PYTHON

PROGRAMMING

A Comprehensive Guide to
Sottware Development

(]
with
REAL-WORLD
APPLICATIONS

AMIN BOULOUMA

Python Programming: A Comprehensive Guide to Software
Development

Amin Boulouma

February 17, 2023

e "I'm very impressed with Python Programming, it’s huge and very accurate! Thanks for this wonderful book!
T’ll share it with my friends, who want to start coding!" — Dimitry Anisimov, Python Backend Developer

¢ "Thank you so much. I thought it would be very hard but You make me learn so fast." — Praveen Chaudhary,
Software Developer

¢ "Explains basics very clearly" — Awiral Agrawal, Software Developer

o “Most Viewed Writer in the topic Python” — Quora

o “Most Viewed Writer in the topic Django” — Quora

o “Most Viewed Writer in the topic Python Libraries” — Quora

o “Most Viewed Writer in the topic Python Web Frameworks” — Quora
o “Most Viewed Writer in the topic ElasticSearch” — Quora

o “Most Viewed Writer in the topic Python Web Frameworks” — Quora
e “Knowledge prize winner - Best answer in the topic Python” — Quora
o “Most Viewed Writer in the topic Python” — Quora

e “Published writer - Best answer in the topic Python” — Quora

e “Top question writer - Best question in the topic Python” — Quora

e “Top writer - Write a lot in the topic Python” — Quora

Contents

Preface
How to read this book e

History and Overview of Python
Introduction L e
A brief history of Python
An overview of Python’s key features and benefits
Python’s Standard Library and Tools
Python in industry and scientific computing L.
Conclusion e

Chapter 1: Introduction to Python
Setting up a Python development environment L
The basics of programming conceptso
Exercises for practice e e e e e e
SUMMATY . . . o o o o e e e e e e e e

Chapter 2: Variables and Data Types
Understanding Variables in Python 0. 0 oo
The Various Data Types in Python 0. . o
Numbers e e e e e
Strings e e e
Lists . . o o e e
Dictionaries L
And more e
How to Use and Manipulate Variables and Data Types
Exercises for Practice L e e e
SUMMATY o o o e e e e e

Chapter 3: Control Structures
Understanding control structures L
if/else statements L.
Tor loops e e
while loopS o e e e
How to use control structures in Python L L
Exercises for Practice
SUMMATY o o oo e e e

Chapter 4: Functions
Understanding functions and their use in Python o oo
Defining and calling functions in Python oL o
Exercises for Practice
SUMMATY . . . o o o e e e e e

Chapter 5: Modules
Understanding modules in Python o
Importing and using modules in Python
Exercises for Practice e
SUMMATY o o e e

Chapter 6: Object-Oriented Programming - Part 1
Understanding the concepts of object-oriented programming
Defining classes and objects in Python o
Exercises for Practice
SUMMATY o o e e e e e e

Chapter 7: Object-Oriented Programming - Part 2
Understanding inheritance and polymorphism oL Lo
Inheritance L
Polymorphism e e

Using built-in classes in Python o
Exercises for Practice
SUMMATY o oo e e

Chapter 8: Input and Output
Reading from and writing to files in Python L
Exercises for Practice e e e e
SUMMATY o o e e e e e

Chapter 9: Error Handling
try / except block
finally block e
raise statement00 0oL Lo
Exercises for Practice
SUIMIMATY . . .« . o o o v e e e e e e e e e e e e e e e

Chapter 10: Regular Expressions
search() function L e e e
findall () function e
split () function L
sub() function L e e e
compile() function L e
Exercises for Practice e e
SUIMIMNATY . . .« . v v o v e e e e e e e e e e e e e e e e

Chapter 11: Debugging
The pdp module e
Exercises for Practice e
SUMMATY o o o e e e

Chapter 12: Decorators
Understanding decorators and their use in Python 0oL
Using decorators to modify functions and methods L.
Exercises for practice L e
SUMMATY o o o e e e e e

Chapter 13: Generators
Understanding generators and their use in Python 0L
Creating and using generators in Python oL oo
Exercises for practice L. e e e
SUMMATY . . . o o o o e e e e e

Chapter 14: Advanced Topics - Part 1
Understanding advanced topics in Python oo
Lambda function e e

Filter o e
Reduce o e
Exercises for practice L. e e e
SUMMATY . . . o o oo e e e e

Chapter 15: Advanced Topics - Part 2
Understanding more advanced topics L Lo e
CloSUTE o o e e e e e
Built-in Libraries e e e
Using the unittest module for unit testing oo oL
Exercises for practice e e e e e
SUMMATY . . . o o ot e e e e e e

Chapter 16: Data Structure - Part 1
Understanding data structureso
Stack . . L e

23
23
23
23
23
24

25
25
25
25
25
25
26
26

27
27
27
27

28
28
28
28
29

30
30
30
31
31

32
32
32
32
32
32
33
33

34
34
34
34
34
35
35

QUELE . . . o e e
Linked List o e e

Implementing data structures in python o oo
Exercises for practice L e
SUMMATY o o oo o e e e e e

Chapter 17: Data Structure - Part 2
Understanding more advanced data structures L Lo
Trees . . . o o e e e

Graphs . . . L
Implementing data structures in pythono Lo
Exercises for practice L e
SUMMATY o o oo e e

Chapter 18: Algorithms - Part 1
Understanding Basic Algorithms L o
Implementing Algorithms in Python
Exercises for Practice e

Chapter 19: Algorithms - Part 2
Dynamic Programming
Greedy Algorithms
Implementing Algorithms in Python
Exercises for Practice L e e e e
SUMMATY o o o e e e e

Chapter 20: Multithreading and Concurrency
Understanding concepts of multithreading and concurrency
The threading module L
The multiprocessing module L
Exercises for practice e e
SUIMIMNATY . . .« . v v o o e e e e e e e e e e e e e e e e e e e

Chapter 21: GUI Programming
Understanding concepts of GUI programming
Using Python’s tkinter module e
Exercises for practice L e
SUMMATY o o o e e e e

Chapter 22: Networking
Understanding concepts of Networking L
Using Python’s socket module
Exercises for practice e e e e e e e
SUMMATY . . . o o o o e e e e e e

Chapter 23: Web Scraping
Understanding concepts of web scraping oL Lo
Using Python’s BeautifulSoup and Scrapy module
Exercises for practice L. e
SUMMATY o o e e e

Chapter 24: Web Development
Understanding concepts of web development
Using Python’s Flask and Django framework
Exercises for practice L Lo
SUMMATY o o e e e e e e

Chapter 25: Database
Understanding concepts of database L Lo
Using Python’s SQLite, MySQL and MongoDB« . vt v it
sqlite3 module L e e

41
41
41
42

43
43
43
43
43
43

45
45
45
45
45
45

46
46
46
46
46

47
47
47
47
47

48
48
48
48
48

49
49
49
49
49

mysql-connector-python module
pymongo moduleo e
Exercises for practice L L e
SUMMATY o o e e e e

Chapter 26: Machine Learning
Understanding concepts of machine learning L Lo
Using Python’s scikit-learn and TensorFlow L Lo
The sklearn library e e e e e
Exercises for Practice
SUIMIMNATY . . .« . v v o v o e e e e e e e e e e e e e e e e

Chapter 27: Natural Language Processing
Understanding concepts of NLP0
Using Python’s NLTK and spaCy e e e e e e e e e
The nltk library o o . e
spaCy Library e
Exercises for Practice
SUMMATY . . . o o o e e e e

Chapter 28: Blockchain
Understanding concepts of blockchain oL oL
Using Python’s blockchain libraries
The bitcoin library e e e e e
The web3 library L
Exercises for practice L e
SUMMATY o o o e e e e

Chapter 29: Quantum Computing
Understanding concepts of Quantum Computing
Using Python’s Quantum Computing libraries o
The giskit library o L e e e
The pyquil library o L e e e
Exercises for Practice L e e e e e
SUMMATY o o o e e e e

Chapter 30: Robotics
Understanding concepts of Robotics
Using Python’s Robotics Libraries
The rospy library L e
The pyrobot library L e
Exercises for Practice e
SUMMATY . . . o o oo e e e e

Chapter 31: Cloud Computing
Understanding concepts of Cloud Computing
Using Python’s Cloud Computing Libraries
The boto3 library o e
The openstack library oL
Exercises for Practice
SUMMATY . . . o o o e e e e e e

Chapter 32: Big Data
Understanding concepts of Big Data
Using Python’s Big Data Libraries e
The pyspark library
The dask library e
Exercises for Practice
SUMMATY o o e e e e

Chapter 33: Cyber Security
Understanding concepts of Cyber Security

54
o4
o4
54
54
54
o4

55
%)
%)
95
95
95
%)

56
56
56
96
o7
57
o7

58
58
58
58
98
99
59

60
60
60
60
60
61
61

62
62
62
62
62
62
63

64

Using Python’s Cybersecurity Libraries
The scapy library oL e
The cryptography library
Exercises for Practice L
Summary e e

Exercises and Projects Solutions for Chapter 2: Variables and Data Types
Variable Input and Data Type
Input Dictionary and Print e e
Loop, Numbers, and Squares e e e

Exercises and Projects Solutions for Chapter 3: Control Structures
Even/Odd Number Check
Fibonacci Sequence Printing L L
Continuous Input Until “stop” e

Exercises and Projects Solutions for Chapter 4: Functions
String Reversal Function L
Number Sum Function e
Largest List Element L 0

Exercises and Projects Solutions for Chapter 5: Modules
Random Number Generation e e e
Current Date and Time e e e e e

Exercises and Projects Solutions for Chapter 6: Object-Oriented Programming - Part 1
Person Name and Age Class o .o 00 i e
Car Make, Model, Year Class i e
Bank Account Balance and Number Class

Exercises and Projects Solutions for Chapter 7: Object-Oriented Programming - Part 2
Inherit Shape class with Circle, Rectangle and override area method
Electric/Gas Vehicle Comparison L e
Student Name, Age, ID Class e

Exercises and Projects Solutions for Chapter 8: Input and Output
Word Count Text File Reader o
User Input Text File Writer o L o
CSV Table Print Reader e

Exercises and Projects Solutions for Chapter 9: Error Handling
Factorial Calculation and Exception Handling, .

Exercises and Projects Solutions for Chapter 10: Regular Expressions
Email address extraction: e e e
Phone number validation: e e e e
Removing whitespace: L e

Exercises and Projects Solutions for Chapter 11: Debugging
Syntax Error Debugging
Semantic Error Debugging L e
Second Largest Element with pdb Lo

Exercises and Projects Solutions for Chapter 12: Decorators
Logging decorator: e e e
Memoization decorator: oL oL e
Type checking decorator: L e e e

Exercises and Projects Solutions for Chapter 13: Generators

66
66
66
66

67
67
67
67

68
68
68
68

69
69
69

70
70
70
70

71
71
71
71

72
72
72
72

73
3
73
73

74
74
74
74

75
(0]
(0]
(6]

76
76
76
76

Power of 2 generator: L 78
Exercises and Projects Solutions for Chapter 14: Advanced Topics - Part 1 79
Linear search function: oL 79
Binary search function: L 79
Bubble sort and linear search combination: L o 79
Exercises and Projects Solutions for Chapter 15: Advanced Topics - Part 2 81
Shortest path in a weighted graph using dynamic programming: 81
Knapsack problem using greedy algorithm: oo Lo 81
Solution using dynamic programming: L L e 82
Exercises and Projects Solutions for Chapter 16: Data Structure - Part 1 83
Custom Stack with Minimum Element e 83
Custom Queue with Maximum Size 0 e e e e e 83
Custom Linked List Reversal 84
Exercises and Projects Solutions for Chapter 17: Data Structure - Part 2 85
Binary Search Tree Class o 85
Trie Word Insertion/Search/Removal o 86
Basic Graph Class for shortest path 87
Exercises and Projects Solutions for Chapter 18: Algorithms - Part 1 89
Linear Search for Sorted List 89
Binary search 89
Target not found 89
Exercises and Projects Solutions for Chapter 19: Algorithms - Part 2 920
Shortest Path in Weighted Graph o 90
Knapsack Problem with Greedy Algorithm 90
Exercises and Projects Solutions for Chapter 20: Multithreading and Concurrency 92
Multiprocessing for Factorial Calculation L 92
Here’s an example of a problem that can be solved using multithreading: 92
Exercises and Projects Solutions for Chapter 21: GUI Programming 93
Simple image viewer e e 93
Simple to-do list application L 93
Exercises and Projects Solutions for Chapter 22: Networking 95
Simple chat client using sockets L. 95
Simple file transfer program using sockets 95
Multiplayer game Server e e e e e e 95
Exercises and Projects Solutions for Chapter 23: Web Scraping 97
Scrapes website for image links oL Lo 97
Scraping website for product prices L 97
Real estate agents L 97
Exercises and Projects Solutions for Chapter 24: Web Development 99
Simple web app for file upload/download using Flask 99
Simple web app for registration/login using Django Lo 99
Web app for resume storage and keyword search oL oL L 100
Exercises and Projects Solutions for Chapter 25: Database 102
Simple CRUD app using SQLite e 102
Simple data analysis on MySQL database o 102
Program for product sales reports using MongoDB Lo 102
Exercises and Projects Solutions for Chapter 26: Machine Learning 104
Simple classification model using scikit-learn on Iris dataset 104
Simple convolutional neural network using TensorFlow on CIFAR-10 dataset 104

Exercises and Projects Solutions for Chapter 27: Natural Language Processing 106

Simple text classifier using NLTK on movie TeVIEWS v v v v v v v et e 106
Named entity extraction program using spaCy 106
Text summarization program using NLTK L 106
Exercises and Projects Solutions for Chapter 28: Blockchain 108
Bitcoin price retrieval program using Bitcoin-Python oL 108
Ethereum wallet creation and Ether transfer program using web3.py 108
Smart contracts with web3.py L L 108
Exercises and Projects Solutions for Chapter 29: Quantum Computing 109
Bell state in Qiskit L 109
GHZ state creation and measurement program using PyQuil 0. 109
Deutsch-Jozsa algorithm using PyQuil.. o . o 0 109
Exercises and Projects Solutions for Chapter 30: Robotics 111
Robotic car control program using ROS Lo L 111
Robotic arm control program using PyRobot Lo 111
EC2 instance creation program using boto3 L. 111
Exercises and Projects Solutions for Chapter 31: Cloud Computing 112
Image upload program to OpenStack using openstack library 112
Average calculation program on large dataset using PySpark oL 112
Data filtering program on large dataset using Dask 112
Exercises and Projects Solutions for Chapter 32: Big Data 113
PySpark column average 113
Dask dataset filtering L 113
Dask data aggregation L 113
Exercises and Projects Solutions for Chapter 33: Cyber Security 114
Scapy ARP spoof detection 114
Cryptography file encryption/decryption L 114
Scapy man-in-the-middle detection L L 114
The Bibliography 116
About the Author 117

https://en.wikipedia.org/wiki/Deutsch%E2%80%93Jozsa_algorithm

Preface

Welcome to "Python Programming: A Comprehensive Guide to Software Development," a book that aims to
provide a complete and accessible introduction to programming with Python.

In this book, you will learn how to write computer programs, and you will develop a solid understanding of the
basics of Python programming. The book is written in simple and easy-to-understand language, making it ideal
for beginners who want to learn programming.

As the author of this book, I have years of experience in software development and teaching. I am passionate
about making programming accessible to everyone, and I believe that Python is an excellent language to learn
programming because of its simplicity and versatility.

The book is organized into chapters, each of which covers a different aspect of Python programming. Each
chapter contains Introduction, Concepts and Examples, Exercises and Practice, and Summary and Project Ideas
sections. The material covered in each chapter will be progressively more challenging, preparing you for more
advanced topics like machine learning.

Even if you have no prior programming experience, you will be able to follow along and work through the
examples in this book. You will also have plenty of opportunities to practice and test the code on your own
computer. If you need further resources, suggestions will be provided throughout the book.

Before you dive into the book, it is beneficial to have a basic understanding of computer usage and the command-
line interface, but it’s not necessary. The book is written to help you learn programming step by step, from the
basics to more advanced concepts.

I want to thank everyone who has helped me in the process of writing this book. Your encouragement and
support have been invaluable. I also want to encourage you to experiment with the code and to reach out to me
with any questions you might have along the way.

I hope that this book will inspire you to learn more about programming and to develop your skills in software
development. Happy learning!

How to read this book
How to Read This Book:

This book “Learn programming with Python” is designed to take you through the fundamentals of programming
with Python, all the way to advanced and expert levels. The chapters are divided into three sections to match
your experience level.

If you are new to programming or have limited experience, we recommend starting with Chapters 1 to 13. These
chapters are beginner-friendly and will cover the basics of programming with Python, including variables, loops,
functions, and data structures.

If you have some experience with programming, you can skip the beginner chapters and move to Chapters 14 to
25. These chapters are more advanced and cover topics such as object-oriented programming, algorithms, and
working with files.

For experienced programmers looking to expand their knowledge of Python, Chapters 26 to 33 are designed for
you. These chapters will dive deep into advanced topics, such as web development, machine learning, and data
science.

No matter your experience level, it’s important to work through the chapters in order, as the content builds
on itself. Each chapter will provide exercises and coding challenges to help solidify your understanding of the
concepts covered.

We hope you find this book to be a useful resource in your journey to mastering programming with Python.
Happy coding!

History and Overview of Python

Introduction

Python is one of the most popular and widely used programming languages in the world. In this chapter, we
will explore the origins of Python and learn about the key features and benefits that make it so popular among
developers.

A brief history of Python

Python was created in 1989 by Guido van Rossum, a Dutch programmer who was looking for a way to make
programming more accessible to non-experts. He named the language after the British comedy troupe Monty
Python, in part because of its playful and irreverent spirit.

Python quickly gained popularity among developers, and by 2000 it had become one of the top 10 programming
languages in the world. It has undergone several updates and improvements over the years, with the latest
version, Python 3.10, being released in December 2021.

An overview of Python’s key features and benefits

Python is known for its readability and simplicity, making it easy for even non-experts to pick up and learn. It
also has a wide range of libraries and modules that make it highly versatile and useful for a variety of tasks,
including web development, data analysis, artificial intelligence, and machine learning.

Python is also an open-source language, which means that it is freely available to anyone who wants to use it,
and its community is constantly growing, contributing to its development and maintenance.

Python’s Standard Library and Tools

Python has a large number of standard libraries, making it possible to perform a wide range of tasks with
minimal code. The standard library includes modules for data manipulation, mathematical calculations, string
processing, and file management, among others.

Tools such as [Python and Jupyter Notebook have also become popular for development in Python. These
interactive computing environments are ideal for data analysis and visualization, and for sharing and reproducing
code and results.

Python in industry and scientific computing

Python has become a popular choice for a wide range of industries, from web development and data analysis
to artificial intelligence and machine learning. Many popular libraries and frameworks such as Tensorflow,
Scikit-learn, Pandas, Flask, Django, etc are written in Python and make it easy to implement these tasks.

In scientific computing, Python has become an important tool for data analysis, modeling, and visualization in
fields such as physics, chemistry, and biology. The powerful libraries like NumPy, SciPy, Matplotlib and others
make it easy to perform complex calculations and create high-quality visualizations.

Conclusion

In this chapter, we have covered the history and origins of the Python programming language, as well as its key
features and benefits. We have seen how Python’s readability and simplicity, as well as its wide range of libraries
and modules, make it a popular choice among developers for a variety of tasks. We also discussed the importance
of its open-source nature and its growing community of contributors. We also looked at the Standard Library
and tools that come with Python making development easier and also it’s application in different industries and
scientific computing fields.

In the next chapter, we will dive into the basics of programming concepts in Python, such as variables and data
types. This will provide a foundation for understanding the more advanced concepts we will cover later in the
book. As we continue to explore the capabilities of Python, you will see how it can be used to create powerful
and useful applications, and how it can help you to understand and shape the technology that impacts our daily
lives and future.

10

Chapter 1: Introduction to Python

Welcome to the world of Python programming! In this chapter, I will introduce you to the basics of setting up a
Python development environment, as well as some key programming concepts that will help you start writing
your own Python programs.

Setting up a Python development environment

Before we can start writing Python code, we need to make sure we have the right tools and dependencies. The
first step is to download and install Python. You can find the latest version of Python on the official Python
website.

It is also recommended to install Anaconda which is a distribution of Python that comes with many popular
libraries and tools pre-installed. It also includes Jupyter Notebook, an interactive environment that allows you
to create and share documents that contain live code, equations, visualizations and narrative text. You can
download Anaconda from the official Anaconda download page.

Once you have installed Python, you can verify that it was installed correctly by opening a terminal or command
prompt and typing python. If you have installed Anaconda, you can also check that Jupyter Notebook is installed
by typing jupyter notebook in the command prompt.

In addition to a development environment, it is recommended that you install a package manager such as pip,
which will make it easier to install and manage external libraries.

Once you have Python installed, you will also need a development environment where you can write, run, and
debug your code. There are several options available, but some popular choices include IDLE (Python’s built-in
IDE), PyCharm, and Visual Studio Code.

It is important to have a clear understanding of your operating system and how to navigate in it. Make sure
you have admin access to the computer that you are using, or if not, you have to be able to run Python as
administrator. Once you have installed Python, you can verify that it was installed correctly by opening a
terminal or command prompt and typing python.

In addition to a development environment, it is recommended that you install a package manager such as pip,
which will make it easier to install and manage external libraries.

The basics of programming concepts

Before diving into the specifics of Python, it’s important to have a basic understanding of key programming
concepts. These include:

e Variables: In programming, a variable is a way to store and manipulate data. In Python, we use the
assignment operator (=) to assign a value to a variable. For example, the following code assigns the value
42 to the variable x: x = 42

o Data types: Different types of data have different properties and behaviors. Python has several built-in
data types, such as integers (e.g. 1, 2, 3), floating-point numbers (e.g. 3.14, 1.23), and strings (e.g. ‘Hello,
world!”). Tt’s important to understand the characteristics of each data type and the operations that can be
performed on them.

e Control structures: Control structures are used to control the flow of a program based on certain
conditions. In Python, we use control structures such as if-else statements, for loops, and while loops to
control the flow of our programs.

Exercises for practice

It’s one thing to read about programming concepts, but it’s another thing to actually see them in action. In this
section, I will provide some simple examples that demonstrate how these concepts can be used in a real-world
Python program.

This ©s an example of using a variable to store data
x = 42
print(x)

This ©1s an example of using a data type
name = 'Python'

11

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.anaconda.com/products/distribution/

print (name)

This is an example of using a control structure
if x > 10:

print("x is greater than 10")
else:

print("x is less than or equal to 10")

To solidify your understanding and apply these concepts in a practical context, I encourage you to try these
examples yourself, and experiment with different inputs.

Summary

This chapter introduces the basics of setting up a Python development environment, including downloading and
installing Python and a package manager like pip. It also covers key programming concepts such as variables,
data types, and control structures. Examples are provided to demonstrate these concepts in a real-world Python
program and the readers are encouraged to practice these examples to solidify their understanding.

12

Chapter 2: Variables and Data Types

In this chapter, we will explore the fundamental building blocks of Python programming - variables and data
types. Understanding how to properly use and manipulate these elements is essential for writing effective and
efficient code.

Understanding Variables in Python

In Python, a variable is a way to store and retrieve a value. They are also known as identifiers and are
case-sensitive. You can assign a value to a variable by using the assignment operator (=). For example:

x =5
This assigns the value 5 to the wariable ‘z°.

In Python, there are different types of variable assignments. Basic assignment, as shown above, is the most
common way to assign value to a variable. With multiple assignment, you can assign a value to multiple variables
at once:

X, y,z=1, 2, 3
You can also use unpacking to assign the elements of an iterable (e.g. a list or tuple) to multiple variables:

numbers = [1, 2, 3]
a, b, ¢ = numbers

It is important to keep in mind that variable naming in Python follows certain conventions. Variable names
should be descriptive and can only contain letters, numbers, and underscores. They cannot begin with a number
and certain words, such as “if” or “def,” are reserved and cannot be used as variable names.

The Various Data Types in Python

In Python, there are several different data types that are used to represent and store different types of information.
These include:

Numbers

In Python, numbers are represented by the int and float data types. int represents a whole number, while float
represents a number with a decimal point. For example:

x =5 # int
y = 5.5 # float

You can perform various mathematical operations with numbers, such as addition, subtraction, multiplication,
and division. Python also has built-in functions for more advanced mathematical operations, such as square
roots and trigonometry.

Strings

In Python, a string is a sequence of characters enclosed in single or double quotes. For example:

name = "John Smith"

Strings are immutable, which means that once they are created, their value cannot be changed. However, you can
manipulate strings by using string methods, such as concatenation, slicing, and accessing individual characters.
Lists

In Python, a list is an ordered collection of items. Lists can store items of different data types, such as integers,
floats, strings, and other lists. Lists are enclosed in square brackets. For example:

numbers = [1, 2, 3, 4, 5]

You can add or remove items from a list and access individual items by their index.

13

Dictionaries

In Python, a dictionary is an unordered collection of key-value pairs. Dictionaries are enclosed in curly braces.
For example:

person = {"name": "John Smith", "age": 30}

You can access the value of a specific key in a dictionary and add or remove key-value pairs.

And more

Other data types in Python include tuples, sets, booleans, and more. Each data type has its own specific use
cases and methods for working with them.

How to Use and Manipulate Variables and Data Types

Now that we have a basic understanding of variables and the different data types in Python, we can explore how
to use and manipulate them.

When working with variables, it’s important to keep in mind the data type of the value that you are assigning.
This is because different data types have different methods and properties that you can use to work with them.
For example, you can use the ‘+’ operator to concatenate strings, but it will not work for concatenating lists.

When working with numbers, you can use mathematical operators such as +, -, *, and / to perform basic
arithmetic. Python also provides built-in functions for more advanced mathematical operations, such as pow()
and math.sqrt ().

When working with strings, you can use string methods such as .upper () and .lower() to change the case of a
string, .find () to search for a substring within a string, and .replace() to replace one substring with another.

When working with lists, you can use the append () method to add an item to the end of a list, the insert ()
method to add an item at a specific index, and the remove () method to remove an item. You can also use list
slicing and indexing to access and manipulate specific elements in a list.

When working with dictionaries, you can use the [] notation to access the value of a specific key and the
.items () method to access all key-value pairs. You can also use the .keys() method and .values() method
to access just the keys and values, respectively.

It is important to practice and get familiar with these data types and their functionalities.

Exercises for Practice

To help solidify your understanding of variables and data types, you can try out some examples and exercises.
Here are a few ideas to get you started:

1. Write a program that takes user input and assigns it to a variable. Print out the variable’s value and data
type.

2. Write a program that prompts the user for their name and age, and then stores the input in a dictionary.
Print out the dictionary.

3. Write a program that prompts the user for a list of numbers, and then uses a for loop to print out each
number and its square.

Summary

In this chapter, we covered the basics of variables and data types in Python. We discussed how to assign and
manipulate variables, and the different data types available in Python, such as numbers, strings, lists, and
dictionaries. With this understanding, you can start building more complex programs and projects.

14

Chapter 3: Control Structures

In this chapter, we’ll be diving into control structures in Python. Control structures are a fundamental building
block of any programming language, and Python is no exception. They allow us to control the flow of execution
in our programs based on certain conditions.

Understanding control structures

In Python, we have two main types of control structures: if/else statements and loops.

if/else statements

The if/else statement is used to make decisions in our code. It allows us to execute a block of code only if a
certain condition is met. Here’s an example:

x =5
if x > 3:

print("x is greater than 3")
else:

print("x is not greater than 3")

In this example, we're checking if the variable x is greater than 3. If it is, we print “x is greater than 3”, otherwise
we print “x is not greater than 3”.

for loops
The for loop is used to iterate over a sequence of items. Here’s an example:

for i in range(5):
print (i)

In this example, we’re using the built-in range () function to create a sequence of numbers from 0 to 4. We then
use a for loop to iterate over that sequence, and print each number.

while loops

The while loop is used to repeatedly execute a block of code as long as a certain condition is met. Here’s an
example:

x =5

while x > O:
print (x)
x =1

In this example, we're using a while loop to repeatedly print the value of x and decrement it by 1, as long as it’s
greater than 0.

How to use control structures in Python

You can use control structures to create conditional statements, as well as looping through code, code blocks or
data structures.

Exercises for Practice
The following exercises will help you practice what you’ve learned about control structures in Python.

1. Write a program that uses an if/else statement to check if a number is even or odd.
2. Write a program that uses a for loop to print out the first 10 numbers of the Fibonacci sequence.
3. Write a program that uses a while loop to keep asking the user for input until they enter the word “stop”.

Summary

In this chapter, we learned about control structures in Python, including if/else statements and loops. We also
learned how to use them to control the flow of execution in our programs, and saw some examples of how they
can be used in practice.

15

Chapter 4: Functions

In this chapter, we’ll be exploring functions in Python. Functions are a fundamental building block of any
programming language, and are used to organize and structure code. They allow us to perform specific tasks by
encapsulating code into reusable chunks that can be called upon when needed.

Understanding functions and their use in Python

A function in Python is a block of code that can be executed multiple times by calling its name. Functions are
defined using the def keyword, followed by the function name and a set of parentheses. The code inside the
function is indented and is executed every time the function is called. Here’s an example of a simple function in
Python:

def greet():
print("Hello, World!")
greet ()
This function is called greet, it will print the message when you call the function

Functions in Python can also take input in the form of parameters, which are passed to the function when it is
called. Here’s an example:

def greet(name):
print("Hello, " + name)
greet ("John")

In this example, we’re defining a function called greet that takes a single parameter called name. When we call
the function with the input “John”, it prints “Hello, John”.

Functions can also return values, which can then be used by the code that calls the function. Here’s an example:
def square(x):
return x*x
result = square(5)
print (result)

In this example, we're defining a function called square that takes a single parameter called x, which it then
squares and returns the result, We are then storing the value returned in a variable named result, and printing it.

Defining and calling functions in Python

You can define functions in python using def keyword, followed by the function name, parameter list and a colon.
The function body must be indented. To call a function, simply write the function name followed by parentheses.

Exercises for Practice
The following exercises will help you practice what you’ve learned about functions in Python.

1. Write a function that takes a string as input and returns the string reversed.
2. Write a function that takes two numbers as input and returns their sum.
3. Write a function that takes a list as input and returns the largest element in the list.

Summary

In this chapter, we learned about functions in Python, including how to define and call them, as well as how to
pass input in the form of parameters and return output in the form of return values. We also saw some examples
of how functions can be used in practice.

16

Chapter 5: Modules

In this chapter, we’ll be diving into modules in Python. Modules are a way to organize and structure code by
separating it into smaller, reusable chunks. They allow you to use existing code in your own programs and can
be used to extend the functionality of your programs.

Understanding modules in Python

A module in Python is simply a file containing Python code. A module can define functions, classes and variables,
and can also include other modules. The file name is the module name with the suffix .py added. To use a
module in your code, you must first import it. Here’s an example of how to import and use a module in Python:

import math
x = math.sqrt(16)
print(x)

In this example, we’re importing the built-in math module, which provides access to a number of mathematical
functions. Then we’re using the sqrt function, which is part of the math module, to calculate the square root of
16 and store it in the variable x.

You can also import specific functions or variables from a module instead of the entire module. Here’s an
example:

from math import sqrt
x = sqrt(16)
print(x)

In this example, we're using the from keyword to import only the sqrt function from the math module, rather
than the entire module.

Importing and using modules in Python

You can import modules in python using the import keyword, followed by the module name. You can then use
the functions and variables defined in the module by referencing the module name followed by the function or
variable name.

Exercises for Practice
The following exercises will help you practice what you’ve learned about modules in Python.

1. Import the random module and use it to generate a random number between 1 and 10.
2. Import the datetime module and use it to display the current date and time.

Summary

In this chapter, we learned about modules in Python, including how to import and use them to extend the
functionality of our programs. We also saw some examples of how modules can be used in practice.

Modules are an important tool for organizing and structuring code, and by practicing the exercises in this
chapter, you’ll be well on your way to mastering them.

17

Chapter 6: Object-Oriented Programming - Part 1

In this chapter, we’ll be introducing the concepts of object-oriented programming (OOP) in Python. OOP is a
programming paradigm that is based on the concept of “objects”, which can contain data and functionality. It
allows you to create modular, reusable code that can be easily extended and maintained.

Understanding the concepts of object-oriented programming

The key concepts in object-oriented programming are classes and objects. A class is a blueprint for creating
objects (a particular data structure), providing initial values for state (member variables or attributes), and
implementations of behavior (member functions or methods). An object is an instance of a class. Classes define
objects which can have properties and methods.

Here’s an example of a simple class in Python:

class Dog:
def __init__(self, name, age):
self .name = name
self.age = age

def bark(self):
print ("Woof woof!")

dog = Dog("Fido", 3)
print(dog.name)
dog.bark()

In this example, we’re defining a class called Dog.

def __init__(self, name, age):
self .name = name
self.age = age

The __init__ method is a special method that is called when an object is created from the class, it is used to
initialize the object’s attributes. In this case, we're initializing the name and age attributes.

def bark(self):
print ("Woof woof!")

The bark method is a regular method that can be called on objects created from the Dog class.

dog = Dog("Fido", 3)
print (dog.name)
dog.bark()

Then, we’re creating an object of Dog class, and using the name attribute, and calling the bark method.

Defining classes and objects in Python

You can define classes in Python using the class keyword, followed by the class name. Within the class, you can
define the class attributes and methods. To create an object of a class, you call the class name as if it were a
function.

Exercises for Practice
The following exercises will help you practice what you’ve learned about object-oriented programming in Python.

1. Create a class called Person with attributes for a person’s name and age. Add a method that displays the
person’s name and age.

2. Create a class called Car with attributes for a car’s make, model, and year. Add a method that displays
the car’s information.

3. Create a class called BankAccount with attributes for a bank account’s balance and account number. Add
a method that displays the account’s balance and account number.

18

Summary

In this chapter, we learned about the concepts of object-oriented programming in Python, including classes and
objects. We also saw an example of how to define and use a simple class in Python.

19

Chapter 7: Object-Oriented Programming - Part 2

In this chapter, we’ll be diving deeper into the concepts of object-oriented programming in Python by focusing on
inheritance and polymorphism. These concepts are closely related and are an important part of object-oriented
programming that allows you to build more complex and efficient code.

Understanding inheritance and polymorphism
Inheritance

Inheritance is the mechanism that allows a new class to be derived from an existing class, inheriting its properties
and methods. The derived class is called the subclass or child class and the class from which it is derived is
called the superclass or parent class. This allows you to reuse code and avoid duplication. Here’s an example of
inheritance in Python:

class Animal:
def __init__(self, name):
self.name = name

def speak(self):
pass

class Dog(Animal):
def speak(self):
return "Woof woof!"

dog = Dog("Fido")
print (dog.speak())

In this example, we're defining an Animal class, which has a name attribute and a speak method that does
nothing. Then we're defining a Dog class that inherits from the Animals class, and overrides the speak method
to return “Woof woof!”. Now, when we create an object of the Dog class and call the speak method, it will
return “Woof woof!” because it is overriding the mother method.

Polymorphism

Polymorphism is the ability of an object to behave in different ways depending on its type. Polymorphism allows
objects of different classes to be treated as objects of a common base class. In Python, polymorphism is achieved
through method overriding and method overloading.

Method overriding is when a subclass defines a method with the same name as a method in its superclass. This
allows the subclass to have a different implementation of the method while still maintaining the same interface.
In the above example of the Dog class, the speak method is an example of method overriding.

Method overloading is when multiple methods in the same class have the same name, but different parameters.
Python does not have native support for method overloading, but you can achieve it by using default arguments
and type hints. Here’s an example:

class Calculator:
def add(self, a: int, b: int):
return a + b

def add(self, a: int, b: int, c: int):
return a + b + ¢

In this example, we have defined two methods, both called add, but with different parameters. When the add
method is called with two arguments, the first add method is called, when it is called with three arguments, the
second add method is called.

Using built-in classes in Python

Python has a number of built-in classes that you can use in your programs, such as the 1ist, dict, and str
classes. These classes provide a set of useful methods that you can use to perform common operations on the
objects of these classes, as well as special methods that allow you to customize their behavior. Here’s an example:

20

list class example
numbers = [1, 2, 3, 4, 5]
numbers.append (6)

print (numbers)

str class example
name = "John"
print (name.upper())

In this example, we are using the built-in list class to create a list of numbers, and using the append method to
add an element to it. Then we are using the built-in str class to create a string object, and using the upper
method to convert it to uppercase.

Exercises for Practice

The following exercises will help you practice what you’'ve learned about inheritance and polymorphism in
Python.

1. Create a Shape class with a area method that returns 0. Define Circle and Rectangle classes that inherit
from Shape and override the area method to return the correct area.

2. Create a Car class with a drive method that returns “Driving. ..”". Define ElectricCar and GasCar classes
that inherit from Car and override the drive method to return “Electric Driving...” and “Gas Driving. ..’
respectively.

i

3. Create a class called Person with a method that display the name and age of the person, Create a new
class called Student that inherits from Person, and add a method that display the name, age and student
id of the student.

Summary

In this chapter, we learned about the concepts of inheritance and polymorphism in Python and how they can be
used to build more complex and efficient code. We also saw some examples of how to use built-in classes in
Python.

21

Chapter 8: Input and Output

In this chapter, we’ll be diving into the topic of input and output (I/O) operations in Python. I/O operations
refer to the ways in which a program can interact with the outside world, such as by reading data from a file or
displaying text on the screen.

Reading from and writing to files in Python

Python provides a number of built-in functions and methods that allow you to easily read from and write to
files. For example, the open() function can be used to open a file, and the read() and write() methods can be
used to read from and write to the file, respectively.

To read from a file, you can use the open() function to open the file, and then use the read () method to read
the contents of the file. For example:

with open("example.txt", "r") as file:
content = file.read()
print(content)

This code opens the file “example.txt” in read mode, reads the entire contents of the file, and then stores it in
the variable “content”. It then uses the print () function to display the contents of the file on the screen.

Similarly, you can use the open() function to open a file in write mode, and then use the write() method to
write data to the file. For example:

with open("example.txt", "w") as file:
file.write("Hello, World!")

This code opens the file “example.txt” in write mode, writes the string “Hello, World!” to the file, and then
closes the file.

Aside from this, python also has standard library ‘os’ which can be used for basic input/output operations like
renaming and deleting the files.

Exercises for Practice

Now, it’s time for you to practice what you’ve learned. Try the following exercises to solidify your understanding
of I/O operations in Python:

1. Create a python script that reads a text file and prints the number of words in it.
2. Create a python script that prompts the user for input and then writes it to a file.
3. Create a python script that reads a CSV file and prints its contents as a table.

Summary

In this chapter, we’'ve covered the basics of input and output operations in Python, including how to read from
and write to files using the built-in open(), read (), and write() functions and methods. You should now have
a solid foundation for working with files in Python and be ready to move on to more advanced topics.

In summary, this chapter has covered the basic of input and output operations in python, from reading from and
writing to files in Python, to use of standard library ‘os’ for I/O operations, and practice exercises for the reader.

22

Chapter 9: Error Handling

As a programmer, it’s important to anticipate and handle errors that may occur during the execution of your
program. In Python, errors are referred to as “exceptions” and are represented by a class that inherits from the
built-in BaseException class.

try / except block

There are two main types of errors that can occur in a Python program: syntax errors and exceptions. Syntax
errors occur when the Python interpreter encounters a line of code that it cannot interpret due to a mistake in
the syntax. On the other hand, exceptions occur when an error occurs during the execution of the program,
such as when a program tries to divide by zero or access an index out of range.

To handle exceptions in Python, we use the try and except keywords. The try block contains the code that may
raise an exception, and the except block contains the code that will be executed if an exception is raised.

For example, consider the following code that opens a file and reads its contents:

try:
with open("example.txt", "r") as file:
content = file.read()
print (content)
except FileNotFoundError:
print("File not found.")

In this example, the try block contains the code that opens and reads the file, and the except block contains
the code that is executed if a FileNotFoundError exception is raised. If the file “example.txt” is not found, the
program will print “File not found.” instead of raising an error.

finally block

In addition to try and except, we can also use the finally block. The code in this block will always be executed,
whether an exception is raised or not. This is useful for performing cleanup operations such as closing a file or a
database connection.

try:

code that can raise an exception
except:

code that handles the exzception
finally:

code that is always ezxecuted

raise statement

We can also raise our custom exceptions using ‘raise’ statement, it’s a good practice to give the exception a
descriptive name and add a helpful error message.

if age < 18:
raise ValueError("You must be at least 18 years old to use this service.")

Exercises for Practice

Now, it’s time for you to practice what you’ve learned. Try the following exercises to solidify your understanding
of error handling in Python:

1. Create a Python script that prompts the user for a number and then calculates the factorial of that number.
Handle the exception that may occur if the user enters a negative number or a non-numeric value.

2. Create a Python script that prompts the user for two numbers and then divides the first number by the
second. Handle the exception that may occur if the user enters zero as the second number.

3. Create a python script that takes a list as input and returns the second largest element. Handle the
exception that may occur if the list is empty.

23

Summary

In this chapter, we’ve covered the basics of error handling in Python, including how to handle and raise exceptions
using the try, except and finally statements. We have also learned how to raise custom exceptions using raise
statement. You should now have a solid foundation for handling errors in Python and be ready to move on to
more advanced topics.

In summary, this chapter has covered the basic concepts of error handling in python, from understanding errors
and exceptions in Python, to handling and raising exceptions, and practice exercises for the reader.

24

Chapter 10: Regular Expressions

Regular expressions, often referred to as “regex” or “regexp,” are a powerful tool for matching patterns in text.
In Python, regular expressions are supported by the re module, which provides a set of functions and classes for
working with regular expressions.

A regular expression is a sequence of characters that define a search pattern. For example, the regular expression
matches any digit, while the regular expression [A-Z] matches any uppercase letter.

In Python, we use the re module to work with regular expressions. The most commonly used functions in the re
module are search(), findall(), split(), sub(), and compile().

search() function

The search() function is used to search for a match to a regular expression in a string. For example, the
following code will search for the regular expression in the string “abc123”:

import re
result = re.search(r"\d", "abc123")
print(result.group())

This will print “1” as output.

findall () function

The findall() function returns a list of all the matches to a regular expression in a string. For example, the
following code will find all the digits in the string “abc123”:

import re

result = re.findall(r"\d", "abc123")
print (result)

This will print “[‘1’, ‘2, ‘3’]” as output.

split () function

The split () function is used to split a string into a list of substrings based on a regular expression. For example,
the following code will split the string “abc,123,def” into a list of substrings using the regular expression ,:

import re

result = re.split(r",", "abc,123,def")
print (result)

This will print “[‘abc’, ‘123’, ‘def’]” as output.

sub() function

The sub() function is used to replace all occurrences of a regular expression in a string with a replacement string.
For example, the following code will replace all occurrences of the regular expression in the string “abc123” with
the string “X”:

import re

result = re.sub(r"\d", "X", "abcl123")
print (result)

This will print “abcXXX” as output.

compile() function

The compile() function is used to create a regular expression object from a string. This is useful when you need
to use a regular expression multiple times in your program. For example, the following code creates a regular
expression object for the pattern :

25

import re

pattern = re.compile(r"\d")
result = pattern.search("abc123")
print(result.group())

This will print “1” as output.

Now, it’s time for you to practice what you’ve learned. Try the following exercises to solidify your understanding
of regular expressions in Python:

Exercises for Practice

1. Create a python script that extracts all email addresses from a given string.
2. Create a python script that validates a phone number.
3. Create a python script that takes a string as input and removes all the whitespace from it.

Summary

In summary, this chapter has covered the basic concepts of regular expressions in Python, including an
understanding of regular expressions and how to use the re module for working with regular expressions using
various functions such as search(), findall(), split(), sub() and compile(). Additionally, it provides practice
exercises for the reader to solidify their understanding of regular expressions.

26

Chapter 11: Debugging

Debugging is the process of identifying and fixing errors in your code. As a programmer, debugging is an
important skill to have, as it allows you to identify and fix issues in your code quickly and efficiently.

The pdp module

In Python, there are several ways to debug your code, but one of the most commonly used is the pdb module.
pdb stands for “Python Debugger,” and it’s a built-in module that provides a set of functions for interacting
with the Python interpreter at a low level.

To use pdb, you can simply import the module at the top of your script and use one of its functions, such as
set_trace(), to set a breakpoint in your code. For example:

import pdb

def my_function(x):
result = x * 2
pdb.set_trace()
return result

print (my_function(3))

This code will start the pdb interpreter at the line where pdb.set_trace() is called, and then you can use the
various commands available in the pdb interpreter to step through your code and inspect variables and stack
frames.

pdb provides many commands that you can use to navigate and inspect your code while it’s running, some of
the most commonly used are:

o 1 (next) : Execute the current line and move to the next one ignoring function calls.

o s (step) : Execute the current line and stop at the first possible occasion (either in a function that is called
or in the current function).

o ¢ (continue) : Continue execution until a breakpoint is found.

o 1 (list) : List source code for the current file. Without arguments, list 11 lines around the current line or
continue the previous listing.

In addition to the pdb module, you can also use other tools for debugging, such as the print () statement, and
assert statement, or Integrated Development Environments (IDEs) like Pycharm, VSCode, etc.

Exercises for Practice

Now, it’s time for you to practice what you’ve learned. Try the following exercises to solidify your understanding
of debugging in Python:

1. Create a python script that has a syntax error and use pdb to find the error and fix it.

2. Create a python script that has a semantic error and use pdb to find the error and fix it.

3. Create a python script that takes a list as input and returns the second largest element. Use pdb to debug
and understand the flow of your program.

In this chapter, we’'ve covered the basics of debugging in Python, including the use of the pdb module and
various commands provided by pdb for debugging, as well as other tools like print (), assert statement and
IDEs.

Additionally, it provided practice exercises for the reader to solidify their understanding of debugging in python.

Summary

In summary, This chapter provides an understanding of debugging in python, including use of the built-in pdb
module, various commands provided by pdb and other tools like print(), assert statement, and IDEs to debug
python programs and also provided practice exercises for the reader to solidify their understanding of debugging
in python.

27

Chapter 12: Decorators

In this chapter, we will explore the concept of decorators in Python. Decorators are a powerful feature that
allows us to modify the behavior of a function or method without changing its code. They are often used to add
additional functionality or to enforce constraints on the arguments passed to a function.

Understanding decorators and their use in Python

A decorator is a special type of function that takes another function as its argument and returns a new function.
The new function is a modified version of the original function, with additional behavior added. Decorators are
defined using the @ symbol, which is placed before the function definition.

Here is an example of a simple decorator that adds 1 to the result of a given function:

def add_one(function):
def wrapper (*args, **kwargs):
result = function(*args, **kwargs)
return result + 1
return wrapper

@add_one
def calculate(x, y):
return x +y

print(calculate(l, 2)) # prints 3

In this example, the add_one decorator is applied to the calculate function, which adds 1 to the result of the
function. The decorator is defined as a function that takes another function as its argument and returns a new
function, wrapper, that is a modified version of the original function.

Using decorators to modify functions and methods

Decorators can be used to add additional functionality to a function or method without changing its code. For
example, you can use a decorator to enforce constraints on the arguments passed to a function, such as checking
that a value is within a certain range.

Here’s an example of a decorator that checks the range of value:

def check_range(min_value, max_value):
def decorator(function):
def wrapper (*args, **kwargs):
for arg in args:
if not min_value <= arg <= max_value:
raise ValueError("Argument out of range")
return function(*args, *xkwargs)
return wrapper
return decorator

@check_range (0, 100)
def calculate(x, y):
return x +y

print(calculate(l, 2)) # prints 3
print(calculate(101, 2)) # raises ValueError

In this example, the check_range decorator is defined as a function that takes two arguments: a minimum
and maximum value. It returns a decorator function that checks whether the arguments passed to the original
function are within the specified range. If any of the arguments are out of range, a ValueError is raised.

Exercises for practice

1. Write a decorator that logs the arguments passed to a function and the result returned by the function.
2. Write a decorator that memoizes the results of a function. A memoized function will return the cached
result for a given set of arguments, rather than recalculating the result.

28

3. Write a decorator that checks whether the values passed to a function are of the correct type.

Summary

Decorators are a powerful feature in Python that allow us to modify the behavior of a function or method without
changing its code. They can be used to add additional functionality, enforce constraints on the arguments passed
to a function, or to cache the results of a function.

29

Chapter 13: Generators

In this chapter, we will explore the concept of generators in Python. Generators are a powerful feature that
allows us to create iterators in a more efficient and easy way than using traditional functions. They are useful
for iterating over large data sets, creating infinite sequences, and handling memory efficiently.

Understanding generators and their use in Python

A generator is a special type of iterator that is defined using a special type of function called a generator function.
A generator function is defined like a normal function but instead of using the return statement, it uses the
yield statement. Each time the yield statement is executed, the state of the generator is saved and the value is
returned to the caller. The next time the generator is called, it picks up where it left off.

Here is an example of a simple generator function:

def count_up_to(max):
count = 1
while count <= max:
yield count
count += 1

counter = count_up_to(5)

print (next(counter)) # prints
print (next(counter)) # prints
print (next(counter)) # prints
print (next(counter)) # prints

(S 10 SNV VIR

print (next(counter)) # prints

In this example, the generator count_up_to is defined using the keyword yield, as a result each time it’s called
it returns a value and continues from where it left off.

Creating and using generators in Python

Generators can be created using generator functions, which are defined using the yield keyword. Once a generator
function is defined, it can be used to create a generator object by calling it like a normal function.

Here’s an example of how to use a generator to iterate over a large data set:

def process_data(data):
for item in data:
if is_valid(item):
yield item

data = load_large_data_set()
for item in process_data(data):
do_something(item)

In this example, the generator process_data is used to iterate over a large data set, and only valid items are
processed. This can be useful in situations where loading the entire data set into memory would be too expensive.

Generators can also be used to create infinite sequences.

def infinite_sequence():

i=0

while True:
yield i
i+=1

seq = infinite_sequence()

print (next(seq)) # prints 0
print(next(seq)) # prints 1
print(next(seq)) # prints 2

In this example, the generator infinite_sequence creates an infinite sequence of numbers starting from 0. We
can also notice how the next () function is used.

30

Exercises for practice

1. Write a generator that generates the fibonacci sequence.
2. Write a generator that yields all the permutation of a given list.
3. Write a generator that generates the powers of 2.

Summary

Generators are a powerful feature in Python that allows us to create iterators in an efficient and easy way. They
are useful for iterating over large data sets, creating infinite sequences, and handling memory efficiently. They
are defined using generator functions, which use the yield statement, and are accessed using the next () function.

31

Chapter 14: Advanced Topics - Part 1

In this chapter, we will explore some advanced topics in Python such as lambda function, map, filter and reduce
function. These features provide a concise and efficient way to perform operations on data and are commonly
used in functional programming.

Understanding advanced topics in Python
Lambda function

A lambda function is a small anonymous function that can take any number of arguments, but can only have
one expression. They are defined using the lambda keyword and are often used in situations where a function is
required but it’s only going to be used once.

Here’s an example of using a lambda function to sort a list of tuples by the second element:

data = [(1, 'A"), (3, 'BY), (2, 'C")]
data.sort(key=lambda x: x[1])
print(data) # prints [(1, 'A'), (3, 'B'), (2, 'C')]

In this example, a lambda function is used to define the sorting key, which sorts the list based on the second
element of each tuple.

Map

The map () function applies a given function to all items in an input list and returns an iterator of the results.
This is useful for applying a function to a large data set without having to use a loop.

Here’s an example of using the map () function to square all the elements in a list:

data = [1, 2, 3, 4, 5]

squared_data = map(lambda x: x**2, data)

print (list(squared_data)) # prints [1, 4, 9, 16, 25]

Filter

The filter () function returns an iterator from elements of an iterable for which a function returns true.
Here’s an example of using the filter () function to remove all even numbers from a list:
data = [1, 2, 3, 4, 5]

filtered_data = filter(lambda x: x % 2 != 0, data)

print (list(filtered_data)) # prints [1, 3, 5]

Reduce

The reduce () function applies a given function cumulatively on a given sequence. At each step, the function
takes two values and returns a single value.

Here’s an example of using the reduce () function to find the product of all the elements in a list:
from functools import reduce
data = [1, 2, 3, 4, 5]

product = reduce(lambda x, y: x*y, data)
print (product) # prints 120

Using some advanced features of Python These advanced features of Python can be used in various situations
and can make our code more efficient and concise.

Here’s an example of using the map(), filter() and reduce() functions together to find the product of all the
even numbers in a list:

from functools import reduce

data = [1, 2, 3, 4, 5]
filtered_data = list(filter(lambda x: x % 2 == 0, data))

32

squared_data = list(map(lambda x: x**2, filtered_data))
product = reduce(lambda x, y: x*y, squared_data)

Exercises for practice

1. Use a lambda function, map and filter to square all the even numbers in a list and return only the squared
values greater than 100.

2. Use a lambda function and reduce to find the product of all the elements in a list of lists.

3. Use a lambda function, map and filter to return only the words that have more than 4 letters from a list of
strings.

Summary

In this chapter, we have explored some advanced topics in Python such as lambda function, map, filter and
reduce function. These features provide a concise and efficient way to perform operations on data and are
commonly used in functional programming. They can be used to make our code more efficient, readable and
reusable. By understanding and mastering these concepts, you will be able to write more efficient and elegant
Python code.

33

Chapter 15: Advanced Topics - Part 2

In this chapter, we will explore more advanced topics in Python such as unit testing, closures, and built-in
libraries. These features provide a powerful way to test and organize our code, and make it more robust and
maintainable.

Understanding more advanced topics
Closure

A closure is a nested function that has access to the variables in the enclosing scope. This allows the nested
function to “remember” the values of those variables, even after the enclosing function has finished executing.
Closures are a powerful feature that allows us to create function objects with “memory”.

Here’s an example of a closure:

def make_adder(x):
def adder(y):
return x +y
return adder

add5 = make_adder (5)
print(add5(3)) # prints 8

In this example, the make_adder function creates and returns a closure adder that remembers the value of x.

Built-in Libraries

Python has a large number of built-in libraries that provide a wide range of functionality. Some of the most
commonly used built-in libraries include math, random, datetime, and os. These libraries provide useful
functions for tasks such as mathematical operations, generating random numbers, working with dates and times,
and interacting with the operating system.

Using the unittest module for unit testing

Unit testing is the process of testing individual units of code, such as functions and methods, to ensure that they
are working as expected. This helps to catch bugs early and to ensure that code changes do not introduce new
bugs. Python has a built-in module called unittest that provides tools for creating and running unit tests.

The unittest module provides tools for creating and running unit tests in Python. To use the unittest module,
you need to create a test class that inherits from unittest.TestCase, and then create test methods within that
class. Each test method should test a specific aspect of the code being tested.

Here’s an example of a simple unit test for a function that calculates the factorial of a number:

import unittest

def factorial(n):
if n ==
return 1
return n * factorial(n-1)

class FactorialTest(unittest.TestCase):
def test_factorial(self):

self.assertEqual(factorial(0), 1)
self.assertEqual(factorial(l), 1)
self .assertEqual (factorial(2), 2)
self.assertEqual(factorial(3), 6)
self.assertEqual (factorial(4), 24)

if __name__ == '__main__"':

unittest.main()

In this example, a test class FactorialTest is defined which inherits from unittest.TestCase. This test
class defines a method test_factorial () which runs several test cases for the factorial() function. The
assertEqual () method is used to check that the output of the function is as expected for different input values.

34

This example shows how you can test a simple function like factorial. but in real life projects and systems, the
functions and classes are more complex and have more conditions to consider.

Exercises for practice
1. Create a unit test for a function that calculates the Fibonacci sequence.

2. Create a unit test for a class that represents a point in 2D space, and provides methods for calculating the
distance from the origin and the slope to another point.

3. Create a unit test for a function that performs a simple encryption by shifting the letters of a message by
a given number of positions.

Summary

In this chapter, we have explored more advanced topics in Python such as unit testing, closures, and built-in
libraries. Unit testing helps to ensure that code works as expected and can catch bugs early. Closure allows us
to create function objects with “memory”, making our code more readable and maintainable. Using the built-in
libraries gives us the ability to use the already-built

35

Chapter 16: Data Structure - Part 1

In this chapter, we will explore some fundamental data structures such as stack, queue, linked list, and etc.
Data structures are an important aspect of programming as they provide a way to organize and store data in a
specific way to make it more efficient to access, manipulate, and process.

Understanding data structures

Stack

A stack is a last-in-first-out (LIFO) data structure that allows for the insertion and deletion of elements at one
end, called the top of the stack. The basic operations that can be performed on a stack include push, pop, and
peek.

Here’s an example of a stack implementation in Python using a list:

stack = []

push operation
stack.append (1)
stack.append(2)
stack.append(3)

pop operation
stack.pop() # returns 3
stack.pop() # returns 2

peek operation
stack[-1] # returns 1

In this example, the list is used to implement the stack data structure, the append method represents the push
operation, the pop method represents the pop operation, and the indexing [-1] represents the peek operation.

Queue

A queue is a first-in-first-out (FIFO) data structure that allows for the insertion of elements at one end, called
the rear, and the deletion of elements at the other end, called the front. The basic operations that can be
performed on a queue include enqueue, dequeue, and peek.

Here’s an example of a queue implementation in Python using a list:

from collections import deque
queue = deque()

enqueue operation
queue . append (1)
queue . append(2)
queue . append(3)

dequeue operation
queue.popleft() # returns 1
queue.popleft() # returns 2

peek operation
queue [0] # returns 3

In this example, the deque class from the collections module is used to implement the queue data structure, the
append method represents the enqueue operation, the popleft method represents the dequeue operation, and the
indexing [0] represents the peek operation.

36

Linked List

A linked list is a data structure that consists of a sequence of nodes, where each node contains an element and a
reference to the next node in the list. Linked lists are useful for situations where the size of the list may change
frequently.

Here’s an example of a simple implementation of a linked list in Python:

class Node:
def __init__(self, data):
self.data = data
self.next = None

class LinkedList:
def __init__(self):
self.head = None

linked_list = LinkedList()
linked_list.head = Node(1)
second = Node(2)
third = Node(3)

linked_list.head.next = second
second.next = third

traversing the linked list

current = linked_list.head

while current:
print(current.data)
current = current.next

output : 1, 2, 3

In this example, the Node class is used to represent each node in the list, and the LinkedList class is used to
represent the linked list itself. The next attribute of a Node object is used to link it to the next node in the list.
The head attribute of the LinkedList object is used to keep track of the first node in the list. To traverse the
list, we can start at the head node and follow the next references until we reach the end of the list.

Implementing data structures in python

Python provides several built-in classes and modules that can be used to implement common data structures
such as lists, tuples, dictionaries, and sets. However, in certain situations, it might be useful to implement a
custom data structure that provides additional functionality or performance optimizations.

Exercises for practice

1. Implement a custom stack class that keeps track of the minimum element in the stack in constant time.

2. Implement a custom queue class that supports a maximum size and automatically discards the oldest
element when the queue is full.

3. Implement a custom linked list class that has a function to reverse the order of the elements.

Summary

In this chapter, we have explored some fundamental data structures such as stack, queue, linked list, and etc.
Understanding and using the appropriate data structure can greatly affect the performance and scalability of
a program. It’s important for a developer to be familiar with different data structures and their use cases in
order to make efficient and effective decisions on which to use in a specific situation. In the next chapter, we will
continue to explore more data structures in python.

37

Chapter 17: Data Structure - Part 2

In this chapter, we will continue to explore more advanced data structures such as trees, tries, and graphs. These
data structures provide more specialized ways of organizing and storing data, and are useful for solving specific
types of problems.

Understanding more advanced data structures

Trees

A tree is a data structure that consists of a set of nodes connected by edges. Each node in the tree can have zero
or more child nodes, and each child node can have zero or more child nodes of its own, and so on. The topmost
node in the tree is called the root node, and nodes with no children are called leaf nodes. Trees are useful for
problems that involve hierarchical relationships or organizing data in a specific way.

There are different types of trees, such as binary trees, which have at most two children, and n-ary trees, which
can have an arbitrary number of children. The most common use case of binary trees is to represent a hierarchical
data structure like a file system.

class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None

class BinaryTree:
def __init__(self):
self.root = None

def insert(self, data):
new_node = Node(data)
if self.root is None:
self.root = new_node
else:
current = self.root
while True:
if data < current.data:
if current.left is None:
current.left = new_node
break
else:
current = current.left
else:
if current.right is None:
current.right = new_node
break
else:
current = current.right

tree = BinaryTree()
tree.insert (5)
tree.insert(3)
tree.insert(7)

This example defines a Node class that represents a node in the binary tree, and a BinaryTree class that
represents the binary tree itself. The insert method is used to insert new nodes into the tree, it checks whether
the value of the new node is greater than or less than the value of the current node and move accordingly, if
there is no left or right child it will insert the new node there.

Tries

A trie (also known as a prefix tree) is a tree-like data structure that is used to store an associative array where
the keys are sequences (usually strings). The position of each node in the tree defines a common prefix of one or

38

more keys in the array, and the value stored at each node is usually an indication of the word terminates at that
position. Tries are mainly used for problems where we want to search for a specific word in a large set of words
in an efficient way.

class TrieNode:
def __init__(self):
self.children = {}
self.is_word = False

class Trie:
def __init__(self):
self.root = TrieNode()

def insert(self, word):
current

node = self.root

for letter in word:
if letter not in current_node.children:
current_node.children[letter] = TrieNode()
current_node = current_node.children[letter]
current_node.is_word = True

def search(self, word):
current_node = self.root
for letter in word:
if letter not in current_node.children:
return False
current_node = current_node.children[letter]
return current_node.is_word

trie = Trie()

trie.insert("hello")
trie.insert("world")
print(trie.search("hello")) # True
print(trie.search("world")) # True
print(trie.search("hi")) # False

This example defines a TrieNode class that represents a node in the trie, and a Trie class that represents the
trie itself. The insert method is used to insert new words into the trie, it adds each letter of the word as a
child of the current node until the last letter, then mark the last node as is_word as True. The search method
is used to search for a specific word in the trie, it checks if the letter in the input word is present in the current
node, if not it returns False otherwise, it moves to the next letter node in the trie, if the last node is marked as
is_word it returns True, else it returns False.

Graphs

A graph is a data structure that consists of a set of nodes (also called vertices) and edges that connect the
nodes. The edges can be directed (with a direction from one node to another) or undirected (with no direction).
Graphs are useful for problems that involve relationships or connections between items, such as social networks
or transportation networks.

Here’s an example of a simple implementation of a graph in Python using a dictionary to represent the edges
between the nodes:

class Graph:
def __init__(self):
self.graph = {}

def add_node(self, node):
if node not in self.graph:

self.graph[node] = []

def add_edge(self, nodel, node2):

39

self.graph[nodel] .append(node2)
self.graph[node?2] .append(nodel)

def bfs(self,start):
visited = set()
queue = [start]
while queue:
node = queue.pop(0)
if node not in visited:
visited.add(node)
queue.extend(self.graph[node]-visited)
return visited

graph = Graph()
graph.add_node(1)
graph.add_node(2)
graph.add_node(3)
graph.add_edge (1, 2)
graph.add_edge(2, 3)
print(graph.bfs(1)) # {1, 2, 3}

In this example, we defined a Graph class that uses a dictionary to represent the edges between the nodes.

Implementing data structures in python

Python provides several built-in classes and modules that can be used to implement common data structures
such as lists, tuples, dictionaries, and sets. Additionally, it also has popular libraries that implement tree and
graph data structures. Examples include networkx for graph manipulation and bintrees for implementation of
Tree data structures like AVL Tree, etc.

Exercises for practice

1. Implement a binary search tree class that provides methods for inserting, deleting, and searching for
elements.

2. Implement a trie class that supports inserting, searching, and removing words from the trie.

3. Implement a basic graph class that supports adding and removing nodes and edges, and provides methods
for finding the shortest path between two nodes.

Summary

In this chapter, we have explored more advanced data structures such as trees, tries, and graphs. These data
structures provide specialized ways of organizing and storing data and are useful for solving specific types of
problems. Being familiar with these data structures and knowing when to use them can greatly improve the
efficiency and effectiveness of your programs. It is important to note that Python has libraries that can be used
to implement these data structures more efficiently and easily.

40

Chapter 18: Algorithms - Part 1

In this chapter, we’ll explore the basics of algorithms and how to implement them in Python. Algorithms are
a set of instructions used to solve problems and perform tasks, and they are a fundamental part of computer
science. We’ll cover common algorithms such as searching and sorting, and show how they can be implemented
in Python.

Understanding Basic Algorithms

e Searching: Searching algorithms are used to find a specific value or item in a collection of data. Examples
of searching algorithms include linear search and binary search.

e Sorting: Sorting algorithms are used to arrange items in a specific order, such as ascending or descending.
Examples of sorting algorithms include bubble sort and quicksort.

Implementing Algorithms in Python

To help you understand how these algorithms work, we will provide examples of their implementation in Python.
We’ll use simple examples and clear explanations to make the concepts easy to understand.

For example, we will show you how to implement a linear search algorithm using Python:

def linear_search(data, target):
for i in range(len(data)):

if datal[i] == target:
return i
return -1

data = [1,2,3,4,5,6]
target = 3

result = linear_search(data, target)

if result == -1:
print(f"{target} is not in the data")
else:
print (f"{target} is at index {result} in the data")

This code snippet is an implementation of linear search, a simple search algorithm that iterates through a list of
data and checks if each element is equal to the target. If the target is found, the index of the element is returned.
If the target is not found, -1 is returned.

Binary search:

def binary_search(data, target):
low = 0O
high = len(data) - 1
while low <= high:
mid = (low + high) // 2
if datal[mid] == target:
return mid
elif datalmid] < target:
low = mid + 1
else:
high = mid - 1
return -1

This snippet is an implementation of binary search, a more efficient search algorithm that works on sorted lists
of data. It starts by finding the middle element of the list and compares it to the target. If the middle element
is the target, the index of the element is returned. If the middle element is less than the target, the search
continues on the right half of the list. If the middle element is greater than the target, the search continues on
the left half of the list. The process is repeated until the target is found or the search reaches an empty sublist,
in which case -1 is returned.

Bubble sort:

41

def bubble_sort(data):
for i in range(len(data) - 1):
for j in range(len(data) - 1 - i):
if datal[j] > datalj + 11:
dataljl, datalj + 1] = datalj + 1], datalj]
return data

The third code snippet is an implementation of bubble sort, a simple sorting algorithm that repeatedly steps
through a list, compares each pair of adjacent items and swaps them if they are in the wrong order. This process
is repeated until the list is sorted in ascending order. The function then returns the sorted data.

Exercises for Practice

1. Given a list of integers and a target value, use the linear_search function to find the index of the target
value in the list. If the target value is not found, print “Target not found”

2. Given a list of integers that are sorted in ascending order and a target value, use the binary_ search function
to find the index of the target value in the list. If the target value is not found, print “Target not found”

3. Given a list of integers, use the bubble_sort function to sort the list in ascending order, and print the
sorted list. Then, prompt the user for a target value and use the linear search function to find the index of
the target value in the sorted list. If the target value is not found, print “Target not found” ## Summary

In this chapter, we’ve introduced the basics of algorithms and how to implement them in Python. We covered
common algorithms such as searching and sorting and provided examples of their implementation in Python.
With the exercises and examples provided, you should now have a solid understanding of how to use algorithms
in your Python programs.

42

Chapter 19: Algorithms - Part 2

Welcome to the second part of our journey on understanding algorithms. In this chapter, we will dive into some
more advanced algorithms like dynamic programming and greedy algorithms. By the end of this chapter, you
will have a better understanding of how these algorithms work and how to implement them in Python. Let’s
begin!

Dynamic Programming

Dynamic programming is a method for solving complex problems by breaking them down into simpler subproblems.
By solving the subproblems and storing the results, we can avoid redundant computation and achieve a faster
overall solution. One of the most famous examples of dynamic programming is the Fibonacci sequence.

Dynamic Programming approach
def fibonacci_dp(n):
if n == 0 or n ==
return n
dp = [0] * (n + 1)
dpl0] = 0
dp[1] = 1
for i in range(2, n + 1):
dpl[i] = dpli - 1] + dpli - 2]
return dp[n]

Greedy Algorithms

A greedy algorithm is an algorithmic paradigm that builds up a solution piece by piece, always choosing the
next piece that offers the most obvious and immediate benefit. The hope is that the local optimal choices will
lead to a global optimal solution. For example, the famous problem of “Coin Change” can be solved by a greedy
algorithm

Greedy Algorithm approach
def coin_change(coins, amount):
coins.sort(reverse=True)
num_coins = 0
for coin in coins:
num_coins += amount // coin
amount = amount % coin
return num_coins

Implementing Algorithms in Python

Now that you have an understanding of dynamic programming and greedy algorithms, it’s time to see how
to implement them in Python. As you can see from the above examples, the implementation is relatively
straightforward. You just need to be careful to understand the problem you're trying to solve and think about
how to break it down into simpler subproblems.

Exercises for Practice

1. Write a Python program that finds the shortest path in a weighted graph using dynamic programming.
2. Write a Python program that solves the knapsack problem using a greedy algorithm.
3. Try to come up with your own problem and try to solve it using dynamic programming or greedy algorithm.

Summary

In this chapter, we looked at some more advanced algorithms like dynamic programming and greedy algorithms.
By understanding the concepts behind these algorithms, you will be able to solve more complex problems more
efficiently.

As a fun fact, did you know that dynamic programming was invented by Richard Bellman in the 1950s, who
originally called it the “Bellman Equation”? And a fun joke: Why was the math book sad? It had too many
problems.

43

Remember, practice makes perfect. Keep experimenting with different algorithms and working on challenging
problems, and you’ll become an algorithmic pro in no time.

44

Chapter 20: Multithreading and Concurrency

Multithreading and concurrency are important concepts in programming that allow for efficient use of system
resources and smooth execution of multiple tasks simultaneously. In this chapter, we will explore the basics of
multithreading and concurrency in Python and learn how to use Python’s built-in threading and multiprocessing
modules to create concurrent programs.

Understanding concepts of multithreading and concurrency

Multithreading is the ability of a central processing unit (CPU) to provide multiple threads of execution
concurrently. This means that the CPU can handle multiple tasks at the same time, improving performance and
responsiveness. In contrast, concurrency is the ability of a program to handle multiple tasks at the same time,
but not necessarily simultaneously.

In Python, the threading module provides a way to create and manage threads, while the multiprocessing
module allows for the creation and management of separate processes, each running its own Python interpreter.

The threading module

To create a new thread using the threading module, we first define a function that will be executed by the thread,
then create a Thread object, passing the function as the target. For example:

import threading
def print_numbers():

for i in range(10):
print (i)

thread = threading.Thread(target=print_numbers)
thread.start()

The multiprocessing module

The multiprocessing module works similarly, with the key difference being that instead of creating a Thread
object, we create a Process object and pass the function as the target. Here’s an example:

import multiprocessing
def print_numbers():

for i in range(10):
print (i)

process = multiprocessing.Process(target=print_numbers)
process.start()

Exercises for practice

Write a Python program that uses multithreading to calculate the sum of the elements of a large list. 1. Write a
Python program that uses multiprocessing to calculate the factorial of a large number. 2. Try to come up with
your own problem that can be solved using multithreading or multiprocessing and implement a solution.

Summary

In this chapter, we learned about the concepts of multithreading and concurrency in Python. We also learned how
to use Python’s built-in threading and multiprocessing modules to create concurrent programs. By practicing
with the provided exercises, you will be able to write efficient and responsive programs that make use of multiple
threads and processes.

45

Chapter 21: GUI Programming

Graphical User Interface (GUI) programming is an important aspect of software development that allows for
the creation of user-friendly and visually appealing programs. In this chapter, we will explore the basics of
GUI programming in Python and learn how to use Python’s built-in tkinter module to create graphical user
interfaces.

Understanding concepts of GUI programming

A GUI consists of graphical elements such as buttons, labels, text boxes, and menus that allow users to interact
with a program. These elements are usually organized in a layout and are called widgets. The most common
layouts are frames, which can contain other widgets, and grids, which allow widgets to be arranged in a grid-like
fashion.

In Python, the tkinter module provides a way to create and manage GUI elements and layouts. It is included
in the Python standard library and is considered the de facto standard for creating GUI applications in Python.

Using Python’s tkinter module

To create a simple GUI application using tkinter, we first import the module, then create a top-level window
(also known as a root window) and one or more widgets. Here’s an example of a simple program that creates a
window with a label and a button:

import tkinter as tk

def button_clicked():
label.config(text="Hello, World!")

root = tk.Tk()

label = tk.Label(root, text="Welcome to my program")

label.pack()

button = tk.Button(root, text="Click me!", command=button_clicked)
button.pack()

root.mainloop()

In this example, the Tk() function creates the top-level window and the Label and Button classes create the
label and button widgets, respectively. The pack () method adds the widgets to the window, and the mainloop()
method enters an infinite loop that waits for events (such as button clicks) to happen. The button_clicked
function is passed as the command argument of the button, which will be executed when the button is clicked.

Exercises for practice

Write a Python program that creates a simple calculator using tkinter. 1. Write a Python program that creates
a simple image viewer using tkinter. 2. Try to come up with your own program idea and implement it using
tkinte3. r.

Summary

In this chapter, we learned about the basics of GUI programming in Python and how to use the tkinter module
to create graphical user interfaces. By practicing with the provided exercises, you will be able to create visually
appealing and user-friendly programs using tkinter.

46

Chapter 22: Networking

Networking is a fundamental aspect of modern computing that allows for communication between computers
and devices over a network. In this chapter, we will explore the basics of networking in Python and learn how to
use Python’s built-in socket module to create networked programs.

Understanding concepts of Networking

Networking allows computers to communicate with each other using a set of protocols. The most common protocol
used for communication on the Internet is the Transmission Control Protocol/Internet Protocol (TCP/IP).

In Python, the socket module provides a way to create and manage sockets, which are the endpoint for sending
or receiving data over a network.

Using Python’s socket module

The socket module provides a low-level way to create and manage sockets. Here’s an example of a simple
program that creates a TCP socket and sends a message to a server:

import socket

server_address = ('localhost', 10000)
message = b"Hello, World!"

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:
sock.connect (server_address)
sock.sendall (message)
data = sock.recv(1024)
print (repr(data))

In this example, the socket.socket () function creates a new socket object and the connect () method connects
to the server on the given IP address and port number. The sendall () method sends the message to the server,
and the recv() method receives data from the server with a buffer size of 1024 bytes.

Sockets can also be used for other types of network protocols, such as UDP, by specifying the socket type during
creation.

with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as sock:
send and receive datagrams using sock

It’s important to note that, while the socket module provides a low-level way to create and manage sockets, it’s
also possible to use higher-level libraries such as httplib, urllib, and requests for HI'TP communication,
and smtplib for email.

Exercises for practice

1. Write a Python program that creates a simple chat client using sockets.
2. Write a Python program that creates a simple file transfer program using sockets.
3. Try to come up with your own network-related problem and try to solve it using sockets.

Summary

In this chapter, we learned about the basics of networking in Python and how to use the socket module to create
networked programs. By practicing with the provided exercises, you will be able to create programs that can
communicate over a network using sockets.

47

Chapter 23: Web Scraping

Web scraping is the process of extracting data from websites using code. It allows for the collection and analysis
of data from the internet in a structured and automated manner. In this chapter, we will explore the basics of
web scraping in Python and learn how to use the popular BeautifulSoup and Scrapy modules to scrape data
from websites.

Understanding concepts of web scraping

Web scraping can be used for a wide range of tasks, such as data mining, data analysis, price comparison,
sentiment analysis, and more. It is a powerful tool that allows for the collection of large amounts of data in a
short amount of time, but it’s also important to keep in mind the ethical and legal implications of web scraping.

In Python, the BeautifulSoup and Scrapy modules are commonly used for web scraping. BeautifulSoup is a
library for pulling data out of HTML and XML files, it allows to parse the HTML and extract the data of
interest with minimal effort. Scrapy is a more powerful and flexible web scraping framework that is built on top
of BeautifulSoup, it is used for larger projects and allows for crawling multiple pages and storing the extracted
data in a structured format.

Using Python’s BeautifulSoup and Scrapy module
Here’s an example of how to use the BeautifulSoup module to scrape a webpage and extract all the links:

from bs4 import BeautifulSoup
import requests

url = 'https://www.example.com'
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')

for link in soup.find_all('a'):
print (link.get('href'))

Scrapy, on the other hand, requires a bit more setup and the creation of a spider. Here’s an example of a spider
that uses Scrapy to scrape all the links from a webpage:

import scrapy

class LinkSpider(scrapy.Spider):
name = 'linkspider'
start_urls = ['https://www.example.com']

def parse(self, response):
for link in response.css('a::attr(href)'):
yield {'link': link.get()}

Exercises for practice

1. Write a Python program that scrapes a website and collects all the image links.
2. Write a Python program that scrapes a website and collects all the product prices.
3. Try to come up with your own problem and try to solve it using web scraping techniques.

Summary

In this chapter, we learned about the basics of web scraping in Python and how to use the popular BeautifulSoup
and Scrapy modules to scrape data from websites. We learned how to navigate the HTML and extract the data
of interest using BeautifulSoup, and how to build a spider using Scrapy to automate the scraping process and
store the data in a structured format. By practicing with the provided exercises, you will be able to scrape data
from websites and use it for various tasks.

48

Chapter 24: Web Development

Web development is the process of creating and maintaining websites. In this chapter, we will explore the basics
of web development in Python and learn how to use the popular Flask and Django frameworks to create web
applications.

Understanding concepts of web development

Web development is a complex field that requires knowledge of many different technologies, including HTML,
CSS, JavaScript, and more. Python is often used as the back-end language for web development, as it is powerful,
flexible, and easy to learn.

Flask and Django are two of the most popular web development frameworks in Python. Flask is a lightweight
and easy-to-learn framework that is suitable for small and simple web applications. Django, on the other hand,
is a more powerful and feature-rich framework that is suitable for larger and more complex web applications.

Using Python’s Flask and Django framework
Here’s an example of a simple web application using Flask:

from flask import Flask
app = Flask(__name__)

Qapp.route('/")
def hello(Q):

return 'Hello, World!'
if __name__ == '_main__':
app.run()

And here’s an example of a simple web application using Django:

from django.http import HttpResponse
from django.urls import path

def hello(request):
return HttpResponse("Hello, World!")

urlpatterns = [
path('', hello),
]

In both examples, we have created a simple route that maps the root URL of the application to a function that
returns the text “Hello, World!”. Flask uses the app.route decorator to define the route, while Django uses the
path function from the django.urls module.

Exercises for practice

1. Write a simple web application using Flask that allows users to upload and download files.
2. Write a simple web application using Django that allows users to register and login.
3. Try to come up with your own web application idea and try to implement it using Flask or Django.

Summary

In this chapter, we learned about the basics of web development in Python and how to use the popular Flask
and Django frameworks to create web applications. We saw examples of simple web applications and learned
how to define routes and handle HTTP requests and responses. By practicing with the provided exercises, you
will be able to create your own web applications using Flask and Django.

49

Chapter 25: Database

A database is a collection of data that is organized in a specific way to make it easy to search, sort and manage.
In this chapter, we will explore the basics of working with databases in Python and learn how to use the popular
SQLite, MySQL, and MongoDB modules to create and interact with databases.

Understanding concepts of database

A database management system (DBMS) is the software that interacts with end users, applications, and the
database itself to capture and analyze the data. Databases are used to store and retrieve information, and a
relational database, such as SQLite, MySQL, and PostgreSQL, uses tables to structure data in a logical way.
NoSQL databases such as MongoDB, on the other hand, use collections to store and retrieve data.

Using Python’s SQLite, MySQL and MongoDB

SQLite is a lightweight relational database that is part of the Python standard library, it is an ideal choice for
small projects that don’t require the complexity of a full-fledged DBMS. Here’s an example of how to create and
interact with a SQLite database using the sqlite3 module:

sqlite3 module

import sqlite3

conn = sqlite3.connect('example.db')

cursor = conn.cursor ()

cursor.execute('''CREATE TABLE users (id INTEGER PRIMARY KEY, name TEXT, age INTEGER)''')
cursor.execute("INSERT INTO users VALUES(1, 'John', 30)")

cursor.execute("SELECT * FROM users")

print(cursor.fetchall())

conn.commit ()

conn.close()

mysql-connector-python module

MySQL is another popular relational database management system that is widely used in web applications and
data warehousing. To work with MySQL in python we can use the mysql-connector-python library.

import mysql.connector

cnx = mysql.connector.connect(
user='scott, '
password='password, '

host='127.0.0.1",
database='employees')

cursor = cnx.cursor()

query = "SELECT * FROM employees LIMIT 5"
cursor.execute(query)

for (employee_id, last_name, first_name) in cursor:
print("{}, {} with id {}".format(last_name, first_name, employee_id))

cursor.close()
cnx.close()

pymongo module

MongoDB is a NoSQL database that stores data in a flexible, JSON-like format called BSON. To interact with
MongoDB from python we can use the pymongo library.

from pymongo import MongoClient

50

client = MongoClient('mongodb://localhost:27017/")
db = client['mydatabase']
collection = db['users']

user = {"name": "John", "age": 30}
collection.insert_one(user)

for doc in collection.find():
print(doc)

Exercises for practice

1. Write a Python program that creates a simple CRUD (create, read, update, delete) application using
SQLite.

2. Write a Python program that performs a simple data analysis on a MySQL database.

3. Try to come up with your own database related problem and try to solve it using SQLite, MySQL, or
MongoDB.

Summary

In this chapter, we learned about the basics of working with databases in Python and how to use the popular
SQLite, MySQL, and MongoDB modules to create and interact with databases. We saw examples of how to
connect to a database, create tables, insert data, and retrieve data using SQLite, MySQL and MongoDB. By
practicing with the provided exercises, you will be able to create your own applications that can interact with
databases.

51

Chapter 26: Machine Learning

Machine learning is a branch of artificial intelligence that involves building algorithms and models that can learn
from and make predictions on data. In this chapter, we will explore the basics of machine learning in Python
and learn how to use the popular scikit-learn and TensorFlow libraries to build and train machine learning
models.

Understanding concepts of machine learning

Machine learning can be divided into two main categories: supervised and unsupervised learning. In supervised
learning, the model is trained on labeled data, and the goal is to make predictions on new, unseen data. In
unsupervised learning, the model is trained on unlabeled data, and the goal is to find patterns and relationships
in the data.

Using Python’s scikit-learn and TensorFlow

The sklearn library

Scikit-learn is a popular machine learning library for Python that provides a wide range of tools for supervised
and unsupervised learning. Here’s an example of how to use scikit-learn to train a simple linear regression model
on a dataset:

from sklearn.linear_model import LinearRegression
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split

X, y = load_boston(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)

print (model.score(X_test, y_test))

The code first imports the necessary modules from the scikit-learn library: the LinearRegression model,
load_boston dataset and train_test_split method.

The load_boston function is used to load the Boston Housing dataset, which is a commonly used dataset for
regression tasks. It returns two arrays: X and y. X represents the features of the dataset, and y represents the
target variable. The code sets the variable return_X_y to True to get the X and y values directly.

The train_ test_ split function is used to split the data into training and test sets. The X and y values are passed
as arguments, and the test_size argument is set to 0.2, which means that 20% of the data will be used for
testing and 80% will be used for training.

A LinearRegression model is created and then fit the training data using the model.fit(X_train, y_train)
method.

Then, the code uses the model.predict () method to make predictions on the test set.

Finally, the code evaluates the performance of the model using the model.score() method, which calculates
the coefficient of determination (R"2) of the predictions. The coefficient of determination ranges from 0 to 1 and
it is a measure of how well the model explains the variance in the target variable. A score of 1 means that the
model explains 100% of the variance in the target variable, and a score of 0 means the model explains none of
the variance. ## The TensorFlow library

TensorFlow is another powerful machine learning library for Python that is widely used for deep learning and
neural networks. It provides a flexible and powerful environment for building, training and deploying machine
learning models. Here’s an example of how to use TensorFlow to train a simple neural network on a dataset:

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

52

Xx_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.Sequential ([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense (128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')

D

model . compile (
optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

In this example, we are using TensorFlow to train a simple neural network on the MNIST dataset which is a
dataset of hand-written digits. The Sequential model is used which allows to build neural network by adding
layers in sequential order. The first layer is a flatten layer, this is because the image data is in 2D format, so it
needs to be flatten out to 1D before feeding it to the network. The next two layers are dense layers.

Exercises for Practice

1. Using the scikit-learn library, train a simple classification model on the Iris dataset and evaluate its
performance.

2. Using the TensorFlow library, train a simple convolutional neural network on the CIFAR-10 dataset and
evaluate its performance.

3. Try to come up with your own machine learning problem and try to solve it using scikit-learn or
TensorFlow.

Summary

In this chapter, we have covered the basics of machine learning in Python, and how to use popular libraries
like scikit-learn and TensorFlow to build and train machine learning models. We also saw examples of how
to train a simple linear regression model and a neural network using those libraries. By practicing with the
provided exercises, you will be able to create your own machine learning models and perform data analysis.

53

Chapter 27: Natural Language Processing

Natural Language Processing (NLP) is a field of artificial intelligence that focuses on the interaction between
human language and computers. It is a subfield of computer science and artificial intelligence that deals with the
interaction between computers and humans in natural language. In this chapter, we will explore the basics of
NLP in Python and learn how to use the popular NLTK and spaCy libraries for text pre-processing and analysis.

Understanding concepts of NLP

NLP involves a wide range of tasks such as sentiment analysis, text summarization, machine translation, and
named entity recognition. It relies on techniques from linguistics and computer science to analyze and process
natural language texts.

Using Python’s NLTK and spaCy

NLTK (Natural Language Toolkit) is a powerful Python library for working with human language data. It
provides a wide range of tools for text pre-processing, tokenization, stemming, and POS tagging. Here’s an
example of how to use NLTK to tokenize a sentence:

The nltk library

import nltk

sentence = "This is a sentence that needs to be tokenized."
tokens = nltk.word_tokenize(sentence)
print (tokens)

This example tokenizes a sentence into individual words or tokens.

spaCy library

spaCy is another popular NLP library for Python, it is known for being fast and efficient. It is a library for
advanced natural language processing in Python and Cython. Here’s an example of how to use spaCy to perform
named entity recognition on a sentence:

import spacy

nlp = spacy.load("en_core_web_sm")

sentence = "Barack Obama was born in Hawaii."
doc = nlp(sentence)

for ent in doc.ents:

print(ent.text, ent.label_)

In this example, we are using spaCy’s pre-trained model to identify named entities in a sentence, such as person’s
names and locations.

Exercises for Practice

1. Using the NLTK library, train a simple text classifier on a dataset of movie reviews and evaluate its
performance.

2. Using the spaCy library, write a program that extracts the named entities from a given text.

3. Try to come up with your own NLP problem and try to solve it using NLTK or spaCy.

Summary

In this chapter, we have covered the basics of NLP in Python, and how to use popular libraries like z and spaCy
for text pre-processing and analysis. We also saw examples of how to perform tokenization and named entity
recognition using those libraries. By practicing with the provided exercises, you will be able to create your own
NLP models and analyze human language data.

54

Chapter 28: Blockchain

Blockchain technology is a decentralized, distributed ledger that allows for secure and transparent transactions.
It is the technology that underlies cryptocurrencies like Bitcoin, but it has potential applications in many other
areas as well. In this chapter, we will explore the basics of blockchain technology and learn how to use popular
Python libraries to work with blockchain.

Understanding concepts of blockchain

A blockchain is essentially a chain of blocks, where each block contains a number of transactions. These
transactions are verified and added to the blockchain through a consensus mechanism, such as proof of work or
proof of stake. Once a block is added to the blockchain, it cannot be modified or deleted, making the blockchain
an immutable and secure way to store data.

One of the key features of blockchain technology is its decentralized nature. It is maintained by a network of
users rather than a central authority, making it more resistant to manipulation and fraud.

Using Python’s blockchain libraries

There are several popular Python libraries for working with blockchain, such as Bitcoin-Python and PyEthereum.
Here’s an example of how to use the Bitcoin-Python library to create a new Bitcoin transaction:

The bitcoin library

from bitcoin.rpc import RawProxy
proxy = RawProxy()
txid = proxy.sendtoaddress('1BvBMSEYstWetqTFn5Aud4m4GFg7xJaNVN2', 0.01)

print (txid)

This example creates a new Bitcoin transaction sending 0.01 BTC to the specified address using the RawProxy
class from the Bitcoin-Python library.

Another library to work with blockchain using python is web3.py library which is a python interface for interacting
with the Ethereum blockchain. Here’s an example of how to check the balance of an Ethereum address using
web3.py:

The web3 library

from web3 import Web3

w3 = Web3(Web3.HTTPProvider('http://ropsten.infura.io/v3/YOUR-PROJECT-ID'))

'0x4bbeEB066eD09B7AEd07bF39EEe0460DFa261520''
w3.eth.getBalance (address)

address
balance

print (w3.fromWei(balance, 'ether'))

Exercises for practice

1. Using the Bitcoin-Python library, create a simple program that retrieves the current price of Bitcoin in
USD.

2. Using the web3.py library, create a program that creates a new Ethereum wallet and transfers a certain
amount of Ether to it.

3. Try to come up with your own blockchain problem and try to solve it using Python’s blockchain libraries.

Summary

In this chapter, we have covered the basics of blockchain technology and how to use popular Python libraries to
work with blockchain. We have seen examples of how to create new Bitcoin and Ethereum transactions using
the Bitcoin-Python and web3.py libraries respectively. By practicing with the provided exercises, you will be
able to gain more experience working with blockchain using Python and its libraries.

55

Chapter 29: Quantum Computing

Quantum computing is a new and rapidly developing field that uses the properties of quantum mechanics to
perform operations on data. It has the potential to revolutionize the way we process and analyze data, making it
much faster and more efficient than classical computing. In this chapter, we will explore the basics of quantum
computing and learn how to use popular Python libraries to work with quantum algorithms.

Understanding concepts of Quantum Computing

Classical computers use bits, which can represent either a 0 or a 1. Quantum computers use quantum bits, or
qubits, which can exist in a state of superposition, meaning they can be in multiple states at once. This allows
quantum computers to perform certain operations, such as database search or integer factorization, exponentially
faster than classical computers.

Another key feature of quantum computing is quantum entanglement, which allows for the correlation of
properties of two or more quantum systems. This allows for the creation of quantum algorithms that are not
possible on classical computers.

Using Python’s Quantum Computing libraries

There are several popular Python libraries for working with quantum computing, such as Qiskit and PyQuil.
Here’s an example of how to use the Qiskit library to create a simple quantum circuit:

The qiskit library

from giskit import QuantumCircuit, ClassicalRegister, QuantumRegister

q = QuantumRegister(2)

¢ = ClassicalRegister(2)
circuit = QuantumCircuit(q, c)
circuit.h(q[0])
circuit.cx(q[0], ql[11)
circuit.measure(q, c)

This example creates a quantum circuit with two qubits and applies a Hadamard gate to the first qubit, which
puts it into a state of superposition. It then applies a controlled-not (CNOT) gate, which entangles the two
qubits. Finally, it measures the state of the qubits and stores the result in classical registers.

A quantum gate is a unitary operation that is applied to one or more qubits in a quantum computer to change the
state of the qubits. The Hadamard gate (H) and the Controlled-NOT (CNOT) gate are two common quantum
gates used in quantum computing.

The Hadamard gate is a single-qubit gate that takes a qubit in the state |0) or |1) and returns it to a superposition
of both states. This is represented mathematically by the transformation matrix:

H= (1/sqrt(2)) * [[1,1],
[1,-1]]

so after applying the Hadamard gate to a qubit in the state |0) or |1), the qubit will be in a superposition of
both states.

The Controlled-NOT (CNOT) gate is a two-qubit gate that applies a NOT operation to the second qubit
(the target qubit) if the first qubit (the control qubit) is in the state |1). The CNOT gate can be represented
mathematically by the transformation matrix:

CNOT = [/1,0,0,07,
[0,1,0,07,
[0,0,0,17,
[0,0,1,07]

Where the first qubit is the control qubit, and the second qubit is the target qubit.

Applying a Hadamard gate to qubit 0 and a CNOT gate to qubits 0 and 1 in this code, will allow the qubits to
be in a superposition of states and also applying a NOT operation based on the control qubit.

These gates are the fundamental building blocks for many quantum algorithms and can be combined to create
more complex operations.

56

The pyquil library

Another library is PyQuil which provides a simple and powerful way to experiment with quantum computing via
its Quil language. Here’s an example of how to use PyQuil to create a simple quantum program that creates an
entangled state:

from pyquil.quil import Program
from pyquil.gates import H, CNOT

p = Program()
p += H(0)
p += CNOT(0, 1)

The code starts by importing the Program class from the pyquil.quil module, as well as the H (Hadamard
gate) and CNOT (controlled-not gate) gates from the pyquil.gates module.

A Program object is created and assigned to the variable p. This is the starting point for creating a Quil program.

Then, The code applies the H(0) gate to qubit 0, which is a hadamard gate, this operation is equivalent to
rotating the state of qubit 0 by a pi radians around the x-axis.

Finally, the CNOT (0, 1) gate is applied to qubits 0 and 1, which is a controlled-not gate. This operation applies
a not gate to qubit 1, but only when qubit 0 is in the state 1.

Overall, this code provides an example of how to use the PyQuil library to write a simple quantum computing
program that applies a Hadamard gate to qubit 0 and a controlled-not gate to qubits 0 and 1.

Exercises for Practice

1. Using the Qiskit library, write a program that creates a Bell state and measures it.

2. Using the PyQuil library, write a program that creates a GHZ state and measures it.

3. Try to come up with your own quantum computing problem and try to solve it using Python’s quantum
computing libraries.

Summary

In this chapter, we have covered the basics of quantum computing and how to use popular Python libraries
to work with quantum algorithms. We have seen examples of how to create simple quantum circuits using the
Qiskit and PyQuil libraries. By practicing with the provided exercises, you will be able to gain more experience
working with quantum computing using Python and its libraries. It’s important to note that currently most of
the Quantum Computing are still in experimental stage and the limit of what can be achieved with them on
classical computers is limited.

57

Chapter 30: Robotics

Robotics is the branch of engineering that deals with the design, construction, and operation of robots. In this
chapter, we will explore the basics of robotics and learn how to use popular Python libraries to control and
program robots.

Understanding concepts of Robotics

A robot is a machine that can be programmed to perform a wide range of tasks. These tasks can range from
simple movements, such as moving a robotic arm, to more complex tasks, such as autonomous navigation.
Robotics encompasses many different areas of expertise, such as mechanical engineering, electrical engineering,
and computer science.

Robotics can be divided into two main categories: industrial robots, which are used in manufacturing and other
industrial applications, and service robots, which are designed to interact with humans in a variety of settings.

Using Python’s Robotics Libraries

There are several popular Python libraries for working with robots, such as ROS (Robot Operating System) and
PyRobot.

ROS is a flexible framework for writing robot software. It provides an operating system-like environment for
running robot programs. Using ROS with Python, you can create programs that can interact with the robot’s
sensors and actuators, perform complex tasks such as navigation and object recognition, and even create your
own new robotic capabilities.

The rospy library
import rospy

from geometry_msgs.msg import Twist

Initialize the ROS mnode
rospy.init_node('square_controller')

Create a publisher for the robot's welocity
velocity_publisher = rospy.Publisher('/cmd_vel', Twist, queue_size=10)

Set the rate of the loop
rate = rospy.Rate(10)

Move forward for 2 seconds
move_cmd = Twist()
velocity_publisher.publish(move_cmd)

This code uses the ROS library to control a robotic car to move in a square shape. The code first imports
the z library, which is the Python client library for ROS. It also imports the Twist message type from the
geometry_msgs package, which is used to define the velocity commands for the robot.

The code starts by initializing the ROS node, which is necessary for any ROS-based program. This is done using
the rospy.init_node() function, which takes the name of the node as an argument.

Then it creates a Twist message move_cmd, and sets the linear x component to 1. this command is to move the
robot forward. And then it publishes this command using the velocity_publisher.publish(move_cmd) this
will send the command to the robot at a rate of 10hz.

PyRobot is a library for controlling robots using Python, it abstracts away the low-level details of communicating
with the robot and provides a simple API for interacting with the robot’s sensors and actuators. Here’s an
example of how to use PyRobot to move a robotic arm:

The pyrobot library

from pyrobot import Robot

#connecting to the robot

58

bot = Robot("locobot")

moving the arm
bot.arm.move_to(x=0.4, y=0.4, z=0.4)

Exercises for Practice

1. Using the ROS library, write a program that controls a robotic car to move in a square shape.
2. Using the PyRobot library, write a program that controls a robotic arm to pick and place an object.
3. Try to come up with your own robotics problem and try to solve it using Python’s robotics libraries.

Summary

In this chapter, we have covered the basics of robotics and how to use popular Python libraries to control and
program robots. We have seen examples of how to use ROS and PyRobot libraries to interact with robots. By
practicing with the provided exercises, you will be able to gain more experience working with robotics using
Python and its libraries.

59

Chapter 31: Cloud Computing

Cloud computing is a technology that allows users to access and use shared resources, such as servers, storage,
and software, over the internet. In this chapter, we will explore the basics of cloud computing and learn how to
use popular Python libraries to interact with cloud services.

Understanding concepts of Cloud Computing

Cloud computing is a way of delivering computing resources as a service over the internet. Instead of owning and
maintaining physical servers, storage devices, and software, users can access and use shared resources provided
by cloud providers. There are three main types of cloud computing services: Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS).

TaaS provides access to virtualized computing resources, such as virtual machines, storage, and networking. PaaS
provides a platform for developing, deploying, and managing applications, and SaaS provides access to software
applications over the internet.

Using Python’s Cloud Computing Libraries
There are several popular Python libraries for interacting with cloud services, such as boto3 and openstack.

boto3 is the Amazon Web Services (AWS) SDK for Python. It allows developers to access and use AWS services,
such as S3, EC2, and DynamoDB, in their Python applications. Here’s an example of how to use boto3 to list
the instances in an EC2:

The boto3 library

import boto3

connect to ec2
ec2 = boto3.client('ec2')

list instances
response = ec2.describe_instances()

#print all instances ID
for reservation in response["Reservations"]:
for instance in reservation["Instances']:
print(instance["InstanceId"])

openstack is a Python library for interacting with OpenStack clouds. It provides a high-level API for interacting
with the OpenStack services, such as Nova, Glance, and Keystone. Here’s an example of how to use openstack
to list the images available in a Glance:

The openstack library

from openstack import connection

create a connection

conn = connection.Connection(auth_url='http://127.0.0.1/identity",
project_name='demo',
username="'admin',
password='secret',
user_domain_name='Default',
project_domain_name='Default')

list images
images = conn.image.images()
for image in images:

print (image.name)

60

Exercises for Practice

1. Using the boto3 library, write a program that creates an EC2 instance.

2. Using the openstack library, write a program that uploads an image to Glance

3. Try to come up with your own cloud computing problem and try to solve it using Python’s cloud computing
libraries.

Summary

In this chapter, we have covered the basics of cloud computing and how to use popular Python libraries to
interact with cloud services. We have seen examples of how to use boto3 and openstack libraries to interact
with AWS and OpenStack clouds respectively. By practicing with the provided exercises, you will be able to gain
more experience working with cloud computing using Python and its libraries.

61

Chapter 32: Big Data

Big data is the term used to describe the massive amounts of data — both structured and unstructured — that
inundate a business on a day-to-day basis. In this chapter, we will explore the basics of big data and learn how
to use popular Python libraries to process and analyze big data.

Understanding concepts of Big Data

Big data is characterized by its large volume, high velocity, and diverse variety. It includes data from various
sources such as social media, IoT devices, and transactional systems. The main challenge in big data is to extract
useful information from it, using technologies such as Hadoop, Spark, and NoSQL databases.

There are several key concepts related to big data that are important to understand. One of them is the 3V's of
big data which include:

e Volume: The large amount of data
e Velocity: The speed at which the data is generated and processed
e Variety: The different types of data, such as structured, semi-structured, and unstructured.

Using Python’s Big Data Libraries
There are several popular Python libraries for working with big data, such as PySpark and Dask.

PySpark is the Python library for Spark programming. It allows developers to create distributed data processing
applications using Python. Here’s an example of how to use PySpark to process a large CSV file:

The pyspark library

from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession

create a spark session
spark = SparkSession.builder.appName("BigData") .getOrCreate()

read the CSV file as a DataFrame
df = spark.read.format("csv").option("header", "true").load("bigdata.csv")

group by a column and count the occurrences
grouped_data = df.groupBy("column_name") .count ()

show the result
grouped_data.show()

Dask is a parallel computing library for analytics in Python. Dask enables users to harness the full power of
their CPU and memory resources without the need for complex parallel algorithms or rendundant copies of data.
Here’s an example of how to use Dask to process a large dataset:

The dask library
import dask.dataframe as dd

read a large CSV file
df = dd.read_csv('large_file.csv')

groupdby and count
result = df.groupby('column_name').size()

#compute the result
result.compute ()

Exercises for Practice

1. Using the PySpark library, write a program that calculates the average of a specific column in a large
dataset.

62

2. Using the Dask library, write a program that filters a specific value from a large dataset
3. Try to come up with your own big data problem and try to solve it using Python’s big data libraries.

Summary

In this chapter, we have covered the basics of big data and how to use popular Python libraries to process and
analyze big data. We have seen examples of how to use PySpark and Dask libraries to process and analyze large
dataset. By practicing with the provided exercises

63

Chapter 33: Cyber Security

Cybersecurity is the practice of protecting internet-connected systems and networks, including hardware, software,
and data, from attack, damage, or unauthorized access. In this chapter, we will explore the basics of cybersecurity
and learn how to use popular Python libraries to protect systems and networks.

Understanding concepts of Cyber Security

Cybersecurity is a multi-disciplinary field that involves protecting networks and systems from unauthorized
access and breaches. It encompasses various domains such as network security, web security, and application
security. Some of the key concepts in cybersecurity include:

e Network security: protecting networks from unauthorized access and breaches.

e Encryption: the process of encoding data to protect it from unauthorized access.

o Firewall: a security system that monitors and controls incoming and outgoing network traffic based on a
set of rules.

Using Python’s Cybersecurity Libraries
There are several popular Python libraries for working with cybersecurity, such as Scapy and Cryptography.

Scapy is a powerful interactive packet manipulation library in Python. It allows to sniff, forge, and decode
packets of various protocols. Here’s an example of how to use Scapy to sniff network packets:

The scapy library

from scapy.all import *

Define our packet callback
def packet_callback(packet):
print (packet.show())

create a sniffer
sniff (prn=packet_callback, count=1)

The cryptography library

Cryptography is a library that provides cryptographic recipes and primitives in Python. It provides both
high-level recipes and low-level interfaces to common cryptographic algorithms such as symmetric ciphers,
message digests, and key derivation functions. Here’s an example of how to use Cryptography to encrypt a
message:

from cryptography.fernet import Fernet

generate a key
key = Fernet.generate_key()
cipher = Fernet(key)

encrypt a message
encrypted = cipher.encrypt(b"my secret message")

#decrypt the message
decrypted = cipher.decrypt(encrypted)
print (decrypted)

Exercises for Practice

1. Using the Scapy library, write a program that detects ARP spoofing attack in the network.

2. Using the Cryptography library, write a program that encrypts and decrypts a file.

3. Try to come up with your own cybersecurity problem and try to solve it using Python’s cybersecurity
libraries.

64

Summary

In this chapter, we have covered the basics of cybersecurity and how to use popular Python libraries to protect
systems and networks. We have seen examples of how to use Scapy and Cryptography libraries to detect and
prevent network and data breaches. By practicing with the provided exercises and experimenting with other
libraries, you can become an expert in the field of cybersecurity.

65

Exercises and Projects Solutions for Chapter 2: Variables and Data
Types

Variable Input and Data Type
Take user input and assign it to a variable

user_input = input("Enter some data: ")

Print out the vartable's wvalue and data type
print("Value:", user_input)
print("Data Type:", type(user_input))

Input Dictionary and Print

name = input("What's your name? ")

age = input("What's your age? ")
user_data = {"name": name, "age": age}
print (user_data)

Loop, Numbers, and Squares
numbers = input("Enter a list of numbers separated by commas: ").split(",")
for number in numbers:

number = int(number)
print (f"{number} squared is {number**2}")

Please note that the input function returns a string, so if you are using it to take integers values, you might need
to convert it first.

66

Exercises and Projects Solutions for Chapter 3: Control Structures

Even/Odd Number Check

num = int(input("Enter a number: "))

if num %, 2 ==

print (f"{num} is even.")
else:

print (f"{num} is odd.")

Fibonacci Sequence Printing

def fibonacci_sequence(n):
fib = [0, 1]
for i in range(2, n):
fib.append(fib[i-1] + fib[i-2])
return fib

print (fibonacci_sequence(10))

Continuous Input Until “stop”

user_input = ""

while user_input != "stop":
user_input = input("Enter something: ")
if user_input != "stop":
print (user_input)
else:
print ("Program stopped.")

Please make sure that the user_ input should be initialized before starting the while loop so that you don’t end
up in infinite loop because of the while condition.

67

Exercises and Projects Solutions for Chapter 4: Functions

String Reversal Function
def reverse_string(s:str) -> str:

return s[::-1]

string = "Hello World"
print(reverse_string(string))

Number Sum Function
def add_numbers(a:int,b:int)->int:

return atb

x =2

y=3

print (add_numbers (x,y))

Largest List Element

def get_max(arr:list)->int:
return max(arr)

numbers = [1,3,2,6,8,7]

print (get_max (numbers))

Please note that the above approach only works for numbers, if you would like to use this with other type of
data you need to provide a key function to the max function.

68

Exercises and Projects Solutions for Chapter 5: Modules

Random Number Generation

import random

random_num = random.randint (1, 10)
print (random_num)

Current Date and Time
import datetime
now = datetime.datetime.now()

print ("Current date and time : ")
print (now.strftime ("%Y-%m-7%d %H:%M:%S"))

You could also use the datetime.datetime.today() method to achieve the same effect, it will return the current
date and time, as well as the current time zone in the form of a datetime object.

69

Exercises and Projects Solutions for Chapter 6: Object-Oriented
Programming - Part 1

Person Name and Age Class

class Person:
def __init__(self, name, age):
self .name = name
self.age = age
def display_info(self):
print("Name: ", self.name)
print("Age: ", self.age)

p = Person("John", 25)
p.display_info()

Car Make, Model, Year Class

class Car:
def __init__(self, make, model, year):
self.make = make
self.model = model
self.year = year
def display_info(self):

print("Make: ", self.make)
print ("Model: ", self.model)
print("Year: ", self.year)

¢ = Car("Toyota", "Camry", 2020)
c.display_info()

Bank Account Balance and Number Class

class BankAccount:
def __init__(self, balance, account_number):
self.balance = balance
self.account_number = account_number
def display_info(self):
print("Balance: ", self.balance)
print ("Account Number: ", self.account_number)

ba = BankAccount (1000, "1234567890")
ba.display_info()

You could also make the balance attribute private by adding a _ before the variable name and then use a
property to get and set the balance.

70

Exercises and Projects Solutions for Chapter 7: Object-Oriented
Programming - Part 2

Inherit Shape class with Circle, Rectangle and override area method

class Shape:
def area(self):
return O

class Circle(Shape):
def __init__(self, radius):
self.radius = radius

def area(self):
return 3.14 * self.radius ** 2

class Rectangle(Shape):
def __init__(self, length, width):
self.length = length
self.width = width

def area(self):
return self.length * self.width

Electric/Gas Vehicle Comparison

class Car:
def drive(self):
return "Driving..."

class ElectricCar(Car):
def drive(self):
return "Electric Driving..."

class GasCar(Car):
def drive(self):
return "Gas Driving..."

Student Name, Age, ID Class

class Person:
def __init__(self, name, age):
self.name = name
self.age = age

def display_person(self):
return f"Name: {self.name}, Age: {self.agel}"

class Student(Person):
def __init__(self, name, age, student_id):
super() .__init__(name, age)
self.student_id = student_id

def display_student(self):
return f"{super().display_person()}, Student ID: {self.student_id}"

71

Exercises and Projects Solutions for Chapter 8: Input and Output
Word Count Text File Reader

def count_words(file_path):
with open(file_path, 'r') as file:
text = file.read()
words = text.split()
print (f 'Number of words in {file_path}: {len(words)l}')

file_path = input('Enter file path: ')
count_words(file_path)

User Input Text File Writer

def write_to_file(file_path):
user_input = input('Enter text to write to file: ')
with open(file_path, 'w') as file:
file.write(user_input)
print (f'Successfully wrote to {file_pathl}')

file_path = input('Enter file path: ')
write_to_file(file_path)

CSV Table Print Reader

import csv

def print_csv_table(file_path):
with open(file_path) as file:
reader = csv.reader(file)
for row in reader:
print (row)

file_path = input('Enter file path: ')
print_csv_table(file_path)

Note: As per the instruction, You may need to install csv module (if not already installed) use !pip install csv.
Please make sure that your file path is accessible and valid.

72

Exercises and Projects Solutions for Chapter 9: Error Handling

Factorial Calculation and Exception Handling

def factorial(n):
try:
n = int(n)
if n < O:
raise ValueError
elif n ==
return 1
else:
return nxfactorial(n-1)
except ValueError:
return "Negative number or non-numeric value not allowed"

user_input = input("Enter a number: ")
print(factorial (user_input))

Division calculation and exception handling:

def divide(a, b):
try:
if b == 0:
raise ZeroDivisionError
return a / b
except ZeroDivisionError:
return "Division by zero is not allowed"

numl = input("Enter first number: ")
num2 = input("Enter second number: ")
print(divide(float (numl), float(num2)))

Second largest element calculation and exception handling:

def second_largest(lst):
try:
if len(lst) < 2:
raise ValueError
return sorted(set(lst)) [-2]
except ValueError:
return "List should contain at least 2 elements"

user_input = input("Enter a list of numbers separated by commas: ")
1st = list(map(int, user_input.split(',')))
print(second_largest(lst))

Please note that in the above examples, user inputs are obtained through the input () function, which is used to
take input from the user. And also it should be pointed that the above solution assumes that, input passed to
the function is correct, like a user will pass list only for the 3rd problem.

73

Exercises and Projects Solutions for Chapter 10: Regular Expressions

Email address extraction:
import re
def extract_emails(string):

pattern = r'\S+@\S+'
return re.findall(pattern, string)

string = "my email addresses are john@example.com and jane@example.com"
print(extract_emails(string))

Phone number validation:
import re
def is_valid_phone (phone) :

pattern = r'"\d{3}-\d{3}-\d{4}$'
return bool(re.match(pattern, phone))

print(is_valid_phone('555-555-5555"')) # True
print(is_valid_phone('555-555-555")) # False

Removing whitespace:

def remove_whitespace(string):
return ''.join(string.split())

n n

string = my string with spaces
print (remove_whitespace(string)) # 'mystringuwithspaces’

74

Exercises and Projects Solutions for Chapter 11: Debugging

Syntax Error Debugging
import pdb

def divide(a, b):
return a/b

pdb.set_trace()
result = divide(10, 5)
print(result)

In this script we have a semantic error, where we expect the result to be 2, but due to missing a * operator, the
result will be 2.0.

To fix this error, we need to change the line ‘return a/b’ to 'return a*b’

Semantic Error Debugging

import pdb

def add_numbers(nums) :
second_largest = 0
for num in nums:
if num > second_largest:
second_largest = num
return second_largest

pdb.set_trace()

nums = [1, 2, 3, 4, 5]
result = add_numbers (nums)
print (result)

In this script, we have a semantic error where we are trying to find the second largest element in a list but the
code is just returning the largest element. To fix this, we need to first sort the list in descending order and then
return the second element.

Second Largest Element with pdb
import pdb

def get_second_largest (nums):
pdb.set_trace()
nums.sort (reverse=True)
return nums[1]

nums = [3,2,1,5,6]
result = get_second_largest (nums)
print (result)

In this script, we are using pdb to debug the code, where we are trying to find the second largest element in a
list by sorting the list in descending order and returning the second element of the sorted list. pdb will allow us
to step through the code, check the value of variables, and inspect the call stack at each step of the program
execution, making it easier to understand the flow of the program and identify any errors.

(0]

Exercises and Projects Solutions for Chapter 12: Decorators

Logging decorator:

import functools

def log_args_and_result(func):

@functools.wraps(func)

def wrapper (*args, *xkwargs):
print(f"Calling {func.__name__} with args: {args}, kwargs: {kwargsl}")
result = func(*xargs, **kwargs)
print (f"{func.__name__} returned: {result}")
return result

return wrapper

@log_args_and_result
def add(a, b):
return a + b

add(1, 2)

Output: Calling add with args: (1, 2), kwargs: {}
add returned: 3

Memoization decorator:

import functools

def memoize(func):
cache = dict()
@functools.wraps (func)
def wrapper (*args, **kwargs):
key = str(args) + str(kwargs)
if key not in cache:
cache[key] = func(xargs, **kwargs)
return cache[key]
return wrapper

@memoize
def factorial(n):
if n ==
return 1
return n * factorial(n-1)

print(factorial(5))
Output: 120
print(factorial(5))
Output: 120

Type checking decorator:

import functools

def check_types(func):

@functools.wraps (func)
def wrapper (*args, **kwargs):

for i, (arg, expected_type) in enumerate(zip(args, func.__annotations__.values())):

if not isinstance(arg, expected_type):
raise TypeError(f"Argument {i} of {func.__name__7}
is not of type {expected_typel}")
for k, v in kwargs.items():

76

if k not in func.__annotations__:
raise TypeError(f"{k} is not a valid keyword argument for {func.__name__3}")
if not isinstance(v, func.__annotations__[k]):
raise TypeError(f"{k} is not of type {func.__annotations__[k]}")
return func(xargs, **kwargs)
return wrapper

Q@check_types
def add(a:int, b:int) -> int:
return a + b

add (1, 2)
Output: 3
Note that python 3.5 and above version only support type hints.

Regenerate response

7

Exercises and Projects Solutions for Chapter 13: Generators

Fibonacci sequence generator:

def fibonacci_sequence():

a, b =0, 1
while True:
yield a

a, b=Db, a+b

fib = fibonacci_sequence()
print(next (fib)) # 0
print (next(fib)) # 1
print (next(fib)) # 1
print(next(fib)) # 2

Permutation generator for a list:

from itertools import permutations

def permutation_generator(lst):
for perm in permutations(lst):
yield perm

1st = [1, 2, 3]

perm_gen = permutation_generator(lst)
print (next(perm_gen)) # (1, 2, 3)
print (next(perm_gen)) # (1, 3, 2)
print (next(perm_gen)) # (2, 1, 3)

Power of 2 generator:

def powers_of_two():

i=1

while True:
yield i
i x= 2

pow_gen = powers_of_two()
print (next (pow_gen)) # I
print (next (pow_gen)) # 2
print (next(pow_gen)) # 4
print (next(pow_gen)) # 8

78

Exercises and Projects Solutions for Chapter 14: Advanced Topics -
Part 1

Linear search function:

def linear_search(lst, target):
for i, val in enumerate(lst):
if val == target:
return i
print ("Target not found")

1st = [3, 2, 5, 1, 4]
target = 5
print(linear_search(lst, target)) # 2

target = 6
print(linear_search(lst, target)) # Target not found

Binary search function:

def binary_search(lst, target):
left, right = 0, len(lst) - 1
while left <= right:
mid = (left + right) // 2
if 1st[mid] == target:
return mid
elif 1st[mid] < target:
left = mid + 1
else:
right = mid - 1
print ("Target not found")

1st = [1, 2, 3, 4, 5]
target = 3
print(binary_search(lst, target)) # 2

target = 6
print(binary_search(lst, target)) # Target not found

Bubble sort and linear search combination:

def bubble_sort(lst):
for i in range(len(lst)):
for j in range(len(lst)-1):
if 1st[j] > 1st[j+1]:
1st[jl, 1st[j+1] = 1st[j+11, 1st[j]
return lst

def linear_search(lst, target):
for i, val in enumerate(lst):
if val == target:
return i
print("Target not found")

1st = [3, 2, 5, 1: 4]
sorted_lst = bubble_sort(lst)
print(sorted_lst) # [1, 2, 3, 4, 5]

target = 5
print(linear_search(sorted_lst, target)) # 2

79

target = 6
print(linear_search(sorted_lst, target)) # Target not found

80

Exercises and Projects Solutions for Chapter 15: Advanced Topics -
Part 2

Shortest path in a weighted graph using dynamic programming:

def shortest_path(graph, start, end):

Create a dictionary to hold the shortest path length from start to every other vertezx
shortest_paths = {vertex: float('infinity') for vertex in graph}
shortest_paths[start] = 0

Create a dictionary to hold the predecessor of every vertex on the shortest path
predecessor = {vertex: None for vertex in graph}

Create a priority queue to hold the unvisited vertices
unvisited = {vertex: float('infinity') for vertex in graph}
unvisited[start] = 0

Dijkstra's algorithm

while unvisited:
current = min(unvisited, key=unvisited.get)
unvisited.pop(current)

for neighbor, weight in graph[current].items():
if shortest_paths[current] + weight < shortest_paths[neighbor]:
shortest_paths [neighbor] = shortest_paths[current] + weight
predecessor [neighbor] = current
unvisited[neighbor] = shortest_paths[neighbor]

Create the shortest path by following the predecessors
path = []
vertex = end
while vertex is not None:
path.append(vertex)
vertex = predecessor [vertex]

return path[::-1]

Example usage

graph = {
'At: {'B': 2, 'C': 3},
'B': {'A': 2, 'D': 4, 'E': 2},
'C': {'A': 3, 'F': 5},
'D': {'B': 4, 'G': 2},
'E': {'B': 2, 'F': 3},
e {'C': 5, 'E': 3, 'H': 4},
'G': {'D': 2},
'H': {'F': 4}
}

print(shortest_path(graph, 'A', 'H')) # ['A', 'C', 'F', 'H']

Knapsack problem using greedy algorithm:

def knapsack(items, capacity):

Sort the items by their value-to-weight ratio in descending order
items.sort(key=lambda x: x[2], reverse=True)

Keep track of the total wvalue and weight of the knapsack

total_value = 0O
total_weight = 0

81

Add items to the knapsack until it is full
for item in items:
if total_weight + item[1] <= capacity:
total_value += item[0]
total_weight += item[1]

return total_value

Example usage

items = [(60, 10, 6), (100, 20, 5), (120, 30, 4)]
capacity = 30

print (knapsack(items, capacity)) # 220

Problem : You are given n number of houses and their coordinates (x, y) on a 2D plane. Your task is to find the
shortest distance between any two houses.

Solution using dynamic programming:

import math

def shortest_distance(coordinates):
n = len(coordinates)
Create a 2D array to hold the shortest distance between every pair of houses
distances = [[math.inf for _ in range(n)] for _ in range(n)]
Fill the array with the Euclidean distance between every pairT of houses
for i in range(n):
for j in range(n):

if iol= §:
x1, y1 = coordinates[i]
x2, y2 = coordinates[j]

distances[i] [j] = math.sqrt((x2-x1)**2 + (y2-yl1)*%*2)

Inittalize the shortest distance with the mazimum possible wvalue
shortest_distance = math.inf
Iterate through all patrs of houses and update the shortest distance
for i in range(n):
for j in range(n):
if i !'= j:
shortest_distance = min(shortest_distance, distances[i][j])

return shortest_distance

Example usage
coordinates = [(0, 0), (3, 4), (1, 1), (4, 5)]
print (shortest_distance(coordinates)) # 2.828/2712/7/61903

In this problem, I used the dynamic programming approach by creating a 2D array to hold the shortest distance
between every pair of houses, then iterating through all pairs of houses and updating the shortest distance.

82

Exercises and Projects Solutions for Chapter 16: Data Structure -
Part 1

Custom Stack with Minimum Element

class Stack:
def __init__(self):
self.items = []
self.mins = []

def push(self, item):
self.items.append(item)
if not self.mins or item <= self.mins[-1]:
self .mins.append(item)

def pop(self):
if self.items:
if self.items[-1] == self.mins[-1]:
self .mins.pop()
return self.items.pop()

def min(self):
if self.mins:
return self.mins[-1]
return None

= Stack()
.push(5)

.push(7)

.push(3)

.push (1)
print(s.min()) # 1
s.pop(Q)
print(s.min()) # 3

n n n n n

Custom Queue with Maximum Size

class Queue:
def __init__(self, size):
self.size = size
self.items = []

def enqueue(self, item):
if len(self.items) == self.size:
self.items.pop(0)
self.items.append(item)

def dequeue(self):
if self.items:
return self.items.pop(0)
return None

q = Queue(3)
q.enqueue(1)
q.enqueue(2)
q.enqueue(3)
print(q.dequeue()) # I
q.enqueue (4)
print(q.dequeue()) # 2

83

Custom Linked List Reversal

class Node:
def __init__(self, data):
self.data data
self.next None

class LinkedList:
def __init__(self):
self.head = None

def append(self, data):

new_node = Node(data)

if self.head is None:
self.head = new_node
return

curr = self.head

while curr.next:
curr = curr.next

curr.next = new_node

def reverse(self):
prev = None
curr self.head
while curr:
nxt = curr.next

curr.next = prev

prev = curr

curr = nxt
self.head = prev

def print_list(self):
curr = self.head
while curr:
print(curr.data)
curr = curr.next

1list = LinkedList()
1list.append(1)
1list.append(2)
1list.append(3)
1list.append(4)
print("Original list:")
llist.print_list()
llist.reverse()

print ("Reversed list:")
1list.print_list()

Note that this implementation of a linked list is unoptimized and only serves as an example. A more efficient
version of a linked list would use a doubly linked list.

84

Exercises and Projects Solutions for Chapter 17: Data Structure -
Part 2

Binary Search Tree Class

class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None

class BST:
def __init__(self):
self.root = None

def insert(self, data):
new_node = Node(data)
if self.root is None:
self.root = new_node
return
curr = self.root
while True:
if data < curr.data:
if curr.left is None:
curr.left = new_node
break
else:
curr = curr.left
elif data > curr.data:
if curr.right is None:
curr.right = new_node
break
else:
curr = curr.right
else:
break

def search(self, data):
curr = self.root
while curr:
if data < curr.data:
curr = curr.left
elif data > curr.data:
curr = curr.right
else:
return curr
return None

def delete(self, data):
if self.root is None:
return
parent = None
curr = self.root
while curr and curr.data != data:
parent = curr
if data < curr.data:
curr = curr.left
else:
curr = curr.right
if curr is None:
return

85

if curr.left and curr.right:
min_right = curr.right
min_parent = curr
while min_right.left:
min_parent = min_right
min_right = min_right.left
curr.data = min_right.data
if min_parent.left == min_right:
min_parent.left = min_right.right
else:
min_parent.right = min_right.right
elif curr.left:
if parent is None:
self.root = curr.left
elif parent.left == curr:
parent.left = curr.left
else:
parent.right = curr.left
elif curr.right:
if parent is None:
self.root = curr.right
elif parent.left == curr:
parent.left = curr.right
else:
parent.right = curr.right
else:
if parent is None:
self.root = None
elif parent.left == curr:
parent.left = None
else:
parent.right = None

bst = BST(Q)
bst.insert(5)
bst.insert(3)
bst.insert(7)
bst.insert (1)
bst.insert (4)
bst.insert(6)
bst.insert(8)
print(bst.search(4)) # Node with data /4
bst.delete(3)

print (bst.search(3))

Trie Word Insertion/Search/Removal

class Trie:
def __init__(self):
self.root = {}
self.end_symbol = 'x*'

def insert(self, word):
current = self.root
for letter in word:
if letter not in current:
current [letter] = {}
current = current[letter]
current [self.end_symbol]l = True

def search(self, word):

86

current = self.root
for letter in word:
if letter not in current:
return False
current = current[letter]
if self.end_symbol in current:
return True
return False

def remove(self, word):
current = self.root
letters = list(word)
for i, letter in enumerate(letters):
if letter not in current:

return

if len(current[letter]) > 1 or i == len(letters)-1:
del current[letter] [self.end_symbol]
return

current = current[letter]

Exzample usage

trie = Trie()

trie.insert("hello")
trie.insert("world")
print(trie.search("hello")) # True
print(trie.search("hell")) # False
trie.remove("hello")
print(trie.search("hello")) # False

Basic Graph Class for shortest path

class Graph:
def __init__(self):
self.nodes = {}

def add_node(self, value):
if value not in self.nodes:
self .nodes[value] = set()

def add_edge(self, valuel, value2):
if valuel not in self.nodes:
self.nodes[valuel] = set()
if value2 not in self.nodes:
self.nodes[value2] = set()
self.nodes[valuel] .add(value?2)
self.nodes[value2] .add(valuel)

def remove_node(self, value):
if value in self.nodes:
for node in self.nodes[value]:
self.nodes[node] .remove (value)
del self.nodes[value]

def remove_edge(self, valuel, value2):
if valuel in self.nodes and value2 in self.nodes:
self.nodes[valuel] .remove(value2)
self.nodes[value2] .remove(valuel)

def shortest_path(self, valuel, value2):

if valuel not in self.nodes or value2 not in self.nodes:
return None

87

visited = set()
queue = [[valuel]]
while queue:
path = queue.pop(0)
node = path[-1]
if node not in visited:
neighbours = self.nodes[node]
for neighbour in neighbours:
new_path = list(path)
new_path.append(neighbour)
queue . append (new_path)
if neighbour == value2:
return new_path
visited.add(node)
return None

This is a basic implementation of a graph class that supports adding and removing nodes and edges, and provides
a method for finding the shortest path between two nodes using breadth-first search. The add_node method
adds a new node to the graph, the add_edge method creates a new edge between two nodes, the remove_node
method removes a node and all its edges from the graph, and the remove_edge method removes an edge between
two nodes. The shortest_path method finds the shortest path between two nodes using breadth-first search
and returns the path as a list of nodes. If the nodes are not connected or do not exist in the graph, it returns
None.

It is worth noting that this implementation only allows for unweighted and undirected graph, for directed and
weighted graph, more code is needed to be added to the class.

88

Exercises and Projects Solutions for Chapter 18: Algorithms - Part 1

Linear Search for Sorted List

def linear_search(lst, target):
for i, x in enumerate(lst):
if x == target:

return i
print("Target not found")
return -1

1st = [1, 2, 3, 4, 5]

target = 3

index = linear_search(lst, target)
print(index) # 2

Binary search

def binary_search(lst, target):
low = 0
high = len(lst) - 1
while low <= high:
mid = (low + high) // 2
if 1st[mid] == target:
return mid
elif 1lst[mid] < target:
low = mid + 1
else:
high = mid - 1
print ("Target not found")
return -1

1st = [1, 2, 3, 4, 5]

target = 3

index = binary_search(lst, target)
print(index) # 2

Target not found

def bubble_sort(lst):
n = len(lst)
for i in range(n):
for j in range(0, n-i-1):
if 1st[j] > 1st[j+11:
1st[j1, 1st[j+1] = 1st[j+1], 1st[j]
return lst

def linear_search(lst, target):
for i, x in enumerate(lst):
if x == target:
return i
print ("Target not found")
return -1

89

Exercises and Projects Solutions for Chapter 19: Algorithms - Part 2

Shortest Path in Weighted Graph

from collections import defaultdict

class Graph:
def __init__(self):
self.graph = defaultdict(list)

def add_edge(self, u, v, w):
self.graph[u] .append ((v, w))

def shortest_path(self, start, end):
dp = {node: float('inf') for node in self.graph}
dplstart] = 0

for node in dp:
for neighbor, weight in self.graph[node]:
dp[neighbor] = min(dp[neighbor], dpl[node] + weight)

return dplend] if dplend] != float('inf') else 'Path not found'

g = Graph()

g.add_edge('A', 'B', 2)
g.add_edge('A', 'C', 3)
g.add_edge('B', 'D', 1)
g.add_edge('C', 'D', 4)
print(g.shortest_path('A', 'D')) # 3

Knapsack Problem with Greedy Algorithm

def knapsack(items, capacity):
items.sort(key=lambda x: x[2], reverse=True)
knapsack = []
weight = 0
for item in items:
if weight + item[1] <= capacity:
knapsack.append (item)
weight += item[1]
return knapsack

items = [('A', 3, 4), ('B', 4, 5), ('Cc', 2, 3), ('D', 3, 4), ('E', 1, 2)]
capacity = 6
print (knapsack(items, capacity)) # [('B', 4, 5), ('D', 3, 4)]

Greedy algorithm task scheduler program

For example, I want to create a program that takes a list of tasks and their corresponding deadlines and finds

the maximum number of tasks that ## can be completed using a greedy algorithm.

def task_scheduler(tasks):
tasks.sort(key=lambda x: x[1])
schedule = []
time = 0
for task in tasks:
if time <= task[1]:
schedule.append(task[0])
time += task[2]
return schedule

tasks = [('A', 2, 1), ('B', 1, 2), ('C', 3, 1), ('D', 2, 2)]
print(task_scheduler(tasks)) # ['B', 'A', 'D']

90

Note that this is an approximate solution that may not be optimal depending on the specific case.

91

Exercises and Projects Solutions for Chapter 20: Multithreading and
Concurrency

Multiprocessing for Factorial Calculation

import multiprocessing

def factorial(n):
if n ==
return 1
return n * factorial(n-1)
if __name__ == '_main_ _':
p = multiprocessing.Pool(processes=4)
result = p.map(factorial, range(1,16))
print(result)

This program creates a pool of 4 worker processes using multiprocessing.Pool(processes=4). The map()
function is then used to apply the factorial() function to a range of numbers, 1 through 15. The results are
collected and printed.

Multiple Files Download Program.

Here’s an example of a problem that can be solved using multithreading:

import threading
import urllib.request

def download_file(url):
response = urllib.request.urlopen(url)
file = open(url.split("/")[-1]1, "wb")
file.write(response.read())
file.close()
print (f"Finished downloading {url}")

1 .

if __name__ == '__main__
urls = ['https://www.example.com/filel.txt',
'https://www.example.com/file2.txt"',
'https://www.example.com/file3.txt',
'https://www.example.com/file4.txt"']
threads = []
for url in urls:
thread = threading.Thread(target=download_file, args=(url,))
thread.start ()
threads.append (thread)
for thread in threads:
thread. join()
print("All files downloaded!")

This program creates a list of threads, one for each file to be downloaded. The download_file() function is
called for each thread, passing the URL of the file to be downloaded as an argument. The join() method is
called for each thread to wait for all downloads to complete before printing “All files downloaded!”.

92

Exercises and Projects Solutions for Chapter 21: GUI Programming

Simple image viewer

import tkinter as tk
from PIL import Image, ImageTk

root = tk.Tk()
root.title("Simple Image Viewer")

Image.open("image. jpg")
ImageTk.PhotoImage (img)

img
img

label = tk.Label(root, image=img)
label.pack()

root.mainloop()

Simple to-do list application

import tkinter as tk

class ToDoApp(tk.Tk):
def __init__(self):
super().__init__Q

self.title("To-Do List")
self.geometry("300x400")

self.tasks = []

Create task entry
self.task_entry = tk.Entry(self)
self.task_entry.pack(pady=5)

Create add task button
self.add_task_button = tk.Button(self, text="Add Task", command=self.add_task)
self.add_task_button.pack()

Create task list frame
self.task_list_frame = tk.Frame(self)
self.task_list_frame.pack()

Populate task list
self.populate_task_list()

def add_task(self):
task = self.task_entry.get()
self.tasks.append(task)
self.populate_task_list()

def populate_task_list(self):
for widget in self.task_list_frame.winfo_children():
widget.destroy()

for index, task in enumerate(self.tasks):
task_label = tk.Label(self.task_list_frame, text=task)
task_label.grid(row=index, column=1)
complete_button = tk.Button(self.task_list_frame,
text="Complete",
command=lambda: self.complete_task(index))

93

complete_button.grid(row=index, column=1)

remove_button = tk.Button(self.task_list_frame, text="Remove",
command=lambda: self.remove_task(index))
remove_button.grid(row=index, column=2)

def complete_task(self, index):
self.tasks[index] = " " + self.tasks[index]
self .populate_task_list()

def remove_task(self, index):
del self.tasks[index]
self.populate_task_list()

if __name__ == "_main__":

app = ToDoApp()
app.mainloop()

This is a simple implementation of a to-do list application using tkinter. The application has an entry field
for the user to enter a task, a button to add the task to the list, and a list to display all the tasks. The list of
tasks is stored in a list called self.tasks. The add_ task function is called when the user clicks the “Add Task”
button and takes the task entered in the entry field and appends it to the list of tasks. The populate_ task_ list
function is used to display the list of tasks in the GUI by creating a label for each task and displaying it in the
task list frame. Each task also has two buttons, “Complete” and “Remove”; that allow the user to mark a task
as complete and remove a task from the list, respectively. When a task is marked as complete, an “” symbol is
added to the beginning of the task.

It is worth noting that this is just a simple example, and there are many ways to improve this application such
as saving tasks, setting deadlines, and adding more functionality.

94

Exercises and Projects Solutions for Chapter 22: Networking

Simple chat client using sockets

import socket

Create a socket object
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Get local machine mame
host = socket.gethostname()

Set the port number
port = 12345

Connect to the server
s.connect ((host, port))

Send a message to the server
s.sendall(b'Hello, Server')

Recetve data from the server
data = s.recv(1024)

print ('Received: ', repr(data))

Close the socket
s.close()

Simple file transfer program using sockets

import socket

Create a socket object
s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

Get local machine mame
host = socket.gethostname()

Set the port number
port = 12345

Connect to the server
s.connect ((host, port))

Open the file to be sent
with open('file_to_send.txt', 'rb') as f:
s.sendfile(f, 0)

Close the socket
s.close()

Multiplayer game server

Problem: Create a Python program that allows multiple clients to connect to a server and play a multiplayer
game. The server will keep track of the score of each client and broadcast the updated scores to all ## clients
every 10 seconds.

import threading

class MultiplayerGameServer:
def __init__(self):

95

self.server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.server_socket.bind(("localhost", 12345))
self.server_socket.listen()

self.clients = []

self.scores = {}

def broadcast_scores(self):
while True:
for client in self.clients:
client.send(str(self.scores).encode())
time.sleep(10)

def handle_client(self, client):

client_name = client.recv(1024).decode()

self.scores[client_name] = 0O

client.send("Welcome to the game, {}! Your score is {}.".format(
client_name, self.scores[client_name]).encode())

while True:
data = client.recv(1024) .decode()
if not data:

break
data = data.split(":")
if datal[0] == "score":

self.scores[client_name] += int(datal[1])

def start(self):
broadcast_thread = threading.Thread(target=self.broadcast_scores)
broadcast_thread.start()

while True:
client, address = self.server_socket.accept()
client.send("Enter your name:".encode())
self.clients.append(client)
client_thread = threading.Thread(target=self.handle_client, args=(client,))
client_thread.start ()

server = MultiplayerGameServer ()
server.start()

This code creates a MultiplayerGameServer class that initializes a socket and binds it to the localhost IP
address and port 12345. The server then listens for incoming connections and creates a new thread for each
client that connects. The handle_ client method is responsible for receiving the client’s name, adding it to the
scores dictionary, and handling any other messages received from the client. The broadcast_ scores method is
responsible for broadcasting the current scores to all clients every 10 seconds. Finally, the start method starts
the server and creates a new thread for broadcasting the scores and for handling each client that connects.

96

Exercises and Projects Solutions for Chapter 23: Web Scraping

Scrapes website for image links
import requests

from bs4 import BeautifulSoup

Make a request to the website
url = 'https://www.example.com'
response = requests.get(url)

Parse the HTML content
soup = BeautifulSoup(response.content, 'html.parser')

Find all <mage tags
img_tags = soup.find_all('img')

Extract the image links
img_links = [img['src'] for img in img_tags]

print (img_links)

Scraping website for product prices

import requests
from bs4 import BeautifulSoup

Make a request to the webstite
url = 'https://www.example.com'
response = requests.get(url)

Parse the HTML content
soup = BeautifulSoup(response.content, 'html.parser')

Find all elements with the class "price”
price_tags = soup.find_all(class_='price')

Extract the product prices
prices = [price.text for price in price_tags]

print (prices)

Real estate agents

import requests
from bs4 import BeautifulSoup

Make a request to the website
url = 'https://www.example.com/real-estate-agents'
response = requests.get(url)

Parse the HTML content
soup = BeautifulSoup(response.content, 'html.parser')

Find all elements with the class "agent"
agent_tags = soup.find_all(class_='agent')

Extract the agent's contact information
agents = []
for agent in agent_tags:

name = agent.find(class_='name').text

97

phone = agent.find(class_='phone').text
email = agent.find(class_='email').text
agents.append({'name': name, 'phone': phone, 'email': emaill})

print (agents)

98

Exercises and Projects Solutions for Chapter 24: Web Development

Simple web app for file upload /download using Flask

from flask import Flask, render_template, request, send_from_directory
import os

app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'uploads/'
app.config['ALLOWED_EXTENSIONS'] = {'txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif'}

def allowed_file(filename):
return '.' in filename and \
filename.rsplit('.', 1)[1]
in app.config['ALLOWED EXTENSIONS']

@app.route('/")
def index():
return render_template('index.html')

Qapp.route('/', methods=['POST'])
def upload_file(Q):
file = request.files['file']
if file and allowed_file(file.filename):
filename = file.filename
file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
return 'file uploaded successfully'
else:
return 'file not uploaded'

Qapp.route('/uploads/<filename>"')
def download_file(filename):
return send_from_directory(app.config['UPLOAD_FOLDER'],
filename, as_attachment=True)
if __name__ == '_main_ _':
app.run()

Simple web app for registration/login using Django

from django.contrib.auth.forms import UserCreationForm
from django.urls import reverse_lazy

from django.views import generic

from django.shortcuts import render, redirect

from django.contrib.auth import authenticate, login

class RegisterView(generic.CreateView):
form_class = UserCreationForm
template_name = 'register.html'
success_url = reverse_lazy('login')

def login_view(request):
if request.method == 'POST':

username = request.POST['username']

password = request.POST['password']

user = authenticate(request, username=username, password=password)

if user is not None:
login(request, user)
return redirect('home')

else:
return render(request, 'login.html', {'error': 'Invalid credentials'})

99

else:
return render(request, 'login.html')

Web app for resume storage and keyword search

Problem: Create a web application that allows users to upload and store their resumes, and then search for
resumes based on specific ## keywords.

from flask import Flask, request, render_template
from werkzeug.utils import secure_filename

import os

from whoosh.index import create_in

from whoosh.fields import *

app = Flask(__name__)

app.config['UPLOAD_FOLDER'] = 'resumes'
app.config['ALLOWED_EXTENSIONS'] = {'txt', 'pdf', 'doc', 'docx'}
app.config['WHOOSH_BASE'] = 'whoosh_index'

def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1] in app.config['ALLOWED_EXTENSIONS']

def create_index():
if not os.path.exists(app.config['WHOOSH_BASE']):
os.mkdir (app.config['WHOOSH_BASE'])
schema = Schema(file_name=ID(stored=True), content=TEXT)
ix = create_in(app.config['WHOOSH_BASE'], schema)
return ix

Qapp.route('/")
def index():
return render_template('index.html')

Qapp.route('/search', methods=['POST'])
def search():
ix = create_index()
with ix.searcher() as searcher:
query = QueryParser("content", ix.schema).parse(request.form['query'])
results = searcher.search(query)
return render_template('search.html', results=results)

Qapp.route('/upload', methods=['POST'])
def upload():
file = request.files['file']
if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
file.save(os.path. join(app.config['UPLOAD_FOLDER'], filename))
ix = create_index()
writer = ix.writer()
writer.add_document (file _name=filename, content=file.read())
writer.commit ()
return "File uploaded successfully."
else:
return "Invalid file type."

if __name__ == '_main__':

app.run()
This program creates a web application using Flask, it has three main routes, the index route which renders the
main page, the search route which handles the search request and renders the search results, and the upload

route which handles the file upload request, saves the file in a local folder, indexes its content using Whoosh and
creates an index for it.

100

The index route just renders the main page, where the user can upload their resume, and search for resumes by
entering keywords.

The search route takes the keywords from the search form, uses the Whoosh library to search the indexed
resumes for the keywords, and renders the search results page with the search results.

The upload route takes the file that the user has uploaded, checks if it’s an allowed file type, saves the file to a
local folder, indexes the file content using Whoosh, and creates an index for it, then returns a message indicating
that the file has been uploaded successfully.

I have used Whoosh library for indexing the resumes and searching it, but you can use any other library or
service for your use case.

101

Exercises and Projects Solutions for Chapter 25: Database

Simple CRUD app using SQLite

import sqlite3

Connect to the database
conn = sqlite3.connect('crud.db')
cursor = conn.cursor()

Create the table
cursor.execute('' 'CREATE TABLE students (id INTEGER PRIMARY KEY, name TEXT, age INTEGER)''")

Insert a record
cursor.execute ("INSERT INTO students VALUES(1, 'John Smith', 20)")
conn.commit ()

Read records
cursor.execute ("SELECT * FROM students")
print (cursor.fetchall())

Update a record
cursor.execute ("UPDATE students SET age = 21 WHERE id = 1")
conn. commit ()

Delete a record
cursor.execute ("DELETE FROM students WHERE id = 1")
conn.commit ()

Close the connection
conn.close()

Simple data analysis on MySQL database

import mysqgl.connector
import pandas as pd

Connect to the database

conn = mysql.connector.connect(
host='hostname',
user='username',
password='password',
database='dbname'

Perform a simple data analysts
data = pd.read_sql('SELECT * FROM table_name', conn)
print(data.describe())

Close the connection
conn.close()

Program for product sales reports using MongoDB

from pymongo import MongoClient
import pandas as pd

Connect to the MongoDB server
client = MongoClient('mongodb://host:port/")

Access the database

102

db = client.database_name

Access the collection
collection = db.collection_name

Perform the aggregation
pipeline = [
{
"$group': {
'_id': '$category’',
'total_sold': {'$sum': '$quantity'}

result = collection.aggregate(pipeline)

Create a DataFrame from the result
df = pd.DataFrame(list(result))

Print the report
print(df)

Close the connection
client.close()

103

Exercises and Projects Solutions for Chapter 26: Machine Learning

Simple classification model using scikit-learn on Iris dataset

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score

iris = load_iris()
X = iris.data
y = iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

clf = DecisionTreeClassifier()
clf . fit(X_train, y_train)
y_pred = clf.predict(X_test)

print (accuracy_score(y_test, y_pred))

Simple convolutional neural network using TensorFlow on CIFAR-10 dataset

import tensorflow as tf
from tensorflow.keras import datasets, layers, models

(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

Normalize pizel values to be between O and 1
train_images, test_images = train_images / 255.0, test_labels / 255.0

Create the CNN model

model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))

model .add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())

model.add(layers.Dense (64, activation='relu'))

model.add(layers.Dense (10, activation='softmax'))

Compile the model
model . compile(

optimizer='adam', .w
loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

Train the model
model.fit(train_images, train_labels, epochs=10)

Evaluate the model on the test set
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)

This program loads the CIFAR-10 dataset using the datasets.cifar10.load_data() function from TensorFlow.
The dataset consists of 60,000 32x32 color images in 10 classes, with 6,000 images per class. There are 50,000

104

training images and 10,000 test images. The program normalizes the pixel values of the images so that they
are between 0 and 1, and then creates a simple CNN using the Sequential model from TensorFlow. The CNN
consists of a stack of 3 convolutional layers, each followed by a max-pooling layer, and a final

Try to come up with your own machine learning problem and try to solve it using scikit-learn or TensorFlow.
Car price prediction program
Problem: Create a Python program that predicts the price of a car #+# based on its make, model, and year.

import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error

Load the car data into a pandas dataframe
car_data = pd.read_csv("car_data.csv")

Extract the feature columns

X = car_datal[["make", "model", "year"]]
Extract the target column

y = car_data["price"]

One-hot encode the categorical features
X = pd.get_dummies (X, columns=["make", "model"])

Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Create the linear regression model
model = LinearRegression()

Train the model on the training data
model.fit(X_train, y_train)

Make predictions on the test data
y_pred = model.predict(X_test)

Calculate the mean absolute error
mae = mean_absolute_error(y_test, y_pred)
print ("Mean Absolute Error:", mae)

This program loads the car data into a pandas dataframe, using the pd.read_ csv() function. It then separates
W

the data into two arrays, the first one X contains the features “make”, “model”, “year” and the second one y
contains the

105

Exercises and Projects Solutions for Chapter 27: Natural Language
Processing

Simple text classifier using NLTK on movie reviews

import nltk

from nltk.corpus import movie_reviews

from nltk.classify import NaiveBayesClassifier
from nltk.classify.util import accuracy

positive_reviews = [(movie_reviews.raw(fileid), 'pos')
for fileid in movie_reviews.fileids('pos')]
negative_reviews = [(movie_reviews.raw(fileid), 'neg')
for fileid in movie_reviews.fileids('neg')]
reviews = positive_reviews + negative_reviews

train_set, test_set = reviews[:800], reviews[800:]
classifier = NaiveBayesClassifier.train(train_set)

acc = accuracy(classifier, test_set)
print(acc)

Named entity extraction program using spaCy

import spacy
nlp = spacy.load("en_core_web_sm")

text = """Barack Obama was born in Honolulu, Hawaii.
He is the 44th president of the United States."""
doc = nlp(text)

for ent in doc.ents:
print(ent.text, ent.label_)

Text summarization program using NLTK

import nltk
from nltk.tokenize import sent_tokenize
from nltk.corpus import stopwords

def summarize_text(text):
Tokenize text into sentences
sentences = sent_tokenize(text)

Remove stopwords from sentences

stop_words = set(stopwords.words("english"))

filtered_sentences = []

for sentence in sentences:
words = nltk.word_tokenize(sentence)
filtered_words = [word for word in words if word.lower() not in stop_words]
filtered_sentence = " ".join(filtered_words)
filtered_sentences.append(filtered_sentence)

Create frequency table for words in the text
frequency_table = {}
for sentence in filtered_sentences:
for word in nltk.word_tokenize(sentence.lower()):
if word in frequency_table:
frequency_table[word] += 1
else:
frequency_table[word] = 1

106

Create a weightage table for each sentence
weightage_table = {}
for index, sentence in enumerate(filtered_sentences):
weightage_table[index] = 0
for word in nltk.word_tokenize(sentence.lower()):
if word in frequency_table:
weightage_table[index] += frequency_table[word]

Get the threshold wvalue for the wetightage table
threshold = sum(weightage_table.values()) / len(weightage_table)

Get the summarized sentences
summarized_sentences = []
for index, weight in weightage_table.items():
if weight > threshold:
summarized_sentences.append(sentences [index])

Return the summarized text
return " ".join(summarized_sentences)

text = """The natural language processing is a field of computer science and artificial
intelligence that deals with the interaction
between computers and human (natural) languages, in particular
how to program computers to process and analyze large amounts of natural language data."""
print (summarize_text(text))

This program takes a text as input and first tokenizes it into sentences using the sent_ tokenize function from
NLTK. Then, it removes stopwords, which are commonly used words that do not add much meaning to the text
such as “the”, “is”, “of”, etc. Next, it creates a frequency table for the words in the text, which will be used to
assign a weight to each sentence. Then it create a weightage table for each sentence, the weight assigned to each
sentence will be based on the frequency of the words in the sentence. Then it set a threshold for the weightage
table, the threshold is calculated by taking the average of the weightage values. Finally, it returns the sentences
whose weightage is greater than the threshold, which represents the most informative sentences of the text.

107

Exercises and Projects Solutions for Chapter 28: Blockchain

Bitcoin price retrieval program using Bitcoin-Python

from bitcoin import *

price = float(unhexlify(get_price()))
print ("The current price of Bitcoin in USD is: $" + str(price))

Ethereum wallet creation and Ether transfer program using web3.py

from web3 import Web3

Connect to a local Ethereum mode
w3 = Web3(Web3.HTTPProvider ('http://127.0.0.1:8545"'))

Generate a new wallet
private_key = w3.eth.account.create() .privateKey

Get the corresponding account address
address = w3.eth.account.privateKeyToAccount (private_key) .address

Send 1 Ether to the new wallet
w3.eth.sendTransaction({'to': address, 'from': w3.eth.coinbase, 'value': w3.toWei(
1, 'ether')})

Smart contracts with web3.py

from web3 import Web3

contract_address = '0x4f9254c4£9254c4£9254c4£9254c4£9254c4£9254c4£9254c4£9254c4£9254c4!
w3 = Web3(Web3.HTTPProvider ('http://127.0.0.1:8545"'))

tx_count = w3.eth.getTransactionCount(contract_address)
print("Total transactions made to the contract: ", tx_count)

Note that this will only work if the contract is deployed on the same Ethereum node that the program is
connected to.

108

Exercises and Projects Solutions for Chapter 29: Quantum Computing

Bell state in Qiskit

from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer

q = QuantumRegister(2)

¢ = ClassicalRegister(2)
bell = QuantumCircuit(q, c)
bell.h(q[0])

bell.cx(ql0l, ql1l)
bell.measure(q, c)

backend = Aer.get_backend('gasm_simulator')
job = execute(bell, backend, shots=1024)
counts = job.result().get_counts()

print (counts)

GHZ state creation and measurement program using PyQuil

from pyquil import Program, get_qc
from pyquil.gates import H, CNOT

qc = get_qc('3g-qvm')
= Program()
+= H(0)
+= CNOT(0, 1)
+= CNOT(1, 2)
H(0)
+= H(1)
+= H(2)
+= CNOT(O, 1)
+= CNOT(1, 2)
+= [MEASURE(i, i) for i in range(3)]

‘oo oo oo oo o
+
Il

result = gc.run(p)

print (result)

Deutsch-Jozsa algorithm using PyQuil.

from pyquil import Program, get_qc
from pyquil.gates import H, X, CNOT

qc = get_qc('2g-qvm')
p = Program()

Prepare the initial state
+= H(0)

+= H(1)

+= X(0)

+= CNOT (0, 1)

+= H(0)

oo o oo W

*

Measure qubits
+= [MEASURE(i, i) for i in range(2)]

o)

result = gc.run(p)

#Checking the results
if result[0] [0] ==

109

https://en.wikipedia.org/wiki/Deutsch%E2%80%93Jozsa_algorithm

print("Constant Function")
else:
print("Balanced Function")

110

Exercises and Projects Solutions for Chapter 30: Robotics

Robotic car control program using R0OS

import rospy
from geometry_msgs.msg import Twist

rospy.init_node('square_move')
pub = rospy.Publisher('cmd_vel', Twist, queue_size=10)

Move forward for 2 seconds
move = Twist()

move.linear.x = 1
pub.publish(move)
rospy.sleep(2)

Turn 90 degrees to the left
move.linear.x = 0O
move.angular.z = 1
pub.publish(move)
rospy.sleep(1)

Repeatl for 3 more sides
...

Robotic arm control program using PyRobot

from pyrobot import Robot

bot = Robot('locobot')

bot.arm.go_home ()
bot.arm.set_tool_pose(x=0.3, y=0.2, z=0.1)
bot.arm.pick()
bot.arm.set_tool_pose(x=0.4, y=0.3, z=0.2)
bot.arm.place()

EC2 instance creation program using boto3

from pyrobot import Robot
import numpy as np

bot = Robot('locobot')
bot.arm.go_home ()
bot.arm.set_tool_pose(x=0.3, y=0.2, z=0.1)

Define the pattern

= np.linspace(0.3, 0.6, num=50)
= np.linspace(0.2, 0.5, num=50)
= np.linspace(0.1, 0.2, num=50)

N < X %

Move the arm to trace the pattern

for i in range(50):
bot.arm.set_tool_pose(x=x[i], y=y[il, z=z[il)
bot.arm.move_cartesian(x=x[i], y=y[il, z=z[il)

bot.arm.go_home ()

111

Exercises and Projects Solutions for Chapter 31: Cloud Computing

Image upload program to OpenStack using openstack library

from boto3 import resource

Connect to EC2
ec2 = resource('ec2')

Create an EC2 instance

instance = ec2.create_instances(
ImageId="'ami-0f£f8a91507£f77£867",
MinCount=1,
MaxCount=1,
InstanceType='t2.micro',
KeyName='my-key-pair'

print (instance[0].id)

Average calculation program on large dataset using PySpark

from openstack import connection

Connect to UpenStack

conn = connection.Connection(auth_url='http://<your_auth_url>',
username='<your_username>',
password='<your_password>',
project_name='<your_project_name>',
user_domain_id='<your_user_domain_id>"',
project_domain_id='<your_project_domain_id>"')

Upload an image to Glance
with open("image.qcow2", "rb") as image_file:
image_data = image_file.read()

conn.image.create(name="my-image", container_format='bare',
disk_format='qcow2', data=image_data)

Data filtering program on large dataset using Dask

from openstack import connection

Connect to UpenStack

conn = connection.Connection(auth_url='http://<your_auth_url>',
username='<your_username>',
password='<your_password>',
project_name='<your_project_name>',
user_domain_id='<your_user_domain_id>"',
project_domain_id='<your_project_domain_id>"')

Retrtieve list of running instances
instances = conn.compute.servers(status='ACTIVE')
for instance in instances:

print (instance.name)

112

Exercises and Projects Solutions for Chapter 32: Big Data

PySpark column average

from pyspark import SparkConf, SparkContext

conf = SparkConf () .setAppName ("average_calculator")
sc = SparkContext (conf=conf)

data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
rdd = sc.parallelize(data)

Calculate the average

average = rdd.mean()
print("Average:", average)

Dask dataset filtering
import dask.dataframe as dd

df = dd.read_csv('large_dataset.csv')

Filter specific value
filtered_df = df[df.column_name != 'specific_value']

filtered_df.compute()

Dask data aggregation

import dask.dataframe as dd

df = dd.read_csv('large_dataset.csv')

Aggregate data on a specific column

aggregated_data = df.groupby('column_name').agg({'column_name_to_aggregate':'sum'})

.compute ()

print (aggregated_data)

113

Exercises and Projects Solutions for Chapter 33: Cyber Security

Scapy ARP spoof detection

from scapy.all import ARP, Ether, srp

Define target IP and MAC
target_ip = '192.168.1.1"
target_mac = 'ff:ff:ff:ff:ff:ff'

Send ARP request

arp = ARP(pdst=target_ip)

ether = Ether(dst=target_mac)

packet = ether/arp

result = srp(packet, timeout=3, verbose=0) [0]

Check for response from target IP
if result:

print ("ARP Spoofing detected.")
else:

print("No ARP Spoofing detected.")

Cryptography file encryption/decryption

from cryptography.fernet import Fernet

from cryptography.hazmat.backends import default_backend

from cryptography.hazmat.primitives import hashes

from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC

Generate password
password = b'"password"
salt = b"salt"

kdf = PBKDF2HMAC(
algorithm=hashes.SHA256,
length=32,

salt=salt,
iterations=100000,
backend=default_backend ()
)

key = base64.urlsafe_b64encode (kdf.derive(password))

Encrypt file

fernet = Fernet(key)

with open("file.txt", "rb") as file:
encrypted_data = fernet.encrypt(file.read())

with open("file.txt.encrypted", "wb") as file:
file.write(encrypted_data)

Decrypt file
with open("file.txt.encrypted", "rb") as file:
decrypted_data = fernet.decrypt(file.read())

with open("file.txt", "wb") as file:
file.write(decrypted_data)

Scapy man-in-the-middle detection

from scapy.all import ARP, Ether, srp

Define target IP and MAC

114

target_ip = '192.168.1.1"
target_mac = 'ff:ff:ff:ff.ff:ff'

Send ARP request

arp = ARP(pdst=target_ip)

ether = Ether(dst=target_mac)

packet = ether/arp

result = srp(packet, timeout=3, verbose=0) [0]

Check for response from target IP
if result[0] [1] .hwsrc != target_mac:

print ("Man-in-the-middle attack detected.")
else:

print("No Man-in-the-middle attack detected.")

115

The Bibliography

References
[1
2
[

Guido van Rossum. An Introduction to Python. CWI Report, 1996.

Python Software Foundation. Python 3.10.2 documentation. https://docs.python.org/3/, 2022.

=

Kenneth Reitz and Tanya Schlusser. Requests: HTTP for Humans. https://requests.readthedocs.io/en/latest/,
2021.

Luciano Ramalho. Fluent Python: Clear, Concise, and Effective Programming. O’Reilly Media, 2015.

CIRES

Mark Lutz. Learning Python: Powerful Object-Oriented Programming. O’Reilly Media, 2013.

Wes McKinney. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O’Reilly
Media, 2012.

Mark Pilgrim. Dive Into Python 3. Apress, 2011.

Jake VanderPlas. Python Data Science Handbook: FEssential Tools for Working with Data. O’Reilly Media,
2016.

[9] Allen B. Downey. Think Python: How to Think Like a Computer Scientist. Green Tea Press, 2015.

=

EONE)

[10] Python Software Foundation. Python Language Website. https://www.python.org/.

[11] Guido van Rossum. Python Reference Manual. Technical Report CS-R9526, Centrum voor Wiskunde en
Informatica (CWI), Amsterdam, May 1995.

[12] Allen B. Downey. Think Python: How to Think Like a Computer Scientist. 2nd Edition, Green Tea Press,
2015.

[13] Mark Pilgrim. Dive into Python 3. Apress, 2014.

[14] Mark Lutz. Learning Python. 5th Edition, O’Reilly Media, 2013.

[15] Alex Martelli, Anna Ravenscroft, and David Ascher. Python Cookbook. 2nd Edition, O’Reilly Media, 2005.
[16]

16] Adam Sharf. Python and Data Science Handbook: Essential Tools for Working with Data. O’Reilly Media,
2019.

[17] Jake VanderPlas. Python Data Science Handbook: Essential Tools for Working with Data. O’Reilly Media,
2016.

[18] Michael Waskom et al. seaborn: statistical data visualization. Journal of Open Source Software, 2021.

[19] Shalev-Shwartz, S., Ben-David, S. (2014). Understanding machine learning: From theory to algorithms.
Cambridge University Press.

20] Goodfellow, 1., Bengio, Y., Courville, A. (2016). Deep learning. MIT Press.

[20]

[21] Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

[22] Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT Press.
23]

23] Ng, A. (2018). Machine learning yearning. Available at https://www.deeplearning.ai/machine-learning-
yearmng/ .

[24] Abu-Mostafa, Y. S., Magdon-Ismail, M., Lin, H. (2012). Learning from data. AMLBook.com.
[25] Russell, S. J., Norvig, P. (2010). Artificial intelligence: A modern approach. Prentice Hall.

[26] Zhang, Y., Lipton, Z. C., Li, M., Smola, A. J. (2018). Discovering hidden variables in noisy-orchestrated
deep learning (NODL) models. Advances in Neural Information Processing Systems, 31, 3896-3906.

[27] Bengio, Y. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(8), 1798-1828.

116

https://docs.python.org/3/
https://requests.readthedocs.io/en/latest/
https://www.python.org/
https://www.deeplearning.ai/machine-learning-yearning/
https://www.deeplearning.ai/machine-learning-yearning/

About the Author

Amin Boulouma is a software engineer, data scientist, startup founder, and chief technical officer with over 10
years of experience in the field. He has written multiple software programs and worked with several industries to
develop innovative solutions for their specific needs.

Apart from his professional career, Amin is also an academic and researcher. He has worked and studied
internationally, from Morocco to Austria through Spain and Israel, and has been involved and stays involved
with academics through his M.Sc., M.Eng., and is entering his PhD studies.

Throughout his career, Amin has coached and trained several students and professionals, sharing his knowledge
and expertise in the field of software engineering and data science. He has founded several startups, and has also
taught numerous students across the globe.

With his wealth of experience and passion for technology, Amin Boulouma is dedicated to sharing his knowledge
and helping others become successful in the field of programming.

You can contact him on his website: boulouma.com

117

	Preface
	How to read this book

	History and Overview of Python
	Introduction
	A brief history of Python
	An overview of Python's key features and benefits
	Python's Standard Library and Tools
	Python in industry and scientific computing
	Conclusion

	Chapter 1: Introduction to Python
	Setting up a Python development environment
	The basics of programming concepts
	Exercises for practice
	Summary

	Chapter 2: Variables and Data Types
	Understanding Variables in Python
	The Various Data Types in Python
	Numbers
	Strings
	Lists
	Dictionaries
	And more

	How to Use and Manipulate Variables and Data Types
	Exercises for Practice
	Summary

	Chapter 3: Control Structures
	Understanding control structures
	if/else statements
	for loops
	while loops
	How to use control structures in Python
	Exercises for Practice

	Summary

	Chapter 4: Functions
	Understanding functions and their use in Python
	Defining and calling functions in Python
	Exercises for Practice
	Summary

	Chapter 5: Modules
	Understanding modules in Python
	Importing and using modules in Python
	Exercises for Practice
	Summary

	Chapter 6: Object-Oriented Programming - Part 1
	Understanding the concepts of object-oriented programming
	Defining classes and objects in Python
	Exercises for Practice
	Summary

	Chapter 7: Object-Oriented Programming - Part 2
	Understanding inheritance and polymorphism
	Inheritance
	Polymorphism

	Using built-in classes in Python
	Exercises for Practice
	Summary

	Chapter 8: Input and Output
	Reading from and writing to files in Python
	Exercises for Practice
	Summary

	Chapter 9: Error Handling
	try / except block
	finally block
	raise statement
	Exercises for Practice
	Summary

	Chapter 10: Regular Expressions
	search() function
	findall() function
	split() function
	sub() function
	compile() function
	Exercises for Practice
	Summary

	Chapter 11: Debugging
	The pdp module
	Exercises for Practice
	Summary

	Chapter 12: Decorators
	Understanding decorators and their use in Python
	Using decorators to modify functions and methods
	Exercises for practice
	Summary

	Chapter 13: Generators
	Understanding generators and their use in Python
	Creating and using generators in Python
	Exercises for practice
	Summary

	Chapter 14: Advanced Topics - Part 1
	Understanding advanced topics in Python
	Lambda function
	Map
	Filter
	Reduce

	Exercises for practice
	Summary

	Chapter 15: Advanced Topics - Part 2
	Understanding more advanced topics
	Closure
	Built-in Libraries
	Using the unittest module for unit testing

	Exercises for practice
	Summary

	Chapter 16: Data Structure - Part 1
	Understanding data structures
	Stack
	Queue
	Linked List
	Implementing data structures in python

	Exercises for practice
	Summary

	Chapter 17: Data Structure - Part 2
	Understanding more advanced data structures
	Trees
	Tries
	Graphs
	Implementing data structures in python
	Exercises for practice
	Summary

	Chapter 18: Algorithms - Part 1
	Understanding Basic Algorithms
	Implementing Algorithms in Python
	Exercises for Practice

	Chapter 19: Algorithms - Part 2
	Dynamic Programming
	Greedy Algorithms
	Implementing Algorithms in Python
	Exercises for Practice
	Summary

	Chapter 20: Multithreading and Concurrency
	Understanding concepts of multithreading and concurrency
	The threading module
	The multiprocessing module
	Exercises for practice
	Summary

	Chapter 21: GUI Programming
	Understanding concepts of GUI programming
	Using Python's tkinter module
	Exercises for practice
	Summary

	Chapter 22: Networking
	Understanding concepts of Networking
	Using Python's socket module
	Exercises for practice
	Summary

	Chapter 23: Web Scraping
	Understanding concepts of web scraping
	Using Python's BeautifulSoup and Scrapy module
	Exercises for practice
	Summary

	Chapter 24: Web Development
	Understanding concepts of web development
	Using Python's Flask and Django framework
	Exercises for practice
	Summary

	Chapter 25: Database
	Understanding concepts of database
	Using Python's SQLite, MySQL and MongoDB
	sqlite3 module
	mysql-connector-python module
	pymongo module
	Exercises for practice
	Summary

	Chapter 26: Machine Learning
	Understanding concepts of machine learning
	Using Python's scikit-learn and TensorFlow
	The sklearn library
	Exercises for Practice
	Summary

	Chapter 27: Natural Language Processing
	Understanding concepts of NLP
	Using Python's NLTK and spaCy
	The nltk library
	spaCy library
	Exercises for Practice
	Summary

	Chapter 28: Blockchain
	Understanding concepts of blockchain
	Using Python's blockchain libraries
	The bitcoin library
	The web3 library
	Exercises for practice
	Summary

	Chapter 29: Quantum Computing
	Understanding concepts of Quantum Computing
	Using Python's Quantum Computing libraries
	The qiskit library
	The pyquil library
	Exercises for Practice
	Summary

	Chapter 30: Robotics
	Understanding concepts of Robotics
	Using Python's Robotics Libraries
	The rospy library
	The pyrobot library
	Exercises for Practice
	Summary

	Chapter 31: Cloud Computing
	Understanding concepts of Cloud Computing
	Using Python's Cloud Computing Libraries
	The boto3 library
	The openstack library
	Exercises for Practice
	Summary

	Chapter 32: Big Data
	Understanding concepts of Big Data
	Using Python's Big Data Libraries
	The pyspark library
	The dask library
	Exercises for Practice
	Summary

	Chapter 33: Cyber Security
	Understanding concepts of Cyber Security
	Using Python's Cybersecurity Libraries
	The scapy library
	The cryptography library
	Exercises for Practice
	Summary

	Exercises and Projects Solutions for Chapter 2: Variables and Data Types
	Variable Input and Data Type
	Input Dictionary and Print
	Loop, Numbers, and Squares

	Exercises and Projects Solutions for Chapter 3: Control Structures
	Even/Odd Number Check
	Fibonacci Sequence Printing
	Continuous Input Until ``stop''

	Exercises and Projects Solutions for Chapter 4: Functions
	String Reversal Function
	Number Sum Function
	Largest List Element

	Exercises and Projects Solutions for Chapter 5: Modules
	Random Number Generation
	Current Date and Time

	Exercises and Projects Solutions for Chapter 6: Object-Oriented Programming - Part 1
	Person Name and Age Class
	Car Make, Model, Year Class
	Bank Account Balance and Number Class

	Exercises and Projects Solutions for Chapter 7: Object-Oriented Programming - Part 2
	Inherit Shape class with Circle, Rectangle and override area method
	Electric/Gas Vehicle Comparison
	Student Name, Age, ID Class

	Exercises and Projects Solutions for Chapter 8: Input and Output
	Word Count Text File Reader
	User Input Text File Writer
	CSV Table Print Reader

	Exercises and Projects Solutions for Chapter 9: Error Handling
	Factorial Calculation and Exception Handling
	Division calculation and exception handling:
	Second largest element calculation and exception handling:

	Exercises and Projects Solutions for Chapter 10: Regular Expressions
	Email address extraction:
	Phone number validation:
	Removing whitespace:

	Exercises and Projects Solutions for Chapter 11: Debugging
	Syntax Error Debugging
	Semantic Error Debugging
	Second Largest Element with pdb

	Exercises and Projects Solutions for Chapter 12: Decorators
	Logging decorator:
	Memoization decorator:
	Type checking decorator:

	Exercises and Projects Solutions for Chapter 13: Generators
	Fibonacci sequence generator:
	Permutation generator for a list:
	Power of 2 generator:

	Exercises and Projects Solutions for Chapter 14: Advanced Topics - Part 1
	Linear search function:
	Binary search function:
	Bubble sort and linear search combination:

	Exercises and Projects Solutions for Chapter 15: Advanced Topics - Part 2
	Shortest path in a weighted graph using dynamic programming:
	Knapsack problem using greedy algorithm:
	Solution using dynamic programming:

	Exercises and Projects Solutions for Chapter 16: Data Structure - Part 1
	Custom Stack with Minimum Element
	Custom Queue with Maximum Size
	Custom Linked List Reversal

	Exercises and Projects Solutions for Chapter 17: Data Structure - Part 2
	Binary Search Tree Class
	Trie Word Insertion/Search/Removal
	Basic Graph Class for shortest path

	Exercises and Projects Solutions for Chapter 18: Algorithms - Part 1
	Linear Search for Sorted List
	Binary search
	Target not found

	Exercises and Projects Solutions for Chapter 19: Algorithms - Part 2
	Shortest Path in Weighted Graph
	Knapsack Problem with Greedy Algorithm

	Exercises and Projects Solutions for Chapter 20: Multithreading and Concurrency
	Multiprocessing for Factorial Calculation
	Here's an example of a problem that can be solved using multithreading:

	Exercises and Projects Solutions for Chapter 21: GUI Programming
	Simple image viewer
	Simple to-do list application

	Exercises and Projects Solutions for Chapter 22: Networking
	Simple chat client using sockets
	Simple file transfer program using sockets
	Multiplayer game server

	Exercises and Projects Solutions for Chapter 23: Web Scraping
	Scrapes website for image links
	Scraping website for product prices
	Real estate agents

	Exercises and Projects Solutions for Chapter 24: Web Development
	Simple web app for file upload/download using Flask
	Simple web app for registration/login using Django
	Web app for resume storage and keyword search

	Exercises and Projects Solutions for Chapter 25: Database
	Simple CRUD app using SQLite
	Simple data analysis on MySQL database
	Program for product sales reports using MongoDB

	Exercises and Projects Solutions for Chapter 26: Machine Learning
	Simple classification model using scikit-learn on Iris dataset
	Simple convolutional neural network using TensorFlow on CIFAR-10 dataset

	Exercises and Projects Solutions for Chapter 27: Natural Language Processing
	Simple text classifier using NLTK on movie reviews
	Named entity extraction program using spaCy
	Text summarization program using NLTK

	Exercises and Projects Solutions for Chapter 28: Blockchain
	Bitcoin price retrieval program using Bitcoin-Python
	Ethereum wallet creation and Ether transfer program using web3.py
	Smart contracts with web3.py

	Exercises and Projects Solutions for Chapter 29: Quantum Computing
	Bell state in Qiskit
	GHZ state creation and measurement program using PyQuil
	Deutsch-Jozsa algorithm using PyQuil.

	Exercises and Projects Solutions for Chapter 30: Robotics
	Robotic car control program using ROS
	Robotic arm control program using PyRobot
	EC2 instance creation program using boto3

	Exercises and Projects Solutions for Chapter 31: Cloud Computing
	Image upload program to OpenStack using openstack library
	Average calculation program on large dataset using PySpark
	Data filtering program on large dataset using Dask

	Exercises and Projects Solutions for Chapter 32: Big Data
	PySpark column average
	Dask dataset filtering
	Dask data aggregation

	Exercises and Projects Solutions for Chapter 33: Cyber Security
	Scapy ARP spoof detection
	Cryptography file encryption/decryption
	Scapy man-in-the-middle detection

	The Bibliography
	About the Author

