerminatedEvent): Unit = {

if (event.exception.nonEmpty) {

logger.error(s"query.terminated.with.exception exception=${event.

exception.get}")

if (exception.is.recoverable) {

 resetTerminated()

} else {

 shutdown()

}

}

}

517

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

Listing 14-7 hooks into StreamingQueryManager and SparkContext to a reset any terminated streams or stop any additional streaming query. Then an explicit call cancels

all active jobs (giving open and active jobs time to gracefully stop and clean up). The

code finally asks the driver application to gracefully shutdown. Choosing when to halt an

application can be instrumental in protecting downstream applications from breaking

due to corrupt data or other unknown unknowns. It is often better to fail, and page the

application owner(s), when an unrecoverable exception is encountered, knowing that it

can (and probably will) cause a traffic jam in the short term, but that it can protect any

downstream systems from data problems in flight.

There are many strategies to ensuring applications continue to perform no matter

how choppy the waters become. Knowing the right patterns to keep the application from

treading water takes patience and practice, but with the right tools at your disposal it can

become easier to automate recovery and broadcast need-to-know events directly from

applications (before they collapse).

 Monitoring Patterns

Connectors to metric aggregators like Prometheus or DataDog can be woven into your Spark Listeners to create central points for observability, emitted by the driver

application. This is better than monitoring and observing all executors, since exception

information and executor metrics will ultimately be passed back to the driver, which can

then be tapped into using the SparkApplicationListener.

The metrics emitted by your applications—using the Spark listener interfaces or

the metrics collected internally and provided via JMX or REST interfaces by Spark—can

be used to power dashboards and other alerting systems. Additionally, once you have

operational metrics flowing, you can use the historic metrics of your applications to

ensure they continue to perform as well, or better, with each new version released to

production. These prior observations (historic metrics) help to ensure updates and

upgrades to each application (such as bug fixes or simply results of any performance

tuning) can be monitored and measured, keeping your SLAs, SLOs, and SLIs in check.

518

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

 Spark Standalone Cluster and Application Migration

Strategies

The Internet is full of best practices and suggestions. When it comes to running multi-

tenant applications on Spark Standalone, it is best to have a strategy in place for

migrating the applications as well as the cluster components to mitigate any downtime.

 Anti-Pattern: Hope for the Best

Tooling for deploying and rolling (metered replacement) fleets of servers has been

around for a while. One pattern that stops working quickly is the “roll and hope”

approach for Spark Workers. If you are running Structured Streaming applications,

you will continue to interrupt the running driver applications, and the applications

can handle the intermittent pause, request new executors, assign, and rebuild process

for any lost application state. The process of constant interruption, for example of a

rolling frequency of 5% of workers every five minutes, can eat away at SLAs. Application

disruptions can be handled naturally when machines come online or go offline, but it is

often better to boot a replacement Spark Standalone cluster and migrate the applications

(depending on latency and on your tooling).

 Best Practices

1. Create a new cluster.

2. Migrate existing applications into the new cluster (start in reverse

priority order for applications based on SLAs).

3. Shut down the prior cluster (if you no longer need the compute

resource: go green).

This is a best practices list because Spark applications and the clusters they run on

are updated to handle new versions of Apache Spark, Java, Scala, and other Python or

system dependencies, as well as to patch application configurations or global settings

on the Masters, Workers, and Drivers. It is best to understand how the changes can affect

performance, so until you’ve become comfortable with the process, use the “canary in a coal

mine” trick and migrate the lowest common denominator (lowest risk) applications first.

Next you are going to learn about the listeners available to you for monitoring the

performance and behavior of your Spark applications.

519

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

 Regarding Containers and Spark Standalone

Spark Standalone can run using containers, but it is beyond the scope of this book to

cover. Essentially, you can use the Zookeeper container (which should be cached) from

running the Kafka cluster in Chapter 11. Then you have to modify the environment variables (spark-env.sh) for the Spark Masters and Workers, assign each one a unique

hostname (such as spark-master1, spark-master2, spark-worker1, spark-worker2,

spark-worker3), or reuse the Docker network (mde) or create a new one called spark.

This will enable cross-cluster communication between the components of the Spark

cluster and your Spark Driver applications.

The official Apache Spark documentation covers how to “Configure Ports for

Network Security,” which can be used to view the port requirements to punch firewall

rules. For example, a Spark Driver application requires inbound access to the Spark

Masters on ports 7077 to submit (deploy) an application. The Spark Master also exposes

an optional REST-based service that runs on port 6066, which can be used to accept

remote jobs to run in the cluster. For the Spark Master, the UI runs by default on port

8080, the Spark Workers expose a UI on port 8081, and each Driver application runs a UI

on port 4040. The Driver port can be turned off using spark.ui.enabled: false to save

on processing overhead of the Driver, or to restrict how folks can access the logs of the

application.

 Managed Spark

This chapter discussed the architectural components and Spark classes used to

construct a Spark cluster, and to tap into the operational metrics of your Apache Spark

applications. You may be wondering why there was no discussion of using Apache Spark

on Amazon EMR or Databricks to simplify the process of running Spark applications without all the headache. Using either platform can greatly reduce the level of effort

required for getting up and running and should be considered in your short-term and

long-term business planning. This book takes an open-source approach (in all ways) as a

means of pulling back the curtain. The goal is to let anyone get to know Spark and learn

about the pillars of the modern data platform for free (laptop and book aside).

520

ChapTer 14 DeployIng MISSIon-CrITICal Spark applICaTIonS on Spark STanDalone

 Summary

It is more common for Spark Standalone clusters to operate using traditional Linux

deploy and DevOps patterns, including bootstrap scripts for creating and laying out the

file system, and Linux package managers like Yum and Apt-Get to scaffold the runtime

environment. There are pros and cons to running multi-tenant server environments

without clear boundaries between application processes, CPU allocations, and

memory limitations (aka cgroups)—mainly that you can bypass containers and lean on

traditional RPMs for managing what is installed at runtime.

Depending on the requirements of the applications your platform supports, there

are often compounding challenges associated with running multiple versions of

Java (supporting Java 8 and Java 11), multiple versions of Scala (2.12, 2.13), handling

the native requirements for PySpark, or debugging which process is to blame for

performance degradation when running in a world void of containers.

As a final note, although it is also possible to support multiple versions of Spark on

the same box, it can be a management nightmare. It is easier to run a Standalone cluster

with the common dependencies of the workloads that will run in the cluster and carve

out isolated clusters based on the performance characteristics and scalability (fan-out,

fan-in) requirements for the workloads that will run in the cluster. If this sounds like a lot

of effort, it can be, but you can also automate a lot of the nuances using frameworks like

Chef or Terraform.

Given this book has been written using a mostly container-driven approach and

given that containers provide consistency and reliability from an operational perspective

carrying over to the Spark runtime, it would make the most sense that the final point

of our journey is to deploy Spark applications on Kubernetes. (In fact, the applications

 you’ve been building since Chapter 7 can all run using Spark on Kubernetes.) We’ll be spending the rest of our time together learning to run mission-critical applications on

Kubernetes.

521

CHAPTER 15

Deploying Mission-Critical

Spark Applications

on Kubernetes

Before diving headfirst into what Kubernetes (K8s) is, and how Apache Spark fits into the distributed K8s ecosystem, it is important to first begin by stating simply that Kubernetes

 enables Apache Spark applications to run in isolation, pairing elastic scalability with the

 runtime consistency of containers, collocated in independent micro-environments called

 pods (which you’ll learn about soon). Ultimately, you can rely on consistent runtime

environments, without having to deal with the pain and other hardships of multi-

tenancy in a share-everything ecosystem. Rather, imagine each application running in its

own isolated world, which at a high-level act similarly to the local environments you’ve

run to power Spark applications using docker-compose on the local data platform we’ve

been constructing throughout this book.

The devil is always in the details, but many of the common pain points that stem

from running Apache Spark applications in production clusters (which we saw in the last

chapter), such as issues with cluster-wide resource contention, the problems of scaling

(up or down) large multi-tenant clusters, or at a high enough level even running one

or more physical Spark clusters simply goes away. Instead, each Spark application is

deployed and auto-wires, aka scaffolds (and operates) its very own isolated Spark cluster

(on-demand), composed across pods that are orchestrated on top of the physical nodes

underpinning your Kubernetes cluster. By removing the many moving parts required to

run standalone clusters and manage the applications running therein, you can instead

focus on the independent needs of each application and generalize the rest.

Kubernetes, with the support of the Apache Spark Kubernetes Resource Manager,

powers your mission-critical Spark applications.

523

© Scott Haines 2022

S. Haines, Modern Data Engineering with Apache Spark, https://doi.org/10.1007/978-1-4842-7452-1_15

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

In this chapter you’ll learn to deploy your Spark applications on Kubernetes.

Furthermore, you’ll see how to take advantage of the inherent idempotency provided

by K8s deployments, coupled with resource requests and limitations (e.g., CPU and

memory allocations). You’ll also learn how Spark’s dynamic allocation comes to the

rescue to help add super-powers to your self-assembling Apache Spark applications. By

the end of this chapter, you’ll see first-hand how Apache Spark on Kubernetes comes

together to power the myriad needs of any data platform and how Kubernetes fits into

the modern data ecosystem. Let’s get started.

 Kubernetes 101

In their own words, “Kubernetes is an open-source system for automating deployment,

scaling, and management of production-grade containerized applications.” In a nutshell,

Kubernetes is a reliable orchestration framework that provides distributed compute and

resource scheduling as a service, built on the first principles of isolation, consistency,

and reliability. It also happens to have a rich API that can be harnessed to enable smarter

decision making and flexibility when it comes to operating applications and services

at scale.

This book has gradually immersed you into the world of containers while teaching

you to architect and build containerized applications with Apache Spark. You learned

to run your applications using Docker, Docker Compose, and the Docker network to

orchestrate local workflows. Each workflow required the setup and bootstrapping of

curated, application specific environments, to support the myriad data engineering use

cases tackled in the book. Use cases ranged from common data processing workflows

like ETL/ELT, to job scheduling and orchestration, as well as architecting and building

pluggable (composable), config-driven, Spark pipeline applications.

Each previous chapter acted as a guide on this journey, drilling into specific aspects

of the data engineering ecosystem to lead you along a curated path through the most

important (need to know) tools and technologies, mental models, and architectures

to provide you with the skills necessary to tackle streaming problems with grace and

finesse. All previous chapters have been leading here, as evolutionary steps along the

journey to the K8s revolution, and our last chapter together.

This final chapter is broken into two main parts. In the first part, will get you started

with Kubernetes locally. You’ll learn to use the common components and resource APIs hands-on, while building your environment. Afterward, in part two, you’ll learn

524

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

to deploy your Apache Spark Structured Streaming applications on K8s. The chapter

concludes with next steps and pointers so you can take everything you’ve learned locally

up to the cloud and onward from there.

Exercise Materials the exercise materials for Chapter 15 are located at

https://github.com/newfront/spark-moderndataengineering/tree/

main/ch-15.

 Part 1: Getting Up and Running on Kubernetes

You can get started with Kubernetes locally in under an hour. Embracing the entire

ecosystem and learning the myriad APIs and best practices can take a lot longer, but

there are many books (and online tutorials and videos) available to walk you through

the core APIs at a lower level. We will instead go over the essentials for getting started,

touching upon the absolute need-to-know constructs, concepts, and paradigms. Let’s

get up and running.

 Using Minikube to Power Local Kubernetes

Minikube is a simple-to-use environment (and shell) that runs a small, dedicated

Kubernetes cluster locally in a virtual machine (Mac/Windows/Linux). Installation

instructions are available online at https://minikube.sigs.k8s.io/docs/start/,

or you can use brew install minikube if you are running on macOS. The following

sidebar provides an additional overview of the basic minikube commands. You can

come back to this section if you want to learn more. Otherwise, you can simply run

minikube start to get up and running.

MINIKUBE BASICS

once it's installed there are only a small handful of commands needed to operate minikube

effectively. the following commands can be run in your terminal of choice.

minikube start

525

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

this command simply spins up a local single-node kubernetes cluster and downloads and

installs any additional dependencies on your behalf.

minikube start

by default, the minikube virtual machine starts with two (Cpu) cores and 2gb of (raM)

memory. there are many options that allow you to customize your installation and specify how

the k8s cluster will operate. For example, you can choose the version of k8s, the total memory

to allocate to the virtual machine, and the number of Cpu cores.

minikube start \

--kubernetes-version v1.21.2 \

--memory 16g \

--cpus 4 \

--disk-size 80g

When you are ready to stop working, you can choose to keep the virtual machine running and

simply pause the processes in the k8s cluster, or you can choose to fully stop the cluster and

reclaim your system resources.

minikube pause

pause is a novel concept in minikube. rather than fully shutting down your cluster, you can

choose to pause (freeze) specific resources (governed by namespaces) or pause everything

that is running. pausing specific resources, such as local kafka or redis, can help when you

need to see how your applications act when a service is lost.

minikube pause -A

minikube pause -n kafka,redis

minikube unpause

any containers paused at a prior point in time can be unpaused.

minikube unpause -n kafka, redis

using pause and unpause can be lifesavers if you have limited local system resources,

and as an added benefit, they provide you with a simple mechanism to return to a specific

environment setup. this is not unlike how docker compose was used to ensure system

services were available for our spark applications to run.

minikube stop

526

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

When you decide you want to simply stop everything and shut down the physical virtual

machine, just use the stop command.

minikube stop

minikube status

From time to time, you will want to check the status of the minikube virtual machine. Just run

the status command to check in on the environment.

minikube status

that concludes the quick tour of the minikube basics. Come back here if you need to revisit

any of the basic commands.

Armed with your local (single node) Kubernetes cluster, you are now ready to begin

the scaffolding process required to run your Spark applications.

 A Hands-On Tour of the Kubernetes APIs

When working with any new tool, the primary objective is to understand, or

simply become aware of, the essential moving parts. With Kubernetes, that means

understanding the core services, concepts, and components. In this section, you will use

the kubectl installed via minikube to interact directly with the Kuberenetes APIs.

Tip if you want to support multiple versions of kubectl on your laptop (for

testing purposes or otherwise), you can use minikube kubectl -- to forward

commands into the internal kubectl inside the minikube virtual machine.

Let’s begin at the core, with the concept of a node.

 Nodes

Nodes are central units of scalability in a Kubernetes cluster. Nodes independently register and join the cluster through the cluster manager (K8s master). Newly joined nodes

increase the horizontal scale of the cluster by expanding the total schedulable resources

(CPU cores and memory). Similarly, nodes that exit the cluster (shutdown or failed) take

away from the total cluster resources, thus enabling loosely coupled elastically scalability.

527

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

 Common Node Services and Responsibilities

Each node in the cluster is comprised of a minimum of at least three components: the

 kubelet, the kube-proxy, and the container runtime.

 kubelet

The kubelet is an agent (running locally on every node) responsible for ensuring that the node can carry out its primary objective, which is to ensure all containers continue to

run within their respective pods.

 kube-proxy

The kube-proxy is an (agent) process that runs on every node in the cluster. It is

responsible for maintaining the network rules for forwarding packets to and from

the pods managed by the kubelet. This essential service enables cluster-wide

communication between applications and services at the node level and participates in

the service layer that enables external requests to be forwarded to a container running

on a pod.

 Container Runtime

The container runtime is a pluggable interface extending the Kubernetes Container

 Runtime Interface (CRI). It supports Docker and other popular container runtimes.

Together the three components—the kubelet, kube-proxy, and container runtime—

work to support the workloads running in a cluster. They do this by ensuring that each

node remains loosely coupled to the cluster and is primarily focused on isolated local

concerns, rather than cluster-wide concerns.

 Viewing All Cluster Nodes

To list all available nodes in your cluster (there will be one by default with minikube),

you can use the get verb on the node resource via the kubectl.

528

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

% kubectl get nodes

NAME STATUS ROLES AGE VERSION

minikube Ready control-plane,master 64m v1.21.2

Once you have the unique node name of a given node, use the describe verb to view the node’s metadata.

% kubectl describe node minikube

The result of the describe node command provides you with all the available

information regarding the node, including the node IP address (hostname), labels (think

tags), any annotations, as well as the available and used node resources (core/memory/

etc.). I recommend revisiting this command again when more services are running in

the cluster. After all, with only the one local node in the cluster, all pods and processes

will be scheduled there. Next up, namespaces.

 Namespaces

Namespaces provide the critically important role of protecting and isolating groups of

services from user error, to separate concerns between many people (teams) running

many workloads in a single federated Kubernetes cluster, and to control access to

protected resources like namespace-scoped secrets and compute and storage allocations

and prevent resource starvation.

Depending on the needs of your team or company, you can decide how you want

to manage your production clusters. However, when running your local development

cluster, I find it useful to separate services based on context and ownership. For example,

databases and other data services live in the data-services namespace, while Spark

applications live in another. By doing this, you effectively cordon off the dependent

services needed to run your Spark applications from the namespace where the Spark

applications run.

Tip in minikube the namespace can also be used to pause or unpause all pods in

the namespace.

minikube pause -n data-services.

use this technique to observe how fault-tolerant your spark applications are.

529

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

Next, you’ll be creating the data-services namespace.

 Creating a Namespace

You have two options when creating a namespace (and most resources and services in

Kubernetes). You can use the kubectl directly or you can provide an external resource

config file that can be applied.

Using the command line, execute the following create command.

% kubectl create namespace data-services

Success. You should see that the data-services namespace has been created. You

can confirm this assumption by checking the available namespaces using the get verb

on the namespaces (ns) resource.

% kubectl get namespaces

As a result, an ordered list of all active namespaces will be returned. Now, let’s

remove the namespace we just created, so we can re-create it again with a resource file.

 Deleting a Namespace

Resources created with the Kubernetes API can be destroyed using the delete verb on

the respective resource.

% kubectl delete namespace data-services

You’ll be recreating the data-services namespace next, but it is an important step

to learn to manage resources in a stress-free way since things can always be rebuilt.

 Creating Kubernetes Resources with Apply

Open your favorite text editor (or IDE), and create a file named namespace.yaml, as

shown in Listing 15-1.

 Listing 15-1. namespace.yaml

apiVersion: v1

kind: Namespace

metadata:

530

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

labels:

kubernetes.io/metadata.name: data-services

name: data-services

The namespace can now be created consistently using the apply verb on the

kubectl.

% kubectl apply -f namespace.yaml

Deleting File-Based Resources any resource created with apply -f {file}

can also be deleted using the same file.

kubectl delete -f namespace.yaml

Now you’ve seen two different ways to create and delete resources using the kubectl.

Note you might be wondering why anyone would choose to use a file when the

command line is faster (and easier). this decision can be filed under consistency.

if you want to achieve good portability with your systems and services while also

maintaining an ecosystem that runs just as easily locally as it will in the cloud, you

need a simple way to rebuild (scaffold) an entire working environment, and that

process starts with a durable blueprint.

Next, you’ll learn the steps to deploy Redis into your minikube cluster using the

newly minted data-services namespace.

 Pods, Containers, and Deployments

We’ll begin with a quick introduction to pods and follow up with an exercise. You’ll see first-hand how a pod deployment works, and as a by-product, you’ll learn what a pod is

and how containers fit into the problem. Along the way, you’ll learn to manage cluster

resources at the container level. For the icing on the cake, you’ll be introduced to stateful

(durable) storage using persistent volumes.

531

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

These steps are all necessary as you work our way toward deploying your first

Spark Structured Streaming application on Kubernetes. As you’ll find out in part 2 of

this chapter, Spark does a lot of magic on your behalf, but without understanding the

constituent parts, the simplicity can come back to haunt you.

 What Is a Pod?

 Pods get their name from nature. A pea in a pod or a pod of whales. In Kubernetes, a pod is the smallest deployable unit of compute. It is important to think of a pod as a construct

encapsulating an isolated environment for a group of one or more containers that

provide runtime protection (think of the protective shell wrapping English peas) to the

shared resources of the underlying group. Resources that include the sharing of a local

(pod-centric) network (localhost/127.0.0.1) and local access to shared storage (volumes/

disk space), all with the runtime guarantee that a pod will only be successfully scheduled

if all resource requests (CPU/memory/storage) and other specialized requirements are

met completely (across all containers). This is required for a pod to be considered in a

 healthy state. The relationship of the pod to a node is shown in Figure 15-1. The common components (covered earlier in the chapter) are nodes, the kublet, the container

runtime, and the kube-proxy, and they work together to run pods and route traffic to and

from the containers of the pod.

 Figure 15-1. Pods are scheduled to run on one or more nodes and allocate

 resources on the physical node, controlled by the kublet process

532

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

Because each pod has its own localized scope, many pods can be scheduled to

run on top of the same underlying node without the worry of collisions within the

addressable network space. Furthermore, concerns regarding node-wide access to

shared secrets or restricted files in the global user space can instead be managed at the

pod level, making security and separation of concerns easier. Pods add a nice paradigm

by separating workloads running across the shared cluster, as well as on the same

physical node.

By design, containers running in a pod cannot break isolation and reach into other

pods running on the same node. This would raise concerns from a security point of view

and would also break the concept of loose coupling, since pods need to be aware of the

other pods in the first place. Okay, so that is great, but to really appreciate pods, we’ll

create a pod spec to run Redis.

 Creating a Redis Pod Spec

In Chapter 10, you were introduced to running Redis via docker compose. Let’s revisit the Redis service from the chapter exercise’s docker-compose.yaml and then convert the

configuration into a Kubernetes pod spec. Listing 15-2 provides the Redis service from Chapter 10.

 Listing 15-2. Docker Compose-Based Redis Service

services:

redis:

image: redis:6.2

container_name: redis

hostname: redis

ports:

- 6379:6379

healthcheck:

test: ["CMD", "redis-cli", "ping"]

interval: 5s

timeout: 30s

retries: 50

restart: always

533

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

Using the docker compose service configuration as our mental model, let’s create

a simple Redis PodSpec, and then launch the Redis pod. Listing 15-3 provides the configuration needed. Open your favorite editor, create a new file called redis-pod-basic.yaml, and add the contents from Listing 15-3.

 Listing 15-3. Basic PodSpec to Configure and Launch Redis (redis-pod-

basic.yaml)

apiVersion: v1

kind: Pod

metadata:

name: redis-basic

namespace: data-services

labels:

app: redis

type: basic

spec:

restartPolicy: OnFailure

containers:

- name: redis

image: redis:6.2

imagePullPolicy: Always

ports:

- containerPort: 6379

protocol: TCP

resources:

limits:

memory: "1G"

cpu: "2000m"

requests:

memory: "500Mi"

cpu: "1000m"

534

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

The Redis PodSpec in Listing 15-3 creates a uniquely named pod template. The reason that we call this a PodTemplate is because it can be used to launch one or more

pods. Starting at the top, we begin by specifying the K8s apiVersion for our pod resource

(kind: Pod). By declaring the API, Kubernetes is free to support and deprecate older APIs

without forcing convergence.

 metadata

Next, the metadata properties are used to uniquely assign a name to our pod (redis-

basic) and to add configuration that can be used to schedule and locate our pod. In

this case, we assign the data-services namespace and add some labels, which we can

use later as a means of locating a specific subset of pods, or to isolate an individual pod

within our namespace.

 spec

Moving on to the most important config: the pod spec (spec) block itself. As mentioned,

a pod encapsulates an isolated environment for one or more containers, and so the

PodSpec is broken into many parts to allow for common configuration of shared

resources, as well as container specifics configs. You’ll see some overlap in the container

specification between the docker-compose.yaml in Listing 15-2 and the Redis pod spec from Listing 15-3. The biggest differences being the granular control of the resource requests and limits, and the port configs.

Let’s release this pod into the wild.

 Scheduling the Redis Pod

Using kubectl we can apply the redis-pod-basic.yaml and let Kubernetes schedule our

pod. Then we can ultimately reach convergence with our desired state of the world.

% kubectl apply -f redis-pod-basic.yaml

If all went as expected, you’ll see the pod/redis-basic created message from the

kubectl. Let’s go find our pod.

535

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

 Listing, Describing, and Locating Pods

From the command line, call get on the pods resource.

% kubectl get pods

You might be scratching your head at this point, wondering why no results are

showing up (no resources were found in the default namespace). This is because

Kubernetes (by default) will only list resources from a single namespace, which

happens to be the default namespace. By adding the explicit namespace or by

including the flag --all-namespaces, you can achieve the desired result.

% kubectl get pods -n data-services

NAME READY STATUS RESTARTS AGE

redis-basic 1/1 Running 0 44m

Now that you can find your pod, you can also gather more information regarding the

pod itself by using the describe verb on the pod resource using the pod name.

% kubectl describe pod/redis-basic

The results of calling describe can be used to gather extended details about the pod

itself, including the launch date, container, node, IP addresses, current observed pod

conditions, and more.

Lastly, in the future case where you have many pods running, and you want to find a

specific pod (or group of pods) you can lean on the metadata labels of the pod resource

to find what you are looking for (across one or many namespaces). Listing 15-4 executes a universal search across all namespaces in order to find any pod with a matching label

(app=redis) that is not the type pv (type!=pv).

 Listing 15-4. Using Label Selectors to Locate Pods Across All Namespaces

% kubectl get pods \

--all-namespaces \

-l app=redis,type!=pv

The query in Listing 15-4 will return all matching pods. In our case there is currently only one.

NAMESPACE NAME READY STATUS RESTARTS AGE

data-services redis-basic 1/1 Running 0 78s

536

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

Our next order of business is to simply pop onto the new Redis pod and execute a

few commands using the redis-cli.

 Executing Commands on the Redis Pod

In the same way that you have grown comfortable using the docker exec command, you

can literally transfer your skills directly to Kubernetes and the kubectl. The command in

Listing 15-5 will connect you to the redis-basic pod and start the redis-cli.

 Listing 15-5. Connecting to a Running Pod Using kubectl Exec

% kubectl exec \

-n data-services \

-it redis-basic \

-- redis-cli

Get and set a key to make sure Redis is working as expected.

127.0.0.1:6379> set app redis-basic

OK

127.0.0.1:6379> get app

"redis-basic"

Exit the process (Command+C) so we can delete the pod.

 Deleting the Redis Pod

You probably already know the command that is needed. Just like with the namespaces,

you can simply use the delete verb on the pod resource to delete a pod by name.

% kubectl delete -n data-services pod/redis-basic

So why go through the effort to do all that work just to delete things? The answer

resides in our expectations for a given service. In the real world, given that pods can be

killed almost at random (due to the normal lifecycle of any cloud-native infrastructure),

you’ll ultimately need a reliable mechanism to ensure that all your services (including

Spark applications) can be deployed, monitored, and restored in a consistent fashion

with limited or zero human intervention.

537

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

We’ll look at the Kubernetes deployment resource next, as we learn to create

consistent and reliable deployments.

 Deployments and Handling Automatic Recovery on Failure

You learned to configure a pod specification in the last section. Using a simple pod

template, you can schedule and run a pod in the data-services namespace. Through

this process you learned how a pod’s metadata can be used to decorate a pod (using

labels for label selection), and how to configure a simple single container spec. Using

the skills you acquired for running the redis-basic pod, you’ll learn next to generate

managed deployments using the Kubernetes Deployment resource.

 Creating a Kubernetes Deployment

A deployment is a special kind of K8s resource that introduces extended capabilities for managing and operating reliable deployments for a given pod specification. Managing

reliability as a service, the Kubernetes cluster will supervise the resources configured

and included within a deployment, ensuring common problems like node failures don’t

cause your services to come to a grinding halt.

Create a new file called deploy-redis-memory.yaml and add the contents of the

deployment configuration in Listing 15-6 to the file. Then save it.

 Listing 15-6. Deployments Provide Your Pod-Based Services with Runtime-

Consistent Behavior Including Automatic Recovery from Failures, And Out-Of-

The-Box Capabilities for Handling Rolling Updates for Replicated Services

apiVersion: apps/v1

kind: Deployment

metadata:

name: redis-memory

namespace: data-services

labels:

app: redis-memory

type: canary

spec:

replicas: 1

538

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

strategy:

rollingUpdate:

maxUnavailable: 100%

type: RollingUpdate

selector:

matchLabels:

app: redis

type: memory

template:

metadata:

labels:

app: redis

type: memory

spec:

containers:

- name: redis

image: redis:6.2

 volumeMounts:

 - name: redis-storage

 mountPath: /data

imagePullPolicy: Always

ports:

- containerPort: 6379

protocol: TCP

resources:

limits:

memory: "1G"

cpu: "2000m"

requests:

memory: "500Mi"

cpu: "1000m"

 volumes:

 - name: redis-storage

 emptyDir:

 medium: Memory

539

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

You’ll notice that the initial deployment config in Listing 15-6 wraps the pod spec that was introduced in Listing 15-3, with two small changes to introduce pod-based local volume storage. Volumes are shared resources in the pod, but rather than being immediately available to all containers, each container must declaratively add the

volume using volumeMounts. Mounting (or attaching) volumes to a container also comes

paired with the added benefit of enabling each container to create a custom mount path.

volumeMounts:

- name: redis-storage

mountPath: /data

We’ll cover volumes and volumeMounts later, but for now, take notice that the

volumes spec is configured at the same level as the containers spec, while the

volumeMounts are configured on a container-to-container basis. Now let’s create the

deployment.

 Deployments and Resource Management

Using the deployment configuration from Listing 15-6, apply the config to create and kick off your deployment.

% kubectl apply -f deploy-redis-memory.yaml

Now that your deployment has been created, let’s have a little fun. Rather than

unpacking all the deployment details, let’s instead investigate the deployment using the

following four steps: locate, connect, observe, and delete.

 Locate the Newly Deployed Pod

Find your newly deployed redis-memory pod using any of the techniques you’ve picked

up in the chapter. When you locate it, you’ll notice that the pod has a longer name than

before. For example, mine was created as redis-memory-78d89d7c87-zchc2. If you want

to understand why, check out the deployment metadata.

% kubectl get deployment/redis-memory -n data-services

Now, connect to the managed pod.

540

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

 Connect to the Managed Pod

Connect to the managed Redis pod and repeat the steps from Listing 15-5. Remember to check that the keys were saved before you disconnect from the pod.

 Observe Pod States and Behavior

In a second terminal window (preferably side-by-side to your existing terminal session),

run the following command.

% kubectl get pods -n data-services --watch.

Watching the pods will enable you to observe real-time state changes for all the pods

in the target namespace.

 Delete the Managed Pod

Returning to your first terminal window, delete the Redis pod.

% kubectl delete -n data-services pod/redis-memory-78d89d7c87-zchc2

What happens?

You’ll observe that the second you delete the managed pod, a new pod is

immediately, in near real-time, scheduled to replace the deleted pod.

The output in Listing 15-7 shows the state change messages as observed on my cluster. The output shows my initial pod (redis-memory-78d89d7c87-zchc2) as it

changes state from Running to Terminating. At the same time, a new Pod is created

to ensure we always have at least one replica, given our deployment states that we

desire replicas: 1. The replacement pod comes up initially in the Pending state, then

ContainerCreating, and lastly Running. All of this happens in under five seconds locally.

Unless the deployment is deleted, Kubernetes will keep your pod running forever.

 Listing 15-7. The Observed State Changes When a Managed Pod (Behind a

Stateful replicaset) Is Terminated

NAME READY STATUS RESTARTS AGE

redis-memory-78d89d7c87-zchc2 1/1 Running 0 35m

redis-memory-78d89d7c87-zchc2 1/1 Terminating 0 36m

redis-memory-78d89d7c87-p4hzl 0/1 Pending 0 0s

541

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

redis-memory-78d89d7c87-p4hzl 0/1 Pending 0 0s

redis-memory-78d89d7c87-p4hzl 0/1 ContainerCreating 0 0s

redis-memory-78d89d7c87-zchc2 0/1 Terminating 0 36m

redis-memory-78d89d7c87-p4hzl 1/1 Running 0 4s

redis-memory-78d89d7c87-zchc2 0/1 Terminating 0 36m

redis-memory-78d89d7c87-zchc2 0/1 Terminating 0 36m

Now for the bad news. While the deployment controller was able to restore the

deleted pod, you’ll find that there are zero keys in the Redis database. You can confirm

this for yourself using the redis-cli. Well, why is that? Wasn’t the pod supposed to be

consistent and reliable?

This is in fact all by design. To declare each deployment idempotent and to support

runtime fault-tolerance in a consistent way, pods and their underlying containers must use

 immutable conventions. Otherwise, runtime alterations (mutations) to any pod-local

resource (such as adding new keys to the Redis database) will be lost when a pod is

terminated or experiences irrecoverable failure. Given that pods, by convention, need to be

capable of quickly moving around the cluster, it is a best practice for external configuration,

secrets, as well as storage to be managed by Kubernetes to ensure consistency.

Let’s complete our hands-on tour of Kubernetes by learning to persist data between

deploys. Then we’ll get our hands dirty with the Kubernetes Resource Manager for

Apache Spark.

 Persisting Data Between Deploys

Kubernetes provides a rich abstraction for file system (and memory) storage based on

the concept of volumes and volumeMounts. You were introduced to these two concepts

in the last section (in Listing 15-6), and now you’ll learn to enable persistent storage that can survive pod failures.

To get started, we are going to use node-level storage, which persists on a Kubernetes

node and prevents data loss when a pod is terminated. It is worth noting that if you

delete your minikube virtual machine, you will lose your node-level data as well.

From the command line, ssh to minikube and then create an empty directory located

at /mnt/data.

% minikube ssh

$ sudo mkdir -p /mnt/data

542

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

With this step completed, we can move on to creating a persistent volume resource.

Warning ssh access in managed production kubernetes clusters (such as eks/

aks/gke) is most likely not necessary. Consider restricting ssh access or turning

it off completely to protect malicious actors from messing with your kubernetes

cluster.

 Persistent Volumes (PV)

Local changes made in a container at runtime will disappear when the pod terminates,

fails, or is otherwise replaced (rescheduled) due to normal lifecycle events (like a fresh

deployment). As you’ve seen, this also includes any database records added to the local

pod environment.

Fortunately, reliable storage can be provisioned for use in the Kubernetes cluster,

using the local file system storage of the underlying Kubernetes’ nodes, or the more

loosely coupled practice of attaching managed cloud network file system storage.

Consider for example the offerings of the major cloud vendors: Amazon’s Elastic Block

Storage, Microsoft’s AzureFile/AzureDisk, and Google’s Persistent Disk. Persistent volumes abstract away the storage providers from the actual consumers, enabling

applications to request storage, and for Kubernetes to do the work of finding and

claiming resources matching the storage requests.

 Configuring a Persistent Volume (PV)

Create a file named persistent-volume.yaml and add the PersistentVolume

resource configuration shown in Listing 15-8. This template can then be applied to the Kubernetes cluster to create a persistent volume located physically on the single node in

your minikube cluster.

 Listing 15-8. Creating a PersistentVolume for Redis (persistent-volume.yaml)

apiVersion: v1

kind: PersistentVolume

metadata:

name: general-pv-volume

543

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

namespace: data-services

labels:

type: local

spec:

storageClassName: manual

capacity:

storage: 2Gi

accessModes:

- ReadWriteOnce

hostPath:

path: "/mnt/data"

The resource configuration in Listing 15-8 creates (cordons off) a 2GB volume located in the /mnt/data directory of your minikube node. Apply the configuration to

create the new resource, then look at what you’ve created using the get and describe

verbs on the persistentvolume (pv) resource type to dive deeper into this new

resource type.

Create the Persistent Volume

% kubectl apply -f persistent-volume.yaml

View the Persistent Volume

% kubectl get pv general-pv-volume

NAME CAPACITY ACCESS MODES RECLAIM POLICY

general-pv-volume 2Gi RWO Retain

Describe the Details of the Persistent Volume

% kubectl describe pv general-pv-volume

Armed with the general-pv-volume, our next step is to create a claim policy to

govern read/write access to the volume using the PersistentVolumeClaims resource.

544

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

 Persistent Volume Claims (PVC)

PVs are storage-specific resources in your cluster. The PVC acts as a resource that claims

a portion (or all) of a PV. Just like a node can be sliced up to run workloads of various

sizes (controlled by pod specs) with respect to CPU cores and memory, PVCs represent

a storage request of a specific amount of storage space, along with specific access modes

to govern inclusive or exclusive read and write access to the underlying storage resource.

 Configuring a Persistent Volume Claim (PVC)

Using the configuration in Listing 15-9, create a new file named persistent-volumeclaim.yaml.

 Listing 15-9. Creating a PersistentVolumeClaim (persistent-volume-claim.yaml)

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

name: redis-pv-claim

namespace: data-services

spec:

storageClassName: manual

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 500Mi

The PVC in Listing 15-9 configures a named claim (redis-pv-claim) requesting at least 500 Mi (MB) and the access mode ReadWriteOnce. This access mode allows a

pod to claim exclusive access to the bound PV, which is the correct access mode for our

Redis service. You’ll probably also have noticed that the PVC doesn’t mention anything

about the actual PV (this is due to the loose coupling of storage provisioning and storage

consumption; the details are simply abstracted away). Next, create the PVC resource,

and then learn more about what you’ve created using the get and describe verbs on the

persistentvolumeclaim (pvc) resource type.

545

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

Create the Persistent Volume Claim (PVC)

% kubectl apply -f persistent-volume-claim.yaml

Use Get to View the PVC

Checking on the status of the PVC shows if the claim has been bound to a PV, including

the name of the bound volume.

% kubectl get pvc -n data-services

NAME STATUS VOLUME CAPACITY

redis-pv-claim Bound general-pv-volume 2Gi

View the PV

Given that the PV to PVC relationship is bi-directional, you can also discover the PVC

claim and the status of the claim (reference) through the PV.

% kubectl get pv redis-pv-volume

NAME RECLAIM STATUS CLAIM

general-pv-volume Retain Bound data-services/redis-pv-claim

Tip kubernetes will use the resources:requests:storage value from the

pVC to attempt to find a matching pV. in our case, we claim 2gi when we only

requested 500Mi. i recommend looking at dynamic provisioning for pVs as a

follow-up if you are interested.

 Enhancing the Redis Deployment with Data Persistence

Let’s put the PV and PVC into action and modify our earlier Redis deployment

from Listing 15-6. It turns out all we need to do at this point is modify the volumes configuration of the pod spec. Open your deployment config file from earlier and modify

the volume type from emptyDir to persistentVolumeClaim (as shown in Listing 15-10).

546

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

 Listing 15-10. Using a Persistent Volume Claim to Persist Data

apiVersion: apps/v1

kind: Deployment

...

spec:

template:

spec:

volumes:

- name: redis-storage

persistentVolumeClaim:

claimName: redis-pv-claim

Save the changes for the deployment and apply the updated deployment. Any data

saved in your Redis database (stream objects, keys, etc.) will persist between deployments

in a stateful and consistent way. Run through the process from Listing 15-6 and then delete your pod. Watch as your Redis service comes back up in the same state you left it.

 Kubernetes Services and DNS

As a final step, let’s add a Service definition for our Redis pod deployment. Services in Kubernetes enable service discovery within the scope of a single namespace (by default)

allowing you, for example, to use Redis from within the data-services namespace,

which could be used in powering Airflow or to act as a cache layer for MySQL.

 Creating a Service

Create a file named redis-service.yaml and add the following Service configuration in

Listing 15-11. Then apply the config using kubectl apply -f.

 Listing 15-11. Defining a Kubernetes Service Resource for Redis

apiVersion: v1

kind: Service

metadata:

name: redis-service

namespace: data-services

547

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

spec:

selector:

app: redis

type: memory

type: ClusterIP

ports:

- name: tcp-port

port: 6379

targetPort: 6379

protocol: TCP

The Redis service definition in Listing 15-11 creates a dynamic service pointing to port 6379 on the group of zero or more pods matching the Service selector

(app=redis,type=memory). This abstraction enables you to define a loosely coupled

service that leans on Kubernetes to fill in the endpoint(s) dynamically, using selectors.

The bound endpoints are the pod’s IP addresses for the subset of pods matching the

selection criteria

 Viewing Services (SVC)

kubectl get services -n data-services

NAME TYPE CLUSTER-IP PORT(S) AGE

redis-service ClusterIP 10.106.24.62 6379/TCP 8d

We’ll revisit services again in Part 2. For now let’s recap what we’ve learned.

 Part 1: Summary

The first half of this chapter introduced you to many of the core components, concepts,

and APIs available for running cloud-native applications on Kubernetes. As mentioned,

running Apache Spark on Kubernetes (using the official Spark Kubernetes Resource

Manager) abstracts away (and protects you from) much of the runtime details and complexity required to get started with K8s. However, when moving from POC to

production, it is always necessary to establish a solid foundation of not only the tools but

of the environment where they run. That’s why we walked through the steps to set up

and configure the persistent Redis deployment.

548

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

As a follow-up exercise, test what you’ve learned in the first half of the chapter by

bringing both MySQL and MinIO into your local Kubernetes cluster. You can use the

earlier lessons in the book to reference everything you’ll need, including using the

docker-compose files and initialization steps. Get creative with how you solve these

problems and use the process to take a closer look at what works and doesn’t work as

you build up your mental models.

Now the part we’ve all been waiting for—it is time to learn how to deploy your

Apache Spark applications on Kubernetes.

 Part 2: Deploying Spark Structured Streaming

Applications on Kubernetes

With your Kubernetes cluster up and running and your data-services namespace

carved out, we’ll dive into the additional Kubernetes resources needed to power our

Apache Spark environment.

Hands-On Content the chapter material for this second part of the chapter

is located in ch-15/spark-on-kubernetes. the complete walkthrough is

available in the READMEs. Full solutions for running both Minio and MysQl in the

data-services namespace can prepare you for this next adventure.

 Spark Namespace, Application Environment, and Role-

Based Access Controls

There are a few essential resources required to enable your Apache Spark applications

to run. In this section, we define the spark-apps NAMESPACE, and then you’ll be

introduced to roles, role-bindings, and service accounts.

 Define the Spark Apps Namespace

The command in Listing 15-12 creates a new namespace for our Spark applications called spark-apps. Create this namespace.

549

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

 Listing 15-12. Defining the Spark Apps Namespace

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Namespace

metadata:

labels:

kubernetes.io/metadata.name: spark-apps

name: spark-apps

EOF

With the spark-apps namespace defined, the next step is to establish some rules to

govern the runtime capabilities of our Spark applications. Just like in the real world, you

wouldn’t give your house keys to any random stranger who asked, and the same goes in

the Kubernetes world. Pods have known identities controlled by nonfungible mutual-

TLS controlling authentication and authorization based on token/certification exchange

between the pods and the Kubernetes API. A pod can assume a specific identity and

receive special resource and access permissions governed by the service account, role,

and role-binding resources.

 Role-Based Access Control (RBAC)

Like establishing permissions in SQL systems using GRANT and REVOKE, role-based access

control (RBAC) is used to define general capabilities and permissions for your pods as

well as the real-world users accessing your K8s clusters.

Roles

Roles within Kubernetes are used to define common permissions at the API level (such

as creating, modifying, or destroying resources).

% kubectl get roles -n {namespace}

Roles define a list of rules that are governed on the resource and are verb level within

a specific namespace.

550

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

Note you can also define rules that govern access at the cluster-level, rather

than just a specific namespace. these are called clusterroles: % kubectl

get clusterroles

Service Accounts

Service accounts provide an identity mechanism in the Kubernetes API. This is

equivalent to using IAM permissions on Amazon Web Services. Service accounts provide

token-authorized access to specific resources in the Kubernetes cluster. By default, each

namespace generates a common service account named default. This default identity is

then automatically associated with any pod created in each namespace unless a different

service account is specified.

% kubectl get sa -n {namespace}

Role Bindings

Role bindings connect a user, group, or service account to a specific role.

% kubectl get rolebindings -n {namespace}

Let’s set up the spark-controller service account now, along with the associated

role and role-binding.

 Creating the Spark Controller Service Account, Role,

and Role-Binding

Given that pods run within namespaces and given the fact that we want our Spark

Structured Streaming applications to be able to supervise themselves—adding and

removing executor pods when necessary—we need to create a special service account

(spark-controller) that can be bound to our Spark application’s pods. This will grant

the pods capabilities to create and destroy themselves and manage additional resources

within the namespace (so that we don’t have to).

The multi-part resource definition in Listing 15-13 generates three new resources inside the spark-apps namespace. The Role (spark-app-controller), ServiceAccount

(spark-controller), and RoleBinding (spark-app-controller-binding).

551

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

 Listing 15-13. Creating Multiple K8s Resources Can Be Achieved Using the

multipart --- Separator

cat <<EOF | kubectl apply -f -

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

namespace: spark-apps

name: spark-app-controller

rules:

- apiGroups:

- ""

resources:

- pods

- services

- configmaps

verbs:

- list

- create

- delete

- get

- list

- patch

- update

- watch

apiVersion: v1

kind: ServiceAccount

metadata:

name: spark-controller

namespace: spark-apps

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

552

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

name: spark-app-controller-binding

namespace: spark-apps

subjects:

- apiGroup: ""

kind: ServiceAccount

name: spark-controller

roleRef:

apiGroup: rbac.authorization.k8s.io

kind: Role

name: spark-app-controller

EOF

The technique in Listing 15-13 enables you to provide a single file declaring a set of resources. Leaning on the multipart resource definition pattern ensures that the various

needs of each isolated deployment are met in a consistent way.

Tip For complex deployments, or for bootstrapping entire environments, you can

lean on multi-resource configurations like the spark bootstrap config (listing 15-13).

in doing so, you can ensure that all your deployment dependencies (resources)

are available and applied within the k8s cluster in the correct order before

deployment. the name of the game is consistency. two popular solutions have

been adopted by the k8s community—helm and kustomize—to make it easier to manage deployment complexity. helm is like a k8s package manager, enabling

complex deployments to be installed and updated with ease using the command

line. kustomize, on the other hand, is a template-free configuration manager that

makes it easy to merge (overlay) environment-specific configs on top of common

deployment resources. this solution enables you to configure deployments

for development, stage, and production environments while reusing common

configuration to prevent the problems of configuration drift.

Now that you have applied the environment scaffolding, it is time to revisit the

generic Structured Streaming application from Chapter 13 and prepare it for deployment in the K8s cluster.

553

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

 Redis Streams K8s Application

You were introduced to Structured Streaming using Redis Streams in Chapter 10, as

a lightweight (low overhead) streaming source. The initial application was built to

show you how to reliably read unbounded streams of CoffeeOrder events, control

the application triggering process (as a stateful batch or streaming micro-batch), and

maintain the state of the application using checkpoints. The result was a simple, but

consistent, streaming application that read and wrote CoffeeOrders into distributed

tables in our data warehouse (MinIO).

In Chapter 13, we leveraged Spark Structured Streaming to generate time-based (windowed) aggregations, thereby simplifying the otherwise complex process of creating

reliable streaming analytics data. We’ll build on the generic aggregations application

from Chapter 13 and create a new container that can be deployed and managed inside the minikube cluster.

To get started, open the ch-15/applications/redis-streams-k8s application in

your favorite IDE or simply open the source code to follow along.

 Building the Redis Streams Application

We won’t be touching the source code of the application; it is ready to be built. There are

just a few small adjustments that are worth pointing out from the container perspective.

First, the Dockerfile has been adjusted to copy the contents of the user_jars

directory into our final container, which can be seen in Listing 15-14. This process is done for consistency, ensuring there are no unexpected missing dependencies or

runtime gotchas.

 Listing 15-14. Modifying the Dockerfile to Package Any Additional Runtime JARs

and Base App Configurations

FROM newfrontdocker/${spark_base_version}

ARG app_jar

USER 1000

copy and rename

COPY --chown=1000 ${app_jar} /opt/spark/app/jars/redis-streams-k8s.jar

554

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

copy the config for the app

COPY --chown=1000 conf /opt/spark/app/conf

COPY --chown=1000 user_jars /opt/spark/app/user_jars

As mentioned, the changes to the Dockerfile were made to generate a consistent

container, one that includes all required runtime JARs and common baseline

configurations. The baseline configurations that ship in the container are the TypeSafe

configurations from Chapter 13, the fairscheduler.xml file (introduced in the last chapter), and two executables (spark-submit.sh and spark-submit-lite.sh), which

can be used to submit your application from within the Kubernetes cluster.

Tip if you need similar common dependencies, those can be bundled into your

base spark container images. that way, each application doesn’t have to repeat

the process of byo-Jars. Just make sure to add what is necessary for common

use cases so the size of the image remains as small as possible.

 Building the Application Container

The second change is to the container build process. You’ll need to build your local

application image using the minikube Docker environment. There is one small

additional step, as shown in Listing 15-15, which boils down to a one-line eval statement.

 Listing 15-15. Building Your Container for Use in the minikube Environment

1. sbt clean assembly

2. eval $(minikube docker-env)

3. docker build . -t mde/redis-streams-k8s:1.0.0

Now that you have built the container, the next step is to deploy it.

Tip it is faster while you are testing things locally to use the trick in listing 15-15

to iterate quickly on your application. the alternative path is to build and push your

image to Dockerhub or an alternative container registry service like amazon eCr.

555

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

 Deploying the Redis Streams Application on Kubernetes

Thinking back to the journey of running the various Spark applications throughout the

book, we often augmented the runtime environment using mounted configuration and

runtime resources (JARs, secrets in hive-site.xml, and config) via docker-compose.

To enable communication between specific containers, we also used the internal Docker

network (mde). It makes total sense to apply similar strategies to our Spark applications

on Kubernetes.

Earlier in the chapter, you learned about services and volumes (persistent and

ephemeral). In preparation for deployment, you’ll add a new service type to simplify

cross-namespace DNS resolution with the services running in the data-services

namespace. You’ll also learn how to externalize environment variables and deployment-

specific configuration, as well as secrets, like the hive-site.xml and the MinIO access/

secret keys. We’ll turn our attention to using volumes that extend beyond traditional file-

based storage (directories and individual files).

Running the Code From your terminal, switch your working directory to ch-15/

spark-on-kubernetes.

 Externalized Dependency Management

There are two important resource types that act like volumes (and can be mounted to a

pod), but provide additional specialized capabilities. They are named ConfigMaps and

Secrets and you will lean on them in your deployment.

 External Configuration with ConfigMaps

The ConfigMap resource provides a solution for storing uniquely identified collections

of data (files, binary data, etc.) scoped within a namespace. ConfigMaps are commonly

used to provide shared environment variables (for dev, stage, and production

environments, for example) and to provide isolated (deployment-specific) application

resources.

Let’s create a ConfigMap that can be used as our default Spark application

configuration (spark-defaults.conf). From your terminal (within the spark-on-

kubernetes directory), run the following command:

556

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

kubectl create configmap spark-redis-streams-conf \

--from-file=spark-redis-streams/config \

-n spark-apps

Magically, the contents of the config/spark-defaults.conf file are encoded into

your spark-redis-streams-conf resource. To inspect the contents, you can run the

following command:

kubectl get configmap spark-redis-streams-conf \

-n spark-apps \

-o yaml

The output essentially just shows you the contents of your spark-defaults.conf.

 Secrets

Everyone knows you shouldn’t commit usernames, passwords, or sensitive data into Git

(or whatever version control system you are using. Otherwise, you may inadvertently

leak sensitive data. The Secret resource type allows you to store sensitive data (within

your namespace) that is guaranteed to travel over an encrypted (HTTPS) channel and is

stored internally as a base-64 encoded string.

 Securely Storing the Hive Metastore Configuration

The command in Listing 15-16 encodes the hive-site.xml that we’ve been using to access the MySQL backed Hive Metastore and wraps it into a secret resource called

hivesite-admin that can be mounted safely onto our Spark application pod at runtime.

 Listing 15-16. The hive-site.xml Wrapped as a Secret for Use Within Our

Application Deployment

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Secret

metadata:

name: hivesite-admin

namespace: spark-apps

type: Opaque

stringData:

557

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

hive-site.xml: |

<configuration>

<property>

<name>javax.jdo.option.ConnectionURL</name>

<value>jdbc:mysql://mysql-service.spark-apps.svc.cluster.

local:3306/metastore</value>

</property>

<property>

<name>javax.jdo.option.ConnectionDriverName</name>

<value>org.mariadb.jdbc.Driver</value>

</property>

<property>

<name>javax.jdo.option.ConnectionUserName</name>

<value>dataeng</value>

</property>

<property>

<name>javax.jdo.option.ConnectionPassword</name>

<value>dataengineering_user</value>

</property>

</configuration>

EOF

You’ll notice that hive-site.xml is stored in the stringData block. For binary files

like hive-site.xml and spark-defaults.conf, you can’t use simple key/value pairs,

which makes the resource definition longer in size.

While we are here, it is worth also pointing out that ConnectionURL in hive-site.

xml is pointing to a service domain name that doesn’t currently exist in the spark-apps

namespace.

jdbc:mysql://mysql-service.spark-apps.svc.cluster.local:3306/metastore

We’ll be adding an ExternalService resource later to provide our alias to the data-

services MySQL service.

Tip use the ch-15/spark-on-kubernetes/data-services/README.md to

set up MysQl on k8s if you haven’t tried your hand at it yet and want the solution.

558

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

Now that we have hive-site.xml encoded as a secret, the other sensitive

information we’ve been working with is the MinIO access and secret keys. This is

thankfully a simpler definition, using key/value pairs.

 Securely Storing the MinIO Access Parameters

The resource definition in Listing 15-17 encodes the administration username and password information. Create the minio-access resource. Remember that secrets are

controlled outside of your application source code, so you don’t have to worry about

accidently committing secrets to GitHub. Just reference known secrets and mount them

to your pod for use in your container.

 Listing 15-17. Creating the minio-access key/value Pair Secret for Use with the Spark Application Deployment

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Secret

metadata:

name: minio-access

namespace: spark-apps

type: Opaque

stringData:

access: minio

secret: minio_admin

EOF

With the two secrets created, you can now use them in your deployment

specifications using volumes and volumeMounts.

 Viewing Secrets in the Namespace

If you want to view the encoded secrets, you can use the following commands:

% kubectl get secrets -n {namespace}

% kubectl get secret/{name} -n {namespace} -o yaml

The next order of business is to add the ExternalService configurations required to

run our Spark Structured Streaming application.

559

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

 Cross Namespace DNS and Network Policies

Fun fact: namespaces provide a natural protective barrier for cross-namespace

communication. To enable crosstalk between namespaces, for example in an actual

production Kubernetes cluster, you need to create a policy using an special service

configuration called ExternalName, along with a NetworkPolicy. Combined, this enables applications running in an isolated namespace to make requests to services running in

another namespace. For example, to enable your Spark applications to communicate

with the data-services namespace.

When running on minikube, we are going through the motions here since the

network is shared on our single node. Let’s define the service pointer to the data-

services MySQL service (shown in Listing 15-18).

 Listing 15-18. The ExternalName Service Provides a Local Fully Qualified

Domain Name (FQDN) Internal to Your Namespace that Resolves to an External

Service in Another Namespace

cat <<EOF | kubectl apply -f -

kind: Service

apiVersion: v1

metadata:

name: mysql-service

namespace: spark-apps

spec:

type: ExternalName

externalName: mysql-service.data-services.svc.cluster.local

ports:

- port: 3306

name: tcp-port

EOF

Why would you need to use this? As things go, internally managed services routinely

switch ownership between teams over time. If a new team is picking up ownership of

some services and switching namespaces, you can update a single resource and migrate

your applications or chain ExternalName resources between namespaces.

560

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

Ultimately, as things grow in scale, you’ll find yourself eventually migrating to a

service mesh such as Istio, but since you are starting out, remember to keep things

simple (there are already many new components and services to keep straight).

As a follow-up exercise, create additional policies for Redis and MinIO, following the

pattern from Listing 15-18. When you are ready, it is time to deploy.

 Controlling Deployments with Jump Pods

To begin, you’ll deploy the Spark application via the mde/redis-streams-k8s:1.0.0

container wrapped in a simple “jump” pod. If you come right out of the gate at full speed,

it is easy to forget something and fall into what is known as a “crash loop.” You might find

it necessary to repeat this slow, controlled deployment flow for the first few applications

that follow any new deployment patterns. This process is also helpful when debugging

applications, since you can check common troublemakers like missing configurations

prior to automating everything an official stateful deployment.

From the ch-15/spark-on-kubernetes/spark-redis-streams directory, open

deployment-manual.yaml (shown in Listing 15-19) to view the pod specification. Pay special attention to the volumes and volumeMounts environment variables to see how the

Secrets and ConfigMaps are mixed into the pod, and how the external DNS values are

mixed into the specification.

 Listing 15-19. The Spark Jump Pod (spark-redis-streams-app) Spec

apiVersion: v1

kind: Pod

metadata:

name: spark-redis-streams-app

namespace: spark-apps

labels:

app: spark-redis-streams

type: canary

version: "1.0.0"

spec:

restartPolicy: OnFailure

The Jump Pod runs as root

561

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

securityContext:

runAsUser: 0

runAsGroup: 0

serviceAccountName: spark-controller

volumes:

- name: spark-submit-conf

configMap:

name: spark-redis-streams-conf

- name: hive

secret:

secretName: hivesite-admin

containers:

- name: redis-streams-app

env:

- name: SPARK_CONTAINER_IMAGE

value: mde/redis-streams-k8s:1.0.0

- name: REDIS_SERVICE_HOST

value: redis-service.spark-apps.svc.cluster.local

- name: REDIS_SERVICE_PORT

value: "6379"

- name: MINIO_SERVICE_HOST

value: minio-service.spark-apps.svc.cluster.local

- name: MINIO_SERVICE_PORT

value: "9000"

- name: MINIO_ACCESS_KEY

valueFrom:

secretKeyRef:

name: minio-access

key: access

- name: MINIO_SECRET_KEY

valueFrom:

secretKeyRef:

name: minio-access

key: secret

volumeMounts:

562

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

- mountPath: /opt/spark/conf/spark-defaults.conf

name: spark-submit-conf

subPath: spark-defaults.conf

readOnly: false

- mountPath: /opt/spark/conf/hive-site.xml

name: hive

subPath: hive-site.xml

readOnly: true

image: mde/redis-streams-k8s:1.0.0

imagePullPolicy: Never

command: ["tail", "-f", "/dev/null"]

resources:

limits:

memory: "2000Mi"

cpu: "500m"

requests:

memory: "1000Mi"

cpu: "250m"

The pod spec in Listing 15-20 securely mounts the secrets and configurations that you applied to the spark-apps namespace. We are using the hanging tail command to

keep the pod up and running (such as when working with the Redis service in part 1 of

the chapter). This allows you to exec into the redis-streams-app container process and

run the application.

Create (and schedule) the pod by executing the following command:

% kubectl apply -f deployment-manual.yaml

A pod/spark-redis-streams-app is created. Now, we can exec into the pod and

trigger the application.

 Triggering Spark Submit from the Jump Pod

Pop onto the jump pod using the exec command to launch the actual Spark application.

For a mental model, consider the jump pod as an authenticated process that resides

in your K8s cluster, thus allowing the user to deploy applications (using the spark-

controller service account).

563

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

% kubectl exec --stdin --tty pod/spark-redis-streams-app \

-n spark-apps \

-- bash

From the exec process, you can submit the application to the Kubernetes cluster

using the spark-submit.sh executable that we packaged inside the container. It is

located in the following path: /opt/spark/app/conf/spark-submit.sh.

Tip before you start the application the first time, i always recommend starting

up a second terminal window to observe how the pods are generated by the

spark-submit process. you can also use the logs generated by the spark-

submit process to observe the actions of the spark kubernetes resource

Manager.

kubectl get pods -n spark-apps –watch

From the exec process on the spark-redis-streams-app pod, run the following

command.

% /opt/spark/app/conf/spark-submit.sh

As the application starts up and switches to a Running state, the spark-submit

process you just triggered will make periodic calls to the K8s API to check in on the status

of the driver (essentially the same behavior that you’ll see from the kubectl process

watching the pods in the namespace).

Fun fact: you just used your service account for the first time, which enabled you

to create new resources on the fly. This allowed you to delegate control to the driver

application process. To view the resources you created, call kubectl get pods -n

spark-apps.

NAME READY STATUS RESTARTS AGE

spark-redis-stream-aggs-app-cf14ec7d5490f37d-exec-1 1/1 Running 0 29m

spark-redis-stream-aggs-app-cf14ec7d5490f37d-exec-2 1/1 Running 0 29m

spark-redis-streams-app 1/1 Running 0 33m

spark-redis-streams-app-driver 1/1 Running 0 29m

564

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

You are free to exit the process. You’ll return to the exec process since the spark-

submit.sh creates a cluster-based deployment. (We covered cluster deploys in Chapter 14, but as a refresher, this means the driver application process runs in the cluster alongside

the executors, as opposed to being controlled as an external resource.)

Note run

ls -l /opt/spark/app/conf on the spark-redis-streams-

app pod and you’ll notice that a second spark-submit* file exists, called

spark-submit-lite.sh. this second config file provides an example of the

minimal required configuration to run the aggregation’s application. given the

second example isn’t an executable (it’s missing the -x), you can run the app

using bash /opt/spark/app/conf/spark-submit-lite.sh.

 Connecting the Deployment Dots

The environment variable-controlled spark-submit.sh executable is shown in Listing 15-20.

You’ll see the important config settings (just the pod spec-based overrides) that are

commonly used to modify the runtime configuration for an application when it is

running in different K8s clusters (non-prod versus prod). You run an application using

a new checkpointLocation and output path so you don’t corrupt the application’s state

when deploying a replacement application (or canary).

 Listing 15-20. The spark-submit.sh Executable

#!/usr/bin/env bash

K8S_MASTER=${K8S_MASTER:-k8s://https://${KUBERNETES_SERVICE_

HOST}:${KUBERNETES_SERVICE_PORT_HTTPS}}

...

$SPARK_HOME/bin/spark-submit \

--master ${K8S_MASTER} \

--deploy-mode cluster \

565

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

--class "com.coffeeco.data.SparkStatefulAggregationsApp" \

--conf "spark.kubernetes.driver.pod.name=${SPARK_APP_NAME}-driver" \

--conf "spark.kubernetes.authenticate.driver.serviceAccountName=${K8S_

SERVICE_ACCOUNT_NAME}" \

--conf "spark.redis.host=${REDIS_SERVICE_HOST}" \

--conf "spark.redis.port=${REDIS_SERVICE_PORT}" \

--conf "spark.hadoop.fs.s3a.endpoint=${MINIO_SERVICE_HOST}:${MINIO_

SERVICE_PORT}" \

--conf "spark.hadoop.fs.s3a.access.key=${MINIO_ACCESS_KEY}" \

--conf "spark.hadoop.fs.s3a.secret.key=${MINIO_SECRET_KEY}" \

--conf "spark.kubernetes.container.image=${SPARK_CONTAINER_IMAGE}" \

--conf "spark.kubernetes.container.image.pullPolicy=${SPARK_CONTAINER_

PULL_POLICY}" \

--conf "spark.sql.warehouse.dir=${S3_BASE_PATH}/warehouse" \

--conf " spark.app.sink.options.checkpointLocation=${S3_BASE_PATH}/apps/

spark-redis-streams-app/1.0.0" \

--conf " spark.app.sink.options.path=${S3_BASE_PATH}/warehouse/silver/

coffee_order_aggs" \

local:///opt/spark/app/jars/redis-streams-k8s.jar

Let’s switch gears and learn to view the runtime information pertaining to the Spark

driver application logs and the Spark Driver UI.

 Viewing the Driver Logs

The application logs are available on the driver pod generated by calling spark-submit

(not on the launch pod itself). This indirection is due to the way we are deploying our

application using the cluster deploy mode.

% kubectl logs spark-redis-streams-app-driver -f \

-n spark-apps

Now you can follow (-f) the logs on the driver as they are updated in real-time. If you

want to dump the logs, skip the -f parameter and you’ll see all the available logs that are

stored in the kubelet for the driver pod. (The logs for the containers on your pods are

memory constrained, so the -f option allows you to read all the logs while working with

your streaming applications.)

566

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

 Viewing the Driver UI

Like the process of viewing the driver logs, you can attach to the remote driver pod and

forward the Spark UI using a simple kubectl command called port-forward.

% kubectl port-forward {spark-driver-pod} 4040:4040 \

-n spark-apps

The beauty here is that the Spark UI is only available to members of your

organization with access to your namespace. In the case here, only you has access to

your own minikube cluster.

 Sending CoffeeOrder Events

Open a new terminal window and exec over to the Redis service pod from part one of the

chapter.

% kubectl exec -it redis-deployment-pv-{hash} \

-n data-services \

-- redis-cli

Then add some records to the CoffeeOrder’s stream.

% xadd com:coffeeco:coffee:v1:orders * timestamp 1637548381179 orderId

ord123 storeId st1 customerId ca100 numItems 6 price 48.00

% xadd com:coffeeco:coffee:v1:orders * timestamp 1637548458800 orderId

ord124 storeId st1 customerId ca101 numItems 3 price 36.00

% xadd com:coffeeco:coffee:v1:orders * timestamp 1637720977241 orderId

ord125 storeId st2 customerId ca102 numItems 1 price 4.99

% xadd com:coffeeco:coffee:v1:orders * timestamp 1637783601557 orderId

ord126 storeId st1 customerId ca103 numItems 2 price 10.99

You should see some activity in the driver logs (open a window and follow the logs)

or head over to the Driver UI to view the Spark Structured Streaming UI or Spark SQL

micro-batches. When you are ready and have confirmed that the application is running

(and processing data), you can delete the driver and jump pods.

567

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

 Deleting the Driver and Jump Pods

When you delete your Spark Structured Streaming driver, all resources associated with

the driver will also be deleted. These resources are managed through ownerReferences

automatically for you. Kubernetes will take care of deleting any resource generated by

the spark-submit process, including auto-generated configMaps, driver pod services,

and the executor pods, when you are done running your application, or if you need to

shut things down during an incident.

% kubectl delete pod/redis-streams-app-driver -n spark-apps

pod "redis-streams-app-driver" deleted

While the driver pod and all resources are now removed, your jump pod remains.

This is because you launched the jump pod, while the spark-submit process that you

triggered generated the driver and the associated configurations and secrets. When you

are ready to shut down your jump pod, you can simply delete it as well.

 Automating the Deployment and Automatic Recovery

When you’re happy with the stability of your application (things are running as

expected), you can apply the simple deployment-redis-streams.yaml to essentially

deploy everything covered in the past section.

% kubectl apply -f ch-15/spark-on-kubernetes/spark-redis-streams/

deployment-redis-streams.yaml

service/redis-service unchanged

configmap/spark-redis-streams-conf unchanged

secret/hivesite-admin configured

secret/minio-access configured

deployment.apps/spark-redis-streams-app created

Congrats. You just deployed an idempotent Spark Structured Streaming application

on Kubernetes.

568

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

 Part 2: Summary

The second half of the chapter got you up and running. It put you in the driver seat to

run your Spark Structured Streaming applications on Kubernetes. You learned how

to create reliable stateful deployments and communicate between namespaces using

service aliases (external network service types). This chapter is a beginning, teaching

you how to take advantage of fully containerized Apache Spark applications. There are

many places to go, now that you have reached the end of the book. I have provided some

additional food for thought after the conclusion. So stick around!

 Conclusion

First off, thank you for reaching this important milestone and following the book

through to the end. It is my hope that the lessons learned throughout the book can

help you think differently about the work you do, the engineers you work with, the

company you work for (or own), the systems you affect, and how to optimize the

results of the time you spend each day as a data engineer. This book is based on real-

world experiences while I was employed at a company called Twilio, as well as from

numerous workshops (presented internally and externally), countless hours providing

guidance and debugging applications during Spark Office Hours (also at Twilio), and

from countless other lessons learned over the past six years of working with Apache

Spark and interoperating with different data systems and services. I’ve learned that the

road to streaming excellence is not always as smooth as you would like. However, with

time, patience, and the ability to test assumptions locally using your local data platform

or directly inside your Spark-powered unit tests, you can solve even the most complex

problems in less time and with less heartache.

Remember that almost all data problems, big and small, can be deconstructed into

smaller, more bite sized problems, and built back up. Take the time to understand the

problems at hand, create a plan of attack, and work toward an optimal solution. If the

problem warrants a more generic solution enabling widespread reuse, then have at it.

Lastly, remember to have fun and seek joy in the work you do.

569

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

 After Thoughts

Docker, containers, and Kubernetes have changed the way organizations work with data

in consistent and isolated ways. Throw Apache Spark into the equation and the doors

open to novel new ways of expressing complex data pipelines and transformations

through their n-wise relationship to data encompassing the greater data network

at scale.

This book was the tip of the modern data engineering iceberg, providing the

foundations I’ve found invaluable to chew on data problems of any size. In terms of

where to go next, I have a few thoughts for things you’ll want to do next.

• JVM Tuning. Apache Spark uses JVM garbage collection. For streaming

jobs, the default G1GC settings can create large GC pauses due to the

buildup of small objects over time. This is a result of processing many

records (per micro-batch) based on IO bound jobs. Use the stage

and task-level GC metrics to track GC pauses and the number of GC

threads and objects. You can also use -XX:+UseStringDeduplication

in your driver and executor and extra Java options to reduce the

memory footprint if you are running out of memory and have string

heavy objects.

• Amazon EKS and Managed Node Groups. Amazon has a feature for

their elastic Kubernetes service called managed node groups (uses

auto-scale groups behind the scenes). This feature enables you to

create isolated groups on-demand, or spot instances, that can be

explicitly scheduled (using selectors) to run your Spark drivers or

application executors. Each managed node group is scaled using

the concept of min, desired, and max sizing in terms of the total

number of hot nodes. You can have a minimum size of 0, which

means nodes will be fetched on-demand when an application is

spinning up (this can be beneficial for expensive instance types, such

as GPU instances, or gigantic instances that are used for one-off jobs,

occasionally). Amazon will attempt to maintain your desired size and

cut you off after you’ve reached your maximum number of allocated

nodes. If you need to run a platform based on Amazon EKS, this

option can help to carve out resource limits on a namespace basis.

570

Chapter 15 Deploying Mission-CritiCal spark appliCations on kubernetes

• Managed Kafka, RDBMS, and Redis. Managing Kafka at scale

requires a dedicated team as a company grows. If you are just getting

started, it is beneficial to run fully managed Kafka (using Confluence

or Amazon) and spend your time using it rather than running it. The

same can be said for your database needs (be it OLTP/OLAP/NoSQL/

etc.). Paying your way into things is the way to move fast without the

headache of also scaling up and providing 24/7 operational support.

Remember to run game day scenarios, since uptime SLAs usually

provide 99.999% style guarantees, which means things can still be

unavailable or require some manual intervention from time to time.

• LakeHouse. We covered the data lakes and the data warehouses in

this book. There are a few common open-source platforms in the

market today that mix the scalability of the data lake with strong

schemas, as well as transactional inserts, merges, and deletes.

DeltaLake, Apache Hudi, and Apache Iceberg are three competing technologies that all support Apache Spark out of the box. I tend

to be biased toward technologies built by the Spark community, so

if Apache Spark support is critical to your LakeHouse needs, give

DeltaLake a try. It requires you to drop in an additional JAR and you

are good to go.

571

Index

A

Analytical Window functions

 vs. aggregation, 446

Access control lists (ACLs), 381

create specification, 446

Amazon’s Simple Storage Service (S3), 13

ordered index, 446

Amazon Web Services (AWS), 6

row_number/sum, 447

Analytical processing and insights

transaction difference, 447, 449

columnar aggregation

Analytics, 433

array explode, 442–444

Apache Airflow

coffee_orders, 430–432

APIs, 255

complex summary statistics, 434,

batch jobs, 258

435, 437, 438

code-driven approach, 258

hierarchical aggregation, 438, 439

components

many rows from one, 442, 443

operators, 268–270

OrderItems, 441

schedulers/executors, 270, 271

order total, 443, 444

tasks, 268

pivoting, 440, 441, 444, 445

creating user, 293, 294

simple summary statistics, 434

data pipelines, 255

Spark DSL, 432, 433

definition, 257

create note, 430

robust workflows, 258

data aggregation, 429

running, 260

environment

cluster, 262

adding file system, 407

command, 261, 262

build command, 408

DAG, 266, 267

container dependencies, 406

detached mode, 261

Multi-stage Docker, 407

directories, 259

spinning up, 408

docker components, 259, 260

Zeppelin container, 406

initialize Airflow, 260

Zeppelin-Spark directory

installation, 259

layout, 406

local data engineering

grouped datasets, 430

environment, 263

Spark functions (see Spark functions)

sanity check, 264, 265

573

© Scott Haines 2022

S. Haines, Modern Data Engineering with Apache Spark, https://doi.org/10.1007/978-1-4842-7452-1

INDEX

Apache Airflow (cont.)

records, 27

scheduling Spark batch jobs

streams processing, 28

component, 272

topics

provider/running,

ACLs, 381

272–275, 277–282

behavior, 370, 372

Apache Hive Metastore

configurations, 375, 376

bootstrap option, 158

creation, 371–373

configuration, 158

deletion, 379, 380

data access, 160

describing, 374

metadata, 156, 157

end-to-end encryption, 382

properties, 163, 164

Firewall rules, 380

Spark SQL

listing, 373

Apache Spark, 162–164

modifying, 375

bootstrapping, 167

replication, 376, 377

configuration, 165, 166

truncating, 378, 379

considerations, 166

Apache Spark, 19

database, 158–160

business intelligence use case

hive-site.xml file, 161, 162

daily active users, 53

schema enforcement, 164

daily average number, 54, 55

tables, 160, 161

problem, 51, 52

$SPARK_HOME file, 161

user carts, 55, 56

uses, 157

cluster manager, 42

Apache Kafka

clusters, 43

architecture, 26

components, 40, 41

asynchronous communication,

dataset, 36, 37

365, 366

definition, 31

binary serialized structured data (see

distributed applications, 40

Binary serialized structured data)

distributed datasets, 35

brokers, 27

driver program, 41

consistency, 366, 367

encoded data types, 83

data pipelines ecosystem, 367

executors, 44

definition, 25

installation, 46–48

DR, 367

MapReduce, 32

environment, 369, 370

modular spark ecosystem, 45, 46

event streams, 367

RDD, 38, 39

high service availability, 366, 367

test ride, 49

horizontal scalability, 366

Apache Spark ecosystem, 3

materials, 369

Apache Zeppelin

574

INDEX

DataFrames/semi-structured

Batch-based application, 206

data, 77, 78

Big Data, 156

data definition, 81, 82

Binary serialized structured data, 382

declared schemas, 80

CoffeeOrder event format, 383, 384

inferred schemas, 79, 80

materials, 383

schema inference, 79

protobuf messages

schema pattern, 80, 81

CoffeeOrderGenerator (see

StructType, 82

CoffeeOrderGenerator)

structured schemas, 84

compling, 384, 385

home page, 70

generators, running, 392, 394

Apache Zeppelin

JAR Hell, 386, 387

definition, 63

Kafka Spark dependencies, 386

Docker Compose, 67, 68

Business intelligence (BI), 10, 36

Docker network, 66

environment variables, 65

C

home page, 71

interpreters, 63, 72

Caching tables

notebook, 63, 64

clearCache catalog method, 186

plain text files/transforming

complex query, 183

DataFrames, 73–76

dropTempView, 183

running, 65

force Spark, 185

volumes, 68

refreshing, 186

Application Programming Interfaces

Spark memory, 184

(APIs), 308

Spark UI, 184

Arbitrary stateful computations

and uncache tables, 185

flatMapGroupsWithState function, 474

Change Data Capture (CDC), 149

iterative computations, 473

Cloud computing, 4

KeyValueGroupedDataset, 472

Cluster Computing, 35

mapGroupsWithState, 473

Cluster resource managers, 491, 492

Authentication, 309

CockroachDB and Google Spanner, 13

Authorization, 309

CoffeeCo, 95, 213

breaking down story, 215

customer, 216

B

data, 214

Batch applications, 207

extracting data models, 215

stateful, 209

location, 218, 219

stateful to streaming, 210

product/goods/items, 217

stateless, 208

rating, 219

575

INDEX

CoffeeCo (cont.)

D

store, 216, 217

Data aggregation, 429

story, 214

Database administrator (DBA), 9

storytelling/modeling, 214

Data Control Language (DCL), 381

vendor, 218

Data discovery/data catalogs

CoffeeOrderGenerator

API documentation, 156

datasets, 391

database, 154

generateCoffeeOrder

design patterns, 156

method, 388, 389

foot traffic, 154

interface, 388

wishful thinking, 155

KafkaRecord, 391

Data engineering, 8

orderEvents, 392

requirements, 388

DataFrames, 326

run method, 390

DataFrameTransformer, 242

Seq(CoffeeOrder), 390

Data Generation, 94

singleton class, 388

Data lake, 15–20

SparkSession, 390

Data Manipulation Language (DML), 188

stepSize, 389

Data modeling, 213, 214

totalRecords, 389

Data pipeline

Compute (CPU), 4

API, 21

Container build process, 555

asynchronous, 204

Continued explorations

data catalogs, 24

customer records, 149

data lineage, 24

customer table, 146, 147

definition, 20, 21

query, 148

ETL, 22

table, 148

foundations, 205

truncate option, 148

hybrid synchronous, 204

customers table, 149

sink, 20

dropDuplicates function, 149

source, 20

ORDER BY clause, 150

workflow orchestration, 22

schemas, 145

Datasets, 326

stash and replace, 150

aliasing, 199

truncating, 150

catalyst/scala functionality, 194–195,

use case, 149

200, 201

Crash loop, 561

conversion, 200

Cross-namespace communication,

dataframes, 198, 199

560, 561

definition, 197

Customer rating event, 233, 234

typed vs. untyped, 198

576

INDEX

Data streams, 324

E

Data transformation

Environment variables, 69

coffee dataset, 94

exec command, 563

selection/projection

Executors, 38

data generation, 95

Exploratory data analysis (EDA), 429

filtering, 96, 97

Expressions

projection, 97

column, 111, 112

selection, 96, 98

conditional select expressions, 113

Data warehouse, 14

inner query, 113

Deploying

Extract-load-transform (ELT), 20

client mode, 495, 496

Extract transform load (ETL), 14, 203

cluster mode, 497–499

controlling resource

allocations, 500–504

F

distributed operating system, 499

Fixed window, 412

dynamic resource allocations, 505–509

flatMapGroupsWithState function, 474

Deployment patterns, 489

cluster resource managers, 491, 492

consistency/reliability/dependability, 491

G

running, 490, 491

Generators, 386

Directed acyclic graph (DAG), 22

gRPC service, 320, 321

Discretized Streams (DStreams), 326

Docker

containers, 60, 61

H

CPU cores and memory, 61, 62

Hadoop, 44

Desktop, 61

Hadoop Distributed File System

Docker, 59

(HDFS), 13

Docker MySQL

Hard drives (HDDs), 4

bootstrap SQL files, 120

configuration, 119, 120

I

container, 120, 121

customer records, 123

Idea, 220

customers table, 122–124

Immutable conventions, 542

databases, 122

Insights, 433

environment, 118, 119

In-sync replica (ISR), 367

shell, 122

Interactive applications, 206

tables, 121

notebook environment, 206, 207

driver pod, 566

Spark Shell, 206

577

INDEX

Interface Definition Language (IDL), 319

minikube, 525–527

Internet of things (IOT), 16

namespaces, 529

Iterative computations, 473

create, 530

delete, 530

J

nodes, 527

CRI, 528

Java Development Kit (JDK), 47

kubelet, 528

Java Virtual Machine (JVM), 45

kube-proxy, 528

Joins

view, 528

definition, 99

pods/containers/deployments, 531

expanding data

pod states and behavior, 541

anti-join, 106

running, 525

full join, 109, 110

Kubernetes Container Runtime

inner join, 100

Interface (CRI), 528

IN operator, 107, 108

left join, 102, 103

negating IN operator, 108

M

occupancy view, 99

Machine learning, 7

right join, 101, 102

MapReduce programming model, 32, 33

semi-join, 103–105

definition, 32

Jump pod, 561, 568

distributed workflow, 33

durable/safe acyclic execution, 34

K, L

mappers, 33

reducers, 35

Key performance metrics (KPM), 308

Mean time to recovery (MTTR), 490, 510

kubectl command, 567

Memory streams, 484

Kubernetes (K8s), 43, 101, 523, 524

Mesos, 43

connect to managed pod, 541

Minikube, 525, 567

create resource, 530

MinIO distributed file system, 291

delete the managed pod, 541

Modern data engineering

deploy

analytical queries, 10, 11

create, 538, 540

automation catalyst, 5, 6

pod, 540

cloud, 4, 5

resource management, 540

cloud age, 6

DNS, 547

machine learning, 7, 8

create, 547

NoSQL database, 11, 12

SVC, 548

OLTP, 9, 10

hands-on tour, API, 527

public cloud, 6, 7

578

INDEX

software, 4

Redis PodSpec, 534

SQL, 8

process method, 471, 472

Multi-part resource, 551

Processing patterns

batch processing, 306

N

near real-time systems, 306

on-demand, 306, 307

Namespaces, 529

real-time systems, 305

Netflix, 7

NewSQL database, 12, 13

Nodes, 527

R

Nutshell, 324

Read, Eval, Print, Loop (REPL), 132

Redis deployment, 546

O

Redis service, 533

automatic recovery, 538

Online analytical processor (OLAP), 10

delete, 537

Online transactional processor (OLTP), 9

executing commands, 537

Open-container initiative (OCI), 60

listing/describing/locating pods, 536

Operating system (OS), 24

metadata, 535

Optimization problem, 300

redis pod, 535

OuputStream method, 467

spec, 535

Redis Streams, 554

P, Q

application state, 344, 345

batch creation, 342

percentile_approx function, 437

connection

Percentiles, 436, 437

health check block, 334

Persistent Volume Claims (PVC), 545

monitor process, 334

configuring, 545

redis-cli, 333

create, 546

consumer groups, 341

view, 546

creation

Persistent Volumes (PV), 543

append-only, 335

configuring, 543

guarantees, 335

create, 544

in-memory database, 334

describe, 544

environment, 332

view, 544

event publishing, 336

Personally identifiable

offsets, 341

information (PII), 120

running application, 340, 341

Pivoting, 440, 441

SparkRedisStreamsApp, 337

Pods, 523, 532

compiling, 337

579

INDEX

Redis Streams (cont.)

tables, 137, 138

Docker container, 338, 339

views, 137, 138

XGROUP command, 342

dynamic class compilation/loading

Redis Streams application

basic application, 129, 130

building, 554

connect-jdbc.scala, 132, 133

ConfigMaps, 556

DataFrameReader, 128, 129

externalized dependency

options, 131

management, 556

parameter, 128

Hive Metastore, 557, 558

Scala REPL, 131

Kubernetes, 556

spark-shell, 131–133

MinIO access parameters, 559

startup script, 130, 131

Secret resource, 557

JARs, 124

view secrets, 559

managing dependencies, 125, 126

Relational Database Management System

Relative window, 412

(RDBMS), Spark SQL/JDBC

Remote procedure call (RPC), 63, 313

DataFrameWriter

Resilient distributed data (RDD), 46, 198

command line SQL application, 143

Role-based access control (RBAC), 550

command-line tool, 143

Role bindings, 551

customers view, 142

runBatch method, 239

error, 141

Runtime configuration, 234

instance/customers table, 140, 141

query, 142

S

rows, 142

SaveMode options, 141

Service accounts, 551

Spark partial application, 144

Service level agreements (SLAs),

spark-shell, 144

255, 308

driven development

Service Level Indicators (SLIs), 308

access patterns, 133

Service Level Objectives (SLOs), 308

customers, 138–140

SharedSparkSql trait, 245

dataframes, 138

Software development cycle, 212

dependency management, 127

Software Development Kits (SDKs), 308

iteration, 136

Software-driven automobile, 204

package management, 128

Solid state drives (SSDs), 307

plan, 126

Spark application, 243

runtime configuration, 127, 135

adding test dependencies, 244

runtime mutation, 133

batch, 207

SparkConf, 134, 135

blueprint, 221

spark-shell flow, 127

application configuration, 225

580

INDEX

build.sbt, 222

SparkEventExtractor transform method,

common components, 224

248, 249

conf, 222

SparkEventExtractorApp, 236

config overrides, 227, 228

DAG, 284, 285

connecting the dots, 232

definition, 283

default, 226

ETL DAG, 288, 289

dependable batch, 230, 231

hybrid architecture

goals, 232

apply bucket prefix

initialization, 228–230

permissions, 292

layout, 221, 222

boostrappingMySQL, 292

project, 223

component, 290

README.md, 222

MinIO, 291

src, 223, 224

MySQL, 289

conf method, 246, 247

setting up extended

designing, 211

environment, 290

end-to-end, 250, 251

job configuration, 287

interactive, 206

spark configuration, 286

streaming, 210

Spark submit properties, 287

testing for failures, 249

Spark functions

testing for success, 248

case statements, 419

test suite, 245

cases, 422

Spark Apps Namespace, 550

dataset, 419, 420

Spark Catalyst Optimizer

Spark SQL table, 421

execution plan, 191, 192

data, 417

explain method, 192

datasets, 408

Java bytecode, 196, 197

insights, 415

logical plan analysis, 194

null values

logical plan optimization, 195

analysis, 419

logical plan parsing, 193

DataFrame, 417, 418

phases, 192

na.fill operation, 418

physical plan, 195, 196

order_nonnull, 418

SparkContext, 42

replacing, 418

Spark delegation pattern, 240, 241

unknown, 419

Spark ETL

seasonality, 415

coffeeSchema, 88

timestamps/dates, 416

Parquet data, 89

calendar functions, 412, 413

structured data, 89

common functions, 409, 410

spark-event-extractor, 236

date addition/subtraction, 411

581

INDEX

Spark functions (cont.)

access, 189

high-order functions, 410, 411

caching tables (see Caching tables)

time zones/Spark SQL session

existence, 174

configuration, 414

grants, 188

modification, 414, 415

Hive Metastore, 175–178

SET TIME ZONE, 415

list, 172, 173

SparkListener class, 510, 514

removing, 187, 190

monitoring patterns, 518

saveAsTable, 188

StreamingQueryListener, 514, 516, 518

table method, 179

Spark programming model, 57

testing, 187

Spark Shell, 50

Spark SQL micro-batches, 567

SparkSQL

sparksql-scalapb library, 386

computing averages, 87

Spark Standalone

DDL, 87

anti-pattern, 519

SQL View, 85

containers, 520

Zeppelin interpreter, 86

Spark standalone cluster, 492

Spark SQL Catalog

availability mode, 493

databases

cluster mode, 493

creation, 171

failover process, 494, 495

external table, JDBC, 171, 172

SparkStatefulAggregationsApp, 474, 475

finding, 169, 170

Spark Structured Streaming

Hive Metastore, 175–178

programming model

list, 168, 169

application entry point, 349

data discovery

challenge, 330

column descriptions, 181–183

DataStreamReader, 346

Hive Metastore, 179

block, 345

listing columns, 181–183

DDL string, 346

listing tables, 180

order event format, 346

table-level descriptions, 180

schema, 346

definition, 167

SparkSession, 345

Hive Metastore

DataStreamWriter

databases, 175, 176

dependency injection, 348

parameters, 178, 179

lazy invocation, 347

steps, 175

run method, 347

tables, 176, 177

StreamingQuery, 349

persistent tables, 173, 174

writeStream method, 348

SparkSession, 168

deterministic cycle, 325

tables

OrderEvent format, 331

582

INDEX

paradigms, 325, 326

Stream processing, 298

processing modes, 326, 327

avro, 313–315

continuous processing, 328, 329

avro binary format, 314

micro-batch processing, 327, 328

backward compatibility, 315, 317

Redis Streams (see Redis Streams)

building reliable data systems, 308

StructType, 331

code generation, 316

triggers

data accountability, 308

continuous processing mode,

data gateway, 309, 310

358, 361

data protocol, 313

directories, 356

definition, 24

OutputMode.Append(), 356

interprocess communication, 25

outputStream method, 355

network queue, 25

parquet, 356

problems in flight, 308

periodic processing, 358

protobuf, 316, 318, 319

results, 361, 362

protobuf binary format, 317

run method, 356–358

real-time, 299, 300

stateful application, 360, 361

RPC

stateful batch jobs, 359

gRPC, 319, 321

streaming table writer, 359

HTTP/2, 322

updates, 354, 355

SDK, 310–312

unbounded table, 325

serialization frameworks, 313

spark-submit command, 235, 495,

time series, 301

564, 568

customer satisfaction, 302, 303

SparkSubmitOperator, 287

delay, 303

SparkTypedStatefulAggregationsApp, 474

event data, 301, 302

Stateful Stream processing

trouble with time, 303, 304

application running, 351

streamReader method, 466

behavior, 352

Streams of serializable structured data

checkpoints, 350

binary data

deletion, 354

DataStreamReader, 397

enabling, 351

failures, 399

process, 353, 354

inputStream, 398

reliable checkpoints, 350

Kafka cluster, 397

Stateless batch-based Spark

partitions, 400

application, 232

sparkConf.getAllWithPrefix

Streaming applications, 206

method, 398

continuous processing, 211

throttling Kafka, 399

micro-batches, 210, 211

topic assignment, 399

583

INDEX

Streams of serializable

T

structured data (cont.)

Tableau/Apache Superset, 57

topic subscription, 398

Timeseries histogram

consumer application, 402–404

analysis, 437

Kafka rows to datasets

Time to live (TTL), 324

DataFrameTransformer, 401

transform method, 471, 475

KafkaOrderTransformer class, 400

TypedRevenueAggregates

outputStream method, 401, 402

average of averages, 482

run method, 401

coffeeOrderForAnalysis,

materials

476, 477

micro-batch flow, 396

GroupedState, 477

partitions, 396

state function, 478, 479, 481, 482

Spark application, 395

StructField, 83

Structured Streaming

U

input data format, 464

Unbounded tables, 324

memory, 484, 486

User-defined functions (UDFs),

output modes

422, 472

append, 461, 462

availability, 426

complete, 460

black box, 428

update, 461

creation, 427

watermark, 463, 464

function literal, 423, 424

output windowed, 465

inline function, 424

store revenue aggregations, 465

introspecting, 425, 426

testing, 484

native functions, 428

trait, 466

registration, 425, 427

aggregations app, 469–471

Scala function, 422, 423

conditional object decoration, 468

Spark DSL, 425

outputStream method, 467

Spark SQL, 428

process method, 471, 472

visibility, 426

streamReader method, 466, 467

working, 424

transform method, 471

window functions, 457

controlling output, 459, 460

V

delayed, 458

Validation, 309

sliding, 458

Validation logic, 238

 vs. windowing, 455, 456

Validity, 237, 238

windowing, 454, 455

Virtual private cloud (VPC), 380

584

INDEX

W, X, Y, Z

Window expression, 457

Windowing, 454

Watermarking process, 462

Workflow orchestration, 256, 257

Website/web application, 6

Write-ahead log (WAL), 26, 150

Whole stage codegen process, 196

585

Document Outline

	Table of Contents

	About the Author

	About the Technical Reviewer

	Acknowledgments

	Introduction

	Part I: The Fundamentals of Data Engineering with Spark

	Chapter 1: Introduction to Modern Data Engineering

	The Emergence of Data Engineering

	Before the Cloud

	Automation as a Catalyst

	The Cloud Age

	The Public Cloud

	The Origins of the Data Engineer

	The Many Flavors of Databases

	OLTP and the OLAP Database

	The Trouble with Transactions

	Analytical Queries

	No Schema. No Problem. The NoSQL Database

	The NewSQL Database

	Thinking about Tradeoffs

	Cloud Storage

	Data Warehouses and the Data Lake

	The Data Warehouse

	The ETL Job

	The Data Lake

	The Data Pipeline Architecture

	The Data Pipeline

	Workflow Orchestration

	The Data Catalog

	Data Lineage

	Stream Processing

	Interprocess Communication

	Network Queues

	From Distributed Queues to Repayable Message Queues

	Fault-Tolerance and Reliability

	Kafka’s Distributed Architecture

	Kafka Records

	Brokers

	Why Stream Processing Matters

	Summary

	Chapter 2: Getting Started with Apache Spark

	The Apache Spark Architecture

	The MapReduce Paradigm

	Mappers

	Durable and Safe Acyclic Execution

	Reducers

	From Data Isolation to Distributed Datasets

	The Spark Programming Model

	Did You Never Learn to Share?

	The Resilient Distributed Data Model

	The Spark Application Architecture

	The Role of the Driver Program

	The Role of the Cluster Manager

	Bring Your Own Cluster

	The Role of the Spark Executors

	The Modular Spark Ecosystem

	The Core Spark Modules

	From RDDs to DataFrames and Datasets

	Getting Up and Running with Spark

	Installing Spark

	Downloading Java JDK

	Downloading Scala

	Downloading Spark

	Taking Spark for a Test Ride

	The Spark Shell

	Exercise 2-1: Revisiting the Business Intelligence Use Case

	Defining the Problem

	Solving the Problem

	Problem 1: Find the Daily Active Users for a Given Day

	Problem 2: Calculate the Daily Average Number of Items Across All User Carts

	Problem 3: Generate the Top Ten Most Added Items Across All User Carts

	Exercise 2-1: Summary

	Summary

	Chapter 3: Working with Data

	Docker

	Containers

	Docker Desktop

	Configuring Docker

	Apache Zeppelin

	Interpreters

	Notebooks

	Preparing Your Zeppelin Environment

	Running Apache Zeppelin with Docker

	Docker Network

	Docker Compose

	Volumes

	Environment

	Ports

	Using Apache Zeppelin

	Binding Interpreters

	Exercise 3-1: Reading Plain Text Files and Transforming DataFrames

	Converting Plain Text Files into DataFrames

	Peeking at the Contents of a DataFrame

	DataFrame Transformation with Pattern Matching

	Exercise 3-1: Summary

	Working with Structured Data

	Exercise 3-2: DataFrames and Semi-Structured Data

	Schema Inference

	Using Inferred Schemas

	Using Declared Schemas

	Steal the Schema Pattern

	Building a Data Definition

	All About the StructType

	StructField

	Spark Data Types

	Adding Metadata to Your Structured Schemas

	Exercise 3-2: Summary

	Using Interpreted Spark SQL

	Exercise 3-3: A Quick Introduction to SparkSQL

	Creating SQL Views

	Using the Spark SQL Zeppelin Interpreter

	Computing Averages

	Exercise 3-3: Summary

	Your First Spark ETL

	Exercise 3-4: An End-to-End Spark ETL

	Writing Structured Data

	Parquet Data

	Reading Parquet Data

	Exercise 3-4: Summary

	Summary

	Chapter 4: Transforming Data with Spark SQL and the DataFrame API

	Data Transformations

	Basic Data Transformations

	Exercise 4-1: Selections and Projections

	Data Generation

	Selection

	Filtering

	Projection

	Exercise 4-1: Summary

	Joins

	Exercise 4-2: Expanding Data Through Joins

	Inner Join

	Right Join

	Left Join

	Semi-Join

	Anti-Join

	Semi-Join and Anti-Join Aliases

	Using the IN Operator

	Negating the IN Operator

	Full Join

	Exercise 4-2: Summary

	Putting It All Together

	Exercise 4-3: Problem Solving with SQL Expressions and Conditional Queries

	Expressions as Columns

	Using an Inner Query

	Using Conditional Select Expressions

	Exercise 4-3: Summary

	Summary

	Chapter 5: Bridging Spark SQL with JDBC

	Overview

	MySQL on Docker Crash Course

	Starting Up the Docker Environment

	Docker MySQL Config

	Exercise 5-1: Exploring MySQL 8 on Docker

	Working with Tables

	Connecting to the MySQL Docker Container

	Using the MySQL Shell

	The Default Database

	Creating the Customers Table

	Inserting Customer Records

	Viewing the Customers Table

	Exercise 5-1: Summary

	Using RDBMS with Spark SQL and JDBC

	Managing Dependencies

	Exercise 5-2: Config-Driven Development with the Spark Shell and JDBC

	Configuration, Dependency Management, and Runtime File Interpretation in the Spark Shell

	Runtime Configuration

	Local Dependency Management

	Runtime Package Management

	Dynamic Class Compilation and Loading

	Spark Config: Access Patterns and Runtime Mutation

	Viewing the SparkConf

	Accessing the Runtime Configuration

	Iterative Development with the Spark Shell

	Describing Views and Tables

	Writing DataFrames to External MySQL Tables

	Generate Some New Customers

	Using JDBC DataFrameWriter

	SaveMode

	Exercise 5-2: Summary

	Continued Explorations

	Good Schemas Lead to Better Designs

	Write Customer Records with Minimal Schema

	Deduplicate, Reorder, and Truncate Your Table

	Drop Duplicates

	Sorting with Order By

	Truncating SQL Tables

	Stash and Replace

	Summary

	Chapter 6: Data Discovery and the Spark SQL Catalog

	Data Discovery and Data Catalogs

	Why Data Catalogs Matter

	Data Wishful Thinking

	Data Catalogs to the Rescue

	The Apache Hive Metastore

	Metadata with a Modern Twist

	Exercise 6-1: Enhancing Spark SQL with the Hive Metastore

	Configuring the Hive Metastore

	Create the Metastore Database

	Connect to the MySQL Docker Container

	Authenticate as the root the MySQL User

	Create the Hive Metastore Database

	Grant Access to the Metastore

	Create the Metastore Tables

	Authenticate as the dataeng User

	Switch Databases to the Metastore

	Import the Hive Metastore Tables

	Configuring Spark to Use the Hive Metastore

	Configure the Hive Site XML

	Configure Apache Spark to Connect to Your External Hive Metastore

	Using the Hive Metastore for Schema Enforcement

	Production Hive Metastore Considerations

	Exercise 6-1: Summary

	The Spark SQL Catalog

	Exercise 6-2: Using the Spark SQL Catalog

	Creating the Spark Session

	Spark SQL Databases

	Listing Available Databases

	Finding the Current Database

	Creating a Database

	Loading External Tables Using JDBC

	Listing Tables

	Creating Persistent Tables

	Finding the Existence of a Table

	Databases and Tables in the Hive Metastore

	View Hive Metastore Databases

	View Hive Metastore Tables

	Hive Table Parameters

	Working with Tables from the Spark SQL Catalog

	Data Discovery Through Table and Column-Level Annotations

	Adding Table-Level Descriptions and Listing Tables

	Adding Column Descriptions and Listing Columns

	Caching Tables

	Cache a Table in Spark Memory

	The Storage View of the Spark UI

	Force Spark to Cache

	Uncache Tables

	Clear All Table Caches

	Refresh a Table

	Testing Automatic Cache Refresh with Spark Managed Tables

	Removing Tables

	Drop Table

	Conditionally Drop a Table

	Using Spark SQL Catalyst to Remove a Table

	Exercise 6-2: Summary

	The Spark Catalyst Optimizer

	Introspecting Spark’s Catalyst Optimizer with Explain

	Logical Plan Parsing

	Logical Plan Analysis

	Unresolvable Errors

	Logical Plan Optimization

	Physical Planning

	Java Bytecode Generation

	Datasets

	Exercise 6-3: Converting DataFrames to Datasets

	Create the Customers Case Class

	Dataset Aliasing

	Mixing Catalyst and Scala Functionality

	Using Typed Catalyst Expressions

	Exercise 6-3: Summary

	Summary

	Chapter 7: Data Pipelines and Structured Spark Applications

	Data Pipelines

	Pipeline Foundations

	Spark Applications: Form and Function

	Interactive Applications

	Spark Shell

	Notebook Environments

	Batch Applications

	Stateless Batch Applications

	Stateful Batch Applications

	From Stateful Batch to Streaming Applications

	Streaming Applications

	Micro-Batch Processing

	Continuous Processing

	Designing Spark Applications

	Use Case: CoffeeCo and the Ritual of Coffee

	Thinking about Data

	Data Storytelling and Modeling Data

	Exercise 7-1: Data Modeling

	The Story

	Breaking Down the Story

	Extracting the Data Models

	Customer

	Store

	Product, Goods and Items

	Vendor

	Location

	Rating

	Exercise 7-1: Summary

	From Data Model to Data Application

	Every Application Begins with an Idea

	The Idea

	Exercise 7-2: Spark Application Blueprint

	Default Application Layout

	README.md

	build.sbt

	conf

	project

	src

	Common Spark Application Components

	Application Configuration

	Application Default Config

	Runtime Config Overrides

	Common Spark Application Initialization

	Dependable Batch Applications

	Exercise 7-2: Summary

	Connecting the Dots

	Application Goals

	Exercise 7-3: The SparkEventExtractor Application

	The Rating Event

	CustomerRatingEventType

	Designing the Runtime Configuration

	Planning to Launch

	Application Recap

	Assembling the SparkEventExtractor

	SparkEventExtractorApp

	Validate the Spark Configuration

	Write the Batch Job

	Spark Delegation Pattern

	SparkEventExtractor

	Compiling the Spark Application

	Exercise 7-3: Summary

	Testing Apache Spark Applications

	Adding Test Dependencies

	Exercise 7-4: Writing Your First Spark Test Suite

	Configure Spark in the SparkEventExtractorSpec

	Testing for Success

	Testing for Failures

	Fully Testing Your End-to-End Spark Application

	Exercise 7-4: Summary

	Summary

	Part II: The Streaming Pipeline Ecosystem

	Chapter 8: Workflow Orchestration with Apache Airflow

	Workflow Orchestration

	Apache Airflow

	When Orchestration Matters

	Working Together

	Exercise 8-1: Getting Airflow Up and Running

	Installing Airflow

	Add the Directories

	Add Environment Variables for Docker Compose

	Initialize Airflow

	Running Airflow

	Running Airflow in Detached Mode

	Start Things Up

	Tear Things Down

	Optimizing Your Local Data Engineering Environment

	Sanity Check: Is Airflow Running?

	Running an Airflow DAG

	Exercise 8-1: Summary

	The Core Components of Apache Airflow

	Tasks

	Operators

	Schedulers and Executors

	Local Execution

	Remote Execution

	Scheduling Spark Batch Jobs with Airflow

	Exercise 8-2: Installing the Spark Airflow Provider and Running a Spark DAG

	Locating the Airflow Containers

	Manually Installing the Spark Provider

	Using Containers for Runtime Consistency

	Running Spark Jobs with Apache Airflow

	Add Airflow Variables

	Add Airflow Connections

	Writing Your First Spark DAG

	Running the Spark DAG

	Exercise 8-2: Summary

	Running the SparkEventExtractorApp using Airflow

	Starting with a Working Spark Submit

	Exercise 8-3: Writing and Running the Customer Ratings Airflow DAG

	The Spark Configuration

	Local Job Configuration

	Spark Submit Properties

	Copy the Spark Application JAR into the Shared Spark JARs Location

	Running the Customer Ratings ETL DAG

	Exercise 8-3: Summary

	Looking at the Hybrid Architecture

	Setting Up the Extended Environment

	Migrating to MinIO from the Local File System

	Apply the Bucket Prefix Permissions

	Bootstrapping MySQL in a Common Location

	Continued Explorations

	Creating a User

	Summary

	Chapter 9: A Gentle Introduction to Stream Processing

	Stream Processing

	Use Case: Real-Time Parking Availability

	Time Series Data and Event Streams

	Do Events Stand Alone?

	Use Case: Tracking Customer Satisfaction

	The Event Time, Order of Events Captured, and the Delay Between Events All Tell a Story

	The Trouble with Time

	Priority Ordered Event Processing Patterns

	Real-Time Processing

	Near Real-Time Processing

	Batch Processing

	On-Demand or Just-In-Time Processing

	Foundations of Stream Processing

	Building Reliable Streaming Data Systems

	Managing Streaming Data Accountability

	Dealing with Data Problems in Flight

	Data Gatekeepers

	Software Development Kits

	Selecting the Right Data Protocol for the Job

	Serializable Structured Data

	Avro Message Format

	Avro Binary Format

	Enable Backward Compatibility and Preventing Data Corruption

	Best Practices for Streaming Avro Data

	Protobuf Message Format

	Code Generation

	Protobuf Binary Format

	Enable Backward Compatibility and Prevent Data Corruption

	Best Practices for Streaming Protobuf Data

	Remote Procedure Calls

	gRPC

	Define a gRPC Service

	gRPC Speaks HTTP/2

	Summary

	Chapter 10: Patterns for Writing Structured Streaming Applications

	What Is Apache Spark Structured Streaming?

	Unbounded Tables and the Spark Structured Streaming Programming Model

	Processing Modes

	Micro-Batch Processing

	Continuous Processing

	Exercise Overview

	The Challenge

	The OrderEvent Format

	Leaning on the Spark Struct

	Exercise 10-1: Using Redis Streams to Drive Spark Structured Streaming

	Spinning Up the Local Environment

	Connecting to Redis

	Connect to the Redis CLI

	Enable the Redis Command Monitor

	Creating the Redis Stream

	Stream Guarantees

	Redis Streams Are Append-Only

	Event Publishing to a Redis Stream

	Consume Events from a Redis Stream

	The SparkRedisStreamsApp

	Compile the Application

	Build the Docker Container

	Running the Application

	Redis Streams Consumer Groups and Offsets

	Consumer Groups

	Creating the Next Batch

	Exercise 10-1: Summary

	Exercise 10-2: Breaking Down the Redis Streams Application

	DataStreamReader

	Is the Schema Required?

	DataStreamWriter

	Lazy Invocation

	Depending on Dependency Injection

	Writing Streaming Data

	Streaming Query

	Application Entry Point

	Exercise 10-2: Summary

	Exercise 10-3: Reliable Stateful Stream Processing with Checkpoints

	Why Checkpoints Matter

	Reliable Checkpoints

	Enabling Reliable Checkpoints

	Running the Stateful Application

	Observing the Stateful Behavior

	How Checkpoints Work

	Deleting Checkpoints

	Exercise 10-3: Summary

	Exercise 10-4: Using Triggers to Control Application Runtime Behavior

	The Updated Run Method with Triggers

	Continuous Mode Processing

	Periodic Processing

	Stateful Batch Jobs

	Streaming Table Writer

	Running the Stateful Application with Triggers

	Run with Trigger Once

	Run with ProcessingTime

	Running Continuously

	Viewing the Results

	Exercise 10-4: Summary

	Summary

	Chapter 11: Apache Kafka and Spark Structured Streaming

	Apache Kafka in a Nutshell

	Asynchronous Communication

	Horizontal Scalability

	High Service Availability and Consistency

	Disaster Recovery

	Event Streams and Data Pipelines Ecosystem

	Chapter Exercises

	Exercise 11-1: Getting Up and Running with Apache Kafka

	Exercise 11-1: Materials

	Spinning Up Your Local Environment

	Creating Your First Kafka Topic

	How Topics Behave

	Creating a Kafka Topic

	Kafka Topic Management

	Listing Kafka Topics

	Describing a Topic

	Modifying a Topic

	Altering Topic Configurations

	Increasing Topic Partition Replication

	Truncating Topics

	Reducing the Topic Retention Period

	Increasing the Topic Retention Period

	Deleting Kafka Topics

	Securing Access to Topics

	Firewall Rules

	Access Control Lists

	End-to-End Encryption with Mutual TLS

	Exercise 11-1: Summary

	Exercise 11-2: Generating Binary Serializable Event Data with Spark and Publishing to Kafka

	Exercise 11-2: Materials

	CoffeeOrder Event Format

	Compiling Protobuf Messages

	Protobuf Message Interoperability with Spark and Kafka

	Adding the Protobuf and Kafka Spark Dependencies

	Escaping JAR Hell

	Writing the CoffeeOrderGenerator

	Running the Generator

	Exercise 11-2: Summary

	Exercise 11-3: Consuming Streams of Serializable Structured Data with Spark

	Exercise 11-3: Materials

	Consuming Binary Data from Apache Kafka

	Topic Subscription

	Topic Assignment

	Throttling Kafka

	Handling Failures

	Splitting the Partitions

	From Kafka Rows to Datasets

	Running the Consumer Application

	Exercise 11-3: Summary

	Summary

	Chapter 12: Analytical Processing and Insights

	Exercises and Materials

	Setting Up the Environment

	Spinning Up the Local Environment

	Using Common Spark Functions for Analytical Preprocessing

	Exercise 12-1: Preprocessing Datasets for Analytics

	Working with Timestamps and Dates

	Common Date and Timestamp Functions

	Applying Higher-Order Functions Using withColumn

	Using Date Addition and Subtraction

	Calendar Functions

	Time Zones and the Spark SQL Session

	Configuring the Time Zone

	Modifying the Spark Time Zone at Runtime

	Using Set Time Zone

	Seasonality, Time Zones, and Insights

	Timestamps and Dates Summary

	Preparing Data for Analysis

	Replacing Null Values on a DataFrame

	Labeling Data Using Case Statements

	Case Statements on the Dataset

	Case Statements on a Spark SQL Table

	The Case for Case Statements

	User-Defined Functions in Spark

	Using Scala Functions in UDFs

	Using Function Literals in UDFs

	Using Inline Functions in UDFs

	How User-Defined Functions Work

	Using UDFs with the Spark DSL

	Registering UDFs for Spark SQL

	Introspecting UDF Functions

	UDF Visibility and Availability

	Creating and Registering Permanent UDFs in the Spark SQL Catalog

	Using UDFs with Spark SQL

	Regarding User-Defined Functions

	Exercise 12-1: Summary

	Analytical Processing and Insights Engineering

	Data Aggregation

	Exercise 12-2: Grouped Data, Aggregations, Analytics, and Insights

	Relational Grouped Datasets

	Columnar Aggregations with Grouping

	Aggregating Using the Spark DSL

	Computing Summary Statistics for Insights

	Using Describe to Compute Simple Summary Statistics

	Using Agg to Compute Complex Summary Statistics

	Using Rollups for Hierarchical Aggregations

	Using Pivots

	Creating the Order Items

	Using Array Explode to Create Many Rows from One

	Using Array Explode and Join to Calculate the Order Total

	Using Pivots to Calculate Price Aggregates Across Menu Item Categories on a Per Order Basis

	Analytical Window Functions

	Calculating the Cumulative Average Items Purchased Difference Between Transactions

	Exercise 12-2: Summary

	Summary

	Part III: Advanced Techniques

	Chapter 13: Advanced Analytics with Spark Stateful Structured Streaming

	Exercises and Materials

	Stateful Aggregations with Structured Streaming

	Creating Windowed Aggregations Over Time

	Window Functions vs. Windowing

	Windowing and Controlling Output

	Streaming Output Modes

	Complete

	Update

	Append

	Append Output Mode

	Watermarks for Streaming Data

	Chapter Exercises Overview

	Input Data Format (CoffeeOrder)

	Output Windowed Store Revenue Aggregates

	Exercise 13-1: Store Revenue Aggregations

	Structured Streaming Application Trait

	Stream Reader

	Output Stream Decorator

	Conditional Object Decoration

	Spark Stateful Aggregations App

	Streaming Aggregations

	The Transform Method

	The Process Method

	Exercise 13-1: Summary

	Typed Arbitrary Stateful Computations

	KeyValueGroupedDataset

	Iterative Computation with *mapGroupsWithState

	MapGroupsWithState Function

	FlatMapGroupsWithState Function

	Exercise 13-2: Arbitrary Stateful Computations on Typed Datasets

	SparkTypedStatefulAggregationsApp

	TypedRevenueAggregates

	CoffeeOrderForAnalysis

	TypedStoreRevenueAggregates State Function

	Average of Averages

	Exercise 13-2: Summary

	Exercise 13-3: Testing Structured Streaming Applications

	MemoryStream

	Exercise 13-3: Summary

	Summary

	Chapter 14: Deploying Mission-Critical Spark Applications on Spark Standalone

	Deployment Patterns

	Running Spark Applications

	Deploying Spark Applications

	Spark Cluster Modes and Resource Managers

	Spark Standalone Mode

	Spark Standalone: High Availability Mode

	The Failover Process

	Deploy Modes: Client vs. Cluster Mode

	Client Mode

	Cluster Mode

	Distributed Shared Resources and Resource Scheduling for Multi-Tenancy

	Controlling Resource Allocations, Application Behavior, and Scheduling

	Elastically Scaling Spark Applications with Dynamic Resource Allocation

	Spark Listeners and Application Monitoring

	Spark Listener

	Observing Structured Streaming Behavior with the StreamingQueryListener

	Monitoring Patterns

	Spark Standalone Cluster and Application Migration Strategies

	Anti-Pattern: Hope for the Best

	Best Practices

	Regarding Containers and Spark Standalone

	Managed Spark

	Summary

	Chapter 15: Deploying Mission-Critical Spark Applications on Kubernetes

	Kubernetes 101

	Part 1: Getting Up and Running on Kubernetes

	Using Minikube to Power Local Kubernetes

	A Hands-On Tour of the Kubernetes APIs

	Nodes

	Common Node Services and Responsibilities

	kubelet

	kube-proxy

	Container Runtime

	Viewing All Cluster Nodes

	Namespaces

	Creating a Namespace

	Deleting a Namespace

	Creating Kubernetes Resources with Apply

	Pods, Containers, and Deployments

	What Is a Pod?

	Creating a Redis Pod Spec

	metadata

	spec

	Scheduling the Redis Pod

	Listing, Describing, and Locating Pods

	Executing Commands on the Redis Pod

	Deleting the Redis Pod

	Deployments and Handling Automatic Recovery on Failure

	Creating a Kubernetes Deployment

	Deployments and Resource Management

	Locate the Newly Deployed Pod

	Connect to the Managed Pod

	Observe Pod States and Behavior

	Delete the Managed Pod

	Persisting Data Between Deploys

	Persistent Volumes (PV)

	Configuring a Persistent Volume (PV)

	Create the Persistent Volume

	View the Persistent Volume

	Describe the Details of the Persistent Volume

	Persistent Volume Claims (PVC)

	Configuring a Persistent Volume Claim (PVC)

	Create the Persistent Volume Claim (PVC)

	Use Get to View the PVC

	View the PV

	Enhancing the Redis Deployment with Data Persistence

	Kubernetes Services and DNS

	Creating a Service

	Viewing Services (SVC)

	Part 1: Summary

	Part 2: Deploying Spark Structured Streaming Applications on Kubernetes

	Spark Namespace, Application Environment, and Role-Based Access Controls

	Define the Spark Apps Namespace

	Role-Based Access Control (RBAC)

	Roles

	Service Accounts

	Role Bindings

	Creating the Spark Controller Service Account, Role, and Role-Binding

	Redis Streams K8s Application

	Building the Redis Streams Application

	Building the Application Container

	Deploying the Redis Streams Application on Kubernetes

	Externalized Dependency Management

	External Configuration with ConfigMaps

	Secrets

	Securely Storing the Hive Metastore Configuration

	Securely Storing the MinIO Access Parameters

	Viewing Secrets in the Namespace

	Cross Namespace DNS and Network Policies

	Controlling Deployments with Jump Pods

	Triggering Spark Submit from the Jump Pod

	Connecting the Deployment Dots

	Viewing the Driver Logs

	Viewing the Driver UI

	Sending CoffeeOrder Events

	Deleting the Driver and Jump Pods

	Automating the Deployment and Automatic Recovery

	Part 2: Summary

	Conclusion

	After Thoughts

	Index

index-307_1.png
ﬁ? MinlO Browser

Q search Buckets

com.coffeeco.d
2 Edit policy

index-282_1.jpg
© 0 axample_bash_ox

index-89_1.png
@D Zeppelin ook - o

Welcome to Zeppelin!

Zopgalin s wa-oasec nctasock that ensble eractie data antcs.
You can ke beaul. ceta-diven,Intarseve, colibrativ deument with SAL. code and aven morel

Notebooks Help
Lot vt Gastanadwi Zagoein cecumaniicn
T Grestonow oo Community
Qi P et o ol s o o Zepooln,
- S orti o e vk
1 nstesparsonzapgsin
oy iy
it e aciing
e
oo Oaumn

o ToSpkOnZopaolFinad
LotsperiWorkFartouFind

index-358_1.png
Redis Streams

com:coffeecoicoffee:viiorders }q—,— DatastreamReader

Spar

Batch 0

DataStreamWriter

Console

index-343_1.png
ches long-running

e sireof e

g quens

s pracess vana 5a scon 83 sy

Pyt

gl

long running tasks continuously process events

Input Event

ey

epoch ’

CUOUTLT

eocn 4

L
apocn Q

Stream

processad caste 1o savad
o s vrte-aheaiicg ar
avery epoch

index-323_1.png
APls / Services

Data APl Gateway

‘Stream Processing

93ta Gatanay Ao sarvart)

[————

i

[E———

index-56_1.jpg
Jobs

[vaiase sors:] ‘vh\-gcn‘hnmsj [wptocan |
ems
3 i L
Unified Storage sty | [ey | actitys
i I '
MapReduce | countititney | | ovatuumttomyassum . | | tem, sumicom) as sl

! 4
i Storage H— | e e

index-44_1.jpg

cover.jpeg
Modern Data |
Engineering with
Apache Spark

A Hands-0n Guide for Building
Mission-Critical Streaming Applications

Scott Haines

Apress’

index-18_1.jpg

index-17_1.jpg

index-91_1.png
Read CSV. P 08 FNSHED >
sopark
27 1004 the sars file fron <

Ll coffees
Cotrass. snons)

ZntraTosparkOnzeppetin
sparc.read_csv("F.La://7Learn/ra cobfee <"} Lol nome’”, "roast)

index-285_1.png
runme_0 \ also_run_this

runme_1 —» run_after_loop — run_this_last

runme_2 /h; will_skip /

index-474_1.png
strzerming Data (In-Orzer) >

e

- S anrarke1d LAY

index-305_1.jpg
Airflow Spark Hybrid Architecture

Data Lake
(minic)
v

0
MysaL
(hive metastore) |+

index-81_1.jpg
@ docker

Resources Advanced
CPUs:4

—_———,_,

Memory: 8.00 GB

Swap:2GB

Disk im

200 GB (5 GB used)

Disk image locat
JUsers/scotthaines/Library/Containers/com.docker.dock: | 8rowse

index-339_1.png
2

1
fime. &

Y
data up.
\nput tot=1
fad
)
]
a
Result tesultup
tot=1

Output .

complete mode

Y

data up
tot=2

i

result Up
tot=2

A\l

data up
=3

‘
O

result up
ot=3

index-367_1.png
satcno Distribued File ystem

Reds Serams.

T ——— Datasureamkeader 4

> checkpointocation/oftsetsbatchid

checkpoinciocatlon/commits/batchic

Dstastraamwriter

index-220_1.jpg
Source A

Pipeline Job A
join
Pipeline Job B 4—{ Source B
oin
‘ Source C Pipeline Job C

!

Job D Job E

index-280_1.jpg
7R —

DAGs
1o @ | rome1@

marvie A

index-309_1.jpg
Rlsicton oaee wmen o wzsure

* esfeaco [Search DASs
oaG Owner Runs Schedule Last Run Recent Tasks
day._spark pi

O™ e O @ s anwwaess O

index-467_1.png
Crdens

0
I

£
I

10

1200

210

220

1230

index-315_1.png
A A
le N 2% N N .

L J L J L J L J L J » time
—

index-297_1.jpg
@ O O localhost:808Blgrash?dag

=daly_sperkpi a ¥

spark_pi_job
2021-06-29T23:47:41+00:00

siflow pac- 8

Task Actions

Ignore Al Deps | Ignore Task State | lgnore Task Deps

Past | Fuare | Upsoeam | Dosrsvean

Ugstream | Downstream

index-408_1.png
Dssuesmieder

l Dt e Sy

] s s

index-47_1.jpg

index-304_1.jpg
© 1/ customer_ratings_eti_dag

v [oo B S Swure ol

Moy DAGs Sewiy Burse Adnn Docs e W

B e | | r— -

s)) 5] (7

index-35_1.jpg
selact * from ...

[3 Data Warchouse

index-90_1.jpg
IntroToSparkOnZeppelin

index-61_1.png
SparkContext

Worker Node

Executor

Cache

Task

Task

Cluster Manager

Worker Node

Executor

Cache

Task

Task

index-342_1.png
DataFrarre

Cetacg

Loget Code.
Anaysis Cptmizaton Planning Generation
3| (saeaed
Y

index-148_1.jpg
Spark Shell

Configuration

i

Dependency Management

i

Class Loader

i

Spark Session

Spark Context SQL Context

RuntimeConfig

index-257_1.jpg
: Spark Driver App

SparkConf ‘ SparkSession

SparkEventExctractorApp. run()

4

Spark Executor l

Serializable Delegate

SparkEventExctractor apply || Sparksession Aransform

index-68_1.jpg
Sparl

Downi

sngie

Download Apache Spark™
1. Choose a Spark release: 3.0.1 (Sep 02 2020) |

2 Croose s prckage e Tre-bul or Asache Fdoop 32 and er)

T e e

index-344_1.png
Order Tracking

Coffeeshop

Coffeeshop

Coffeeshop

APl

Event Gateway

Event Streaming Platform

index-510_1.png
Spar

Spark Standalone Cluster

o

Driver 8) |« »| executor
——sparw—worker
executor
v L2
executor || executor executor
lorker

index-105_1.jpg
sl
Blw 0w e | & | sons-
foigars

nespress
st

four zama

BISPARK JOB FINISHET

roast
w00
00
w00
v
50

index-306_1.jpg
O A& Notsesus

Q s

2

index-291_1.jpg
C O G lcamcaudkananabis! i ha 0T @

Rl iiton oacs sty oo Admn Docs e
oo Fla s e ctosen [@ porvasabes

Lt Variable

Search-

[cors o
o Ky at Descrigion [am—

O @el sPRcHoME loprsparks The Spark Home Cresory Fee

index-543_1.png
Node

ip: 172.x.x.x

Kube-proxy

Pod
ip: 10.10.10.1

velumes

container(s)
kublet

Container Runtime
Interfzce (Docker, etc)

index-272_1.jpg
Workflow A

Sour

Pipeline Job A

Pipaline Job A

| oo [o puatnenc
'

¥

index-43_1.jpg
Data Warehouse.

index-281_1.jpg
oy wowzo

R o
example_bash aperator

[... [T

a

[T P
sensae 00+
DT ok LarseaToes O o
reln
s WAL
L e —————

index-38_1.png
er— [

g
f2

et o L e

st
incees Dabus)

= = e |
B —

o)

pr——
o7 Zdge)

index-514_1.png
Spar

Spark Driver
Application (A)

Spark Master: Active

Workers (Executors)

spark Waorker: Spark Worker:
Cores: 8 (0 Used) Cores: 8 0 Used)
- - -~ Memory: 16GIE(UGIB | | Memory: 15GiB(0Gi8
Used) Used)
Spark Warker: Spark Worker:
Cores: 8 (0 Used) Cores: 8 (0 Used)
Memory: 16 GIE (UGIB | | Memary: 15 GIB (0GB
Used) Used)

index-409_1.png
ot Topic

w | o [[»

[—

> checkpoinlocatoniosestbaehis

parquet

——

index-341_1.png
avents wherat'store.open = e’}
groupBywindoa(time”, "5 minutes”)
averarcers’)

Structured Streaming

— ﬂ\ /[W

outpus sirsams

[—
ofsseLog L

index-53_1.png
ek

W Wk
e
(naster
Qe) o
o g
e =4
—
_ <)
S0 @i [
spiall ‘s,m.,mm/("”m’)i iz
sl |-) tom e
ol s, e | - =
split3 K““ ", file |
it
=
Input Map Inermediate filcs Reduce
Tiles chase (o0 local disks) ‘phase

index-1_1.jpg

index-201_1.jpg
SPAAS L, e s | s G Sesues Zeppains3picasen U
Storage
-o0s

0 R Storgotenn Cashed pariions FracienGached Szein My Siasanpisk

index-449_1.png
Normal,
Bell-shaped Curve

40 E 20 EE] 0 1o +20 +30 +40
| | | | | ' |
01% 23% 5o 50% 841% oTT% 999%
T

i | f
AL L T T
1 5 10 2000506708 W 5w

10 20 30 40 S0 60 70 8 80

index-515_1.png
Sponi‘

Spark Driver

Spark Master: Active

Workers (Executors)

—

Spark Driver
Aapplication (8)

Spark Worker:
Cores: 8 8 Used)
Memory; 16 GiB (16 GiB
Used)

Spark Worker:
Cores: 8 2 Used)
Memory: 16 GiE (4 GiE
Used)

Spark Worker:
Cores: 8 (8 Used)
Memory: 16 GiB (16 GIB
Used)

Spark Worker:
Cores:8 2 Used)
Memory: 16 GiE (4 GIE
Used)

index-369_1.png
[rr—

Spar

Bacno

Distributed il System

[r———

Dstasereampsder

DstreamMriter

-

[

—

chackpoinclscatonrofisecsbatchid

hackpeincacatisnicommicsbatehid

index-505_1.png
Apache Zookeeper

Spark Cluster Workers (Executors)

Spark Warker:
Cores: 8 (0 Used)
Memory: 16 GiB (0 GiB
Used)

Spark Worker:
(0 Used)
6GiB (0 GiB
Used)

spark Worker:
Cores: § (0 Used)
Memory: 16 GiB (0 GiB
Used)

Spark Worker:
Cores: 8 (0 Used)
Memory: 6 GiB (0 GiB
Used)

index-279_1.jpg
Rl ton T

sknin

o your ogin ara passwore o

Uaermames

index-200_1.jpg
@ A NotSecure | spark

Spmiz:” Jobs Stages = Storage = Environment Executors

Storage

index-1_2.png

index-508_1.png
DeplayMode:

Spark Driver
Application (A)

Spor

Spark Standalane Cluster ®
executor
: orker Spark Worker
———
| [soancaorker Spark Worker
I | pU—

index-335_1.jpg
Ruby Client

gRPC Server

C++ Service

Android-Java Client

index-228_1.jpg
Planning /

/ Spec \

Maintenance

Analysis
/ Software
Development)
Release
Cycle

\ Design
Testing /

=~ Coding

index-293_1.jpg
© 0 @ lecaest 036 onrectoniadd

Gom g™

Comn Type

Dascrption

e3 -

DAGs Seowlty Browse Admn Doos 2xs4uTC

e p—

park =

Gonn Type missing? Mk eure o

vl the commesanding iriou P der Package.

This cor i reprasorts e Spek Home conneston o the volume
mounes Spark dsbulon, See e docier-composa.yan o more
i

t
deploy. moca*: ‘',
“apare nome': opliperc’,
“spar_sinary': “spark_subrmt{
)

ax 0@

index-208_1.jpg
Logical ~ Physical Code
Analsls optimzation Pianning -

Optinized

Logica Plan

Selecied
Prysial [~ RDDs
Flan

Cost Model

