

Serverless Web
Applications with

AWS Amplify
Build Full-Stack Serverless
Applications Using Amazon

Web Services

Akshat Paul
Mahesh Haldar

Serverless Web Applications with AWS Amplify: Build Full-Stack Serverless
Applications Using Amazon Web Services

ISBN-13 (pbk): 978-1-4842-8706-4		 ISBN-13 (electronic): 978-1-4842-8707-1
https://doi.org/10.1007/978-1-4842-8707-1

Copyright © 2023 by Akshat Paul, Mahesh Haldar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on the Github repository: https://github.com/haldarmahesh/amplify-book. For more detailed
information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Akshat Paul
Gurgaon, Haryana, India

Mahesh Haldar
Bahraich, Uttar Pradesh, India

https://doi.org/10.1007/978-1-4842-8707-1

iii

Table of Contents

About the Authors��� ix

Acknowledgments�� xi

Introduction�� xiii

Chapter 1: �Introduction to Serverless��� 1

A Little Background�� 1

Rise of Cloud Computing�� 3

Key Advantages of Cloud Environments��� 4

The Emergence of Serverless Computing: A Game-Changer for Cloud Development������������������� 5

Backend As a Service (BaaS)��� 6

Function As a Service/Serverless Computing��� 8

Benefits and Weaknesses of a Serverless Architecture��� 10

Benefits of Serverless Architecture�� 10

Weaknesses of Serverless��� 12

AWS Amplify Introduction��� 13

Local Setup�� 14

Setting Up AWS Amplify CLI�� 15

Summary��� 22

Chapter 2: �UI Component and Authentication�� 23

Authentication Basics�� 23

What Is Authentication?�� 24

How Can Users Prove Credibility?�� 24

What Is Authorization?��� 25

Broken Authentication�� 27

Types of Authentication�� 28

Why MFA Is Important�� 30

https://doi.org/10.1007/978-1-4842-8707-1_1
https://doi.org/10.1007/978-1-4842-8707-1_1#Sec1
https://doi.org/10.1007/978-1-4842-8707-1_1#Sec2
https://doi.org/10.1007/978-1-4842-8707-1_1#Sec3
https://doi.org/10.1007/978-1-4842-8707-1_1#Sec4
https://doi.org/10.1007/978-1-4842-8707-1_1#Sec5
https://doi.org/10.1007/978-1-4842-8707-1_1#Sec6
https://doi.org/10.1007/978-1-4842-8707-1_1#Sec7
https://doi.org/10.1007/978-1-4842-8707-1_1#Sec8
https://doi.org/10.1007/978-1-4842-8707-1_1#Sec15
https://doi.org/10.1007/978-1-4842-8707-1_1#Sec20
https://doi.org/10.1007/978-1-4842-8707-1_1#Sec21
https://doi.org/10.1007/978-1-4842-8707-1_1#Sec22
https://doi.org/10.1007/978-1-4842-8707-1_1#Sec25
https://doi.org/10.1007/978-1-4842-8707-1_2
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec1
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec2
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec3
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec4
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec5
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec6
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec7

iv

Types of MFA�� 31

JSON Web Tokens��� 32

JWT Authentication Flow�� 33

JWT Structure��� 34

Setting Up Authentication Using AWS Amplify��� 35

Creating Our React App�� 36

Configuring the Backend for Our React Application��� 37

Setting Up Authentication�� 41

Creating an Auth Service�� 42

Amplify UI React Components�� 43

Integrating Auth with React App��� 45

Logging In and Logging Out�� 51

OAuth Social Login��� 57

What Is OAuth?��� 58

Setting Up React App�� 71

Summary��� 72

Chapter 3: �CRUD and REST APIs – Pillars of Efficient Data Exchange��������������������� 75

API Overview�� 75

Why Do We Need an API?��� 77

API Design�� 78

Types of APIs�� 79

API Specifications and Protocols�� 79

Introduction to Lambda�� 80

Lambda Functions – The Serverless Functions�� 80

Lambda Functions�� 81

Use Cases of Lambda Functions�� 82

Cons of Using Lambda Functions��� 82

How Lambda Function Works��� 82

What Is the Lambda Layer?�� 83

Table of Contents

https://doi.org/10.1007/978-1-4842-8707-1_2#Sec8
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec9
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec10
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec11
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec12
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec13
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec14
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec15
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec16
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec17
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec19
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec22
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec24
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec25
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec28
https://doi.org/10.1007/978-1-4842-8707-1_2#Sec30
https://doi.org/10.1007/978-1-4842-8707-1_3
https://doi.org/10.1007/978-1-4842-8707-1_3#Sec1
https://doi.org/10.1007/978-1-4842-8707-1_3#Sec2
https://doi.org/10.1007/978-1-4842-8707-1_3#Sec3
https://doi.org/10.1007/978-1-4842-8707-1_3#Sec4
https://doi.org/10.1007/978-1-4842-8707-1_3#Sec5
https://doi.org/10.1007/978-1-4842-8707-1_3#Sec6
https://doi.org/10.1007/978-1-4842-8707-1_3#Sec7
https://doi.org/10.1007/978-1-4842-8707-1_3#Sec8
https://doi.org/10.1007/978-1-4842-8707-1_3#Sec9
https://doi.org/10.1007/978-1-4842-8707-1_3#Sec10
https://doi.org/10.1007/978-1-4842-8707-1_3#Sec11
https://doi.org/10.1007/978-1-4842-8707-1_3#Sec12

v

Working with REST APIs��� 85

Saving the File�� 92

PUT API to Update Items��� 97

Using the Delete API to Delete an Item by ID�� 99

Summary��� 100

Chapter 4: �Integrating REST APIs with a Frontend React App������������������������������� 101

Creating a Basic React ToDo App��� 101

Adding a New Item��� 105

Enhancing the User Experience��� 108

Enhancement 1��� 108

Enhancement 2��� 109

Do It Yourself (DIY): Deleting and Updating�� 111

GraphQL API�� 111

Custom Resolver�� 118

Modifying the Lambda Handler�� 119

Testing the API�� 121

Creating New Item – Mutation Query��� 122

Testing the Mutation��� 124

Updating the Item by ID – Mutation Query��� 125

Integrating GraphQL API in React��� 130

Integrating GraphQL Mutation API�� 133

Do It Yourself (DIY): Modifying the React App��� 134

Subscription API��� 134

Integrating Subscription API with React�� 139

Why APIs Throw 401 Error�� 142

Summary��� 144

Table of Contents

https://doi.org/10.1007/978-1-4842-8707-1_3#Sec14
https://doi.org/10.1007/978-1-4842-8707-1_3#Sec15
https://doi.org/10.1007/978-1-4842-8707-1_3#Sec16
https://doi.org/10.1007/978-1-4842-8707-1_3#Sec17
https://doi.org/10.1007/978-1-4842-8707-1_3#Sec18
https://doi.org/10.1007/978-1-4842-8707-1_4
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec1
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec2
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec3
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec4
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec5
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec6
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec7
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec9
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec10
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec11
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec12
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec13
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec14
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec16
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec17
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec18
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec21
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec22
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec23
https://doi.org/10.1007/978-1-4842-8707-1_4#Sec24

vi

Chapter 5: �Offline-First App��� 145

Benefits of the Client-Server Model��� 145

Use Cases of Offline Apps�� 146

The Offline App – Design Overview�� 148

Goal�� 148

Add Offline Features in React.js��� 150

Assumption��� 150

The Page Render Function��� 151

Real-Time Online HTTP Client��� 153

Offline HTTP Client�� 153

Rendering the Offline and Online Items in the List�� 156

Testing Offline Feature��� 157

Testing the Online Syncing Feature��� 162

Things to Consider While Creating Offline Apps��� 162

Summary��� 164

Chapter 6: �Data Storage�� 165

Introduction�� 165

Types of Data to Store�� 166

Cloud Storage As a Service�� 167

Database Provision and Integration��� 167

Provisioning Database�� 168

Integrating the Database with APIs�� 169

Assigning IDs to New Items�� 172

Modifying the Create Todo Item Function��� 172

Modifying the Get All Items API��� 174

Do It Yourself (DIY)�� 175

File Storage – S3 Bucket��� 176

Goal�� 176

Approach�� 176

Provision S3 Bucket�� 177

Table of Contents

https://doi.org/10.1007/978-1-4842-8707-1_5
https://doi.org/10.1007/978-1-4842-8707-1_5#Sec1
https://doi.org/10.1007/978-1-4842-8707-1_5#Sec2
https://doi.org/10.1007/978-1-4842-8707-1_5#Sec3
https://doi.org/10.1007/978-1-4842-8707-1_5#Sec4
https://doi.org/10.1007/978-1-4842-8707-1_5#Sec5
https://doi.org/10.1007/978-1-4842-8707-1_5#Sec6
https://doi.org/10.1007/978-1-4842-8707-1_5#Sec7
https://doi.org/10.1007/978-1-4842-8707-1_5#Sec8
https://doi.org/10.1007/978-1-4842-8707-1_5#Sec9
https://doi.org/10.1007/978-1-4842-8707-1_5#Sec11
https://doi.org/10.1007/978-1-4842-8707-1_5#Sec12
https://doi.org/10.1007/978-1-4842-8707-1_5#Sec13
https://doi.org/10.1007/978-1-4842-8707-1_5#Sec14
https://doi.org/10.1007/978-1-4842-8707-1_5#Sec15
https://doi.org/10.1007/978-1-4842-8707-1_6
https://doi.org/10.1007/978-1-4842-8707-1_6#Sec1
https://doi.org/10.1007/978-1-4842-8707-1_6#Sec2
https://doi.org/10.1007/978-1-4842-8707-1_6#Sec3
https://doi.org/10.1007/978-1-4842-8707-1_6#Sec4
https://doi.org/10.1007/978-1-4842-8707-1_6#Sec5
https://doi.org/10.1007/978-1-4842-8707-1_6#Sec6
https://doi.org/10.1007/978-1-4842-8707-1_6#Sec7
https://doi.org/10.1007/978-1-4842-8707-1_6#Sec8
https://doi.org/10.1007/978-1-4842-8707-1_6#Sec9
https://doi.org/10.1007/978-1-4842-8707-1_6#Sec10
https://doi.org/10.1007/978-1-4842-8707-1_6#Sec11
https://doi.org/10.1007/978-1-4842-8707-1_6#Sec12
https://doi.org/10.1007/978-1-4842-8707-1_6#Sec13
https://doi.org/10.1007/978-1-4842-8707-1_6#Sec15

vii

Verifying the Resources on Amazon Console��� 179

The Lambda Function��� 184

Testing the Thumbnail Creation by Lambda Trigger��� 187

Checking the Lambda Function Logs��� 190

Summary��� 193

Chapter 7: �Analytics�� 195

A High-Level View of Analytics��� 195

Analytics Fundamentals��� 198

Terminologies��� 199

Setting Up Amplify Analytics Backend��� 200

Recording Events and Actions��� 201

Recording Events from our React App�� 202

Recording Button Clicks on the Sign-In Page��� 204

Why Is There a Delay in API Calls After We Click the Button to Record?������������������������������� 206

Tracking Page Views��� 207

Automatic Tracking��� 209

Events Dashboard on AWS Console�� 210

Limitations of AWS Pinpoint Service��� 213

Introduction to Kinesis��� 214

Streaming Analytics Data��� 215

Setting Up Kinesis Backend��� 215

Delivery Stream�� 220

Writing the Data into the File�� 222

Streaming the Analytics Data from React App�� 225

Summary��� 232

Table of Contents

https://doi.org/10.1007/978-1-4842-8707-1_6#Sec16
https://doi.org/10.1007/978-1-4842-8707-1_6#Sec18
https://doi.org/10.1007/978-1-4842-8707-1_6#Sec22
https://doi.org/10.1007/978-1-4842-8707-1_6#Sec23
https://doi.org/10.1007/978-1-4842-8707-1_6#Sec24
https://doi.org/10.1007/978-1-4842-8707-1_7
https://doi.org/10.1007/978-1-4842-8707-1_7#Sec1
https://doi.org/10.1007/978-1-4842-8707-1_7#Sec2
https://doi.org/10.1007/978-1-4842-8707-1_7#Sec3
https://doi.org/10.1007/978-1-4842-8707-1_7#Sec4
https://doi.org/10.1007/978-1-4842-8707-1_7#Sec6
https://doi.org/10.1007/978-1-4842-8707-1_7#Sec8
https://doi.org/10.1007/978-1-4842-8707-1_7#Sec9
https://doi.org/10.1007/978-1-4842-8707-1_7#Sec10
https://doi.org/10.1007/978-1-4842-8707-1_7#Sec11
https://doi.org/10.1007/978-1-4842-8707-1_7#Sec12
https://doi.org/10.1007/978-1-4842-8707-1_7#Sec13
https://doi.org/10.1007/978-1-4842-8707-1_7#Sec14
https://doi.org/10.1007/978-1-4842-8707-1_7#Sec15
https://doi.org/10.1007/978-1-4842-8707-1_7#Sec16
https://doi.org/10.1007/978-1-4842-8707-1_7#Sec17
https://doi.org/10.1007/978-1-4842-8707-1_7#Sec18
https://doi.org/10.1007/978-1-4842-8707-1_7#Sec19
https://doi.org/10.1007/978-1-4842-8707-1_7#Sec20
https://doi.org/10.1007/978-1-4842-8707-1_7#Sec25

viii

Chapter 8: Continuous Integration and Continuous Delivery/Continuous
Deployment�� 233

The Goal of This Chapter�� 233

Defining CI/CD�� 233

Difference Between CI and CD��� 234

Continuous Integration��� 234

Continuous Delivery�� 235

Continuous Deployment��� 235

The Objective of the CI/CD Pipeline�� 236

Pipeline As Code�� 236

Benefits of Pipeline As Code��� 237

Repository and Environments��� 237

Hosting the Application for Development Environment�� 238

Creating a New Environment and Hosting It��� 248

Password Protecting the Nonproduction Environment��� 254

Summary��� 256

Chapter 9: �Amplify Supplements��� 257

Building Interactive Bots with AWS Lex Service�� 257

Important Terminologies��� 260

Test the Chatbot��� 262

Boost Your Application with AI/ML Capability��� 264

What Is Artificial Intelligence?�� 264

What Is Machine Learning?�� 265

Amplify Beyond React Web Apps��� 268

AWS Amplify Studio�� 270

Summary��� 272

�Index�� 273

Table of Contents

https://doi.org/10.1007/978-1-4842-8707-1_8
https://doi.org/10.1007/978-1-4842-8707-1_8
https://doi.org/10.1007/978-1-4842-8707-1_8#Sec1
https://doi.org/10.1007/978-1-4842-8707-1_8#Sec2
https://doi.org/10.1007/978-1-4842-8707-1_8#Sec3
https://doi.org/10.1007/978-1-4842-8707-1_8#Sec4
https://doi.org/10.1007/978-1-4842-8707-1_8#Sec5
https://doi.org/10.1007/978-1-4842-8707-1_8#Sec6
https://doi.org/10.1007/978-1-4842-8707-1_8#Sec7
https://doi.org/10.1007/978-1-4842-8707-1_8#Sec8
https://doi.org/10.1007/978-1-4842-8707-1_8#Sec9
https://doi.org/10.1007/978-1-4842-8707-1_8#Sec10
https://doi.org/10.1007/978-1-4842-8707-1_8#Sec11
https://doi.org/10.1007/978-1-4842-8707-1_8#Sec12
https://doi.org/10.1007/978-1-4842-8707-1_8#Sec14
https://doi.org/10.1007/978-1-4842-8707-1_8#Sec15
https://doi.org/10.1007/978-1-4842-8707-1_9
https://doi.org/10.1007/978-1-4842-8707-1_9#Sec1
https://doi.org/10.1007/978-1-4842-8707-1_9#Sec2
https://doi.org/10.1007/978-1-4842-8707-1_9#Sec3
https://doi.org/10.1007/978-1-4842-8707-1_9#Sec4
https://doi.org/10.1007/978-1-4842-8707-1_9#Sec5
https://doi.org/10.1007/978-1-4842-8707-1_9#Sec6
https://doi.org/10.1007/978-1-4842-8707-1_9#Sec8
https://doi.org/10.1007/978-1-4842-8707-1_9#Sec9
https://doi.org/10.1007/978-1-4842-8707-1_9#Sec10

ix

About the Authors

Akshat Paul is the Founder and CTO of Company360, a technology leader, author of four

books on React Native, Ruby, and RubyMotion, and a former consultant at McKinsey &

Company. With his extensive experience in mobile and web development, coupled with

his strategic insights gained at McKinsey, he has delivered numerous enterprise and

consumer applications over the years. As an influential voice in the tech industry, Akshat

frequently speaks at conferences and meetups on various technologies. He has given

talks at React Native EU, Cross-Platform Mobile Summit, Devops@scale Amsterdam, the

DevTheory Conference India, RubyConfIndia, and #inspect-RubyMotion Conference

Brussels and was a keynote speaker at technology leadership events in Bangkok and

Kuala Lumpur. Besides technology Akshat spends time with his family, is an avid reader,

and is obsessive about healthy eating.

Mahesh Haldar is a passionate software engineer and expert in building scalable

systems. With extensive experience in designing robust architectures, Mahesh empowers

the team to fully harness the potential of cloud-based solutions. As a sought-after

speaker, Mahesh has presented at technical meetups and conferences in Bangalore,

Johannesburg, and Singapore. His outstanding contributions have earned recognition,

including features in Yourstory magazine and being listed among India’s top 20 apps.

Currently serving as a Principal Software Engineer at Carrefour, Mahesh leads a team

of talented developers, delivering exceptional eCommerce experiences. His expertise

has been pivotal in designing and implementing high-impact functionalities, effectively

serving millions of daily customer requests. With a proven track record in developing

complex large-scale systems for start-ups and renowned enterprises like Jago Bank and

Mckinsey & Company, Mahesh brings a wealth of practical knowledge and expertise to

the table.

xi

As the saying goes, “If I have seen further, it is by standing on the shoulders of giants.” In

the context of this book, those giants are the individuals who offered their unwavering

support and invaluable guidance throughout my journey.

Firstly, I want to express my profound gratitude to my parents, Shakuntala Paul
and Anup Paul. Your unwavering belief in my abilities and steadfast encouragement

have always propelled me forward. The spirit of continuous learning that you fostered

in me has not only been instrumental in my personal growth, but it has also profoundly

influenced my professional trajectory as a technology leader, and your tireless

cheerleading during my biggest victories has always been my motivation to keep moving

forward.

I am eternally thankful for my wife, Anu Sharma. She has been my rock and my

sanctuary throughout the process of writing this book. Her understanding, patience, and

unconditional love were invaluable during those late-night writing sessions and bouts of

writer’s block. Her ability to uplift my spirits during challenging moments and celebrate

with me during my triumphs has been a constant source of inspiration. This book is as

much her accomplishment as it is mine.

I would also like to extend my heartfelt thanks to the Apress team: Jessica Vakili,
James Robinson-Prior, and James Markham. Your collective expertise, support, and

collaboration have played a vital role in the successful completion of this book. Your

dedication to maintaining the quality and integrity of this work has not gone unnoticed,

and I am deeply grateful for your tireless efforts. A special acknowledgment to Louise
Corrigan, who was instrumental in the initial conceptualization of this book.

To each and every one of you, I express my sincerest appreciation. This book would

not have been possible without your enduring support, faith, and encouragement.

Thank you for being a part of my journey.

—Akshat Paul

Acknowledgments

xii

I would like to express my heartfelt gratitude to the following individuals who have been

instrumental in the creation and completion of this book.

My dearest friend and mentor, Akshat Paul, whose guidance, expertise, and

unwavering support have been invaluable throughout this journey. Your wisdom and

insights have shaped not only this book but also my growth as a technologist and as a

writer. Thank you for believing in me.

To my late father, Ram Ratan Haldar, who always taught me to work hard and

instilled in me the love for knowledge and learning. Though you are no longer with us,

your presence and influence continue to inspire me every day.

To my mother, Champa Rani Haldar, whose unwavering love, encouragement,

and sacrifices have been a constant source of strength and motivation. Your belief

in my abilities and your unwavering support have been the driving force behind this

accomplishment.

And finally, to my loving wife, Prachita, who sacrificed many late nights and

weekends without me while I was working on this book. Thank you for your unwavering

support, encouragement, and patience.

I must also extend my earnest appreciation to the team at Apress: Jessica Vakili,
James Robinson-Prior, and James Markham. Your combined knowledge, unwavering

support, and collaborative efforts were pivotal to the book’s successful completion.

I am deeply grateful to each and every person who has played a role, big or small, in

the creation of this book. Your contributions, encouragement, and belief in my abilities

have made this book possible.

—Mahesh Haldar

Acknowledgments

xiii

As we progress further into the digital age, serverless architectures and web applications

are continuously reshaping the technological landscape. As technology leaders, we often

faced challenges when searching for thorough, hands-on resources on this topic. This

motivated us to compose Serverless Web Applications with AWS Amplify, a book that

represents the guide we wished existed when we first ventured into the field of serverless

architecture.

Serverless Web Applications with AWS Amplify is intended for a broad audience – from

newbies taking their first steps in cloud development to advanced developers aiming

to broaden their understanding of modern web application technologies. While prior

knowledge of cloud computing might be helpful, it is not a prerequisite. The aim is to

assist all readers in scaling their web applications, reducing costs, enhancing scalability, or

simply exploring the expansive domain of serverless web development with AWS Amplify.

The structure of this book is carefully designed, beginning with the fundamentals

of cloud computing and serverless architectures, followed by an introduction to AWS

Amplify. Subsequent chapters dive into topics such as authentication, authorization,

REST APIs, GraphQL, and offline-first applications. As we progress, we delve into data

and storage, analytics, continuous integration/continuous delivery (CI/CD), with AWS

Amplify, and, eventually, the integration of AI and ML capabilities into your applications,

by building interactive chatbots and building application to convert text to speech.

In addition to detailed explanations, this book includes practical examples, code

snippets, and hands-on exercises to solidify your understanding of the concepts. To

further support your learning journey, additional online resources are available.

Reflecting on our journey, we recall the intriguing challenge that programming

initially posed for us. It was the transformative power of code, the ability to turn ideas

into reality, that fueled our fascination. AWS Amplify, in particular, revolutionized our

approach to web application development. This book is the culmination of our journey,

experiences, and accumulated knowledge, which we are eager to share with all readers.

As the famous quote by Albert Einstein goes, “The measure of intelligence is the

ability to change.” By the end of Serverless Web Applications with AWS Amplify, our

hope is to provide you with the knowledge and skills to adapt to the fast-paced world of

serverless web applications, fostering your growth in this dynamic field.

Introduction

1

CHAPTER 1

Introduction to Serverless
In the world of cloud, scale is the game changer.

—Akshat Paul

Cloud computing has transformed the way we store, process, and manage data. In

this chapter, we will cover the basics of cloud computing, including its evolution from

traditional IT, its key advantages, and the next generation of cloud technologies. We will

explore serverless architectures, BaaS (Backend as a Service) and FaaS (Function as a

Service), discussing their benefits and weaknesses. We will also introduce AWS Amplify,

a platform for building web and mobile applications with AWS services, and guide you

through setting it up locally and configuring the Amplify CLI with AWS.

Whether you’re new to cloud computing or an experienced developer looking to

learn about next-generation cloud technologies, this chapter will provide you with a

solid foundation to build upon. So, let’s dive into the world of cloud computing and

explore the latest and greatest technologies that it has to offer.

�A Little Background
In 2017 at AWS re:Invent, I became intrigued by a new architecture for application

development called serverless architecture. Initially, I had reservations about serverless

applications, as it seemed like someone else would be running a server for me, which

meant giving up control. As a developer, I was reluctant to relinquish control over my

application. However, I soon discovered that serverless architecture offers much more.

In this book, we will explore how this game-changing architecture can save developers

a significant amount of time on repetitive tasks, allowing them to focus on tasks that

have the maximum impact. But before we dive into that, let’s take a brief look at the

background and history of how we arrived at this point.

© Akshat Paul, Mahesh Haldar 2023
A. Paul and M. Haldar, Serverless Web Applications with AWS Amplify,
https://doi.org/10.1007/978-1-4842-8707-1_1

https://doi.org/10.1007/978-1-4842-8707-1_1#DOI

2

If we time travel back to almost 20 years and see how traditional IT used to work, life

was not easy. There used to be a dedicated team to handle all the operations tasks of the

server setup and maintenance, and once the servers were ready, the developers would

be writing business logic and deploy the application on those servers.

The server operations team was responsible for setting up firewalls and compute

servers, installing the operating system, and configuring database servers. Additionally,

they were tasked with monitoring the temperature of the server rooms to prevent server

failures caused by excessive heat. They also had to plan for potential damage caused by

natural calamities such as heavy rainfall or other extreme weather events.

In the past, hosting an application required a significant amount of time and effort.

Before writing the first line of business logic, one had to perform a series of operational

tasks. This was akin to having to build a car from scratch before embarking on a family

trip. It was an extremely painful and time-consuming process.

However, a revolutionizing change came in the form of cloud computing. Services

such as AWS transformed the hosting model. Rather than building a car from scratch,

users could now simply rent one and focus on itinerary planning and enjoying the trip.

With AWS, hosting applications in the cloud has become incredibly easy. There is

no need to invest in physical space or worry about maintaining data centers. Compute,

storage, and databases can be quickly provisioned on demand, without having to worry

about setting up and maintaining hardware.

This approach saves companies from up-front investments in procuring hardware,

paying rent for a data center, and paying the bills for electricity. In addition, it enables

businesses to scale their infrastructure as per their requirements, without having to

worry about infrastructure management. As a result, cloud computing has become an

essential component of modern software architecture, and AWS is a leading provider of

cloud computing services.

EC2 (Elastic Computing Cloud) from AWS (Amazon Web Services) was one of the

early Infrastructure as a Service (IaaS) products. IaaS allows users and companies to

buy computing capacity on rent rather than setting up and buying all those physical

machines on their own. It allowed them to provision infrastructure just in time when

required, which means the commissioning of machines to availability will happen in

minutes, if not in seconds. This was revolutionary at that time to even think.

IaaS is a type of cloud service that offers required resources like compute engine,

database, storage, artificial intelligence services, and networking configurations on

demand; these are basically on the model of pay as you go. Over the years, companies

Chapter 1 Introduction to Serverless

3

realized there is a huge overhead just to commence a digital footprint on the World Wide

Web or even spinning up simple internal apps, which involved physical infrastructure

operations like electric power for machines, setting up data centers. All these resources

can be provisioned quickly and easily with the advent of cloud.

�Rise of Cloud Computing
If we look closely, all the things involved in computing infrastructure are a bunch

of repetitive tasks. There were inefficiencies and a high learning curve for any new

company to set up its infrastructure. Cloud computing giants were able to find this

opportunity and establish best practices in order to take away this stress from end

consumers.

Further, they also have multiple options in these instances. They also have options

like spot instance which can further help you lower the costs; these are a few examples,

but the probability to play around with options is huge to bring down cost and improve

efficiency.

The evolution of cloud computing led to the introduction of Platform as a Service

(PaaS). Among the most popular and my personal favorite PaaS services is Heroku. PaaS

builds on the foundation of Infrastructure as a Service (IaaS) and provides additional

tools and resources to help you deploy your application quickly. With PaaS, you can

leverage prebuilt services such as OS installation, language-specific environment setup,

service discovery, and monitoring, which are completed up front.

PaaS enables developers to focus on the core business logic of their application,

rather than worrying about the underlying infrastructure. This significantly reduces

the time and effort required for deployment while also providing greater flexibility

and scalability. By leveraging PaaS, businesses can rapidly deploy and iterate on their

applications, reducing time to market and improving overall efficiency. Heroku is an

excellent example of a PaaS service that offers a wide range of features and capabilities,

making it a top choice for many developers and businesses.

Platform as a Service (PaaS) is a layer that sits on top of virtual machines (VMs),

but we can also use containers to achieve the same. Containers, such as Docker, are

a popular example that isolates application requirements from operating system

dependencies. When containers run on top of virtual machines, it is called

Chapter 1 Introduction to Serverless

4

Container as a Service (CaaS). Container orchestration is a sophisticated task that

requires tools such as Kubernetes and Mesos, which can be run on both public and

private clouds (we will discuss private cloud in more detail shortly).

So far, we have discussed the three main genres of cloud computing: Infrastructure

as a Service (IaaS), PaaS, and CaaS. Together, they come under the umbrella of compute

as a service. All three are closely associated with each other and are interdependent.

Now, let’s review some of the advantages of cloud environments.

�Key Advantages of Cloud Environments
By leveraging cloud computing services, businesses can focus on their core

competencies and achieve greater operational efficiency.

The following are some key advantages:

•	 Cheaper cost: Before Infrastructure as a Service, you would need to

set up data centers which in turn would require specialized skilled

engineers who would work in these data centers to maintain apps

and servers. Things from networking to installations, power, and

physically fixing issues which means high cost of assets and team.

With IaaS, all this cost is outsourced to cloud providers like AWS (in

the case of EC2), and you can pay as you go.

•	 Less risk: Managing your own physical servers can expose you and

your company to many unplanned incidents like hardware failure,

downtime during high volume, or scaling up the servers due to

unplanned surge in traffic. There is also a high risk that the servers you

own are in a region which has become hostile. With IaaS spread across

continents and backups available in multiple regions, you are secured

in every manner. Downtime is managed since cloud providers have

endless computing capacity, so risk is pretty much at bay.

•	 Scaling: Scaling has a cost attached to it, and it is significantly pulled

down when we bring IaaS. With IaaS, there is flexibility in paying as

you scale. You are no longer required to make up-front investment

on servers which might never be used or could be used very quickly.

There is also an option to start with the minimal configuration of

infrastructure and move to high-power infrastructure as and when

Chapter 1 Introduction to Serverless

5

needed. You are also free from procurement and provisioning of

servers every time you start a new proof of concept or a planned

application. If you just want to try an idea for a short period of time

with IaaS, you can go live in minutes instead of months. This is one of

the main reasons of small start-ups experimenting ideas like any big

corporation and scaling only when required.

•	 Increased efficiency: Cloud environments provide automated

provisioning, orchestration, and management, which results in

increased efficiency and reduced downtime.

•	 Improved agility: With cloud computing, developers can rapidly

deploy and iterate on applications, reducing time to market and

improving overall agility.

•	 Flexibility: Cloud environments provide the flexibility to run

workloads on public, private, or hybrid clouds, as well as the ability to

leverage multiple cloud providers for different services.

Now that we’ve discussed the advantages of cloud computing, let’s dive into the

next evolution in cloud development: serverless computing. With serverless, developers

can take their applications to the next level, leveraging the power of the cloud without

worrying about the underlying infrastructure.

�The Emergence of Serverless Computing:
A Game-Changer for Cloud Development
After a decade of cloud computing, the technology industry started exploring new

ideas for the next evolution of infrastructure outsourcing. The focus was to make the

process more efficient and cost-effective for the end consumer. The concept of serverless

emerged from this, but it does not mean that applications run without servers. Instead,

serverless architecture allows applications to run without being tied to a specific server.

Traditionally, an application would require a dedicated server even if it was only needed

for a few hours a day. With serverless architecture, when a request is made, one of the

available servers is assigned to execute the required business logic, and the function

runs on that server. This means that the same function may not run on the same server

Chapter 1 Introduction to Serverless

6

if it is required at different times of the day. With serverless architecture, you only pay for

the time the function consumes the computing engine, making it a more cost-effective

solution.

Serverless architecture is a way of providing backend services on an as-needed basis.

In this architecture, resources are not held in volatile memory. Computation is done in

short bursts of requests, and the results are persisted. When the application is not in use,

no computing resources are allocated. However, serverless architecture comes with a

range of techniques and technologies that can be grouped into two categories: Backend

as a Service (BaaS) and Function as a Service (FaaS). Let us take a closer look at these

two categories.

�Backend As a Service (BaaS)
In the Backend as a Service (BaaS) model, developers can focus solely on building

the client side of applications while outsourcing the backend activities as services

through APIs (Application programming interfaces). This means the various essential

functionalities such as authentication, database management, and push notifications,

can be outsourced to third party service providers, and directly consumed in the

applications, without managing it. To put it simply, it is similar to a fast-food restaurant

where the waitstaff is responsible for serving clients and chef prepares the food in the

back kitchen. The basic idea of BaaS is to reduce complex backend tasks that can be

reused and enable the team to focus more on the frontend development.

BaaS can be seen as a variation of Software as a Service (SaaS), where business

processes are consumed through tools and services such as GitHub, Salesforce,

Dropbox, and Google apps. BaaS breaks down an application into smaller pieces, where

the implementation can be entirely in-house, using external products, or a combination

of both, with APIs and SDKs (software development kits) being the typical integration

methods used. BaaS has become very popular ever since the advent of single-page web

apps and mobile apps. Some common features which BaaS services easily provide are

	 1.	 Authentication

	 2.	 CDN (Content Delivery Network)

	 3.	 API integration

	 4.	 Database management

Chapter 1 Introduction to Serverless

7

	 5.	 Geographical location

	 6.	 Cloud storage and backup

	 7.	 Email service and verification

	 8.	 Regulatory compliance

	 9.	 Social media integration

	 10.	 Push notifications

Popular BaaS service providers include

•	 Apache Usergrid

•	 Auth0

•	 Back4App

•	 Backendless

•	 8Base

•	 Built.io Backend

•	 Couchbase

•	 Kii

•	 Kumulos

•	 Kuzzle

•	 MongoDB Stitch

•	 Parse

•	 Firebase

•	 Windows Azure Mobile Services

•	 AWS Amplify (one we will discuss in depth in this book)

Now let’s move on to Function as a Service (FaaS), which is another type of serverless

architecture that focuses on the backend code execution.

Chapter 1 Introduction to Serverless

8

�Function As a Service/Serverless Computing
Function as a Service (FaaS) is another part of serverless computing where an

environment is provided to customers to develop, execute, and manage application

functionalities without setting up or maintaining complexity of building a full-blown

server. By full-blown server here we mean instead of deploying server-side software, the

deployment is limited to only functions and operations. The most popular form of FaaS

implementation is Lambda from AWS. Figure 1-1 shows the evolution path of application

infrastructure from a physical machine to serverless.

Figure 1-1.  Evolution of IT infrastructure

The evolution of serverless computing can be analogous to human evolution; with

every passing step, the productivity and ease for end users increased manyfolds.

Traditionally, applications had to deploy their server-side software with a host

instance, which used to be a virtual machine (VM) instance or container. The application

contains functions that have the business logic to act based on user requirements.

However, with the rise of Function as a Service (FaaS), developers can now focus only

on writing these functions, while the service providers manage everything else. FaaS is

Chapter 1 Introduction to Serverless

9

at the top of the chain, offering developers a way to execute code on demand without

the need to manage servers, operating systems, or infrastructure. The block diagram in

Figure 1-2 explains parts of infrastructure managed by you and the provider in different

strategies.

Figure 1-2.  Infrastructure components managed under different infrastructure
strategies

As seen in Figure 1-2, with FaaS we strip away everything from the host instance

to the application process from our model. Instead, we focus on just the individual

operations or functions that express our application’s logic. We upload those functions

individually to a vendor-supplied FaaS platform.

The functions or operations are the basic and only unit in a FaaS system. They are

not constantly active but sit idle until they need to be run. A FaaS platform is set up

to listen for a specific event for each operation; basically, it works on an event-driven

approach. When that event happens, the function is triggered.

AWS Lambda is a highly popular and stable FaaS option, which was launched in 2014

and has since become a go-to choice, especially for those using AWS services. Apart from

AWS Lambda, other widely used FaaS offerings are provided by Google, Microsoft, IBM,

and smaller players such as Auth0.

Chapter 1 Introduction to Serverless

10

�Benefits and Weaknesses of a Serverless Architecture
While architecting an application, it is necessary to take the right decision; though we

are focusing on serverless applications in this book, traditional architecture having a

backend server altogether is still a preferred architecture based on the problem at hand.

Hence, we must look at the benefits and weaknesses of serverless architecture to come to

a conclusion when to opt for it.

�Benefits of Serverless Architecture
�Scalability

One of the key advantages of going serverless is getting scalability out of the box. If

your application goes viral, you don’t have to worry about how you would manage high

traffic and too many sign-ups, the cloud service provider handles this for you. Since in a

serverless architecture your code in function runs in parallel based on individual trigger,

scaling with size is automatic. You don’t have to worry about scaling either your server or

databases.

�Less Code

Less code is not just a buzzword, it is actually the crux of serverless architecture. Since

you are focused on writing the business logic, most of the repetitive and bootstrapping

part is already managed by cloud providers. This also makes things simple for new team

members to understand a simple architecture and corresponding functions. Though it’s

not guaranteed, usually less complexity means less bugs and it’s easy to debug them. The

tech team often plugs existing managed services to implement features, further reducing

burden of building and maintaining code.

�Better Velocity

With fewer features to build and complex repetitive ones outsourced to other services,

developer velocity increases drastically. Spinning up features like authentication,

databases, APIs, etc., is super fast, and developers can focus on core business logic.

Chapter 1 Introduction to Serverless

11

�Fail Fast

Most of the repetitive tasks are outsourced to other services; there is ample time to

experiment new features with less risk. A focus is on to go live with business features that

work and retire the features which are not making any impact is totally possible in such

environment. This type of testing is called A/B testing where we can compare different

versions of an application to conclude which one performs the best.

Improved Reliability

Serverless architectures often include built-in fault tolerance and redundancy features,

which can help ensure that your applications remain available and reliable even in the

face of failures.

�Cost

The pricing of a serverless architecture is far different from traditional on-premises

infrastructure and cloud-based hosting. In a traditional infrastructure, there are

exuberant costs for data centers and day-to-day maintenance of the application,

while cloud-based hosting also has many of the costs associated with maintaining an

application. With serverless technologies, you basically pay for what you use. FaaS

further drops your price arrangement to the number of requests your functions serve,

reserved memory for each function, and time taken for the code to execute.

You are not paying anything when your app is sitting idle. Besides that, most of cloud

providers have managed services to satisfy key complex requirements, and the cost is

only based on usage. This significantly reduces overall costs and allows developers to

spend time on the unique features of the application rather than implementing the same

features again like authentication, etc. This also means reduced time to market, which is

additional saving.

�Security and Stability

Since we are going to consume many services related to core functionalities, we are

actually reusing time-tested software which comes with security and scalability. For

example, authentication is a very complex piece of software in a serverless architecture;

we will outsource it to a managed service, which means we don’t need to worry

about implementation but also day-to-day vulnerabilities which are managed by the

respective owner.

Chapter 1 Introduction to Serverless

12

Another advantage of using these managed services is that service owners make sure

to avoid any kind of downtime possible. We basically outsource them, not just building

but also deploying and maintaining these services, keeping them stable for day-to-day

operations.

�Weaknesses of Serverless
�The Cold Start

A cold start happens when a function is invoked, but there is no running function

available to execute; rather, a new function container will spin up; this will increase time

for users to start interacting with the app. Developers avoid this situation by keeping

functions warm, but this workaround kind of beats the purpose of going serverless at the

first place.

This cold start issue is there but continues to have less impact with time. For

example, AWS Lambda significantly improved its start-up time for cold starts by

reinventing how it connects a function to a private network.

�VPC/Network Issues

If the application needs to operate within a private network, there may be limitations

in a serverless architecture. Subnets with limited IP addresses have a constraint on the

number of concurrent executions. Depending on your company’s requirements, it is

important to plan the capacity of private networks adequately to ensure they are large

enough to accommodate the application. Additionally, it is advisable to avoid relying

heavily on classic serverless architecture, where we can outsource many core features to

cloud services.

�Application Size

We have discussed about cold start time earlier, and it becomes a serious problem if

the application size is huge. The impact of this limitation is, you cannot pack a huge

Java application or node application with huge dependencies to a serverless function;

therefore, a choice of better technology that complements well with your serverless

architecture could be an alternate strategy.

Chapter 1 Introduction to Serverless

13

�Debugging

Chances of failure are inevitable, so a strategy of debugging has to be part of software

development; however, when the runtime is dynamic, debugging at times becomes

complicated. However, the savior here is, since core functionalities can be outsourced to

managed services, we can pinpoint the issue if our architecture is set up correctly.

Vendor Lock-In

Moving from one serverless platform to another may be challenging due to the

proprietary nature of serverless architectures.

�AWS Amplify Introduction
AWS Amplify is a comprehensive suite of services and tools that empowers frontend

and mobile developers to build highly scalable and secure full-stack applications by

leveraging the robust features of AWS. Amplify offers an open source framework that

provides libraries tailored to specific use cases and a robust toolchain to easily integrate

cloud-based functionalities into your application. Additionally, Amplify includes a web

hosting service that enables hassle-free deployment of static web applications.

Amplify boasts a plethora of services in its toolkit, which we will explore in detail in

subsequent chapters. However, to provide a brief overview, Amplify offers the following

services as part of its out-of-the-box offerings:

•	 Authentication: Enable sign-in, sign-up, and sign-out within minutes

with prebuilt UI components and powerful authentication APIs

•	 Storage: A simple mechanism for managing user content in public,

protected, or private storage

•	 GraphQL API: Easy and secure solution to access your backend data

with support for real-time updates using GraphQL

•	 DataStore: Seamlessly synchronize and persist online and offline

data to the cloud as well as across devices

•	 REST API: A straightforward and secure solution for making HTTP

requests using REST APIs

Chapter 1 Introduction to Serverless

14

•	 Analytics: Make informed decisions with drop-in analytics to track

user sessions, custom user attributes, and in-app metrics

•	 Push notifications: Drive customer engagement using push

notifications with campaign analytics and targeting

•	 XR (Extended Reality): Engage your customers in a different

dimension with augmented reality (AR) and virtual reality (VR)

content within your app

•	 PubSub: Provide best-in-class real-time experiences by connecting

your application with a message-oriented middleware in the cloud

•	 Interactions: Automate customer workflows by enlisting the help of

conversational chatbots powered by deep learning technologies

•	 AI/ML predictions: Design delightful experiences with the power of

AI (artificial intelligence) and ML (machine learning) functionality

such as computer vision, translation, transcription, and more

�Local Setup
In this book, we will be creating a web application which will use React as frontend

technology.

For that purpose, let’s use create-react-app npm package to create our hello world

React application, using the following command:

npx create-react-app react-amplified

Note  Since we are creating our React application using create-react-app please
install node and npm globally if you haven’t. You might have to add sudo based on
your system policy.

Next, let’s set up the AWS Amplify CLI so that we can get started working with

Amplify.

Chapter 1 Introduction to Serverless

15

�Setting Up AWS Amplify CLI
The Amplify Command Line Interface (CLI) is a unified toolchain to create, integrate,

and manage the AWS cloud services for your app. Basically, with React we build the

frontend or client side of a web application, and Amplify helps us set up anything related

to the backend.

The following are prerequisites for setting up the Amplify CLI:

	 1.	 Install Node.js and NPM if they are not already on your machine.

	 2.	 Verify that your Node.js version is at least 10.x and npm version 6.x

or greater; this can be done by the following commands: `node -v`

and `npm -v`.

	 3.	 You must have a valid AWS account. In order to create an AWS

account, simply visit https://aws.amazon.com/ and sign up.

There is no up-front cost for creating a new account with AWS;

however, you would have to provide your credit card to get started.

Install the Amplify CLI using the following command:

npm install -g @aws-amplify/cli

Note  Since we are installing the CLI globally, you might have to add sudo based
on your system policy.

While writing this book, I have used Amplify CLI version @aws-amplify/cli@4.45.2;

please use the same version in order to run all the examples exactly how we implement

throughout this book, avoiding any confusion. To specify the exact version, you can add

it in the following way:

npm install -g @aws-amplify/cli@12.1.1

Before we start using the Amplify CLI, we would have to configure it with our AWS

account; let’s do that in this section.

Chapter 1 Introduction to Serverless

https://aws.amazon.com/

16

�Configuring Amplify CLI with AWS

To set up our AWS account with the Amplify CLI, we would have to run the following

command, which we would be using just one time to tie our AWS account with the

Amplify CLI:

➔ react-amplified git:(develop) amplify configure

Follow these steps to set up access to your AWS account:

➔ react-amplified git:(develop) amplify configure

Follow these steps to set up access to your AWS account:

Sign in to your AWS administrator account:

https://console.aws.amazon.com/

Press Enter to continue

What happens now is that a browser page opens up, and we will be prompted to sign

in into our AWS account. Enter your AWS account email and password. This is illustrated

in Figure 1-3.

Figure 1-3.  Amazon Web Services login

Chapter 1 Introduction to Serverless

17

Upon successful login, as shown in Figure 1-4, we will be taken to the home page of

AWS Management Console.

Figure 1-4.  AWS Management Console

We don’t have to do anything here; simply switch back to your terminal. You will

have to now select your AWS region. Select the closest one from all the provided options:

Specify the AWS Region

? region:

 ca-central-1

 me-south-1

 sa-east-1

❯ us-east-1

 us-east-2

 us-west-1

 us-west-2

(Move up and down to reveal more choices)

Chapter 1 Introduction to Serverless

18

Next, you will be navigated to AWS console on browser to create a new user and you

will be asked to name your new IAM (Identity and Access Management) user. This user

is an entity that is created in AWS to represent the application which will interact with

AWS. The reason for this new IAM user to be created is to make sure only authorized

person can manage and modify different resources.

�Adding a New IAM Management Console

The first step is to add the user details, you will see the username will be prefilled with

what we have selected the CLI and also you have the ability to add multiple users.

We will set the permission in next screen, which will provide us required accesses to

our Amplify app via an access key ID and a secret access key which we will get at the end

of this process. Click Next and move to the next step.

Figure 1-5.  IAM user addition and access

Chapter 1 Introduction to Serverless

19

In this setup, we will provide a policy for our user; click on `Attach policies directly`

tab to attach the policy for this user. In our case, since we have one user and we want to

provide it full access, let’s select AdministratorAccess-Amplify, you can type in the filter

input as illustrated in Figure 1-6. If you had created multiple users, we could add them

in groups and select desired limited access with limited policies. Click Next to move

forward.

Figure 1-6.  User policy

In this section, we can provide certain tags to our user. This is an optional step; we

will skip it and move to the next step, as shown in Figure 1-7.

Chapter 1 Introduction to Serverless

20

This is a review page to review various parameters we had selected in previous steps.

Review them to create a user. Once reviewed, click the Create user button.

Figure 1-8.  Create user review page

Figure 1-7.  Optional step to add a tag

Chapter 1 Introduction to Serverless

21

This is the final step where our new user is created and we get a success message.

We will require to generate this user’s access key, as the terminal in next step will ask to

enter the access key and secret, so that it can validate the user. From the success screen

shown in Figure 1-9, select the user you just created, navigate to Security credentials

tab, and under Access keys section click on the Create access key button. Next you will

be asked to select the use case for the access keys, select Command Line Interface (CLI)

option and click on confirm to create access key. It’s important to note that we can only

see these values once. The secret access key is hidden, but we can reveal it by clicking the

Show button or download the .csv file to store it locally. Before you move forward, make

sure you copy both values.

Figure 1-9.  User creation page with keys

Go back to the terminal and press enter to continue.

After pressing enter, we get an option to add accessKeyId and secretAccessKey –

press enter. You get an option to add a profile name; you can skip it as default and hit

enter again. With this step, you get successfully set up new user message, and we have

configured AWS Amplify successfully before we start building our first app.

Chapter 1 Introduction to Serverless

22

Enter the access key of the newly created user:

? accessKeyId: ********************

? secretAccessKey: **

This would update/create the AWS Profile in your local machine

? Profile Name: default

Successfully set up the new user.

�Summary
In this chapter, we covered the background of cloud computing and how it has evolved

from traditional IT to become the dominant technology paradigm today. We discussed

the rise of cloud computing and the key advantages that it provides, such as scalability,

cost savings, and flexibility.

We also looked at the next generation of cloud computing, including serverless

architectures, BaaS and FaaS, and the benefits and weaknesses of these approaches. We

discussed how serverless architecture can help reduce costs and improve scalability, but

may be more complex to manage.

We then introduced AWS Amplify, a platform for building web and mobile

applications with AWS services. We discussed how to set up Amplify locally and

configure the Amplify CLI with AWS. Finally, we covered how to set up an IAM user to

start building applications in the next chapter.

Overall, this chapter provided an overview of cloud computing and its evolution, as

well as an introduction to AWS Amplify and the tools needed to build applications with

it, which we will use in next chapter.

Chapter 1 Introduction to Serverless

23

CHAPTER 2

UI Component and
Authentication

The essence of authentication is being able to prove the assertion you
are making.

—Akshat Paul

In this chapter, we will explore the concepts of authentication and authorization and

how they are essential for secure application development. We will discuss different

types of authentication and authorization mechanisms. Furthermore, we will dive into

the AWS Cognito service, which is used for managing registered users and their access to

the application. We will also demonstrate how to implement a login flow, sign-up flow,

and basic password management in a React app using AWS Amplify.

Additionally, we will showcase how to implement social authentication, such as

using a Google email ID and password.

�Authentication Basics
Can you watch a Netflix show without having a valid login credential or without paying

with your credit card? Obviously not. Imagine if there was a security flaw in Netflix’s

security systems and users could watch the shows without subscribing, this may cost

billions of dollars to the business, and if not fixed in time, it could lead to a significant

loss, ultimately impacting the financials of the company. This is the business importance

of the user login credential in the digital industry.

Similarly, the offices require employees to carry an access card to enter the office and

access specific areas like meeting rooms and cafeterias. The repercussions of allowing

© Akshat Paul, Mahesh Haldar 2023
A. Paul and M. Haldar, Serverless Web Applications with AWS Amplify,
https://doi.org/10.1007/978-1-4842-8707-1_2

https://doi.org/10.1007/978-1-4842-8707-1_2#DOI

24

unauthorized access could be severe, leading to potential losses for the company, in

many aspects. Hence, it is essential to have a security check at the gateway to avoid any

such losses.

In this chapter, we will discuss the importance of authentication and authorization

in digital platforms and implement it in our app using AWS Amplify. We will discuss the

various types of authentication, along with the AWS Cognito service, a fully managed

service that provides basic user management, sign-up, sign-in, and access control,

without having to rebuild the authentication and authorization system. We will also

use the AWS Amplify to implement the login flow, sign-up flow, and basic password

management in our React app. Additionally, we will also explore how to implement

social login, like using Google email ID and password for logging in.

�What Is Authentication?
Authentication is a fundamental aspect of security and access control in the digital

world. It involves verifying the identity and credibility of a user and granting access to the

resources of a system. The authentication process typically requires the user to provide

proof of their identity, such as a password, PIN, or biometric information.

In our daily lives, we interact with authentication systems frequently, often without

realizing it. For example, we need to provide a PIN to withdraw cash from an ATM

and valid login credentials to access our social media accounts. The importance of

authentication becomes even more apparent in the business world, where a security

flaw can lead to significant financial losses and damage to a company’s reputation.

�How Can Users Prove Credibility?
To authenticate a user or incoming request, the request must meet the specific criteria:

	 1.	 Proof of who the user is claiming to be.

The user should provide some proof to validate their identity such

as login ID, password, or token.

	 2.	 Proof should be understandable by the system.

The proof should be understandable by the system and should

be present in the system records. If the proof is a user ID and

password, then it should be registered already in the system.

Chapter 2 UI Component and Authentication

25

If the proof is an access token or certificate, then it should be in

line with the agreed format between the server and the client or

should be generated by the system itself.

	 3.	 Proof should be valid.

The proof provided by the user should be valid, such that the

access token should not be expired or the password should be

correct.

Once the process of authentication is successful, the next step is authorization.

�What Is Authorization?
Let us consider a scenario where you have booked a flight ticket from Tokyo to Berlin.

Along with you, there are other passengers, air hostesses, and pilots who will be

boarding the same flight. As long as you possess a valid ticket, you are authenticated to

board the flight, along with the pilots and air hostesses.

However, if someone like Mr. Professor tries to board the same flight without a valid

ticket, they will not be authenticated to board the flight. Once you, the pilots, and the

air hostesses board the flight, each individual has a different level of access within the

aircraft. For instance, you can only use the seats and washrooms, but cannot go to the

cockpit or visit the pantry section of the aircraft to take food from the oven.

Similarly, air hostesses have different seats and cannot enter the cockpit to take

control of the aircraft. This rule of different users having different levels of access to

resources is what is known as authorization. The authentication and authorization flow

can occur either between a server and users or between two servers. Regardless of the

combination, the authorization server acts as the server, while the requester functions

as the client. The client can be any web application, mobile application, or any program

such as the CLI or backend server.

Figure 2-1 and the subsequent steps outline the flow of how the authentication

occurs in a web application when a user logs in and subsequently accesses other

resources.

Chapter 2 UI Component and Authentication

26

Figure 2-1.  The authentication flow between the application and the server

	 1.	 The user clicks the login button.

	 2.	 This triggers the whole flow of the authentication process, and in

return, the authentication server returns a redirect URL, where the

user needs to add credentials and grant consent if required.

	 3.	 The user is then presented with the screen on the browser,

prompting them to enter their credentials. In the case of social

login via Gmail, the Google sign-in screen will be displayed.

	 4.	 The user enters their credentials and grants their consent by

acknowledging the login.

	 5.	 The authentication server verifies the provided credentials and

returns a success response, if they are correct.

	 6.	 Upon successful authentication, the authentication server appends

metadata such as TTL (time to live), user role, and other useful

information to the access token, which is then returned to the web app.

Chapter 2 UI Component and Authentication

27

	 7.	 The web app can store the access token and use it until it expires,

which is typically a few minutes to hours depending on the token’s

importance.

	 8.	 After a successful login, the user is inside the application and can

access other resources such as their personal information. When

a new API request is made with the access token, the server or API

gateway checks if the user’s token is valid and has a valid role. If it

does, the server responds to the request successfully; otherwise,

the request is rejected.

�Broken Authentication
The configuration of the authentication system in any digital system should be robust

enough to prevent malicious users from gaining unauthorized access to resources or

sensitive data. Broken authentication refers to vulnerabilities in the system that allow

an attacker to log in and gain access to sensitive data that they should not be able to

access. This can result in significant financial loss, loss of customers, and damage to a

company’s reputation. Broken authentication vulnerabilities can be caused by various

factors such as poor session management, nonsecure protocols, nonsecure cookies,

and poor password policies. A survey conducted by the National Cyber Security Centre

(NCSC) in Great Britain revealed that a significant number of users, about 23.2 million,

were using weak passwords such as “123456”. Additionally, passwords such as “qwerty”

and “password” were used by more than 3 million accounts.

Here are a couple of examples of real-world cases where broken authentication

mechanisms were exploited:

•	 In 2014, Yahoo suffered a data breach that compromised billions

of user accounts due to weak passwords and unencrypted

communication. As a result, Yahoo suffered significant financial

losses and damage to its reputation.

•	 Similarly, in 2018, hackers were able to access the Marriott hotel

chain’s system by exploiting compromised credentials, leading to

exposure of personal information of up to 500 million guests.

Chapter 2 UI Component and Authentication

28

These incidents highlight the importance of implementing strong authentication

mechanisms to protect sensitive data and prevent unauthorized access. The improper

authentication mechanism can result in various types of losses such as financial,

theft, and compromising of confidential data. This further leads to losing customers.

Therefore, organizations should implement strong security measures to ensure the

confidentiality, integrity, and availability of their systems.

The following are ways to prevent broken authentication:

	 1.	 Disallow infinite attempts of the wrong password, as this can

prevent hackers from using automated programs to guess the

password.

	 2.	 Never store passwords in clear text and always encrypt them with

additional salt for extra security, such that even if some malicious

user gets access to the database, they should not be able to

understand the passwords.

	 3.	 Enforce the password complexity, for example, a combination

of uppercase and lowercase letters as well as at least one special

character to make guessing the password abstruse.

	 4.	 Have an automated alert mechanism that sends notifications

when multiple failed login attempts reach a certain threshold.

	 5.	 HTTPS should be the default protocol for all communications.

	 6.	 Implement the latest authentication protocols that have been

thoroughly tested against most of the security vulnerabilities to

ensure the highest level of security.

�Types of Authentication
•	 Basic authentication: This is the most basic type of authentication;

in this method, a user’s credentials (username and password) are

encoded and sent in all the HTTP request header.

This type of authentication is not secure as the credentials are

to be saved on the device in order to send in every request. To

mitigate this risk basic authentication, is recommended.

Chapter 2 UI Component and Authentication

29

•	 Token authentication: This type of authentication is a widely used

method for authentication in modern applications; in this method,

the client (user or application) provides their credentials, username

and password, once to the server. In return, the server generates a

unique and encrypted token, which is then sent back to the client.

The token contains metadata about the user or client, as well as

information to validate its authenticity. This token serves as proof

of authentication and is used for subsequent interactions with the

server or for making API calls. The client includes this token in the

request headers for each subsequent request, rather than sending the

credentials (e.g., username and password) repeatedly.

Token authentication offers several advantages. It reduces the

risk of transmitting sensitive credentials with each request. It also

enables better scalability and performance, as the server does not

need to perform expensive authentication checks for every request

but can validate the token quickly. Additionally, tokens can have

expiration times, improving security by automatically invalidating

them after a certain period. Overall, token authentication provides

a more secure and efficient way to authenticate clients and protect

sensitive data in web and mobile applications.

•	 Biometric authentication: Biometric authentication is a method

of verifying a user’s identity based on their unique physical

characteristics. These characteristics, such as fingerprints, voice

patterns, or facial features, are captured by sensors or cameras and

compared with stored digital records for authentication purposes. Let

us delve to discuss a few types of biometric authentication:

•	 Fingerprint authentication is one of the most commonly

used biometric authentication methods. It involves scanning

and matching the unique patterns present in an individual’s

fingerprint. This method is widely used in smartphones and

fingerprint-based laptops, where users can unlock their devices

by simply placing their finger on a sensor.

Chapter 2 UI Component and Authentication

30

•	 Face authentication is another popular biometric authentication

method. It utilizes facial recognition technology to identify and

authenticate users based on their facial features. Many mobile

phone companies have implemented this method, allowing users

to unlock their devices by scanning their registered face.

•	 Eye or iris authentication is a more advanced biometric

method. It involves scanning the unique patterns of the iris for

authentication purposes. By comparing the scanned iris pattern

with the stored record, access to resources can be granted if there

is a match.

•	 Certificate-based authentication is a robust method of authentication

that involves the use of digital certificates to gain access to specific

resources. These certificates employ various algorithms, ensuring

their uniqueness and making them nearly impossible to predict or

replicate. However, it is crucial to emphasize that the security of the

certificate storage is of utmost importance, as the system relies on

trusting any client or process that presents a valid certificate.

•	 Multifactor authentication (MFA) is a powerful authentication

approach that enhances the security of a system by requiring users

to provide multiple proofs of their identity. This additional layer of

security is essential for protecting sensitive resources such as bank

accounts, VPNs, or any other system. Instead of solely relying on a

username and password combination, MFA mandates the provision

of an extra authentication factor, significantly reducing the likelihood

of unauthorized access by potential hackers. Implementing MFA

strengthens the overall security posture of a system and is often a

prerequisite for systems aiming to be deemed secure, such as those

employed by financial institutions.

�Why MFA Is Important
Imagine a scenario where you have stored your bank account credentials in Google

Keep, a note-keeping application. Now, suppose Mr. Professor gains access to your

phone or obtains your Google ID and password. In such a situation, Mr. Professor

Chapter 2 UI Component and Authentication

31

would have complete access to your notes, including your bank credentials. This could

potentially lead to unauthorized access to your bank account, allowing him to perform

transactions or transfer money without your knowledge or consent.

However, this risk can be mitigated if multifactor authentication (MFA) is enabled.

Even if Mr. Professor manages to log in to your bank account using your compromised

credentials, MFA adds an additional layer of security. In addition to the password, an

OTP (one-time password) is required, which is typically sent to your mobile phone. This

means that Mr. Professor would not be able to transfer money or perform any sensitive

actions without possessing both your password and the OTP from your phone.

Furthermore, if Mr. Professor attempts to change the phone number associated with

the account, MFA still provides protection. Without the SMS OTP sent to your registered

phone number, the change request would not be successful, thwarting any attempts to

gain control over your bank account.

By enabling MFA, you significantly enhance the security of your sensitive

information and financial assets, safeguarding them against unauthorized access and

potential fraudulent activities.

�Types of MFA
Multifactor authentication (MFA) can be implemented through various methods,

ensuring an additional layer of security beyond traditional username and password

authentication. Here are some common ways MFA can be achieved:

	 1.	 SMS OTP (one-time password): A unique password is sent to

the user’s mobile phone via SMS, which must be entered along

with the regular login credentials to gain access. This password is

generally valid for a few minutes.

	 2.	 Email OTP (one-time password): Similar to SMS OTP, but the

one-time password is sent to the user’s registered email address

instead.

	 3.	 Time-based one-time password: This method involves the use

of time-based algorithms to generate a unique password that

changes periodically. Users need to enter this password, along

with their regular login credentials, within a specified time

window. This password is generated on the device and not sent

via any network.

Chapter 2 UI Component and Authentication

32

	 4.	 Hardware token–based one-time password: Users are provided

with a physical device, often a small electronic token or key fob,

which generates unique passwords that need to be entered during

the authentication process.

	 5.	 Location-based authentication: This method uses the user’s

current location as an additional factor for authentication. It

verifies if the user is logging in from a trusted or predefined

location, adding an extra layer of security.

	 6.	 Google-based two-step verification: This method utilizes Google’s

two-step verification process, where users provide a secondary

verification code generated by the Google Authenticator app or

received via SMS or phone call.

These methods enhance the security of authentication processes by requiring users

to provide additional information or verification beyond the traditional username

and password combination. Implementing MFA helps protect against unauthorized

access, as potential attackers would need to bypass multiple layers of authentication to

gain entry.

�JSON Web Tokens
JWT (JSON Web Token) is a universally accepted and standardized token used to

establish a secure and trusted connection between two parties. JWT is a compact

JSON object that is digitally signed. The JWT is issued to the clients after successful

authentication; the token contains relevant information such as the user’s identity,

access roles, token validity details, and expiration time. JWTs are commonly used for

user authentication in modern, stateless applications.

To understand JWT, imagine it as a boarding pass for a flight. It includes your

identity, details of the flight you are authorized to enter, and a barcode to prevent forgery

by malicious individuals.

JWTs are encoded in base64 format, allowing the base64 decoder to read the JSON

information contained within.

JWTs can be digitally signed using various algorithms such as RSA (Rivest-Shamir-

Adleman) and HMAC (hash-based message authentication code). Additionally, they

can be encrypted using the JSON Web Encryption (JWE) standard, which ensures the

confidentiality of the claims contained within the token.

Chapter 2 UI Component and Authentication

33

Overall, JWTs provide a secure and standardized approach to authentication,

enabling the verification of user identities and the secure exchange of information

between parties.

�JWT Authentication Flow
The API gateway plays a crucial role in the validation of JWTs. It examines the header

information and expiration time contained within the token to determine its validity. If

the token is found to be invalid, either due to an incorrect signature or expiration, the

API gateway rejects the request immediately. This means that the request is halted at the

API gateway level and never reaches the downstream services.

By performing this validation process, the API gateway ensures that only

authenticated and valid requests are forwarded to the appropriate services. This

adds an extra layer of security to the system by preventing unauthorized or tampered

requests from reaching the backend services. Figure 2-2 illustrates the flow and system

interaction.

Figure 2-2.  The token validation mechanism on the API gateway

Chapter 2 UI Component and Authentication

34

�JWT Structure
Let’s take the following JWT as an example to discuss the details of the token. By

examining its components, we can gain a deeper understanding of its structure and

purpose.

xxxx.yyyy.zzzz

The JWT contains three parts and is joined by the dot operator:

•	 Header

•	 The header contains two parts: the token type and the signing

algorithm used. It specifies the type of the token and provides

details about the specific signing algorithm, such as, HMAC,

SHA256 or RSA.

{

 "alg": "HS256",

 "typ": "JWT"

}

•	 JSON body or known as payload

This second part contains a JSON object payload with some data

in it that can be utilized by different services. For example, it may

include user information such as name and email, eliminating

the need for an additional API call to retrieve user details from the

authentication server. Additionally, the payload contains scope

and role information, as well as details regarding the token’s

generation time and its expiration time.

{

 "sub": "1234567890",

 "name": "John Doe",

 "iat": 1516239022

}

Chapter 2 UI Component and Authentication

35

•	 Signature

This part is a crucial component of the JWT that serves the

purpose of verifying the authenticity of the sender and ensuring

the integrity of the payload. To generate the signature, the header

and the payload parts are encoded in base64 format. The resulting

encoded strings are then combined and signed using the specified

signature algorithm from the header, using a private key. This

process ensures that the signature can be validated using the

corresponding public key to verify the integrity and origin of

the JWT.

The signature would be the following:

HMACSHA256(

 base64UrlEncode(header) + "." +

 base64UrlEncode(payload),

 256 bit secret

)

�Setting Up Authentication Using AWS Amplify
In this section, we will dive into the practical aspect and demonstrate the integration of

AWS Amplify Auth in our application. We will write code to implement this integration

and make our application ready for authentication using AWS Amplify.

Upon completion of this section, we will accomplish the following objectives:

	 1.	 Creation of public and private pages: We will establish distinct

pages in our application, some of which will be accessible to the

public, while others will require authentication to access.

	 2.	 Implementation of a sign-up page: Users will be able to register

themselves by providing the necessary information, enabling

them to create an account within our application.

	 3.	 Development of a login page: Users will have the ability to log in

and log out of their accounts securely, allowing them to access

restricted features and personalized content.

Chapter 2 UI Component and Authentication

36

	 4.	 Provision of a manage password page: Users will be provided

with a dedicated page where they can change their passwords,

ensuring they have control over their account’s security.

By accomplishing these tasks, we will have successfully integrated AWS Amplify

Auth into our application, enhancing its functionality and security through user

authentication and account management features.

Note P rior to proceeding, please ensure that you have completed the setup
section outlined in the first chapter and that your machine is configured with AWS
Amplify. If you haven’t done so yet, kindly follow the provided steps to set up AWS
Amplify before continuing from this point. It is important to have the necessary
configurations in place to ensure a smooth integration process. Once you have
completed the setup, you can resume the following steps.

�Creating Our React App
To initiate the development of a React application, we will employ the create-react-app

CLI, which offers a streamlined approach for setting up the project structure. By utilizing

this tool, we can create a foundation for our React app and subsequently enhance it with

additional features and functionalities.

npx create-react-app react-authentication

Upon executing the aforementioned command, a rudimentary “Hello World”

React application will be generated. This initial setup will encompass all the essential

configurations needed for running and building the application.

Once the repository is established, navigate to the corresponding directory, and we

can commence with the configuration of the authentication system.

cd react-authentication

To launch the React application, you can execute the script provided as follows. This

script will initiate the necessary processes to start the app and make it accessible for

interaction.

npm start

Chapter 2 UI Component and Authentication

37

You can now open your web browser and enter the following URL in the address bar:

http://localhost:3000. By doing so, you will be directed to the main page of the React

application index page. Figure 2-3 illustrates the index page.

Figure 2-3.  The default index page of the newly generated React application

�Configuring the Backend for Our React Application
Now that we have our web app up and running, we need to set up the necessary

infrastructure and services that enable functionalities like login, logout, and user

creation. We will leverage the power of AWS Amplify to streamline this process

effectively.

To begin, navigate to the root directory of your project and execute the following

command:

amplify init

Chapter 2 UI Component and Authentication

38

Running this command will initiate the creation of a new app within AWS

Amplify. This step is crucial as it prepares the backend infrastructure required for your

application.

You will be prompted for confirmation and basic configurations. To proceed, simply

enter “yes” to confirm your choices.

If the accessKey on your local machine is not set up during the initial configuration,

you will be prompted to select an authentication method. As depicted in Figure 2-4,

select the “AWS access keys” option.

This authentication method allows your local machine to establish communication

with your authorized AWS account, enabling you to utilize Amplify services such as auth

and REST API.

Figure 2-4.  The options provided by the init command to choose from

Provide the authentication method you wish to use, if you have followed instructions

in Chapter 1, you can select AWS profile option and select the profile you created,

else you can select AWS access keys options and then enter the “accessKeyId” and

“secretAccessKey” that you configured in Chapter 1, as shown in Figure 2-5. These

credentials will authenticate your local machine and allow it to securely access and

consume Amplify services.

Chapter 2 UI Component and Authentication

https://doi.org/10.1007/978-1-4842-8707-1_1
https://doi.org/10.1007/978-1-4842-8707-1_1

39

Figure 2-5.  Entering the access key and secret key to authenticate the app

These changes include the creation of an “amplify” directory, which contains

all the necessary code to regenerate your backend infrastructure on AWS. As you

continue to add more services such as Auth, REST API, and GraphQL, this directory

will automatically expand, and any changes made to it should be committed to your Git

repository. This approach exemplifies the concept of Infrastructure as Code (IaC), where

your infrastructure can be easily replicated across different AWS accounts.

Once the Amplify CLI successfully initializes the backend for your new React

application, several changes are made to your project repository. The changes are as

follows:

	 1.	 A directory with the name “amplify” got created, which contains

all the necessary code to regenerate your backend infrastructure

and configurations in AWS. As you continue to add more services

such as Auth, REST API, and GraphQL, this directory will grow

automatically, and any changes made to it should be committed

to your Git repository. This approach exemplifies the concept of

Infrastructure as Code (IaC), where your infrastructure can be

easily replicated across different AWS accounts.

To illustrate this, let’s consider a scenario where you have two

different AWS accounts: one for basic proof of concept (POC)

and testing and another for a different business or company’s

account. If you wish to recreate the Amplify app in the latter

account, you simply need to update the access keys and secrets,

and all the code within the amplify directory will replicate the

Amplify services in the new AWS account. This future-proof

approach ensures seamless deployment and management of your

infrastructure.

Chapter 2 UI Component and Authentication

40

	 2.	 The Amplify CLI generates an “aws-export.js” file in the “src”

directory, which contains all the necessary configurations for your

services. It is important to avoid modifying any of the generated

code directly. Instead, utilize the Amplify CLI to add or remove

services, which will automatically update these files accordingly.

Note P lease do not modify any of these generated codes. We will use the Amplify
CLI to add or remove services, and those will be added automatically to these files.

If you wish to view your Amplify app, you can log in to your AWS account and

navigate to the Amplify service from the list of available services, as illustrated in

Figure 2-6. There, you will find a detailed overview and management interface for your

Amplify backend.

Congratulations on reaching this milestone!

Figure 2-6.  The Amplify app in the AWS console

Now, let’s proceed with setting up the authentication for your application.

Chapter 2 UI Component and Authentication

41

�Setting Up Authentication
When setting up authentication for an application, there are several important

components that need to be considered. Here is a list of the components required for a

comprehensive authentication setup:

	 1.	 User management: Authentication revolves around allowing a

predefined list of users to access the system. User management

involves functionalities like user creation, blocking or removing

users when necessary.

	 2.	 Role management: Different types of users may require different

levels of access to resources. Role management allows the

definition of roles and their assignment to users, ensuring

appropriate access controls.

	 3.	 Registration link: To streamline user onboarding, it is essential to

provide a registration feature where users can self-register. This

eliminates the need for manual onboarding by administrators.

	 4.	 Unique identifier: Each user needs a unique identifier, such as

an email, phone number, or username, to distinguish them from

others. Verification of email or phone numbers can be done by

sending a code for users to confirm their validity.

	 5.	 Login link: Users should have a secure login mechanism where

they can authenticate themselves and receive a token or validation

upon successful login.

	 6.	 Forget/reset password: As users are the owners of their passwords,

the authentication system should provide options for password

reset or generation as needed.

	 7.	 Logout: It is important to have a mechanism for users to terminate

their active sessions or revoke the issued tokens if they wish to log out.

AWS Amplify provides all these features out of the box. It leverages Amazon

Cognito, an authentication service for applications, to handle authentication-related

functionalities. Cognito also offers a user interface dashboard for managing and

monitoring user activities. By utilizing Amplify and Cognito, developers can easily

implement a robust and secure authentication system for their applications.

Let’s set up the authentication for our application.

Chapter 2 UI Component and Authentication

42

�Creating an Auth Service
To add the authentication service to our app using Amplify, we can run the following

command:

amplify add auth

As shown in Figure 2-7, this command will prompt us to configure the authentication

settings for our app. We can choose the default configuration or customize based on our

requirements. Amplify supports various authentication mechanisms such as username

and password, social sign-in, multifactor authentication, and more. We can select the

desired options during the configuration process.

Figure 2-7.  Options prompted by the CLI after the auth service add command
is entered

Once the authentication service is added, Amplify will automatically generate the

necessary backend resources and update the relevant configuration files in the project.

Please expand the `amplify` directory in the root of your application; you will see

auth being added in `/amplify/backend`.

Chapter 2 UI Component and Authentication

43

To push the authentication configuration to our app on the cloud, we can use the

Amplify CLI. Run the following command:

amplify push

During the execution of the `amplify push` command, AWS Amplify utilizes

AWS CloudFormation to create the necessary infrastructure in the AWS cloud.

CloudFormation is an AWS service that allows you to define and provision AWS

resources using a declarative template.

By using CloudFormation, Amplify ensures that the infrastructure is created

consistently. It automates the process of setting up the authentication service and

its associated resources, such as user pools and identity pools, in a reliable and

scalable manner.

Note  It is important to commit the changes made in the amplify directory, by
the CLI. This directory contains the generated code and configuration files that
define the infrastructure and services created by Amplify. By versioning the amplify
directory along with your application code, you can track and manage the changes
made to both the application and its underlying infrastructure. This approach
ensures that the infrastructure and services are synchronized with your application
code, making it easier to collaborate with other developers, revert changes if
needed, and maintain a consistent deployment environment. Now, let’s proceed by
exploring some additional Amplify capabilities of React components to enhance our
application further.

�Amplify UI React Components
The Amplify team has also published some React components to speed up the front

development and integration with this service.

To streamline the frontend development and integration with the Amplify service,

the Amplify team has provided a set of React components.

Let’s begin by adding the necessary npm package to our application, by running the

following command:

npm install aws-amplify @aws-amplify/ui-react

Chapter 2 UI Component and Authentication

44

Once the package installation is complete, we can proceed to connect our React

application with the Amplify backend. Let’s now connect our React app with the Amplify

backend.

Open the `index.js` file located in the `src` directory and call the `configure`

function. This function will handle the configuration of the React app, ensuring that it is

connected to the appropriate backend service. Open the index.js in the src directory and

call the configure function. This will take care of pointing the React app to the correct

backend service.

import { Amplify } from "aws-amplify";

import awsExports from './aws-exports'

Amplify.configure(awsExports);

�What If aws-exports Is Not Found?

Please note the aws-exports file will only be created after at least once the amplify push

command is run. If you don’t find the aws-exports file, please run the push command.

If you cannot find the `aws-exports.js` file in your project, it is likely because it has

not been generated yet. This file is created after running the `amplify push` command at

least once.

To generate the `aws-exports.js` file, please follow these steps:

	 1.	 Open your terminal or command prompt.

	 2.	 Navigate to the root directory of your project.

	 3.	 Run the following command: `amplify push`.

This command will deploy the backend resources defined in your Amplify project

and generate the necessary configuration files, including the `aws-exports.js` file. Once

the command completes successfully, you should be able to locate the `aws-exports.js`

file in the `src` directory.

Note that the `amplify push` command should be run whenever you make changes

to your Amplify backend configuration and want to deploy those changes to your AWS

environment.

Chapter 2 UI Component and Authentication

45

We have imported the AWS-amplify library which we installed and the AWS-export

config file to point our app to amplify the backend.

And that’s all we need to do for connecting our frontend app with the Amplify

backend.

�Integrating Auth with React App
The AWS Amplify not only simplifies the process of creating the backend services for

your application but also provides ready-to-use UI components that can be easily

integrated into your React app.

�Login and Registration UI Components

By using these UI components, you don’t have to build the authentication screens or

components from scratch. Instead, you can leverage the prebuilt components provided

by AWS Amplify to handle the user registration, login, and other functionalities.

To integrate the AWS Amplify login UI component into your React app, you can

follow these steps:

STEP 1: Import the required component into your main app’s file, typically `App.js`:

import { withAuthenticator } from '@aws-amplify/ui-react'

STEP 2: Wrap your main app component with the `withAuthenticator` higher-order

component (HOC).

export default withAuthenticator(App);

STEP 3: Add the CSS file if you want to use the default styles and theme by AWS

team. Add the following import command in your App.js file `import ‘@aws-amplify/ui-

react/styles.css’`.

By wrapping your App component with withAuthenticator, you enable the

authentication flow and automatically render the login UI component in your app.

Note  What is HOC?

A higher-order component (HOC) is a function that takes a component and returns
a new component with additional functionality. It allows you to enhance or modify
the behavior of a component without changing its underlying implementation.

Chapter 2 UI Component and Authentication

46

In the context of React, an HOC is used to add or wrap a component with additional

logic, state, or props. It helps in reusing code and separating concerns by abstracting

common functionality into a separate function.

import React from 'react';

//HOC that adds a new prop extraProp

const withExtraProps = (Component) => {

 return class extends React.Component {

 render() {

 return <Component {...this.props} extraProp="Hii" />;

 }

 }

}

// The component that will receive the extraProp

const MyComponent = (props) => {

 return <div>{props.extraProp}</div>

}

export const WrappedComponent = withExtraProps(MyComponent)

STEP 3: Run the app.

npm start

As you launch the application, you will be presented with a login screen without

having to create a separate login page or UI component. This login screen is provided by

AWS Amplify, making it easy to incorporate authentication functionality into your app.

Figure 2-8 provides a preview of the login screen, showcasing its appearance and layout.

Chapter 2 UI Component and Authentication

47

Figure 2-8.  The preview of the login screen for private pages

Since we haven’t created any users yet, a successful login won’t be possible at this

stage. However, you can still test the connection with the backend system by entering

a random login ID and password. This should result in a “user not found” exception,

indicating that the authentication process failed. Additionally, you can open the Network

tab in your browser’s developer tools to inspect the API call and response, gaining

further insights into the authentication process; this is shown in Figure 2-9.

Chapter 2 UI Component and Authentication

48

Figure 2-9.  Network tab showing the user not found error

This successful demonstration validates the functionality of our application,

confirming that the API calls are being made and processed correctly.

To proceed, locate the “Create Account” button located below the sign-in button on

the user interface. Clicking this button will initiate the account creation process. In the

prompted form, please provide the necessary details, including a desired username,

email address, and phone number, which are essential for creating an account.

Once the verification process is successfully completed, you will be granted access to

your application, and you will be automatically logged in.

Congratulations on successfully creating your account and accessing your

application.

�Logout UI

Once you have successfully logged in, you may notice that there is no visible “log out”

button or option available. To enable the logout functionality, you have a couple of

options.

Chapter 2 UI Component and Authentication

49

Firstly, you can create a custom header component for your application that includes

a profile section and a logout button, which triggers the logout API. This approach

allows for more flexibility and customization according to your application’s design and

requirements.

Alternatively, AWS Amplify provides a prebuilt UI React component specifically for

the logout functionality. By utilizing this component, you can easily integrate the logout

feature into your application without the need for extensive coding. To add the logout UI

component from AWS Amplify, follow these steps:

STEP 1: Import the Button component from the Amplify library.

import { Button } from "@aws-amplify/ui-react";

STEP 2: Add this imported button component in the app.js file and get the function

to signOut as parameter in App passed by withAuthenticator HOC.

04: import { withAuthenticator } from '@aws-amplify/ui-react'

05: import { Button } from "@aws-amplify/ui-react";

06: import '@aws-amplify/ui-react/styles.css'

07: function App({ signOut }) {

08: return (

09: <div className="App">

10: <Button onClick={ signOut }>Sign out</Button>

After you have logged in, the logout UI component will be rendered, as shown in

Figure 2-10.

Chapter 2 UI Component and Authentication

50

Figure 2-10.  React application with logout component from the library

By clicking the logout button, which calls the signOut function, the user will be

successfully logged out, and the application will navigate back to the login screen.

The signOut component takes care of clearing the authentication information from

the browser and handling the navigation back to the login screen.

Chapter 2 UI Component and Authentication

51

�Logging In and Logging Out
After integrating the Amplify UI React component, which automatically generates the

login UI and provides functionality for logging in and logging out, let’s explore what

happens behind the scenes. As mentioned earlier, to authenticate successfully, the client

application needs a valid JWT access token, which will be used for future API requests

from the frontend.

To understand where the generated tokens are stored, we can inspect the browser’s

developer tools. To do this, right-click the web page, select “Inspect,” and navigate to

the “Application” tab. Under the “Storage” section, click “Local storage.” Here, you will

be able to see the relevant information, including the storage of tokens, as shown in

Figure 2-11.

Figure 2-11.  View of local storage in the browser

	 1.	 If you are not logged in, please log in.

	 2.	 The item with key `userData`, contains information about the

currently logged-in user.

	 3.	 The item with key `accessToken`, represents the JWT access token,

generated by AWS Cognito. Additionally, there are other items such

as `refreshToken` and `idToken`, which are also relevant tokens as

discussed under the section of Auth2.0 protocols.

To further examine the contents of the access token, please copy the token value.

Then, open a web browser and navigate to jwt.io. And paste the access token as

illustrated in Figure 2-12.

Chapter 2 UI Component and Authentication

52

Figure 2-12.  The decoding of the JWT token

As shown in Figure 2-13, you can open the Cognito service in your AWS account

and navigate to the list of users. There, you will find the users who have registered and

interacted with your application through the authentication flow. The Cognito service

provides a comprehensive dashboard for managing and monitoring user accounts and

their associated information.

Chapter 2 UI Component and Authentication

53

Figure 2-13.  The users list in AWS console

�Getting Logged-In User Information

To display the username of the logged-in user in the header of our app, we will create

a new React component called HeaderStrip. This component will be responsible for

retrieving the user information and rendering the username.

Here are the steps to implement this:

	 1.	 Create a new file named HeaderStrip.js in the src directory.

	 2.	 Inside the component, import the necessary dependencies.

	 3.	 Add the logic to read the auth information for logged-in users.

Chapter 2 UI Component and Authentication

54

Let’s discuss the component code in detail.

01: import React from "react";

02:

03: import { Auth } from "aws-amplify";

04: import { useAuthenticator, Button } from "@aws-amplify/ui-react";

05:

06: const HeaderStrip = () => {

07: const { authStatus, route, user } = useAuthenticator((context) => [

08: context.authStatus,

09: context.route,

10: context.user,

11:]);

12: // we will get the current authStatus and user details if present

13:

14: �return authStatus === "authenticated" && route === "authenticated"

&& user ? (

15: <div className="App">

16: Hi {user.username}

17: <div style={{ width: "20%" }}>

18: <Button

19: onClick={async () => {

20: await Auth.signOut();

21: }}

22: >

23: Sign out

24: </Button>

25: </div>

26: </div>

27:) : null;

28: };

29:

30: export default HeaderStrip;

31:

Chapter 2 UI Component and Authentication

55

LINE 7: We are using useAuthenticator hook to get the current authState, route and

details of the user.

Indeed, the different auth statuses provided by Amplify, such as “configuring”,

“authenticated” and “unauthenticated”, allow us to identify and handle various user

statuses within our application flow. The useAuthenticator hook exports the auth

route context such as “authenticated”, “confirmResetPassword”, “confirmSignIn”,

“confirmSignUp”, “confirmVerifyUser”, “forceNewPassword”, “idle”, “resetPassword”,

and few others which helps us to control and customize the state of the application in

the granular levels. These authStates and routes play a crucial role in determining the

appropriate actions and rendering the corresponding UI components based on the

current user state.

For example, when a user attempts to create an account, the signUp auth route is

triggered. This enables us to display the necessary registration form and handle the

registration process accordingly.

Similarly, when a user logs out, the signOut auth route is activated. In response,

we can redirect the user to the login page or display a message indicating a

successful logout.

On the other hand, when a user successfully logs in, the signIn auth route is

triggered. This allows us to customize the user interface and provide access to

authenticated features specific to logged-in users.

By leveraging these different auth statuses and routes, we can create a dynamic user

flow that adapts to the current authentication status, enhancing the user experience and

ensuring the application functions appropriately in each scenario.

LINE 10: We will get the current user’s basic details from auth like username, phone

number, etc., and store in variable user.

LINE 14: We check if the authStatus and route is “authenticated”, we render the

username.

LINE 18-20: We are rendering a sign out button if the user is authenticated, and

calling the function signOut from Auth if this button is clicked.

Chapter 2 UI Component and Authentication

56

Figure 2-14.  Implementation of the HeaderStrip component

LINE 9: Render the HeaderStrip component so that the logic of reading the user data

and auth state can run, and we can show the logged-in username.

Congratulations! You have successfully implemented the functionality to read the

logged-in user information; this is illustrated in Figure 2-15. By utilizing the Amplify

authentication service and integrating it with your React app, you can now retrieve and

display relevant user data such as the username, phone number, and other details.

This achievement allows you to enhance the user experience by personalizing the

application based on the logged-in user’s information. You can now customize the

app’s content, features, and interactions based on the specific user who is accessing the

application.

By being able to read the logged-in user information, you have taken a significant

step toward building a secure and user-friendly authentication system within your

React app.

Chapter 2 UI Component and Authentication

57

Figure 2-15.  The name of the logged-in user is shown in the implemented
header strip

Let us now proceed with implementing the social login feature in our application.

This functionality allows users to log in using their social media accounts, such as

Google, Facebook, or Amazon. By integrating social login, we can enhance the user

experience and provide users with alternative authentication options.

�OAuth Social Login
Indeed, social login has become a common and convenient way for users to access

various online applications. It eliminates the need for repetitive form filling by allowing

users to log in or register using their existing social media accounts, such as Google,

Facebook, Amazon, or Apple.

Chapter 2 UI Component and Authentication

58

In our case, we will focus on integrating Google as the social login provider into

our application using the AWS Amplify service. Amplify offers seamless authentication

integration with popular social sites, making it easier for us to implement this feature

without starting from scratch.

By leveraging Amplify’s authentication capabilities, we can enable users to log in

or register using their Google accounts, enhancing the onboarding experience and

improving user convenience. Let’s proceed with the integration of Google social login

into our authentication app.

�What Is OAuth?
OAuth, which stands for Open Authorization, is a widely accepted authorization

framework that facilitates the secure access of user information by third-party

applications, without the need for users to disclose their login credentials, such as

usernames and passwords. This framework allows users to grant specific permissions to

third-party apps, enabling them to access limited data from a particular service on behalf

of the user.

For instance, when you sign up for a service using your Google account, Google

grants the application access to certain basic details like your email, name, and phone

number, without revealing your actual login information. Facebook, Google, and

GitHub are prominent examples of companies that have developed APIs (application

programming interfaces) for other applications to leverage as authentication methods.

The OAuth protocol is openly available, and anyone can build APIs following

its standardized specifications, as outlined in the publicly accessible RFC (Request

for Comments) documentation. This allows developers to implement OAuth-based

authentication in their applications and integrate with popular service providers for

streamlined and secure user authentication.

There are different types of OAuth2.0 flows, though we will discuss one most

commonly used when the authorization server is a third party, in our case Google.

 Figure 2-16 illustrates the sequence of the OAuth2.0.

Chapter 2 UI Component and Authentication

59

Figure 2-16.  The high-level OAuth2.0 sequence flow

Chapter 2 UI Component and Authentication

60

	 1.	 The user initiates the OAuth flow by requesting authorization from

the application, by clicking a button or entering a URL.

	 2.	 The application redirects the user to the Authorization Server,

including the necessary parameters, such as the requested scope

of access.

	 3.	 The user authenticates with the Authorization Server (e.g.,

providing credentials) and grants permission to the application.

	 4.	 The Authorization Server generates an Authorization Grant (e.g., a

temporary code) and sends it back to the application.

	 5.	 The application sends an Access Token Request to the

Authorization Server, including the Authorization Grant obtained

in the previous step.

	 6.	 The Authorization Server verifies the Authorization Grant and

issues an Access Token to the application.

	 7.	 The application can now use the Access Token to access protected

resources on behalf of the user.

	 8.	 The application sends a request to the Resource Server (which

hosts the protected resource) and includes the Access Token.

	 9.	 The Resource Server validates the Access Token by contacting the

Authorization Server (token validation).

	 10.	 If the Access Token is valid, the Resource Server grants access to

the requested protected resource.

	 11.	 The Resource Server sends back the requested resource to the

application.

	 12.	 The application can now display or use the protected resource on

behalf of the user.

Chapter 2 UI Component and Authentication

61

This sequence diagram provides a high-level overview of the interactions between

the user, application, Authorization Server, and Resource Server in the OAuth 2.0 flow. It

showcases the delegation of authorization and the secure exchange of tokens to enable

access to protected resources.

To integrate the social login with Google in our application, we are treating the auth

server of Google as our authorization server, where we need to register our application,

and our application’s URL as a redirect URL, so that on successful authentication the

user can be navigated back to our application.

Let’s start with creating an application in Google Cloud to implement social login.

STEP 1: Create a Google app.

Go to https://console.cloud.google.com/ and log in with a Google ID – as shown

in Figure 2-17, you will see a similar dashboard – and click the highlighted drop-down.

Figure 2-17.  Dashboard after logging in to the Google Cloud console

Chapter 2 UI Component and Authentication

https://console.cloud.google.com/

62

STEP 2: Click New Project from the modal on the top-right corner, as shown in

Figure 2-18, and enter the project name.

Figure 2-18.  Modal to show the list of projects and create a new project

STEP 3: Enter a valid project name and choose No organisation, if there is none, and

click Create as shown in Figure 2-19.

Chapter 2 UI Component and Authentication

63

Figure 2-19.  Create new project screen

Chapter 2 UI Component and Authentication

64

STEP 4: After the project is created, open the left menu to access the credentials of

the project, as shown in Figure 2-20.

Figure 2-20.  Menu to access the API credentials

Chapter 2 UI Component and Authentication

65

You might have no API keys and no client IDs; we will require to create a new set.

STEP 5: Creating the OAuth consent screenTo integrate Google as the social login

provider in our application, we need to set up an OAuth consent screen. The OAuth

consent screen is an important step in the OAuth 2.0 flow as it informs the user about the

application’s basic information and the user details that Google will provide to the third-

party application. It ensures transparency and allows the user to give consent before

providing their credentials.

As shown in Figure 2-21, choose the user type, and click Create. In the next screen,

provide the app information and upload a logo and domain.

Figure 2-21.  Creating the OAuth consent screen

Chapter 2 UI Component and Authentication

66

STEP 6: Creating the OAuth client ID

Follow Credentials from the left menu and click Create Credentials on top, as shown

in Figure 2-22.

Figure 2-22.  Menu to create a type of credential

Please create the OAuth client ID.

As shown in Figure 2-23, fill out the form and select the web app as the type of

application.

Chapter 2 UI Component and Authentication

67

Figure 2-23.  Creating OAuth client ID form

We need to add the redirect URIs in the Google client app to let Google know which

servers are allowed to log in. Once we add the auth configuration in Amplify, we will get

the app URLs; we will use these URLs to add to the Google app.

Chapter 2 UI Component and Authentication

68

For now, click the Create button; we will update the redirect URIs once we

have them.

Copy the client ID and client secret; this is what we wanted to create.

Let’s continue on setting up the AWS Amplify, which will generate the valid

AWS URL.

�Updating Amplify Auth Service

Let’s add auth service from Amplify to set up the social login:

amplify add auth

Please note, I am adding a new auth service in case a different auth is already set up,

and then we need to use the update command from the Amplify CLI to change the auth

config. You can use the following to update the auth config:

amplify update auth

Figure 2-24.  Amplify add auth options

Chapter 2 UI Component and Authentication

69

Follow the options from the menus.

As we are going to run the application on localhost, we have added http://

localhost:3000/ as a redirect URI for sign-in and sign-out.

Select Google as the social provider.

Enter the client ID and secret generated on console.google.com when we created the

OAuth client.

Let’s push the configuration to our AWS cloud:

amplify push

�Adding the Redirect URIs

Once successful, our social login setup is done from the backend Amplify perspective;

now we need to tell Google which URLs are allowed to log in or use these credentials

to log in.

Figure 2-25.  The hosted UI endpoints after the successful amplify push

Chapter 2 UI Component and Authentication

70

Copy the first URL generated by AWS Amplify from the console.

Go to Credentials and open the OAuth2.0 client we created, as illustrated in

Figure 2-26.

Figure 2-26.  The OAuth2.0 client ID created a while ago

Chapter 2 UI Component and Authentication

71

Figure 2-27.  Updating the authorized URIs and redirect URIs

Add the URL in both the text boxes, namely, `Authorised JavaScript origins` and

`Authorised redirect URIs`.

Append `/oauth2/idpresponse` in the redirect URIs to get the user profile.

�Setting Up React App
To enable login with Google, in the login screen we need to add a button; when a user

clicks this button, the Google login flow will be triggered.

Chapter 2 UI Component and Authentication

72

�Let’s start with adding a button in our React app

1: <button

2: onClick={() => {

3: Auth.federatedSignIn({ provider: "Google" });

4: }}

5: >

6: Sign in with Google

7: </button>;

8:

LINE 1: This is a default button component; you can use any custom button as well.

LINE 2: Add a function on the event of click of this button.

LINE 3: �Use the Auth imported from @aws-amplify/auth to call the federatedSignIn

function by passing the provider; in this case, it is Google.

LINE 6: Add the title to be shown on the button.

And that’s all in enabling the social login flow in our app.

Run the app to see this in action.

�Summary
The chapter started by introducing the concept of authentication and its importance in

securing web applications. It highlighted the key components of authentication, such as

user management, role management, registration, login, and logout.

Next, it explained how AWS Amplify simplifies the process of setting up

authentication in a React app. The chapter walked through the steps of adding

authentication to the app using the Amplify CLI and configuring the authentication

service.

The Amplify library provides UI components that can be used to integrate

the authentication flow into the app. The chapter demonstrated how to use these

components to create a login and registration UI without writing custom components.

It further explored the storage of authentication-related data, such as access tokens,

refresh tokens, and user information. The browser’s developer tools are used to inspect

the local storage and decode the access token to understand its contents.

Chapter 2 UI Component and Authentication

73

The chapter also covered social login integration using OAuth with AWS Amplify. It

explained the concept of OAuth and how it allows third-party applications to access user

information without sharing passwords. It specifically focused on integrating Google

social login into the app and provided step-by-step instructions for setting it up.

Finally, the chapter concluded by summarizing the key concepts covered, including

the use of Amplify’s authentication-related states and the storage of user information.

It emphasized the convenience and improved user experience provided by social login

features.

Overall, the chapter provided a comprehensive guide on implementing

authentication and social login in a React app using AWS Amplify, empowering

developers to enhance the security and usability of their applications.

Chapter 2 UI Component and Authentication

75

CHAPTER 3

CRUD and REST
APIs – Pillars of Efficient
Data Exchange

APIs are the conduits through which data flows, applications communicate
and functionality is shared.

—Akshat Paul

In today’s world, the exchange of information and data between systems or devices is

really important. As businesses and individuals continue to rely on digital technologies,

the need for efficient and secure data transfer protocol becomes a necessity. REST APIs

are one way to achieve this goal. REST APIs provide a set of standardized interface that

allows systems to communicate with each other in a scalable and flexible manner.

CRUD (create, read, update, and delete) operations are some of the most common

operations that any API must support. In this chapter, we will explore how to create a

REST API using AWS Amplify that supports CRUD operations.

We will start by explaining what a REST API is and how it works. Then we will go

through the steps defining endpoints, handling request and response, deploying the API,

and testing it from Postman.

�API Overview
I am pretty sure you have connected your phone with some of your friends’ Bluetooth

speaker, where the speaker was not manufactured by the same company as your phone.

Please think how these different components manufactured in different factories by

different companies are able to connect and communicate with each other.

The answer is the standard protocol.

© Akshat Paul, Mahesh Haldar 2023
A. Paul and M. Haldar, Serverless Web Applications with AWS Amplify,
https://doi.org/10.1007/978-1-4842-8707-1_3

https://doi.org/10.1007/978-1-4842-8707-1_3#DOI

76

For Bluetooth connection, there is a standard protocol and set of rules; if the phone and

speaker manufacturer follows it, they will be able to communicate to and fro. There are

standard rules for USB connectors to be followed by adapters and cables. Similarly, we humans

follow standard protocols of languages like pronunciations and grammars to communicate

with other humans; if there is a mismatch, then they are not able to communicate.

Imagine a French and a Chinese trying to communicate in their local languages.

The protocols for computer programs are called application programming interfaces

(APIs). An API is a software interface through which more than one software component

interacts, sends commands, and receives responses.

When talking in terms of web development, from a high level, there are two big

components, the frontend app and the backend server. Backend servers are a set of

CPUs, which run programs and from a business point of view perform tasks. An API is

the interface through which any application can request to perform some action; the

server gets a request through these APIs, performs a defined action, and responds with

the response and status after performing tasks.

Let’s discuss the basic login flow from a user’s point of view using Figure 3-1.

Figure 3-1.  The system interaction when a user tries to log in

When the user wants to log in via an app, following steps are followed:

STEP 1: The user enters the username and password.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

77

STEP 2: The user clicks the login button.

STEP 3: The mobile app requests the server by sending a POST API request on the

URL path `/login` with request parameters like username and password.

STEP 4: Then the server processes that request and checks in the database if the

username and password are correct.

STEP 5: The database will return true or false on the find match query.

STEP 6: The server then responds that the job is successfully finished and responds

with the answer; in this case, it will be a valid JWT token.

STEP 7: The mobile app now will understand this result and navigate the user to the

dashboard.

This URL path, namely, `/login`, through which the server takes a request and

performs actions is an API, that is, application programming interface.

APIs are the interfaces through which our own FE (Front-end) application or third-

party applications interact with the server.

In software applications, APIs play an important role; as the important business logic

and computation-heavy jobs are written in servers and exposed to multiple clients via

APIs, these also help the whole system to reuse some code logic exposed via APIs. For

example, for Facebook, all the code of authentication and friend recommendations can

be reused for web and mobile apps via APIs.

Many companies sell the logic and important data via APIs; hence, APIs are also the

baseline of many businesses.

�Why Do We Need an API?
The following are a few reasons about the usages of APIs:

	 1.	 Connect with systems built with different technologies

APIs let systems communicate and interoperate with each other,

even if they are built using different technology languages, for

example, the Java microservice and Node.js microservice can

communicate via JSON standard.

	 2.	 Business logic abstraction

APIs let developers use the functionality of a system without

needing to know the business logic or how it is built, for example,

the weather API exposes the current weather status by wrapping

the sensor and other logics.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

78

	 3.	 Enable automation

APIs enable the team to do the automation and integration with

various systems and lead a path to innovation. For example,

we can use Slack APIs to develop Slack apps to automate our

daily tasks.

	 4.	 Reduce the development time

Let’s assume we have two frontend applications, a mobile app and

a web app; it would be costly to have to maintain and write their

individual servers and business logic. Maintaining separate servers

and duplicating business logic for each application can be costly. By

exposing APIs from servers, we can reuse the same business logic

across multiple clients and platforms, such as mobile apps and web

apps. Furthermore, APIs offer the flexibility to support multiple

versions and ensure backward compatibility indefinitely.

	 5.	 Improving the security

APIs encapsulate different private keys on the server side,

ensuring that only the desired data is exposed to specific users.

This approach enhances the overall security of applications,

providing end-to-end protection.

	 6.	 Extending features to multiple platforms

APIs enable us to extend the services to multiple platforms, for

example, once we have written backend services they can be

consumed by various form factors like web and mobile at the

same time.

�API Design
Whenever the system’s APIs are to be used by more than one client or more than one

external platform, the API design is crucial. These APIs become the interface for the

developers. Hence, the API should be

•	 Consistent

•	 Understandable

•	 Backward compatible

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

79

�Types of APIs
As API developers, we should be aware that APIs can be classified in terms of their

availability. Let’s discuss the different types:

•	 Public APIs: These APIs are publicly available and require no

authentication or special access to consume.

•	 Private APIs: These APIs belong to a particular system and are not

available for everyone to use. For example, the APIs by Facebook are

only available to be used by Facebook web and mobile apps. There

are various layers of security in place so that any anonymous user is

not able to exploit and consume the APIs.

•	 Partner APIs: These are similar to private APIs, but generally shared

with a third-party platform to consume, for example, a third-party

wallet app integrated with an ecommerce platform for easy payment.

These partners are registered and authorized to use the APIs mostly

using JWT tokens, digital certificates, or secret keys.

�API Specifications and Protocols
•	 SOAP (Simple Object Access Protocol) APIs are based on XML format

over a variety of transports, including HTTP, HTTPS, SMTP, TCP, and

others. SOAP is commonly used in enterprises to exchange data from

one system to another.

•	 gRPC (Remote Procedure Calls) is an open source RPC framework. It

was developed by Google and uses HTTP/2 as the transport protocol.

gRPC is designed to be highly performant, with a focus on low latency

and low bandwidth usages. It can be used to build highly scalable

distributed systems. One of its use cases is microservices, where the

servers communicate via APIs.

•	 WebSocket is a protocol for a persistent, bidirectional, full-duplex

communication over a single TCP connection. It is widely supported

by web browsers and enables real-time interactive use cases like chat

systems, collaboration tools, online games, etc. This lets the data flow

in real time without needing the client apps to poll the data again and

again for latest data.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

80

•	 Message Queue Telemetry Transport (MQTT) is a lightweight

messaging protocol for small sensors and mobile devices for high

latency or unreliable networks. MQTT runs over the TCP/IP protocol.

MQTT is often used in the Internet of Things (IoT), where low power

consumptions and small message size make it suitable for various

use cases.

•	 Representational State Transfer (REST) APIs are based on the HTTP

or HTTPS protocol and use standard HTTP methods such as GET,

POST, PUT, DELETE, and OPTIONS to perform operations on

resources as requested over the URL. REST APIs are stateless and

are often used to expose data from backend to frontend servers. The

most common format of data used is JSON.

•	 GraphQL is a query language API that gives the control to clients. The

clients can request the exact data they want. This solves the problem

in REST APIs of overfetching and underfetching. Generally, GraphQL

is used as an alternative of REST APIs.

�Introduction to Lambda
AWS Lambda is a serverless compute service that runs the code without provisioning

or managing servers, allowing us to focus on our application business logic rather than

infrastructure management. In this section, we will learn what AWS Lambda is, how to

create a function using AWS Amplify, how to deploy it, how to invoke the function via an

HTTP request, and how to configure triggers to execute those functions.

�Lambda Functions – The Serverless Functions
Let’s assume you are starting up a restaurant and delivering the food online to your

customers. We are quite aware that setting up a restaurant is a capital-heavy investment,

which requires setting up a full-fledged commercial kitchen with commercial kitchen

equipment, apart from arranging the chefs and raw material, preparing menus, renting a

place, and marketing. The cost generally goes from $1000 to $15,000 just for commercial

equipment.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

81

In this case, it’s not an easy question to estimate the time to get back the return on

investment. If you are starting up and especially if you are not sure how many orders we

might receive and how the customers are going to react to the launch of the restaurant, it

can be a big risk.

Given the following two options, which one would you choose?

	 1.	 Buy all the commercial kitchen equipment and spend $5000–

$10,000 on equipment.

	 2.	 Rent someone’s commercial kitchen and pay a small amount on

the amount of time you use to prepare food, which may cost up to

$75 per hour.

I am not sure about you, but if I would be this person who is not sure about many

aspects of starting up a restaurant, I would start slow and rent on an hourly basis.

Similarly, when we deploy applications, there are many operations jobs required

before we can run our business logic, which include server setup, scaling, deployment,

server management, security, etc. What if there was a service where we as developers

only care about writing the business logic code and everything is taken care of, and

there’s no need to pay for the server instance’s computation for the whole day if you run

once a day for a few hours?

Yes, the AWS Lambda function is that service.

�Lambda Functions
In the AWS ecosystem, the Lambda function is a service that lets you and me run a piece

of code on demand without worrying about the setup and operations of servers.

The service automatically manages the underlying operations of server

management, handling high traffic, and security parts of it.

This service is capable of all the dynamic state changes and updates like adding

items in a cart, making payments, listening to data from your sensor and adding in your

database, or training your AI/ML models.

The Lambda function takes away all the overhead of running your piece of code and

helps you to focus only on your business logic on highly available infrastructure. The

Lambda function manages all the operations like provisioning of computing services,

updating the security patch, operating system updates, monitoring, and logging.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

82

�Use Cases of Lambda Functions
Lambda functions can be used in various scenarios; these functions are also capable of

integrating with other available AWS services like DynamoDB or notification services.

Let’s discuss some of the use cases of Lambda functions:

	 1.	 APIs for web development to read from databases and update

data in the database

	 2.	 On-demand file processing operations like resizing of images or

Excel sheet parsing

	 3.	 Various kinds of daily or weekly scheduled tasks, like parsing web

pages to fetch news or job posting

	 4.	 Scalable backend for your web, mobile, or IoT apps

	 5.	 Training of AI/ML models

�Cons of Using Lambda Functions
•	 No control over the underlying hardware

If your code requires to access some hardware capabilities like the

GPU, you should not use Lambda functions.

•	 Cost vs. computation time required

If your code requires a computation machine to run continuously

most of the time during the day, then the Lambda function might

be costly compared to having a dedicated server to run the code.

�How Lambda Function Works
The service requires you to upload the code, and then whenever triggered via the API,

the function runs on a dedicated pool of servers managed by AWS and returns the

response.

The function is the piece of code which runs on service AWS Lambda. This function

can further integrate with third-party systems via APIs or integrate with other AWS

services. After successful processing of code, this returns some value to the caller.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

83

Let’s take an example; you wrote a function that, when triggered, calls the Yahoo

Finance API and gets the list of stocks.

Then you apply some business logic, for example, you do some sorting and some

calculation to get the top five stocks.

You can then store that in the database and return the list of recommended stocks.

This can be easily represented in Figure 3-2.

Figure 3-2.  The steps involved when triggering the Lambda function via the
REST API

�What Is the Lambda Layer?
From AWS’s perspective, we need to upload the function to Lambda service, and that

gets deployed to service handled by AWS. The larger the function, the more time it

takes to upload and be deployed. Many times, we may want to share a piece of code or

library among more than one Lambda function. For example, there is a util function

that generates UUID (Universally Unique Identifier) based on some input, and it also

depends on the third-party npm package. If we want the same util function of generating

UUID in more than one Lambda function, instead of duplicating the function we can

create a Lambda layer that contains this logic and npm package and reuse it in more

than one function.

The Lambda layer (as shown in Figure 3-3) is an abstraction of dependency or

library, which can be further shared among more than one Lambda function. This is

similar to creating a new npm module and using it in more than one project.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

84

Figure 3-3.  Reusing code with Lambda layers

�Why Lambda Layers Are Useful

	 1.	 The function’s code becomes smaller.

Using Lambda layers, we are able to split the main business logic

code and the pure functions in a different layer; this makes the

main individual function smaller and makes it lightweight.

	 2.	 Reuse code across multiple Lambda functions.

More than one Lambda function can reuse these layers.

	 3.	 Easy management and deployment of the main function.

Lambda layers make the root function smaller, and hence it takes

lesser time to upload and deploy the functions; the other util logic

is referred to using the location of the Lambda layer and version

which gets called after deployment.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

85

�Working with REST APIs
Let’s get our hands dirty and see the REST APIs in action. In this section, we will create

the REST APIs and create a Things Todo application. In this application, we should be

able to do the following:

	 1.	 Get the list of todos

	 2.	 Create a new item in the list

	 3.	 Delete one item

To achieve these, we need the following APIs:

	 1.	 List of all todos:

GET /todos

	 2.	 Create new item:

POST /todos and metadata in the request body

	 3.	 Update the todo item:

PUT /todos and metadata in the request body

	 4.	 Delete one item:

DELETE /todos/{id}

STEP 1: To create a set of APIs, we will use the Amplify CLI tool shown here:

amplify add api

This will give us two options to choose from, as shown in Figure 3-4.

STEP 2: Let’s select REST and press enter.

Figure 3-4.  Add a new API using AWS Amplify

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

86

STEP 3: The CLI will ask to give a label to the set of APIs; let’s name it `todosapi` as

shown in Figure 3-5.

Figure 3-5.  Add a name to the API resource

STEP 4: The CLI will ask for a path; as we know the best practices of REST APIs, we

will name it `/todos` as shown in Figure 3-6.

Figure 3-6.  Provide the path to the API

Now is the time to create a Lambda function; choose the option to create a new

Lambda function, which will map all the CRUD API endpoints.

STEP 5: Add `todosfunction` as the name of the Lambda function as shown in

Figure 3-7.

Figure 3-7.  Select the template for the Lambda function

Then, the CLI will ask which programming language you want to use to serve the

APIs; as we are JavaScript enthusiasts, we will choose Node.js. Please note, you can

choose other languages as well from the list.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

87

STEP 6: The Amplify CLI autogenerates the template functions for the APIs, which

can be modified easily.

As we intend to have the CRUD APIs, let’s choose the Express.js function.

Note E xpress.js is a Node.js framework, majorly used to serve web-based HTTP
APIs, where we write the API path and attach a set of functions against that path to
fulfill the API request.

STEP 7: Select No for advanced settings for now.

STEP 8: Now we will like to see how our autogenerated function looks like; hence,

select Yes for editing the Lambda function now and select your IDE.

The menu looks like Figure 3-8 with selected options.

Figure 3-8.  Final selection of Lambda function configuration

STEP 9: The file where the Lambda function is written will open automatically; if it

doesn’t open, you can navigate to the following location:

amplify/backend/function/todosfunction/src/app.js

If you note, we want to open the Lambda function generated by the Amplify CLI;

hence, the directory structure depicts the same. Lambda function configurations are

in the function directory, and we can create n number of APIs and functions to serve

the API, hence there is todosfunction directory, this is the name we gave in STEP 5 and

create a group of functions with this name.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

88

Let’s check the autogenerated Lambda function and modify to achieve the required

functionality as shown in Figure 3-9.

Figure 3-9.  The autogenerated Express.js template

As we selected the Express.js-based template, we have the app.get and path in line

number 33.

LINE 33: This means whenever the get API with path `/todos` is requested, the

response will be returned with a JSON object as

{

 success: 'get call succeed!',

 url: 'request string url'

}

LINE 38: This means whenever the GET API call with path `/todos/*` is requested,

it will run the function and return the object. The `*` is from the regex family and means

any string is valid.

For example, if you hit `/todos/89` or `/todos/my-name`, it will call the same

function.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

89

LINE 47: This means whenever the POST API call with path `/todo` is requested, it

will call the callback function. In this case, it will return the JSON object, with the success

key, the URL from the request using req.url, and the request body using req.body.

STEP 10: Press enter on your console to continue on the Amplify CLI.

STEP 11: Let’s push these REST APIs and Lambda functions, so that we can check

the working APIs as shown in Figure 3-10.

amplify push

Figure 3-10.  Push the Lambda function to the cloud

The AWS Amplify CLI will ask for confirmation on pushing the changes; enter yes.

What we are pushing here is `todosapi` and the Lambda function `todosfunction`;

hence, you see these two resources have create operations, while Auth has no change in

operation.

Let’s wait for CloudFormation changes, and we should be really good with REST APIs

and running our first Lambda function.

When the push operation is successfully finished, you will be prompted with the

REST API endpoint as shown in Figure 3-11.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

90

Figure 3-11.  Successful prompt when the Lambda function is pushed

Let’s copy this endpoint and try to request our new created REST APIs.

Basically, our frontend React app will consume the todos REST APIs, but even

before we jump into React code to call get or POST APIs, let’s try to test if the APIs are

working or not.

If you don’t have the Postman application, you can download from the website. Just

google `download postman`.

Click New and select HTTP request.

Enter the REST API endpoint in the URL section and append `/todos`.

Please click the blue Send button to request the GET API call as shown in

Figure 3-12.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

91

Figure 3-12.  Response from the REST API

You will see the response, as this is what we sent from the Lambda function.

Similarly, you can try the DELETE, PUT, or POST APIs, and you will get the expected

response from all of these APIs.

STEP 12: Let’s modify our Lambda functions to return a list of data, and also on the

POST API call, we will add one item in the array. Open the todosfunction file to modify

the Lambda functions as shown in Figure 3-13.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

92

Figure 3-13.  Return the hardcoded response from the function

LINE 28: Add a variable listOfTodos which is an array of object with id, title, and

done status.

Note  We have declared the variable which has the list of items; ideally, the data
should be stored in any database; we will modify this function when we learn
about using databases in later chapters.

LINE 38: Instead of static strings, return the array of todo items.

�Saving the File
STEP 13: Now that the function is modified, we need to save the file and push the

changes to AWS also shown in Figure 3-14.

amplify push

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

93

Figure 3-14.  Confirmation dialog when pushing the changes

As you can see in the confirmation section, the function has an update operation.

Once pushed, let’s wait for the changes to be applied on AWS cloud.

STEP 14: Let’s test our API again on Postman as shown in Figure 3-15.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

94

Figure 3-15.  Response on Postman from the REST API

Voila, as we can see, the changes are reflected on the same APIs.

STEP 15: Let’s modify the add new item POST API.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

95

Note  We have used a variable and updated the data in the variable which is in
memory. Please be aware the new data added using the POST API will only be
persisted until the same server is up and running; the moment you restart the
server, the data will be reset to the actual value declared initially. Please note,
we are running the Lambda functions which run the same functions in different
machines; hence, if you hit the get all item API after some time, you will not
receive the data added using the POST API, because the server picked to run the
function by AWS will change, and hence the variable will return the initial value
assigned to it.

To resolve this issue, as discussed earlier, we should have a database, which we will

learn in later chapters, and we will replace the datasource from variable to database.

LINE 52: Get the request body and add a dummy id, using the total length of

the array.

LINE 53: Push this new item in the same array.

LINE 54: Because we know the best practices of REST APIs, we are setting the HTTP

response status code as 200, because technically this API is going to create a todo item

resource.

STEP 16: Let’s push the changes and test the API in Postman.

Change the request type to POST from GET in Postman, and add the request body as

shown in Figure 3-16.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

96

Figure 3-16.  Response from the REST API after the modification of the response
structure

As we get the response 200 with the expected JSON response, let’s test the get all

todos; we are expecting to get one more item now.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

97

Figure 3-17.  Response when requesting all the todos

As you can see in Figure 3-17, we got the new item in getting all API.

�PUT API to Update Items
Now that we can get all list of items, and add a new item in the list, let’s try to update

existing todo items.

The following function template is where we will customize it, so that we can edit the

items by passing the id:

app.put("/todos/*", function (req, res) {

 // Add your code here

 res.json({ success: "put call succeed!", url: req.url, body: req.body });

});

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

98

Modify the put function with the following function:

01: app.put("/todos/:uid", function (req, res) {

02: �const itemIndex = listOfTodos.findIndex((item) => item.id == req.

params.uid);

03: if (itemIndex >= 0) {

04: listOfTodos[itemIndex] = {

05: ...listOfTodos[itemIndex],

06: ...req.body,

07: };

08:

09: res.json({

10: success: "put call succeed!",

11: url: req.params.uid,

12: body: req.body,

13: });

14: } else {

15: res.json({

16: failed: "Put call failed, as the id not found",

17: });

18: }

19: });

To update the item by id, we have done the following changes in the preceding code

snippet:

•	 LINE 1: We have replaced `*` with :uid; we are capturing the id of the

item to be edited in a variable named uid.

For example, when we want to update any item, we will hit the

PUT API as follows:

```

PUT /todos/3

Request body: title to be updated

```

Now we need the id in one variable, in this case, 3.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

99

•	 LINE 2: We are finding the index of the item which has the id passed

by the client; we can easily capture the id from the URL by req.

params.uid, where uid is the named variable.

Note  We are using `==` instead of`===`, as the uid will be in string and will fail
if we use the triple equal operator. Either we can use `==` or transform the types
from string to int or vice versa before comparison.

•	 LINE 3: If the item with the id is found, the function findIndex returns

the index of the item from the array, and if not found, it returns –1.

•	 LINE 4: If the index is greater than or equal to zero, we know the item

with the id is found, and now we can handle the positive edge case.

•	 LINE 5: We are updating the object in the found index with the

request body data.

•	 LINE 9: Return with the success message.

•	 LINE 15: This case is a negative case when the passed item id is not

found in the list.

Once you have modified the function, save the file and push the Lambda function

changes to the AWS cloud so that we can test the API.

You can try the API in Postman to update the items.

�Using the Delete API to Delete an Item by ID
Now that we can get all list of items and add and edit items in the list, let’s try to delete

existing todo items.

The following function template is where we will customize it, so that we can delete

the items by passing the id:

app.delete("/todos/*", function (req, res) {

 // Add your code here

 res.json({ success: "delete call succeed!", url: req.url });

});

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

100

The following is the modified function:

01: app.delete("/todos/:uid", function (req, res) {

02: �const itemIndex = listOfTodos.findIndex((item) => item.id === req.

params.uid);

03:

04: if (itemIndex >= 0) {

05: list.splice(itemIndex, 1);

06:

07: res.json({ success: "delete call succeed!", url: req.url });

08: } else {

09: res.json({

10: failed: "Delete call failed, as the id is not found",

11: });

12: }

13: });

•	 LINE 1: Capture the id in the variable named uid.

•	 LINE 2: Find the index of the item, searching by id.

•	 LINE 5: Remove the item from the index, using the splice function.

•	 LINE 7: Return a success message.

•	 LINE 9: This is handling a negative case when the item is not found in

the datasource against the id passed in the delete API.

Once you have modified the function, save the file and push the Lambda function

changes to the AWS cloud so that we can test the API.

�Summary
Congratulations, you have now successfully created a CRUD REST API and saw it

working end to end. In this chapter, we explored on what REST APIs are and created

CRUD APIs. We also discussed the best practices of REST APIs. We used Node.js and

Express.js to create a sample CRUD REST API. We also discussed in depth about Lambda

functions and what value they generate.

Throughout the chapter, we emphasized the importance of testing and showed how

to use tools like Postman to verify whether our goal is achieved or not.

Chapter 3 CRUD and REST APIs – Pillars of Efficient Data Exchange

101

CHAPTER 4

Integrating REST APIs
with a Frontend
React App

Building a powerful frontend is an art, but it becomes a masterpiece when
it is integrated seamlessly with APIs.

—Akshat Paul

In the previous chapter, we have created REST APIs which is ready to be consumed by

client apps and client apps can render the user interface using these APIs. The next step

is to add security enhancements, and we’ll be ready to distribute our APIs to third-party

apps as well. In this chapter, we will focus on React application to consume these APIs

and render the UI components. In order to integrate these APIs with a React app, we will

first create a basic todo application.

�Creating a Basic React ToDo App
Let’s create a new file in the React app, where we will achieve the following:

	 1.	 Call the get all items API and render the items in an ordered list.

	 2.	 Strike the items, which are marked done.

	 3.	 Add a create new item button; on clicking it, we should be able to

add one item to the todo list.

	 4.	 Add the check box button to update the status from done to not

done and vice versa.

	 5.	 Add a delete button to delete one item.

© Akshat Paul, Mahesh Haldar 2023
A. Paul and M. Haldar, Serverless Web Applications with AWS Amplify,
https://doi.org/10.1007/978-1-4842-8707-1_4

https://doi.org/10.1007/978-1-4842-8707-1_4#DOI

102

STEP 1: Let’s start with basic API integration; we will call the get all API and show the

title in an ordered list in the UI. Figure 4-1 shows what we want to achieve.

Figure 4-1.  User interface for a todo application

Let’s create TodoPage.js and add the following code. Let’s discuss the code line

by line:

01: import React, { useState, useEffect } from "react";

02: import { API } from "aws-amplify";

03:

04: const TodoPage = () => {

05: const [todoList, setTodoList] = useState([]);

06:

07: useEffect(() => {

08: API.get("todosapi", "/todos").then((data) => {

09: setTodoList(data);

10: });

11: }, []);

12:

13: return (

14: <>

15: <h1>Todo lists</h1>

16:

17: {todoList.map((item) => {

18: return {item.title};

19: })}

20:

21: </>

Chapter 4 Integrating REST APIs with a Frontend React App

103

22:);

23: };

24:

25: export default TodoPage;

26:

LINE 1: Importing dependencies from React, we will use useState to manipulate the

state, namely, after calling the API, we want to set it in React state to reflect in the UI. And

useEffect to add a hook to call the API instantly after loading the page.

LINE 2: Import the API from aws-amplify; this will help us in the integration with the

REST API we created and deployed in Chapter 3 and this also acts as the HTTP client to

call the REST API and return the data asynchronously.

LINE 5: Define useState with a default empty array value. The setTodoList is the

function which will help in setting the new data after we receive the data from the GET

API call.

LINES 7 and 11: Consuming the useEffect React hook, this gets triggered as soon

as the React page is loaded, as we want to call the API instantly. When we pass an array

as the second parameter, the hook is triggered on change on the variables passed in the

array. If you don’t pass anything as the second parameter, the hook will be triggered

infinite times, in this case, the get all API will be called infinite times, and we don’t want

this. We passed an empty array to call the API only once; technically, the array is empty;

hence, the array will never change, guaranteeing the API to be called once.

LINE 8: Use the API from the aws-amplify package to call the API, by mentioning the

HTTP method API we want to call. The first parameter is the API name, as we created by

the name of todosapi, and the second parameter is the path of the API; in the case of get

all, it is going to be /todos.

Note T he hostname will change with different environments, that is, different
for the dev environment and different for production. Similarly, if we kill the AWS
backend config and recreate in a new AWS account, the hostname will change; the
API from aws-amplify handles this, so that the base host is not hardcoded in our
application.

LINE 9: When the API call is finished or succeeded, the data is to be set in React state

using the setTodoList function, so that the UI can rerender with the items.

Chapter 4 Integrating REST APIs with a Frontend React App

https://doi.org/10.1007/978-1-4842-8707-1_3

104

LINE 17: Until the API call is not a success, the value of items will be an empty array;

hence, nothing will be rendered on the UI.

Note H ere, you can show a loader component until the value of itemList is empty,
and when the itemList is not empty, show the title. In this way, we can achieve
the functionality of showing loader whenever there is an API call happening in the
background.

LINE 18: Render the title from the item to show on the UI.

Run the server and load the page on the browser; you will see the list.

If you want to see the API getting called and response, open the Network tab, as

shown in Figure 4-2.

Figure 4-2.  List of data from REST APIs

Let’s modify our application further to show the status of which item is done and

which is not:

17: {todoList.map((item) => {

18: return (

19: �{item.done ? <strike>{item.title}</strike> : item.

title}

20:);

21: })}

Chapter 4 Integrating REST APIs with a Frontend React App

105

LINE 19: Add a ternary operator, and check if the item’s status is done, then wrap the

title in an HTML <strike> tag; if not done, then render without the strike tag.

The output will be like Figure 4-3.

Figure 4-3.  UI change indicating a completed todo task

�Adding a New Item
Let’s add a new button so that we can add a new item using the POST API call.

STEP 1: Add the button to add a new item.

24: <div>

25: <input type="text" />

26: </div>

27: <div>

28: <button>+ Add new item</button>

29: </div>

Chapter 4 Integrating REST APIs with a Frontend React App

106

The preceding input field and button will render as shown in Figure 4-4.

Figure 4-4.  Button addition to the UI

STEP 2: Let’s now add the functionality on what happens on clicking this button.

01: import React, { useState, useEffect } from "react";

02: import { API } from "aws-amplify";

03:

04: const TodoPage = () => {

05: const [newItemField, setNewItemField] = useState("");

06: const [todoList, setTodoList] = useState([]);

07:

08: const addNewItem = (title) => {

09: API.post("todosapi", "/todos", { body: { title, done: false } })

10: .then((data) => {

11: console.log("Creation success with data", data);

12: })

13: .catch((err) => {

14: console.log("ERROR while calling POST api call");

15: });

16: };

17:

18: useEffect(() => {

19: API.get("todosapi", "/todos").then((data) => {

Chapter 4 Integrating REST APIs with a Frontend React App

107

20: setTodoList(data);

21: });

22: }, []);

LINE 5: We want to create a new item, and the title is to be picked from the input

box; hence, we need a variable to store the value of the new title typed in the input box.

Hence, we use the useState.

LINE 8: We are writing an addNewItem function, which will call the POST API with

the title passed to the function as a parameter. This function will be called when the add

button is clicked.

LINE 9: We are going to use the API from AWS-amplify and pass the request body as

a JSON object as a parameter.

LINE 11: If the response is a success, for now, let’s log the response in the console.

LINE 14: The catch part will be triggered if the API fails; let’s also log the failure.

STEP 3: Integrate the input box, and call the POST API on button click.

33:

34: <div>

35: <input

36: type="text"

37: onChange={(event) => {

38: setNewItemField(event.target.value);

39: }}

40: />

41: </div>

42: <div>

43: <button onClick={() => addNewItem(newItemField)}>

 + Add new item

 </button>

44: </div>

45: </>

46:);

47: };

48:

49: export default TodoPage;

50:

Chapter 4 Integrating REST APIs with a Frontend React App

108

Now run your React app and try to add a new item; the expectation is we should be

able to create a new item, and on success, it should show the result in the console.

Figure 4-5 shows the screenshot of the application.

Figure 4-5.  UI updated allowing a new todo item to be added from the page

�Enhancing the User Experience
Now that API integration of getting all the data and adding new items is done, let’s

enhance the user experience.

As an end user, when I add a new item, I want the experience to be better than what

we have achieved so far.

	 1.	 When I add a new item, the new item should be added in the list.

	 2.	 The text field should get clear so that I can add a new item.

Let’s achieve these one by one.

�Enhancement 1
If we want to add the new item, when the POST API call is successful we will add the

response in our list of todo item variables. Let’s change what we should do in our

React app:

Chapter 4 Integrating REST APIs with a Frontend React App

109

08: const addNewItem = (title) => {

09: API.post("todosapi", "/todos", { body: { title, done: false } })

10: .then((data) => {

11: console.log("Creation success with data", data);

12: setTodoList([...todoList, data]);

13: })

14: .catch((err) => {

15: console.log("ERROR while calling POST api call");

16: });

17: };

LINE 12: We will use the function by the useState React hook to push the new item

we received from the POST API call. And we achieve what we wanted. What it does is, as

the list of todos is in the state, when the list gets updated, React also rerenders and shows

our new item in the list.

�Enhancement 2
We want to reset the text field value when the POST API call is successful. Let’s see how

the React code will change to achieve this enhancement:

08: const addNewItem = (title) => {

09: API.post("todosapi", "/todos", { body: { title, done: false } })

10: .then((data) => {

11: console.log("Creation success with data", data);

12: setTodoList([...todoList, data]);

13: setNewItemField("");

14: })

15: .catch((err) => {

16: console.log("ERROR while calling POST api call");

17: });

18: };

LINE 13: For capturing the value of text from the input field, we have used the

useState hook; we will use the same set function to set the value of the field to an

empty string.

Chapter 4 Integrating REST APIs with a Frontend React App

110

The preceding change will have no impact on our text field because we are so far

only capturing the value from the text field, but we have not set the value of the text field.

Let’s set the value:

37: <div>

38: <input

39: type="text"

40: onChange={(event) => {

41: setNewItemField(event.target.value);

42: }}

43: value={newItemField}

44: />

45: </div>

LINE 43: We are using the HTML attribute name ‘value’ to set the value from

the state.

Let’s run our React app and see the app in action.

Figure 4-6.  Input box emptied to add new item

Now if you see, the moment an add new button is clicked, the item gets added in

the preceding list as a third item and the input box is cleared to be ready to accept the

new item.

Congrats, you have implemented a basic feature and also enhanced the user

experience. Next, we will add delete and update features to our React application.

Chapter 4 Integrating REST APIs with a Frontend React App

111

�Do It Yourself (DIY): Deleting and Updating
Still, our app is not complete; we have to add the feature of deleting one item and

updating the status of the item from done to not done, so that the strike on the item goes

off and on, depending on the item.

Please write your function to implement the APIs and write the React code to achieve

the update status and delete one item functionality.

�GraphQL API
GraphQL is a powerful and flexible query language and runtime for APIs that was

developed by Facebook. It allows clients to request and receive only the data they need,

which can help solve the problem of overfetching and underfetching of data that occurs

with traditional REST APIs.

With GraphQL, clients can send dynamic queries that specify exactly what data

they want, and the server will respond with only that data. This gives clients greater

control and power over the data they receive and can lead to faster and more efficient

application performance.

In addition to its query capabilities, GraphQL also provides a strongly typed schema

that defines the types of data that can be queried. This can help catch errors early in the

development process and make it easier to maintain and evolve APIs over time.

GraphQL has gained widespread adoption in recent years and is now supported by

many popular programming languages and frameworks. It’s a powerful tool for building

modern, scalable APIs, and I highly recommend it to anyone looking to build APIs for

their applications. Let us understand GraphQL with the help of an example:

{

 author {

 firstName

 twitterHandle

 }

}

Chapter 4 Integrating REST APIs with a Frontend React App

112

This schema will return the following structure data:

{

 author {

 "Andrew",

 "some_handle"

 }

}

if the query is modified to the following query:

{

 author {

 lastName

 }

}

This will return the following:

{

 author {

 "James"

 }

}

Note G raphQL was initially developed by Facebook (now Meta) in 2012 and later
published as open source in 2015.

Why GraphQL?

•	 It simplifies backend and frontend communication.

•	 Frontend developers can get exactly what they want, no under- or

overfetching.

•	 Reduced number of HTTP API calls, compared to REST APIs.

•	 GraphQL allows an API to evolve by adding more keys without

breaking existing queries. Not required to maintain versions like in

REST APIs.

Chapter 4 Integrating REST APIs with a Frontend React App

113

Why not GraphQL?

•	 Learning curve: GraphQL can have a steeper learning curve than

traditional REST APIs, especially if you’re not familiar with the

GraphQL query language and its concepts.

•	 Small APIs: If you have a small API with simple data requirements, it

may be overkill to use GraphQL. In such cases, a traditional REST API

or a simpler solution may be sufficient.

•	 Caching: Caching can be more complex with GraphQL than with

REST, as GraphQL queries are often dynamic and can have a wide

range of possible responses. This can make it harder to implement

effective caching strategies.

•	 Lack of tooling: While GraphQL has gained widespread adoption,

some tools and libraries may not yet support it, which could make

development more difficult.

•	 Security concerns: As with any API, security is a concern, and

GraphQL has its own unique security considerations, such as query

depth limits and input validation.

•	 Performance: While GraphQL can offer improved performance in

certain cases, it can also have performance issues if queries are too

complex or too many requests are made. This can require additional

optimization and caching strategies to be implemented.

Now that we deeply understand the GraphQL APIs well, let’s create all APIs for

the todo list in GraphQL and run those in action, and we will modify our React app to

consume the GraphQL APIs instead of REST APIs.

Chapter 4 Integrating REST APIs with a Frontend React App

114

�To create a set of APIs, we will use the Amplify CLI tool:

amplify add api

This will give us two options to choose from, namely:

STEP 2: Let’s select GraphQL and press enter.

STEP 3: The CLI will ask to give a label to the set of APIs; let’s name it todosgql.

STEP 4: The CLI will ask the type of API authorization; let’s choose the API key.

There are other ways to authorize, but let’s select the quickest of all options.

Chapter 4 Integrating REST APIs with a Frontend React App

115

STEP 5: The CLI tool will ask for a description of the key; provide some text.

STEP 6: The CLI will ask for the number of days, after which one API key will expire.

Select the default number, namely, 7.

STEP 7: Select no for additional settings option.

STEP 8: When asked if you have annotated GraphQL schema, select no. This will

autogenerate from a template, which we can modify to fit our todo application use case.

Though if you already have some schema you want to migrate to Amplify, you can select

Yes and add your schema.

This will lead to choose the template option; let’s go simple with a single object and

choose the todo template GraphQL schema.

STEP 9: The tool will ask if you want to edit the schema, select no. As from the

previous section we know where this API file will be generated, we will navigate to the

directory and edit the GraphQL API.

Let’s check our amplify directory and check what code has been generated.

Chapter 4 Integrating REST APIs with a Frontend React App

116

Given we want to modify the GraphQL API, it should be placed in the API directory.

Follow the following path:

./amplify/backend/api/todosgql

Note  todosgql is the name we gave to this new gql API, hence the directory
name. We can have more than one GraphQL API with different names, and the
name of the directory will be created.

Open the schema.GraphQL file.

And we see the basic GraphQL schema is generated for Todo:

1: type Todo @model {

2: id: ID!

3: name: String!

4: description: String

5: }

6:

LINE 1: The @model directive in the schema tells AWS to create a similar database

schema in DynamoDB, so that the data can be stored and read from the database.

We will discuss in detail about database integration in later chapters; let’s remove the

@model directive from this schema.

Chapter 4 Integrating REST APIs with a Frontend React App

117

Modify the schema to add a done field of type boolean for our todo item status and

rename “name” field to “title”, as our React app is using “title” key:

1: type Todo {

2: id: ID!

3: title: String!

4: done: Boolean!

5: }

Let’s add some operation type in our GraphQL schema so that the clients can

perform some operations on the GraphQL API, like getting data, creating, deleting, etc.

In GraphQL, the operations can be of following types:

	 1.	 Query

This operation is equivalent to the GET HTTP verb, where any get

operations are grouped.

	 2.	 Mutation

This operation is responsible for all the operation which mutates

or changes the resource data, for example, all the creation,

deletion, and update operations are written under this keyword.

	 3.	 Subscription

This operation enables the clients to create a socket connection

with the server, and any change on the resource will be delivered

on real time to the clients.

We want to get a list of all todo items. Let’s modify our schema using the keyword

‘query’:

6: type Query {

7: todos: [Todo] @function(name: "")

8: }

LINE 7: The query returns a field ‘todos’ which returns the array of Todo items.

The @function directive helps us to quickly connect a Lambda function with a

GraphQL API.

Chapter 4 Integrating REST APIs with a Frontend React App

118

To explain further, the client will request ‘todos’, and to operate on this request, we

need to connect a function, and @function helps us.

We also need a Lambda function, the following command will add a Lambda

function and we need to pass the name of that function:

amplify add function

Provide a name to the function; you can give ‘todosfunctiongql’.

Select Node.js and select a basic Hello World template:

amplify add function

? Select which capability you want to add: Lambda function (serverless

function)

? Provide an AWS Lambda function name: todosfunctiongql

? Choose the runtime that you want to use: NodeJS

? Choose the function template that you want to use: Hello World

Now we have the Lambda function, and we need to add the name of this in GraphQL

API configuration, and this Lambda function will be our custom resolver.

Open the schema.GraphQL file, and modify as follows:

6: type Query {

7: todos: [Todo] @function(name: "todosfunctiongql-${env}")

8: }

9:

LINE 7: @function expects the name of the function as a parameter to be able to

resolve the query, and we need to provide ‘-${env}’.

�Custom Resolver
We want to control our function, so that we can have the confidence of ownership in our

API. As we have already connected the GraphQL API controller layer with our custom

Lambda function, let’s modify the function to respond to the GraphQL query.

We will modify the Lambda function in a way, so that it returns some list of todo

items from in-memory datasource.

Chapter 4 Integrating REST APIs with a Frontend React App

119

Navigate to open the function file:

./amplify/backend/function/todosfunctiongql/src/index.js

01: const listOfTodos = [

02: {

03: id: 1,

04: title: "Review PR",

05: done: false,

06: },

07: { id: 2, title: "Attend standup", done: true },

08:];

09:

10: const resolvers = {

11: Query: {

12: todos: (ctx) => listOfTodos,

13: },

14: };

LINE 1: This is our in-memory variable, which will hold the items of todos.

LINE 10: The resolver map, which will have the GraphQL operation keywords like

query, mutation, and subscription as keys and resolver function as value.

In this case, when the query todos is requested, it should resolve to return the list

of todos.

The ctx variable holds the request contexts like header, params, or auth info.

�Modifying the Lambda Handler
To be able to resolve the GraphQL query, we need to handle the operation type in the

Lambda handler.

Please replace the autogenerated handler with the following:

16: exports.handler = async (event) => {

17: const typeHandler = resolvers[event.typeName];

18: if (typeHandler) {

19: const resolver = typeHandler[event.fieldName];

20: if (resolver) {

Chapter 4 Integrating REST APIs with a Frontend React App

120

21: return await resolver(event);

22: }

23: }

24: throw new Error("Resolver not found.");

25: };

Let’s take the following two sample GraphQL queries to understand the preceding

handler:

01: query {

02: products {

03: name

04: }

05: }

06:

07: mutation {

08: deleteCategory(id: 2) {

09: name

10: }

11: }

12:

LINE 17: The event contains some information about the incoming request, so that

we can identify the GraphQL operation types.

event.typeName will return one of the operations, for example, query, mutation, or

subscription, event.typeName would be query and mutation if the preceding two queries

are passed.

LINE 19: The field name from the event map returns the field under an operation the

client is requesting to. For example, the value of event.fieldName will be products and

deleteCategory for the preceding two sample queries.

LINE 21: The same event is passed as ctx to our custom resolver function, so that in

our resolver function we can get the request metadata like header, auth information, etc.

Congratulations, now we have successfully created a GraphQL API and connected

a customer Lambda function to resolve the query. Let’s push this change and test the

API by running the following command:

amplify push

Chapter 4 Integrating REST APIs with a Frontend React App

121

�Testing the API
There will be some configuration preference asked by the CLI tool; you can answer as

follows:

? Do you want to generate code for your newly created GraphQL API Yes

? Choose the code generation language target javascript

? Enter the file name pattern of graphql queries, mutations and

subscriptions src/graphql/*

/.js

? Do you want to generate/update all possible GraphQL operations - queries,

mutations and s

subscriptions No

And wait for the CloudFormation script to generate the resources in AWS cloud.

Let’s test our new GraphQL API; navigate to the Amplify console:

amplify console

You can choose the console option from the menu. This will open the console on the

browser.

Figure 4-7.  Amplify console

Chapter 4 Integrating REST APIs with a Frontend React App

122

Navigate to the API and click the View in AppSync button under the GraphQL API.

Click the Run a query option, which will open a console to add the

GraphQL query.

Enter the todos query and hit the run button, the result is shown in Figure 4-8.

Figure 4-8.  AppSync to run the GraphQL query

Congratulations, we have our first GraphQL API. You can play around with the query

and check the response.

�Creating New Item – Mutation Query
Let’s proceed further with our GraphQL API development; let’s navigate to the GraphQL

schema file and register the mutation operation:

./amplify/backend/api/todosgql/schema.graphql

10: type Mutation {

11: addItem(title: String!, done: Boolean!): Todo!

12: @function(name: "todosfunctiongql-${env}")

13: }

14:

Chapter 4 Integrating REST APIs with a Frontend React App

123

LINE 10: Add the operation type as mutation to be able to mutate the resource.

LINE 11: The addItem is the subfield name in the mutation query, which expects two

arguments title and done, and both of them need to be a valid value; it cannot be null.

This returns an object of type Todo.

LINE 12: Connect the same Lambda function we created which has all the resolvers

using the @function directive.

Modify the Lambda resolver function.

After connecting the Lambda function with the gql API, we need to add the support

for the mutation operation and addItem field.

Navigate to the Lambda function, and let’s start the modification:

10: const addNewItem = (title, done) => {

11: const newItem = { id: listOfTodos.length + 1, title, done };

12: listOfTodos.push(newItem);

13: return newItem;

14: };

15:

16: const resolvers = {

17: Query: {

18: todos: (ctx) => listOfTodos,

19: },

20: Mutation: {

21: �addItem: (ctx) => addNewItem(ctx.arguments.title, ctx.

arguments.done),

22: },

23: };

24:

LINE 10: Create a new function, so that we pass the title and boolean value from the

query to add the new item in our datasource, in this case the in-memory variable.

LINE 11: Generate the ID and create a new item object.

LINE 20: Add the mutation operation in the resolver map to be able to resolve

whenever adding a new item in the list.

Chapter 4 Integrating REST APIs with a Frontend React App

124

LINE 21: Read the arguments passed in the ctx variable and pass to the resolver

function.

Let’s push the changes and test the GraphQL mutation API:

amplify push

�Testing the Mutation
Please navigate to the GraphQL API console on a browser, and let’s try to hit the

mutation query. This is shown in Figure 4-9.

Figure 4-9.  AppSync console

In response, we created the new item. Let’s again hit the get all items query, and the

expectation is we should receive three items now.

Chapter 4 Integrating REST APIs with a Frontend React App

125

Figure 4-10.  Query to get all the items

We now are able to add new items using the GraphQL API.

�Updating the Item by ID – Mutation Query
Let’s now create one more mutation query, which should take the ID of the item, and we

should be able to update the status of the item, with a boolean value.

Let’s start with modifying the GraphQL schema:

10: type Mutation {

11: addItem(title: String!, done: Boolean!): Todo!

12: @function(name: "todosfunctiongql-${env}")

13: updateItem(id: ID!, done: Boolean!): Todo!

14: @function(name: "todosfunctiongql-${env}")

15: }

Chapter 4 Integrating REST APIs with a Frontend React App

126

LINE 13: Add the updateItem field in the mutation schema, which takes id and done

values as arguments, and connect the same Lambda function as the resolver using the

@function directive.

Let’s modify the resolver function to act on this operation.

Navigate to the gql Lambda function:

15: const updateItem = (id, done) => {

16: �const itemIndex = listOfTodos.findIndex((item) => item.id ===

Number(id));

17: if (itemIndex > 0) {

18: listOfTodos[itemIndex] = {

19: ...listOfTodos[itemIndex],

20: done,

21: };

22: return listOfTodos[itemIndex];

23: } else {

24: throw new Error("Id not found");

25: }

26: };

27:

28: const resolvers = {

29: Query: {

30: todos: (ctx) => listOfTodos,

31: },

32: Mutation: {

33: �addItem: (ctx) => addNewItem(ctx.arguments.title,

ctx.arguments.done),

34: �updateItem: (ctx) => updateItem(ctx.arguments.id,

ctx.arguments.done),

35: },

36: };

LINE 15: Add the function which takes id and done values to update the item from

the datasource.

Chapter 4 Integrating REST APIs with a Frontend React App

127

The implementation is pretty much the same as we did in the REST API Lambda

function. Find the item by id and update the value and throw an error if the id is

not found.

LINE 16: Please note the type of id has changed from number to string, hence

transposing to a number type using the Number keyword and then comparing to find

the index.

Alternatively, we could use the == operator instead of === so that only a comparison

could happen, ignoring the type.

LINE 34: In the mutation map, create a key with the same name as the query field,

and read the arguments from the GraphQL query and pass to the function.

Let’s push the changes to Amplify and test the GraphQL API in the AWS console.

The following is the negative scenario: when the id is not found, it should return an

error; let’s pass the id as a random number, which we are confident that it doesn’t exist.

Figure 4-11.  Execute query with incorrect ID

Chapter 4 Integrating REST APIs with a Frontend React App

128

As expected, it throws an error. Let’s pass the correct id to update the value.

Figure 4-12.  Execute query with correct ID

Congratulations, our update GraphQL query is working fine.

�Deleting the Item – Mutation Query

We want to write a mutation query which will take the id and remove it from the list. Let’s

start by modifying the GraphQL schema:

10: type Mutation {

11: �deleteItem(id: ID!): Boolean! @function(name:

"todosfunctiongql-${env}")

12: }

Add the same field in the Lambda function resolver to handle the mutation

operation:

28: const deleteItem = (id) => {

29: �const itemIndex = listOfTodos.findIndex((item) => item.id ===

Number(id));

30:

31: if (itemIndex >= 0) {

32: listOfTodos.splice(itemIndex, 1);

33: return true;

Chapter 4 Integrating REST APIs with a Frontend React App

129

34: } else {

35: throw new Error("Id not found");

36: }

37: };

38:

39: const resolvers = {

40: Query: {

41: todos: (ctx) => listOfTodos,

42: },

43: Mutation: {

44: �addItem: (ctx) => addNewItem(ctx.arguments.title, ctx.

arguments.done),

45: �updateItem: (ctx) => updateItem(ctx.arguments.id, ctx.

arguments.done),

46: deleteItem: (ctx) => deleteItem(ctx.arguments.id),

47: },

48: };

LINE 28: Add the delete function, which finds the item by id and removes it from

the list.

LINE 46: Update the mutation resolver map with a field name and connect the

resolver function.

Let’s push the change to AWS and open the console to test the GraphQL API.

Figure 4-13.  Execute query to delete record

Chapter 4 Integrating REST APIs with a Frontend React App

130

The API returns a boolean true value, as expected, and let’s hit get all todo items.

Now we should get only one item.

Figure 4-14.  Get all todo records

Congratulations, now we are confident we have been able to delete an item.

�Integrating GraphQL API in React
As we have already learned, an API is a mode of communication between two parties,

in this case, a client app and a server. Just like human communication, the language

or interface can be of any type; the core requirement is that the message should be

transferred and understood by both parties. Whether the API is REST or GraphQL, the

actual data should be requested and transferred to the client. In both cases, the client

sends a request to the server, which then responds with the requested data. The key

Chapter 4 Integrating REST APIs with a Frontend React App

131

difference between REST and GraphQL is in how the data is requested and how the

server responds. With REST, the client specifies the endpoint, and the server responds

with all the data at that endpoint. With GraphQL, the client specifies the data it needs

using a query language, and the server responds with only the requested data. Both

REST and GraphQL have their own strengths and weaknesses, and the choice between

the two will depend on the specific needs of a given project.

Now that we have all the required set of GraphQL APIs for our todo application,

we should integrate these in our application, we will not rewrite the React code from

scratch, we will modify the existing client app to consume the GraphQL API, and the

application should work as is.

Let’s begin with our React hook where on load we call the API to get all lists of Todos

and show them on the UI:

33: useEffect(() => {

34: API.get("todosapi", "/todos").then((data) => {

35: setTodoList(data);

36: });

37: }, []);

The preceding code is the React hook integration to call the get all REST API; let’s

modify this so that it consumes the GraphQL query:

33: useEffect(() => {

34: API.graphql({

35: query: `query {

36: todos {

37: id

38: title

39: done

40: }

41: }`,

42: }).then((data) => {

43: setTodoList(data);

44: });

45: }, []);

46:

Chapter 4 Integrating REST APIs with a Frontend React App

132

LINE 34: Call the GraphQL function from the API to request the GraphQL query.

LINE 35: Pass the exact query from our query console.

Let’s run, start the React server, and keep our eye on the Network tab of the browser.

Figure 4-15.  Integrating GraphQL with the React app

Please note the GraphQL API is requested by the React hook; if you check the

response, you will see we received the response.

But something failed on our React code.

It’s nothing but the response structure. In the REST API, we got the response as an

array; in GraphQL, we are getting the data wrapped in the data key and todos key.

Let’s modify our response handler from the React hook:

37: id

38: title

39: done

40: }

41: }`,

42: }).then((data) => {

43: setTodoList(data.data.todos);

44: });

45: }, []);

Chapter 4 Integrating REST APIs with a Frontend React App

133

LINE 43: We are modifying to read the list of todos from the todos key wrapped

under the data key.

Save and restart; voila, our new list of todos is getting fetched from the GraphQL API.

�Integrating GraphQL Mutation API
Let’s start modifying the function on click of add item to call the mutation query, which

will create a new item using our GraphQL mutation API:

08: const addNewItem = (title) => {

09: API.graphql({

10: query: `

11: mutation {

12: addItem(done:false, title: "${title}") {

13: id

14: title

15: done

16: }

17: }

18: `,

19: })

20: .then((data) => {

21: console.log("Creation success with data", data);

22: setTodoList([...todoList, data.data.addItem]);

23: setNewItemField("");

24: })

LINE 10: Call the GraphQL function from the API to pass the GraphQL

mutation query.

LINE 11: Pass the same mutation query for adding a new item, as we ran in the

previous section from the AWS console.

LINE 12: Use the backtick to create a dynamic mutation query to pass the title to

the query.

LINE 22: Read the response from the addItem key wrapped under the data key which

is the response structure from GraphQL.

Save the file and run the server; voila, we are now able to add new items using the

GraphQL mutation query.

Chapter 4 Integrating REST APIs with a Frontend React App

134

�Do It Yourself (DIY): Modifying the React App
Modify the React application to integrate the update and delete mutation GraphQL

queries.

���Subscription API
So far, we have implemented and consumed the traditional request-response

model-based client-server interaction APIs, which uses the HTTP protocol. In this

model, the client opens an HTTP connection to the server and sends a request, and the

server responds with the requested data on the same connection. Once the response is

complete, the HTTP connection is closed. This is true for all the methods of REST APIs,

as well as for GraphQL queries and mutations.

Many times, we require receiving real-time data pushed from the server to the client.

For example, while booking a cab on Uber, we want to receive notifications from the

server when the cab is near us or receive messages on a chatting application. If the server

does not push the data to the client, we would be required to refresh again and again to

get the new status of the cab or get new messages.

Outside of the GraphQL realm, this can be achieved in various ways. One common

approach is setting up a WebSocket connection between the server and client. This

creates a two-way connection and enables the server to send the data without requiring

the client to poll the data.

Now, given that we want to discuss GraphQL functionalities, let me introduce you

to GraphQL subscription APIs. Subscriptions are a GraphQL feature that enables real-

time data streaming from the server to the client over a WebSocket connection. With

GraphQL subscriptions, the client can specify a subscription query to the server, which

the server uses to push relevant data to the client in real time. Subscriptions provide a

powerful and efficient way to implement real-time features in GraphQL APIs and can be

particularly useful for applications like chat apps, stock tickers, and real-time gaming.

The GraphQL team has done an amazing job by providing the subscription feature.

As the name suggests, clients can subscribe to events and receive real-time data from

those events. For example, a client could subscribe to a Todo item mutation event. Every

time a new Todo item is created, the subscribed client will receive the data in real time

and can choose to update the list on their UI.

Chapter 4 Integrating REST APIs with a Frontend React App

135

GraphQL subscriptions are a wrapper of WebSockets and handle all the edge cases

under the hood. The client initiates a WebSocket connection with the server, and the

server uses the connection to push data to the client in response to subscription queries.

GraphQL subscriptions provide a powerful and efficient way to implement real-time

features in GraphQL APIs and can be particularly useful for applications that require live

updates, such as chat apps, social networks, and stock tickers.

With GraphQL subscriptions, clients have greater control over the data they receive

and can choose to receive only the data they need. This can help reduce the amount

of data transferred over the network, leading to faster and more efficient application

performance. Overall, GraphQL subscriptions are a great addition to the GraphQL

ecosystem and provide a powerful tool for building real-time applications.

As you can see in Figure 4-16, let’s assume Mr. Bob subscribed to a Todo item

mutation event, and Larry from a different browser created a new item in todo; Mr. Bob

will instantly receive the details of the new item created.

Figure 4-16.  GraphQL subscription high-level workflow

Chapter 4 Integrating REST APIs with a Frontend React App

136

Let’s create the subscription API and see the end-to-end flow in action.

We need to add the subscription in our GraphQL schema and connect to the event.

Open the schema.GraphQL file from the following location:

```

./amplify/backend/api/todosgql/shema.graphql

```

And add the following in the schema:

18: type Subscription {

19: OnCreateTodo: Todo @aws_subscribe(mutations: ["addItem"])

20: }

Let’s discuss what we wrote in the schema.

LINE 18: We are mentioning that we want to define a subscription type operation in

our schema.

LINE 19: OnCreateTodo is the name of the operation; we can have n numbers

of such subscriptions with different names. This returns a Todo type object. @aws_

subscribe is a directive provided by AWS Amplify which automatically adds some

functionalities and binds the mutation events. The directive takes an array of mutation,

which returns the data in real time to subscribed clients when the mutation events are

triggered.

Here, we have added the addItem mutation. Please note we have already defined the

addItem mutation, which we used to create Todo items.

Please save and amplify push to deploy our subscription GraphQL API.

Once done, let’s see the subscription in action.

Open the AppSync GraphQL console from the AWS console.

Chapter 4 Integrating REST APIs with a Frontend React App

137

Figure 4-17.  AppSync GraphQL console

Enter the subscription query and click the play button, and please note on the right

top, it shows the client is subscribed to one mutation.

Now open the same console on a new tab. We will run the mutation and create a new

Todo item.

Chapter 4 Integrating REST APIs with a Frontend React App

138

Figure 4-18.  Creates new Todo record

Add a new item using the addItem mutation and click play; as you can see, the new

item is created and new id has been assigned.

Let’s switch to the tab, which has subscribed to the addItem mutation.

Chapter 4 Integrating REST APIs with a Frontend React App

139

Figure 4-19.  Subscribed tab to see data

Voila, as you can see, the same item is shown here, which was created now.

This is the magic of subscription.

�Integrating Subscription API with React
In the previous section, we tested the GraphQL subscription API over two different

clients. Let’s modify our React code to list real-time changes.

Let’s switch to our React code and add the subscription in the useEffect hook:

43: useEffect(() => {

44: API.graphql(

45: graphqlOperation(`

46: subscription {

47: OnCreateTodo{

48: id

49: title

50: done

51: }

Chapter 4 Integrating REST APIs with a Frontend React App

140

52: }

53: `)

54:).subscribe({

55: next: ({ value }) => {

56: setTodoList((currentTodoList) => [

57: ...currentTodoList,

58: value.data.OnCreateTodo,

59:]);

60: setNewItemField("");

61: },

62: error: (error) => console.warn(error),

63: });

LINE 44: Similar to consuming the mutation API, we need to use the API.GraphQL

function and pass our query, in this case subscription query.

LINE 46: This is the same subscription query we wrote in the previous section, and

we tested it from the AppSync query console in the browser.

LINE 54: As this query is subscription based, there would be some events, and we

need to react on certain events; hence, we would subscribe using the subscribe function

and attach a listener, in this case, next and error.

LINE 55: On success event, we would receive a value; there are also other metadata

we receive on success event, but for now we are not going to discuss those.

LINE 56: When we receive a new item on success event, we need to reflect it on the

UI; hence, we are using the useState hook function to set the value, so that it can reflect

on the UI.

LINE 60: We are setting newItemField to empty to clear the item label that we type.

Chapter 4 Integrating REST APIs with a Frontend React App

141

Figure 4-20.  Updated user interface for the Todo app

Once you add via the mutation subscription event, the new item gets reflected to

the list.

We can use this trigger point to notify or for a bunch of other activities.

Use cases of subscription:

•	 All sort of real-time updates

Let’s assume you are building your own Facebook; when the

user’s friends like or comment on a post, the user should instantly

get the notification of who has liked or commented on the post,

and instantly the like count should increase. If you are live

streaming videos, and you want to continuously show the current

number of live users watching the video.

•	 Payment status updates

Whenever you are integrating a payment system via banks or

cards, you will definitely be integrating the application with a

third-party system, and payment APIs may take more than five

seconds, and there may be a retry required due to failures, so

keeping the customer waiting on the loading screen is not a good

idea; hence, we might use the subscription APIs to notify the

customer from the server to the client app when the payment

status changes to success or failure.

Chapter 4 Integrating REST APIs with a Frontend React App

142

�Why APIs Throw 401 Error
APIs pushed via Amplify are exposed via AppSync service by AWS. For security purposes,

APIs need to have an API key.

If you inspect the element and check the Network tab from the React app, you will

see the API key in action.

Figure 4-21.  Network tab in DevTools

If you recall, this was also shown on the console when you pushed the new API via

amplify push.

Chapter 4 Integrating REST APIs with a Frontend React App

143

This API key comes with an expiry date; when the key is expired, the application will

stop working, and the APIs will throw a 401 error.

To check the current API key and its expiry

	 1.	 Open and log in to the AWS console.

	 2.	 Open the AWS AppSync service.

	 3.	 Click the Amplify project.

	 4.	 From the left pane, open the Settings tab.

	 5.	 Scroll down to authorization mode; you will see the API keys and

expiry date.

Figure 4-22.  Amplify project settings

If the API key is expired, we need to rotate the keys.

Follow the steps to recreate the key:

	 1.	 Open the parameters.json file located in amplify/backend/

api/<api-name>.

	 2.	 Add a key with “CreateAPIKey”: 0.

For example:

{

 "AppSyncApiName": <api-name>,

 "DynamoDBBillingMode": "PAY_PER_REQUEST",

 "DynamoDBEnableServerSideEncryption": false,

 "CreateAPIKey": 0

}

Chapter 4 Integrating REST APIs with a Frontend React App

144

	 3.	 The value 0 means to delete the existing key.

	 4.	 Run amplify push, and accept the changes.

	 5.	 After the successful push, open the same file and change the value

to 1, which denotes create the key.

	 6.	 You can now choose from the CLI menu how long you want the

key to be alive.

	 7.	 Run amplify push to recreate the API key with a new TTL.

�Summary
This chapter covered the process of integrating a REST API with a frontend React app.

We started by creating a basic React todo app and then learned how to get data from a

REST API using the fetch() method in JavaScript. Next, we introduced GraphQL as an

alternative to REST APIs and discussed its pros and cons. We then moved on to using

GraphQL with AWS Amplify, setting up the API for CRUD operations and creating

custom resolvers for complex data operations.

We also covered testing GraphQL APIs with the Amplify console, adding new items

to our GraphQL API using mutation queries, and integrating our GraphQL API with

React. We then introduced GraphQL subscriptions and learned how to define them in

our schema and integrate them with our React app using the Apollo client library.

Throughout the chapter, we covered a range of topics related to integrating APIs

with React, including both REST and GraphQL APIs. We discussed the benefits and

drawbacks of each approach and provided practical examples and code snippets to

help readers implement the concepts covered in the chapter. By the end of the chapter,

readers should have a good understanding of how to integrate APIs with React and how

to choose the best approach for their specific needs.

Chapter 4 Integrating REST APIs with a Frontend React App

145

CHAPTER 5

Offline-First App
Offline-first is not just a feature, it’s a mindset. It’s about building resilient
systems that empower users, no matter their connection status.

—Akshat Paul

Most of the web or mobile applications require an Internet connection to work. This

especially has changed in the last decade when the world adapted the client and server

model, and both of these instruments interact using APIs, and the server will be on

the cloud and require an active Internet connection to interact with, which makes the

client more mobile and decouples itself with the physical location; In the late 1990s,

applications used to be more client side, that is, on the desktop you install the software,

and without any Internet, all the operations were allowed and all the user data were

stored in the machine itself, in the hard disk. This model used to be much different than

applications we use nowadays. These client-side applications never supported more

than one user and also did not support multidevice features, because nothing was on the

cloud and the data, device, and users were tightly coupled.

�Benefits of the Client-Server Model
The reason why the client-server architecture has tons of benefits and the world has

shifted to the cloud is because of the following:

	 1.	 Privacy: The server is secured and is not publicly accessible,

unlike the client app; hence, we can keep valuable business logic

and keep secret keys on the backend server.

	 2.	 Multitenancy: We can design the server architecture in a way

that we can support more than one user and add some security

policies, namely, one user will not be able to see other users’ data;

this is known as a multitenant application.

© Akshat Paul, Mahesh Haldar 2023
A. Paul and M. Haldar, Serverless Web Applications with AWS Amplify,
https://doi.org/10.1007/978-1-4842-8707-1_5

https://doi.org/10.1007/978-1-4842-8707-1_5#DOI

146

	 3.	 Easy updates: As the code is deployed on the server, it can be

updated any number of times and doesn’t depend on the client

whether the customer has updated or not; it gives the flexibility

of updating the server code as much as required, and changes are

reflected instantly.

	 4.	 Multidevice support: Given the user data is mostly stored on

the server side, the application can be simultaneously logged

on multiple devices, and the same data gets replicated instantly

without any manual steps involved.

	 5.	 Accessible anywhere: Given the server is on the cloud, this model

reduces the dependency of specific devices; if it is a web app, just

open any browser irrespective of the operating system you get the

access to; if the device is mobile, then all you need is to install the

app and log in. This model allows users to use any device.

We understand this solves a lot of problems, but it takes away some of the benefits

which client-only apps had.

There can be times when the Internet is not active but you still want to access the

app. As per the Internet stats data, still 63% of the world population don’t have access to

the Internet.

Sometimes, the business requires offline apps and expects the Internet is not

available in some isolated areas or secured areas.

If we can make the web app also work without an Internet, and later sync with the

cloud when the Internet is back, then it can be labeled as an offline-first app.

This will give the benefit of both worlds.

�Use Cases of Offline Apps
Let’s discuss some of the real-life use cases of offline apps to better understand why we

are even discussing this:

	 1.	 Deep tunnel application: Suppose you are creating an application

to record data for workers in a deep tunnel. If there is no Internet

available in the tunnel, then the data cannot be recorded. In this

case, having an offline-first app would solve the problem, allowing

data to be recorded even without an Internet connection.

Chapter 5 Offline-First App

147

	 2.	 Lift or pipeline inspection app: Similar to the previous example,

if you are part of a lift inspection application, you cannot expect

the Internet to work with high bandwidth. Hence, an offline app

would solve the problem by allowing data to be recorded without

a reliable Internet connection.

	 3.	 Application for tourists when traveling outside the country:

Imagine if you could not download Google Maps for offline use or

could not access a tourism guide. As a tourist, this would cause a

lot of problems, especially if Internet access is expensive. Hence,

an offline-first app is valuable in such scenarios.

	 4.	 Improving user experience: Many times, even if the user has an

Internet connection, there can be obvious Internet breakages due

to various reasons such as Internet issues or unexpected jammers.

This can negatively impact the user experience. By implementing

an offline-first strategy, the user experience can be drastically

improved. For example, the first screen can appear instantly, and

the user would not have to wait for all the JavaScript, CSS, and

images to load. Additionally, the user’s data can be cached on the

browser to minimize the number of loaders and improve overall

performance.

	 5.	 Field service applications: Imagine if you are a field service

engineer who needs to access customer data, work orders, and

service manuals while in remote locations with poor connectivity.

With an offline-first app, you can download all the necessary

information beforehand and access it offline, ensuring that you

have everything you need to do your job.

	 6.	 Point-of-sale systems: In busy retail environments, network

connectivity can be unpredictable. An offline-first app for point-

of-sale systems allows transactions to be processed offline and

synced with the server when a connection is reestablished,

preventing loss of sales and customer frustration.

Chapter 5 Offline-First App

148

	 7.	 Learning and educational applications: Students and educators

in remote areas may not have reliable Internet connectivity. An

offline-first learning app can provide access to course materials,

videos, and other educational content even without an Internet

connection, enabling continuous learning.

	 8.	 Remote and rural health applications: In remote and rural areas,

Internet connectivity can be scarce or expensive. An offline-first

health app can enable healthcare providers to collect and store

patient data offline, ensuring continuity of care and enabling

remote consultations when an Internet connection is available.

�The Offline App – Design Overview
Even before we make our hands dirty with code, let’s discuss how the offline feature

would work in general, and let’s together create a mental map of the same.

�Goal
Let’s list down the goals we want to achieve:

	 1.	 When the application is connected to the Internet, the application

should work as expected.

	 2.	 When the Internet is not available, we should be able to interact

with applications.

	 3.	 When the Internet connection is back, the data gets synced with

our backend systems.

To achieve the preceding goals, when the Internet connection has failed, instead of

crashing the application and acting helpless, the application needs to be smarter.

We can keep track of when the Internet connection has failed, then we can store the

data local cache with a flag that the items are local only, and when the Internet is back,

we replicate the behavior and remove it from our local cache.

We can refer to Figures 5-1 and 5-2 to represent what we just discussed.

Chapter 5 Offline-First App

149

Figure 5-1.  The offline app sequence diagram

Chapter 5 Offline-First App

150

Figure 5-2.  The offline app high-level diagram

�Add Offline Features in React.js
We will keep the cache store in the client-side application; hence, the majority of effort

will be on the backend. Let’s modify our todo application further and already created

GraphQL APIs to add todo items.

We will use the AWSAppSyncClient provided by the Amplify team, which provides all

the capabilities of offline cache management and syncing of data.

The AWSAppSyncClient internally uses the Apollo Client to achieve the functionality;

for more information, you can refer to the official Apollo documentation https://www.

apollographql.com/docs/.

�Assumption
If you have followed the previous chapters, I am assuming you have achieved the

following:

	 1.	 We have the GraphQL queries to get all items.

	 2.	 We have GraphQL mutations to create, delete, and update items.

	 3.	 We have the React code which integrates with the preceding APIs.

	 4.	 And our React app looks similar to Figure 5-3.

Chapter 5 Offline-First App

https://www.apollographql.com/docs/
https://www.apollographql.com/docs/

151

Figure 5-3.  Demo of the React application output

�The Page Render Function
153: <div>

154: <button onClick={() => addNewItem(newItemField)}>

155: + Add new item

156: </button>

157: </div>

When the add new button is clicked, we call the function addNewItem.

In this function, while trying to create an item on the server, there are two

possibilities:

	 1.	 The Internet connection is stable and the API call is a success;

voila, we already have this working end to end.

	 2.	 The device is not connected to the Internet and the API call fails;

in this case, our smart app should handle the edge case and do the

caching stuff to sync it when the Internet connection is back.

Let’s see #2 in action:

70: const addNewItem = async (title) => {

71: let data;

72: try {

73: console.log("Trying to add through internet");

74: const response = await addItemWithOnlineClient(title);

Chapter 5 Offline-First App

152

75: data = response.data.addItem;

76: console.log(

77: "You are online now, hence added via network with response",

78: data

79:);

80: setTodoList([...todoList, data]);

81: } catch (err) {

82: console.log(

83: �"The api call failed, may be you are offile, trying

offline client"

84:);

85: console.log(">>> CALLING ADD WITHOFFLINE");

86: �const response = await addItemWithOfflineClient(title,

setTodoList);

87: data = response.data.addItem;

88: �console.log(">> Data stored in localstorage to sync when

online", data);

89: } finally {

90: setNewItemField("");

91: }

92: };

LINE 74: Notice the function addItemWithOnlineClient; this is the client which will

try to create items via the Internet, and this client doesn’t have cache integration.

LINE 75: If the creation API is successful, we will get data; if the Internet is not there,

then an error will be thrown. That’s why we have wrapped this function with a try-catch

block so that we can handle the cases when the Internet connection is not present and

the app is offline.

LINE 80: If we get a response, this is the happy case, and we set the response in our

state to rerender the UI with a new set of lists.

LINE 81: If the creation failed, then the error thrown will be caught here.

LINE 86: Then we try a different HTTP client using the function

addItemWithOfflineClient; this client has all the capability of caching and syncing

of data.

LINE 89: As discussed in the previous chapter, we want to reset the input field, hence

resetting to the empty field via the useState function.

Chapter 5 Offline-First App

153

�Real-Time Online HTTP Client
We have already done this in the previous chapter; let’s still check the function:

53: async function addItemWithOnlineClient(title) {

54: return API.graphql({

55: query: `

56: mutation {

57: addItem(done:false, title: "${title}") {

58: id

59: title

60: done

61: }

62: }

63: `,

64: });

65: }

LINE 54: It integrates with the API instance from the AWS-amplify plugin and calls

the mutation GraphQL query.

�Offline HTTP Client
Let’s discuss how we use the Amplify prebuilt HTTP client to achieve most of the offline

capabilities:

07: import awsconfig from "./aws-exports";

08: import AWSAppSyncClient, { AUTH_TYPE } from "aws-appsync";

09:

10: const client = new AWSAppSyncClient({

11: url: awsconfig.aws_appsync_graphqlEndpoint,

12: region: awsconfig.aws_appsync_region,

13: auth: {

14: type: AUTH_TYPE.API_KEY,

15: apiKey: awsconfig.aws_appsync_apiKey,

16: },

Chapter 5 Offline-First App

154

17: cacheOptions: {

18: dataIdFromObject: (obj) => `${obj.__typename}:${obj.id}`,

19: },

20: });

LINE 7: Import the aws config like the GraphQL endpoint and apikeys to be used to

communicate with the servers.

LINE 8: We will install the aws-appsync package to get the appsync client.

LINE 10: Create a new instance of the client and pass the required configurations.

LINE 17: This configuration is for creating the entries in local cache; when the

Internet connection is not there, then under which key the objects will be stored. In our

case, we are forming the keys by combining the typename and id of the object, so that

there is no conflict.

�Handling Errors in Real-Time API Clients with Offline Clients

As discussed in the previous section, this offline client will be used when the real-time

API client fails and throws an error; hence, we catch and call the function to handle via

the offline client.

Let’s expand and discuss the function we wrote in the previous section:

20: async function addItemWithOfflineClient(title, setTodoList) {

21: return client.mutate({

22: mutation: gql(`mutation {

23: addItem(

24: done:false,

25: title: "${title}")

26: {

27: id

28: title

29: done

30: }

31: }`),

32: update: (cache, { data }) => {

33: setTodoList((currentTodoList) => {

34: let newListOfTodos = currentTodoList;

Chapter 5 Offline-First App

155

35: if (!data.addItem) {

36: newListOfTodos = [

37: ...newListOfTodos,

38: {

39: title,

40: done: false,

41: isOffline: true,

42: },

43:];

44: } else {

45: �newListOfTodos = currentTodoList.filter((item) => !item.

isOffline);

46: newListOfTodos = [...newListOfTodos, data.addItem];

47: }

48: return newListOfTodos;

49: });

50: },

51: });

52: }

LINE 21: The mutate function is called when we want to do the mutation operation.

LINE 22: The mutation key takes the mutation query as a string. This query is the

same as the one we developed in the previous chapter.

LINE 32: The update key requires a function to be operated. This function gets called

two times: the first time when the Internet is off and the mutation is successful in the

cache, and the second time again when the app is online and when syncing is done and,

actually, mutation is successful on the server.

LINE 33: When the mutation is done in local, then we also want to reflect the data in

the list of items, hence we are using the setTodoList which is the useState function.

LINE 35: If the response comes from the server, the data is defined; if it is stored

in local, the data.addItem response is undefined; we are using this value to identify

whether the data is stored locally for later syncing or is created in the server.

LINE 41: When we are confident the data is stored in the local cache for later

syncing, we are updating the list with a flag isOffline to true, so that we can identify

which data is offline and which is not.

Chapter 5 Offline-First App

156

LINE 45: When again the update function is called, with a valid data.addItem

response from the server, we know the data is synced to the server; hence, we are

removing the item which has an isOffline flag and setting the new data to our list.

�Rendering the Offline and Online Items in the List
To improve the user experience, we should flag the offline data and show the synced data

differently.

Figure 5-4 is the screenshot of when we tried to add one item in the absence of an

Internet connection.

Figure 5-4.  React application screenshot rendering the item added in offline mode

And the moment we connect to the Internet, the item should be synced, and the red

color should be gone, and the wifi icon should also disappear.

Let’s modify our render function to achieve this:

123: return (

124: <>

125: <h1>Todo lists</h1>

126:

127: {todoList.map((item) => {

128: return (

129: <li style={{ color: item.isOffline ? "red" : "black" }}>

130: {item.done ? <strike>{item.title}</strike> : item.title}

131:

132: {" "}

Chapter 5 Offline-First App

157

133: <input

134: type="checkbox"

135: defaultChecked={item.done}

136: �onChange={(event) => updateItemStatus

(item.id, event)}

137: />

138:

139:

140: {item.isOffline ? <BsWifiOff /> : ""}

141:

142:);

143: })}

144:

This is the extend render function from the previous chapter.

LINE 127: todoList is the current list of items from useState, which initially is

populated from the get all item API using useEffect.

LINE 129: If the data has isOffline as true value, we set the color in style to red, else

black for non-offline data.

The React code we have already discussed in the previous chapter, if you skipped

that, even then also its simple code to render some components.

LINE 140: We also wanted to render a wifi off icon, hence one more check and

render icon for offline data.

�Testing Offline Feature
Let’s start our server and open our landing page.

Figure 5-5 shows what is expected; the list will have two items already rendered if you

are consuming the same get all query.

Chapter 5 Offline-First App

158

Figure 5-5.  Screenshot showing different states of data

Let’s make our app offline.

Open the inspect element or developer tool on a browser, and navigate to Network;

click the arrow which has No throttling as shown in Figure 5-6.

Figure 5-6.  Screenshot of the Network tab to control the throttling configuration

Click the Offline option as shown in Figure 5-7.

Chapter 5 Offline-First App

159

Figure 5-7.  Screenshot of the Network tab to switch to offline mode

Basically, this throttling tool is for developers to test your application and replicate

scenarios of low Internet bandwidth or no Internet.

Once your app is offline, let’s try to add an item in our todo list application.

As you can see in Figure 5-8 in network logs, one GraphQL API tried to

communicate, but it failed as our app is offline.

Figure 5-8.  Screenshot of the Network tab and application to show the failed API
call due to offline mode

Chapter 5 Offline-First App

160

And please note, the same item is added in the list as a third item, with red color.

That means our item is added in local storage.

Let’s see what’s there in the local storage cache.

In the same panel, navigate to the Application tab, and on the left section, click

Storage ➤ Local Storage ➤ first item for your localhost as shown in Figure 5-9.

Figure 5-9.  Screenshot of the Application tab showing the information
in local storage

You see some data is there; this data is added by the aws-appsync client, as we

expected.

Let’s see what type of data is added in this local storage.

The appsync-metadata has the following data:

{"deltaSync":{"metadata":{}},"snapshot":{"enqueuedMutations":1,"cache":{}},

"idsMap":{}}

This says enqueuedMutations counts to be one; this is the new item we added.

The reduxPersist::offline has the following data:

{

 "busy": false,

 "lastTransaction": 1,

 "online": false,

 "outbox": [

 {

 "type": "ENQUEUE_OFFLINE_MUTATION",

 "payload": {},

 "meta": {

Chapter 5 Offline-First App

161

 "offline": {

 "query": {

 "kind": "Document",

 "definitions": [

 {

 "kind": "OperationDefinition",

 "operation": "mutation",

 ...

 {

 "kind": "Argument",

 "name": { "kind": "Name", "value": "title" },

 "value": {

 "kind": "StringValue",

 �"value": "Adding new item, when internet

is off",

 "block": false

 }

 },

 "transaction": 1

 }

 }

],

 "retryCount": 0,

 "retryScheduled": false

}

I have removed a few keys and values from the preceding code to make it short; you

can navigate to your browser to see the data in detail.

If you check data, it stores some information like online: false.

The operation kind is mutation and also stores the data which needs to be synced

when the app goes online.

Well, this shows we have successfully stored the data in the local cache when the app

is not connected to the Internet.

Chapter 5 Offline-First App

162

�Testing the Online Syncing Feature
Now that we have offline data, let’s replicate the situation when the app gets back the

Internet connection and see the online syncing process in action.

Before making your application to the online state, let’s navigate back to the Network

tab and set the throttling to No throttling in developer tools.

As you can notice in Figure 5-10, in network log, the moment we made the network

throttling to no throttling, there is a new API request which is successful with a 200

HTTP status.

Figure 5-10.  Screenshot of the Network tab showing a successful API when the
Internet is connected

And our list got refreshed with a new item, and the red color and wifi icon are

also gone.

Voila, congratulations, our first offline storage and online syncing feature is working

as expected.

�Things to Consider While Creating Offline Apps
Developing and maintaining offline features for an application is not an easy task; the

major problem lies in making the data consistent across the system. The complexity is

directly proportional to various parameters, like a number of features to have the offline

capability and a number of users trying to modify the same data parallelly when offline.

Chapter 5 Offline-First App

163

The following steps should be taken when planning to build an offline-first app:

	 1.	 Well-thought-of use case for offline scenario

The scope of offline use cases should be well planned and

handled. The user should be informed which data is not synced

and also when the app is running in offline mode.

	 2.	 API standard error codes

The API should throw the correct and meaningful error codes, so

that the client can respond accordingly.

	 3.	 Error handling

When we switch to offline, all the APIs will start breaking; hence,

the client app should gracefully handle these errors and perform

the actions of the offline journey.

	 4.	 Data syncing strategy

The application should subscribe to an Internet connection state,

and the moment the Internet is back, the data should instantly

start syncing.

	 5.	 Mindful deleting of local cache data

The application should mindfully remove the unsynced data only

after a confirmation from the server, if the data is synced to the

server. If this is not handled, then the user will end up losing the

data forever.

	 6.	 Testing

The application should be thoroughly tested for all the use cases

before going live on production.

Chapter 5 Offline-First App

164

�Summary
In this chapter on building offline applications, we learned to create an application

which can function without a reliable Internet connection. This is an important

consideration for any application which needs to work even when the Internet

connection is guaranteed.

First, we discussed the limitations of a traditional web application and how they can

be improved with offline functionality. We also discussed about various use cases in real

life, where the offline-first application can really help the business to generate value and

also get the benefits of the client-server model. We also explored the use of AWS Amplify

services which helps in achieving the offline-first app.

Throughout the chapter, we provided the examples of how to use AWS Amplify and

React.js to build offline functionality to create a todo application.

Chapter 5 Offline-First App

165

CHAPTER 6

Data Storage
Data really powers everything that we do.

—Jeff Weiner, CEO of LinkedIn

In the previous chapters, we have discussed how to create the backend and frontend of

the application using the AWS Amplify service. The server and frontend interacted via

REST and GraphQL APIs. However, we still need a place to store our data. This is where

the data storage systems like databases or file storage come into the picture and play an

important role in data-centric applications. In this chapter, we will explore the ways to

store and retrieve data efficiently and reliably.

We will start with understanding the requirements of such systems, types of data and

storages, and AWS services, and then we will do some coding to provision data storage

and integrate with our APIs.

�Introduction
In computing context, the data is a piece of information that has some meaning

and some value to a particular business or process; the data represents the state or

information about an individual or a process. The data can be in different languages and

different formats, like text, numbers, images, or videos. For example, the transactional

data from a bank account can help the banks to calculate how much money is remaining

in a particular bank account, and the ticket number, name, and photographs can help a

person to get entry to the airport and travel from one place to another.

If we can store these data in a particular structure and store them in a computer

to make it easy to search, filter, and readable by different systems and machines, this

is termed a database. For example, a ticket number is the data, and the database is the

computer where this is stored. Databases are the most important element in the human

world. The database in the modern world is generally associated with the storage part

© Akshat Paul, Mahesh Haldar 2023
A. Paul and M. Haldar, Serverless Web Applications with AWS Amplify,
https://doi.org/10.1007/978-1-4842-8707-1_6

https://doi.org/10.1007/978-1-4842-8707-1_6#DOI

166

of any computer software. We interact with them almost every day, whenever you log

in, search for products, view product reviews, or watch YouTube videos – all of these are

possible because of databases.

The database has been existing way before computers and the Internet became

reachable to humans. Before computing databases, humans used libraries, journals, and

cabinets to store data in files. Even the shares in the stock market were traded on paper

before the Internet. And, physical records were maintained in files by a bunch of humans

to keep the process on.

Given the records were kept on paper, the challenge was searching for the right

data; it took a lot of physical space and backup if something goes wrong, for example,

accidental fire and rats chewing, wiping off the data records in minutes. Like many other

problems in the world, the computer and the Internet solved the data storage problem as

well. Data storage became digital, and it was a blessing to humanity.

�Types of Data to Store
Broadly, all the data in the world can be categorized into two buckets that are valuable

for businesses or processes to run smoothly:

•	 Files: File-based data are an important part of the storage, for

example, if we want to create and store a copy of our ID card in our

phone, it has to be an image; if we want to store the memory of our

travel, it has to be photos or videos. These data are raw file based.

Other examples are Excel sheets, pdf, etc.

If we upload these files on the cloud and generate a URL, we need

not carry over a hard disk or pen drives anymore.

We can control the access policy to make these files public or

private. For example, your passport photo can be a public URL,

but your driving license needs to be private and not public for

security concerns.

•	 Data: The data is any other information that is not a file, for example,

a list of students’ names and addresses. These are generally strings,

numbers, or special characters – basically, a combination of whatever

keys you have on your keyboard.

Chapter 6 Data Storage

167

These data are stored in databases in a particular manner and

style, so that searching and filtering can be easier. We can interact

with the data via a query language, which helps to easily search,

filter, delete, or create data.

�Cloud Storage As a Service
Even after humans got the computerized database and solved all the problems with data

storage, before the Internet, the data was still stored in floppy disks, pen drives, and hard

disks. With applications going over the Internet and solving a bunch of problems, it was

obvious and required to make the data storage available on the cloud and accessible via

the Internet. Especially, AWS solved both problems with their services. The file-based

storage and database are available as a service.

	 1.	 Amazon Simple Storage Service: Also known as AWS S3, it is a

service offered by AWS to store and share raw files, for example,

images, videos, sheets, pdf, etc. There are other similar service

providers like Azure Blob Storage and Dropbox.

	 2.	 Amazon DynamoDB: DynamoDB is a fully managed NoSQL

database service by AWS.

The Amplify CLI has the capability to provision and manage these services for our

application. In the upcoming sections of this chapter, we will follow a hands-on guide to

provide this data storage and make our application interact with these services.

�Database Provision and Integration
In the last couple of chapters, we have been successfully able to create RESTful and

GraphQL APIs, and also we have created our Todo items React application to consume

these APIs. Until this chapter, in our Todo application, the data was stored in in-memory

variables, because we did not introduce the databases. Now we should extend our

backend APIs to integrate with the database and fetch and store the data in the database.

Chapter 6 Data Storage

168

�Provisioning Database
Even before we modify our APIs to integrate with the database, let’s start with

provisioning our database and check if we got our database up and running or not. Let’s

start with our Amplify CLI on the terminal with following command to add storage in our

Amplify application:

amplify add storage

The CLI will ask some questions for the new database that we are going to create;

let’s answer them:

01: �? Please select from one of the below mentioned services: NoSQL

Database

02:

03: Welcome to the NoSQL DynamoDB database wizard

04: �This wizard asks you a series of questions to help determine how to set

up your NoSQL database table.

05:

06: �? Please provide a friendly name for your resource that will be used to

label this category in the project: todolist

07: ? Please provide table name: todos

08:

09: You can now add columns to the table.

10:

11: ? What would you like to name this column: id

12: ? Please choose the data type: string

13: ? Would you like to add another column? Yes

14: ? What would you like to name this column: title

15: ? Please choose the data type: string

16: ? Would you like to add another column? Yes

17: ? What would you like to name this column: status

18: ? Please choose the data type: boolean

19: ? Would you like to add another column? No

20:

21: ? Please choose partition key for the table: id

22: ? Do you want to add a sort key to your table? No

Chapter 6 Data Storage

169

LINE 6: I have provided todolist as the data storage name, which is basically the

database resource name.

LINE 7: I have named my database table todos; we can create more than one table in

one database.

LINES 11–19: I have added the id, title, and status column, as these are what our

todo application requires.

LINE 21: We choose the column id as the partition key.

LINE 22: Given that our database structure is quite simple and flat, we choose no for

the sort key.

Let’s push these changes to the AWS cloud, by running the following command:

amplify push

Once done, let’s navigate to the browser on our AWS cloud console to verify these

changes. Open the DynamoDB from the service list and open the tables (Figure 6-1).

Figure 6-1.  Screenshot of our newly provisioned database from the AWS console

We can confirm that our todos table is created.

�Integrating the Database with APIs
In the chapter where we learned to create REST and GraphQL APIs, we skipped the

database integration with our APIs and temporarily stored data in memory. Now that we

have our Amplify database, we should modify our APIs to integrate with our database, so

that our function deployment becomes stateless.

Chapter 6 Data Storage

170

The Lambda functions and databases we created in the previous section are two

different entities and live in two different servers; if our Lambda function wants to access

the database, it has to be provided the access to the database by the admin, in this case,

us. This makes our Amplify entities’ boundaries more secure, and hence without the

admin’s permission, no one can access the services like the database.

We are assuming you are following the chapters sequentially, and so far you have the

following in your Amazon console and in your local codebase:

	 1.	 The todo React.js application.

	 2.	 The GraphQL or REST endpoints, integrated with the

React.js code.

	 3.	 The Lambda function gets triggered on operations like create new,

delete, or update.

	 4.	 The Lambda function gets and updates the variable in memory.

At this stage, we need to update the Lambda function and give permission to access

the newly created database:

amplify function update

We are going to update the function config, as we have already created the function

in the past; in case you don’t have Lambda already created, then you can follow

Chapter 3 and you can add the database access while creating it:

? Select the Lambda function you want to update

›  todosfunctiongql

The CLI will show all the list of Lambda functions you have created, and you can

choose one to start updating it.

We are going to modify our GraphQL APIs; hence, we choose the todosfunctiongql

function.

If you have more than one function, change your selection using the up or down

arrow key.

Press enter to select the function.

? Which setting do you want to update?

›  Resource access permissions
 Scheduled recurring invocation

Chapter 6 Data Storage

https://doi.org/10.1007/978-1-4842-8707-1_3

171

 Lambda layers configuration

 Environment variables configuration

 Secret values configuration

The next question the CLI asks is what kind of setting we want to update for our

Lambda; this time, we are going to modify the access-related settings for the function;

hence, as shown above choose the `Resource access permission`.

Press enter to move to the next question.

? Select the categories you want this function to have access to.

 ◯ auth

 ◯ function

 ◯ api

›◉ storage

The next question is about the kind of access we want to modify or add to our

functions.

The database falls under the storage category; hence, move to storage and press the

space bar to select the option.

Note that this is a multi-option menu; hence, you can navigate to more than one

option and press the space bar to select more than one option.

Hit enter once you select the storage option.

Storage has 2 resources in this project. Select the one you would like your

Lambda to access (Press <space> to sel

ect, <a> to toggle all, <i> to invert selection)

 ◯ thumbnail

›◉ todolist

The next option will show which storage resource name we want to add the access

policy; in my case, we created functions named thumbnail and todolist. The todolist is

our DynamoDB resource; hence, we select this and hit enter.

? Select the operations you want to permit on todolist

 ◉ create

 ◉ read

 ◉ update

›◉ delete

Chapter 6 Data Storage

172

The next option pops up with what kind of operations we want to permit to our

Lambda functions.

As we have CRUD APIs and we want our Lambda function to be able to create, read,

update, and delete, we will select all using the space bar and hit enter.

? Do you want to edit the local lambda function now? (y/N)

When the CLI asks to edit the local Lambda function now, you can choose Yes if you

are not sure about the location of the function.

Given we already discussed the pattern of the directory structure of Amplify files,

I will choose N and continue to navigate the file and edit.

Congratulations, the policy to access the database is added to our Lambda function.

Let’s now start modifying our Lambda function attached to the GraphQL APIs, so that we

can create the items in our database.

Please note, we create this function in Chapter 4.

�Assigning IDs to New Items
When we create new items in our database, we need unique ids to assign to the items.

We will use the npm package named UUID which will guarantee uniqueness.

In the terminal, navigate to the directory where package.json is located by running

the following command:

cd amplify/backend/function/todosfunctiongql/

And install the UUID npm package:

npm install uuid

�Modifying the Create Todo Item Function
Navigate to the Lambda function by opening the following file:

amplify/backend/function/todosfunctiongql/src/index.js

Modify the file to create a new DynamoDB instance client from the AWS-SDK:

8: const AWS = require("aws-sdk");

9: const dynamodbClient = new AWS.DynamoDB.DocumentClient();

Chapter 6 Data Storage

https://doi.org/10.1007/978-1-4842-8707-1_4

173

Let’s modify our addNewItem function which gets called when the GraphQL creation

query is triggered:

21: const addNewItem = async (title, done) => {

22: const id = uuid.v4();

23: const item = { id, title, done };

24: await dynamodbClient

25: .put({

26: TableName: "todos-dev",

27: Item: item,

28: })

29: .promise();

30: return item;

31: };

LINE 22: Get a new id for our new item to be created.

LINE 23: The new item to be created will be the new id, title, and done status from

the params.

LINE 24: Use the same dynamodbClient to create the item. As we are using the

async-await syntax, we need to add the async keyword in line 21.

LINE 25: Use the put function from the client to create the item.

LINE 26: We need to pass the table name, followed by env, for example, todos-dev;

for now, we are hardcoding the env, but please note that we should pick the env from

the env variables, which we will discuss in the upcoming chapters; otherwise, when we

deploy this function to prod, it will still try to connect to the dev env database, which we

don’t want.

LINE 30: If creation is successful, we will return the item to the client, and if

something fails, the exception will be thrown to the clients.

Let’s push the changes and test our API:

amplify push

If you followed all the steps before pushing, you will see the Lambda function’s

access changes and Lambda function code updates.

Let’s now run our React application and add a new item and hit the add button.

If you track the Network tab, you will notice the GraphQL mutation API was hit and

the response looks as we expected, along with our new UUIDs, as shown in Figure 6-2.

Chapter 6 Data Storage

174

Figure 6-2.  Network tab showing the GraphQL mutation request

�Modifying the Get All Items API
Instead of now returning the data from the in-memory variable, we will read from the

database and return the data list, let’s see how the query resolver function will change:

56: const resolvers = {

57: Query: {

58: todos: async (ctx) => {

59: const data = await dynamodbClient

60: .scan({

61: TableName: "todos-dev",

62: })

63: .promise();

64: return data.Items;

65: },

66: },

LINE 59: Use the dynamodbClient to read the list of data.

LINE 60: The DynamoDB client exposes the scan function to read all data.

Chapter 6 Data Storage

175

LINE 61: We need to pass the table name, in this case, todos-dev where dev is the

env name.

LINE 64: The response from the DB client has a few other options apart from the

data, for example, total count and scanned count; the data list is under the key Items;

hence, we are returning data.

Let’s hit refresh on our React app, and we should get all the data loaded from the

database.

Figure 6-3.  GraphQL request showing get all todos

If you notice the Network tab, in Figure 6-3, reloading the query returns all the data

from the database. Congratulations on this integration.

�Do It Yourself (DIY)
Similarly, you should now modify the delete APIs and update APIs.

Chapter 6 Data Storage

176

�File Storage – S3 Bucket
As we introduced already, AWS provides a service to manage the raw file of almost all

file types. The service is named S3 or Amazon Simple Storage Service. The service offers

all the capabilities required to manage the files of formats like jpg, png, video, pdfs, and

documents which are scalable, highly available, secured, and cost-effective.

�Goal
In this section, we will write a thumbnail generator function; whenever an image

is uploaded in an S3 bucket, two different sizes of thumbnails will be generated

automatically.

To achieve this, we will create an S3 bucket and attach a Lambda function which will

be triggered on the object creation event, where the object is an image.

�Approach
Before we start with the code and creating the S3 resources, let’s plan and understand

what we are going to do:

	 1.	 The user will upload one image in one bucket.

	 2.	 On successful upload, one Lambda function will be triggered.

	 3.	 This function will generate two thumbnail images of

different sizes.

	 4.	 The images will be uploaded to different S3 buckets.

Figure 6-4 is the depiction of the processes we are going to follow.

Chapter 6 Data Storage

177

Figure 6-4.  The Lambda trigger flow on image upload

�The Need for Two S3 Buckets

If you notice, the user uploads in one bucket, and the thumbnails are uploaded in a

different bucket. If we don’t do this, on upload of the generated thumbnail, it will trigger

the Lambda again, and the S3 Lambda function will fall into infinite recursive calls,

which will result in unwanted flow.

�Provision S3 Bucket

amplify add storage

This will ask what type of storage we want to create; choose the content, and

hit enter:

Please select from one of the below mentioned services: (Use arrow keys)

› Content (Images, audio, video, etc.)
 NoSQL Database

Provide a name to this resource; we are going to name it amplifythumbnail:

? Please provide a friendly name for your resource that will be used to

label this category in the project: amplifythumbnail

Chapter 6 Data Storage

178

Provide a name to the S3 bucket:

? Please provide bucket name: amplifythumbnail

Then it will ask what type of users will access this bucket. As of now, we don’t plan to

make it public; hence, let’s choose auth users:

? Who should have access:

› Auth users only
 Auth and guest users

It will then ask the kind of access you want to set for users. This is multi-option;

hence, press the space bar to select more than one option and hit enter:

? What kind of access do you want for Authenticated users?

 ◉ create/update

 ◉ read

›◉ delete

Enter yes to add a Lambda trigger for this bucket:

? Do you want to add a Lambda Trigger for your S3 Bucket? (y/N) y

Given we want to create a new function, choose the following option:

? Select from the following options

 Choose an existing function from the project

› Create a new function

Enter no for editing the function now; let’s test this trigger, and later we will edit the

function to add the capability:

? Do you want to edit the local S3Trigger8b84f142 lambda function

now? (Y/n) n

amplify push

Once you approve the changes, let’s wait for this push to complete.

Now let’s verify these resources on console.amazon.com.

Chapter 6 Data Storage

179

�Verifying the Resources on Amazon Console
Log in to the console, and from the services, the section opens the Lambda service.

From the list of functions, select the one which starts with the S3Trigger name.

You will see the Lambda function is connected to S3 in the representation; this is

proof that the Lambda function and the S3 buckets are connected via some event, as

shown in Figure 6-5.

Figure 6-5.  Screenshot from the AWS console showing the Lambda function and
triggers

In the function overview, click S3, as shown in Figure 6-6 and Figure 6-7.

Chapter 6 Data Storage

180

Figure 6-6.  Screenshot from the AWS console showing the trigger details

This will open the triggers; as shown in Figure 6-7, you will notice two triggers. Let’s

check the details.

Chapter 6 Data Storage

181

Figure 6-7.  Screenshot from the AWS console showing the name and ids of the
triggers

The Amplify CLI has added two triggers on event types Object Created and Object

Removed.

Chapter 6 Data Storage

182

�Testing the Triggers

We can also test the triggers using the test feature of Lambda.

Click the Test tab, which will open a window to pass the event JSON, as shown in

Figure 6-8.

Figure 6-8.  Trigger test console from the AWS console

Let’s see what our default function is doing now.

Chapter 6 Data Storage

183

Navigate to the Lambda path to see function details:

/amplify/backend/function/S3Triggere0581125/src/index.js

1: // eslint-disable-next-line

2: exports.handler = async function (event) {

3: console.log('Received S3 event:', JSON.stringify(event, null, 2));

4: // Get the object from the event and show its content type

5: const bucket = event.Records[0].s3.bucket.name; //eslint-disable-line

6: const key = event.Records[0].s3.object.key; //eslint-disable-line

7: console.log(`Bucket: ${bucket}`, `Key: ${key}`);

8: };

9:

The default function generated by the CLI simply reads the event object and logs the

bucket name and key.

Let’s replicate this event and test our trigger; in the browser test window, modify the

event JSON to the following:

{

 "Records": [

 {

 "s3": {

 "bucket": "test bucket name",

 "object": {

 "key": "test key"

 }

 }

 }

]

}

Pass this event and hit the Test button, as shown in Figure 6-9.

Chapter 6 Data Storage

184

You will see the execution result to be a success.

You can also see the logs in a dedicated window to monitor.

Click the Monitor tab and then navigate to logs; you will see the same log there as well.

�The Lambda Function
Given the Lambda trigger function is working as expected, now let’s write code to create

the thumbnail image of a smaller size and upload it in the same bucket.

�Resizing the Image to Create a Small Thumbnail

We will use the npm package named sharp to resize our images. Sharp is a high-speed

Node.js module that helps in various image operations.

The following is how we can resize an image to 320x240 size and create a new

image file:

sharp(inputBuffer)

 .resize(320, 240)

 .toFile('output.webp', (err, info) => { ... });

You can refer to the sharp npm package for more APIs and capabilities.

Figure 6-9.  Screenshot of the result from the test console of triggers

Chapter 6 Data Storage

185

�Lambda Function to Create Small Thumbnails

Let’s open the Lambda function in VS Code and add the thumbnail creation code:

cd amplify/backend/function/S3Triggere0581125/src

Please note S3Triggere0581125 is the Lambda function name in my system; it can

be a different name in your machine.

As discussed in Chapter 3 about Lambda functions, this is a self-sufficient node

project which has its own package.json and package-lock.json.

Let’s install the sharp npm package:

npm install --arch=x64 --platform=linux sharp

Please note we are passing architecture and platform information while installing;

if we don’t do this, by default it installs the package by detecting the system, in my case

macOS, and it will install the macOS binary; given our Lambda function will run on

Linux machines which have x64 processors, we need to pass this.

Open index.js and we will add the following snippet:

01: const sharp = require("sharp");

02: const aws = require("aws-sdk");

03: const s3 = new aws.S3();

04:

05: const THUMBNAIL = {

06: width: 100,

07: height: 100,

08: };

09:

10: const THUMBNAIL_DIRECTORY_NAME = "thumbnails";

11:

12: exports.handler = async function (event, context) {

13: const BUCKET_NAME = event.Records[0].s3.bucket.name;

14: const KEY = event.Records[0].s3.object.key;

15: const DIRECTORY_LIST = KEY.split("/");

16: const BASE_FOLDER = DIRECTORY_LIST[0];

17: if (BASE_FOLDER === THUMBNAIL_DIRECTORY_NAME) {

18: console.log(

Chapter 6 Data Storage

https://doi.org/10.1007/978-1-4842-8707-1_3

186

19: �">> Stopping the function execution, as the event is for new

thumbnail file."

20:);

21: return;

22: }

23: console.log(">> The new file uploaded by customer");

24: let FILE_NAME = DIRECTORY_LIST[DIRECTORY_LIST.length - 1];

25: try {

26: const image = await s3

27: .getObject({ Bucket: BUCKET_NAME, Key: KEY })

28: .promise();

29:

30: const resizedImage = await sharp(image.Body)

31: .resize(THUMBNAIL.width, THUMBNAIL.height)

32: .toBuffer();

33:

34: await s3

35: .putObject({

36: Bucket: BUCKET_NAME,

37: Body: resizedImage,

38: Key: `${THUMBNAIL_DIRECTORY_NAME}/thumbnail-${FILE_NAME}`,

39: })

40: .promise();

41:

42: return;

43: } catch (err) {

44: context.fail(`Error resizing files: ${err}`);

45: }

46: console.log(`Bucket: ${BUCKET_NAME}`, `Key: ${KEY}`);

47: };

48:

LINES 1 and 2: Require the sharp npm module to resize the image and AWS SDK.

LINE 3: Assign the s3 instance to get an object from s3 and create new images in

the bucket.

LINE 5: The constants for the width and height of the thumbnail to be generated.

Chapter 6 Data Storage

187

LINE 10: The name of the directory to store the thumbnails.

LINE 12: The handler function that will run whenever the event is triggered, in this

case, the upload event.

LINE 13: Get the current bucket name.

LINE 14: The key is the file name we uploaded; this key will be used to fetch the

object from this bucket.

LINE 15: We are going to split the file path by “/” when the thumbnail will be created,

and the event will be triggered again; we want to keep track of the directory path whether

the file is a thumbnail or an actual image.

LINE 17: We are checking if the directory is a thumbnail or not.

LINE 21: If the file is from the thumbnail directory, we will exit the function by

calling return, just to avoid creating a thumbnail from the thumbnail.

LINE 25: Here, we are confident we are not processing a thumbnail image; hence,

we will start resizing in a try-catch block to handle any failure like corrupted file or

access issues.

LINE 26: We are getting the actual image from the bucket using the key.

LINE 30: We will use the sharp module to resize our image.

LINE 34: We are uploading the thumbnail in the thumbnail directory.

LINE 38: We are creating a file with a new name by prepending the thumbnail word.

LINE 44: Let’s log if there is any kind of error to debug later.

�Deploying the Function

Once done, save the file and push the changes, by running the following command:

amplify push

Approve the changes and let the CLI push and deploy the function.

�Testing the Thumbnail Creation by Lambda Trigger
Let’s see our trigger in action. Open console.aws.amazon.com and log in using your

credentials. Click the search bar and search for S3 service, as shown in Figure 6-10, and

click it.

Chapter 6 Data Storage

188

Figure 6-10.  Screenshot of the AWS console from the search result of services

You will land on your bucket list, and click the bucket where the Lambda trigger was

set up, the reference is shown in Figure 6-11.

Figure 6-11.  AWS console listing the S3 buckets

You will see an empty bucket, as no files have been uploaded yet, refer Figure 6-12.

Chapter 6 Data Storage

189

Let’s check the Lambda trigger by uploading one image. Click the Upload button,

choose the image file, and click Upload.

After the upload is successful, come back to the bucket and refresh the page, as

depicted in Figure 6-13.

Figure 6-13.  Screenshot of the S3 bucket after an image is uploaded with a new
directory

You will see the image is uploaded, and the thumbnail directory is also created.

Congratulations, the directory is created; it looks like our trigger worked. Let’s open the

directory, refer Figure 6-14.

Figure 6-12.  Screenshot of an empty S3 bucket

Chapter 6 Data Storage

190

Figure 6-14.  S3 bucket showing a list of files under the new directory

The smaller size file with the same name prepended with a thumbnail is also created.

Congratulations, you can open the file to cross-check the file width and height. Now let’s

check our Lambda function logs.

�Checking the Lambda Function Logs
Click the search bar and search for Lambda service, the search result is shown in

Figure 6-15 and Figure 6-16.

Figure 6-15.  AWS console search result

Chapter 6 Data Storage

191

Figure 6-16.  The Lambda function overview showing the bucket and triggers

Open the S3 trigger function, and click Monitor ➤ Logs.

Depending on the number of files uploaded, you will see invocation logs, as shown

in Figure 6-17.

Chapter 6 Data Storage

192

Figure 6-17.  The log of the Lambda trigger function

Open the function invocation logs and try to read the logs which we added using

console.log, the screenshot of logs are shown in Figure 6-18.

Figure 6-18.  The log from the trigger function

In Figure 6-18, if you notice the highlighted line of logs, this is the second invocation

of the trigger, when the thumbnail was created, and using the thumbnail directory

condition, we were able to stop the function from falling in an infinite loop. Please refer

back to the code snippets of this trigger function.

Chapter 6 Data Storage

193

�Summary
This chapter covered the importance of data and storage required and gave a detailed

hands-on guide to procure the database using AWS Amplify. This chapter also discussed

the different ways to store and transfer data via a network.

This chapter also discussed in detail how to integrate our APIs with databases, and

we wrote code to implement the use case of creating different-sized thumbnails from a

parent image.

By the end of the chapter, readers should understand the basics of data storages,

ways to implement the methodologies in their own problems, and how to debug issues

to find the root cause of problems they face.

Chapter 6 Data Storage

195

CHAPTER 7

Analytics
Analytics will not replace decision-makers, but decision-makers who use
analytics will replace those who do not.

—Akshat Paul

Analytics is essentially a framework that is used to gain insights into the behavior of end

users. By analyzing data related to user behavior, businesses can gain valuable insights

and know which products or services are popular among different groups of users, as

well as which aspects of their application may be causing users to leave.

The data collected through analytics helps businesses in many areas, such as

marketing, sales, user experience, and prioritizing features, to make informed decisions

about how to improve their products and services. By analyzing user behavior,

businesses can gain a deeper understanding of what is working and what is not and use

this information to improve their offerings.

With analytics, we can do systematic analysis of data to find patterns and

correlations. This can be achieved through various techniques such as data mining,

predictive analytics, and machine learning. This chapter is intended to provide a deeper

understanding of analytics and how it can be used to gain valuable insights into user

behavior and ultimately help businesses make better decisions using technologies we

have discussed so far along with new AWS services we will explore in this chapter.

In short, analytics is the systematic analysis of data available to find similar patterns

across. In this chapter, we’ll take a deep dive into analytics, understand it, and start

writing code, but before we do, let’s take a step back so that we see a panoramic picture.

�A High-Level View of Analytics
Data analytics is a powerful tool that can help businesses gain valuable insights into their

operations, customers, and competition. With the right analytics framework in place,

businesses can make informed decisions and improve their bottom line. Whether it’s

© Akshat Paul, Mahesh Haldar 2023
A. Paul and M. Haldar, Serverless Web Applications with AWS Amplify,
https://doi.org/10.1007/978-1-4842-8707-1_7

https://doi.org/10.1007/978-1-4842-8707-1_7#DOI

196

improving sales, streamlining processes, or gaining a competitive edge, analytics can

help businesses achieve their goals and outperform their competitors.

By analyzing data from various sources, such as sales figures, customer behavior,

and market trends, businesses can gain a deeper understanding of their operations

and identify areas for improvement. They can use this information to optimize their

processes, develop more effective marketing strategies, and make better decisions about

product development and pricing.

Moreover, analytics can help businesses build customer loyalty and improve

retention by understanding their customers’ preferences and behavior patterns. By

analyzing customer data, businesses can personalize their offerings, anticipate their

customers’ needs, and provide them with a seamless, personalized experience.

In short, analytics is a powerful tool that can help businesses of all sizes make

smarter, data-driven decisions. With the right analytics framework in place, businesses

can unlock the full potential of their data and gain a competitive edge in today’s fast-

paced business environment.

In the past, businesses heavily relied on customer feedback collected on physical

paper or forms on tablets, which were then grouped together to identify problems and

discuss solutions. However, this traditional approach to collecting customer feedback

presents several challenges in a modern business context.

Firstly, not all customers are willing to provide feedback, resulting in a limited and

biased dataset. This makes it difficult to accurately identify areas for improvement and

make informed decisions.

Secondly, even when feedback is collected, it may not be accurate or comprehensive.

Customers may rush through the process or simply tick boxes without fully

understanding the question or considering their response. This can lead to incomplete

or misleading data, which may hinder the business’s ability to make informed decisions.

Thankfully, with the advancement of technology, businesses now have access to

a wide range of tools and platforms that make it easier to collect, analyze, and act on

customer feedback. By leveraging the power of data analytics and machine learning,

businesses can gain deep insights into customer behavior and preferences, identify

trends, and develop more effective strategies to meet their customers’ needs.

While traditional methods of collecting customer feedback may have served their

purpose in the past, modern businesses need to embrace new technologies and data-

driven approaches to stay competitive and meet the evolving needs of their customers.

Chapter 7 Analytics

197

I have talked to a few friends and family, and in my sample, most of the people do

the same. Hence, we cannot depend on this, and we will never be able to find the real

customer pain points. We need a more robust and automated way to visualize customer

activities on our application, gather those data points, and analyze them to find

problems. For example, we need to know how many customers are active and when and

why they drop off from the app; if we are an ecommerce app, then we need to know how

many customers visit products and why they don’t end up buying. And the problems and

use cases are infinite.

There are four steps to solve a problem:

	 1.	 Finding the current problems

Using analytics data, businesses can identify problem areas and

understand the root causes behind them. This allows them to

develop more targeted and effective solutions to address the

problems.

	 2.	 Proposing a few solutions

Once the problems have been identified, businesses can

brainstorm and propose various solutions to address them.

This may involve collaboration with cross-functional teams,

stakeholders, and customers to ensure that the proposed solutions

are feasible and aligned with the business’s goals.

	 3.	 Finding which solution works and which doesn’t

To determine the effectiveness of different solutions, businesses

can leverage A/B testing, where two groups of users are provided

with different solutions and their behavior is analyzed. This allows

businesses to compare and contrast the effectiveness of different

solutions and make data-driven decisions about which solutions

to deploy.

	 4.	 Deploying the solution in which we have gained more confidence

Based on the results of A/B testing and other data analyses,

businesses can confidently deploy the solutions that have been

shown to be effective. By deploying proven solutions, businesses

can optimize their operations, improve customer satisfaction, and

gain a competitive edge.

Chapter 7 Analytics

198

In summary, data analytics can provide businesses with valuable insights into

their operations and customers, allowing them to identify problems, propose effective

solutions, and make data-driven decisions. By leveraging analytics and A/B testing,

businesses can gain a competitive edge and improve their bottom line.

�Analytics Fundamentals
Let’s understand the whole fundamental of analytics by one use case. Let’s say we have

launched a new product, baby shampoo.

There are two aspects of this business:

	 1.	 Marketing: Via various channels like Google Ads and blogs, which

will increase customer reachability

	 2.	 Ecommerce portal: One where customers can visit and buy the

product by placing an order

Both of the preceding steps are crucial for a business. If marketing is not successful,

customers will never know about the product and won’t land on the website to make

a purchase. And if the ecommerce portal’s user experience is poor, customers will not

buy, which is the only point where businesses generate revenue. The crucial aspect is

measuring the effectiveness of our strategies to ensure they are working.

For instance, suppose we market using both Google Ads and blogs. How do we

determine which of the two methods is generating the maximum impact? By analyzing

the data, we can quantify the effectiveness of each approach. For example, if we find that

for every $100 spent on blog marketing, we generate 10 leads, while for every $100 spent

on Google Ads, we generate only 1 lead, we can make an informed decision to focus

solely on blog marketing and discontinue Google Ads.

This is an example of the quantification process, which involves using data and

analytics to measure the effectiveness of various strategies. By adopting this framework,

businesses can make data-driven decisions and optimize their operations to achieve

their goals.

Let’s zoom in further on the marketing strategy, and let’s assume the following list is

the outcome from our analytics framework:

	 1.	 90% of the users are women.

	 2.	 80% of the users are between the ages of 28 and 38.

	 3.	 75% are from metro city locations.

Chapter 7 Analytics

199

The business can use this outcome to improve its marketing strategy and attract

more customers. The business will now focus on writing more blogs, targeting only

women customers, targeting the age range which buys more, and also targeting only the

metro locations.

This is called targeted marketing, and there will be points where the marketing

strategy is so precise that any marketing campaign will produce best results.

Analytics can be used to identify patterns in available data, allowing businesses to

gain insights and make data-driven decisions.

Google Analytics is a powerful and widely used tool that can be easily integrated into

your website or mobile application. It requires only a few lines of code and a few simple

steps to set up, after which you can gain valuable insights into user behavior and website

performance. Most of the features are available for free, making it an accessible option

for small companies and website owners to quickly analyze user behavior and optimize

their operations.

�Terminologies
Before delving into the details, it’s important to have a basic understanding of key

terms that will be used further in this chapter. This will provide a foundation for better

comprehension and prevent confusion in the future.

•	 User segments: The segmentation is basically breaking down the

data by different dimensions – by age, sex, location, etc. For example,

males and females are two user segments, and users from Tokyo is

another segment.

•	 Events: Every user action that needs to be recorded is an event. For

example, click a button is an event, and close the app is another

event. Events have a name and some metadata. For example, the

CLICK_BUTTON event will have metadata like button title and page

name metadata so that data analysts can identify which button was

clicked.

•	 Sessions: A session is a sequence of user actions that are performed

by the same user in the app in a given time frame. The same user’s

activity on the app defines the session.

Chapter 7 Analytics

200

•	 Amazon Kinesis: This is the AWS service that will help us in

streaming the user analytics data and storing it. Later, we can use

these data to do our analysis and find various patterns.

•	 Amazon Pinpoint: This is an AWS service that enables businesses

to engage with their customers through various channels. It offers

personalized campaigns and in-depth analysis of customer behavior

to improve engagement. With powerful A/B testing tools, businesses

can optimize their campaigns for better results.

�Setting Up Amplify Analytics Backend
Let’s start setting up our analytics backend so that it can start receiving the events and

record them for our analysis to understand our users better.

Just like adding any other Amplify service, we will use the CLI to add analytics:

amplify add analytics

This will ask us to choose the analytics provider we want to use.

We will go ahead with pinpoint:

? Select an Analytics provider (Use arrow keys)

›  Amazon Pinpoint
 Amazon Kinesis Streams

? Select an Analytics provider (Use arrow keys)

›  Amazon Pinpoint
 Amazon Kinesis Streams

Press enter for Amazon Pinpoint.

This will ask you to give a name to the pinpoint resource; let me name it

analyticsreactapp, and hit enter.

? Provide your pinpoint resource name: analyticsreactapp

You will get a success message, and that’s all required to set up our analytics

backend; it is that simple.

Chapter 7 Analytics

201

Now we only need to push the changes, and we can start recording the event from

our React application and various kinds of information.

Let’s publish our changes:

amplify push

�Confirm the changes after reviewing by pressing `y` and pressing enter.

Voila, our backend is ready to start recording the events and the user actions and

show us the data.

�Recording Events and Actions
Let’s open the dashboard on the Amazon cloud console. Log in with your credentials

and search for the Amazon Pinpoint service. You will see the screen in Figure 7-1 with

different project IDs or names.

Figure 7-1.  AWS console pinpoint service

Chapter 7 Analytics

202

Click the project; you will land on the analytics dashboard, this is shown

in Figure 7-2.

Figure 7-2.  AWS Pinpoint project analytics dashboard

If you are opening it for the first time, there might be zero events to show on the

graph. On the left menu pane, expand the Analytics tab, and you will see more options

related to the Analytics tab. We can explore these options once we integrate the analytics

into our frontend code and start sending the events.

Let’s jump to our React app and integrate the analytics service.

�Recording Events from our React App
In order to collect and analyze user data, it’s essential to have a fully functional

application with multiple pages and different types of pages. The application should also

offer users a variety of options to choose from.

Continuing to add records in our todo application may not provide the full flavor of

analytics in a production app due to its small use case. To replicate a production type

of app, let’s create a dummy page and smaller components, where we will treat each

component as a page.

Chapter 7 Analytics

203

We will have three pages for this app. Refer to Figure 7-3.

Figure 7-3.  UI design for the analytics application

In our React application, the preceding three cards represent three different pages,

and when the mouse hovers over the card, it glows with a yellow color that represents

the user has visited the page; in the real-world web application, the page view is counted

when the URL changes and the user navigates from one URL to another on the browser.

In this application, on clicking buttons nothing happens; we will only record events.

The goal here is that with a very small and simple imitation of a real-world application,

you will be able to understand the fundamentals of analytics easily.

As application owners, we want to know in our dashboard about various user

actions we need to name the event, and call an API to create an entry in our analytics

backend system.

Let’s define our goal and outcome for page/card 2:

Goal: We want to know how many times users click the Play video button vs. the Play

song button.

Result: As business owners, we will know users’ behavior whether they like playing

videos or listening to music. Accordingly, we can take a decision to further build on

either of the options as investments.

How to achieve this: On every button click, call the record function from Amplify,

for example:

 Analytics.record({ name: "playVideoButtonClicked" });

where name is the unique key of the event.

Chapter 7 Analytics

204

�Recording Button Clicks on the Sign-In Page
Import the Amplify-related objects to access the backend:

2: import { Amplify, Analytics } from "aws-amplify";

3: import awsconfig from "./aws-exports";

4: Amplify.configure(awsconfig);

LINE 2: We will require Amplify to configure Amplify on this page and Analytics to

record events or sessions.

LINE 3: Get the AWS export configuration to configure Amplify.

LINE 4: Configure Amplify.

The following is our React login page component:

01:

02: <h4>Login page</h4>

03: <div>

04: <input

05: type="text"

06: placeholder="Enter email"

07: />

08: </div>

09: <div>

10: <input

11: type="text"

12: placeholder="Enter password"

13: />

14: </div>

15: <div>

16: <button

17: onClick={() => {

18: Analytics.record({

19: name: "signInButtonClicked",

20: });

21: }}

Chapter 7 Analytics

205

22: >

23: Login

24: </button>

25: </div>

LINES 1–15: This is a very simple component, with two input boxes for login id and

password.

LINE 16: This is our login button where we want to track events.

LINE 18: Call the record function whenever the button is clicked, and a unique name

is passed in the key name, and this key will be recorded with count and timestamp.

Let’s run the React server and see the event recording in action.

Run the frontend server and open the Network tab in the browser before clicking it,

this is shown in Figure 7-4.

Figure 7-4.  Demo analytics application

As you click the login button and wait for a couple of seconds, you will notice one

API being called with events, and if you expand the payload of the API call, you will

notice the eventType with the same name `signInButtonClicked` called, with other

metadata like a timestamp and sessions, etc.

Chapter 7 Analytics

206

�Why Is There a Delay in API Calls After We Click
the Button to Record?
I will be very happy to know if you asked this question before reading this question.

If you notice the behavior of how the APIs are being called, they are not real time, so

what Amplify by default does is it batches the events to record in a couple of seconds; to

explain this in detail, if you click the button ten times continuously, this will batch all the

ten event records and call one API, say, in two seconds.

This way, all the records are also published via the API, and Amplify saves on calling

ten APIs to record events.

Here is the result if I click the login button five times continuously, shown in

Figure 7-5.

Figure 7-5.  Network calls made with gap to Amplify

If you notice, there are five items in one API call.

If you don’t want to batch these and want to record events immediately, you can

configure that as well.

Chapter 7 Analytics

207

1: Analytics.record({

2: name: signInButtonClicked,

3: immediate: true

4: });

LINE 3: In the same record function, pass the boolean flag with key name

`immediate`, and set it to true.

Here is the result if I click the login button five times.

Figure 7-6.  Network calls made immediately to Amplify

Now there are five API calls that are recorded immediately.

�Tracking Page Views
In our scenario, we have created three smaller components to replicate the pages in less

time to understand the crux of analytics. In this case, when the user’s mouse hovers over

the component, we are considering it a page view; hence, in our scenario, this should

also record the page view event in our analytics backend.

Chapter 7 Analytics

208

Let’s see the code snippet to record events on page views:

06: const MyPageContainer = (props) => {

07: const [isCurrentlyOnPage, setIsCurrentlyOnPage] = useState(false);

08: return (

09: <div

10: onMouseEnter={() => {

11: setIsCurrentlyOnPage(true);

12: Analytics.record({

13: name: "pageView",

14: attributes: {

15: pageId: props.pageId,

16: },

17: });

18: }}

19: onMouseLeave={() => {

20: setIsCurrentlyOnPage(false);

21: }}

22: style={{

23: background: isCurrentlyOnPage ? "#f2edbf" : "",

24: }}

25: >

26: {props.children}

27: </div>

28:);

29: };

LINE 6: This is a common page container, which all the pages in our application will

use to create the parent container that wraps some common functionality across any

React component and renders the children whatever passed to it. This is a very good

example of HOC (higher-order component) which abstracts the logic of registering

analytics logic in one place.

Note I n React, higher-order components (HOCs) are functions that accept a
component as an argument and return a new component with enhanced functionality.

Chapter 7 Analytics

209

LINE 7: Create the local state to rerender the UI when the mouse enters and leaves.

LINE 10: We are listening to when the mouse enters we call a function, which sets

the local state to true and records page view event, with the page Id as the attribute so

that we can identify each page.

LINE 19: Set the local state value back to false when the mouse leaves this component.

LINE 23: We are using the local state to decide when to glow the component with

background color, which as explained in the previous paragraph depends on when the

mouse leaves or enters the components.

LINE 26: Given this is a HOC and we want to use this as the component which can

wrap around any other component, we are rendering the children as is.

And that’s all; if you load your application and hover the mouse in and out, you will

see the pageView event getting registered, as shown in Figure 7-7.

Figure 7-7.  Registers pageView event

�Automatic Tracking
If you see the pattern of recording events on every button click, everything remains the

same code-wise apart from name and attributes, and we have to add in every onclick

function, the Amplify has given one more way to add the tracking to the buttons on the

various other events.

Chapter 7 Analytics

210

Let’s configure our first auto-event tracker:

06: Analytics.autoTrack("event", {

07: enable: true,

08: events: ["click"],

09: selectorPrefix: "data-amplify-analytics-"

10: });

LINE 6: Call the autoTrack function to configure an auto-event tracker of type event.

LINE 7: This flag is required to enable or disable the auto tracker.

LINE 8: The list of events we want to track; we are mentioning click here.

LINE 9: We need to mention the HTML element selector prefix; we will set this

prefix to our buttons, and automatically this configuration will record the events on the

mentioned HTML events.

Let’s see how to attach attributes on the buttons so that the preceding auto-event

tracker can be attached to the button and reacts to the events:

65: <button

66: data-amplify-analytics-on="click"

67: data-amplify-analytics-name="signInButtonClicked"

68: >

69: Login

70: </button>

LINE 66: We are using the same selector prefix and add -on against which event we

want to register the record.

LINE 67: The -name for the selector prefix is the name of the event we want to

register. As you can notice here, the function onclick and registering the events by calling

the record function is vanished.

�Events Dashboard on AWS Console
Ideally, when you publish your application to your customers, we want to know how our

customers are reacting and which features they are using the most and which pages they

are visiting the most.

To see our customer’s behavior, log in to your AWS console and open the pinpoint

service.

Chapter 7 Analytics

211

From the left pane, choose Analytics, and click Events, the screenshot in Figure 7-8

shows the same.

Please refer to Figure 7-8 and open the Filters accordion; in this section, we will be

able to see our various events, shown in Figure 7-9.

Figure 7-9.  Pinpoint Analytics Events dashboard filter

Click the events list drop-down.

As you can see, you will see all the events coming from our application.

Figure 7-8.  Pinpoint Analytics Events dashboard

Chapter 7 Analytics

212

You can select the event which you are interested to know the statistics for,

Figure 7-10 shows a view of the event selected.

Figure 7-10.  Pinpoint Analytics Events dashboard for a event view

If you click the “View charts” button, you will see various charts against timelines

with the count of events.

You can also click the demographics from the left pane which will tell the users’

demographic data, as shown in Figure 7-11.

Chapter 7 Analytics

213

Figure 7-11.  Pinpoint Analytics Events dashboard for demographics charts view

Given that our application is not published on the Internet for the users, and I am

running only from my local machine, we cannot see more than one location and more

than one device.

�Limitations of AWS Pinpoint Service
In the previous section, using the AWS Pinpoint service, we have seen whenever the

analytics events and their metadata are being sent to our analytics backend, the data

is collected by the AWS Pinpoint service, and it creates some default dashboards and

charts. Pinpoint also provides basic filters where we can roughly analyze how many

users are active and how the users are interacting with our application by checking on

various events of button clicks and page views. The following are some limitations with

Pinpoint:

•	 Limited charts on the dashboard: The events dashboard in the

pinpoint service is limited and will be controlled by Amazon; if

we want to read the analytics data and create a custom chart, it is

impossible. We will be restricted, and we will have to live with what

Amazon provides by default.

Chapter 7 Analytics

214

•	 Limited filters to conclude on user behavior: If you try to play around

with the pinpoint dashboard, you will notice the filter feature is quite

limited. What if we want to find how many users are clicking the

play song button from the London location only? With the default

pinpoint dashboard, we will not be able to achieve this as of now.

•	 Cannot process the data and programmatically send alerts: There

can be a use case where our business wants to analyze the user

interaction events and process them in real time to check on the

frauds or send alerts. For example, let’s assume the analytics data are

coming from one heart rate medical equipment, and whenever the

current heartbeat reaches a threshold, we want to alert the doctors in

real time, but we cannot do that. This is a huge requirement in IoT.

•	 Cannot feed the events data to our ML models and train them: A lot

of times when we are building a customer-facing large application

like an ecommerce application, we want to feed the user interaction

data to our ML models so that we can train our models, and our ML

models can recommend personalized components, for example, if a

user buys a washing machine, it can recommend a washing machine

cover to that user. For training our ML models, we need these

datasets which Pinpoint doesn’t provide out of the box.

To mitigate these issues, we need a different approach of recording our event’s data,

so that we have better control. To mitigate these, we will now learn about the service

named AWS Kinesis.

�Introduction to Kinesis
Kinesis is a fully managed, scalable, cost-effective, and flexible service that enables us

to collect, process, and do whatever we want to do with the incoming data in real time.

This service helps us easily stream the data so that we can store or react instantly instead

of waiting for the data to process and draw conclusions later, which might impact the

crucial journeys of the application.

Kinesis offers robust capabilities in a cost-effective way, which is scalable and has

the flexibility to connect with any tools of our choice to get the maximum output from

the data.

Chapter 7 Analytics

215

Kinesis is not limited to analytics and is a service that we can use to ingest any

real-time data like analytics events, application logs, video, audio, or in IoT for various

devices’ event log data and further use these data to perform any action, send alerts,

train ML models, or draw a conclusion.

�Streaming Analytics Data
Now that we understand the capabilities of Kinesis, we will use the Kinesis service to

stream our analytics data, and we will discuss how we can plug more tools and processes

to consume this stream data and get more output as per our needs. Instead of recording

our analytics events to Pinpoint, we will send each event data to Kinesis.

We want to receive the data from users’ actions, and we want to write these analytics

data in a file with the required metadata and timestamp so that we can do the following:

	 1.	 Translate raw data output into GraphQL APIs, which our web

application can use to draw more custom charts.

	 2.	 We can also feed this raw data, massage it in the required format,

and feed it to our ML models, and our ML models can draw

conclusions or make recommendations for each user.

	 3.	 We can also process the real-time data and check for a few

thresholds and send alerts if required.

In the following sections, we will only set up the kinesis backend, stream the

analytics data, write the data into the file, and store the file in S3. Let’s set up our backend

first, and then we will go through the demo.

�Setting Up Kinesis Backend
Let’s start by adding kinesis to our project:

amplify add analytics

This will ask which service we want to use to record our events; this time, we will

choose the Kinesis streams, use the arrow key, and press enter:

? Select an Analytics provider

 Amazon Pinpoint

›  Amazon Kinesis Streams

Chapter 7 Analytics

216

Then it will ask to enter a name; you can name whatever you want. I will choose the

default name `reactauthenticationKinesis`.

The next question would be how many shards we want; let’s choose one for now.

The configuration is done; let’s push the changes to the cloud:

amplify push

Review and confirm the changes by pressing Y and enter.

Once this is done, roughly we are good at setting up the ingestion stream.

Let’s check our AWS console dashboard if the stream is set up.

Log in to your console, and select the kinesis service.

You will see something like Figure 7-12.

Figure 7-12.  AWS Kinesis services home page

Click the hamburger menu on the top left, just below the AWS logo.

Chapter 7 Analytics

217

Figure 7-13.  AWS Kinesis services menu

Click the Data streams.

Figure 7-14.  AWS Kinesis data streams

Chapter 7 Analytics

218

You will see one data stream is created with an active status by the name we entered

in our CLI; yes, this data stream resource is ready to ingress our data.

Note  “Ingress data” refers to data that is coming into a system, network, or
device from an external source or device. It is the opposite of “egress data,” which
refers to data that is exiting a system, network, or device and going to an external
source or device.

Click the item and open the page.

Figure 7-15.  AWS Kinesis monitoring

The Monitoring tabs basically show how the data has flown on the timeline.

If you click the Applications tab, you will see something like Figure 7-16.

Chapter 7 Analytics

219

Figure 7-16.  AWS Kinesis Applications tab

The data stream has two important ends:

	 1.	 Producers

This is the initiation end of the stream, the part of the client which

produces the data, for example, in our case it is going to be a

React.js application, which on user interaction it will send the

analytics data. If we were into IoT, the sensors would have been

our producers.

	 2.	 Consumers

If the data is produced, then some other tool or program has to

listen to it and react as per the requirement; given kinesis is quite

flexible, we can do whatever we want to do on the consumer end,

either process in real time and call APIs or store as a CSV file in an

S3 bucket.

Chapter 7 Analytics

220

In our case, let’s store the events data in a file and store the file in an S3 bucket, which

can be further used to either process and store in DB to expose the API or feed the file to

ML models to train them.

�Delivery Stream
From the left-side pane, let’s click the Delivery streams option.

Figure 7-17.  AWS Kinesis delivery streams

Click Create delivery stream.

Chapter 7 Analytics

221

Figure 7-18.  AWS Kinesis Data Streams details

As we want the kinesis data stream, from the source drop-down choose the kinesis

data stream option.

Chapter 7 Analytics

222

Figure 7-19.  Writing data in an S3 bucket

�Writing the Data into the File
As we want to write the data in an S3 bucket, let’s choose the S3 from the drop-down.

Figure 7-20.  Select source

Chapter 7 Analytics

223

We will be asked to choose the source; click Browse.

Figure 7-21.  Selecting Kinesis data stream source

Choose the kinesis data stream we just created.

Enter the delivery stream name; I will go ahead with the default name.

In the destination setting, choose the S3 bucket name where you want to write the

file of events.

Chapter 7 Analytics

224

Figure 7-22.  Selecting an S3 bucket

Click Browse and select the S3 bucket from the list.

Click the Create delivery stream button, and on success go back on the delivery

stream dashboard.

Figure 7-23.  Delivery stream dashboard

Chapter 7 Analytics

225

If you see Figure 7-23 with an active status, congratulations, your delivery stream is

ready as well to create a file in the S3 bucket.

Please note in the source column, we have a valid data stream, and in the

destination, we have our selected S3 bucket to write the files.

�Streaming the Analytics Data from React App
We will use the same React application and remove the Pinpoint recording registration

login from the onClick event function and onMouseEnter event function.

Let’s modify our React application code:

02: import { Amplify, Analytics, AWSKinesisProvider } from "aws-amplify";

03: import awsconfig from "./aws-exports";

04: Amplify.configure(awsconfig);

05:

06: Analytics.configure({

07: AWSKinesis: {

08: region: awsconfig.aws_project_region,

09: },

10: });

11: Analytics.addPluggable(new AWSKinesisProvider());

LINE 2: Import the AWSKinesisProvider from the npm package, which will help in

streaming the data to Kinesis.

LINE 6: Using the analytics, configure the function to configure the kinesis stream.

LINE 11: Add the kinesis provider plugin to amplify analytics configurations.

�Recording Event to Kinesis Streams

This is simple, similar to recording in Pinpoint.

Please follow the following in all the buttons or page load events:

58: <button

59: onClick={() => {

60: Analytics.record(

61: {

62: data: {

Chapter 7 Analytics

226

63: eventType: "buttonClick",

64: eventName: "playSongClicked",

65: timestamp: new Date(),

66: },

67: streamName: "reactauthenticationKinesis-dev",

68: },

69: "AWSKinesis"

70:);

71: }}

72: >

73: Play song

LINES 59 and 60: In the event onClick, call the record function to stream the data.

LINE 62: Pass the data we want to stream under the key name data.

LINE 63: The event type is buttonClick.

LINE 64: The name of the event is as required on the event we want to register, in this

case, its playSongClicked.

LINE 65: We want the current timestamp to process later. Please note, you can add

more data if required, like user info, device info, or anything else.

LINE 67: As this is a kinesis stream, we need to pass the name of the stream where

we want to register.

LINE 69: This is a type we need to pass to the analytics provider, in this case,

AWS Kinesis.

Once you add the kinesis analytics recording function in all the buttons and page

load events, save the changes and load the React server.

Hover on the components, and click various buttons to stream the analytics data on

kinesis.

Chapter 7 Analytics

227

Navigate to the Network tab; you will notice the events data are streamed using

kinesis as shown in Figure 7-24. The value in Data key is base64 encoded; you can copy

the value and decode the base64 from your terminal or any online tool.

Figure 7-24.  Web application streaming data to Kinesis

You will see something like Figure 7-25, which is exactly the data that we wanted

to record.

Chapter 7 Analytics

228

Figure 7-25.  Using www.base64decode.org to decode base64-encoded data

Congratulations on integrating from the producers’ side of the data stream and

successfully streaming our analytics data from the events from the React application.

�Kinesis Data Stream Dashboard

Navigate to the kinesis service on the AWS console on the browser and click the data

stream; under the Monitoring tab, you will see something like Figure 7-26.

Chapter 7 Analytics

http://www.base64decode.org

229

Figure 7-26.  Amazon Kinesis Monitoring tab

As you can see, as we interacted on the React application we have streamed the data,

and that is reflected on the charts.

�Kinesis Data Delivery Dashboard

Click the data delivery; you will see something like Figure 7-27.

Chapter 7 Analytics

230

Figure 7-27.  Amazon Kinesis data delivery dashboard

�Data in the S3 Bucket

Open the S3 bucket, the one which was selected as the destination in the delivery stream

configurations.

You will notice one directory is created, as shown in Figure 7-28.

Figure 7-28.  Amazon S3 bucket

Chapter 7 Analytics

231

Open the directories until you reach the files, shown in Figure 7-29.

Figure 7-29.  Amazon S3 bucket view data

In my case, it was 2022/07/02/18. The various directories will follow year/month/

date/UTC hour. You will get the directory names and the day and time you receive the

stream from your application.

Let’s open the file, you will can see the file preview in Figure 7-30.

Figure 7-30.  Data file

As you can read through the file, it contains the various data we streamed from our

React application.

Chapter 7 Analytics

232

�Summary
The chapter provided a high-level view of analytics and covered the fundamentals of

analytics and its terminologies. It then moved on to discuss how to set up the Amplify

Analytics backend and use AWS Pinpoint to record events and actions. Readers learned

how to record events in a React app, track page views, and use automatic tracking. The

chapter also highlighted the limitations of the AWS Pinpoint service.

To address these limitations, the chapter introduced Amazon Kinesis as an

alternative solution for streaming analytics data. It covered the steps involved in setting

up the Kinesis backend and monitoring Kinesis data streams. Readers learned how to

write the data into a file and stream analytics data from their React app to AWS Kinesis.

Overall, the chapter provided a comprehensive guide to implement analytics using

AWS Pinpoint, React web app, AWS Kinesis, and AWS Amplify. Readers learned how to

record and track events, stream data, and monitor Kinesis data streams. The chapter

also covered the limitations of the Pinpoint service and how to overcome them by using

Kinesis.

Chapter 7 Analytics

233

CHAPTER 8

Continuous Integration
and Continuous
Delivery/Continuous
Deployment

Continuous integration doesn’t get rid of bugs, but it does make them
dramatically easier to find and remove.

—Martin Fowler

�The Goal of This Chapter
	 1.	 Understand the CI and CD in detail and their differences

	 2.	 Understand Pipeline as Code and its benefits

	 3.	 Publish apps in multiple environments

	 4.	 Password-protect the development environment using Amplify’s

access control feature

�Defining CI/CD
Continuous integration/continuous delivery (CI/CD) is a set of practices that an

application development team uses to automate and streamline the process of

sanitizing, testing, building, and deploying the application quickly and efficiently, as

soon as there is any code change.

© Akshat Paul, Mahesh Haldar 2023
A. Paul and M. Haldar, Serverless Web Applications with AWS Amplify,
https://doi.org/10.1007/978-1-4842-8707-1_8

https://doi.org/10.1007/978-1-4842-8707-1_8#DOI

234

To deliver high-quality and bug-free code at a high velocity with minimum errors,

software development teams rely on fast and reliable CI/CD pipelines. These pipelines

enable the team to take an agile approach to deliver the applications.

The guiding principle of CI/CD is the frequent and continuous delivery of software

updates, which encompasses a range of activities including integration, testing, building,

delivery, and deployment of applications. This end-to-end process is commonly referred

to as the CI/CD pipeline, which is composed of multiple phases. Typically, some of these

phases depend on previous phases and require the one phase to complete successfully

before proceeding further. This process of breaking down the CI/CD pipeline into

smaller, more manageable phases gives the team more flexibility and control to deliver

high-quality software and helps business by reducing the time to market for new features

and updates.

�Difference Between CI and CD
CI and CD have different responsibilities in the pipeline; let’s try to understand that.

�Continuous Integration
Continuous integration (CI) emphasizes the need of frequent merging of code changes

from the feature branches into the main branch. With typical development teams

comprising anywhere from 8 to 10 developers, if all the developers contribute to the

repository, there can be a minimum of 10–15 branches. If integration of these branches

into the main branch is postponed until the release day, the likelihood of conflicts and

delays in the release process significantly increases. To avoid such problems, CI practices

require developers to merge their code changes regularly and promptly, enabling them

to catch and resolve issues early, leading to a smoother, more efficient release process.

CI enforces continuous integration of code changes into the main branch while

validating them through a set of phases.

CI emphasizes a lot on automating the test cases and checking the quality of code to

really make sure the application is not breaking by any code change, before merging to

the main branch.

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

235

�Continuous Delivery
Continuous delivery (CD) is the next phase in the CI/CD pipeline, which involves the

automated deployment of code changes to either a test environment or a production

environment. After passing through the CI pipeline, which includes phases like testing

and linting, the newer version needs to be deployed to the test environment to QAs or

in a production environment to the customers. This means after the automated testing

and build phase, it’s time for the automated deployment of the application, which is as

simple as clicking a button of approval whenever the team wants the newer version to

appear to the customer.

CD ensures that the delivery process is controlled and planned with a manual button

click, allowing teams to maintain greater control over the integration and delivery phases

of their application.

�Continuous Deployment
Continuous deployment (CD) significantly steps up the deployment process in the CI/

CD pipeline, which emphasizes the automated deployment of code changes to the

environments without any manual intervention. With continuous deployment, every

approved small change is continuously delivered to customers as soon as possible,

automatically.

The CI/CD pipeline recommends frequent and smaller deployments to make it

easier to track and identify any issues that may arise. This approach enables businesses

to quickly revert small portions of the code, if necessary, rather than having to revert

entire features that may impact multiple areas of the business, resulting in a significant

amount of time and effort being wasted. By leveraging continuous deployment, teams

can significantly reduce the time it takes to deliver code changes to customers, minimize

the risk of human error, and ensure the smooth and efficient operation of their software

applications.

In Figure 8-1, we can see an overview of the flow of the CI/CD pipeline. When code is

merged to the main branch, the CI pipeline is triggered, which consists of multiple jobs.

These jobs include testing, code quality checks, and creating a build of the application,

either as a zip of files or a Docker image. Once all of the jobs are successfully completed,

the CD pipeline is triggered.

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

236

Figure 8-1.  CI and CD pipeline flow

�The Objective of the CI/CD Pipeline
The primary objective of the CI/CD pipeline is to provide immediate feedback to

developers regarding the code modifications they have made. By doing so, it helps

ensure that the development team avoids introducing any faulty code into the software

automatically and instantaneously. This feedback is a critical component of the

development process, as it enables developers to identify and resolve issues quickly,

leading to more efficient and effective software delivery. The real-time nature of

the feedback allows for the creation of a continuous improvement cycle, where the

development team can continually refine their code and delivery processes, leading to

better software quality and faster time to market.

�Pipeline As Code
Pipeline as Code is a methodology that entails incorporating the pipeline configuration

and definition into the codebase in version control, such as Git, in which it coexists with

the application code. If, for example, the team decides to add an integration test phase

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

237

after the unit test phase, rather than manually adding this phase from some dashboard,

a team member must add the configuration to the codebase and raise a pull request

against the main branch.

All configurations, such as testing, linting, building the docker image, pushing the

image, and deployments, are established by coding, that is part of the repository. With

this approach, as long as the pipeline configuration is versioned, it can be tested by

adding it to a separate branch, and once the configuration is deemed satisfactory, it can

be merged into the main branch.

�Benefits of Pipeline As Code
The Pipeline as Code has effectively addressed various issues that arise from manual

configurations of pipelines:

•	 Version control: Similar to version-controlling business logic code,

the team can now create new versions of the pipeline and regulate

configurations using code. This enables them to revert to the previous

version or create distinct configurations for different branches.

•	 Audit trails: If we keep our Pipeline as Code, then it is possible to

easily track who modified what and when.

•	 Testing before integrating into the main branch: Pipeline as Code

enables the team to carry out the testing of the pipeline prior to

integrating it into the main branch. The team can raise a pull request

as a feature and test the pipeline in a different branch, which provides

assurance before merging it into the main branch.

�Repository and Environments
A team requires multiple environments to cater to different types of users to ensure that

one type of user does not interfere with another type of user and breaks the user flow.

Typically, there are three types of users for a team:

	 1.	 Developers: The developers need a development environment,

which they use to integrate basic features and store the most

recent changes. However, this environment may have bugs and

unstable features.

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

238

	 2.	 Testers: The testers require a relatively stable environment to

test the features that developers have marked ready for QA. Once

developers are satisfied with their feature, they move it to the test

environment. This test environment is closer to production and is

more stable compared to the development environment.

	 3.	 End customers: The end customers use the production

environment once the feature is thoroughly tested, and only then

is the feature marked ready for production and deployed to the

production environment.

It is crucial to maintain control over every environment using specific git branches.

In doing so, the team can follow the agreed git flow to manage the smooth transition of

the features from the development environment to the test environment and finally to

the production environment. It should be noted that the number of environments and

their respective responsibilities are decided by the team members, and the practices and

terminologies may vary from one team to another. As such, there is no universal rule,

and teams work together to create their own set of guidelines.

�Hosting the Application for Development Environment
To commence with the hosting and deployment of an application in the development

environment, the primary step is to create a GitHub repository and push our source

code. We will start with creating a development branch named `develop`, by running the

following git command:

git checkout -b develop

Should you have any changes that have not been committed, kindly add, commit,

and push the changes to the develop branch. Upon completion, the first step is to

establish a connection between the repository and the branch to our Amplify app.

Access the AWS console and log in to your account. Proceed to the Amplify service,

and click the hosting environment tab. Select your git repository host depending on

where your repository is located. For instance, in our case, as shown in Figure 8-2, we

have pushed to GitHub; thus, we will opt for GitHub.

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

239

Figure 8-2.  Connecting the Amplify app with the GitHub repository

Authorize GitHub by providing your account credentials. You will be directed

to a screen. The step is illustrated in Figure 8-3. You will be required to select which

repositories you want to grant access to. You can choose to give access to all repositories

associated with your account or just one specific repository.

Figure 8-3.  Prompt after successful account authorization

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

240

The next step would be to select the branch that will be used for the hosting process.

In this instance, we will select the `develop` branch, which was previously pushed before

commencing the hosting process. As illustrated in Figure 8-4, enter in the branch field to

find your desired branch.

Figure 8-4.  Selecting the branch to connect GitHub with the Amplify app

If you have multiple Amplify apps, you need to select the appropriate app you want

to connect to the repository from the drop-down. The step is illustrated in Figure 8-5.

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

241

Figure 8-5.  Select the Amplify app from the drop-down

Please select the appropriate environment by navigating to the relevant section

in the hosting console. In this case, since we have already created a development

environment, we can select it from the list of available environments. Refer to Figure 8-6.

Figure 8-6.  Select the environment

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

242

The continuous integration (CI) pipeline is generated automatically under the “build

and test” setting; refer to Figure 8-7. These configuration files are in YAML format, so it is

important to verify that the commands used in the configuration files match those used

by npm or yarn scripts.

Figure 8-7.  The autogenerated CI config file for review

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

243

If an attempt is made to submit it without selecting a role, an error will occur,

prompting the selection of a role, as illustrated in Figure 8-8. This role is an AWS role

specifically created for the CI/CD pipeline to access AWS resources and deploy the

application.

Figure 8-8.  The error state to select the role

Therefore, it is necessary to create a new role and assign it to the CI/CD pipeline.

This role has multiple benefits, including aiding in auditing, access control, and

increased application security. In case any access key is leaked, the impact on the

application would be minimal. Furthermore, the roles can be disabled at any point

in time.

To create a new role, click the “Create a new role” option, which will navigate you to a

new tab, as illustrated in Figure 8-9.

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

244

Figure 8-9.  Use case list for creating a new role

Select the Amplify use case and click Next to add the permissions.

The permission is added automatically to the role, as illustrated in Figure 8-10. As

we don’t want to add more permissions to this role, we may proceed to the next step by

selecting the “Next” option.

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

245

Figure 8-10.  The permission policy for the Amplify app

In the next screen, you will be prompted to add some tags to the role. These tags are

used to group roles into desired categories. For now, you can skip this step and proceed

by clicking the “Next” button.

In the subsequent screen, you need to specify a name for the role and provide a

brief description. The screen is illustrated in Figure 8-11. This will help you identify the

purpose of the role when you have multiple roles in the future.

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

246

Figure 8-11.  Form fields to add the name and description of the role to be created

After creating the new role, return to the previous tab and refresh it to fetch the newly

created role. Once the page is refreshed, the newly created role should appear on the list,

as illustrated in Figure 8-12. Select it in order to proceed to the next step.

Figure 8-12.  Selecting the newly created role from the drop-down

In conclusion, it is essential to review the entire configuration carefully before

proceeding. After reviewing, click the “Save and deploy” button, as illustrated in

Figure 8-13, to initiate the deployment process. This step ensures that the application is

properly configured and ready to be deployed.

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

247

Figure 8-13.  The review screen to save and deploy the application

After completing the aforementioned steps, you can view the CI pipeline in

action. The pipeline consists of several phases for CI and CD, which can be viewed in

Figure 8-14. To check the logs and details of each job in the pipeline, simply click the

respective jobs.

Figure 8-14.  In progress CI/CD pipeline

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

248

After the successful deployment, verify all the phases are successful and green,

as illustrated in Figure 8-15; the domain where the application is deployed will be

displayed. By clicking it, you will be able to see that your latest code has been deployed

on the development environment.

Figure 8-15.  The successful screen after completion of the CI/CD pipeline

�Creating a New Environment and Hosting It
It is possible to effortlessly create numerous environments for development as desired.

Let us proceed to create a production environment.

To create the new environment, it is necessary to create a new branch in git and push

it. We shall name the new branch as master and push it to the repository:

git checkout -b master

�Creating a Production Environment in Amplify Backend

In order to host the code in the production environment, we need to create a new

environment. To view the list of existing environments, you can execute the following

command:

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

249

amplify env list

| Environments |

| ------------ |

| *dev |

As we currently have only one environment, which is “dev,” the command will

display only that environment.

Let’s create a new environment.

In the master branch, run

amplify add env

Enter the name of the new environment; let’s name it production:

? Enter a name for the environment: production

? Select the authentication method you want to use: (Use arrow keys)

›  Amplify Admin UI
 AWS profile

 AWS access keys

Select Amplify Admin UI to authenticate and allow sign-in from the browser.

If you are deploying the same application as created in Chapter 2, the creation

of a new environment will require a new Google web client id and client secret to be

added. This is because the authentication added in application in Chapter 2, will also be

deployed.

Please obtain these values from the Google console app and add them.

 Enter your Google Web Client ID for your OAuth flow: xx-xx-xx

 Enter your Google Web Client Secret for your OAuth flow: xxxxx

Once done, you can check the status by entering the following command:

amplify status

Upon completion of this process, a number of resources will be generated for the

production environment. The status is illustrated in Figure 8-16.

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

https://doi.org/10.1007/978-1-4842-8707-1_2
https://doi.org/10.1007/978-1-4842-8707-1_2

250

Figure 8-16.  The Amplify status for the new environment

We can push these by entering the following command:

amplify push

After confirming the changes, wait for Amplify to finish creating the resources on

the cloud.

Let’s now set up the CI/CD for the master branch and production environment to

provision and host the application.

To do so, navigate to the Amplify application in the Amplify service and click

“Connect branch.” From there, select the master branch and app name. This step is

illustrated in Figure 8-17. Also assign the environment to the branch, as shown in

Figure 8-18.

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

251

Figure 8-17.  Add the branch of GitHub to the Amplify app

Figure 8-18.  Link the branch and environment to our Amplify app

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

252

If we want to create a new environment from the AWS console, we can do it from

here as well. After reviewing the configurations, if everything looks good, we can click the

“Save and deploy” button as illustrated in Figure 8-19. This will confirm the changes and

wait for Amplify to finish the resource creation on the cloud.

Figure 8-19.  The review screen of connecting the branch

As shown in Figure 8-20, you will notice the master branch appears which is

connected to the newly created environment, production. Furthermore, there are two

distinct CI/CD pipelines, so that the code pushed to individual branches is deployed

individually.

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

253

Figure 8-20.  The CI/CD pipeline of both branches

As soon as the deployment is successful, you can access the application on the

production environment. From here on, you can develop a new feature on the develop

branch and raise a pull request (PR) to merge it with the master branch. The new feature

will be deployed to the production environment.

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

254

�Password Protecting the Nonproduction Environment
To enhance security, we can utilize Amplify’s out-of-the-box solution to password-

protect nonproduction environments. Since features in lower environments are used for

internal testing and are not yet ready for public release, exposing them to the public is

not recommended. By adding a root user ID and password, we can prevent unauthorized

access. By default, all the environments are publicly accessible.

To do this, as shown in Figure 8-21, go to the Amplify screen on the browser and click

“Access control” on the left pane.

Figure 8-21.  The Amplify options in the AWS console

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

255

As illustrated in Figure 8-22, notice both environments are publicly viewable.

Figure 8-22.  The access control setting of our Amplify app

Let’s password-protect our develop environment; click Manage access on the

top right.

Click the “Manage access” button on the top-right corner. Change the access setting

to “Restricted” against the develop branch and add a username and password, as shown

in Figure 8-23. Finally, click “Save” to apply changes.

Figure 8-23.  Adding security to our environment for private access

Now try to open the develop environment.

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

256

As illustrated in Figure 8-24, you will be asked to enter your username and password.

And congratulations, you have secured your nonreleased features under a username and

password.

Figure 8-24.  The credential input dialog to access the private app

�Summary
This chapter discussed how to use AWS Amplify to implement CI/CD for an application.

It started with a brief overview of CI/CD and then moved on to how to set up CI/CD for

an application using Amplify.

The chapter covered how to create a CI/CD pipeline using Amplify for both the

development and production environments. The chapter went through the steps to

create a development environment in Amplify, which includes creating a repository in

GitHub, setting up a new Amplify app, connecting to the GitHub repo, and creating a

CI/CD pipeline. The chapter also explained how to create a production environment

in Amplify by creating a new branch in the GitHub repository and pushing the code to

that branch.

Once the production environment was set up, the chapter showed how to connect

the production environment to the CI/CD pipeline and how to password-protect the

development environment. It also covered how to add new features to the application

and deploy them to the production environment using the CI/CD pipeline.

Overall, the chapter provided a comprehensive guide to using AWS Amplify to

implement a robust CI/CD pipeline for an application.

Chapter 8 Continuous Integration and Continuous Delivery/Continuous Deployment

257

CHAPTER 9

Amplify Supplements
The future is not going to be driven by people, but by artificial intelligence.

—Sundar Pichai, CEO of Google

Amplify is not just limited to these core features which we have discussed in previous

chapters – there are also a number of supplementary services and capabilities that can

be used to enhance and extend application’s functionality. From creating chatbots with

AWS Lex service to adding AI/ML capabilities to applications, Amplify provides a wide

range of capabilities to enhance the development process. In this chapter, we will explore

some of the key features of AWS Amplify, including its support for multiple frameworks,

its integration with AI/ML services, and its capabilities for chatbot development. We will

also introduce AWS Amplify Studio, a powerful tool for UI development. By the end of

this chapter, you will have a solid understanding of the many ways in which AWS Amplify

can help you streamline your development process and build powerful, responsive, and

scalable applications.

�Building Interactive Bots with AWS Lex Service
A chatbot is a computer program designed to simulate conversation with human users,

typically via a messaging interface. AWS Lex helps us to build chatbots that uses natural

language processing (NLP) algorithms to understand and interpret the user’s queries,

and they can provide automated responses to these queries in a conversational way.

AWS Lex is a service that helps us build interactive ML-based chatbots in no time.

Lex internally uses deep learning technologies like automatic speech recognition which

converts speech to text and natural language processing. Lex is also used to empower

Amazon Alexa. Lex will help us to achieve the same output without diving deep into

these core technologies.

© Akshat Paul, Mahesh Haldar 2023
A. Paul and M. Haldar, Serverless Web Applications with AWS Amplify,
https://doi.org/10.1007/978-1-4842-8707-1_9

https://doi.org/10.1007/978-1-4842-8707-1_9#DOI

258

AWS Lex has also the capability to integrate with other services like AWS Lambda,

which can call APIs, write data in the database, or integrate with third-party systems to

act on users’ requests. In Amplify these capabilities are grouped under interactions; let’s

now use interactions with Amplify.

Run the following to add interaction using amplify:

amplify add interactions

This will ask you to give a name to this chatbot; I will name it `reactchatbot`.

? Provide a friendly resource name that will be used to label this category

in the project: reactchatbot

There are some chatbot configurations; let’s choose a sample:

? Would you like to start with a sample chatbot or start from scratch?

›  Start with a sample
 Start from scratch

There are three options; you can choose any of them. For this chapter’s scope, let’s

choose the Order Flowers sample:

? Choose a sample chatbot:

 BookTrip

›  OrderFlowers
 ScheduleAppointment

This will ask if children’s privacy policies are applicable; answer accordingly.

? Please indicate if your use of this bot is subject to the Children's

Online Privacy Protection Act (COPPA).

Learn more: https://www.ftc.gov/tips-advice/business-center/guidance/

complying-coppa-frequently-asked-questions (y/N)

Once this is done, approve and push the changes to the Amazon backend:

amplify push

Once successful, log in to the AWS console on the browser and open the Lex service

from the list (Figure 9-1).

Chapter 9 Amplify Supplements

259

Figure 9-1.  Amazon Lex service on AWS Console

You will probably see no bots created; this is because when we are writing this

chapter, Amplify by default creates bots in Lex V1, hence the new Lex V2 console doesn’t

show up the bots created from the Amplify CLI. Let’s hope in near future Amplify will

add a support to enable us to choose the version to create chatbots. Let’s switch to the V1

console from the left pane, the Lex V1 preview is shown in Figure 9-2.

Figure 9-2.  Amazon Lex V1 dashboard

Chapter 9 Amplify Supplements

260

No we can see the Order Flowers bot we created from the Amplify CLI.

Let’s open it up to see the configurations (Figure 9-3).

Figure 9-3.  Order Flowers bot details

There are some terminologies which we should understand before testing the

chatbot; let’s have a quick glance of the same.

�Important Terminologies

	 1.	 Intent

Intent is an action that the user wants to perform. For example,

ordering flowers is intent, and similarly ordering pizza is intent.

	 2.	 Utterances

Utterances are various ways of conveying the same intent. For

example, the following are utterances of the same intent:

Chapter 9 Amplify Supplements

261

	 a.	 I want to order the flowers.

	 b.	 Can I order the flowers, please?

	 c.	 I need help ordering flowers.

	 3.	 Slots

In order to fulfill the intent, the chatbots need some required set

of parameters without which one intent cannot be fulfilled. For

example, to order flowers, the required parameters are as follows:

	 a.	 Flower type

	 b.	 Pickup time

	 c.	 Delivery time

These parameters are called slots.

	 4.	 Slot types

Given slot is a parameter, there will be a type associated with it,

for example, pickup time would be date-time type, and the flower

type will be of type Rose, Lilly, or Tulip. The slot types can be built-

in or custom defined.

	 5.	 Intent fulfillment

Intent fulfillment refers to the set of actions that a chatbot needs

to perform in order to fulfill a user’s intent after it has correctly

understood their utterance and extracted all the required

slots. This can be achieved in a couple of ways. One way is by

integrating a Lambda function that takes the required parameters

and carries out the intended action, such as creating an order or

fulfilling a request. Alternatively, the parameters can be passed

to the client application, which can then handle the fulfillment of

the intent without relying on a Lambda function. Both approaches

have their own advantages and disadvantages, and the choice

between them largely depends on the specific use case and

requirements of the chatbot.

Chapter 9 Amplify Supplements

262

	 6.	 Lambda function as a code hook

The Lex chatbot service also provides a way to attach the Lambda

function as a hook in various steps, where we can validate the user

input and show a proper error message to the users. For example,

let’s say if the chatbot asks about the delivery time, and if the

user enters a past date, the code hook can validate the input and

respond with a message that the orders cannot be delivered in

past, please reenter a future date.

�Test the Chatbot
Once you open the chatbot, which is forked from the sample Order Flowers chatbot,

from the AWS console, on the top right there is a test chatbot option, follow Figure 9-4.

Figure 9-4.  Test chatbot

Chapter 9 Amplify Supplements

263

Click that, and try to add some utterances, as shown in Figure 9-5.

Figure 9-5.  Testing the chatbot with utterances

Voila, you can further configure more utterances and fulfillment Lambda functions

to take action, as shown in Figure 9-6.

Chapter 9 Amplify Supplements

264

Figure 9-6.  Lambda function to take action

�Boost Your Application with AI/ML Capability
The AWS Amplify has a package of artificial intelligence and machine learning

capabilities. AWS has beautifully packaged those capabilities to make them easy to use

instead of diving deep into these technologies. AWS’s effort is to let the developers focus

more on delivering the business outcome instead of learning the core and reinventing

the wheel of AI and ML technologies.

�What Is Artificial Intelligence?
Artificial intelligence (AI) is a field of computer science that focuses on developing

machines that can perform tasks that would typically require human intelligence,

such as learning, problem-solving, and decision-making. AI technologies rely on

mathematical operations and algorithms to analyze input data, identify patterns, and

produce output.

AI is being used in various industries to solve real-world problems, such as data

analysis, chatbots, and manufacturing. For example, chatbots are computer programs

that use natural language processing and machine learning to understand user input

and provide helpful responses.

Chapter 9 Amplify Supplements

265

Some specific examples of AI technologies include speech to text, which processes

spoken input and converts it to text output, and chatbots, which can simulate human

conversation and make decisions based on user input.

�What Is Machine Learning?
Machine learning is a subset of AI that focuses on teaching computers to learn from data

and identify patterns in that data. By analyzing vast amounts of data, machine learning

algorithms can identify patterns and make predictions about new data that they haven’t

seen before. For example, if we want a computer to recognize images of dogs, we can

train a machine learning algorithm by feeding it thousands of sample images of dogs so

that it can learn to identify common features and characteristics of dogs.

AWS provides a range of AI and ML services that can help developers build more

powerful and interactive applications. For example, the Predictions category of AWS

Amplify includes services such as text to speech, language translation, image recognition,

and entity recognition. These services enable developers to add advanced AI capabilities

to their applications without having to build these capabilities from scratch.

In addition, AWS offers the SageMaker service, which allows developers to quickly

build and train machine learning models using a range of prebuilt algorithms and

frameworks. This service can help developers to accelerate the development of machine

learning models and bring them to market more quickly.

Predictions is categorized into the following three categories:

	 1.	 Identity: The services in this category will help us in analyzing

the input image and finding various things in the provided image.

This can identify a particular text, face, entities, chairs, desks,

animals, or celebrities from the image provided as input.

	 2.	 Convert: The services in this category will help us in converting

the given input from one form to another, for example, translating

text from one language to another, converting text to audio

speech, or speech to text.

	 3.	 Interpret: The services in this category will help us in listening,

reading, or analyzing the input and drawing a conclusion on

behalf of a human. For example, it can take the paragraph as

input and interpret whether the sentiment is positive, negative, or

neutral.

Chapter 9 Amplify Supplements

266

�Text to Speech with Amplify

Let’s start adding the amplify predictions package:

amplify add predictions

This will ask which category of prediction we want to start integrating with our

application:

? Please select from one of the categories below

 Identify

›  Convert
 Interpret

 Infer

 Learn More

You can choose to convert.

Now we have various conversion options, like translation and transcribing text

from audio.

Let’s choose speech from text:

? What would you like to convert?

 Translate text into a different language

›  Generate speech audio from text
 Transcribe text from audio

Provide a name to this resource and hit enter.

This will ask what the source of the language is:

? Provide a friendly name for your resource speechGeneratordfb39f8c

? What is the source language?

 Dutch

 Russian

 South African English

›  US English
 German

 Italian

 Chinese Mandarin

Chapter 9 Amplify Supplements

267

I will choose US English.

The next option would be the output speaker option:

? Select a speaker

 Salli - Female

 Joanna - Female

 Kevin - Male

›  Matthew - Male
 Kendra - Female

 Ivy - Female

 Justin - Male

If you want to listen to which speaker sounds like what, you can check the AWS Polly

service; there will be a sample text, and you can listen to various speakers from the list

and choose one, the same is shown in Figure 9-7.

Figure 9-7.  AWS text-to-speech dashboard

Chapter 9 Amplify Supplements

268

Once done, review and push the changes.

On the client application, if we want to generate an audio buffer from the text, we can

call the convert function from Predictions and pass the text as follows:

1: Predictions.convert({

2: textToSpeech: {

3: source: {

4: text: textToGenerateSpeech

5: },

6: }

7: })

8: .then(result => console.log({ result }))

9: .catch(err => console.log({ err }));

Similarly, you can use other AI/ML capabilities from AWS using Amplify like

identifying from images or translating from one language to another and enhance your

applications.

�Amplify Beyond React Web Apps
Amplify is a super powerful tool for today’s developers and software businesses; this

gives the capability of building the whole backend system, cloud-based services, and

infrastructure with no code, in no time, which is secured, can handle any scale of traffic,

and is super cost-efficient. Amplify is not only meant for React web apps, it can also

integrate with Android, iOS, or React Native mobile apps similar to React web apps. The

following are some highlights of Amplify:

	 1.	 Next.js support

The Amplify recently added support for the Next.js framework,

which makes it compatible with many production apps.

	 2.	 Flutter support

Amplify has also added support for Flutter apps; this makes the

whole Flutter community more excited, as Amplify can cater to

one more group of developers.

Chapter 9 Amplify Supplements

269

	 3.	 Geo support

With Amplify, we can easily create maps, add markers, and

search locations just by adding a few lines of code. We can also

implement the areas on the map or geo-fencing in the maps.

	 4.	 PubSub

Amplify has the capability to send messages in real time from the

backend to the client or vice versa. PubSub is available on the

MQTT protocol as well, to support IoT devices.

	 5.	 Push notifications

The Amplify also can help developers quickly set up push

notifications for their mobile applications to quickly receive and

send mobile notifications on Android or iOS devices.

	 6.	 AR and VR features

Amplify also has the capabilities to implement augmented reality

(AR) and virtual reality (VR) content within the applications. This

is provided by the component named XR in Amplify.

	 7.	 Internationalization

Amplify also helps the client apps to implement and handle

the internationalization for the application; we can import the

i18n module from Amplify and set the vocabulary of the various

languages to load in our applications.

	 8.	 Logger

Amplify also has a module named Logger, which helps to log

important information and errors on the client side.

	 9.	 Admin UI data explorer

Many times, we need to create a user-friendly data explorer UI to

manage or modify the data in our system; we cannot give database

access to our business owners or content managers. Amplify has

this capability; with some configurations, we can get the data

explorer UI and invite users to modify and save the data.

Chapter 9 Amplify Supplements

270

	 10.	 Data seeding

Often in our application, we need to test our application

with various edge cases to make it look like a real production

application. Amplify has the capability to generate random seed

data in our application.

�AWS Amplify Studio
The Amplify team has also recently launched a visual development environment, where

developers can also build UI components with minimal code and also can integrate the

Amplify powerful backend configurations from this UI-based development studio.

Developers can now create UI components, set up the Amplify backend, and connect

the two from this powerful tool. This tool can also create React components right from

the Figma (tool used by designers and developers) designs to accelerate further the

whole development cycle so that developers and the business team can launch their

applications as soon as possible.

To enable the Amplify Studio, open the Amplify project and click Set up Amplify

Studio, as shown in Figure 9-8.

Figure 9-8.  Setting up Amplify Studio

Chapter 9 Amplify Supplements

271

Once approved and done, wait for some time and click Launch studio to open

Amplify Studio.

As you can see, in Figure 9-9, we have almost all the Amplify components and UI

library to start creating UI and create or configure the Amplify backend components and

bind both of them, including the authentication, storage, REST API, analytics, etc. Go

ahead and explore the Amplify Studio. Since this tool is out of scope, we will skip getting

into details.

Figure 9-9.  Amplify Studio for UI development

Chapter 9 Amplify Supplements

272

�Summary
In this chapter, we explored the many ways in which AWS Amplify can help developers

build powerful, cloud-based applications quickly and easily. We started by discussing

how AWS Lex service can be used to create chatbots and examined the important

terminologies associated with building chatbots. We then looked at how AWS Amplify

can be used to create chatbots and add AI/ML capabilities to our applications. We

explored the concepts of AI, ML, and predictions and how they can be used to enhance

the functionality of our applications. We also discussed how AWS Amplify can be used

to integrate with AI/ML services such as Amazon SageMaker and support frameworks

besides React, such as Angular and Vue.js. Finally, we introduced AWS Amplify

Studio, a powerful tool for UI development. By the end of this chapter, you will have

a solid understanding of how AWS Amplify can be used to create robust, scalable,

and responsive cloud-based applications that can meet the needs of your business or

organization.

Chapter 9 Amplify Supplements

273

Index

A
AI/ML technologies

amplify predictions package, 266
categories, 265
conversion options, 266
definition, 264
speaker option, 267
text-to-speech dashboard, 267

Amazon Simple Storage Service (S3),
167, 176

Amazon Web Services (AWS), 2
Amplify (see AWS Amplify services)
analysis

charts view, 213
events dashboard, 210–213
filters accordion, 211
limitations, 213, 214
pinpoint services, 212

authentication, 35–57
cloud computing, 3
hosting applications, 2
Kinesis (see Kinesis)
Lambda, 80
supplements (see Supplement

services, AWS)
trigger test console, 182

Analytics, 195
amplify service, 200
automatic tracking, 210, 211
AWS console pinpoint service, 201
dashboard, 202

events/actions, 201
events dashboard, 211–214
fundamentals, 198, 199
high-level view, 195–198
kinesis (see Kinesis)
limitations, 213, 214
login button, 206, 207
quantification process, 198
recording events, 202, 203
registers pageView event, 209
segmentation, 199
sign-in page, 204, 205
systematic analysis, 195
terminologies, 199, 200
tracking page views, 208–210
traditional methods, 196
UI design, 203

Application programming interfaces
(APIs), 6

Bluetooth connection, 76
database, 169–172
definition, 76
GraphQL, 111–118
GraphQL API, 114, 115
JSON Web Token, 33
login flow, 76
Open Authorization (OAuth), 58
REST APIs, 85, 88, 97–99
specifications/protocols, 79, 80
subscription, 139–141
system interaction, 76

© Akshat Paul, Mahesh Haldar 2023
A. Paul and M. Haldar, Serverless Web Applications with AWS Amplify,
https://doi.org/10.1007/978-1-4842-8707-1

https://doi.org/10.1007/978-1-4842-8707-1#DOI

274

ToDo application, 142–144
URL path, 77
usages, 77, 78

Authentication
application/servers, 25, 26
AWS Amplify

access key and secret key, 39
Auth service, 42, 43
components, 41
configurations, 38–41
HeaderStrip, 53, 56
index page, 37
logging in and logging out, 51–53
objectives, 35
React application, 36, 37
UI react components, 43–50
user information, 53–57
users list, 53

Broken authentication, 27, 28
digital platforms, 24
fundamental aspect, 24
login process, 26
MFA (see Multifactor

authentication (MFA))
OAuth (see Open Authorization

(OAuth))
types, 28–30
user/incoming request, 24

Authorization, see Authentication
AWS Amplify services

AI (artificial intelligence)/ML
(machine learning), 14

authentication, 35–57
authentication/storage, 13
Command Line Interface (CLI), 15–21

definition, 13
GraphQL/DataStore, 13
PibSub/interactions, 14
REST APIs/analysis, 13, 85

B
Backend as a Service (BaaS), 1, 6–7
Biometric authentication, 29, 30
Broken authentication, 27, 28

C
Client-server model, 145, 146
Cloud computing, 1

advantages, 4, 5
PaaS/IaaS, 3

Command Line Interface (CLI)
authentication, 42
command information, 15
configuration, 16
database, 170
GraphQL API, 114, 115
identity and access

management, 18–22
pre-requisites, 15
REST APIs, 85
web services login, 16

Container as a Service (CaaS), 4
Content Delivery Network (CDN), 6
Continuous integration/continuous

delivery (CI/CD)
continuous integration, 234
definition, 233
delivery definition, 235
deployment process, 235
development environment application

Application programming
interfaces (APIs) (cont.)

INDEX

275

account authorization, 239
amplify app, 240
build/test configuration, 240, 241
config file, 242
environment, 241
error messages, 243
form fields, 246
GitHub repository, 239
hosting process, 238
permission policy, 244, 245
in progress, 247
review screen, 247
role creation, 243, 244, 246
subsequent screen, 245

environment/hosting
process, 248

amplify status, 249, 250
branch/environment, 252
branches, 253
Google web client, 249
production environment, 248
repository branch, 250, 251
review screen, 252

flow chart, 236
high-quality/bug-free code, 234
nonproduction environments

access control, 255
amplify options, 254
credential input dialog, 256
password-protect, 254
private access, 255

objective, 236
pipeline as code, 236–238
principle, 234
responsibilities, 234

Create, read, update, and delete (CRUD)
operations, 75

D
Data storage

addNewItem function, 173, 174
business/process, 165
cloud services, 167
DIY, 175
file-based data, 166
file storage (S3 bucket)

approach, 176, 177
console.amazon.com, 179–181
goals, 176
lambda trigger flow, 177
provision, 177, 178
testing tab, 182–184
trigger details, 179–181

graphql mutation request, 174
GraphQL request, 175, 176
in-memory variable, 174
integration, 169–172
lambda trigger function, 184–192
new items creation, 172
provisioning database, 168, 169
requirements, 165
types, 166

Do It Yourself (DIY)
amplify console, 121
AppSync, 122
data storage, 175
deleting/updating, 111
event query, 134
function file, 119
GraphQL, 111–118
high-level workflow, 135
lambda handler, 119, 120
mutation operation

AppSync console, 124

INDEX

276

deleting item, 128–131
gql lambda function, 126
graphql schema, 125
new item creation, 122–124
query execution, 127, 128
query information, 124, 125
todo records, 130

resolver, 118, 119
subscription API, 134–139
Todo record, 138

E
Elastic Computing (EC2), 2
Eye/iris authentication, 30

F
Face authentication, 30
Fingerprint authentication, 29
Function as a Service (FaaS), 1, 6–9

G
GraphQL API

amplify setup, 114–119
caching, 113
CLI, 114
configuration, 118
definition, 111–118
graphql mutation API, 133
graphql schema, 115
handler code, 132
Hello World template, 118
integration, 130
learning curve, 113
modification, 117

performance, 113
query, 122
query information, 111, 112
react app, 132
schema file, 122
schema.graphql file, 116
security concerns, 113
types, 117
UI react code, 131

H
Hash-based message authentication code

(HMAC), 32, 34
Higher-order component (HOC), 45, 208

I
Identity and Access Management (IAM)

accessKeyId and secretAccessKey, 21
management console, 18
page creation, 21
review page, 20
tags details, 19, 20
user addition and access, 18
user policy, 19

Infrastructure as a Service (IaaS)
cloud computing, 3
cloud service, 2

Infrastructure as Code (IaC), 39

J
JSON Web Encryption (JWE), 32
JSON Web Token (JWT)

definition, 32
flow and system interaction, 33, 34
structure/components, 34, 35
token validation mechanism, 33

Do It Yourself (DIY) (cont.)

INDEX

277

K
Kinesis

analytics data, 215
Amazon S3 bucket, 230
buttons/page load events, 225
data file, 231
delivery dashboard, 230, 231
directories, 231
encoded data, 228
monitoring tab, 229, 230
onMouseEnter function, 225
recording events, 225–228
web application, 227

applications tab, 218, 219
backend setup, 215
data stream, 217, 219
data streams details, 221
data stream source, 223
definition, 214
delivery stream dashboard, 224
delivery streams option, 220–222
ingress data/egress data, 218
metadata and timestamp, 215
monitoring tabs, 218
S3 bucket, 222
S3 bucket selection, 224
services home page, 216, 217
source selection, 222

L
Lambda functions

configuration, 87
cons, 82
data storage, 170

DIY, 119, 120, 123
file storage (S3 bucket), 177

AWS console, 188
deployment, 187
directory, 189, 190
empty bucket, 188, 189
logs, 191–194
resizing image, 184
search bar, 187, 188
thumbnail creation code, 185–187
trigger function, 192

layers, 83, 84
REST APIs, 86, 89
serverless functions, 80
server setup and operations, 81
supplement services, 263
triggers, 179–181, 184
use cases, 82
working process, 82, 83

M
Machine learning (ML), 14, 195, 196,

264, 265
Message Queue Telemetry Transport

(MQTT), 80, 269
Multifactor authentication (MFA)

approaches, 30
JWT model, 32–35
methods, 31, 32
one-time password (OTP), 31

N
Natural language processing (NLP),

257, 264

INDEX

278

O
Offline-First App, 145

client-server, 145, 146
deep tunnel application, 146
design view

goals, 148–150
high-level diagram, 150
sequence diagram, 149

features, 148, 162, 163
field service applications, 147
learning/educational applications, 148
lift/pipeline inspection app, 147
point-of-sale systems, 147
react application screenshot, 156, 157
ReactJs

assumption, 150, 151
features, 150
handling errors, 154–156
offline HTTP client, 153, 154
page render function, 151, 152
react application output, 151
real-time online HTTP client, 153

remote/rural health applications, 148
testing

application tab, 160
enqueuedMutations, 160, 161
network tab, 159
online syncing process, 162
screenshot, 157, 158
throttling configuration, 158
todo list application, 159

user experience, 147
Open Authorization (OAuth)

amplify auth service, 68, 69
API credentials, 64
client ID form, 67
consent screen, 65

credential menu, 66
definition, 58
Google Cloud console, 61
login screen, 71, 72
project screen, 63
redirect URLs, 69–71
selection process, 62
sequence flow, 58–60
social login, 57, 58

P, Q
Pipeline as Code

benefits, 237
configurations, 237
definition, 236
repository/environments, 237

Platform as a Service (PaaS)
cloud computing, 3
Heroku, 3
virtual machines (VMs), 3

R
Remote Procedure Calls (gPRC), 79
Representational State Transfer (REST), 80

AWS Amplify, 85
CLI tools, 85
configuration, 87
delete, 99, 100
ExpressJS function, 87
ExpressJS template, 87, 88
GraphQL, 130
hardcoded response, 91, 92
JSON object, 88
lambda function, 86
path, 86
POST, 94

INDEX

279

prompt app, 90
push operation, 89
PUT, 97–99
React ToDo application (see ToDo

application)
resource, 86
response, 91
save file/push, 92–97
selected options, 87
Things Todo application, 85

Request for Comments (RFC), 58
REST APIs, see Representational State

Transfer (REST)
Rivest-Shamir-Adleman (RSA), 32

S
Serverless architecture

Backend as a Service (BaaS)
model, 6, 7

benefits, 10
cost-effective solution, 6
costs, 11
definition, 1
disadvantages

application size, 12
cold start, 12
debugging, 13

Function as a Service (FaaS), 8, 9
less code, 10
reliability, 11
scalability, 10
security and scalability, 11
server operations, 2
velocity, 10

Simple Object Access Protocol (SOAP), 79
Software as a Service (SaaS), 6
Supplement services, AWS

AI/ML technologies, 264–268
amplify studio, 270, 271
Lex services

browser window, 258, 259
chatbot configurations, 258
dashboard, 259
interaction, 257
lambda function, 264
order flowers bot details, 260
terminologies, 260–262
test chatbot option, 262
utterances, 263

react web apps
amplify, 268
internationalization, 269
push notifications, 269
seed data, 270

UI development, 271

T
ToDo application

amplify project settings, 143
data lists, 104
DIY (see Do It Yourself (DIY))
error messages, 142–144
file information, 101
GraphQL, 130–133
integration, 101
item information, 105–108
network tab, 142
offline-first app, 150
output window, 105
subscription API, 139–141
ternary operator, 105
TodoPage.js, 102, 104
user experience

HTML attribute, 110

INDEX

280

Input box, 110
items, 108
POST API, 108, 109
text field, 110

user interface, 102, 141
Token authentication, 29

U, V
Universally Unique Identifier (UUID), 83
UI components

aws-exports file, 44, 45
index.js file, 44

integration, 45
login screen, 47
log out, 48–50
network tab, 48
react components, 43
user registration/login/

functionalities, 45–48
User interface (UI)

components (see UI components)
ToDo application, 106

W, X, Y, Z
WebSocket, 79, 134, 135

ToDo application (cont.)

INDEX

	Table of Contents
	About the Authors
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Serverless
	A Little Background
	Rise of Cloud Computing
	Key Advantages of Cloud Environments

	The Emergence of Serverless Computing: A Game-Changer for Cloud Development
	Backend As a Service (BaaS)
	Function As a Service/Serverless Computing
	Benefits and Weaknesses of a Serverless Architecture
	Benefits of Serverless Architecture
	Scalability
	Less Code
	Better Velocity
	Fail Fast
	Improved Reliability
	Cost
	Security and Stability

	Weaknesses of Serverless
	The Cold Start
	VPC/Network Issues
	Application Size
	Debugging
	Vendor Lock-In

	AWS Amplify Introduction
	Local Setup
	Setting Up AWS Amplify CLI
	Configuring Amplify CLI with AWS
	Adding a New IAM Management Console

	Summary

	Chapter 2: UI Component and Authentication
	Authentication Basics
	What Is Authentication?
	How Can Users Prove Credibility?

	What Is Authorization?
	Broken Authentication
	Types of Authentication
	Why MFA Is Important
	Types of MFA
	JSON Web Tokens
	JWT Authentication Flow
	JWT Structure

	Setting Up Authentication Using AWS Amplify
	Creating Our React App
	Configuring the Backend for Our React Application

	Setting Up Authentication
	Creating an Auth Service
	Amplify UI React Components
	What If aws-exports Is Not Found?

	Integrating Auth with React App
	Login and Registration UI Components
	Logout UI

	Logging In and Logging Out
	Getting Logged-In User Information

	OAuth Social Login
	What Is OAuth?
	Updating Amplify Auth Service
	Adding the Redirect URIs

	Setting Up React App

	Summary

	Chapter 3: CRUD and REST APIs – Pillars of Efficient Data Exchange
	API Overview
	Why Do We Need an API?
	API Design
	Types of APIs
	API Specifications and Protocols

	Introduction to Lambda
	Lambda Functions – The Serverless Functions
	Lambda Functions
	Use Cases of Lambda Functions
	Cons of Using Lambda Functions
	How Lambda Function Works
	What Is the Lambda Layer?
	Why Lambda Layers Are Useful

	Working with REST APIs
	Saving the File
	PUT API to Update Items
	Using the Delete API to Delete an Item by ID

	Summary

	Chapter 4: Integrating REST APIs with a Frontend React App
	Creating a Basic React ToDo App
	Adding a New Item

	Enhancing the User Experience
	Enhancement 1
	Enhancement 2

	Do It Yourself (DIY): Deleting and Updating
	GraphQL API
	Custom Resolver
	Modifying the Lambda Handler
	Testing the API
	Creating New Item – Mutation Query
	Testing the Mutation
	Updating the Item by ID – Mutation Query
	Deleting the Item – Mutation Query

	Integrating GraphQL API in React
	Integrating GraphQL Mutation API

	Do It Yourself (DIY): Modifying the React App
	Subscription API

	Integrating Subscription API with React
	Why APIs Throw 401 Error
	Summary

	Chapter 5: Offline-First App
	Benefits of the Client-Server Model
	Use Cases of Offline Apps
	The Offline App – Design Overview
	Goal

	Add Offline Features in React.js
	Assumption
	The Page Render Function
	Real-Time Online HTTP Client
	Offline HTTP Client
	Handling Errors in Real-Time API Clients with Offline Clients

	Rendering the Offline and Online Items in the List
	Testing Offline Feature
	Testing the Online Syncing Feature
	Things to Consider While Creating Offline Apps
	Summary

	Chapter 6: Data Storage
	Introduction
	Types of Data to Store
	Cloud Storage As a Service
	Database Provision and Integration
	Provisioning Database
	Integrating the Database with APIs
	Assigning IDs to New Items
	Modifying the Create Todo Item Function
	Modifying the Get All Items API
	Do It Yourself (DIY)

	File Storage – S3 Bucket
	Goal
	Approach
	The Need for Two S3 Buckets

	Provision S3 Bucket
	Verifying the Resources on Amazon Console
	Testing the Triggers

	The Lambda Function
	Resizing the Image to Create a Small Thumbnail
	Lambda Function to Create Small Thumbnails
	Deploying the Function

	Testing the Thumbnail Creation by Lambda Trigger
	Checking the Lambda Function Logs

	Summary

	Untitled
	Untitled
	Chapter 7: Analytics
	A High-Level View of Analytics
	Analytics Fundamentals
	Terminologies
	Setting Up Amplify Analytics Backend
	Recording Events and Actions
	Recording Events from our React App
	Recording Button Clicks on the Sign-In Page
	Why Is There a Delay in API Calls After We Click the Button to Record?
	Tracking Page Views
	Automatic Tracking
	Events Dashboard on AWS Console
	Limitations of AWS Pinpoint Service

	Introduction to Kinesis
	Streaming Analytics Data

	Setting Up Kinesis Backend
	Delivery Stream
	Writing the Data into the File
	Streaming the Analytics Data from React App
	Recording Event to Kinesis Streams
	Kinesis Data Stream Dashboard
	Kinesis Data Delivery Dashboard
	Data in the S3 Bucket

	Summary

	Chapter 8: Continuous Integration and Continuous Delivery/Continuous Deployment
	The Goal of This Chapter
	Defining CI/CD
	Difference Between CI and CD
	Continuous Integration
	Continuous Delivery
	Continuous Deployment

	The Objective of the CI/CD Pipeline
	Pipeline As Code
	Benefits of Pipeline As Code
	Repository and Environments

	Hosting the Application for Development Environment
	Creating a New Environment and Hosting It
	Creating a Production Environment in Amplify Backend

	Password Protecting the Nonproduction Environment

	Summary

	Chapter 9: Amplify Supplements
	Building Interactive Bots with AWS Lex Service
	Important Terminologies
	Test the Chatbot

	Boost Your Application with AI/ML Capability
	What Is Artificial Intelligence?
	What Is Machine Learning?
	Text to Speech with Amplify

	Amplify Beyond React Web Apps
	AWS Amplify Studio

	Summary

	Index

