

Conquering JavaScript
Conquering JavaScript: The Practical Handbook helps the reader master the
JavaScript (JS) programming language for faster and more robust develop-
ment. JS is a highly popular language and is often termed as the ‘language
of the web.’ In addition to the internet, JS is also being used actively in
game development, mobile apps, progressive applications, and now even
desktop apps. As such, it is safe to say that JS is probably the most cross-
platform language currently in use, and it rises in popularity with each
passing day.

This book covers the basics and moves on to advanced concepts using a
hands-on approach with practical lessons and tutorials. JS programming,
JS frameworks and various use-case scenarios are discussed in detail.
Bridging the gap between beginner and intermediate-level JS literature,
this book is a valuable resource to build robust knowledge.

About the Series

The Conquering JavaScript series covers a wide range of topics, pertain-
ing specifically to the JavaScript programming ecosystem, such as frame-
works and libraries. Each book of this series is focused on a singular topic,
and covers said topic at length, focusing especially on real-world usage
and a code-oriented approach, adhering to an industry-standard coding
paradigm, so as to help the learners gain practical expertise that can be
useful for real-world projects.

Some of the key aspects of books in this series are:

•	 Crystal-clear text, spanning various JavaScript-related topics sorted
by relevance.

•	 Special focus on practical exercises with numerous code samples and
programs.

•	 A guided approach to JS coding with step-by-step tutorials and
walkthroughs.

•	 Keen emphasis on the real-world utility of skills, thereby cutting the
redundant and seldom-used concepts and bloatware.

•	 A wide range of references and resources to help the readers gain the
most out of the books.

The Conquering JavaScript series of books assume a basic understanding
of coding fundamentals.

The Conquering JavaScript series is edited by Sufyan bin Uzayr, a writer
and educator having over a decade of experience in the computing field.
Sufyan holds multiple degrees, and has taught at universities and insti-
tutions worldwide. Having authored and edited over 50 books thusfar,
Sufyan brings a wide array of experience to the series. Learn more about
his works at sufyanism.com.

https://www.routledge.com/Conquering-JavaScript/book-series/
CRCCONJAV

https://www.routledge.com/Conquering-JavaScript/book-series/CRCCONJAV
https://www.routledge.com/Conquering-JavaScript/book-series/CRCCONJAV
http://sufyanism.com

Conquering JavaScript
The Practical Handbook

Edited by
Sufyan bin Uzayr

First edition published 2024
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 Sufyan bin Uzayr

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of
their use. The authors and publishers have attempted to trace the copyright holders of all material
reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write
and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,
now known or hereafter invented, including photocopying, microfilming, and recording, or in
any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.
copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact
mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and
are used only for identification and explanation without intent to infringe.

ISBN: 9781032411675 (hbk)
ISBN: 9781032411668 (pbk)
ISBN: 9781003356578 (ebk)

DOI: 10.1201/9781003356578

Typeset in Minion
by codeMantra

http://www.copyright.com
http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003356578

For Dad

https://taylorandfrancis.com

vii

Contents

About the Editor, xxxv

Acknowledgments, xxxvii

Zeba Academy – Conquering JavaScript, xxxix

Chapter 1    ◾   � Introduction to JavaScript	 1
IN THIS CHAPTER	 1

CLIENT-SIDE JAVASCRIPT	 3

WHAT IS THE PURPOSE OF JAVASCRIPT?	 3

WHAT MAKES JAVASCRIPT SO SPECIAL?	 6

WHAT ARE JAVASCRIPT’S FLAWS?	 6

How Does JavaScript Work on Our Website?	 7
WHAT MAKES JAVASCRIPT UNIQUE AMONG
PROGRAMMING LANGUAGES?	 7

TOOLS FOR JAVASCRIPT DEVELOPMENT	 8

What Is the Current State of JavaScript?	 9
JAVASCRIPT’S EVOLUTION	 9

What Is Modern JavaScript and How Can It Be Used?	 9
What JavaScript Can Do for Us	 10
What Distinguishes JavaScript?	 11
JavaScript Tendencies	 11
Standardizing JavaScript	 12
ECMAScript Version History	 13
JavaScript vs. Java	 14

viii    ◾    Contents

WHO CONTROLS JAVASCRIPT?	 14

Oracle’s Trademark Is JavaScript	 15
Various Variations	 15

JAVASCRIPT FRAMEWORK	 15

The jQuery and JavaScript Libraries	 16
What Distinguishes JavaScript Frameworks from Libraries?	 16
Frontend Frameworks	 17

REACT	 17
ANGULAR	 17
VUE	 17

Backend Frameworks	 17
EXPRESS	 17
NEXT.JS	 18

WHAT ARE THE BENEFITS AND DRAWBACKS OF
JAVASCRIPT FRAMEWORKS?	 18

Library vs. Framework	 26
Model View Controller (MVC)	 26

VANILLA JS VS. REACT JS: WHICH SHOULD
WE USE FOR OUR DEVELOPMENT?	 27

Vanilla JS vs React JS Functionality	 27
React JS: What Is Its Role in the Application’s View Layer?	 27
Why Is Vanilla JS Used?	 28
Stack Data Structure Comparison between React
JS vs Vanilla JS	 28
Performance Comparison between Vanilla JS with React JS	 28
Future Prospects	 29
Testing	 30
Security	 30
ReactJs and Vanilla js UI/UX Performance	 31
Convenience for the Developer	 31
Maintenance	 32
Development Cost	 32

Contents    ◾    ix

5 REASONS WHY OUR WEBSITE NEEDS JAVASCRIPT	 33

Explain How Using JavaScript Will Enhance Our Website	 33
AJAX Uses to Load Sections of Pages Independently	 34

NOTES	 35

Chapter 2    ◾   � Getting Started with JavaScript I	 37
IN THIS CHAPTER	 37

SELECTING THE BEST JAVASCRIPT EDITOR FROM
SEVEN OPTIONS	 37

What Is the Difference between a JavaScript Editor and
an IDE?	 38

What Exactly Is an Editor?	 38
IDE Definition	 38
When Conflicts Arise	 39
The Top 7 JavaScript Editors	 39
Time to Select the Best JavaScript Editor	 45
With a JavaScript Editor, You May Improve the Efficiency
of Your Work Environment	 46

HOW TO INSTALL JAVASCRIPT IN VISUAL STUDIO CODE	 46

Installation of Visual Studio Code in Windows	 47
Setup Visual Studio Code	 51

INSTALLING VISUAL STUDIO CODE ON LINUX	 54

Installing Visual Studio Code on Debian, Ubuntu, or
Linux Mint	 54

NODE.JS INSTALLATION ON WINDOWS	 55

Configuring the Node Development Environment	 55
Node Installation on Windows (WINDOWS 10):	 55

NODE.JS INSTALLATION ON LINUX	 61

HOW DO WE START AND EXECUTE A NODE.JS
PROJECT IN VISUAL STUDIO CODE?	 62

TOP VISUAL STUDIO CODE EXTENSIONS FOR
JAVASCRIPT DEVELOPERS	 64

JavaScript (ES6) Code Snippets	 64

x    ◾    Contents

ESLint	 65
Prettier	 65
Quokka.js	 66
REST Client	 67
Debugger for Chrome	 67
Live Server	 68
Live Share	 68
Babel JavaScript VSCode	 69
JavaScript Booster	 69
Tabnine	 70

WHAT EXACTLY IS ‘VANILLA JAVASCRIPT’?	 71

Why Should We Learn Pure JS?	 72
Website Performance	 72
User Interface	 72
It also Makes Working with Frameworks Simpler	 72

Vanilla Script’s Disadvantages	 73
HELLO WORLD PROGRAM IN JAVASCRIPT	 74

SYNTAX OF JAVASCRIPT	 74

OUR FIRST JAVASCRIPT CODE	 75

Line Breaks and Whitespace	 76
Semicolons Are Not Required	 76
Case Sensitivity	 77

COMMENT IN JAVASCRIPT	 77

Benefits of JavaScript Comments	 77
JavaScript Comment Types	 77

Single-Line Comment in JavaScript	 77
Multiline Comment in JavaScript	 78

VARIABLE IN JAVASCRIPT	 78

JavaScript Variables That Are Correct	 79
JavaScript Variables That Are Not Correct	 79
Variable in JavaScript Example	 79
Local Variable in JavaScript	 79

Contents    ◾    xi

The Global Variable in JavaScript	 80
Declaring a Global Variable in JavaScript within a Function	 80
Internals of Global Variable	 80

DATA TYPES IN JAVASCRIPT	 81

Primitive Data Types in JavaScript	 81
NON-PRIMITIVE DATA TYPES IN JAVASCRIPT	 81

OPERATORS IN JAVASCRIPT	 82

Arithmetic Operators	 82
Comparison Operators	 82
Bitwise Operators	 83
Logical Operators	 83
Assignment Operators	 83
Special Operators	 84

IF-ELSE STATEMENTS IN JAVASCRIPT	 84

If Statement	 84
If...else Statement	 85
If...else if Statement	 86

SWITCH IN JAVASCRIPT	 88

LOOPS IN JAVASCRIPT	 89

for loop	 90
while loop	 90
do-while loop	 91
for-in loop	 91

FUNCTIONS IN JAVASCRIPT	 92

The Benefit of the JavaScript Function	 92
Syntax of JavaScript Functions	 93
Function Arguments	 93
Function with Return Value	 93
Function Object	 94
Parameter	 94
Function Methods	 94

xii    ◾    Contents

Examples of JavaScript Function Objects	 94
OBJECTS IN JAVASCRIPT	 95

Object Creation in JavaScript	 95
Creating a Method in a JavaScript Object	 97
Object Methods in JavaScript	 97

ARRAY IN JAVASCRIPT	 98

Array Methods in JavaScript	 100
STRING IN JAVASCRIPT	 102

String Methods in JavaScript	 103
DATE OBJECT IN JAVASCRIPT	 106

Constructor	 106
Date Methods in JavaScript	 106
Date Example in JavaScript	 108
Example of JavaScript Current Time	 108
Example of a JavaScript Digital Clock	 108

MATH IN JAVASCRIPT	 109

Math Methods	 109
Math.sqrt(n)	 110
Math.random()	 110
Math.pow(m, n)	 110
Math.floor(n)	 111
Math.ceil(n)	 111
Math.round(n)	 111
Math.abs(n)	 112

NUMBER OBJECT IN JAVASCRIPT	 112

Number Constants in JavaScript	 112
Number Methods in JavaScript	 113

JAVASCRIPT BOOLEAN	 113

Boolean Properties	 113
Boolean Methods	 114

ERRORS AND EXCEPTIONS IN JAVASCRIPT	 114

Contents    ◾    xiii

What Exactly Is Exception Handling?	 114
Errors in Syntax	 115
Runtime Errors	 115
Logical Errors	 116
Statement of try...catch...finally	 116
The throw Statement	 119
The onerror() function	 120

EVENTS IN JAVASCRIPT	 122

What Exactly Is an Event?	 122
onclick Event Type	 123
onsubmit Event Type	 123
onmouseover and onmouseout	 124
Standard HTML 5 Events	 125

NOTES	 128

Chapter 3    ◾   � Getting Started with JavaScript II	 131
IN THIS CHAPTER	 131

HOW CAN WE BUILD AN ASYNCHRONOUS
NODE.JS FUNCTION?	 131

HOW DO WE WRITE AN ASYNCHRONOUS
FUNCTION IN JAVASCRIPT?	 134

Waiting for Multiple Promises	 138
Synchronous and Asynchronous in JavaScript	 141

Synchronous JavaScript	 141
Asynchronous JavaScript	 142

Explain the Difference between Asynchronous and
Deferred JavaScript	 143

Asynchronous	 144
Deferred	 144
Asynchronous vs Deferred	 144

DOCUMENT OBJECT MODEL	 145

Document Object Properties	 145
Document Object Methods	 146

xiv    ◾    Contents

Document Object Accessing Field Value	 146
METHOD DOCUMENT.GETELEMENTBYID() IN
JAVASCRIPT	 147

GETELEMENTSBYCLASSNAME()	 147

Method getElementsByClassName() Example	 147
Distinction between the Methods
getElementsByClassName(), querySelector(), and
querySelectorAll()	 148

METHOD DOCUMENT.GETELEMENTSBYNAME() IN
JAVASCRIPT	 149

METHOD DOCUMENT.GETELEMENTSBYTAGNAME()
IN JAVASCRIPT	 149

THE INNERHTML IN JAVASCRIPT	 151

InnerHTML Property Example	 151
Example of a Comment Form Using innerHTML	 151

THE INNERTEXT IN JAVASCRIPT	 152

Example of JavaScript innerText	 152
5 METHODS FOR MAKING HTTP REQUESTS IN
JAVASCRIPT	 153

XMLHttpRequest	 153
Advantages of XMLHttpRequest	 156
Disadvantages of XMLHttpRequest	 156

Fetch	 156
Advantages of Fetch	 158
Disadvantages of Fetch	 158

Axios	 159
Advantages Axios	 160
Disadvantages Axios	 160

SuperAgent	 161
Advantages of SuperAgent	 162
Disadvantages of SuperAgent	 162

Ky	 162

Contents    ◾    xv

Advantages of Ky	 163
Disadvantages of Ky	 164

HTTP COOKIES	 164

Utilization of Cookies	 165
How Do Cookies Work?	 166
Cookies in JavaScript	 166

Create Cookies	 166
Client Side	 167
Web Server Side	 167

Properties of Cookies	 168
Scope of Cookies	 168

Varieties of Cookie	 170
First-Party Cookies	 170
Third-Party Cookies	 171
Session Cookies	 171
Secure Cookies	 171
Zombie Cookies	 172

FORM IN JAVASCRIPT	 172

Overview to Forms	 172
Referencing Forms	 173
Submitting Form	 174
Login Form	 174
SignUp Form	 175

VALIDATION OF JAVASCRIPT FORMS	 177

Example of Form Validation in JavaScript	 177
Password Retype Validation in JavaScript	 178
Number Validation in JavaScript	 178
Validation of JavaScript Using an Image	 179
Email Validation in JavaScript	 180

WORKING WITH JAVASCRIPT APIS	 181

THE MOST WELL-KNOWN JAVASCRIPT LIBRARIES	 191

xvi    ◾    Contents

jQuery	 191
Features	 191
Use Cases	 192

React.js	 192
Features	 192
Use Cases	 193

D3.js	 193
Features	 193
Use Cases	 194

Underscore.js	 194
Features	 194
Use Cases	 195

Lodash	 195
Features	 195
Use Cases	 195

Algolia Places	 195
Features	 196
Use Cases	 196

Anime.js	 196
Features	 196
Use Cases	 197

Animate On Scroll (AOS)	 197
Features	 197
Use Cases	 197

Bideo.js	 198
Features	 198
Use Cases	 198

Chart.js	 198
Features	 198
Use Cases	 199

Cleave.js	 199

Contents    ◾    xvii

Features	 199
Use Cases	 199

Choreographer.js	 199
Features	 200
Use Cases	 200

Glimmer	 200
Features	 200
Use Cases	 200

Granim.js	 201
Features	 201
Use Cases	 201

fullPage.js	 202
Features	 202
Use Cases	 202

Leaflet	 202
Features	 203
Case Studies	 203

Multiple.js	 203
Features	 203
Use Cases	 204

Moment.js	 204
Features	 204
Use Cases	 204

Masonry	 204
Features	 204
Use Cases	 205

Omniscient	 205
Features	 205
Use Cases	 205

Parsley	 206
Features	 206

xviii    ◾    Contents

Use Cases	 206
Popper.js	 206

Features	 207
Use Cases	 207

Three.js	 207
Features	 207
Use Cases	 207

Screenfull.js	 207
Features	 208
Use Cases	 208

Polymer	 208
Features	 208
Use Cases	 208

Voca	 208
Features	 209
Use Cases	 209

NOTES	 209

Chapter 4    ◾   � The Clearer Picture	 211
IN THIS CHAPTER	 211

A JAVASCRIPT FRAMEWORK IS WHAT?	 211

What Distinguishes a JavaScript Framework from a
JavaScript Library?	 212
Use a JavaScript Framework, But Why?	 212
Libraries and Frameworks for JavaScript	 213

TOP 7 JAVASCRIPT FRONTEND FRAMEWORKS	 214

1. React	 214
How It Operates	 214
Popular React Components	 215
Advantages	 215
Disadvantages	 215
When Should We Utilize React?	 215

Contents    ◾    xix

2. Vue.js	 215
How It Operates	 216
Real-Life Examples	 216
Popular Vue.js Components	 216
Advantages	 217
Disadvantages	 217
When Should We Utilize Vue.js?	 217

3. Angular	 217
How It Operates	 218
Real-Life Examples	 218
Popular Angular Components	 218
Advantages	 219
Disadvantages	 219
When Should We Utilize Angular?	 219

4. jQuery	 219
How It Operates	 219
Real-Life Examples	 220
Popular jQuery Components	 220
Advantages	 221
Disadvantages	 221
When Should We Utilize jQuery?	 221

5. Svelte	 221
How It Operates	 221
Real-Life Examples	 222
Popular Svelte Components	 222
Advantages	 222
Disadvantages	 222
When Should We Utilize Svelte?	 223

6. Ember	 223
How It Operates	 223
Real-Life Examples	 223

xx    ◾    Contents

Popular Ember Components	 224
Advantages	 224
Disadvantages	 224
When Should We Utilize Ember?	 224

7. Backbone.js	 224
How It Operates	 225
Real-Life Examples	 225
Advantages	 225
Disadvantages	 225
When Should We Utilize Backbone.js?	 226

How Can We Choose the Ideal JavaScript Framework
for Our Next Project?	 226

Team Proficiency	 226
Backward Compatibility	 226
Complexity	 226
Size and Functionality	 227

5 Backend JavaScript Frameworks	 227
THE EIGHT TOP JAVASCRIPT GAME ENGINES	 231

10 MAJOR JAVASCRIPT FRAMEWORKS FOR
DEVELOPING MOBILE APPS	 233

1. React Native	 234
In What Ways Is React Native Superior?	 234

2. NativeScript	 234
Why Is NativeScript Used?	 235

3. Ionic	 235
Why Is Ionic Used?	 235

4. Apache Cordova	 235
Why Was Cordova Chosen?	 236

5. OnSenUI	 236
Why Use OnSen UI?	 236

6. jQuery Mobile	 236
7. Mobile Angular UI	 237

Contents    ◾    xxi

8. Sencha Touch	 237
9. Titanium	 238
10. Meteor	 238

THE BEST JS FRAMEWORKS FOR DESKTOP
APPLICATIONS	 238

Are Cross-Platform Apps Interchangeable with
Desktop Programs?	 239
The Advantages and Disadvantages of a Standalone
Level vs a Cross-Platform App	 239
Are Desktop Apps Supported by React and NodeJS?	 239
Top Five JS Frameworks for Desktop Applications
(Desktop Apps)	 240

1. Electron	 240
2. NodeGUI	 240
3. Proton Native	 241
4. NW.js	 241
5. AppJS	 241

HOW TO SELECT THE BEST JAVASCRIPT
FRAMEWORK FOR OUR PROJECT	 242

Development Speed and Simplicity of Use, as well as
Project Support	 242
Trends	 242
Scalability and Mobility	 242
The Frequency of Updates	 242
Which JavaScript Framework Should We Start With?	 243

React.js	 244
Node.js	 244

JAVA VS. JAVASCRIPT	 244

PYTHON VS. JAVASCRIPT	 247

What Is JavaScript?	 247
What Is Python?	 248
Differences of Most Significance	 248

xxii    ◾    Contents

Features of JavaScript	 249
Features of Python	 249
Comparison between Python vs Java Script	 250

JQUERY VS. JAVASCRIPT	 251

What Exactly Is jQuery?	 251
The Distinction between jQuery and JavaScript	 252

JAVASCRIPT VS. PHP	 252

What Exactly Is PHP?	 252
The Distinction between JavaScript and PHP	 253

DART VS. JAVASCRIPT	 254

What Exactly Is Dart?	 255
Benefits and Drawbacks of Dart	 255

Advantages	 255
Drawbacks	 255

What Is JavaScript?	 256
Advantages	 256
Drawbacks	 256

Important Distinction between Dart and JavaScript	 257
Simplicity of Use	 257
Speed	 257
Type Security	 257
Popularity	 258
The Learning Curve	 258
Web vs. Mobile	 258
Frontend vs. Backend	 259
Commercial Usage	 259

JAVASCRIPT VS. ANGULAR JS	 260

What Is JavaScript?	 261
JavaScript Features	 261

What Is Angular Js?	 262
Angular JS features	 262

Contents    ◾    xxiii

Major Distinctions between JavaScript and Angular JS	 262
Comparative Analysis of JavaScript and Angular JS	 263

JAVASCRIPT VS. NODE.JS	 264

What Is JavaScript?	 264
JavaScript’s Benefits and Drawbacks Are Discussed	 264

Benefits	 264
Drawbacks	 265

What Is Node.js?	 265
How Does Node.js Work, and What Are Its Benefits and
Drawbacks?	 266

Benefits	 266
Drawbacks	 266

Comparing JavaScript with Node.js: Key Distinctions	 267
In-Depth Analysis of JavaScript vs. Node JS	 268

NOTES	 269

Chapter 5    ◾   � Frontend Development	 271
IN THIS CHAPTER	 271

FRONTEND VS BACKEND	 271

FRONTEND DEVELOPMENT	 271

Frontend Languages	 272
Frontend Frameworks and Libraries	 272

BACKEND DEVELOPMENT	 274

Backend Languages	 274
Backend Frameworks	 275
Difference between Frontend and Backend Development	 275

REACTJS	 276

WHAT DOES THE ‘REACT’ MEAN?	 276

The Question Is, ‘Why React?’	 276
React Features	 277

JSX	 278
Components	 278

xxiv    ◾    Contents

Data Binding, One Way Only	 278
Virtual DOM	 278
Simplicity	 278
Performance	 279

Benefits and Drawbacks of ReactJS	 279
Benefits	 279
Drawbacks	 281

Version of React	 282
SETUP OF THE REACT ENVIRONMENT	 286

REACTJS INSTALLATION METHODS	 286

1. By Use of the npm Command	 286
Install NPM and NodeJS	 286
Get React and React DOM Installed	 286
Install Webpack	 287
Install Babel	 288
Creation of Files	 288

2. Set React Application Compiler, Loader, and Server	 289
Configure Webpack	 289
HTML Webpack Template for the index.html File	 291
App.jsx and main.js	 291
Creation of .babelrc file	 292
Running Server	 292
Create the Bundle	 293

3. Use the Command create-react-app	 293
Install NodeJS and NPM	 293
Installation of React	 293
Develop a New React Project	 293
App.js	 294

Running Server	 295
COMPARISON BETWEEN ANGULARJS VS REACTJS	 295

AngularJS	 295

Contents    ◾    xxv

Characteristics of AngularJS	 295
ReactJS	 296

Characteristics of ReactJS	 297
AngularJS vs. ReactJS	 298

COMPARISON BETWEEN REACTJS AND SVELTE	 298

What Is Svelte?	 298
When Need One Use Svelte?	 299
Which Companies Utilize Svelte?	 299

What Is React?	 299
When Should React to Be Used?	 299
Which Companies Utilize React?	 300

React vs Svelte: Which Is Superior?	 300
Performance	 300
Bundle Size	 300
Testing	 301
Community Assistance	 301

Who Succeeds?	 301
REACT JSX	 302

Why Use JSX?	 302
JSX Nested Elements	 303

App.JSX	 303
Attributes in JSX	 303
Comments in JSX	 305
Styling in JSX	 306

EXPRESS.JS	 307

WHAT IS EXPRESS.JS	 307

Why Employ Express?	 307
How Does Express Appear?	 308

basic_express.js	 308
Prerequisite	 308
Audience	 308

xxvi    ◾    Contents

Problem	 308
Benefits of Express.js	 308

SETTING UP EXPRESS	 309

The Early Stages	 310
Its Evolution	 310

BASICS OF NODE.JS	 311

Types of Primitive	 311
Loose Typing	 311
Object Literal	 311
Functions	 312
Buffer	 312
Process Object	 312
Defaults to Local	 312
Utilize Global Scope	 313

VUEJS	 313

WHAT IS VUEJS?	 313

Features	 313
Comparative Assessment of Other Frameworks	 315

VueJS vs React	 315
VueJS vs Angular	 316

Similarities	 316
Complexity	 317
Performance	 317
Popularity	 317
Dependencies	 317
Flexibility	 317
Reverse Compatibility	 318
Typescript	 318

ENVIRONMENT SETUP FOR VUEJS	 318

Directly Use the <script> Tag in an HTML File	 318
By Using the CDN	 318
By Using the NPM	 320

Contents    ◾    xxvii

By Using the CLI Command Line	 320
Creating a Project with Webpack	 320
Start the Project, Then the Server	 321

UNDERSTANDING VUE.JS	 321

Advantages of Using Vue.js	 321
Extremely Small in Size	 321
Simple to Comprehend and Code	 322
Integration with Existing Applications Is Simple	 322
Nature Is Adaptable	 322
Components	 322
Documentation That Is Simple, Thorough, and Detailed	 322
DOM Virtualization	 322
Two-Way Communication	 322

Companies That Use Vue.js	 323
Examine the Vue.js Version We Have Installed	 324

INSTANCES IN VUEJS	 325

Example Explanation	 326
TEMPLATE IN VUE.JS	 327

Attributes Should Be Added to HTML Elements	 330
NOTES	 332

Chapter 6    ◾   � Backend Development	 333
IN THIS CHAPTER	 333

WHAT IS BACKEND DEVELOPMENT?	 333

NODE.JS	 333

What Is Node.js, and How Does It Work?	 333
Why Should We Use Node.js?	 334

Fast, Lightweight Applications with Real-Time
Communication	 334
Serverless and Microservice Design	 334
The Internet of Things	 335
Processing of Audio/Video	 335
Quick Development	 335

xxviii    ◾    Contents

Code Integration with C++	 335
The Downsides of Node.js	 336

Heavy Calculation Activities Cause Performance
Constraints	 336
Callback Hell Is a Problem	 336
Tooling Immaturity	 337
There Is a Growing Need for Skilled Experts	 337

Where Can We Use Node.js?	 338
Where Should We Not Use Node.js?	 338

SETUP OF THE NODE.JS ENVIRONMENT	 338

Text Editor	 338
Node.js Runtime	 338
Get the Node.js Archive	 339
Installation on SunOS, Mac OS X, Linux, and UNIX	 339
Setup on a Windows Computer	 339
Executing a File Will Verify Installation	 340

FIRST APPLICATION OF NODE.JS	 340

Creation of Node.js Application	 340
MongoDB	 342

What Is MongoDB	 342
How Does It Work?	 342
MongoDB Data Modeling	 344
What Distinguishes MongoDB from RDBMS?	 344
MongoDB Features Include	 345
MongoDB Has the Following Advantages	 346
MongoDB Disadvantages	 346

GETTING STARTED WITH MongoDB	 346

Terminology	 346
How to Get Started	 347
Queries	 349

HOW CAN MongoDB BE INSTALLED ON WINDOWS?	 350

Run Mongo Shell	 355

Contents    ◾    xxix

SERVER-SIDE JS	 356

Server-Side Website Programming	 356
Engines That Run JavaScript	 357
Runtime Environment	 357
Uses of Server-Side JavaScript	 357

MERN STACK	 358

Acquainting Oneself with MERN Stack Components	 358
1. �MongoDB: Cross-Platform Document-Oriented

Database� 358
Why Should We Create Mobile and Web Applications
with MERN Stack?	 359
Why Employ MongoDB?	 360

2. Express: Backend Framework	 361
Why Use Express?	 362

3. React: Frontend Library	 363
Why Use React?	 363

4. Node.js: JS Runtime Environment	 365
Why Use Node.JS?	 365
What Is the MERN Stack’s Structural Makeup and
How Does It Operate?	 366

Web or Frontend Layer	 366
Server or Middle Tier	 367
Database as Backend Tier	 367

MERN VS MEAN	 368

What Are MERN Stack Developers’ Futures?	 368
NOTES	 369

Chapter 7    ◾   � JavaScript for Mobile Usage	 371
IN THIS CHAPTER	 371

WHY IS JAVASCRIPT REGARDED AS ONE OF THE
FINEST PROGRAMMING LANGUAGES FOR MOBILE
APPS IN 2022?	 371

xxx    ◾    Contents

JavaScript’s Importance in the Development of Mobile
Applications	 372

Extremely Responsive	 372
Frontend Rich Platform	 372
Offline Assistance	 373
Suitable for All Kinds of Developers	 373
JavaScript Frameworks for Mobile Apps	 373
PhoneGap	 373
Ionic	 373
React Native	 374
jQuery	 374
Native Language	 374
Tabris.js	 374

SHOULD WE USE JAVASCRIPT WHEN DEVELOPING
FOR MOBILE?	 374

Key Attributes of JavaScript	 375
Native React	 376
JQuery	 376
PhoneGap	 376
Ionic	 376

BENEFITS OF USING JAVASCRIPT WHEN DEVELOPING
MOBILE APPS	 376

REACT NATIVE	 377

Setting Up a React Native Environment	 377
How to Install React Native Environment in Steps	 378
Install Android Studio	 379
Set Up the Android SDK and the Java JDK	 380

FUTURE SIGNIFICANCE OF REACT NATIVE IN THE
DEVELOPMENT OF MOBILE APPS	 380

Why Is React Native so Popular?	 384
Building React Native Apps	 385
Benefits of React Native App Development	 387
Cons of React Native	 388

Contents    ◾    xxxi

CREATE A MOBILE APPLICATION USING REACT NATIVE	 388

The Leading Cross-Platform Framework, React Native	 389
Why Should We Use React Native When Developing
Mobile Apps?	 389

Saves both Money and Time	 389
High Quality	 389
Over-the-Air Updates	 390
The Main Advantage Is Open-Source Software	 390

NATIVESCRIPT	 390

What Is NativeScript?	 390
Why NativeScript Is Preferred for the Creation of Android
Applications	 390
What Is NativeScript? What Are Its Main Advantages and
Disadvantages?	 391

Advantages of Native Apps	 391
Limitations with Native Apps	 392

Setups for NativeScript Environment	 393
Prerequisites	 394
Verify Node.js	 394
CLI Setup	 394
setupcli	 394
cli	 395

Setting Up the NativeScript Playground Application	 395
Setup for Android and iOS	 395

Top NativeScript Usage Cases	 396
Key Benefits of Developing Android Apps Using
NativeScript	 397

Performance of Native Apps	 397
Reusable Program	 398
The Very Low Learning Curve	 398
Substantial Community Support	 398

COMPARISON BETWEEN NATIVESCRIPT AND REACT
NATIVE	 399

xxxii    ◾    Contents

Performance of NativeScript and React Native	 399
Learning Curves for NativeScript and React Native	 399
Development Community for React Native vs NativeScript	 400
Popularity of NativeScript vs React Native	 400
Which Should We Use between React Native and
NativeScript?	 401

Select NativeScript if	 401
Select React Native if	 401

NOTES	 401

Chapter 8    ◾   � JavaScript for Desktop Apps	 403
IN THIS CHAPTER	 403

HOW CAN WE USE DESKTOP APPLICATIONS?	 404

WHAT IS AN ELECTRON?	 405

Installation	 405
WHICH APPS USE ELECTRON?	 405

1. WebTorrent Desktop Application	 405
Why Is Electron Used by WebTorrent for Desktop?	 406

2. WordPress Desktop Application	 406
Why Does the WordPress Desktop App Make Use of
Electron?	 406

3. Ghost Electron Application	 406
Why Does the Ghost Desktop App Make Use of Electron?	 407

4. The Electron App Beaker Browser	 407
Why Is Electron Used by Beaker Browser?	 407

5. Pexels Electron App	 407
Why Does the Pexels Desktop App Make Use of Electron?	 407

6. Slack Desktop Application	 408
Why Does the Slack Desktop App Make Use of Electron?	 408

7. WhatsApp Electron Application	 408
Why Does the WhatsApp Desktop App Make Use
of Electron?	 408

Contents    ◾    xxxiii

WHY DO SO MANY BUSINESSES CHOOSE ELECTRON
TO CREATE CROSS-PLATFORM DESKTOP APPS?	 408

What Is the Significance of This?	 408
BENEFITS OF ELECTRON	 409

Single Codebase	 409
Quick Feature Delivery	 409
Framework Maturity	 409
Electron Has Several Unresolved Concerns	 409

ALTERNATIVES FOR ELECTRON	 410

DRAWBACKS OF ELECTRON.JS FRAMEWORK	 410

Excessive Volume	 410
Electron.js Framework Consumes a Lot of Resources	 411
Specific Customer Needs	 411

SIGNIFICANCE OF USING THE ELECTRON.JS
FRAMEWORK	 411

DISTINCTION BETWEEN THE MAIN AND
RENDERER PROCESSES	 411

HELLO EVERYONE CODE IN ELECTRON	 412

HOW DOES THIS APP FUNCTION?	 413

BUILDING UIs WITH ELECTRON	 413

NOTES	 416

Chapter 9    ◾   � Appraisal	 417
WHAT EXACTLY IS JAVASCRIPT?	 417

JAVASCRIPT’S PAST AND ITS FUTURE	 418

WHAT MAKES JAVASCRIPT UNIQUE?	 418

Languages That Are “Superior” To JavaScript	 419
In Comparison to Other Languages, JavaScript	 420

JavaScript Contrasted with C	 420
The Contrast between Java and JavaScript	 421
When Compared to C#, JavaScript Is	 422
JavaScript Compared to the Programming Language
Python	 422

xxxiv    ◾    Contents

When Compared to PHP, JavaScript Is	 423
JavaScript Compared to the Programming Language Ruby	 424

Opportunities for Professional Development in JavaScript	 424
Frontend Web Developer	 424
Designer and Developer of Web Applications	 425

Developer Skilled in JavaScript	 425
UX/UI Designer	 426
DevOps Engineer	 426
Developer Who Works on All Layers	 427
What Is the Most Appropriate Framework for JavaScript?	 427
Vanilla js	 428
Why Do We Believe That Frameworks Written in
JavaScript Are so Awesome?	 428

APPENDIX I: JAVASCRIPT CHEAT SHEET, 429

APPENDIX II: BRIEF GUIDE TO TYPESCRIPT, 447

APPENDIX III: HANDY JAVASCRIPT TOOLS, 479

INDEX, 509

xxxv

About the Editor

Sufyan bin Uzayr �is a writer, coder, and entrepreneur with over a
decade of experience in the industry. He has authored several books in
the past, pertaining to a diverse range of topics, ranging from History to
Computers/IT.

He is the Director of Parakozm, a multinational IT company special-
izing in EdTech solutions. He also runs Zeba Academy, an online learning
and teaching vertical with a focus on STEM fields.

He specializes in a wide variety of technologies, such as JavaScript,
Dart, WordPress, Drupal, Linux, and Python. He holds multiple degrees,
including ones in management, IT, literature, and political science.

He is a digital nomad, dividing his time between four countries. He
has lived and taught in numerous universities and educational institutions
around the globe. He takes a keen interest in technology, politics, litera-
ture, history, and sports, and in his spare time, he enjoys teaching coding
and English to young students.

Learn more at sufyanism.com.

http://sufyanism.com

https://taylorandfrancis.com

xxxvii

Acknowledgments

There are many people who deserve to be on this page, for this book would
not have come into existence without their support. That said, some names
deserve a special mention, and I am genuinely grateful to

•	 My parents, for everything they have done for me.

•	 The Parakozm team, especially Divya Sachdeva, Jaskiran Kaur, and
Simran Rao, for offering great amounts of help and assistance during
the book-writing process.

•	 The CRC team, especially Sean Connelly and Danielle Zarfati, for
ensuring that the book’s content, layout, formatting, and everything
else remain perfect throughout.

•	 Reviewers of this book, for going through the manuscript and
providing their insight and feedback.

•	 Typesetters, cover designers, printers, and everyone else, for their
part in the development of this book.

•	 All the folks associated with Zeba Academy, either directly or
indirectly, for their help and support.

•	 The programming community in general, and the web development
community in particular, for all their hard work and efforts.

– Sufyan bin Uzayr

https://taylorandfrancis.com

xxxix

Zeba Academy –
Conquering JavaScript

The “Conquering JavaScript” series of books are authored by the Zeba
Academy team members, led by Sufyan bin Uzayr, consisting of:

•	 Divya Sachdeva

•	 Jaskiran Kaur

•	 Simran Rao

•	 Aruqqa Khateib

•	 Suleymen Fez

•	 Ibbi Yasmin

•	 Alexander Izbassar

Zeba Academy is an EdTech venture that develops courses and content for
learners primarily in STEM fields, and offers educational consulting and
mentorship to learners and educators worldwide.

Additionally, Zeba Academy is actively engaged in running IT Schools in
the CIS countries, and is currently working in partnership with numerous
universities and institutions.

For more info, please visit https://zeba.academy.

https://zeba.academy

https://taylorandfrancis.com

1

C h a p t e r 1

Introduction to
JavaScript

IN THIS CHAPTER

➢ What is JS?

➢ Advantages and Disadvantages

➢ Evolution of JS

➢ What are frameworks?

➢ Comparison with Vanilla JS

JavaScript is a dynamic language of programming for computers.
Its implementations allow client-side script to interact with users and

build dynamic sites, and it is most frequently used as a component of web
pages.

It is an object-oriented computer program that may be interpreted.
LiveScript was the original name of JavaScript, but Netscape changed it

to JavaScript owing to the buzz that Java was creating.1
JavaScript was first released in Netscape 2.0 in 1995; however, it was

called LiveScript back then. The language’s general-purpose core is inte-
grated in Netscape, Internet Explorer, and other web browsers.

DOI: 10.1201/9781003356578-1

https://doi.org/10.1201/9781003356578-1

2    ◾    Conquering JavaScript

The ECMA-262 Specification established a standard version of
JavaScript’s core language.

•	 JavaScript is an interpreted language for programming that is
lightweight.

•	 Designed for the development of network-centric applications.

•	 Java complements and integrates it.

•	 HTML-complementary and HTML-integrated.

•	 Open and platform-independent.

JavaScript is quick, extremely quick. It easily outperforms earlier lan-
guages such as PHP.

For example, if our company delivers email newsletters to consumers,
node.js (a JavaScript platform) is unquestionably our best choice. We can send
600 emails in about 3 seconds, while PHP would take around a half-minute.

Node.js is a JS-based framework that has rapidly become a developer
favorite. The developers at our Toronto-based web development firm swear
by it. Node.js debuted in January 2012 and has witnessed a 180% increase
in use since then. It is also the most popular language on the open-source
code repository GitHub. JavaScript is used in some manner in 21% of all
code on GitHub. Ruby, the second most popular programming language,
appears in just 13% of projects on the site.

Free code may be found anywhere. Because JavaScript is so widespread,
libraries of JavaScript code may be found all over the place. jQuery is one
of the most well-known. Because it contains a large number of pre-written
events and objects, this library enables developers to write much more in
much less time. Google’s search engine, Dell’s home page, and the Bank
of America all employ jQuery (to name a few). If our existing website
does not utilize JavaScript, we are losing out. It’s the future language, and
it’s becoming more popular by the day. Working with JavaScript is now
required for a pleasant user experience. Every day, web development firms
in Toronto migrate from PHP and other older languages to JavaScript. We
remained ahead of the curve here since we’ve been utilizing JS to develop
our webpages for quite some time. From the speedy load times of JS sites
to their simplicity and the wonderful experience they deliver, there is just
no excuse not to contact us now and usher in a new era for our website.

Introduction to JavaScript    ◾    3

CLIENT-SIDE JAVASCRIPT
The most frequent version of the language is client-side JavaScript. For
the HTML code to be understood by the browser, the script must be inte-
grated into or utilized as a reference by an HTML page. It suggests that
a web page need not be static HTML, but rather might incorporate pro-
grams that communicate with users, manage browsers, and dynamically
create HTML content.

The JavaScript client-side technique outperforms classic CGI server-
side scripts in many ways. JavaScript might be used to validate user input
in a form field, such as an email address. The JavaScript code is called
when the user submits the form, and only if all of the inputs are accurate
are they transmitted to the web server.

JavaScript may be used to record explicitly or implicitly performed
actions by users, such as button clicks, link navigation, and other actions.

WHAT IS THE PURPOSE OF JAVASCRIPT?
The scripting language’s early versions were restricted for internal
usage.

The path was opened for ECMAScript to be published when Netscape
submitted JavaScript to ECMA International as a standard specification
for internet browsers.

It was a general-purpose high-level programming language used to
guarantee the interoperability of online pages across various browsers and
devices.2

Since then, JavaScript has grown with new browsers such as Mozilla
Firefox and Google Chrome.

The latter even began creating V8, the first contemporary JavaScript
engine that translates bytecode into native machine code.

AngularJS, jQuery, and ReactJS are just a few of the frameworks and
tools available for JavaScript today.

Initially executed on the client side, the JavaScript implementation
has expanded to the server side after the introduction of Node.js, a cross-
platform server environment based on the Google Chrome JavaScript V8
engine.

While it primarily caters to web-based applications, JavaScript pro-
gramming capabilities have numerous uses in many fields.

4    ◾    Conquering JavaScript

The following are some simple JavaScript applications.

	 1.	Web and Mobile Applications
The creation of JavaScript frameworks, comprising JavaScript

code libraries, enables developers to leverage pre-written JavaScript
code in their applications.

It saves them effort and time from having to write programming
features from start.

Each JavaScript framework contains features that try to ease the
creation and testing procedure. For instance, frontend JavaScript
frameworks like jQuery and ReactJS boost design efficiency.

They let developers reuse and alter code components without
influencing each other, function or value-wise. However, mobile app
development frameworks like Cordova and Titanium make it fea-
sible to construct native or hybrid apps.

The execution of JavaScript code in Node.js also plays a significant
part in web development.

Node.js may minimize server response time owing to its single-
threaded nature and non-blocking design and remove latency. Node.
js is also light enough just to act as a scalable tool for microservices,
enabling us to construct a single program combining small services
with independent processes.

	 2.	Development of Web Servers and Server Applications
JavaScript allows developers to construct web servers and back-

end infrastructure using Node.js, saving time and effort in web
server development.

When visitors browse a web page, the built-in HTTP module
allows us to create a simple HTTP server that displays plain text.
To handle HTTP requests, we may use Node.js’s native web server,
Node-OS, or third-party ones such as Microsoft Internet Information
Services (IIS) and Apache.

Remember that Node-OS works best on Linux-based operating
systems since it is built on top of the Linux kernel.

	 3.	Interactive Website Behavior
Adding dynamicity to web pages is one of JavaScript’s primary

roles.

Introduction to JavaScript    ◾    5

This includes showing animations, changing the visibility of text,
and constructing dropdown menus. While we may create a website
using just HTML and CSS code, it will only have a static appearance.
A user may interact with web pages and have a better surfing experi-
ence by using JavaScript.

Furthermore, JavaScript allows us to update HTML content and
attribute values without having to refresh the web page. The reason
for this is that JavaScript has the following data types:

•	 String: Textual data enclosed in quote marks. “Hello Everyone,”
“Hello Everyone,” and “Display ‘Hello Everyone’ text” are some
examples.

•	 Number: Includes integer and floating-point values ranging from
(2^53 – 1) to -(2^53 – 1).

•	 Boolean: A Boolean data type has true and false values.

•	 BigInt: Represents arbitrary length integer data.

•	 Null: A value that is not present.

•	 Undefined: Undefined variables are those that have been declared
but have not yet been assigned.

•	 Symbol: Gives items unique identifiers.

•	 Object: Used to write sophisticated data structures using curly
brackets. For instance, {item:“Book,” information:“biography”}.

Primitive data types, which include all data types except object, may
only hold a single piece of data. Meanwhile, the object data type may
hold a set of values.

Cookies can also be used with JavaScript to improve the online
browsing experience of users. The document is required for creating,
reading, and removing cookies in JavaScript. cookie attribute, which
serves as a getter and setter of cookie values.

	 4.	Game Creation
When used with HTML5 and an Application Programming

Interface (API) such as WebGL, JavaScript may assist us in creating
a game. There are several JavaScript-based game engines available,

6    ◾    Conquering JavaScript

including Phaser, GDevelop, and Kiwi. JavaScript is accessible for
visual rendering, code recycling, and cross-platform applications.

Angry Birds, The Wizard, and 2048 are examples of games cre-
ated utilizing JavaScript game engines.

WHAT MAKES JAVASCRIPT SO SPECIAL?
JavaScript has some benefits that set it apart from its competitors. Some
benefits of using JavaScript include the following:

•	 JavaScript’s basic structure makes it easier to understand and imple-
ment, and it runs quicker than certain other languages. Errors are
also simple to identify and repair.

•	 Scripts written in JavaScript may be run in a web browser without
a server or a compiler. Furthermore, most major browsers allow
JavaScript to build code while the application is running.

•	 JavaScript is interoperable with other languages such as PHP, Perl,
and Java. It also opens up data science and machine learning to
developers.

•	 There are several tools and forums accessible to assist newcomers
with limited technical abilities and JavaScript understanding.

•	 Another advantage of acting on the client side is that JavaScript min-
imizes the number of queries sent to the server. Data validation is
possible through the web browser, and updates only apply to specific
web page areas.

•	 Updates the JavaScript development team and ECMA International
are constantly updating and creating new frameworks and libraries
to ensure the industry’s relevancy.

WHAT ARE JAVASCRIPT’S FLAWS?
JavaScript, like any other programming language, has limitations that
must be considered. Some of the drawbacks of utilizing JavaScript are as
follows:

Introduction to JavaScript    ◾    7

•	 Different web browsers read JavaScript code differently, resulting in
inconsistencies. To avoid degrading the user experience, we should
test our JavaScript script in all prevalent web browsers, including
older versions.

•	 JavaScript code that runs on the client side is subject to abuse by
careless users.

•	 Debugging is supported by several HTML editors; however, it is less
efficient than in other editors. Because browsers do not display error
messages, locating the problem may be difficult.

How Does JavaScript Work on Our Website?

JavaScript is either incorporated in a web page or referenced via a separate.
js file.

When a user views that web page, their browser will execute the script
as well as the HTML and CSS code, resulting in a working page shown in
the browser tab.

The script is downloaded and executed on the workstations of the
visitors.

This is distinct from a server-side language, in which the script is pro-
cessed by the server before being sent to the browser.

When a web browser encounters a block of JavaScript code, it will ana-
lyze it from top to bottom.

Because it is order-sensitive, remember to reference the objects or vari-
ables inside the block before altering them.

Variables with no values will produce an undefined error.

WHAT MAKES JAVASCRIPT UNIQUE AMONG
PROGRAMMING LANGUAGES?
JavaScript is widely used because of its flexibility, making it a top pro-
gramming language. Many developers see it as their first option until they
need a function that JavaScript does not offer.

Let’s have a look at a couple of the most popular programming languages:

C#: C# is an object-oriented programming language used to create pro-
grams that operate inside the .NET framework. It is statically typed,
which means that its variables may be identified at build time. Unlike

8    ◾    Conquering JavaScript

JavaScript, C# offers operator and conversion overloading, enabling
us to manipulate data types.

Java: Java, being an object-oriented programming language, is capable
of running complex, multi-part applications. Unlike JavaScript, Java
is tightly typed, meaning that its variables must be tied to particu-
lar data types. Java needs a just-in-time (JIT) compiler to execute its
script.

PHP: PHP is a server-side language typically used in PHP-based content
management systems like WordPress. Its major aim is to transport
data to and from a database, construct HTML pages, and monitor
sessions. Unlike JavaScript, PHP can access databases explicitly and
supports both lowercase and uppercase variables.

Ruby: Ruby is a general-purpose language for programming that allows
for metaprogramming, which means it may examine and alter other
programs as well as itself.

Its most popular framework, Ruby on Rails, allows us to construct mas-
sive web applications cheaply and time efficiently. JavaScript’s implemen-
tation on Node.js draws influence from the Ruby on Rails framework.

TOOLS FOR JAVASCRIPT DEVELOPMENT
One of JavaScript’s primary advantages is that it does not need the use
of costly development tools. We may begin with a basic text editor like
Notepad. We don’t even need to acquire a compiler since it’s an interpreted
language in the context of a web browser.

Various manufacturers have created extremely great JavaScript editing
tools to make our lives easier. Several of them are mentioned below.

Microsoft FrontPage: Microsoft FrontPage is a popular HTML editor
created by Microsoft.

FrontPage also includes a variety of JavaScript features to help web
developers create dynamic webpages.

Macromedia Dreamweaver MX: Macromedia Dreamweaver MX is a
popular HTML and JavaScript editor among professional web developers.

It comes with a number of useful prebuilt JavaScript components, con-
nects effectively with databases, and adheres to emerging standards such
as XHTML and XML.

Introduction to JavaScript    ◾    9

Macromedia HomeSite 5: Macromedia’s HomeSite 5 is a well-liked
HTML and JavaScript editor that can be used to effectively manage indi-
vidual webpages.

What Is the Current State of JavaScript?

The ECMAScript Edition 5 standard will be issued as the first upgrade in
over 4 years.

The difference between JavaScript 2.0 and Edition 5 of the ECMAScript
standard is quite minimal. The specification for JavaScript 2.0 may be
found at www.ecmascript.org/.

Today, both Netscape’s JavaScript and Microsoft’s JScript adhere to the
ECMAScript standard; however, both languages continue to offer capa-
bilities that are not included in the standard.

JAVASCRIPT’S EVOLUTION
JavaScript continues its reign as the most popular programming language,
with 67.8% of developers using it in 2019.

Its rise to the world’s most popular programming language is inextrica-
bly linked to the rise of the internet itself.

It was developed out of necessity and is now used to build 95.2% (1.52
billion) of websites, including some of the world’s largest, such as Facebook
and YouTube.

We wouldn’t have popular and useful web apps like Google Maps and
eBay without it.

What Is Modern JavaScript and How Can It Be Used?

JavaScript is used to bring web pages to life and make them interactive.
Scripts are programs written in JavaScript. Because scripts are directly
linked to HTML, they are performed as soon as the page loads in our
browser.3

To be honest, scripts are simple text. That is, they do not require any
further or preparatory development. And, it is this property that distin-
guishes JavaScript from the Java programming language. We may won-
der why it’s called JavaScript. It had a different name in the beginning:
LiveScript.

However, at the time, Java was a popular programming language,
and marketers opted to adopt a similar name to attract additional users.

http://www.ecmascript.org

10    ◾    Conquering JavaScript

JS, which was originally intended to be part of Java, grew swiftly, and
eventually became a separate programming language with its own
ECMAScript definition.

In terms of frontend development, GBKSOFT employs the JavaScript
Programming Language, the Node.js environment, and the AngularJS
framework.

The final two are frameworks created in the JavaScript Programming
Language.

What JavaScript Can Do for Us

Modern JavaScript is a risk-free programming language.
Because it lacks low-level tools, it does not have access to low-level

resources such as memory or CPU. In reality, JS was first focused solely
on browsers and browser interaction. Because the browser area is inde-
pendent of the operating system, JavaScript is playing it safe. However, as
time passed, developers began to apply JavaScript outside of the browser
area. As a result, the capabilities of JavaScript now depend solely on the
context in which it is run. JavaScript can do everything relating to web
page manipulations, user interactions, and server interactions when it is
executing in the browser (to some extent).

Create new HTML tags, delete existing ones, modify the style of ele-
ments, display or hide components, and so on.

React to user activities such as mouse movements and clicks, keyboard
typing, and so on.

Put in a request to the server and get results without having to reload
the page (AJAX technology).

Receive and configure cookies, request data, show messages, and so
forth.

There are plenty of additional features and options.
Because JavaScript lacks access to the operating system, it cannot read,

record, or copy arbitrary files or run applications.
Modern browsers can deal with files, but only with restricted access

and only if the user actively drops files into the browser window or selects
them using an <input> element.

JavaScript cannot communicate with other tabs while functioning in a
certain tab unless the user specifically permits it.

Nonetheless, it is only feasible if they share a single domain, protocol,
and port.

Introduction to JavaScript    ◾    11

What Distinguishes JavaScript?

JavaScript has at least three major advantages, which are as follows:

•	 JavaScript is completely compatible with HTML and CSS.

•	 JavaScript makes it simple to accomplish simple tasks.

•	 All current browsers support this language and include it by
default.

•	 By the way, JavaScript is the only language that supports all three
functionalities at the same time, making it the most widely utilized
technology for developing browser interfaces.

JavaScript Tendencies

HTML5: HTML5 is a new version of HTML that supports new tags and
browser capabilities such as

•	 Reading and writing files to disc.

•	 Built-in browser database that allows data to be stored directly on
the user’s machine.

•	 Multitasking and the utilization of many CPU cores at the same
time.

•	 Video and audio are being played without the use of Flash.

•	 Drawing in 2D and 3D with hardware support (for example in mod-
ern games).

Though many HTML5 capabilities are still under development, current
browsers are beginning to support them. In other words, JavaScript grows
in strength, and everything shifts to desktop apps.

ECMAScript 5: To remain creative and current, JavaScript and
ECMAScript are always improving by introducing new features and
capabilities.

For example, the upcoming ECMAScript 6 will take the language syn-
tax one step farther.

12    ◾    Conquering JavaScript

However, while adopting new standards, it is critical to maintain maxi-
mum compatibility with earlier versions in order to avoid problems with
the current ones.

Here are some more prominent JavaScript trends for 2020:

•	 Through GraphQL, everything is more focused on solution-driven
APIs.

•	 Web components should be framework agnostic.

•	 Modular and reusable components are preferred.

•	 With its intriguing features, Angular 7 is becoming increasingly
popular.

•	 React is ‘getting back on track’ after being outperformed by Vue.JS.

•	 TypeScript is gaining popularity like never before.

Standardizing JavaScript

JavaScript adheres to two standards:

•	 ECMA International is hosting ECMA-262. It is the fundamental
criterion.

•	 The International Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC) host ISO/IEC
16262. (IEC). This is a supplementary need.

These standards specify a language named ECMAScript, not JavaScript.
Sun (now Oracle) held a trademark for the latter term, thus a different

name was adopted.
The prefix ‘ECMA’ refers to the organization that hosts the major

standard.
The organization’s initial name was ECMA, which stood for European

Computer Manufacturers Association.4
Because the organization’s operations had grown outside Europe, the

name was eventually changed to ECMA International (with ‘Ecma’ being
a proper name, not an abbreviation).

The first all-caps acronym shows how to spell ECMAScript.

Introduction to JavaScript    ◾    13

In theory, JavaScript and ECMAScript are interchangeable. The follow-
ing difference is sometimes made:

•	 JavaScript refers to both the language and its implementations.

•	 The language standard and language versions are referred to as
ECMAScript.

As a result, ECMAScript 6 is a language version (its 6th edition).

ECMAScript Version History

This is a summary of ECMAScript versions:

•	 ECMAScript 1 (June 1997): The standard’s first version.

•	 ECMAScript 2 (June 1998): Minor upgrade to bring ECMA-262 up
to date with the ISO standard.

•	 ECMAScript 3 (December 1999): Adds “[…] regular expressions,
improved string handling, new control statements [do-while, switch],
try/catch exception handling, […].”

•	 ECMAScript 4 (deprecated in July 2008): Would have been a huge
improvement (including static typing, modules, namespaces, and other
features), but proved too ambitious, separating the language’s stewards.

•	 ECMAScript 5 (December 2009): Added a few standard library fea-
tures as well as strict mode.

•	 ECMAScript 5.1 (June 2011): Another minor upgrade to align Ecma
and ISO standards.

•	 ECMAScript 6 (June 2015): A major upgrade that fulfilled many of
ECMAScript 4’s promises. This is the first version with a formal des-
ignation based on the year of publication, ECMAScript 2015.

•	 ECMAScript 2016: First annual release (June 2016). When compared to
the huge ES6, the shorter release life cycle resulted in fewer new features.

•	 ECMAScript 2017 (June 2017). The second annual release.

•	 Following ECMAScript versions (ES2018, for example) are always
confirmed in June.

14    ◾    Conquering JavaScript

JavaScript vs. Java

Although there is some overlap, JavaScript and Java (another powerful
computer language for data scientists after Python) have essentially noth-
ing in common.

JavaScript got its moniker from Netscape’s support for Java applets in
its browser.

Many believe it was also a marketing ploy to take attention away from
Java, which was the most talked-about language at the time.5

Java applications must first be compiled into executable code before
they can be executed.

However, JavaScript is far more dynamic since it is meant to be inter-
preted at runtime.

To put it mildly, JavaScript didn’t have the best beginnings. Java devel-
opers considered JavaScript as more of a ‘UI glue,’ something that design-
ers and non-engineers would utilize because of its poor performance.
However, having a ‘glue’ language enabled the internet to really blossom.

Programmers might respond more quickly to inputs and construct
interactive components.

As a result, JavaScript spread like wildfire and swiftly became the web’s
language franca.

WHO CONTROLS JAVASCRIPT?
JavaScript is a common programming language, yet attribution and locat-
ing the owner of JavaScript may be difficult.

The initial version had two owners, Oracle and Netscape, but newer
versions need a third owner. Brendan Eich created the JavaScript
Programming Language while working for Netscape.6

Brendan Eich also founded the Mozilla Foundation. Oracle owns the
trademark ‘JavaScript.’

This had nothing to do with the JavaScript Programming Language,
yet it was related to it. So it’s not incorrect to assert that Brendan Eich,
Mozilla, Netscape, Oracle, or Sun Microsystem own JavaScript. JavaScript
is owned by at least two people. In short:

•	 Because of the legal name, Oracle.

•	 Depending on the JavaScript engine we use, certain companies such
as Google, Microsoft, Mozilla, and others may be used.

•	 The first version of JavaScript was created by Netscape.

Introduction to JavaScript    ◾    15

Oracle’s Trademark Is JavaScript

Oracle owns the trademark ‘JavaScript.’ This had nothing to do with
the JavaScript Programming Language, yet it was related to it. Sun
Microsystems, the company that created Java, first trademarked the term
‘JavaScript.’

Oracle later acquired Sun Microsystems, and all of their trademarks
were transferred to Oracle.

As a result, Oracle presently holds the JavaScript trademark. Some
argue that Sun Microsystem’s trademarking of ‘JavaScript’ is based on the
same logic as

Java is equivalent to JavaScript
as a car is to carpet.

Various Variations

The original JavaScript has been changed to conform to ECMA-262
Edition 5 and subsequent versions. Many engines support the JavaScript
Computer Language. This includes the following:

•	 SpiderMonkey (the original engine)

•	 Rhino (made by Norris Boyd, also an employee of Netscape)

•	 SquirrelFish or Nitro (by Apple for Safari)

•	 V8 (by Google as a part of Chrome browser)

•	 Carakan (by Opera)

•	 Chakra (by Microsoft for Internet Explorer)

JAVASCRIPT FRAMEWORK
Consider constructing websites and web apps like building a house—we
could produce all of our own construction materials from scratch and
start building without any plans, but that method would be extremely
time-consuming and inefficient.7

It’s more likely that we’d buy pre-fabricated building components
(wood, bricks, countertops, etc.) and then assemble them to our specifica-
tions using a plan.

16    ◾    Conquering JavaScript

Coding is really similar. Though it is possible to create a website from
scratch, it is often more efficient to use an already design as a starting point
and then modify it to meet our needs. This is where JavaScript frameworks
come in.

JS frameworks, at their most basic, are sets of JavaScript code libraries
that give coders with pre-written JS code to utilize for routine program-
ming functions and tasks—literally, a framework around which to create
websites or web apps.

For example, if we require a standard JavaScript picture carousel on a
website, we may leverage code from a framework to offer the functionality
(while we spend more time creating the unique features of our site that
don’t have a simple, plugin solution).

This may seem familiar if we’ve heard of the unique JavaScript library
jQuery, but there’s a subtle (but significant) differential between singular
JavaScript libraries and JavaScript frameworks.

The jQuery and JavaScript Libraries

When necessary, JS libraries such as jQuery are utilized by inserting library
code into the rest of our site’s code. If we wish to utilize a jQuery template
for an autocomplete feature, for example, we would put the relevant jQuery
code, which then fetches the feature from the jQuery library and shows it
in the web browser of our user. In other words, when a frontend developer
employs a library such as jQuery, the developer employs jQuery code to
‘call’ the jQuery library, which subsequently gives the desired content.

What Distinguishes JavaScript Frameworks from Libraries?

While contrasting a library with a framework, the following should be
kept in mind when trying to define the term ‘framework:’ Using JS frame-
works is a more holistic procedure since it gives a structure (like a skeleton
or scaffolding… or a framework) that organizes the areas of our site where
the framework is installed. Page templates offer this structure by mak-
ing room for snippets of code from the framework’s libraries (which the
JavaScript framework ‘calls’ on its own).

The advantage of adopting JavaScript frameworks is the general effi-
ciency and organization they offer to a project—our code will be cleanly
formatted, and the framework will give ready-made solutions to common
coding challenges. On the other hand, all of that structure might be a dis-
advantage of working with a framework—any JavaScript code that create

Introduction to JavaScript    ◾    17

on top of JS frameworks must adhere to the framework’s rules and con-
ventions, restricting the flexibility we have when writing totally by hand.

Frontend Frameworks

There are varied types of Frontend Frameworks, which we will discuss
below:

REACT
Facebook built React.js, an efficient and versatile JavaScript toolkit for
designing user interfaces.8

For all intents and purposes, React is a JS library; however, it is often
referred to as a web framework and compared to other open-source JavaScript
frameworks. Because it uses predictable JavaScript code that is simple to
debug, React makes it simple to construct interactive user interfaces.

It also has a REACT component system, which allows blocks of
JavaScript code to be created once and reused in other portions of the
program or even other apps.

ANGULAR
AngularJS is a famous enterprise-level JavaScript framework used for con-
structing big and complicated corporate applications.

It is an open-source web framework designed by Google and backed by
both Google and Microsoft.

VUE
Vue.js is a modern framework for designing user interfaces.

It is an up-and-coming framework that aids developers in interacting
with other libraries and current applications.

It contains an ecosystem of libraries that enable developers to construct
complicated and solid single-page apps.

Backend Frameworks

There are varied types of Backend Frameworks, which we will discuss
below:

EXPRESS
Express.js is a versatile, simple, lightweight, and very well platform for
Node.js applications.

18    ◾    Conquering JavaScript

It is unquestionably the most widely used framework for server-side
Node.js applications.

Express delivers a large variety of HTTP functions, as well as maxi-
mum speed.

It is perfect for constructing a basic, single-page application that can
manage several requests at the same time.

NEXT.JS
Next.js is a basic framework that enables a JavaScript developer to use
React.js to construct server-side rendering and static web apps.

It is one of the most recent and popular frameworks, and it takes plea-
sure in its simplicity.

Next.js solves many of the issues that developers have while designing
apps using React.js.

It includes several crucial features ‘out of the box,’ making JavaScript
programming a breeze. React.js is the most popular JavaScript frame-
work/library in the present employment market. Because JavaScript has
so many frameworks, it might be difficult to determine which one to learn
first. We could start with any framework, but if our objective is to acquire
a job, learning React first will give us a higher chance.

The same can be said about Express.js, the most frequently used and
sought-after backend framework. JavaScript frameworks make it easy to
create online apps and deal with JavaScript.

This is why they are so popular among programmers. There are several
frameworks because they may be used to tackle various challenges.

Before opting to adopt any specific JavaScript framework, thor-
oughly analyze our project needs. Aside from the distinct technologi-
cal capabilities of JavaScript frameworks, each framework has its own
learning curve, community engagement/support, documentation, and
compatibility.

WHAT ARE THE BENEFITS AND DRAWBACKS
OF JAVASCRIPT FRAMEWORKS?
JavaScript Frameworks: Frameworks offer the foundation for developers
to build JavaScript programs. This saves developers the time and effort of
starting from scratch with a working foundation. This foundation com-
prises a collection of JavaScript code libraries.9

Introduction to JavaScript    ◾    19

The libraries are compiling code for the particular application type
that we may work on. The framework will effectively define the program’s
structure on its own. Each JavaScript framework uses a distinct function.
JavaScript is a solid choice for web development, and many of its struc-
tures are built around it.

The following are the most popular JavaScript frameworks these days:

•	 Vue JS

•	 Angular

•	 React Native

•	 Ember JS

•	 Mithril

•	 Meteor

•	 Node JS

•	 Polymer

•	 Next JS

•	 Aurelia

Let’s compare the best JavaScript frameworks and see what makes each
one special.

	 1.	AngularJS: AngularJS is a client-side JavaScript MVC framework
for developing dynamic websites. AngularJS originated as a Google
project but has now evolved into an open-source framework. Because
AngularJS is fully based on HTML and JavaScript, there is no need
to learn another grammar or language.

Pros:

•	 Data synchronization between the model and the display.

•	 Model updates are immediately visible in the display.

•	 The application of guidelines: This enables developers to utilize
features and create change instructions.

20    ◾    Conquering JavaScript

•	 Dependency injection: A method that is dependent on software
components.

•	 It makes it easy to manage and use. It features an MVVM-based
architecture: This Model-View-Model Architecture enables us to
separate data from view.

•	 Help with application management.

Cons:

•	 It does not support JavaScript in many choices.

•	 A developer must be familiar with MVC in order to utilize
angular.

	 2.	React Native: Using a JavaScript framework they are already
acquainted with, web developers can now construct mobile apps that
feel and look fully “native.”

Because much of the code we write can be shared between plat-
forms, React makes it straightforward to create for both Android
and iOS at the same time.

Pros:

•	 It converts the physical DOM into a virtual DOM.

•	 It helps developers write better code and generate better user
interfaces.

•	 It contains unidirectional data.

•	 Child elements have no effect on parent components.

•	 Use JSX to increase code reusability.

Cons:

•	 It is tough to learn and understand.

•	 It is a framework with inadequate documentation.

Introduction to JavaScript    ◾    21

	 3.	Vue.js: Because it is a progressive JavaScript framework, we can
use it to construct UIs (User Interfaces) and SPAs (Single-Page
Applications).

It’s a simple framework that allows us to create online apps with
minimum understanding of HTML, CSS, and JavaScript.

Pros:

•	 Vue JS makes use of HTML templates.

•	 The DOM is used to collect data.	

•	 Data is sent in both directions.

•	 Vue JS is more reactive than previous frameworks.

•	 It is straightforward to interface with different frameworks.

Cons:

•	 Its versatility overburdens the developer.

•	 It is the most recent library, and there are fewer developers.

	 4.	Ember JS: Ember Js is a JavaScript development platform.
It is a single framework used to build a single web application.
It will construct a superb one-page web application coupled with

others using idioms, best practices, and patterns.
It is also scalable, using ecosystem patterns provided by the

framework.

Advantages:

•	 Powerful add-ons

•	 Ember CLI

•	 Convention over configuration

•	 Community

•	 Stability sans stagnation

•	 Ember Octane

22    ◾    Conquering JavaScript

Cons:

•	 Difficult to learn

•	 Sluggish Popularity Due to Strong Opinions

	 5.	Mithril: Mithril is another JS framework that is speedy and utilized
to get tasks done efficiently.

Another advantage of this framework is its small size, which is
less than 10 KB.

It also has routing and XHR functionality.

Pros:

•	 Lightweight

•	 React is faster

•	 It is compatible with ES6

•	 Development that is quite active

•	 Flux-compatible intelligent auto-redrawing system

•	 A Short Learning Curve

Cons:

•	 Virtual Dom

	 6.	Meteor: Meteor is another isomorphic JavaScript framework that is
largely used for websites. We may finish our project fast by using
NODE JS for prototyping.

Node JS also aids in the development of cross-platform applica-
tions for Android, iOS, and Web. Another great feature is that data is
immediately updated when we connect to MongoDB.

Pros:

•	 It is simple to get started and rapidly distribute a prototype to
end consumers

•	 Hot code deployment

Introduction to JavaScript    ◾    23

•	 Full-stack responsiveness

•	 This is useful for real-time applications

•	 Allows us to create an MVP

Cons:

•	 Auto-bundling

•	 Build system that optimizes itself

•	 There is a speed issue

•	 Development is unpredictable

	 7.	Node JS: Node JS is a well-known Java Framework.
It will make Node JS lightweight and practical by using an event-

driven, non-blocking I/O mechanism.
The ecosystem package, nmp, is the world’s most comprehensive

open-source ecosystem library.

Pros:

•	 Asynchronous event-driven IO facilitates concurrent request
processing

•	 It is simple to learn

•	 The identical piece of code should be used on both the server and
client sides

•	 NPM, or Node packaged modules, is massive and still expanding

•	 A vibrant and busy community

•	 Stream large files

Cons:

•	 There is no scalability

•	 A relational database is a must-have

•	 Callback that is nested

•	 CPU-intensive activities are not supported

24    ◾    Conquering JavaScript

	 8.	Polymer: Polymer is an open-source JavaScript toolkit that is used
to create online applications using web components. The language is
created by Google engineers and GitHub contributors. Furthermore,
Google is integrating the modern design idea via its material design
framework.

Benefits:

•	 Web components

•	 Design of materials

•	 Backed by Google

•	 Data Binding

•	 Open-source

•	 Designer friendly. HTML concepts

Cons:

•	 We need to work harder to build components that work in all
browsers.

•	 Shadow DOM is used by several browsers.

•	 Mobile Performance is slow.

	 9.	Next, JS is a JavaScript framework designed to develop very fast and
user-friendly static webpages.

Then, with the assistance of React, we create a web application.
As a consequence of automated static optimization, static and

dynamic have now combined.
Its primary purpose is to construct a hybrid application.

Pros:

•	 Automatic server rendering and code separation

•	 Setup is simple

•	 Generator of static websites

•	 Simple to set up

Introduction to JavaScript    ◾    25

•	 Development that is frictionless

•	 Static regeneration that is incremental

•	 The filesystem as an API

•	 React apps that are isomorphic

•	 Testing

•	 Very well documented

•	 Built-in file-based routing and hooks

Cons:

•	 The price of flexibility

•	 Management and development

•	 It has an opinion

•	 There is no built-in state manager

•	 There aren’t enough plugins

	 10.	Aurelia: Aurelia creates sophisticated browsers, web apps, and desk-
top applications using a library of JavaScript components.

It, too, is open source and incorporates web standards.

Pros:

•	 Conventions made simple

•	 Extensible modern architecture

•	 Combines nicely with other components

•	 Simple to use

•	 Dependency

•	 Injection

•	 Excellent modular router

•	 Data Binding that is Adaptive

26    ◾    Conquering JavaScript

•	 Full Stack, IoC, Modularity, Simplicity

•	 Based on the ES7 standard

•	 Rapid development

•	 Excellent documentation

•	 Compliance with changing standards

•	 A gentle learning curve

•	 Outstanding Assistance (paid)

Cons:

•	 Limited documentation

•	 Small community

Library vs. Framework

The distinction between a framework and a library is a frequent issue of
debate in the software world.

In reality, experts have recommended that the boundary between
them might be hazy, but it is necessary to distinguish between them. A JS
framework is a comprehensive toolset that helps shape and organize our
web-based application, while a JS library is a collection of pre-written code
snippets that are less concerned with shaping our application and more
concerned with offering a use-as-needed library of functionality.

Model View Controller (MVC)

Model View Controller is a software design paradigm used by modern
JavaScript frameworks. It is often utilized in the creation of user interfaces
that separate related computer logic into three interrelated pieces. The
model is the pattern’s fundamental web component since it is the applica-
tion’s dynamic data structure. It is in charge of the application’s data. The
view contains all of the code associated with expressing the application’s
data the user interface code. The interpreter is the controller. It receives
input and transforms it into model or view instructions. To give structure
and flexibility in software development, frameworks are designed around
the MVC design pattern.

Introduction to JavaScript    ◾    27

VANILLA JS VS. REACT JS: WHICH SHOULD
WE USE FOR OUR DEVELOPMENT?
Vanilla JS vs. React JS has long been a source of contention, since both
may be used to create JavaScript apps. This session will provide a full com-
parison of Vanilla versus React JS, including performance, UI, and other
factors.

Web application utilization is expanding every day, and the apps are
getting more complicated and dynamic.10

People often wish to discover sites where they can compare vanilla vs
react, and here we can find all points, including a performance compari-
son of reacting versus Vanilla JS.

As a result, developers choose to utilize diverse libraries when design-
ing web apps in order to boost development pace.

Web applications may be complicated and need a lot of dynamic func-
tionality, which is why developers choose to utilize frameworks such as
React JS, Angular, Vanilla JS, and others.

We may simply locate React JS professionals that provide a variety of
React JS development services.

Vanilla JS vs React JS Functionality

Before we begin the full comparison of React JS vs Vanilla JS, we’d like to
clarify the primary difference between these two JavaScript and how React
JS and Vanilla JS operate.

If we want to learn more about the advantages of utilizing React over
vanilla JS, this article will provide us with all the information we need.

Both are used to create JavaScript apps.

React JS: What Is Its Role in the Application’s View Layer?

To build interfaces that make use of UI components, many developers
have turned to React JS, a free and open-source JavaScript framework.
React JS is a frontend JavaScript library that will allow us to build user-
friendly apps.

We’ll learn how React JS may be used to create a variety of user inter-
faces tailored to single-page apps. Developers may sometimes utilize
React JS to manage the viewing layer for various sorts of mobile and
online apps.

28    ◾    Conquering JavaScript

Why Is Vanilla JS Used?

Vanilla JS is known as vanilla JavaScript, and developers use it to build
JavaScript code that does not need the usage of libraries.

Vanilla JS is a scripting language that does not impose any restrictions
on how developers construct data in their applications.

Vanilla JS apps may not always deliver the greatest outcomes for the
application.

Vanilla JS is well-known among developers since it is one of the sim-
plest frameworks that anybody can learn fast.

Stack Data Structure Comparison between React JS vs Vanilla JS

We’ll see that communication across JavaScript components requires a
lot of interaction through bridges so that we can communicate with both
sides.

As we may know, React JS and Vanilla JS are both JavaScript frame-
works used to create various online apps.

If we’re curious, the stack data structure of React JS and Vanilla JS will
vary.

We are erroneous since the concepts in both JavaScript frameworks are
the same.

We will see that a stack may be defined as an ordered collection of ele-
ments that adhere to the Last In First Out (LIFO) principle.

If we remove any items from the stack, the one at the top is eliminated
first.

As a result, the stack data structure of React JS and Vanilla JS is
extremely similar.

Performance Comparison between Vanilla JS with React JS

When comparing the performance of Vanilla JS versus React, we will
notice several areas of difference. Consider that React JS, unlike Vanilla
JS, is a free and open-source frontend JavaScript framework for building
UIs using reusable UI components.

Vanilla JS is a cross-platform framework for developing sophisticated
JavaScript applications. Vanilla JS versus React performance-based com-
parison might be difficult, but we’ve got us covered. Because of the virtual
DOM capability, React JS is efficient in handling diverse UI modifications.

React JS converts every UI change to DOM and then compares it to
the Regular DOM on a regular basis. As a result, this method aids in

Introduction to JavaScript    ◾    29

determining the adjustments required for the normal DOM. This whole
process may be so rapid that developers may believe there would be per-
formance difficulties with UI rendering.

However, React JS offers a set of workarounds that will overcome any
performance problem. We may be shocked to learn that Vanilla JS is much
quicker than other JavaScript frameworks. As a result, we may argue that
it outperforms leading frontend frameworks.

We will see that Vanilla JS initially produces the UI over 30 times
quicker than React JS, which is one of the key reasons why Vanilla Js out-
performs React JS.

Handling UI state changes in Vanilla Js is simpler and quicker than in
React JS.

Vanilla JS outperforms React JS in terms of performance.

Future Prospects

Future comparison of React vs Vanilla Js is crucial because it will show us
which JavaScript is best.

ReactJs is an important library that developers may use to create
JavaScript apps.

We will see that ReactJs is a framework for developing fast and scalable
online apps.

New plugins for future elements are continually being developed in this
framework.

Because the technology is utilized in a variety of industries, ReactJs
developers and ReactJs Development Companies that provide varied
React js development services have a promising future.

The ReactJs community will also expand over time, and the framework
will be updated.

Vanilla Js is also known as pure JavaScript since it does not include any
other libraries, such as jQuery.

Some developers may use it as a joke to educate younger devs that many
things can be done without the usage of extra JavaScript libraries.

It is possible to build web applications using JavaScript.
That is why we must grasp the fundamental concepts of JavaScript and

study Vanilla Js.
New JavaScript frameworks will be launched in the future.
However, before utilizing such frameworks, we must be familiar with

Vanilla Js.

30    ◾    Conquering JavaScript

Winner: Both ReactJs and Vanilla js are promising since they are both
needed by all JavaScript frameworks, although ReactJs has a somewhat
better future.

Testing

It will be difficult to determine the victor of a comparison of Vanilla JS vs
React JS for testing.

We may test ReactJs code just as we would any other simple JavaScript
code.

ReactJs has many testing libraries that may be used for testing.
The ReactJs testing library is a collection of helper libraries that allow

us to test ReactJs components without depending on their implementation
details.

We might claim that this way of evaluating ReactJs assures that it is the
best practice for ensuring code accessibility.

We must also set up the ideal testing environment for all ReactJs com-
ponents when testing the ReactJs code.

Many people are unaware that Vanilla js code may be readily tested.
Jest, a JavaScript testing framework that focuses on simplicity, must be

installed by the developers.
This Jest JavaScript testing framework is also compatible with AngularJS

and ReactJS.
With the aid of Jest, testing with Vanilla js is a breeze.
Installing npm or yarn on the device is necessary for developers who

want to test Vanilla js code in Jest.
Winner: Because testing in ReactJs and Vanilla JS is straightforward,

both are winners.

Security

We’ll see that ReactJs is a JavaScript framework for creating web apps.
ReactJs has fewer attacking points than other frameworks that are used

to construct various web apps. Because few security concerns have been
disclosed, ReactJs is not completely safe.

Because ReactJs is compatible with a variety of open-source compo-
nents, it lacks robust default security settings. As a result, ReactJs is exposed
to several security vulnerabilities. Because of weaknesses in the security
mechanism, ReactJs online apps are not completely safe. Vanilla js may

Introduction to JavaScript    ◾    31

demand multiple credentials for APIs at times; however, this framework
does not provide short-term tokens.

If developers wish to ensure the security of online applications, they
may employ the method of intermediary APIs.

Vanilla JS is a simple framework for creating amazing and powerful
JavaScript apps. We may be shocked to learn that Vanilla js is also popular
among developers since there are no known security vulnerabilities as of
now.

Winner: If we compare Vanilla versus React js for security consider-
ations, Vanilla js is the obvious winner.

ReactJs and Vanilla js UI/UX Performance

ReactJs is a free and open-source JavaScript toolkit used to create various
UI components.

Some of the top React UI frameworks for our project can be found here.
Ant Design is the second most used UI framework in the world, and it

is utilized in ReactJs.
We’ll see that it combines an enterprise-class UI design language with a

collection of high-quality ReactJs UI components. Ant Design’s documen-
tation is thorough, and thanks to a plethora of examples and frameworks,
Ant Design is always up to date.

Material UI is a user interface component built using ReactJs that may
streamline the creation of websites. Many developers use this UI since it
is the most popular ReactJs UI framework that gives different material
design concepts provided by Google.

There are several UI libraries available in Vanilla js that may be used to
improve online apps.

Vanilla js’s JavaScript 3D library, Three, is well-liked by programmers
because of its thorough documentation.

This 3D library is simple to use and provides superior performance.
Cheerio is a UI framework for Vanilla js that may be regarded as a faster,

more versatile, and better server-side version of core jQuery.
Winner: For UI/UX speed, ReactJs outperforms Vanilla JS since devel-

opers don’t have to input DOM because it occurs automatically in ReactJs.

Convenience for the Developer

Vanilla js versus Reacts js will be a pretty close comparison in terms of
developer ease.

32    ◾    Conquering JavaScript

ReactJs is one of the most widely used JavaScript libraries nowadays, as
we can see.

ReactJs was released in 2013; however, it is still widely used by web
developers since it is incredibly user-friendly.

It is one of the greatest JavaScript UI frameworks for creating viewing
pages.

ReactJs is more handy for developers since it is more than simply a
library because it includes JSX and several virtual DOMs.

ReactJs is used by developers because it gives them entire flexibility to
construct high-quality interfaces for any application. Some developers
may be wondering whether Vanilla js is still utilized, and we can assure
that it is. If developers are creating basic code to modify the DOM in the
browser, why require a large framework when Vanilla js would satisfy.

ReactJs or another framework may be used by developers to construct
complicated frontend web apps. Both ReactJs and Vanilla are handy for
developers, but ReactJs has more features, thus many developers choose it.

Maintenance

ReactJs maintenance regularly analyses and monitors the online applica-
tion. It will ensure that the web applications’ security, speed, output, and
overall performance are satisfactory. If developers want to maintain their
applications up to date, quicker, and fresh, they should remember that
ReactJs offers a solid maintenance solution.

ReactJs offers three kinds of maintenance services: ReactJs startup
maintenance, ReactJs professional maintenance, and ReactJs business
maintenance.

We will notice that developers dislike using the Vanilla js framework
due to the expense of upkeep. If the developers code an eCommerce web-
site with Vanilla js, the maintenance and development time will be higher.

We will notice that it is one of the primary reasons why developers
choose to utilize numerous JavaScript frameworks available on the mar-
ket, such as AngularJS, ReactJS, Vue.js, and so on.

Winner: ReactJs is much superior to Vanilla js in terms of maintenance
since developers can easily maintain web apps.

Development Cost

Both are efficient JavaScript frameworks for creating web applications.

Introduction to JavaScript    ◾    33

We will see that ReactJs developers may charge between $20 and $40
per hour to create ReactJs web apps. Vanilla js developers may charge over
$1,000 to create vanilla js web apps.

However, due to the popularity of ReactJs web apps, many in the mar-
ket choose to engage ReactJs developers for web app development.

Winner: While developing a Vanilla JS application may be less expensive,
many prefer to employ a ReactJs developer, which may be pricey at times.

5 REASONS WHY OUR WEBSITE NEEDS JAVASCRIPT
This website was written with JavaScript, the language of the internet.
JavaScript, or ‘Js’ for short, is widely used throughout the web.

HTML (Hypertext Markup Language), CSS (Cascading Style Sheets),
and JavaScript are the ‘big three’ languages that all Toronto web develop-
ment companies want their programmers to know.11

HTML is the language used to instruct a web browser on what to dis-
play on a website.

The Cascading Style Sheets (CSS) language instructs the browser on
how to arrange and style the material for optimal visual presentation.

The page’s functionality is determined by JavaScript. JavaScript is used
to create all the fancy effects seen on contemporary websites, such as pop-
ups, transitions, and scrolling animations. Ten years ago, while seeking
information, most consumers searched for simple text. We would most
likely abandon a page that included nothing but text and no other visu-
als in the modern day. Today’s development norms evolve in conjunction
with the ever-shifting web ecosystem.

Explain How Using JavaScript Will Enhance Our Website

•	 Developing applications for end users: It’s unusual since it’s not
executed on the web server itself. As web designers, we understand
how crucial it is for our readers to have a quick website load time. The
longer something takes to load, the less enjoyable it is for the user.
When a JavaScript animation loads, it executes in the background on
the viewer’s device CPU. This drastically lessens the demand on the
web server and shortens the time it takes for pages to load.

•	 Small learning curve: JavaScript isn’t the sole online programming
language, and learning it isn’t particularly difficult. Some more are

34    ◾    Conquering JavaScript

Python, C++, and a few others. This makes it the most widely used
language, and it also makes it the simplest to master. JavaScript syn-
tax is quite close to the English language. It doesn’t take weeks for
developers to create a new site since they don’t have to spend time
figuring out the purpose of each line of code. A single second may
make or break a project in the frantic world of Toronto web develop-
ment. Our website will be live to the public quicker if the developer
employs JavaScript.

•	 Compatible with other languages: Web servers utilize a wide variety
of languages, and it’s important that they all work together smoothly.
The list of popular programming languages includes Python, PHP,
Ruby, Rails, ASP.NET, and Java, just to name a few. JavaScript’s com-
patibility with a wide variety of server languages ensures that our
audience will always enjoy a dynamic and engaging experience.

•	 Uses the DOM model: The DOM model is a way of organizing a
website’s structure so that its components may be styled as “objects”
with their own attributes. This makes it simple for JavaScript to
apply animations and transitions to any element. There is no spe-
cific programming language for working with the DOM (Document
Object Model). Using JavaScript, a developer may create a DOM for
a website.

•	 Compiler-free programming: Traditional programming makes
use of a compiler; compiler-free programming avoids this step. For
a browser to function, raw code must be compiled into understand-
able syntax by a compiler. The page takes longer to load as a result of
this. As a result, it will take longer for our site to be ready for launch.
On the other side, browsers have built-in support for JavaScript. In
the same manner that they can translate HTML, they can do so with
this. In other words, we can read it without a compiler.

AJAX Uses to Load Sections of Pages Independently

JavaScript has been more popular since it was first released in 1995.
JavaScript is used to improve the user experience on an astonishing 92% of
websites on the internet today. With AJAX, we may update certain parts of
a website without having to refresh the whole page. This is accomplished

http://ASP.NET

Introduction to JavaScript    ◾    35

via the use of JavaScript. We’ve probably seen this on many social media
and video sharing websites as well as the likes of Google.com and YouTube.
Consider what occurs when we play a video on YouTube. After the website
loaded, we may begin playing the video. If we leave a comment while the
video is playing, it will appear in the comments box once we scroll down
and post.

We covered what is JS, advantages and disadvantages, and the evolution
of JS in this chapter. Furthermore, we discussed what frameworks are and
how they differ from Vanilla JS.

NOTES
	 1	 JavaScript – Overview: www.tutorialspoint.com/javascript/javascript_

overview.htm Accessed on: 20 September 2022.
	 2	 What Is JavaScript? A Basic Introduction to JS for Beginners: www.

hostinger.in/tutorials/what-is-javascript Accessed on: 20 September 2022.
	 3	 What Is Modern JavaScript and How to Use It?: www.altamira.ai/blog/what-

is-modern-javascript-and-how-to-use-it/#:~:text=Since%20JavaScript%20
does%20not%20have,via%20an%20tag. Accessed on: 21 September 2022.

	 4	 History and Evolution of JavaScript: https://exploringjs.com/impatient-js/
ch_history.html Accessed on: 22 September 2022.

	 5	 The History of JavaScript: Everything You Need to Know: www.spring-
board.com/blog/data-science/history-of-javascript/ Accessed on: 20
September 2022.

	 6	 Who Owns JavaScript?: https://iq.opengenus.org/who-owns-javascript/
Accessed on: 20 September 2022.

	 7	 Tech 101: What Is a JavaScript Framework? Here’s Everything You Need
to Know: https://skillcrush.com/blog/what-is-a-javascript-framework/
Accessed on: 20 September 2022.

	 8	 What Is a JavaScript Framework?: https://generalassemb.ly/blog/what-is-a-
javascript-framework/ Accessed on: 20 September 2022.

	 9	 What Are the Pros and Cons of JavaScript Frameworks?: www.geeks-
forgeeks.org/what-are-the-pros-and-cons-of-javascript-frameworks/
Accessed on: 21 September 2022.

	 10	 Vanilla JS vs React JS: What to Choose for Your Development?: https://tag-
lineinfotech.com/react-js-vs-vanilla-js/ Accessed on: 21 September 2022.

	 11	 5 Reasons Why You Need JavaScript in Your Website: https://vestrainet.
com/5-reasons-why-you-need-javascript-in-your-website.html Accessed
on: 22 September 2022.

http://Google.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.hostinger.in
http://www.hostinger.in
http://www.altamira.ai
http://www.altamira.ai
https://exploringjs.com
https://exploringjs.com
http://www.springboard.com
http://www.springboard.com
https://iq.opengenus.org
https://skillcrush.com
https://generalassemb.ly
https://generalassemb.ly
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
https://taglineinfotech.com
https://taglineinfotech.com
https://vestrainet.com
https://vestrainet.com

https://taylorandfrancis.com

37

C h a p t e r 2

Getting Started
with JavaScript I

IN THIS CHAPTER

➢ Data Types and Operators

➢ Functions

➢ Objects and Arrays

➢ Error Handling

➢ Events

In the previous chapter, we covered Introduction to JavaScript, and in
this chapter, we will discuss Getting started with JavaScript and some
core concepts.

SELECTING THE BEST JAVASCRIPT
EDITOR FROM SEVEN OPTIONS
Our page is nothing more than a dead static document without JavaScript.

We can develop user interfaces using JavaScript. Our page is nothing
more than a dead static document without JavaScript. We may use
JavaScript to design user interfaces that respond to user activities, adding
movement and interactivity to the user experience.

DOI: 10.1201/9781003356578-2

https://doi.org/10.1201/9781003356578-2

38    ◾    Conquering JavaScript

As a result, we may consider JavaScript to be the heart of a website.
If JavaScript is so vital, we should think about the tools we use to deal

with it.
While there is nothing stopping us from working just in Notepad, using

a decent JavaScript editor will undoubtedly enhance our experience and
increase our productivity.

We’ll go through our selection of seven JavaScript editors. We’ll offer a
short summary of each item and discuss its benefits and drawbacks.

What Is the Difference between a JavaScript Editor and an IDE?

But, before we get into the editors, let’s take a step back and discuss how
editors vary from a comparable tool: IDEs.1

What Exactly Is an Editor?
Let us begin with editors. Text editors are tools that enable you to create
and edit plain-text files, as the name implies. That’s all. An editor, in
the traditional sense, isn’t always a programming tool; it may be used
to modify text files for any purpose. Of course, one of these reasons is
to write code.

IDE Definition
IDE is an abbreviation for Integrated Development Environment. An IDE
is just an editor with a variety of handy programming tools. An IDE is a
specialist tool for software development as opposed to a simple text editor.

What exactly is the package that comes with an IDE? This may vary, but
some common additions are as follows:

•	 A debugger, compiler, and source code analyzer are all included.

•	 Highlighting syntax.

•	 Project scaffolding functionality based on pre-defined templates.

•	 Connection to the compiler and build tools.

•	 Auto-complete features that are advanced.

•	 Database connection wizards and assistance.

•	 GUI development functionality / Rapid Application Development.

Getting Started with JavaScript I    ◾    39

•	 Integration with terminals and version control software.

•	 Management and execution of automated tests, particularly unit
testing.

•	 Advanced find/replace capabilities and even refactoring are available.

When Conflicts Arise
But here’s the catch: The once-wide gap between editors and full-fledged
IDEs is closing with each passing year.

The distinctions between the two instruments are not as obvious as
they formerly were.

For decades, programmers have used editors to code, augmenting their
capabilities via the use of plugins. See also Vim and Emacs.

Modern editors, on the other hand, use a different approach. For exam-
ple, Visual Studio Code is often regarded as a text editor, but many would
argue that it may also be regarded as an IDE owing to its many integra-
tions. In contrast to editors, which may be used to modify any kind of text
file, programming-related or not, IDEs are often tailored to a particular
programming language or framework.

However, we’re sure there are several exceptions to this rule. At the end of the
day, the categorization that assign to a tool is unimportant as long as one under-
stand its strengths and shortcomings and can make an educated selection.

The Top 7 JavaScript Editors
It’s really tough to move from one code editor to another later on. After all,
how often can you really expect to find new ways to speed up the develop-
ment process? As a result, it is preferable to set aside some time in advance
to choose among the finest JavaScript (JS) editors. Let us explore.

	 1.	Atom
Before delving into Atom’s features, it’s important to first grasp

what Electron is. Electron is a JavaScript-based framework for creat-
ing cross-platform desktop programs. In a word, the electron is the
foundation of the atom.

Atom is one of the most popular JavaScript source code edi-
tors. Atom is completely free. The editor is available for a variety of

40    ◾    Conquering JavaScript

operating systems, including Mac, Windows, and Linux. This open-
source editor is also quite simple to set up. Other features include
intelligent code completion and an intuitive file system viewer.

Atom makes it simple to integrate GitHub and Git control. Plugins
created in Node.js are also supported by the editor. The interface
supports HTML, CSS, and JS, among other languages.

Atom also features a function called fuzzy finder. The fuzzy finder
speeds up your work by allowing for rapid file switching. Do we want
more? Atom’s capabilities may be expanded by installing packages
such as Minimap, auto-close HTML elements, and a linter.

Pros:

•	 Git integration.

•	 Cross-platform compatibility.

•	 Support for multiple cursors.

Cons:

•	 It is sometimes unstable.

•	 Code execution failure.

•	 Slower than other top editors.

	 2.	Visual Studio Code
Many individuals consider of Visual Studio (VS) Code when they

think of the greatest integrated development environments (IDEs)
for JS programming. This free and open-source editor is compatible
with Linux, Windows, and macOS. IntelliSense support allows for
automated completions when writing in HTML, CSS, JS, or PHP.

Another function that this editor has is code refactoring.
Furthermore, the editor creates native and managed code. This code
editor has built-in support for JS. Debugging tools for TypeScript,
Node.js, and JavaScript are also included.

VS Code also features a peek capability. This feature enables us to
expand a function in-line and inspect the code rather than traveling
straight to the line where the function is declared.

Getting Started with JavaScript I    ◾    41

Another useful tool provided by VS Code is Task Runner. It sup-
ports the usage of Gulp, Grunt, or MSBuild for setup tasks.

We can use the built-in Git functionality to conduct opera-
tions like publish, commit, push, pull, and rebase. We may also
tweak and enhance Visual Studio Code by adding new features
and plugins.

Pros:

•	 Memory use is minimal.

•	 Integration with the console.

•	 Task organization.

•	 Marketplace provides a large selection of extensions for extend-
ing functionality.

•	 WSL incorporation (Windows Subsystem for Linux).

Cons:

•	 Lag at times.

•	 Some widely used programming languages are not supported.

•	 Inadequate source control.

	 3.	The eclipse
Eclipse is a well-known Java IDE. However, full-stack engineers

often utilize Eclipse for JavaScript development. However, for JS, we
must install certain more plugins. Of course, the flexible plugin sys-
tem facilitates use. A unified development environment promotes
peak performance. Along with speed, developers may expect reli-
ability and resilience. When we set up the Oomph Project, we can
also automate and replicate similar workspaces.

Eclipse’s highlight is the precise performance of JavaScript
Development Tools.

A new Docker UI aids in the creation of Docker images and con-
tainers using the Docker CLI.

42    ◾    Conquering JavaScript

Almost all packages integrate with Git. Another notable aspect is
the automatic error reporting. The IDE may use this functionality to
communicate issues identified in the IDE to eclipse.org.

Pros:

•	 Effective project management.

•	 Advanced troubleshooting.

•	 Excellent auto-complete.

Cons:

•	 To take effect, most modifications need a reboot.

•	 For beginners, it is difficult.

•	 Poor customer service.

	 4.	Sublime Text
Sublime Text is another free and open-source JS editor. It’s cross-

platform, which means there’s plenty of space for customization.
There is no clutter on the UI.

As a result, the editor is more user-friendly. Some of its out-
standing features include a significant performance gain and
enhanced pane management. Other functions include Go to
Symbol and Go to Definition. We may also get packages like
SideBar Enhancements for copying, pasting, moving, and renam-
ing. Getting things set up might take some time at first. However,
once installed, Sublime Text will give a seamless experience.
Also, if we want to use Sublime Text, here are some plugins that
need to install: DocBlockr, SideBar Enhancements, JsFormat, and
SublimeLinter, which are all available.

The greatest thing is that you may check out all of the features
for free.

This JS editor also provides a trial version so that developers may
see how it works.

After the trial time expires, we must pay $80 for three years of use
to have access to all features.

http://eclipse.org

Getting Started with JavaScript I    ◾    43

Pros:

•	 Editing mode with no distractions.

•	 Working on many projects is simple.

•	 Help with automation.

Cons:

•	 Awful library stack.

•	 Debugging is lacking.

•	 There is no default printing.

	 5.	Brackets
Adobe developed the open-source coding editor Brackets. This

lightweight and quick JS editor includes JavaScript functional-
ity. Brackets are compatible with Mac, Windows, and Linux. Some
important capabilities are function searching and rapid project
switching. Users may utilize these tools to search for various project
files while typing in real time.

The Extract functionality turns PSD data into CSS. Live Preview is
one of the finest features of Brackets. We can observe how any changes to
the code are affecting the code in real time. The functionality is similar
to Adobe Dreamweaver. We may additionally improve the editor’s capa-
bilities by adding plugins. Some of these features include an autoprefixer,
code folding, a Markdown preview, smart highlighting, and snippets.

Pros:

•	 A straightforward user interface.

•	 Minimization of code.

•	 Browser preview in real time.

Cons:

•	 Long launch time.

•	 Project management is difficult.

•	 When dealing with huge files, performance suffers.

44    ◾    Conquering JavaScript

	 6.	NetBeans
NetBeans is a multiplatform IDE for developing JavaScript

applications.
The nicest thing is that the time between installing NetBeans and

using it is less than with other editors. NetBeans has features like as
syntactic and semantic code highlighting, smart code completion,
and Subversion. Mercurial and built-in Git support is also available.

Here’s another useful feature for us!
NetBeans’ workspace may be easily customized.
Aside from that, we may simply drag and rearrange tabs in the

app frame.
And, as we all know, each developer has a unique development style.
We may edit the toolbar buttons in NetBeans to suit our needs

and preferences.
And do we know what else is useful?
Users may develop their own keyboard shortcuts!

Pros:

•	 Effective for automation.

•	 Excellent refactoring.

•	 Excellent service management.

Cons:

•	 More system resources are used.

•	 Support for integration is inadequate.

•	 Pop-ups are annoying.

	 7.	Vim
We couldn’t say goodbye without acknowledging the legendary

Vim. Vim stands for VI Upgraded, and it is an improved version of
an older free text editor called vi, which was first designed for the
Unix system. Even though vim has long been associated with Linux
and the Unix community, it is now available for Windows.

Vim is perhaps the most basic of the editors on our list. Though
a graphical interface is available with vim, it is often a text-based
editor. This editor has a somewhat high learning curve. However, if

Getting Started with JavaScript I    ◾    45

we’ve overcome the first learning curve and become skilled with it,
vim may help us attain great levels of productivity, especially when
we consider its extensive ecosystem of plugins.

Pros:

•	 Lightweight and efficient.

•	 Cross-platform.

•	 Very adaptable.

•	 Plugin ecosystem to increase functionality.

Cons:

•	 The learning curve is steep.

Time to Select the Best JavaScript Editor
In the preceding part, we examined the seven greatest JavaScript editors.

Now comes the hard part choosing the best one. This is simply like
picking the greatest operating system. One who uses Windows would
undoubtedly defend it, saying that it is superior and that they would
never switch to any other OS. Conversely, those that use Linux or Mac
are likely to think their system is much better to everything else out
there. When it refers to JavaScript editors we have to evaluate a few cri-
teria before picking one:

•	 Flexibility.

•	 Help with integration.

•	 Excellent project management.

•	 Performance.

•	 Advanced troubleshooting.

However, when it comes to JS editors, Visual Studio Code is the clear win-
ner, regardless of our individual preferences.

Experienced programmers like ourselves have no other choice than
to use Visual Studio Code. The editor allows for quick and simple code
and file management and searching. Furthermore, we have shortcuts to

46    ◾    Conquering JavaScript

quickly access any icon or operation. We can type codes and navigate
between folders without putting down the keyboard.

If we’re just starting out in the world of computer programming, VS
Code’s capabilities will be a huge help. We had no trouble picking up the
keyboard shortcuts or any of the other features. Plus, the integrated com-
mand line interface is a great help to those who work with Angular or
Node. If you have Node.js installed, you can also use VS Code to debug
our code. Plus, we needn’t fret about getting help with VS Code since it’s
built by Microsoft. All of the features and how to’s are well documented
and shown in a plethora of written and video materials.

With a JavaScript Editor, You May Improve the
Efficiency of Your Work Environment
A website may be built using a variety of technologies, but three are
always present: HTML, CSS, and JavaScript. Each of these technologies
is concerned with a single issue. HTML organizes and defines our page.

CSS helps it seem fantastic. It comes to life thanks to JavaScript. If we’re
a developer, we’re probably excited about making your workplace more
enjoyable and efficient. A superb JavaScript editor is the way to go in this
scenario.

Personally, we can’t always absolutely assess and compare text editors
to determine which one is the finest. The opinion differs according on the
demands of each user. Spending some time with each of the top options is
a fantastic method to determine which the finest JavaScript editor is. This
will assist us in comprehending the many characteristics and, ultimately,
making the best decision.

HOW TO INSTALL JAVASCRIPT IN VISUAL STUDIO CODE
JavaScript is a web object-oriented computer program used in web brows-
ers to create interactive effects by having our website behaves and thinks.
An IDE, or integrated development environment, helps programmers to
merge the numerous components of creating a computer program into a
single handy area. It includes a debugger, a source code editor, and local
build automation. Visual Studio Code is a great IDE that practically every
JavaScript developer uses.2

Getting Started with JavaScript I    ◾    47

Visual Studio Code is a free cross-platform text editor that sup-
ports over 40 programming languages and is mostly used for frontend
development.

It is a Microsoft product that can be used in practically all major
operating systems, including Linux, Windows, and macOS. Visual
Studio Work is frequently used for JavaScript development since it is
lightweight while yet having sophisticated built-in capabilities like as
IntelliSense (which allows us to code faster by displaying intelligent
code completion), formatting, refactorings, code navigation, debug-
ging, and much more.

In this session, we’ll look at how to configure Visual Studio Code for
JavaScript.

Let’s begin by installing Visual Studio Code on our Windows system.

Installation of Visual Studio Code in Windows

To begin installing Visual Studio Code, we must first download it from
the following link:

https://code.visualstudio.com/
When we go to the aforementioned URL, we’ll see a blue button labeled

Download for Windows. Select this button.

Installation of VScode

https://code.visualstudio.com

48    ◾    Conquering JavaScript

Download page of VScode
When we press the blue button, the following will happen:

When our download is complete, double-click the downloaded file seen
in the preceding picture.

When we’re finished, a window will appear with a license agreement for
Visual Studio Code.

Choose “I accept the agreement” and then click the Next button:

Process start of Setup

Setup start of VScode

Getting Started with JavaScript I    ◾    49

The following box that appears will allow us to pick more tasks. Select
all of the settings we need and then press the Next button:

Accept Agreement

Task Selections

50    ◾    Conquering JavaScript

When we click the Next button, the Ready to Install box appears, and
we must click the Install button:

The installation process will now begin:

Begin of Installation

Installation Box

Getting Started with JavaScript I    ◾    51

Once the setup is finished, click the Finish button to start Visual Studio
Code.

Setup Visual Studio Code

Now that we’ve finished downloading and installing Visual Studio Code,
let’s configure our JavaScript editor. The first step in configuring Visual
Studio Code is to install the necessary extensions that will allow us to
code more effectively and fast. The extension symbol is visible on the left,
as illustrated in the picture below:

Setup Done

Setup of Editor

52    ◾    Conquering JavaScript

Search for the extension we wish to install after clicking the extension’s icon.

Install the LiveServer addon, which is quite handy due to its automated
live-reload capability.

We don’t need to save our file since it will save and display the result on
our browser every time we alter our code.

Search for the Live Server in the extension tab and click on the button
shown below:

Search of Extensions

Getting Started with JavaScript I    ◾    53

When we click on the Live Server, the install option will appear on the
right-hand side.

To install Live Server, click the install button.
Our Live Server will be installed when we click the install button:

LiveServer Extensions

54    ◾    Conquering JavaScript

The JavaScript (ES6) code snippet, which has a ton of built-in code
snippets, is another useful item we may install in Visual Studio Code.

Installing ES6 code snippets is similar to installing the Live Server
extension.

INSTALLING VISUAL STUDIO CODE ON LINUX
Microsoft developed Visual Studio Code, a free and open-source, cross-plat-
form integrated development environment (IDE) or code editor that enables
programmers to create apps and write code in a number of languages, including
C, C++, Python, Go, and Java, to name a few.3 This guide will lead us through
installing Visual Studio Code on Linux. More specifically, we will learn how to
install Visual Studio Code on both Debian and RedHat-based Linux variants.

Installing Visual Studio Code on Debian, Ubuntu, or Linux Mint

On Debian-based computers, the most popular way of installing Visual
Code Studio is to enable the VS Code repository and install the Visual
Studio Code package that use the apt package manager.

$ sudo apt update

Once updated, execute to install any needed dependencies.

$ sudo apt install software-properties-common
apt-transport-https

LiveServer Extensions installed

Getting Started with JavaScript I    ◾    55

Next, import Microsoft’s GPG key using the wget command to obtain the
repository:

$ wget -qO- https://packages.microsoft.com/keys/
microsoft.asc | gpg --dearmor > packages.microsoft.gpg
$ sudo install -o root -g root -m 644 packages.
microsoft.gpg /etc/apt/trusted.gpg.d/
$ sudo sh -c 'echo "deb [arch=amd64 signed-by=/etc/
apt/trusted.gpg.d/packages.microsoft.gpg] https://
packages.microsoft.com/repos/vscode stable main" > /
etc/apt/sources.list.d/vscode.list'

Use the next command to install Visual Studio Code and update the sys-
tem after we’ve enabled the repository:

$ sudo apt update
$ sudo apt install code

Because of its size, installation takes around 5 minutes. Once installed,
utilize the project coordinator to find and open Visual Code Studio.

NODE.JS INSTALLATION ON WINDOWS
We will install Node.js with following steps:

Configuring the Node Development Environment

The Node may be installed on a computer in a variety of methods. Our
approach is determined by the system’s current development environ-
ment. There are many package installers for various contexts. Node may
be installed by downloading the source code and building the program.
Another method is to clone the GIT repository in all three environments
and then install Node on the machine.4

Node Installation on Windows (WINDOWS 10):
To install Node.js on Windows, we must first do the following steps:

Step 1: Get the Node.js ‘.msi’ installer.
Downloading the installer is the first step in installing Node.js on

Windows.
Go to the official Node.js website, https://nodejs.org/en/download/, and

download the.msi file that corresponds to our system environment (32-bit
& 64-bit).

https://nodejs.org

56    ◾    Conquering JavaScript

On our machine, an MSI installer will be downloaded.

Step 2: Start the Node.js installation.
We must now install the node.js installer on our computer. To install

Node.js, we must first complete the following steps:

•	 Double-click the.msi installer to launch it.
The Node.js Setup Wizard will be launched.

•	 Welcome to the Node.js Installation Wizard.

“Next” should be selected.

Downloading NodeJs

Caption: Node.js wizard screen

Getting Started with JavaScript I    ◾    57

•	 The End-User License Agreement (EULA) will be shown after
selecting “Next.”

Choose “I accept the terms of the License Agreement” by checking the box
next to it.

“Next” should be selected.

•	 Choose Destination Folder

Node.js agree screen

58    ◾    Conquering JavaScript

•	 Custom Configuration

“Next” should be selected.

Node.js custom setup

Node.js choose folder

Getting Started with JavaScript I    ◾    59

•	 Node.js is now ready for installation.

Choose “Install.”

NOTE:
“This step needs administrator rights,” a prompt will appear.
Authenticate as a “Administrator” to the prompt.

•	 Node.js installation

Do not close or cancel the installer until it has finished installing.

•	 Finish the Node.js Setup Wizard.

Click the “Finish” button.

Node.js installation start

60    ◾    Conquering JavaScript

Step 3: Check to see whether Node.js was correctly installed.
To verify whether node.js is fully installed on our machine, use the

following line at our command prompt or Windows Powershell:

C:\Users\Admin> node –v

If node.js was fully installed on our machine, the command prompt will
display the version of node.js that was installed.

Step 4: Update the Local npm version.
The last step in installing Node.js is to update our local npm version

(if necessary)—the package manager that comes with Node.js.
To fast update the npm, use the following command.

npm install npm –global // Updates ‘CLI’ client

NOTE:
We do not need to modify the system variables since the Windows

installer handles them automatically when installing using the.msi
installer.

If we use another format to install node.js on our PC, the system variable
path for node.js should be as follows:

PATH : C:\Users\[user-name]\AppData\Roaming\npm
C:\Program Files\nodejs (Path to nodejs folder)

Node.js installation complete

Getting Started with JavaScript I    ◾    61

NODE.JS INSTALLATION ON LINUX
Node.js is a JavaScript runtime based on the V8 JavaScript engine in
Chrome. Node.js may be installed on your Ubuntu Linux laptop in a
variety of methods.5 We may install Node.js using either Ubuntu’s official
repository or the NodeSource repository. The NodeSource repository
allows us to install the most recent version of Node.js.

Installing Node On Ubuntu 18.04 and 16.04: Ubuntu has two reposi-
tories, the official one and the NodeSouce one, from which you may down-
load and install Node.js.

Install Node.js from the official Ubuntu repository: In a few
keystrokes, you can install Node.js from the Ubuntu repository. To
install Node.js on our Ubuntu operating system, follow the instruc-
tions below.

Step 1: Launch a terminal or press Ctrl+Alt+T.
Step 2: Run the following command to install node.js:

sudo apt install nodejs

Step 3: Once installed, use the following command to check the installed
version:

node -v or node –version

It is strongly advised to install Node Package Manager (NPM) with Node.
js. NPM is an open-source Node.js package library.

Use the following code to install NPM:

sudo apt install npm
npm -v or npm –version

Node and NPM will be installed successfully on our Ubuntu computer.
Using the NodeSouce repository, install Node.js
The most recent version of Node.js may be downloaded from the

NodeSource repository.
To install Node.js on Ubuntu, follow the instructions below.
Step 1: To update and upgrade the package management, open your

terminal or press Ctrl + Alt + T and enter the following commands:

sudo apt-get update
sudo apt-get upgrade

62    ◾    Conquering JavaScript

Step 2: Run the following command to install Python software libraries:

sudo apt-get install python-software-properties

Step 3: Install the Node.js PPA on the machine.

curl -sL https://deb.nodesource.com/setup_10.x | sudo
-E bash –

Note: We are installing version 10 of node.js; if we wish to install version
11, replace setup 10.x with setup 11.x.
Step 4: Run the following command to install Node.js and NPM on our
Ubuntu machine:

sudo apt-get install nodejs

Step 5: Once installed, use the following command to check the installed
version:

node -v or node –version
npm -v or npm –version

Finally, on our Ubuntu system, we have successfully installed Node.js and
NPM.

HOW DO WE START AND EXECUTE A
NODE.JS PROJECT IN VISUAL STUDIO CODE?
The instructions below will walk us through the process of creating a basic
NodeJS project and executing it in the VS Code editor.6

Step 1: In our VS Code editor, create an empty folder and transfer it
there using the following command.

mkdir demo
cd demo
code .

Step 2: In our folder, create a file called app.js.
Step 3: Install Modules: Install the modules by running the following
command.

Getting Started with JavaScript I    ◾    63

npm install express
npm install nodemon

Step 4: In the package.json file, add these two instructions that are required
for launching and dynamically executing the code once changes are made
in our Node.js app.

"start": "node app.js",
"dev": "nodemon app.js"

package.json File Configuration:

{
 "name": "demo",
 "version": "1.0.0",
 "description": "",
 "main": "app.js",
 "scripts": {
 �"test": "echo \"Error: no test specified\" &&

exit 1",
 "start": "node app.js",
 "dev": "nodemon app.js"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "express": "^4.17.1",
 "nodemon": "^2.0.12"
 }
 }

Step 5: The following is the structure of our project:

•	 app.js

•	 package-lock.json

•	 package.json

Step 6: Add the following code to the app.js file.

// Require module
const express = require('express');

64    ◾    Conquering JavaScript

// Create express object
const app = express();

// Handling the GET request
app.get('/', (req, res) => {
 res.send('Simple Node App is '
 + 'running on this server')
 res.end()
})

// Port-Number
const PORT = process.env.PORT ||5000;

// Server-Setup
app.listen(PORT,console.log(
`Server started on the port ${PORT}`));

Step 7: Use the following command to launch the application:

npm run dev

Step 8: In our browser, go to http://localhost:5000/ and we will get the output:

TOP VISUAL STUDIO CODE EXTENSIONS
FOR JAVASCRIPT DEVELOPERS
Today, we’ll show the plugins that are a game changer for JavaScript devel-
opers and elevate VS Code to new heights.7

JavaScript (ES6) Code Snippets

Working with a predetermined snippet collection helps us to boost our
efficiency.

We may tailor the snippets to our needs by adding more packages or
creating our own.

The customization possibilities for creating our own snippets are where
its value resides; we haven’t done much of it on our own, but we have
installed other plugins to obtain tools for React, React Native, Redux, and
other frameworks.

http://localhost:5000

Getting Started with JavaScript I    ◾    65

Simply search for “VS Code code snippets” + our framework to locate a
collection that works for us.

Download from: https://marketplace.visualstudio.com/items?item
Name=xabikos.JavaScriptSnippets

ESLint

There is no doubt that ESList is one of the most widely used and beloved
add-ons in the JS community. The extension applies ESLint rules to our
code and displays the results in the editor. It enables us to find and rapidly
correct rule inconsistencies. It’s a must-have for all JS developers since it
boosts productivity and code quality.

Download from: https://marketplace.visualstudio.com/items?item
Name=dbaeumer.vscode-eslint

Prettier

With VS Code, Visual Studio, Atom, Vim, Sublime Text, and a number of
other programs, Prettier is an opinionated code formatter.

Download Page of JavaScript (ES6) code snippets

Download Page of ESList

https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com

66    ◾    Conquering JavaScript

This useful little addon ensures that our scripts are uniformly
structured and indented, and it displays colored keywords for more
readable code.

It decreases formatting time and hence enhances productivity. It con-
tributes to great code readability.

Download from: https://marketplace.visualstudio.com/items?item
Name=esbenp.prettier-vscode

Quokka.js

Quokka.js allows us to quickly prototype JavaScript in our VS Code edi-
tor. It is a live JavaScript and TypeScript playground.

It is often referred to be the modern-day scratchpad for JS developers.
Have we ever wanted to test something quickly and found yourself in our
browser’s console, running some JS? Or do we launch the node process
and test it there? The major goal of this addon is to execute code quickly
and easily directly in our VS Code editor.

Download from: https://marketplace.visualstudio.com/items?item
Name=WallabyJs.quokka-vscode

Download Page of Prettier

Download Page of Quokka

https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com

Getting Started with JavaScript I    ◾    67

REST Client

REST Client is a Visual Studio Code addon that lets us submit an HTTP
request and examine the result right in the editor. It’s Postman for VS
Code, with the added benefit of being incorporated inside the code editor.

REST Client is compatible with both REST and GraphQL APIs. It
is one of the greatest vscode extensions for API developers in terms of
productivity.

Download from: https://marketplace.visualstudio.com/items?item
Name=humao.rest-client

Debugger for Chrome

JavaScript debugging may be a nuisance. Chrome and other browsers pro-
vide fantastic features to assist us with our work. Nonetheless, they are
sometimes difficult to work with or do not deliver a good overall experi-
ence, particularly when dealing with frameworks and several libraries.

Microsoft Debugger for Chrome is a Chrome extension that lets us
debug our code for any little change. The Chrome console debugger is very
strong when it comes to determining which lines and functions caused the
issue, as well as seeing its data processing. Run our code via Chrome and
debug it in our code editor.

Download from: https://marketplace.visualstudio.com/items?item
Name=msjsdiag.debugger-for-chrome

Download Page of REST Client

Download Page of Debugger for Chrome

https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com

68    ◾    Conquering JavaScript

Live Server

We may use Live Server to launch a local development server with a live-
reload option for static and dynamic sites. This may not be very useful
for individuals working with frameworks that already have live-reload
enabled, such as React, but it is a lifesaver if we are working with other
web pages or static material.

Download from: https://marketplace.visualstudio.com/items?item
Name=ritwickdey.LiveServer

Live Share

This one is fantastic, and we’re not sure whether anything similar exists
for WebStorm, but it enables us to share our code editor with others.

It’s ideal for pair programming, particularly as working from home
becomes more popular.

Download from: https://marketplace.visualstudio.com/items?item
Name=MS-vsliveshare.vsliveshare

Download Page of Live Server

Download Page of Live Share

https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com

Getting Started with JavaScript I    ◾    69

Babel JavaScript VSCode

JavaScript has advanced dramatically in recent years, and with the
development of frameworks and libraries like as React, Flow, and GraphQL,
many new forms of ‘syntaxes’ are now possible. Babel JavaScript offers syn-
tax highlighting for new JavaScript syntax and these specific ‘languages,’
keeping our JavaScript editor up to date and looking good.

Download from: https://marketplace.visualstudio.com/items?item
Name=mgmcdermott.vscode-language-babel

JavaScript Booster

One of our preferred WebStorm features is now accessible in VS Code.
By evaluating our code and its context, JavaScript booster automatically

proposes short methods to restructure or improve our code.
It supports a wide range of code activities, including refactoring condi-

tions, declarations, functions, typescript, promises, JSX, and many more.
Download from: https://marketplace.visualstudio.com/items?item

Name=sburg.vscode-javascript-booster

Download Page of Babel JavaScript

Download Page of JavaScript Booster

https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com

70    ◾    Conquering JavaScript

Tabnine

Another issue that arises while switching from Webstorm to VS Code is
the quality of auto-completions.

Code completion works great in VS Code, but it lags well below what
Webstorm or PyCharm can offer.

However, owing to the Tabnine, VS Code receives a significant
increase.

Tabnine use artificial intelligence to provide cutting-edge recommen-
dations and it has far surpassed my expectations.

It is such a great tool that we use it for VS Code as well as the whole
JetBrains product suite.

Let us look at some of their characteristics:

•	 Code completion is insane.

•	 Capability to learn from one’s own and one’s team’s projects.

•	 Users have the option of running models locally or receiving cloud
completions, in which case the developer’s code is encrypted and
instantly removed.

•	 The models are built using open-source programming.

•	 There are no licensing difficulties.

•	 There are free and premium versions.

Download from: https://tabnine.com/

Download Page of Tabnine

https://tabnine.com

Getting Started with JavaScript I    ◾    71

WHAT EXACTLY IS ‘VANILLA JAVASCRIPT’?
The phrase vanilla script refers to pure JavaScript (or simple JavaScript)
that does not include any other libraries.

It was often used as a joke that ‘nowadays various things may also be
done without the usage of any extra JavaScript libraries.’

One of its lightest frameworks ever made is the vanilla script. It’s quite
easy to use and comprehend, and it’s also very straightforward.8

Using the vanilla script, you may construct big and influential apps
as well as websites. The individuals who developed vanilla JavaScript are
always striving to enhance it and make it more helpful for web developers.

Let’s look at some of the most prominent websites using simple
JavaScript right now:

The websites listed below are presently utilizing vanilla JavaScript, and
they are also mentioned on the vanilla JavaScript home page.

•	 Google

•	 Facebook

•	 Yahoo

•	 Wikipedia

•	 YouTube

•	 Twitter

•	 Apple

•	 Amazon

•	 LinkedIn

•	 MSN

•	 Windows Live

•	 eBay

•	 Microsoft

•	 Tumblr

•	 Pinterest

•	 Netflix

72    ◾    Conquering JavaScript

•	 PayPal

•	 Reddit

•	 Stack Overflow

Most people may also find it difficult to accept that the number of websites
that use vanilla JavaScript is much more than the number of websites that
utilize JQuery.

Why Should We Learn Pure JS?

This is a typical issue among beginners: why should they learn and utilize
vanilla Js when there are so many other sophisticated frameworks and
packages available?

We intend to study and use vanilla js for our projects for a variety of
reasons.

The three biggest and most essential of them are discussed below.

Website Performance
Because it is the most costly and critical portion of the frontend stack,
this is far better for web performance than many other frameworks
and tools. Unlike HTML and CSS files, which are only accessible when
downloaded, vanilla js code must be built and processed. A 50kb js file
has a considerably greater influence on web speed than the same size
HTML and CSS files.

User Interface
It offers a simple yet user-friendly development experience. A developer
may begin building an application or website using JavaScript by simply
opening a text editor. There is no need for the developer to undertake
time-consuming tasks such as npm install, compilation processes, and no
build, among others.

It also Makes Working with Frameworks Simpler
If a developer still wants to utilize one of the other frameworks, this makes
working with them more pleasant. As we are all aware, getting started
with a framework is difficult. The documentation has a lot of assumed
knowledge, and knowing how all accessible tools function makes it much
simpler to learn.

Getting Started with JavaScript I    ◾    73

Many newcomers with minimal understanding attempt to study a
framework; no surprise, they get stopped someplace and eventually stop
concentrating on the basics of Vanilla js.

When they are comfortable, they begin studying frameworks again,
and this time they learn considerably faster. Other significant benefits of
the vanilla script include:

•	 Interoperability: We can inject JavaScript into any of the web pages,
but not in another programming language. Consider PHP. We may
also use it in a variety of applications because it supports other lan-
guages such as PHP and Pearl, among others.

•	 Server Load: Load on the server. Because we all know that JavaScript
is executed on the client side, it minimizes the total need for server
utilization. Furthermore, the basic program does not require any
interaction from the server.

•	 Rich user interfaces: We can use JavaScript to construct high-qual-
ity features like drag-and-drop and components like a slider. This
can have a good influence on the user experience on the website.

•	 Speed: Because it is executed on the client side and does not require
any external resources, its speed is great. Calls to a backend server
have no effect on the performance of JavaScript.

Vanilla Script’s Disadvantages

•	 One of the most fundamental downsides of vanilla script is client-
side security, since we all know that JavaScript code is readable on
the client. As a result, anybody with the ability to change it may use
it as a weapon or tool for nefarious reasons.

•	 Another significant drawback of JavaScript is the absence of a
Debugging Facility.

•	 We can’t utilize it for network-based apps since there isn’t any such
support.

•	 The vanilla script also lacks certain features, such as multiprocessors
and multithreading.

•	 It also prohibits reading and writing data for security reasons.

74    ◾    Conquering JavaScript

HELLO WORLD PROGRAM IN JAVASCRIPT
In this example, we will learn three alternative methods to print ‘Hello
World’ in JavaScript.

A ‘Hello, World!’ program is a basic program that prints the phrase
“Hello, World!” on the screen.9

Because it is a fairly basic program, it is often used to teach newbies a
new programming language.

We’ll print ‘Hello, World!’ in three different ways.

•	 console.log()

•	 alert()

•	 document.write()

	 1.	Using console.log()
The console.log() function is used to debug the code.
Code:

// program of hello world
console.log('Hello World!');

	 2.	Using alert()
The alert() function displays an alert box with the supplied message
over the current window.
Code:

// program of hello world
alert("Hello, World!");

	 3.	Using document.write()
When we wish to print information to an HTML document, we use
document.write().

// program of hello world
document.write('Hello, World!');

SYNTAX OF JAVASCRIPT
JavaScript may be applied by placing JavaScript statements inside <script>...
</script> HTML tags on a web page.

Getting Started with JavaScript I    ◾    75

We may insert the <script> tags containing our JavaScript wherever on
our web page, although it is usually best to keep it inside the <head> tags.

The <script> tag instructs the browser to begin reading any content
between these tags as a script.

The following is a basic syntax for our JavaScript.

<script ...>
 code
</script>

The script tag requires two critical attributes.

•	 Language: This element defines the scripting language that is being
used. Its value is often JavaScript. Despite the fact that subsequent
versions of HTML (and its successor, XHTML) have phased out the
usage of this feature.

•	 Type: The value of type is now recommended to be “text/javascript”
to indicate the scripting language being used.

As a result, our JavaScript portion will look like this:

<script language = "javascript" type = "text/
javascript">
 JavaScript-code
 </script>

OUR FIRST JAVASCRIPT CODE
Let’s try printing “Hello Everyone” as an example. We included an optional
HTML comment around our JavaScript code. This is done to protect our
code from browsers that do not support JavaScript.10

The remark concludes with “//-->” Because “//” represents a comment in
JavaScript, we include it here to prevent a browser from seeing the end of
the HTML comment as JavaScript code. Then we’ll call a function docu-
ment. This inserts a string into our HTML document

This function can create text, HTML, or both. Take a look at the code
below.

<html>
 <body>

76    ◾    Conquering JavaScript

 �<script language = "javascript" type = "text/
javascript">

 <!--
 document.write("Hello Everyone")
 //-->
 </script>
 </body>
</html>

Line Breaks and Whitespace

JavaScript disregards spaces, tabs, and newlines in JavaScript scripts. We
may freely utilize spaces, tabs, and newlines in our program, and we can
style and indent it in a clean and uniform manner that makes the code
simple to read and comprehend.

Semicolons Are Not Required

Simple statements in JavaScript, like those in C, C++, and Java, are
usually followed by a semicolon character. JavaScript, on the other hand,
permits us to eliminate this semicolon if each of our statements is on a
distinct line. The following code, for example, might be written without
semicolons.

<script language = "javascript" type = "text/
javascript">
 <!--
 var1 = 30
 var2 = 10
 //-->
 </script>

However, semicolons must be used when formatting in a single line, as
seen below.

<script language = "javascript" type = "text/
javascript">
 <!--
 var1 = 30; var2 = 10;
 //-->
 </script>

Getting Started with JavaScript I    ◾    77

Case Sensitivity

JavaScript is a case-sensitive programming language. This implies that all
language keywords, variables, function names, and other identifiers must
be entered with consistent letter capitalization.

In JavaScript, the identifiers Time and TIME will have distinct meanings.
NOTE: When naming variables and functions in JavaScript, use caution.

COMMENT IN JAVASCRIPT
JavaScript comments are an effective technique to convey information. It is
used to include code information, cautions, or recommendations so that
the end user can easily read the code.11 The browser’s built-in JavaScript
engine disregards the JavaScript comment.

Benefits of JavaScript Comments

JavaScript comments have primarily two benefits.

•	 To make coding more understandable, it may be used to develop the
code so that the end user understands it easily.

•	 To prevent the needless code, it can also use to prevent the code from
running. Sometimes, we add code to do a certain activity. However,
the code may need to be disabled after a while. In this instance, it is
preferable to utilize comments.

JavaScript Comment Types

In JavaScript, there are two kinds of comments.

•	 Single-line comment

•	 Multiline comment

Single-Line Comment in JavaScript
It is denoted by two forward slashes (//). It can be used both before and
after the sentence.

Let’s look at an example of a single-line comment, which is put before
the statement.

<script>
 // It is the singleline comment

78    ◾    Conquering JavaScript

 document.write("hello everyone");
 </script>

Let’s look at an example of a single-line comment, which is placed after
the statement.

<script>
 var c=30;
 var d=10;
 var e=c+d;//It adds values of c and d variable
 document.write(e);//prints sum of 30 and 10
 </script>

Multiline Comment in JavaScript

It may be used to add single or multiple line comments. As a result, it is
more convenient.

It is symbolized as a forward slash followed by an asterisk, followed by
another forward slash. As an example:

/* code here */

It can be used before, after, or in the midst of a sentence.

<script>
 /* It is the multiline comment.
 It will not display */
 document.write("instance of javascript multiline
comment");
 </script>

VARIABLE IN JAVASCRIPT
A JavaScript variable is nothing more than the name of a storage place.12

Variables in JavaScript are classified into two types: local variables and
global variables.

There are several guidelines to follow when declaring a JavaScript
variable (also known as identifiers).

•	 The name begins with the letter (a-z or A-Z), underscore (_), or
dollar ($) symbol.

Getting Started with JavaScript I    ◾    79

•	 We can put numbers (0–9) after the initial letter, for example value1.

•	 Variables in JavaScript are case sensitive; therefore, x and X are
different.

JavaScript Variables That Are Correct

var d = 20;
var _value="sonoo";

JavaScript Variables That Are Not Correct

var 321=20;
var *bb=310;

Variable in JavaScript Example

Let’s look at a basic JavaScript variable example.

<script>
var c = 30;
var d = 10;
var e=c+d;
document.write(e);
</script>

Local Variable in JavaScript

A local variable in JavaScript is declared within a block or function. It is
only available within the function or block. As an example:

<script>
 function cde(){
 var k=10;//local variable
 }
 </script>

OR

<script>
 If(20<15){
 var y=40;// local variable

80    ◾    Conquering JavaScript

 }
 </script>

The Global Variable in JavaScript

A global variable in JavaScript may be accessed from any function.
A global variable is one that is defined outside of the function or

declared with the window object. As an example:

<script>
 var data=250;//gloabal variable
 function d(){
 document.writeln(data);
 }
 function e(){
 document.writeln(data);
 }
 d();//call JavaScript function
 e();
 </script>

Declaring a Global Variable in JavaScript within a Function

We must utilize the window object to define JavaScript global variables
within a function. As an example:

window.value=70;

It may now be defined within any function and accessed from any func-
tion. As an example:

function m(){
 window.value=120;//declaring the global variable
by window object
 }
 function n(){
 alert(window.value);//accessing the global
variable from the other function
 }

Internals of Global Variable

When we declare a variable outside of a function, it is automatically
added to the window object. We may also get to it via the window object.
As an example:

Getting Started with JavaScript I    ◾    81

var value=60;
function a(){
alert(window.value);//access global variable
}

DATA TYPES IN JAVASCRIPT
JavaScript supports many data types for storing various sorts of values.
In JavaScript, there are two kinds of data types:13

•	 Primitive data type

•	 Non-primitive data type

JavaScript is a dynamic type language; therefore, there’s no need to specify
the variable’s type before using it in code. To indicate the data type, we
must use var here.

It may store any sort of value, such as integers, strings, and so on. As an
example:

var a=60;//hold number
var b="Raman";//hold string

Primitive Data Types in JavaScript

In JavaScript, there are five basic data types. These are their names:

NON-PRIMITIVE DATA TYPES IN JAVASCRIPT
The following are the non-primitive data types:

Data Type Description

String Indicates a string of characters, such as “hi.”
Number Depicts a set of numbers, e.g., 100.
Boolean Indicates a Boolean value that can be either false or true.
Undefined Signifies an undefined value.
Null Represents null, that is, no value at all.

Data Type Description

Object Represents an instance that allows us to access members.
Array Indicates a set of values that are comparable.
RegExp Stands for regular expression.

82    ◾    Conquering JavaScript

OPERATORS IN JAVASCRIPT
Operators in JavaScript are symbols that are employed to perform actions
on operands. As an example14:

var sum=30+10;

The arithmetic operator + is used here, while the assignment operator = is
used. In JavaScript, there are several sorts of operators.

•	 Arithmetic operators

•	 Comparison (relational) operators

•	 Bitwise operators

•	 Logical operators

•	 Assignment operators

•	 Special operators

Arithmetic Operators

To conduct arithmetic operations on the operands, arithmetic operators
are employed.15

JavaScript arithmetic operators are the operators listed below.

Comparison Operators

The comparison operator in JavaScript compares the two operands.
The following are the comparison operators:

Operator Description Example

+ Addition 20+20 = 40

− Subtraction 30−10 = 20
* Multiplication 20*20 = 400
/ Division 40/10 = 4
% Modulus (remainder) 40%10 = 0
++ Increment var a=20; a++; Now a = 21
-- Decrement var a=20; a--; Now a = 19

Getting Started with JavaScript I    ◾    83

Bitwise Operators

Bitwise operators apply bitwise operations to operands. The following are
the bitwise operators:

Logical Operators

JavaScript logical operators include the basic operators.

Assignment Operators

JavaScript assignment operators include the following operators.

Operator Description Example

== Is equal to 20==10 = false

=== Identical (equal and of same type) 20==10 = false
!= Not equal to 20!=10 = true
!== Not Identical 10!==10 = false
> Greater than 30>20 = true
>= Greater than or equal to 30>=20 = true
< Less than 30<20 = false
<= Less than or equal to 30<=20 = false

Operator Description Example

& Bitwise AND (20==10 & 10==33) = false
| Bitwise OR (20==10 | 10==33) = false
^ Bitwise XOR (20==10 ^ 10==33) = false
~ Bitwise NOT (~20) = –20
@ Bitwise Left Shift (10≪2) = 40
@ Bitwise Right Shift (10≫2) = 2
@> Bitwise Right Shift with Zero (10⋘>2) = 2

Operator Description Example
&& Logical AND (20==10 && 10==33) = false
|| Logical OR (20==10 || 10==33) = false
! Logical Not !(20==10) = true

Operator Description Example
= Assign 20+20 = 40
+= Add and assign var a=20; a+=10; Now a = 30
-= Subtract and assign var a=10; a-=20; Now a = 10
= Multiply and assign var a=20; a=10; Now a = 200
/= Divide and assign var a=20; a/=2; Now a = 10
%= Modulus and assign var a=20; a%=2; Now a = 0

84    ◾    Conquering JavaScript

Special Operators

JavaScript special operators include the following operators.

IF-ELSE STATEMENTS IN JAVASCRIPT
The if-else statement in JavaScript is used to run code whether the condi-
tion is true or false.

In JavaScript, there are three types of if statements:16

•	 If Statement

•	 If else statement

•	 If else if statement

If Statement

It only analyses the content if the expression is true. The JavaScript if state-
ment’s signature is shown below.

if(expression){
//content to evaluate
}

Operator Description

(?:)
Based on the condition, the Conditional Operator returns a value. It’s similar
to if-else.

, Multiple expressions can be evaluated as a single statement using the Comma
Operator.

delete The Delete Operator removes a property from an object.
in Operator determines if an object has the specified attribute.
instanceof Tests to see whether the object is an instance of the provided type makes an

instance (object) checks the object’s type.
new It ignores the return value of the expression.
typeof Validates what the generator’s iterator returns in a generator.
void Based on the condition, the Conditional Operator returns a value. It’s similar

to if-else.
yield Multiple expressions can be evaluated as a single statement using the Comma

Operator.

Getting Started with JavaScript I    ◾    85

Flowchart:

Let’s look at a basic if statement in JavaScript.

<script>
var a=40;
if(a>20){
document.write(“The value of a is greater than 20”);
}
</script>

If...else Statement

It determines if the condition is true or false. The syntax of the if-else
statement in JavaScript is shown below.17

if(expression){
 //content to evaluate if the condition is true
 }
 else{
 //content to evaluate if the condition is false
 }

if code

start

after if

exit

Cond

ition

false

Statement of if

86    ◾    Conquering JavaScript

Flowchart:

Let’s look at an example of an if-else statement in JavaScript to deter-
mine if a number is even or odd.

<script>
var d=40;
if(d%2==0){
document.write(“d is even number”);
}
else{
document.write(“d is odd number”);
}
</script>

If...else if Statement

It only analyses the content if one of multiple expressions is true. The
JavaScript if else if statement’s signature is shown below.

if(expression1){

start

if code

after if

exit

Cond

ition

false

true
else code

Statement of if-else

Getting Started with JavaScript I    ◾    87

 //content to evaluate if the expression1 is true
 }
 else if(expression2){
 //content to evaluate if the expression2 is true
 }
 else if(expression3){
 //content to evaluate if the expression3 is true
 }
 else{
 //content to evaluate if no expression is true
 }

Flowchart:

Let’s look at a basic if-else-if expression in JavaScript.

<script>
var d=40;
if(d==20){

start

Condition n

Condition 2

Condition 1

Statement 1 Statement 2 Statement n Statement s

false

false

false

true

true

true

next statement

Statement of if-else-if

88    ◾    Conquering JavaScript

document.write(“d is equal to 10”);
}
else if(a==25){
document.write(“d is equal to 15”);
}
else if(a==40){
document.write(“d is equal to 20”);
}
else{
document.write(“d is not equal to 20, 25 or 40”);
}
</script>

SWITCH IN JAVASCRIPT
The JavaScript switch statement is used to perform a single piece of code
from a collection of expressions. It is the same as the else if statement that
we studied on the previous page. However, it is more handy than if...else...
if since it may be used with integers, characters, and so on.18

The JavaScript switch statement’s signature is shown below.

switch(expression){
 case value1:
 code to execute;
 break;
 case value2:
 code to execute;
 break;

 default:
 code to execute if the above values are not
matched;
 }
 	

Let’s look at a basic switch statement in JavaScript.19

<script>
var grade=’B’;
var result;
switch(grade){

Getting Started with JavaScript I    ◾    89

case ‘A’:
result=”Grade A”;
break; 	
case ‘B’:
result=”Grade B”;
break;
case ‘C’:
result=”Grade C”;
break;
default:
result=”No Grade”;
}
document.write(result);
</script>

Let’s look at how the switch statement works in JavaScript.

<script>
var grade=’B’;
var result;
switch(grade){
case ‘A’:
result+=”Grade A”;
case ‘B’:
result+=”Grade B”;
case ‘C’:
result+=”Grade C”;
default:
result+=” No Grade”;
}
document.write(result);
</script>

LOOPS IN JAVASCRIPT
JavaScript loops are used to repeat code using for, while, do-while, and
for-in loops.

It makes the code smaller. It is most often used in arrays.20

In JavaScript, there are four kinds of loops:

•	 for loop

•	 while loop

90    ◾    Conquering JavaScript

•	 do-while loop

•	 for-in loop

for loop

The JavaScript for loop loops over the components a certain number of
times.

If the number of iterations is known, it should be utilized. The syntax
for the for loop is shown below.

for (initialization; condition; increment)
{
 code to execute
}

Let’s look at a simple for loop in JavaScript.

<script>
for (x=1; x<=5; x++)
{
document.write(6 + “
”)
}
</script>

while loop

The JavaScript while loop iterates over the components indefinitely.
When the expected number of iterations is uncertain, this method

should be used. The while loop syntax is seen below.

while (condition)
{
 code to execute
}

Let’s look at a simple while loop in JavaScript.

<script>
 var x=12;
 while (x<=16)
 { 	
 document.write(x + “
”);

Getting Started with JavaScript I    ◾    91

 x++;
 }
 </script>

do-while loop

The JavaScript do-while loop, like the while loop, iterates the items
indefinitely.

Regardless of whether the condition is true or not, the code is performed
at least once. The following code demonstrates the do-while loop syntax.

do{
 code to execute
}while (condition);

Let’s look at a basic do-while loop in JavaScript example.

<script>
var x=22;
do{
document.write(x + “
”);
x++;
}while (x<=26);
</script>

for-in loop

The JavaScript for-in loop is used to iterate through an object’s attributes.
It consists of three crucial components:

•	 The loop initialization, in which we set our counter to a begin-
ning value. Before the loop starts, the initialization statement is
performed.21

•	 The test statement determines whether or not a particular condition
is true. If the condition is met, the code contained inside the loop
will be performed; otherwise, the control will exit the loop.

•	 The iteration statement, which allows us to raise or decrease the
counter.

•	 All three components may be presented on a single line, separated
by semicolons.

92    ◾    Conquering JavaScript

for (initialization; test condition; iteration
statement) {
 Statement(s) to execute if the test condition is true
 }

To discover how a for loop works in JavaScript, try a simple example.

<html>
 <body>
 <script type = “text/javascript”>
 <!--
 var count;
 document.write(“Start Loop” + “
”);

 for(count = 0; count < 10; count++) {
 �document.write(“The Current Count : “ +

count);
 document.write(“
”);
 }
 document.write(“Loop stop!”);
 //-->
 </script>
 <p>Set variable to a different value and then
try</p>
 </body>
</html>

FUNCTIONS IN JAVASCRIPT
JavaScript functions are used to do out tasks. To reuse the code, we may
call the JavaScript method many times.

The Benefit of the JavaScript Function

JavaScript functions have primarily two benefits:

•	 Code reusability: We may invoke a function several times to save
coding time.

•	 Less coding: This reduces the size of our software. We don’t need to
write a lot of code every time we do the same thing.

Getting Started with JavaScript I    ◾    93

Syntax of JavaScript Functions

The syntax for defining a function is as follows.

function function_Name([arg1, arg2, ...argN]){
 //code to execute
 }

JavaScript functions may take zero or more parameters.
Let’s look at a basic JavaScript function that doesn’t take any parameters.

<script>
 function msg(){
 alert(“hey this is my message”);
 }
 </script>
 �<input type=”button” onclick=”msg()” value=”call

function”/>

Function Arguments

Functions may be called by giving parameters. Let’s look at an example of
a function with just one parameter.

<script>
 function getcube(numb){
 alert(number*numb*numb);
 }
 </script>
 <form>
 <input type=”button” value=”click”
onclick=”getcube(4)”/>
 </form>

Function with Return Value

We may utilize a function that returns a value in our application. Let us
look at an example of a function that returns a value.

<script>

94    ◾    Conquering JavaScript

function getInfo(){
return “hey everyone How are you?”;
}
</script>
<script>
document.write(getInfo());
</script>

Function Object

The function constructor’s purpose in JavaScript is to build a new Function
object.

It runs the code on a global scale.
However, if we directly use the constructor, a function is built dynami-

cally but in an insecure manner.

Syntax:

new Function ([arg_1[, arg_2[,arg_n]],]
functionBody)

Parameter

•	 arg_1, arg_2,..., arg_n: It represents the function parameter.

•	 functionBody: This is the definition of the function.

Function Methods

Let’s look at function methods and their descriptions.

Examples of JavaScript Function Objects

Example 1

Let’s look at an example of displaying the total of two integers.

<script>

Method Description

apply()
It is used to invoke a function that takes this value as well as a single array of
arguments.

bind() It is used to implement a new function.
call() It is used to invoke a function that takes this value and a list of arguments.
toString() It gives us the result as a string.

Getting Started with JavaScript I    ◾    95

var add=new Function(“numb1”,”numb2”,”return
numb1+numb2”);
document.writeln(add(12,7));
</script>

Example 2

Let’s look at an example to demonstrate the strength of offered value.

<script>
var pow=new Function(“numb1”,”numb2”,”return Math.
pow(numb1,numb2)”);
document.writeln(pow(21,4));
</script>

OBJECTS IN JAVASCRIPT
A JavaScript object is a stateful entity with behavior (properties and
method), for example, a vehicle, a pen, a bicycle, a chair, a glass, a
keyboard, and a monitor.

JavaScript is an object-oriented programming language. In JavaScript,
everything is an object. JavaScript is template-based rather than class-
based.22 We don’t construct a class to retrieve the object here. However, we
guide the creation of things.

Object Creation in JavaScript

Objects may be created in three ways.

•	 By object literal.

•	 By generating instance of Object directly (using the new keyword).

•	 By making use of an Object constructor (using the new keyword).

By object literal

By generating instance of Object directly
(using the new keyword)

By making use of an Object constructor
(using the new keyword)

Object Creation in JavaScript

96    ◾    Conquering JavaScript

	 1. Object by object literal
The syntax for constructing an object using an object literal is as

follows:

object={property1:value_1,property2:value_2.....
propertyN:value_N}

As we can see, property and value are distinguished by : (colon).
Let’s look at a basic example of object creation in JavaScript.

<script>
emp={id:113,name:”Shiva Kishan”,salary:45000}
document.write(emp.id+” “+emp.name+” “+emp.salary);
</script>

	 2. By generating an Object instance
The syntax for generating an object directly is as follows:

var object_name=new Object();

The new keyword is used to construct the object in this case.
Let’s look at an example of directly constructing an object.

<script>
var emp=new Object();
emp.id=107;
emp.name=”Rita Kaur”;
emp.salary=52000;
document.write(emp.id+” “+emp.name+” “+emp.salary);
</script>

	 3. By making use of an Object constructor
We must construct a function with parameters here. This keyword

may be used to assign each parameter value to the current object.
The keyword this relates to the current object.
The following example shows how to create an object using an

object constructor.

<script>
function emp(id,name,salary){
this.id=id;

Getting Started with JavaScript I    ◾    97

this.name=name;
this.salary=salary;
}
e=new emp(105,”Vinay Sharma”,33000);

document.write(e.id+” “+e.name+” “+e.salary);
</script>

Creating a Method in a JavaScript Object

In a JavaScript object, we may specify methods. However, before we define
method, we must add a property in the function with the same name as
method. The following is an example of defining a method in an object.

<script>
function emp(id,name,salary){
this.id=id;
this.name=name;
this.salary=salary;

this.change_Salary=change_Salary;
function change_Salary(other_Salary){
this.salary=other_Salary;
}
}
e=new emp(102,”Suraj Garewal”,39000);
document.write(e.id+” “+e.name+” “+e.salary);
e.changeSalary(41000);
document.write(“
”+e.id+” “+e.name+” “+e.salary);
</script>

Object Methods in JavaScript

Object’s numerous methods are as follows:

S.No Methods Description

1 Object.assign()

Enumerable and own properties are
transferred from a source object to a
destination object using this method.

2 Object.create() This function is used to generate a new
object using the prototype object and
properties given.

3 Object.defineProperty() This approach is used to characterize some of
the property’s behavioral characteristics.

(Continued)

98    ◾    Conquering JavaScript

ARRAY IN JAVASCRIPT
An object that represents a group of identical objects in JavaScript is called
an array.

In JavaScript, there are three methods to create an array.23

•	 By array literal.

S.No Methods Description

4 Object.defineProperties() Multiple object attributes can be created or
configured using this technique.

5 Object.entries() This function returns an array containing
arrays of key-value pairs.

6 Object.freeze() This strategy avoids the removal of existing
properties.

7 Object.getOwnPropertyDescriptor() This function returns a property descriptor
for the given object’s property.

8 Object.getOwnPropertyDescriptors() This function retrieves all of an object’s own
property descriptors.

9 Object.getOwnPropertyNames() This function produces an array of all
properties discovered (enumerable or not).

10 Object.getOwnPropertySymbols() This function produces an array containing
all of our own symbol key attributes.

11 Object.getPrototypeOf() The prototype of the given object is returned
by this method.

12 Object.is() This function compares two values to see if
they are the same.

13 Object.isExtensible() This method detects whether or not an object
is extendable.

14 Object.isFrozen() This method detects whether or not an item
was frozen.

15 Object.isSealed() This method detects whether or not an item
is sealed.

16 Object.keys() This function returns an array containing
the names of the properties of the supplied
object.

17 Object.preventExtensions() This technique is used to prohibit an object
from extending.

18 Object.seal() This approach disables the addition of new
properties and labels all current properties
as non-configurable.

19 Object.setPrototypeOf() This function assigns the prototype of one
object to another.

20 Object.values() This method returns a value array.

Getting Started with JavaScript I    ◾    99

•	 By explicitly generating an Array instance (using new keyword).

•	 By making use of an Array constructor (using new keyword).

	 1. Array literal in JavaScript
The syntax for building an array using an array literal is as follows:

var arrayname=[value_1,value_2.....value_N];

As we can see, values are enclosed by [] and separated by, (comma).
Let’s look at a basic example of constructing and utilizing an array

in JavaScript.

<script>
var emp=[“Simran”,”Vijay”,”Rajat”];
for (x=0;x<emp.length;x++){
document.write(emp[x] + “
”);
}
</script>

The .length attribute returns the array’s length.

	 2. Array directly in JavaScript (new keyword)
The syntax for constructing an array directly is as follows:

var array_name=new Array();

In this case, the new keyword is used to construct an array object.
Let’s look at an example of directly generating an array.

By array literal

By explicitly generating an
Array instance (using new

keyword)

By making use of an Array
constructor (using new

keyword)

Array in JavaScript

100    ◾    Conquering JavaScript

<script>
var x;
var emp = new Array();
emp[0] = “Ajay”;
emp[1] = “Vinay”;
emp[2] = “Johny”;
 	
for (x=0;x<emp.length;x++){
document.write(emp[x] + “
”);
}
</script>

	 3. The array constructor in JavaScript (new keyword)
We must build an array instance by providing parameters to the

constructor so that we do not have to specify a value manually.
The following is an example of object creation using an array

constructor.

<script>
var emp=new Array(“Jaya”,”Vinay”,”Simran”);
for (x=0;x<emp.length;x++){
document.write(emp[x] + “
”);
}
</script>

Array Methods in JavaScript

Let’s go through the JavaScript array methods and their descriptions.

Methods Description

concat() It creates a new array object from two or more merged arrays.
copywithin() It replaces the provided array’s elements with its own and returns the

transformed array.
entries() It generates an iterator object and a loop that loops through each key/

value pair.
every() It checks if all of the items of an array fulfill the function criteria.
flat() It generates a new array with sub-array entries concatenated recursively

until the desired depth is reached.
flatMap() It uses a mapping function to map all array items, then flattens the result

into a new array.
fill() It populates an array with static values.

(Continued)

Getting Started with JavaScript I    ◾    101

Methods Description
from() It generates a new array containing an identical duplicate of another

array element.
filter() It returns a new array containing the entries that satisfy the function’s

requirements.
find() It returns the value of the first array element that meets the provided

criterion.
findIndex() It returns the index of the first member in the provided array that meets

the criterion.
forEach() It calls the specified method once for each array element.
includes() It determines whether the provided element is present in the provided

array.
indexOf() It searches the provided array for the specified element and provides the

index of the first match.
isArray() It determines whether the provided value is an array.
join() It creates a string by joining the members in an array.
keys() It constructs an iterator object that just includes the array keys, then

loops through these keys.

lastIndexOf() It returns the value of the first array element that meets the provided
criterion.

map() It executes the supplied function on each array element and returns the
new array.

of() It generates a new array from a configurable number of parameters,
which can be of any type.

pop() It removes and returns the array’s final element.
push() It appends one or more array elements to the end.
reverse() It flips the items of the provided array.
reduce(function,
initial)

It runs the specified function for each value in the array from left to
right, reducing the array to a single value.

reduceRight() It runs the specified function for each value in the array from right to
left, reducing the array to a single value.

some() It determines if any member of the array satisfies the implemented
function’s test.

shift() It removes and returns the array’s first member.
slice() It returns a new array containing a duplicate of the specified array’s

portion.
sort() It returns the sorted elements of the provided array.
splice() It adds and removes elements from the specified array.
toLocaleString() It returns a string containing all of the members in the array supplied.
toString() It translates the items of a given array into string form while leaving the

original array alone.
unshift() It inserts one or more elements at the start of the provided array.
values() It generates a new iterator object with values for each array index.

102    ◾    Conquering JavaScript

STRING IN JAVASCRIPT
A string in JavaScript is an object that represents a series of characters.24

In JavaScript, there are two methods for creating strings.

•	 Using a string literal

•	 Using a string object (using new keyword)

	 1. Using a string literal
Double quotes are used to construct the string literal. The syntax

for constructing a string using a string literal is as follows:

var string_name=”string_value”;
<script>
var str=”This is the string literal”;
document.write(str);
</script>

	 2. Using a string object (using new keyword)
The new keyword’s syntax for creating a string object is as follows:

var string_name=new String(“string_literal”);

In this case, the new keyword is used to construct a string instance.
Let’s take a look at a JavaScript string that was formed using the

new keyword.

<script>
var stringname=new String(“hey everyone”);
document.write(stringname);
</script>

Getting Started with JavaScript I    ◾    103

String Methods in JavaScript

Let’s go over the examples for the JavaScript string methods.

	 1. String charAt(index) Method in JavaScript
The charAt() function of the JavaScript String returns the charac-

ter at the specified index.

<script>
var str=”heyeveryone”;

Methods Description

charAt() The char value located at the specified index is returned.
charCodeAt() It provides the character’s Unicode value at the specified index.
concat() It allows us to combine two or more strings.
indexOf() It gives the position of a char value inside the given string as a

response.
lastIndexOf() It provides the location of a char value inside the given string by

returning the results of its search starting from the last position.
search() It searches a provided text for a specified regular expression and, if

a match is discovered, returns its location.
match() If a match is discovered, it checks a given text for a specified

regular expression and returns that regular expression.
replace() It substitutes the provided string with the given string.
substr() Based on the specified beginning position and length.
, i It is used to obtain a portion of the given string.

substring()
Based on the specified index

, i It is used to get a section of the given text.
slice()
We may use it to get a section of the given string. We can provide
both positive and negative indices thanks to it.

toLowerCase() It lowercases the string that is sent to it.
toLocaleLowerCase() It transforms the provided string to lowercase letters based on the

current locale of the host.
toUpperCase() It changes the string to uppercase letters.
toLocaleUpperCase() It turns the provided text to an uppercase letter based on the host’s

current locale.
toString() A string that represents the particular object is returned.
valueOf() It returns the string object’s primitive value.
split() It creates substring arrays from a string and then returns the

resultant array.
trim() It removes the white space from the string’s left and right sides.

104    ◾    Conquering JavaScript

document.write(str.charAt(2));
</script>

	 2. JavaScript String concat(str) (Method)
The String concat(str) method in JavaScript concatenates or unites

two strings.

<script>
var st1=”heyeveryone “;
var st2=”concat example”;
var st3=st1.concat(st2);
document.write(st3);
</script>

	 3. String indexOf(str) Method in JavaScript
The JavaScript String indexOf(str) function returns the string’s

index position.

<script>
var st1=”hey from eveyrone indexof”;
var n=st1.indexOf(“from”);
document.write(n);
</script>

	 4. Method JavaScript String lastIndexOf(str)
The JavaScript String lastIndexOf(str) function returns the string’s

last index point.

<script>
var st1=”everybody from eveyrone indexof”;
var n=st1.lastIndexOf(“every”);
document.write(n);
</script>

	 5. The toLowerCase() method in JavaScript
The String toLowerCase() function in JavaScript returns the pro-

vided string in lowercase characters.

<script>
var st1=”JavaScript toLowerCase Instance”;
var st2=st1.toLowerCase();

Getting Started with JavaScript I    ◾    105

document.write(st2);
</script>

	 6. The toUpperCase() method in JavaScript
The String toUpperCase() function in JavaScript returns the pro-

vided string in uppercase characters.

<script>
var st1=”JavaScript toUpperCase Inatnce”;
var st2=st1.toUpperCase();
document.write(st2);
</script>

	 7. String slice(beginIndex, endIndex) Method in JavaScript
The String slice(beginIndex, endIndex) function in JavaScript

returns the sections of a string from beginIndex to endIndex. The
beginIndex is inclusive and endIndex is exclusive in the slice()
function.

<script>
var st1=”abcdefgh”;
var st2=st1.slice(3,6);
document.write(st2);
</script>

	 8. String trim() Method in JavaScript
The JavaScript String trim() function eliminates whitespace from

the beginning and end of a string.

<script>
var st1=” javascript trim “;
var st2=st1.trim();
document.write(st2);
</script>

	 9. String split() method in JavaScript

<script>
var str=”This is the JavaScript website”;
document.write(str.split(“ “)); //splits given
string.
</script>

106    ◾    Conquering JavaScript

DATE OBJECT IN JAVASCRIPT
We may use the JavaScript date object to retrieve the year, month, and
day. The JavaScript date object may be used to show a timer on a website.

To generate a date object, we may utilize several Date25 constructors.
It includes methods for retrieving and setting the day, month, year, hour,
minute, and seconds.

Constructor

To build a date object, we may use one of four Date constructor variants.

•	 Date()

•	 Date(milliseconds)

•	 Date(dateString)

•	 Date (year, month, day, hours, minutes, milliseconds, seconds)

Date Methods in JavaScript

Let’s go through the JavaScript date methods and their descriptions.

Methods Description

getDate()
It generates an integer number, ranging from 1 to 31, which
represents the day for the specified date and time in local time.

getDay() It produces an integer number between 0 and 6 that reflects the
weekday based on local time.

getFullYears() It returns the integer number representing the year in local time.
getHours() It produces an integer number between 0 and 23 representing the

hours in local time.
getMilliseconds() It returns an integer number between 0 and 999 representing

milliseconds in local time.
getMinutes() It produces an integer number between 0 and 59 representing the

minutes in local time.
getMonth() It actually gives an integer value between 0 and 11 that, based on

local time, reflects the month.
getSeconds() It produces an integer number between 0 and 60 representing the

seconds in local time.
getUTCDate() It produces an integer number between 1 and 31 representing the

day for the given date in universal time.
getUTCDay() It generates an integer number, ranging from 0 to 6, which

corresponds to the day of the week in universal time.
(Continued)

Getting Started with JavaScript I    ◾    107

Methods Description

getUTCFullYears() It returns the integer number representing the year in universal
time.

getUTCHours() It returns an integer number between 0 and 23 representing the
hours based on universal time.

getUTCMinutes() It produces an integer number between 0 and 59 representing the
minutes in universal time.

getUTCMonth() It produces an integer number between 0 and 11 representing the
month in universal time.

getUTCSeconds() It returns an integer number between 0 and 60 representing the
seconds in universal time.

setDate() It determines the day value for the given date using local time.
setDay() It determines the specific day of the week based on local time.
setFullYears() It determines the year value for the given date using local time.
setHours() It determines the hour value for the given date using local time.
setMilliseconds() It determines the millisecond value for the given date using local

time.
setMinutes() It determines the minute value for the given date using local time.
setMonth() It determines the month value for the given date using local time.
setSeconds() It determines the second value for the given date based on local

time.
setUTCDate() It determines the day value for the given date using universal time.
setUTCDay() It establishes the specific day of the week based on universal time.
setUTCFullYears() It determines the year value for the given date using universal time.
setUTCHours() It determines the hour value for the given date using universal

time.
setUTCMilliseconds() It computes the millisecond value for the given date using

universal time.
setUTCMinutes() Minute values for the given date are calculated using UTC.
setUTCMonth() It determines the month value for the given date using universal

time.
setUTCSeconds() It determines the second value for the given date using universal

time.
toDateString() It returns a Date object’s date component.
toISOString() It returns the date in ISO standard string form.
toJSON() It returns a string containing the Date object’s representation.

During JSON serialization, it also serializes the Date object.
toString() It returns a string representation of the date.
toTimeString() It gives us the time component of a Date object.
toUTCString() The input date is converted to a string representing UTC time.
valueOf() It returns a Date object’s basic value.

108    ◾    Conquering JavaScript

Date Example in JavaScript

Let’s look at a simple example of printing a date object. It publishes both
the date and the time.

Current Date and Time:
<script>
var today=new Date();
document.getElementById(‘text’).innerHTML=today;
</script>

Let’s look at another code to print the date, month, and year.

<script>
 var date=new Date();
 var day=date.getDate();
 var month=date.getMonth()+1;
 var year=date.getFullYear();
 document.write("
The Date is:
“+day+”/”+month+”/”+year);
 </script>

Example of JavaScript Current Time

Let’s look at a basic example of printing the system’s current time.

Current Time:
<script>
var today=new Date();
var h=today.getHours();
var m=today.getMinutes();
var s=today.getSeconds();
document.getElementById(‘text’).
innerHTML=h+”:”+m+”:”+s;
</script>

Example of a JavaScript Digital Clock

Let’s look at a basic example of displaying a digital clock using a JavaScript
date object.

In JavaScript, we may specify intervals using either the setTimeout() or
setInterval() methods.

Current Time:
<script>
window.onload=function(){getTime();}

Getting Started with JavaScript I    ◾    109

function getTime(){
var today=new Date();
var h=today.getHours();
var m=today.getMinutes();
var s=today.getSeconds();
// add zero in the front of numbers<10
m=checkTime(m);
s=checkTime(s);
document.getElementById(‘text’).
innerHTML=h+”:”+m+”:”+s;
setTimeout(function(){getTime()},1200);
}
//setInterval(“getTime()”,1000);//another way
function checkTime(i){
if (x<10){
 x=”0” + x;
 }
return x;
}
</script>

MATH IN JAVASCRIPT
The JavaScript math object has a number of constants and methods for
performing mathematical operations.26 It does not have constructors,
unlike the date object.

Math Methods

Let’s go through the JavaScript math methods and their descriptions.27

Methods Description

abs() It gives the absolute value of the number provided.
acos() The arccosine of the provided integer in radians is returned.
asin() It computes the arcsine of the provided number in radians and returns it.
atan() It returns the arc-tangent in radians of the provided integer.
cbrt() It returns the cube root of the integer supplied.
ceil() The function returns the smallest integer greater than or equal to the given

parameter.
cos() It returns the cosine of the number provided.
cosh() The hyperbolic cosine of the provided integer is returned.

(Continued)

110    ◾    Conquering JavaScript

Math.sqrt(n)

The math.sqrt(n) function in JavaScript returns the square root of the pro-
vided integer.

The Square Root of 14 is:
<script>
document.getElementById(‘p1’).innerHTML=Math.sqrt(14);

</script>

Math.random()

The math.random() function in JavaScript provides a random integer
between 0 and 1.

The Random Number is:
<script>
document.getElementById(‘p2’).innerHTML=Math.random();
</script>

Math.pow(m, n)

The JavaScript math.pow(m, n) function returns mn, which is m to the
power of n.

Methods Description

exp() It returns the provided number’s exponential form.
floor() The largest integer that is less than or equal to the given value is returned.
hypot() It gives back the cube root of the sum of the squares of the given numbers.
log() It computes the natural logarithm of a number.
max() It returns the greatest possible value of the provided numbers.
min() It returns the smallest of the provided numbers.
pow() It returns the value of the base multiplied by the power of the exponent.
random() It returns a random number between 0 (inclusive) and 1 (exclusive) (exclusive).
round() It returns the integer value that is closest to the specified number.
sign() It returns the sign of the number provided.
sin() It returns the sine of the number provided.
sinh() The hyperbolic sine of the provided integer is returned.
sqrt() It computes the square root of the input number.
tan() It returns the tangent of the integer provided.
tanh() The hyperbolic tangent of the supplied integer is returned.
trunc() It gives back an integer portion of the provided number.

Getting Started with JavaScript I    ◾    111

5 to the power of 2 is:
<script>
document.getElementById(‘p3’).innerHTML=Math.pow(5,2);
</script>

Math.floor(n)

The math.floor(n) function in JavaScript delivers the lowest integer for the
supplied value.

For example, 3 for 3.7, 5 for 5.9, and so on.

The Floor of 5.2 is:
<script>
document.getElementById(‘p4’).innerHTML=Math.
floor(5.2);
</script>

Math.ceil(n)

The math.ceil(n) function in JavaScript gives the biggest integer for the
supplied number.

For example, 4 for 3.7, 6 for 5.9, and so on.

The Ceil of 5.2 is:
<script>
document.getElementById(‘p5’).innerHTML=Math.
ceil(5.2);
</script>

Math.round(n)

The JavaScript calculation. The round(n) function returns the rounded
integer that is closest to the provided number.

If the fractional component is equal to or larger than 0.5, the upper
value 1 is used; otherwise, the lower value 0 is used. For instance, 4 for 3.7,
3 for 3.3, 6 for 5.9, and so on.

The Round of 5.2 is:

The Round of 5.6 is:
<script>

112    ◾    Conquering JavaScript

document.getElementById(‘p6’).innerHTML=Math.
round(5.2);
document.getElementById(‘p7’).innerHTML=Math.
round(5.6);
</script>

Math.abs(n)

The math.abs(n) function in JavaScript returns the absolute value of the
provided integer.

For example, 4 for -–4, 6.6 for –6.6, and so on.

The Absolute value of -6 is:
<script>
document.getElementById(‘p8’).innerHTML=Math.abs(-6);
</script>

NUMBER OBJECT IN JAVASCRIPT
We may express a numeric value using the JavaScript number object.

It may be either integer or floating point. To represent floating-point
numbers, the JavaScript number object adheres to the IEEE standard.28

In JavaScript, we may build a number object with the Number() con-
structor. As an example:

var nm=new Number(value);

If the value cannot be converted to a number, it returns NaN (Not a
Number), which may be tested using the isNaN() function.

We may also directly assign a number to a variable. As an example:

var x=110;//integer value
var y=132.7;//floating point value
var z=14e6;//exponent value, output: 140000
var n=new Number(15);//integer value by number object

Number Constants in JavaScript

Check out the defined JavaScript constants for numbers.

Constant Description

MIN_VALUE The biggest minimum value is returned.
MAX_VALUE The biggest maximum value is returned.
POSITIVE_INFINITY overflow value, yields positive infinity.
NEGATIVE_INFINITY overflow value, yields negative infinity.
NaN reflects the value “Not a Number.”

Getting Started with JavaScript I    ◾    113

Number Methods in JavaScript

Let’s go through the JavaScript number methods and their descriptions.

JAVASCRIPT BOOLEAN
A JavaScript Boolean object represents a value in one of two states: true
or false.29

The JavaScript Boolean object may be created with the Boolean() con-
structor, as seen below.

Boolean bn=new Boolean(value);

The JavaScript Boolean object’s default value is false.

Example of a JavaScript Boolean

<script>
document.write(30<40);//true
document.write(12<8);//false
</script>

Boolean Properties

Methods Description

isFinite() It checks to see if the provided value is a finite number.
isInteger() It checks to see if the provided number is an integer.
parseFloat() It translates a string into a floating-point number.
parseInt() It turns the string provided into an integer number.
toExponential() It returns the string that represents the provided number in exponential

notation.
toFixed() It returns a string with the exact digits following a decimal point.
toPrecision() It returns a string representing a number with the precision requested.
toString() It returns the specified number as a string.

Property Description

constructor The reference to the Boolean function that produced the Boolean
object is returned.

prototype allows us to include attributes and methods in a Boolean prototype.

114    ◾    Conquering JavaScript

Boolean Methods

ERRORS AND EXCEPTIONS IN JAVASCRIPT
An exception denotes the occurrence of an abnormal circumstance that
necessitates the use of unique operational approaches. An exception in
programming is a piece of code that deviates from the regular flow of the
code. Such exceptions need the use of particular programming structures
in order to be executed.

What Exactly Is Exception Handling?

Exception handling is a procedure or method in programming that is
used to handle and execute anomalous statements in code. It also allows
you to regulate the flow of the code/program.

Various handlers that process the exception and execute the code are
utilized to handle the code. For instance, dividing a non-zero number by
zero always results in infinity, and this is an exception. Thus, it may be
performed and managed with the aid of exception handling.

To raise an exception in exception handling, a throw statement is uti-
lized. When an abnormal state arises, throw is used to throw an exception.

Wrapping the function in a try...catch block handles the thrown exception.
If an error occurs, the catch block is performed; otherwise, just the try

block instructions are executed.
Thus, numerous forms of mistakes may occur in a programming lan-

guage, interfering with the correct execution of the program.
In programming, there are three categories of errors:

	 a. Syntax errors.

	 b. Runtime errors.

	 c. Logical errors.

Method Description

toSource() The source of the Boolean object is returned as a string.
toString() converts a Boolean to a String.
valueOf() converts another type to a Boolean value.

Getting Started with JavaScript I    ◾    115

Errors in Syntax

Syntax mistakes, also known as parsing errors, occur during the compile
process in conventional programming languages and during the interpret
process in JavaScript.30

The following line, for instance, gives a syntax error because it lacks a
closing parenthesis.

<script type = “text/javascript”>
 <!--
 window.print(;
 //-->
 </script>

When a syntax error occurs in JavaScript, just the code contained inside
the same thread as the syntax mistake is impacted, and the remainder
of the code in other threads is run as long as it does not rely on the code
containing the problem.

Runtime Errors

During execution (after compilation/interpretation), runtime errors, also
known as exceptions, occur. For example, the following line results in a
runtime error because, although the syntax is valid, it attempts to invoke
a method that does not exist.

<script type = “text/javascript”>
 <!--
 window.printme();

Types
of Erros

syntax
errors,

runtime
errors,

logical
errors.

Types of errors

116    ◾    Conquering JavaScript

 //-->
 </script>

Exceptions also have an effect on the thread in which they occur, enabling
other JavaScript threads to proceed normally.

Logical Errors

The most difficult form of mistake to locate is a logic error. These problems
are not caused by syntactic or runtime issues.

They arise instead when we make a mistake in the logic that drives
our script and do not obtain the desired outcome. We cannot notice such
issues since the sort of logic we want to include in our software is deter-
mined by our business requirements.

Statement of try...catch...finally

The most recent JavaScript versions introduced exception handling
features.

JavaScript has the try...catch...finally structure and the throw operator
for handling exceptions. JavaScript syntax mistakes can be caught, but
not programmer-generated or runtime exceptions. The try...catch...finally
block syntax is as follows:

<script type = “text/javascript”>
 <!--
 try {
 // Code run
 [break;]
 }

 catch (e) {
 // Code run if an exception occurs
 [break;]
 }

 [finally {
 // Code that is always run regardless of
// whether or not an exception occurs
 }]
 //-->
 </script>

Getting Started with JavaScript I    ◾    117

Either the catch block or the finally block must come before the try block
(or one of both). The catch block is executed if an exception is thrown
inside the try block and is reported in the e variable. After try/catch, the
optional finally block runs unconditionally.

Examples

Here’s an example of attempting to call a non-existent function, which
results in an exception.

Let’s see how it acts without try...catch−

<html>
 <head>
 <script type = “text/javascript”>
 <!--
 function myFunc() {
 var k = 120;
 alert(“The Value of variable k is : “ +
k);
 }
 //-->
 </script>
 </head>

 <body>
 <p>Click following to see the result:</p>

 <form>
 <input type = “button” value = “Click Here”
onclick = “myFunc();” />
 </form>
 </body>
</html>

Let us now utilize try...catch to capture this error and provide a user-
friendly message.

If we wish to conceal this problem from a user, we may also suppress
this message.

118    ◾    Conquering JavaScript

<html>
 <head>

 <script type = “text/javascript”>
 <!--
 function myFunc() {
 var k = 120;
 try {
 alert(“Value of variable k is : “ + k);
 }
 catch (e) {
 alert(“Error: “ + e.description);
 }
 }
 //-->
 </script>

 </head>
 <body>
 <p>Click following to see the result:</p>

 <form>
 <input type = “button” value = “Click Here”
onclick = “myFunc();” />
 </form>

 </body>
</html>

Finally, we may use a block that will always run unconditionally after the
try/catch.

Here’s an illustration.

<html>
 <head>

 <script type = “text/javascript”>
 <!--
 function myFunc() {
 var k = 120;

Getting Started with JavaScript I    ◾    119

 try {
 alert(“The Value of variable k is :
“ + k);
 }
 catch (e) {
 alert(«Error: “ + e.description);
 }
 finally {
 alert(“Finally block will execute
always!”);
 }
 }
 //-->
 </script>

 </head>
 <body>
 <p>Click following to see the result:</p>

 <form>
 <input type = “button” value = “Click Here”
onclick = “myFunc();” />
 </form>

 </body>
</html>

The throw Statement

We may use the toss statement to raise either built-in or custom exceptions.
These exceptions may later be recorded and appropriate action taken.

Example

The example below shows how to utilize a throw statement.

<html>
 <head>

 <script type = “text/javascript”>
 <!--

120    ◾    Conquering JavaScript

 function myFunc() {
 var j = 120;
 var k = 0;

 try {
 if (k == 0) {
 throw(“Divide by zero error.”);
 } else {
 var m = j / k;
 }
 }
 catch (e) {
 alert(“Error: “ + e);
 }
 }
 //-->
 </script>

 </head>
 <body>
 <p>Click following to see the result:</p>

 <form>
 <input type = “button” value = “Click Here”
onclick = “myFunc();” />
 </form>

 </body>
</html>

An exception may be thrown in one code using a string, an integer, a
Boolean, or an object, and then caught in another function using a try...
catch block, as we saw above.

The onerror() function

To begin handling errors, JavaScript introduced the onerror event han-
dler. When an exception occurs on the page, the error event is dispatched
on the window object.

<html>
 <head>

Getting Started with JavaScript I    ◾    121

 <script type = “text/javascript”>
 <!--
 window.onerror = function () {
 alert(“Error occurred.”);
 }
 //-->
 </script>

 </head>
 <body>
 <p>Click following to see the result:</p>

 <form>
 <input type = “button” value = “Click Here”
onclick = “myFunc();” />
 </form>

 </body>
</html>

The onerror event handler returns three pieces of information that may be
used to determine the specific nature of the error.

•	 Error message: The same message that the browser would show for
the specified issue.

•	 URL: The URL of the file where the problem occurred.

•	 Line number: The line number in the provided URL that resulted
in the error.

Here’s an example of how to get this information.

Example

<html>
 <head>

 <script type = “text/javascript”>
 <!--

122    ◾    Conquering JavaScript

 window.onerror = function (msg, url, line)
{
 alert(“The Message : “ + msg);
 alert(“The url : “ + url);
 alert(“The Line number : “ + line);
 }
 //-->
 </script>

 </head>
 <body>
 <p>Click following to see the result:</p>

 <form>
 <input type = “button” value = “Click Here”
onclick = “myFunc();” />
 </form>

 </body>
</html>

We may present extracted data in whichever manner we believe is best.
We may use the onerror method to display an error message if there is

a difficulty loading an image, as demonstrated below.
We may use onerror with a variety of HTML elements to show suitable

error messages.

EVENTS IN JAVASCRIPT
We will discuss events in JavaScript below:

What Exactly Is an Event?

JavaScript communicates with HTML through events, which are gener-
ated in response to changes made to a page by the user or the browser.
After the website loads, something happens. When the user triggers an
action, also known as an event.31

Any keypress, window close, window resize, etc., are also considered
events.

Developers may utilize these events to perform JavaScript pro-
grammed replies, such as closing buttons, displaying messages to users,

Getting Started with JavaScript I    ◾    123

validating data, and nearly any other sort of response conceivable.
Events are a component of the Document Object Model (DOM) Level 3,
and each HTML element has a collection of events that may be used to
execute JavaScript code.

onclick Event Type

This is the most common event kind, which happens when a user hits the
left mouse button.

We may apply validation, warnings, and so on to this event type.

Example

Consider the following example.
<html>
 <head>
 <script type = “text/javascript”>
 <!--
 function sayHey() {
 alert(“Hey Everyone”)
 }
 //-->
 </script>
 </head>

 <body>
 <p>Click following button and see result</p>
 <form>
 <input type = “button” onclick = “sayHey()”
value = “Say Hey” />
 </form>
 </body>
</html>

onsubmit Event Type

When we attempt to submit a form, an event called onsubmit happens. We
may use this event type for form validation.

124    ◾    Conquering JavaScript

Example

The following code demonstrates how to utilize onsubmit. Before sending form
input to the website, we use the validate() method. If the validate() method
returns true, the form is submitted; otherwise, the data is not submitted.

Consider the following example.

<html>
 <head>
 <script type = “text/javascript”>
 <!--
 function validation() {
 here all validation goes

 return either true or false
 }
 //-->
 </script>
 </head>

 <body>
 <form method = “POST” action = “t.cgi” onsubmit
= “return validate()”>

 <input type = “submit” value = “Submit” />
 </form>
 </body>
</html>

onmouseover and onmouseout

These two event types will assist us in creating great effects with images or
even text. When we move our mouse over an element, the onmouseover
event is triggered, and when we move our mouse away from that element,
the onmouseout event is triggered.

Consider the following example.

<html>
 <head>
 <script type = “text/javascript”>
 <!--

Getting Started with JavaScript I    ◾    125

 function over() {
 document.write (“Mouse-Over”);
 }
 function out() {
 document.write (“Mouse-Out”);
 }
 //-->
 </script>
 </head>

 <body>
 <p>Bring our mouse inside division to see the
outcome:</p>
 <div onmouseover = “over()” onmouseout =
“out()”>
 <h2> This is inside division </h2>
 </div>
 </body>
</html>

Standard HTML 5 Events

For our convenience, the standard HTML 5 events are given below.
Script denotes a JavaScript function that will be performed against the
event.

Attribute Value Description
Offline script When the document is offline, this event occurs.
Onabort script An abort event is triggered.
onafterprint script This event occurs after the document has been printed.
onbeforeonload script This event occurs before the document is loaded.
onbeforeprint script This event occurs before the document is printed.
onblur script When the window loses focus, this event occurs.
oncanplay script Triggers when media can begin playing but must pause for

buffering.
oncanplaythrough script When media can be played all the way through without

pausing for buffering, this event is triggered.
onchange script When an element changes, this triggers.
onclick script Triggers when the mouse is clicked.
oncontextmenu script When a context menu is invoked, this event is triggered.
ondblclick script Triggers when the mouse is double-clicked.
ondrag script When an element is dragged, this event occurs.

(Continued)

126    ◾    Conquering JavaScript

Attribute Value Description
ondragend script At the end of a drag operation, this triggers.
ondragenter script When an element is dragged to a proper drop target, this

event is triggered.
ondragleave script When an element is moved over a valid drop target, this

event occurs.
ondragover script Triggers when a drag operation begins.
ondragstart script Triggers when a drag operation begins.
ondrop script When a dragged element is dropped, this event occurs.
ondurationchange script When the length of the media is modified, this event

occurs.
onemptied script When a media resource element becomes unexpectedly

empty, this event is triggered.
onended script When the medium has reached its finish, this triggers.
onerror script When an error occurs, this function is triggered.
onfocus script When the window is focused, this event occurs.
onformchange script When a form changes, this event is triggered.
onforminput script When a form receives user input, this event is triggered.
onhaschange script When the document changes, this event is triggered.
oninput script When an element receives user input, this event is

triggered.
oninvalid script When an element is invalid, this event is triggered.
onkeydown script When a key is pressed, this event occurs.
onkeypress script When a key is pressed and released, this event occurs.
onkeyup script When a key is released, this event occurs.
onload script When the document is loaded, this event occurs.
onloadeddata script When media data is loaded, this event occurs.
onloadedmetadata script When a media element’s duration and other media data

are loaded, this event occurs.
onloadstart script When the browser begins to load the media data, this

event occurs.
onmessage script When the message is triggered, this function is called.
onmousedown script When a mouse button is pushed, this event occurs.
onmousemove script When the mouse cursor moves, this event is triggered.
onmouseout script When the mouse cursor leaves an element, this event is

triggered.
onmouseover script When the mouse cursor passes over an element, this event

is triggered.
onmouseup script When a mouse button is released, this event occurs.
onmousewheel script When the mouse wheel is turned, this event occurs.
onoffline script When the document is offline, this event occurs.

(Continued)

Getting Started with JavaScript I    ◾    127

Attribute Value Description
onoine script When the document becomes online, this event occurs.
ononline script When the document becomes online, this event occurs.
onpagehide script When the window is hidden, this event occurs.
onpageshow script When the window becomes visible, this event occurs.
onpause script When media data is halted, this event occurs.
onplay script Triggers when media data is about to begin playing

Triggers when media data has begun playing Triggers
when the history of the window changes.

onplaying script When the browser retrieves media data, this event occurs.
onpopstate script Triggers when the playing rate of the media data changes.

Triggers when the ready-state changes.
onprogress script When the document is redone, this event occurs.
onratechange script When the window is resized, this event occurs.
onreadystatechange script When an element’s scrollbar is scrolled, this event is

triggered.
onredo script When a media element’s seeking property is no longer

true and the seeking has stopped, this event is triggered.
onresize script When media data is halted, this event occurs.
onscroll script Triggers when media data is about to begin playing

Triggers when media data has begun playing Triggers
when the history of the window changes.

onseeked script This event happens when the browser retrieves media data.
onseeking script When the seeking attribute of a media element is true and

the searching has begun, this event is triggered.
onselect script When an element is chosen, this function is triggered.
onstalled script When there is a mistake in retrieving media data, this

event is triggered.
onstorage script When a document is loaded, this event is triggered.
onsubmit script When a form is submitted, this event occurs.
onsuspend script When the browser has been downloading media data but

has stopped before the whole media file has been
retrieved, this event is triggered.

ontimeupdate script When the media’s playing position changes, this event
occurs.

onundo script When a document executes an undo, this event is
triggered.

onunload script When the user exits the document, this event occurs.
onvolumechange script Triggers when the volume of media is changed, as well as

when the volume is set to “mute.”
onwaiting script When media has stopped playing but is expected to

restart, this event is triggered.

128    ◾    Conquering JavaScript

In this chapter, we discussed about the installation of Visual Studio
Code and node js. We went through Vanilla JavaScript, Data Types and
Operators, Functions, and Objects and Arrays. We also discussed Error
Handling and Events.

NOTES
	 1	 Choosing the Best JavaScript Editor From 7 Options: www.testim.io/blog/

best-javascript-editor-6-options/ Accessed on: 22 September 2022.
	 2	 How to Setup Visual Studio Code for JavaScript: https://linuxhint.com/

set-up-visual-studio-code-for-javascript/#:~:text=Select%20all%20
the%20options%20you,Visual%20Studio%20Code%20will%20launch
Accessed on: 22 September 2022.

	 3	 How to Install Visual Studio Code on Linux: www.tecmint.com/install-
visual-studio-code-on-linux/ Accessed on: 23 September 2022.

	 4	 Installation of Node.js on Windows: www.geeksforgeeks.org/installation-
of-node-js-on-windows/ Accessed on: 22 September 2022.

	 5	 Installation of Node.js on Linux: www.geeksforgeeks.org/installation-of-
node-js-on-linux/?ref=lbp Accessed on: 22 September 2022.

	 6	 How to Create and Run Node.js Project in VS code editor?: www.geeks-
forgeeks.org/how-to-create-and-run-node-js-project-in-vs-code-editor/
Accessed on: 22 September 2022.

	 7	 The Best VS Code Extensions for JavaScript Developers: https://live-
codestream.dev/post/best-vscode-extensions-for-javascript/ Accessed on:
22 September 2022.

	 8	 What Is “Vanilla JavaScript”?: www.javatpoint.com/what-is-vanilla-javas-
cript Accessed on: 22 September 2022.

	 9	 JavaScript Program to Print Hello World: www.programiz.com/javascript/
examples/hello-world Accessed on: 24 September 2022.

	 10	 JavaScript—Syntax: www.tutorialspoint.com/javascript/javascript_syntax.
htm Accessed on: 24 September 2022.

	 11	 JavaScript Comment: www.javatpoint.com/javascript-comment Accessed
on: 24 September 2022.

	 12	 JavaScript Variable: www.javatpoint.com/javascript-variable Accessed on:
24 September 2022.

	 13	 Javascript Data Types: www.javatpoint.com/javascript-data-types Accessed
on: 24 September 2022.

	 14	 JavaScript Operators: www.javatpoint.com/javascript-operators Accessed
on: 24 September 2022.

	 15	 JavaScript Operators: www.geeksforgeeks.org/javascript-operators/ Accessed
on: 24 September 2022.

	 16	 JavaScript If-else: www.javatpoint.com/javascript-if Accessed on: 24
September 2022.

http://www.testim.io
http://www.testim.io
https://linuxhint.com
https://linuxhint.com
http://www.tecmint.com
http://www.tecmint.com
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
http://www.javatpoint.com
http://www.javatpoint.com
http://www.programiz.com
http://www.programiz.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.geeksforgeeks.org
http://www.javatpoint.com
https://linuxhint.com
https://livecodestream.dev
https://livecodestream.dev

Getting Started with JavaScript I    ◾    129

	 17	 JavaScript—if...else Statement: www.tutorialspoint.com/javascript/javas-
cript_ifelse.htm Accessed on: 24 September 2022.

	 18	 JavaScript Switch: www.javatpoint.com/javascript-switch Accessed on: 24
September 2022.

	 19	 JavaScript Switch Case—JS Switch Statement Example: www.freecodecamp.
org/news/javascript-switch-case-js-switch-statement-example/ Accessed
on: 24 September 2022.

	 20	 JavaScript Loops: www.javatpoint.com/javascript-loop Accessed on: 24
September 2022.

	 21	 JavaScript—For Loop: www.tutorialspoint.com/javascript/javascript_for_
loop.htm Accessed on: 24 September 2022.

	 22	 JavaScript Objects: www.javatpoint.com/javascript-objects Accessed on: 26
September 2022.

	 23	 JavaScript Array: www.javatpoint.com/javascript-array Accessed on: 26
September 2022.

	 24	 JavaScript String: www.javatpoint.com/javascript-string Accessed on: 26
September 2022.

	 25	 JavaScript Date Object: www.javatpoint.com/javascript-date Accessed on:
26 September 2022.

	 26	 JavaScript Math: www.javatpoint.com/javascript-math Accessed on: 26
September 2022.

	 27	 JavaScript—The Math Object: www.tutorialspoint.com/javascript/javas-
cript_math_object.htm Accessed on: 27 September 2022.

	 28	 JavaScript Number Object: www.javatpoint.com/javascript-number
Accessed on: 27 September 2022.

	 29	 JavaScript Boolean: www.javatpoint.com/javascript-boolean Accessed on:
27 September 2022.

	 30	 JavaScript —Errors & Exceptions Handling: www.tutorialspoint.com/
javascript/javascript_error_handling.htm Accessed on: 27 September 2022.

	 31	 JavaScript—Events: www.tutorialspoint.com/javascript/javascript_events.
htm Accessed on: 27 September 2022.

http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.javatpoint.com
http://www.freecodecamp.org
http://www.freecodecamp.org
http://www.javatpoint.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com

https://taylorandfrancis.com

131

C h a p t e r 3

Getting Started
with JavaScript II

IN THIS CHAPTER

➢ Asynchronous Development

➢ DOM Manipulation

➢ HTTP and Forms

➢ Working with APIs

In the previous chapter, we covered Data Types and Operators, Functions,
Objects and Arrays, Error Handling, Events, and in this chapter, we will
discuss APIs and DOM.

HOW CAN WE BUILD AN ASYNCHRONOUS
NODE.JS FUNCTION?
In Node.js, write the asynchronous function with ‘async’ before the
function name.

As a consequence, the asynchronous method returns an implicit
Promise.

The async function aids in the asynchronous execution of promise-
based code through the event-loop. A value is always returned by async
functions. To wait for the promise, use the await function within the

DOI: 10.1201/9781003356578-3

https://doi.org/10.1201/9781003356578-3

132    ◾    Conquering JavaScript

asynchronous function. The function is forced to wait until the promise
produces a result.1

Install async from npm in Node.js using the command:

npm i async

Using the require() function in our Node.js app, use async.

Example 1

Write an asynchronous function in Node.js to compute the square
of an integer.

•	 Make a folder for our project.

•	 To initialize the package.json file within the project folder, run the
following command.

npm init -y

•	 Use the following command to install async:	

npm i async

•	 Make a server.js file and add the following code to it.

•	 Use npm start to execute the code.

var async = require("async");

function square(k) {
 return new Promise((resolve) => {
 setTimeout(() => {
 resolve(Math.pow(k, 2));
 }, 2000);
 });
}

async function output(k) {
 const ans = square(k);
 console.log(ans);

Getting Started with JavaScript II    ◾    133

}

output(10);
var async = require("async");

function square(k) {
 return new Promise((resolve) => {
 setTimeout(() => {
 resolve(Math.pow(k, 2));
 }, 2000);
 });
}

async function output(k) {
 const ans = await square(k);
 console.log(ans);
}

output(10);

Example 2

Using await, write an asynchronous function to compute the sum
of two integers within Node.js. To start a Node.js project, follow the
steps outlined above.

var async = require("async");

function square(j, k) {
 return new Promise(resolve => {
 setTimeout(() => {
 resolve(j + k);
 }, 2000);
 });
}

async function output(j, k) {
 const ans = await square(j, k);
 console.log(ans);
}

output(10, 20);

134    ◾    Conquering JavaScript

HOW DO WE WRITE AN ASYNCHRONOUS
FUNCTION IN JAVASCRIPT?
JavaScript is a synchronous, single-threaded language. The code is run
one step at a time. However, in certain cases, JavaScript may seem to be
asynchronous.2

Example

<!DOCTYPE html>
<html lang="en">	
<head>
 <meta charset="utf-8" />
 <title></title>
</head>
<body>
 <div id="message"></div>
 <script>
 var msg = document.getElementById("message");

 function fd1() {
 setTimeout(function () {
 msg.innerHTML += "
<p>fd1 is start</p>
";
 msg.innerHTML += "
<p>fd1 is end</p>
";
 }, 100);
 }
 function fd2() {
 msg.innerHTML += "
<p>fd2 is start</p>
";
 fd1();
 msg.innerHTML += "
<p>fd2 is end</p>
";
 }

 fd2();

 </script>

Getting Started with JavaScript II    ◾    135

</body>
</html>

Now, we can observe that after calling setTimeout(fd1, 100), our program
does not wait for the timer to complete before proceeding to the next line.

This happens because JavaScript adds the event to the event queue and
continues running the program as usual if we wish to conduct an event.
The engine checks the event queue on a regular basis to determine whether
an event needs to be called or not. However, we may want our code to wait
until a certain event or task is done before processing more instructions.

Async, await, and promises are used to implement asynchronous
functions.

•	 async: The term “async” specifies an asynchronous function.

Syntax
async function Function_Name(){
 ...
}

•	 await: The “async” function includes “await,” which stops the
“async” function’s execution. “await” can only use inside the “async”
function.

•	 Promise: A Promise is a value that acts as a proxy. It informs us about
the asynchronous event’s success or failure. A Promise must include a
resolve() or reject() call, or otherwise the Promise’s consumer would
never know whether the Promise is fulfilled or not. If this occurs,
the program will continue to wait for await and that code block will
never be run again. There’s a lot more to Promise, but we can make
Asynchronous work without knowing anything about it.

Example

Let’s recreate the same example using the Asynchronous function.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />

136    ◾    Conquering JavaScript

 <title></title>
</head>
<body>
 <div id="message"></div>
 <script>
 var msg = document.getElementById("message");

 function fd1() {
 return new Promise(function (resolve,
reject) {
 setTimeout(function () {
 msg.innerHTML += "
<p>fd1 is start</p>
";
 msg.innerHTML += "
<p>fd1 is end</p>
";
 resolve();
 }, 100);
 })
 }

 async function fd2() {
 msg.innerHTML += "
<p>fd2 is start</p>
";

 // Engine waits for the fd1() to finish it's
 // execution before executing next line
 await fd1();
 msg.innerHTML += "
<p>fd2 is end</p>
";
 }

 fd2();

 </script>
</body>
</html>

Getting Started with JavaScript II    ◾    137

In the preceding example, the program waits for fd1() to finish before
continuing.

Until a Promise is obtained, the “await” command halts the execution
of that code segment. Use resolve to fulfill the Promise (). It denotes that
the Promise has been fulfilled. Similarly to resolve, we can use reject() to
determine whether or not a Promise has been rejected.

We don’t need to go into the reject() method right now since it’s mostly
used for debugging and error purposes.

Example

We can include a value in resolve if we want the Promise to return
one (variable).

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title></title>
</head>
<body>
 <div id="message"></div>
 <script>
 var msg = document.getElementById("message");

 function fd1() {
 return new Promise(function (resolve,
reject) {
 setTimeout(function () {
 msg.innerHTML += "
<p>fd1 is start</p>
";
 msg.innerHTML += "
<p>fd1 is end</p>
";
 resolve(1);
 }, 100);
 })
 }

138    ◾    Conquering JavaScript

 async function fd2() {
 msg.innerHTML += "
<p>fd2 is start</p>
";
 var p = await fd1();
 if (p == 1) msg.innerHTML += "
<p>Promise Received</p>
"
 msg.innerHTML += "
<p>fd2 is ending</p>
";
 }

 fd2();

 </script>
</body>
</html>

Waiting for Multiple Promises

What if we had to wait while a number of processes ran simultaneously?
There are two methods that we can do this.

Example

We may write numerous await statements in a row.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title></title>
</head>
<body>
 <div id="message"></div>
 <script>
 var msg = document.getElementById("message");

 function fd1() {
 return new Promise(function (resolve, reject) {
 setTimeout(function () {

Getting Started with JavaScript II    ◾    139

 msg.innerHTML += "
<p>fd1 is start</p>
";
 msg.innerHTML += "
<p>fd1 is end</p>
";
 resolve();
 }, 1000);
 })
 }

 function fd3() {
 return new Promise(function (resolve,
reject) {
 setTimeout(function () {
 msg.innerHTML += "
<p>fd3 is start</p>
";
 msg.innerHTML += "
<p>fd3 is end</p>
";
 resolve();
 }, 1000);
 })
 }

 async function fd2() {
 msg.innerHTML += "
<p>fd2 is start</p>
";
 await fd1();
 await fd3();
 msg.innerHTML += "
<p>fd2 is end</p>
";
 }

 fd2();

 </script>
</body>
</html>

140    ◾    Conquering JavaScript

Example

The second option to wait for several Promises is to use Promise.all
to execute the Promises in parallel (iterable object).

Syntax:

await Promise.all(iterable object);

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title></title>
</head>
<body>
 <div id="message"></div>
 <script>
 var msg = document.getElementById("message");

 function fd1() {
 return new Promise(function (resolve,
reject) {
 setTimeout(function () {
 msg.innerHTML += "
<p>fd1 is start</p>
";
 msg.innerHTML += "
<p>fd1 is end</p>
";
 resolve();
 }, 1000);
 })
 }

 function fd3() {
 return new Promise(function (resolve,
reject) {
 setTimeout(function () {
 msg.innerHTML += "
<p>fd3 is start</p>
";
 msg.innerHTML += "
<p>fd3 is end</p>

Getting Started with JavaScript II    ◾    141

";
 resolve();
 }, 1000);
 })
 }

 async function fd2() {
 msg.innerHTML += "
<p>fd2 is start</p>
";
 await Promise.all([fd1(), fd3()]);
 msg.innerHTML += "
<p>fd2 is end</p>
";
 }

 fd2();

 </script>
</body>
</html>

Synchronous and Asynchronous in JavaScript
Synchronous JavaScript
As the name implies, synchronous means in a sequence, which means that
each statement of the code is performed one by one.

So, effectively, a statement must wait for the previous statement to be
performed before proceeding.3

Let us look at an instance to better grasp this.

Example

<script>
 document.write("Hey"); // First
 document.write("
");

 document.write("Mayank") ;// Second
 document.write("
");
 	
 document.write("How are you doing"); // Third
</script>

142    ◾    Conquering JavaScript

In the preceding code snippet, the first line of code, Hey, will be recorded
first, followed by the second line, Mayank, and finally, the third line, after
its completion How are you doing.

As we can see, the codes operate sequentially. Every line of code waits
for the one before it to be executed before it is run.

Asynchronous JavaScript
Asynchronous code enables the program to be run instantly, but synchro-
nous code prevents continued execution of remaining code until the cur-
rent one is completed. This may not seem to be a major issue, but when
seen in context, it might result in the User Interface being delayed.

Let’s look at an example of how Asynchronous JavaScript works.

<script>
 document.write("Hey"); // First
 document.write("
");

 document.write("Mayank") ;// Second
 document.write("
");

 document.write("How are you doing"); // Third
</script>

In the preceding code snippet, the first line of code Hey will be logged
first, followed by the second line Mayank, and finally, the third line will be
recorded after its completion.

How are you doing. As we can see, the codes operate sequentially. Every
line of code waits for the one before it to be executed before it is run.

Asynchronous JavaScript: Asynchronous code enables the program to
be run instantly, but synchronous code prevents continued execution of
remaining code until the current one is completed. This may not seem
to be a major issue, but when seen in context, it might result in the User
Interface being delayed.

Let’s look at an example of how Asynchronous JavaScript works.

<script>
 document.write("Hey");
 document.write("
");

Getting Started with JavaScript II    ◾    143

 setTimeout(() => {
 document.write("Let's wait and see what
occurs");
 }, 1000);

 document.write("
");
 document.write("End");
 document.write("
");
</script>

So, instead of performing the setTimeout function, the code first logs in
Hey, then End, and then executes the setTimeout function. As usual, the
Hey statement was logged in first.

Because we execute JavaScript in browsers, there exist web APIs that
manage these things for users. So, what JavaScript does is call the setTime-
out method in such a web API, and then we continue to execute our code
as normal. As a result, it does not obstruct the execution of any other code.
Instead, it is pushed to the call stack and executed once all other code has
finished. This is how asynchronous JavaScript works.

Explain the Difference between Asynchronous
and Deferred JavaScript

In general, when we use a script element to load any JavaScript code,
the browser pauses HTML processing and begins downloading the
JavaScript file first.4

Until the browser has completely downloaded and processed the script,
the HTML element’s script tag will not be activated. The browser waits
for the script to be downloaded and run before continuing to analyze the
remainder of the page.

In current browsers, the script is often bigger than the HTML file,
resulting in a greater download size and a longer processing time. This
increases the page’s load time and limits the user’s ability to browse the
website. Async and defer characteristics are used to fix this issue.

Syntax: A standard script is supplied on the page as follows.

<script src = "script.js"></script>

144    ◾    Conquering JavaScript

Asynchronous
When the HTML parser discovers this element, it sends a request to the server
to get the script. If the script has to be downloaded while the page is being
parsed and displayed, the async functionality will do it in the background.
When the script is downloaded, the HTML parsing is halted and the script is
executed. When the operation is complete, HTML parsing will restart.

The page and other scripts do not wait for async scripts, and they do not
wait for them. It is ideal for both independent and externally located scripts.

Syntax:

<script async src = "script.js"></script>

Deferred
The defer property instructs the browser not to interfere with HTML pro-
cessing and to only run the script file once the HTML page has been com-
pletely processed.

When a script with this attribute is discovered, the downloading of the
script begins asynchronously in the background, and the scripts are only
run once the HTML parsing is completed.

Syntax:

<script defer src = "script.js"></script>

Asynchronous vs Deferred

Asynchronous Deferred

Asynchronous prevents the page from being
parsed. Deferred never obstructs the page.

Asynchronous scripts do not rely on one
another. As a result, if a smaller script comes
second in the list, it will be loaded before the
prior lengthier script.

Deferred scripts keep their relative order,
which implies that the first script will be
loaded first, followed by the others.

Script execution begins with pause parsing. However, script execution begins only
after parsing is complete but before the
document’s DOMContentLoaded event.

Getting Started with JavaScript II    ◾    145

DOCUMENT OBJECT MODEL
The document object is used to represent the whole HTML document.

A document object is created when an HTML file is loaded into a
browser.

The html document is represented by the root element.
It has characteristics as well as methods.5

We may add dynamic material to our web page using the document
object.

It is, as previously said, the object of window. So

window.document

is the same as

document

Across all platforms and languages, the W3C Document Object Model
(DOM) provides an interface for dynamic access to and modification of a
document’s content, structure, and style.

Document Object Properties

Let’s look at the document object’s properties that may be viewed and
updated.

document

anchor

form

link

text

textarea

checkbox

radio

select

reset

button

option

Document object properties

146    ◾    Conquering JavaScript

Document Object Methods

We may use its methods to access and modify the contents of the
document. The following are the most significant document object
methods:

Document Object Accessing Field Value

In this instance, we will get the value of the user’s supplied text. To access
the value of the name field, we use document.form1.name.value. The root
element here is document, which represents the HTML document.

•	 form’s name is form11.

•	 name is the name of the input text’s attribute.

•	 the value property returns the value of the supplied text.

Let’s look at a basic example of a document object that displays the user’s
name along with a welcome message.

<script type=”text/javascript”>
 function printvalue(){
 var name=document.form11.name.value;
 alert(“Welcome here: “+name);
 }
 </script>

 <form name=”form11”>
 Enter Name:<input type=”text” name=”name”/>
 <input type=”button” onclick=”printvalue()”
value=”print name”/>
 </form>

Method Description

write(“string”) The specified string is written to the document.
writeln(“string”) The specified string is written to the document, with a

newline character at the conclusion.
getElementById() The element with the specified id value is returned.
getElementsByName() retrieves all entries with the specified name value.
getElementsByTagName() retrieves all items with the specified tag name.
getElementsByClassName() retrieves all entries with the specified class name.

Getting Started with JavaScript II    ◾    147

METHOD DOCUMENT.GETELEMENTBYID() IN JAVASCRIPT
The function document.getElementById() retrieves the element with the
supplied id.

We used document.form1.name.value on the previous page to acquire
the value of the input value. To access the value of the input text, we may
use the document.getElementById() function instead. However, we must
specify an id for the input field.

Let’s look at a small document example.6
The getElementById() function returns the cube of the provided integer.

<script type=”text/javascript”>
 function getcube(){
 var numb=document.getElementById(“numb”).value;
 alert(numb*numb*numb);
 }
 </script>
 <form>
 Enter No:<input type=”text” id=”numb”
name=”numb”/>

 <input type=”button” value=”cube”
onclick=”getcube()”/>
 </form>

GETELEMENTSBYCLASSNAME()
The getElementsByClassName() function is used to select or get items
based on the value of their class name. This DOM function produces
an array-like object containing all members of the supplied classname.
When we use the getElementsByClassName() function on any element, it
searches the whole document and returns just those elements that match
the requested or provided class name.7

Syntax:

var ele=document.getELementsByClassName(‘name’);

The necessary parameter to be given here is name. It is the string that
defines whether to match a single classname or many class names.

Method getElementsByClassName() Example

Let’s look at some instances to learn about and comprehend the method’s
actual use.

148    ◾    Conquering JavaScript

Example

It is a basic class implementation that, when the variable k is invoked,
produces an array-like object.

<html>
<head> <h5>The DOM Methods </h5> </head>
<body>
<div class=”Class”>
This is a basic class implementation
</div>
<script type=”text/javascript”>
var k=document.getElementsByClassName(‘Class’);
document.write(“On calling k, it will return arrsy-
like object:
”+k);
</script>
</body>
</html>

Similarly, we can use the getElementsByClassName() function to get ele-
ment collections for various classes.

Distinction between the Methods getElementsByClassName(),
querySelector(), and querySelectorAll()

•	 getElementsByClassName(): This method searches for items that
match the supplied class name and provides a list of the elements
that match. The items returned are a live HTML collection of ele-
ments. If the Document Object Model is changed, these live compo-
nents will be updated.

•	 querySelector(): This function returns a single element that
matches the supplied classname. If no matching element is found,
it returns null.

The essential aspect to remember is that all of the methods mentioned
above return either one element or a list, but the getELementsByClass-
Name() function handles dynamic updates, while the other two handle
static updates.

Getting Started with JavaScript II    ◾    149

METHOD DOCUMENT.GETELEMENTSBYNAME()
IN JAVASCRIPT
The function document.getElementsByName() retrieves all elements
with the given name.8 The following is the syntax for the getElements-
ByName() method:

document.getElementsByName(“name”)

Example

In this example, we’ll count the total number of genders. To retrieve
all of the genders, we use the getElementsByName() function.

<script type=”text/javascript”>
 function totalelements()
 {
 var allgenders=document.getElementsByName(“gender”);
 alert(“Total Genders is:”+allgenders.length);
 }
 </script>
 <form>
 Male:<input type=”radio” name=”gender”
value=”male”>
 Female:<input type=”radio” name=”gender”
value=”female”>

 <input type=”button” onclick=”totalelements()”
value=”The Total Genders”>
 </form>

METHOD DOCUMENT.GETELEMENTSBYTAGNAME()
IN JAVASCRIPT
The function document.getElementsByTagName() retrieves all elements
with the supplied tag name.9

The following is the syntax for the getElementsByTagName() method:

document.getElementsByTagName(“name”)

150    ◾    Conquering JavaScript

Example

In this example, we’ll count the total number of paragraphs in the
document.

To do this, we used the document.getElementsByTagName(“p”)
function, which returns the total number of paragraphs.

<script type=”text/javascript”>
 function countpara(){
 var totalpara=document.getElementsByTagName(“p”);
 alert(“The total p tags are: “+totalpara.length);

 }
 </script>
 <p>This is the pragraph</p>
 <p>We are going to count the total number of
paragraphs by getElementByTagName() method.</p>
 <p> Let’s look at a basic example</p>
 �<button onclick=”countpara()”>count paragraph</

button>

Another Example

In this instance, we’ll count the total number of h2 and h3 tags in
the document.

<script type=”text/javascript”>
 function counth2(){
 var totalh2=document.getElementsByTagName(“h2”);
 alert(“The total h2 tags are: “+totalh2.length);
 }
 function counth3(){
 var totalh3=document.getElementsByTagName(“h3”);
 alert(“The total h3 tags are: “+totalh3.length);
 }
 </script>
 <h2>This is the h2 tag</h2>
 <h2>This is the h2 tag</h2>
 <h3>This is the h3 tag</h3>
 <h3>This is the h3 tag</h3>

Getting Started with JavaScript II    ◾    151

 <h3>This is the h3 tag</h3>
 <button onclick=”counth2()”>count h2</button>
 <button onclick=”counth3()”>count h3</button>

THE INNERHTML IN JAVASCRIPT
The innerHTML property is used to write dynamic html on an HTML
document. It is typically used in web sites to produce dynamic html, such
as registration forms, comment forms, and links.10

InnerHTML Property Example

When the user activates the button, an HTML form will be generated. In
this example, we’re dynamically creating the html form within the div
with the id mylocation. This location is identified by using the document.
getElementById() function.

<script type=”text/javascript” >
function showcommentform() {
var data=”Name:<input type=’text’ name=’name’>
Comm
ent:
<textarea rows=’5’ cols=’90’></textarea>

<input type=’submit’ value=’Post Comment’>”;
document.getElementById(‘mylocation’).innerHTML=data;
}
</script>
<form name=”my_Form”>
<input type=”button” value=”comment”
onclick=”showcommentform()”>
<div id=”mylocation”></div>
</form>

Example of a Comment Form Using innerHTML

<!DOCTYPE html>
<html>
<head>
<title>First JS</title>
<script>
var flag=true;
function commentform(){
var cform=”<form action=’Comment’>Enter Name
is:
<input type=’text’ name=’name’/>

152    ◾    Conquering JavaScript

Enter Email:
<input type=’email’
name=’email’/>
Enter Comment is:

<textarea rows=’5’ cols=’75’></textarea>
<input
type=’submit’ value=’Post Comment’/></form>”;
if(flag){
document.getElementById(“mylocation”).innerHTML=cform;
flag=false;
}else{
document.getElementById(“mylocation”).innerHTML=””;
flag=true;
}
}
</script>
</head>
<body>
<button onclick=”commentform()”>Comment</button>
<div id=”mylocation”></div>
</body>
</html>

THE INNERTEXT IN JAVASCRIPT
The innerText property may be used to display dynamic text on an HTML
page. Text will be read as conventional text rather than html text in this
case. It is usually used in web sites to produce dynamic content such as
writing the validation message, password strength, and so on.11

Example of JavaScript innerText

In this example, we’ll show the password strength when the key is released
after being pressed.

<script type=”text/javascript” >
 function validate() {
 var msg;
 if(document.my_Form.userPass.value.length>6){
 msg=”good”;
 }
 else{
 msg=”poor”;
 }
 document.getElementById(‘mylocation’).
innerText=msg;
 }

Getting Started with JavaScript II    ◾    153

 </script>
 <form name=”my_Form”>
 <input type=”password” value=”” name=”userPass”
onkeyup=”validate()”>
 Strength:no strength
 </form>

5 METHODS FOR MAKING HTTP
REQUESTS IN JAVASCRIPT
Modern Javascript supports several methods for sending HTTP requests
to distant services. Having so many alternatives for requesting and
dynamically loading information in web applications, from the built-in
XMLHttpRequest object to third-party libraries like Axios, has made it
simpler than ever before.12

So, we’ll go through several methods for delivering HTTP requests
in Javascript. Starting with the language’s native choices, we’ll look at
the following five modules and send various forms of HTTP requests
using them.

•	 XMLHttpRequest

•	 Fetch

•	 Axios

•	 SuperAgent

•	 Ky

XMLHttpRequest

XMLHttpRequest is a Javascript native API that contains the mechanism
of sending HTTP requests without the need to refresh a previously loaded
web page (AJAX requests). Despite the fact that developers seldom use the
XMLHttpRequest directly anymore, it is nevertheless the building com-
ponent that functions behind many popular HTTP request modules.

Understanding how to submit requests using the XMLHttpRequest
method, for example, might assist us in dealing with unusual use scenar-
ios if a third-party library does not support it.

Here’s how we can use the XMLHttpRequest API to send GET queries
and asynchronously receive data from a remote API:

154    ◾    Conquering JavaScript

//creation of XMLHttpRequest object
const xhr = new XMLHttpRequest()
//open the remote server URL for the get request
xhr.open(“GET”, “https://world.openfoodfacts.org/
category/pastas/1.json”)
//send the Http request
xhr.send()

//the Event Handlers

//triggered when response is completed
xhr.onload = function() {
 if (xhr.status === 210) {
 //parse JSON datax`x
 data = JSON.parse(xhr.responseText)
 console.log(data.count)
 console.log(data.products)
 } else if (xhr.status === 404) {
 console.log(“No records found”)
 }
}

//triggered when network-level error occurs with
request
xhr.onerror = function() {
 console.log(“The Network error occurred”)
}

// triggered on regular basis when client receives
data
//used to track the status of the request
xhr.onprogress = function(e) {
 if (e.lengthComputable) {
 console.log(`${e.loaded} B of ${e.total} B
loaded!`)
 } else {
 console.log(`${e.loaded} B loaded!`)
 }
}

As seen in this example, sending a GET request with XMLHttpRequest
includes three steps:

Getting Started with JavaScript II    ◾    155

•	 Make an XMLHttpRequest.

•	 Opening the indented type HTTP request.

•	 Sending the request.

Once the request is sent, we can handle its response using the event han-
dlers supplied by the XMLHttpObject. We’ve utilized two event handlers
in this case: onload, onerror, and onprogress. It is vital to remember that
the onerror function only handles network-level requests problems. To
discover HTTP problems, we must specifically examine the HTTP status
code within the onload method.

We may use XMLHttpRequest to send POST requests in a similar manner.

// creation of XMLHttpRequest object
const xhr = new XMLHttpRequest()
// open the POST request
xhr.open(“POST”, “/food”)
// set the content-type header to JSON
xhr.setRequestHeader(“Content-Type”, “application/
json”);
// send the JSON data to remote server
xhr.send(JSON.stringify(food))

// the Event Handlers

// track the data upload progress
xhr.upload.onprogress = function(e) {
 console.log(`${e.loaded}B of ${e.total}B uploaded!`)
}

// trigger when data upload is finished
xhr.upload.onload = function(e) {
 console.log(“The Upload completed”)
}

// trigger when response is fully received
xhr.onload = function() {
 console.log(xhr.status)
}

// trigger due to the network-level error

156    ◾    Conquering JavaScript

xhr.onerror = function() {
 console.log(“The Network error occurred”)
}

The primary difference between the previous GET and the present POST
request is that when submitting JSON data, the content-type headers are
explicitly specified. In addition, a POST request can generate an additional
event type when compared to a GET request. They are upload events that
may be accessed using the xhr.upload field. When the request body must
convey a large quantity of data, these event handlers assist us in tracking
the data upload process (e.g., images and files)

Advantages of XMLHttpRequest

•	 All recent browser versions are compatible with the approach because
it is natively supported.

•	 This eliminates the requirement for external dependencies.

•	 At the most basic level, it is possible to view and manipulate asyn-
chronous HTTP requests.

Disadvantages of XMLHttpRequest

•	 The code is rather verbose and lengthy.

•	 There is no async/await or promise-based syntax support.

•	 The majority of recent HTTP request packages give straightforward
abstractions over the difficult XMLHttpRequest API.

Fetch

Fetch is a contemporary and streamlined native JavaScript API for mak-
ing HTTP requests. It includes promise functionality and improves on
the verbose syntax of the previously described XMLHttpRequest. Fetch
has become one of the most common ways to send HTTP requests in
JavaScript nowadays as an API designed with current application and
developer needs in mind.

As seen in this example, we can use Fetch to send HTTP requests from
the client side by using a promise-based syntax.

Getting Started with JavaScript II    ◾    157

fetch(“https://world.openfoodfacts.org/category/
pastas/1.json”)
 .then(response => {
 // indicates whether response is successful
(status code 200–299) or not
 if (!response.ok) {
 throw new Error(‘Request failed with the
status ${reponse.status}’)
 }
 return response.json()
 })
 .then(data => {
 console.log(data.count)
 console.log(data.products)
 })
 .catch(error => console.log(error))

Fetch greatly decreases code complexity and verbosity by using simplified
syntax and promises. Because the problems captured in the catch func-
tion belong to the network level, not the application level, we must utilize
the ‘response.ok’ field in this implementation to determine if the response
contains an HTTP error or not.

The fetch function accepts a configuration object as the second parame-
ter, allowing for easy customization of HTTP data like as headers, content-
types, request method, and so on. The whole set of configuration options
supported by Fetch may be seen in its official manual.

Making POST requests using Fetch follows the same technique as in
the previous example. In this case, we utilize the config object to indicate
the request method and the data to be submitted.

Let’s see how this works with async/await:

async function postData () {
 const food = {
 name: “Rice”,
 weight: 410,
 quantity: 4
 }

 const response = await fetch(“/food”, {
 method: “POST”,

158    ◾    Conquering JavaScript

 body: JSON.stringify(food),
 headers: {
 “Content-Type”: “application/json”
 }
 })

 if (!response.ok) {
 throw new Error(`Request failed with the status
${reponse.status}`)
 }
 console.log(“Request is successful!”)
 }

Advantages of Fetch

•	 Provides a streamlined, native method for making HTTP requests
in JavaScript.

•	 Simple to understand and apply to any level of difficulty.

•	 Allows us to create clearer, more succinct code by supporting prom-
ise-based implementation.

•	 It improves upon XMLHttpRequest in many ways, including the
ability to do no-cors requests and combine Request and Response
objects with the built-in Cache API.

Disadvantages of Fetch

•	 Some key XMLHttpRequest functionality, such as request abort
and request progress monitoring, are missing. (However, a separate
AbortController object may be used to govern request aborts and
timeouts.)

•	 Accepts a response even if there is an HTTP error. We must manu-
ally check for and handle HTTP problems.

•	 Not compatible with Internet Explorer, but hopefully this is no lon-
ger an issue.

Getting Started with JavaScript II    ◾    159

Axios

Axios is a well-known third-party program for performing HTTP
requests in JavaScript. Under the hood, it collaborates with the native
XMLHttpRequest API to provide a straightforward and comprehensive
collection of functionality for handling specific challenges such as inter-
cepting HTTP requests and delivering simultaneous requests. It, like
Fetch, enables promises for dealing with asynchronous requests.

When performing GET requests using Axios, we may compile the
request using the specialized axios.get() function. We’ve presented an
example of implementation here:

axios.get(“https://world.openfoodfacts.org/category/
pastas/1.json”)
 .then(response => {
 // access the parsed JSON response data using the
response.data field
 data = response.data
 console.log(data.count)
 console.log(data.products)
 })
 .catch(error => {
 if (error.response) {
 //get the HTTP error code
 console.log(error.reponse.status)
 } else {
 console.log(error.message)
 }
 })

Axios reduces the amount of effort required on our end to perform HTTP
requests when compared to Fetch. The response.data property contains the
interpreted JSON data. There is no need to explicitly check for status code
before processing the response when using Axios since the catch method cov-
ers HTTP failures as well. Error.response checks, which remember the specific
HTTP error code, allow us to classify incoming failures in the catch function.

We utilize the specialized axios.post() function to send POST
requests with Axios, as seen in the following example, which is built
using async/await:

160    ◾    Conquering JavaScript

async function postData () {
 const food = {
 name: “Rice”,
 weight: 410,
 quantity: 4
 }	

 try {
 const response = await axios.post(“/food”, food)
 console.log(“Request issuccessful!”)
 } catch (error) {
 if (error.response) {
 console.log(error.reponse.status)
 } else {
 console.log(error.message)
 }
 }
 }

Axios simplifies this implementation once again by transforming
Javascript objects to JSON without our intervention. These Axios methods
use a last argument that specifies HTTP settings.

Advantages Axios

•	 It has a basic, succinct, and simple-to-learn syntax.

•	 Supports a diverse range of functionality not seen in many other
accessible HTTP packages. These include intercepting HTTP
requests, sending multiple requests at the same time, canceling sent
requests, automated JSON data translation, monitoring request
progress, and so on.

•	 All major browser versions, including Internet Explorer, are
supported.

•	 Client-side XSRF protection is provided.

Disadvantages Axios

•	 Because the module is not native, it adds an external dependence to
the program.

Getting Started with JavaScript II    ◾    161

SuperAgent

SuperAgent was one of the first third-party tools for performing HTTP
requests in JavaScript. It, like Axios, implements the XMLHttpRequest
API behind the hood and includes a complete set of functionality useful
in a variety of request processing jobs. Both promise-based and callback-
based solutions are supported by the package.

When sending HTTP requests using SuperAgent, we may use its spe-
cialized methods to launch a certain sort of request. As seen in this exam-
ple, we can utilize the superagent.get() function to send GET queries.

superagent
 .get(“https://world.openfoodfacts.org/category/
pastas/1.json”)
 .then(response => {
 // get the parsed JSON response data
 data = response.body
 console.log(data.count)
 console.log(data.products)
 })
 .catch(error => {
 if (error.response) {
 console.log(error.status)
 } else {
 console.log(error.message)
 }
 })

With the promise-based syntax, SuperAgent follows a similar approach
to Axios for delivering GET requests. It automatically parses the response
body into a JavaScript object without developer interaction. It also collects
HTTP failures within the catch method, which are identified using the
error.response field. In the event of a network issue, the columns labeled
“error.response” and “error.status” will be blank.

Similarly, we may send POST requests using SuperAgent.

superagent
 .post(“/food”)
 .send(food)
 .then(response => console.log(“Request is
successful!”))

162    ◾    Conquering JavaScript

 .catch(error => {
 if (error.response) {
 console.log(error.status)
 } else {
 console.log(error.message)
 }
 })

SuperAgent thinks the given data is in JSON by default and handles data
transformation and content-type headers on its own. We utilize SuperAgent’s
transmit() function to pass the data given with the POST request.

Advantages of SuperAgent

•	 Offers a simple, promise-based approach for delivering HTTP
requests.

•	 It’s a robust and well-supported Javascript module.

•	 Retries requests if a network or other transitory error occurs while
making a request.

•	 Allows for the extension of the package’s functionality through the use
of a continually increasing list of plugins. These plugins provide func-
tionality to SuperAgent such as mimicking fake HTTP calls, caching
request and response data, queueing and throttling requests, and so on.

•	 All major browser versions are supported. However, prior versions of
Internet Explorer require the deployment of a polyfill to allow capa-
bilities such as promise support. What does it matter at this point?

Disadvantages of SuperAgent

•	 Adds an external requirement as the module is not native.

•	 Monitoring request progress is not supported.

Ky

Ky is a new Javascript module that may be used to make asynchronous
HTTP requests from a web application’s frontend. The native Fetch API is
used as the foundation, but it has been enhanced with a clearer syntax and
more functionality.

Getting Started with JavaScript II    ◾    163

Ky’s specialized HTTP methods have a straightforward syntax for
making requests. Here’s an instance of a GET request sent using Ky and
async/await.

async function getData () {
 try {
 const data = await ky.get(“https://world.
openfoodfacts.org/category/pastas/2.json”).json()
 console.log(data.count)
 console.log(data.products)
 } catch (error) {
 if (error.response) {
 console.log(error.response.status)
 } else {
 console.log(error.message)
 }
 }
 }

POST requests can be sent in a similar manner:

async function postData () {
 try {
 const response = await ky.post(“/food”, { json:
food })
 console.log(“The Request is successful”)
 } catch (error) {
 if (error.response) {
 console.log(error.reponse.status)
 } else {
 console.log(error.message)
 }
 }
 }

Advantages of Ky

•	 Provides a straightforward, lightweight, promise-based API for per-
forming HTTP requests.

•	 Supports request timeout, retry, and progress monitoring to address
several restrictions in the native Fetch API.

164    ◾    Conquering JavaScript

•	 Hooks are provided for altering requests throughout their lifecycle:
beforeRequest, afterResponse, beforeRetry, and so on.

•	 All current browsers, including Chrome, Firefox, and Safari, are
supported. Ky offers an alternate package, Ky-Universal, for Internet
Explorer support; I’m not sure why they bother.

Disadvantages of Ky

•	 In comparison to the other mature, diverse solutions covered in this
essay, this is a very new package. This function adds an external
dependence.

HTTP COOKIES
A web cookie, also known as an HTTP cookie, is a little piece of data
sent by the server to the online browser. The cookies may be stored by
the browser and sent back to the server along with subsequent requests.13
Cookies are commonly used to detect repeated requests from the same site
(browser). It assists the user in remaining logged in and tracking his data,
such as user name and session. It’s also a good idea to keep track of the
stateful information for the stateless HTTP protocol.

If we are a developer, we cannot avoid cookies because they are nec-
essary for session management and monitoring other user information.
A cookie is as crucial nowadays as any other app functionality. Cookies
facilitate various tasks for both the user and the programmer.

Cookies have been around for a while and are still changing now. A
cookie is just textual data about a web app. When a user visits a website,
certain information is stored to the system’s local storage so that the app
may recognize the user and display appropriate results if they visit again.

When the user visits a website, the server requests the application’s
home page, and when he performs a specific action, the server requests
any other page of the application. So, if the user visits the 100th time, the
request will be unique each time. Because server queries are so intense,
saving data directly to the server is unfeasible; moreover, it may cause a
server overload. Furthermore, if the user does not return, the information
gathered will be outdated.

As a result, in order to remember the user’s identity, the server trans-
mits cookies with the response, which are saved to the system’s local stor-
age. When the same client performs the same request again, the server
will identify its identity and display the appropriate response.

Getting Started with JavaScript II    ◾    165

Cookies are unique to the server, thus even if the user has numerous
cookies on their system, the server can identify its cookie.

In this part, we shall cover the following cookie-related topics:

•	 Cookies are used.

•	 How Do Cookies Work?

•	 Cookies generated by JavaScript.

•	 Cookie Specifications.

•	 Cookie Varieties.

Utilization of Cookies

The cookie is commonly used in the following ways:

•	 Session Management:
The cookie’s principal function is to handle user logins, shop-

ping cart data, gaming scores, and anything else the server should
remember the next time the user comes in.

In general, session management enables the user to interact
securely with the server via the application. Because the user con-
tinues to engage with the web application, each time they visit the
website, they generate a new request. As a result, it makes it simple to
follow their status and activities during the session.

•	 Tracking
Tracking is capturing user activity and evaluating their behav-

iors in order to tailor material for them. It tracks and analyzes their
behaviors and interests, as well as the pages they visit. The time spent
on a page or throughout the website during a session may be included
in the tracking information. Because the user tracking contains sen-
sitive information, the user should be aware of the hazards of access-
ing unsecured websites and, if feasible, avoid visiting such websites.

•	 Personalization
Cookies aid in the customization of user preferences, themes, and

other settings. Most of the time, these settings are synced with a cen-
tral database to personalize things for users the first time they log in.
When the user signs in or restarts the program, the user customiza-
tion saves information about the user’s preferences and settings for
future use.

166    ◾    Conquering JavaScript

•	 Authentication
Cookies are also essential for user authentication. When a user

checks in, the server responds with the Set-Cookie HTTP header,
which sets a cookie with a unique “session identifier.”

The cookie is sent across the internet via the Cookie HTTP header
the next time the same user requests the same website.

As a result, the server can determine who made the request.

How Do Cookies Work?

Each time a user interacts with a website, a new request is made to the
server, and each time he does any action within the program, a new request
is sent to the server. Every new request submitted by a separate user was
taken into account by the server.

To identify requests from the same user, developers must include the
cookie in the server’s response, which is kept in the system’s local memory.
If the same user submits a request to the server, the server recognizes the
user using cookies.

The web browser is the client-side communication channel that sends
requests from the client to the server.

Once the cookie is added by the developers, the requests submitted
by users are detected, and the server provides the answer based on the
customization.

Cookies are critical from the standpoints of both users and developers.
It aids both parties in responding appropriately.

Let’s look at how to make cookies with JavaScript.

Cookies in JavaScript

Let’s look at how to make cookies with JavaScript:

Create Cookies
When a request is received, the server may respond with one or more Set-
Cookie headers. It will be saved in the system’s local storage. So, the next
time when the browser sends a request to the server, it will also send the
cookie along with the request.

We may optionally set an expiration date or time period after which
the cookie will be invalid and will not be transmitted. We may also apply
some extra constraints to a specified domain and path to limit when the
cookie is transmitted.

Getting Started with JavaScript II    ◾    167

To create, read, update, and remove cookies, JavaScript offers the docu-
ment.cookie property.

The syntax for creating a cookie is as follows:

document.cookie=”cookiename=value”;

An HTTP cookie can be generated in two ways. Cookies can be created
on the client using the browser interface or added from the server in the
file’s script section. To add from the client side, we may open the console
and type the JavaScript code into the browser. Set-cookie headers can be
included from the server side to generate one or more cookies.

Let’s look at how cookies are created on both the client and server sides.

Client Side
To access the cookie from the client side, open the console in our browser
and enter the following code:

document.cookie=”mycookie=1”

Using the web browser’s dev tool, we can also examine the cookies saved
on the local system. To see if the cookie has been added, go to the dev
tool’s application tab and pick the Cookies tab.

Web Server Side
To add the server cookie, we must create the cookie on an activity when
the user visits the page.

Consider the following scenario:

<!DOCTYPE html>
<html lang=”en”>
<head>
 <meta charset=”UTF-8”>
 <meta name=”viewport” content=”width=device-width,
initial-scale=2.0”>
 <meta http-equiv=”X-UA-compatible” content
=”ie=edge”>
 <title>Document</title>
</head>
<body>
 <button id =’setcookie’>Set Cookie</button>
 <script>

168    ◾    Conquering JavaScript

 const my_Cookie = document.
getElementbyID(“setcookie”)
 myCookie.addEventLister(“click”, e=> document.
cookie = “mycookie=2”)
 </script>
</body>
</html>

It will display a button component on our website page based on the pre-
ceding example. When we press the button, the requested cookie is cre-
ated for our system storage.

Similarly, we may construct the cookie with any other event listener. To
set the cookie, we can alternatively add an onload event.

Let’s look at few cookie properties:

Properties of Cookies

The cookie attributes are consistent across all sorts of cookies; the follow-
ing are some of the typical cookie properties:

Scope of Cookies
The scope of a cookie specifies which URLs are transmitted with the
cookie. Cookie scope is separated into two distinct attributes:

•	 Path
The path is one of the properties that define a cookie’s scope. It

defines a specified URL route in the HTTP header to transmit the
cookie. To set the cookie to various routes, use the following code:

document.cookie=”cookiefirst=1; path=/path1”
document.cookie=” cookiesecond=2; path=/path2”

When we visit a website with the provided URL, such as exam-
ple.com/path1, we will now submit a cookie header with the value
“cookiefirst=1.”

If we navigate to another URL, such as example.com/path2, we
will submit a cookie header with the value “cookiesecond=2.”

Except for the defined URLs, other requested routes will not
transmit any cookie headers.

http://example.com
http://example.com
http://example.com

Getting Started with JavaScript II    ◾    169

•	 Domain
The domain is the cookie’s second property. Domains function

as a container for cookies. The cookie provides a unique domain
name to itself, which assists the administrator in keeping the cookies
particular and organized for each http request for web pages. An
example of a domain-specific cookie is shown below:

Domain=google.com will enable cookies for the domain google.
com and its subdomains, including pasta.google.com.

•	 Expires and Max-age
A cookie’s “Expires” and “Max-Age” parameters define its lifetime

or expiration date. They are classified as persistent cookies. With the
exception of the term “permanent cookie,” the “Expires” property
can remove a cookie on a certain date. Furthermore, the “Max-Age”
characteristic deletes cookies after a given time.

Session cookies, on the other hand, are destroyed when the
current session expires. Some browsers allow us to choose when the
current session will finish, which can be any length of time, includ-
ing indefinitely.

•	 SameSite
The SameSite property enables us to set the cookie when a link

within a page is clicked. We’ve spoken about how to establish http
cookies for a certain URL, but what if we want to put the cookie on
a link inside that direct URL? Using the SameSite, we may trans-
mit cookies by clicking on a link from a redirected new page. We
can instruct SameSite to transmit cookies in response to cross-site
requests or if a user clicks on a link on a web page.

Let’s have a look at an actual scenario where the SameSite prop-
erty enables cross-site cookies. The flow chart below explains how
cookies are transmitted and received while moving from one page
to another.

The user navigates to a URL (for example, google.com)
They’ll get a first-party cookie.
The user will go to google.com and click on the link that makes

a retrieve request to another site, such as www.googleexample.com.
Tutorialandexample.com will place a cookie with the domain

name Domain=googleexample.com.

http://google.com
http://google.com
http://pasta.google.com
http://google.com
http://www.googleexample.com
http://google.com
http://google.com
http://Tutorialandexample.com
http://googleexample.com

170    ◾    Conquering JavaScript

Google.com now stores a third-party cookie from googleandex-
ample.com.

With the following three values, the SameSite property defines
whether third-party cookies are sent:

•	 Strict
The strict value for the SameSite property will only be transmitted

through a first-party cookie context. Third-party cookies will not be
considered.

•	 Lax
When a user hits a link with third-party navigation, the “Lax”

value of a SameSite property is delivered. If the SameSite prop-
erty is not explicitly specified on the third-party link, the default
value is lax.

•	 None
If the SameSite property is set to “None,” cookies are transmitted

in all contexts.
We’ve spoken about cookies and their attributes; now let’s look at

the many sorts of cookies:

Varieties of Cookie

Cookies are classified into the following kinds based on their usage and
behaviors:

First-Party Cookies
First-party cookies are those that are transmitted to the system directly
from the server of the website that we are viewing. The visited website
stores these cookies directly on our computer. Most websites send cook-
ies to their visitors in order to collect useful information and analytics in
order to improve the user experience.

Authentication is the greatest example of a first-party cookie. When a
user registers in to an application, the server sends cookies to the client,
which keeps them on the user’s local machine. We do not need to enter
the login credentials again the next time you check in to the program. The
website cannot identify the user without first-party cookies and will not
automatically log us in or remember our choices from previous sessions.

http://Google.com
http://googleandexample.com
http://googleandexample.com

Getting Started with JavaScript II    ◾    171

Third-Party Cookies
The third-party domains to which we are redirected create third-party
cookies.

It is not created by the domain in which we are currently logged in.
These cookies are typically used for tracking and can be retained even

after the browser is closed. Ad tracking from websites is an excellent exam-
ple of a third-party cookie. We may have noticed that after browsing a few
products from various eCommerce sites, we will begin to see ads for those
products. Because we may have been exposed to third-party cookies from
a domain other than that specific website while browsing the products.

When we close the browser or that specific website, a third-party cookie
can be used to track our browsing details, such as which products you
have seen and whether or not we have purchased them. After that, we’ll
have to start receiving emails about those products and seeing advertise-
ments from various ad agencies.

Session Cookies
Session cookies are transient cookies that are deleted when the user closes
the browser tab.

Session cookies are often utilized when a user inputs their login creden-
tials and connects into an application. When session cookies are utilized,
users must provide their credentials each time they attempt to log in to the
application.

The shopping cart management on an eCommerce site is a good exam-
ple of a session cookie.

Session cookies aid in the organization of a user’s shopping cart.
If the site does not employ session cookies, users will have a more dif-

ficult time remembering the goods they have chosen.

Secure Cookies
The cookies include a Secure feature to prevent unwanted access from
cookies given to a user as part of an HTTP response. When cookies are
used in conjunction with the Secure property, all HTTP requests will con-
tain the cookie only if it is communicated over a secure medium.

In 2002, Microsoft Internet Explorer introduced HttpOnly cookies.
Cookies with the HttpOnly flag can be included in a Set-Cookie HTTP
header. The HttpOnly property decreases the possibility of users click-
ing on a malicious link that exploits cross-site scripting vulnerabilities.

172    ◾    Conquering JavaScript

In general, attackers attempt to inject malicious scripts into a trusted
website in order to obtain cookies and other sensitive information stored
on the local system.

Zombie Cookies
The zombie cookies’ names give us a hint. These cookies, like zombies,
can come back to life after being killed. These cookies can be reactivated
when the browser is closed or erased. Cookies from zombies can be stored
anywhere other than the browser’s dedicated storage.

In general, the zombie cookie can make a copy of the original cookie,
store it somewhere else, and then reattach it to the user’s cookie storage.

Few firms previously exploited the zombie cookie to track user activi-
ties and obtain personal information. Few states have prohibited the zom-
bie cookie, which is considered an illegal violation of privacy.

FORM IN JAVASCRIPT
We will learn, examine, and understand the JavaScript form in this ses-
sion. We will also learn how the JavaScript form is implemented for vari-
ous reasons.14

In this session, we will learn how to access the form, obtain elements as
the JavaScript form’s value, and submit the form.

Overview to Forms

Forms are the foundation of HTML. In order to generate the JavaScript
form, we need the HTML form element. The following sample code may
be used to create a form:

<html>
<head>
<title> Form of Login </title>
</head>
<body>
<h3> LOGIN </h3>
<formform =”Loginform” onsubmit=”submitform()”>
<h4> USERNAME</h4>
<input type=”text” placeholder=”Enter email id”/>
<h4> PASSWORD</h4>
<input type=”password” placeholder=”Enter
password”/></br></br>

Getting Started with JavaScript II    ◾    173

<input type=”submit” value=”Login”/>
<input type=”button” value=”SignUp”
onClick=”create()”/>
</form>
</html>

In the program:

•	 The form name tag is used to define the form’s name. The form
is called “Loginform” in this case. This name will appear in the
JavaScript form.

•	 The action element specifies the action that the browser will do when
the form is submitted. We haven’t done anything here.

•	 When the form is to be sent to the server, the method to take action
can be either post or get. Both techniques have their own set of prop-
erties and regulations.

•	 The input type tag specifies the type of inputs that will be available in
our form. We’ve set the input type to ‘text,’ which means we’ll enter
data into the textbox as text.

•	 Net, we’ve set the input type to ‘password,’ and the input value is
password.

•	 Next, we choose the input type ‘button,’ and when we click it, the
form’s value is shown.

Aside from action and methods, the HTML form element also provides
the following helpful techniques.

•	 submit (): The technique for submitting the form.

•	 The reset () technique is used to reset the form values.

Referencing Forms

Now that we’ve established the form element with HTML, we need to con-
nect it to JavaScript. To do this, we employ the getElementById () func-
tion, which refers to the HTML form element in the JavaScript code.

The following is the syntax for utilizing the getElementById() method:

let form = document.getElementById(‘subscribes’);

174    ◾    Conquering JavaScript

We may make the reference using the Id.

Submitting Form

The onSubmit() function is then used to submit the form by sending its
value.

In general, we utilize a submit button to submit the value provided in
the form.

The submit() function has the following syntax:

<input type=”submit” value=”Subscribes”>

The action is executed shortly before the request is delivered to the server
when we submit the form. It lets us to add an event listener to the form,
allowing us to set multiple validations on it.

Finally, a combination of HTML and JavaScript code is used to com-
plete the form.

Let us gather and use all of them to develop a Login form and a SignUp
form, and then use both of them.

Login Form

<html>
<head>
<title> Form of Login </title>
</head>
<body>
<h3> LOGIN </h3>
<formform =”Loginform” onsubmit=”submitform()”>
<h4> USERNAME</h4>
<input type=”text” placeholder=”Enter email id”/>
<h4> PASSWORD</h4>
<input type=”password” placeholder=”Enter
password”/></br></br>
<input type=”submit” value=”Login”/>
<input type=”button” value=”SignUp”
onClick=”create()”/>
</form>
<script type=”text/javascript”>
function submitform(){

Getting Started with JavaScript II    ◾    175

alert(“Successfully Login “);
}
function create(){
window.location=”signup.html”;
}
</script>
</body>
</html>

SignUp Form

<html>
<head>
<title> SignUp Page</title>
</head>
<body align=”center” >
<h1> CREATE ACCOUNT</h1>
<table cellspacing=”2” align=”center” cellpadding=”9”
border=”0”>
<tr><td> Name</td>
<td><input type=”text” placeholder=”Enter name”
id=”n1”></td></tr>
<tr><td>Email </td>
<td><input type=”text” placeholder=”Enter email id”
id=”e1”></td></tr>
<tr><td> Set Password</td>
<td><input type=”password” placeholder=”Set password”
id=”p1”></td></tr>
<tr><td>Confirm Password</td>
<td><input type=”password” placeholder=”Confirm
password” id=”p2”></td></tr>
<tr><td>
<input type=”submit” value=”Create”
onClick=”createaccount()”/>
</table>
<script type=”text/javascript”>
function create_account(){
var n=document.getElementById(“n1”).value;
var e=document.getElementById(“e1”).value;
var p=document.getElementById(“p1”).value;
var cp=document.getElementById(“p2”).value;

176    ◾    Conquering JavaScript

//Code for the password validation
 var letters = /^[A-Za-z]+$/;
 var email_val = /^([a-zA-Z0-9_\.\-])+\@
(([a-zA-Z0-9\-])+\.)+([a-zA-Z0-9]{2,4})+$/;
//other validations required code
if(n==’’||e==’’||p==’’||cp==’’){
alert(“Enter details correctly”);
}
else if(!letters.test(n))
 {
 alert(‘Incorrect Name, must contain
alphabets only’);
 }
else if (!email_val.test(e))
 {
 alert(‘Invalid format of email please
enter valid email id’);
 }
else if(p!=cp)
{
alert(“The Passwords not matching”);
}
else if(document.getElementById(“p1”).value.length >
13)
{
alert(“The Password maximum length is 13”);
}
else if(document.getElementById(“p1”).value.length < 7)
{
alert(“The Password minimum length is 7”);
}
else{
alert(“Our account has create successfully...
Redirecting to google.com”);
window.location=”https://www.google.com/”;
}
}
</script>
</body>
</html>

Getting Started with JavaScript II    ◾    177

VALIDATION OF JAVASCRIPT FORMS
It is critical to check the user-submitted form since it may include incor-
rect information.

As a result, validation is required to authenticate the user. Because
JavaScript allows form validation on the client side, data processing is
faster than server-side validation.15

JavaScript form validation is preferred by the majority of web developers.
We can validate name, password, email, date, cell numbers, and other

data using JavaScript.

Example of Form Validation in JavaScript

In this example, we’ll validate the name and password. The name cannot
be blank, and the password cannot be less than seven characters long. On
form submission, we validate the form.

The user will not be sent to the next page unless the values entered are
correct.

<script>
 function validateform(){
 var name=document.my_form.name.value;
 var password=document.my_form.password.value;

 if (name==null || name==””){
 alert(“Name cannot be blank”);
 return false;
 }else if(password.length<7){
 alert(“Password must be atleast 7 characters
long.”);
 return false;
 }
 }
 </script>
 <body>
 <form name=”my_form” method=”post” action=”abcd.
jsp” onsubmit=”return validateform()” >
 Name: <input type=”text” name=”name”>

 Password: <input type=”password”
name=”password”>

 <input type=”submit” value=”register”>
 </form>

178    ◾    Conquering JavaScript

Password Retype Validation in JavaScript

<script type=”text/javascript”>
 function matchpass(){
 var firstpassword=document.fm1.password.value;
 var secondpassword=document.fm1.password2.value;

 if(firstpassword==secondpassword){
 return true;
 }
 else{
 alert(“password must same!”);
 return false;
 }
 }
 </script>

 <form name=”fm1” action=”register.jsp”
onsubmit=”return matchpass()”>
 Password:<input type=”password” name=”password”
/>

 Re-enter Password:<input type=”password”
name=”password2”/>

 <input type=”submit”>
 </form>

Number Validation in JavaScript

Let us verify the textfield solely for numeric values. We’re using the
isNaN() method here.

<script>
 function validate(){
 var num=document.my_form.num.value;
 if (isNaN(num)){
 document.getElementById(“numloc”).
innerHTML=”Enter Numeric value only”;
 return false;
 }else{
 return true;
 }
 }

Getting Started with JavaScript II    ◾    179

 </script>
 <form name=”my_form” onsubmit=”return validate()” >
 Number: <input type=”text” name=”num”><span
id=”numloc”>

 <input type=”submit” value=”submit”>
 </form>

Validation of JavaScript Using an Image

Let’s look at an interactive JavaScript form validation example that shows
the correct and incorrect image depending on whether the input is correct
or incorrect.

<script>
 function validate(){
 var name=document.fm1.name.value;
 var password=document.fm1.password.value;
 var status=false;

 if(name.length<1){
 document.getElementById(“nameloc”).innerHTML=
 “ Please enter name”;
 status=false;
 }else{
 document.getElementById(“nameloc”).innerHTML=”
”;
 status=true;
 }
 if(password.length<7){
 document.getElementById(“passwordloc”).innerHTML=
 “ Password must be at
least 7 char long”;
 status=false;
 }else{
 document.getElementById(“passwordloc”).innerHTML=”
”;
 }
 return status;
 }
 </script>

180    ◾    Conquering JavaScript

 <form name=”fm1” action=”#” onsubmit=”return
validate()”>
 <table>
 <tr><td>Enter the Name:</td><td><input type=”text”
name=”name”/>
 </td></tr>
 <tr><td>Enter the Password:</td><td><input
type=”password” name=”password”/>
 </td></tr>
 <tr><td colspan=”2”><input type=”submit”
value=”register”/></td></tr>
 </table>
 </form>

Email Validation in JavaScript

Using JavaScript, we can validate the email.
To validate the email address, several criteria must be met, including:

•	 The @ and. characters must appear in the email address.

•	 Before and after the @, there must be at least one character.

•	 There must be at least two characters following.(dot).

Let’s look at a simple example of email validation.

<script>
 function validateemail()
 {
 var x=document.my_form.email.value;
 var atposition=x.indexOf(“@”);
 var dotposition=x.lastIndexOf(“.”);
 if (atposition<1 || dotposition<atposition+2 ||
dotposition+2>=x.length){
 alert(“Enter the valid email address \n
atpostion:”+atposition+”\n dotposition:”+dotposition);
 return false;
 } 	
 }
 </script>
 <body>

Getting Started with JavaScript II    ◾    181

 <form name=”my_form” method=”post” action=”#”
onsubmit=”return validateemail();”>
 Email: <input type=”text” name=”email”>

 <input type=”submit” value=”register”>
 </form>

WORKING WITH JAVASCRIPT APIS
An API is just a means of transferring data between interfaces. Assume we
want to create an app that presents the user with real-time data retrieved
from the server or even allows us to alter or add data to another endpoint.
The API, or Application Programming Interface, makes this feasible.16

We’ll use a basic public API that doesn’t need authentication and lets us
retrieve data simply querying the API with GET requests.

https://randomuser.me/ is a website that supplies us with fake data for
random users to work with.

A request to https://randomuser.me/api/ will provide the result. The JSON
answer that we receive is in the format shown below.

{
 “results”: [
 {
 “gender”: “Mmale”,
 “name”: {
 “title”: “Mr”,
 “first”: “Nitin”,
 “last”: “Simka”
 },
 “location”: {
 “street”: {
 “number”: 230,
 “name”: “Erakon Roadd”
 },
 “city”: “Jalandhar”,
 “state”: “Punjab”,
 “country”: “India”,
 “postcode”: 121001,
 “coordinates”: {
 “latitude”: “81.1327”,

https://randomuser.me
https://randomuser.me

182    ◾    Conquering JavaScript

 “longitude”: “104.4160”
 },
 “timezone”: {
 “offset”: “+7:00”,
 “description”:
 “Ludhiana, Amritsar, Chandigarh, Moga”
 }
 },
 “email”: “nitin.simka@example.com”,
 “login”: {
 “uuid”:
“bd0d135f-84df-4102-aa4f-5baaa41baf5c”,
 “username”: “redfrog722”,
 “password”: “abc”,
 “salt”: “q28gdiyN”,
 “md5”:
“291987daea22bb91775226574925b271”,
 �“sha1”: “a0463a26ea5c2ff4f3ad498fd01c

5994926e5021”,
 “sha256”:
“6583eb74ca08bfac50b3b29aa52c9f02ea5d9d017fef0e5a5a
6fae4f5225f928”
 },
 “dob”: {
 “date”: “1998-10-01T23:10:09.403Z”,
 “age”: 40
 },
 “registered”: {
 “date”: “2015-02-02T02:26:52.904Z”,
 “age”: 7
 },
 “phone”: “(91)-234-7985”,
 “cell”: “(51)-984-9443”,
 “id”: {
 “name”: “SSN”,
 “value”: “847-09-2973”
 },
 “picture”: {
 “large”:
“ https://randomuser.me/api/portraits/women/61.jpg”,
 “medium”:
“ https://randomuser.me/api/portraits/women/61.jpg”,

Getting Started with JavaScript II    ◾    183

 “thumbnail”:
“ https://randomuser.me/api/portraits/women/61.jpg”
 },
 “nat”: “US”
 }
],
 “info”: {
 “seed”: “82a8d8d4a996ba17”,
 “results”: 1,
 “page”: 1,
 “version”: “1.3”
 }
}

Next, we’ll need an HTML file for the frontend, where you’ll show the
obtained data.

We can use the “div” tag (block-level) or the “span” tag (inline-level) as
a placeholder for the data.

We may obtain the needed “div/span” container where we need to insert
the information by using the “id” property.

<html lang=”en”>

<head>
<meta charset=”UTF-8” />
<meta name=”viewport” content=
 “width=device-width, initial-scale=2.0” />

<link id=”favicon” rel=”icon”
 href=”” sizes=”17x17” />

<!-- To make the website more attractive, use the
font-awesome library -->
<link rel=”stylesheet” href=
“https://cdnjs.cloudflare.com/ajax/libs/font-
awesome/4.7.0/css/font-awesome.min.css” />

<!—The Internal CSS styling -->
<style>
 .content {
 text-align: center;

184    ◾    Conquering JavaScript

 padding: 32px;
 margin: 0px auto;
 }

 .details {
 margin-left: auto;
 margin-right: auto;
 }

 img {
 border-radius: 6px;
 box-shadow: black;
 }

 table,
 td {
 border-collapse: collapse;
 margin-left: auto;
 margin-right: auto;
 text-align: center;
 padding: 12px;
 border: 2px solid black;
 }
</style>
</head>

<body>
<div class=”content”>
 <div class=”head”>
 <h1 id=”head”></h1>
 </div>
 <div class=”email”>
 <i class=”fa fa-envelope” style=
 “font-size: 16px; color: red;”>

 </div>
 <div class=”phone”>
 <i class=”fa fa-phone” style=
 “font-size: 16px; color: red;”>

 </div>

Getting Started with JavaScript II    ◾    185

 <div id=”user-img”></div>

 <div class=”details”>
 <table>
 <tr>
 <td>Age</td>
 <td></td>
 </tr>
 <tr>
 <td>Gender</td>
 <td></td>
 </tr>
 <tr>
 <td>Location</td>
 <td></td>
 </tr>
 <tr>
 <td>Country</td>
 <td></td>
 </tr>
 </table>
 </div>
</div>
</body>

</html>

The script tag will have the code for making the API request and handling
the response.

This should be included in the body tag or as a separate file.
We utilize the async/await method to ensure that data is presented even

after the page has been loaded.
We may use the console.log(...) function to see if the user is obtaining

the proper information.
To see the output, open the console window in our internet browser

(Right Click -> Inspect -> Console or Ctrl+Shift+J in Chrome/Edge).

<script>
 const api_url = “https://randomuser.me/api/”;
 async function getUser() {

186    ◾    Conquering JavaScript

 // Make an API call (request)
 // and getting response back
 const response = await fetch(api_url);

 // Parsing it to the JSON format
 const data = await response.json();
 console.log(data.results);

 // Retrieve data from the JSON
 const user = data.results[0];
 let { title, first, last } = user.name;
 let { gender, email, phone } = user;
 let image = user.picture.large;
 let image_icon = user.picture.thumbnail;
 let age = user.dob.age;
 let { city, state, country } = user.location;

 let fullName = title + “. “ + first + “ “ + last;
 document.title = fullName;

 �// Accessing the div container and modifying/

adding
 // items to it
 �document.getElementById(“head”).innerHTML =

fullName;
 �document.getElementById(“email”).href =

“mailto:” + email;
 �document.getElementById(“email”).innerHTML =

email;
 �document.getElementById(“phone”).href = “tel:”

+ phone;
 �document.getElementById(“phone”).innerHTML =

phone;
 // accessing the span container
 document.querySelector(“#age”).textContent = age;
 �document.querySelector(“#gender”).textContent

= gender;

 document.querySelector(“#location”).textContent
 = city + “, “ + state;

 document.querySelector(“#country”).textContent
= country;

Getting Started with JavaScript II    ◾    187

 // Making a new element and adding
 // it to already made containers
 let img = document.createElement(“img”);
 let img_div = document.getElementById(“user-img”);
 img.src = image;
 img_div.append(img);

 const favicon = document.getElementById(“favicon”);
 favicon.setAttribute(“href”, image_icon);
 }

 // Call the function
 getUser();
 </script>

The final code is: It is the result of combining the preceding code parts.

<html lang=”en”>

<head>
<meta charset=”UTF-8” />
<meta name=”viewport” content=
 “width=device-width, initial-scale=2.0” />

<!-- To create the font-awesome library
more attractive website -->
<link rel=”stylesheet” href=
“https://cdnjs.cloudflare.com/ajax/libs/font-
awesome/4.7.0/css/font-awesome.min.css” />

<!—The Internal CSS styling -->
<style>
 .content {
 text-align: center;
 padding: 32px;
 margin: 0px auto;
 }

 .details {
 margin-left: auto;

188    ◾    Conquering JavaScript

 margin-right: auto;
 }

 img {
 border-radius: 6px;
 box-shadow: black;
 }

 table,
 td {
 border-collapse: collapse;
 margin-left: auto;
 margin-right: auto;
 text-align: center;
 padding: 12px;
 border: 2px solid black;
 }
</style>
</head>

<body>
<div class=”content”>
 <div class=”head”>
 <h1 id=”head”></h1>
 </div>
 <div class=”email”>
 <i class=”fa fa-envelope” style=
 “font-size: 16px; color: red;”>

 </div>
 <div class=”phone”>
 <i class=”fa fa-phone” style=
 “font-size: 16px; color: red;”>

 </div>

 <div id=”user-img”></div>

 <div class=”details”>
 <table>

Getting Started with JavaScript II    ◾    189

 <tr>
 <td>Age:</td>
 <td></td>
 </tr>
 <tr>
 <td>Gender:</td>
 <td></td>
 </tr>
 <tr>
 <td>Location:</td>
 <td></td>
 </tr>
 <tr>
 <td>Country:</td>
 <td></td>
 </tr>
 </table>
 </div>
</div>
</body>
<script>
const api_url = “https://randomuser.me/api/”;

async function getUser() {

 // Make an API call (request)
 // and getting response back
 const response = await fetch(api_url);

 // Parsing it to the JSON format
 const data = await response.json();
 console.log(data.results);

 // Retrieve data from the JSON
 const user = data.results[0];
 let { title, first, last } = user.name;
 let { gender, email, phone } = user;
 let image = user.picture.large;
 let image_icon = user.picture.thumbnail;
 let age = user.dob.age;
 let { city, state, country } = user.location;

190    ◾    Conquering JavaScript

 let fullName = title + “. “ + first + “ “ + last;
 document.title = fullName;

 // Access the div container and modify/add
 // elements to containers
 document.getElementById(“head”).innerHTML =
fullName;
 document.getElementById(“email”).href = “mailto:”
+ email;
 document.getElementById(“email”).innerHTML =
email;
 document.getElementById(“phone”).href = “tel:” +
phone;
 document.getElementById(“phone”).innerHTML =
phone;
 // access span container
 document.querySelector(“#age”).textContent = age;
 document.querySelector(“#gender”).textContent =
gender;

 document.querySelector(“#location”).textContent
 = city + “, “ + state;

 document.querySelector(“#country”).textContent =
country;

 // Create the new element and
 // appending it to previously created containers
 let img = document.createElement(“img”);
 let img_div = document.getElementById(“user-img”);
 img.src = image;
 img_div.append(img);

 const favicon = document.getElementById(“favicon”);
 favicon.setAttribute(“href”, image_icon);
}

// Call the function
getUser();

Getting Started with JavaScript II    ◾    191

</script>

</html>

If we want to learn more about APIs and delve further into them, visit
Public APIs, which provides a large variety of publicly available APIs to
help us on our API discovery adventure.

To determine the type of answer sent by an API, Postman is a fantastic
application that will meet all of our requirements. Another option is to use
Postman APIs to perform the same action in the browser.

THE MOST WELL-KNOWN JAVASCRIPT LIBRARIES
The most popular JavaScript libraries are listed here.17

jQuery

jQuery is a traditional JavaScript library that is lightweight, quick, and
feature-rich.

John Resig constructed it during BarCamp NYC in 2006. jQuery
is MIT-licensed free and open-source software. It makes HTML page
manipulation and traversal, animation, event management, and Ajax eas-
ier. According to W3Techs, jQuery is used on 77.6% of all websites (as of
23rd February 2021).

Features

•	 It offers a simple, minimalistic API.

•	 It makes use of CSS3 selectors to manipulate style attributes and dis-
cover elements.

•	 jQuery is small, needing only 30 kb to gzip and minify, plus it
includes an AMD module.

•	 It is simple to learn because its syntax is identical to that of CSS.

•	 Plugins allow for more customization.

•	 Versatility is provided through an API that works with different
browsers, including Chrome and Firefox.

192    ◾    Conquering JavaScript

Use Cases

•	 CSS selectors are used to pick a node in the DOM based on certain
criteria. These criteria contain the names of the elements as well as
their properties (like class and id). DOM element selection using
Sizzle (an open-source, multi-browser selector engine).

•	 Effects, events, and animations are created.

•	 Parsing JSON.

•	 Development of Ajax applications.

•	 Detection of features.

•	 Asynchronous processing may be controlled using Promise and
Deferred objects.

React.js

React.js (also called as ReactJS or React) is an open-source JavaScript fron-
tend library.

Jordan Walke, a software developer at Facebook, founded the app in
2013. It now has the MIT license; however, it was originally distributed
under the Apache License 2.0.

React was created to make creating interactive user interfaces as simple
as possible. Simply create a basic display for each state in our program.
Following that, it will render and update the appropriate component as
data changes.

Features
•	 The React code consists of components or entities that must be ren-

dered to a specific element in DOM using a React DOM library.

•	 It employs a virtual DOM by constructing an in-memory cache in a
data structure, calculating the difference and efficiently updating the
display DOM in the browser.

•	 Because to this selective rendering, the app’s efficiency improves
while developers save time recalculating the page layout, CSS styles,
and full-page rendering.

Getting Started with JavaScript II    ◾    193

•	 It employs lifecycle methods such as render and componentDid-
Mount to allow code execution at precise periods during the lifetime
of an object.

•	 It supports JavaScript XML (JSX), which blends JavaScript with HTML.
It facilitates the visual presentation of components that contain nested
elements, attributes, JS expressions, and conditional statements.

Use Cases
•	 Serving as the foundation for mobile or single-page apps.

•	 Rendering and managing a state for the DOM.

•	 Creating effective user interfaces when creating web apps and inter-
active websites.

•	 Easier debugging and testing.

D3.js

Another well-known JS framework used by developers for data-driven
document editing is Data-Driven Documents (D3) or D3.js.

In 2011, it was made available under the BSD license.

Features

•	 It places an emphasis on web standards and provides modern browser
capabilities without forcing you to use a particular framework.

•	 A sophisticated data visualization tool is D3.js.

•	 Support for HTML, CSS, and SVG is available.

•	 Uses a data-driven method to modify the DOM.

•	 A quick framework called D3.js makes a variety of dynamic behavior
and datasets for animation and interactivity possible.

•	 By reducing overhead, it permits more intricate graphics while still
keeping high frame rates.

194    ◾    Conquering JavaScript

Use Cases

•	 Creating interactive and dynamic data visualizations.

•	 DOM data binding and data-driven transformations on the data. A
numbers array may be used to generate HTML tables, for example, and
then D3.js can be used to generate an SVG bar chart or a 3D surface plot.

•	 It may be used with a lot of modules because to its functional code.

•	 D3 has a variety of tools for altering nodes, including declaratively
changing styles or attributes, adding, sorting, or removing nodes, as
well as altering text or HTML content.

•	 To make animated transitions, complicated transitions using events,
CSS3 transitions, and so on.

Underscore.js

Underscore is a JavaScript utility package that includes a number of func-
tions for common programming tasks.

Jeremy Askenas produced it in 2009 and released it under an MIT
license.

Lodash has now surpassed it.

Features

•	 Its capabilities are comparable to those of Prototype.js (another
famous utility package), although Underscore is designed for func-
tional programming rather than object prototype extensions.

•	 It includes about 100 functions that are classified into four kinds
based on the datatypes they modify. These are the functions that can
be manipulated:

•	 Objects

•	 Arrays

•	 Arrays and objects both

•	 Other features

•	 Underscore works with Chrome, Firefox, Edge, and other browsers.

Getting Started with JavaScript II    ◾    195

Use Cases

•	 It offers functional tools like filters and maps, as well as specific func-
tions like binding, rapid indexing, JavaScript templating, quality
testing, and so on.

Lodash

Another JS toolkit that simplifies dealing with objects, arrays, strings, and
numbers is called Lodash. Like Underscore.js, it was introduced in 2013
and uses functional programming.

Features

•	 It makes it easier to write concise and manageable JavaScript code.

•	 Mathematical operations, binding, throttling, decorating, constrain-
ing, debouncing, and other routine tasks are simplified.

•	 Simpler string operations include camel case, trimming, and upper
case.

•	 Generation, modifying, compressing, and sorting of arrays.

•	 Additional operations on collections, objects, and sequences.

Use Cases
Its modular approaches can assist us in

•	 Arrays, strings, and objects are iterated through.

•	 Constructing composite functions.

•	 Value manipulation and testing.

Algolia Places

Algolia Places is a JavaScript package that allows us to use address auto-
completion on our website in a simple and widespread manner.

It’s a lightning-fast and incredibly accurate tool that can assist improve
our site’s user experience. Algolia Places uses OpenStreetMap’s outstand-
ing open-source database to cover international locations.

196    ◾    Conquering JavaScript

Features

•	 It speeds up checkouts by filling many inputs at once.

•	 We can easily utilize the nation or city selectors.

•	 We may see results fast by presenting real-time link recommenda-
tions on a map.

•	 Algolia Places can handle mistakes and present results appropriately.

•	 It returns responses in milliseconds by automatically routing all
inquiries to the closest server.

Use Cases

•	 Allows us to include a map to display a certain place, which is quite
handy.

•	 It allows us to use forms more effectively.

Anime.js

One of the best JavaScript animation libraries is Anime.js, which we can
use to create animations to our website or application.

It was released in 2019 and is compact with a reliable yet straightfor-
ward API.

Features

•	 DOM attributes, CSS properties, SVG, CSS transformations, and JS
objects are all supported by Anime.js.

•	 Works with a variety of browsers, including Chrome, Safari, Firefox,
and Opera.

•	 Its source code is simple to understand and apply.

•	 Complex animation techniques like overlapping and staggered fol-
low-through become simpler.

Getting Started with JavaScript II    ◾    197

Use Cases

•	 On attributes and timings, we may utilize Anime.js’ staggering
mechanism.

•	 Create layered CSS modifications with multiple durations over one
HTML element at the same time.

•	 Anime.js callbacks and controls functions are used to play, stop, trig-
ger, reverse, and control events in a synchronized way.

Animate On Scroll (AOS)

For single-page parallax websites, Animate On Scroll is ideal. This open-
source JS toolkit allows you to add nice animations to our sites that look
great as we scroll down or up. It enhances our site design by allowing us
to add fading effects, static anchor placements, and other features that will
delight our users.

Features

•	 The library can identify element locations and apply appropriate
classes when they appear in the viewport.

•	 It not only allows us to simply build animations, but it also allows us
to adjust them in the viewport.

•	 It works well on a variety of devices, including a mobile phone, tab-
let, and PC.

•	 It has no dependencies because it is developed entirely in JavaScript.

Use Cases

•	 Animate one element based on the location of another.

•	 Animate items based on their position on the screen.

•	 On mobile devices, disable element animations.

•	 Create various animations such as fades, flips, slides, zooms, anchor
placements, and so on.

198    ◾    Conquering JavaScript

Bideo.js

Do we want to incorporate full-screen videos into the backdrop of our
website?

Try out Bideo.js.

Features

•	 Using this JavaScript package, we can easily add a video background.

•	 This feature looks great and works well on screens of all sizes and
scales.

•	 Videos can be resized depending on the browser used.

•	 CSS/HTML makes it simple to implement.

Use Cases

•	 To incorporate responsive full-screen background videos into a
website.

Chart.js

Is our website or project relevant to the field of data analysis?
Is it necessary to offer a large number of statistics? Chart.js is a fantastic

JavaScript package to work with. Chart.js is a versatile and easy-to-use
framework for designers and developers who want to quickly add stun-
ning charts and graphs to their projects. It is open-source and licensed
under the MIT license.

Features

•	 Basic charts and graphs may be added in an elegant and straightfor-
ward manner.

•	 As a result, responsive web pages are produced.

•	 Loading is light, and learning and implementing is simple.

•	 There are eight distinct sorts of charts.

•	 Excellent for beginners.

•	 Pages may be animated to make them more interactive.

Getting Started with JavaScript II    ◾    199

Use Cases

•	 When diverse datasets are employed, mixed chart types provide
clear visual representations.

•	 Plot sparse and complicated datasets on logarithmic, date, time, or
user-defined scales.

Cleave.js

If we wish to format your text content, Cleave.js provides an intriguing
approach.

Its invention seeks to make it simpler to boost the readability of the
input field by formatting the inputted data. To format text, we no longer
need to mask patterns or use regular expressions.

Features

•	 Improves user experience by providing consistent data for form
submissions.

•	 We may format credit card numbers, phone numbers, dates, times,
and numerals in a variety of ways.

•	 Custom blocks, prefixes, and delimiters should be formatted.

•	 Supports ReactJS components, among other things.

Use Cases

•	 Using CSS selectors, apply cleave.js to several DOM components.

•	 To make changes to a given raw value.

•	 To obtain the text field’s reference.

•	 It is used in Vue.js, jQuery, and Playground with a redux form.

Choreographer.js

To efficiently animate complicated CSS, use Chreographer.js.
It may even include more custom functions for non-CSS animations.

Install its package using npm or add its script file to utilize this JavaScript
library.

200    ◾    Conquering JavaScript

Features

•	 Its Animation class is in charge of managing individual animation
data.

•	 Each animation instance is configured through the animationCon-
fig object.

•	 There are two built-in animation functions: ‘change’ and ‘scale.’

•	 Scale is used to translate progressively measured values to a node’s
style parameter.

•	 The ‘Change’ command removes or adds style attributes.

Use Cases

•	 Make instant scroll animations.

•	 Create animations based on mouse movements.

Glimmer

Glimmer, which was released in 2017, has lightweight and fast UI
components.

It makes use of the robust Ember CLI and can be used as a component
with EmberJS.

Features

•	 Glimmer is a fast DOM rendering engine that may give exceptional
render and update performance.

•	 It is adaptable enough to function with our existing technological
stack without needing us to rewrite code.

Use Cases

•	 It may be used as a stand-alone component or integrated as a web
component into existing systems.

•	 Rendering of the DOM.

Getting Started with JavaScript II    ◾    201

•	 It aids in the differentiation between static and dynamic material.

•	 When we want the functionalities of Ember but in a lighter package,
use Glimmer.

Granim.js

Granim.js is a JS framework that allows us to build dynamic and fluid
gradient animations. We may make our site stand out by using colorful
backgrounds.

Features

•	 Gradients can be used to cover pictures, work independently, slide
beneath image masks, and so forth.

•	 Gradient directions may be customized using percentage or pixel
values.

•	 Choose from diagonal, top-bottom, left-right, radial, and custom
gradient directions.

•	 Set the length of the animation in milliseconds (ms) with changing
states.

•	 Change the color and location of the gradient.

•	 Image modification based on canvas position, source, scale, and so
forth.

•	 Other alternatives include setting callbacks, issuing events, gradient
control methods, and so forth.

Use Cases

•	 Making a simple gradient animation using three gradients of two
colors.

•	 Complex gradient animation with two gradients of three colors.

•	 Gradient animation using a single backdrop picture, two colors, and
a single blending mode.

202    ◾    Conquering JavaScript

•	 Using a single picture mask, create gradient animations beneath a
given form.

•	 Developing event-responsive gradient animations.

fullPage.js

fullPage.js, an open-source JS package, makes it simple to develop full-
screen scrolling webpages or one-page websites. It is simple to use and
allows us to include a landscape slider inside our site sections.

Features

•	 Provides several customization and setup possibilities.

•	 JavaScript frameworks such as react-fullpage, angular-fullpage, and
vue-fullpage are supported.

•	 Allows for vertical as well as horizontal scrolling.

•	 A responsive design that adapts to different screen sizes and browsers.

•	 Page loads with auto-scrolling.

•	 Lazy video/image loading.

Use Cases

•	 To enhance the default functionality with the use of several
extensions.

•	 To build full-screen scrolling websites.

•	 Making a one-page website.

Leaflet

Leaflet is one of the greatest JavaScript frameworks for incorporating
interactive maps into our website. It is open-source and mobile-friendly,
with a file size of roughly 39kb.

Leaflet powers the interactive maps in the MapPress Maps for WordPress
plugin.

Getting Started with JavaScript II    ◾    203

Features

•	 Performance improvements include mobile hardware acceleration
and CSS support.

•	 Tile layers, popups, markers, vector layers, GeoJSON, and picture
overlays are all examples of unique layers.

•	 Drag panning, pinch-zoom, keyboard navigation, events, and other
interaction features.

•	 Layer switcher, attribution, scale, and zoom buttons are all available
on the map.

•	 Browsers such as Chrome, Safari, Firefox, Edge, and others are
supported.

•	 Customization options include OOP, HTML and image-based mark-
ers, CSS3 controls, and popups.

Case Studies

•	 Include a map with improved zooming and panning, smart polygon/
polyline rendering, modular design, and tap-delay mobile animation
on our website.

Multiple.js

Several.js allows background image sharing across multiple items by
utilizing CSS or HTML and does not require JavaScript coordinate
processing. As a result, it produces an eye-catching visual impact that
encourages greater user involvement.

Features

•	 Multiple backgrounds are supported.

•	 Support for gradient opacity.

•	 Many mobile and web browsers are supported.

204    ◾    Conquering JavaScript

Use Cases

•	 To distribute background images.

Moment.js

Moment.js assists us in successfully managing time and date while work-
ing with multiple time zones, API requests, local languages, and so forth.

Dates and times can be streamlined by checking, parsing, formatting,
or altering them.

Features

•	 It supports a large number of worldwide languages.

•	 Mutability of objects.

•	 Several internal characteristics like as epoch shifting and accessing
native Date objects, are available.

•	 There are several suggestions for using its parser appropriately, such
as strict mode, date formats, forgiving mode, and so on.

Use Cases

•	 To include a time stamp in a published article.

•	 Communicating with individuals from all around the world in their
native tongue.

Masonry

Masonry is an outstanding JS grid layout framework.
This library assists us in positioning our grid items based on the amount

of vertical space available. It’s even utilized by some of the most popular
WordPress picture gallery plugins.

Consider how a mason fits stones when constructing a wall.

Features

•	 The grid arrangement of masonry is built on columns and does not
have a defined row height.

•	 Optimizes web page space by removing unwanted spaces.

Getting Started with JavaScript II    ◾    205

•	 Sorting and filtering items while keeping the layout structure intact.

•	 Effects of animation.

•	 Dynamic components that alter the layout automatically for optimal
structure.

Use Cases

•	 To make image galleries with different image sizes.

•	 List the most recent blog entries in many columns while keeping
consistency, even if the summary lengths change.

•	 To represent portfolio items such as photographs, designs, projects,
and so on.

Omniscient

Omniscient.js is a JS package that provides React component abstraction
for immediate top-down rendering with immutable data. Because it is effi-
cient and has fascinating features, this library may help us construct our
project smoothly.

Features

•	 Reminds us of stateless React components.

•	 User interface functional programming.

•	 Component rendering from the top.

•	 Immutable data is supported by Immutable.js.

•	 Mixins provide tiny and composable components with shared
functionality.

Use Cases

•	 To give component keys.

•	 Use auxiliary functions or constructs to communicate with parent
codes.

•	 Overriding elements.

•	 Debugging and filtering.

206    ◾    Conquering JavaScript

Parsley

Do we want to include shapes into our projects? If so, Parsley may be ben-
eficial to us.

It is a simple yet effective JS library for form validation.

Features

•	 Its simple DOM API accepts input straight from HTML tags without
requiring you to write a single line of JS.

•	 Dynamic form validation is accomplished by dynamically detecting
form alterations.

•	 There are over 12 built-in validators, an Ajax validator, and various
extensions.

•	 We may modify Parsley’s default behavior and provide a more UI
and UX focused experience.

•	 Free, open-source, and extremely dependable, it is compatible with a
wide range of browsers.

Use Cases

•	 Making a basic form.

•	 Performing difficult validations.

•	 Creating forms with several steps.

•	 Multiple inputs are being validated.

•	 Taking care of promises and Ajax requests.

•	 Creating excellent floating error labels by styling inputs.

Popper.js

Popper.js was intended to simplify positioning popovers, dropdowns,
tooltips, and other contextual components that display near a button or
other similar elements easier. Popper makes it easy to organize them,
attach them to other site components, and make them work flawlessly on
every screen size.

Getting Started with JavaScript II    ◾    207

Features

•	 A little library of roughly 3kb in size.

•	 When we scroll inside the scrolling containers, the tooltip stays with
the reference element.

•	 Advanced customizability.

•	 Uses a comprehensive toolkit to develop UIs, such as Angular or
React, making integrations straightforward.

Use Cases

•	 To create a tooltip from the ground up.

•	 To neatly arrange these parts.

Three.js

Three.js can enhance our 3-D design experience. On contemporary brows-
ers, it renders scenes using WebGL. If we are using IE 10 or below, try
other CSS3, CSS2, and SVH renderers.

Features

•	 Chrome 9+, Opera 15+, Firefox 4+, Internet Explorer 11, Edge, and
Safari 5.1 are all supported.

•	 Typed arrays, Blob, Promise, URL API, Fetch, and other JS capabili-
ties are supported.

•	 We may make a variety of geometrics, objects, lighting, shadows,
loaders, materials, arithmetic components, textures, and so on.

Use Cases

•	 To make a geometric cube, sphere, or other shape.

•	 Making a camera or a scene.

Screenfull.js

To add a full-screen element to our project, use Screenfull.js.
We will have no problems utilizing this JavaScript library because of its

amazing cross-browser performance.

208    ◾    Conquering JavaScript

Features

•	 Make a page or element full-screen.

•	 Hide cell phone navigation UI.

•	 Using jQuery and Angular, add full-screen components.

•	 Detects full-screen changes, mistakes, and so forth.

Use Cases

•	 Including a full-screen feature on a website.

•	 Screenfull.js in a document.

•	 Toggling the full-screen mode and exiting.

•	 Event management.

Polymer

Polymer, a Google open-source JavaScript toolkit, is used to create web
programs with components.

Features

•	 An easy method for creating custom components.

•	 Properties computed.

•	 Both one-way and two-way data binding are supported.

•	 Gesture occurrences.

Use Cases

•	 Using JS, CSS, and HTTP, you can construct interactive online apps
using bespoke web components.

•	 It is utilized by popular websites and services like as YouTube, Google
Earth, and Play, among others.

Voca

The aim of Voca is to alleviate the agony associated with dealing with
JavaScript strings. It includes handy functions for easily manipulating
strings such as changing case, padding, trimming, truncating, and more.

Getting Started with JavaScript II    ◾    209

Features

•	 Because of its modular nature, the entire library or individual func-
tions load rapidly while decreasing app construction time.

•	 Provides utilities for cutting, formatting, manipulating, querying,
and escaping strings.

•	 There are no dependencies.

Use Cases

•	 Voca may be used in a variety of settings, including Node.js,
Webpack, Rollup, Browserify, and others.

•	 To change the case of a topic to title case, camel case, kebab case,
snake case, upper case, and lower case.

•	 To uppercase and lowercase the initial character.

•	 To enable an implicit/explicit chain sequence, construct chain objects
to surround a subject.

•	 To conduct various operations such as character counting, string
formatting, and so on.

We covered Asynchronous Development, DOM Manipulation, HTTP,
and Forms in this chapter. We also talked about working with APIs and
JavaScript libraries.

NOTES
	 1	 How to Write Asynchronous Function for Node.js?: www.geeksforgeeks.

org/how-to-write-asynchronous-function-for-node-js/?ref=lbp Accessed
on: 28 September 2022.

	 2	 How to Create an Asynchronous Function in Javascript?: www.geeksfor-
geeks.org/how-to-create-an-asynchronous-function-in-javascript/?ref=lbp
Accessed on: 28 September 2022.

	 3	 Synchronous and Asynchronous in JavaScript: www.geeksforgeeks.org/
synchronous-and-asynchronous-in-javascript/?ref=lbp Accessed on: 28
September 2022.

	 4	 Explain Asynchronous vs Deferred JavaScript: www.geeksforgeeks.org/
explain-asynchronous-vs-deferred-javascript/?ref=lbp Accessed on: 28
September 2022.

http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org

210    ◾    Conquering JavaScript

	 5	 Document Object Model: www.javatpoint.com/document-object-model
Accessed on: 28 September 2022.

	 6	 Javascript – document.getElementById() Method: www.javatpoint.com/
document-getElementById()-method Accessed on: 28 September 2022.

	 7	 GetElementsByClassName(): www.javatpoint.com/javascript-getelements-
byclassname Accessed on: 28 September 2022.

	 8	 Javascript – document.getElementsByName() Method: www.javat-
point.com/document-getElementsByName()-method Accessed on: 28
September 2022.

	 9	 Javascript – document.getElementsByTagName() Method: www.javat-
point.com/document-getElementsByTagName()-method Accessed on: 29
September 2022.

	 10	 Javascript – innerHTML: www.javatpoint.com/javascript-innerHTML
Accessed on: 29 September 2022.

	 11	 Javascript – innerText: www.javatpoint.com/javascript-innerText Accessed
on: 29 September 2022.

	 12	 5 Ways to Make HTTP Requests in JavaScript: https://livecodestream.
dev/post/5-ways-to-make-http-requests-in-javascript/ Accessed on: 29
September 2022.

	 13	 Http Cookies: www.javatpoint.com/http-cookies Accessed on: 30
September 2022.

	 14	 JavaScript Form: www.javatpoint.com/javascript-form Accessed on: 30
September 2022.

	 15	 JavaScript Form Validation: www.javatpoint.com/javascript-form-valida-
tion Accessed on: 30 September 2022.

	 16	 Working with APIs in JavaScript: www.geeksforgeeks.org/working-with-
apis-in-javascript/ Accessed on: 30 September 2022.

	 17	 The 40 Best JavaScript Libraries and Frameworks for 2022: https://kinsta.
com/blog/javascript-libraries/ Accessed on: 01 October 2022.

http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
https://livecodestream.dev
https://livecodestream.dev
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
https://kinsta.com
https://kinsta.com

211

C h a p t e r 4

The Clearer Picture

IN THIS CHAPTER

➢ The various uses of JS

•	 Frontend

•	 Backend

•	 Mobile

•	 Gaming

•	 Desktop

➢ Finding your Niche

•	 Which framework to learn and when?

•	 Combining JS skills with other programming languages

Let us now spend some time discussing JavaScript ecosystem as a whole.

A JAVASCRIPT FRAMEWORK IS WHAT?
A JavaScript framework is a group of prewritten programs designed to
enable applications and give advantages that plain JavaScript cannot by
itself. Consider a tent if the concept of frameworks is still unclear to us.

We construct a frame to serve as the tent’s framework.1 The tent’s inside
and outside may then be customized in anyway we choose.

DOI: 10.1201/9781003356578-4

https://doi.org/10.1201/9781003356578-4

212    ◾    Conquering JavaScript

Naturally, JavaScript frameworks aren’t actual buildings like our tent,
but the idea is the same.

Let’s take a minute to address two frequently asked topics before mov-
ing on to the most well-known JavaScript frameworks.

What Distinguishes a JavaScript Framework
from a JavaScript Library?

Libraries in JavaScript are collections of code created for certain use cases.
For instance, the Day.js package is devoted to making use of dates in

JavaScript, which may be challenging even for experienced developers.
jQuery is a well-known JavaScript library that simplifies the syntax for

DOM traversal, event handling, animations, and other typical operations.
On the other hand, frameworks are designed to perform various tasks and
serve as the foundation of a web application.

Like Angular, several frameworks design the complete site tree. In
other words, they support the full application frontend. Some, like Vue.js,
allow for gradual usage, allowing our application to make restricted use
of the framework.

For particular use cases that our framework doesn’t handle, we’ll proba-
bly utilize libraries in our application. Remember those annoying dates with
Day.js? This library is not required to be used in views that exclude dates.

However, regardless of the functionalities we use, if our application is
created using Angular, the page template is written in Angular’s syntax.

In contrast, Day.js may be called where it is necessary and not called
where it is not.

Use a JavaScript Framework, But Why?

Because frameworks are constructed on top of JavaScript, we can accom-
plish any function a framework does using standard JavaScript.

But because the hard work has already been done, why go through all
that bother again?

This underlines the fundamental advantage of using a JavaScript frame-
work: More capability without the need for us to produce new code.

For instance, the virtual document object model is used by both React
and Vue.js (DOM).

Because it only updates altered HTML components, the virtual DOM is
quicker at handling HTML elements.

Contrarily, regular JavaScript will render the whole DOM once again
regardless of the amount of the change.

The Clearer Picture    ◾    213

React and Vue.js are thus quicker for websites and programs that have
a lot of interactive elements.

Libraries and Frameworks for JavaScript

In programming, frameworks and libraries are crucial. This raises the
issue, nevertheless, which is superior: JavaScript libraries or JavaScript
frameworks?

One cannot replace the other nor is one better than the other.
Nonetheless, a developer may choose which one to utilize based on the
specifics of the project. Take into account the goals of the project you’re
working on. What, for instance, is the scope of our project?2

This might help us remove libraries and frameworks that are inap-
propriate for smaller applications from our list of options. Overall,
although both libraries and frameworks need a fundamental knowledge
of JavaScript, frameworks often demand more JS expertise and experi-
ence, making the learning curve for libraries a bit less difficult. And which
library ought to should we use first? React is a logical first library option
since creating and maintaining complex user interfaces is a major com-
ponent of frontend web or app development, which is where most web
developers start. Additionally, organizations place a great value on React
expertise. The React team also provides extensive documentation and has
a sizable community. The fact that you begin with a JavaScript library
like React JS or jQuery does not exclude us from subsequently learning
JavaScript frameworks, however.

On the contrary, if we start with one library, it will be a lot simpler to
comprehend and ultimately go on to frameworks like Angular, Vue, or
Ember JS.

Although learning to code is a process, we must start.
A programmer has access to the universal language known as

JavaScript.
Its libraries and frameworks are very beneficial to programmers work-

ing in the web development industry. A framework inverts program con-
trol, which is the primary difference between it and a library.

It provides the developer with the necessary information. However, a
library does not.

A programmer instead calls the library as and when needed. Overall,
JavaScript offers great aesthetics and functionalities and is utilized in the
majority of modern apps. Due to its superior functionality and simplicity
of use, it is favored by web developers all over the globe.

214    ◾    Conquering JavaScript

TOP 7 JAVASCRIPT FRONTEND FRAMEWORKS
The best JavaScript frameworks for the contemporary web will be dis-
cussed first.3

1. React

One of the most well-known open-source JavaScript frameworks is React,
which was developed in 2013 by a Facebook software developer called
Jordan Walke.

On GitHub, the React community has received more than 180k stars.
React is used and adored by around 40% of developers globally.
Despite a minor decline in use satisfaction in 2020, React is still a popu-

lar option for new developers joining the IT industry.
It is simpler to learn, has stronger community support, and is

lightweight.
Simform used React as well because of how lightweight it is to create

a user-friendly component-driven frontend online application for the
International Hockey Federation (FIH).

How It Operates

•	 Developers may include HTML snippets into JavaScript files thanks
to React’s usage of JSX.

•	 The React library integrates seamlessly with state management, rout-
ing, and APIs.

•	 The React library employs an in-memory cache to create a virtual
DOM. The components’ prior and subsequent states are compared
by the virtual DOM. Based on that, only components whose statuses
have changed are rendered by the actual DOM.

•	 Developers may nest by using the framework’s one-way data bind-
ing, which is a unidirectional flow of data.

•	 When executing code, it makes use of lifecycle methods like
componentDidMount.

Real-life examples
Popular websites like Facebook, Netflix, Asana, Pinterest, Airbnb,

Reddit, UberEats, etc. have all been designed using React.

The Clearer Picture    ◾    215

Popular React Components

•	 Material UI: A beautiful UI design may be produced with the mate-
rial UI set of react components. It has several features, including sty-
listic elements for making widgets like forms, navigation, and layouts.

•	 React Semantic UI: Simple sentences are used by React Semantic UI
to activate built-in functionality. Additionally, the interface has a wide
variety of themes that provide developers total creative flexibility.

•	 React Toolbox: It is a collection of React components created in
SASS that follows Google’s guidelines for material design. To import
SASS stylesheets, it makes use of CSS modules. The library offers
adaptable and customizable solutions with easy integration with
React webpack.

Advantages

•	 Facebook supports communities.

•	 Writing components without classes is possible.

•	 Recognized for its reusable code components.

•	 Suitable for beginners.

Disadvantages

•	 There is insufficient and credible documentation.

•	 Constant updates force developers to keep up with new developments.

•	 Learning JSX syntax may be difficult.

When Should We Utilize React?
React is the most effective option for creating Single-Page Applications
because of its Virtual DOM features (SPAs). Additionally, React has a
strong community and is a great choice for creating complex apps.

2. Vue.js

Vue.js is an open-source frontend framework created and maintained by
Evan and his team that was first made available 7 years ago. These days,
Vue.js is often used for lightweight frontend apps that must function on a

216    ◾    Conquering JavaScript

JavaScript framework. It came to the third place among frameworks in a
Github poll done in 2021. By using this framework, close to 700k websites
have been created. When developing code, Vue.js is a full framework that
offers more flexibility. The framework is further renowned for its suitable
size and quicker loading times.

How It Operates

•	 Virtual DOM is used by Vue.js to provide state updates and
modifications.

•	 Both one-way and two-way data binding are supported by vue.
js. Reactive two-way data binding is the term for this capability. It
implies that React makes it simple to modify the data between a
component class and its template.

•	 The ecosystem of Vue.js is rich. We may still create hybrid mobile
apps with Quasar Framework, NativeScript, or Ionic even if it lacks
its own mobile framework.

•	 JSX is also used by Vue.js. Vue.js can import and maintain custom-
ized components quickly by using JSX.

•	 As it provides a variety of methods to apply transition effects, Vue.
js is feature-rich with CSS transitions and animations. Users of Vue.
js may make use of the transition wrapper, unique transition classes,
JavaScript hooks, and other features.

Real-Life Examples
Popular businesses like Alibaba, 9gag, Xiaomi, and others have used Vue.
js for all of their frontend needs.

Popular Vue.js Components

•	 A Vue.js component library called Element UI has 500 active devel-
opers and strong community support. The component places a heavy
emphasis on minute details, assisting both developers and designers
in creating a beautiful and engaging user interface.

•	 Unofficial Vue.js material design framework Vuetify enables you to
build reusable, squeaky-clean components that are compatible with

The Clearer Picture    ◾    217

Server-Side Rendering, or SSR. Github now has 23k stars for it, and
both the community and popularity are rapidly expanding. Over
400 people have contributed to the active Vuetify community, which
has produced more than 20 plugins.

•	 A UI kit based on the Bootstrap library is called Bootstrap Vue.js.
Developers may use this kit with Vue.js to create responsive, mobile-
first apps using bootstrap version 4. The kit is jam-packed with a grid
system, many UI elements, and themes.

Advantages

•	 The framework is simple for new users.

•	 Vue.js provides thorough documentation.

•	 Two-way data binding is supported.

•	 Is quite small and simple to incorporate.

Disadvantages

•	 Lacks a wide variety of plugins to choose from.

•	 The developer community is not very big.

•	 No tech giant is supporting the framework.

•	 Not appropriate for scaling.

When Should We Utilize Vue.js?
With Vue.js, we may use a framework that goes beyond a simple library
and doesn’t complicate code. Vue.js is the answer if you’re searching for a
forgiving design that yet keeps logic and view separate.

It assists in developing SPAs or launching smaller initiatives in terms of
apps. Vue.js is the finest alternative on the market if we want a variety of
developer-friendly capabilities like tree-sharking, code-splitting, etc.

3. Angular

Google created the TypeScript-based open-source web application frame-
work known as Angular. This framework’s version 2 included fundamen-
tal components including dependency injection, asynchronous compiles,
RxJS, etc.

218    ◾    Conquering JavaScript

It has become very popular among developers. Nearly 60% of engineers
have actual experience working with the Angular framework, according
to a poll by Ideamotive. Simform specialists also used Angular to create
the FoodTruck Spaces online application.

How It Operates

•	 A full-featured MVC framework is Angular. It helps in building an
organized application.

•	 The architecture provides data flow in both directions. Using the
controller, this functionality allows Angular to link the DOM to the
model data. We may listen to events and change the data between
parent and child components concurrently using bi-directional
data flow.

•	 Despite its flaws, Angular’s environment is amazing. We may use
the numerous out-of-the-box solutions it offers to build quick and
effective applications. For instance, nothing has to be installed or
configured in order to use server-side rendering with Angular.

•	 All of the code components are very tested and reusable thanks to
Angular’s hierarchical dependency injection functionality.

•	 Due to its rapid mistake detection and useful feedback choices,
Angular’s debugging is often less difficult.

Real-Life Examples
Numerous Google services have been created using Angular.

Other well-known websites created using Angular include those from
Forbes, LEGO, Autodesk, BMW, etc.

Popular Angular Components

•	 The Angular component library Ngx-bootstrap is perfect for incor-
porating bootstrap components into your project. For improved effi-
ciency and a responsive user interface, the bootstrap components are
created using Angular.

•	 Angular Material is a set of reusable UI components that draws inspi-
ration from Google’s Material Design. This toolkit offers a wide range
of UI design elements, responsive grid layouts, and different themes.

The Clearer Picture    ◾    219

Advantages

•	 The component-based design of Angular provides flawless model-to-
view synchronization.

•	 Offers reusable, thoroughly tested components.

•	 Angular has a sizable development community and is supported by
Google.

•	 Provides sophisticated features like dependency injection and
directives.

Disadvantages

•	 The structure doesn’t lend itself well to beginners. Users must get
familiar with MVC before using the framework.

•	 Restricted SEO abilities.

•	 File sizes have increased significantly.

When Should We Utilize Angular?
Because it is a complete framework, Angular is appropriate for creating
massive corporate applications. It also leverages MVC architecture, which
enables smooth integration of sophisticated features.

4. jQuery

Prior to the creation of contemporary JavaScript libraries and frame-
work, jQuery dominated the IT industry. It is one of the first open-source
JavaScript libraries and is lightweight and feature-rich, having been
released in 2006 by John Resign. One of the best JavaScript frontend
frameworks, according to experts.

It is used by 95.5% of all websites that employ JavaScript, according to
a W3Techs study. JavaScript scripts are recognized to be minimized by
jQuery, which also provides strong assistance from its knowledgeable and
mature community.

How It Operates

•	 For its event handling skills, jQuery is well-known. Even user actions
like mouse clicks and keyboard presses are condensed into little
pieces of code for simpler administration.

220    ◾    Conquering JavaScript

•	 The syntaxes of jQuery and CSS are pretty similar. Beginners may
thus get practical experience with the framework rather quickly.

•	 The framework’s most recent iteration now comes with jQuery
Mobile for creating scalable mobile apps.

•	 It is a simple-to-use framework with a straightforward API that
works with several browsers.

•	 One of the lightweight frameworks supporting AMD modules
is jQuery, which has a 30kb zip size for a blank project. By using
AMD modules, you can manage our UI dependencies without using
Download Builder. The module also helps us load the source code for
jQuery UI using an exclusive AMD loader like RequireJS.

Real-Life Examples
Twitter, Microsoft, Uber, Pandora, SurveyMonkey, and other well-known
companies have used jQuery in their apps.

Popular jQuery Components

•	 A jQuery UI is a free library with a variety of UI elements for our
next project. The library is an expansion of dynamic and interactive
widgets that programmers may use to improve the user interfaces
of their applications. Tree view, form widgets, color pickers, charts,
RTL support, and other noteworthy elements are just a few. In addi-
tion, this library provides consistent performance across a range of
browsers, platforms, and devices.

•	 A jQuery-based widget library for jQuery mobile is called Wijimo.
JQuery is used to power the tool, which results in greater perfor-
mance. It offers more than 30 themes, support for RTL, video wid-
gets, animation widgets, etc. Additionally, this widget is compatible
with both online and mobile platforms.

•	 A free plugin called Muuri allows us to build flexible layouts with
jQuery. We have total control over the grid container’s location and
dimensions thanks to the plugin. When working with jQuery to cre-
ate an intuitive UI, developers may unleash their inner designers
thanks to the freedom.

The Clearer Picture    ◾    221

Advantages

•	 All widely used web browsers are compatible with the framework.

•	 Offer exemplary community assistance.

•	 The learning curve for jQuery is not very severe.

•	 Provides a huge selection of plugins.

Disadvantages

•	 Because it contains all DOM events, effects, and AJAX components,
the file size is enormous.

•	 DOM APIs are dated.

•	 Due to the lack of a data layer, DOM modification is a laborious and
manual procedure.

When Should We Utilize jQuery?
jQuery is still the best option for delivering web-based and desktop
JavaScript applications since it has cross-browser compatibility.

5. Svelte

Svelte is a framework that is an open-sourced frontend compiler, while
the majority of the frameworks on this list are complete frameworks or
libraries.

It was first shown in 2016 and quickly became well-liked by the devel-
oper community.

More than 25k websites have been created using it as of right now.
An application created using Svelte creates code to change DOM as it is

only a compiler.
It is one of the frontend frameworks that are lightweight as a result.

How It Operates

•	 The MVC architectural concepts are used to segregate the template,
logic, and view in the Svelte application. It enables numerous devel-
opers to collaborate on the same project at once.

222    ◾    Conquering JavaScript

•	 With Svelte, we can blend basic JavaScript with HTML, CSS, and
TypeScript.

•	 Svelte uses minimal resources since it doesn’t need anything extra to
create a virtual DOM. It makes the total loading time of the program
substantially faster.

Real-Life Examples
Many well-known companies have used Svelte to create their websites and
benefited from its ease of use. A few examples are The New York Times,
Absolute Web, Cashfree, Godaddy, and Razorpay.

Popular Svelte Components

•	 Svelte Material UI is a collection of TypeScript-written Material UI
elements. SASS is used to style the Svelte Material UI. Developers
may create unique user interface components using a variety of wid-
gets and tools provided by SMUI (Svelte Material UI).

•	 Svelte-flow is a Flowbite-powered Svelte UI component that may help
you design websites more quickly. Dark modes, buttons, modals,
cards, a navbar, etc. are all included.

•	 Carbon Components Svelte—It is the Carbon Design System, an
open-source design tool developed by IBM. It has about 7,000 icons,
700 pictograms, 20+ charts, and other things.

Advantages

•	 Code into vanilla JavaScript is converted.

•	 The structure is quite light.

•	 Provides support for component-based architecture.

Disadvantages

•	 A little ecosystem.

•	 There aren’t many Svelte tools on the market.

•	 Is difficult to scale.

The Clearer Picture    ◾    223

When Should We Utilize Svelte?
The USP of Svelte is simplicity. Svelte is best used for small-scale undertak-
ings as a result. Its straightforward coding style makes it accessible to any
beginner frontend developer.

6. Ember

Ember is a free JavaScript framework that supports both MVVM and
MVC architectures. It was first released in 2011. By using the capabili-
ties provided by Ember, more than 70k websites have been created.

One of the fastest rendering engines on the market, Glimmer, is the
foundation around which Ember is based. Ember focuses primarily on
creating web-based apps.

However, Ember has developed over time and currently provides whole
support for creating mobile-based apps. Ember is one of the most reliable
frameworks and is ideal for creating scalable one-page apps.

How It Operates

•	 Ember provides two-way data binding that instantly synchronizes
display and model.

•	 Through its server-side DOM rendering, Ember uses fastboot.js to
enhance the efficiency of complicated user interfaces.

•	 Ember’s community is one of the busiest ones around right now.

•	 A large ecology exists in Ember. There is probably a plugin to make
every function you ever find difficult to include easy. More than
1,500 add-ons are available for Ember to help anybody with their
development endeavors.

Real-Life Examples
Ember was used by several well-known companies for their business
requirements.

Ember has been utilized by companies including Apple Music, Square,
LinkedIn, Netflix, Twitch, and others. Apple Music is one of the notable
instances of a desktop application built using Ember.

224    ◾    Conquering JavaScript

Popular Ember Components

•	 The process of transforming naming conventions into classes, methods,
and templates is carried out by the well-known plugin Ember Resolve.
Usually, this is beneficial when Ember has to resolve its dependencies.

•	 Ember test helpers are a plugin that offers a number of utility meth-
ods to enhance your testing experience. DOM interaction helpers,
routing helpers, rendering helpers, and other utility methods are
included in the plugin.

•	 Ember-concurrency is a condensed plugin for Ember.js that enhances
the concurrency/async functionalities. We may use the task primi-
tive it provides, which has several advantages including permitting
cancellation and exposing the underlying data.

Advantages

•	 Ember provides rendering on the server.

•	 Both TypeScript and JavaScript are supported.

•	 Ember features extensive and in-depth documentation.

•	 It has a solid data layer that is incorporated.

Disadvantages

•	 The structure may be a bit challenging for beginners.

•	 There is no way to reuse components.

•	 Provides no customization.

•	 Not suggested for little tasks.

When Should We Utilize Ember?
Component-based design and the abundance of plugins at our disposal
might be the ideal partners for creating complicated mobile apps or single-
page web applications.

7. Backbone.js

Backbone.js is a JavaScript library that was released as an open-source
project in 2010 by Jeremy Ashkenas. It is renowned for being portable.

The Clearer Picture    ◾    225

But for complete library compatibility, the framework largely relies on
underscore.js and jQuery. Simform used the capabilities of backbone.js to
create SenTMap, a sentiment analysis engine.

How It Operates

•	 One of the key aspects of Backbone.js is the ability to divide business
logic from user input logic. This aids programmers in creating an
application that is properly structured.

•	 Developers are urged by Backbone.js to turn data into models, DOM
operations into views, and connect the two together via events.

•	 The framework gives client-side web applications powerful APIs
with enumerable methods.

•	 Backbone.js automatically refreshes our application’s HTML if the
architecture’s model changes.

Real-Life Examples
Backbone.js has been used by a number of well-known companies,
including Uber, Pinterest, Reddit, Trello, and Tumblr, to fulfill applica-
tion needs.

Advantages

•	 There are more than 100 extensions offered.

•	 The framework is simple for new users.

•	 Very portable.

•	 Data is kept in models rather than the DOM.

Disadvantages

•	 There is no two-way data binding functionality.

•	 At times, architecture seems to be complicated and hazy.

•	 More boilerplate code must be written by us.

•	 The developer community thinks that the framework is gradually
getting outdated.

226    ◾    Conquering JavaScript

When Should We Utilize Backbone.js?
Backbone.js may be used for larger projects and is best suited for basic
single-page apps.

How Can We Choose the Ideal JavaScript
Framework for Our Next Project?

It is challenging to keep track of all the variations across frameworks.
The harder part is deciding which one to employ for our project.
Making the incorrect choice might be a terrible bet on our time and

project money.
Unfortunately, it is difficult to tell which framework is the greatest suit

for us.
Our company needs will determine the framework to use, but the fol-

lowing four considerations might aid in your choice.

Team Proficiency
The most common one is a framework, if there is such a thing.

However, developers won’t be able to take full use of this framework if
our current team isn’t at ease utilizing it.

Choose a framework that our team has the greatest expertise with, or
recruit remote workers to take advantage of market-leading frameworks.

Backward Compatibility
A frontend framework helps in coding the application, but the backend
must also be taken care of.

For an application to be completely functional, the frontend and back-
end must communicate smoothly.

Choosing a frontend framework that complements your backend is a
good idea if you have already established your backend.

If not, we will have to deal with difficulties such as integration prob-
lems, compatibility problems, etc.

Complexity
Choose a framework based on MVC architecture if you’re creating a com-
plicated web application with several sub-pages and capabilities. We will
be able to divide your features into sections that can be developed concur-
rently by doing this. Our development time will be greatly shortened by
doing this.

The Clearer Picture    ◾    227

However, using a lightweight framework to create complicated applica-
tions might be disastrous. A less robust framework cannot manage the
complexity and will eventually experience several issues.

Size and Functionality
Ideally, a framework shouldn’t have a lot of features. Several frameworks
may seem to be quite sophisticated yet are challenging to deploy. Focus
on achieving maximum performance if we’re creating a straightforward
system with few features. As a rule of thumb, you should aim for a happy
medium between performance and size when designing a framework.

5 Backend JavaScript Frameworks

The web is powered by JavaScript when it comes to web development.
JavaScript is in charge of websites’ programmed behavior, including

loading and reloading new page material without completely refreshing
the page, animating page components, and verifying user input into online
forms. HTML and CSS manage the style and data shown on a page.4

The popularity of JavaScript has led to the emergence of a wave of
frameworks throughout time. For JavaScript developers, it feels like a new
framework debuts every week, each claiming to be superior to the previ-
ous one.

There is a constant need for these items since millions of websites
depend on third-party JavaScript libraries and frameworks.

What about the backend? We’ve previously covered some of the most
well-liked frontend JS frameworks. Even while some frameworks are simi-
lar, it’s best to avoid mixing together front- and backend programming,
particularly when using something as important as JavaScript.

For instance, JavaScript is often used with server-side and other non-
browser applications, which requires developers to approach their work
fundamentally differently.

	 1.	Next
Although it first sounds a bit strange, the Next framework makes

it incredibly simple to share JavaScript code across the project.
This eliminates the need to write the same job in many languages

of code.
Nearly, the same component is used for displaying client-side

markup and querying a datastore.

228    ◾    Conquering JavaScript

Everything about creating with Next becomes pretty intuitive
once you master the fundamentals.

‘With Next, we get highly well-maintained documentation as well as
the same setup simplicity as we do with projects like create-react-app.

It is maintained by Vercel, a firm that was originally known as
Zeit, and it contains a library of examples for almost every use case
and integration that is currently in use.

Their deployment platform is something we also like.
Due to the fact that the API routes and pages we build are con-

verted into lambda functions, Next was essentially built to be
deployed with Now.

In my opinion, developers may save a tonne of time by concentrat-
ing more on application problems rather than AWS console issues.

Because we get a framework that handles server-side rendering,
simple to configure API routes, and is generally a better create-react-
app, we believe we would prefer Next over Gatsby or other Node
backend tools. They’re all beneficial in various ways, but because we
tend to work alone on many projects, my choice for launching using
Now seals Next for me.

It is marketed as a fantastic framework for everything production-
related, from TypeScript and built-in CSS support to code-splitting
and packaging. Next.js is now up to version 9.5. The first edition was
released in October 2016.

	 2.	Express
Express.js is a great option for developing online apps and server APIs,

according to Kirill Onishuk, a full-stack web developer at OrangeSoft.
Its quickness, simplicity, and flexibility provide all the capabilities

required for creating both simple and complicated programs.
Installing the necessary npm packages enables it to be readily

extended, allowing for the solution of any issue.
Express offers a layer on top of node.js that does not restrict its

functionality, allowing us to use its features quickly as well.
Because Express offers a wide variety of template engines, Onishuk

said, ‘it is appropriate for creating apps with server rendering’ (for
example, pug and handlebars).

It has several HTTP service methods and intermediary handlers
for API development.

The Clearer Picture    ◾    229

	 3.	Gatsby
Gatsby may be used without a server since the pages can be devel-

oped locally and then pushed to an object store and CDN, according
to Up Hail’s founder Avi Wilensky (i.e., AWS S3 and Cloudfront).
The design offers speedy performance while reducing expense and
complexity.

With a vast library of more than 2,000 plugins, Gatsby is also
scalable.

Gatsby, a React and GraphQI-based framework, works well for
building relatively static webpages with services connected (via its
plugins, of course).

The fact that Gatsby does not do server-side rendering makes
webpages created with it very quickly, but it may also be restrictive.

	 4.	Node.js
‘At Riseapps, Node.js is the preferred JavaScript backend

architecture.
We choose this architecture mostly because it allows us full-stack

JS development.
This makes it easy to reuse code on both the frontend and the

backend, which is a major benefit given how often we utilize React
and Vue.js.

A web application that uses JavaScript on bothends loads
extremely rapidly and fluidly. ‘The applicability of Node for real-
time applications, particularly those for communication, would be
the next justification.

A framework that makes software quickly responsive is essen-
tial as we develop several applications with calling and messaging
features.

Apps created with Node.js may also effectively manage numerous
user requests.

‘At long last, this JS design enables the development of scalable
apps. This framework’s nature makes the software it produces effi-
cient and readily adaptable to changing needs.

For developers of all stripes, Node.js provides a wide range of
applications.

In the context of AWS, where you may use it to launch EC2
instances, it is quite helpful.

230    ◾    Conquering JavaScript

It is used by businesses including IBM, Microsoft, Netflix, and
Walmart as part of their infrastructure and web servers. In other
words, you should study it if we want to work for a large organization
that primarily relies on cloud infrastructure.

	 5.	Meteor
Another framework that resembles a platform a little more is

Meteor.
Christian Fritz, the company’s founder and CEO, provides an

excellent summary: ‘Meteor has a package system, capabilities for
building and deploying, and testing support.

Even while it has certain features in common with other frame-
works like next.js or gatsby, it is nevertheless unique in a number of
important ways.

The DDP protocol, which is exclusive to Meteor, is used for data
synchronization.

Simply described, DDP selectively synchronizes collections in the
client-side minimongo database and the server-side mongo database.

This eliminates the need for the developer to write API code for
data transmission between the client and server, as I would if I were
to use Express, and it does it in a very beautiful way: It uses reac-
tive behavior on the client so that when new data comes, the page
changes reactively using either React or another reactive framework.
It only transmits patches, preventing the needless sending of repeti-
tive data (Vue, Angular, Blaze).

Although many users now utilize GraphQL to reduce the need to
write API code, Meteor still stands out for its live and reactive char-
acteristic of the data ‘just being there.’

This is ideal for any online application where users add to or mod-
ify material since it allows users to share their work in real time and
smoothly with other users.

‘The other thing I haven’t seen in that form anywhere else yet is
the possibility to create packages that have both a client and a server
part.

Account management is the finest illustration of how this func-
tionality is important.

For user management and authentication, a developer often has
to choose two libraries—one for the frontend and one for the back-
end—and then figure out how to integrate them.

The Clearer Picture    ◾    231

There are several hazards and it typically needs the developer to
understand a little bit more about both of the selected libraries than
they would want.

This is easy to do using Meteor.
For example, if you install the ‘accounts-password’ package, you

get a user database on the server with (hashed) passwords and the
necessary UI with login/signup/forgot-password/etc. capabilities on
the client, and all the communication is already taken care of.

We may install further packages like ‘accounts-google’ for single
sign-on with Google (and a similar package for Facebook or other
social logins) just as easy.

Because it is developed in Node.js and interacts with MongoDB, a
well-liked cross-platform database engine, Meteor is very beneficial
for developers creating business solutions.

THE EIGHT TOP JAVASCRIPT GAME ENGINES
Scripting language JavaScript is cross-platform and interpretive. It is
renowned for creating websites. It is also used in a lot of settings outside of
browsers.5 Both client-side and server-side development can be done with
JavaScript. This session will examine the top 8 JavaScript gaming engines
that every JS developer should be familiar with.

	 1.	PixiJS
PixiJS is a 2D rendering library that is very quick and versatile.
We can make interactive, aesthetically beautiful visuals using

PixiJS, which also supports cross-platform apps. Without prior
WebGL experience, programmers may use the Pixi renderer to
take advantage of hardware acceleration (it also supports a Canvas
Fallback).

It does not, however, have a built-in physics engine.
It is a completely free open-source library, and a very supportive

community is what fuels its development.

	 2.	Phaser
The creation of cross-platform gaming apps is a breeze using

Phaser. Amazingly, it employs both a WebGL and a Canvas renderer
internally and can switch between them dependent on browser sup-
port. Canvas is used for devices that don’t support WebGL.

232    ◾    Conquering JavaScript

A sizable community of game creators using Phaser and a variety
of plugins are both behind it. It is among the most popular gam-
ing frameworks and engines right now on GitHub. For development,
JavaScript or TypeScript may be utilized.

	 3.	Babylon.js
Babylon JS is a stunning, effective, and straightforward rendering

engine.
It provides programmers the ability to build nearly anything in

your browser, from animated logos to fully interactive 3D games.
Since it was created particularly for visualization, it isn’t really a ren-
dering engine for games, but you can still create strong games with
it.

Due to its active and supportive developers, it has great commu-
nity support.

It has a playground so that you may experiment before moving
further with development.

	 4.	PlayCanvas WebGL Game Engine
Without the requirement for a plugin, it leverages HTML5 and

WebGL to run gaming apps and any other interactive 3D content on
any mobile or desktop browser.

This indicates that you will be using their platform to write code,
test it, and set up your scenes by quickly exporting your games. In
contrast to Babylon JS, it places more emphasis on the Game Engine
than the Rendering Engine.

The 3D rigid-body physics engine ammo.js makes it incredibly
simple to add physics to your game.

	 5.	Melon.js
It is a highly effective, lightweight, and user-friendly HTML5

game engine that enables designers and developers to concen-
trate on content by including the well-liked Tiled map format. Its
major goal is to provide a user experience without plugins (It needs
nothing but an HTML5-capable browser to function). To guaran-
tee minimal CPU demands, it uses lightweight physics. It is a free
open-source project that is backed by a vibrant group of dedicated
developers.

The Clearer Picture    ◾    233

	 6.	GDevelop
It is an open-source, fully functional game production tool with

a primary emphasis on 2D game development, although it may be
used to create any kind of game.

Events is a tool that allows you to intuitively design the game logic
without any prior knowledge of any particular programming lan-
guage, and that is what distinguishes it from other game engines.

The Web, Windows, Android, iOS, macOS, and Linux are just a
few of the platforms on which GDevelop games may be published
and played.

It may be instantly exported to Android.

	 7.	Kiwi.js
For creating games that function in HTML5 browsers, an open-

source game framework is very simple to utilize.
Given that WebGL rendering has been increased, speed is its pri-

mary concern.
For the purpose of distributing games to mobile devices as native

applications, the Cocoon.js framework is used.

	 8.	Three.js
This project’s primary objective is to simplify WebGL use.
You can work with WebGL with a lot less lines of code when using

three.js.
It supports Canvas 2D, CSS3D, and SVG renderers in addition to

WebGL as the default renderer.

10 MAJOR JAVASCRIPT FRAMEWORKS
FOR DEVELOPING MOBILE APPS
JavaScript, which was formerly fundamental to the creation of dynamic
webpages on the World Wide Web, is now a popular choice among app
developers.

Businesses and developers now have a streamlined option to create
dynamic UI, with less lines of code, thanks to JavaScript frameworks for
designing mobile applications.

The amount of developers using JavaScript to create mobile applica-
tions has increased recently.6

234    ◾    Conquering JavaScript

There are hundreds of JavaScript frameworks to choose from for devel-
oping online, desktop, and mobile apps due to the language’s widespread
use.

Here are the top 10 JavaScript frameworks that let programmers create
native and hybrid mobile applications that run on several platforms.

1. React Native

In 2015, Facebook unveiled React Native, an open-source framework for
creating native applications that can run on several platforms.

Mobile applications developed using React and JavaScript are indistin-
guishable from those written in Objective-C, Swift, or Java.

The React library, written in JavaScript, is used to construct user
interface components for websites; React Native is an offshoot of this
framework.

When compared to the hundreds of other JS frameworks available, this
one stands out due to its premium features, such as its declarative pro-
gramming approach, virtual DOM, and reusable components to develop
UI.

In What Ways Is React Native Superior?

•	 To create scalable applications, developers may mix and match React
Native code with native code written in Objective-C, Swift, or Java.

•	 By contrast, developers who are well-versed in JavaScript will find
learning React and creating React Native applications to be a breeze.

•	 For the development of portable programs that can run on several
platforms, check out this JavaScript framework. Because they share
80% of their code across the Android and iOS platforms, React
Native apps save developers a tonne of time and effort when it comes
to building complex mobile applications.

2. NativeScript

NativeScript is a free and open-source framework for developing cross-
platform native applications using Angular, Vue.js, TypeScript, or
JavaScript.

It enables web developers to use their existing skill set to create native
mobile experiences.

The Clearer Picture    ◾    235

NativeScript allows developers to create native mobile applications
using Vue CLI, VueX, and other Vue framework capabilities. NativeScript
also combines with recent Angular full-stack capabilities including router
support, code generation, interaction with the Angular CLI, and so on.

Why Is NativeScript Used?
NativeScript allows developers to use existing plugins from npm, CocoaPods
(iOS), Gradle (Android), as well as hundreds of NativeScript plugins.

A single codebase may be developed and distributed across different
platforms (Android and iOS). Angular or Vue.js may be utilized for code
sharing. Web developers may construct native mobile applications using
their current web expertise (JavaScript, CSS, Native UI Markup).

3. Ionic

Ionic is another well-known javascript framework for creating hybrid
applications.

Understanding the framework of an Ionic app is simple for developers
who are familiar with web technologies and web app development. Users
are unaware that hybrid applications are running in a full-screen browser
called WebView.

They may use native capabilities of mobile devices such as cameras and
touch ID without connecting the core code to the device by using custom-
izable native plugins.

Why Is Ionic Used?
A hybrid app codebase may be utilized across multiple platforms (Android
and iOS), lowering development costs (as compared to native applications)
and time to market.

When developing hybrid applications with Ionic, developers may use
Cordova plugins to access a mobile device’s hardware and software func-
tionalities. Existing web development skills (HTML, CSS, and JavaScript)
may be used to create mobile applications.

4. Apache Cordova

Apache Cordova (formerly PhoneGap) is a hybrid app development plat-
form that encapsulates HTML or JavaScript programs in a native container.

A plethora of technologies, frameworks, and cloud services are avail-
able to improve Cordova’s speed.

236    ◾    Conquering JavaScript

Popular names include Visual Studio, Ionic, Framework7, Monaca,
Mobiscroll, and others.

Given the potential of Cordova, the contributors to this framework
include tech titans such as Adobe, Microsoft, Blackberry, IBM, Intel, and
others.

Why Was Cordova Chosen?
There is a large community of Cordova plugin developers.

As a consequence, the framework enables developers to access a large
variety of plugins, allowing them to access device functions and so expand
the scope and size of the program. It is feasible to deliver code for several
platforms (iOS, Android) with Cordova, making app development more
cost-effective.

5. OnSenUI

OnSen UI is a JS framework that allows you to create hybrid mobile appli-
cations using HTML, CSS, and JavaScript. Onsen UI is compatible with
AngularJS and Angular 2+, React, Vue, and jQuery, allowing developers
to transition between libraries and frameworks when creating interactive
user interfaces.

Why Use OnSen UI?
OnSen UI includes a vast collection of sophisticated UI components that
are particularly built for mobile applications. Monaca and OnSen UI get
along swimmingly.

Monaca provides a robust command-line tool and desktop interface to
help with complex tasks.

6. jQuery Mobile

With so many smartphones on the market, it is critical to be cautious
while building a mobile application that not only loads quicker but is also
customizable and usable across several platforms.

When it comes to developing a faster-loading app, jQuery Mobile tops
the list when compared to other frameworks.

•	 Cross-platform apps may be created more quickly by developers.

•	 It is a low-cost hybrid mobile app development.

The Clearer Picture    ◾    237

•	 HTML5 and CSS3 are utilized to create a more touch-friendly user
interface.

•	 Because it is a lightweight framework, the software loads quicker.

•	 Navigation driven by Ajax with dynamic page transitions.

•	 A consistent user interface across all platforms and devices.

7. Mobile Angular UI

Mobile Angular UI is an HTML5 framework that uses AngularJS and
Bootstrap 3 to create highly interactive mobile applications. If we like
Angular, this is the Framework for us.

This framework not only provides crucial mobile components such as
switches, sidebars, and overlays, but it also assists the website in becoming
responsive in the form of an application.

•	 Aids in the quicker and easier binding of data.

•	 Modifications will be reflected in the model immediately.

•	 Reduces the load on server CPUs by facilitating caching and other
tasks.

•	 More rapid application prototyping.

8. Sencha Touch

Sencha Touch allows you to tailor precisely how users interact with the
program based on their preferences by adding a slew of features.

Sencha Touch is a popular HTML-based framework used to design
apps that run quickly on all platforms without the need to update the code
for each one.

•	 Provides apps with high-level responsiveness.

•	 It works with the most recent versions of Android, iOS, and
BlackBerry.

•	 The program is loaded as quickly as possible.

238    ◾    Conquering JavaScript

9. Titanium

Titanium, an ancient framework for hybrid mobile app development,
gives straightforward and transparent access to most native capabilities.

Developers may create native apps as well as hybrid and web apps using
web technologies such as JavaScript and CSS.

•	 Developers may quickly create apps that are compatible with
Android, iOS, and other platforms.

•	 Functional entities enable the development of high-performance
applications.

•	 Because it comes with an integrated environment, we can create
rapid prototypes.

•	 Open-source alternative that is very cost-effective.

•	 Because it supports sophisticated web technologies, the code struc-
ture has been simplified.

10. Meteor

Meteor is a platform that is free and open source. It is a popular JavaScript
for mobile applications. This JavaScript framework not only allows for
quick prototyping and cross-platform coding, but it also provides us con-
trol over our application.

•	 JavaScript code may be modified without any programming
knowledge.

•	 Meteor is well-known for its speed and ease of deployment.

•	 Removes bugs that most new programs seem to have.

•	 Provides a lot of versatility between platforms and devices.

•	 External libraries and a variety of plugins may be used.

THE BEST JS FRAMEWORKS FOR DESKTOP APPLICATIONS
A cross-platform program is one that operates on many operating systems.

This is incredibly handy for both the client and the developer: develop-
ing a cross-platform solution saves time and money, and makes the pro-
gram simpler to maintain.7

The Clearer Picture    ◾    239

Desktop apps may also be cross-platform, but they need a unique meth-
odology to account for all of the quirks of desktop PC operating systems.

Are Cross-Platform Apps Interchangeable with Desktop Programs?

The correct response to this question is ‘both’ and ‘neither.’ A cross-plat-
form program, it seems, is a platform that works on several operating
systems. This is incredibly handy for both the client and the developer:
developing a cross-platform solution saves time and money, and makes
the program simpler to maintain.

Desktop apps may also be cross-platform (as discussed further in the
article), but they need a unique methodology to account for all of the
quirks of desktop PC operating systems.

The cross-platform desktop app is a high-quality, quick system that sat-
isfies the user and, as a result, provides considerable advantages to the
client.

The Advantages and Disadvantages of a
Standalone Level vs a Cross-Platform App

A standalone application is a software that runs locally on the device and
does not need anything more than the required level to work.

Because all logic is embedded inside the program, it does not need an
Internet connection or any additional installed services or tools in most
circumstances.

A cross-platform application is one that adapts to and runs on sev-
eral operating systems, as well as one that integrates online technology
with tools for designing operating software for smartphones and desktop
computers.

Everything, however, relies on your goal: what is the objective of the
application we are developing? Is the platform in need of upgrades, inter-
net access, or hyperlinks? Can it stand alone as an introduction platform
and so function without an online connection?

Are Desktop Apps Supported by React and NodeJS?

Yes will be the succinct response. But let us begin at the beginning.
ReactJS is a free and open JavaScript library for building user interfaces.
The method addresses the issue of partial updating of a web page’s con-

tent, which is faced in the creation of single-page apps.
React is a powerful framework developed in JavaScript.

240    ◾    Conquering JavaScript

The open-source framework is used to create interactive interfaces for
React desktop applications.

ReactJS is ideally suited for handling the design layer of complicated
apps, web apps, and even websites.

Node.js allows us to execute JavaScript programs on the server and
provide the results to the user. JavaScript has become a mainstream lan-
guage with a significant developer community thanks to the Node.js
platform.

Node is a server-side framework that is powered by Google Chrome’s
V8 JavaScript Engine.

This open-source platform is also used to develop networking and
backend applications.

Node JS desktop apps are simple to use, high quality, and speedy.

Top Five JS Frameworks for Desktop Applications (Desktop Apps)

1. Electron
This is an open-source framework. GitHub built it 7 years ago for the edi-
tor of the JS desktop application Atom.

This library will enable the development of a high-quality cross-plat-
form desktop application.

Electron makes use of web technologies such as JavaScript, HTML, and
CSS.

The Electron program has the benefit of allowing us to create desktop
apps that function similarly to online applications while also allowing us
to read and write data in our computer’s file system. The Electron frame-
work was used to construct the desktop platform Skype for the Linux
operating system.

2. NodeGUI
This is another open-source framework for developing cross-platform
desktop apps using CSS and JavaScript. It is possible to construct native
apps with the aid of this framework.

Here we will discover a collection of fee-based developer tools and wid-
gets that may be used to construct built-in UI platform pieces. There is
also a React-based variant.

The Clearer Picture    ◾    241

3. Proton Native
This is a relatively ‘new’ program on the market. Proton Native allows you
to create programs on the PC. This is comparable to what React Native
did for mobile devices. We may use the framework to construct interfaces
without interruption and manage the progress of cross-platform apps.
This is what distinguishes Proton Native as one of the finest JS frameworks
for creating apps for a variety of OS systems. Proton Native develops the
program using just native tools, takes very minimal computer space, and
does not use many resources.

The framework employs the same syntax as React Native and is com-
patible with the React and Redux frameworks. Another benefit is that it is
Node.js compatible.

4. NW.js
This is also a good JavaScript framework for desktop apps. It is open-
source Intel, which combines the Node.js framework with the Chromium
engine, previously known as Webkit.

With this high-quality combination, we can build an application on the
NW.js framework that not only loads the local webpage in the program
window but also connects to the operating system through the JavaScript
API.

This solution allows you to customize the size of windows, toolbars,
and menu items.

NW.js will also allow us to access files on our local PC. The framework
supports all browser features and may secure our JavaScript source. NW.js
is available for Linux, Mac OS, and Windows.

5. AppJS
This is a simple-to-use yet very powerful tool for developing cross-platform
apps. When developing an application, you do not need to learn a new lan-
guage. If we know the fundamentals of HTML, CSS, and JavaScript, we
can easily design applications for a smartphone.

Because AppJS is built on Chromium, the developer has access to the
most recent HTML5 APIs. AppJS may also be used to construct visually
appealing apps ranging from word processors to 3D games. In the default
mode, there are no GUI widget limits; therefore, the creation of user inter-
faces is now limited only by our creativity.

242    ◾    Conquering JavaScript

HOW TO SELECT THE BEST JAVASCRIPT
FRAMEWORK FOR OUR PROJECT
Many JavaScript frameworks are created and updated on a regular basis,
making it difficult to stay up with the times and choose which framework
is appropriate for our project. Before selecting any of these for our web
application, evaluate the unique needs of our project as well as the frame-
work’s strengths and limitations. IT businesses in Ukraine can assist with
project creation and selecting the optimal framework.8

Before beginning project execution, it is typically required to under-
take preliminary research to choose the best technology for our needs.
Before beginning any project, it must be thoroughly analyzed and evalu-
ated. However, there are several crucial factors by which we may estimate
the choice of a particular technology for development in advance:

Development Speed and Simplicity of
Use, as well as Project Support

The speed of development is determined by the technology utilized in our
project. If your project already makes use of technologies such as TypeScript
or JSX, Angular is a better fit. However, if we are beginning a project from
scratch, Vue.js is the ideal choice because it adheres to standards.

Trends

These frameworks are well-liked and will take the lead in the development
industry in the next few years. Vue, on the other hand, is fast gaining
popularity, followed by the React framework.

Scalability and Mobility

If we’ve decided to move a project from one framework to another, Vue.js
is the finest option. Because developers would most likely need to convert
TypeScript or JSX code to standard JavaScript and HTML if they wish to
rewrite Angular or React applications.

The Frequency of Updates

Another critical consideration is the frequency with which the framework
is updated. Every 6 months, Angular is extensively upgraded. Vue is as
reliable as it can be in this sense, with big changes every few years.

This session will discuss the three most popular JavaScript frameworks,
Angular, React, and Vue. They are the most well-known JavaScript frame-
works nowadays.9

The Clearer Picture    ◾    243

Which JavaScript Framework Should We Start With?

That is dependent on our aim. To begin, decide whether we want to work
on frontend or backend development. Are we interested in performing all
of the functions of a web app and coding behind the scenes?

Each JavaScript framework has its own official site where we may
download and start using the product (for example, React.js or Node.js).
Our framework classes will lead us through the following steps and how
to use all of the capabilities.10

Angular React Vue

If we are an extremely
structured person who
likes to keep everything
distinct, Angular is for
you. Each component and
functionality has its own
set of HTML, CSS, and
TypeScript files.

If we want to have everything
under the control, from the
row of a table to the location
of the buttons, and want to
reuse components, then
React is for us.

If we are a nice and clean
person who prefers
easy organization and
does not want to
navigate between files,
the Vue with its
extremely simple data
binding is ideal for us.

If we don’t want to deal with
the hassle of installing
third-party packages,
Angular’s built-in packages
are ideal. This built-in
package includes packages
for routing and forms,
among other things.

React allows us to install
packages of our choosing for
a variety of reasons. For
instance, there are several
packages available for
routing, but whatever
package we choose is
determined by our expertise
with the package.

Vue includes some
built-in packages as
well, but we may easily
add third-party
packages based on our
preferences.

If the project is fairly huge
and there are many
features to be created, then
Angular is the way to go
because it follows the
MVC pattern, and
managing the code for an
Angular Project is quite
simple.

If the project is small to
medium in scope and many
components are reusable, we
should select React for that
type of project since
component reusability and
component-based thinking
will enhance productivity
significantly.

Vue is utilized when the
application is small to
medium in size and
speed and performance
are the most important
aspects of the project or
application.

Data management is a key
notion in Angular, and you
can do it totally raw using
RXJS, or we can utilize the
NGRX framework and
Akita as well.

The Redux framework may
be used to manage data in
React.

In the case of Vue, we
may handle the data via
VUEX.

244    ◾    Conquering JavaScript

React.js
React.js was the most extensively used web framework if you eventually
want to focus on frontend programming. And it’s easy to see why React.js
is a frontend favorite: it allows us to create scalable, dynamic, and interac-
tive online apps.

There is a considerable discussion regarding whether React.js is a ‘frame-
work’ or a ‘library,’ which is a collection of previously published code that
we may use to create our own code. Because both libraries and frameworks
contain pre-written code that allows us to do anything, the small distinction
may make our head spin. While both libraries and frameworks may be use-
ful, frameworks often provide overall web programs with more structure.

Node.js
For those interested in backend programming, it’s ‘Node.js all the way.’
Node.js is a framework for developing desktop apps as well as a JavaScript
runtime environment (which implies it runs a server in the language).
Node.js can support asynchronous JavaScript code, which implies it can
run programs while waiting for a longer-running job to finish.

JAVA VS. JAVASCRIPT
JavaScript is a lightweight computer language that is utilized to make web
webpages dynamic. It has the ability to inject dynamic text into HTML.
The browser’s language is another name for JavaScript. JavaScript (JS) is
not connected to or similar to Java. Both languages have a C-like syntax
and are extensively used in client-side and server-side Web applications,
but the similarities end there.11

JavaScript has the following features:

•	 JavaScript was originally designed for DOM manipulation.
Previously, websites were primarily static; but, with the advent of JS,
dynamic Web sites were established.

•	 In JS, functions are objects. They, like any other object, can have attri-
butes and methods. Other functions can take them as arguments.

•	 Date and time can be handled.

•	 Although the forms are produced in HTML, it does Form Validation.

•	 A compiler is not required.

The Clearer Picture    ◾    245

Example: This is the most basic JavaScript example.

<script>
 console.log(“Welcome to Home”);
</script>

Java is an object-oriented language of programming with a virtual machine
platform that lets us develop compiled programs that run on almost any
platform. ‘Write Once, Run Anywhere,’ Java promised.

Java has the following features:

	 1.	Platform Independence: The compiler turns source code to byte-
code, which is subsequently executed by the JVM. This bytecode is
platform-independent.

	 2.	Object-Oriented Programming Language: Object-oriented pro-
gramming is a way of structuring a program in which each object
represents a unique instance of a class. The OOP concept is built on
four pillars:

•	 Encapsulation

•	 Abstraction

•	 Polymorphism

•	 Inheritance

	 3.	Simplicity: Java is a simple language because it lacks sophisticated
features such as pointers, operator overloading, multiple inheritance,
and explicit memory allocation.

	 4.	Robust: The Java programming language is robust, which implies
it is dependable. It is designed in such a manner that it makes every
attempt to find faults as early as possible, which is why the java
compiler can detect errors that other programming languages
cannot.

	 5.	Secure: Because we don’t have pointers in Java, we can’t access out-of-
bound arrays; if we do, we get an ArrayIndexOutOfBoundException.

246    ◾    Conquering JavaScript

	 6.	Distributed: Using the Java programming language, we may develop
distributed applications. For developing distributed Java applica-
tions, Remote Method Invocation and Enterprise Java Beans are
employed.

	 7.	Multithreading: Multithreading is supported by Java. It is a Java fea-
ture that permits the concurrent execution of two or more portions
of a program in order to maximize CPU usage.

Example: Here we have a basic Java program as an example.

// Import required classes
import java.io.*;

// the Main class
class PFP {

 // method of main driver
 public static void main(String[] args)
 {
 // Print-statement
 System.out.println(
 “Welcome to Home”);
 }
}

The following is the distinction between Java and JavaScript

Java JavaScriptVS

The distinction between Java and JavaScript

The Clearer Picture    ◾    247

PYTHON VS. JAVASCRIPT
We will discuss about the difference between Python and JavaScript below.

What Is JavaScript?

An interactive website can be written in JavaScript, a scripting language.
In accordance with client-side programming principles, it executes

locally within the user’s web browser, bypassing the requirement for
server-side processing. JavaScript is also compatible with other technolo-
gies, such as REST APIs, XML, and more.12

These days, JavaScript also uses Node js and other modern technologies.

Java JavaScript

Because Java is a tightly typed language,
variables must be declared before they may
be used in the program. The type of a
variable is verified at build time in Java.

JavaScript is a weakly typed language
with permissive syntax and rules.

Java is a computer language that is
object-oriented.

JavaScript is a scripting language that is
object-oriented.

Java programs may execute in any virtual
machine (JVM) or browser.

JavaScript code used to only run in the
browser, but it can now run on the
server thanks to Node.js.

Java objects are class-based, and we can’t
write a program in Java without first
establishing a class.

JavaScript Objects are built on
prototypes.

The Java application has the file extension
‘.Java’ and converts source code into
bytecodes that are then executed by the JVM
(Java Virtual Machine).

JavaScript files have the file extension ‘.js’
and are interpreted rather than
compiled; every browser has a
JavaScript interpreter for executing JS
code.

Java is a stand-alone programming language. if it is incorporated into a web page at
build time and combines with its
HTML content

Concurrency in Java is handled by threads. Concurrency in JavaScript is handled by
an event-based technique.

Multithreading is supported by Java. Multi-threading is not supported by
JavaScript.

Java is mostly used for backend applications. JavaScript is utilized for both the
frontend and the backend.

Java consumes more RAM. JavaScript makes use of less Memory.
To run the code, Java requires a Java
Development Kit (JDK).

JavaScript may be executed in any text
editor or browser terminal.

248    ◾    Conquering JavaScript

What Is Python?

Python is an advanced, object-oriented language with a high level of
usability.

It’s great for creating apps quickly because of its pre-built data struc-
tures and dynamic binding and typing.

Python’s module and package support further the system’s modularity
and facilitates code reuse. Due to the low barrier to entry (line count), it
is a rapid programming language. It’s perfect for newcomers because it
prioritizes clarity and ease of use. Key distinctions between Python and
JavaScript are outlined here.

Differences of Most Significance

•	 JavaScript is a scripting language that facilitates the creation of
interactive web pages, whereas Python is a high-level object-oriented
programming language that is suitable for quick application devel-
opment due to its in-built data structures, dynamic binding, and
typing.

•	 Mutable and immutable data types exist in Python but not in
JavaScript.

•	 JavaScript requires UTF-16 encoding due to its lack of in-built func-
tionality for handling raw bytes, but Python source code is ASCII
unless a different encoding is specified.

•	 Curly brackets are used in JavaScript whereas indentation is used in
Python.

•	 We may construct a property for a JavaScript object by composing
its underlying attributes, and in the Python programming language,
attributes are defined by use of the getter and setter methods.

•	 JavaScript may be used to create a website or native app, but Python
is better suited to more mathematically complex activities like data
analysis, machine learning, and scientific computing.

The Clearer Picture    ◾    249

Features of JavaScript

JavaScript’s primary capabilities are as follows:

•	 It’s popular for both client and server-side development because of
its portability between platforms.

•	 Methodology that is well-suited to testing.

•	 Quickly get started with coding and learn the language.

•	 Gives us more options to rely on.

Features of Python

Python’s primary capabilities are as follows:

•	 A breeze to pick up and keep in good shape

•	 It has portability and uses the same interface regardless of the hard-
ware platform it’s installed on.

•	 The Python interpreter may be expanded using low-level modules.

•	 Python’s robust framework and community make it a great choice
for large-scale software projects.

•	 Automatic garbage collection is a feature available in Python.

•	 Tests and fixes may be performed in real time.

•	 It allows dynamic type verification and provides access to high-level
dynamic data types.

•	 Python code is compatible with C, C++, and the Java programming
languages.

•	 Goroutines provide convenient support for several threads running
at once.

•	 Quick times for compilation

•	 Simple-to-deploy, statically-linked binaries

250    ◾    Conquering JavaScript

Comparison between Python vs Java Script

The primary distinction between Python and JavaScript is as follows:

JavaScript Python

JavaScript does not understand the terms
mutable and immutable.

Python supports both mutable and
immutable data types.

Because JavaScript lacks built-in
functionality for processing raw bytes, it
should be encoded as UTF-16.

Unless you provide an encoding format,
Python source code is ASCII by default.

JavaScript only supports floating-point
integers.

There are several numeric types in
Python, such as int and fixed-point
decimal.

Curly brackets are used in JavaScript. Python employs indentation.
JavaScript contains fewer modules such as
date, arithmetic, regexp, and JSON.

Python has a large number of modules.

JavaScript objects contain properties that are
made up of underlying attributes that allow
us to specify a property.

Getter and setter functions are used to
define attributes in the Python
programming language.

JavaScript employs an inheritance paradigm
based on prototypes.

Python employs a paradigm of class-
based inheritance.

JavaScript is a fantastic choice for mobile
development in addition to frontend and
backend programming.

Python is unsuitable for creating mobile
apps.

JavaScript may be used to create a website or
a native application.

Python is used for data analytics,
machine learning, and other math-
intensive activities.

TOBIE has a rating of 7. TOBIE has a rating of 3.
In the United States, the average annual
income for a JavaScript developer is
$114,856.

The annual compensation for a python
developer is $120,255.

JavaScript PythonVS

The distinction between Python and JavaScript

The Clearer Picture    ◾    251

JQUERY VS. JAVASCRIPT
We will discuss about the difference between jQuery and JavaScript below:

What Exactly Is jQuery?

A free and open-source Javascript library for creating, navigating, and
modifying the HTML DOM. A DOM is a tree-like structure used to
represent webpage elements. jQuery allows web designers to quickly
use JavaScript code on their websites. The sophisticated jQuery tech-
nique allows for the creation of powerful dynamic websites and online
apps.13

jQuery’s syntax is intended to make things simple, such as

•	 A document’s navigation

•	 DOM element selection

•	 Making animations

•	 Event management

•	 Creating Ajax apps

Among all other libraries, jQuery is one of the most extensively used, with
the following key features:

•	 Selection of DOM elements

•	 Sizzle allows for traversal and manipulation (the selector engine).

•	 Developing a new programming style

•	 DOM data structures and algorithms are combined.

jQuery, on the other hand, enables developers to build plug-ins on top of
the JavaScript library. Abstractions for low-level interaction and anima-
tions can also be created by developers.

252    ◾    Conquering JavaScript

The Distinction between jQuery and JavaScript

Although jQuery is a component of JavaScript, the following variances
may exist:

JAVASCRIPT VS. PHP
We will discuss about the difference between PHP and JavaScript below:

What Exactly Is PHP?

Adds support for the Hypertext Preprocessor. It’s the most popular web
development language. It’s generally referred to be an open-source script-
ing language.14

jQuery JavaScript

It is a library for JavaScript. It is a dynamic and interpreted programming
language for web development.

Only the relevant jQuery code has to
be written by the user.

The whole js code must be written by the
user.

It requires less time. It takes longer since the entire screenplay
must be written.

Handling multi-browser compatibility
concerns is not required.

Developers write their own code to handle
cross-browser compatibility.

The header of the page must contain the
URL of the jQuery library.

Every browser has support for JavaScript. No
other plugins are necessary.

Because it is a JavaScript library, it is
dependent on JavaScript.

In JavaScript, jQuery is present. As a result,
jQuery may or may not be used in the js
code.

It merely only has a few lines of code. The code might be difficult and lengthy.
It is a basic, quick, and easy method. It is a programming method with weak

typing.
jQuery is a web design method that has
been optimized.

JavaScript, which introduced jQuery, is one
of the most popular web design
programming languages for developers.

DOM is created faster with jQuery. JavaScript creates DOM slowly.

jQuery JavaScriptVS

The distinction between jQuery and JavaScript

The Clearer Picture    ◾    253

PHP code may be inserted in HTML documents. The code is written
in-between <?php> and?> the start and finish processing instructions.
PHP is also a basic language for beginners.

Although both PHP and JavaScript are utilized in web development,
they serve quite distinct goals and perform very different jobs.

PHP and JavaScript may even collaborate to accomplish a same objec-
tive in certain instances. When the two languages interact, JavaScript
handles the frontend of the website while PHP handles the backend.
However, when they operate separately, each may contribute signifi-
cantly to web development. Most popular and trending websites, such
as Facebook, Yahoo, and Flickr, are developed using a combination of
JavaScript and PHP.

The Distinction between JavaScript and PHP

The following table compares and contrasts JavaScript with PHP.

JavaScript PHPVS

The distinction between JavaScript and PHP

JavaScript PHP

It is currently a full-stack programming
language. It may therefore serve both
client and server sites.

It is a scripting language for the server. It
simply serves the website’s backend.

It is speedier, but it is more difficult to
learn.

It is slower yet simpler to learn.

It is an asynchronous language of
programming that does not wait for
input–output operations to complete.

It is a programming language that is
synchronous. As a result, it waits for the
input–output activities to complete.

Every web browser, including Mozilla,
Google Chrome, and many more,
supports it.

It is compatible with systems such as
Windows, Linux, and Mac. IIS, Apache, and
Lighttpd web servers all support it.

It contains less secure code. PHP code is quite secure.
It requires an environment in order to
access the database.

It provides quick and easy access to the
database.

(Continued)

254    ◾    Conquering JavaScript

DART VS. JAVASCRIPT
We will discuss about the difference between Dart and JavaScript below:

JavaScript and Dart are the greatest cross-platform mobile app devel-
opment languages. Dart is a newer language than JavaScript, but it offers
several really useful features and good Google support. When it comes
to cross-platform mobile application and server-side application develop-
ment, JavaScript was at the pinnacle of its popularity.15

In this section, we will compare and contrast Dart with JavaScript. But,
before we get into the specifics, we’ll learn about Dart and JavaScript.

JavaScript PHP

The code is enclosed by
<script>...<script> tags.

The program written inside <?php....?> tag.

Previously, JavaScript could generate
interactive sites for clients. However, it
can now create real-time games and
apps, as well as mobile applications.

A PHP code may build dynamic pages,
transmit and receive cookies, collect form
input, and so on.

It is a single-threaded programming
language. As a result, each input–output
process is performed concurrently.

It is a multi-threaded programming
language. As a result, it will block if
numerous input–output procedures are
performed.

The.js suffix is used to store an external
JavaScript file.

The ‘.php’ extension is used to store files.

The js code may be embedded in HTML,
XML, and AJAX.

Only HTML allows us to embed PHP code.

It has fewer features. When compared to JavaScript, it provides
more sophisticated functionalities.

Popular JavaScript frameworks include
Angular, React, Vue.js, Meteor, and
more.

PHP frameworks that are popular include
Laravel, Symfony, FuelPHP, CakePHP, and
many others.

Twitter, LinkedIn, Amazon, and other
websites created on JavaScript are
examples.

Wordpress, Tumblr, MailChimp,
iStockPhoto, and more websites created
with PHP are examples.

Dart JavaScriptVS

The distinction between Dart and JavaScript

The Clearer Picture    ◾    255

What Exactly Is Dart?

Dart is a client-optimized programming language that was created by
Google in 2011 and is meant to build rapid apps for any platform. It was
initially used internally by Google to construct web, server, and mobile
apps. Dart compiles source code in the same manner that other program-
ming languages like C, JavaScript, Java, and C# do.

It also has its own virtual machine (VM), Dart VM, for running the
native application. It also includes its own package management, called
Pub. It gained popularity with Google’s launch of Flutter for cross-plat-
form mobile application development.

The primary reason for this is that Flutter is entirely focused on Dart.
Dart, on the other hand, may be learnt rapidly by developers with prior
familiarity with OOPS languages.

Benefits and Drawbacks of Dart

Dart has the following benefits and drawbacks:

Advantages

•	 It is a client-oriented, open-source computer program.

•	 It is very scalable across projects.

•	 It was created by Google and works effortlessly on the Google Cloud
Platform.

•	 It is simple to learn if we are already familiar with JavaScript since it
is comparable to JavaScript.

•	 It’s faster than JavaScript.

•	 It is mostly used to create mobile apps.

Drawbacks

•	 It just has one object class.

•	 It is a very new programming language that is not commonly used
in the industry.

•	 We can’t rename a function in Dart without creating a new assign-
ment statement.

•	 Because there are few internet resources, it is difficult to discover
answers to difficulties.

256    ◾    Conquering JavaScript

What Is JavaScript?

To create dynamic HTML sites with interactive effects, programmers turn
to JavaScript, a small, object-oriented programming language.

The creation of games and mobile apps both benefit greatly from the
usage of JavaScript.

As its name implies, it is a scripting language whose code is interpreted
and run only in a web browser. Node.js might be used to execute the code
outside of the browser.

Client-side and server-side programming are both possible with this
language, which is also known as the language of browsers. Brendan Eich
of Netscape created it, and in 1995 it was first made available to consum-
ers. Prior to being renamed JavaScript, the language went by the name
LiveScript. As a scripting language, JavaScript borrows extensively from C
in terms of syntax. JavaScript code is saved in a file with the.js extension.

The Benefits and Drawbacks of Using JavaScript
These are some of JavaScript’s benefits and drawbacks:

Advantages

•	 It’s a lightweight, quick, and adaptable open-source framework.

•	 Cross-compilation is possible.

•	 It’s compatible with classes, interfaces, and modules.

•	 Since it’s utilized for both front- and backend work, it might be com-
patible with a wide range of devices.

•	 We can utilize this to create interactive user interfaces that change in
response to a mouse hover.

•	 Because of its compatibility with other languages, JavaScript may be
used in a wide variety of programs.

•	 Creating complex programs may need us to enhance JavaScript.

Drawbacks

•	 It relies on limited libraries.

•	 Client-side there is no way to create or read files with JavaScript. For
reasons of safety, it has been kept.

The Clearer Picture    ◾    257

•	 There’s a risk that one mistake might take down the whole website.

•	 Because of the dynamic quality of the language, serious errors by
programmers are not uncommon.

•	 Only a single inheritance is supported, not numerous ones. This
characteristic of object-oriented languages may be necessary for cer-
tain applications.

Important Distinction between Dart and JavaScript

Here, we’ll contrast Dart with JavaScript in terms of their most distin-
guishing features:

Simplicity of Use
JavaScript has been around for a while and is a mature and powerful
language.

JavaScript is easy to use. It contains a number of frameworks and librar-
ies that are freely accessible online. Developers may save time and effort by
making use of these frameworks to create new software with little rework.

Dart, on the other hand, is a new language for most developers outside
of Google. Despite Google’s attempts to explain the Dart programming
language, finding answers to particular issues remains tough for develop-
ers. It features a writing style and grammar comparable to Java, so devel-
opers with OOPS knowledge should be able to learn and utilize Dart once
they understand the fundamentals.

Speed
Because JavaScript is an interpreted language, it is lighter and quicker
than other computer languages. It outperforms Java and other compiled
languages.

Dart, on the other side, is substantially quicker than JavaScript. Dart
can be compiled in both JIT and AOT modes, which aids app develop-
ment in a variety of ways. JIT compilation, for example, may be used to
accelerate development, while AOT compilation can be used to optimize
the release process.

Type Security
As an interpreted language, JavaScript offers both dynamic and
duck-typing.

258    ◾    Conquering JavaScript

Because it can type any code, JavaScript is not a type-safe language.
Mistakes in the code can only be found during runtime. Alternatively,

Dart allows for both loose and strict prototyping. The bulk of program-
ming problems is identified during the compilation phase since Dart is a
compiled language. It is type-safer than JavaScript.

Popularity
JavaScript may be found almost everywhere. JavaScript is supported by
almost every machine. JavaScript is now used to build code for the web,
mobile, and server side.

There are about 2.5 million questions regarding JavaScript on Stack
Overflow. Because of its ubiquity, the JavaScript ecosystem has grown
enormously, and it currently dominates the ‘market’ for reusable com-
ponents, thanks to the development of cloud component hubs. Frontend
developers would prefer an alternative option.

Dart, on the other side, is gaining traction, but it is no match for
JavaScript. Dart was nowhere to be seen until Google announced Flutter.
Dart has attracted developers who were previously averse to JavaScript.
Dart currently has around 45K Stack Overflow questions labeled.

The Learning Curve
JavaScript is not an easy language to learn for novices, but understand-
ing the principles of programming makes JavaScript straightforward. For
developers who wish to learn JavaScript, there are several online courses
and tutorials accessible.

Dart, on the other side, might be a difficult exercise for beginners
since it is not a frequently used programming language. Online, there are
extremely few Dart programming classes or books.

Web vs. Mobile
With its multiple frameworks, JavaScript has dominated both online and
mobile app development. With the release of Facebook’s React Native, design-
ing mobile and web applications for small companies became a no-brainer.
There are still several JavaScript frameworks, such as Agular, Vue.js, and oth-
ers, that may be used to create websites, PWAs, and hybrid mobile apps.

However, Dart may be used to build both mobile and web-based appli-
cations. The cross-platform mobile app development capabilities of Dart
and the Flutter framework caused them to rise to prominence.

The Clearer Picture    ◾    259

Frontend vs. Backend
JavaScript is used for frontend development in conjunction with HTML
and CSS.

However, since the Node.js platform has grown in popularity, it is now
routinely utilized for backend and server-side programming. Dart, on the
other side, is now being used in conjunction with Flutter to create the
frontend of cross-platform mobile apps. Dart may also be utilized for web
development; however, no mention of it being used for backend develop-
ment is mentioned.

Commercial Usage
JavaScript is widely utilized in industry, especially large-scale projects.
It is used in the creation of network and cross-platform applications.
In Facebook’s online and cross-platform applications, React and React
Native, JavaScript is utilized. The eBay, Airbnb, Slack, and more compa-
nies utilize JavaScript as well.

Dart, on the other side, was created at Google. As a consequence, it was
first used internally.

Following the launch of Flutter, major companies such as Alibaba
started adopting Flutter and Dart to develop cross-platform apps.

The following comparison table demonstrates the head-to-head com-
parison between Dart vs JavaScript:

Features Dart JavaScript

Simplicity
of use

Dart features a Java-like syntax
and writing style, making it easy
to use for developers with
OOPS expertise.

JavaScript is simple to use, and it has
a variety of frameworks and libraries
available online, allowing developers
to reuse preexisting code to develop
apps more quickly.

Editor and
IDE
support

Dart code may be written in
simple editors such as Sublime
or VIM. The most popular IDEs
for Dart application
development are IntelliJ IDEA
and Android Studio, both of
which include the Dart plugin.

It has several great editors and IDEs
for developing apps. A full-fledged
IDE is not necessarily required;
instead, developers can utilize
lightweight editors such as VIM,
Sublime Text, Emacs, or Atom.
Some IDEs, such as WebStorm and
Visual Studio Code, may help us
create JavaScript applications.

(Continued)

260    ◾    Conquering JavaScript

JAVASCRIPT VS. ANGULAR JS
The client’s web browser executes JavaScript, a lightweight, object-oriented
programming language used to create dynamic HTML pages with inter-
active effects.16

It’s a kind of scripting language that runs in the browser and adds
interactivity and dynamism to websites. The contrasting Angular JS
is a framework written in JavaScript that adds functionality to HTML.
Creating dynamic and single-page web apps is its primary purpose (SPAs).
Differences between JavaScript and Angular JS will be covered here. First,
we’ll become acquainted with JavaScript and Angular JS before we dive
into their differences.

Features Dart JavaScript

Popularity Dart and Flutter have a tiny
community in addition to
various internet communities.
Despite good documentation,
many experienced developers
are nevertheless perplexed by
Dart.

Because it is a simpler, lightweight,
dynamic language, it is easier for
new developers to learn. It boosts
developer productivity by offering a
variety of JavaScript frameworks and
thousands of conveniently accessible
web packages.

Type safety Because it supports both loose
and strong prototyping, it is
more type-safe than JavaScript.

Because it allows both duck-typing
and dynamic, it is not a type-safe
language.

The
Learning
Curve

Because Dart is not a commonly
used programming language, it
might be difficult for novices.
Online, there are extremely few
Dart programming classes or
books.

JavaScript is not a simple language to
learn for novices, but knowing the
principles of programming makes
JavaScript straightforward.

Commercial
Usage

Dart is backed by Google and is
utilized by a number of
well-known companies,
including Blossom, WorkTrails,
Whale, Mobile, and others.

JavaScript is frequently utilized to
construct online and cross-platform
mobile apps in huge organizations
such as Instagram, Slack, Reddit,
eBay, and Airbnb.

Speed Dart can be compiled in both JIT
and AOT modes, allowing for
the creation of apps in a variety
of methods. Dart is significantly
quicker than JavaScript.

Because JavaScript is an interpreted
language, it is lighter and quicker
than other computer languages. It
outperforms Java and other
compiled languages.

Web vs.
Mobile

Dart may be used to create
online and mobile applications.

JavaScript can be used with various
frameworks to construct online and
mobile apps.

The Clearer Picture    ◾    261

What Is JavaScript?

JavaScript is a tiny, object-oriented programming language that allows
developers to construct dynamic HTML pages with interactive effects.

Using JavaScript is very beneficial for the development of games and
mobile applications.

It is a scripting language whose code is only understood and executed
on a web browser, as its name suggests.

Code may be executed outside of the browser using Node.js. It is the
language browsers utilize. It is handy for developing client and server
applications.

Brendan Eich of Netscape designed and published it to the public for
the first time in 1995.

Before it was renamed JavaScript, the language was known as LiveScript.
JavaScript as a scripting language draws heavily from C in terms of

syntax.
A file with the.js extension is where JavaScript code is kept.

JavaScript Features
There are several JavaScript features. Among them are the following:

•	 Originally, JavaScript was built for DOM manipulation. Previously,
the majority of websites were static; however, JS allows for the cre-
ation of interactive webpages.

•	 In JavaScript, functions are objects.

•	 They may have the same attributes and methods as regular objects,
and they can be provided as parameters to other functions.

•	 JavaScript requires no compiler.

•	 Date and time may be handled by JavaScript.

Angular JS JavaScriptVS

The distinction between Angular JS and JavaScript

262    ◾    Conquering JavaScript

What Is Angular Js?

It is an open-source framework for frontend web development with excel-
lent features and support. The Angular team at Google initially introduced
it in 2010.

It is a framework that is always evolving and extending to include more
effective techniques for constructing online applications. It typically cre-
ates applications using the model view controller (MVC) paradigm and
enables both data binding and dependency injection.

Since AngularJS is mostly derived from HTML and JavaScript, there’s
no need to study a foreign language or grammar. The function converts
static HTML to dynamic HTML. It expands HTML’s capabilities by intro-
ducing built-in attributes and components and by allowing easy JavaScript
creation of additional attributes.

Angular JS features
There are several angular JS functionalities. Among them are the following:

•	 AngularJS enables us to work with modules that facilitate their re-
use, saving time, and code.

•	 Angular JS’s usage of JavaScript, HTML, and CSS makes it user-friendly.

•	 A template is sent to the DOM and then the AngularJS compiler,
while AngularJS itself is mostly plain HTML.

•	 It then travels through the templates and becomes usable.

Major Distinctions between JavaScript and Angular JS

There are a number of significant distinctions between JavaScript and
Angular JS. Among them are the following:

•	 JavaScript is a server-side and client-side scripting language for
online application development. AngularJS, on the other hand,
makes web apps rapid and simple from the start.

•	 JavaScript reduces the time required to fix widespread flaws and
faults. Compared to JavaScript, AngularJS requires more time to do
the same task.

•	 JavaScript is one of the most efficient approaches for developing web-
sites and constructing online apps. In contrast, AngularJS has been
mostly used as a JS framework for constructing web apps.

The Clearer Picture    ◾    263

•	 JavaScript is a programming language used to control the Document
Object Model (DOM) (Document Object Model). AngularJS, on the
other hand, augments its capabilities with several technologies.

•	 JavaScript doesn’t allow dependency injection. AngularJS, on the
other hand, enables data binding and dependency injection.

•	 JavaScript coding is rapid and efficient. In contrast, Angular JS appli-
cations often become slow.

•	 JavaScript has used the same method for a number of years. On the
other side, AngularJS has been upgraded for typescript, resulting in
lighter and more engaging apps.

•	 The comprehensive user interface of JavaScript includes sliders and
other features. AngularJS, on the other hand, is a data-driven frame-
work used to develop online apps.

•	 JavaScript is a robust and intricate programming language. In con-
trast, AngularJS is a straightforward and effective framework.

Comparative Analysis of JavaScript and Angular JS

Here, we will examine a head-to-head contrast between JavaScript vs
Angular JS:

Features JavaScript Angular JS

Definition It is a scripted object-oriented
language used to create mobile and
dynamic web apps.

It is an open-source framework
for creating dynamic web pages
and big single-page online apps.

Developed It was created by Netscape
Communications in 1995.

It was primarily created by Google
in 2010.

Syntax Its syntax is far more sophisticated
than that of Angular JS.

Its syntax is basic and
straightforward.

Programmed The interpreters are developed in the
C and C++ programming languages.

It is written in the JavaScript
programming language.

Filters The filters are not supported. Filters are supported.
Learnability It is not easy to learn. It is simple to learn if you have a

basic understanding of JavaScript.
Concept It is based on the notion of dynamic

typing.
To construct apps, Angular JS uses
the model view controller
approach.

Dependency
injection

It does not allow for dependency
injection.

It allows data binding as well as
dependency injection.

264    ◾    Conquering JavaScript

JAVASCRIPT VS. NODE.JS
JavaScript is a lightweight, object-oriented programming language used to
construct dynamic HTML web pages with interactive effects.17

Node.js, on the other hand, often displays a list of objects and func-
tions that JavaScript code may access when executed in the V8 engine or
through the node interpreter.

This session will focus on the distinction between JavaScript and Node.
js. However, before examining the differences, we shall get familiar with
JavaScript and Node.js.

What Is JavaScript?

JavaScript is a compact, object-oriented programming language that lets
developers add interactivity to static HTML pages via scripting. When mak-
ing video games or mobile applications, JavaScript comes in quite handy.

Simply said, it is a scripting language whose code can only be read and
executed on a web browser. Node.js allows code to be executed in environ-
ments other than a web browser.

Browsers communicate using this language. It can help you build both
client and server applications. Brendan Eich of Netscape developed it and
made it available to the general public for the first time in 1995. In the
past, this language was known as LiveScript, but it has since been renamed
JavaScript. The syntax of the programming language JavaScript is heavily
inspired by C. JavaScript code is saved in a file with the extension.js.

JavaScript’s Benefits and Drawbacks Are Discussed

These are some of JavaScript’s benefits and drawbacks:

Benefits

•	 It is a lightweight, speedy, and versatile open-source framework that
supports cross-compilation.

•	 It works with classes, interfaces, and modules.

Node JS JavaScriptVS

The distinction between Node JS and JavaScript

The Clearer Picture    ◾    265

•	 It is used for both frontend and backend development, enabling
cross-device interoperability.

•	 We can use this to construct interactive user interfaces that respond
to mouse hovers.

•	 JavaScript may be utilized in a wide range of projects due to its
interoperability with other languages.

•	 Creating complicated applications may necessitate the use of
JavaScript enhancements.

Drawbacks

•	 It is reliant on limited resource pools.

•	 There is no mechanism to create or read files using JavaScript on the
client side. It has been retained for safety reasons.

•	 There is a chance that a single error will bring the entire website down.

•	 Why because the language is dynamic, developers may make fatal
mistakes rapidly.

•	 Only one inheritance is supported, not many ones.

•	 This feature of object-oriented languages may be required for spe-
cific applications.

What Is Node.js?

Node.js is a free and open-source server-side JavaScript runtime environ-
ment that may be used across several platforms. Node.js makes it possible
for JavaScript to be executed in environments outside of web browsers.

Node.js is mostly used for web development and comes with a wide
variety of modules. It’s possible to use it with Windows, Linux, Mac OS,
and other computers. For the development of scalable JavaServer Pages
(JSP) applications, it offers a cross-platform runtime environment that
features event-driven, non-blocking (asynchronous) I/O.

Ryan Dahl created and first released Node.js in 2009. Web apps, real-
time chat apps, command-line apps, and REST API servers are just some
of the many types of applications that may be built using Node.js. However,
its primary use is in the creation of server-side network applications like
web browsers. A common Node.js filename extension is.js.

266    ◾    Conquering JavaScript

How Does Node.js Work, and What Are Its
Benefits and Drawbacks?

The benefits and drawbacks of Node.js come in many forms.

Benefits

•	 A free and open-source framework, js is distributed under the MIT
license.

•	 It’s a minimalist framework; therefore, it just has a few components.
Depending on the specifics of a given use case, more modules may
be necessary.

•	 This framework is compatible with several operating systems, includ-
ing Windows, Mac OS X, and Linux.

•	 JavaScript is a programming language used to create backend sys-
tems and services.

•	 No data was ever buffered in a js app before. Applications written in
Node.js simply send out data in bite-sized pieces. All of the APIs in
the Node.js library operate in a non-blocking, asynchronous man-
ner. This basically denotes that a server written in Node.js will not
hold its breath for an API to deliver data. A Node.js notification
mechanism helps the server get a response from an API after it has
called it and moved on to the next API.

•	 js is a library for rapid program execution based on Google Chrome’s
V8 JavaScript Engine.

Drawbacks

•	 Consistency issues are a major drawback of using Node.js. To keep
their code compatible, developers must make adjustments to the
API all the time, which just adds to their workload. It isn’t keeping
up with the advancement of resource-intensive apps and does not
enable multi-threaded programming.

•	 JavaScript, unlike many other programming languages, does not
have a robust library system.

The Clearer Picture    ◾    267

•	 Users are therefore compelled to seek out a standard library for
processing images, parsing XML, performing Object-Relational
Mapping (ORM), managing databases, etc. It complicates even the
most fundamental of programming jobs with Node.js.

Comparing JavaScript with Node.js: Key Distinctions

Here, we’ll contrast JavaScript with Node.js by highlighting their key
distinctions:

•	 Typically used for client-side scripting, JavaScript is a small, porta-
ble, platform-independent, interpreted computer language. Java and
HTML both include it by default. However, Node.js is a server-side
programming language built on the same V8 engine that powers
Google Chrome. Therefore, it is utilized to create apps focused on
the network. It’s a decentralized system for processing large amounts
of data in real time.

•	 JavaScript is a scripting language that may be executed in any
browser that has the JavaScript Engine installed. The alternative
option is Node.js, which is an implementation of the JavaScript pro-
gramming language. To be more practical, it requires libraries that
can be accessed without much hassle while writing in JavaScript.

•	 Any engine, such as V8, Safari’s JavaScript Core, Firefox’s Spider
Monkey, or any other, may execute JavaScript (Google Chrome).
Because of this, developing with JavaScript is straightforward, and
any operating environment functions as effectively as a browser.
However, Node.js only works on Google Chrome since it relies on
the browser’s proprietary V8 engine. Contrarily, JavaScript code
produced by any developer may be executed in any environment,
regardless of whether or not the V8 engine is available.

•	 Getting into any OS requires completing a certain nonblocking job.
JavaScript has a few standard objects, but they are entirely platform-
dependent. As an example, ActiveX Control is a program that can
only be used on a Windows computer. However, Node.js is allowed
to execute non-blocking OS-specific operations from any JavaScript
code. It does not include any constants that are unique to any one
operating system. Node.js is proficient at making a clean connection

268    ◾    Conquering JavaScript

with the file system, enabling the developer to access and modify
files on the disc.

•	 When developing a single web app, JavaScript is often utilized for all
client-side responsibilities. Business validation, the periodic display
of a dynamic page, or even a basic Ajax request might all be part of a
single action. These have a fixed lifetime in each given web applica-
tion. However, Node.js is often used to make any operating system
accessible or executable in a non-blocking manner. Non-blocking
operations on an OS include things like creating or running a shell
script, receiving specific hardware-related information with a sin-
gle call, retrieving data about certificates already installed on the
machine, and carrying out a huge number of predefined actions.

•	 The key benefits of using JavaScript are the flexibility it provides in
terms of interface and interaction, as well as the appropriate amount
of server connectivity and direct input for visitors. However, Node.
js can process several requests at once and features a node package
manager with more than 500 modules. Its unique abilities include
support for micro-service architecture and Internet of Things.

In-Depth Analysis of JavaScript vs. Node JS

Here, we’ll contrast JavaScript and Node JS, two popular server-side
scripting languages:

Features JavaScript Node JS

Definition It is a cross-platform, accessible,
interpreted, lightweight
scripting computer language
used to create dynamic and web
applications.

It’s a cross-platform, accessible
JavaScript runtime environment
that lets us run JavaScript on the
server.

Type It is a kind of computer language.
It is compatible with any
browser that has a functional
browser engine.

It’s a JavaScript interpreter and
environment with several useful
libraries for JavaScript
programming.

Dedicated
Server

It is commonly used on
client-side servers.

It is often utilized on the server.

(Continued)

The Clearer Picture    ◾    269

We discussed the many uses and frameworks of JS Frontend, Backend,
Mobile, Gaming, and Desktop in this chapter.

Furthermore, we explored which framework to learn and when, as well
as how to combine JS abilities with other programming languages.

NOTES
	 1	 The 5 Best JavaScript Frameworks of 2022 [+ How to Pick the Right One]:

https://blog.hubspot.com/website/javascript-frameworks Accessed on: 03
October 2022.

	 2	 JavaScript Library vs JavaScript Frameworks – The Differences: www.
microverse.org/blog/javascript-library-vs-javascript-frameworks-the-dif-
ferences Accessed on: 03 October 2022.

	 3	 7 Frontend JavaScript Frameworks Loved by Developers in 2022: www.simform.
com/blog/javascript-frontend-frameworks/ Accessed on: 03 October 2022.

	 4	 5 Backend JavaScript Frameworks Experts Love: https://insights.dice.
com/2020/08/21/5-backend-javascript-frameworks-experts-love/ Accessed
on: 04 October 2022.

	 5	 8 Best Javascript Game Engines: www.geeksforgeeks.org/8-best-javascript-
game-engines/ Accessed on: 04 October 2022.

	 6	 10 Popular Javascript Frameworks for Mobile App Development: https://
insights.daffodilsw.com/blog/5-popular-javascript-frameworks-for-
mobile-app-development Accessed on: 04 October 2022.

Features JavaScript Node JS

Community The node community does not
care about all of the JavaScript.

The JavaScript community is
represented by all node projects.

Running
Engines

Any engine, including Spider
Monkey, V8, and JavaScript
Core, can run JavaScript.

Node JS is only enabled by the V8
engine, which is typically used by
Google Chrome. Any JavaScript
program built using Node JS will
be executed in the V8 engine.

Used for It is intended for the
development of network-centric
applications.

It is intended for data-intensive
real-world applications that operate
across several platforms.

Languages It’s a new variant of the ECMA
script that operates on Chrome’s
C++-based V8 engine.

It makes use of C, C++, and
JavaScript.

Modules TypedJS, RamdaJS, and other
JavaScript frameworks are
examples.

Nodejs modules include Lodash and
Express. All of these modules must
be imported from npm.

Companies’
Uses

Google, Shopify, Udacity,
Sendgrid, Groupon, Okta,
Instacart, and more firms
employ JavaScript.

Node Js is used by a variety of firms,
including Netflix, Hapi, Walmart,
Paypal, Linkedin, Trello, Medium,
and eBay.

https://blog.hubspot.com
http://www.microverse.org
http://www.microverse.org
http://www.microverse.org
http://www.simform.com
http://www.simform.com
https://insights.dice.com
https://insights.dice.com
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
https://insights.daffodilsw.com
https://insights.daffodilsw.com
https://insights.daffodilsw.com

270    ◾    Conquering JavaScript

	 7	 One for All and All for One: JS Frameworks for Desktop Applications and
the Best of Them: https://luxnet.io/blog/the-best-of-js-frameworks-for-
desktop-applications Accessed on: 06 October 2022.

	 8	 How to Choose the Best Javascript Framework: https://wiredelta.com/how-
to-choose-the-best-javascript-framework-2/ Accessed on: 06 October 2022.

	 9	 How to Choose a Right JavaScript Framework for Your Project?: https://
dev.to/abdurrkhalid333/how-to-choose-a-right-javascript-framework-for-
your-project-2501 Accessed on: 06 October 2022.

	 10	 How to Choose a JavaScript Framework for Beginners: www.codecad-
emy.com/resources/blog/what-javascript-framework-to-learn-beginner/
Accessed on: 06 October 2022.

	 11	 Difference between Java and JavaScript: www.geeksforgeeks.org/difference-
between-java-and-javascript/ Accessed on: 06 October 2022.

	 12	 Python vs JavaScript: Key Difference between Them: https://www.guru99.
com/python-vs-javascript.html#:~:text=KEY%20DIFFERENCES%3A-
,JavaScript%20is%20a%20scripting%20language%20that%20helps%20
you%20create%20interactive,choice%20for%20rapid%20application%20
development. Accessed on: 06 October 2022.

	 13	 jQuery vs. JavaScript: www.javatpoint.com/jquery-vs-javascript Accessed
on: 07 October 2022.

	 14	 jQuery vs. PHP: www.javatpoint.com/javascript-vs-php Accessed on: 07
October 2022.

	 15	 Dart vs. JavaScript: www.javatpoint.com/dart-vs-javascript Accessed on: 07
October 2022.

	 16	 JavaScript Vs. Angular Js: www.javatpoint.com/javascript-vs-angularjs
Accessed on: 07 October 2022.

	 17	 JavaScript vs. Node.js: www.javatpoint.com/javascript-vs-nodejs Accessed
on: 08 October 2022.

https://luxnet.io
https://luxnet.io
https://wiredelta.com
https://wiredelta.com
https://dev.to
https://dev.to
https://dev.to
http://www.codecademy.com
http://www.codecademy.com
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
https://www.guru99.com
https://www.guru99.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
https://www.guru99.com
https://www.guru99.com
https://www.guru99.com

271

C h a p t e r 5

Frontend Development

IN THIS CHAPTER

➢ React

➢ Express

➢ Vue.js

In the previous chapter, we covered frameworks for gaming, desktop,
frontend, backend, and mobile, and in this chapter, we will discuss fron-
tend development.

FRONTEND VS BACKEND
Frontend and backend are the two terms used in web development most
frequently.

These words are crucial for web development even if they are very differ-
ent from one another.1 Each side must work together and communicate with
one another as a single unit in order to improve the website’s functionality.

FRONTEND DEVELOPMENT
The part of a website that users engage with directly is referred to as the
frontend.

It is frequently referred to as the ‘client side’ of the program. It encom-
passes all of the elements that consumers view and utilize right away,
including button colors, text styles, images, graphs, and tables.

DOI: 10.1201/9781003356578-5

https://doi.org/10.1201/9781003356578-5

272    ◾    Conquering JavaScript

HTML, CSS, and JavaScript are the three languages used for frontend
programming.

The structure, design, behavior, and content of everything seen on
browser displays when websites, online applications, or mobile apps are
viewed are all put into practice by frontend developers. Performance and
responsiveness are the main objectives of the frontend.

Frontend Languages

The languages listed below are used to build the frontend portion:

•	 HTML: In HTML, ‘Hypertext Markup Language’ is denoted. It is
used to develop the frontends of web pages using a markup language.
HTML is an abbreviation for Hypertext Markup Language. The con-
nection between web pages is defined by hypertext. The written doc-
umentation included inside the tag that specifies the structure of web
pages is defined using markup language.

•	 CSS: Cascading Style Sheets, sometimes known as CSS, is a straight-
forwardly written language that makes it easier to display web pages.
Applying styles to web pages is possible using CSS. More impor-
tantly, CSS enables us to do this without having to rely on the HTML
that each webpage is made up of.

•	 JavaScript: JavaScript is a well-known programming language that
is used to work on websites so that users may interact with them.
It is utilized to increase a website’s functionality so that exciting
games and web-based programs may be employed on it. Being a
good developer requires knowledge of JavaScript, which can be uti-
lized in both the frontend and the backend. For example, Dart for
Flutter, JavaScript for React, and Python for Django are just a few
of the other languages that may be used for frontend development,
depending on the framework.

Frontend Frameworks and Libraries

•	 AngularJS: AngularJs is a JavaScript open-source frontend frame-
work that is mostly used to create single-page web applications

Frontend Development    ◾    273

(SPAs), frontend frameworks, and libraries. It is a framework that
constantly develops and grows and provides better techniques to
create Internet applications. Dynamic HTML is created by convert-
ing static HTML. The open-source undertaking has a free vari-
ant. HTML and data are related because directives expand HTML
attributes.

•	 React.js: React is a declarative, efficient, and flexible JavaScript tool-
kit for building user interfaces. ReactJS is a free frontend library with
component architecture that is solely in charge of the application’s
view layer. Facebook takes care of it. Frontend development is also
extremely easy with React JS.

•	 Bootstrap: Bootstrap is a free and open-source framework for cre-
ating responsive webpages and online applications. For building
flexible, mobile-first websites, the framework is the most popular
combination of HTML, CSS, and JavaScript.

•	 JQuery: Streamlining interactions between JavaScript and the
Page Object Model (DOM) of an HTML/CSS document is accom-
plished via the open-source JavaScript framework known as JQuery.
To elaborate, jQuery facilitates DOM animations, Ajax interac-
tions, traversal and manipulation of HTML pages, and JavaScript
programming for cross-browser usage. SASS is the trustworthy,
advanced, and powerful CSS extension language. It may be used to
quickly add inheritance, nesting, and variables to an existing CSS
style sheet on a website.

•	 Flutter: The open-source Flutter UI development SDK is overseen by
Google. It is powered by the programming language Dart. From a
single code base, it produces effective and visually beautiful natively
developed applications for desktop, web, and mobile (IOS, Android).
Thanks to native speed and UI, Flutter’s main selling point is the
simplicity, expressiveness, and flexibility of flat development. In
March 2021, Flutter will release Flutter 2, an upgrade that will let
programmers create and share web apps while desktop programs are
still being developed.

•	 A few instances are Semantic-UI, Foundation, Materialize, Backbone.
js, Ember.js, and more libraries and frameworks.

274    ◾    Conquering JavaScript

BACKEND DEVELOPMENT
The server side of a website is called the backend.

It also ensures that everything on the client side of the website func-
tions properly while storing and organizing data. It is the portion of the
website that you are unable to see and use.

It is the part of the program that consumers do not directly interact
with.

Users indirectly access the components and features created by back-
end designers via a frontend application. The backend also includes
tasks like developing APIs, building libraries, and interacting with
system elements devoid of user interfaces or even systems of scientific
programming.

Backend Languages

The following list of languages is used to build the backend portion:

•	 PHP: PHP is a programming language used on servers that was cre-
ated primarily for creating websites. PHP is referred to be a server-
side scripting language since PHP code is executed on the server.

•	 C++: It’s a widely used language for a wide variety of programming
tasks, and it’s especially popular in the professional arena. In addi-
tion, it serves as a backend language.

•	 Java: One of the most well-liked and often used platforms and com-
puter languages is Java. It can scale up quite well.

•	 Python: Python is a programming language that enables rapid work
and more effective system integration. It is also a crucial language
for the backend, and Python Programming Foundation—Self-Paced
course may help us learn it. This course is suitable for beginners and
will assist you in laying a solid foundation for Python.

•	 Node.js: JavaScript code may be executed outside of a browser using
the Node.js runtime environment, which is free and cross-platform.
We must keep in mind that NodeJS is neither a programming lan-
guage nor a framework. The majority of folks are perplexed and
realize it’s a computer language or framework. For creating back-
end services like APIs for web apps or mobile apps, we often employ
Node.js. Large corporations like PayPal, Uber, Netflix, Walmart, and
others utilize it throughout production.

Frontend Development    ◾    275

Backend Frameworks

•	 Express: Express is a Node.js framework for server-side and backend
programming. Single-page, multi-page, and hybrid web apps may
all be created with it. We may manage a variety of various HTTP
requests with its assistance.

•	 Django: Django is a model-template-views-based web framework
written in Python. It is used to create expansive and intricate web
applications. It has the qualities of being quick, secure, and scalable.

•	 Ruby on Rails: Model-view-controller architecture is used by the
server-side framework known as Ruby on Rails. It offers pre-built
structures including databases, online services, and web pages.

•	 Laravel: Laravel is a reliable PHP web application framework called
Laravel. Reusing the components of many frameworks while build-
ing a web application is its best feature.

•	 Spring: This server-side framework, called Spring, supports Java
applications’ infrastructure. It supports a variety of frameworks,
including Hibernate, Struts, and EJB. Additionally, it offers addons
that make it simple and rapid to create Java apps.

•	 C#, Ruby, GO, and other backend programming and scripting lan-
guages are a few examples.

Difference between Frontend and Backend Development

Frontend and backend development are two facets of the same problem, yet
they differ significantly from one another. The backend controls how every-
thing functions, whereas the frontend is what users see and interact with.

The frontend of a website is the portion that visitors can see and interact
with. It includes the design, menus for navigation, texts, photographs, and
videos, as well as the graphical user interface (GUI) and command line.
Contrarily, the backend is the portion of the website that visitors cannot
access or interact with.

Frontend refers to the elements of the website that visitors can view and
interact with visually. On the other side, the backend is responsible for
everything that takes place in the background.

The frontend is written in HTML, CSS, and JavaScript, and the backend
is written in Java, Ruby, Python, and .Net.

276    ◾    Conquering JavaScript

REACTJS
We will about ReactJS below with its definition, installation, and syntax.

WHAT DOES THE ‘REACT’ MEAN?
React is a JavaScript toolkit for building user interfaces that is managed
by Facebook and a developer community that uses open-source software.
React has been widely adopted in the field of web development despite the
fact that it is not a language because of its large library of practical tools.2

Although it didn’t debut until May 2013, this library has quickly become
a standard for web designers and developers. Beyond the realm of user
interface development, React provides a number of architectural support
extensions like Flux and React Native.

The Question Is, ‘Why React?’

At now, no other frontend framework comes close to competing with
React’s widespread adoption. We’ll explain the reason:

•	 The building of dynamic web apps is simplified with React since it
takes less code and provides more capability than JavaScript, which
may rapidly become convoluted.

•	 React’s usage of virtual DOM makes developing web apps more
quickly. When a change is made to a component in a web applica-
tion, the virtual DOM compares it to its prior state and only updates
the elements in the Real DOM that have changed.

•	 Components are the foundation of a React project, and many differ-
ent kinds of components may be found in a single app. With their
own dedicated logic and controls, these modules may be utilized
throughout the program, thus cutting down on development time.

•	 There is only one path for data to go in React. It follows that develop-
ers would often stack kid components atop parent components when
building a React app. Since data only moves in one way, it’s much
simpler to pinpoint exactly where an issue is originating inside an
application.

•	 React has a shallow learning curve since it mostly builds on familiar
principles from HTML and JavaScript, with a few helpful additions.
Still, we need to put in some effort to learn the ins and outs of React’s
library, just as you would with any other tool or framework.

Frontend Development    ◾    277

•	 It’s useful for creating both online and mobile applications: Although
it is common knowledge that web apps are built using React, it is
far from its only purpose. React Native is a popular framework for
developing high-quality mobile apps; it is based on the original React
library. To that end, it’s important to note that React is as at home
when developing for the web as it is for mobile devices.

•	 Facebook has created a Chrome plugin that can be used to debug
React apps, providing dedicated tools for simple debugging. Because
of this, fixing bugs in React web apps is a breeze.

React Features

It’s no secret that ReactJS is quickly becoming the preferred JavaScript
framework among today’s most cutting-edge websites.3

It’s doing some very important work for the frontend ecosystem right now.
Some of ReactJS’s most notable characteristics are listed here.

•	 JSX

•	 Components

•	 One-way Data Binding

•	 Virtual DOM

•	 Simplicity

•	 Performance

JSX

Components

One-way

Data

Binding

Virtual

DOM

Simplicity

Performance

Features of React

278    ◾    Conquering JavaScript

JSX
JavaScript XML is what JSX refers to. It’s a new addition to the JavaScript
syntax.

ReactJS employs a syntax that’s similar to XML or HTML.
Calls to the React Framework’s Java API are generated from this

syntax. By enhancing ES6, it allows HTML-like text to coexist with
JavaScript react code. In ReactJS, JSX is not required but is highly
encouraged.

Components
Components are the backbone of ReactJS. Each individual ‘component’ in
a ReactJS program has its own set of rules and data processing capabili-
ties. Because of their modular nature, these parts may be reused, making
it easier to manage the codebase of large-scale projects.

Data Binding, One Way Only
Due to its architecture, ReactJS only supports one-way data binding and
flows in just one direction. Using one-way data binding, you may exert
more command over the whole program.

If information is flowing in the other way, then supplementary capabili-
ties are needed.

This is due to the fact that data included inside components should be
immutable. The flux pattern is useful for ensuring that your data flows
in just one way. The application’s newly discovered flexibility is the main
cause of the higher efficiency.

Virtual DOM
A DOM object that exists only in a computer’s memory is called a ‘virtual
DOM object.’

The effect is similar to a one-way data binding.
If there are any changes made to the web app, the complete user interface

will be re-rendered in a virtual DOM representation. Then, it compares
the old DOM representation to the new one. Afterward, just the modified
elements will be reflected in the true DOM. This eliminates memory waste
and speeds up the program.

Simplicity
Because it is written in JSX files, ReactJS is easy to learn and implement.

Frontend Development    ◾    279

We all know that since ReactJS is a component-based approach, the
code may be reused as many as we want. This makes it easy to pick up and
get started with.

Performance
There is widespread agreement that ReactJS is a speed demon. As a
result of this improvement, it is now the best framework available.
Because it controls a DOM that exists only in the computer’s mem-
ory, this is the case. HTML, XML, and XHTML are all supported by
the Document Object Model (DOM), a programming API that works
across platforms.

The DOM is purely virtual. This is why we avoid explicitly altering the
DOM whenever we build new components. Instead, we’re focusing on
developing virtual components that can be easily transformed into DOM
for improved speed.

Benefits and Drawbacks of ReactJS

The most popular open-source JavaScript library nowadays is called
ReactJS. It’s useful for quickly building high-quality web applications with
nothing in the way of custom code. ReactJS’s primary goal is to help pro-
grammers create faster app interfaces.4

The following are some major benefits and drawbacks of using ReactJS:

Benefits

	 1.	ReactJS is simple to learn and use
As opposed to other similar frameworks, ReactJS is far less com-

plicated to learn and use. There is a tonne of help material like guides
and videos included. Any developer with a JavaScript experience may
quickly grasp and begin designing web applications using React.

It’s a JavaScript framework that represents the view in the Model-
View-Controller (MVC) design pattern. It is not fully featured, but
it has the benefit of an open-source JavaScript User Interface (UI)
library, which aids in job execution.

	 2.	It is now easier to create dynamic web applications
It was difficult to construct a dynamic web application particu-

larly using HTML strings since it required extensive code, but React
JS eliminated that problem and made it easy. It requires less code

280    ◾    Conquering JavaScript

while providing greater features. The JSX (JavaScript Extension) syn-
tax is used, which is a notation for building HTML elements using
HTML tags and HTML citations. Further, it simplifies the process of
making codes that computers can read.

	 3.	Components that may be reused
A ReactJS web application is composed of many components,

each with its own logic and controls. These parts are responsible
for generating a small, modular chunk of HTML code that may be
dropped in wherever it’s needed. You may easily plan and manage
your apps with the help of the code that can be reused. These com-
ponents may be layered onto one another to form complex software
systems. ReactJS uses a method based on a ‘virtual DOM’ to add ele-
ments to the HTML DOM. In order to save time, the virtual DOM
only updates the data for the specific nodes that have changed, rather
than the whole DOM.

	 4.	Improving Performance
ReactJS is quicker because of the virtual DOM. The DOM provides

a consistent API for developing applications that work with HTML,
XML, and XHTML regardless of the platform. This bug slowed
down development time for most programmers when the DOM was
updated. Virtual DOM is how ReactJS dealt with this problem.

The React Virtual DOM is a version of the web browser’s DOM
that resides completely in memory. As a result, we did not write
directly to the DOM while creating a React component.

Instead, we’re creating virtual components that will respond to
the DOM, resulting in smoother and quicker performance.

	 5.	The Use of Handy Tools
React JS has also grown in popularity owing to the availability of

a useful collection of tools.
These tools help developers comprehend and simplify their work.

The React Developer Tools are Chrome and Firefox dev extensions
that enable you to investigate the React component hierarchies in
the virtual DOM. We may also pick certain components and analyze
and update their current properties and state.

Frontend Development    ◾    281

	 6.	Well-known for being SEO-friendly
Traditional JavaScript frameworks have a problem with SEO.

JavaScript-heavy apps are usually difficult for search engines to read.
Many site developers have often complained about this issue.

ReactJS solves this issue, allowing developers to be readily found on
search engines. This is because React.js applications may run locally
on the server and the virtual DOM can render and deliver a web
page to the browser.

	 7.	The Advantages of Having a JavaScript Library
The majority of web developers now use ReactJS. It is because it

provides a highly comprehensive JavaScript library. The JavaScript
library gives web developers greater freedom to pick how they wish
to work.

	 8.	Test Scope for the Codes
ReactJS apps are really simple to test. It provides a platform for

developers to test and debug their programs using native tools.

Drawbacks

	 1.	The rapid rate of development
The quick pace of growth has benefits and drawbacks. In the event

of a disadvantage, since the environment is always changing, some
developers may not feel comfortable relearning new methods of
doing things on a frequent basis.

With all of the constant upgrades, it may be difficult for them to
absorb all of these changes.

It is incumbent upon them to continually improve their skills and
get familiar with cutting-edge practices.

	 2.	Inadequate documentation
It is just another drawback of rapidly evolving technology. The

rate of advancement and expansion of React technologies makes it
impossible to offer thorough documentation. To solve this, develop-
ers create their own instructions when new versions and tools are
added to their present projects.

282    ◾    Conquering JavaScript

	 3.	View Part
ReactJS just covers the app’s UI layers and nothing more. As a

result, we will still need to choose some additional technologies
in order to have a comprehensive tools set for development in the
project.

	 4.	SX as a barrier
ReactJS makes use of JSX. Because of this syntactic extension,

HTML and JavaScript may cohabit. Although this method has ben-
efits of its own, some members of the development community con-
sider JSX to be a barrier, especially for novice developers.

Developers complain about the complexity of the learning curve.

Version of React

A detailed React release history is shown here. On GitHub, we may also
get complete documentation for latest versions.5

SN Version Release Date Significant Changes

1. 0.3.0 29/05/2013 Initial Public Release.
2. 0.4.0 20/07/2013 <div>{/* */}</div> support for comment nodes

Server-side rendering APIs have been improved. React.
autoBind has been removed. Support for the main
point, Formal improvements, Bugs have been fixed.

3. 0.5.0 20/10/2013 Increase memory use, Assistance with Selection and
Composition events, In mixins, getInitialState and
getDefaultProps are supported. React.version and
React.isValidClass have been added. Windows
compatibility has been improved.

4. 0.8.0 20/12/2013 Support for rows and cols, defer & async, loop for
<audio> & <video>, and autoCorrect attributes has
been added. onContextMenu events have been added.
jstransform and esprima-fb utilities have been
upgraded. Browserify has been upgraded.

5. 0.9.0 20/02/2014 Added support for crossOrigin, download and hrefLang,
mediaGroup and muted, sandbox, seamless, and
srcDoc, scope attributes, Added any, arrayOf,
component, oneOfType, renderable, shape to React.
PropTypes, Added support for onMouseOver and
onMouseOut event, Added support for onLoad and
onError on elements.

(Continued)

Frontend Development    ◾    283

SN Version Release Date Significant Changes

6. 0.10.0 21/03/2014 Added support for srcSet and textAnchor attributes, add
update function for immutable data, Ensure all void
elements don’t insert a closing tag.

7. 0.11.0 17/07/2014 Improved SVG support, Normalized e.view event,
Update $apply command, Added support for
namespaces, Added new transformWithDetails API,
includes pre-built packages under dist/,
MyComponent() now returns a descriptor, not an
instance.

8. 0.12.0 21/11/2014 New features have been added. The spread operator ({...})
was created to replace this. transferPropsTo,
acceptCharset, classID, manifest HTML attributes, and
React.addons.batched are now supported. API updates,
@jsx React.DOM is no longer necessary, CSS
Transitions problems have been resolved.

9. 0.13.0 10/03/2015 Deprecated patterns that were warned about in 0.12 no
longer work, the sequence of ref resolution has altered,
and this._pendingState and this._rootNodeID have
been removed. Classes in ES6 are supported. API React.
findDOMNode(component) has been added, as well as
support for iterators and immutable-js sequences. New
features have been added. Deprecated React.addons.
createFragment method React.addons.classSet.

10. 0.14.1 29/10/2015 Support for srcLang, default, sort, and color attributes
has been added. Legacy.props access on DOM nodes
has been ensured.
scryRenderedDOMComponentsWithClass was fixed.
React-dom.js has been added.

11. 15.0.0 07/04/2016 Instead of producing HTML, the first render now utilizes
‘document.createElement’. No more additional s.
SVG support has been improved, ReactPerf.
getLastMeasurements() is now opaque, and New
deprecations are announced with a warning. React
DOM now supports the citation and profile HTML
attributes, as well as the cssFloat, gridRow, and
gridColumn CSS properties.

12. 15.1.0 20/05/2016 Repair a batching bug, Use the most recent object-assign,
Resolve the regression, Remove the usage of the merge
utility. Some modules have been renamed.

13. 15.2.0 01/07/2016 Include information about the component stack, Stop
validating props at mount time, add React.PropTypes.
symbol, add onLoad and onError handling to <link>
and <source> elements, add isRunning() API, fix
performance regression.

(Continued)

284    ◾    Conquering JavaScript

SN Version Release Date Significant Changes

14. 15.3.0 30/07/2016 Include React. PureComponent, Fix nested server
rendering problem, add xmlns and xmlnsXlink to
support SVG attributes and referrerPolicy to HTML
attributes, update React Perf Add-on The ref problem
has been resolved.

15. 15.3.1 19/08/2016 Enhance the performance of development builds.
Internal hooks should be cleaned. Improve fbjs, React’s
startup time should be reduced. Fix a memory leak in
server rendering, as well as the React Test Renderer.
Convert the trackedTouchCount invariant to a console.
error.

16. 15.4.0 16/11/2016 React package and browser build no longer contain
React DOM, improved development efficiency, fixed
infrequent test failures, updated batchedUpdates API,
React Perf, and ReactTestRenderer.create().

17. 15.4.1 23/11/2016 Reorganize variable assignment, Handling of fixed
events, The browser build is now compatible with AMD
setups.

18. 15.4.2 06/01/2017 Build difficulties have been resolved. Missing package
dependencies were added. Error messages have been
improved.

19. 15.5.0 07/04/2017 React-dom/test-utils have been added.
peerDependencies were removed. Fixed an issue with
the Closure Compiler and added a React deprecation
notice. React.PropTypes and createClass Chrome
problem was fixed.

20. 15.5.4 11/04/2017 Enzyme compatibility is improved by presenting batched
data. Updates to the shallow renderer, proptypes, and
the react-addons-create-fragment package to support
the loose-envify transform.

21. 15.6.0 13/06/2017 Add CSS variable support to the style attribute and Grid
style properties. Fix AMD support for addons that rely
on react. Remove any undue reliance. Add a React
deprecation warning. helpers for createClass and React.
DOM

22. 16.0.0 26/09/2017 Improved error handling with the addition of “error
boundaries, “ React DOM now supports supplying
non-standard attributes, minor changes to setState
behavior, and the removal of the react-with-addons.js
build React.createClass is added as a create-react-class,
React.PropTypes is added as a prop-type, React.DOM is
added as a react-dom-factory, and the scheduling and
lifecycle methods’ behavior is changed.

(Continued)

Frontend Development    ◾    285

SN Version Release Date Significant Changes

23. 16.1.0 9/11/2017 Bower Releases are being discontinued. Fix an
unintentional superfluous global variable in UMD
builds. Fix the onMouseEnter and onMouseLeave
events, Replace the <textarea> placeholder, Remove any
unneeded code. Replace a missing package.json
reliance, Add React DevTools support.

24. 16.3.0 29/03/2018 Add a new context API that is officially supported.
Include a new package. When attempting to create
portals using SSR, prevent an endless loop. Fix a
problem with this. state, Resolve an IE/Edge problem.

25. 16.3.1 03/04/2018 Prefix private API with, In development mode, fix
performance regression and error handling problems.
Consider peer dependence. When utilizing Fragment,
IE11 displays a false positive warning.

26. 16.3.2 16/04/2018 Repair an IE crash, Labels in User Timing measurements
should be fixed. Add a UMD build, and use nesting to
improve the efficiency of the unstable_observedBits API.

27. 16.4.0 24/05/2018 Include support for the Pointer Events standard. Allow
for the specification of propTypes. Correct the reading
context, Fix the getDerivedStateFromProps()
functionality. Fix a crash in testInstance.parent. Add the
React.unstable_Profiler component to track
performance. Change the names of internal events.

28. 16.5.0 05/09/2018 Include support for the React DevTools Profiler. Handle
failures in additional edge circumstances with grace.
Include react-dom/profiling. Browsers should have a
onAuxClick event. To mouse events, add movementX
and movementY fields. Pointer event now has
tangentialPressure and twist fields.

29. 16.6.0 23/10/2018 Add contextType support. Priority levels, continuations,
and wrapped callbacks are all supported. Enhance the
fallback method. Remove the gray overlay from iOS
Safari. Add React.lazy() to separate code components.

30. 16.7.0 20/12/2018 Improve the speed of React.lazy for lazy-loaded
components. To minimize memory leaks, clear fields
after unmounting. Fix the problem with SSR. Resolve a
performance decline.

31. 16.8.0 06/02/2019 Include Hooks, For batching updates, add
ReactTestRenderer.act() and ReactTestUtils.act(). Allow
React to be supplied synchronous thenables. Improve
useReducer Hook’s lazy initialization API with lazy().

32. 16.8.6 27/03/2019 In useReducer(), rectify an improper bailout, Resolve
iframe issues in Safari DevTools, and alert if
contextType is set to Context. Instead of Context, use
Consumer and warn if contextType is set to an
incorrect value.

286    ◾    Conquering JavaScript

SETUP OF THE REACT ENVIRONMENT
We will understand how to set up a development platform for a ReactJS
application in this part.6

Prerequisite for ReactJS is as follows:

•	 NodeJS and NPM

•	 React and React DOM

•	 Webpack

•	 Babel

REACTJS INSTALLATION METHODS
There are two approaches to prepare an environment for a ReactJS applica-
tion to run successfully.

The list of them is as follows:

•	 By use of the npm command

•	 Use the command create-react-app

1. By Use of the npm Command

Install NPM and NodeJS
The platforms required to create any ReactJS application are NodeJS and
NPM.

By clicking the link provided below, we may install NodeJS and the
NPM package manager.

We will talk about the NodeJS installation in Chapter 6.
Utilize the command indicated in the code below to confirm NodeJS

and NPM.

$ node -v

$ npm -v

Get React and React DOM Installed
On the desktop or anywhere you choose, create a root folder with the
name reactApp.

Frontend Development    ◾    287

On the PC, we make it here. The folder may be created manually or by
using the command shown below.

$ mkdir reactApp

$ cd reactApp

Create a package.json file right now. A package.json file must be generated
and stored in the project folder in order to construct any module. We must
execute the following command, as seen below, to do this.

javatpoint@root:~/Desktop/reactApp> npm init -y

We must install react and its DOM packages using the npm command
below in the terminal window after generating a package.json file.

javatpoint@root:~/Desktop/reactApp>npm install react
react-dom --save

The aforementioned command may also be used independently, as seen in
the example below.

javatpoint@root:~/Desktop/reactApp>npm install react
--save
javatpoint@root:~/Desktop/reactApp>npm install react-
dom --save

Install Webpack
Automation of the development and production pipelines is accomplished
using Webpack.

Webpack-dev-server will be used for development, Webpack will be
used to produce builds, and Webpack CLI offers a number of commands.
These are combined by Webpack into a single file (bundle). Utilize the
command described below to install Webpack.

javatpoint@root:~/Desktop/reactApp>npm install webpack
webpack-dev-server webpack-cli --save

The following command may also be used independently, as seen in the
example below.

288    ◾    Conquering JavaScript

javatpoint@root:~/Desktop/reactApp>npm install webpack
--save
javatpoint@root:~/Desktop/reactApp>npm install
webpack-dev-server --save
javatpoint@root:~/Desktop/reactApp>npm install
webpack-cli --save

Install Babel
Babel is a JavaScript transpiler and compiler used to translate different
source code.

React JSX and ES6 are converted into ES5 JavaScript, which may be
used with any browser.

Babel-preset-react enables our browser to immediately update when-
ever any changes are made to our code without losing the state of the app.
We require babel-loader for JSX file types.

Babel preset babel-preset-env is necessary for ES6 functionality. Use the
command as indicated in the below code to install Webpack.

javatpoint@root:~/Desktop/reactApp>npm install babel-
core babel-loader babel-preset-env babel-preset-react
babel-webpack-plugin --save-dev

The following command may also be used individually, as seen in the
example below.

javatpoint@root:~/Desktop/reactApp>npm install babel-
core --save-dev
javatpoint@root:~/Desktop/reactApp>npm install babel-
loader --save-dev
javatpoint@root:~/Desktop/reactApp>npm install babel-
preset-env --save-dev
javatpoint@root:~/Desktop/reactApp>npm install babel-
preset-react --save-dev
javatpoint@root:~/Desktop/reactApp>npm install babel-
webpack-plugin --save-dev

Creation of Files
To finish the installation procedure, the following files must be added to
our project folder.

Frontend Development    ◾    289

indexs.html, Appl.js, main.js, webpack.config.js, and.babelrc are these
files.

We may manually generate these files or use the command prompt.

javatpoint@root:~/Desktop/reactApp>touch indexs.html
javatpoint@root:~/Desktop/reactApp>touch Appl.js
javatpoint@root:~/Desktop/reactApp>touch main.js
javatpoint@root:~/Desktop/reactApp>touch webpack.
config.js
javatpoint@root:~/Desktop/reactApp>touch .babelrc

2. Set React Application Compiler, Loader, and Server

Configure Webpack
We may configure webpack by including the following code to the
webpack.config.js file.

It specifies our app’s entry point, build output, and automatically
resolved extension.

Additionally, it sets the development server’s port to 8080.
It specifies the loaders for processing the different file formats used by

our application and adds plugins required for development.

webpack.config.json

const path = require(‘path’);
const HtmlWebpackPlugin = require(‘html-webpack-plugin’);

module.exports = {
 entry: ‘./main.js’,
 output: {
 path: path.join(__dirname, ‘/bundle’),
 filename: ‘indexsbundle.js’
 },
 devServer: {
 inline: true,
 port: 8080
 },
 module: {
 rules: [

290    ◾    Conquering JavaScript

 {
 test: /\.jsx?$/,
 exclude: /node_modules/,
 use: {
 loader: «babel-loader»,
 }
 }
]
 },
 plugins:[
 new HtmlWebpackPlugin({
 template: ‘./indexs.html’
 })
]
}

Now, open the package.json file, remove “test” “echo\ “Error: no test speci-
fied\” && exit” from the “scripts” object, and replace it with the start and
build commands. Because we will not do any testing on this application.

{
 “name”: “reactApp”,
 “version”: “1.0.0”,
 “description”: “”,
 “main”: “indexs.js”,
 “scripts”: {
 “start”: “webpack-dev-server --mode development
--open --hot”,
 “build”: “webpack --mode production”
 },
 “keywords”: [],
 “author”: “”,
 “license”: “ISC”,
 “dependencies”: {
 “react”: “^16.8.6”,
 “react-dom”: “^16.8.6”,
 “webpack-cli”: “^3.3.2”,
 “webpack-dev-server”: “^3.3.2”
 },
 “devDependencies”: {
 “@babel/core”: “^7.4.3”,

Frontend Development    ◾    291

 “@babel/preset-env”: “^7.4.3”,
 “@babel/preset-react”: “^7.0.0”,
 “babel-core”: “^6.26.3”,
 “babel-loader”: “^8.0.5”,
 “babel-preset-env”: “^1.7.0”,
 “babel-preset-react”: “^6.24.1”,
 “html-webpack-plugin”: “^3.2.0”,
 “webpack»: “^4.30.0”
 }
 }

HTML Webpack Template for the index.html File
Using the HtmlWeb-packPlugin plugin, we can add a custom template to
produce indexs.html.

This allows us to add a viewport element to provide responsive scal-
ing of our app on mobile devices. In addition, it adds the indexsbundle.
js script, which is our packaged app file, and sets the div id = “app” as the
root element for our app.

<!DOCTYPE html>
<html lang = “en”>
 <head>
 <meta charset = “UTF-8”>
 <title>React App</title>
 </head>
 <body>
 <div id = “app”></div>
 <script src = ‘indexsbundle.js’></script>
 </body>
</html>

App.jsx and main.js
This is the first React component, sometimes known as the app entrance
point.

It will display “Hello, Everyone.”

App.js

import React, { Component } from ‘react’;
class App extends Component{

292    ◾    Conquering JavaScript

 render(){
 return(
 <div>
 <h1>Hello Everyone</h1>
 </div>
);
 }
}
export default App;

Import this component and display it to our App’s root element so that it
is visible in the browser.

Main.js

import React from ‘react’;
import ReactDOM from ‘react-dom’;
import App from ‘./App.js’;

ReactDOM.render(<App />, document.
getElementById(‘app’));

Creation of .babelrc file
Create a file named.babelrc and paste the code below into it.

.babelrc

{
 “presets”:[
 “@babel/preset-env”, “@babel/preset-react”]
 }

Running Server
After installing and configuring the application, we may start the server
by using the following command.

javatpoint@root:~/Desktop/reactApp>npm start

It will display the port number that must be opened in the browser. After
opening it, the output will be shown.

Frontend Development    ◾    293

Create the Bundle
Now, produce the application’s bundle.

Bundling is the process of integrating imported files into a single file,
called a ‘bundle.’ This bundle may then be added to a website to load an
application in its entirety. To construct this, we must execute the build
command indicated below in command prompt.

javatpoint@root:~/Desktop/reactApp> npm run build

This command creates the bundle in the current folder (to which our
application belongs) and displays it.

3. Use the Command create-react-app

If we do not want to install react using webpack and babel, we may install
react using create-react-app. The ‘create-react-app’ function is adminis-
tered by Facebook.

This is appropriate for novices who do not want to manually deal with
transpiling technologies such as webpack and babel. This section demon-
strates how to install React using the CRA tool.

Install NodeJS and NPM
NodeJS and NPM are the required development platforms for every
ReactJS application.

We may download NodeJS and the NPM package manager in the next
chapter.

Installation of React
We may install React using the npm package manager using the command
below. Do not stress about the potential difficulties of installing React. The
necessary functionality is included in the create-react-app npm package.

javatpoint@root:~/>npm install -g create-react-app

Develop a New React Project
After installing React, the create-react-app command may be used to build
a new React project. Here, we pick the project name jtp-reactapp.

javatpoint@root:~/>create-react-app jtp-reactapp

294    ◾    Conquering JavaScript

javatpoint@root:~/>npx create-react-app jtp-reactapp

The above code will install react and generate a new project called jtp-
reactapp. This application includes the subfolders and files that will be
shown by default.

To begin, enter the src folder and make modifications to the required
file. By default, files are stored in the src folder.

For instance, we will open App.js and make the code modifications
indicated below.

App.js

import React from ‘react’;
import logo from ‘./logo.svg’;
import ‘./App.css’;

function App() {
 return (
 <div className=”App”>
 <header className=”App-header”>
 <img src={logo} className=”App-logo”
alt=”logo” />
 <p>
 Welcome Everyone.

 <p>Get started, edit src/App.js and save to the
reload.</p>
 </p>
 <a
 className=”App-link”
 href=”https://reactjs.org”
 target=”_blank”
 rel=”noopener noreferrer”
 >
 Learn React

 </header>
 </div>
);
}

export default App;

Frontend Development    ◾    295

Running Server

After installation is complete, we may start the server by using the follow-
ing code:

javatpoint@root:~/Desktop>cd jtp-reactapp
javatpoint@root:~/Desktop/jtp-reactapp>npm start

COMPARISON BETWEEN ANGULARJS VS REACTJS
We will discuss AngularJS and ReactJS below.

AngularJS

The open-source JavaScript framework AngularJS is used to create
dynamic web applications. In 2009, Misko Hevery and Adam Abrons cre-
ated AngularJS, which is currently maintained by Google.7

The most recent version of Angular as of March 11, 2019 is 1.7.8. It is
mostly used for creating single-page applications and is based on HTML
and JavaScript. It may be added to an HTML document using a <script>
tag. It enhances HTML by adding built-in attributes using directives and
connects data to HTML using Expressions.

Characteristics of AngularJS

•	 Data binding: AngularJS follows the two-way data binding pattern.
The synchronization of data is done between model and display
components.

•	 POJO Paradigm: AngularJS employs the POJO (Plain Old
JavaScript) model, which delivers objects that are both spontaneous
and well-planned. The POJO concept makes AngularJS autonomous
and simple to utilize.

•	 Model-View-Controller Framework: MVC is a software design
pattern used in the development of online applications. AngularJS’s
working paradigm is built on MVC principles. AngularJS’s MVC
architecture is simple, flexible, and dynamic. MVC facilitates the
development of client-side applications.

•	 Services: AngularJS offers various built-in services, such as $http
for XMLHttpRequest creation. In AngularJS, user interfaces are

296    ◾    Conquering JavaScript

constructed using HTML. This declarative language includes shorter
tags and is straightforward to interpret. It delivers a structured, orga-
nized, and fluid interface.

•	 Dependency Injection: AngularJS’s built-in dependency injection
subsystem facilitates the creation, comprehension, and testing of
applications.

•	 Community activity on Google: AngularJS gives tremendous com-
munity support. Since Google maintains AngularJS, this is the
case. Therefore, if you have maintenance concerns, there are several
forums where we may have our questions answered.

•	 Routing: Routing is the process of transitioning from one view to
another. Routing is the most important feature of single-page appli-
cations, in which all content appears on a single page. When a user
clicks the menu, the developers do not want to send them to a differ-
ent website. The developers want for the content to load on the same
page regardless of the URL.

ReactJS

User interfaces for single-page applications are created using the free and
open-source JavaScript package ReactJS. It is exclusively responsible for
the application’s view layer.

It enables developers to assemble complicated user interfaces using
tiny, isolated pieces of code known as ‘components.’ ReactJS consists of
two parts: components, which are the elements that include HTML code
and what we want to see in the user interface, and an HTML page where
all your components are presented.

It is developed by Jordan Walke, a former software developer at
Facebook. Initially created and managed by Facebook, it was eventually
included in major products like WhatsApp and Instagram. ReactJS was
created by Facebook in 2011 for the newsfeed area, although it was not
made available to the public until May 2013.

Frontend Development    ◾    297

Characteristics of ReactJS

•	 JSX: JSX is a syntactic extension for JavaScript. The JSX syntax is
converted into React Framework JavaScript calls. It extends ES6
so that HTML-like text may coexist with React code written in
JavaScript.

•	 Components: Components are fundamental to ReactJS. Multiple
components make up a ReactJS application, and each component has
its own logic and controls. These components are reusable, which
makes it easier to maintain the code in bigger projects.

•	 One-way Data Binding: ReactJS uses unidirectional data f low, or
one-way data binding. The one-way data binding provides more
application-wide control. If the data f low is in the other direc-
tion, then extra characteristics are required. This is because com-
ponents are intended to be immutable and their data cannot be
modified.

•	 Virtual DOM: A virtual DOM object is a representation of a physi-
cal DOM object. When any changes are made to a web application,
the complete user interface is re-rendered in virtual DOM form. The
difference between the existing DOM representation and the new
DOM is then examined. Once complete, the actual DOM will only
update the modified elements. It speeds up the program and elimi-
nates memory waste.

•	 Simplicity: ReactJS utilizes the JSX file, which makes the application
easy to both create and comprehend. In addition, ReactJS is a com-
ponent-based framework that allows code to be reused as required.
It makes it easy to use and understand.

•	 Performance: ReactJS is renowned for its excellent performance.
This is because it has control over a virtual DOM. The DOM is purely
memory-based. As a result, when we construct a component, we do
not immediately write to the DOM. Instead, we are developing vir-
tual components that will transform into the DOM, resulting in a
more efficient and fluid user experience.

298    ◾    Conquering JavaScript

AngularJS vs. ReactJS

COMPARISON BETWEEN REACTJS AND SVELTE
What Is Svelte?

Svelte is a frontend compiler that is free and open-source, and it was cre-
ated by Rich Harris in 2016. Svelte assembles HTML templates to produce
original code that directly modifies the Document Object Model.8

In contrast to React and other conventional JavaScript frameworks,
Svelte does not incur virtual DOM cost. Svelte’s methods result in less
transmitted files and higher client performance. The application code is
processed by the compiler, which also redraws UI components impacted
by the data and inserts calls to automatically update the data.

The TypeScript programming language, a superset of JavaScript, is used
to create Svelte.

AngularJS ReactJS

Author Google Facebook Community
Developer Misko Hevery Jordan Walke
Initial Release October 2010 March 2013
Latest Version Angular 1.7.8 on 11 March 2019. React 16.8.6 on 27 March 2019
Language JavaScript, HTML JSX
Type Open-Source MVC Framework Open-Source JS Framework
Rendering Client Side Server Side
Packaging Weak Strong
Data Binding Bi-directional Unidirectional
DOM Regular DOM Virtual DOM
Testing Unit and Integration Testing Unit Testing
App Architecture MVC Flux
Dependencies Requirements are automatically

managed by it.
To handle dependencies, extra
tools are needed.

Routing For its router setup, it needs a
template or controller that
must be manually maintained.

Although it contains several
routing modules, such as
react-router, it does not handle
routing.

Performance Slow fast thanks to virtual DOM.
Best For Single-page apps that refresh a

single view at a time work best
with it.

The ideal use cases are single-
page apps that update several
views simultaneously.

Frontend Development    ◾    299

When Need One Use Svelte?
Svelte’s code is recognized for being straightforward since Vanilla
JavaScript is quite similar to it. Svelte enables developers to accomplish
their goals with less code. If website developers want to create an extremely
minimal package size, they should utilize Svelte.

Svelte-written programs are practical for usage in low-capacity or low-
power devices. Better control over state management, routing, and the
development of specialized infrastructure is offered by nimble tools and
frameworks. DOM manipulation, reactive frameworks, and growing mar-
kets may all benefit from Svelte.

Which Companies Utilize Svelte?
Major corporations rely on Svelte for their websites, including Yahoo,
Rakuten, Bloomberg, Facebook, Apple, The New York Times, Square,
ByteDance, Spotify, Reuters, Ikea, Brave, and others. Because Svelte turns
the application’s code to optimum JavaScript while it is being coded, busi-
nesses like it. As a result, the performance of programs created in Svelte is
not hampered by framework abstractions.

What Is React?

React is a frontend JavaScript library that developers use to create user
interfaces.

The UI elements are maintained by the Meta (Facebook), and a group
of organizations and developers collaborate to create updated versions.
The foundation for creating webpages, mobile applications, and server-
rendered apps is React. React is helpful for managing state and rendering
it onto the DOM.

React application development necessitates the use of extra libraries.
To create React components, you need to be familiar with design patterns,
client-side code, and routing.

When Should React to Be Used?
The component library React is versatile and ideal for state management.
As a result, data may be sent between apps and websites that employ React
components without refreshing the page. For user interfaces that need a
lot of user involvement, React should be employed.

React is the model-view-‘view’ controller’s component. React makes it
simple to manage lower-level algorithms, and just the view model of the

300    ◾    Conquering JavaScript

user interface needs to be coded. The Virtual DOM of React speeds up
loading times and enhances website performance.

Which Companies Utilize React?
React is used to create user interfaces by hugely popular companies
including Facebook, Instagram, Salesforce, Shopify, Discord, Skype, and
Pinterest.

Companies prefer React to build the frontend portion of their websites
since it is easy to find developers internationally. React is a popular option
among developers and businesses because it is quick, simple to use, and
scalable.

React vs Svelte: Which Is Superior?

Svelte is a more recent framework than React and requires no additional
tools. Multiple variables and preferences may influence a developer’s deci-
sion between these frameworks.

Let’s compare their distinctions so you can select the appropriate
JavaScript framework for our applications.

Performance
Traditional Document Object Model (DOM) necessitates an update for
each code change, which degrades the efficiency of the application. Virtual
DOM accelerates the process by functioning as temporary memory stor-
age for user interface modifications.

A procedure called as diffusion or reconciliation delays updates until
they can be successfully updated and rendered.

React utilizes virtual DOM to decompose an application’s code as the
code is run.

VDOM improves React’s performance over conventional JavaScript
languages. However, Svelte improves efficiency by avoiding the VDOM
diffing procedure. Svelte is a compiler that renders DOM documents using
reactive programming. The DOM is updated whenever an assignment
causes a change in the component stage. As a serverless-first framework,
Svelte is therefore seen as more reactive than React.

Bundle Size
The.gzip version of Svelte has a size of 1.6 kilobytes. When paired with
ReactDOM, React.gzip has a total size of 42.2 kilobytes. Svelte’s decreased

Frontend Development    ◾    301

bundle size assures faster loading times, enhanced responsiveness, and
reduced bandwidth costs.

Testing
End-to-end tests are able to be performed on React code. The application’s
React code is tested in a realistic browser environment. This decreases
the time to market (TTM) and increases the value of your software. The
Svelte testing library is available for unit testing. The Svelte testing library
is more compact than React and provides straightforward calculations.
Thus, Svelte can assist developers in maintaining code that is clean, func-
tional, and compact.

Community Assistance
React has a large developer community since it is one of the most popu-
lar JavaScript platforms in the world. The community of React develop-
ers contributes tutorials, guidelines, updates, components, and more in
order to maintain the library’s usefulness. The fact that a huge corpora-
tion like Facebook (Meta) maintains React increases the need for React
engineers. Svelte is uncommon, but developers that employ it report
high levels of satisfaction. Svelte’s enterprise-level support is relatively
new, as Sveltekit 1.0 has not yet been published. Compared to the more
than 287k active React developers, the Svelte community consists of just
11k developers.

Who Succeeds?

The Svelte vs. React debate is simple when the project needs are well-
defined. Utilize Svelte in our applications to obtain a lower bundle size,
manageable code, and outstanding performance without the VDOM. Due
to the framework’s simplicity, Svelte helps developers to prepare websites
more quickly.

Utilizing React for our projects will facilitate the recruitment of soft-
ware professionals.

React facilitates the maintenance of application stability. An active
community of React developers assists in resolving development-related
questions and issues.

Using React with Svelte to produce robust software solutions necessi-
tates the hiring of seasoned software engineers.

302    ◾    Conquering JavaScript

REACT JSX
All React components have a render method, as we have previously seen.
A React component’s HTML output is defined by the render function.
A React plugin called JSX (JavaScript Extension) enables the creation of
JavaScript code that resembles HTML.9

To put it another way, JSX is an extension of ECMAScript utilized by
React to allow HTML-like syntax to coexist alongside JavaScript/React
code. Preprocessors (also known as transpilers, such as babel) employ the
syntax to convert HTML-like syntax into typical JavaScript objects that a
JavaScript engine can interpret.

In the same file where we write JavaScript code, JSX enables us to write
HTML/XML-like structures (such as DOM-style tree structures). A pre-
processor will subsequently convert these expressions into JavaScript
code. JSX tags contain a tag name, attributes, and children much as XML/
HTML tags do.

Example

In this section, we’ll put JSX syntax in a JSX file and examine the
associated JavaScript code that a preprocessor converts (babel).

JSX File

<div>Hello Everyone</div>

Output

React.createElement(“div”, null, “Hello Everyone”);

The code above creates a react element with three arguments, the first of
which is the element’s name, “div,” the second of which is the attributes
supplied in the div tag, and the third of which is the content we supply,
“Hello Everyone.”

Why Use JSX?

•	 Because it conducts optimization when converting the code to
JavaScript, it is quicker than standard JavaScript.

Frontend Development    ◾    303

•	 React employs components that combine markup and functionality
rather than splitting technologies by placing them in distinct files.
Components will be covered in a later section.

•	 The majority of the mistakes may be identified during compilation
since it is type-safe.

•	 Making templates is made simpler.

JSX Nested Elements

We must enclose it in one container element if we want to utilize more
than one element.

In this case, the div element serves as a container for three nested items.

App.JSX

import React, { Component } from ‘react’;
class App extends Component{
 render(){
 return(
 <div>
 <h1>Everyone</h1>
 <h2>Training Center</h2>
 <p> The greatest CS lessons may be found
on this website.</p>
 </div>
);
 }
}
export default App;

Attributes in JSX

Like standard HTML, JSX uses attributes with HTML components.
Because class is a reserved term in JavaScript, JSX employs camelcase

naming conventions for attributes rather than the conventional naming
convention of HTML. For example, a class in HTML becomes className
in JSX.

In JSX, we may also utilize our own unique custom characteristics.
Data- prefix must be used for custom attributes.

304    ◾    Conquering JavaScript

In the instance below, the p> tag’s custom attribute data-demoAttribute
has been utilized as an attribute.

Example

import React, { Component } from ‘react’;
class App extends Component{
 render(){
 return(
 <div>
 <h1>Everyone</h1>
 <h2>Training Institutes</h2>
 <p data-demoAttribute = “demo”> The
greatest CS lessons may be found on this website.</p>
 </div>
);
 }
}
export default App;

There are two methods to define attribute values in JSX:

	 1.	As String Literals: Double quotes may be used to express the values
of attributes.

var element = <h2 className = “firstAttribute”>Hello
Everyone</h2>;

Example

import React, { Component } from ‘react’;
class App extends Component{
 render(){
 return(
 <div>
 <h1 className = “hello” >Everyone</h1>
 <p data-demoAttribute = “demo”> The
greatest CS lessons may be found on this website.</p>
 </div>

Frontend Development    ◾    305

);
 }
}
export default App;

	 2.	As Expressions: Curly braces {} can be used to define attribute values
as expressions:

var element = <h2 className = {varName}>Hello
Everyone</h2>;

Example

import React, { Component } from ‘react’;
class App extends Component{
 render(){
 return(
 <div>
 <h1 className = “hello” >{45+10}</h1>
 </div>
);
 }
}
export default App;

Comments in JSX

Similar to how JSX expressions are used, JSX enables us to utilize com-
ments that start with /* and conclude with */ and enclose them in curly
brackets. The JSX sample below demonstrates how to utilize comments.

Example

import React, { Component } from ‘react’;
class App extends Component{
 render(){
 return(
 <div>
 <h1 className = “hello” >Hello
Everyone</h1>

306    ◾    Conquering JavaScript

 {/* This is the comment */}
 </div>
);
 }
}

Styling in JSX

React consistently advises using inline styles. We must use camelCase
syntax to set inline styles. On some elements, React automatically permits
appending px after the number value. The element’s style may be seen in
use in the instance below.

Example

import React, { Component } from ‘react’;
class App extends Component{
 render(){ 	
 var myStyle = {
 fontSize: 50,
 fontFamily: ‹Courier›,
 color: ‹#004400›
 }
 return (
 <div>
 <h1 style = {myStyle}>www.example.com</h1>
 </div>
);
 }
}
export default App;

Example

import React, { Component } from ‘react’;
class App extends Component{
 render(){
 var x = 6;
 return (
 <div>

Frontend Development    ◾    307

 <h1>{x == 1 ? ‘True!’ : ‘False!’}</h1>
 </div>
);
 }
}
export default App;

EXPRESS.JS
We will about Express.js below with its definition, installation, and
syntax.10

WHAT IS EXPRESS.JS?
Express is a Node.js web framework that is quick, forceful, necessary, and
modest. We might imagine express as a layer added to Node.js that assists
in managing a server and routes. It offers a complete collection of tools for
creating online and mobile apps.

Here are a few of the key components of the Express framework:

•	 Single-page, multi-page, and hybrid web apps may all be created
with it.

•	 It enables middleware configuration for HTTP request responses.

•	 According to the HTTP method and URL, it defines a routing table
that is utilized to carry out various operations.

•	 It enables the dynamic rendering of HTML pages by using template
parameters.

Why Employ Express?

•	 Very fast I/O.

•	 Single threaded and asynchronous.

•	 MVC-style organization.

•	 Routing is simple with a robust API.

308    ◾    Conquering JavaScript

How Does Express Appear?

See a simple Express.js application.

basic_express.js
var express = require(‘express’);
var app = express();
app.get(‘/’, function (req, res) {
 res.send(‹Welcome to Everyone›);
});
var server = app.listen(8000, function () {
 var host = server.address().address;
 var port = server.address().port;
 console.log(‹Instance app listening at
http://%s:%s›, host, port);
});

Prerequisite

We must have a working grasp of JavaScript and Node.js before studying
Express.js.

Audience

Both learners and experts may benefit from the information in our
Express.js lesson.

Problem

We guarantee that there won’t be any issues with this Express.js lesson.
However, if there is a mistake, please report it using the contact form.

Benefits of Express.js

•	 Enables quick and simple creation of Node.js web applications.

•	 Simple to adjust and personalize.

•	 Enables us to specify application routes based on HTTP methods
and URLs.

•	 Includes a number of middleware modules that we may use to add
extra request and response-related functions.11

Frontend Development    ◾    309

•	 Simple integration with several template engines, such as Jade, Vash,
and EJS.

•	 Allows us to provide a middleware for handling errors.

•	 It’s simple to provide static files and application resources.

•	 Enables the creation of REST API servers.

•	 Simple connection to databases like MongoDB, Redis, and MySQL.

SETTING UP EXPRESS
Using npm, we can put it in. Inspect our installation of npm and Node.js.12

Step 1: The first step is creating a directory for our project and making
that directory our working directory.

$ mkdir pfp
$ cd pfp

Step 2: Making a package using the npm init command. For our project,
a json file.

$ npm init

This command lists all of our project’s dependencies. The document will
be updated as more Setting up Express

Step 3: Type the below command line in our pfp(name of our folder)
folder:

$ npm install express --save

Let’s now use an example to better grasp how express.js works.

Example

In app.js, enter the following code.

var express = require(‘express’);
var app = express();

310    ◾    Conquering JavaScript

app.get(‘/’, function (req, res) {
res.send(“Welocme to Everyone”);
});
app.listen(4000);

Run the program by entering the following code in the run window.

node app.js

The Early Stages

Unbelievably, Node.js is 12 years old. The Internet is 32 years old, but
JavaScript is 26 years old. Ryan Dahl created Node.js in 2009. Node.js ini-
tially only supported Linux and Mac OS X.13

Dahl oversaw its creation and upkeep, while Joyent subsequently pro-
vided sponsorship.

Because it had to manage a lot of connections simultaneously, Dahl
criticized the Apache HTTP Server, the most popular web server at the
time, for having restricted capabilities in 2009 (up to 10,000 and more).

The problem was handled by writing code using sequential program-
ming when there was any halted code throughout the whole process or
when there was an implied multiple execution stack in the event of simul-
taneous connections.

The Node.js project was introduced by Dahl on November 8, 2009, at
the first European JSConf.

The V8 JavaScript Chrome engine, a basic I/O API, and an event loop
are all components of Node.js.

Its Evolution

JavaScript engines improved a lot as browsers vied to provide consumers
with the greatest performance.

Major browsers put a lot of effort into figuring out how to make
JavaScript run more quickly and provide better support.

Node.js was thus created at the appropriate time and location.
Numerous methods for JavaScript server-side programming were estab-

lished, as well as creative thinking that has benefited many developers.
The fact that Node.js supports hundreds of open-source libraries, the

bulk of which are available on the npm website, is one of the main reasons
for its popularity among developers.

Frontend Development    ◾    311

A large number of developer conferences and events, such as Node.js
Interactive, Node.js Summit, and NodeConf, as well as additional local
events, are held in the Node.js community.

The Node.js open-source community created web frameworks to has-
ten the creation of apps.

Connect, Sails.js, Koa.js, Express.js, Feathers.js, socket.io, Derby, Hapi.
js, Meteor, and several more frameworks are among them.

BASICS OF NODE.JS
JavaScript is supported by Node.js. Thus, JavaScript syntax in Node.js is
comparable to JavaScript syntax in browsers.14

Types of Primitive

These basic types are available in Node.js:

•	 String

•	 Boolean

•	 Number

•	 Undefined

•	 Null

•	 RegExp

Everything else in the Node.js is an object.

Loose Typing

Like JavaScript in browsers, Node.js JavaScript enables loose typing. To
define a variable of any type, use the var keyword.

Object Literal

The object literal syntax is the same as JavaScript in browsers.

var obj = {
 authorName: ‘Shiya Sham’,
 language: ‘Node.js’
}

312    ◾    Conquering JavaScript

Functions

Similar to JavaScript in browsers, Node’s JavaScript treats functions as
first-class citizens.

Additionally, a function may have characteristics and attributes. In
JavaScript, it is comparable to a class.

function Display(k) {
 console.log(k);
}

Display(200);

Buffer

Buffer is an extra data type in Node.js that is not offered by JavaScript in
browsers.

When reading from a file or receiving packets over the network, buffer
is mostly utilized to hold binary data.

Process Object

A process is used to execute each Node.js script. To get all the details about
the Node.js application’s current process, it contains a process object. The
example that follows demonstrates how to use a process object to get pro-
cess information in REPL.

> process.execPath
‘C:\\Program Files\\nodejs\\node.exe’
> process.pid
1234
> process.cwd()
‘C:\\’

Defaults to Local

When it comes to global scope, Node’s JavaScript differs from JavaScript
in browsers.

Variables defined without the var keyword become global in the brows-
er’s JavaScript. Everything becomes local by default with Node.js.

Frontend Development    ◾    313

Utilize Global Scope

Global scope in a browser refers to the window object. Global object in Node.
js is a representation of the global scope. We must export anything using
export or module.export in order to add it to the global scope. To access mod-
ules or objects from the global scope, use the need() method to import them.

Use exports.name = object, for instance, to export an object in Node.js.

exports.log = {
 console: function(msg) {
 console.log(msg);
 },
 file: function(msg) {
 // here log to file
 }
}

We can now use the log object anywhere in our Node.js project by import-
ing it using the require() method.

VUEJS
We will about VueJS below with its definition, installation, and syntax.

WHAT IS VUEJS?
An open-source, progressive JavaScript framework called VueJS is used to cre-
ate dynamic web interfaces. One of the well-known frameworks for stream-
lining web development is this one. The view layer is where VueJS focuses.15

It may be seamlessly incorporated into large frontend development proj-
ects. VueJS installation is pretty simple to begin with. Interactive web inter-
faces are simple to comprehend and quick to construct for any developer.

Former Google employee Evan You is the creator of VueJS. VueJS’s first
version was published in February 2014. It is now rated 64,828 stars on
GitHub, making it highly well-liked.

Features

The characteristics of VueJS are listed below.

•	 DOM virtual
Virtual DOM is a technique utilized by VueJS and other frame-

works such as React and Ember.

314    ◾    Conquering JavaScript

Instead of altering the DOM itself, a duplicate of it is built and
placed in the form of JavaScript data structures. Every time a change
has to be performed, the JavaScript data structure is modified and
then compared to the original data structure. The actual DOM,
which the user will see altering, is then updated with the final adjust-
ments. This is advantageous for optimization since it costs less and
allows for quick modifications.

•	 Binding of data
With the aid of a binding directive called v-bind that is included

with VueJS, the data binding functionality assists in manipulating or
assigning values to HTML attributes, changing the style, and assign-
ing classes.

•	 Components
One of VueJS’s key features, components enable the creation of

unique elements that may be reused throughout HTML.

•	 Event handling
In VueJS, the DOM elements include a property called v-on that

makes it possible to listen to events.

•	 Animation/Transition
When HTML elements are added, changed, or deleted from the

DOM, VueJS offers a variety of techniques to apply transition. For
the transition effect, an element must be wrapped in the built-in
transition component of VueJS. The interface may be made more
interactive and third-party animation libraries are simple to add.

•	 Computerized Property
One of VueJS’s key characteristics is this. It’s critical to pay atten-

tion to UI element changes and perform the necessary computations.
Additional code is not required for this.

•	 Templates
The DOM is bound to the Vue instance data through HTML-based

templates that are provided by VueJS. The templates are converted
by Vue into simulated DOM Render functions. We may utilize the

Frontend Development    ◾    315

render function template, but we must swap out the template with
the render function in order to do so.

•	 Directives
The built-in directives in VueJS may be used to carry out a vari-

ety of frontend tasks, including v-if, v-else, v-show, v-on, v-bind, and
v-model.

•	 Watchers
Data that changes is given watchers. For instance, form input

components.
We don’t need to add any further events in this case. The code is

made easy and quick by the watcher, which takes care of processing
any data changes.

•	 Routing
With the aid of vue-router, pages may be navigated between.

•	 Lightweight
The performance and weight of the VueJS script are both quite

quick.

•	 Vue-CLI
Using the vue-cli command line interface, VueJS may be installed

via the command line. Using vue-cli makes it simple to build and
compile the project.

Comparative Assessment of Other Frameworks

Let’s now evaluate VueJS in comparison to other frameworks like React,
Angular, Ember, Knockout, and Polymer.

VueJS vs React
DOM Virtual  The DOM tree is represented virtually by virtual DOM. A
JavaScript object that is identical to the actual DOM is constructed using
virtual DOM. Every time a modification to the DOM is required, a new
JavaScript object is formed and the modifications are made. Later, the
final modifications are updated in the actual DOM after a comparison of

316    ◾    Conquering JavaScript

the two JavaScript objects. Both VueJS and React employ virtual DOM,
which speeds things up.

JSX vs. a Template  Separate html, js, and css are used by vuejs. The
VueJS style is relatively simple for a novice to comprehend and adapt.
The VueJS template-based method is fairly simple. React uses the jsx
method. For ReactJS, everything is JavaScript. JavaScript includes both
HTML and CSS.

Tools for Installation  VueJS utilizes vue-cli, the CDN, and npm, whereas
React uses build react app.

Both are quite simple to use, and the project has been set up to meet all
the prerequisites. VueJS does not need webpack for the build, but React
requires. Using the CDN library, we may begin writing VueJS code any-
where in jsfiddle or codepen.

Popularity
More people use React than VueJS. React offers more employment oppor-
tunities than VueJS.

React is more well-known since it is backed by a well-known company,
namely Facebook.

React employs the finest JavaScript practices since it exploits the lan-
guage’s fundamental idea. Anyone who uses React will undoubtedly be
quite knowledgeable about all the JavaScript fundamentals.

The framework VueJS is under development. Currently, compared
to React, VueJS has less career possibilities. A poll indicates that many
individuals are adjusting to VueJS, which might increase its popularity
relative to React and Angular. A strong community is developing VueJS’s
many features. This community updates the vue-router on a regular basis.
VueJS is a strong library that was created by combining the best elements
of Angular and React. Due to its lightweight library, VueJS is considerably
quicker than React/Angular.

VueJS vs Angular
Similarities
Angular and VueJS are quite similar to one another. V-if and V-for
directives are nearly identical to Angular’s ngIf and ngFor. Both of

Frontend Development    ◾    317

them offer a command line interface that is used to install and build
the project.

Both Angular and VueJS require angular-cli. Both provide server side
rendering, two-way data coupling, etc.

Complexity
Vuejs is really simple to use and learn. As was previously said, a newbie
may use the VueJS CDN package to get started with codepen and jsfiddle.
For Angular, we must follow a set of procedures for installation, and get-
ting started with Angular might be a bit challenging for novices. It employs
TypeScript for coding, which is challenging for anyone with a background
in JavaScript’s fundamentals. However, users with a background in Java
and C# find it simpler to learn.

Performance
The users will determine the performance. Compared to Angular, VueJS is
substantially less in file size. The following URL: http://stefankrause.net/
js-frameworks-benchmark4/webdriver-ts/table.html compares the per-
formance of the frameworks.

Popularity
Currently, Angular is more widely used than VueJS. Angular is widely used
by many businesses, making it quite well-known. For those with Angular
expertise, job prospects are also more plentiful. VueJS, on the other hand, is
gaining ground and may be seen as an excellent rival to Angular and React.

Dependencies
Many functionalities are included by default with Angular.

To begin, we must import the necessary modules, such as @angular/
animations and @angular/form.

VueJS relies on third-party libraries to function since it lacks several of
Angular’s built-in functionality.

Flexibility
Any other large project may be seamlessly combined with VueJS without
any problems.

It won’t be simple to start using Angular with any other project that
already exists.

http://stefankrause.net
http://stefankrause.net

318    ◾    Conquering JavaScript

Reverse Compatibility
AngularJS, Angular2, and Angular4 have all been around. The two
Angular frameworks, JS and v2, vary greatly.

Due to fundamental incompatibilities, project applications created in
AngularJS cannot be transferred to Angular2. VueJS 2.0 is the most cur-
rent version, and it has strong backward compatibility. It has excellent
documentation that is extremely simple to read.

Typescript
For its coding, Angular uses TypeScript. To use Angular, users need to be
familiar with TypeScript. But with the CDN library, we may begin writing
VueJS code anywhere in jsfiddle or codepen. Standard JavaScript is avail-
able for use and is a great place to start.

ENVIRONMENT SETUP FOR VUEJS
VueJS may be installed in a number of ways. A few methods for doing the
installation are covered in the sections that follow.16

Directly Use the <script> Tag in an HTML File

<html>
 <head>
 <script type = “text/javascript” src = “vue.min.
js”></script>
 </head>
 <body>
</body>
</html>

Visit the VueJS home page at https://vuejs.org/v2/guide/installation.html
and download the necessary version of vue.js. Production version and devel-
opment version are the two versions available for use. As demonstrated in
the accompanying screenshot, the production version is minimized but the
development version is not. Debug mode and warnings will be supported
by the development version while the project is being developed.

By Using the CDN

In our application, we may also utilize the Vue.js file from the CDN library.
We may acquire the most recent version of Vue.js by using this URL in our
application: https://unpkg.com/vue inside <script> element.

https://vuejs.org
https://unpkg.com

Frontend Development    ◾    319

Example 1

<!DOCTYPE html>
<html> 	
<head>
 <title>Out first Vue app</title>
 <script src=”https://unpkg.com/vue”></script>
</head>
<body>
 <div id=”app”>
 {{ message }}
 </div>
 <script>
 var app = new Vue({
 el: ‘#app’,
 data: {
 message: ‘Vue.js instance with the CDN’
 }
 })
 </script>
</body>
</html>

In addition, we may get Vue.js via jsDelivr (https://cdn.jsdelivr.net/
npm/vue/dist/vue.js) and cdnjs (https://cdnjs.cloudflare.com/ajax/libs/
vue/2.4.0/vue.js).

Example 2

<!DOCTYPE html>
<html>
<head>
 <title>Our first Vue app</title>
<script src=”https://cdn.jsdelivr.net/npm/vue/dist/
vue.js”> </script>
</head>
<body>
 <div id=”app”>
 {{ message }}
 </div>
 <script>
 var app = new Vue({

https://cdn.jsdelivr.net
https://cdn.jsdelivr.net
https://cdnjs.cloudflare.com
https://cdnjs.cloudflare.com

320    ◾    Conquering JavaScript

 el: ‘#app’,
 data: {
 message: ‘Vue.js second instance with the CDN’
 }
 })
 </script>
</body>
</html>

By Using the NPM

If we want to create a big-scale application with VueJS, NPM is advised.
If we want to install Vue.js via the npm package, use the following line. It
includes Webpack and Browserify in addition to other essential technolo-
gies that facilitate development.

npm install vue

By Using the CLI Command Line

Additionally, we may use the CLI to install Vue.js and launch the server
activation process. Using the CLI, run the following command to install
Vue.js:

npm install --global vue-cli

The installation of Vue.js cli will take a little while. When finished, it will
display the Vue.js CLI version.

+ vue-cli@2.9.6
added 238 packages from the 205 contributors in 346.282s

Creating a Project with Webpack

The command below may be used to start a Webpack project. Here, we’ll
make a project called “myproject.”

vue init webpack myproject

We will be prompted to input Y/n at several points during this process.
Type Y to continue.

Frontend Development    ◾    321

All requirements and the template will be downloaded automatically.
We’ll notice a message following the successful creation of our project.

Start the Project, Then the Server

The project has now been started. Enter the project directory using the
command below:

cd myproject

The Server may be started by using the command:

npm run dev

We can see that the Server is launched after executing the npm run dev
command. Open Google Chrome or any suitable browser and execute loc-
alhost http://localhost:8080/#/ to launch our project.

UNDERSTANDING VUE.JS
There are several ways to use and install Vue.js in our project, as we saw
previous.

This session will cover how to verify the Vue.js version, the benefits
and drawbacks of utilizing Vue.js in our project, the first example, and an
explanation of all the underlying concepts.17

Advantages of Using Vue.js

Vue.js is among the most cutting-edge software frameworks for creating web-
sites and single-page applications. The name suggests that the user interface
(UI) or ‘view side’ of a project is where it is most often applied. Evan You (a for-
mer Google employee who was working on Angular at the time) created this
framework so that rich client-side applications may be built with JavaScript.
Let’s examine the advantages of integrating Vue.js into our project:

The benefits of utilizing Vue.js include the following:

Extremely Small in Size
Small footprint is one of Vue.js’s main selling points.

This interesting JavaScript plugin is only 18–21 KB, so it can be down-
loaded and used in no time at all.

http://localhost:8080

322    ◾    Conquering JavaScript

Simple to Comprehend and Code
The Vue.js framework has a very straightforward structure that is easy to
grasp.

It is one of the reasons for the framework’s popularity.
We can simply develop in Vue.js if we are comfortable with HTML and

JavaScript.
Because of its basic structure, users may quickly include Vue.js in their

web projects and construct apps.

Integration with Existing Applications Is Simple
Vue.js offers many components for everything and can be rapidly inte-
grated with existing apps. It may be integrated with any JavaScript-based
application.

Nature Is Adaptable
The flexibility of Vue.js also makes it simple to grasp for developers of
React.js, Angular.js, and any other modern JavaScript framework.

We have a significant amount of flexibility to use virtual nodes to create
HTML files, JavaScript files, and pure JavaScript files.

Components
In Vue.js apps, we may construct reusable custom components.

Documentation That Is Simple, Thorough, and Detailed
Vue.js provides highly simple, extensive, and clear documentation, allow-
ing developers with little knowledge of HTML and JavaScript to code
with it.

DOM Virtualization
Vue.js employs virtual DOM, as do other existing frameworks such as
ReactJS, Ember, and others. Virtual DOM is an in-memory tree version
of the actual HTML DOM that may be modified without impacting the
original DOM.

Two-Way Communication
Vue.js’s MVVM design allows for two-way communication, making
HTML blocks relatively straightforward to manage.

Frontend Development    ◾    323

Companies That Use Vue.js

Vue.js is gaining popularity as more and more well-known firms begin to
employ it in real time. Several businesses are effectively utilizing Vue.js in
the real world.

Here are several examples:

•	 Facebook: Facebook is the most successful corporation that uses
Vue.js in their real-world projects. This framework is being used by
Facebook for the marketing side of their Newsfeed.

•	 Adobe: Adobe’s Portfolio product makes use of Vue.js. The organi-
zation has already moved its current software to the Vue.js frame-
work, taking advantage of its ease of integration.

•	 Xiaomi: Xiaomi is also employing Vue.js to construct its product
catalog in order to give consumers a dynamic experience.

•	 Alibaba: Vue.js has been adopted by Alibaba, one of China’s most
important public corporations.

Other famous firms that use Vue.js in their projects include:

•	 Grammarly

•	 Laracast

•	 Behance

•	 Netflix

•	 Codeship

•	 Livestorm

•	 Gitlab

•	 Euronews

•	 Wizzair, etc.

324    ◾    Conquering JavaScript

Examine the Vue.js Version We Have Installed

If we’re already familiar with Node.js and have the Vue.js CLI installed on
our machine, we can use the Node.js command prompt to verify the ver-
sion of our installed Vue.js:

•	 Run the following command in the Node.js command prompt:

vue --version

•	 If it replies favorably, go to the next step in creating our new proj-
ect. Vue.js version 2.9.6 is successfully installed in the preceding
instance. To create a new project, use the following command:

Syntax:

vue create <ourAppName>

•	 To build an app called, use the vue create firstapp command.

•	 We encountered an error stating that the vue create command is
only compatible with Vue CLI 3, and we are using an earlier version.
Now, use the command below to uninstall the previous version and
install the new one.

npm uninstall -g vue-cli
npm install -g @vue/cli

•	 The outdated version of Vue.js is clearly removed. Install the newest
version now.

•	 The latest version of Vue CLI is now installed. The vue—version
command may be used to determine the Vue CLI version.

•	 We can see that the most recent Vue CLI version has been installed.
Run the vue create firstapp command to make a new app named.

Frontend Development    ◾    325

INSTANCES IN VUEJS
We must use the Vue method to create a new Vue instance in order to
launch a Vue application. The main.js file’s default activation of the Vue
instance occurs whenever we start a new Vue project. Another name for it
is a root Vue instance.18

Syntax:

var vm = new Vue({
 // option
 })

The MVVM pattern informed the design of Vue’s application. To refer
to our Vue instance, we must use the variable vm (short for ViewModel).
When creating a Vue instance, we must include an options object.

Let’s look at an illustration to see what the Vue constructor must
provide.

Indexs.html file:

<html>
 <head>
 <link rel=”stylesheet” href=”indexs.css”>
 <script src=”https://cdn.jsdelivr.net/npm/vue/
dist/vue.js”></script>
 </head>
 <body>
<div id = “app”>
 <h1>Firstname is: {{firstname}}</h1>
 <h1>Lastname is: {{lastname}}</h1>
 <h1>{{mydetails()}}</h1>
 </div>
 <script src=”indexs.js”></script>
 </body>
</html>

326    ◾    Conquering JavaScript

Indexs.js file:

var vm = new Vue({
 el: ‘#app’,
 data: {
 firstname : “Alisha”,
 lastname : “Singla”,
 address : “delhi”
 },
 methods: {
 mydetails : function() {
 return “I am "+this.firstname +” “+ this.
lastname +” from “+ this.address;
 }
 }
 })

Let’s utilize a simple CSS file to enhance the output’s visual quality.

Indexs.css file:

html, body {
 margin: 6px;
 padding: 0;
}

Example Explanation
We can notice that we utilized a parameter named el in the example above.
The id of the DOM element is carried by this ‘el’ argument. We have the
id #app in the aforementioned example. The div element’s id is what is
displayed in the Indexs.html file.

<div id = “app”></div>

Now, the logic of the aforementioned program will only have an impact on
the div element and nothing else.

We have defined the data object after specifying the id. We have
specified certain values, including firstname and lastname, in the data
object. The <div> element contains a definition for this as well. For
instance,

Frontend Development    ◾    327

<div id = “app”>
 <h1>Firstname : {{firstname}}</h1>
 <h1>Lastname : {{lastname}}</h1>
</div>

The Firstname: {{firstname}}value defines the first name of the data object’s
stored data.

When we run the program, the value assigned in the data object, Alisha,
will be substituted inside the interpolation, i.e. ‘{{}}’.

The same is true for the final name as the Lastname: {{lastname}} value
provides the last name of the data object’s stored data.

When you run the program, the value assigned in the data object, i.e.,
‘{{}}’ Singla, will be substituted inside the interpolation.

Following the definition of the data object, we have methods with a
function named “mydetails” and a return value.

It is also specified within the <div> element as

<h1>{{mydetails()}}</h1>

As a result, we can see that within {{}} a call to the function mydetails is
made. As we can see, the value returned in the Vue instance is printed
within {{}}.

TEMPLATE IN VUE.JS
In this, we will learn how to get an output on the screen in the form of an
HTML template.

Vue.js employs an HTML-based template syntax that allows Vue.js
developers to declaratively connect the displayed DOM to the data of the
underlying Vue instance.

All Vue.js templates are valid HTML that can be processed by browsers
and HTML parsers that support the standard.19

If we use the simple interpolation approach, i.e., double curly brackets,
to display the HTML text on the web browser, the output will be incorrect.

To fully grasp this notion, consider a simple example and examine the
result.

Indexs.html file:

<html>
 <head>

328    ◾    Conquering JavaScript

 <title>Vue.js Template</title>
 <link rel=”stylesheet” href=”indexs.css”>
 <script src=”https://cdn.jsdelivr.net/npm/
vue/dist/vue.js”></script>
 </head>
 <body>
 <div id = “app”>
 <h1>Firstname is: {{firstname}}</h1>
 <h1>Lastname is: {{lastname}}</h1>
 <div>{{htmlcontent}}</div>
 </div>
 <script src=”indexs.js”></script>
 </body>
</html>

Indexs.js file:

var vm = new Vue({
 el: ‘#app’,
 data: {
 firstname : “Alisha”,
 lastname : “Singla”,
 htmlcontent : "<div><h1>This is the Vue.js
Template Instance</h1></div>”
 }

Let’s utilize a simple CSS file to enhance the
output’s attractive appearance.

Indexs.css file:

html, body {
 margin: 6px;
 padding: 0;
}

In the above instance, we can see that the html content is not shown on
the browser as we would like. The html content is shown in the manner we
specify in the htmlcontent variable.

This is not what we are looking for. We want it to appear in the browser
as standard HTML text.

Frontend Development    ◾    329

To address this problem, we will need to employ the v-html directive.
When we apply the v-html directive to the html element, Vue.js under-

stands that it must output HTML content.
Now, insert the v-html directive into the.html file and compare the

results in the following instance.

Syntax:

<div v-html = “htmlcontent”></div>

Example 2

Indexs.html file:

<html>
 <head>
 <title>Vue.js Template</title>
 <link rel=”stylesheet” href=”indexs.css”>
 <script src=”https://cdn.jsdelivr.net/npm/
vue/dist/vue.js”></script>
 </head>
 <body>
 <div id = “app”>
 <h1>Firstname : {{firstname}}</h1>
 <h1>Lastname : {{lastname}}</h1>
 <div v-html = “htmlcontent”></div>
 </div>
 <script src=”indexs.js”></script>
 </body>
</html>

Indexs.js file:

var vm = new Vue({
 el: ‘#app’,
 data: {
 firstname : “Alisha”,
 lastname : “Singla”,
 htmlcontent : "<div><h1>This is the Vue.js
Template instance</h1></div>”
 }
 })

http://Indexs.html

330    ◾    Conquering JavaScript

In the above instance, we can see that the v-html directive correctly adds
an HTML template to the DOM. Let’s look at how to add properties to the
existing HTML components now.

Attributes Should Be Added to HTML Elements

Assume we have an image element in the HTML file and want to assign
src, which is a Vue.js component. Consider the following:

Indexs.html file:

<html>
 <head>
 <title>Vue.js Template</title>
 <link rel=”stylesheet” href=”indexs.css”>
 <script src=”https://cdn.jsdelivr.net/npm/
vue/dist/vue.js”></script>
 </head>
 <body>
 <div id = “app”>
 <h1>Firstname : {{firstname}}</h1>
 <h1>Lastname : {{lastname}}</h1>
 <div v-html = “htmlcontent”></div>

 </div>
 <script src=”indexs.js”></script>
 </body>
</html>

Indexs.js file:

var vm = new Vue({
 el: ‘#app’,
 data: {
 firstname : “Alisha”,
 lastname : “singla”,
 htmlcontent : "<div><h1>This is the Vue.js
Template instance</h1></div>”,
 imgsrc : “https://www.fiordalisa.ch/
wp-content/uploads/2017/12/IMG_40.jpg”
 }
 })

Frontend Development    ◾    331

Example 3

Indexs.html:

<html>
 <head>
 <title>Vue.js Template</title>
 <link rel=”stylesheet” href=”indexs.css”>
 <script src=”https://cdn.jsdelivr.net/npm/
vue/dist/vue.js”></script>
 </head>
 <body>
 <div id = “app”>
 <h1>Firstname : {{firstname}}</h1>
 <h1>Lastname : {{lastname}}</h1>
 <div v-html = “htmlcontent”></div>
 <img v-bind:src = “imgsrc” width = “310”
height = “280” />
 </div>
 <script src=”indexs.js”></script>
 </body>
</html>

Indexs.js:

var vm = new Vue({
 el: ‘#app’,
 data: {
 firstname : “Alisha”,
 lastname : “singla”,
 htmlcontent : "<div><h1>This is the Vue.js
Template instance</h1></div>”,
 imgsrc : “https://www.fiordalisa.ch/
wp-content/uploads/2017/12/IMG_40.jpg”
 }
 })

In this chapter, we covered installation, advantages, disadvantages, basic
syntax of React, Express, and Vue.js.

332    ◾    Conquering JavaScript

NOTES
	 1	 Frontend vs Backend: www.geeksforgeeks.org/frontend-vs-backend/#:~:

text=The%20visual%20aspects%20of%20the,%2C%20Ruby%2C%20
Python%2C%20and%20. Accessed on: 11 October 2022.

	 2	 The Best Guide to Know What Is React: www.simplilearn.com/tutorials/
reactjs-tutorial/what-is-reactjs Accessed on: 10 October 2022.

	 3	 React Features: www.javatpoint.com/react-features Accessed on: 10
October 2022.

	 4	 Pros and Cons of ReactJS: www.javatpoint.com/pros-and-cons-of-react
Accessed on: 10 October 2022.

	 5	 React Version: www.javatpoint.com/react-version Accessed on: 10 October
2022.

	 6	 React Environment Setup: www.javatpoint.com/react-installation Accessed
on: 10 October 2022.

	 7	 Difference between AngularJS and ReactJS: www.javatpoint.com/reactjs-
vs-angularjs Accessed on: 11 October 2022.

	 8	 Svelte vs React: Which JavaScript Framework Is Better?: www.turing.com/
blog/svelte-vs-react-which-javascript-framework-should-you-choose-in-
2022/#:~:text=Svelte%20is%20a%20free%20and,components%20to%20
design%20UI%20elements. Accessed on: 11 October 2022.

	 9	 React JSX: www.javatpoint.com/react-jsx Accessed on: 12 October 2022.
	 10	 Express.js Tutorial: www.javatpoint.com/expressjs-tutorial Accessed on: 12

October 2022.
	 11	 Express.js: www.tutorialsteacher.com/nodejs/expressjs Accessed on: 12

October 2022.
	 12	 Express.js: www.geeksforgeeks.org/express-js/ Accessed on: 12 October

2022.
	 13	 The History of Node.js: www.section.io/engineering-education/history-of-

nodejs/ Accessed on: 12 October 2022.
	 14	 Node.js Basics: www.tutorialsteacher.com/nodejs/nodejs-basics Accessed

on: 12 October 2022.
	 15	 VueJS – Overview: www.tutorialspoint.com/vuejs/vuejs_overview.htm

Accessed on: 12 October 2022.
	 16	 Vue.js Installation: www.javatpoint.com/vue-js-installation Accessed on:

13 October 2022.
	 17	 Getting Started with Vue.js: www.javatpoint.com/getting-started-with-

vue-js Accessed on: 13 October 2022.
	 18	 Vue.js Instance: www.javatpoint.com/vue-js-instance Accessed on: 13

October 2022.
	 19	 Vue.js Template: www.javatpoint.com/vue-js-template Accessed on: 13

October 2022.

http://www.geeksforgeeks.org
http://www.simplilearn.com
http://www.simplilearn.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.turing.com
http://www.turing.com
http://www.turing.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.tutorialsteacher.com
http://www.geeksforgeeks.org
http://www.section.io
http://www.section.io
http://www.tutorialsteacher.com
http://www.tutorialspoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.javatpoint.com
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
http://www.turing.com

333

C h a p t e r 6

Backend Development

IN THIS CHAPTER

➢ Node.js

➢ MongoDB

➢ Server-side JS

In the previous chapter, we covered frontend development, and in this
chapter, we will discuss backend development.

WHAT IS BACKEND DEVELOPMENT?
Server-side development is referred to as backend development. It focuses on
databases, programming, and website design. It describes the operations that
take place behind the scenes when a user performs any activity on a website.1

It might be logging into an account or completing an online transaction.
Backend developers write code that allows browsers to interface with

database information.

NODE.JS
We will discuss introduction to node.js and its installation process below:

What Is Node.js, and How Does It Work?

Node.js is a fascinating combination of front- and backend technologies
in the context of application stacks. Node.js is based on JavaScript, which

DOI: 10.1201/9781003356578-6

https://doi.org/10.1201/9781003356578-6

334    ◾    Conquering JavaScript

is often used for the frontend, client-side of a web application; however,
Node.js extends the capabilities of JavaScript so that it may run on the
backend, server-side component of web application architecture or in a
serverless architecture.2

The server-side processing is handled by Node.js’s native runtime
environment.

Node.js is similar to Java in that both languages have their own runtime
environment in which to execute programs.

Node.js is a runtime environment that is meant to be fast and light-
weight, with features like non-blocking I/O and a package management
that simplifies the process of creating applications.

The Node.js package manager is known as npm. Its objective is to act as
an index of libraries created by the Node.js developer community that can
be readily shared and imported by other projects. These packages give use-
ful answers to common functions and code, making it easier to construct
new applications and improve existing ones.

Why Should We Use Node.js?

Node.js is a suitable option for a wide range of use scenarios.
Node.js, as a predominantly server-side framework, lends itself to appli-

cations on the backend of the technological stack. Here are a few examples
of why Node.js makes sense to utilize.

Fast, Lightweight Applications with Real-Time Communication
Understanding the size of your product is critical to selecting the appropriate
technology to develop it with. Node.js’s flexibility and efficiency make it ideal
for developing small, quick, and scalable apps. One example is real-time apps
such as instant messaging and collaboration tools. This, along with Node.js’s
quick synchronization capabilities, makes it suitable for event-based applica-
tions. WebSockets and WebRTC apps are examples of this.

Serverless and Microservice Design
Node.js is ideal for developing serverless and microservice-based applica-
tions due to its flexibility. These design choices are both highly popular
for conserving resources and managing application lifecycles efficiently.
Serverless architecture is popular due to its potential to reduce computing
expenses by using only the resources required for the application to execute
with no additional overhead. These are stateless and lightweight programs.

Backend Development    ◾    335

As a result, Node.js integration with serverless architecture is an excel-
lent match.

When the server demand is variable, there are npm packages for server-
less design, and constructing a serverless Node.js application works well
with an overall microservice architecture in C2C and B2C use cases.

The Internet of Things
Node.js excels at handling several connections at once. Because IoT is
based on multiple devices generating little signals that must be handled
rapidly, Node.js is an excellent backend for these types of applications,
including serverless architecture and real-time communication capability.

Processing of Audio/Video
Node.js is considerably better at handling asynchronous input and output
than other technologies. As a result, when paired with other media tools,
Node.js may be used to process and handle multimedia data.

A streaming configuration, for example, may be readily configured
using Node.js.

Quick Development
Because Node.js is built on standard web languages, it is incredibly easy
to use and has very short ramp-up times. New items may be developed
swiftly and promptly brought to market.

As a result, the quantity of engineering resources necessary to do so is
lowered.

This case study demonstrates how Node.js may assist in meeting tight
deadlines.

The product, an online marketplace for hail damage repair companies
and customers, was supposed to go live before the peak season.

When deciding between PHP and Node.js, we chose Node.js to match
both functional needs and timeframes. We were able to cut development
time by using isomorphic architecture.

Code Integration with C++
Node.js may work in tandem with existing C++ libraries. This is due to
the fact that the Node.js runtime is based on a C++ server that runs on the
host node. As a result, Node.js can rapidly transport data between C++
and application code.

336    ◾    Conquering JavaScript

The Downsides of Node.js
Heavy Calculation Activities Cause Performance Constraints
Even today, the most significant limitation of Node.js is its inability to
handle CPU-bound activities.3

But, in order to comprehend the underlying causes of this problem, we
need some context.

Let’s start with the fundamentals: JavaScript. Node.js, as we know, is
a server-side runtime environment that runs JavaScript. JavaScript, as
a frontend programming language, processes work on a single thread.
Threading is not necessary since JavaScript tasks are lightweight and con-
sume minimal CPU.

Returning to Node.js, we now understand why it is deemed single
threaded:

It executes JavaScript in a single thread.
A non-blocking input/output architecture means that Node.js responds

to the client call to start a request and processes the job as soon as the call-
back is fired, as the task is ready.

Node executes JS code on an event basis on its single thread while pro-
cessing jobs asynchronously. That is referred to as an event loop.

The issue arises when Node.js gets a CPU constrained task: if a big
request arrives in the event loop, Node.js will set all available CPU to
handle it first, before answering other requests queued. Because of the
sluggish processing and overall latency in the event loop, Node.js is not
recommended for intensive computing.

However, with the 10.5.0 upgrade in 2018, multithreading was added as
an experimental capability in Node.js.

A new feature called the worker threads module allows you to employ
extra threads from a thread pool to carry out CPU-bound activities.

However, this is only possible on machines with several cores, because
Node.js still enables us to use one core for one thread.

This means that hefty parallel tasks can be run on a separate thread.
This functionality is still experimental in Node.js version 12; however,

it has been greatly improved.

Callback Hell Is a Problem
Because of its asynchronous nature, Node.js mainly relies on callbacks,
which are routines that execute when each job in the queue is completed.

Backend Development    ◾    337

Keeping a multitude of queued jobs in the background, each with its
own callback, may result in callback hell, which has a direct influence on
code quality.

Simply described, it’s a “situation in which callbacks are nested within
other callbacks several levels deep, possibly making understanding and
maintaining the code challenging.”

However, this is sometimes interpreted as an indication of poor cod-
ing standards and a lack of knowledge with JavaScript and, in particular,
Node.js.

Tooling Immaturity
Although the core Node.js modules are relatively stable and mature,
many tools in the npm registry are either of poor quality or are not fully
documented/tested.

Furthermore, the register isn’t well-structured enough to provide tools
depending on their ranking or quality.

As a result, without understanding what to look for, it may be difficult
to identify the ideal option for our needs.

The fact that the Node.js ecosystem is primarily open source also has
an effect.

There Is a Growing Need for Skilled Experts
Contrary to popular perception, not all JavaScript developers are also
Node.js engineers.

Mastering server-side JavaScript coding takes considerable work and
an experience in backend development. The number of Node.js engineers
is much smaller than the overall number of JS professionals due to the
steep learning curve.

As the buzz around Node.js grows, so does the need for skilled indi-
viduals in this industry.

As a result, with millions of JavaScript engineers available, it may be
difficult to locate a knowledgeable Node.js expert for our project.

We definitely don’t want to limit our search to just one nation in this
scenario.

In the IT business, sourcing technical expertise from other countries
has long been the standard.

338    ◾    Conquering JavaScript

Where Can We Use Node.js?

Following are some examples of when Node.js has shown to be a valuable
technological asset.4

•	 Applications that are I/O bound

•	 Applications for Data Streaming

•	 Data Intensive Real-time Applications

•	 Applications based on JSON APIs

•	 Applications on a Single Page

Where Should We Not Use Node.js?

Node.js should not be used for CPU-intensive applications.

SETUP OF THE NODE.JS ENVIRONMENT
If we still want to set up our Node.js environment, we will need the two
following software on our computer: (a) a text editor and (b) the Node.js
binary installable.5

Text Editor

This is where we will type our program.
Some editors are Windows Notepad, the OS Edit command, Brief,

Epsilon, EMACS, and vim or vi.
On various operating systems, the name and version of the text editor

may change.
Notepad, for example, will be used on Windows, while vim or vi may be

used on both Windows and Linux or UNIX.
Source files are files that we produce with your editor that contain pro-

gram source code.
The source files for Node.js apps are usually suffixed with “.js.”
Before we begin programming, make sure we have a text editor and enough

expertise to develop a computer program, store it in a file, and then run it.

Node.js Runtime

The source code in the source file is only JavaScript. Our JavaScript code
will be interpreted and executed using the Node.js interpreter.

Backend Development    ◾    339

The Node.js distribution is available as a binary installable for SunOS,
Linux, Mac OS X, and Windows operating systems that support the 32-bit
(386) and 64-bit (amd64) x86 CPU architectures.

The section that follows will show us how to install the Node.js binary
distribution on different operating systems.

Get the Node.js Archive

Visit https://nodejs.org/download to obtain the most recent installable
archive file for Node.js. The versions that are available on various OS as of
the time this guide was written are listed below.

Installation on SunOS, Mac OS X, Linux, and UNIX

Install and extract the node-v6.3.1-osname.tar.gz archive into /tmp
according to the OS architecture for our computer, and then move the
extracted contents into the /usr/local/nodejs directory. For instance:

$ cd /tmp
$ wget http://nodejs.org/dist/v6.3.1/node-v6.3.1-
linux-x64.tar.gz
$ tar xvfz node-v6.3.1-linux-x64.tar.gz
$ mkdir -p /usr/local/nodejs
$ mv node-v6.3.1-linux-x64/* /usr/local/nodejs

Add the PATH environment variable to the path /usr/local/nodejs/bin.

Setup on a Windows Computer

To install Node.js, use the MSI file and follow the on-screen instructions.
The installer by default makes use of the Node.js package located at C:\

OS Archive Name

Windows node-v6.3.1-x64.msi
Mac node-v6.3.1-darwin-x86.tar.gz
Linux node-v6.3.1-linux-x86.tar.gz
SunOS node-v6.3.1-sunos-x86.tar.gz

OS Output

Mac export PATH=$PATH:/usr/local/nodejs/bin
Linux export PATH=$PATH:/usr/local/nodejs/bin
FreeBSD export PATH=$PATH:/usr/local/nodejs/bin

https://nodejs.org

340    ◾    Conquering JavaScript

Program Files\nodejs. The C:\Program Files\nodejs\bin directory should
be added to Windows’ PATH environment setting by the installation. Any
open command windows must be restarted for the modification to take
effect.

Executing a File Will Verify Installation

Create a main.js file with the following code on our computer (Windows
or Linux).

/* Hello, Everyone! program in node.js */
console.log(“Hello, Everyone!”)

To view the outcome, run the main.js file using the Node.js interpreter
now.

$ node main.js

FIRST APPLICATION OF NODE.JS
Let’s first look at the components of a Node.js application before build-
ing a real “Hello, Everyone!” application. The following three crucial parts
make up a Node.js application:

•	 Import required modules: Use the need directive to load the neces-
sary Node.js modules.

•	 Create server: Create a server that responds to client requests in a
manner similar to the Apache HTTP Server.6

•	 Read request and return response: The server constructed in a previ-
ous stage will read the HTTP request sent by the client, which can be
a browser or a console, and deliver the response.

Creation of Node.js Application

Step 1: Import the necessary module.
The following is how we load the http module using the need directive

and save the resulting HTTP instance into an http variable:

var http = require(“http”);

Backend Development    ◾    341

Step 2: Create a server
Using the newly formed http instance, we execute the http.create-

Server() function to create a server instance, and then we bind it to port
8081 by using the server instance’s listen method. Send it a function with
request and response arguments. Make the example implementation
return “Hello Everyone!” every time.

http.createServer(function (request, response) {
 // Send HTTP header
 // HTTP Status: 200 : OK
 // Content Type: text/plain
 response.writeHead(200, {‘Content-Type’: ‘text/
plain’});

 // Send response body as “Hello Everyone!”
 response.end(‘Hello Everyone!\n’);
 }).listen(8081);

 // Console will print message
 console.log(‘Server running at
http://127.0.0.1:8081/’);

The aforementioned code is sufficient to build an HTTP server that listens
on the local machine’s port 8081, or waits for a request.

Step 3: Testing Request & Response.
Let’s combine steps 1 and 2 in a file named main.js and launch our

HTTP server as seen below.

var http = require(“http”);

http.createServer(function (request, response) {
 // Send HTTP header
 // HTTP Status: 200 : OK
 // Content Type: text/plain
 response.writeHead(200, {‘Content-Type’: ‘text/
plain’});

 // Send response body as “Hello Everyone!”
 response.end(‘Hello Everyone!\n’);
}).listen(8081);

342    ◾    Conquering JavaScript

// Console will print message
console.log(‘Server running at
http://127.0.0.1:8081/’);

Execute “main.js” now to launch the server in the manner shown below.

$ node main.js

MongoDB
We will discuss introduction to MongoDB and its installation process
below:

What Is MongoDB

MongoDB is a free document-oriented database that can hold a big amount
of data while also allowing us to deal with it extremely efficiently.

It is classified as a NoSQL (Not simply SQL) database since data in
MongoDB is not stored and retrieved in the form of tables.

MongoDB is a database that was created and operated by MongoDB.
Inc under the SSPL (Server-Side Public License) and was first published in
February 2009.

It also offers official driver support for all prominent programming lan-
guages such as C, C++, C#, etc.7

Programming languages such as Net, Go, Java, Node.js, Perl,
PHP, Python, Motor, Ruby, Scala, Swift, and Mongoid are just a few
examples.

As a result, we may write an application in any of these languages.
Nowadays, numerous firms, like Facebook, Nokia, eBay, Adobe, and

Google, utilize MongoDB to store massive amounts of data.

How Does It Work?

Now we’ll look at what goes on behind the scenes.
As we all know, MongoDB is a database server that stores data in

databases.
In other words, the MongoDB environment provides you with a server

on which we may launch MongoDB and build several databases.
The data is kept as collections and documents due to the NoSQL

database.

Backend Development    ◾    343

As a result, the database, collection, and documents are linked as
follows:

•	 Collections exist in the MongoDB database in the same way that
tables exist in the MYSQL database. We are permitted to build sev-
eral databases and collections.

•	 We now have papers within the collection. Because we are schema-
less, documents do not have to be comparable to one another, and
the data we want to store in the MongoDB database is included
inside documents.

•	 The fields are used to build the documents. Fields in documents
are key-value pairs, similar to columns in a relational database. The
fields’ values can be of any BSON data type, such as double, string,
and Boolean.

•	 The data in MongoDB is saved in the form of BSON documents.
BSON is an abbreviation for binary representation of JSON docu-
ments. In other words, the MongoDB server turns JSON data in the
backend into a binary version known as BSON, which is then stored
and searched more effectively.

•	 It is possible to store nested data in MongoDB documents. Because
of data layering, complex data associations may be built and stored
in a single document, making data management and retrieval con-
siderably faster than using SQL. To get data from tables 1 and 2, we
must use complicated SQL joins. The BSON document can be up to
16MB in size.

Databases

Documents

Documents

Documents

C
o

ll
e
c
ti

o
n

Documents

Documents

Documents

C
o

ll
e
c
ti

o
n

Working of MongoDB

344    ◾    Conquering JavaScript

MongoDB Data Modeling

As we saw in the introduction, MongoDB data has a flexible structure.8

Unlike SQL databases, which require you to define the schema of a
table before entering data, MongoDB’s collections do not impose docu-
ment structure.

This kind of adaptability is what makes MongoDB so effective.
Keep the following points in mind when modeling data in Mongo.

•	 What are the application’s requirements?—Examine the applica-
tion’s business requirements to determine what data and the sort of
data it requires.

•	 As a result, ensure that the structure of the document is determined
appropriately. What are data retrieval patterns?—If we anticipate
a high volume of queries, consider including indexes in our data
model to boost query performance.

•	 Are there frequent inserts, updates, and deletions in the database? To
increase the overall efficiency of our MongoDB system, reconsider
the usage of indexes or add sharding if necessary in your data model-
ing strategy.

What Distinguishes MongoDB from RDBMS?

The following are some significant differences between MongoDB and
RDBMS:

MongoDB RDBMS

It is a document-oriented, non-relational
database. The database is a relational one.

It is appropriate for storing hierarchical
data.

It is not appropriate for storing hierarchical
data.

Its schema is dynamic. It already has a schema.
The CAP theorem is at its core
(Consistency, Availability, and Partition
tolerance).

It focuses on the characteristics of ACID
(Atomicity, Consistency, Isolation, and
Durability).

It performs significantly better than
RDBMS in terms of speed.

It performs worse than MongoDB in terms
of speed.

Backend Development    ◾    345

MongoDB Features Include

•	 Schema-less Database: MongoDB offers a nice feature called
schema-less databases. A schema-less database allows several types
of documents to be stored in a single collection. That is to say, in
the MongoDB database, several documents of varying field counts,
content types, and sizes may coexist in the same collection. It is not
required for one document to be comparable to another, as in rela-
tional databases. MongoDB’s interesting feature gives databases a lot
of flexibility.

•	 Oriented to Documents: As MongoDB, all data is kept in docu-
ments rather than tables like in RDBMS. In these documents, data is
kept in fields (key-value pairs) rather than rows and columns, mak-
ing the data far more flexible than in RDBMS. And each document
has a distinct object id.

•	 Indexing: Every field in the documents in the MongoDB database is
indexed with main and secondary indices, making it easier and tak-
ing less time to obtain or search data from the pool of data. If the data
is not indexed, the database must search each document individually
with the supplied query, which takes a long time and is inefficient.

•	 Scalability: MongoDB offers horizontal scalability via sharding.
Sharding is the process of distributing data over numerous servers.
A huge quantity of data is partitioned into data chunks using the
shard key, and these data pieces are distributed evenly across shards
that exist across many physical servers. It will also add additional
machines to an already active database.

•	 Replication: With the aid of replication, MongoDB enables high
availability and redundancy by creating several copies of the data
and sending these copies to a separate server so that if one server
fails, the data may be accessed from another server.

•	 Aggregation: It allows us to conduct actions on aggregated data
to obtain a single or calculated output. It is analogous to the SQL
GROUPBY clause. It offers three types of aggregations: aggregation
pipelines, map-reduce functions, and single-purpose aggregation
techniques.

346    ◾    Conquering JavaScript

•	 High Efficiency: MongoDB has superior speed and data permanence
when compared to other databases due to capabilities such as scal-
ability, indexing, and replication.

MongoDB Has the Following Advantages

•	 It is a NoSQL database with no schema.

•	 When working with MongoDB, we do not need to design the data-
base schema.

•	 The join operation is not supported.

•	 It gives the fields in the papers a lot of leeway.

•	 It contains a variety of data.

•	 It has a high level of performance, availability, and scalability.

•	 It effectively supports Geospatial.

•	 It is a document-oriented database that stores data as BSON
documents.

•	 It also allows for multiple documents ACID transitions (string from
MongoDB 4.0).

•	 There is no need for SQL injection.

•	 It is simple to integrate with Big Data Hadoop.

MongoDB Disadvantages

•	 It stores data in a large amount of memory.

•	 We may not save more than 16MB of data in the documents.

•	 Data nesting in BSON is similarly limited; we cannot nest data more
than 100 layers.

GETTING STARTED WITH MongoDB
Terminology

A MongoDB Database may be thought of as a container for all collections.9

Backend Development    ◾    347

•	 As MongoDB, documents are stored in collections. It’s quite similar
to relational database management system tables.

•	 There are fields in this document. It’s like an RDBMS tuple, except
the schema may change on the fly. Even within the same collection,
documents need not contain a uniform set of fields.

How to Get Started

After installing MongoDB, we can find all of the installed files under C:\
ProgramFiles\MongoDB\ (default location).

There are a number of executables in the C:\Program Files\MongoDB\
Server\3.2\bin directory and a brief summary of them is as follows:

mongo: A command-line tool for interacting with
databases.
mongod: This is the database, mongod. configures the
server.
mongodump: It removes the database’s binary data (BSON)
mongoexport: The document is exported using
mongoexport in the JSON and CSV formats.
mongoimport: To add data to the database.
mongorestore: To restore everything that you’ve
exported, use mongorestore.
mongostat: Database statistics

We may now start the MongoDB server. Open a Command Prompt and go
to the location of the MongoDB executables (C:\Program Files\MongoDB\
Server\3.2\bin\, however this path may change in the future). Simply typ-
ing “mongod” will result in an error stating that the path \data\db does
not exist.

This signifies that the default storage path C:datadb was not discov-
ered. So we may create the directory C:datadb manually or with the mkdir
program. We may also alter the default path by using the “mongod” com-
mand with the switch –dbpath <path>.

After creating this directory, rerun the “mongod” command to start the
server on port 27017.

We must now launch our customer. In order to modify the directory
to the MongoDB path, create a new terminal. Once we type “mongo,” our
client will start up and attempt to connect to the server.

348    ◾    Conquering JavaScript

To communicate with and manage the databases, use this CLI. This shell
resembles a JS console somewhat. We may experiment with various JS com-
mands to see how it works. Now that our customer is operational, we can
begin working on the database. We can see that the active database is called
“test.” We may switch to different databases, such as “local,” by saying “use
<dbname>,” and you can examine the databases by typing “see dbs.”

There are no collections currently in existence. By entering the com-
mand “display collections,” this may be viewed.

Start by entering some information into our database. By using the
method db.createCollection(name, { size : …, capped : …, max : … }), we
can create a collection.

However, we have constructed a json file (with employee data) that
was generated at random, and we would import it into our database by
entering

mongoimport --jsonArray --db test --collection
employeedata <
C:\mongoJson\employeedata.json

This might import the Employee data json file that is referenced by the
path in the database “test” collection titled “employeedata.”

We may now type “display collections” in the shell to confirm that the
collection has been imported. Count(), find(), and findOne() are a some
of the very basic querying techniques we may employ with our document.

As we can see, each document contains a field named “_id” that was
absent from the data imported. The explanation is because every docu-
ment in MongoDB is guaranteed to have a unique “_id” by default, which
is a 12-byte hexadecimal integer. Even though changing this “_id” field is
possible, doing so is not advised.

Indexing: If our query returns more than one document, we may uti-
lize indexing.

For example, db.employeedata.find() retrieves all of the documents in
the collection, but if we just want the 7th one, use db.employeedata.find()
[6] to get it. [Note: Indexing begins at 0 here.]

Projections: Assume we want just certain specified information for a
query rather than the whole set of details in the document. We can do
these using projections.

Backend Development    ◾    349

Simply set the required fields to 1 after our query object, and the rest
will be presumed to be 0. However, keep in mind that the “_id” field is
always expected to be 1 implicitly, and if we don’t want to see the unsightly
“_id” field, we must specify this in our projection by “_id: 0”

Queries

	 1.	Determine the company’s personnel count for “PEEKS FOR PEEKS.”

> db.employeedata.find({ company= “PEEKS FOR
PEEKS” }).count()

	 2.	Display all of the employees called “Sanjana Jain” in detail

> db.employeedata.find({ name: “Sanjana Jain” }
All of the papers that match the supplied name would appear here.

	 3.	Display the “Harshit Gupta” employee’s age, gender, and email
address but not their “_id.” (Presume there is just one worker with
the name Harsh Sharma.) Employing projections

> db.employeedata.find({ name: “Harsh Sharma” }, {
_id:0, age:1, gender:1, email:1 })

The results of questions may also be saved in variables, which can
then be used to create intriguing inquiries.

	 4.	List every female employee’s name in print.

> var femaleEmp = db.employeedata.find({ gender:
“female” })

for (var x = 0 ; x < femaleEmp.count() ; x++){

print (femaleEmp[i].name)

}

> db.employeedata.find({ gender: “female” }, {
_id:0, name:1 })

350    ◾    Conquering JavaScript

HOW CAN MongoDB BE INSTALLED ON WINDOWS?
MongoDB is an open-source document-oriented database that can hold
a big amount of data while also allowing you to deal with it extremely
efficiently.

It is classified as a NoSQL (Not Only SQL) database since data in
MongoDB is not stored and retrieved in the form of tables.10

This has been a broad introduction to MongoDB; now we will learn
how to install MongoDB on Windows.

MongoDB may be installed in two ways: as a msi package or as a zip
archive.

We’ll go through how to install MongoDB using msi in this section, so
pay attention to each step:

Step 1: Download MongoDB Community Server from the https://www.
mongodb.com/try/download/community2 MongoDB Download Center.]

We may choose any version, Windows, and package based on our needs.
For Windows, we must select:

•	 Version: 4.2.2

•	 OS: WindowsOS

•	 Package: msi

Download MongoDB

https://www.mongodb.com
https://www.mongodb.com

Backend Development    ◾    351

Step 2: Once the download is complete, open the msi file and go to the
starting page by clicking the next button:

Step 3: Go ahead and click the next button after accepting the end-user
license agreement.

Installation Step 2

Installation Step 3

352    ◾    Conquering JavaScript

Step 4: To install every function of the application, choose the entire
option. Use the Custom option if we wish to install only particular soft-
ware features and choose the installation location in this case:

Step 5: Choose “Run service as Network Service user” and note the direc-
tory’s location. Select Next.

Step 6: To begin the installation process, press the Install button:

Step 7: After selecting the install option, MongoDB is installed:

Step 8: To complete the installation procedure, click Finish now:

Step 9: Go to the place where MongoDB was installed on our machine in
step 5 and copy the bin path.

Step 10: Next, open System Properties, << Environment Variable << System
variable << path << Edit Environment variable paste the copied URL into

Installation Step 4

Backend Development    ◾    353

Installation Step 5

Installation Step 6

354    ◾    Conquering JavaScript

Installation Step 7

Installation Step 8

Backend Development    ◾    355

our environment system, and then click OK to establish an environment
variable.

Step 11: Following the setup of the environment variable, mongod, the
MongoDB server, will be started. Run the following command after start-
ing the command prompt:

mongod

An error message stating “C:/data/db/ not found” may appear when we
perform this program.

Step 12: Next, open C drive and make a folder called “data” inside of
which we should make another folder called “db.” these folders have been
created. Run the following command after once again opening the com-
mand prompt:

mongod

Now, the MongoDB server (also known as mongod) will operate correctly.

Run Mongo Shell

Step 13: At this point, we’ll connect the mongo shell to our server (mon-
god). Therefore, keep the mongod window open and type mongo in a new
command prompt window. Our mongo shell will now connect success-
fully to the mongod.

Important Notice: Do not close the mongod window; doing so may
cause our server to cease functioning and prevent it from connecting to
the mongo shell.

We may now start creating queries in the mongo Shell.

Example

In our shell, we may now create new databases, collections, and docu-
ments. An illustration of creating a new database is shown below.

The use Databasename creates a new database in the system if one
doesn’t already exist and utilizes an existing database if one does.

use pfp

Our database for the name pfp is now ready.

356    ◾    Conquering JavaScript

The student collection is created in the pfp database using the
db.Collection name command, and the document is added using the
insertOne() method:

db.student.insertOne({Ankita:400})

SERVER-SIDE JS
We will discuss introduction to Server-side JS and its installation process
below:

Server-Side Website Programming

The Dynamic Websites—Server-side programming subject is comprised
of a set of modules that demonstrate how to develop dynamic websites, or
websites that serve personalized content in response to HTTP requests.11

The majority of significant websites employ server-side technologies to
dynamically display data on demand. Consider, for instance, how many
things are accessible on Amazon and how many Facebook postings have
been published. It would be extremely inefficient to display all of these on
separate static pages; so instead, these sites display static templates (built
using HTML, CSS, and JavaScript) and dynamically update the data dis-
played within those templates when necessary, such as when we want to
view a different product on Amazon.

In the present world of web development, it is strongly suggested to
have knowledge in server-side development.

Server-side programming is typically less daunting than client-side
development for new developers because most dynamic websites use web
frameworks that simplify common web server operations like retrieving
data from a database and displaying it in a page, validating user-entered
data and saving it to a database, checking user permissions and logging
users in, etc. The ability to program (or familiarity with a certain pro-
gramming language) is helpful but not required.

To the same extent, we don’t need to be a coding pro to work effectively
with the team building our website’s frontend.

Web browsers run JavaScript, a Web programming language that is
largely used on webpages and web apps. But because JavaScript is a gen-
eral-purpose language, it may also be used for other kinds of program-
ming. It may be utilized on the server side, which in this context refers to
all locations other than the web browser.

Backend Development    ◾    357

Engines That Run JavaScript

JavaScript has several engines that implement it. JavaScript code is read
by JavaScript engines, which then carry it out. Web browsers make heavy
use of these, but they also have other possible host environments, such as
web servers.

The public API that JavaScript engines make available allows for the
language to be embedded in other applications and systems (like web
browser, web server, and database).

SpiderMonkey: Mozilla Foundation maintains SpiderMonkey, the orig-
inal JavaScript engine developed by JavaScript’s developer, Brendan Eich.

C/C++ code serves as the implementation. Originally designed for use
with Netscape Navigator, Mozilla Firefox is now the browser of choice for
many.

Mozilla Foundation also maintains the Rhino JavaScript engine. It was
developed using the Java programming language. Because of Rhino, the
Java API is available to JavaScript.

JavaScript has the ability to interact with Java through calling Java meth-
ods, setting Java properties, and converting JavaScript values to Java values.

Chrome V8 utilizes the JavaScript framework that the Chrome team
maintains.

It is a C++ program.
JScript & Chacra: Microsoft’s Internet Explorer and Edge use two

engines—JScript and Chacra.
JavaScriptCore (Nitro): Safari uses Apple’s custom-built JavaScriptCore

(Nitro) engine.

Runtime Environment

To put it simply, a JavaScript Runtime Environment is a container that
houses the JavaScript engine and executes scripts. Because of its embedded
nature, JavaScript often requires extra libraries.12 These further objects and
capabilities are made available by the Runtime Environment. Web brows-
ers include a number of other things, such as the window and the page.

Uses of Server-Side JavaScript

Here are some instances of server-side JavaScript usage:
Document-oriented database MongoDB utilizes the SpiderMonkey

engine.

358    ◾    Conquering JavaScript

NoSQL database CouchDB, powered by SpiderMonkey.
Riak is a distributed, SpiderMonkey-powered key-value database.
SpiderMonkey is the engine used by Thunderbird, an email client.
Use the SpiderMonkey engine for Flash, Reader, and Adobe Acrobat.
GNOME is a desktop environment that utilizes the SpiderMonkey

engine and runs on UNIX-like operating systems.
Java API is used by Rhino to transform JavaScript scripts into Java

classes. We may run scripts in batch mode using Rhino shell.
We may run JavaScript code on the server side using the Node.js

JavaScript runtime environment. Built around a V8 engine. Building scal-
able network applications requires the usage of Node.js. It is built on asyn-
chronous, event-driven communication, which enables us to successfully
manage heavy loads.

MERN STACK
Full-stack online applications may be deployed more quickly and with
less effort with MERN Stack, a JavaScript stack. There are four technolo-
gies that make up the MERN Stack: MongoDB, Express, React, and Node.
js. The whole point of it is to streamline and simplify the development
procedure.13

Each of these four potent technologies plays a significant role in the cre-
ation of web apps and offers a comprehensive environment for program-
mers to use.

As a jumping off point, consider: Make a new folder for the project first.
Next, open a command prompt or terminal and go to the project’s folder;
then, run the following command to create a package.json file. (Ensure
that npm is set up)

npm init

Acquainting Oneself with MERN Stack Components
1. MongoDB: Cross-Platform Document-Oriented Database
MongoDB is a NoSQL database in which each record is a document con-
sisting of key-value pairs comparable to JSON (JavaScript Object Notation)
objects.

MongoDB is adaptable and lets users design schema, databases, and
tables, among other things.

Backend Development    ◾    359

Documents that can be identified by a primary key are the fundamental
unit of MongoDB.

Once MongoDB has been deployed, users may also use the Mongo shell.
Through the JavaScript interface provided by Mongo shell, users may

communicate and perform activities (eg: querying, updating records,
deleting records).

Why Should We Create Mobile and Web
Applications with MERN Stack?

•	 Cost-effective: All four of the above-mentioned technologies,
MERN (MongoDB, Express.js, React.js, and Node.js), are utilized
in MERN Stack, which is based on JavaScript. This makes it cost-
effective, and with less cost investment, the user will be able to get
greater outcomes.

•	 SEO friendly: Here, SEO (Search Engine Optimization) friendly
implies that Google, Yahoo, and other scan engines can efficiently
and simply search each page on the website, understand and cor-
relate the content with the searched text, and readily index it in their
database. As websites developed with MERN technology are always
optimized for search engines.

•	 Better performance: Better performance refers to the quicker reac-
tion between the backend, the frontend, and the database, which
eventually increases the website’s speed and delivers better perfor-
mance, hence facilitating a seamless user experience.

•	 Improves Security: It mostly relates to the security of MERN-
generated apps; web application security refers to the techniques,
methods, and technologies used to safeguard web servers and dif-
ferent online applications, such as APIs (Application user interface),
against internet-based attacks. Generally speaking, secure hosting
companies can easily incorporate MERN-based apps. For additional
or enhanced protection, Mongo DB and Node.js security solutions
are also used.

•	 Give the quickest delivery: Web and mobile apps generated with
MERN Stack are developed much quicker, allowing us to provide
speedier delivery to our customers.

360    ◾    Conquering JavaScript

•	 Provides quicker Adjustments: MERN stack technologies offer
rapid modifications in mobile and web apps per client request.

•	 Open Source: MERN’s four constituent technologies are all open
source. This functionality enables developers to get answers to ques-
tions arising from open portals during development. Consequently,
it will eventually be advantageous for a developer.

•	 Easy to switch between client and server: Because it is developed in
a single language, MERN is highly simple and quick, making it easy
to move between client and server. Additionally, switching between
client and server is fairly simple.

Why Employ MongoDB?

•	 Being a document-oriented database, indexing documents is simple.
Consequently, a quicker reaction.

•	 Scalability—Large data sets may be managed by distributing them
over several computers.

•	 Utilization of JavaScript—The greatest benefit of MongoDB is that it
utilizes JavaScript.

•	 Any form of data is included in a distinct document.

•	 JSON data consists of Objects, Object Members, Arrays, Values,
and Strings.

•	 JSON syntax is quite simple to use.

•	 JSON has broad browser compatibility.

•	 Sharing Data: It is simple to exchange data of any size or form
(video, audio).

•	 Simple Environment Configuration—Setting up MongoDB is a
breeze.

•	 Flexible Document Model—MongoDB offers the document model
(tables, schemas, columns, and SQL), which is quicker and more
convenient.

Backend Development    ◾    361

•	 Creating a database: Easily achieved with the “use” command:

use databasename;

•	 Constructing a table If the collection or table does not already exist,
one will be made:

db.createCollection(“collectionname”);

•	 Recordings being added to the collection:

db.collectionname.insert

(

 {

 “id” : 101,

 “Name” : “Karan”,

 “Department”: “Tech”,

 “Organization”: “Peeks For Peeks”

 }

);

•	 A document’s query:

db.collectionname.find({Name : “Karan”}).
forEach(printjson);

2. Express: Backend Framework
Express is a Node.js framework used as a backend framework. Express
allows building the backend code simpler and easier than using Node.js
and producing several Node modules. Express supports the creation of

362    ◾    Conquering JavaScript

excellent web applications and APIs. Because Express offers so many mid-
dlewares, writing code is quicker and simpler.

Why Use Express?

•	 Single-threaded and asynchronous.

•	 Effective, quick, and scalable.

•	 ’Node.js’ has the largest community.

•	 Express’ integrated router encourages code reuse.

•	 Robust API.

•	 Create a new folder to house our express project, then enter the com-
mand below to create a ‘package.json’ file at the command prompt.
Accept the defaults and go on.

npm init

•	 Then, install express by using the command shown below. Finally,
create a file called index.js within the directory.

npm install express --save

•	 To establish an example server, enter the following code in index.js
instantly.

const express = require(‘express’),
http = require(‘http’);

const hostname = ‘localhost’;
const port = 8080;
const app = express();

app.use((req, res) => {
console.log(req.headers);
res.statusCode = 200;
res.setHeader(‘Content-Type’, ‘text/html’);
res.end(‘<html><body><h1>This is the test server</
h1></body></html>’);

Backend Development    ◾    363

});
const sampleserver = http.createServer(app);

sampleserver.listen(port, hostname, () => {
console.log(`Server running at
http://${hostname}:${port}/`);
});

•	 Update the package.json file’s “scripts” section.

•	 Then execute the command below to start the server.

npm start

•	 Now that the server is operating, we may access the output by open-
ing the browser.

3. React: Frontend Library
A JavaScript package called React is used to create user interfaces. Because
React can manage quickly changing data, it is used to create single-page
apps and mobile applications. JavaScript coding is supported by React,
and UI components may be made.

Why Use React?

•	 Virtual DOM—A virtual DOM object is a DOM object’s representa-
tion. The virtual DOM is an exact replica of the original DOM. Any
changes to the web application result in a complete re-rendering of
the virtual DOM. The difference between the original DOM and the
virtual DOM is then compared, and adjustments are applied to the
original DOM appropriately.

•	 JSX—Abbreviation for JavaScript XML. It is a React-specific HTML/
XML JavaScript Extension. Facilitates and simplifies the creation of
React components.

•	 Components: Components are supported by ReactJS. Components are
the building elements of UI, with each component having its own logic

364    ◾    Conquering JavaScript

and contributing to the UI as a whole. These components also increase
code reuse and simplify the overall web application’s readability.

•	 High Performance—Features like virtual DOM, JSX, and Compon-
ents make it much quicker than other available frameworks.

•	 Developing Android/iOS Apps—With React Native and understand-
ing of JavaScript and ReactJS, we can simply create Android-based or
IOS-based apps.

•	 Install “create-react-app” using npm or yarn in order to launch your
React application.

npm install create-react-app --global

OR

yarn global add create-react-app

•	 After that, we may use to build a new React app.

create-react-app appname

•	 Then, to launch our application, browse to the “appname” folder and
execute yarn start or npm start.

•	 Update the index.js file.

ReactDOM.render(
<h1>Hello EVERYONE!!</h1>,
document.getElementById(‘root’)
);

•	 Use the commands listed below to execute our program.

npm start

OR

yarn start

Backend Development    ◾    365

4. Node.js: JS Runtime Environment
The JavaScript Environment provided by Node.js enables users to run
their code on the server (outside the browser). The user may select from
thousands of free packages (also known as node modules) to download
using the Node Pack Manager, or npm.

Why Use Node.JS?

•	 JavaScript Runtime Environment is available for free.

•	 Follows a single-threaded model; single threading.

•	 Data Streaming Quickly—Node.js has a quick code execution and is
built on the JavaScript Engine of Google Chrome.

•	 High Scalability.

•	 Start a Node.js application by entering the command shown below in
the command window. Embrace the default settings.

npm init

•	 Make a file with the name indexs.js.
Example: A simple Node.js example for calculating a rectangle’s

area and perimeter.

var rectangle = {
 perimeter: (j, Ky) => (2*(j+k)),
 area: (j, k) => (j*k)
};

function Rectangle(l, b) {
 console.log(“A rectangle with l = “ + l + “
and b = “ + b);

 if (l <= 0 || b <= 0) {
 console.log(“Error! Rectangle’s length &
breadth should be greater than 0: l = “
 + l + “, and b = “ + b);
 }
 else {

366    ◾    Conquering JavaScript

 console.log(“The Area of a rectangle: “ +
rectangle.area(l, b));
 console.log(“The Perimeter of a rectangle:
“ + rectangle.perimeter(l, b));
 }
}

Rectangle(2, 6);
Rectangle(5, 14);
Rectangle(-7, 2);

•	 Run the command shown below in the command window to launch
the node application.

npm start

What Is the MERN Stack’s Structural Makeup
and How Does It Operate?

The 3-tier architecture system at MERN primarily consists of three layers.
The following are these layers:

•	 Web as frontend tier

•	 Server as the middle tier

•	 Database as backend tier

Its four components- MongoDB, Express.js, React, and Node.js are already
known to us.14

Let’s examine these three stages that were discussed before in greater
detail:

Web or Frontend Layer
React.js is primarily responsible for the top tier of the MERN stack. When
building websites, it is one of the most used open-source frontend JavaScript
libraries. It is known for its ability to create dynamic client-side applications.
React facilitates the construction of sophisticated interfaces from individ-
ual components. It also links these sophisticated interfaces to the backend
server’s data. React is used to construct online apps and mobile applications
(React Native). React enables the reusability of code and can easily support
it, which has several advantages and saves a great deal of time.

Backend Development    ◾    367

It allows users to develop massive web apps that can quickly modify
page data without requiring a page refresh.

Server or Middle Tier
It is the next level down from the top layer and is mostly managed by
Express.js and Node.js from the MERN stack. Express.js maintained the
Server-side framework while operating within the Node.js server, allow-
ing these two components to manage it concurrently. When it comes to
backend development in JavaScript, Express.js is among the most widely
used frameworks. It makes it easier and simpler for developers to create
sophisticated APIs (Application Programming Interface) and web servers.

It also provides useful functionality to HTTP (HyperText Transfer
Protocol) objects in Node.js. In contrast, Node.js plays a significant role
in and of itself.

It is an open-source server environment and cross-platform runtime
environment for running JavaScript code outside of a web browser. Node.
js consistently employs JavaScript; hence, it enables a computer user to
rapidly develop any web service or web or mobile application.

Database as Backend Tier
The database as the backend layer

It is one of the most significant tiers of the MERN Stack and is mostly
managed by MongoDB; a database’s primary function is to store all the
data linked to your application, such as content, statistics, information,
user profiles, and so on. It keeps all the data primarily for safety reasons.
It keeps an accurate record, which provides the data to the user whenever
necessary. Primarily, it saves data in the database. It makes at least two
copies of the files to ensure that, even if the originals are lost, you can still
get your hands on the data you need.

It means that MongoDB is not structured like a relational database with
tables.

In contrast, it offers a whole separate system for retrieving and stor-
ing data. Mongo DB is the most popular open-source document-oriented
NoSQL (NoSQL or Non-Structured Query Language) database. NoSQL
often refers to a non-relational database that does not need a set structure
or relational tables in order to hold the essential data. MongoDB stores
data in a structure distinct from relational tables, which comprise rows
and columns.

368    ◾    Conquering JavaScript

MERN VS MEAN

What Are MERN Stack Developers’ Futures?

It goes without saying that the future isn’t set in stone. However, given on
the market data we now have, we can certainly make a reasonable analysis
of the growth that MERN stack developers will see in the future. What are
the benefits for developers of understanding the MERN Stack?16

	 1.	Open source: The best aspect of MERN is that the four technologies
that comprise the stack are open source (open-source). This makes it
simpler for developers to obtain quick answers from the accessible
open portals and successfully resolve any problems that may emerge
throughout the development process.

	 2.	Cost-Effective: MERN stack developers are in high demand since
this stack utilizes just one language, JavaScript. It is considerably
more advantageous for businesses to invest in MERN-savvy person-
nel. This is a more efficient approach, both financially and in terms
of time, than recruiting experts for each technology.

	 3.	Simple to switch between client and server: With MERN Stack, every-
thing is written in a single language, which makes it much easier for
developers to know the language (within 4–6 months with dedicated
learning). It is also simple to switch between client and server, pro-
viding developers with additional expansion opportunities.

MEAN MERN

The stack technology includes Angular.js,
Express.js, Node.js, and MongoDB.15

Stack technology includes MongoDB,
React.js, Express.js, and Node.js.

The JavaScript framework Angular.js is part
of the MEAN stack.

JavaScript library React.js is part of the
MERN stack.

Typescript is used by Angular.js in the
MEAN stack.

React.js uses JSX and JavaScript in the
MERN stack.

It boosts productivity. It is not very productive.
Compared to the MERN stack, it is more
challenging to master.

It is significantly easier to learn because
of the superior documentation.

It helps with code management and
rendering.

The virtual DOM makes it possible for
fluid rendering.

The data flow is bidirectional. It only allows one way data transmission.
It is incompatible with apps for mobile devices. With mobile apps, it is compatible.

Backend Development    ◾    369

	 4.	UI rendering and performance: React JS has shown to be the fin-
est solution for UI layer abstraction, rendering, and performance to
date.

Why? It allows developers to construct and arrange application
code in accordance with their vision.

In this chapter, we covered backend development where we discussed
Node.js, MongoDB, and Server-side JS.

NOTES
	 1	 What Is Backend Developer? Skills Need for Web Development: www.

guru99.com/what-is-backend-developer.html Accessed on: 13 October
2022.

	 2	 Using Node.js for Backend Web Development in 2022: https://mobidev.biz/
blog/node-js-for-backend-development Accessed on: 13 October 2022.

	 3	 The Good and the Bad of Node.js Web App Development: www.altexsoft.
com/blog/engineering/the-good-and-the-bad-of-node-js-web-app-devel-
opment/ Accessed on: 13 October 2022.

	 4	 Node.js – Introduction: www.tutorialspoint.com/nodejs/nodejs_introduc-
tion.htm Accessed on: 14 October 2022.

	 5	 Node.js - Environment Setup: www.tutorialspoint.com/nodejs/nodejs_
environment_setup.htm Accessed on: 14 October 2022.

	 6	 Node.js - First Application: www.tutorialspoint.com/nodejs/nodejs_first_
application.htm Accessed on: 14 October 2022.

	 7	 What Is MongoDB – Working and Features: www.geeksforgeeks.org/what-
is-mongodb-working-and-features/ Accessed on: 14 October 2022.

	 8	 What Is MongoDB? Introduction, Architecture, Features & Example: www.
guru99.com/what-is-mongodb.html Accessed on: 14 October 2022.

	 9	 MongoDB: Getting Started: www.geeksforgeeks.org/mongodb-getting-
started/?ref=lbp Accessed on: 14 October 2022.

	 10	 How to Install MongoDB on Windows?: www.geeksforgeeks.org/how-to-
install-mongodb-on-windows/ Accessed on: 14 October 2022.

	 11	 Server-Side Website Programming: https://developer.mozilla.org/en-US/
docs/Learn/Server-side Accessed on: 15 October 2022.

	 12	 Server-Side Javascript: www.javascriptinstitute.org/javascript-tutorial/
server-side-javascript/ Accessed on: 15 October 2022.

	 13	 MERN Stack: www.geeksforgeeks.org/mern-stack/ Accessed on: 15
October 2022.

	 14	 MERN Stack: www.javatpoint.com/mern-stack Accessed on: 15 October
2022.

	 15	 What Is the MERN Stack and Why It Is the Best to Fit for Web Development:
www.groovyweb.co/blog/what-is-the-mern-stack-and-why-it-is-the-best-
to-fit-for-web-development/ Accessed on: 15 October 2022.

http://www.guru99.com
http://www.guru99.com
https://mobidev.biz
https://mobidev.biz
http://www.altexsoft.com
http://www.altexsoft.com
http://www.altexsoft.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
http://www.guru99.com
http://www.guru99.com
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
https://developer.mozilla.org
https://developer.mozilla.org
http://www.javascriptinstitute.org
http://www.javascriptinstitute.org
http://www.geeksforgeeks.org
http://www.javatpoint.com
http://www.groovyweb.co
http://www.groovyweb.co

370    ◾    Conquering JavaScript

	 16	 Future of MERN Stack Developers in 2022: Fewer Risks, More Rewards: www.
cybersuccess.biz/future-of-mern-stack-developers/#:~:text=MERN%20
is%20a%20free%20and,end%20or%20server%2Dside%20development.
Accessed on: 15 October 2022.

http://www.cybersuccess.biz
http://www.cybersuccess.biz
http://www.cybersuccess.biz

371

C h a p t e r 7

JavaScript for
Mobile Usage

IN THIS CHAPTER

➢ React Native

➢ NativeScript

In the previous chapter, we covered backend development, and in this
chapter, we will discuss JS for mobile usage.

WHY IS JAVASCRIPT REGARDED AS ONE OF THE FINEST
PROGRAMMING LANGUAGES FOR MOBILE APPS IN 2022?
Due to the prevalence of smartphones in everyday life, the development of
mobile apps will be one of the industries with the highest demand in 2022.
The process of creating a mobile app involves a variety of technologies and
procedures.1

Coding, which uses a range of languages to accomplish the process, is
one of the most important components. JavaScript is a computer language
that has long been favored by developers due to a wide range of advan-
tages. Major developers always include JavaScript in their tech stack when
creating high-quality apps.

DOI: 10.1201/9781003356578-7

https://doi.org/10.1201/9781003356578-7

372    ◾    Conquering JavaScript

JavaScript’s Importance in the Development of
Mobile Applications

When creating a robust and collaborative UI/UX that meets the needs
of the customer, mobile app developers benefit from a wide range of
JavaScript coding advantages.

It has been demonstrably shown that developing mobile apps with
JavaScript is quicker than with other languages.

Extremely Responsive
One of the bothersome problems in the development sector is the net-
work’s slowness.

The problem becomes more serious when a slow network is combined
with the time it takes to send server queries, which results in delayed page
loads.

If an app can function better with fewer server bytes, users will benefit
from a faster-acting app.

JavaScript can greatly enhance the scenario by pushing XML or
JSON data instead of other sorts of data. There will be little interac-
tion with the server, quick output, and full HTML rendering in the
browser.

Consequently, using Java Script in the development has additional ben-
efits. Without further server connectivity, any modifications to the UI that
do not affect the data can be made. As a result, our app will be very user-
responsive and provide the finest experience.

Frontend Rich Platform
Whatever server technology is used, Java Script ensures that users will
have access to a robust frontend platform.

This will increase the frontend development’s usability and make it
more resistant to the server’s changing characteristics.

Backend tasks can be accommodated and successfully carried out by
rewriting the server-side code.

As a result, by determining the server’s capability, developers can select
the best platform for all future tasks.

We can be guaranteed to acquire the ideal platform to complete your
work if JavaScript has a precise frontend.

Up until the JSON is covered, the frontend will be the best place to
execute all the functionality.

JavaScript for Mobile Usage    ◾    373

Offline Assistance
The hard requirement of communicating with the server following each user
interaction is present in server-related programming. As the server is down,
the software becomes unusable. But even in the absence of the internet,
JavaScript development is still quick and responsive. Compared to the stan-
dard server-oriented development approach, it offers a significant advantage.

In JavaScript development, the frontend uses locally cached data to update
the application until connectivity is restored. This will facilitate local change
tracking and force modifications to one side after connectivity is restored.

It differs from other apps in that it carries out the essential activities
without the need for ongoing server connections. A user interface (UI)
built using Java Script loads and runs on a screen without the use of a net-
work connection. JavaScript can provide options that conventional server-
side frontend programming cannot.

Suitable for All Kinds of Developers
The environment configuration for JavaScript is not very specific.

All you need is a browser to start the programming process by going to
developer tools.

Therefore, it is favored by developers of all stripes and levels of
experience.

Even beginners in the field can quickly learn and master it, resulting in
widespread acceptance.

JavaScript Frameworks for Mobile Apps
Using JavaScript frameworks, you can complete all important client-side
tasks.

To create high-quality JavaScript apps, developers can use a variety of
frameworks, depending on the need.

PhoneGap
This makes it easier to construct a variety of platforms with a single
JavaScript code base that can serve a variety of target clients.

Ionic
The Ionic framework can be used by programmers to create, test, monitor,
and publish high-performance mobile apps. It is among the most widely
used JavaScript frameworks available, out of all of them.

374    ◾    Conquering JavaScript

React Native
With its navigable design features, this well-known open-source frame-
work makes it easier for developers to create mobile apps.

jQuery
It is never easy for developers to create apps for all kinds of mobile devices.
As there are many different topics that need to be covered, this is not an
easy job for app engineers. However, jQuery enables us to create quick,
highly responsive software that works with a variety of mobile and desk-
top platforms.

Native Language
Native script framework is a vital tool for effectively creating apps for both
iOS and Android.

The native script framework codes help to get improved user interface
functionalities in the finished product, as the name implies.

Tabris.js
Even this framework enables the creation of native iOS or Android apps
by just a single JavaScript piece of code. It is also mentioned as one of
the most popular frameworks used by programmers to create native
apps.

SHOULD WE USE JAVASCRIPT WHEN
DEVELOPING FOR MOBILE?
It is totally fair to be concerned whenever we consider developing a mobile
app, especially if we want it to function on both iOS and Android and
since we might later encounter technological difficulties. However, since
we won’t have to learn how to accomplish it in an entirely new develop-
ment language, things need not be that horrible. We’ll be able to steer clear
of the choppy waters up front with the assistance of an experienced devel-
opment company like Kambda.2

One of the most important technological advancements nowadays is
the creation of mobile apps. These days, the proliferation of smartphones
and the app market have had a significant impact on every area of tech-
nology. The main languages for creating all kinds of coding are HTML,
CSS, and JavaScript, while many other languages are also utilized. These

JavaScript for Mobile Usage    ◾    375

three coding systems work well together. HTML is the markup that
instructs the browser how to display a website’s text and images. CSS
is the style sheet, which means it gives the entire website a consistent
appearance. JavaScript improves the user experience by generating an
interactive and dynamic interface that enables web pages to respond
to a variety of variables, including events, variables, the user’s browser,
effects, and so on.

Despite what was just stated, JavaScript is not generally used for cre-
ating apps because it is the language used to create and maintain web-
sites. Additionally, even though there are ways to create apps solely using
JavaScript, there are other, more effective ways to do so.

Nevertheless, JavaScript (JS) has one significant benefit that can help us
save time: we can reuse your code for both the frontend and the backend
(Node.js).

Another benefit of JS is that it works well across all browsers, which
makes the development process simpler.

The popularity of the JS framework is growing daily. Even large corpo-
rations like Apple and IBM use JS. The angularJS team now collaborates
with Google and Microsoft, continuing the trend. JavaScript makes it sim-
ple to create apps because we only need to develop them once to release
them across all platforms (Android, iOS, and Windows).

Key Attributes of JavaScript

•	 One of the simplest languages.

•	 Quick and effective.

•	 Since it runs client-side, it avoids using the server and conserves
bandwidth.

•	 Used to add dynamic elements and motion to otherwise boring
websites.

While jQuery and other JavaScript libraries can be used to add more
sophisticated dynamic features to webpages, plain JavaScript is still fre-
quently recommended for basic client-side operations. A professional
JavaScript app can be made using a variety of frameworks, including
PhoneGap, jQuery Mobile, and Ionic.

376    ◾    Conquering JavaScript

Native React
This framework was created recently, primarily by Facebook. It is a
viable alternative for those looking to develop a single program that
works on both Android and iOS gadgets. It provides excellent perfor-
mance, perhaps even better than some of the other frameworks dis-
cussed above.

JQuery
The ‘write less, do more’ maxim is taken to a new level by the jQuery
Mobile framework, which enables us to create a single, highly branded
responsive website or application that will run on all widely used smart-
phone, tablet, and desktop platforms.

PhoneGap
By using PhoneGap, we can ‘easily create hybrid applications built with
HTML, CSS, and JavaScript using existing web development expertise.’

Create cross-platform experiences from a single codebase to connect
with our audience on any device.

Ionic
Ionic ‘helps us design, deploy, test, and monitor apps easier than ever
before, from open source to professional services.’ Although there are
many more frameworks for creating mobile apps using JavaScript, JQuery
and React Native are the most popular ones among developers.

BENEFITS OF USING JAVASCRIPT WHEN
DEVELOPING MOBILE APPS
Since smartphones are so close to people, mobile app development has
begun to influence the world. A vast variety of languages, primarily
JavaScript, CSS, and HTML, are utilized to construct all types of coding.
The development of mobile apps is now one of the most important areas
of current technology developments thanks to JavaScript coding. Despite
not being seen as a key language for app development, JavaScript offers
a number of techniques to create applications. The JavaScript framework
has had a significant impact on the creation of mobile apps recently.
Let’s look at a few of the key advantages of using JavaScript in mobile
applications.3

JavaScript for Mobile Usage    ◾    377

Since smartphones are so close to people, mobile app development
has begun to influence the world. A vast variety of languages, primarily
JavaScript, CSS, and HTML, are utilized to construct all types of coding.
The development of mobile apps is now one of the most important areas of
current technology developments thanks to JavaScript coding.

Despite not being seen as a key language for app development, JavaScript
offers a number of techniques to create applications. The JavaScript frame-
work has had a significant impact on the creation of mobile apps recently.
Let’s look at a few of the key advantages of using JavaScript in mobile
applications.

The programming language known as JavaScript is used to carry out
sophisticated operations on web pages. The app uses JavaScript to improve
the UI/UX and to deliver recent scrolling video jukeboxes, the most recent
content updates, animated 2D/3D visuals, interactive maps, and other fea-
tures. JavaScript has the ability to validate, manipulate, and calculate data
as well as edit and modify CSS and HTML.

Using a JavaScript codebase, Meteor is the platform for developing
mobile and web applications. JavaScript makes it simple to create new
mobile applications, and it may be appropriate for all platforms, includ-
ing Android and iOS. Let’s look at some of the main characteristics of
JavaScript that make it useful for creating mobile applications.

•	 Recognized as the world’s easiest language.

•	 Able to conserve bandwidth while performing client-side operations.

•	 Utilized in the construction of dynamic animations.

•	 Rapid and organized growth.

REACT NATIVE
We will discuss about the setup, scope, benefits of React Native below:

Setting Up a React Native Environment

Depending on the operating system we use, there are many alternatives
for setting up (installing) the React Native environment.4

Each development and target operating system has a somewhat distinct
set of instructions.

378    ◾    Conquering JavaScript

In this session, Windows will serve as the development platform while
Android will serve as the final operating system.

It takes Node, the React Native command line interface, Python 2,
JDK, and Android Studio to create an app utilizing the React Native
framework.

Here, we use the Windows version of the popular package management
Chocolatey.

We may use this to install the latest versions of Java SE Development Kit
and Python (JDK).

How to Install React Native Environment in Steps

	 1.	Go to the https://chocolatey.org/ website, click “Install Chocolatey
Now,” and a new URL will open.

	 2.	Run the chocolaty setup program, and then copy the code under the
Install using cmd.exe section.

@"%SystemRoot%\System32\WindowsPowerShell\v1.0\
powershell.exe" -NoProfile -InputFormat None
-ExecutionPolicy Bypass -Command "iex ((New-Object
System.Net.WebClient).DownloadString('https://
chocolatey.org/install.ps1'))" && SET
"PATH=%PATH%;%ALLUSERSPROFILE%\chocolatey\bin"

Installation of chocolatey

https://chocolatey.org

JavaScript for Mobile Usage    ◾    379

	 3.	Enter this code into our Command Prompt after opening it in
Administrative mode (right-click Command Prompt and choose
“Run as Administrator”).

It’ll set up Chocolatey.

	 4.	Paste the code and execute it in command prompt’s Administrative
mode (install Node.js, Python, and JDK).

If we’ve already installed JDK, make sure it’s version 8 or newer,
and if we’ve previously installed Node.js, make sure it’s version
above 8.

choco install -y nodejs.install python2 jdk8

	 5.	We may install React Native using Node’s npm (Node Package
Manager).

Run the code provided:

npm install -g react-native-cli

Install Android Studio

	 1.	Download Android Studio from the https://developer.android.com/
studio/ website.

	 2.	Run the Android Studio Set (.exe) file we downloaded and follow the
instructions.

	 3.	Decide which functionality to install.

Installation of Android Studio

https://developer.android.com
https://developer.android.com

380    ◾    Conquering JavaScript

	 4.	Decide where to put the device.

	 5.	Click Next to let the installation continue.

	 6.	To finish the installation, click Finish.

When the installation is complete, the Android Studio home
screen will show up.

Set Up the Android SDK and the Java JDK

	 1.	First set the JDK path.

	 2.	In the System variables section, change the Android SDK path to My
Computer > Properties > Advanced system settings > Environment
Variables.

		 Then, add Android Home and Android SDK to the “New...” screen
appears.

	 3.	 Install the necessary components by selecting them from Tools
Android > SDK Manager > SDK platforms and installing them.

	 4.	Permit the installation to continue, then click Finish when it is
complete.

	 5.	To create an Android emulator, a virtual Android device, pick the
device type under Tools > Android > AVD Manager > Create Virtual
Device.

	 6.	Choose the Android emulator’s API level.

	 7.	Enter the device’s name and configure its settings by selecting Show
Advanced Settings.

	 8.	Begin using the emulator.

FUTURE SIGNIFICANCE OF REACT NATIVE IN
THE DEVELOPMENT OF MOBILE APPS
Facebook’s introduction of the React Native framework for mobile app
development has sparked wonderful enthusiasm in the app community.
To ensure the success of their projects, business and technical profession-
als must fully grasp the significance of React Native.

JavaScript for Mobile Usage    ◾    381

The engineers at Facebook and Instagram manage the famous JavaScript
framework ReactJS, which has a native counterpart called React Native.
React Native has gained tremendous popularity within the developer
community in just 2 years. It has received so many stars that it is currently
GitHub’s fourteenth most popular project of all time.

These days, the react native development firm is using this technology.
According to Google trends, more people have searched for ‘React Native’
than for ‘iOS development’ or ‘Android development.’5

Software developers are working hard to produce mobile apps that per-
form fast and efficiently in the present digital environment, where speed,
efficiency, and rapid tools are vital for every mobile application

The engaging user experience and straightforward development have
convinced mobile app developers to use JavaScript, HTML5, CSS, or React
Native to build the app.

The leading mobile app development companies view React Native as
the future of app development for a variety of reasons.

These factors include:

	 1.	Cross-Platform Support
Given that the bulk of React Native APIs are cross-platform, one

component will work on both iOS and Android.
We can build complete, completed applications that function,

look, and feel natively without writing a single line of platform-spe-
cific code. We do, however, occasionally need to be platform-specific.
For instance, the effects of design are different on iOS and Android.

React offers remedies for such circumstances with its platform
module and platform-specific file extensions. The platform mod-
ule’s capacity to recognize the OS being used by the app allows for
the definition of platform-specific implementations. By employing
platform-specific file extensions, we may designate files for various
platforms. React automatically chooses the appropriate date based
on the operating system that the app is running on.

	 2.	Open Source
We are all aware with the idea that open-source projects are made

up of a huge number of contributors that work tirelessly to improve
the projects.

382    ◾    Conquering JavaScript

Similar to this, there is a huge developer community that is always
striving to enhance functionality, fix issues, and make React Native
simpler to use.

Every time we wish to design anything that is typical of mobile
apps, there is a strong possibility that React Native members have
already done it.

	 3.	Reduced Development Time
React Native modifies the mobile app development life cycle.

Since it is open source, a lot of individuals in the community identify
with it. Many different mechanisms can be combined with it. The
state management tool Redux was used, which also greatly improved
development. When there is a single shared data layer for iOS and
Android, it goes more quickly and has a lower failure rate.

	 4.	Code Push and Live Updates
When developing native mobile applications, employing React

Native has several advantages, including Live Updates. Developers
may transmit the updates directly to the user’s phone without going
via the app store update cycle. This is now possible since JavaScript is
so widely used. Live updates for IOS are authorized more gradually.

But if we update all of our users’ applications at once, we can be
confident that you won’t have to deal with problems with older ver-
sions. The live updating feature of Microsoft

We can publish changes to our React Native project using the
Code Push SDK thanks to integration with React Native. The only
thing that can be changed is the JavaScript file and the assets, which
is a drawback. The standard App Store or Play Store update proce-
dure will need to be followed for any update that affects the Native
OS side.

	 5.	UI and Performance
It’s common practice to create hybrid mobile applications using

JavaScript, HTML, and CSS.
These applications will maintain their excellent performance

without having their functionality altered because of Reacts’ inde-
pendence from the user interface.

JavaScript for Mobile Usage    ◾    383

	 6.	Employ the Same Code When Creating Apps for Different
Platforms

The usage of React Native by mobile app developers allowed them
to create applications for several platforms using the same code.

The main shortcoming is recovered in this way.
What could be more advantageous for developers than the abil-

ity to create cross-platform applications utilizing and mastering only
one set of tools?

	 7.	Reduces the Time It Takes to Write Code
The ability to reuse previously created code is truly a huge deal in

the world of software development. We can get to that precise capac-
ity with the help of React Native. We don’t mean to imply that React
Native allows you to ‘write once and use everywhere.’

As a developer, we must create new code to create a user interface
(UI) that adheres to the standards and best practices of each plat-
form so that it seems and feels natural.

The nicest aspect is that there is some shared UI code that can be
utilized on both platforms.

	 8.	Quickly Accessible Resources
It is easy and quick to locate developers that can construct mobile

apps using React Native with an emphasis on efficiency since React
Native uses JavaScript, one of the most well-liked and quickly grow-
ing computer languages.

	 9.	A Single Framework for Various Platforms
React Native enables full codebase replication between iOS and

Android (or just a portion of it). In practice, certain changes may
require a complete rewrite, and other features will be included as
in-app packages. The react native developer community actively sup-
ports the framework by releasing new tools as open source.

	 10.	Quick Reloads
By introducing Hot Reload, React Native increases productivity

and decreases total development time. It allows a developer to con-
tinue working on new versions and UI changes while the app is still
running.

384    ◾    Conquering JavaScript

	 11.	A Better Environment for Development
Developers are more effective in the React Native environment.
By removing the time-consuming rebuild and deployment from

the iteration cycle, a pleasant development experience is generated.
React native uses the Flexbox layout engine for mobile apps on both
platforms. This suggests that just one layout engine has to be under-
stood in order to design for both iOS and Android.

	 12.	Includes Two Important Ecosystems
iOS and Android have very distinct ecosystems. The creation of

these platforms is challenging and challenging. Therefore, making
native apps for them is said to be the greatest nightmare of devel-
opers. Similar to building iOS applications, Swift or Objective C
expertise is essential. On the other hand, developing Android appli-
cations necessitates a thorough knowledge of Java and the Android
SDK. We will also have to put up with the inconvenience of keeping
up with the most recent features that these two important ecosys-
tems have to offer. But with modern technology, no issue persists
indefinitely.

Why Is React Native so Popular?

Because of its excellent performance, improved user experience, and wide
range of accessibility, React Native is receiving high praise from the indus-
try. Facebook supports the sophisticated backend development language,
ensuring its endurance throughout actual development. React Native
exclusively focuses on UI, in contrast to MeteroJS and AngularJS. The user
interface of React Native apps is incredibly responsive. Our app will load
faster and have a smoother feel thanks to React Native and the native envi-
ronment of the device.

Additionally, React Native works with third-party plugins.
Download a third-party plugin and attach it to a native module in
order to include Google Maps features into our project. In addi-
tion to making the life of mobile app developers easier worldwide,
Facebook’s React Native is a mobile framework that helps them create
ground-breaking applications for their customers. Additionally, our
app effortlessly makes advantage of the device’s features like rotation,
zoom, and compass.

JavaScript for Mobile Usage    ◾    385

Building React Native Apps

	 1.	Skype Using React Native
When the Skype app first started having a lot of issues, it was

announced that a new application using React Native development
was being introduced.

Skype had a complete redesign, down to the icons, so that both old
and new capabilities could benefit users of the application’s cutting-
edge appearance. Microsoft announced that React Native would not
only be considered as a platform for the PC version of Windows but
also for the creation of mobile applications after realizing the effec-
tiveness of React Native. Additionally, Microsoft acquired the aston-
ishing benefits of React Native from the GitHub repository.

	 2.	React Native Facebook Ads
Before React Native began supporting social networking sites, it

began with Facebook advertisements as a mobile app for Android
users under Facebook’s wing.

It might deal with problems caused by the numerous business
logic needs required to handle variations in time zones, ad formats,
date formats, currency conventions, currencies, and many other
things. Other developers were inspired to try and implement React
Native technologies that were freshly released or incorporated into
Facebook advertisements.

	 3.	Using React Native, Facebook
As a simple feature, Facebook intended to make its online version

available to its customers on mobile so they could enjoy a smooth
user interface when using their smartphone applications. Facebook
intended to use a single team to create its mobile application offer-
ings. React Native was therefore used in the creation of Facebook’s
mobile app for both iOS and Android users.

The development team for React Native verified and examined the
new features’ tested performance. This crucial modification deter-
mines whether the user will abandon or continue using the program.
It is but one example of how changes were made using React Native,
but many other aspects were also extensively used by users.

386    ◾    Conquering JavaScript

	 4.	Tesla Using Native React
Tesla, the most well-known manufacturer of electric vehicles

in the world, has joined the react-native community in order to
create an application for its electric vehicles and Powerwall bat-
teries. They did it by using Facebook’s trending structure as a
guide.

The Tesla app has a few restricted functions that allow for smart-
phone-based car operation, including the ability to analyze a vehicle
and pinpoint its precise location.

Although their application development is not entirely known,
clients have given the concept a positive response.

	 5.	Using React Native with Instagram
Instagram is one among them while discussing react native app

development services.
It started with transforming the basic view to an excellent UI to

overcome the hurdle of integrating react-native into their existing
project.

Due to the elegant user interface, it does not require a separate
navigation infrastructure.

Even though the development team encountered several challeng-
ing jobs when integrating React Native app features into Instagram,
they were able to steadily boost the app’s velocity.

Approximately 80%–90% of the codes are exchanged between iOS
and Android, which is a huge time saver for an app development
team.

	 6.	Shine with React Native
One of the top native React apps for users who are stressed out,

unmotivated, or lack motivation is Shine. It provides relaxing arti-
cles, encouraging quotations, and mottos.

When users log in from their day, the app’s inspirational and spir-
itual audio made by specialists helps them deal with daily stress. This
software was initially made available to iOS users with a focus on
the American market because Apple phones had a significant market
share. They quickly created the app for Android, which is why they
used React Native because the technology makes it simple to transfer
code from iOS to Android.

JavaScript for Mobile Usage    ◾    387

Benefits of React Native App Development

React Native has several advantages for creating mobile apps.

	 1.	More Flexibility
Any team member may hop right to the work that was left before

and continue performing it thanks to the type of interface utilized by
each native development service.

With this team, flexibility is growing and the processes for updat-
ing and upgrading the mobile app are greatly facilitated.

	 2.	It Saves Time and Money
Businesses may now have apps for both the Android and iOS plat-

forms thanks to React Native, which also saves time for the developers.
This is so because they may save time and effort by developing just

a single app that will work on both the Android and iOS markets.
As a result, money that would have been spent on creating differ-

ent apps is also saved.

	 3.	Excellent Performance
The central processing unit (CPU), which powers the majority of

OS operations, is employed here, but React Native apps also make
use of the GPU, the graphics processing unit, to aid improve speed.
However, due to the programming language’s specialization for
mobile devices, React Native apps run almost as quickly as native
apps created specifically for the Android or iOS platform.

	 4.	Immediately Changed Views
Reacts Native’s live or hot reloading feature enables developers to

examine their changes in real time in a live preview window while
simultaneously viewing their changes in the code.

Additionally, the developers benefit greatly from this since they
receive real-time feedback as each step is completed.

	 5.	Movable
React Native is claimed to give a lot of flexibility to the procedures

being used, making this one of the biggest advantages of adopting it
for mobile app development.

These properly export applications from React Native and transfer
them to Android Studio or XCode before continuing.

388    ◾    Conquering JavaScript

Cons of React Native

We discussed a few advantages of React Native above, but we all know that
anything that has advantages also has disadvantages. The disadvantages
(drawbacks) of React Native are therefore listed below.6

	 1.	Insufficient Framework
Every new update or release, as we all know, brings with it a num-

ber of significant changes that might eventually be difficult for the
developers to handle.

React Native is the speedier and newer alternative in this situa-
tion, but in an effort to move quickly, the framework tends to lose
its commitment to credibility and, as a consequence, becomes too
immature for any type of iOS and Android apps.

	 2.	It Is Difficult to Define the User Interface
Choosing React Native for your app development is not worth it

at this moment if your mobile application requires capabilities like
animation, numerous screen transitions, and interactions.

	 3.	Complicated Debugging
Debugging procedures and how React Native-developed mobile

applications are challenging to troubleshoot. Most of the credit for
this goes to the programming languages Java, JavaScript, and C/C++.

CREATE A MOBILE APPLICATION USING REACT NATIVE
Businesses have been forced to consider moving their business models from
traditional platforms to digital platforms as a result of the fast changing
environment across the globe. Businesses are beginning to create extremely
efficient corporate apps that function flawlessly on iOS and Android.

However, their ability to invest in mobile app development is con-
strained by the rising cost of app development. However, given that mobile
applications have grown so prevalent across all industries from commu-
nication to retail, healthcare, and entertainment businesses have realized
how difficult it would be to compete in the next decades without having
a strong online presence. Although there is an app for nearly everything,
which provides a seamless user experience and guarantees easy user navi-
gation, businesses are still unsure about which technology to utilize to
develop successful solutions.

JavaScript for Mobile Usage    ◾    389

The Leading Cross-Platform Framework, React Native

React Native is a cross-platform framework built on JavaScript that has
been extensively used to develop mobile apps that look and feel native on
iOS and Android.

React Native, although being introduced by Facebook in 2015, has
swiftly risen to prominence as the leading open-source framework.

After powering several applications like Skype, Instagram, Facebook,
and others, it eventually became well-known as the greatest app develop-
ment option.

It was the ideal platform for app creation because of the advantages of
reusability of scripts, rapid testing capabilities, and running apps on both
iOS and Android platforms.

Why Should We Use React Native When Developing Mobile Apps?

Undoubtedly, 42% of developers worldwide like React Native, however
when it comes to investing in an app development project, many organi-
zations are perplexed as to why React Native is the top option.

Here are a few justifications for using React Native for app development.

Saves both Money and Time
The main benefit of using React Native for app development is the time,
money, and effort it saves. Developing two native apps for several plat-
forms will cost us more money than utilizing React Native and a single
codebase to create an app.

Therefore, using React Native, developers can easily release the same
update for both iOS and Android platforms without the added work of
utilizing a distinct codebase, saving money on paying mobile app develop-
ers to create two native apps.

High Quality
Businesses’ top priorities are almost usually related to the app’s
performance.

Additionally, React Native apps are just as good as native Android and
iOS apps.

React Native uses GPU to do computations, as opposed to other cross-
platform frameworks that use CPU. This is a key factor in the better per-
formance of React Native apps.

390    ◾    Conquering JavaScript

Over-the-Air Updates
React Native’s ground-breaking OTA update capability enables develop-
ers to make changes to the backend while users are actively using the app.

Once completed, the modifications will appear immediately in the app.
In other words, consumers frequently have the option to update an app

without visiting the app store.
The entire process of upgrading the app is made simple and quick

thanks to React Native’s functionality.

The Main Advantage Is Open-Source Software
For those who want to personalize the lovely application, React Native
offers a wide range of freely available native-like UI capabilities.

Since React Native enables developers to smoothly export scripts from
Android Studio to Xcode, developers do not have difficulties porting React
Native projects from one platform to another.

NATIVESCRIPT
We will discuss about the introduction, setup, scope, benefits of
NativeScript below:

What Is NativeScript?

An open-source framework called NativeScript is used to build native
mobile apps for iOS and Android. This framework is JIT compiled. On the
JS virtual computer, NativeScript code is executed.7

Both the Android and iOS platforms employ the V8 engine runtime.
For development, NativeScript makes use of XML, JS, and CSS. It has
a web-based IDE called PlayGround. This PlayGround includes a user-
friendly working interface, straightforward project management, hot
reloading, and device debugging. NativeScript enables programmers to
build native, cross-platform applications fast and effectively while reduc-
ing the expenses of testing, development, and training. Therefore, Native
applications will remain powerful and rich for years to come, making
them better and simpler to use.

Why NativeScript Is Preferred for the Creation of Android Applications

These days, developers may choose from a wide range of frameworks to
create stunning and scalable mobile applications.

JavaScript for Mobile Usage    ◾    391

Developers may take advantage of both smartphone features and their
web development expertise thanks to the widespread adoption of the
hybrid app development idea in the market.

This is where NativeScript enters the picture because of all the advan-
tages it offers businesses searching for an Android app development
solution.

As the name implies, Native Script enables JavaScript developers to cre-
ate flawlessly native apps.8

Surprisingly, the length of time it takes to build an app as a whole is
cut without sacrificing quality. Additionally, programmers can utilize
alternative frameworks like TypeScript and Angular. Applications created
using Native Script run incredibly well, have a great user experience, and
can connect to several devices.

Here are all the key justifications to use Native Script in the event that
we are considering doing so for our projects.

What Is NativeScript? What Are Its Main
Advantages and Disadvantages?

A well-known open-source frontend framework called Native Script is
used to create native and cross-platform mobile apps that have outstand-
ing performance and user experience features. When it was introduced in
2014, it soon gained a reputation for great usability and platform-specific
programming capabilities.

The most important benefit of using Native Script is providing users
with an engaging native user experience across platforms like Android,
iOS, and the web. Android developers can benefit from the simple access
to native Android features through native Android APIs to build a user-
centric app regardless of the niches.

Advantages of Native Apps

	 1.	Native Apps Provide Quickness
Because they are native to the platform, native apps operate

more quickly. There are many preloaded elements. Since they
leverage the built-in features of the device, they are quick because
the user data is fetched from the web rather than the complete
application.

392    ◾    Conquering JavaScript

	 2.	The Use of Native Apps Offline
Even without internet access, native apps function. Therefore,

native apps are usable while we’re stranded in a place with poor or
no connectivity, like an airline, underground tunnel, or metro.

	 3.	Native Applications Offer a Recognizable Interface and Feel
The default apps on their device have been enhanced with native

applications. Because the program is similar to other apps already
installed on the smartphone, when a user does several actions, they
rapidly know the natural flow of the application.

Native apps have an advantage in this situation because mobile
applications that attempt to mimic the appearance and feel of native
apps frequently wind up succumbing to the phenomenon known as
the ‘uncanny valley effect,’ which was named by robotics professor
Masahiro Mori.

	 4.	Native Apps
Maintain aspect ratios the width to height ratio of various screens

is known as an aspect ratio. It is a significant element that affects how
good an image is.

Changing the size and form of the device causes many apps to
break and function incorrectly.

The orientation, size, and resolution of an app can be more pre-
cisely controlled with native apps.

Layout features are available to developers as they create native
apps.

A native app keeps the aspect ratio on its own regardless of the
screen it is running on after setting the screen size. Both iOS and
Android have tools called Constraint Layout and Auto Layout that
assist in keeping the aspect ratio on their respective devices. Along
with maintaining aspect ratios, these capabilities offer various DPI
(dots per inch) for each screen to preserve the visual quality.

Limitations with Native Apps

	 1.	Lengthy Downloading Process
Native applications are ready to use only after consumers down-

load them from the app store (Google Play or Apple App Store).

JavaScript for Mobile Usage    ◾    393

This entails a number of steps going to the app store, selecting the
program, accepting its terms and conditions, and then eventually
installing it. Many folks don’t have the time and patience to follow
all the steps to download an app. We lose 20% of consumers at each
level in an app funnel.

	 2.	Absolute Rigidity
There is little freedom for developers when choosing the platform

on which to build native applications. One platform at a time, with
separate development for Android and iOS, is required of develop-
ers. We’ll often need to employ two teams of developers if you’re
recruiting app developers for our native app idea: one for Android
and one for iOS.

	 3.	Costly Development
Native app developers are hard to find since the coding they uti-

lize is fairly difficult. As a result, native app development takes longer
to complete and costs more money. It also costs more money and
takes longer to build native applications since they need distinct
codes for each platform.

Additionally, the expense of maintaining native applications is
relatively expensive.

Upkeep accounts for 15%–20% of total app development costs. For
instance, a simple native app that costs $25,000 would need roughly
$5,000 in upkeep. The maintenance expenses of a native app will
increase along with its development expenditures.

	 4.	Development That Takes Time
Because each platform, like iOS and Android, has a unique set of

codes, it takes longer to develop for each platform because it’s like
creating for two new applications.

A high-quality native app has to be developed in roughly
18 weeks. Depending on how difficult the project is, the time
grows.

Setups for NativeScript Environment

How to install NativeScript on our computer is described in this section.

394    ◾    Conquering JavaScript

Prerequisites
We require the following requirements before beginning installation:

•	 Node.js

•	 Android

•	 iOS

Verify Node.js
Node.js is a JavaScript runtime engine constructed on top of Google
Chrome’s internal JavaScript engine, v8.

NativeScript utilizes Node.js heavily for different purposes like build-
ing the beginning template application, compiling the application, etc.

It is required to have Node.js on our PC. Hopefully, we have installed
Node.js on our system.

If it is not installed then visit the website, https://nodejs.org/ and get the
latest LTS package and install it.

To test if Node.js is correctly installed, enter the below command on
our terminal:

node --version

The version was visible. The most recent ‘LTS’ stable version of node is
12.14.0.

CLI Setup
We may construct and develop NativeScript applications using the
NativeScript CLI, a terminal/command line program.

NativeScript CLI is installed on our computer via the Node.js package
manager npm.

Run the command shown below to install NativeScript CLI.

npm install -g nativescript

setupcli
The most recent version of the NativeScript CLI, tns, is installed on our
system. Enter the following command into our terminal now.

tns

https://nodejs.org

JavaScript for Mobile Usage    ◾    395

cli
Without any further setup, we can construct and develop applications
using tns.

However, we were unable to deploy the program on actual hardware.
Instead, we may use the NativeScript Playground iOS and Android app

to launch the program.

Setting Up the NativeScript Playground Application

Search for NativeScript Playground on the Google Play Store or the iOS
App Store.

Click the install button when the program is displayed in the search
results.

The NativeScript Playground app will be installed on our device.9
Without actually publishing the program to a real device or emulator,

we may test our apps on Android or iOS devices using the NativeScript
Playground application.

This will speed up the process of developing the application and pro-
vide a simple approach to get it going.

Setup for Android and iOS
Let’s learn how to set up the system to create and launch iOS and Android
apps on either a real device or an emulator.

Step 1: Dependency on Windows
Run the command below as administrator at our Windows command

prompt.

@powershell -NoProfile -ExecutionPolicy Bypass
-Command "iex
((new-object net.webclient).DownloadString('https://
www.nativescript.org/setup/win'))"

Following this command, downloaded scripts install their dependencies
and are configured.

Step 2: Dependency on macOS
We must check whether Xcode is installed before we can install on

macOS.
NativeScript requires the use of Xcode.
If Xcode isn’t already installed, go to https://developer.apple.com/

xcode/, download it, and then install it. In our terminal, run the following
command to begin.

https://developer.apple.com
https://developer.apple.com

396    ◾    Conquering JavaScript

sudo ruby -e "$(curl -fsSL https://www.nativescript.
org/setup/mac)"

The script will install the necessary prerequisites for developing for both
iOS and Android after running the aforementioned command. Close our
terminal and restart it after it’s finished.

Step 3: Android reliance
The following requirements should be set up, hopefully:

•	 JDK 8 or higher

•	 Android SDK Build-tools 28.0.3 or higher

•	 Android Support Repository

•	 Google Repository

•	 Android SDK

•	 Android Studio

If the following requirements are not set up, go to https://developer.
android.com/studio/install and install it. Finally, add the environment
variables JAVA_HOME and ANDROID_HOME.

Step 4: Verify dependencies
Everything is finished at this point. This dependence may be verified

using the command provided below.

tns doctor

Top NativeScript Usage Cases

For years, feature-rich and performant apps have employed Native Script
across all platforms.

The key selling point of the framework continues to be its customary
capacity to influence native user experience. Let’s quickly review some of
the most prominent and well-known use cases of Native Script from vari-
ous angles.

•	 Popular social networking platforms including Facebook, Twitter,
WhatsApp, and a number of others employ Native Script.

https://developer.android.com
https://developer.android.com

JavaScript for Mobile Usage    ◾    397

•	 NativeScript is used by several popular GPS map and location apps,
including Field Trip, Banjo, Glimpse, and others.

•	 Numerous popular news and entertainment applications, like
Buzzfeed, Reddit, SmartNews, Feedly, and others, also employ
Native Script.

•	 Native Script Live is used by a number of well-known gaming appli-
cations, including Drop7, Crossy Road, Real Racing 3, Robot Unicorn
Attack 2, and others. Live feed apps, including Livestream, Broadcast
me, Periscope, and numerous more, also utilize Nativescript.

•	 NativeScript is used by streaming music and video applications like
Apple Music, iHeartRadio, and others.

•	 Native Script is also used by popular chat and social messaging apps
like Skype, Snapchat, Messenger, and others.

Key Benefits of Developing Android Apps Using NativeScript

NativeScript has established itself as a go-to framework for creating
robust, captivating, and high-performing native Android apps through-
out the years. For their Android app projects, developers may take use of a
number of fantastic benefits provided by Native Script.

Let’s quickly review the main advantages of utilizing Native Script
while creating Android apps.

Performance of Native Apps
Accessing the native UI through a specific Android API is the main ben-
efit of utilizing NativeScript for Android programming. NativeScript, in
contrast to many other frameworks, can access native UI without using
WebViews or a middle JavaScript bridge.

NativeScript is likely to begin running native code in all areas of the app
as soon as the developers have specified the native feature and capability.

As long as this natural UI building ability is present. The user interface
may be further modified by Android developers to suit the needs of a cer-
tain device.

This is crucial for a complex and varied device ecosystem like Android
because Native Script, like other native Android programming languages

398    ◾    Conquering JavaScript

like Kotlin or Java, can enable fast app performance and a completely plat-
form-specific user experience without compromising the code’s reusabil-
ity. The user interface and user experience characteristics stay naïve when
the same code is reused across different platforms.

Reusable Program
We can easily utilize and reuse the same codebase across iOS, Android, the
web, and other platforms when using NativeScript. Additionally, Native
Script includes a number of native Android capabilities that programmers
may employ right away in their app projects.

By integrating with a variety of other top JavaScript frameworks, includ-
ing React, Angular, Vue, and others. While preserving the platform-spe-
cific user experience, Native Script can assist with platform-specific code
reuse.

The Very Low Learning Curve
By utilizing the Native Script framework, any app developer may quickly
hone and expand their programming talents. Native Script enables us to
get a head start while learning to develop Android features from scratch if
we are just getting started with the platform.

We may create a whole Android app with the aid of some basic under-
standing of popular web development languages like JavaScript, CSS, and
Android UI.

Along with facilitating simple access to platform-specific APIs for iOS
and Android.

The framework is renowned for its simplicity in integrating with other
frameworks and SDKs.

Every plugin, template engine, and API that Android developers uti-
lize in their various app projects are supported by the framework. The
Android SDK is also fully supported by it. The ability to integrate with
various technologies guarantees that developers have the greatest amount
of flexibility and creative freedom to create a distinctive and interesting
user experience.

Substantial Community Support
The team behind the creation of Native Script was made up of profession-
als with years of expertise in creating native apps for various platforms.

JavaScript for Mobile Usage    ◾    399

They are familiar with the difficulties experienced by developers work-
ing on the iOS and Android platforms.

Additionally, the framework has widespread support from the devel-
oper community.

Last but not least, the company that created Native Script offers enter-
prise-level assistance for projects that include developing mission-critical
apps.

COMPARISON BETWEEN NATIVESCRIPT AND
REACT NATIVE
It’s not easy to pick one framework from two JS-based frameworks. Both
provide benefits that are relatively comparable due to being cross-plat-
form. However, React Native truly shines in particular industries. The
performance, learning curve, popularity, and development community of
the two frameworks, as well as other important characteristics, are briefly
compared here.10

Performance of NativeScript and React Native

Both frameworks offer native app performance to start. Both take a long
time to load. But this is where React Native takes center stage. NativeScript
renders pages slowly. To be really honest, delayed rendering is unaccept-
able in a society when every second matters. This is the very situation
when React Native is useful. React Native uses native SDKs to render apps
while rendering dynamic components. All because of the Virtual DOM,
this transforms React Native into a very fast framework.

Learning Curves for NativeScript and React Native

NativeScript and React Native cannot be handled by a developer with only
JS skills.

Let’s consider this. Initially, NativeScript will be simpler for developers
with an Angular background. Programmers with a React background, on
the other hand, will find the shift to React Native easier.

It is important to remember that JavaScript is used by both systems. For
frontend developers, this is a fantastic chance. At these times, it is some-
what simpler to perceive these frameworks. Choosing React Native means
that all we need is JavaScript, whereas NativeScript provides assistance
through its declarative coding approach.

400    ◾    Conquering JavaScript

Development Community for React Native vs NativeScript

React Native has a larger developer community than NativeScript, which
is utilized by 11% of programmers, with 42% of programmers. React
Native is also very popular since tech behemoths like Instagram and Tesla
selected it over PhoneGap or NativeScript to create their applications.

The importance of considering community support is vital while decid-
ing on the best structure.

Even though it may seem odd, NativeScript has existed for a lot longer
than React Native.

React Native was published on March 26, 2015, whereas NativeScript
was first made available in 2014.

Although the 1-year gap may appear to be an advantage, NativeScript is
increasingly being replaced with React Native.

React Native records 533k downloads on npm weekly, compared to
around 7k downloads per week for NativeScript as of the publication date.

Speaking of contributions, React Native beats out NativeScript
with more than 2,200 contributors on GitHub. NativeScript has 208
contributors.

On GitHub, React Native is really utilized by 720k developers, whereas
NativeScript is used by greater than 3.5k.

These margins show the developer community’s widespread acceptance
of React Native, which has an effect on the amount of third-party librar-
ies, replies, and bug solutions on StackOverflow. Overall, React Native tri-
umphs in this case.

Popularity of NativeScript vs React Native

Both NativeScript and React Native were developed using JavaScript.
The competition is never far apart. According to a 2019 StackOverflow

study, JavaScript was the most widely used technology.
React.js has surpassed Angular.js/Angular and Vue.js when it comes to

web frameworks.
It appears that developers favor React.js more. React Native is simul-

taneously used by 10.5% of all respondents. In addition to becom-
ing more popular than NativeScript, React Native also attracts more
attention.

JavaScript for Mobile Usage    ◾    401

Which Should We Use between React Native and NativeScript?

It may be difficult to decide between these two well-known technologies
because each has advantages and drawbacks of its own. The best technol-
ogy for us will mostly rely on the needs of our project. The proper times to
utilize NativeScript and React Native have been determined, nevertheless.

Select NativeScript if

•	 We want to create a cross-platform program.

•	 Using the free and built-in plugins and templates, we want to create
extendable APIs.

•	 Instead of creating complex, inaccessible, and distracting user inter-
faces, we don’t require webViews.

•	 Avoid performance problems at all costs.

Select React Native if

•	 We want to quickly develop an MVP.

•	 We want to create real-time apps that communicate updates in
real-time.

•	 We want to make mobile apps with a certain UI.

•	 Without third-party plugins, our platform must be created.

In this chapter, we covered advantages, disadvantages, scope, popularity
and comparison of React Native, and NativeScript.

NOTES
	 1.	Why Is JavaScript Considered One of the Best in Mobile App Development

for 2022?: www.linkedin.com/pulse/why-javascript-considered-one-
best-mobile-app-?trk=pulse-article_more-articles_related-content-card
Accessed on: 17 October 2022.

	 2.	Should You Use JavaScript for Mobile Development?: www.kambda.com/
should-use-javascript-mobile-app-development/ Accessed on: 17 October
2022.

http://www.linkedin.com
http://www.linkedin.com
http://www.kambda.com
http://www.kambda.com

402    ◾    Conquering JavaScript

	 3.	Benefits of Using JavaScript for Mobile App Development: https://medium.
com/@rohithaelsa/benefits-of-using-javascript-for-mobile-app-develop-
ment-e1e71aa94e21 Accessed on: 17 October 2022.

	 4.	React Native Environment Setups: www.javatpoint.com/react-native-envi-
ronment-setup Accessed on: 19 October 2022.

	 5.	Future Scope of React Native for Mobile App Development: https://richest-
soft.com/blog/future-scope-of-react-native-for-mobile-app-development/
Accessed on: 17 October 2022.

	 6.	The Pros and Cons of Native Apps: https://clutch.co/app-developers/
resources/pros-cons-native-apps Accessed on: 18 October 2022.

	 7.	NativeScript Tutorial: www.tutorialspoint.com/nativescript/index.htm
Accessed on: 18 October 2022.

	 8.	Why Nativescript Is Preferred for Android App Development: www.cisin.
com/coffee-break/technology/know-why-nativescript-is-preferred-for-
android-app-development.html Accessed on: 18 October 2022.

	 9.	NativeScript – Installation: www.tutorialspoint.com/nativescript/nati-
vescript_installation.htm Accessed on: 19 October 2022.

	 10.	NativeScript vs React Native for Native App Development in 2022: www.
bacancytechnology.com/blog/nativescript-vs-react-native Accessed on: 18
October 2022.

https://medium.com
https://medium.com
http://www.javatpoint.com
http://www.javatpoint.com
https://richestsoft.com
https://richestsoft.com
https://clutch.co
https://clutch.co
http://www.tutorialspoint.com
http://www.cisin.com
http://www.cisin.com
http://www.cisin.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.bacancytechnology.com
http://www.bacancytechnology.com
https://medium.com

403

C h a p t e r 8

JavaScript for
Desktop Apps

IN THIS CHAPTER

➢ Electron.js

In the previous chapter, we covered JS for mobile usage, and in this chap-
ter, we will discuss the usage of JS for Desktop Apps.

The design of desktop programs has improved in recent years, with
more and more apps taking on the appearance and feel of today’s cutting-
edge websites.

Electron is the technology that has allowed desktop programs to go to
this next level.

It’s a breeze to use, loads quickly, and streamlines production.
Previously, JavaScript was the preferred language for creating websites

and online applications, in large part because JavaScript frameworks like
React, Vue, and Angular were so well-liked. However, with the advent
of Node.js in 2009, JavaScript gained the ability to operate outside the
browser.

Because of this, we can now utilize JavaScript for a lot more than simply
websites, including the development of desktop apps using Electron.js.

DOI: 10.1201/9781003356578-8

https://doi.org/10.1201/9781003356578-8

404    ◾    Conquering JavaScript

Electron is a runtime that provides a wide range of native (operating
system) APIs, allowing us to write desktop apps in pure JavaScript.

We may think of it as a fork of the Node.js runtime tailored specifically
for desktop programs as opposed to web servers.

HOW CAN WE USE DESKTOP APPLICATIONS?
The term ‘desktop application’ refers to software designed to be used only
on personal computers. These programs are installed for one single func-
tion and serve no other reason.

Microsoft Word, which we use to write and edit documents, is an exam-
ple of a desktop program. Web browsers, Visual Studio Code, and Adobe
Photoshop are further examples of widespread desktop apps.

Desktop apps are distinct from online programs in that they need
installation prior to use and, in some cases, may not even require an active
internet connection to function.

However, web applications need constant connectivity to the internet
and can only be accessed by going to the URL where the app is located.

The following are some examples of frameworks used while creating
desktop applications:

	 1.	 Java
Java is an object-oriented, class-based programming language

that was created with the goal of requiring as little from the underly-
ing implementation as feasible.

As a result, generated Java code may run on any systems that
accept Java without the need for recompilation, allowing application
developers to ‘write once, run everywhere’ (WORA).

	 2.	 JavaFX
As stated on their website, it is a Java-based, open-source, next-

generation client application platform for desktop, mobile, and
embedded devices.

	 3.	C#
C# is a general-purpose, multi-paradigm programming language

that supports a wide range of programming paradigms, including
strong typing, lexically scoped, imperative, declarative, functional,
generic, object-oriented, and component-oriented.

JavaScript for Desktop Apps    ◾    405

	 4. .NET
.NET is a free, open-source, and cross-platform development

environment that may use to create a wide variety of software.
When using.NET, developers have access to a wide variety of

tools and frameworks for creating applications for the web, mobile
devices, desktop computers, video games, and the Internet of
Things.

WHAT IS AN ELECTRON?
Electron is a free and open-source software environment for creating
desktop software.

The project, originally known as ‘Atom shell,’ is built and supported by
GitHub.1

With it, we can create desktop apps that run on several platforms with
only HTML, CSS, and JavaScript. This implies that a same set of codes
may be used to create desktop programs for several platforms, including
Windows, MacOS, and others.

It was built using Node.js and Chromium. Many well-known programs,
including the Atom text editor, Visual Studio Code, WordPress for desk-
top, and Slack, were developed using Electron.

Installation

Use the NPM package manager to add Electron to our project.

npm install electron --save-dev

If we intend on working with electron applications extensively, we may
install it globally with this command:

npm install electron –g

WHICH APPS USE ELECTRON?
Electron provided several advantages to numerous businesses.2

1. WebTorrent Desktop Application

Let’s face it: We all love torrents, whether they’re downloaded on our
phones or our computers. However, this sort of software still seems

406    ◾    Conquering JavaScript

obsolete and out of date, which is why the folks at WebTorrent decided
to take action—adopting Electron JS as their primary development tool.

WebTorrent is the first torrent client that works in the browser, is
entirely built-in JavaScript, and leverages WebRTC for peer-to-peer trans-
mission. WebTorrent connects the user to a decentralized browser-to-
browser network that provides efficient file sharing without the need for
plugins, extensions, or installs.

Why Is Electron Used by WebTorrent for Desktop?
Electron enters the fray with the WebTorrent desktop client, making it
as light, ad-free, and open source as possible. It also helps with stream-
ing and functions as a hybrid client, connecting the program to all of the
prominent BitTorrent and WebTorrent networks.

2. WordPress Desktop Application

WordPress, as the undisputed monarch of content management systems,
needed a dependable and automatic desktop version. It joined the list of
desktop applications utilizing Electron JS—as an open-source framework
that enables users to manage WordPress content—thanks to Electron JS.

We’ve all heard about WordPress and how to use it in our browsers.
WordPress for desktop, on the other hand, is something altogether new:
desktop software built on the Electron framework that delivers a seamless
cross-platform experience, enabling users to concentrate on their content
and design without being distracted by browser tabs.

Why Does the WordPress Desktop App Make Use of Electron?
WordPress for desktop is a desktop program that uses Electron as a foun-
dation and JavaScript with React as the primary language in this new
desktop technology.

3. Ghost Electron Application

We are not alone if you have never heard of Ghost. Ghost is essentially an
open-source platform that allows users to create and manage contempo-
rary web publications.

Ghost is entirely hackable and has a significant influence on the future
of online media, from blogs to magazines and journals. This is mostly due
to the easier and more focused authoring experience, which is clearly a
result of the JavaScript desktop framework, among other technologies.

JavaScript for Desktop Apps    ◾    407

Why Does the Ghost Desktop App Make Use of Electron?
In that spirit, Ghost for desktop is a desktop program built with Electron
JS that enables authors to maintain many blogs at the same time while
focusing on their content.

If we’re a writer, we’re surely aware that basic things like keyboard
shortcuts may be difficult to implement in a browser. The Ghost desktop
program, on the other hand, makes it simpler than ever.

Ghost for desktop is one of the Electron-based applications that provide
a better user experience by using JavaScript and Node.js on both the back-
end and frontend.

4. The Electron App Beaker Browser

Are we looking for a dependable peer-to-peer web browser? If so, we’ve
just discovered it. Beaker Browser is a collaborative browser for hackers.
Beaker Browser, originally developed as a hackable product, transforms
the Web to an open-source format and allows hackers, modders, and cre-
ative types to make the most of their digital abilities.

Why Is Electron Used by Beaker Browser?
The Electron framework makes it much simpler to construct Beaker.

It assisted the Electron design process with minimum iterations and in
the best manner possible as a toolset for developing browsers. In a word,
Beaker Browser is an open-source online browser and a solution that
enables social hacking simpler and more effective than ever before.

5. Pexels Electron App

Pexels is a lifesaver for many authors, designers, and publicists.
As a site with thousands of royalty-free stock pictures, it clearly needed

to be improved.
That is how the Pexels desktop app, developed using Electron JS, came

to be.

Why Does the Pexels Desktop App Make Use of Electron?
With just one click, this software makes it simpler than ever to copy a
snapshot to your clipboard. The picture may then be pasted into any soft-
ware and used as a stock image for an article, infographic, or social media
post. There are no downloads, therefore there are no issues, and finding
new photographs is simple due to the Pexels desktop software.

408    ◾    Conquering JavaScript

6. Slack Desktop Application

Slack desktop app for macOS is another amazing program that makes use
of this JavaScript technology.

Why Does the Slack Desktop App Make Use of Electron?
It was created using the Electron framework, which is clearly noticeable
due to its speedier performance and frameless appearance, as opposed to
the browser experience.

Slack for desktop is the software of choice for many organizations seek-
ing for an improved organization or a more focused workplace. Although
Slack for desktop uses a mixed method, the majority of their assets and
code are loaded remotely, using the Chromium rendering engine and the
Node.js runtime and module system.

7. WhatsApp Electron Application

WhatsApp, the most downloaded chat software, is another prominent
desktop program that uses ElectronJS.

Why Does the WhatsApp Desktop App Make Use of Electron?
The Electron framework helped WhatsApp developers cover everything
at once and wrap the desktop experience of WhatsApp behind a more
streamlined and revolutionary framework—the Electron. This resulted in
less labor and more contribution.

WHY DO SO MANY BUSINESSES CHOOSE ELECTRON
TO CREATE CROSS-PLATFORM DESKTOP APPS?
There are many important reasons why businesses choose Electron to cre-
ate desktop apps:

Electron enables developers to create desktop programs using JavaScript
specifically, developers leverage web technologies such as HTML, CSS,
and JavaScript.

Electron allows developers to create cross-platform programs that run
on Mac, Windows, and Linux—it removes the requirement for developers
to be skilled in technologies required to develop for these platforms natively.

What Is the Significance of This?

At the highest level, we can see Mac, Windows, and Linux. That’s already
quite a lot. On a deeper level, though, such systems come in a variety

JavaScript for Desktop Apps    ◾    409

of flavors. Each has unique characteristics, and each one that is still in
use should be considered during product creation.

Furthermore, each platform has its own peculiarities.
To meet this development challenge, we must employ professionals,

which might take a long period. Furthermore, developing three distinct
applications is a time-consuming procedure.

From a commercial standpoint, in many circumstances, that is not a
realistic answer.

BENEFITS OF ELECTRON
Nowadays, most developers choose Electron to create cross-platform apps
due to the following remarkable benefits3:

Single Codebase

Electron offers a versatile abstraction for native operating system
functionality.

As a result, developers may keep a single codebase for their cross-plat-
form application, which will work on the majority of popular platforms.

Quick Feature Delivery

Creating user interfaces in Electron using HTML and CSS is simple; these
web technologies allow us to construct any custom GUI element.

Furthermore, Node.js offers a vast ecosystem of libraries, allowing us to
easily add native-like capabilities.

Framework Maturity

Because Electron was first launched about 8 years ago, it has a large user
base and community.

There are also useful built-in features such as auto updates.
Reputable firms like Microsoft use Electron to develop cross-platform

apps.
Electron was used to build applications such as Visual Studio Code,

Teams, and Skype.

Electron Has Several Unresolved Concerns

While the Electron framework is generally amazing, it has numerous key
speed concerns.

410    ◾    Conquering JavaScript

Electron includes Chromium and Node.js in the final application pack-
age, thus even if we write a basic and lightweight app by carefully selecting
frontend libraries and frameworks, our project will become bloated.

Chromium and Node.js are large projects, and their modules will need
more resources than usual on our machine.

In other words, Electron-based apps will need a large amount of physi-
cal memory and disc space. Furthermore, because of their high resource
usage, Electron programs rapidly deplete our laptop’s battery. Electron-
based cross-platform apps often become bloatware as a result of the severe
performance difficulties discussed above. This disadvantage may be hid-
den from the common user by powerful hardware. However, if users begin
running many Electron apps, they will quickly notice this hidden perfor-
mance disadvantage.

ALTERNATIVES FOR ELECTRON
Several alternatives, such as Electrino and DeskGap, appeared as remedies
to Electron’s performance difficulties some time ago.

Both efforts attempted to decrease the size of the final bundle by utiliz-
ing the operating system’s webview rather than Chromium.

Unfortunately, the developed Electron framework could not finish
these two projects.

However, there are two popular lightweight Electron alternatives: Tauri
and Neutralino.js.

Both projects attempt to address Electron’s performance problem by
replacing Chromium and Node with better, lighter alternatives.

Instead of Chromium, both projects utilize the well-known webview
library to render HTML and CSS. The webview library renders using the
current web browser component.

It will, for instance, utilize gtk-webkit2 on Linux systems, Cocoa Webkit
on macOS, and Edge/MSHTML on Windows.

DRAWBACKS OF ELECTRON.JS FRAMEWORK
There are some disadvantages to using electron.js, which are listed below4:

Excessive Volume

Electron programs use their own version of the Chromium browser.
This browser is quite large and comprises millions of lines of code.
In fact, since the Chrome browser is the same size as an operating sys-

tem, it takes up a lot of hard disk space on a computer.

JavaScript for Desktop Apps    ◾    411

However, given that current computers often offer users with 2 tera-
bytes of memory space, the huge number of electron applications isn’t a
major concern.

Electron.js Framework Consumes a Lot of Resources

The Electron.js framework consumes ROM and system resources, as well
as battery power fast if utilized on a laptop.

Indeed, the Electron application is optimized to function on many sys-
tems, and since the platforms vary, application optimization necessitates
more energy.

Because native apps are platform-specific, their resources are superior.

Specific Customer Needs

Electron.js apps typically operate the same on all platforms, but program-
mers may struggle if users have a different design for each device.

In reality, developers must devote more effort to creating unique fea-
tures to each platform, which will inevitably raise expenses. Most cru-
cially, this will not work; as a result, application owners must plan ahead
of time for their product identification.

SIGNIFICANCE OF USING THE ELECTRON.JS FRAMEWORK
The Electron JS framework is used by developers to create high-quality
cross-platform apps.

But why do you believe programmers choose this framework over other
tools?

First and foremost, this framework supports all accessible platforms,
making it very user-friendly for developers. In addition, developers will
be able to create Cross-Platform apps using the Electron.js framework and
other JavaScript frameworks.

Another reason for the Electron framework’s success is that its apps are
genuinely web applications. In other words, Electron.js is a web technol-
ogy that allows us to simply convert a desktop program to a web version.

DISTINCTION BETWEEN THE MAIN
AND RENDERER PROCESSES
By establishing BrowserWindow instances, the main process generates
web pages.

The web page is rendered in its own renderer process by each
BrowserWindow instance.

412    ◾    Conquering JavaScript

The related renderer process is ended when a BrowserWindow instance
is destroyed.

The main process is in charge of all web pages and their associated ren-
derer processes.

Each renderer process is isolated and is solely concerned with the web
page that is executing in it.

HELLO EVERYONE CODE IN ELECTRON
For our project, we built a package.json file. Now we’ll use Electron to
build our first desktop app.5

Make a new file named main.js. Fill in the following code:

const {app, BrowserWindow} = require('electron')
const url = require('url')
const path = require('path')

let win

function createWindow() {
 win = new BrowserWindow({width: 700, height: 500})
 win.loadURL(url.format ({
 pathname: path.join(__dirname, 'index.html'),
 protocol: 'file:',
 slashes: true
 }))
}

app.on('ready', createWindow)

Make a new file named index.html, this time in HTML. Enter the code
below into it.

<!DOCTYPE html>
<html>
 <head>
 <meta charset = "UTF-8">
 <title>Hello Everyone!</title>
 </head>

JavaScript for Desktop Apps    ◾    413

 <body>
 <h1>Hello Everyone!</h1>
 We are using the node <script>document.
write(process.versions.node)</script>,
 Chrome <script>document.write(process.versions.
chrome)</script>,
 and Electron <script>document.write(process.
versions.electron)</script>.
 </body>
</html>

Use the following command to launch this app:
$ electron ./main.js

HOW DOES THIS APP FUNCTION?
We made a primary file as well as an HTML file.

Two modules are used in the main file: app and BrowserWindow.
The app module manages our application’s event lifecycle, while the
BrowserWindow module creates and manages browser windows. We built
a createWindow function that creates a new BrowserWindow and associ-
ates it with a URL. When we launch the program, this is the HTML file
that is rendered and shown to us. In our html file, we utilized a native
Electron object process.

This object extends the Node.js process object, retaining all of its func-
tionality but adding many more.

BUILDING UIs WITH ELECTRON
Electron applications’ user interfaces are constructed using HTML, CSS,
and JS.

As a result, we can use all of the existing tools for frontend web develop-
ment here as well.

To create the applications, we may utilize technologies like Angular,
Backbone, React, Bootstrap, and Foundation.6

We may handle these frontend dependencies using Bower. Bower
should be installed via

$ npm install -g bower

414    ◾    Conquering JavaScript

Bower now provides access to all available JS and CSS frameworks, librar-
ies, plugins, and so forth.

For example, to get the most recent stable version of bootstrap, use the
following command:

$ bower install bootstrap

This will download the bootstrap component from bower components.
We may now use this library in our HTML. Let’s build a basic page

using these libraries.
Let us now use the npm command to install jquery.

$ npm install --save jquery

This will also be needed in our ‘view.js’ file. We already have a’main.js’ file
as seen below.

const {app, BrowserWindow} = require('electron')
const url = require('url')
const path = require('path')

let win

function createWindow() {
 win = new BrowserWindow({width: 700, height: 500})
 win.loadURL(url.format ({
 pathname: path.join(__dirname, 'index.html'),
 protocol: 'file:',
 slashes: true
 }))
}
app.on('ready', createWindow)

JavaScript for Desktop Apps    ◾    415

Open our index.html file and add the following code:

<!DOCTYPE html>
<html>
 <head>
 <meta charset = "UTF-8">
 <title>Hello Everyone!</title>
 <link rel = "stylesheet"
 href = "./bower_components/bootstrap/dist/
css/bootstrap.min.css" />
 </head>

 <body>
 <div class = "container">
 <h1>This page use Bootstrap and jQuery!</h1>
 <h3 id = "click-counter"></h3>
 <button class = "btn btn-success" id =
"countbtn">Click</button>
 <script src = "./view.js" ></script>
 </div>
 </body>
</html>

Create a view.js file and add the click counter logic to it.

let $ = require('jquery') // jQuery loaded and
assigned to $
let count = 0
$('#click-counter').text(count.toString())
$('#countbtn').on('click', () => {
 count ++
 $('#click-counter').text(count)
})

Use the following command to launch the app:

$ electron ./main.js

416    ◾    Conquering JavaScript

We may create our native app in the same way that we create webpages. If
we do not want users to be limited to a certain window size, we may utilize
responsive design to enable them to use our app in a flexible way.

In this chapter, we examined desktop apps built using electron.js, as
well as their merits and downsides, as well as how to install electron.js.

NOTES
	 1	 Building Desktop Apps with Electron and Vue: www.smashingmaga-

zine.com/2020/07/desktop-apps-electron-vue-javascript/ Accessed on: 19
October 2022.

	 2	 7 Famous Electron App Examples (JavaScript Desktop Apps): https://
brainhub.eu/library/electron-app-examples Accessed on: 19 October 2022.

	 3	 Why You Should Use an Electron Alternative: https://blog.logrocket.com/
why-use-electron-alternative/ Accessed on: 19 October 2022.

	 4	 Introducing the Electron.js Framework, Its Advantages and Disadvantages:
https://ded9.com/introducing-the-electron-js-framework-its-advantages-
and-disadvantages/ Accessed on: 20 October 2022.

	 5	 Electron – Hello World: www.tutorialspoint.com/electron/electron_hello_
world.htm Accessed on: 20 October 2022.

	 6	 Electron – Building UIs: www.tutorialspoint.com/electron/electron_build-
ing_uis.htm Accessed on: 20 October 2022.

http://www.smashingmagazine.com
http://www.smashingmagazine.com
https://brainhub.eu
https://blog.logrocket.com
https://blog.logrocket.com
https://ded9.com
https://ded9.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
https://brainhub.eu

417

C h a p t e r 9

Appraisal

WHAT EXACTLY IS JAVASCRIPT?
JavaScript was first developed with the intention of “bringing online pages
to life.”
Scripts are what you name the programs written in this language. They
may be written directly in the HTML of a web page and will execute them-
selves as soon as the page loaded.

Scripts are sent in plain text format and run in that format. They may
be run without any further preparation or compilation being necessary.

JavaScript is a programming language that is executed on the client side
of the web and may be used to create and program how web pages react
when a certain event takes place. JavaScript is a popular choice since it is
both accessible and strong as a programming language. It is most often
used to control the behavior of web pages.

JavaScript is not ‘Interpreted Java,’ despite the widespread belief that
this is what it is. JavaScript is a dynamic programming language that sup-
ports prototype-based object building. This is the gist of what JavaScript
is. Because learning this language requires familiarity with a significant
number of novel ideas, the fundamental grammar was designed to be con-
ceptually comparable to Java and C++. Constructs of the language such as
if statements, for and while loops, switch and try... catch blocks have the
same functionality in each of these languages (or nearly so).

The programming language JavaScript may operate in both a proce-
dural and an object-oriented mode. In contrast to the syntactic class dec-
larations that are prevalent in compiled languages such as C++ and Java,

DOI: 10.1201/9781003356578-9

https://doi.org/10.1201/9781003356578-9

418    ◾    Conquering JavaScript

objects in JavaScript are formed programmatically. This is accomplished
by adding methods and attributes to objects that are otherwise empty at
the time of execution. After the construction of an item, that item might
serve as a model (or prototype) for the construction of more items of the
same kind.

JAVASCRIPT’S PAST AND ITS FUTURE
JavaScript was first developed by Brendan Eich in 1995 for use with
Netscape Navigator, which was the most popular web browser at the time.
JavaScript made it possible for web developers to create more dynamic
websites by allowing for the modification of visual components on the
screen in real time in response to the actions of site visitors. There were
a number of name changes made over JavaScript’s first half year of exis-
tence. It was at first known as Mocha, and afterward as LiveScript, before
finally being given the name JavaScript.

In spite of its name, the programming language JavaScript has no con-
nection to the Java programming language. This is a fun fact. The cooper-
ation that existed between Netscape and Sun Microsystems, the company
that was responsible for developing Java, led to the creation of the term.

These days, JavaScript is used for a far wider variety of purposes than
only as a programming language for the web. Because it is a powerful and
adaptable language that can be used in a number of different ways, you
may write in JavaScript as you choose, whether you like imperative pro-
gramming, a more object-oriented style, a functional approach, or even an
event-driven model.

WHAT MAKES JAVASCRIPT UNIQUE?
At a minimum, JavaScript has the following three wonderful qualities:

•	 Complete incorporation of HTML and CSS.

•	 Things that are simple can be accomplished with ease.

•	 All of the main browsers provide support for it, and it is turned on
by default.

JavaScript is the only technology available for browsers that combines all
three of these features.

Appraisal    ◾    419

This is what sets JavaScript different from other languages. Because of
this, it is the tool that is used the most often for the creation of browser
interfaces.

Having stated that, JavaScript may be used in the creation of servers,
mobile apps, and other types of software.

Languages That Are “Superior” To JavaScript

There are certain people for whom the syntax of JavaScript is not suitable.
The preferences of various individuals might vary greatly.

This is to be anticipated given the fact that each person’s projects and
needs are unique to them.

Therefore, in recent times a variety of new languages have emerged;
in order for these languages to operate in a browser, they must first be
transpiled, or converted, to JavaScript.

These days, modern technologies make the translation process incred-
ibly quick and easy to understand, which enables programmers to write
code in one language while having it automatically converted ‘under the
hood.’

These languages are some examples:

•	 CoffeeScript is often referred to as the ‘syntactic sugar’ of JavaScript.
It does this by introducing shorter syntax, which in turn enables us
to create code that is more clear and exact. Ruby developers, on the
whole, are fond of it.

•	 TypeScript is focused on implementing ‘strict data typing’ to facili-
tate the creation and maintenance of complicated systems. Microsoft
is the company that created it.

•	 Data type is likewise added by Flow, but in a different manner.
Facebook was the developer behind this.

•	 Dart is a standalone programming language that operates in
non-browser settings (like mobile applications), but it can also be
transpiled to JavaScript for use in browsers. Its engine runs natively
on the Dart platform. Designed and built by Google.

•	 The use of Brython, which is a transpiler for Python to JavaScript,
makes it possible to write apps in Python alone, without the need for
JavaScript.

420    ◾    Conquering JavaScript

•	 Kotlin is a cutting-edge programming language that is terse, safe,
and current. It may be used to target either the browser or Node.

There are further ones. Even if we utilize one of these transpiled languages,
to fully grasp the situation, we still need to be well-versed in JavaScript.

In Comparison to Other Languages, JavaScript

When it was initially released, JavaScript was nothing more than an addi-
tional Turing-complete option that had been introduced to Netscape’s
browser. The majority of programmers laughed it off as a game, something
that might be used to assess the accuracy of the information in the form or
to add irritating popup windows. They missed the opportunity to seize the
potential. Before it pushed forward-thinking features like lambdas and
functions as first-class objects into the mainstream, not many people rec-
ognized the significance of the language’s innovative characteristics.

It has been almost 20 years since then, and throughout that time, every-
thing has changed. JavaScript serves as the basis for the vast majority of peo-
ple’s interactions with the computer world, which takes place via web apps.
Programmers are increasingly turning to Node.js for greater performance as
well as the ability to execute the same code on the server as they do on the cli-
ent. As a result, even server applications are increasingly built in JavaScript.

The following is a quick comparison of JavaScript with some of the
other main programming languages, written as a bulleted list for ease of
reading.

JavaScript Contrasted with C

•	 Compilation of C takes place in advance. Just-in-time (JIT) compil-
ers are used to understand JavaScript during runtime, and the lan-
guage is also sometimes built at this point.

•	 C is statically typed. JavaScript is a dynamically typed programming
language.

•	 The C programming language needs its users to create and release
chunks of memory. This is taken care of automatically by JavaScript.

•	 When moving C code to a new processor, it is necessary to recompile
the code. There is no need for JavaScript to be.

Appraisal    ◾    421

•	 Through the use of pointers, C is built to facilitate direct interac-
tion with the memory of the computer. This ability is hidden behind
JavaScript.

•	 C is a programming language that is often used for embedded com-
puters and applications that call for high levels of performance, such
as operating systems. In the beginning, JavaScript was only included
in web pages, but now it is being used in Node.js server applications,
which is a relatively new use for the technology.

•	 C provides users with explicit control over threads, but JavaScript
encourages users to juggle several jobs by partitioning activities
into asynchronous functions that are executed when data is avail-
able. C provides users with this level of control, whereas JavaScript
does not.

The Contrast between Java and JavaScript

•	 Compilation of Java results in bytecode, which is an intermediate
form that is later executed by a JIT compiler. In the past, JavaScript
was only ever executed via an interpreter; however, these days, a JIT
compiler is often used.

•	 To put it simply, Java is not a dynamically typed language, while
JavaScript is a dynamically typed programming language.

•	 In contrast to JavaScript, Java is a tightly typed programming
language.

•	 Java is built to serve massive applications and provides a strong
namespace for these programs. JavaScript doesn’t supply it directly,
therefore programmers have synthesized it.

•	 Java was originally used in browsers as well as servers, although
nowadays, it is mostly used on servers. Previously, JavaScript could
only be executed in browsers; however, it is now very often employed
on the server side.

•	 Java and JavaScript both support a wide variety of other languages.
Cross-compilers are able to translate a wide variety of languages
such that they may be executed on Java’s JVM or JavaScript engines.

422    ◾    Conquering JavaScript

•	 Java 8 has included a method for embedding JavaScript, allowing
the programming language to take use of numerous of JavaScript’s
advantages.

•	 Java provides the programmer with direct control over the threads.
The call-and-response function structure of JavaScript helps to con-
ceal a significant portion of this.

When Compared to C#, JavaScript Is

•	 The C# programming language is reduced down to a form called
bytecode, which is an intermediate form that is later executed by a JIT
compiler. Once upon a time, the only way to process JavaScript was
via interpretation. These days, however, a JIT compiler is often used.

•	 JavaScript is dynamically typed, in contrast to the statically typed
nature of C#.

•	 JavaScript is not highly typed, in contrast to C#, which is.

•	 JavaScript has different libraries that can cover this capability, one
of which being Underscore.js. While C# has LINQ, a powerful.NET
component that offers native data querying capabilities, JavaScript
has independent libraries that can cover this feature.

•	 The computer language C# provides precise control over the threads.
The call-and-response function structure of JavaScript helps to con-
ceal a significant portion of this.

•	 Overloading of operators and conversions is available in C#.
JavaScript does not.

JavaScript Compared to the Programming Language Python

•	 The initial purpose of JavaScript was to provide support for HTML
sites inside browsers. Python was designed to be executed through
the command line in order to enable server environments (and
desktops).

•	 The communities that speak both languages are now much bigger.
The field of social research has seen significant adoption of Python

http://powerful.NET

Appraisal    ◾    423

as a data processing language. There are now instances of JavaScript
on servers and in other places.

•	 JavaScript denotes sections of code with brackets shaped like curly
braces. Indentation and whitespace are used by Python.

•	 Python’s argument blocks for methods may be as flexible as the user
wants them to be, but JavaScript requires that every parameter be
defined.

•	 The execution of JavaScript code is often triggered by events such
as clicks of the mouse or keystrokes. Calls made to functions are
acknowledged by Python.

•	 The processing and analysis of data are the primary emphases
of many Python libraries, while the manipulation of HTML in a
browser is the primary focus of many JavaScript tools.

When Compared to PHP, JavaScript Is

•	 Both of these scripting languages were initially interpreted at run-
time, but nowadays, a JIT compiler is often used to do the necessary
transformations.

•	 Both have variables that may be written dynamically.

•	 In the beginning, PHP was created to be used on servers to compile
HTML pages, whereas JavaScript was meant to run inside of brows-
ers on client computers. At this time, JavaScript is also capable of
constructing HTML files on the server.

•	 PHP is almost never used for anything other than putting together
HTML. The ever-more-complex interfaces in the browser and
server-side stacks that integrate business logic and databases rely on
JavaScript as their basis.

•	 PHP is a programming language that is designed to get data from
databases and format it using HTML. It is a very straightforward
language. JavaScript is evolving into a language that may be used
for a wider range of applications, including general computing and
interaction with browsers.

424    ◾    Conquering JavaScript

JavaScript Compared to the Programming Language Ruby

•	 In the past, operating JavaScript was restricted to the client’s browser,
whereas Ruby was executed on the server in conjunction with the
Rails framework.

•	 The Ruby on Rails framework provides an inspiration for many of
the principles that are used in JavaScript while it is executing in
Node.js on the server.

•	 Ruby and JavaScript are both examples of dynamically typed pro-
gramming languages.

•	 In Ruby, the term ‘end’ is used to denote the end of a block, while
curly brackets are used in JavaScript.

•	 Ruby takes more of its syntax from Perl and Smalltalk, whereas
JavaScript takes a significant portion of its syntax from Java and C.

•	 Ruby is mainly confined to server applications that use its Rails
framework; nevertheless, some administrators like Ruby for their
server-supporting command-line programs. On the other hand,
JavaScript is transitioning to become a general-purpose program-
ming language.

As can be seen, JavaScript diverges significantly from a good number of
the other common programming languages. Its first version was created
in only 10 days, but it included a number of forward-thinking improve-
ments that allowed it to survive into the present decade. These innovations
let it survive into the current decade.

There are many problems, yet, it seems that it will continue to be a key
language for frontend developers for as long as it is the only language that
all browsers understand.

Opportunities for Professional Development in JavaScript

Frontend Web Developer
It entails the construction of a user-facing and visually appealing portion
of a website. This position will mostly include working with HTML, CSS,
JavaScript, and a basic backend. You probably have a good understanding

Appraisal    ◾    425

of several ideas that go beyond the fundamental technologies, such as per-
formance testing or regression testing.

The following is a list of the duties of a Frontend Developer:

•	 Develop new software applications from the idea to conclusion,
including frequent testing and maintenance.

•	 In order to construct normal programs and libraries for the future
applications.

•	 Ensure that the technical capabilities of the UI/UX design are met.

•	 Before sending any user inputs to the backend service team, it is
imperative that all of those inputs be checked for authenticity.

•	 Collaborate with the other members of the team as well as the
investors.

Designer and Developer of Web Applications
Developing software applications that run on the web, such as interactive
online forms, shopping carts, word processing and spreadsheet programs,
video and picture editors, file converter tools, scanning programs, and
email software.

Desktop programs that are cross-platform are often created on
platforms such as Adobe AIR, whereas ELECTRON makes use of
JavaScript.

In the process of developing interactive web pages. It would be pref-
erable to use a JavaScript framework such as jQuery that extends your
JavaScript capabilities in order to make this JavaScript simpler.

This role is distinct from that of a Frontend Developer since there
is less emphasis placed on design and more on the principles behind
programming.

Developer Skilled in JavaScript

It is the responsibility of a JavaScript developer to connect this newly gener-
ated element with the services that are already in place on the backend. In
most cases, the developer will get assistance from the backend web designer,
who is liable for the whole of the server-side application logic. Together with
other frontend web developers who focus on the application’s HTML and
aesthetics, a JavaScript developer often collaborates on projects with these

426    ◾    Conquering JavaScript

colleagues. Programming and application development are the responsibili-
ties of a JavaScript developer. In addition to that, he is accountable for

•	 Creating new features for, and improving, the primary frontend
website platform.

•	 Developing new functions that are focused on the end user.

•	 Helping out with frontend work on other programs (HTML/CSS/
JavaScript in Ruby and Python application), along with the design-
ing and programming of new frontend applications for a variety of
different platforms.

•	 Performing code analysis, analysis of requirements, analyses of system
risk and software dependability, and identification of code metrics.

UX/UI Designer
It is the process of analyzing and investigating how people use a certain website.
The next step is to test the outcome of the system after implementing improve-
ments that will make it better. A rich earning potential may be attained by
possessing knowledge of both user experience designing and JavaScript.

They are also quite proficient in the design tools of choice; however,
their skill set may simply include HTML and CSS. In addition to being
familiar with JavaScript, the employee should have expertise in interface
design. The people who are responsible for the user interface might also be
referred to as visual designers.

DevOps Engineer
This position helps to close the communication gap between IT and devel-
opers. In addition to that, they are investigating things like server soft-
ware, version control, deployment, build procedures, and testing servers
and processes.

The following is a list of the tasks of a DevOps Engineer:

•	 Putting out updates and addressing any technical problems that may
have arisen.

•	 Developing tools to reduce the number of errors that users encounter
while also enhancing their overall experience.

Appraisal    ◾    427

•	 Developing software to work in coordination with existing backend
systems inside the organization.

•	 Carrying out an investigation into the underlying causes of produc-
tion problems.

•	 Developing scripts in order to automate the process of visualization.

•	 Developing processes for debugging the system and doing general
maintenance on it.

Developer Who Works on All Layers
It is comparable to the work done on the frontend and the backend. The
company is looking for persons with very high levels of expertise, since
this is a very prestigious position.

For the position of Full Stack Developer in JavaScript, the following
responsibilities and competencies are required:

•	 Create a blueprint for the whole structure of the web application.

•	 Collaborating with the technical team to develop new features via
design and testing.

•	 Having experience in developing for both mobile and desktop plat-
forms is advantageous.

•	 The skills and understanding to secure sensitive information.

•	 Should have prior knowledge with languages used for backend devel-
opment (Example: JavaScript, Ruby, PHP, Python, Java, .NET, etc.).

•	 A history of collaboration with graphic designers and experience
translating concepts into visual components.

What Is the Most Appropriate Framework for JavaScript?
An abstraction, a web development framework enables software to offer
broad functionality and be tailored in specific ways with the addition of
user-written code. These modifications may be made in a variety of ways.
One definition of a JavaScript framework is an application framework writ-
ten in JavaScript that may be customized by developers for their own needs.

Because frameworks are more malleable for use in web design, the vast
majority of website developers choose to work inside them. Frameworks

428    ◾    Conquering JavaScript

simplify and streamline the process of working with JavaScript, opening up
possibilities such as making apps more responsive to the device being used.

Therefore, Vanilla js is considered to be one of the greatest frameworks
for JavaScript.

Vanilla js
Plain JavaScript is what’s referred to as Vanilla js, and you’ll notice that
developers utilize Vanilla js to produce JavaScript code that doesn’t need
the assistance of any libraries. You will see that Vanilla js is a scripting lan-
guage that does not impose any restrictions or guidelines on the develop-
ers about the manner in which the data in the application may be defined.
There is a possibility that apps written with vanilla.js may not always pro-
vide the most optimal outcomes for the application.

You will see that Vanilla js is very popular among developers. This is
because it is widely acknowledged as one of the simplest frameworks,
making it accessible to developers of all levels.

Why Do We Believe That Frameworks Written
in JavaScript Are so Awesome?
They alleviate your burden by simplifying the difficult and convoluted code.

They allow you to ship code more quickly and boost the pace of your
work.

They challenge you to concentrate more on the value of your app rather
than the execution of it.

Collaboration is, in our opinion, the JS framework that offers the best
potential return on investment. Because of their standardized user inter-
face and methodologies, software engineers from different countries, such
as Canada, the United States, and Brazil, are able to communicate with
one another and collaborate effectively.

When the time comes, you will be able to discover an experienced
developer who can confidently step into the project codebase if you are
creating an app using [insert your preferred framework]. This individual
will be able to begin working on features without you having to spend
time explaining every aspect of your software architecture to them.

Practice is yet another important reason why frameworks should be
used. They will make you practice on and off throughout the day. That’s
fantastic news! Whatever it is that you’re working for, mastery can only be
achieved via consistent practice.

429

Appendix I
JavaScript Cheat Sheet

We must join the JavaScript file to the HTML file in order to uti-
lize JavaScript on the website. Including comments in the coding

process will help us produce better code overall. One may use either sin-
gle-line or multi-line comments.

•	 In order for the browser to recognize that your code is written in
JavaScript and execute it, you must enclose the code in [delete] tags
and paste it into your HTML page.

<script type=“text/javascript”>
// Your js code goes here
</script>

•	 An outside JavaScript report also can be written one after the other
and blanketed inside our HTML report the usage of the script tag as:

<script src=“filename.js”></script>

•	 JavaScript comments are very useful for explaining JavaScript code,
understanding what is happening in the code, and making it easier
to read.

430    ◾    Appendix I

	 1.	Single-line comments: It starts with “//”.

	 2.	Multi-line comments: Enclose comments that span multiple lines
with /* and */.

INSTANCES OF JAVASCRIPT VARIABLES
JavaScript variables are merely the names of data storage areas. As such,
we may utilize them as surrogate values in our JavaScript programs and
still accomplish a wide range of tasks. You have three options when work-
ing with variables in JavaScript.

•	 When it comes to JavaScript, var is by far the most used variable.
Only inside the scope of a function may it be redeclared and its value
transferred. Variables declared using var will rise to the top of the
stack when the JavaScript code is executed. This is an example of a
variable declared with the “var” keyword in JavaScript:

var x = 140; // x may be redeclared and given a new value at any time

•	 To avoid unexpected results, const variables in JavaScript must be
declared in the body of the code before they may be utilized. They
cannot be redeclared or have their values changed in any way over
the course of the program’s execution. Listed below is an example of
a JavaScript variable defined using the “const” keyword:

const x = 5; // It’s not possible to change the value of the variable x

•	 similar to the const variable, the let variable cannot be redeclared.
However, their worth may be changed. The following is an example
of a variable defined using the “let” keyword in JavaScript:

let x = 202; // The variable x cannot be redeclared, although its value
may be changed, as in let x = 202;

DATATYPES IN JAVASCRIPT
JavaScript variables may hold a wide variety of data. The equals (=) sign
operator is used to assign values to variables in JavaScript. JavaScript
supports the following data types:

Appendix I    ◾    431

•	 Variables: The variable data type may take on a wide range of values
since, well, it’s called a variable. Below is an example of a variable’s
data type: var y

•	 Strings: Multi-character sequences of varying lengths that make up
JavaScript’s string data type. You can see how the string data type is
used in the following code snippet: var demoString = “Hello World.”

•	 Numbers: These are only figures. All integers and real numbers are
equally acceptable. Here’s an example of the numeric data type in
action: var id = 100

•	 Operations: You may also attach operations in JavaScript to variables.

•	 Objects: Objects in JavaScript are storage locations for a set of named
values known as properties. They are responsible for their own infor-
mational components and procedures. Below is an example of the
objects data type: var name = “name:”Jon Snow”, id:”AS123”

•	 Boolean value: A Boolean value is one that may be either true or
false. Below is a code snippet demonstrating the use of the boolean
data type: var booleanValue = true.

•	 Constant numbers: Data types with a constant value are called
“constant numbers.” The following is an instance of the constant
data type: const g = 9.8

OPERATORS OF JAVASCRIPT
You can use JavaScript operators on variables to perform a wide range of
operations. These are the numerous kinds of operators that may be used
in JavaScript:

JavaScript’s fundamental operators allow for elementary arithmetic
operations like addition and multiplication to be carried out. Here is an
index of all JavaScript’s primitive operators:

•	 To add two integers together, use the plus sign (+).

•	 To do a subtraction operation, utilize the “Subtraction Operator (–).”

•	 Multiple numbers may be multiplied with the help of the
MultiplicationOperator (*).

432    ◾    Appendix I

•	 In order to do a division, we need to utilize the Division Operator (/).

•	 By enclosing an expression or sub-expression in parenthesis with
the (...) grouping operator, the order of evaluation of the operators is
changed such that the ones with lower precedence are evaluated first.

•	 When dividing by another integer, the residual may be found with
the help of the Modulus operator (%).

•	 To add one to an integer, use the Increment operator (++).

•	 When using the Decrement operator (--), the value of a number is
reduced by 1.

Bitwise Operators

Using JavaScript’s bitwise operators, you can execute any operation that
involves a number’s bits. Here’s a rundown of all the bitwise operators
available in JavaScript:

•	 The bitwise AND operator, (&), produces a result of 1 for every bit
location where the corresponding bits in both operands are 1.

•	 Wherever bits in each or both operands are 1, the bitwise OR
operator (|) delivers a 1.

•	 Bitwise NOT is an operator (~) that flips the bits in the operand. Like
other bitwise operators, it converts the operand to a signed 32-bit
integer.

•	 Each bit location in which the corresponding bits of both operands
are 1s but not both is returned by the bitwise XOR operator (̂).

•	 The left shift operator (≪) moves the bits of the first operand to the
left by the amount specified.

•	 By providing a positive integer, the right shift operator (≫) will shift
the first operand to the right by that many bits.

Comparison Operators

JavaScript has a number of comparison operators, all of which are listed
below.

•	 Whenever its two operands are equal, the equality operator (==) will
return a true or false result.

Appendix I    ◾    433

•	 When its two operands are of the same type and equal in value, the
equivalent operator (===) returns a Boolean.

•	 The inequality operator (!=) returns a boolean if the two operands
are not equal.

•	 If the two operands are not the same type, or if they are not equal,
the inequal operator (!==) will return a Boolean result.

•	 In JavaScript, only the conditional (ternary) operator accepts three
operands: a condition followed by a question mark (?), an expres-
sion to run if the condition is true followed by a colon (:), and a final
expression to execute if the condition is false.

•	 If the left operand has a smaller value than the right operand, then
the Lesser than operator (<) will return true.

•	 The (>=) operator evaluates to true if and only if the left operand is
greater than or equal to the right operand.

•	 Less-than-or-equal-to (=) is an equality operator (<=) that evalu-
ates to true if the left operand is less than or equal to the right
operand.

Logical Operators

The whole set of JavaScript logical operators is as follows:

•	 The logical AND operator (&&) for a collection of Boolean operands
evaluates to true if and only if all of the operands are true.

•	 The logical OR (logical disjunction) operator (||) indicates that a set
of operands is true if and only if any of the operands is true.

•	 The NOT operator (logical complement, negation) (!) turns the truth
into a lie.

JAVASCRIPT FUNCTION
A function in JavaScript is a predefined piece of code that may be used to
accomplish a certain goal. As soon as it is called or invoked, it begins run-
ning. To save retyping the same code again and over, you may save it as a
function and call it as necessary. The functions keyword in JavaScript is used
to define new functions. JavaScript is capable of many things, including:

434    ◾    Appendix I

FUNCTION AND DESCRIPTION
parseInt(): It is a function that takes a string and returns an integral value
that represents the string.

parseFloat() is a function that takes an input and returns a floating-
point representation of that value.

isNaN(): To test whether a value is Not a Number, programmers may
use the isNaN() method.

Number(): This function, called Number(), takes an input and returns
the corresponding number.

eval(): JavaScript code in string form may be evaluated using the eval()
method.

prompt(): Use the prompt() method to generate a text box asking the
user for input.

encodeURI(): Using this method, you may convert a URI to the
Unicode (UTF-8) format.

match() is a built-in JavaScript function that can be used to check if a
string matches a given regular expression.

ARRAY IN JAVASCRIPT
It’s common practice in many languages to store data in arrays. They
may be used to classify things like variables and characteristics. An
array is a sequence of items all of the same kind. A collection of auto
mobiles, written in JavaScript:

var cars = [“Tesla”, “Toyota”, “Honda”];
With our newfound knowledge of array construction, we can apply

various transformations to the resulting data. Check out the many APIs in
JavaScript for manipulating arrays:

•	 push(): It is utilized at the end of an array for adding a new element.

•	 pop(): It is for eliminating the last element of the array.

•	 concat(): It is used to join several arrays into one.

•	 splice(): It is used for adding elements in a particular way and
position.

•	 shift(): It is for eliminating the first element of the array.

•	 reverse(): It is used for preserving the order of the elements in the
array.

Appendix I    ◾    435

•	 slice(): It is for pulling a copy of a part of an array into a new array.

•	 unshift(): It is utilized for adding new elements at the starting of the
array.

•	 toString(): It is used for converting the array elements into strings.

•	 valueOf(): It is used for returning the primitive value of the given
object.

•	 join(): It is used for combining elements of an array into one single
string and then returning it.

•	 lastIndexOf(): It is used for returning the final index at which a
given element appears in an array.

•	 sort(): It is used for sorting the array elements based on some
condition.

•	 indexOf(): It is used for returning the first index at which a given
element is found in an array.

STRINGS IN JAVASCRIPT
Strings, as we’ve already established, are just sequences of characters that
may be put to various uses. Since Strings are so versatile in JavaScript,
we’ve decided to devote their own section to them in this reference guide.
Let’s have a look at JavaScript’s string functions and the numerous escape
sequences it supports.

In the fields of computers and communications, a ‘special character’
known as a ‘escape character’ is a character that, when followed by other
characters in a string, alters the meaning of those characters. Escape
characters make up a subset of the metacharacters that are available. The
surrounding context of a character will determine whether or not that
character may be used as an escape character. To encapsulate strings,
JavaScript may use either single quotes or double quotes. You will need
to make use of special characters in order to include quote marks into a
string. For instance, the following is a selection of escape sequences that
might be used in JavaScript:

•	 \\—Backslash

•	 \”—Double quotes

436    ◾    Appendix I

•	 \’—Single quotes

•	 \t—Horizontal tab

•	 \n—Newline

•	 \v—Vertical tab

•	 \r—Carriage return

•	 \b—Backspace

•	 \f—Form feed

DOM, OR THE JAVASCRIPT DOCUMENT OBJECT MODEL
A website’s code is arranged according to the Document Object Model
(DOM). JavaScript has a large range of options for building and
changing HTML components, which may be accessed via the language
(called nodes).

Node Properties

Let’s start with an examination of some of the attributes of a node in the
JavaScript DOM:

•	 attributes: Obtains a real-time collection of all the attributes of an
element.

•	 The baseURI attribute, when applied to an HTML element, will
return the element’s primary URI.

•	 childNodes: Provides access to an element’s child nodes as a list.

•	 firstChild: Returns the first child node of the element.

•	 lastChild: The last child node of an element.

•	 nextSibling: Node at the same level in the tree as the current node is
returned by nextSibling.

•	 nodeName: The name of a node is returned by calling the node-
Name method.

•	 nodeType: Obtains the node’s type and returns it.

Appendix I    ◾    437

•	 nodeValue: A node’s value can be set or retrieved using the node-
Value method.

•	 ownerDocument is the root document object of this node.

•	 Parent Node: This function returns the Node that is the parent of
the current element.

•	 previousSibling: Using the previousSibling technique, this com-
mand retrieves the node that came before the current node in the
tree.

•	 textContent: Stores or retrieves the textual content of a node and its
children.

Node Methods

Let’s look at some of the Node Methods supplied by JavaScript to work
with these DOM nodes:

•	 appendChild(): A new child node is appended to an element as its
final child node using the appendChild() method.

•	 In HTML, cloneNode() is a function used to create a copy of an
existing node.

•	 The compareDocumentPosition() method is used to examine the
similarities and differences between the document locations of two
elements.

•	 The feature’s APIs are implemented by the object returned by
getFeature().

•	 hasAttributes(): Whether the element contains characteristics is
determined by the value returned.

•	 If an element has any child nodes, the hasChildNodes() method will
return true, otherwise it will return false.

•	 An additional child node is inserted to the left of the current node
using the insertBefore() method.

•	 If the passed-in namespaceURI is the default, isDefaultNamespace()
will return true; otherwise, it will return false.

438    ◾    Appendix I

•	 Function to test if two nodes are equivalent isEqualNode().

•	 If two elements have the same node, isSameNode() returns true.

•	 A feature can be tested to see if it is supported by calling the
isSupported() method on the element.

•	 The lookupNamespaceURI() method gets the namespace URI for a
given node and returns it.

•	 For a given namespace URI, lookupPrefix() will return a DOMString
with the prefix if it exists.

•	 The normalise() method merges adjacent text nodes in an element
and gets rid of any that are empty.

•	 Child() method’s removeChild() method removes a child node from
an element.

Element Methods

This function substitutes a child node of an element with another.
Here are a few examples of the element methods available in JavaScript:

•	 The getAttribute() method retrieves the attribute’s value from a
node in an element.

•	 Input a namespace and the name of an attribute, and getAttributeNS()
will return that attribute’s value as a string.

•	 When called, getAttributeNode() will give you back the node you
passed in as an attribute.

•	 The getAttributeNodeNS() function retrieves the attribute node
associated with the given namespace and attribute name.

•	 This function, called “getElementsByTagName(),” returns a collec-
tion of all child elements with the specified tag name.

•	 When called with a tag name, getElementsByTagNameNS() returns
a live HTMLCollection of elements from the given namespace.

•	 With hasAttribute() if the element has attributes it returns true,
otherwise false.

Appendix I    ◾    439

•	 hasAttributeNS() evaluates whether the given attribute is present
on the current element in the given namespace and returns true or
false accordingly.

•	 The removeAttribute() method is used to get rid of an attribute
from an element.

•	 Invoking removeAttributeNS() on an element in a given namespace
will remove that attribute from that element.

•	 To set or alter an attribute node, use setAttributeNode().

•	 Adding a new namespaced attribute node to an element is as simple
as calling setAttributeNodeNS().

TRANSFORM DATA USING JAVASCRIPT
Using higher-order functions, data transformation is possible in JavaScript.
Functions that take in other functions as arguments and return another func-
tion are said to be higher-order functions in JavaScript. Map(), Filter(), and
Reduce are the Only Higher-Order Functions That Accept Functions as an
Input (). Now, let’s examine the applications of these features. All of these
operations can be performed on arrays without resorting to any intermedi-
ate variables or collections because they are built into the JavaScript Array
prototype.

map() Method

A function is applied to each array element using the map() method. The
array’s contents are passed one by one to the callback method, which
then generates a new array with the same dimensions. This function can
be used to apply a uniform operation or transformation to each array
element and return a new array of the same length containing the resul-
tant updated values.

filter() Method

The filter() method is used to delete data from an array if it does not match
a certain condition. Each item in the array is passed along to the callback
function. The element will be added to the new array if and only if the
callback function returns true after each iteration.

440    ◾    Appendix I

reduce() Method

It is possible to combine the results of many members of an array into
a single value by using the reduce() function. Prior to making a call to
reduce, the starting value of the accumulator is required to be supplied
(final result). In the course of each cycle, we carry out an operation
in the callback, and the results of that operation are accumulated in a
variable.

Date Objects

In JavaScript, the date object is a built-in datatype. Dates and times can
be managed and modified with its help. The new Date() operator is used
to construct date objects, which can be declared in 1 of the 4 possible
ways.

Syntax

new Date()
new Date(milliseconds)
new Date(dataString)
new Date(year, month, date, hour, minute, second, millisecond)

JavaScript provides a number of functions for accessing and gener-
ating date and time information. These strategies include, but are not
limited to:

Method and Description

•	 This function, called ‘getDate(),’ returns a numeric representation of
the day inside a given month (1–31).

•	 Using getTime(), you may find out how many milliseconds have
passed since January 1, 1970.

•	 getMinutes() is the function that gets the current minute (0–59).

•	 The current year, in four digits, can be retrieved with the help of the
getFullYear() function (yyyy).

•	 getDay() gives you back a number from 0 to 6 that represents the day
of the week.

•	 parse() takes a date in string form and returns the number of mil-
liseconds since January 1, 1970.

Appendix I    ◾    441

•	 In numerical form, setDate() gives you today’s date (1–31).

•	 When the time needs to be changed, use the setTime() function
(milliseconds since January 1, 1970).

JAVASCRIPT BROWSER OBJECTS
In addition to HTML components, JavaScript may also monitor
the user’s browser behavior and incorporate its properties into the
code.

A number of Window attributes that JavaScript can use are detailed
below.

•	 window.history: Returns the History object for the window.

•	 innerHeight: The window’s internal height in pixels.

•	 innerWidth: The width of the content area’s innermost margin.

•	 closed: If a window has been closed, closed will return true, other-
wise it will return false.

•	 pageXOffset: The pixel distance from the page’s center. It appears
that you have used your mouse to scroll horizontally across this
page.

•	 pageYOffset: The vertical distance in pixels from the page’s center.
A vertical scroll was made in the document.

•	 navigator: the window’s Navigator object (navigator) is returned.

•	 opener: Using opener will return a pointer to the parent window
that initiated the current window’s creation.

•	 outerHeight: The overall height of the window, including the title
bar and any toolbars.

•	 outerWidth: The total width of a window, including the borders and
any other components.

•	 defaultStatus: If you want to modify or restore the status bar’s
default text, use the defaultStatus command.

•	 document: The document object associated with the current win-
dow is returned.

442    ◾    Appendix I

•	 frames: This will return every iframe in the current window.

•	 location: Brings back the location object for the window.

•	 name: Specifies or returns the window’s label.

•	 parent: This refers to the window that is the parent of the active
window.

•	 screen: Obtains the Screen object for the current window.

•	 screenLeft: The left horizontal position of the window (relative to
the screen).

•	 screenTop: The top vertical position of the window.

•	 self: Returns the active window.

•	 status: To modify or restore the text in a window’s status bar, use the
status command.

•	 top: Brings back the window that’s at the top of the screen in your
browser.

•	 screenX is equivalent to the standard screenLeft attribute, but is
necessary in specific browsers.

•	 screenY is equivalent to screenTop but is required by some browsers.

The following are some examples of JavaScript methods that can be used
in the user’s browser:

•	 To warn the user and provide them the option to dismiss the warn-
ing, the alert() method presents a dialogue box.

•	 You may often test out an expression or run a function with the help
of the setInterval() method.

•	 setTimeout(): After a given amount of time has elapsed, a function
or expression is executed.

•	 To stop a timer that was set with setInterval(), use clearInterval().

•	 When called, clearTimeout() will cancel any timers that were previ-
ously created using setTimeout() ().

Appendix I    ◾    443

•	 With open(), a new tab or window will open in your browser.

•	 The print() function prints the contents of the active window.

•	 Removes the focus from the active window via the blur() function.

•	 With moveBy(), you can reposition a window relative to its current
location.

•	 Using the moveTo() method, you can relocate a window to a new
position.

•	 If you use close() on a window, it will close and the program will
exit.

•	 confirm(): invokes a dialog box containing a message and OK and
Cancel buttons.

•	 The focus() function is used to concentrate the active window.

•	 The scrollBy() method will move the document down by the speci-
fied number of pixels.

•	 The scrollTo() method takes a pair of x, y coordinates and scrolls the
document to that location.

•	 prompt(): Displays a dialogue box requesting input from the site
visitor.

•	 Input a number of pixels, then resizeBy() will make that amount the
new width and height of the window.

•	 resizeTo() Sets the window’s width and height to the parameters you
provide.

•	 The stop() function cancels the loading of the current window.

This section provides a list of Screen attributes that can be considered by
JavaScript.

 height: The full vertical distance of the display.
 screen width: The total horizontal distance between two adjacent dis-

play elements.
 colorDepth: Gives back the bit depth for each palette color.

444    ◾    Appendix I

 availableHeight: Returns the height of the display when available-
Height is called (excluding the Windows Taskbar).

 availableWidth: Replies with the width of the display.

ALGEBRA AND COMPUTATION
A number of Number and Math-related properties and methods are avail-
able in JavaScript.

Some of the characteristics of numbers are their maximum or mini-
mum values, whether they are positive or negative infinity, or whether
they are NAN (not a number). JavaScript provides a variety of functions
for working with numeric values, including:

•	 valueOf() It gives back the raw form of a number.

•	 the toString() method converts an integer into a string.

•	 toFixed() returns the string representation of a number with the
given precision.

•	 It takes an integer and returns a string of a given length using the
toPricision() method.

•	 Use toExponential() to get a string representation of a rounded
number in exponential form.

The number manipulation is simplified thanks to the mathematical func-
tions provided by the math object of the JavaScript programming lan-
guage. Mathematical objects have a variety of numerical properties, such
as the logarithm, Euler’s number, the square root, and the square root of
PI. The following is a list of some of the mathematical property manipula-
tion tools that are available via JavaScript:

•	 Returns the greatest value in a range max(x, y, z…n).

•	 The function min(x, y, z,...) returns the least-significant of a given
set of numbers.

•	 To get the exponential value of x, just type exp(x).

•	 Natural logarithm (in base E) of x; log(x) returns this value.

Appendix I    ◾    445

•	 To get the square root of an input value, use the function sqrt(x).

•	 The result of calling pow(x, y) is x raised to the yth power.

•	 round(x): It adjusts x to the next whole number.

•	 When you type sin(x), you get x’s sine value back (x is in radians).

•	 the tangent of an angle is given by tan(x), which in this case would
be x.

https://taylorandfrancis.com

447

Appendix II
Brief Guide to TypeScript

The incorporation of static types into JavaScript is one of the
many features that TypeScript brings to the table, making it much

simpler for us to build large applications.
JavaScript was created to be utilized by a wide variety of people, includ-

ing software developers as well as individuals who are not developers. It
was made to be user-friendly and straightforward enough so that even
inexperienced people could comprehend it. This ultimately resulted in the
establishment of a magnificent language for the production of prototypes
and projects on a scale that falls in between small and large. Programming
with JavaScript, on the other hand, might be difficult to scale up when it
comes to the building of large applications. This is mostly due to the fact
that the components of our application cannot have their contracts speci-
fied openly.

AN OUTLINE OF THE TYPESCRIPT PAST
JavaScript, which is also known as ECMAScript, was a straightforward
programming language for online browsers that was where it all started.
At the time that it was being created, it was thought that it would be used
for small snippets of code that would be embedded in a web page. Writing
more than a few hundred lines of code would have been regarded pretty
strange at the time. Because of this, the execution of this kind of code
was carried out by older versions of web browsers in a somewhat slug-
gish manner. On the other hand, throughout the course of time, JS has

448    ◾    Appendix II

amassed a greater following, and web developers have begun using it in
order to create interactive experiences.

The developers of web browsers responded to the increasing demand for
JS by enhancing the performance of their execution engines via dynamic
compilation and expanding the range of uses for the language (adding
APIs). Web developers were thus motivated to use it even more as a result
of this. When you go to modern websites, your web browser is probably
running programs that include tens of thousands to hundreds of thou-
sands of lines of code. This happens every time you go to a new page. This
exemplifies the gradual and consistent development of what we now refer
to as ‘the web,’ which started out as a simple network of static pages but
has now grown into a platform on which a wide variety of complex appli-
cations may be executed.

In addition, JS has garnered sufficient popularity to be used in situa-
tions other than browsers, such as the development of JS servers via the
use of node.js. This is an example of how JS has expanded its application
outside the realm of browsers. Because it can be used on any platform, JS
is a fantastic choice for developing applications that can be used across
several platforms. The majority of today’s workforce in the information
technology industry writes all of their stack code in JavaScript.

FOUNDATIONAL ELEMENTS OF TYPESCRIPT
The language, the compiler, and the language service may be considered
the three primary pillars upon which Typescript is founded.

Language of TypeScript

•	 This includes the syntax of TypeScript, as well as its keywords and
type annotations.

•	 The syntax of TypeScript is comparable to, but not identical to, the
syntax of JavaScript.

Compiler for TypeScript

•	 The TypeScript code must first be compiled into JavaScript before the
compiler may begin its work.

•	 In fact, what takes place is not exactly compilation but rather
transpilation.

Appendix II    ◾    449

•	 It is also the job of the TypeScript compiler to delete any information
that is connected to types while the program is being compiled.

In JavaScript, types are not regarded as genuine features since they are not
used. Because TypeScript has to be changed into regular JavaScript first,
everything that has to do with types has to be removed before the code can
be regarded genuine JavaScript and submitted to the browser to be executed.
This is because TypeScript has to be converted into normal JavaScript.

In addition to this, the Typescript compiler is responsible for doing
code analysis. Errors and warnings will be generated if there is a sufficient
foundation for the system to do so.

Language Department

The task of extracting type information from the source code is within the
purview of the language service.

The development tools may use this information to give IntelliSense
type suggestions, and alternative refactorings once they have processed it.

A STATIC TYPE CHECKER DEFINED BY TYPESCRIPT
Earlier, we said that there are some programming languages that would
never, under any circumstances, permit the execution of programs that
include defects. Static checking is the method of discovering errors in
computer code without actually running the program itself. The process
of identifying whether or not something constitutes an error based on the
kinds of values that are being acted on is referred to as ‘static type check-
ing,’ and it is referred to as ‘checking’ for short.

Because TypeScript does its error checking before the execution of a
program by examining the various kinds of values, it is referred to as a
static type checker. For instance, there is an error in the very last exam-
ple that was provided before because of the kind of object. The error that
TypeScript pointed out is as described below:

const obj = { width: 10, height: 15 };
const area = obj.width * obj.heigth;

Property ‘height’ does not exist on type ‘{ width: number; height: number;
}’. Did you mean ‘height’?Property ‘height’ does not exist on type ‘{ width:
number; height: number; }’. Did you mean ‘height’?

450    ◾    Appendix II

A Typed Expansion of the JavaScript Language

However, what is the connection between TypeScript and JavaScript?

Syntax

How we compose text into the shape of a program is referred to as its
syntax. As TypeScript is a superset of JavaScript, it is compatible with the
syntax of JS. To provide just one example, this line of code has a syntax
error since it is missing an a):

let a = (4
‘)’ expected.’)’ expected.

There is no JavaScript code that will be flagged as an error by TypeScript
due to the language’s grammar. This indicates that you can take any func-
tional JavaScript code and place it in a TypeScript file without worrying
about how the code is written.

Types

TypeScript, on the other hand, is a typed superset that extends the rules
that control how different kinds of values may be applied. It does this by
extending the rules that govern how values are applied. The issue that
had been occurring before with obj.height was not due to a syntax error;
rather, it was an error that happened as a result of the incorrect application
of some sort of value (a type).

Another example of this would be the piece of JavaScript code that fol-
lows, which, when run in a web browser, would record a value as follows:

console.log(4 / []);

This grammatically correct software keeps track of infinity. TypeScript,
on the other hand, will throw an error if you try to divide a number by an
array since it deems this to be a meaningless operation.

console.log(4 / []);

On the right side of an arithmetic operation, you are free to use any type
that is numeric, bigint, or enum. On the right hand side of an arithme-
tic operation, you may use a type that begins with “any,” “number,” or
“bigint,” or you can use an enum type.

Appendix II    ◾    451

There is a chance that dividing a number by an array was not some-
thing you intended to do. It is possible that you intended to divide a num-
ber by an array, maybe to find out what would happen if you did so, but in
the vast majority of situations, this is a mistake in the code. The objective
of the built-in type checker in TypeScript is to allow correct programs
to execute while identifying as many common programming errors as is
reasonably possible under the circumstances.

When you move some code from a JavaScript file to a TypeScript file, you
can discover type issues in the TypeScript file depending on how the code
was written in the JavaScript file. It’s conceivable that these are legitimate
problems with the code, but it’s also possible that TypeScript is being too
cautious for no good reason. In this post, we will demonstrate how to include
a range of TypeScript syntax in order to eliminate errors such as these.

Behavior During Runtime

While JavaScript is being performed, another programming language
known as TypeScript keeps the functionality that JavaScript provides
intact. In JavaScript, for example, the operation of division by zero pro-
duces the value infinite rather than causing an error to occur during the
execution of the program. The execution of JavaScript code will not be
affected in any significant way by TypeScript, as a general rule.

Because of this, when you migrate code from JavaScript to TypeScript,
even if TypeScript deems the code to have type errors, it is assured that the
code will run in the same manner as it did in JavaScript. Both JavaScript
and TypeScript make use of the same grammar, which is why this is the
case.

One of the most important guarantees made about TypeScript is that
it will keep the same runtime behavior as JavaScript. This indicates that
you will be able to transition between the two languages in a smooth man-
ner without having to worry about any little modifications that may cause
your application to stop operating properly.

Erased Types

When the TypeScript compiler has completed checking your code and is
ready to build the “compiled” version of the code, it will often erase all of
the types. This is done in preparation for the next step in the process. This
indicates that the simple JS code that is created when your code is com-
piled does not contain any type information.

452    ◾    Appendix II

Since of this, TypeScript will never change the way your program
works based on the types it has derived from the data you supply because
it can’t access that information. The most important thing to remember
is that even while you may see type difficulties during the compilation
process, the type system does not in and of itself have any bearing on
how your program functions when it is being run. This is the bottom line.

In conclusion, the package that contains TypeScript does not include
any additional runtime libraries. Because your apps will utilize the same
standard library (or more libraries) as JavaScript programs, there is no
additional TypeScript-specific framework that you will need to learn how
to use. This is because your applications will use the same libraries.

TYPESCRIPT’S PRIMARY ATTRIBUTES AND FUNCTIONS

TypeScript’s Support for Type Annotations

The process of assigning a type to a variable or function is what is known
as type annotation.

const birthdayGreeter = (name: string, age: number):
string => {
return ‘Happy birthday ${name}, you are now ${age}
years old!’;
};

const birthdayHero = “Jane User”;
const age = 22;
console.log(birthdayGreeter(birthdayHero, 22));

The above example shows how to construct a function with two argu-
ments: name and age. We give the name field a type of string and the age
field a type of number.

The value that is returned by a function may also have types assigned
to it. In this particular instance, our function is going to return a value of
the string data type.

const birthdayGreeter = (name: string, age: number):
string => { };

If we sent in arguments of a type that was different from the type that
Typescript anticipates, we would get an error.

Appendix II    ◾    453

TypeScript’s Support for Structural Typing

The programming language TypeScript is a structurally typed language,
which means that in order for two items to be deemed to be of the same
type, they must have equivalent and similar properties.

Inference of Type Utilizing TypeScript

In the event that no explicit type is supplied, the TypeScript compiler may
make an attempt, based on its own logic, to infer the type information.
This suggests that TypeScript is able to give a type to a variable or function
based on the initial values of the variable or the application of the func-
tion, respectively.

When you create variables, set default values, or figure out the type of
the result that a function should return, you are most likely engaging in
some kind of type inference.

const platform = ‘freeCodeCamp’;
const add = (a: number, b: number) => a + b

In the example that was just shown, the variable platform is given the type
string even though we did not do so explicitly. Additionally, the return
value of the function add is assumed to have the type number.

Deleted Characters in TypeScript

During compilation, TypeScript eliminates the following constructs of the
type system:

Input
let x: someType;

Output
let x;

WHY SHOULD YOU USE TYPESCRIPT?

Checking for Typos and Doing Static Analysis of the Code

Since of this, the total number of faults in your code will decrease overall
because TS will alert you whenever you make an incorrect usage of a par-
ticular type.

454    ◾    Appendix II

Runtime errors are also reduced, and since TypeScript does static code
analysis, you will get warnings if any typos or other issues are found in
your code. Therefore, there will be fewer mistakes, which might lead to
testing being reduced in scope.

Annotations on Types May Serve in Place
of Documentation for Code

Because of annotations on types, we are able to comprehend, for instance,
what kinds of inputs a function anticipates receiving and what kinds of
outcomes it will return. In addition, we are able to comprehend what
kinds of outputs the function will deliver.

This makes the code easier to read, which in turn makes it simpler
not just for ourselves but also for others to comprehend what the code is
intended to do.

Users of integrated development environments (IDEs) are able to get
more accurate and insightful IntelliSense feedback while using TypeScript,
which is another benefit of utilizing this programming language. This is
made feasible by the fact that IDEs are aware of the particular kind of data
that the user is currently processing, which enables this functionality.

STARTING OUT WITH TYPESCRIPT: A CRASH COURSE
Installing the TypeScript package is where we should get started. In this
situation, we have two choices: we can either install it globally so that we
can use it on any project in the system, or we can install it locally so that
we can use it just on the project that we are now working on.

By executing the following command, you will be able to install
TypeScript globally:

npm install -g typescript

If you do not want to install anything worldwide, you need to perform this
command:

npm install --save-dev typescript

Because we find it useful throughout the development process, TypeScript
was included in the local installation as a development dependency. First,
it has to be compiled to JavaScript before it can be used in production. The
TypeScript language cannot be executed in the browser.

Appendix II    ◾    455

After TypeScript has been installed, the first step in getting started is to
create a new project. You are able to do this by using the following command:

tsc --init

With the execution of this command, a brand-new tsconfig.json file will
be created in the project’s parent directory. This configuration file includes
all the configuration settings available to us when we use TypeScript in
a project.

You may provide all of the build settings for a given project in the tscon-
fig.json file under the compileOptions key. This file is located in the root
directory of the project.

There are certain config settings already included in the file, but you
have the ability to add additional options to the project if necessary. You
may comment out or eliminate unneeded compiler options.

Establishing the Baselines for Your TypeScript
Development Environment

Setting Up Your Development Environment

Code Editor  You need an integrated development environment (IDE)
that supports TypeScript to use all the capabilities that TypeScript has to
offer. Although we suggest Visual Studio Code (which is also designed in
TypeScript), you may use any integrated development environment (IDE)
that supports TypeScript.

Node.js and npm  Each of the projects described in this book calls on
a functional Node.js development environment, in addition to using
npm.

When you install Node.js, a JavaScript package management called
npm is automatically installed on your computer. Open a new terminal
window and put in the following command to determine whether or not
npm is compatible with your development environment.

$ npm -v

If an error is shown or a version number is not written out, be sure you
download a Node.js installation that contains npm.

456    ◾    Appendix II

Beginning the Process  Launch a terminal and go to the directory that
will serve as the project’s storage location for its files. Moving forward,
we will be putting new files into the directory containing our project. In
the following instances, the root folder of our project will be referred to as
FinanceMe since we will be utilizing that name throughout.

Start with the package.json Initialization  Our project’s package.json file
includes essential information, such as the list of dependencies that must
be installed, and is located in the corresponding directory.

Executing the following command will result in our package.json being
initialized:

$ npm init --yes

Install the TypeScript# Language
Simply enter the following line into your terminal to install the most
recent version of TypeScript:

$ npm install --save-dev typescript

The tsc (TypeScript compiler) version number will be shown in the output
of the following command if the installation was completed successfully:

$ npx tsc -v

Install ts-node  ts-node is a tool that allows TypeScript applications to be
executed straight from the terminal. This eliminates the need to compile.
ts files to.js files and then execute the produced files, which is the proce-
dure that would normally be required.

Execute the following command in order to install the most recent ver-
sion of ts-node:

$ npm install --save-dev ts-node

The ts-node version number will be shown if the installation has com-
pleted successfully by using the following command:

$ npx ts-node -v

The ts-node command operates in a manner that is similar to that of the
node command. If the command is given the name of a file, then that file

Appendix II    ◾    457

will be executed, and the program will terminate after the file has completed
its execution. We will be put in interactive mode if we do not provide the
command with a file name. This mode allows us to import modules and
perform TypeScript commands while they are being executed in real time.
The interactive mode is very helpful for testing pieces of code that are just a
few lines long.

Execute the following command in order to begin the interactive mode:

$ npx ts-node

Since we are now in the interactive mode, we will be able to execute code
in real time. In the following example, we will do a straightforward com-
putation, and the result will be printed:

$ 10 + 30 + 2
> 42
$ const today = new Date()
$ today.getFullYear()
> 2019

It is important to take note that we may define variables and utilize them
throughout the session. Additionally, we do not need to report stuff
directly by using the console.log() function since the result of the state-
ment being run will be written automatically.

You may enter editor mode to copy and paste a block of code or to alter
code that spans numerous lines. When you do so, execution will be paused
until you simultaneously click the CTRL and D keys.

$ npx ts-node
$.editor
$ /*
* code can span multiple lines
* will run when you press CTRL+D
*/

You may quit interactive mode by using CTRL+C or by simply typing.exit
followed by pressing enter on your keyboard.

Initialize tsconfig.json  Our integrated development environment (IDE)
and the ts-node will use the key compiler information stored in the tscon-
fig.json file.

458    ◾    Appendix II

In the directory of the project, create a file called tsconfig.json and
include the following settings in it:

{
“compilerOptions”: {
“target”: “es6”,
“module”: “commonjs”,
“typeRoots”: [“./node_modules/@types”],
“esModuleInterop”: true,
“forceConsistentCasingInFileNames”: true
}
}

Further discussion of each compiler option will be provided in the next
chapter, titled “Compiler Options,” but in the meanwhile, here is a quick
description of what each of the aforementioned settings does:

•	 target: This option allows you to choose the version of ECMAScript
the compiler will use when producing JavaScript files. We are able to
use all of the capabilities that were added in ES6/ES2015 as a result
of setting this to es6.

•	 module: This option allows you to specify the module system being
used in the code being created. We have confirmed that our code
is capable of running in Node.js by setting this to the commonjs
value.

•	 typeRoots is an option that allows you to specify the directory in
which TypeScript should look for global types. In order to avoid
inadvertently inheriting types from parent directories, we configure
it here to point to our own node modules/@types directory (which is
the default behavior).

•	 esModuleInterop: This option guarantees that CommonJS and
ES Modules are compatible with one another and is referred to as
esModuleInterop.

•	 forceConsistentCasingInFileNames: We may use an option to
guarantee that we do not bring defects into the system by inadver-
tently importing a module with the wrong case.

Appendix II    ◾    459

•	 Because VSCode and ts-node will automatically discover a tsconfig.
json if it is there, there is no need to make any adjustments to any of
these programs.

TYPESCRIPT FOR DEVELOPERS WORKING IN JAVASCRIPT
The connection between TypeScript and JavaScript is not what one may
expect. TypeScript provides all of the functionality that JavaScript does,
in addition to an extra layer on top of these features called the type system
for TypeScript.

JavaScript, for instance, offers language primitives such as strings and
numbers, but the programming language does not verify to ensure that
you have consistently allocated them. TypeScript does.

This indicates that the JavaScript code you have already written that is
functioning properly is also valid TypeScript code. The primary advantage
of using TypeScript is that it reduces the likelihood of errors by pointing
out areas of your code that exhibit unexpected behavior.

Types Deduced from Inference

TypeScript is familiar with the JavaScript programming language and
can, in many instances, automatically create types for you. For instance,
when a variable is created in TypeScript and a specific value is assigned to
it, TypeScript will utilize the value as the variable’s type.

let helloWorld = “Hello World”;
let helloWorld: string

TypeScript can construct a type system compatible with JavaScript code
but also has types since it understands how JavaScript works. This pro-
vides a type system without requiring you to add more characters to your
code in order to make the types obvious. That is how TypeScript is able to
determine that the helloWorld variable represents a string in the example
that was just shown.

You could have used the editor auto-completion feature in Visual
Studio Code while you were writing JavaScript. Under the hood, Visual
Studio Code uses TypeScript, simplifying the process of working with
JavaScript.

460    ◾    Appendix II

Defining Types

JavaScript gives you access to a vast library of different design patterns to
choose from. Nevertheless, design patterns make it more challenging for
types to be inferred automatically (for example, patterns that use dynamic
programming). TypeScript is an extension of the JavaScript programming
language that enables locations for you to tell TypeScript what the appro-
priate types are. This was done to accommodate the scenarios described
above.

For instance, the following code may be written to construct an object
with an inferred type that has the attributes name: string and id: number:

const user = {
name: “Hayes”,
id: 0,
};

You may provide a detailed description of the form of this object by using
an interface declaration:

interface User {
name: string;
id: number;
}

const user: User = {
username: “Hayes”,
Type ‘{ username: string; id: number; }’ is not
assignable to type ‘User’.
Object literal may only specify known properties, and
‘username’ does not exist in type ‘User’.Type ‘{
username: string; id: number; }’ is not assignable to
type ‘User’.
Object literal may only specify known properties, and
‘username’ does not exist in type ‘User’.
id: 0,
};

TypeScript supports classes and object-oriented programming in the same
way as JavaScript does because of this. A declaration of an interface may
be used while working with classes:

Appendix II    ◾    461

interface User {
name: string;
id: number;
}

class UserAccount {
name: string;
id: number;

constructor(name: string, id: number) {
this.name = name;
this.id = id;
}
}

const user: User = new UserAccount(“Murphy”, 1);

You can use interfaces to annotate parameters and return values to
functions:

function getAdminUser(): User {
//...
}

function deleteUser(user: User) {
//...
}

An interface may use the following basic types currently accessible in
JavaScript: Boolean, bigint, null, number, string, symbol, and undefined.
TypeScript adds a few more to this list, such as any (which means ‘allow
anything’), unknown (which means ‘ensure that someone using this type
announces what the type is’), never (which means ‘it is not conceivable
that this type might exist’), and void (which simply means ‘nothing’).
Additionally, you have the option to build your own kinds.

You are going to discover that there are two different syntaxes for
constructing types: interfaces and types. You should give interface more
weight. When you require characteristics that are quite particular, use
the type.

462    ◾    Appendix II

Forms of Composition

You may construct more complicated types by mixing TypeScript’s
simpler ones using the language. There are two common approaches to
accomplishing this goal: via the use of unions and generics.

Unions
You can define, when using a union, that a type may be any of a number of
other types. You might, for instance, characterize a boolean type as having
the property of either being true or false:

type MyBool = true | false;

Note: If you move your cursor over the word “MyBool” in the sentence
above, you’ll see that it has the boolean classification. That is one of the
characteristics that the Structural Type System has. More about this may
be found below.

One of the most common applications of union types is to express the
set of string literals or integer literals that a value is permitted to be:

type WindowStates = “open” | “closed” | “minimized”;
type LockStates = “locked” | “unlocked”;
type PositiveOddNumbersUnderTen = 1 | 3 | 5 | 7 | 9;

Unions provide a solution to the problem of juggling several kinds. You
may have a function that accepts either an array or a string, such as the
following:

function getLength(obj: string | string[]) {
return obj.length;
}

USER AND EXPENSE ARE TWO OF TYPESCRIPT’S CLASSES
JavaScript that is object oriented is known as TypeScript. The object-
oriented programming concepts like classes, interfaces, and other such
things are supported by TypeScript. In object-oriented programming
(OOP), a class functions as a template for the creation of objects. The data
for the object is included inside the class. This idea, which is referred to as
class, has built-in support provided by Typescript. Classes were not sup-
ported in JavaScript versions prior than ES5, though. This functionality is
brought to Typescript by ES6.

Appendix II    ◾    463

Developing Classes

To define a class in TypeScript, you will need to use the class keyword. The
syntax for the same may be found down below:

Syntax

class class_name {
//class scope
}

The name of the class comes immediately after the class keyword. When
naming a class, it is necessary to take into consideration the rules that
govern identifiers.

The following is an example of what may be included in a class definition:

•	 Fields that are defined inside a class might be referred to as fields.
The data associated with objects is represented via fields.

•	 Constructors are in charge of allotting memory for the objects of
that class.

•	 Functions are a representation of the many activities that an object
is capable of doing. Methods is another term that is sometimes used
to refer to them.

When taken as a whole, these components make up what are known as the
data members of the class.

Consider the typescript version of the class Person.

class Person {
}
On compiling, it will generate following JavaScript
code.
//Generated by typescript 1.8.10
var Person = (function () {
function Person() {
}
return Person;
}());

464    ◾    Appendix II

A Class Declaration as an Example

class Car {
//field
engine:string;

//constructor
constructor(engine:string) {
this.engine = engine
}

//function
disp():void {
console.log(“Engine is : “+this.engine)
}
}

An instance of the class Car is declared in the example. The name of the
field in this class is engine. In the process of defining a field, the var key-
word is never utilized. The function Object() { [native code] } for the class
has been declared in the preceding example.

A class’s function Object() { [native code] } is a specialized function
that is responsible for initializing the variables that belong to the class.
It is called a function Object() { [native code] }. The function Object() {
[native code] } keyword in TypeScript is what really specifies the function
Object() { [native code] }. Since a function Object() { [native code] } is a
function, it is possible to provide parameters into it.

The “this” keyword refers to the instance of the class that is now being
worked with. In this case, the name of the field in the class and the name
of the argument are identical. As a result, in order to prevent confusion,
the field of the class is prefixed with this keyword.

disp() is an example of a straightforward function definition. It is impor-
tant to take note that the function keyword is not utilized in this context.

Following is an example of the code that will be generated when you
compile it.

//Generated by typescript 1.8.10
var Car = (function () {
//constructor
function Car(engine) {

Appendix II    ◾    465

this.engine = engine;
}
//function
Car.prototype.disp = function () {
console.log(“Engine is : “ + this.engine);
};
return Car;
}());

Creating Objects of Instance

Use the new keyword, then follow it up with the name of the class to create
a new instance of the class. The syntax for the same may be found down
below:

Syntax
var object_name = new class_name([arguments])

An Example of Instantiating a Class  var obj = new Car(“Engine 1”)

CLASS INHERITANCE
The idea of inheritance may be implemented using TypeScript. A com-
puter program’s capacity to derive new classes from pre-existing classes is
referred to as inheritance. The class that serves as the basis for the creation
of subsequent classes is referred to as the parent class or the super class.
The classes that have just been produced are referred to as the kid or sub
classes.

The ‘extends’ keyword allows one class to inherit properties and behav-
iors from another. Child classes take on all of the attributes and methods
of their parent classes, with the exception of any private members and
constructors.

The term “inherited” may also be used to refer to:

•	 Single—Each child class may only inherit from a single parent class
at the most.

•	 Multiple—A class may take inheritance from more than one other
class. There is currently no support for multiple inheritance in
TypeScript.

466    ◾    Appendix II

•	 Multi-level—Inheritance on Several Levels The following example
demonstrates how inheritance may occur on multiple levels.

Data Hiding

A class has the ability to govern how other classes’ members see the data
that is stored in its members. This functionality is sometimes referred to
as data encapsulation or data hiding.

The idea of encapsulation is realized in Object Oriented Programming
via the use of the concepts of access modifiers and access specifiers. Access
specifiers and modifiers determine whether or not a class’s data members
are visible to classes other than the one that defines them.

public
Everyone may view the information contained in a public data member.
The default access level for data members of a class is public.

private
Only other instances of the class that define a private data member’s defi-
nition may access that member’s data. An error is generated by the com-
piler whenever an external class member makes an attempt to access a
private member.

protected
A protected data member is available not only to members of the same
class as the member being protected, but also to members of any child
classes that the parent class may have.

INTERFACES

An Outline of TypeScript Interfaces

Interfaces in TypeScript are what specify the agreements between different
parts of your code. Furthermore, they provide granular names for use in
type verification.

First, let’s look at a straightforward illustration:

function getFullName(person: {
firstName: string;
lastName: string

Appendix II    ◾    467

}) {
return ‘${person.firstName} ${person.lastName}’;
}
let person = {
firstName: ‘John’,
lastName: ‘Wick’
};
console.log(getFullName(person));
Code language: TypeScript (typescript)

Output
John Wick

Code language: TypeScript (typescript)
Here, the parameter to the getFullName() method is verified by the

TypeScript compiler.
The TypeScript compiler will allow the argument to proceed if it con-

tains two properties of type string. In such case, it will throw an error.
The code itself demonstrates how the type annotation of the function

parameter complicates the code and makes it more difficult to comprehend.
TypeScript’s idea of interfaces was designed with this problem in mind.
In the following, a Person interface with two string attributes is used:

interface Person {
firstName: string;
lastName: string;
}

Format of code: CSS (css)
The standard for naming interfaces is to use camel case. In their

names, just the first letter of each word is capitalized. Such as FullName,
UserProfile, and Person.

The Person interface may be used as a type as soon as it is defined. The
name of the interface may also be annotated on a function’s argument.

function getFullName(person: Person) {
return ‘${person.firstName} ${person.lastName}’;
}

let john = {
firstName: ‘John’,
lastName: ‘Doe’

468    ◾    Appendix II

};

console.log(getFullName(john));
Code language: TypeScript (typescript)

The code is much more readable now.

Function Types

Interfaces enable you to specify the sorts of functions as well as the char-
acteristics of an object.

To specify a function type, you attach the interface to the function sig-
nature that includes the argument list with types and returned types. For
instance:

interface StringFormat {
(str: string, isUpper: boolean): string
}
TypeScript, a programming language (typescript)

It is now possible to use this interface for functions
of a certain type.

Assigning a value of the same type to a variable
declared as a function is seen below.

let format: StringFormat;

format = function (str: string, isUpper: boolean) {
return isUpper? str.toLocaleUpperCase() : str.
toLocaleLowerCase();
};

console.log(format(‘hi’, true));
Code language: TypeScript (typescript)

Output
HI

OBJECTS IN TYPESCRIPT
A collection of key-value pairs that make up an object is called an instance.
The values might be anything from simple numbers to functions or arrays
of other things. Here is the syntax:

Appendix II    ◾    469

var object_name = {
key1: “value1”, //scalar value
key2: “value”,
key3: function() {
//functions
},
key4:[“content1”, “content2”] //collection
};

As was just shown, objects may store not just scalar values and functions,
but also arrays and tuples and other structures.

TYPE TEMPLATE FOR TYPESCRIPT
Suppose you wrote the following JavaScript object literal:

var person = {
firstname:”Tom”,
lastname: “Hanks”
};

In the event that you need to alter an object’s value, JavaScript provides
the functionality you need. Let’s say we find later on that the Person object
needs an extra feature.

person.sayHello = function(){ return “hello”;}

The Typescript compiler returns a compilation error if you try to utilize
the same code. Concrete objects in Typescript must have a corresponding
type template. In Typescript, all objects must represent concrete examples
of predefined classes.

Duck-Typing

If two objects have the same set of characteristics, then they are said to
be of the same type in duck-typing. Instead of checking the exact type
of an object, duck-typing instead ensures that particular attributes are
present [2–13].

TypeScript’s compiler makes use of the duck-typing system, which per-
mits dynamic object generation without compromising type safety. In the
next example, we’ll see how to send objects to a method that don’t directly
implement the interface but nevertheless have all the necessary members.

470    ◾    Appendix II

NAMESPACES IN TYPESCRIPT
Using a namespace allows you to organize your code in a meaning-
ful manner. TypeScript was designed with this feature in mind, unlike
JavaScript, where variable declarations are placed in a global scope and
might be overwritten or misunderstood if various JavaScript files are used
inside the same project.

Namespace Determination

In order to define a namespace, you must first use the term “namespace,”
followed by the actual namespace’s name, like in

namespace SomeNameSpaceName {
export interface ISomeInterfaceName { }
export class SomeClassName { }
}

The term export must be used to indicate which classes or interfaces
should be exposed outside of the namespace.

The syntax for using a class or interface that is defined in a different
namespace is to use the form namespaceName.className.

SomeNameSpaceName.SomeClassName;
If the initial namespace is defined in a completely distinct TypeScript

file, the triple slash reference syntax must be used to access it.

/// <reference path = “SomeFileName.ts” />

Nested Namespaces

An nested namespace definition looks like this:

namespace namespace_name1 {
export namespace namespace_name2 {
export class class_name { }
}
}

MODULES IN TYPESCRIPT
The goal of this TypeScript module is to provide a means of encapsulating
and reusing similar pieces of code. It is possible to categorize modules as
follows:

Appendix II    ◾    471

•	 Internal Modules

•	 External Modules

Internal Modules

Typescript’s internal modules debuted in a previous version. This was
done so that classes, interfaces, and functions could be logically grouped
together into a single unit that could be exported to another module.
In TypeScript’s newest iteration, this logical classification is known as
a namespace. As a result, namespace is superior than internal modules.
While we currently allow internal modules, we strongly advise using
namespaces instead.

Syntax of Internal Module (Veteran)
module TutorialPoint {
export function add(x, y) {
console.log(x+y);
}
}

External Module

The purpose of TypeScript’s external modules is to allow developers to
declare and load dependencies between numerous external js files. There
is no need for external modules if just a single.js file is being utilized.
Historically, browser script tags (script>/script>) were used for managing
dependencies between JavaScript files. However, that can’t grow with your
needs since module loading is so slow. This implies that loading modules
asynchronously is not an option and files must be loaded sequentially.
Script tags don’t even exist in server-side JS languages like NodeJs.

Dependent js files may be loaded in one of two ways, both of which
involve a single primary JavaScript file.

•	 Server Side - NodeJs

•	 Client Side - RequireJs

FUNCTIONS IN TYPESCRIPT
Code that is understandable, easy to maintain, and versatile relies heav-
ily on its functions as its fundamental building blocks. A collection of
statements designed to carry out a certain activity is known as a function.

472    ◾    Appendix II

The functionality of the software is broken down into logical sections by
the functions. When they have been defined, functions may be used to
access code by calling them. This enables the code to be used in several
places. In addition, functions simplify the process of reading and main-
taining the code of a program.

A function declaration provides the compiler with information about a
function’s name, as well as its arguments and return type. The meat and pota-
toes of a function is its body, which is provided by the function specification.

•	 Defining a Function: A function description describes both the spe-
cifics of a job and the manner in which it should be completed.

•	 Invoking a Function: Before a function can be put into action, it
must first be invoked.

•	 Returning Functions: Functions may return control and value back
to the person who called them in a process known as “returning
functions.”

•	 Parameterized Function: Parameters are a means through which
values may be sent to functions.

Parameters That Are Optional

It is possible to utilize optional parameters in situations in which it is
not necessary to supply arguments to a function in order for it to be exe-
cuted. Putting a question mark in front of the name of a parameter is one
way to indicate that it is optional. When calling a function, the optional
parameter should be sent in as the very last argument. The declaration
syntax for a function that may or may not take an optional argument
looks like this:

function function_name (param1[:type], param2[:type],
param3[:type])

Rest Parameters
Rest parameters are analogous to variable arguments in Java. The amount
of different values that may be sent to a function is not limited in any way
by rest parameters. However, all of the values that are handed in need to

Appendix II    ◾    473

have the same type. To put it another way, rest parameters serve the pur-
pose of being placeholders for many arguments of the same type.

The name of the parameter is given a prefix consisting of three peri-
ods when it is declared to be a rest parameter. Any parameter that is not
involved in rest should appear before the rest parameter.

Default Parameters
It is also possible to set values by default to the arguments of a function.
On the other hand, values for such parameters may also be provided in
directly.

Syntax

function function_name(param1[:type], param2[:type] =
default_value) {
}

NUMBERS IN TYPESCRIPT
The Number class performs the function of a wrapper and makes it pos-
sible to manipulate numeric literals as if they were objects. Numeric values
may be represented as Number objects in TypeScript, just way JavaScript
does. A numeric literal may be converted into an instance of the number
class by using a number object.

Syntax

var var_name = new Number(value)

In the event that the Number function Object() { [native code] } is given
an argument that is not a number, it will return NaN. (Not–a–Number)

ARRAYS IN TYPESCRIPT
Making use of variables to store values provides a number of issues, some
of which are as follows:

474    ◾    Appendix II

•	 Variables are scalar in nature. To put it another way, a variable dec-
laration can never contain more than one thing at a time regardless
of the circumstances. This suggests that in order for a program to
be able to hold n values, there will need to be n variable declarations
made before the program can be run. When one has to retain a larger
collection of data, the use of variables is not an option since it is not
realistic. This means that one cannot use variables.

•	 It may be difficult to retrieve or read the values in the order in which
they were declared since the memory for the variables in a program
is allocated in what seems to be an arbitrary sequence.

In order to address this issue, the programming language TypeScript has
a component called as arrays in its toolkit. When we speak about arrays,
we refer to collections of things that all have the same data type. An item
collection known as an array has elements that are all of the same kind. It
is a sort that the user chooses for themselves to have.

What Makes Up an Array

The following is a list that outlines, in more depth, the qualities of an array:

•	 Memory will be allotted in a sequential manner whenever a declara-
tion of an array is made.

•	 There is never any variation in arrays. This signifies that once an
array has been started, its size cannot be altered in any way after it
has been started.

•	 Each memory block is a substitute for one of the array’s items.

•	 The subscript or index of an array element is a single number that is
used to identify that element inside the array specifically. This num-
ber may also be referred to as the array element’s index.

•	 Just like variables, arrays need to have their definitions written down
before they can be used in a program. This is a prerequisite for using
arrays. Utilizing the var keyword is necessary before an array can be
declared.

Appendix II    ◾    475

•	 The action of populating the elements of an array with data is referred
to as “array initialization,” and it is a part of many programming
languages.

•	 While it is possible to update or edit the values of array items, it is not
feasible to remove them. Array elements cannot be deleted.

Object Contained Inside an Array

An array may also be created from scratch with the help of the Array
object if desired.

•	 A numeric value indicates either the array’s dimensions or the array
or the size of the array.

•	 A group of values that are delineated from one another using
commas.

TUPLES FOR THE TYPESCRIPT LANGUAGE
It is possible that there may be circumstances in which it would be essen-
tial to keep a collection of values that belong to several categories. In this
particular setting, the usage of arrays is not acceptable. TypeScript has
made a data type known as tuple accessible to us, and it contributes to the
success of such an endeavor by assisting in its completion.

Tuples are one more kind of data that may be sent into functions in
the role of an argument. It is representative of a wide variety of distinct
principles, ideals, and principles all at once. To state it another way, tuples
make it feasible to hold many fields of differing types. This may be done in
a number of ways.

Syntax

var tuple_name = [value1,value2,value3,…value n]

For Example:
var mytuple = [10,” Hello”];

You also have the option in Typescript to declare an empty tuple and then
decide at a later time whether or not to populate it.

476    ◾    Appendix II

var mytuple = [];
mytuple[0] = 120
mytuple[1] = 234

UNION IN TYPESCRIPT
Programs now have the capability to mix one or two different types
thanks to TypeScript 1.4. Union types are an extremely useful approach
to describe a value that may be any one of a number of different kinds.
When referring to a Union Type, the pipe symbol (|) is used to indicate
the combination of two or more data types. In a nutshell, the syntax for a
union type looks like a string of several types with vertical bars in between
each one.

Syntax

Type1|Type2|Type3

Example: Union Type Variable

var val:string|number
val = 12
console.log(“numeric value of val “+val)
val = “This is a string”
console.log(“string value of val “+val)

The type of the variable is shown to be union in the preceding illustration.
This specifies that the value of the variable may be either a number or a
string. Either one is acceptable.

AMBIENTS IN TYPESCRIPT
In TypeScript, ambient declarations are a method for alerting the
TypeScript compiler that the actual source code is stored in another loca-
tion. These declarations may be placed anywhere in a file. If it uses a vari-
ety of different third-party JS frameworks, such as jQuery, AngularJS,
or NodeJS, you won’t be able to rebuild it in TypeScript. This is because
TypeScript is not compatible with these frameworks. A TypeScript pro-
grammer may encounter challenges while trying to utilize these packages
while preserving typesafety and intellisense at the same time. TypeScript

Appendix II    ◾    477

may be seamlessly connected to other JS libraries via the use of ambient
declarations, which expand its functionality.

Definition of Ambients

By custom, declarations of ambients are stored in a type declaration file
that has the following extension: (d.ts)

Sample.d.ts

The file that is being shown above will not be transcompiled to JavaScript.
It is going to be used for both type safety and intellisense.

The following syntax will be used for defining ambient variables or
modules:

declare module Module_Name {
}

The client TypeScript file ought to include a reference to the ambient files
in the manner shown above.

/// <reference path = “ Sample.d.ts” />1

NOTES
	 1	 A Brief History/A Static Type Checker/ (2022, October 19)/ www.type-

scriptlang.org/docs/handbook/typescript-from-scratch.html
	 2	 Main Pillars of Typescript/Features/How to Get Started/ (2022, October

19)/ www.freecodecamp.org/news/learn-typescript-basics/
	 3	 Setting Up Your TypeScript Development Environment/ (2022, October 19)/

www.newline.co/books/beginners-guide-to-typescript/setting-up-your-
typescript-development-environment

	 4	 TypeScript for JavaScript Programmers
	 5	 www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
	 6	 Classes in TypeScript: User and Expense
	 7	 www.tutorialspoint.com/typescript/typescript_classes.htm
	 8	 TypeScript - Objects
	 9	 www.tutorialspoint.com/typescript/typescript_objects.htm
	 10	 TypeScript - Namespaces
	 11	 www.tutorialspoint.com/typescript/typescript_namespaces.htm
	 12	 Modules
	 13	 www.tutorialspoint.com/typescript/typescript_modules.htm

http://www.typescriptlang.org
http://www.typescriptlang.org
http://www.freecodecamp.org
http://www.newline.co
http://www.newline.co
http://www.typescriptlang.org
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com

https://taylorandfrancis.com

479

Appendix III
Handy JavaScript Tools

IN THIS CHAPTER

➢	 Gulp

➢	 Grunt

➢	 npm

In the previous chapter, we covered a Brief Guide to TypeScript, and in
this chapter, we will discuss the Handy JS Tools.

Because JavaScript is such a popular language and is used in some form
by all front-end web apps, many excellent tools help us effortlessly develop
high-quality JavaScript applications.

Every day, the tool ecosystem grows, and more tools for creating and
debugging JavaScript applications are available.

OVERVIEW OF GULP
We will talk about Gulp with its installation and advantages and
disadvantages.1

What Exactly Is Gulp?

Gulp is a task runner that runs on the Node.js platform. Gulp runs
front-end tasks and large-scale web applications entirely in JavaScript
code. It automates system tasks such as CSS and HTML minification,

480    ◾    Appendix III

concatenating library files, and compiling SASS files. These tasks can be
carried out via the command line using Shell or Bash scripts.

Why Should We Use Gulp?

It is shorter, simpler, and faster than other task runners. CSS preproces-
sors are SASS and LESS. After editing the source files, the page automati-
cally refreshes.

Gulpfile.js is simple to understand and build because it uses pure
JavaScript code to construct the task.

History

The CC0 license applies to all Gulp documentation. Gulp v1.0.0 was ini-
tially released on January 15, 2015, and the current version is v3.9.0.

Features

•	 Allows for minification and concatenation.

•	 Pure JavaScript code is used.

•	 Converts CSS compilation from LESS or SASS.

•	 The Node.js platform manages file manipulation in memory and
increases speed.

Advantages

•	 Significant time advantage over any other task runner.

•	 Simple to code and comprehend.

•	 It is simple to test web applications.

•	 Plugins are simple to use and intended to do only one thing
simultaneously.

•	 Repeatedly performs repetitive tasks such as minifying stylesheets,
compressing images, etc.

Disadvantages

•	 It has more dependencies than Grunt and is a newcomer.

•	 We cannot perform multiple tasks with Gulp plugins.

•	 Grunt’s configuration is not as clean.

Appendix III    ◾    481

INSTALLATION OF GULP
This session walks us through the installation of Gulp step by step.2

Gulp System Requirements

•	 Operating System Cross-platform

•	 IE (Internet Explorer 8+), Firefox, Google Chrome, Safari, and Opera
are all supported browsers.

Installation of Gulp

Step 1: To run Gulp examples, we need Node.js.
To download Node.js, go to https://nodejs.org/en/, and we’ll see the

screen below.

Download the zip file with the most recent features.
Step 2 Run the setup program to install NodeJs on your computer.
Step 3: Configure the environment variables.

User Variable Path

•	 Right-click My Computer and select Properties.

•	 Choose Properties.

•	 Select the Advanced tab and then click on ‘Environment Variables.’

•	 Double-click on the PATH as indicated on the screen in the
Environment Variables box.

download gulp

https://nodejs.org

482    ◾    Appendix III

•	 An Edit User Variable box will appear. In the Variable Value field,
enter C:\Program Files\nodejs\node modules\npm as the path of the
Node.js folder. If the path has already been established for other files,
we must add the Node.js path after the semicolon (;).

•	 In the end, press the “Ok” button.

System Variable

•	 Double-click on Path under System variables.

•	 An Edit System Variable window will appear. In the Variable Value
field, enter C:\Program Files\nodejs\ as the path of the Node.js folder,
and then click “Ok.”

Step 4: Open our system’s command prompt and type the following
command. The installed Node.js version will show.

Step 5: To show the version of npm (the Node.js package manager)
that is used to install modules, type the following command into the
command prompt. The installed Node.js version will display.

npm -v

Step 6: Type the following command to install Gulp at the command
prompt. The “-g” parameter guarantees that Gulp is available for any proj-
ect worldwide.

npm install gulp -g

Step 7: Type the following command to view the Gulp version to ensure it
was installed correctly.

gulp -v

BASICS OF GULP
This section will introduce us to the fundamentals of Gulp.3

What Exactly Is a Build System?

A Build System is a collection of tasks (collectively known as task runners)
that automate repetitive work.

Appendix III    ◾    483

Some of the jobs that the build system is capable of doing are listed below:

•	 Preprocess CSS and JavaScript compilation.

•	 File compression to reduce file size.

•	 Concatenation of multiple files into one.

•	 Activating the server’s automatic reloading.

•	 Create deployment builds to keep the resulting files in one place.

•	 The build system in a modern front-end workflow consists of three
components:

•	 Managers of packages.

•	 Preprocessors.

•	 Task managers and build tools.

Package Administrators

It automates installation upgrades, dependency removal, library cleaning,
and package cleanup in the development environment.

Bower and npm are two examples of package managers.

Preprocessors

Preprocessors are particularly helpful for a productive modern workflow
since they bring enhanced capabilities and optimized syntax that compile
into the target language.

A few of the well-liked preprocessors include

•	 CSS − SASS, Stylus, and LESS.

•	 JS − LiveScript, CoffeeScript, TypeScript, etc.

•	 HTML − Markdown, Slim, HAML, Jade, etc.

Task Executors

Task runners automate various development activities, including minify-
ing files, enhancing photos, and converting SASS to CSS. In the contem-
porary front-end work environment, Gulp is one of the task runners and
runs on Node.

484    ◾    Appendix III

Setting Up Our Project

Create a folder on our computer called, for instance, “work” to save our
project there. The work folder has the following files and subfolders:

•	 Src: Pre-processed HTML source files and directories are located in
the Src directory.

•	 Images: Uncompressed images are included.

•	 Scripts: Contains several script files that have already been
processed.

•	 Styles: Consists of several pre-processed CSS files.

•	 Build: The production files are located in this automatically gener-
ated folder.

•	 Images: Comprised of compressed pictures.

•	 Scripts: A single script file containing code that has been
compressed.

•	 Styles: A single CSS file containing code that has been
compressed.

•	 gulpfile.js: The configuration file used to specify our tasks is called
gulpfile.js.

DEVELOPING AN APPLICATION USING GULP
We learned about Gulp installation and the fundamentals of Gulp in the
previous section, which covered topics like the Gulp build system, package
management, task runner, and Gulp structure.4

The following are some of the fundamentals for creating applications
that we will examine in this session:

•	 Stating necessary dependencies

•	 Task creation for the dependencies

•	 Performing the task

•	 Observing the task

Appendix III    ◾    485

Declaration of Dependencies

We must indicate the plugins’ dependencies when installing them for
the application. Package managers like bower and npm take care of the
dependencies.

Let’s define dependencies for the gulp-imagemin plugin in the configu-
ration file. The following command line may use to install this plugin,
which can use to compress the image file:

npm install gulp-imagemin --save-dev

As seen in the following code, we may include dependencies in our con-
figuration file.

var imagemin = require(‘gulp-imagemin’);

Task Creation for Dependencies

Task makes it possible to configure Gulp in a modular fashion. Each
dependent must have its task, which we must add to as we locate and set
up additional plugins. The Gulp job will be organized as follows:

gulp.task(‘taskname’, function() {
 //here, do stuff
});

Where “function()” carries out our task and “taskname” is a string name.
Gulp.task defines the dependencies on other tasks and registers the func-
tion as a task with a name.

As illustrated in the following code, we may build the task for the previ-
ously created dependency.

gulp.task(‘imagemin’, function() {
 var imgsrc = ‘src/images/**/*’, imgdest = ‘build/
images’;
 gulp.src(imgsrc)
 .pipe(changed(imgdest))
 .pipe(imagemin())
 .pipe(gulp.dest(imgdest));
});

486    ◾    Appendix III

The images are saved in the img srcobject and may be found in the direc-
tory src/images/**/*. The imagemin constructor pipes it to further func-
tions. By invoking the dest method with an argument that stands in for
the destination directory, it compresses the pictures that were transferred
from the src folder to the build folder.

Running the Task

The Gulp file is configured and prepared to run. To execute the task, enter
the following command in our project directory.

gulp imagemin

OVERVIEW OF GruntJS
We will talk about GruntJS with its installation and its advantages and
disadvantages.

A JavaScript task manager is GruntJS. With no effort, it may use to
automate various operations for our application, increasing developer
productivity.5

GruntJS has plugins for many different tasks. One such instance is the
nodemon plugin, which restarts the node server automatically anytime a
JavaScript file changes in our application. Therefore, we don’t need to man-
ually stop and restart the node server each time we change the JavaScript.
We may use the grunt-contrib-cssmin plugin to compress CSS files. We
may format, search, or rewrite the JavaScript in our application with the
grunt-jsfmt plugin.

Why Should We Use Grunt?

Grunt can easily do repetitive operations like compilation, unit testing,
file minification, test execution, etc.6 Grunt comes with built-in tasks that
let our plugins and scripts do more. Grunt’s ecosystem is vast; we can
automate almost anything with minimal effort.

History

GruntJS’s first lines of source code were added in 2011.
On February 18, 2013, Grunt v0.4 was released.
On May 12, 2014, Grunt v0.4.5 was released.
Grunt’s current stable version is 1.0.0 rc1, published on February 11,

2016.

Appendix III    ◾    487

Advantages

•	 We may quickly execute file minification, compilation, and testing
with Grunt.

•	 Grunt unifies web developers’ workflows.

•	 Because it has the minimal infrastructure, Grunt makes it simple to
work with a fresh codebase.

•	 It improves project performance by speeding up the development
workflow.

Disadvantages

•	 We must wait till the creator of the Grunt changes it whenever npm
packages are updated.

•	 Every job is intended to perform a specific function.

•	 If we wish to extend a particular assignment, we must employ some
methods to complete the work.

•	 Grunt provides a plethora of configuration options for individual
plugins.

•	 Grunt configuration files are often lengthier in length.

FEATURES IN GRUNT
Grunt is a JavaScript-based task runner that may use to automate repeti-
tive operations in a workflow and as a command-line tool for JavaScript
objects.7

The following are some of the most notable features of GruntJS:

•	 Grunt makes the workflow as simple as writing a configuration file.

•	 With no effort, we may automate repetitive operations.

•	 Grunt is a famous NodeJS task runner. It is adaptable and frequently
used.

•	 It takes a fundamental approach, with tasks written in JS and con-
figuration written in JSON.

488    ◾    Appendix III

•	 Grunt minifies JavaScript, CSS files, tests files, CSS preprocessor files
(SASS, LESS), and other files.

•	 Grunt comes with built-in tasks that let your plugins and scripts do
more.

•	 It improves project performance by speeding up the development
workflow.

•	 Because it has the minimal infrastructure, Grunt makes it simple to
work with a fresh codebase.

•	 Grunt’s ecosystem is vast; we can automate almost anything with
minimal effort.

•	 Grunt decreases the possibility of mistakes when doing repetitive
activities.

•	 Grunt now has almost 4,000 plugins.

•	 It may be employed in large production facilities.

SETTING UP OF GRUNT
This section walks us through installing Grunt on our system step by step.8

Grunt’s System Requirements

•	 Cross-platform operating system

•	 Support for Internet Explorer (version 8 and higher), Firefox, Google
Chrome, Safari, and Opera

Installation of Grunt

Step 1: To execute Grunt, we require NodeJs. The screen below will show
us when we click the link https://nodejs.org/en/ to download NodeJs.

https://nodejs.org

Appendix III    ◾    489

Download the zip file with the most recent features.
Step 2: Run the setup program to install NodeJs on our machine.
Step 3: The third step is to set environment variables.

User Variable for Path

•	 To right-click My Computer.

•	 Choosing Properties.

•	 Next, click Environment Variables under the Advanced tab.

•	 Double-click the PATH entry in the Environment Variables box
when it appears on the screen.

•	 An Edit User Variable window will appear as displayed. C:\Program
Files\nodejs\node_modules\npm should be added as the path of the
NodeJs folder in the Variable Value box. If the path has already been
established for other files, add the NodeJs path after the semicolon
(;) in the format.

Click the OK button when we’re done.

System Variable

•	 Double-click Path under System variables, as displayed on the screen.

•	 A window to edit system variables will appear, as displayed. As
illustrated below, enter C:\Program Files\nodejs\ as the path to the
NodeJs folder and click OK.

download grunt

490    ◾    Appendix III

Step 4: To complete the installation of Grunt on your system, install its
command-line interface (CLI) globally, as seen below.

npm install -g grunt-cli

By running the command above, the grunt command will be added to our
system path and be available for use from any directory.

Grunt task runner is not installed when grunt-cli is installed. The grunt-
function cli’s is to execute the Grunt version installed next to a Gruntfile.
It enables a system to install numerous Grunt versions at once.

Step 5: To use Grunt, we need to generate configuration files.

package.json
Alongside the Gruntfile, the package.json file is positioned in the project’s
root directory. When we execute the command npm install in the same
folder as package.json, it uses package.json to run each dependent indi-
cated appropriately.

We may generate the basic “package.json” file by using the following
command at the command prompt:

npm init

The ‘package.json’ file’s basic structure is seen below:

{
 “name”: “tutorialsession”,
 “version”: “0.1.0”,
 “devDependencies”: {
 “grunt-contrib-jshint”: “~0.10.0”,
 “grunt-contrib-nodeunit”: “~0.4.1”,
 “grunt-contrib-uglify”: “~0.5.0”
}
}

The below command may use to add Grunt and Gruntplugins to an
already-existing package.json file.

npm install <module> --save-dev

Appendix III    ◾    491

The module to be installed locally is indicated by the word “module” in the
command above. The preceding command will also automatically add the
<module> to devDependencies.

For example, the following command will add the most recent version
of Grunt to our devDependencies and install it.

npm install grunt --save-dev

Gruntfile.js
We define our Grunt setup in the Gruntfile.js file. It will be here that
we write the settings. As illustrated below, the fundamental Gruntfile.js
file

// (Required by Grunt and its plugins) our wrapper
function
// This function contains all configuration.
module.exports = function(grunt) {
 // CONFIGURE GRUNT
 grunt.initConfig({
 // get configuration info from package.json file
 // this way, we can use things such as name and
version (pkg.name)
 pkg: grunt.file.readJSON(‘package.json’),
 // here, all of our configuration goes
 uglify: {
 // uglify task configuration
 options: {},
 build: {}
 }
 });
 // log something
 grunt.log.write(‘Hello world! Welcome to
Tutorialspoint!!\n’);
 // Load plugin that provides “uglify” task.
 grunt.loadNpmTasks(‘grunt-contrib-uglify’);
 // Default task.
 grunt.registerTask(‘default’, [‘uglify’]);
 };

492    ◾    Appendix III

GETTING STARTED WITH GRUNT
We require Node.js to utilize Grunt, so ensure it is set up. Using the Node.
js package manager, we may install Grunt and its plugins.9

We may update the Node package management using the command
line before installing Grunt on the machine.

npm update -g npm

To provide administrator access on a Mac or Linux computer, use sudo
word at the beginning of the command line, as seen below.

sudo npm update -g npm

Installation of CLI

The installed version of Grunt is launched using the CLI, or command-line
interface. We must install Grunt’s command-line interface (CLI) globally
to begin using it.

npm install -g grunt-cli

By running the command above, the grunt command will be added to
our system path and be available for use from any directory. By installing
grunt-cli, we cannot install the Grunt task runner. It enables a system to
install numerous Grunt versions at once.

Working of CLI

Every time Grunt is executed, the CLI uses the require() mechanism to
check to see if Grunt is already installed on our system. We may launch
Grunt from any directory in our project using grunt-cli. Grunt-cli utilizes
the locally installed Grunt library and applies the configuration from the
Grunt file if Grunt is being used locally.

Working on a New and Current Project

If we are working with a project that has already been configured and
includes package.json and a Gruntfile, then follow the instructions listed
below:

•	 Discover the directory’s root path for the project.

•	 The npm install command may use to install dependencies.

Appendix III    ◾    493

•	 Use the grunt command to launch Grunt.

•	 Include the two files package.json and Gruntfile, in our project if we
are starting a new one.

•	 package.json: When we execute the command npm install in the
same folder, the package.json file, which is located in the project’s
root directory, is used to run each dependent that is indicated.

•	 Gruntfile.js: The project’s configuration settings are written in the
Gruntfile.js file.

package.json
When we execute the command npm install in the same folder, the pack-
age.json file is used to run each dependency mentioned and is located next
to the Gruntfile in the project’s root directory.

There are several ways to construct the “package.json,” as noted below:

•	 To generate the ‘package.json’ file, use grunt-init.

•	 We may also use the npm-init command to build a “package.json” file.

As demonstrated below, we may write specifications.

{
 “name”: “tutorialsession”,
 “version”: “0.1.0”,
 “devDependencies”: {
 “grunt-contrib-jshint”: “~0.10.0”,
 “grunt-contrib-nodeunit”: “~0.4.1”,
 “grunt-contrib-uglify”: “~0.5.0”
}
}

The below command may use to add Grunt and gruntplugins to an exist-
ing “pacakge.json” file.

npm install <module> --save-dev

The local installation module is represented by <module> in this instance.
The requested module will be installed and immediately added to the
devDependencies section by using the preceding command.

494    ◾    Appendix III

For example, the command below will update Grunt to the most recent
version and add it to our devDependencies.

npm install grunt --save-dev

Gruntfile
By default, our Grunt configuration settings will be stored in the Gruntfile.
js file. The following components are present in the Grunt file:

•	 The function of wrapping

•	 Task and project setup

•	 Grunt jobs and plugins are loading

•	 Certain tasks

The ‘Gruntfile.js’ basic file is shown as follows:

// (Required by Grunt and its plugins) our wrapper
function
// This function contains all configuration.
module.exports = function(grunt) {
 // configure the grunt
 grunt.initConfig({
 // to obtain configuration information, see the
package.json file
 // We may utilize elements like name and version
in this way (pkg.name)
 pkg: grunt.file.readJSON(‘package.json’),
 // Everything we configure goes here
 });
 // Load the plugin that performs the “uglify” function
 grunt.loadNpmTasks(‘grunt-contrib-uglify’);
 // Default task
 grunt.registerTask(‘default’, [‘uglify’]);
};

Wrapper Function

In the code above, module.exports is a wrapper function that receives the
complete configuration. It is a method of showing configuration to other
program users.

Appendix III    ◾    495

module.exports = function(grunt) {
 //here do grunt-related things
}

Task and Project Configuration

Once our Grunt configuration is ready, we may configure Grunt tasks. The
grunt.initConfig() section is where the project configuration may enter.
Take the configuration data from package.json and store it in pkg inside
grunt.initConfig(). We may use pkg.name and pkg.version to call our proj-
ect’s name and version, respectively.

Loading the Grunt Plugins and Task

Use the ‘grunt.loadNpmTasks’ function to load the tasks from a specific
plugin.

The plugin may be installed locally using npm; it must be relative to the
Gruntfile. The plugin may be loaded using the straightforward command
described below.

grunt.task.loadNpmTasks(plugin_Name)

Custom Tasks

Grunt will search for the default task when executed through the com-
mand line. The task uglify, which may be executed using gruntcommand,
is used in the code above. This is equivalent to manually using the grunt
uglify command, and we may provide the array’s job count.

grunt.registerTask(‘default’, [‘uglify’]);

GULP VS GRUNT
Before delving into the Grunt versus Gulp debate, we may ask what both
tools accomplish and why you would want to use either.

Both Grunt and Gulp, as previously noted, exist to assist automate
operations and are popular tools among web developers and designers.10

A website designer’s regular duties include debugging code, concate-
nating and minifying CSS and JavaScript files, compressing images, and
making modifications to a server or server files.

Many of these chores are essential, but they can take a long time.
This is especially true if the website is vast or requires regular revisions

and updates.

496    ◾    Appendix III

Someone may appoint to perform these activities, but because they are
relatively simple, the person doing them could be doing more productive
things.

This is when Grunt and Gulp come into play.
We can build up a process that automates tasks using a piece of really

easy code, plugins, and either Gulp or Grunt.
Both of these programs enable you to check for new files or changes to

files in specific folders and conduct operations that are relevant to them.
In other words, after we’ve configured the processes we want and

applied them to existing files, any new or updated files can have processes
applied to them automatically.

Assume we put up a procedure that compresses jpg files in the images
directory.

When we perform the procedure, all photographs have their EXIF data
removed and are compressed.

Once we’ve correctly installed and configured Gulp or Grunt, the image
compression task code for each tool should look something like this:

Gulp
gulp.task(‘jpgs’, function() {
 return gulp.src(‘src/documents/*.jpg’)
 .pipe(imagemin({ progressive: true }))
 .pipe(gulp.dest(‘optimizedimages’));
});

Grunt
imagemin: {
 jpgs: {
 options: {
 progressive: true
 },
 files: [{
 expand: true,
 cwd: ‘src/img’,
 src: [‘*.jpg’],
 dest: ‘documents/’
 }]
 }
}

Appendix III    ◾    497

If we’ve also configured Gulp or Grunt to check for new or updated files,
any altered or new files saved to the directory will compress, and the EXIF
data will immediately erase.

Gulp or Grunt can conduct this job efficiently, and in the case of large
amounts of files, they can do so in a fraction of the time it would take if it
had been carried out manually.

Gulp vs Grunt: What’s the Difference?

Now that we know what Gulp and Grunt can accomplish let’s talk about
how they do it. Both programs are task runners using Node.js, an open-
source JavaScript runtime environment for developing tools and apps.
Grunt and Gulp rely on plugins to do the tasks we want them to do for us.

To build tasks, both tools utilize.js files; for Grunt, you use a gruntfile.
js, and for Gulp, we use a gulpfile.js. Instead of utilizing a function, we may
define flows with grunt.task and gulp.task.

Some of the most frequent tasks that each tool can do and automate
include the following:

•	 Image file compression

•	 Script debugger and console statements are removed

•	 CSS and JavaScript minification, concatenation, and cleanup

•	 Error-checking code

•	 Less file compilation

•	 Executing unit tests

•	 Sending updates to a live server

•	 Database updates

Gulp vs Grunt: Which Is Faster?

Regarding speed, Gulp has a significant edge, although the advantage may
not be that significant, and changes to Grunt have done a lot to lessen the
speed disparity.

Gulp’s present speed advantage is because it uses streams and processes
jobs in memory, resulting in only one file being written.

Furthermore, Gulp can handle several jobs simultaneously, whereas
Grunt typically only handles one task at a time.

498    ◾    Appendix III

TMWtech did a speed test to compare the time it takes to do a Sass
compilation using Gulp and Grunt. The findings reveal that Gulp was
substantially quicker, consuming only 1.27 seconds compared to Grunt’s
2.348 seconds. A temporary file is saved when a plugin executes a file in
Grunt. A final destination file is written after a file has passed through all
plugins.

Writing data to the disc can significantly increase the amount of time
required to execute activities; however, significantly is a relative phrase.
Unless we’re working on a vast project, the output time for Gulp or Grunt
will measure in seconds or milliseconds.

Even if Grunt takes 500 ms to perform a job that Gulp can complete
in 50 ms, a tenfold difference, we’re still talking about a half-second dif-
ference for the considerably longer Grunt time frame. When comparing
Gulp versus Grunt, the scale of the project we’re working on will decide
whether performance is a concern. Even if speed is an issue for us, Grunt
gained pipe support earlier this year (as of version 0.5), so the speed dis-
parities are likely lower than when most comparisons were performed.

Gulp vs Grunt: Configuration vs Coding

The crucial distinctions between Gulp and Grunt in terms of configura-
tion versus code have been heavily debated. Gulp is intended to help us
achieve our goals using single-purpose plugins and scripts. In most cir-
cumstances, this makes writing plugins for Gulp considerably easier than
developing them for Grunt. Furthermore, because Gulp is more focused
on code and single-task plugins, setting plugins in Gulp is a lot more stan-
dardized procedure than it is for Grunt plugins.

However, the issue may be less about code and more about how com-
fortable we and, if applicable, our team are with node streams. Gulp
largely relies on node streams, and unless we and everyone else who will
be working with Gulp are familiar with them, as well as pipes, buffers, and
asynchronous JavaScript, dealing with Gulp will be an uphill battle.

While configuring Grunt takes longer than setting Gulp, Grunt is
far more user-friendly since it relies on configuration rather than code.
Furthermore, while Gulp code is easier to read, many people believe that
Grunt code is simpler to write. If we’re working with a large group of indi-
viduals with diverse skill levels, Grunt could be a better option. To use it,
read the manual, acquire and set up the necessary plugins, and produce
some JavaScript code.

Appendix III    ◾    499

Gulp vs Grunt: Support, Community, and Plugins

Both programs have a huge and helpful community, as well as a significant
number of plugins to pick from.

As previously stated, over 6,000 Grunt plugins are posted on the official
site, and approximately 2,700 Gulp plugins are listed on the official site of
Gulp.

Gulp is the new kid on the block, so it’s not surprising that there are
about twice as many plugins available for Grunt. In any case, both a pro-
gram lacks plugins, and there is a Gulp plugin that, with principle, allows
any Grunt plugin to operate in Gulp.

As of 2016, Grunt had over 70% of the market, compared to Gulp’s 30%
share. However, throughout the same period, the number of downloads
for each tool was quite close. Grunt was downloaded approximately 1.85
million times a month, whereas Gulp was downloaded roughly 1.6 million
times in the same time frame.

Which Should We Go With?

There is no right or wrong answer when deciding between Grunt and Gulp.
Both automation technologies have a lot to offer, and none has a signifi-

cant flaw.
Our decision will be influenced by whether we prefer configuring

(Grunt) or coding (Gulp) while setting up automation and our familiarity
with node streams. There is a great deal of personal preference involved.

Speed, how plugins function and the number and types of plugins avail-
able may all factor into our selection. While some people find that they can
efficiently utilize either method, others may not. If we’re still undecided
between Gulp and Grunt, we should experiment with both. Both programs
are free and have active communities that may assist us in finding the right
plugins and getting started with automation scripts. We can use both tools
on separate tasks depending on how many projects we have.

OVERVIEW OF NPM
We will talk about npm with its installation and advantages and
disadvantages.

What Exactly Is npm?

The npm is an abbreviation for Node Package Manager, the world’s largest
software registry.

500    ◾    Appendix III

It is used by open-source web project developers worldwide to share
and borrow packages.11

The npm package manager also serves as a command-line utility for the
Node.js project, allowing it to install packages, manage dependencies, and
even manage versions.

Components of npm

The npm is made up of three distinct components, which are as follows:

•	 Website: The official npm website www.npmjs.com/ is used to find
packages for our project and create and configure profiles for man-
aging and accessing private and public packages.

•	 CLI (Command-Line Interface): The CLI interacts with npm pack-
ages and repositories from our computer’s terminal.

•	 Registry: The registry is a large and open database of JavaScript proj-
ects and metadata. We can use any supported npm registry, includ-
ing our own. We can even use someone else’s registry if we follow
their terms of service.

Setting Up npm (Node.js and npm)

We must install Node.js for it to be automatically installed on our machine
because npm already includes Node.js. The installation of npm on a com-
puter may be done in one of two ways.

•	 NVM use (Node Version Manager).

•	 Installing Node.js using.

It is strongly advised to install npm using Node Version Manager rather
than the Node installer. When you attempt to execute npm packages glob-
ally, the Node installation process installs npm in the directory by grant-
ing local rights, producing an error message.

1. Setup Node.js and npm Using nvm
Using Node version management to install npm and Node.js on our device
is strongly advised by npm developers. We may install many Node.js ver-
sions on our computer by utilizing the nvm installation method, and we

http://www.npmjs.com

Appendix III    ◾    501

can switch between them as needed to use any Node.js version for our
project. They do not advise us to install npm and Node.js using the node
installers.

Open https://github.com/nvm-sh/nvm to download and install npm
using nvm on our Linux operating system.

•	 As we are utilizing a Windows OS device, we will download the
nvm-setup.zip file for Windows from the Git link.

•	 Run the setup program after downloading it, then follow the instal-
lation instructions on the screen.

•	 Run the setup by either double-clicking it or selecting Run as admin-
istration from the context menu.

•	 Clicking the Yes option will permit installation.

•	 After carefully reading their licensing agreement, if we agree, click
the Next option to accept it.

•	 Click the Next button after selecting the area where NVM should
install. It remains the default place that has been chosen.

•	 Click the Next button after selecting the folder where the setup will
build the symlink.

•	 Now that our setup is prepared for installation click the Install but-
ton to begin the procedure.

•	 The nvm setup has now begun to install on our computer, and we
will need to wait a little while for it to finish.

•	 Our installation of the nvm setup is complete; choose Finish to leave
the setup.

Verify the nvm Version
Verify whether we are installed and which nvm version is installed once
the nvm setup has been completed. Run the following command on our
terminal to accomplish this:

nvm -
v

https://github.com

502    ◾    Appendix III

Look through the List of Node.js That Can Install with nvm
Use the following command to discover the supported Node.js version for
nvm installation. It will show a limited list of Node.js versions that are
currently available.

npm list available

Installing npm and node.js
We may install any version of Node.js; on our system, we have LTS 14.15.4
installed. To install Node.js, just run the following command:

nvm install 14.15.4

Verify the Node.js and npm Versions
Use the command nvm use 14.15.4 to launch Node.js (make sure to replace
14.15.4 with our installed version).

nvm use 14.15.4

Then, use the commands node -v and npm -v to verify the Node.js and
npm versions in our terminal.

node -v
npm -v

Verify the Installed Node.js Version List
Using the command below, we can see how many different Node.js ver-
sions are currently installed and active on our machine.

nvm list

On our system, Node.js version 14.15.4 is currently active. If necessary,
we may also install other, distinct Node.js versions on a machine (while
building another Node.js project based on a different version). Choose a
different Node.js version from the list provided by nvm, then execute the
command below to install it.

nvm install 12.20.2

Here, we’ve chosen to install Node version 12.20.2; it also downloads and
sets up a suitable version of npm on our smartphone.

Appendix III    ◾    503

Node.js and npm now come in two separate versions. Run the following
command to see how many Node.js versions are currently installed:

nvm list

2. Using the Node Installer, Install npm and Node.js
Consider a situation where we cannot install npm on our device or are
having trouble doing so. The Node.js installer is the alternative method for
installing npm and Node.js on our computers.

To install Node.js and npm simultaneously, go to the Node.js download
area https://nodejs.org/en/download/ where we can locate Node.js install-
ers for the various OS systems.

Download any Node.js installation compatible with our operating system
and its bits.

	 1.	We are downloading a 64-bit Node.js installer for our device because
we have Windows with the 64-bit operating system.

	 2.	Run the setup program after downloading it, then follow the instal-
lation instructions on the screen.

	 3.	To begin the installation procedure, click the Next button.

	 4.	Click the Next button after reading and accepting the end-user
licensing agreement.

Download npm

https://nodejs.org

504    ◾    Appendix III

	 5.	Select a unique location for our Node.js installation and click Next to
continue. It remains in its default position.

	 6.	Click Next after selecting the Node.js functionality we want to
install. We maintain it as a default functionality that is offered.

	 7.	Check the box and select the Next option to install additional
required tools (such as C/C++ and Chocolaty) together with our
node.js and npm installation.

	 8.	To install Node.js and npm on our device, click the Install button
now.

	 9.	To install Node.js, select Yes in the pop-up box.

	 10.	To finish the installation, click the Finish button.

The extra tools are prepared for installation, as indicated by the check-
box above for automated installation of extra tools. Press any key to move
forward.

To download the most recent version of npm, issue the command
shown below on the command line.

npm install -g npm

Features of npm

•	 Package.json files, which are used to define all npm packages.

•	 The package.json file’s content must write in JSON.

•	 The name and version fields must both be included in the definition
file.

package.json
When we use npm init to launch a JavaScript/Node.js project, a “pack-
age.json” file will create with the essential metadata details supplied by
developers:

•	 Name: This is the title of our JavaScript project or library.

•	 version: This is the project’s version.

Appendix III    ◾    505

•	 description: Send details about the project’s description.

•	 license: It is a license for a project.

When to Employ npm

•	 Use npm to modify code packages for our projects or use them
exactly as-is.

•	 When we need to download standalone tools immediately, we can
utilize npm.

•	 Utilize npx to run packages without downloading.

•	 If we need to share code with any other npm user, use npm.

•	 When you want to limit code to particular developers, we may use
npm.

•	 Create teams using npm to organize developers, coding, and pack-
age maintenance.

•	 To handle various code versions and code dependencies, use npm.

•	 Npm may use to update apps when the underlying code is modified
quickly.

•	 To locate additional developers working on related issues and proj-
ects, use npm.

Command-Line Client
The software package npm comes with a CLI (Command-Line Client) that
may be used to obtain and install npm packages:

Example on Windows OS

C:\>npm install <package>
C:\>npm uninstall <package>

Example on Mac OS

>npm install <package>
>npm uninstall <package>

506    ◾    Appendix III

Publishing a Package

As long as a directory includes a “package.json,” we can publish it from
our PC.

Verify that npm is installed:

C:\>npm

Verify our logged-in status:

C:\>npm whoami

If not, login:

C:\>npm login
Username: <our username>
Password: <our password>

Go to our project’s page and publish it:

C:\Users\my_user>cd my_project
C:\Users\my_user\my_project>npm publish

Global Mode Package Installation

We have the npm package loaded globally, which is all we have now. So
let’s alter it and install UglifyJS as a different package (a JavaScript minifi-
cation tool). Although it may shorten to -g, we use the --global flag in this
instance:

npm install uglify-js -global
C:\Users\JTP\AppData\Roaming\npm\uglifyjs -> C:\Users\
JTP\AppData\Roaming\npm\node_modules\uglify-js\bin\
uglifyjs
+ uglify-js@3.13.9
added 1 package from 1 contributor in the 12.32s

Packet Installation in Local Mode

A package.json file is typically used when installing any packages locally.
Here is an illustration of how to make a project folder in our home
directory:

Appendix III    ◾    507

mkdir project && cd project
npm init
package name: (project)
version: (1.0.0)
description: Instance of the package.json
entry point: (indexs.js)
test command:
git repository:
keywords:
author:
license: (ISC)

To generate “package.json” with default settings, press Enter. Then, type
“yes” to confirm that the “.json” file is okay. By doing this, a “package.json”
file will create in the project’s root:

{
 “name”: “project”,
 “version”: “1.0.0”,
 “description”: “Instance of the package.json”,
 “main”: “indexs.js”,
 “scripts”: {
 “test”: “echo \”Error: no test is specified\” &&
exit 1”
 },
 “author”: ““,
 “license”: “ISC”
}

Removing Local Packages

We can also uninstall a package because npm is package management
that is always manipulable. Let’s say there is a compatibility issue with
the package packageName that is currently installed. Consequently, we’ll
uninstall this package and install an earlier version:

npm uninstall packageName

Installing a Particular Package Version

Now that we have the packageName package of the desired version, we
may install it. The @ symbol can use to attach a version number.

npm install packageName@1.4.5

508    ◾    Appendix III

As we’ve seen, there are several approaches to executing npm instructions.
The lists of some of the most popular npm commands are provided below
(or aliases).

•	 npm i : Install the local package using npm i

•	 npm i -g : Install the global package using npmiI -g

•	 npm un : Uninstall a local package using npm un

•	 npm up: packages updated by npm

•	 npm t: run tests using npm

•	 npm ls: List installed modules using npm ls

•	 npm ll or npm la: Print more package details while listing modules
using npm ll or npm la

We discussed the introduction, installation, and functionality of Gulp,
Grunt, and npm in this chapter.

NOTES
	 1	 Gulp – Overview: www.tutorialspoint.com/gulp/gulp_overview.htm

Accessed on: 20 October 2022.
	 2	 Gulp – Installation: www.tutorialspoint.com/gulp/gulp_installation.htm

Accessed on: 20 October 2022.
	 3	 Gulp – Basics: www.tutorialspoint.com/gulp/gulp_basics.htm Accessed on:

20 October 2022.
	 4	 Gulp – Developing an Application: www.tutorialspoint.com/gulp/gulp_

developing_application.htm Accessed on: 20 October 2022.
	 5	 GruntJS: www.tutorialsteacher.com/nodejs/gruntjs Accessed on: 20

October 2022.
	 6	 Grunt – Overview: www.tutorialspoint.com/grunt/grunt_overview.htm

Accessed on: 20 October 2022.
	 7	 Grunt – Features: www.tutorialspoint.com/grunt/grunt_features.htm

Accessed on: 20 October 2022.
	 8	 Grunt – Installing: www.tutorialspoint.com/grunt/grunt_installing.htm

Accessed on: 20 October 2022.
	 9	 Grunt – Getting Started: www.tutorialspoint.com/grunt/grunt_getting_

started.htm Accessed on: 21 October 2022.
	 10	 Gulp vs Grunt – Comparing both Automation Tools: www.keycdn.com/blog/

gulp-vs-grunt#:~:text=Gulp%20vs%20Grunt%3A%20Speed&text=The%20
reason%20for%20Gulp%27s%20current,one%20task%20at%20a%20time.
Accessed on: 22 October 2022.

	 11	 What Is npm: www.javatpoint.com/what-is-npm Accessed on: 22 October
2022.

http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.tutorialsteacher.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.tutorialspoint.com
http://www.keycdn.com
http://www.keycdn.com
http://www.javatpoint.com
http://www.keycdn.com

509

Index

ActiveX Control program 267
aggregations 345
AJAX technology 10, 34–35, 153, 268
alert() method 442
algebra 444–445
Algolia Places 195–196
ambients, in TypeScript 476–477
Android apps, using NativeScript 397–399
Android SDK 380
Android Studio 379–380; see also Visual

Studio (VS) Code
AngularJS 17, 19–20, 46, 213, 217–219

characteristics of 295–296
frontend frameworks and libraries

272–273
vs. JavaScript 260–263
vs. React.js 295–298
VueJS vs. 316–318

Animate On Scroll (AOS) 197
Anime.js 196–197
Apache Cordova 235–236
API see Application Programming

Interface (API)
App.js 241, 291–292, 294
App.JSX 303
Application Programming Interface (API)

181–191, 367, 434; see also user
interface (UI)

GraphQL API 67
native Fetch API 162

applications
cross-platform applications (see cross-

platform applications)
desktop applications (see desktop

applications)
dynamic web applications 279–280

full-stack online applications 358
Ghost Electron app 406–407
hybrid app 235
mobile applications (see mobile

applications)
Pexels Electron app 407
Playground app 390, 395–396
professional JavaScript app 375
server applications 4
Single-Page Applications (SPAs) 215
Skype app 385
standalone level vs. cross-platform app

239
Tesla app 386
web 4, 27, 425

Application user interface 359
arithmetic operators 82
arrays

in JavaScript 98–101, 434–435
in TypeScript 473–475

assignment operators 83
assistances

community assistance 301
offline assistance 373

asynchronous function 134–143; see also
functions

vs. deferred JavaScript 143–144
Node.js 131–133

Atom 39–40
audio/video, processing of 335
Aurelia 25–26
Axios methods 159–160

Babel JavaScript VSCode 69, 288
.babelrc file 292
Babylon.js 232

510    ◾    Index

Backbone.js 224–226
backend frameworks 17–18, 227, 275; see

also frameworks
development 274, 333
Express.js 228, 361–363
Gatsby 229
languages 274
Meteor 230–231
Next.js 227–228
Node.js (see Node.js)
tasks 372
web designer 425

Beaker Browser 407
Bideo.js 198
bitwise operators 83, 432
blur() function 443
Boolean object 113–114
Bootstrap

frontend frameworks 273
libraries 217, 273

Brackets 43
browsers

Beaker Browser 407
Netscape browser 9, 418, 420
objects 441–444

Brython 419
BSON data type 343
buffer 312
Build System 482–483
bundle process 293

C# 7–8, 255, 275, 317, 342, 404, 422
C++ 274, 335, 417; see also languages;

programming languages
callback method 439
Carbon Components Svelte 222
Carbon Design System 222
Cascading Style Sheets (CSS) language 33,

46, 72, 227, 272, 375, 479–480
case-sensitive programming language 77
CDN library 318
characters

deleted character 453
escape character 435
semicolon character 76
special character 435

Chart.js 198–199

chocolaty setup program 378–379
Chreographer.js 199–200
class inheritance 465–466
clearInterval() method 442
clearTimeout() method 442
Cleave.js 199
CLI Command Line 320
client-optimized programming language

255
client-side JavaScript 3
client-side programming 256
close() function 443
Cocoon.js framework 233
Code Editor 455
Code Push SDK 382
coding 371

configuration vs. 498
integration with C++ 335

CoffeeScript 419
Command-Line Client 505
Command-Line Interface (CLI) 500
comments 77–78
community activity, on Google 296
community assistance 301; see also

assistances
comparison operators 82–83, 432–433
compiler for TypeScript 448–449
compiler-free programming 34; see also

programming
computation 444–445
computerized property 314
configurations

vs. coding 498
environment configuration 373
Simple Environment Configuration

360
confirm() function 443
console.log() function 457
“const” keyword in JavaScript 430
contact() array 434
cookies 5, 164–165

in JavaScript 166–168
properties of 168–170
utilization of 165–166
varieties of 170–172

C programming language 420–421; see
also programming languages

Index    ◾    511

‘create-react-app’ function 293, 364
cross-compilers 421; see also applications;

desktop applications; mobile
applications

cross-platform applications 239
framework 28, 389
program 238–239, 408–409
runtime environment 367
support 381

Cross-Platform Document-Oriented
Database 358–359

CSS language see Cascading Style Sheets
(CSS) language

Dart platform 419
vs. JavaScript 254–260

databases
as backend tier 367
Cross-Platform Document-Oriented

Database 358–359
document-oriented database 350, 360
MongoDB database (see MongoDB

database)
Not Only SQL database 350
Not simply SQL database 342
schema-less database 345

data binding pattern 295
Data-Driven Documents (D3.js) 193–194
data hiding 466
data modeling, MongoDB 344
data types 5, 430–431

BSON data type 343
non-primitive in JavaScript 81

date objects 106–109, 440
Day.js package 212
Debian-based computers 54
Debugger for Chrome 67
default parameters 473; see also

parameters
deferred vs. asynchronous JavaScript

143–144
deleted characters, in TypeScript 453
desktop applications 238–239, 403–404;

see also applications; cross-
platform applications; mobile
applications

AppJS 241

Beaker Browser 407
cross-platform apps (see cross-platform

applications)
Electron (see Electron)
Ghost 406–407
main vs. renderer processes 411–412
NodeGUI 240
Node.js 240
NW.js 241
Pexels 407
Proton Native 241
React.js 239–240
Slack 408
standalone application 239
use of 404–405
WebTorrent 405–406
WhatsApp 408
WordPress 406

developers
programming languages suitable for

373
skilled, in JavaScript 425–428
software 381
TypeScript for 459–462
VS Code extensions for JavaScript

64–70
development community, for React Native

vs. NativeScript 400
DevOps Engineer 426–427
directives, in VueJS 315
Django 275
document.getElementById() function 147,

151–152
document.getElementsByName() function

149
document.getElementsByTagName()

function 149–151
Document Object Model (DOM) 31–32,

34, 145, 192, 212, 214, 224, 263,
273, 278, 279, 300, 436–439

document-oriented database 360; see also
databases

DOM see Document Object Model
(DOM)

domain property, cookies 169
do-while loop 91
duck-typing 469

512    ◾    Index

dynamic HTML 273
dynamic programming language 417; see

also programming languages
dynamic web applications 279–280; see

also applications
Dynamic Websites 19, 251, 356, 418

Eclipse 41–42
ECMAScript 3, 12–13, 302, 447, 458
ECMAScript 5 9, 11
ECMAScript 6 11, 13
ECMA-262 Specification 2, 3, 6, 12
ecosystems 384
Eich, Brendan 14, 256, 261, 264, 418
Electron 39, 403–405, 409–410

alternatives for 410
applications using 405–408
benefits of 409–410
cross-platform desktop apps 408–409
drawbacks of 410–411
Hello Everyone Code in 412–413
program 240
significance of 411
UIs with 413–416

element methods 438–439
Ember JS 21–22, 213, 223–224
encodeURI() function 434
end-to-end tests 301
environment configuration 373; see also

configurations
environment setup, for VueJS 318–321
errors 114–122
escape character 435; see also characters
ESLint 65
eval() function 434
events 122–128
exceptions 114–122
“Expires” and “Max-Age” parameters,

cookies 169
Express.js 17–18, 275, 307–308, 367

backend framework 361–363
benefits of 308–309

‘extends’ keyword 465
external modules, in TypeScript 471
Extract functionality 43

Facebook advertisements 385
Fetch function 156–158; see also functions

filter() method 439
first application of Node.js 340–342
first-party cookies 170; see also cookies
Flexbox layout engine for mobile apps 384
Flexible Document Model 360
Flutter, frontend frameworks and libraries

255, 258, 259, 272, 273
flux pattern 278
focus() function 443
for-in loop 91–92
for loop 90
forms

login form 174–175
overview 172–173
referencing form 173–174
SignUp form 175–176
submitting form 174

foundational elements of TypeScript
448–449

frameworks 15–16, 211–213
backend frameworks (see backend

frameworks)
benefits and drawbacks of 18–26
for desktop applications (see desktop

applications)
for developing mobile apps (see mobile

applications)
frontend frameworks (see frontend

frameworks)
jQuery and JS libraries 16
libraries and 16–17, 213
maturity 409
for project support 242–244

frontend development 271–272
frameworks (see frontend frameworks)
languages 272
layer 366–367
libraries 272–273, 363–364
rich platform 372

frontend frameworks 17
Angular 217–219
Backbone.js 224–226
development 272–273
Ember 223–224
jQuery 219–221
React 214–215
Svelte 221–223
Vue.js 215–217

Index    ◾    513

Frontend Web Developer 424–425
fullPage.js 202
Full Stack Developer in JavaScript 427
full-stack online applications 358
functions

asynchronous function (see
asynchronous function)

Fetch function 156–158
in JavaScript 92–95, 433, 434
in TypeScript 471–473

fundamental operators 431
fuzzy finder 40

“-g” parameter 482; see also parameters
game creation 5–6
gameengines

Babylon.js 232
GDevelop 233
Kiwi.js 233
Melon.js 232
Phaser 231–232
PixiJS 231
PlayCanvas WebGL 232
Three.js 233

Gatsby 228
GDevelop 233
getAttribute() method 438
getAttributeNode() method 438
getAttributeNodeNS() method 438
getAttributeNS() method 438
getDate() method 440
getDay() method 440
getElementsByClassName() function

147–148
getElementsByName() method 149
getElementsByTagName() method 149,

438
getElementsByTagNameNS() method 438
getFullYear() method 440
getMinutes() method 440
getTime() method 440
Ghost Electron app 406–407
Git control 40, 42
GitHub 2, 24, 40, 214, 217, 282, 381, 385,

400, 405
Glimmer 200–201
global mode package installation 506
global scope 313

global variable 80–81
Google Chrome JavaScript V8 engine 3
Google trends 381
Granim.js 201–202
GraphQL API 67
GruntJS 486–487

features in 487–488
getting started with 492–495
Gulp vs. 495–499
setting up of 488–491

Gulp 479–480
application of 484–486
basics of 482–484
vs. GruntJS 495–499
installation of 481–482

gulpfile.js 484

handy JavaScript tools
GruntJS (see GruntJS)
Gulp (see Gulp)
Node Package Manager (see Node

Package Manager)
use of 280

hasAttribute() method 438
hasAttributeNS() method 439
Hello Everyone Code in Electron 412–413
‘Hello, World!’ program 74
Hevery, Misko 295
HTML see Hypertext Markup Language

(HTML)
HtmlWeb-packPlugin plugin 291
HTTP

cookies (see cookies)
requests 153–164

HttpOnly property 171
hybrid app 235; see also applications
Hypertext Markup Language (HTML)

11, 33, 46, 72, 144, 145, 227, 272,
374–375, 413, 417, 423, 425, 429,
441, 479

Hypertext Preprocessor 252
HyperText Transfer Protocol (HTTP) 367

ideal JavaScript framework 226–227
identifiers 78
IDEs see integrated development

environments (IDEs)
if-else statement 84–88

514    ◾    Index

in-depth analysisvs. Node.js 268–269
indexOf() array 435
innerHTML property 151–152
innerText property 152–153
insertOne() method 356
instances

of JavaScript variables 430
in Vue.js 325–327

integrated development environments
(IDEs) 38–40, 42, 44, 46, 54,
455, 457

interactive website behavior 4–5
interfaces; see also user interface (UI)

Application Programming Interface
(API) 181–191, 367, 434

application user 359
in TypeScript 466–468

internal modules, in TypeScript 471
International Electrotechnical

Commission (IEC) 12
International Organization for

Standardization (ISO) 12
Internet of Things 268, 335, 405
Ionic framework 235, 373, 376
isNaN() function 434

Java 8, 422
backend language 274
vs. JavaScript 14, 244–247, 421–422

JavaFX 404
Java JDK 380
JavaScript (JS) 417–418; see also

NativeScript; TypeScript
Angular JS vs. 260–263
API (see Application Programming

Interface (API))
applications of 4–6
array in 98–101, 434–435
asynchronous function in 134–144
benefits of 6
Boolean object 113–114
browser objects 441–444
client-side JavaScript 3
comment in 77–78
controls of 14–15
Dart vs. 254–260
data types in 5, 81, 430–431
date object in 106–109, 440

definition of 1
for desktop applications (see desktop

applications)
developer skilled in 425–428
development tools 8–9
editors (see JavaScript (JS) editors)
errors and exceptions in 114–122
events in 122–128
evolution of 9–14
first code 75–77
flaws of 6–7
form in (see forms)
frameworks (see frameworks)
frontend language 272
functions in 92–95, 433, 434
gameengines (see gameengines)
‘Hello, World!’ program in 74
HTTP requests in 153–164
if-else statement in 84–88
innerHTML property in 151–152
innerText property in 152–153
install, in Visual Studio Code 46–54
vs. Java 14, 244–247
jQuery vs. 251–252
libraries (see libraries)
loops in 89–92
math in 109–112
for mobile usage (see mobile usage)
Node.js vs. 264–269
number object in 112–113
objects in 95–98
operators in 82–84, 431–433
opportunities for professional

development 424–425
Oracle 12, 14, 15
past and future 418
PHP vs. 252–254
purpose of 3
Python vs. 247–250
qualities 418–424
standards 12
strings in 102–105, 435–436
switch statement in 88–89
syntax of 74–75
tendencies 11
transform data 439–441
unique among programming

languages 7–8

Index    ◾    515

validation of forms (see validation of
JavaScript forms)

variables in 78–81, 430
Visual Studio Code extensions for

64–70
website 33–35

JavaScript Booster 69
JavaScript (ES6) code snippets 64–65
JavaScript (JS) editors

Atom 39–40
Brackets 43
Eclipse 41–42
NetBeans 44
Sublime Text 42–43
Vim 44–45
Visual Studio (VS) Code 40–41, 45–46

JavaScript/React code.Preprocessors 302
JavaScript XML (JSX) 193, 278, 280, 297,

363
Java SE Development Kit (JDK) 378
Jest JavaScript testing framework 30
join() array 435
jQuery 2, 16, 191–192, 212, 219–221,

236–237, 374, 376
frontend frameworks and libraries 273
vs. JavaScript 251–252
UI 220

jQuery-based widget library 220
JS see JavaScript (JS)
JSX see JavaScript XML (JSX)
just-in-time (JIT) compilers 420–422

Kiwi.js 233
Kotlin 420
Ky 162–164

languages; see also programming
languages

backend JavaScript frameworks 274
C++ 274, 335, 417
CSS language 33, 46, 72, 227, 272, 375,

479–480
frontend development 272
Java (see Java)
Non-Structured Query Language

(NoSQL) 367
object-oriented programming (OOP)

language 95, 462

PHP (see PHP)
Python (see Python)
of TypeScript 448

Laravel 275
lastIndexOf() array 435
Last In First Out (LIFO) principle 28
Lax value, cookies 170
Leaflet 202–203
learning curves 258

for NativeScript and React Native 399
libraries

Algolia Places 195–196
Animate On Scroll (AOS) 197
Anime.js 196–197
Bideo.js 198
Chart.js 198–199
Chreographer.js 199–200
Cleave.js 199
D3.js 193–194
vs. frameworks 26, 213
frontend libraries 272–273
fullPage.js 202
Glimmer 200–201
Granim.js 201–202
in JavaScript 212
jQuery 191–192
Leaflet 202–203
Lodash 195
Masonry 204–205
Moment.js 204
Multiple.js 203–204
Omniscient.js 205
Parsley 206
Polymer 208
Popper.js 206–207
React.js 192–193
Screenfull.js 207–208
Three.js 207
Underscore.js 194–195
Voca 208–209

Linux
installing Visual Studio Code on 54–55
Node.js installation on 61–62

LiveScript 256, 261, 264
Live Server 68
Live Share 68
Live updates for IOS 382
local variable 79–80

516    ◾    Index

Lodash 195
logical errors 116
logical operators 83, 433
loops in JavaScript 89–92

Macromedia Dreamweaver MX 8
Macromedia’s HomeSite 5 9
Main.js 292
main vs. renderer processes 411–412
map() method 439
Masonry 204–205
match() function 434
Material UI 215
math, in JavaScript 109–112
MEAN vs. MERN Stack 368–369
Melon.js 232
MERN Stack 358–368

vs. MEAN Stack 368–369
structural makeup 365

Meteor 22–23, 238, 377
microservice design 335
Microsoft Debugger for Chrome 67
Microsoft FrontPage 8
Microsoft Internet Explorer 171
Microsoft’s JScript 9
Microsoft Word 404
Mithril 22
Mobile Angular UI 237
mobile applications 4, 233–234,

373–376; see also cross-
platform applications; desktop
applications

Apache Cordova 235–236
benefits of 376–377
development of 372
Ionic 235
jQuery 236–237
Meteor 238
Mobile Angular UI 237
NativeScript 234–235
OnSen UI 236
React Native 234, 380–390
Sencha Touch 237
Titanium 238
use JavaScript 374–376

mobile usage

mobile app development (see mobile
applications)

NativeScript (see NativeScript)
programming languages (see

programming languages)
React Native 377–390

mobility 242
Mocha 418
model view controller (MVC) 26

architectural concepts 221
design pattern 279
framework 295
paradigm 262

modern JavaScript 9–10
modules, in TypeScript 470–471
Moment.js 204
MongoDB database 342–346

advantages and disadvantages 346
data modeling 344
features 345–346
getting started with 346–349
installed on Windows 350–356
vs. RDBMS 344

“mongod” command 347
moveBy() function 443
moveTo() function 443
Mozilla Foundation 357
multiline comment in JavaScript 78
Multiple.js 203–204
Muuri 220
MVC see model view controller (MVC)

namespaces, in TypeScript 470
NAN (not a number) 444
Native apps 397–398; see also applications
native Fetch API 162
Native React 376
NativeScript 234–235; see also JavaScript

(JS); TypeScript
advantages of 391–392
Android apps 390–391, 397–399
cases usage 396–397
framework 374
learning curves for 399
limitations of 392–393
Playground app 390, 395–396

Index    ◾    517

with React Native 399–401
setups for 393–395

nested namespaces 470
.NET 405
NetBeans 44
Netscape browser 9, 418, 420; see also

browsers
new Date() operator 440
new React project 293–294
Next.js 18, 24–25
Ngx-bootstrap 218
NodeGUI 240
Node.js 2–4, 10, 22, 23, 40, 46, 240, 244,

256, 293, 307, 309–311, 333–334,
394, 409, 410, 420, 455, 479, 500

asynchronous function 131–133
backend language 274
buffer 312
defaults to local 312
development environment 55–60
downsides of 336–337
environment, setup of 338–340
first application of 340–342
functions 312
global scope 313
vs. JavaScript 264–269
JS Runtime Environment 365–367
Linux, installation on 61–62
loose typing 311
methods 437–438
object literal 311
primitive types 311
process object 312
project in Visual Studio Code 62–64
properties 436–437
use of 334–335, 338
Windows, installation on 55–60

Node Package Manager (NPM) 293, 365,
499–500

Command-Line Client 505
components of 500
download 503–505
features of 504
global mode package installation 506
package.json 506
packageName package 507–508

packet installation in local mode
506–507

removing local packages 507
Setting Up 500–504

NodeSource repository 61
Node Version Manager 500
non-blocking input/output architecture

336
None value, cookies 170
non-primitive data types in JavaScript 81
Non-Structured Query Language

(NoSQL) 367
Not Only SQL database 350; see also

databases
Not simply SQL database 342; see also

databases
NPM see Node Package Manager (NPM)
Number() function 434
numbers

object in JavaScript 112–113
in TypeScript 473

NW.js 241

Object Creation 95–97
Object Methods 97–98
object-oriented programming (OOP)

language 95, 462
objects

in JavaScript 95–98
in TypeScript 468–469

offline assistance 373; see also assistances
Omniscient.js 205
onclick Event Type 123
onerror() function 120–122
one-way data binding 297
onmouseout event 124–125
onmouseover event 124–125
OnSen UI 236
onsubmit Event Type 123–124
Oomph Project 41
open() function 443
open-source Flutter UI development

SDK 273
open-source software 390

document-oriented database 350
framework 240

518    ◾    Index

open-source software (cont.)
Javascript library 251
projects 381–382
server environment 367

operators 82–84, 431–433
Oracle 12, 14, 15

packages
administrators 483
Day.js package 212
global mode package installation 506
Node Package Manager (see Node

Package Manager (NPM))
package.json 456, 504–506
packageName package 507–508

packet installation in local mode 506–507
parameters

default parameters 473
“Expires” and “Max-Age” parameters 169
“-g” parameter 482
rest parameters 472–473

parseFloat() function 434
parseInt() function 434
parse() method 440
Parsley 206
path property, cookies 168
Pexels Electron app 407; see also

applications
Phaser 231–232
PhoneGap 373, 376
PHP 8, 423; see also languages;

programming languages
backend language 274
vs. JavaScript 252–254

PixiJS 231
Plain Old JavaScript (POJO) model 295
PlayCanvas WebGL 232
Playground app 390, 395–396; see also

applications
plugins 499
Polymer 24, 208
pop() array 434
Popper.js 206–207
preprocessors 483
Prettier 65–66
primitive operators 431–432
primitive types

data 5, 81
of Node.js 311

print() function 443
professional development

designer and developer of web
applications 425

frontend web developer 424–425
professional JavaScript app 375
programming

client-side programming 256
compiler-free programming 34
languages (see languages;

programming languages)
Server-side JS 256
Server-Side Website Programming

356–358
traditional programming 34

programming languages 342, 371, 377; see
also languages; programming

case-sensitive programming language
77

client-optimized programming
language 255

C programming language 420–421
development 372
dynamic programming language 417
extremely responsive 372
frameworks 373
frontend rich platform 372
Ionic framework 373
jQuery 374
native script framework 374
object-oriented programming (OOP)

language 95, 462
offline assistance 373
PhoneGap 373
React Native 374
suitable for developers 373
Tabris.js 374
TypeScript 298

prompt() function 434, 443
Proton Native 241
Prototype.js 194
push() array 434
Python 378, 422–423; see also languages;

programming languages
backend language 274

Index    ◾    519

vs. JavaScript 247–250
libraries 62

querySelector() function 148
quick feature delivery 409
Quokka.js 66

React Developer Tools 280
React.js 17, 18, 20–21, 192–193, 213,

214–215, 239–240, 244, 276–277,
293, 296

AngularJS vs. 295–298
benefits of 279–281
characteristics of 297
drawbacks of 281–282
environment, setup of 286
features of 277–279
frontend frameworks and libraries 273,

363–364
installation methods 286–295
and Svelte 298–301
version of 282–285

React JSX 302; see also React.js
attributes in 303–305
comments in 305–306
nested elements 303
styling in 306–307
use of 302–303

React Native 234, 374, 377–380; see also
React.js; React JSX

framework for mobile app 380–388
learning curves for 399
vs. NativeScript 399–401

React Semantic UI 215
React Virtual DOM 280
reduce() method 440
registry 500
removeAttribute() method 439
removeAttributeNS() method 439
Resign, John 191, 219
resizeBy() function 443
resizeTo() function 443
REST Client 67
rest parameters 472–473; see also

parameters
reusable program 398
reverse() array 434

robust framework 227; see also
frameworks

routing process 296
Ruby on Rails framework 8, 275, 423–424;

see also frameworks
rule of thumb 227
Runtime Environment 357
runtime errors 115–116

SameSite property, cookies 169–170
scalability 242, 345, 360
schema-less database 345; see also

databases
scope of cookies 168–170; see also cookies
Screenfull.js 207–208
scrollBy() function 443
scrollTo() function 443
Search Engine Optimization (SEO) 359
secure cookies 171–172; see also cookies
security 30–31
semicolon character 76; see also characters
Sencha Touch 237
server applications, development of 4
serverless architecture 334–335
Server-side JS 357–358

development 333
processing 334
programming 256
Server-Side Website Programming

356–358
Server-Side Public License (SSPL) 342
Server-Side Rendering (SSR) 217
Server-Side Website Programming

356–358
session cookies 169, 171
setAttributeNode() method 439
setAttributeNodeNS() method 439
setDate() method 441
setInterval() method 442
setTime() method 441
setTimeout() method 442
Setting up Express 309–311
setup program

chocolaty setup program 378–379
for NativeScript 393–395
for React.js 286
for Vue.js 318–321

520    ◾    Index

Several.js 203
shift() array 434
SideBar Enhancements 42
Simform 214
Simple Environment Configuration 360
simple interpolation approach 327
single codebase 235, 409
single-line comment in JavaScript 77–78
Single-Page Applications (SPAs) 215
Skype app 385; see also applications
Slack desktop app 407, 408; see also

applications
slice() array 435
software developers 381; see also

developers
sort() array 435
special character 435; see also characters
special operators 84
SpiderMonkey 357–358
splice() array 434
Spring 275
stack data structure 28
standalone level vs. cross-platform

app 239
standard HTML 5 events 125–128
standard server-oriented development

approach 373
‘static type checking,’ TypeScript 449–452
stop() function 443
strict value 170; see also cookies
strings 102–105, 435–436
Sublime Text 42–43
substantial community support 398–399
Sun Microsystems 418
SuperAgent 161–162
superb JavaScript editor 46
Svelte 221–223

React.js and 298–301
testing library 301

Svelte-flow 222
Svelte Material UI (SMUI) 222
Svelte-written programs 299
switch statement 88–89
synchronous JavaScript 141–142
‘syntactic sugar’ 419
syntax of JavaScript 74–75

errors 115
functions 93

Tabnine 70
Tabris.js 374
task executors 483
templates 314–315

in Vue.js 327–331
Tesla app 386; see also applications
testing 30
text-based editor 44
third-party cookies 171; see also cookies
“this” keyword 464
Three.js 207, 233
3-tier architecture system 366
throw Statement 119–120
Titanium 238
toString() array 435
Traditional Document Object Model 300
Traditional JavaScript frameworks 281; see

also frameworks
traditional programming 34; see also

programming
transform data, JavaScript 439–441
transpilers 302
tsconfig.json 457–458
tuples, for TypeScript language 475–476
two-way communication 322
TypeScript 318, 419, 447–448; see also

JavaScript (JS); NativeScript
ambients in 476–477
arrays in 473–475
classes 462–465
class inheritance 465–466
crash course 454–459
for developers 459–462
foundational elements of 448–449
functions in 471–473
interfaces 466–468
modules in 470–471
namespaces in 470
numbers in 473
objects in 468–469
primary attributes and functions

452–453
programming language 298

Index    ◾    521

static type checker 449–452
tuples for 475–476
type template for 469
union in 476
use of 453–454

TypeScript compiler (tsc) 449, 451, 453,
456–457

type template for TypeScript 469
typical cookie properties 168–170; see also

cookies

Ubuntu’s official repository 61
UI see user interface (UI)
Underscore.js 194–195
Union, in TypeScript 476
unshift() array 435
user interface (UI) 72, 296, 321, 373; see

also interfaces
designer 426
with Electron 413–416
kit 217
performance 31

validate() method 124
validation of JavaScript forms 177; see also

forms
email validation 180–181
example 177–178
number validation 178–179
using an image 179–180

valueof() array 435
Vanilla JS 71–73, 428
Vanilla JS vs. React JS 27

applications 27
convenience for the developer 31–32
development cost 32–33
functionality 27
maintenance 32
performance 28–29
security 30–31
stack data structure 28
testing 30
UI/UX performance 31

variables 78–81, 430
“var” keyword in JavaScript 430
version of React 282–285

Vim 44–45
Virtual DOM 278, 280, 297, 300, 313, 315,

322, 363
Visual Studio (VS) Code 39, 40–41,

45–46, 455
extensions for JavaScript developers

64–70
JavaScript installation in 46–54
Linux, installing on 54–55
Node.js project in 62–64

V8 JavaScript engine 61
Voca 208–209
Vue CLI version 315, 324
Vue.js 17, 21, 212–213,

215–217, 313
advantages of 321–322
vs. AngularJS 316–318
companies 323–324
comparative assessment of frameworks

315–316
environment setup for 318–321
features 313–315
instances in 325–327
popularity 316
template-based method 316
template in 327–331
version 324

Walke, Jordan 192, 214, 296
watchers 315
web

applications (see applications)
cookies (see cookies)
development framework 427
layer 366–367
vs. mobile 258
servers 4
website 33–35, 72

Webpack 289–291, 320–321
Webpack-dev-server 287
WebTorrent desktop app 405–406; see also

mobile applications
wget command 55
WhatsApp Electron app 408; see also

applications
while loop 89–91, 417

522    ◾    Index

Windows
MongoDB database installed on

350–356
Node.js installation on 55–60

WordPress desktop app 406; see also
applications

worker threads module 336

Xcode 395
XMLHttpObject 155–156
XMLHttpRequest 153–156

Zeit 228
zombie cookies 172;

see also cookies

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	About the Editor
	Acknowledgments
	Zeba Academy – Conquering JavaScript
	Chapter 1 Introduction to JavaScript
	In this Chapter
	Client-Side Javascript
	What is the Purpose of Javascript?
	What Makes Javascript so Special?
	What are Javascript's Flaws?
	How Does JavaScript Work on Our Website?

	What Makes Javascript Unique Among Programming Languages?
	Tools for Javascript Development
	What is the Current State of JavaScript?

	Javascript's Evolution
	What is Modern JavaScript and How Can it Be Used?
	What JavaScript Can do for Us
	What Distinguishes JavaScript?
	JavaScript Tendencies
	Standardizing JavaScript
	ECMAScript Version History
	JavaScript vs. Java

	Who Controls Javascript?
	Oracle's Trademark is JavaScript
	Various Variations

	Javascript Framework
	The jQuery and JavaScript Libraries
	What Distinguishes JavaScript Frameworks From Libraries?
	Frontend Frameworks
	React
	Angular
	Vue

	Backend Frameworks
	Express
	Next.JS

	What are the Benefits and Drawbacks of Javascript Frameworks?
	Library vs. Framework
	Model View Controller (MVC)

	Vanilla JS vs. React JS: Which Should We Use for Our Development?
	Vanilla JS vs React JS Functionality
	React JS: What is its Role in the Application's View Layer?
	Why is Vanilla JS Used?
	Stack Data Structure Comparison between React JS vs Vanilla JS
	Performance Comparison between Vanilla JS with React JS
	Future Prospects
	Testing
	Security
	ReactJs and Vanilla js UI/UX Performance
	Convenience for the Developer
	Maintenance
	Development Cost

	5 Reasons Why Our Website Needs Javascript
	Explain How Using JavaScript Will Enhance Our Website
	AJAX Uses to Load Sections of Pages Independently

	Notes

	Chapter 2 Getting Started with JavaScript I
	In this Chapter
	Selecting the Best Javascript Editor From Seven Options
	What is the Difference between a JavaScript Editor and an IDE?
	What Exactly is an Editor?
	IDE Definition
	When Conflicts Arise
	The Top 7 JavaScript Editors
	Time to Select the Best JavaScript Editor
	With a JavaScript Editor, You May Improve the Efficiency of Your Work Environment

	How to Install Javascript in Visual Studio Code
	Installation of Visual Studio Code in Windows
	Setup Visual Studio Code

	Installing Visual Studio Code on Linux
	Installing Visual Studio Code on Debian, Ubuntu, or Linux Mint

	Node.JS Installation on Windows
	Configuring the Node Development Environment
	Node Installation on Windows (Windows 10):

	Node.JS Installation on Linux
	How do we Start and Execute a Node.JS Project in Visual Studio Code?
	Top Visual Studio Code Extensions for Javascript Developers
	JavaScript (ES6) Code Snippets
	ESLint
	Prettier
	Quokka.js
	REST Client
	Debugger for Chrome
	Live Server
	Live Share
	Babel JavaScript VSCode
	JavaScript Booster
	Tabnine

	What Exactly is 'Vanilla Javascript'?
	Why Should We Learn Pure JS?
	Website Performance
	User Interface
	It also Makes Working with Frameworks Simpler

	Vanilla Script's Disadvantages

	Hello World Program in Javascript
	Syntax of Javascript
	Our First Javascript Code
	Line Breaks and Whitespace
	Semicolons are Not Required
	Case Sensitivity

	Comment in Javascript
	Benefits of JavaScript Comments
	JavaScript Comment Types
	Single-Line Comment in JavaScript

	Multiline Comment in JavaScript

	Variable in Javascript
	JavaScript Variables that are Correct
	JavaScript Variables that are Not Correct
	Variable in JavaScript Example
	Local Variable in JavaScript
	The Global Variable in JavaScript
	Declaring a Global Variable in JavaScript within a Function
	Internals of Global Variable

	Data Types in Javascript
	Primitive Data Types in JavaScript

	Non-Primitive Data Types in Javascript
	Operators in Javascript
	Arithmetic Operators
	Comparison Operators
	Bitwise Operators
	Logical Operators
	Assignment Operators
	Special Operators

	If-Else Statements in Javascript
	If Statement
	If...Else Statement
	If...Else if Statement

	Switch in Javascript
	Loops in Javascript
	For Loop
	While Loop
	Do-While Loop
	For-in Loop

	Functions in Javascript
	The Benefit of the JavaScript Function
	Syntax of JavaScript Functions
	Function Arguments
	Function with Return Value
	Function Object
	Parameter
	Function Methods
	Examples of JavaScript Function Objects

	Objects in Javascript
	Object Creation in JavaScript
	Creating a Method in a JavaScript Object
	Object Methods in JavaScript

	Array in Javascript
	Array Methods in JavaScript

	String in Javascript
	String Methods in JavaScript

	Date Object in Javascript
	Constructor
	Date Methods in JavaScript
	Date Example in JavaScript
	Example of JavaScript Current Time
	Example of a JavaScript Digital Clock

	Math in Javascript
	Math Methods
	Math.sqrt(n)
	Math.random()
	Math.pow(m, n)
	Math.floor(n)
	Math.ceil(n)
	Math.round(n)
	Math.abs(n)

	Number Object in Javascript
	Number Constants in JavaScript
	Number Methods in JavaScript

	Javascript Boolean
	Boolean Properties
	Boolean Methods

	Errors and Exceptions in Javascript
	What Exactly is Exception Handling?
	Errors in Syntax
	Runtime Errors
	Logical Errors
	Statement of Try...Catch...Finally
	The Throw Statement
	The Onerror() Function

	Events in Javascript
	What Exactly is an Event?
	onclick Event Type
	onsubmit Event Type
	onmouseover and onmouseout
	Standard HTML 5 Events

	Notes

	Chapter 3 Getting Started with JavaScript II
	In this Chapter
	How Can we Build an Asynchronous Node.JS Function?
	How do we Write an Asynchronous Function in Javascript?
	Waiting for Multiple Promises
	Synchronous and Asynchronous in JavaScript
	Synchronous JavaScript
	Asynchronous JavaScript

	Explain the Difference between Asynchronous and Deferred JavaScript
	Asynchronous
	Deferred
	Asynchronous vs Deferred

	Document Object Model
	Document Object Properties
	Document Object Methods
	Document Object Accessing Field Value

	Method Document.Getelementbyid() in Javascript
	Getelementsbyclassname()
	Method getElementsByClassName() Example
	Distinction between the Methods getElementsByClassName(), querySelector(), and querySelectorAll()

	Method Document.Getelementsbyname() in Javascript
	Method Document.Getelementsbytagname() in Javascript
	The Innerhtml in Javascript
	InnerHTML Property Example
	Example of a Comment Form Using innerHTML

	The Innertext in Javascript
	Example of JavaScript innerText

	5 Methods for Making http Requests in Javascript
	XMLHttpRequest
	Advantages of XMLHttpRequest
	Disadvantages of XMLHttpRequest

	Fetch
	Advantages of Fetch
	Disadvantages of Fetch

	Axios
	Advantages Axios
	Disadvantages Axios

	SuperAgent
	Advantages of SuperAgent
	Disadvantages of SuperAgent

	Ky
	Advantages of Ky
	Disadvantages of Ky

	HTTP Cookies
	Utilization of Cookies
	How Do Cookies Work?
	Cookies in JavaScript
	Create Cookies
	Client Side
	Web Server Side

	Properties of Cookies
	Scope of Cookies

	Varieties of Cookie
	First-Party Cookies
	Third-Party Cookies
	Session Cookies
	Secure Cookies
	Zombie Cookies

	Form in Javascript
	Overview to Forms
	Referencing Forms
	Submitting Form
	Login Form
	SignUp Form

	Validation of Javascript Forms
	Example of Form Validation in JavaScript
	Password Retype Validation in JavaScript
	Number Validation in JavaScript
	Validation of JavaScript Using an Image
	Email Validation in JavaScript

	Working with Javascript APIS
	The Most Well-Known Javascript Libraries
	jQuery
	Features
	Use Cases

	React.js
	Features
	Use Cases

	D3.js
	Features
	Use Cases

	Underscore.js
	Features
	Use Cases

	Lodash
	Features
	Use Cases

	Algolia Places
	Features
	Use Cases

	Anime.js
	Features
	Use Cases

	Animate On Scroll (AOS)
	Features
	Use Cases

	Bideo.js
	Features
	Use Cases

	Chart.js
	Features
	Use Cases

	Cleave.js
	Features
	Use Cases

	Choreographer.js
	Features
	Use Cases

	Glimmer
	Features
	Use Cases

	Granim.js
	Features
	Use Cases

	fullPage.js
	Features
	Use Cases

	Leaflet
	Features
	Case Studies

	Multiple.js
	Features
	Use Cases

	Moment.js
	Features
	Use Cases

	Masonry
	Features
	Use Cases

	Omniscient
	Features
	Use Cases

	Parsley
	Features
	Use Cases

	Popper.js
	Features
	Use Cases

	Three.js
	Features
	Use Cases

	Screenfull.js
	Features
	Use Cases

	Polymer
	Features
	Use Cases

	Voca
	Features
	Use Cases

	Notes

	Chapter 4 The Clearer Picture
	In this Chapter
	A Javascript Framework is What?
	What Distinguishes a JavaScript Framework from a JavaScript Library?
	Use a JavaScript Framework, But Why?
	Libraries and Frameworks for JavaScript

	Top 7 Javascript Frontend Frameworks
	1. React
	How it Operates
	Popular React Components
	Advantages
	Disadvantages
	When Should We Utilize React?

	2. Vue.js
	How it Operates
	Real-Life Examples
	Popular Vue.js Components
	Advantages
	Disadvantages
	When Should We Utilize Vue.js?

	3. Angular
	How it Operates
	Real-Life Examples
	Popular Angular Components
	Advantages
	Disadvantages
	When Should We Utilize Angular?

	4. jQuery
	How it Operates
	Real-Life Examples
	Popular jQuery Components
	Advantages
	Disadvantages
	When Should We Utilize jQuery?

	5. Svelte
	How it Operates
	Real-Life Examples
	Popular Svelte Components
	Advantages
	Disadvantages
	When Should We Utilize Svelte?

	6. Ember
	How it Operates
	Real-Life Examples
	Popular Ember Components
	Advantages
	Disadvantages
	When Should We Utilize Ember?

	7. Backbone.js
	How it Operates
	Real-Life Examples
	Advantages
	Disadvantages
	When Should We Utilize Backbone.js?

	How Can We Choose the Ideal JavaScript Framework for Our Next Project?
	Team Proficiency
	Backward Compatibility
	Complexity
	Size and Functionality

	5 Backend JavaScript Frameworks

	The Eight Top Javascript Game Engines
	10 Major Javascript Frameworks for Developing Mobile Apps
	1. React Native
	In What Ways is React Native Superior?

	2. NativeScript
	Why is NativeScript Used?

	3. Ionic
	Why is Ionic Used?

	4. Apache Cordova
	Why Was Cordova Chosen?

	5. OnSenUI
	Why Use OnSen UI?

	6. jQuery Mobile
	7. Mobile Angular UI
	8. Sencha Touch
	9. Titanium
	10. Meteor

	The Best JS Frameworks for Desktop Applications
	Are Cross-Platform Apps Interchangeable with Desktop Programs?
	The Advantages and Disadvantages of a Standalone Level vs a Cross-Platform App
	Are Desktop Apps Supported by React and NodeJS?
	Top Five JS Frameworks for Desktop Applications (Desktop Apps)
	1. Electron
	2. NodeGUI
	3. Proton Native
	4. NW.js
	5. AppJS

	How to Select The Best Javascript Framework for Our Project
	Development Speed and Simplicity of Use, as well as Project Support
	Trends
	Scalability and Mobility
	The Frequency of Updates
	Which JavaScript Framework Should We Start With?
	React.js
	Node.js

	Java vs. Javascript
	Python vs. Javascript
	What is JavaScript?
	What is Python?
	Differences of Most Significance
	Features of JavaScript
	Features of Python
	Comparison between Python vs Java Script

	Jquery vs. Javascript
	What Exactly is jQuery?
	The Distinction between jQuery and JavaScript

	Javascript vs. PHP
	What Exactly is PHP?
	The Distinction between JavaScript and PHP

	Dart vs. Javascript
	What Exactly is Dart?
	Benefits and Drawbacks of Dart
	Advantages
	Drawbacks

	What is JavaScript?
	Advantages
	Drawbacks

	Important Distinction between Dart and JavaScript
	Simplicity of Use
	Speed
	Type Security
	Popularity
	The Learning Curve
	Web vs. Mobile
	Frontend vs. Backend
	Commercial Usage

	Javascript vs. Angular JS
	What is JavaScript?
	JavaScript Features

	What is Angular Js?
	Angular JS features

	Major Distinctions between JavaScript and Angular JS
	Comparative Analysis of JavaScript and Angular JS

	Javascript vs. Node.JS
	What is JavaScript?
	JavaScript's Benefits and Drawbacks are Discussed
	Benefits
	Drawbacks

	What is Node.js?
	How Does Node.js Work, and What are its Benefits and Drawbacks?
	Benefits
	Drawbacks

	Comparing JavaScript with Node.js: Key Distinctions
	In-Depth Analysis of JavaScript vs. Node JS

	Notes

	Chapter 5 Frontend Development
	In this Chapter
	Frontend vs Backend
	Frontend Development
	Frontend Languages
	Frontend Frameworks and Libraries

	Backend Development
	Backend Languages
	Backend Frameworks
	Difference between Frontend and Backend Development

	ReactJS
	What does the 'React' Mean?
	The Question is, 'Why React?'
	React Features
	JSX
	Components
	Data Binding, One Way Only
	Virtual DOM
	Simplicity
	Performance

	Benefits and Drawbacks of ReactJS
	Benefits
	Drawbacks

	Version of React

	Setup of the React Environment
	ReactJS Installation Methods
	1. By Use of the npm Command
	Install NPM and NodeJS
	Get React and React DOM Installed
	Install Webpack
	Install Babel
	Creation of Files

	2. Set React Application Compiler, Loader, and Server
	Configure Webpack
	HTML Webpack Template for the index.html File
	App.jsx and main.js
	Creation of .babelrc file
	Running Server
	Create the Bundle

	3. Use the Command create-react-app
	Install NodeJS and NPM
	Installation of React
	Develop a New React Project
	App.js

	Running Server

	Comparison Between AngularJS vs ReactJS
	AngularJS
	Characteristics of AngularJS

	ReactJS
	Characteristics of ReactJS

	AngularJS vs. ReactJS

	Comparison Between ReactJS and Svelte
	What is Svelte?
	When Need One Use Svelte?
	Which Companies Utilize Svelte?

	What is React?
	When Should React to Be Used?
	Which Companies Utilize React?

	React vs Svelte: Which is Superior?
	Performance
	Bundle Size
	Testing
	Community Assistance

	Who Succeeds?

	React JSX
	Why Use JSX?
	JSX Nested Elements
	App.JSX

	Attributes in JSX
	Comments in JSX
	Styling in JSX

	Express.Js
	What is Express.Js
	Why Employ Express?
	How Does Express Appear?
	Basic_express.js

	Prerequisite
	Audience
	Problem
	Benefits of Express.js

	Wsetting Up Express
	The Early Stages
	Its Evolution

	Basics of Node.Js
	Types of Primitive
	Loose Typing
	Object Literal
	Functions
	Buffer
	Process Object
	Defaults to Local
	Utilize Global Scope

	VueJS
	What is VueJS?
	Features
	Comparative Assessment of Other Frameworks
	VueJS vs React

	VueJS vs Angular
	Similarities
	Complexity
	Performance
	Popularity
	Dependencies
	Flexibility
	Reverse Compatibility
	Typescript

	Environment Setup For VueJS
	Directly Use the <script> Tag in an HTML File
	By Using the CDN
	By Using the NPM
	By Using the CLI Command Line
	Creating a Project with Webpack
	Start the Project, Then the Server

	Understanding Vue.JS
	Advantages of Using Vue.js
	Extremely Small in Size
	Simple to Comprehend and Code
	Integration with Existing Applications is Simple
	Nature is Adaptable
	Components
	Documentation that is Simple, Thorough, and Detailed
	DOM Virtualization
	Two-Way Communication

	Companies that Use Vue.js
	Examine the Vue.js Version We Have Installed

	Instances in VueJS
	Example Explanation

	Template in Vue.JS
	Attributes Should Be Added to HTML Elements

	Notes

	Chapter 6 Backend Development
	In this Chapter
	What is Backend Development?
	Node.JS
	What is Node.js, and How Does it Work?
	Why Should We Use Node.js?
	Fast, Lightweight Applications with Real-Time Communication
	Serverless and Microservice Design
	The Internet of Things
	Processing of Audio/Video
	Quick Development
	Code Integration with C++

	The Downsides of Node.js
	Heavy Calculation Activities Cause Performance Constraints
	Callback Hell is a Problem
	Tooling Immaturity
	There is a Growing Need for Skilled Experts

	Where Can We Use Node.js?
	Where Should We Not Use Node.js?

	Setup of the Node.Js Environment
	Text Editor
	Node.js Runtime
	Get the Node.js Archive
	Installation on SunOS, Mac OS X, Linux, and Unix
	Setup on a Windows Computer
	Executing a File Will Verify Installation

	First Application of Node.JS
	Creation of Node.js Application

	MongoDB
	What is MongoDB
	How does it Work?
	MongoDB Data Modeling
	What Distinguishes MongoDB from RDBMS?
	MongoDB Features Include
	MongoDB Has the Following Advantages
	MongoDB Disadvantages

	Getting Started with MongoDB
	Terminology
	How to Get Started
	Queries

	How can Mongodb be Installed on Windows?
	Run Mongo Shell

	Server-Side JS
	Server-Side Website Programming
	Engines that Run JavaScript
	Runtime Environment
	Uses of Server-Side JavaScript

	Mern Stack
	Acquainting Oneself with MERN Stack Components
	1. MongoDB: Cross-Platform Document-Oriented Database

	Why Should We Create Mobile and Web Applications with MERN Stack?
	Why Employ MongoDB?
	2. Express: Backend Framework

	Why Use Express?
	3. React: Frontend Library

	Why Use React?
	4. Node.js: JS Runtime Environment

	Why Use Node.JS?
	What is the MERN Stack's Structural Makeup and How Does it Operate?
	Web or Frontend Layer
	Server or Middle Tier
	Database as Backend Tier

	Mern vs Mean
	What are MERN Stack Developers' Futures?

	Notes

	Chapter 7 JavaScript for Mobile Usage
	In this Chapter
	Why is Javascript Regarded as One of the Finest Programming Languages for Mobile Apps in 2022?
	JavaScript's Importance in the Development of Mobile Applications
	Extremely Responsive
	Frontend Rich Platform
	Offline Assistance
	Suitable for All Kinds of Developers
	JavaScript Frameworks for Mobile Apps
	PhoneGap
	Ionic
	React Native
	jQuery
	Native Language
	Tabris.js

	Should We use Javascript when Developing for Mobile?
	Key Attributes of JavaScript
	Native React
	JQuery
	PhoneGap
	Ionic

	Benefits of Using Javascript when Developing Mobile Apps
	React Native
	Setting Up a React Native Environment
	How to Install React Native Environment in Steps
	Install Android Studio
	Set Up the Android SDK and the Java JDK

	Future Significance of React Native in the Development of Mobile Apps
	Why is React Native So Popular?
	Building React Native Apps
	Benefits of React Native App Development
	Cons of React Native

	Create a Mobile Application Using React Native
	The Leading Cross-Platform Framework, React Native
	Why Should We Use React Native When Developing Mobile Apps?
	Saves Both Money and Time
	High Quality
	Over-the-Air Updates
	The Main Advantage is Open-Source Software

	Nativescript
	What is NativeScript?
	Why NativeScript is Preferred for the Creation of Android Applications
	What is NativeScript? What are its Main Advantages and Disadvantages?
	Advantages of Native Apps
	Limitations with Native Apps

	Setups for NativeScript Environment
	Prerequisites
	Verify Node.js
	CLI Setup
	Setupcli
	Cli

	Setting Up the NativeScript Playground Application
	Setup for Android and iOS

	Top NativeScript Usage Cases
	Key Benefits of Developing Android Apps Using NativeScript
	Performance of Native Apps
	Reusable Program
	The Very Low Learning Curve
	Substantial Community Support

	Comparison between Nativescript and React Native
	Performance of NativeScript and React Native
	Learning Curves for NativeScript and React Native
	Development Community for React Native vs NativeScript
	Popularity of NativeScript vs React Native
	Which Should We Use between React Native and NativeScript?
	Select NativeScript if
	Select React Native if

	Notes

	Chapter 8 JavaScript for Desktop Apps
	In this Chapter
	How can we Use Desktop Applications?
	What is an Electron?
	Installation

	What is an Electron?
	1. WebTorrent Desktop Application
	Why is Electron Used by WebTorrent for Desktop?

	2. WordPress Desktop Application
	Why does the WordPress Desktop App Make Use of Electron?

	3. Ghost Electron Application
	Why does the Ghost Desktop App Make Use of Electron?

	4. The Electron App Beaker Browser
	Why is Electron Used by Beaker Browser?

	5. Pexels Electron App
	Why does the Pexels Desktop App Make Use of Electron?

	6. Slack Desktop Application
	Why does the Slack Desktop App Make Use of Electron?

	7. WhatsApp Electron Application
	Why does the WhatsApp Desktop App Make Use of Electron?

	Why do so Many Businesses Choose Electron to Create Cross-Platform Desktop Apps?
	What is the Significance of This?

	Benefits of Electron
	Single Codebase
	Quick Feature Delivery
	Framework Maturity
	Electron Has Several Unresolved Concerns

	Alternatives for Electron
	Drawbacks of Electron.JS Framework
	Excessive Volume
	Electron.js Framework Consumes a Lot of Resources
	Specific Customer Needs

	Significance of Using the Electron.JS Framework
	Distinction Between the Main and Renderer Processes
	Hello Everyone Code in Electron
	How does this App Function?
	Building UIs with Electron
	Notes

	Chapter 9 Appraisal
	What Exactly is Javascript?
	Javascript's Past and its Future
	What Makes Javascript Unique?
	Languages that are "Superior" To JavaScript
	In Comparison to Other Languages, JavaScript
	JavaScript Contrasted with C
	The Contrast between Java and JavaScript
	When Compared to C#, JavaScript is
	JavaScript Compared to the Programming Language Python
	When Compared to PHP, JavaScript is
	JavaScript Compared to the Programming Language Ruby

	Opportunities for Professional Development in JavaScript
	Frontend Web Developer
	Designer and Developer of Web Applications

	Developer Skilled in JavaScript
	UX/UI Designer
	DevOps Engineer
	Developer Who Works on All Layers
	What is the Most Appropriate Framework for JavaScript?
	Vanilla js
	Why do we Believe that Frameworks Written in JavaScript are so Awesome?

	Appendix I: Javascript Cheat Sheet
	Appendix II: Brief Guide to Typescript
	Appendix III: Handy Javascript Tools
	Index

