THE PYTHON SERIE

LEARNING
PROFESSIONAL PYTHON

VOLUME 1: THE BASICS

USHARANI BHIMAVARAPU
JUDE D. HEMANTH

CRC Press

Taylor & Francis Group
A CHAPMAN & HALL BOOK

Learning Professional

Python

Volume 1 of Learning Professional Python is a resource for students who
want to learn Python even if they don’t have any programming knowledge
and for teachers who want a comprehensive introduction to Python to use
with their students. This book helps the students achieve their dream job
in the IT Industry and teaches the students in an easy, understandable
manner while strengthening coding skills.

Learning Professional Python: Volume 1 Objectives

+ Become familiar with the features of Python programming language
« Introduce the object-oriented programming concepts

+ Discover how to write Python code by following the object-oriented
programming concepts

» Become comfortable with concepts such as classes, objects, inheritance,
dynamic dispatch, interfaces, and packages

o Learn the Python generics and collections
 Develop exception handling and the multithreaded applications

« Design graphical user interface (GUI) applications

CHAPMAN & HALL/CRC THE PYTHON SERIES

About the Series

Python has been ranked as the most popular programming language, and
it is widely used in education and industry. This book series will offer a
wide range of books on Python for students and professionals. Titles in the
series will help users learn the language at an introductory and advanced
level, and explore its many applications in data science, Al, and machine
learning. Series titles can also be supplemented with Jupyter notebooks.

Image Processing and Acquisition using Python, Second Edition
Ravishankar Chityala, Sridevi Pudipeddi

Python Packages
Tomas Beuzen and Tiffany-Anne Timbers

Statistics and Data Visualisation with Python
Jestis Rogel-Salazar

Introduction to Python for Humanists
William J.B. Mattingly

Python for Scientific Computation and Artificial Intelligence
Stephen Lynch

Learning Professional Python: Volume 1: The Basics
Usharani Bhimavarapu and Jude D. Hemanth

Learning Professional Python: Volume 2: Advanced
Usharani Bhimavarapu and Jude D. Hemanth

For more information about this series please visit: www.crcpress.com/
Chapman - HallCRC/book-series/PYTH

http://www.crcpress.com/Chapman%20%E2%80%93%20HallCRC/book-series/PYTH
http://www.crcpress.com/Chapman%20%E2%80%93%20HallCRC/book-series/PYTH

Learning Professional
Python

Volume 1: The Basics

Usharani Bhimavarapu
and Jude D. Hemanth

CRC Press
Taylor &Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK

Cover Image Credit: Shutterstock.com

First edition published 2024
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton, FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC
© 2024 Usharani Bhimavarapu and Jude D. Hemanth

Reasonable efforts have been made to publish reliable data and
information, but the author and publisher cannot assume responsibility
for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of
all material reproduced in this publication and apologize to copyright
holders if permission to publish in this form has not been obtained. If
any copyright material has not been acknowledged please write and let us
know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be
reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including
photocopying, microfilming, and recording, or in any information storage
or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this
work, access www.copyright.com or contact the Copyright Clearance
Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. For works that are not available on CCC please contact
mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or
registered trademarks and are used only for identification and explanation
without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Bhimavarapu, Usharani, author. | Hemanth, D. Jude, author.

Title: Learning professional Python / Usharani Bhimavarapu, D. Jude Hemanth.

Description: First edition. | Boca Raton : CRC Press, 2024. | Includes
bibliographical references and index.

Identifiers: LCCN 2023007977 | ISBN 9781032539256 (volume 1 ; hbk) |
ISBN 9781032534237 (volume 1 ; pbk) | ISBN 9781003414322
(volume 1 ; ebk) | ISBN 9781032611761 (volume 2 ; hbk) | ISBN
9781032611709 (volume 2 ; pbk) | ISBN 9781003462392 (volume 2 ; ebk)

Subjects: LCSH: Python (Computer program language) | Computer
programming.

Classification: LCC QA76.73.P98 B485 2024 | DDC 005.13/3—dc23/eng/
20230508

LC record available at https://lccn.loc.gov/2023007977

ISBN: 978-1-032-53925-6 (hbk)
ISBN: 978-1-032-53423-7 (pbk)
ISBN: 978-1-003-41432-2 (ebk)

DOI: 10.1201/9781003414322

Typeset in Minion
by Apex CoVantage, LLC

http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003414322
https://lccn.loc.gov
http://Shutterstock.com

Contents

Preface, xi

Author Biographies, xiii

CHAPTER T = Python Basics

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
19
1.10
1.1
1.12
1.13
1.14
1.15
1.16
117
1.18
1.19

HISTORY OF PYTHON

ADVANTAGES OF PYTHON
CHARACTERISTICS OF PYTHON
APPLICATIONS OF PYTHON

PYTHON VERSIONS

PYTHON IDENTIFIERS

RESERVED WORDS

PRINT () FUNCTION

LINES AND INDENTATION

MULTILINE STATEMENTS

QUOTATION IN PYTHON

COMMENTS IN PYTHON

MULTIPLE STATEMENTS ON A SINGLE LINE
PYTHON VARIABLES

NAMING CONVENTIONS TO VARIABLES
ASSIGNING VALUES TO VARIABLES
MULTIPLE ASSIGNMENT

NONE VARIABLE

DATA TYPES

© 0 0 N N A W W W N DN = ==

—_ e e e
w W N = O O

vi m Contents

1.20 TYPE CONVERSION 14
1.20.1 Implicit Conversion 14
1.20.2 Explicit Conversion 15

1.21 LITERALS 16

1.22 BINARY NUMBER SYSTEM 17

EXERCISE 17

CHAPTER 2 = Python Operators 19

2.1 OPERATORS INTRODUCTION 19
2.1.1 Unary Operators 19
2.1.2 Binary Operator 19
2.1.3 Ternary Operator 19

2.2 BINARY OPERATORS 20
2.2.1 Arithmetic Operators 20
2.2.2 Shortened Operators 22

2.3 STRING OPERATORS 26

2.4 OPERATOR PRECEDENCE 27

2.5 EXPRESSION EVALUATION 28

2.6 INPUT () FUNCTION 29

2.7 LIBRARIES 33
2.71 Math and CMath Libraries 33
2.7.2 SciPy Library 36

EXERCISE 37

CHAPTER 3 = Decision-Making and Conditionals 41

3.1 INTRODUCTION 41

3.2 IF STATEMENT 41

3.3 IF-ELSE STATEMENT 43

3.4 NESTED-IF-ELSE STATEMENT 44

3.5 ELIF STATEMENT 46

3.6 WHILE 48

3.7 FOR LOOP 49

3.8 NESTED FOR LOOPS 52

Contents ® vii

3.9 NESTED WHILE 54
3.10 USING ELSE STATEMENT WITH FOR LOOP 55
3.11 THE PASS STATEMENT IN FOR LOOP 56
3.12 BREAK STATEMENT 56
3.13 CONTINUE 58
3.14 WHILE LOOP AND THE ELSE BRANCH 60
EXERCISE 74
CHAPTER 4 = Strings 75
4.1 STRING CREATION 75
4.2 ACCESSING VALUES TO A STRING 76
4.3 MODIFY EXISTING STRING 78
4.4 ESCAPE CHARACTERS 79
4.5 STRING SPECIAL CHARACTERS 80
4.6 STRING FORMATTING OPERATOR 81
4.7 TRIPLE QUOTES 84
4.8 UNICODE STRINGS 84
4.9 BUILT-IN STRING METHODS 34
410 DELETING STRING 87
EXERCISE 88
CHAPTER 5 = Lists 91
5.1 INTRODUCTION 91
5.2 CHARACTERISTICS OF LISTS 92
5.3 DECISION-MAKING IN LISTS 93
5.3.1 Range 94

54 ACCESSING VALUES IN THE LIST 95
5.5 UPDATING LIST 99
5.6 DELETE LIST ELEMENTS 100
5.7 SORTING 100
5.8 COPYING 101
5.9 OPERATORS ON LISTS 102

5.10 INDEXING, SLICING

104

viii m Contents

511 SEARCHING IN LIST 105
5.12 NESTED LIST 106
5.13 LIST COMPREHENSION 108
5.14 MATRIX REPRESENTATION 109
EXERCISE 126
CHAPTER 6 = Tuple 127
6.1 TUPLE CREATION 127
6.2 ACCESSING VALUES IN TUPLES 129
6.3 UPDATING TUPLES 132
6.4 DELETE TUPLE ELEMENTS 133
6.5 OPERATIONS ON TUPLES 134
6.6 UNPACKING OF TUPLES 138
6.7 INDEXING, SLICING ON TUPLES 140
EXERCISE 142
CHAPTER 7 = Sets 143
71 INTRODUCTION 143
7.2 ACCESS SET ELEMENTS 145
7.3 ADDING ELEMENTS TO THE SET 145
74 REMOVE AN ELEMENT FROM THE SET 146
7.5 ~DELETE THE SET 146
76 PYTHON SET OPERATIONS 147
7.7 SET MEMBERSHIP OPERATORS 148
7.8 SET PREDEFINED METHODS 149
7.9 FROZEN SET 152
710 FROZEN SET OPERATIONS 153
711 FROZEN SET PREDEFINED OPERATIONS 153
EXERCISE 156
CHAPTER 8 = Dictionary 157
8.1 ACCESSING THE ELEMENTS OF THE DICTIONARY 163
8.2 COPYING THE DICTIONARY 165

Contents ® ix

8.3 NESTED DICTIONARY 166
8.4 CHANGING THE DICTIONARY VALUES 167
8.5 ADDING THE ELEMENTS TO THE DICTIONARY 168
8.6 REMOVING THE ELEMENTS OF THE DICTIONARY 168
8.7 DICTIONARY COMPREHENSION 169
8.8 OPERATORS IN DICTIONARY 172
EXERCISE 173
CHAPTER 9« Modules and Packages 175
9.1 PYTHON IMPORT STATEMENT 175
9.2 PYTHON FROM ... IMPORT STATEMENT 175
9.3 PACKAGE 183
EXERCISE 187
CHAPTER 10 = Functions 189
10.1 DEFINING A FUNCTION 189
10.2 PASS BY REFERENCE 192
10.3 FUNCTION ARGUMENTS 193
10.3.1 Required Arguments 194

10.3.2 Keyword Arguments 194

10.3.3 Default Arguments 197

10.3.4 Variable Length Arguments 198

10.4 ANONYMOUS FUNCTIONS 199
10.5 RETURN STATEMENT 200
10.6 FUNCTION VARIABLE SCOPE 202
10.7 PASSING LIST TO FUNCTION 206
10.8 RETURNING LIST FROM THE FUNCTION 208
10.9 RECURSION 209
EXERCISE 21
CHaPTER 11« Date and Time 213
11.1 TIME MODULE 213
11.2 CALENDAR 214

x m Contents

11.3 TIME MODULE 214
11.4 CALENDAR MODULE 215
11.5 THE DATETIME MODULE 217
11.6 THE PYTZ MODULE 217
11.7 THE DATEUTIL MODULE 218
EXERCISE 238
CHAPTER 12 = Regular Expression 241
12.1 THE RE MODULE 241
12.2 PYTHON MATCH FUNCTION 243
12.3 THE SEARCH FUNCTIONS 244
12.4 PYTHON MATCH FUNCTION VS SEARCH
FUNCTION 246
12.5 THE COMPILE FUNCTION 248
12.6 THE FINDALL () FUNCTION 249
12.7 THE SPLIT () FUNCTION 251
12.8 THE SUB () FUNCTION 252
12.9 THE RE.ESCAPE () FUNCTION 254
EXERCISE 254

INDEX, 255

Preface

ython is a general-purpose interpreted programming language used

for deep learning, machine learning, and complex data analysis.
Python is a perfect language for beginners as it is easy to learn and under-
stand. This book is intended to teach the reader how to program in Python.
The book aims to get you up to speed fast enough and have you writing
real Python programs in no time at all. It assumes no previous exposure
to the Python language and is suited to both beginners and experienced
programmers. This book gives a comprehensive, in-depth introduction to
the core Python language.

This book helps you in gaining a quick grasp of the fundamentals of
Python programming and working with built-in functions. The book then
moves to help you in exception handling, data wrangling, databases with
Python, regular expressions, NumPy arrays, data frames and plotting. The
Python Programming culminates with how you can continue learning
Python after reading this book and leaves you with a problem to solve,
testing your skills even at the last step.

The book contains approximately 500 tested programs, and all these
programs have been tested using the IDE Anaconda, Google colaboratory,
and Python online compilers compatible to the Windows operating sys-
tem and discussed the appropriate nature of the output. The book further
mentions a summary of the technical aspects of interviewing tips on nego-
tiating the best offer and guiding the best way.

This book is for data analysts, IT developers, and anyone looking to get
started with or transition to the field of software or refresh their knowledge
of Python programming. This book will also be useful for students plan-
ning to build a career in data engineering or IT professionals preparing for
a transition. No previous knowledge of data engineering is required. The
book aims to get you up to speed fast enough and have you writing real
Python programs in no time at all.

xii ®m Preface

It contains 12 chapters, and at the end of every chapter, practice exer-
cises are given to enable the learners to review the knowledge gained. Each
chapter starts with a brief introduction, top tips, and a review of the essen-
tial library methods, finally followed by broad and thought-provoking
problems.

We are thankful to Taylor and Francis Publications for undertaking the
publication of this book and supporting us in this endeavor. Any sugges-
tions for the improvement of the book will be thankfully acknowledged
and incorporated in the next edition.

Dr. Usharani Bhimavarapu
Dr. Jude D. Hemanth

Author Biographies

Usharani Bhimavarapu is working as an assistant
professor in the Computer Science and Engineering
Department at Koneru Lakshmaiah Education
Foundation at Vaddeswaram, Andhra Pradesh,
India. She has been teaching for the last 14 years with
emphasis on data mining, machine learning, and data

structure. She communicated more than 40 research
papers in SCI, SCIE, and Scopus indexed journals. She
has authored 12 books in programming languages like
CPP, Java, Python, HTML, CSS, and so on.

Dr. Jude D. Hemanth received his BE degree in ECE
& from Bharathiar University in 2002, ME degree in
B communication systems from Anna University in
2006, and PhD from Karunya University in 2013. His
research areas include computational intelligence and
image processing. He has authored more than 230
research papers in reputed SCIE indexed international
journals and Scopus indexed international confer-
ences. His cumulative impact factor is more than 350.
He has published 37 edited books with reputed publishers such as Elsevier,
Springer, and IET.

He has been serving as an associate editor of SCIE indexed interna-
tional journals such as IEEE Journal of Biomedical and Health Informatics
(IEEE-JBHI), IEEE Transactions on Intelligent Transportation Systems, Soft
Computing (Springer), Earth Science Informatics (Springer), IET Image
Processing, Heliyon (Elsevier), Mathematical Problems in Engineering,
Peer] Computer Science, PLOS One, and Dyna (Spain). He also holds the
associate editor/guest editor position with many Scopus journals. He

xiii

xiv m Author Biographies

has been serving as the series editor of Biomedical Engineering series
(Elsevier), editorial board member of ASTI series (Springer), and Robotics
and Healthcare series (CRC Press).

He has received a project grant of 35,000 UK pounds from the UK
government (GCRF scheme) with collaborators from the University of
Westminster, UK. He has also completed two funded research proj-
ects from CSIR and DST, the government of India. He also serves as the
research scientist of Computational Intelligence and Information Systems
(CI2S) Lab, Argentina; LAPISCO Research Lab, Brazil; RIADI Lab,
Tunisia; Research Centre for Applied Intelligence, University of Craiova,
Romania; and eHealth and Telemedicine Group, University of Valladolid,
Spain.

He is the NVIDIA university ambassador and NVIDIA certified instruc-
tor for deep learning courses. His name was featured in the “Top 2% Lead-
ing World Scientists” [2021, 2022] list released by Stanford University, USA.
He is an international accreditation member for higher education insti-
tutions in Romania [ARACIS] and Slovenia [SQAA] under the European
Commission. Currently, he is working as a professor in the Department of
ECE, Karunya University, Coimbatore, India.

CHAPTER 1

Python Basics

Python is a regular general-purpose, high-level, and object-oriented
programming language. Python is an interpreted scripting language.
Python is a simple-to-understand and multipurpose scripting language.
Python is a multipurpose programming language. It can be used with
web, enterprise applications. Python makes the development and the
debugging fast.

1.1 HISTORY OF PYTHON

Python was created by Guido Van Rossum in the early nineteenth cen-
tury at the national research institute for mathematics and computer
science in the Netherlands. Python is obtained from several additional
programming languages like ABC, Modula-3, C, CPP, Smalltalk, Unix,
and scripting languages. Python is accessible under the GNU public
license (GPU)

1.2 ADVANTAGES OF PYTHON

1. Python is interpreted — There is no need to compile the python pro-
gram before executing it.

2. Python is interactive — The developer can relate to the interpreter
immediately to write the python programs.

3. Python is object oriented — Python maintains an object-oriented pro-
gramming concept that encapsulates the code contained by objects.

DOI: 10.1201/9781003414322-1 1

https://doi.org/10.1201/9781003414322-1

2 m Learning Professional Python

1.3 CHARACTERISTICS OF PYTHON

The important characteristics of Python programming:

1. Python provides a high-level dynamic data type and strengthens
dynamic type checking.

2. Python is opensource; it can contribute to the development code.
3. Python is as understandable as plain English.

4. Python supports functional, structure, as well as object-oriented
programming methods.

5. Python supports automatic garbage collection.
6. Python source code can be converted to the byte code.

7. Easy to learn — Python has a straightforward structure and obviously
defined syntax. It is simple to read, easy to provide, and cross-platform
compatible.

8. Easy to teach - Workload is smaller when compared to other pro-
gramming languages techniques.

9. Easyto use — Python code is faster than other programming languages.

10. Easy to understand - Easier to understand than other programming
languages.

11. Easy to obtain — Python is free, open source, and multiplatform.

1.4 APPLICATIONS OF PYTHON

1. Portable - Python can run on all platforms, like Unix, Windows, and
Macintosh.

2. Extendable - The developer can combine low-level modules to the
Python interpreter. These modules allow the programmers to mod-
ify their tools useful database.

3. Python offers interface to the commercial databases.

4. GUI programming - Python encourages graphical user interface
applications by system calls, libraries, and Windows systems such as
Windows MFC Macintosh and the X Windows system of Unix.

Python Basics = 3

5. Scalable - Python offers systematic structure and assist shell
scripting.

1.5 PYTHON VERSIONS

1. CPython
2. Cython
3. Jython
4. PyPy

5. RPython

1.6 PYTHON IDENTIFIERS

A Python identifier is their name used to recognize a variable, func-
tion, module, class, or an object. An identifier begins with the letter,
or an underscore followed by digits. Python does not permit punctua-
tion marks such as @, $, A. Python is a case-sensitive programming
language. For example, Test and test are two unique identifiers in
Python.

Naming rules for Python identifiers:

1. Class names begin with an uppercase letter. All additional identifiers
beginning with a lowercase letter.

2. If the identifier closes with two trailing underscores, the identifier is
the language specified special name.

3. Beginning with an identifier with a particular leading _underscore
signifies that the identifier is private.

4. Beginning an identifier with the two prominent underscores indi-
cates it is an intensely private identifier.

1.7 RESERVED WORDS

Table 1.1 shows the Python keywords. These keywords cannot be used as a
constant or variable or any other identifier names.

4 m Learning Professional Python

TABLE 1.1 Reserve Words

and exec not
assert finally or
break for pass
class from print
continue global raise
def if return
del import try
elif in while
else Is with
except lambda yield

1.8 PRINT () FUNCTION

The print () prints a message onto the screen or to the standard output.

Syntax

print (object, sep=separator, end=end, file= file,

flush=flush)
« sep - Specifies the separator between the outputted argument.
« end - Specifies what to print at the end of the print statement
o flush - Flushes the screen. Its default value is false

o file - Where to display the message object. The default out is to the
console, that is, std.out. The programmers can output the message to
the file also.

The end and sep are the keyword arguments, and these parameters are
used to format the output of the print () function. The programmers can
enter more than one object separated by separator. An empty print () out-
puts an empty line to the screen.

Your first python program:

print (“this is to test”)
The previous line produces the output:

this is to test

Python Basics m 5

If we remove double quotes in the print statement:

print (this is to test)

Output

File “<ipython-input-86-c0dae74495e9>", line 1
print (this is to test)

A

SyntaxError: invalid syntax

print () can operate with all types of data provided by Python. The data
type data strings, numbers, characters, objects, logical values can be suc-
cessfully passed to print ().

0}
‘P NOTE: print () does not evaluate anything.

Program

print (“*this is to test”)
print (*this is the second line in python program”)

Output

this is to test
this is the second line in python program

The preceding program invokes the print () twice. The print () begins
its output from a fresh new line each time it starts its execution. The
output of the code is produced in the same order in which they have
been placed in the source file. The first line in the preceding program
produces the output [this is to test], and the second line produces the
output [this is the second line in python program]. The empty print ()
with without any arguments produces the empty line, that is, just a new
empty line.

Program

print (“*this is to test”)
print ()
print (“this is the second line in python program”)

6 m Learning Professional Python

Output

this is to test
this is the second line in python program

In the preceding program, the second line print statement introduces
the empty line.
The following programs illustrate the separator and end argument:

Program

prlnt (“this" , \\isn , “tO” , “test” , end: \\@n)

Output

this is to teste

In the preceding program, end separator is used, so after printing the
string, the separator has been added.

Program

print (“*this is”,™ to test”,sep="---",end="#")
print (“*this is an experiment”)

Output

this is--- to test#this is an experiment

The string assigned to the end keyword argument can be any length.
The sep arguments value may be an empty string. In the previous exam-
ple, the separator is specified as —. The first and the second argument is
separated by the separator. In the preceding program the separator is -.
So the output is [this is - to test]. In the first the print statement, the end
argument specified is “#”. So after printing the first print statement, the #
symbol is placed, the first line output is [this is - to test#].

Program

print (“this”, “is”,6 “to”, “test”,end="\n\n\n")
print (“*this is an experiment”)

Python Basics m 7

Output

this is to test
this is an experiment

In the preceding program, “\n” is used as the end separator, so after
printing the first line string, new lines have been added.

1.9 LINES AND INDENTATION

The Python statement does not end with a semicolon. Python gives no
braces to specify blocks of code for class and function definitions or flow
control. Blocks of code are represented by line indentation. The number
of spaces in the indentation is valuable, and the old statements within the
block must be invented the same indentation. In Python, all the continu-
ous lines are indented with the equivalent number of spaces, which would
form a block. For example:

def test():
a=1
print (a)

The preceding program produces the output 1.

1.10 MULTILINE STATEMENTS

Statements in Python predictably end with the new line. Python per-
mits use of the line continuation character to denote that the line should
continue.

a=test one+\
test two+)\
test three

Statements continued with [], {}, () do not need to use the line continu-
ation character, for example:

a= {1,2,3,4,
5,6,7}

8 m Learning Professional Python

1.11 QUOTATION IN PYTHON

Python allows single, double, and triple quotes to signify string literals.
The triple quotes are applied to spend the string within multiple lines. For
example, the following are legal:

S="test”
S='test’
S="7" This is to test a multiple lines and sentence “"”

112 COMMENTS IN PYTHON

A hash sign (#) is the starting of the comment. All characters after the hash
and up to the end of the line are part of the comment, and the Python
interpreter ignores that line. For example:

print (“this is to test”) # Python comment

The Python developer can comment multiple lines as follows:

#This is the first comment

#this is the second line comment
#This is the third line comment
#this is also a comment

OAN

(=) . .

(@) Note: Comments omitted at runtime and these comments leave
additional information in code.

2=y
(‘@)) Note: The triple quoted string is also ignored by Python in-
terpreter and can be used as a multiline comment.

‘‘“‘this is the
test the
multiline comment ’’’’,

Program

print (“test#1”)
print (“test#2”)
#print (“test#3)

Python Basics = 9

Output

test#l
test#2

In the preceding program, the first and the second print statement con-
sists of the # statement in between the quotes, so this # symbol behaves like
a symbol, and the interpreter prints that symbol. But at line 3 the # symbol
is in front of print statement. In this case # symbol works as comment.

Program

#this is
to test comment
print (“python comment”)

Output

File “<ipython-input-28-b77848£f8c85d>", line 2
to test comment

A

SyntaxError: invalid syntax

If we want to display anything at runtime, we must put that content in
quotes inside print statement, otherwise the interpreter throws the error.
In the preceding program, the second line consists of the string without
the print statement. So this line throws the error.

1.13 MULTIPLE STATEMENTS ON A SINGLE LINE

The semicolon (;) lets multiple statements on the single and given that nei-
ther statement starts in new code block. For example:

x=‘test’ ;print (x)

Output

test

10 m Learning Professional Python

1.14 PYTHON VARIABLES

Every variable has a name and a value. Variables are used to store values
stop. That means when the developer creates a variable, the translator allo-
cates memory and decides what can be saved in the reserved memory. By
allocating different data types of variables, you can store integers, deci-
mals, or characters in these variables.

Syntax

variable name=value
E.g.: 1=100

oS
((@)) Note: If the programmer assigns any value to a nonexistent variable,
the variable will be automatically created, that is, a variable comes into
existence because of allocating a value to the variable.

1.15 NAMING CONVENTIONS TO VARIABLES

1. The name of the variables must be composed of uppercase or lower-
case alphabets (A...Z,a...z),digits (0...9) and the special symbol
underscore (_).

2. The name of the variable must begin with a letter or the special sym-
bol underscore (_) but not with a digit.

3. The name of the variables must be a reserved keyword.
4. Uppercase and lowercase letters are treated as different in Python.

5. Python does not have any restrictions on the length of the variable
name.

6. Some valid variable names are test, sum, test_sum, testl, testl_avg,
myVariable.

7. Some invalid variable names are 5sum, test sum, False, None.

AN
(‘@)) Note: Python is a dynamically typed language; no need to declare
the type of the variable.

Python Basics m 11

1.16 ASSIGNING VALUES TO VARIABLES

Python variables do not require specific declaration to reserve memory
space. The declaration occurs automatically when you allocate a value to
your variable. The = is applied to allocate values to variables. The oper-
ating to the left of the = to operator is the name of the variable and the
operand to the right of the = operator is the value stored in the variable.
For example:

£=100
sname=‘rani’

In the previous example, t and the sname are the variable names and
100 and ‘rani’ are the variable values.

oS
((@’) Note: The programmer can assign a new value to the already existing
variable by using either the assignment operator or the shortcut operator.

Program

Test=1
print (test)

NameError Traceback (most recent call last)
<ipython-input-23-£210£fd97eab0> in <modules> ()

1 Test=1

----> 2 print(test)

NameError: name ‘test’ is not defined

Name error has occurred because the variable name is Test but in print
the variable name is test.

Program

i=100
1=50+500
print (i)

12 = Learning Professional Python

Output

550

In the previous example, variable i is assigned an integer literal 100, and
in the second line the value of i is reassigned to 550(50 + 500). The variable
retains its latest value, that is, in the second line the old value (i.e., 100) is
overwritten by the value 550(50 + 500).

Program

a: ’ 5 ’

b: A\} 5II
print (a+b)
Output

55

In the preceding program, the value of a is character literal 5 but not the
numeric value. The value of b is string literal 5. The third line performs the
computation a+b. Here + works as the concatenation operator.

Program: Find the hypotheses of the triangle
a=5.0

b=3.

c= (a**2+b**2)**0.5
print (“c=",c)

Output

c= 5.830951894845301

In the preceding program, the ** is the exponentiation operator. In line
3, during expression evaluation, interpreter first computes the expression
a**2+b**2, the higher priority gives to the parenthesis’s operator.

1.17 MULTIPLE ASSIGNMENT

Python allows to allocate a single value to several variables simultane-

ously. For example:

a=b=c=1

Python Basics = 13

In the previous line, the value of a, b, and c is 1.
a, b, c¢c=1,2,3
In the previous example the value a is 1, b is 2, and c is 3.

1.18 NONE VARIABLE

None is a keyword in python, and this word used in circumstances

1. To assign to a variable
E.g., test=None

2. To compare with another variable
if(test==None):

if test is None:

Scope of the variables in Python

1. Global

2. Local

1.19 DATA TYPES

The data stored in memory off many types. Python has various standard
data types, like numbers, strings, list, tuple, dictionary. Number data types
store numeric values, for example Varl= 1.

Python supports four different numeric types:

e int
+ long
o float

» complex

14 m Learning Professional Python

1.20 TYPE CONVERSION

Python supports several built-in functions to complete conversion from
one data type to another data type. These functions restore the converted

values. Python supports 2 types of data conversions

1. Implicit conversion

2. Explicit conversion

1.20.1 Implicit Conversion

Python automatically converts one data type to another data type. There is

no need for user involvement.

Program: Implicit Conversion

x=123
y=12.34
print (x+y)
x=123
v=10.0
print (x+y)
x=10+17
v=10.0
print (x+y)

Output

135.34
133.0
(20+17)

Program: Implicit Conversion

x="test”
v=10
print (x+y)

TypeError
(most recent call last)

Traceback

Python Basics m 15

<ipython-input-65-d2c36b20b8bd> in <modules ()

1 x="test”

2 y=10

----> 3 print (x+y)

TypeError: can only concatenate str (not “int”) to str

1.20.2 Explicit Conversion

In explicit type conversion, the programmers must use the predefined
functions. This type of conversion is also known as the type casting
because the users are forcing the one data type to another data type by
using predefined functions. The following table gives some predefined
explicit type conversion functions.

TABLE: Conversion Function

Conversion Function Description

int (x [, base]) Converts x to an integer and x is a string
long (x [, base]) Converts x to a long and x is a string
float(x) Converts x to a floating-point number
complex (real [, imag]) Creates a complex number

tuple(x) Converts x to tuple

set(x) Converts x to set

list(x) Converts x to list

dict(d) Creates a dictionary

chr(x) Converts an integer to character

hex(x) Converts an integer to hexadecimal value
oct(x) Converts an integer to octal value
Program

x="1010"

print (“string=",x)

print (“*conversion to int=",int (x,2))

print (“*conversion to float=",float (x))
print (“conversion to complex=",complex (x))
x=10

print (“*converting to hexadecimal=",hex (x))
print (“*converting to octal=",oct (x))

print (“conversion to Ascii=",chr(x))
x='‘test’

print (“conversion to tuple=",tuple(x))
print (“conversion to set=",set (x))

16 m Learning Professional Python

Output

string= 1010

conversion to int= 10

conversion to float= 1010.0

conversion to complex= (1010+07j)
converting to hexadecimal= 0xa
converting to octal= 0012

conversion to Asciis

conversion to tuple= (‘t’, ‘e’, ‘s’, ‘t’)
conversion to set= {‘s’, ‘t’, ‘e’}

The preceding program uses the explicit data type conversion.

1.21 LITERALS

Literals are nothing but some fixed values in code. Python has various
types of literals - number (e.g., 111 or - 1), float literal (e.g., 2.5 or - 2.5),
string literal (e.g., ‘test’ or “test”), Boolean literal (True/False), None literal.

RN
((@’) Note: None literal is used to signify the absence of a value.

oS
((@’) Note: Python 3.6 introduced versions of underscores in numeric
literals. For example, 11_11.

oS
((@)) Note: Python print () function automatically does the conversion to
the decimal representation from other number systems.

XS
((@)) Note: Python omits zero when it is the only digit in front or after
the decimal point.

In Python the number 1 is an integer literal and 1.0 is the float literal.
The programmer has to input the value 1.0 as 1. and 0.1 as .1. To avoid
writing many zeros in, Python uses the scientific notation E or e. For

Python Basics m 17

example, 10000000 can be represented as 1E7 or 1e7. The value before the e
is the base, and the value after the e is the exponent. For example, the float
literal 0.000000001 can be represented as le-9 or 1E-9.

1.22 BINARY NUMBER SYSTEM

A binary number system is expressed in zeros and ones.

Program

print (0ol3)#octal representation
print (0x13) #hexadecimal representation

Output
11
19
EXERCISE
1. Write the first line of code in the python program using the sep=“$"
and
end=“...” keywords.

print (“this”, “is”, “to”, ‘test”)
print (“python language”)

2. Write the first line of code in the python program using the sep=
“**” and end= “----” keywords.
print (((this)’, ((is”’ ((to)), ((test”)
print (“python language”)
3. Write the first line of code in the python program using the sep= “*”
and end= “\n” keywords and second line of code using the sep= “#”

>

and end= “---".
prlnt (“this”, “iS”, “to”, utest”)

print (“python language”)

18 m Learning Professional Python

10.

. Check the following code:

print (true>false)

print (true<false)

. What is the decimal value for the binary number 11012

. What is the decimal value for the binary number 10012

. What is the hexadecimal value for the binary number 1101?
. What is the octal value for the binary number 1101?

. What is the octal value for the decimal number 145?

What is the hexadecimal value for the decimal number 123?

CHAPTER 2

Python Operators

2.1 OPERATORS INTRODUCTION

An operator is a symbol that can operate on the operands. The operators

can be classified as follows:

1. Unary Operator
2. Binary Operator

3. Ternary Operator

2.1.1 Unary Operators

It works on single variable. The unary operators in python are the following:
+ =

2.1.2 Binary Operator

It works on single variables. For binary operators, refer to section 2.2.

2.1.3 Ternary Operator

It works on three variables. Ternary operator evaluates the expression
based on the condition being true or false. Ternary operator allows the
testing condition in a single line instead of the multiline if else code.

DOI: 10.1201/9781003414322-2 19

https://doi.org/10.1201/9781003414322-2

20 m Learning Professional Python

a,b = 10, 20
print(a if a> b else b)

Output

20

2.2 BINARY OPERATORS

Python language supports the seven types of binary operators:

1. Arithmetic Operators
2. Relational Operators

3. Assignment Operators
4. Logical Operators

5. Bitwise Operators

6. Membership Operators

7. Identity Operators

2.2.1 Arithmetic Operators

TABLE Arithmetic Operators

S.No Operator Name Example
1 + addition a+b

2 - subtraction a-b

3 * multiplication a*b

4 / division a/b

5 % modulus a%b

6 * exponentiation a**b

7 /1 floor division a//b

Program

a,b=1,4
print (a+b)
a,b=10,5
print (a-b)
a,b=10,5
print (a*b)
a,b=10,3
print (a/b)
a,b=10,3
print (a%b)
a,b=10,5
print (a**Db)
a,b=10,3
print (a//b)

Result

50

3.3333333333333335

100000

Python Operators m 21

Program

|.& Python 3.6.2 Shell - m] X

File Edit Shell Debug Options Window Help

Python 3.6.2 (v3.6.2:5fd33b5, Jul 8 2017, 04:14:342) [MSC v.1900 32 bit (Intel)]
on win32

Type "copyright", "credits"™ or "license ()" for more information.

>»> a=10

>»> b=4

>>> atb

i4

>>> a-b

6

>>> a*b

40

>>> a/b

2.5

>>> a%sb

2

>>> a%**b

10000

>»> a//b

¥

»>»> (a%b)+a**b-(a*b)/ (a//b)
8988z2.0

>33 |

Ln: 21 Col: 4

The preceding program is about Python program to perform arithmetic
operations.

LN
(‘@’) Note: For **(exponentiation) operator the left argument is the base,
and the right argument is the exponent (baseexPonent e g.: 2**3 =23=8).

OAN
((@’) Note: When using **, if both operands are integers, then the result
is an integer.

O
(‘@)) Note: When using **, if one of the operands is float, then the result
is a float.

LN
((@’) Note: The result produced by the division operator is always a float
value.

O
((@)) Note: For integer divisional operator (//), the result is always
rounded towards the lesser integer value.

22 m Learning Professional Python

L/
(¢

is an integer.

L/
(¢

is a float.

2.2.2 Shortened Operators

TABLE Assignment Operators (Screenshot)

\d
@)) Note: When using //, if both operands are integers, then the result

\d
@’) Note: When using //, if one of the operands is float, then the result

S.No

Operator

%=

/1=

ok

Name

assignment
add and

subtract and

multiply and

divide and

modulus and

floor division

and

exponent and

bitwise and

Example
a=b
a+=b

a-=

a*=b

a/=b

a%=Db

a//=b

a**:b

Program
a,b= 10,5
a,b=10,5
a+=b
print (a)
a,b=10,5
a-=b
print (a)
a,b=10,5
a*=b
print (a)
a,b=10,5
a/=b
print (a)
a,b=10,5
a%=b
print (a)
a,b=10,5
a//=b
print (a)
a,b=10,5
a**=b
print (a)
a,b=10,5
a&=b
print (a)

Result

15

50

2.0

100000

(Continued)

Python Operators m 23

TABLE (Continued) Assignment Operators (Screenshot)

S.No Operator Name Example Program Result
10 |= bitwise orand al=b a,b=10,5 15
al=b
print (a)
11 A= bitwise xor and a’A=b a,b=10,5 15
a”=b
print (a)
12 >>= binary rght shift a>>=b a,b=10,5 0
and a>>=b
print (a)
13 <<= binary left shift a<<=b a,b=10,5 320
and a<<=b
print (a)
Program
| & Python 3.6.2 Shell - O X

File Edit Shell Debug Options Window Help

Python 3.6.2 (v3.6.2:5fd33b5, Jul 8 2017, 04:14:34) [M5C v.1900 32 bit (Intel)]
on win32

Type "copyright®™, "credits™ or "license ()" for more information.

>>> a=3

>>> b=a

>>»> print (b)

3

>>> bi+=a

>»>»> print (b)

6

>>> b—=a

>>»> print (b)

=

>>> b*=a

>>> print (b)

9

>>> b/=a

>»» print (b)

3.0

>>> hv=p

>>> print (b}

270

>»> b//=a

»>> print (b)

S.0

>>> b%=a

>»> print (b)

0.0

>3 |

Ln: 28 Col: 4

The preceding program is about Python program to perform assignment
operations.

24 m Learning Professional Python

TABLE Comparison Operators
S.No Operator Name Syntax Program Result
1 = equal to a==b a,b=10,5 False
print (a==b)
2 1= not equal to al=b a,b=10,5 True
print (a!=b)
3 < less than a<b a,b=10,5 False
print (a<b)
4 <= less than equal to a<=b a,b=10,5 False
print (a<=b)
5 > greater than a>b a,b=10,5 True
print (a>b)
6 >= greater than equal to a>=b a,b=10,5 True
print (a>=b)
Program
| & Python 3.6.2 Shell - O X
File Edit Shell Debug Options Window Help
Python 3.6.2 (v3.6.2:5£d33b5, Jul 8 2017, 04:14:34) [MSC v.1900 32 bit (Intel)]
on win32
Type "copyright™, "credits™ or "license ()" for more information.
>>> a=5
>>»>» b=3
e A
True
>*>> a'=b
True
>>»> a<b
False
>>»> a<=b
False
>>> a>b
True
>>> a>=b
True
>
Ln: 17 Cok 4

The preceding program is about Python program to perform relational

operations.

TABLE Logical Operators

S.No Operator Name
1 and logical and
2 or logical or
3 not logical not

Example

aandb

aorb

nota

Program

a,b=10,5
print (a and b)
a,b=10,5
print(a or b)

a

print (not a)

Result

10

False

Python Operators m 25

Program

[& Python 3.6.2 Shell - O X

File Edit Shell Debug QOptions Window Help

Python 3.6.2 (v3.6.2:5fd33b5, Jul 8 2017, 04:14:34) [MSC v.1900 32 bit (Intel)]
on win32

Type "copyright™, "credits" or "license ()" for more information.
>>> a=10

>>> b=5

>>> print ((a>b)and(a!=b))

True

>>> print | (a<b)and(a!=b))

False

>>> print ((a<xb)or (a!=b))

True

>>> print (not ((a<b)or(a!=b)))

False

>35> |

Ln:13 Col: 4

The preceding program is about Python program to perform logical
operations.

TABLE Identity Operators

S.No Operator Example Program Result

1 is aisb a,b=10,5 False
print(a is b)

2 is not aisnotb a,b=10,5 True

print (a is not b)

TABLE Membership Operators

S.No Operator Example Program Result
1 in 10 in list 1=[10,20] True
print (10 in 1)
2 not in 10 not in list print (10 not False
in 1)

TABLE Bitwise Operators

S. No Operator Name Example Program Result

1 & bitwiseand a&b a,b=10,5 0
print (a&b)

2 | bitwise or alb a,b=10,5 15
print (a|b)

(Continued)

26 m Learning Professional Python

TABLE (Continued) Bitwise Operators

S. No Operator Name Example Program Result
3 ~ bitwise not a a,b=10,5 -6
print (~b)
4 A bitwise xor a"b a,b=10,5 15
print (a’b)
5 >> bitwise right a>>b a,b=10,5 0
shift print (a”b)
6 << bitwise left a<<b a,b=10,5 320
shift print (a<<b)
Program
[& Python 3.6.2 Shell - O X

File Edit Shell Debug Options Window Help

on win32
¥y =B
>>> b=3
>»>»> print (a&b)
>>»> print (a|b)
>>»> print (~a)
>»> print (~b)
>»> print (a"b)
>»>> print (a>>3)
>»>> print (a<<3)
>>»>» print (a>>b)

>33 |

Python 3.6.2 (v3.6.2:5£d33b5, Jul 8 2017, 04:14:34)

[M5C v.1900 32 bit (Intel)]

Type "copyright™, "credits™ or "license ()" for more information.

Ln: 21 Col: 4

The preceding program is about Python program to perform bitwise

operations.

2.3 STRING OPERATORS

The string operators in Python are + (concatenation) and * (replication).
Concatenation operator concatenates more than one string into one. The

concatenation operator is not commutative, for example, ab is not equal to
ba. When * sign is applied to string and a number, it replicates the string
the same number of times specified by the number.

Python Operators m 27

Syntax of replication operator:

« String*number
o Number*string

Program: Concatenation operator
s="test”

s 1 - lng "

print (s+sl)

Output

testing
Program: Replication operator

print (“test”*3)
print (3*“sample”)
print (3*”1”)#outputs 111 but not 3

Output

testtesttest
samplesamplesample
111

2.4 OPERATOR PRECEDENCE

When more than one operator is there in the expression, to compute the

expression operator precedence determines which operation to perform
first. Operator associativity evaluates the operators in particular order
when the operators have the same precedence.

TABLE Operator Priority

Priority Operator Description
1 + - Unary
2 e Binary
3 /11 % * Binary
4 + - Binary
5 <<=>>= Binary
6 === Binary

28 m Learning Professional Python

TABLE Operator Precedence and Associativity

Operator Precedence Order Meaning Associativity
0 Parentheses left-to-right
o Exponent right-to-left
+5m~ Unary addition, Unary subtraction, left-to-right
and unary bitwise not
1,115 % Multiplication, division, floor left-to-right
division, modulus
+, - Addition, subtraction left-to-right
<<, >> Bitwise shift operators left-to-right
?
& Bitwise and left-to-right
A Bitwise xor left-to-right
| Bitwise or left-to-right
==,1=5,>,>=, <, <=, is, isnot, in, Comparison, identity, and left-to-right
not in membership operators
and, or Logical and, logical or left-to-right
not Logical not right-to-left
= +=, - Assignment operators right-to-left
=, %=, /=, %=, &=, A=, |=, >>=,
<<=

2.5 EXPRESSION EVALUATION

An expression is a combination of operands and operators. In Python,
eval () evaluates the expression dynamically.

Syntax:

eval (expression|[,globals ([, locals]])

E.g.: eval (“123+123")

246

E.g.: eval(“sum[10,10,101)”,{})

30

E.g.: x=100,y=100

eval (“x+y")

200

In the given example both x and y are global

variables.
E.g.: eval (“x+50”,{},{"x":50})
100

In the cited example x is the local variable because it is defined inside
the eval function.

Python Operators m 29

2.6 INPUT () FUNCTION

The input () function can read the data entered by the programmer. The
input () prompts the programmer to input some data from the console
(default from keyboard). When the input () function is invoked without
arguments, the function will switch the console to the input mode. The
cursor blinks, and the programmer can input some keys. By pressing the
enter key, the inputted data will be sent to the source code through
the input functions result. The programmers must catch what the input
function returns otherwise the entered data will be lost.

oS
((@’) Note: The default return type of the input () function is the string.

oS
(‘@’) Note: The input () function is invoked with one argument.
E.g.: i=input ()

Program

print (“enter 2 integers”)
a=int (input ())
b=int (input ())
print (a+b)

Output

enter 2 integers
10
30
40

The preceding program uses the input () function without arguments.

Program

a=int (input (“enter integer:”))
b=int (input (“*enter integer:”))
c=a+b

print (“sum=", c)

Output

enter integer:1
enter integer:3
sum= 4

30 m Learning Professional Python

The preceding program uses the input () function with arguments.

Program

a=input ()
print (a+3)

Output

TypeError Traceback (most recent call last)
<ipython-input-22-3ae605921ae5> in <module> ()

1 a=input ()

----> 2 print (a+3)

TypeError: can only concatenate str (not “int”) to str

In the preceding program it’s a type error because the input returns
string data type. Python does not concatenate the string and the integer.
So the previous program throws the type error.

Program

a=input ()
print (type (a))

Output

4
<class ‘str’>

In the preceding program, the entered value is 10. Though the value 10
is an integer, the default return type value of the input () function is the
string, so the output of the print function is the str (string).

Program

a=float (input (“enter float value”))
b=float (input (“enter float value”))
c=a+b

print (“sum of floats=",c)

Python Operators m 31

Output

enter float wvaluel.5
enter float value3.8
sum of floats= 5.3

The preceding program performed sum of two floats. To convert the
input value to float, there is a need to typecast the input () function with
float.

Program

n=int (input (“enter integer”))
print (n*“1")

Output

enter integer4

1111

The program is about replication operation by reading data from the
user.

Program

#Ascii wvalue
x=input (“enter character:”)
print (“Ascii of ”,x,"“is”,ord(x))

Output

enter character:a
Ascii of a is 97

The preceding program prints ascii value.

Program

print (“%5.3e”% (123.456789))

print (%%10.3e”% (123.456789))

print (“*%15.3e”% (123.456789))

print (“%-15.3e”% (123.456789))
("%

print (“*%5.3E”% (123.456789))

32 m Learning Professional Python

o\°
)
ul

S}
w

(0]

o\

ul

x"

A\

o

w
o]
N~ o —~ U1 Ul
Ul — — | —

o~ —~
b — —
—
—

(15))
15))
123456789))
(123456789))
0:4,d}”.format (123456789))
}7.format (123))
5f}”.format (123456789.123456789))

w

("%
("%
("%
("%
("%
("%
print (“%x%
(%
(%
(4
(4
(4

Output:

.235e+02
.235e+02
.235e+02
.235e+02
.235E+02

th O Hh il Hh O B B B B B P

o\

123456789
123456789,
123,456,789
000123
123,456,789.12346

The preceding program is about formatting the numbers.

Program

:.0f} only”.format (150.99))
:e} only”.format (150.99))

print (“this book costs
print (“*this book costs

print (“this book costs {0:f} only”.format (150.99))

print (“this book costs {0:8f} only”.format (150.99))

print (“this book costs {0:.2f} only”.format (150.99))

print (“this book costs {0:.3f} only”.format (150.99))
({o)
({o

Python Operators m 33

print (“this book costs {0:1} only”.format (150.99))
print (“this book costs {0:d} only”.format (150))

print (“this book costs {0:8d} only”.format (150))

print (“this book costs {0:0} only”.format (150))#octal
print (“this book costs {0:b} only”.format (150))#binary
print (“{:d}”.format (-15))

print (“{:=7d}”.format (-15))

print (“{:=7d}”.format (15))

Output

this book costs 150.990000 only
this book costs 150.990000 only
this book costs 150.99 only
this book costs 150.990 only
this book costs 151 only

this book costs 1.509900e+02 only
this book costs 150.99 only
this book costs 150 only

this book costs 150 only

this book costs 226 only

this book costs 10010110 only

The preceding program is about formatting the numbers.

2.7 LIBRARIES
2.7.1 Math and CMath Libraries

Math is the basic math module that deals with mathematical operations
like sum, mean, exponential, etc., and this library is not useful with com-
plex mathematical operations like matrix multiplication. The disadvan-
tage is the mathematical operations performed with the math library are
very slow. For instance, if we consider the example shown here, we per-
formed the basic mathematical operations. The statement math.exp is used
to find the exponent of the number. For example, math.exp (5) means e to
the power of 5, that is, e°. The value of e is approximately 2.17. The state-
ment math.pi returns the value approximately 3.14. The constant math.e
returns the value 2.17. The ceil returns the ceiling value not greater than

34 m Learning Professional Python

that number. The floor returns the floor value of the given number. The
math.trunc method returns the truncated part of the number.

TABLE Math Functions

Function Description
min (x1,x2...) The smallest of all its arguments
max (x1,x2...) The largest of all its arguments
pow (X,) The value of x**y, i.e. (2*¥3=8) (2°=8)
round (x [, n]) X rounded to n digits from the decimal point
sqrt(x) The square root of x
abs(x) The absolute value of x
ceil(x) The smallest integer not less than x
floor(x) The largest integer not greater than x
exp(x) The exponent of x (e*)
log(x) The natural logarithm of x
Tog10(x) The base 10 logarithm of x
fabs((x) The absolute value of x

Program

import math

x,y,z2=10,20,30

print (“min=",min(x,y,z))

print (“max=",max(x,y,z))

print (“sgrt of ”,x,“=",math.sqrt (x))
(
(

print (*round=",round(0.5))
print (“power=",pow(2,3))

f=1.5

print (“*ceil=",math.ceil (f))
print (*floor=",math.floor (f))
xX=2

print (“exponent=",math.exp (x))
print (*log=",math.log (x))
print (*logl0=",math.logl0 (x))
x=-1

print (“absolute=",abs (x))
print (“absolute=",math. fabs (x))

Output

min= 10
max= 30

Python Operators m 35

sgrt of 10 = 3.1622776601683795

round= 0
power= 8
ceil= 2

floor= 1

exponent= 7.38905609893065
log= 0.6931471805599453
logl0= 0.3010299956639812
absolute= 1

absolute= 1.0

The preceding example uses some math operations and produces the
output based on the mathematical operation used.

import math
print(“exp(S)”,math.exp(S))

print i”,math.pi)

print “Exponent" math.e)

print (“factorial (5)” ,math.factorial (5))
print (“ceil (-5)”,math.ceil (-5))

print (“ceil(5)”,math.ceil (5))

print (“ceil (5.8)” ,math.ceil (5.8))

print (“*floor 5)” math.floor (-5))

print (*floor (5)”,math.floor (5))

8)"” ,math.floor(5.8))
5.43)"” ,math.trunc(-5.43))
print (“pow(3,4)” ,math.pow(3,4))

(v

(

(

(

(

(

((-

((5
print (“*floor (5

((-

(

(

(

(

(

(

(

print (“pow(3,4.5)” ,math. pow(3,4.5))

print (“pow (math.pi,4)”,math. pow(math.pi,4))
print (*log(4)”,math.log(4))

print (*log(3,4)"”,math.log(3,4))

print (“*log(math.pi,4)”,math.log(math.pi,4))
print (“sgrt(8)”,math.sqgrt (8))

Similarly the mathematical operations for complex numbers can be
obtained by the CMath module in Python. The methods in CMath always
returns a complex number. If the return value can be expressed as a real
number, then the return value for the imaginary is zero. The command
lines perform the mathematical operations on the complex numbers.

import cmath
print (“cmath.pi”, cmath.pi)

36 m Learning Professional Python

print (“*cmath.e”,cmath.e)
print (“sgrt (4+j5)”,cmath.sqrt (4 +57))
print (*cos (4+57)”,cmath.cos(4+57))
print (*sin(4+57)”,cmath.sin(4+57))

)

print (*tan(4+57j)”,cmath.t

print (*asin(4+57j)”,cmath.

an(4+57)

asin(4+57))
acos (4+57))
atan(4+57))
sinh (4 +57))
cosh(4+57))
tanh (4 +57))

print (“*acos (4+57)”,cmath.
(
print (*sinh (4+57)”,cmath.
print (*cosh(4+57)”,cmath.
print (“tan (4+5j 7, cmath.
print (“rect (3,4)”,cmath.rect (3,4))
print “log 1+27)"”,cmath.1

(
(
(
(
(
()
()
print (“*atan(4+57j)”,cmath.
()
()
()
(
(
(

og(1l+27))

print (Yexp(1+27j)”,cmath.exp(1+27))

2.7.2 SciPy Library

SciPy Python library performs mathematical operations mathematical
optimization, linear algebra, etc. SciPy stands for Scientific Python. It is
the scientific computation library that depends on the NumPy, which pro-
vides user-friendly and efficient-for-optimization and numerical integra-
tion. The command lines to perform SciPy library are as follows:

from scipy.stats import describe

import numpy as np

x=np.random.normal (size=50)

r=describe (x)
print (r)

Solved Examples

Program

Python Operators m 37

Program

i=10
print (i!=1i>5)

Output

False

Program

x=int (input (“enter number:"))

y=int (input (“enter number:”))

global x,y

test={“add” :x+y, “sub” :x-y, ‘mul” :x*y, “div" :x/vy}
op=input (“enter operation:”)

print (test.get (op, “wrong option”))

Output

enter number:1
enter number:3
enter operation:add
4

EXERCISE

1. Check the result for this Python program:
print (3**2)
print (3. **2)
print (3**2.)
print (3. **2.)
2. Check the result for this Python program:
print (3*2)
print (3. *2)
print (3*2.)
print (3. *2.)

38 m Learning Professional Python

3. Check the result for this Python program:
print (8/2)
print (8. /2)
print (8/2.)
print (8. /2.)
4. Check the result for this Python program:
print (8//2)
print (8. //2)
print (8//2.)
print (8. //2.)
5. Check the result for this Python program:
print (-8//2)
print (8. //-2)
print (-8//2.)
print (-8. //2.)
6. Check the result for this Python program:
print (8%2)
print (8.5%2)
print (8%2.5)
print (8.5%2.5)
7. Run this Python program and check the result:
print (8+2)
print (-8.5+2)
print (-8 +2.5)

print (8. +2.5)

10

11.

12.

13.

14.

15.

Python Operators m 39

. Run this Python program and check the result:

print (8-2)
print (-8.5-2)
print (-8-2.5)
print (8.-2.5)

. What is the output of the following Python program?

print ((4**2) +5%2-3*8)

. What is the output of the following Python program?

print ((4%2),5%*2, (5 +4**3))

Write a Python program, create two variables, and assign different
values to them. Perform various arithmetic operations on them. Try
to print a string and an integer together on one line, for example,
“sum="and total (sum of all variables).

Check the output for the following line:

print (5==5)

Check the output for the following line:

print (5==5.)

Run this Python program and check the result:
X,y,2=5,6,7

print(x>y)

print(x>z)

Run this Python program and check the result:
x,y,2=1,2,3

print(x>y)

print((z-2) ==x)

40 m Learning Professional Python

16. Run this Python program and check the result:

x=5

if(x==y):
print(x)
if (x==int(z)):

print(x)

CHAPTER 3

Decision-Making
and Conditionals

3.1 INTRODUCTION

Conditional statements can check the conditions and accordingly change
the behavior of the program.
Python programming language supports different decision-making

statements:

o If statement

o If-else statement

o Nested if statement
o elif statement

Python language considers non-zero, non-null values as TRUE and zero,
null values as FALSE.

3.2 IF STATEMENT

The condition after the if statement is the Boolean expression. If the
condition becomes true, then the specified block of statement runs,
otherwise nothing happens.

DOI: 10.1201/9781003414322-3 41

https://doi.org/10.1201/9781003414322-3

42 m Learning Professional Python

Syntax

if condition:

#Execute the indented block if true
Statement-1

Statement-2

Statement-3

Statement-4

Necessary elements for the if statement:

1. The if keyword.
2. One or more white spaces.

3. An expression whose value is intercepted as true or false. If the
expression is interpreted as true, then the indented block will be
executed. If the expression that is evaluated is false, the indented
block will be omitted, and the next instruction after the indented
block level will be executed.

4. A colon followed by a newline.

5. An indented set of statements.

Program

a,b=10,5
if (a<b):

print (“ a is smaller than b”)
if (b<a) :

print(* b is smaller than a”)

Output

b is smaller than a

In the preceding program, the first if condition becomes false, so
the corresponding print statement was not executed, and the second
if statement became true, so the corresponding print statement gets
executed.

Decision-Making and Conditionals = 43

3.3 IF-ELSE STATEMENT

If the condition evaluates to true, then the if block will be executed other-
wise the else block will be executed.

Syntax

if condition:

#Execute the indented block if true

Statement-1

Statement-2

else:

#Execute the indented block if condition meets false
Statement-3

Statement-4

XX
(¢), .
(@) Note: Two else statements after an if statement throws error.

Program

python program to find the maximum of two numbers
def maximum(a, b):

if a >= b:
return a
else:
return b
main code
a = 2
b =14

print (maximum(a, b))

Output
4

The preceding program finds max of two numbers using decision-
making statements.

Program

#Find maximum of two numbers using ternary operator
numl = int (input (“Enter the numl: "))

44 m Learning Professional Python

num2 = int (input (“Enter the num2: "))

printing the maximum value

print (“The maximum of all values is”, (numl if numl >= num2
else num2))

Enter the numl: 3

Enter the num2: 5

The maximum of all values is 5

The preceding program finds max of two numbers by using the ternary
operator.

3.4 NESTED-IF-ELSE STATEMENT

Nested-if-else has different forms.

Syntax-1

if conditionl:

#Execute the indented block if true

if condition2:

Statement-1

Statement-2

else:

#Execute the indented block if condition mets false
if condition3:

Statement-3

Statement-4

Syntax-2

if conditionl:

#Execute the indented block if true
if condition2:

Statement-1

Statement-2

else:

Statement-3

Statement-4

else:

#Execute the indented block if condition mets false
if condition3:

Statement-4

Statement-5

Decision-Making and Conditionals = 45

Synatx-3

if conditionl:

#Execute the indented block if true
if condition2:

Statement-1

Statement-2

else:

Statement-3

Statement-4

else:

#Execute the indented block if condition mets false
if condition3:

Statement-5

Statement-6

else:

Statement-7

Statement-8

Syntax-4

if conditionl:

#Execute the indented block if true
if condition2:

Statement-1

Statement-2

if condition3:

Statement-3

Statement-4

Syntax-5

if conditionl:

#Execute the indented block if condition 1 is true
if condition2:

Statement-1

Statement-2

if condition3:

Statement-3

Statement-4

else:

#Execute the indented block if condition 3 is false
Statement-5

Statement-6

46 m Learning Professional Python

Syntax-6

if conditionl:

#Execute the indented block if true
if condition2:

Statement-1

Statement-2

if condition3:

Statement-3

Statement-4

else:

#Execute the indented block if condition 1 is false
Statement-5

Statement-6

Program

year = 2000

if (year % 4) == 0:
if (year % 100) == O0:
if (year % 400) == O0:
print {0} is a leap year”.
format (year))
else:
print (*{0} is not a leap year”.
format (year))
else:
print (*{0} is a leap year”.format (year))
else:
print (*{0} is not a leap year”.format (year))
Output

2000 is a leap year

The preceding program checks whether a year is a leap year or not.

3.5 ELIF STATEMENT

Syntax

If condition 1:
Statements-1
elif condition 2:

Decision-Making and Conditionals = 47

#Execute the indented block if the
false

Statements-2

elif condition 3:

#Execute the indented block if all
conditions become false

elif condition-n:

#Execute the indented block if all
conditions become false
Statements-n

else:

#Execute the indented block if all
conditions become false

statement

condition-1 becomes

the above two

the above n-1

the above

In the elif statement, else is always the last branch, and the else block is an

optional block.

Program

#Calculating Grade

ml=int (input (“enter ml:"))
m2=int (input (“enter m2:”))
m3=int (input (“enter m3:”))
p=(int) (ml+m2+m3/3)

if (p>90) :

print (“Grade-A")

elif (p>80 and p<=90) :
print (*Grade-B”)

elif (p>60 and p<=80) :
print (“Grade-c”)

elif (p>60 and p<=45):
print (“Pass”)

else:

print (*Fail”)

Output

enter ml:78
enter m2:89
enter m3:94
Grade-A

The preceding program calculates grade using elif.

48 m Learning Professional Python

3.6 WHILE

While loop repeats the execution if the condition evaluates to true. If the
condition is false for the first time, the while loop body is not executed
even once. The loop body should be able to change the condition value
because if the condition is true at the beginning, the loop body may run
continuously to infinity.

Syntax

while condition:

Indent block is executed if the condition evaluates
to true
statement
statement
statement

BN W N R

statement

Program

Python3 program to find Smallest of
#three integers withoutcomparison operators
def smallest(x, vy, 2z):

c =20

while (x and y and z)
x = x-1

y = y-1

zZ = z—1
c=c+ 1
return c

Driver Code
x = 12

y = 15

z =5

print (*Minimum of 3 numbers is”,
smallest (x, y, z))

Output

Mininum of 3 numbers is 5

The preceding program finds min of three numbers using while loop.

Decision-Making and Conditionals = 49

Program

#program to Display the Multiplication Table
num = int (input (" Enter the number : "))
i=1
using for loop to iterate multiplication 10 times
print (*Multiplication Table of : ")
while i<=10:
num = num * 1
print (num, ‘x’,1i, ‘=’ ,num*i)
i +=1

Output

Enter the number : 5
Multiplication Table of
5 x 1 =25

10

= 15

= 20

= 25

= 30

35

= 40

= 45

0 = 50

o)
X
N
1]

[S2 O IO B2 NG O BN G2 IO |

X X X X X X X X

H WO 0 J 0 Ul b W
1]

The preceding program prints the multiplication table using while
loop.

3.7 FOR LOOP

The for loop is used to iterate a sequence range of the items of different data
structures like list, tuple, string, etc.

Syntax

for value in sequence-range:
loop body

Explanation about the for syntax is discussed in the next section:

o For keyword.

50 m Learning Professional Python

« The variable after the for keyword is the control variable of the loop,
automatically counts the loop turns.

« The in keyword.

 The range () function. The range () function accepts only the integers
as its arguments, and it generates the sequence of integers.

Body of the for loop. Sometimes the pass keyword inside the loop body is
nothing but the empty loop body. The body of the loop may consist of the
if statement, if-else statement, elif statement, while loop.

oS
(‘@)) Note: The range () function may accept the three arguments: start,
end, increment. The default value of the increment is 1.

Program

#range with one argument
for seqg in range(10) :
print (seq)

O 0 J o0 U1 W INDHBKHE O

The preceding program uses for . . . range with one argument to print a
sequence of numbers from 0 to 9.

Program

#range with two argument
for seq in range(5,10):
print (seq)

Decision-Making and Conditionals = 51

Output

O 0 J o Ul

The preceding program uses for . . . range with two arguments to print
a sequence of numbers from 5 to 10 with step value 1.

Program

#range with three argument and argument is ascending
for seq in range(50,1000,100) :
Print (seq)

Output

50

150
250
350
450
550
650
750
850
950

The preceding program uses for . . . range with three arguments, and
argument is ascending to print a sequence of numbers from 50 to 1000
with step value of 100.

Program

#range with three argument and argument is descending
for seq in range(100,10,-10):
print (seq)
100
90
80
70

52 m Learning Professional Python

60
50
40
30
20

The preceding program uses for . . . range with three arguments, and
argument is descending to print a sequence of numbers from 100 to 10
with step value of - 10.

Program:

#Negative range ()
for i in range(-1, -11, -1):
print (i, end=‘, ')

Output:
-, -2, -3, -4, -5, -6, -7, -8, -9, -10

The previous program uses the negative values for start, end, and the
step values.

3.8 NESTED FOR LOOPS

The nested for loop is used to iterate different data structures and iterable
data objects.
In Python, a for loop inside another for loop.

Syntax

outer for loop
for element in sequence
inner for loop
for element in sequence:
body of inner for loop
body of outer for loop

foriin range(1, 5):

or j in range(1, 10):
Inner for loop J print(i% j,(end=}' } Body Body
print() of of
Inner QOuter
for for
loop loop

Outer for loop

Decision-Making and Conditionals = 53

Output:

234567829

4 6 8 10 12 14 16 18
6 9 12 15 18 21 24 27
8 12 16 20 24 28 32 36

AW N R

Program

n=int (input (“enter number:”))
for i in range(l,n+1l):
for j in range(1l,i+1):
print (i,end=" ")
print ()

Output

enter number:5
1

U w N
U w N
U W
SIS

The preceding program prints the numbers in a specific pattern.

Program

n=int (input (“enter number:"))
for i in range(l,n+1):
for j in range(1l,i+1):
print (j,end=" ")
print ()

Output

enter number:5
1

R R R
NN NN
w oW w
IS

The preceding program prints the numbers in a specific pattern.

54 m Learning Professional Python

3.9 NESTED WHILE

A while loop inside another while loop.

Syntax

while expression:
while expression:
statement (s)

statement (s)

Program

#Strong number

n=int (input (“enter number”))
t=n

sum=0

while(n!,=0) :

i, f=1,1

r=n%10

while{i<=r):

fr=1

i+=1

sum+=£

n//=10

if (t==sum) :

print (t, “is strong number”)
else:

print (t, “is not strong number”)

Output

enter number9
9 is not strong number

The preceding program checks whether the given number is a strong
number or not using the nested while.

Program

multiplication table using nested while
n=2

while 1:

i=1;

Decision-Making and Conditionals = 55

while i<=10:

print (*%d x %d = %d\n”%(n,1i,n*1i));

i = 1i+1;

choice = int (input (“*Do you want to continue printing
the table, press 0 for no?”))

if choice ==

break;
n=n+1
Output

2 x 1 =2
2 x 2 =4
2 x 3 =6
2 x 4 =8
2 x5 =10
2 x 6 =12
2 x 7 = 14
2 x 8 =16
2 x 9 = 18
2 x 10 = 20

Do you want to continue printing the table, press 0
for no?0

The preceding program prints the multiplication table using the nested while.

3.10 USING ELSE STATEMENT WITH FOR LOOP

If the for loop contains any of the break statement, then the else statement
will not be executed.

Syntax

for statement

For loop code
else:

Else block code

Program

for i in range(1l, 5):
print (i)

else: # Executed because no break in for
print (*No Break”)

56 m Learning Professional Python

Output

B w N R

No Break

3.11 THE PASS STATEMENT IN FOR LOOP

If we want to implement the code in the future and now, it should not be
empty. If we empty for loop, then the interpreter throws an error. To pre-

vent such type of error, pass will be used. The pass statement constructs
the body of the for loop that does nothing.

Syntax

for val in sequence:
pass

Program

for i in “this is to test”:
if i==“e” or i==“0":
pass
else:
print (i,end=" ")

Output

this is t tst

The preceding program uses the pass statement in for loop.

3.12 BREAK STATEMENT

Break - exists the loop immediately and unconditionally ends the loop;
the control goes to the next instruction after the loop body.

Syntax

break

Decision-Making and Conditionals = 57

Program

Use of break statement inside the loop
for val in “string”:
if val == “i”:
break
print (val)

Output

S
t
r

The preceding program uses the break statement in the for loop. The for

loop iterates through the string literal “string” and when the character “i
is encountered the for loop breaks.

Program

n =1
while n < 5:

n += 1
if n == 3:
break
print (n)
Output

The preceding program is about break statement in while loop.

Program

for 1 in range(3):
for j in range(2):
if § == 1:

break

print (i, 3J)

58 m Learning Professional Python

Output

NN
R O O

The preceding program is about break loop in nested for loops.

Program

#break inner loop while
while True:

print (“In outer loop”)

i=0

while True:

print (“In inner loop”)

if i >= 5: break

i +=1

print (“*Got out of inner loop, still inside outer
loop”)

break

Output

In outer loop
In inner loop
In inner loop
In inner loop
In inner loop
In inner loop
In inner loop
Got out of inner loop, still inside outer loop

The preceding program uses the break statement in nested inner while
loop.

3.13 CONTINUE
Continue - skips the remaining body of the loop.

Syntax

continue

Decision-Making and Conditionals = 59

Program

Program to show the use of continue statement inside
loops
for val in “string”:
if val == “i”:
continue
print (val)

Output

Q B K Ww

The preceding program uses the continue statement in for loop.

Program
i=1
while i <= 5:
i = 1i+1
if (i==3):
continue
print (i)
Output
2
4
5
6
The preceding program is about continue statement in while loop.
Program
first = [1,2,3]
second = [4,5]

for 1 in first:
for j in second:
if 1 == J:

60 m Learning Professional Python

continue
print (i, ‘*’, j, ‘=, 1 * 7J)

Output

1 * 4 =

1 * 5 =

2 * 4 =8

2 *5 =10
3 % 4 =12
3 5 =15

The preceding program is about continue loop in nested for loops.

Program

i=1
while i<=2
print (i, “outer ”)
j=1
while j<=2:
print (j, “Inner ")
Jj+=1
if (§==2):
continue
i+=1;

Output

Outer
Inner
Inner
Outer
Inner

NP NP

Inner

The preceding program is about continue statement in nested while
loops.

3.14 WHILE LOOP AND THE ELSE BRANCH
The loops while and the for loop has an interesting feature in Python. The

else block is executed once regardless of whether the loop has entered its
loop body or not, but the else block of the while executes once.

Decision-Making and Conditionals = 61

Syntax

while condition:
statements

else:

statements

If the condition becomes false at the very first iteration, then the while
loop body never executes.

[/

\g
((@)) Note: The else block executes after the loop finishes its execution if
it has not been terminated by the break statement.

Solved examples

Program

for i in “test”:

if 1 == “g”:
break
print (i)
Output
t
e

Program: The continue statement

for i in “test”:
if 1 == “g”:
continue
print (i)

Output

t

62 m Learning Professional Python

Program

#Amstrong number

n=int (input (“enter number”))
sum=0

t=n

C=0

while t>0:

c = c+1l

t=t//10

t=n

while t>0:

r=t%10

sum+= (r**c)

t//=10

if n==sum:

print (n, “is amstrong number”)
else:

print (n, “is not amstrong number”)

Output

enter number5
5 is amstrong number

The preceding program checks whether the given number is amstrong
number or not.

Program

#Factorial of a number
n=int (input (“enter number”))
f=1
for 1 in range(1l,n+1):

fx=1
print (“factorial is”, f)

Output

enter number5
factorial is 120

The preceding program prints the factorial of the given number.

Decision-Making and Conditionals = 63

Program

#Reverse the number
n=int (input (“enter number”))
rev=0
while (n>0) :
r=n%10
rev=rev*10+r
n=n//10
print (“*reverse number”, rev)

Output

enter numberl23
reverse number 321

The preceding program prints the given number in the reverse order.

Program

#Palindrome Number

n=int (input (“enter number”))
rev=0

t=n

while (n>0) :

r=n%10

rev=rev*10+r

n=n//10

if (t==rev):

print (t,"“ is plindrome”)
else:

print (t,"“ is not plindrome”)

Output
enter numberl2l

121 is plindrome

The preceding program checks whether the given number is a palin-
drome number or not.

Program

#Printing first max and the second max number

64 m Learning Professional Python

n=int (input (“enter range”))
fbig, sbig=0,0

for i in range(0,n,1):
num=int (input (“enter number”))
if (num>fbig:

sbig=fbig

fbig=num

if (num>sbig and num<fbig) :
sbig=num

print (“first max:”, fbig)
print (“second max:”,sbig)

Output

enter rangeb

enter number4

enter number?9
enter nubmer23
enter number45
enter number89
first max: 89
second max: 45

The preceding program prints first max and the second max number
without using array.

Program

#perfect number

n=int (input (“enter number”))
sum=0

for i in range(l,n):

if (n%i==0) :

sum+=1

if (n==sum) :

print (n, “is perfect number”)
else:

print (n, “is not perfect number”)

Output

enter number5
5 is not perfect number

Decision-Making and Conditionals = 65

The preceding program checks whether the given number is perfect or
not.

Program

n=int (input (“enter number:”))
for 1 in range(n,0,-1):
for j in range(1l,i+1):
print (j,end=" ")
print ()

Output

enter number:5
12 3 45

2 3 4
2 3
2

===

The preceding program prints patterns using nested for.

Program

n=int (input (“enter number:”))
for 1 in range(n,0,-1):
for j in range(i,0,-1):
print (j,end=" ")
print ()

Output

enter number:5
54 3 2 1

4 3 2 1
321
2 1
1

The preceding program prints patterns using nested for.

Program

Python program to find the

66 m Learning Professional Python

minimum of two numbers
def minimum(a, b):

if a <= b:

return a

else:

return b

Driver code

a = 2

b =4

print (minimum(a, b))

Output

2

The preceding program is to find in of two numbers without using min
() function.

Program

function computes the gross salary from basic
salary.

def calculate gross salary(basic_salary):

hra = 0;

da = 0;

salary is less than 2500, hra and da is calculated
if (basic _salary < 2500):

hra = (basic_salary * 10) / 100;
da = (basic_salary * 90) / 100;
else:

hra = 1000;

da = (basic salary * 95) / 100;
return (basic_salary + hra + da);
if name_ == " main ":

Type casting from input string into float value.
basic_salary = float (input (“Enter basic salary: ”));
gross_salary calculate gross salary(basic_salary) ;

[}

print (“Gross Salary is: %f” % gross_salary) ;

Output

Enter basic salary: 10000
Gross Salary is: 20500.000000

Decision-Making and Conditionals = 67

The preceding program is for net income calculation.

Program

#max of 3 numbers using while loop
numbers = [1,2,5,8,4,99, 3]

x =0

lar = numbers [x]

while x < len(numbers) :

if numbers([x] > lar:

lar = numbers [x]

X = xX+1

print (lar)

Output

99

The preceding program prints the max of seven numbers using while
loop.

Program

#Infinite loop using while

while True:
num = int (input (“Enter an integer: "))
print (*The double of”,num, “is”,2 * num)

Output

Enter an integer: 5
The double of 5 is 10
Enter an integer: 7
The double of 7 is 14
Enter an integer: 0
The double of 0 is 0

Enter an integer: -1

The double of -1 is -2

Enter an integer: -0.5

ValueError Traceback (most recent call last)

<ipython-input-132-d7b1308085a4> in <module> ()
1 #1: Infinite loop using while

68 m Learning Professional Python

The preceding program is for the infinite loop using the while statement.

Program

#Program to Display the Multiplication Table

num = int (input (“ Enter the number : "))

using for loop to iterate multiplication 10 times
print (*Multiplication Table of : ")

for 1 in range(1,11):

print (num, ‘x’,1i, ‘=’ ,num*i)
Output
Enter the number : 1
Multiplication Table of
1 x 1 =1
1 x 2 =2
1 x 3 =3
1 x 4 = 4
1 x 5 =25
1 x 6 =6
1 x 7 =717
1 x 8 =8
1 x 9 =29
1 x 10 = 10

The preceding program prints the multiplication table for the given
number using the for statement.

Program

Python program to

demonstrate continue

statement

loop from 1 to 10

for i in range(l, 11):

If 1 is equals to 6,

continue to next iteration
without printing

if i == 6:

continue

else:

otherwise print the value

Decision-Making and Conditionals m 69

of i
print (i, end = “ ”)

Output

12345789 10
The preceding uses the continue statement to print the numbers.

Program

#Infinite loop using for

import itertools

for 1 in itertools.count() :
print (i)

The preceding program is the infinite loop using the or control
statement.

Program

#Pascal triangle

n=int (input (“enter range”))
for 1 in range(0,n):
for s in range(0,n-1i):
print (end=" ")

for j in range(0,i+1):
if (j==0 or 1==0):

c=1

else:
c=(int) (c* (i-j+1)/3)
print (c,end=" ")
print ()

Output

enter rangeb5
1

R R R
S W N R
o W R
N

-

The preceding program prints the pascal triangle.

70 m Learning Professional Python

Program

#check even or odd using ternary operator
x=1int (input (“enter number”))

s=“even” 1if x%2==0 else “odd”
print (x, “is”,s)

Output

enter number5
5 is odd

The preceding program used the ternary operator to check whether the
given number is even or odd.

Program

#Max of three numbers using ternary operator
x=1int (input (“enter number”))

y=int (input (“enter number”))

z=int (input (“enter number”))

max= x if x>y and x>z else y if y>z else z
print (“max:”,max)

Output

enter number5
enter number9
enter numberll
max: 11

The preceding program used the ternary operator to find the max of the
three numbers.

Program

#Max of four numbers using ternary operator
p=int (input (“enter number”))
g=1int (input (“enter number”))
r=int (input (*enter number”))

s=int (input (“enter number”))

max= p if p>g and p>r and p>s else

qg if g>r and g>s else r if r>s else s
print (“max:”,max)

Decision-Making and Conditionals = 71

Output

enter number4
enter numbers8
enter number3
enter number2
max: 8

The preceding program used the ternary operator to find the max of the
four numbers.

Program

Python program to find the largest
number among the three numbers

def maximum(a, b, c):

if (a »>= b) and (a >= c):

largest = a

elif (b >= a) and (b >= ¢):

largest = b
else:
largest = ¢

return largest
Driven code

a = 10
b = 14
c =12

print (maximum(a, b, c))

Program

Python3 program to find Smallest

of three integers using division operator to find
minimum of three numbers

def smallest(x, y, z):

if (not (y / x)): # Same as “if (y < x)”
return y 1if (not (y / z)) else z

return x 1if (not (x / z)) else z

Driver Code

if name == " main_ ”:

x = 78

y = 88

Z = 68

72 m Learning Professional Python

print (*Minimum of 3 numbers is”,
smallest (x, y, z))

Output

Minimum of 3 numbers is 68

Program

#Even inclusive range ()

step = 2

for 1 in range(2, 20 + step, step):
print (i, end=‘ ')

Output

2 4 6 8 10 12 14 16 18 20

Program

#range () indexing and slicing

rangel = range (0, 10)

first number (start number) in range
print (rangel[0])

access 5th number in range

print (rangel[5])

#Output 5

access last number

print (rangel [rangel.stop - 1])

Output

0
5
9

Program

#Negative indexing range

negative indexing

access last number

print (range (10) [-11)

output 9

access second last number
print (range (10) [-2])

Decision-Making and Conditionals = 73

Output

Program

#Slicing range

for i in range(10) [3:8]:
print (i, end=‘ ')

Output

34567

Program

#Reverse range

for 1 in reversed(range (10, 21, 2)):
print (i, end=‘ ')

Output

20 18 16 14 12 10

Program

#One-Line while Loops
n=>5
while n> 0: n -= 1; print(n)

Output

o N W b

Program

Use of break statement inside the loop
for val in “string”:
if val == “i”:
break
print (val)

74 m Learning Professional Python

Output

S
t
r

Program

#concatenate two or more range functions using the
itertools

from itertools import chain

al = range(10,0,-2)

a2 = range(30,20,-2)

a3 = range(50,40,-2)

final = chain(al,a2,a3)

print (final)

Output

<itertools.chain object at 0x7f2e824a6ad0>

EXERCISE

1. Write a Python program. Use the while loop and continuously ask
the programmer to enter the word unless the programmer enters the
word “quit”. By entering the word “quit”, the loop should terminate.

2. Write a Python program to read an input from the user and separate
the vowels and consonants in the entered word.

3. Write a Python program to read an input from the user and to print
the uppercase of the entered word.

CHAPTER 4

Strings

ython does not provide a character data type. String is a data type
in Python language, and the programmers can create a string by
surrounding characters in quotes.

4.1 STRING CREATION

Python considers single quotes the same as double quotes, and string index
and negative index representation is shown in Figure 4.1.
For example:

s=‘this is to test’ #single quote example
sl="this is to test” # double quote example

Syntax

String name=“content inside quotesg”

negative
index -15-14 -13-12-11 10 9 -8 -7 -6 -5 -4 -3 -2 1

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

FIGURE 4.1 String index and negative index representation.

DOI: 10.1201/9781003414322-4 75

https://doi.org/10.1201/9781003414322-4

76 m Learning Professional Python

4.2 ACCESSING VALUES TO A STRING

To access the values of the string, use the slicing operator (:) and the
indexing operator ([]).

Program

s="“thig is to test”
print (s[0])
print (s [13])

Output

The preceding program used the indexing operator ([]) to display the string.

Program

s="this is to test”
print(s[0:])
print (s[5:10])
print (s[-3])

print (s[-7:-31)

Output

this is to test
is to

e

to t

The preceding program used the slicing operator (:) to display the string.

Program

s="this is to test”

print (s)

print (“s[:6]--",s[:6])
print (“s[4:]1--",S[4:])
print (“s[-1]1--",s[-1])
print(“*s[-2:]--",s[-2:1)
print (“*s[-2:5]--",s[-2:5])
print (“*s[5:-2]1--",8[5:-21)
print(“*s[::-1]--",s[::-11)

print (“*s[-14]--",s[-14])
print (*s[-15]--",s[-15])
print (*s[:-1]1--",s[:-1])
print (%*s[5:-1]--",s[5:-11)
print (“*s[5:-2]--",s[5:-2])
print (*s[-5:-2]--",s[-5:-2])

Output

this is to test
s[:6]-- this 1

Strings m 77

In the preceding program is a string displaying using index notations.

s[4:]1-- is to test
s[-1]-- t

s[-2:1-- st

s[-2:5]--

s[5:-2]-- is to te
s[::-1]-- tset ot si siht
s[-14]-- h

s[-15]-- t

s[:-1]1-- this is to tes
s[5:-1]1-- is to tes
s[5:-2]-- is to te
s[-5:-2]-- te

Program

s="this is to test”
print (s[15])

Output

IndexError Traceback
<ipython-input-12-e2bc36c787f4> in <modules ()

1l s=“this is to test”
----> 2 print(s[15])

IndexError: string index out of range

The preceding program tries to print index out of range.

Program

s="this is to test”
print (s[1.5])

(most recent call last)

78 m Learning Professional Python

Output

TypeError Traceback (most recent call last)
<ipython-input-13-8a4d10de04c8> in <modulex ()

1 s=“this is to test”

----> 2 print(s[1.5])

TypeError: string indices must be integers

The preceding program gives non-integer index value to retrieve string
content.

4.3 MODIFY EXISTING STRING

The programmers can alter an existing string by reassigning another
string to the variable.

Program

g="this is to test”
print (s)

g=“india”

print (s)

Output

this is to test

india
We can modify the part of the string by using the slicing operator.

Program

s="this is to test”

print(s[0:])
print (“updated string :- ”, s[:6] + ‘Python’)
Output

this is to test
Updated String :- this iPython

In the preceding program, from the six character onwards, the string
has been modified as the string Python. Modified the string “s to test” with
the string “python”.

Strings = 79

Program

s=“Vijayawada”
print (s)

s="pyhton”

print (s)

s=“string example”
print (s)

s="this is to test”
print (s)

Output

vijayawada
pyhton

string example
this is to test

The preceding program updates the string.

4.4 ESCAPE CHARACTERS

An escape character becomes interpreted in a single quote as well as double
quote. An escape character can be embodied with backslash notation. The

subsequent table, Table 4.1, is a list of escape or non-printable characters.

TABLE 4.1 Escape Characters

Backslash Notation Description
\a Bell or alert

\b Backspace

\e Escape

\f Form feed

\n New line

\r Carriage return
\s Space

\t Tab

\v Vertical tab

\x Character x
\xnn Hexadecimal notation

Note: print (“\\”) produces output \.

Program

prlnt (\\\\n)

80 m Learning Professional Python

Output
\

4.5 STRING SPECIAL CHARACTERS

The special characters to access the string is tabulated in Table 4.2.

TABLE 4.2 String Special Characters

Operator Description

+ Concatenation

* Repetition

[Slice

[:] Range slice

In Membership operator - returns true if a specified character exists in a string
not in Membership operator - returns false if a specified character exists in a string
% String formatting

r/r Raw string

Program

s=“python”
print (s+s)
print (s+s+s)
print (s*4)

(

(
print (*t’ in s)
print (*t’ not in s)
print (“12345”*3)

Output

pythonpython
pythonpythonpython
pythonpythonpythonpython
True

False

123451234512345

The preceding program applies the concatenation, membership, and
the replication operator on strings.

Strings = 81

4.6 STRING FORMATTING OPERATOR

The % operator is unique to strings. The following table consists of collec-
tion of symbols that can be utilized with %. Different string formatting
operators are tabulated in Table 4.3

TABLE 4.3 String Formatting Operators

Format operator Description

%c Character

%i String conversion

%s Signed Integer

%d Signed Integer

%u Unsigned integer

%0 Octal integer

%x Hexadecimal integer — lowercase
%X Hexadecimal integer — uppercase
%e Exponent notation — lowercase
%E Exponent notation — lowercase
%f Floating point

%g Shorter form %f and %e

%G Shorter form %f and %E

}H}7.format (‘this’, ‘is’, ‘for’, ‘test’)

H
s)

s="{} {} {} {}”.format (‘this’, ‘is’, ‘for’, ‘test’)
s)
{2}{1}{0}”.format (‘this’, ‘is’, ‘for’, ‘test’)
S

s="{t}{i}{£f}{e}”.format (t="this’,i="is’,f="for’,e="t
est’)

print (s)

s="{}, string format example”.format (“pyhton”)
print (s)

s="string example in {}”.format (“pyhton”)

print{s)

s="this example is for {}, string”.format (“pyhton”)
print (s)

82 m Learning Professional Python

Output

thisisfortest

this is for test

testforisthis

thisisfortest

pyhton, string format example
string example in pyhton

this example is for pyhton, string

The preceding program formats the string using format ().

Program

s="this is to test”
print (s)
sl=‘this is to test’
print (s1)
s2="'this is to test’”
print (s2)
s3=""this is to test”’
print (s3)
s4=""‘this is
to
test’ '’
print (s4)
5=“this is \n to test”
print (s5)
5=“this is \t to test”
print (s5)
print (“'{}’ " .format (“this is to test”))
print (* “{}” ' .format (“this is to test”))
st="this is to test”
print (“$s”%st)
print (“\\%s\\”%st)
print (*\“%s\”"”%st)
print (“It\’s pyhton \‘'String\’ testing”)
print (“\”Python\" String example”)
print (r“\”Python\"“ String example”)#raw string
print (R“"\”Python\"“ String example”)#raw string
print (M :.7}”.format (“this is to test”))

Strings m 83

Output

this is to test

this is to test

‘this is to test’

“this is to test”

this is

to

test

this is

to test

this is to test

‘this is to test’

“this is to test”

this is to test

\this is to test)\

“this is to test”

It’s python ‘'‘String’ testing
“Python” String example
\“Python” String example
\“"Python\” String example
this is

The preceding program displays the string in different formats.

Program

print (“this {0:10} is to test {1:10} {2:10}”.format
(‘example’, ‘pyhton’, ‘string’))

print (“this {0:>10} is to test {1:>10} {2:>10}”.format
(‘example’, ‘pyhton’, ‘string’))

print (“this {0:<10} is to test {1:<10} {2:<10}”.format
(‘example’, ‘pyhton’, ‘string’))

print (“this {0:710} is to test {1:710} {2:710}”.format
(‘example’, ‘pyhton’, ‘string’))

print (“this {0:@>10} is to test {1:*>10}{2:&>10}".format
(‘example’, ‘pyhton’, ‘string’))

print (“this {0:$<10} is to test {1:%<10} {2:~<10}”.format
(‘example’, ‘pyhton’, ‘string’))

print (“this {0:#710} is to test {1:!%10} {2:*"10}".format
(‘example’, ‘pyhton’, ‘string’))

84 m Learning Professional Python

Output:

this example is to test pyhton string
this example is to test pyhton string
this example is to test pyhton string
this example is to test pyhton string

this @eeexample is to test ****pyhton &&&&string
this example$$s is to test pyhton%%%% string~~~~
this #example## is to test !!pyhton!! “**gstring**

The preceding program formats the strings using the alignments by format ().

4.7 TRIPLE QUOTES

Triple quotes permit the string to span multiple lines.

Program

s=""“"this is
to testllllll
print (s)

Output
this is
to test

4.8 UNICODE STRINGS
In Python the normal strings are accumulated as the 8-bit ASCII, whereas
the unicode strings are saved as the 16-bit values.

Note: Unicode strings apply the prefix u; raw strings use the prefix r.

Program

print (u‘test’)

Output

test

4.9 BUILT-IN STRING METHODS

Some of the predefined string methods to handle strings are tabulated in
Table 4.4.

Strings ® 85

TABLE 4.4 Built-In String Methods

Method Description

capitalize () Capitalizes first letter of string.

Count (str, beg=0, end=len(string)) Counts how many times str occurs in string or in
substring of string if starting index beg and
ending index end are given.

find (st, beg=0, end=len(string)) Determines if st occurs in string or in a substring

of string form starting index beg and ending
index end are given returns index if found and
- 1 otherwise.

join (seq) Merges the string.

len (st) Returns the length of the string.

lower () Converts all uppercase letters in string to
lowercase.

max (str) Returns the max alphabetical character from the
string str.

min (str) Returns the min alphabetical character from the
string str.

replace (old, new[, max]) Replaces all occurrences of old in string with new

or at most max occurrences if max given.

rstrip () Performs both Istrip () and rstrip () on string.

swapcase () Inverts case for all the letters in the string.

upper () Converts lowercase letters in string to uppercase.

zfill (width) Left padded with zeros to a total of width
characters.

Program

s="Vijayawada”
print (s)
s[0]="b’

Output

Vijayawada

TypeError Traceback (most recent call last)
<ipython-input-18-1£f023elb5186> in <modulesx ()
1l.s=“Vijayawada”

2 print(s)

---->3 s[0]="Db’

TypeError: ‘str’ object does not support item assignment

86 m Learning Professional Python

The preceding program tries to modify the string using = operator. The
interpreter throws error. To modify the string, we must use the predefined
method replace ().

Program

s=“Vijayawada”

print (s)

print (s.replace (V' ,'B’))
Output

Vijayawada

Bijayawada

The preceding program modifies some specific portion of the string.

Program

s="this is to test”
print (s.capitalize())

print (s.lower())
print (s.swapcase())
print(s.title())
print (s.upper())
print (s.count (‘t’))
print (s.find(‘'s”’))
print (s.index(‘is’))
print (s.rfind(‘is’))
print (s.rindex(‘is’))
print (s.startswith(‘this’))
print (s.endswith('t’))
print (* this is to test ”.lstrip())
print (* this is to test " .rstrip())
print (* this is to test “.strip())
print (s.partition(‘@’))
print (s.rpartition(‘@’))
print (s.split())
print (s.rsplit())
print (s.splitlines())
print (“this \t is \v to \b test”.splitlines())
print (“this is to test”.casefold())
(
(

Strings m 87

Output

This is to test
this is to test
THIS IS TO TEST
This Is To Test
THIS IS TO TEST

(2 IO B SR VU R

True

True

this is to test

this is to test

this is to test
this is to test’, '/, ‘')
N ‘7, ‘this is to test’)

¢

(

[‘thls ‘is’, ‘to’, ‘test’]
[‘this’ ‘is’, ‘to’, ‘test’]
[‘this is to test’]

[‘this \t is ’, ‘to \x08 test’]

this is to test
this is to test
b'this is to test’

The preceding program checks some of the predefined methods for
string.

4.10 DELETING STRING

The users can delete the entire string but not part of the string.

Program

s=“python”

print (“the given sting is: ”,s)
del s

print (s)

Output

the given sting is: python

88 m Learning Professional Python

NameError Traceback (most recent call last)
<ipython-input-17-369fdc4f776a> in <modulex ()
2 print (“the given sting is: ”,s)

3 del s

----> 4 print(s)
NameError: name ‘s’ 1s not defined

The preceding program deletes the string s. After deleting the string,
when the user tries to retrieve the string, the name error, the string not
defined is thrown.

Program

s="this is to test”
del s[1]

TypeError Traceback (most recent call last)
<ipython-input-8-6bfc7ff42e45> in <module> ()

1 s="this is to test”

----> 2 del s[1]

TypeError: ‘str’ object doesn’t support item deletion

The preceding program tries to delete the part of the string. Python
does not support deleting the part of the string, so we got the error.

EXERCISE

1. Write a Python program using the new line and the escape characters
to match the expected result as follows:

“This is”
“to test”
“Python language”

2. Write a program to count the number of the characters in the string
(Do not use the predefined method).

3. Access the first three characters and the last two characters from the
given string.

10.
11.
12.

Strings ® 89

. Count the number of occurrences of the first character in the given

string.

. Access the longest word in the given sentence.

. Exchange the first and the last characters of each word in a sentence.
. Insert the character <> in the middle of each word in a sentence.

. Access the words whose length is less than 3.

. Reverse the words in a sentence.

Print the index of the characters of the string.
Replace the vowel with a specified character.

Remove the duplicate characters from the string.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

CHAPTER 5

Lists

5.1 INTRODUCTION

List is a collection of elements, but each element may be a different type.
List is a data type in Python programming language, which can be written
as a list of commas separated values between square brackets. Creating a
list is putting different comma separated values between square brackets.
The list is a type in python used to store multiple objects. It is an ordered
and mutable collection of elements.

The value inside the bracket that selects one element of the list is called
an index, while the operation of selecting an element from the list is called
as indexing. List indexing is shown in Figure 5.1, and the specific indica-
tion of the index is shown in Figure 5.2.

Ll= [‘this’, ‘is’, ‘to’, ‘test’]

el e

Index ¢ 1 2 3

FIGURE 5.1 List indexing.

DOI: 10.1201/9781003414322-5 91

https://doi.org/10.1201/9781003414322-5

92 m Learning Professional Python

- =

Index ¢ 1 2 3

L1[0]=This
L1[1]=is
L1[2]=to
L1[3]=test

FIGURE 5.2 Specific indexing location and its content of the list.

L4: [\\aII, \\bll, \\Cll, \\dll, \\e/l]

List indices start at 0, and lists can be sliced, concatenated, and soon.

oS
((@’) Note: The index may be the expression or the number.

oS

(=) . .

(@) Note: + works on lists as concatenation operator and * works as
repetition operator

5.2 CHARACTERISTICS OF LISTS

The important characteristics of Python lists are as follows:

Lists are ordered.

Lists can contain any arbitrary objects.
List elements can be accessed by index.
Lists can be nested to arbitrary depth.
Lists are mutable.

Lists are dynamic.

The built functions and the predefined methods are tabulated in Table 5.1
and Table 5.2.

Lists m 93

TABLE 5.1 Built-In Functions in Lists

Function Description

cmp(listl, Tist2) Compares the elements of the two lists
len(list) Calculates the length of the list

max(list) Returns the maximum element of the list
min(list) Returns the minimum of the list
list(sequences) Converts any sequence to the list elements
sum () Summarizes all the elements in the list

TABLE 5.2 The Predefined Methods for List in Python

Method Description
list.append(obj) Adds an element at the end of the list
list.count(obj) Counts the number of elements in the list
list.extend(seq) Adds all elements of the list to another list
list.index(obj) Returns the index of the first matched item
list.insert(index,obj) Inserts the elements at the defined index
list.pop(obj=list [-]) Removes an element at the given index
list.remove(obj) Removes the list

list.reverse() Reverses the order of elements of the list
list.sort([func]) Sorts items in a list in the ascending order

5.3 DECISION-MAKING IN LISTS

Decision-making plays a vital role to access/update/delete elements in the
python list. The detailed example with explanation is given in the follow-
ing sections.

For loop

r = range (2, 20, 3)
1 list ()

for x in r
1.append (x)

print (1)

Result

[2, 5, 8, 11, 14, 17]

In the cited example, list () is the list constructor and | is the list object
created using the list constructor. The variable r was created using the

94 m Learning Professional Python

range with the starting element of 2 and the ending element with 20 and
increment was 3; that is, the first element is 2, the second element is 5, the
third element is 8, and so on. By using the for loop, the r variable elements
are appended to the list 1 by using the predefined method append of the list
at line number 4. At line 5 the list is displayed using the print statement.

While loop

11 = [1, 3, 5, 7, 9]
1 = len(11)

1 =20

while i < 1
print (11[4i])
i += 1

o g3 0 W

In the cited example, 11 is the list, which consists of five integer ele-
ments. Using the while loop to print the list 11 elements. The variable i
is used as the index variable. The while condition is i<l, that is, the loop
repeats for the length of the list. If the condition is true, then it prints the
list element based on the index location and incrementing the index. If the
while is false, then the while loop gets terminated.

5.3.1 Range

The range function generates the numbers based on the given specified
values. The syntax is

range (Start, End, Step)

The start indicator is the starting element, end indicator is the end ele-
ment, and step indicator is used to increment the elements.

print (list (range(6)))

Result

Lists m 95

In the cited example, start is the optional, so it is considered as the value
0 because 0 is the default start value, and the end element is number 6, and
step is optional, so the default step is +1.

r = range(2, 20, 5)
1 = list(x)
print (1)

Result

[2, 7, 12, 17]

In the cited example, start value is 2 and the end element is number
20 and step is 5. The first element is 2, the second element is (first ele-
ment + step that is 2+5=7) 7, the third element is (second element +
step=>7+5=12)12 and so on.

5.4 ACCESSING VALUES IN THE LIST

To retrieve values in the list, use the square brackets for slicing along
with the index or indices to acquire value presented at that index. For
example:

Example: list slicing

Ll= [‘this’, ‘is’, ‘to’, ‘test’]
print (L1[0])
print (L1[0:3])

Result

this
[‘this’, ‘is’, ‘to’]

oS
(‘@)) Note: The negative indices are legal.

An element with an index equal to - 1 is the last element in the list. The
index - 2 is the one before last element in the list. The negative index for
the list is shown in Figure 5.3, and the list that contains different data types
along with index and negative index is shown in Figure 5.4.

96 m Learning Professional Python

Ll= [‘this’, ‘is’, ‘to’, ‘test’]

el el

Index ¢ 1 2 3

Negative _4 -3 2 A
Index

FIGURE 5.3 Negative index.

L3= [1.1,2.2,3.3,4.4, “test”]

TR

Index o 1 2 3 4

Negative 5 _4 .3 2 -1
Index

FIGURE 5.4 Negative index for different data types in the list.

Example:

Python program to Print the length of the list
= [l

.append (“this”)

.append (“is”)
.append (“to”)
.append (“test”)

print (*The length of list is: ”, len(a))

Q0 0 9 O HF

Result

The length of list is: 4

The cited example prints the length of the list. The variable “a” is created
with the empty list. To that empty list, first the string “this” was appended.
Now the list contains one element, that is, a=[“this”]. Next, three more
strings are appended to the list - append means adding the content to the
last of the existing list. After line 5 the list seems like a= [“this”,” is”,” to”,”
test”]. The length is the total number of the elements of the list. The pre-

defined method len() returns the length of the list.

Lists m 97

Example

#Accessing Elements in Reversed Order
systems = [‘Windows’, ‘macOS’, ‘Linux’]
Printing Elements in Reversed Order
For o in reversed(systems) :

print (o)

Result

Linux
macOS
Windows

The cited example reverses the elements of the list. The reversed () is the
predefined method that reverses the sequence of the elements. The original
sequence of the list is the Windows, MacOS, and Linux. After applying the
reversed () on the list systems, the sequence becomes Linux, MacOS, and
Windows.

Example

#program to swap any two elements in the list

Getting list from user

myList = []

length = int (input (“Enter number of elements: "))
for i in range (0, length):

val = int (input())

myList.append(val)

print (“Enter indexes to be swapped”)

indexl = int (input(“index 1: "))
index2 = int (input(“index 2: "))
print (*Initial List: ”, myList)

Swapping given elements

myList [index1], myList[index2] = myList [index2],
myList [index1]

printing list

print (*List after Swapping: ”, myList)

Result

Enter number of elements: 4

98 m Learning Professional Python

0 3 BN

Enter indexes to be swapped
index 1: 1

index 2: 3

Initial List: [2, 4, 7, 9]

List after Swapping: [2, 9, 7, 4]

The cited example swaps the elements in the list. The list name myl-
ist the list variable, and it is the empty list. The length consists of the
count value, which the user wants to enter the number of values to the
list. The user-entered value is stored in the variable val, and this variable
is appended to the list mylist. Later swapped the index1 value with the
index2 value.

Example

#Negative List Indexing In a Nested List

L = ['a’, ‘b’, [‘cc’, *dd’, [‘eee’, ‘fff’]], ‘g’, ‘h’']
print (L[-31)

Prints [‘cc’, ‘dd’, [‘eee’, ‘fff’]]

print (L[-3]1 [-11)

Prints [‘eee’, ‘fff']

print (L[-3] [-1] [-2])

Result

[‘cc’, ‘dd’, [‘eee’, ‘fff’']]
[‘eee’, ‘fff’]

eee

The cited example retrieves the list elements using the negative index.
The index - 1 represents the list element ‘h’ and - 2 represents the list ele-
ment ‘g, — 3 list element [‘cc’, ‘dd’, [‘eee’, ‘ff’]], - 4 list element ‘b’, and - 5
points to the list element ‘@’. In line 4, L [-3] [-1] first retrieves the element
[‘cc, ‘dd’, [‘eee’, ‘fIf’]] and later — 1 retrieves the element [‘eee’, “fif’]. L [-3]
[-1] [-2] first retrieves the — 3 element [‘cc’, ‘dd’, [‘eee’, ‘fif’]] and later — 1
retrieves the element [‘eee’, ‘fff’]. In this list — 1 is ‘fff” and — 2 is ‘eee’. So L
[-3] [-1] [-2] retrieves the element ‘eee’.

Lists m 99

5.5 UPDATING LIST

The Examplemers can update the single list or multiple list elements by provid-
ing the slice on the left-hand side of the assignment operator. The Examplemer
can add up elements to the already existing list with the append () method.

Example

Ll= [‘this’, ‘is’, ‘to’, ‘test’]
print (L1[0:3])

L1[1] =‘testing’

print (L1[0:3])

Result
[‘this’, ‘is’, ‘to’]
[‘this’, ‘testing’, ‘to’]

In the cited example, L1[1]="testing " in line 2 replaces the string at L1[1]
from ‘is’ to ‘testing’.

Example

Python program to demonstrate comparison
between extend, insert and append
assign lists

list 1 = [1, 2, 3]
list_ 2 = [1, 2, 3]
list_3 = [1, 2, 3]
a = [2, 3]

use methods
list 1.append(a)
list_2.insert (3, a)
list_3.extend(a)
display lists
print (list 1)
print (list 2)

print (list 3)

Result

100 m Learning Professional Python

In the cited example, the variable a is appended to the already existing
list list_1. The contents of the list a is added to the last of the already exist-
ing list list_1. The list, after adding the variable a to the list list_1, becomes
(1, 2, 3, [2, 3]]. The insert method adds the specific content at the specific
location. At line 10, the variable a is inserted at the third location to the list
list_2. After inserting the variable a to the list_2, the contents in list_2 are
[1, 2, 3, [2, 3]]. The extend function adds the contents to the end of the list.
After extending the list_3, the contents are [1, 2, 3, 2, 3].

5.6 DELETE LIST ELEMENTS

To remove the list elements, the Examplemer can use the del statement or
the remove () method.

Example

Ll=[‘this’, ‘is’, ‘to’, ‘test’]
print (L1[0:4])

print (L1[3])

del(L1[3])

print (L1[0:3])

Result

[‘this’, ‘is’, ‘to’, ‘test’]
test
[‘this’, ‘is’, ‘to’]

In the cited example, del () method is used to delete the elements from
the list. The statement del(L1[3]) deletes the index 3 element from the list,
that is, the string test is deleted from the list L1.

5.7 SORTING

Sort the list is sorting the elements of the list, that is, arranging the ele-
ments in the list. The predefined methods sort () and sorted () are used to
sort the list.

Example: sort the list elements

#Sort a given list

vowels list

vowels = [‘e’, ‘a’, ‘u’, ‘o', ‘i’]
sort the vowels

Lists m 101

vowels.sort ()
print vowels

print (‘sorted list: ‘', vowels)

Result

sorted list: [‘a’, ‘e’, ‘i’, ‘o', ‘u’]
Example

Python prog to illustrate the following in a list
def find len(listl):

length = len(listl)

listl.sort ()

print (“Largest element is:”, listl[length-11)

print (*Smallest element is:”, listl1[0])

print (*Second Largest element is:”, listl[length-2])
print (*Second Smallest element is:”, listl1[1])

Driver Code
listl=[12, 45, 2, 41, 31, 10, 8, 6, 4]
Largest = find len(listl)

Result

Largest element is : 45
Smallest element is: 2

Second Largest element is : 41
Second Smallest element is: 4

In the cited example, the list is sorted using the sort () function. After
sorting the list, it displays the first largest element, second largest element,
first smallest, and the second smallest element.

5.8 COPYING
The predefined method copy () returns the shallow copy of the list.

Example

#Copying a List

mixed list

my list = [‘cat’, 0, 6.7]
copying a list

102 m Learning Professional Python

new list = my list.copy()
print (‘copied List:’, new list)

Result

Copied List: [‘cat’, 0, 6.7]

The cited example copies one complete list to another list. The pre-
defined method copy copies the my_list elements to the list new_list.

Example

#Copy List Using Slicing Syntax

shallow copy using the slicing syntax # mixed list
list = [‘cat’, 0, 6.7]

copying a list using slicing

new list = list[:]

Adding an element to the new list

new list.append(‘dog’)

Printing new and old list

print (*0l1d List:’, list)

print (‘New List:’, new list)

Result
0ld List: [‘cat’, 0, 6.7]

New List: [‘cat’, 0, 6.7, ‘dog’]

In the cited example, the variable list contains three elements. The variable
new_list copies the variable list elements, that is, it does not specify the index
location, so it copies all the target list elements. A string ‘dog’ is appended to
the new_list variable. The new_list contains the elements [‘cat’, 0, 6.7, ‘dog’].

5.9 OPERATORS ON LISTS
The operators used for list are tabulated in Table 5.3

TABLE 5.3 Operators Used for List

Operator Description

+ Concatenation

* Repetition

In Membership, iteration

not in Not membership

Lists m 103

Example

#Repetition operator on Strings
sl="python”
print (s1*3)

Result

pythonpythonpython

In the cited example, * works as the repetition operator. Print(s1*3)
means sl is repeated three times, so the string python is repeated three
times.

Example

membership operators in lists

declare a list and a string
strl = “Hello world”
listl = [10, 20, 30, 40, 50]

Check ‘w’ (capital exists in the strl or not
if ‘w’ in stril:

print (“Yes! w found in ”, strl)
else:

print (*No! w does not found in ”, strl)
check ‘X’ (capital) exists in the strl or not
if ‘X’ not in stril:

print (“Yes! X dose not exist in ”, strl)
else:

print (*No! X exists in ”, strl)
Check 30 exists in the listl or not
if 30 in listl:

print (“Yes! 30 found in ", listl)
else:

print (*No! 30 does not found in ”, listl)
Check 90 exists in the listl or not
if 90 not in listl:

print (“Yes! 90 dose not exist in ”, listl)
else:

print (*No! 90 exist in ", 1listl)

104 m Learning Professional Python

Result

Yes! w found in Hello world

yes! X does not exist in Hello world

Yes! 30 found in [10, 20, 30, 40, 50]

Yes! 90 does not exist in [10, 20, 30, 40, 50]

In the cited example, the membership operator in is used to check
whether the list element exists in the list or not. The statement ‘w’ in strl
means checking whether the character w exists in the string strl.

5.10 INDEXING, SLICING

A slice allows the Examplemer to make either a copy or part of the list.

Syntax
List name [start end]

List name [: end] ~ list name [0: end]

A slice of the list makes a new list, taking elements from the source list
and the elements of the indices from start to end-1.

AN
((@)) Note: Can use the negative values for both start and the end
limits.

Example: Slicing

#whole list using slicing
Initialize list
List = [1, 2, 3, 4, 5, 6, 7, 8, 9]

Show original list
print (*\nOriginal List:\n”, List)

print (“\nSliced List: ")

Display sliced list
print (List [3:9:2])

Display sliced list
print (List[::2])

Lists m 105

Display sliced list
print (List[::])

Result

Original List:
[ll 2’ 3’ 4’ 5’ 6’ 7’ 8’ 9]

Sliced Lists:

[4, 6, 8]

(1, 3, 5, 7, 9]

(1, 2, 3, 4, 5, 6, 7, 8, 9]

In the cited example, the variable list consists of nine elements. The state-
ment List [3:9:2] returns the elements starting from index 3, that is, index
3 element is 4, and last slice operator 2 indicates 2 steps increment (that is,
the next element to retrieve is +2 element means index 3 + 2, so retrieves the
index 5 element) retrieves the element 6, and it repeats up to last list index 9.

5.11 SEARCHING IN LIST

To perform the search operation on the list, the users have to perform the
linear search. There is no predefined method to perform the search opera-
tion on the list.

#Largest and smallest element in the list
1st = []

num = int (input (‘How many numbers: ’))
for n in range (num) :

numbers = int (input (‘Enter number ’))
lst.append (numbers)

print (*Maximum element in the list is :”, max(lst),
“"\nMinimum element in the list is :”, min(lst))
Result

How many numbers: 4

Enter number 1

Enter number 3

Enter number 5

Enter number 7

Maximum element in the list is : 7
Minimum element in the 1list is : 1

106 m Learning Professional Python

In the cited example, max () and min () are predefined methods to dis-
play the maximum and the minimum elements from the list.

#''' Python3 code for k largest elements in an list’’’

def kLargest (arr, k):

Sort the given array arr in reverse
order.

arr.sort (reverse = True)

Print the first kth largest elements
for 1 in range (k) :

print (arr([i], end =" ")

Driver program

arr = [1, 23, 12, 9, 30, 2, 50]
n = len(arr)
k =3

kLargest (arr, k)

Result

50 30 23

In the cited example, the max three elements are displaying. For this,
first the array is sorted in the ascending order, and later the top three ele-
ments are used by using the for loop.

5.12 NESTED LIST

A list which in turn contains another list called the nested list. The nested
list L1=[[1, 2, 3, 4], [5, 6], [7, 8, 9]]. Representation is shown in Figure 5.5.

M.234] [56 @ | [7.89] |

FIGURE 5.5 Nested list representation.

The negative index for the nested list is represented in Figure 5.6.
L1=[A, ‘B’, [7, “test”, 5.8], 25.5]

Lists m 107

Negative
Index 4

L1

Index 0
Nested Index

-3 -2 -1 Negative
Index
L1[0]=A
L1[1]=B
L1[2]=[7,"test",5.8]
L1[3]=25.5

FIGURE 5.6 Nested list negative index.

#2D list

a=[[1, 2, 3, 41, [5, 61, [7, 8, 911
for i in range(len(a)):

for j in range(len(alil)):

print (alil [§], end=" ')

print ()

Result

3 4

<N o B
o o N
\¢]

In the cited example, the nested 2D list is presented. The outer list con-
sists of only one element, and the inner list consists of three elements.

#Find Nested List length

L = [*a’, ['bb’, ‘cc’], ‘d']
print (len (L))

Prints 3

print (len(L[1]))

Result

3
2

108 m Learning Professional Python

The cited examples display the length of the nested list. The outer list
consists of three elements, and the inner list consists of two elements.

Nested list: 3D

#3D list

X = 2

y = 2

zZ = 2

a 3d list = []

for i in range (x) :
a 3d_list.append([])

for j in range(y):
a_3d list[i] .append([])

for k in range(z):

a 3d list[i] [j].append(0)
print(a 3d list)

Result

(cfo, ol, fo, oll, [[o, o], [0,0]]]

5.13 LIST COMPREHENSION

List comprehension offers a short syntax to define and create a list based
on the existing list.

Example: Nested list

#Nested List Comprehensions

matrix = []

for 1 in range(5):

Append an empty sublist inside the list
Matrix.append([])

for j in range(5):

matrix[i] .append(73)

print (matrix)

Lists m 109

[
(o, 1, 2, 3, 41, [0, 1, 2, 3, 4]]

Example

Nested list comprehension
matrix = [[j for j in range(5)] for i in range(5)]
print (matrix)

Result

[[OI 1[2[3[4][[Ol 1[2[3[4][[Ol 1[2[3[4][
[Ol 1’ 2’ 3’ 4]’ [Ol 1’ 2’ 3’ 4]]

5.14 MATRIX REPRESENTATION

A matrix is a n-dimensional data structure where the data are arranged as
the rows and the columns. The Python list can also be represented as the
matrices.

Example

print (“enter first matrix size”)
row=int (input (“enter row size "))
col=int (input (“enter column size "))
a= []

for 1 in range (row) :

c= []

for j in range(col) :
c.append (int (input (“*number:”)))
a.append (c)

for 1 in range (row) :

for j in range(col) :
print (aflil [j],end=" ")

print ()

Result

enter first matrix size
enter row size 2

110 ®m Learning Professional Python

enter column size 2
number:1

number: 2

number: 3

number: 4

12

3 4

Lists can be represented as lists in the cited example. The variable ‘@’
is the empty list and all the user entered elements are stored in the list c’.
Later the list ‘¢’ is appended to the list @’.

Example

print (*enter first matrix elements”)
row=int (input (“enter row size "))
col=int (input (“enter column size "))

a=[]
for 1 in range (row) :
c=[]

for j in range(col) :

c.append (int (input (“number:”)))
a.append (c)

for 1 in range (row) :

for j in range(col) :
print (ali] [j],end=" ")

print ()

print (*enter second matrix elements”)
rowl=int (input (“enter row size "))
coll=int (input (“enter column size "))

al=[]
for i in range (rowl) :
cl=1I1]

for j in range(coll) :
cl.append (int (input (“*number:”)))
al.append(cl)

for 1 in range (rowl) :

for j in range(coll) :

print (al([i] [j],end=" ")

print ()

print (*Matrix Addition”)

if row==rowl and col==coll:

Lists m 111

for 1 in range (rowl) :

for j in range(coll) :

print (ali] [j]1+al[i] [j],end=" ")
print ()

else:

print (*addition not possible”)

Result

enter first matrix elements
enter row size 2
enter column size 2

number: 1
number: 2
number: 3
number:4
12
3 4

enter second matrix elements
enter row size 2

enter column size 2

number:5

number :
number:
number :
5 6

7 8
Matrix Addition
6 8

10 12

0 J O

The cited examples perform the matrix addition. The result shown is
only for 2 x 2 matrix additions. The uses can try other than this row and
column sizes.

Solved Examples

Example

Python program to Print the length of the list
n = len([10, 20, 30])
print (*The length of list is: ”, n)

112 m Learning Professional Python

Result

The length of list is: 3

Example

Python program to Print the length of the list
Initializing list

test list = [1, 4, 5, 7, 8]
Printing test list
print (“The list is : ” + str(test list))

Finding length of list using loop Initializing
counter

counter = 0

for i in test list:

incrementing counter

counter = counter + 1

Printing length of list

print (“Length of list using naive method is : ”
str (counter))

Result
The list is : [1, 4, 5, 7, 8]
Length of list using naive method is : 5

Example: Print the list in the reverse order

#Reverse a List

systems = [‘Windows’, ‘macOS’, ‘Linux’]
print (*Original List:’, systems)

List Reverse

systems.reverse ()

updated list

print (‘Updated List:’, system)

Result

Original List: [‘Windows’, ‘macOS’, ‘Linux’]
Updated List: [‘Linux’, ‘macOS’, ‘Windows’]
Example

#Reverse a List Using Slicing Operator
systems = [‘Windows’, ‘macOS’, ‘Linux’]

Lists m 113

print (*Original List:’, systems)

Reversing a list

#Syntax: reversed list = systems[start:stop:stepl
reversed list = systems[::-1]

updated list

print (‘Updated List:’, reversed list)

Result

Original List: [‘Windows’, ‘macOS’, ‘Linux’]
Updated List: [‘Linux’, ‘macOS’, ‘Windows’]
Example

#Swapping two values based on their values entered by
the user

Getting list from user

myList = []

length = int (input (“Enter number of elements: "))
for 1 in range (0, length):

val = int (input())

myList.append(val)

print (“Enter values to be swapped ")

valuel = int (input (“value 1: "))

value2 = int (input (“value 2: "))

indexl = myList.index(valuel)

index2 = myList.index(value2)

print (*Initial List: ”, myList)

Swapping given element

myList [index1], myList[index2] = myList [index2],
myList [index1]

Printing list

print (*List after Swapping: ”, myList)

Result

Enter number of elements: 4
1

3

4

5

Enter values to be swapped
value 1: 3

value 2: 5

114 = Learning Professional Python

Initial List: [1,3,4,5]
List after Swapping: [1, 5, 4, 3]

Example

#Python program to interchange first and last elements
in a list

Swap function

def swapList (newList) :

size = len(newList)

Swapping

temp = newList [0]

newList [0] = newList[size - 1]
newlList [size - 1] = temp
return newlList

list

newList = [12, 35, 9, 56, 24]
print (swapList (newList))

[24, 35, 9, 56, 12]

Example

#Swap the first and last elements is to use inbuilt
function list.pop().

Swap function

def swapList(list):

first = list.pop(0)

last = list.pop(-1)
list.insert (0, last)
list.append (first)

return list

#list

newList = [12, 35, 9, 56, 24]
print (swapList (newList))

Result

[24, 35, 9, 56, 12]

Example

#Reverse the first half of list elements in python
l1=1ist (map (int, input (*Enter Number:”) .split()))
start=0

Lists m 115

stop=len(l)//2 -1

while (start<stop) :
l[start],l[stopl=1[stopl,l[start]
start+=1

stop-=1

print (1)

Result

Enter Numbers:4

[4]

Example: append () and insert ()

#Inserting an Element to the List

vowel list

vowel = [‘a’, ‘e’, ‘i’, ‘u’]

‘o’ 1s inserted at index 3 (4th position)
vowel.insert (3, ‘o’)

print (‘Updated List:’, vowel)

Result

Updated List: [‘a’, ‘e’, ‘i’, ‘o’, ‘u’l
Example

#Inserting a Tuple (as an Element) to the List
mixed list = [{1,2}, [5, 6, 7]]

number tuple

number tuple = (3, 4)

inserting a tuple to the list

mixed list.insert (1, number tuple)

print (‘Updated List:’, mixed list)

Result

Updated List: [{1, 2}, (3, 4), [5, 6, 71]
Example

python program to demonstrate working of append
function

assign list

1 = [‘pythom’]

116 m Learning Professional Python

use method

1.append (‘program’)

1.append (‘course’)

display list

print (1)

Result

[‘pythom’, ‘program’, ‘course’]
Example

#Nested List

L = ['a’, ‘b’, [‘cc’, *dd’, [‘eee’, ‘fff’]], ‘g’, ‘h’']
print (L[2])

Prints [‘cc’, ‘dd’, [‘eee’, ‘fff’]]

print (L[2] [2])

Prints [‘eee’, ‘fff']

print (L[2] [2] [0])
Prints eee

Result

[‘cc’, *dd’, [‘eee’, ‘fff’]]
[‘eee’, ‘fff']

eee

Example

import functools
filtering odd numbers

1st = filter(lambda x : x % 2 == 1, range(1l,20))
print (1st)

filtering odd square which are divisible by 5
lst = filter(lambda x : X % 5 == 0,

[x ** 2 for x in range(1l,11) if x % 2 ==11)
print (1st)

filtering negative numbers

1st = filter((lamba x: x < 0), range(-5,5))
print (1st)

implementing max () function, using
print (functools.reduce(lambda a,b: a if (a > b) else
b, [7, 12, 45, 100, 15]))

Lists m 117

Result

<filter object at 0x7f9ec4201f50>
<filter object at 0x7f9ec84b4410>
<filter object at 0x7f9ec4201f50>
100

Example 18

x= []
t=x [0]
print (t)

Result

IndexError Traceback (most recent call last)
<ipython-input-12-a29e2cf34d86> in <module> ()
1 x= [

- ----> 2 t=x [0]

3 print (t)

IndexError: list index out of range

Example

Python code to clone or copy a list Using the
in-built function list ()

def Cloning(1lil):

1i copy = 1lil

return 1li copy

list

1i1 = [4, 8, 2, 10, 15, 18]
1li2 = Cloning(1lil)

print (*Original List:”, 1i1l)
print (*After Cloning:”, 1i2)
Result

Original List: [4, 8, 2, 10, 15, 18]
After Cloning: [4, 8, 2, 10, 15, 18]

118 m Learning Professional Python

Example 36

python code to clone or copy a list Using list
comprehension
def Cloning(1lil):

1i copy = [1 for i in 1i1]
return 1li copy

list

1i1 = [4, 8, 2, 10, 15, 18]
1li2 = Cloning(1lil)

print (*Original List:”, 1il)
print (*After Cloning:”, 1i2)
Result

Original List: [4, 8, 2, 10, 15, 18]
After Cloning: [4, 8, 2, 10, 15, 18]

Example

python code to clone or copy a list Using append()
def closing(1lil):

1i copy =11

for item in 1il: 1i copy.append(item)

return 1i copy

list

1i1 = [4, 8, 2, 10, 15, 18]
1i2 = Cloning(1lil)

print (*Original List:”, 1il)
print (*After Cloning:”, 1i2)
Result

Original List: [4, 8, 2, 10, 15, 18]
After Cloning: [4, 8, 2, 10, 15, 18]

Example

python code to clone or copy a list Using bilt-in
method copy ()

def Cloning(1lil):

1i copy = I[]

1i copy = 1lil.copy()

return 1i copy

list

1i1 = [4, 8, 2, 10, 15, 18]
1li2 = Cloning(1lil)

print (*Original List:”, 1il)
print (*After Cloning:”, 1i2)
Result

Original List: [4, 8, 2, 10, 15, 18]
After Cloning: [4, 8, 2, 10, 15, 18]
Example: membership operators in lists

#members hip operators in and not in
a = 10

b = 20

list = [1, 2, 3, 4, 5] ;

if (a in list)

print (*Line 1 - a is available in the
else:

print (*Line 1 - a is not available in
if (b not in list)

print (*Line 2 - b is not available in
else:

print (*Line 2 - b is available in the
a = 2

if (a in list)

Lists m 119

given list”)

the given list”)

the given list”)

given list”)

print (*Line 3 - a is available in the given list”)
else:

print (*Line 3 - a is not available in the given list”)
Result

Line 1 - a is not available in the given list

Line 2 - b is not available in the given list

Line 3 - a is available in the given list

Example

* Operator on lists
def multiply(a, b):
return a * b

values = [1, 2]

120 m Learning Professional Python

print (multiply (*values))
print (multiply(1,2))
Result

2
2

Example

#Repetition operator on lists
11=[1,2,3]
print (11 * 3)

Result

Example

#Repetition operator on a nested list

11=[1[2]1]
12=11%*2
print (12)
11[0] [0]=99
print (11)
print (12)
Result

(021, [2]]
[[99]]
[[99], [99]]
Example

#whole list using slicing

Initialize list

Lst = [50, 70, 30, 20, 90, 10, 50]
Display list

print (Lst[::])

Result

[50, 70, 30, 20, 90, 10, 50]

Example 49: negative slicing

#negative slicing

Initialize list

Lst = [50, 70, 30, 20, 90, 10, 50]
Display list

print (Lst[-7::11)

Result

[50, 70, 30, 20, 90, 10, 50]

Example 50

Negative indexing in lists
my_liSt = [\pl,\rl,\ol,\bl,\el]
print (my list[-1])
print (my list[-5])

Result

e
p

Example: Delete part of the list using slicing

#Delete part of the list using slincing
1 =1[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
print (1)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
del 1[0]

print (1)

[1, 2, 3, 4, 5, 6, 7, 8, 9]

del 1[-1]

print (1)

[1, 2, 3, 4, 5, 6, 7, 8]

del 1[6]

print (1)

[1, 2, 3, 4, 5, 6, 8]

Result

[OI 1/ 2/ 3I 4I 5/ 6/ 7/ 8/ 9]
[11 2/ 3I 4I 5/ 6/ 7/ 8/ 9]
(1, 2, 3, 4, 5, 6, 7, 8]

[1, 2, 3, 4, 5, 6, 8]

Lists m 121

122 m Learning Professional Python

Example: Delete complete list using slicing

#Delete complete list using slincing
1 =1[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
del 1[:]

print (1)

Result

[]

Example

#Change Nested List Item Value

L = [\al’ [‘bb,, ‘CC,], \dl]
L[1][1] = 0O

print (L)

Result

(*ta’, ['bb’, 0], *d’]
Example

#Add items to a Nested list

L = ['a’, [‘bb’, ‘cc’], 'd’'l

L[1] .append(‘xx")

print (L)

Prints [‘a’, [‘bb’, ‘cc’, ‘xx’], ‘d’]
Result

[\al, [\bbl, \CCI, \Xxl], \dl]

Example

#Insert items to a Nested list

L = [‘all [‘bb,, ‘CC,], \dl]
L[1] .insert (0, ‘xx’)

print (L)

Result

Example

#extend items to a Nested list

L - [\al, [\bbl, \Ccl], \dl]

L[1] .extend([1,2,3])

print (L)

Prints [‘a’, [‘bb’, ‘cc’, 1, 2, 3], ‘d’l]
Result

[‘a’, [‘bb’, ‘cc’, 1, 2, 31, 'd’'l

Example

#Remove items from a Nested List

L = [‘a’, [‘bb’, ‘cc’, ‘dd’'], ‘e’]
x = L[1] .pop (1)

print (L)

removed item

print (x)

Prints cc

Result

[\al, [\bbl, \ddl], \el]
ccC

Example

#Remove items from a Nested List use the del
statement.

L = ['a’", ['‘bb’, ‘cc’, *dd’'], ‘e’l

del L[1][1]

print (L)

Prints [‘a’, [‘bb’, ‘dd’'l, ‘e’l

Result
[\al, [‘bb,, ‘dd,], \el]

Example

#Remove items from a Nested List use remove ()
to delete it by value.

Lists m 123

method

124 m Learning Professional Python

L = ['a’", ['‘bb’, ‘cc’, *dd’']l, ‘e’l
L[1] .remove(‘cc’)

print (L)

Prints [‘a’, [‘bb’, ‘dd’'], ‘e’]

Result

[\al, [‘bb,, ‘dd,], \el]

Example

#Iterate through a Nested List

L = [[1, 2, 31,04, 5, 61,17, 8, 911
for list in L:

for number in list:

print (number, end=‘' ')

Result

1 2345¢6 789

Example

* Operator on lists
def multiply(a, Db):
return a * b

values = [1, 2]

print (multiply (*values))
print (multiply (1, 2))

Result

2
2

Example

#Strings are concatenated
sl=“Welcome”

s2="to”

s3="python”

S4=81+s2+83

print (s4)

Result

Welcometopython

Example

#Repetition operator on Strings
sl=“python”

print (s1*3)

Result

pythonpythonpython

Example

#Repetition operator on lists
11=[1,2,3]
print (11 * 3)

Result

Example

#Repetition operator on a nested list

11=[12]1]
12=11%*2
print (12)
11[0] [0]1=99
print (11)
print (12)
Result

(021, [2]]
[[99]]
(0991, [99]]
Example

#whole list using slicing
Initialize list
Lst = [50, 70, 30, 20, 90, 10, 50]

Lists m 125

126 m Learning Professional Python

Display list
print(Lst[::])
Result

[50, 70, 30, 20, 90, 10, 50]

Example

#negative slicing

Initialize list

Lst = [50, 70, 30, 20, 90, 10, 50]
Display list

print (Lst[-7::1]1)

Result

[5s0, 70, 30, 20, 90, 10, 50]

EXERCISE

1. Write a Python program to print only the second element of the
student names list.

2. Write a Python program to print the maximum element in the list.

3. Write a Python program to remove duplicate elements in the list.

CHAPTER 6

Tuple

A tuple is a collection of objects in sequence that is ordered and immu-
table. The main difference between list and the tuple is the tuples use the
parentheses, whereas the list uses the square brackets. The tuples cannot
be changed unlike lists. The tuple elements are separated by the comma
operator. Tuple index starts with 0. The example for the tuple is as follows:

Tl= (‘this’, ’is’, ’'to’, ’'test’)
T2: (“thiS", IliSII, IltOII, "teSt”)
T3= (1,2,3,4,5)

T4= (1.1,2.2,3.3,4.4)

6.1 TUPLE CREATION

The empty tuple is written as two parentheses with nothing:

Tl= ()

If the tuple contains a single element, the programmer must include the
comma operator even if the tuple contains a single element. For example:

Program

t=tuple((1,2,3))
print (t)
tl=tuple((“thig”, “ig”, “to”, “test”))

DOI: 10.1201/9781003414322-6 127

https://doi.org/10.1201/9781003414322-6

128 m Learning Professional Python

print (tl)
t2=tuple((1,2,3,3, (“this”, “is”, “to”, “test”, “test”)))
print (t2)

Output

(1, 2, 3)

(‘this’, ‘is’, ‘to’, ‘test’)

(1, 2, 3, 3, (‘this’, ‘is’, ‘to’, ‘test’, ‘test’))

The preceding program demonstrates the tuple creation using tuple ().

Program

t=tuple((1,2,3))

print (t)

tl=tuple((“thig”,6 “ig”, “to”, “test”))

print (tl)
t2=tuple((1,2,3,3, (“this”,6 “is”, “to”, “test”, “test”),
[“test”,11))

print (t2)

Output

(1, 2, 3)

(‘this’, ‘is’, ‘to’, ‘test’)

(1, 2, 3, 3, (‘this’, ‘is’, ‘to’, ‘test’, ‘test’),
[‘test’, 1])

The preceding program demonstrates the tuple creation.
Python provides predefined functions for tuples. They are tabulated
in Table 6.1, and predefined method for tuples are tabulated in Table 6.2.

TABLE 6.1 Predefined Functions for Tuples

Function Description

cmp(tuplel, tuple2) Compares the elements of the two tuples
len(tuple) Gives the total length of the tuple
max(tuple) Returns the max value of the tuple
min(tuple) Returns min value of the tuple

tuple(sequence) Converts the list to tuple

Tuple = 129

TABLE 6.2 Predefined Method for Tuple

Method Description
count() Returns the number of times a specified value occurs in a tuple
index() Searches the tuple for a specified value and returns the position of

where it was found

Program

t=tuple((1,2,3,3, “this”, “is”, “to”, “test”, “test”,

[“test”,1]1))

print (t.count (3))

print (t.count (“test”))

print (t.index(3))
((

print (t.index(“test”))

Output

NN NN

The preceding program performs predefined methods of tuple.

6.2 ACCESSING VALUES IN TUPLES

To retrieve values in tuple, use either the index or indices inside the square
bracket. For example:

T1= (“thiS" , \\iSII , “Wto” , “test”)
print (T1[0])
print (T1[0:3])

Output

this

(‘this’, ‘is’, ‘to’)
Program

s=tuple((“this”,6 “is”, “to”, “test”, “python”, “tuple”,
“example”, “collection”, “data”, “type”))
print (s)

130 ®m Learning Professional Python

(‘this’, ‘is’, ‘to’, ‘test’, ‘python’, ‘tuple’,
‘example’, ‘collection’, ‘data’, ‘type’)

s[:6]-- (‘this’, ‘is’, ‘to’, ‘test’, ‘python’, ‘tuple’)
s[4:1-- (‘python’, ‘tuple’, ‘example’, ‘collection’,
‘data’, ‘type’)

s[-1]1-- type

s[-2:1-- (‘data’, ‘type’)

s[-2:5]-- ()

s[5:-2]-- (‘tuple’, ‘example’, ‘collection’)
s[::-11-- (‘type’, ‘data’, ‘collection’, ‘example’,
‘tuple’, ‘python’, ‘test’, ‘to’, ‘is’, ‘this’)
s[-10]-- this

s[-9]1-- is

s[:-11-- (‘this’, ‘is’, ‘to’, ‘test’, ‘python’,
‘tuple’, ‘example’, ‘collection’, ‘data’)

s[5:-11-- (‘tuple’, ‘example’, ‘collection’, ‘data’)
s[5:-2]-- (‘tuple’, ‘example’, ‘collection’)
s[-5:-2]-- (‘tuple’, ‘example’, ‘collection’)

The preceding program accesses tuple elements using index notation.

Program

t=tuple((1,2,3))

for x in t:

print (x)

tl=tuple ((“thig”,”ig”,”to”,"test”))

Tuple = 131

for x in til:

print (x)

t2=tuple((1,2,3,3, (“this”,”is”,"to”,"test”,"test”),
[“test”,1]1))

for x in t2:

print (x)

Output

‘this’, ’is’, 'to’, ’'test’, ’'test’)
‘test’, 1]

The preceding program accesses tuple elements.

Program

s=tuple((“this”, “is”, “to”, “test”))
print (s)

print (sorted(s))

print (sorted (s, reverse=True))

Output

(‘this’, ’is’, ’'to’, ’'test’)
[Vis’, ’'test’, ’'this’, 'to’]
[‘to’, ’'this’, ’'test’, ’'is’]

The preceding program sorts tuple using the sorted function.

Program: sort tuple numbers

s=tuple((2,3,1,7,3,4,5,8,9))
print(s)

132 m Learning Professional Python

print(sorted(s))
print(sorted(s,reverse=True))

Output

(2, 3, 1, 7, 3, 4, 5, 8, 9)
(1, 2, 3, 3, 4, 5, 7, 8, 9]
(9, 8, 7, 5, 4, 3, 3, 2, 1]

The preceding program sorts tuple of numbers using the sorted function.

Program
t:((\tl,\hl,\il,\sl))
print (*.join(t))
Output

this
The preceding program converts tuple to string.

6.3 UPDATING TUPLES

Tuples are immutable, that is, the programmer cannot update or modify
the tuples of tuple elements. The programmer is able to take the portions

of current tuples to create the new tuples. For example:

Tl=(“this”,6 “is”, “to”, “test”)
T2=(1,2,3,4,5)

T3=T1+T2

print (T3)

When the preceding code is executed, it produces the following result:
(‘this’, ‘is’, ‘to’, ‘test’, 1, 2, 3, 4, 5)

Program

s=tuple((“this”,”is”,”to”,"test”))
print (%s:”,s)

g=list (s)

s.append (“tuple”)

Tuple m 133

s=tuple (s)

print (s)

Output

s: (‘this’, ‘is’, ‘to’, ‘test’)
(‘this’, ‘is’, ‘to’, ‘test’, ‘tuple’)

The preceding program adds item to the tuple.

Program

t=tuple((1,2,3))

print (t)

print (“concat”, t+t)
print (“replicate”, t*3)

Output

(1, 2, 3)
concat (1, 2, 3, 1, 2, 3)
replicate (1, 2, 3, 1, 2, 3, 1, 2, 3)

The preceding program concats and replicates on tuples.

6.4 DELETE TUPLE ELEMENTS

Tuples are immutable, that is, deleting an individual tuple element is not
feasible. The programmer can remove an entire tuple by using the del
statement. For example:

Tl=(“this”,”is”,”to”,"test”)
print (T1[0:3])

del (T1)

print (T1)

Output

NameError Traceback (most recent call last)
<ipython-input-5-£29dc347d682> in <module> ()

2 print (T1[0:3])

3 del (T1)

134 m Learning Professional Python

---->4 print(T1)
NameError: name 'Tl’ is not defined

Program

t=tuple((1,2,3))

print (t)
del t
Output

(1, 2, 3)

The preceding program removes complete tuple.

Program

t=tuple((1,2,3,3,”this”,”is"” ,"to”,"test”,"test”,
[“test”,1]1))
print (t)

t=list (t)
t.remove (3)
print (t)
t.remove (“test”)
print (t)

for x in t:
t.remove (x)
t=tuple (t)

print (t)

1, 2, 3, 3, ‘this’, ‘is’, ‘to’, ‘test’, ‘test’,

1, 2, 3, ’'this’, ’'is’, 'to’, 'test’, 'test’,
‘test’, 11]

, 2, 3, 'thisg’, ’isg’, ’'to’, ’'test’, [‘test’, 1]]
, 'this’, ’"to’, [‘test’, 1])

The preceding program removes the elements from the tuple.

6.5 OPERATIONS ON TUPLES

The + and * operators work like a concatenation and replication operation

on tuples.

Tuple m 135

RN
(‘@)) Note: The + operator joins tuples together, and * operator multiplies

tuples.
Program
t=(1, 2, 3)

tl=(4, 5, 6)
print (t+tl)

Output

The preceding program performs + operator in tuples.

Program

t=(1, 2, 3)
tl=(‘test’)
print (t+tl)

TypeError Traceback (most recent call last)
<ipython-input-4-d4200773bff6> in <module>()

1 t=(1, 2, 3)

2 tl=(‘test’)

----> 3 print (t+tl)

TypeError: can only concatenate tuple (not ”"str”) to
tuple

The preceding program performs + operator in integer and string tuples.

Program

t=(1, 2, 3)
print (t*3)

Output

The preceding program performs * operator in integer tuples.

136 m Learning Professional Python

Program
tl=(‘test’)
print (t1*3)
Output

testtesttest

The preceding program performs * operator in string tuples.

(4 .
@)Note: + operator works as the concatenation operator for tuples, and
* operator works as the repetition operator for tuples.

Program

s=tuple((“this”,”is”,”to”,”"test”, (1,2,3), (“true”,
"false") ,IIlII))
“S)

print (

print(“thls in s: "this” in s)

print (*3 in s:”,3 in s)

print (*false in s:”,”false” in s)

print (*(1,2,3) in s:”,(1,2,3) in s)
print (“*(1,2) in s:”,(1,2) in s)

print (*(1,2) not in s:”,(1,2) not in s)

Output

s: (‘this’, ’"is’, ’'to’, 'test’, (1, 2, 3), (‘true’
'false’), "'1")

this in s: True

3 in s: False

false in s: False

(1,2,3) in s: True

(1,2) in s: False

(1,2) not in s: True

The preceding program performs membership operators in tuple.

Program

s=tuple((1,2,3,4,5,6,9))
print (len(s))
print (max(s))

Tuple = 137

~

print (min(s)
print (sum(s)

N

Output

The preceding program performs aggregate operations on tuple.

Program

s=tuple((1,2,3,4))
sl=tuple((1,2,3))

print(“s:”,s)

print (*sl:”,sl)

print (“s==s1:”,8==81)
print (*s!=sl1”,s!l=s1)
print (“*s<sl:”,s<sl)
print (“*s>sl:”,s>sl)
print (“*s>=s1:”,s>=s1)
print (“*s<=sl:”,s<=s1)
Output

s: (1, 2, 3, 4)
sl: (1, 2, 3)
s==sl: False
s!=sl1l True
s<sl: False
s>sl: True
s>=s8l1: True
s<=gl: False

The preceding program performs comparison operators on tuples.

Program

Tuple Largets and Smallest Item

lgsmTuple = (25, 17, 33, 89, 77, 10, 64, 11, 55)
print (“Tuple Items = ”, lgsmTuple)

138 m Learning Professional Python

tupLargest = lgsmTuple[0]

tupSmallest = lgsmTuple[0]

for i in range(len(lgsmTuple)) :
if (tupLargest < lgsmTuple[i]) :
tupLargest = lgsmTuple[i]
tupLargestPos = 1
if (tupSmallest > lgsmTuple[i]):
tupSmallest = lgsmTuple[i]
tupSmallestPos = i

print (“Largest Item in lgsmTuple Tuple = ”,
tupLargest)

print (“Largest Tuple Item index Position = ",
tupLargestPos)

print (*Smallest Item in lgsmTuple Tuple = ”,
tupSmallest)

print (*Smallest Tuple Item index Position = ”,
tupSmallestPos)

Output

Tuple Items = (25, 17, 33, 89, 77, 10, 64, 11, 55)
Largest Item in lgsmTuple Tuple = 89
Largest Tuple Item index Position = 3

Smallest Item in lgsmTuple Tuple = 10

Smallest Tuple Item index Position

Il
ul

6.6 UNPACKING OF TUPLES

In Python packing means placing a value in a new tuple, and unpacking
means extracting the tuple values back to the variables.

Packing:
T=(‘this’;)is’;’to’, test’) # packing
Unpacking:
Mapping the right-hand arguments to the left-hand arguments. The total

number of variables on the left-hand side should be equal to the total
number of values in the tuple. For arbitrarylength, use the * arguments.

e.g.: (a,b,c,d)=T # unpacking

Program

s=(“this”,”is”,”to”,"test”, (1,2,3), (“true”,
"false”), "1")

(a,b,c,d,e, £f,g9)=s

print (a)

print
print
print
print
print

(b
(c
(d
(e
(f
(g

)
)
)
)
)
print (g)

print (“Unpacking-1")
(a,b, *c)=s

print (a)

print (b)

print (c)

print (“Unpacking-2")
(a,*b,c)=s

print (a)

print (b)

print (c)

print (“Unpacking-3")
(*a,b,c)=s

print (a)

print (b)

print (c)

Output

this

is

to

test

(1, 2, 3)
(‘true’, ’'false’)
1

Unpacking-1

this

is

Tuple = 139

140 m Learning Professional Python

[‘to’, ’'test’, (1, 2, 3), (‘true’, ’'false’), '1']
Unpacking-2

this

[‘is’, 'to’, ‘test’, (1, 2, 3), (‘true’, ’'false’)]
1

Unpacking-3

[‘this’, ’is’, ’'to’, ’'test’, (1, 2, 3)]
(‘true’, ’"false’)

1

The preceding program performs unpacking the tuple.

6.7 INDEXING, SLICING ON TUPLES

The [] operator is used to index or slice the tuple in Python. Indexing
the tuple uses either the positive or the negative value. The positive index
fetches the index from the tuple left, whereas the negative index fetches
from the tuple right. Tuple slicing uses the slicing operator (:) to retrieve a

range of items.

Syntax for tuple index

Tuplename [index]
Syntax for tuple slicing
Tuplename [start:stop:stepl

Tuple = 141

The preceding program performs the tuple index and slicing on
characters.

Program

t = (1,2,3,4)
print (t [1])

print (t[-1])
print (t[:2])
print (t[1:3])
print (t[::2])

— — e/

Output

2
4
(1, 2)
(2, 3)
(1, 3)
The preceding program performs the tuple index and slicing on
numbers.

Nested Tuple

Nested tuple is the tuple inside another tuple.

Program

s=tuple((“this”,”is”,”to”,"test”, (1,2,3), (“true”,
"falsgse”) ,”1"))

4])

4] [0])
4] [11)
4] [2])
5])

5] [0])
51 [11)

142 m Learning Professional Python

1
2
3
(‘true’, ’'false’)

true
false

The preceding program performs accessing elements from the nested
tuple.

Program

s=tuple (“this”,”is”,”to”,"test”, [1,2,3], [“true”,
"false”],”1"))

s[4] [1]="test”
print (s)

s[5] [0] ="boolean”
print (s)

Output

(‘this’, ’'is’, ’'to’, ’'test’, [1, ’'test’, 3], [‘true’,
'false’], '1")

(‘this’, ’'is’, ’'to’, ’'test’, [1, ’'test’, 31,
[‘boolean’, 'false’], '1")

The preceding program modifies the nested tuple elements.

EXERCISE

1. Unpack a tuple with seven different types of elements.
2. Convert a tuple to string.

3. Retrieve the repeated elements of the tuple.

4. Convert a list to a tuple.

5. Find the length of the tuple.

6. Reverse the tuple.

7. Convert a tuple to dictionary.

8. Compute the sum of all the elements of the tuple.

CHAPTER 7

Sets

7.1 INTRODUCTION

A set is a collection that is unordered and unindexed. In Python, sets are
written with curly brackets.

S:{“this”, “iS”, “to”, “teSt”}
There are two ways to create a set in Python.

1. Using curly brackets

2. Using set constructor

Syntax for curly brackets set creation

setname={“iteml”,”item2”, . . .}

Syntax using set constructor

Setname=set ((={“iteml”,”item2”, . . .))

Program: creating the set

s={“this”,h “is”,6 “to”, “test”}

print (s)

sl=set ((“this”,6 “is”, “to”, “test”))
print (sl)

DOI: 10.1201/9781003414322-7 143

https://doi.org/10.1201/9781003414322-7

144 m Learning Professional Python

Output

{‘test’,‘is’,‘to’, ‘this’}
{‘test’,‘is’,‘to’, ‘this’}

Program: creating set with multiple data types

s={“this is to test”, (1,2,3), (“pyhton”, “set”,
“example”),10.34567}

print (s)

gl=get ((“this is to test”, (1,2,3), (“pyhton”, “set”,
“example”),10.34567))

print (sl)

print (“pyhton elements”)

for x in s:
print (x)

Output

{‘this is to test’, (‘pyhton’, ‘set’, ‘example’),
10.34567, (1, 2, 3)}

{‘this is to test’, (‘pyhton’, ‘set’, ‘example’),
10.34567, (1, 2, 3)}

Pyhton elements

this is to test

(‘pyhton’, ‘set’, ‘example’)

10.34567

(1, 2, 3)

Program: giving duplicate values to the set

s={1,2,3,2, “this”, “is”, “to”, “test”, “test”}

print (s)

sl=set ((1,2,3,2,"“this”, “ig”, “to”, “test”, “test”))
print (s1)
s2={(1,2,3,2), (“this”, “is”, “to”, “test”, “test”) }
Print (s2)

Output

{1, 2, 3, ‘to’, ‘test’, ‘this’, ‘is’}
{1, 2, 3, ‘to’, ‘test’, ‘this’, ‘is’}
{(*this’, ‘is’, ‘to’, ‘test’, ‘test’), (1, 2, 3, 2)}

https://doi.org/10.34567}
https://doi.org/10.34567))
https://doi.org/10.34567,
https://doi.org/10.34567,
https://doi.org/10.34567

Sets m 145

7.2 ACCESS SET ELEMENTS

The set items cannot be accessed by referring the index or the key.
The programmer has to use the loop to access the set elements.

Program: Access set items
S={“this", “iS”, “to”, “teSt"}
print (s)

for x in s:
print (x)

Output

{‘test’, ‘is’, ‘to’, ‘this’}
test

is

to

this

7.3 ADDING ELEMENTS TO THE SET

To add the elements in the set, there is a predefined method called the add
(). To add multiple items to the set, there is a predefined method called the
update ().

Program: Adding elements to the set

s={“this”, “is”, “to”, “test”}
print (s)
s.add (“pyhton”)
print (s)
g.add (“set”)
print (s)
s.add (“example”)
print (s)
Output
{‘test’, ‘is’, ‘to’, ‘this’}
{‘this’, ‘to’, ‘pyhton’, ‘test’, ‘is’}
{‘this’, ‘to’, ‘pyhton’, ‘set’, ‘test’, ‘is’}
{‘this’, ‘example’, ‘to’, ‘pyhton’, ‘set’, ‘test’,

\isl}

146 m Learning Professional Python

Program: adding multiple items
S={“thiS”,“iS”,“tO”,“teSt”}

print (s)

s.update ([“python”, “set”, “example”])
print (s)

Output

{‘test’, ‘is’, ‘to’, ‘this’}
{‘python’, ‘this’, ‘example’, ‘to’, ‘set’, ‘test’, ‘is’}

74 REMOVE AN ELEMENT FROM THE SET

To remove an element from the set, there are two predefined methods
called the remove (), discard (). There is another predefined method called
the pop () to remove the topmost element from the set. There is no guaran-
tee that by using pop () which element from the set will be removed.

Program: Remove an element from the set

s={“this”,h “is”, “to”, “test”}
print (s)

s.remove (“test”)

print (s)

s.discard(“this”)

print (s)

s .pop ()

print (s)

Output

{‘test’, ‘is’, ‘to’, ‘this’}

{‘iS’, ‘to’, ‘thiS’}
{\isl, \tol}
{*to"}

7.5 DELETE THE SET

There are two predefined methods called the clear () and del to delete the
set elements. Clear only deletes the set elements and the empty set retains,
but the del keyword deletes the entire set.

Program: using del keyword

S={ Z“thig” , wign ,“to", “teSt"}

Sets m 147

print (s)
s.clear ()
print (s)
del s

Output

{‘test’,
Set ()

‘is’, ‘to’, ‘this’}

7.6 PYTHON SET OPERATIONS

Most of the set operations works on two sets. Table 7.1 tabulates the opera-
tions on sets.

TABLE 7.1 Python Set Operations

Operation Symbol Description

union U Combines both sets

intersection n Selects elements that are common in both sets
difference - The elements in first set but not in second

Program: Set operations

s={1,2,3, “test”}

Sl={ Z“thig” , wign ,“to”, “test”,“1", 1}
print (“s:”,s)

print (“*sl:”,sl)

print(“s|sl:”,s|sl)

print (“s&sl:”,s&sl)

print (“s*sl:”,s"sl)

print (“*s-sl:”,s-s1)

print (“*sl-s:”,sl-s)

Output

s: {1, 2, 3, ‘test’}

sl: {1, ‘this’, ‘1’, ‘to’, ‘test’, ‘is’}
s|s1: {1, 2, 3, ‘this’, ‘1’, ‘to’, ‘test’, ‘is’}
s&sl: {1, ‘test’}

s*s1: {2, ‘is’, 3, ‘this’, ‘1’, ‘to’}
s-sl: {2, 3}

sl-s: {‘1’, ‘is’, ‘to’, ‘this’}

148 m Learning Professional Python

7.7 SET MEMBERSHIP OPERATORS

Set membership operators in Python test for membership in set. Table 7.2
tabulates the Python membership operations.

TABLE 7.2 Python Membership Operations

Operation Description

in Returns true if the element is found in the set; otherwise false

not in Returns true if the element is not found in the set; otherwise
false

Program: Set membership operators

s={1,2,3,“test”}

print (“*s:”,s)

print (“test in s:”,“test” in s)

print(*1 in s:”1 in s)
(
(

print(*5 in s :”,5 in s)
print (“*5 not in s”,5 not in s)
Output

s: {1, 2, 3, ‘test’}
test in s: True

1 in s: True

5 in s: False

5 not in s True

Program: Sort the set

s={“this”, “is”,6 “to”, “test”}
print (s)

print (sorted(s))

print (sorted (s, reverse=True))

Output

{‘test’, ‘is’, ‘to’, ‘this’}
[Vis’, ‘test’, ‘this’, ‘to’]
[‘to’, ‘this’, ‘test’, ‘isg’]

Sets m 149

7.8 SET PREDEFINED METHODS
Table 7.3 tabulates the set predefined methods in Python.

TABLE 7.3 Predefined Set Methods

Method Description

add() Adds an element to the set. Set maintains only unique
elements; if the newly added element already exists in the set,
then it does not add that element.

clear() Removes all elements from the set.

copy() Copies the set.

difference() Returns the first set elements only that were not exist in the
second set.

intersection() Returns the elements that were common in the given sets.

pop() Removes the random element from the set.

symmetric difference() Returns the distinct elements that were found in the given sets.

union() Combines the given sets.

update() Updates the set by adding distinct elements from the passed ones.

Program: Set predefined functions

s={“this”, “is”, “to”, “test”}

sl={“this”,h “is”, “to”, “test”,“1”,1}

print (“s:”,s)

print (“*sl:”,sl)

print (“union:”,s.union(sl))

print (“intersection:”,s.intersection(sl))

print (*difference s-sl:”,s.difference(sl))

print (*difference sl-s:”,sl.difference(s))

print (“symmetric difference s-sl:”,
s.symmetric difference(sl))

print (“symmetric difference sl-s:”,
sl.symmetric difference(s))

Output

s: {‘test’, ‘is’, ‘to’, ‘this’}

sl: {1, ‘this’, '1’, ‘to’, ‘test’, ‘is’}
union: {1, ‘this’, ’1’, ‘to’, ‘test’, ‘is’}
intersection: {‘this’, ‘is’, ‘to’, ‘test’}

difference s-sl: set ()
difference sl-s: {’1’, 1}

150 ®m Learning Professional Python

symmetric difference s-sl: {1, '1'}
symmetric difference sl-s: {1, "1’}

Program: operation on 3 sets

s={“this”, “is”,6 “to”, “test”}
sl={“this”, “is”, “to”, “test”,“1”,1}
s2=={1,2,3,2,“this”, “is”, “to”, “test”, “test”}
print (“s:”,s)
print (%sl:”,sl)
print (%s2:”,s82)
print (“union:”,s.union(sl, s2))
print (“intersection:”,s.intersection(sl,s2))
print (*difference s-sl:”,s.difference(sl,s2))
print (*difference sl-s:”,sl.difference(s,s2))

Output

s: {‘test’, ‘is’, ‘to’, ‘this’}

s1: {1, ‘this’, ’1’, ‘to’, ‘test’, ‘is’'}

s2: {(‘this’, ‘is’, ‘to’, ‘test’, ‘test’), (1, 2, 3, 2)}

union: {1, ‘this’, ’1’, ‘to’, (‘this’, ‘is’, ‘to’,
‘test’,‘test’), ‘test’, (1, 2, 3, 2), ‘is’}

intersection: set()

difference s-sl: set()

difference sl-s: {'1’, 1}

Program: Operations on four sets

s={“this”, “is”, “to”, “test”}

sl={“this”, “is”, “to”, “test”,“1”,1}

s2=={1,2,3,2, this”, “is”, “to”, “test”, “test”}

s3={“"this is to test”, (1,2,3), (“pyhton”, “set”,
“example”),10.34567}

print (“s:”,s)

print (“sl:”,sl)

print (“s2:”,s2)

print (“s3:”,s3)

print (“union:”,s.union(sl,s2,s3))
print (“*intersection:”,s.intersection(sl,s2,s3))

print (*difference s-(sl,s2,83):",
s.difference(sl,s2,s3))

print (*difference sl-(s,s2,83):",
sl.difference(s,s2,s3))

Sets m 151

print (*difference s2-(sl,s,s3):",
s2.difference(s,sl,s3))

print (*difference s3-(gl,s2,8):",
s3.difference(s,sl,s2))

Output:

s: {‘test’, ‘is’, ‘to’, ‘this’}

si: {1, ‘this’, ’1’, ‘to’, ‘test’, ‘is’}

s2: {(‘this’, ‘is’, ‘to’, ‘test’, ‘test’), (1, 2, 3, 2)}

s3: {‘'this is to test’, (‘pyhton’, ‘set’, ‘example’),
10.34567, (1, 2, 3)}

union: {1, (‘pyhton’, ‘set’, ‘example’), (1, 2, 3, 2),
‘to’, ‘this’, 10.34567, (1, 2, 3), ‘is’, ‘test’,
‘this is to test’, ’1’, (‘this’, ‘is’, ‘to’, ‘test’,
‘test’) }

intersection: set()

difference s-(sl,s2,s3): set()

difference sl-(s,s2,s3): {1, "1’}

difference s2-(sl,s,s3): {(1, 2, 3, 2), (‘this’, ‘is’,
‘to’, ‘test’, ‘test’)}

difference s3-(sl,s2,8): {10.34567, (1, 2, 3), ‘this
is to test’, (‘pyhton’, ‘set’, ‘example’)}

Program: Relational operators on sets
S=(1,2,3,4)

S1=(1,2,3)

Print (:",s)

print (%sl:”,sl)
print{“s==s1",s==s1)

print (“*s!=sl1”,s!=sl)
print (“s<sl:”,s<sl)
print{“s>sl:”,s>s1)
print(
print (®

“s>=g51: ,s>=sl)
s<=sl:”,S<=gl)

Output

s: (1, 2, 3, 4)
sl: (1, 2, 3)
s==sl: False
sl=s1 True
s<sl: False

152 m Learning Professional Python

s>sl: True
s>=sgl: True
s<=sgl: False

Program: Intersection and difference

S:{ “thig” , wqgn , “to”, “teSt”}
Sl:{ Zrhig” , wign ,“to”, “test”,“1", 1}

print (“s:”,s)

print (“sl:”,sl)

print (“intersection:”,s.intersection update(sl))
print (*difference s-(sl):”,s.difference update(sl))
print (*difference sl-(s):”,sl.difference update(s))
print (*Symmetric_difference s-(sl):”,s.

symmetric_difference update(sl))
print (*Symmetricdifference sl-(s):”,sl.
symmetric_differance update(s))

Output
s: {‘test’, ‘is’, ‘to’, ‘this’}
s1: {1, ‘this’, ’'1’, ‘to’, ‘test’, ‘is’}

intersection: None

difference s-(sl): None
difference sl-(g): None
Symmetric_difference s-(sl): None
Symmetricdifference sl-(s): None

7.9 FROZEN SET

A frozen set function returns an immutable frozen set object initialized
with elements from the given object, like list, tuple, etc.

Syntax

frozenset(object), where object is the object of list, tuple etc.

Program 17: Creating frozen set
s=forzenset ((“this”, “ig”, “to”, “test”))
print (s)

Output

frozenset ({‘test’, ‘is’, ‘to’, ‘this’})

Sets m 153

710 FROZEN SET OPERATIONS

Table 7.4 tabulates different frozen set operations in Python.

TABLE 7.4 Python Frozen Set Operations

Operation symbol Description

union | Combines both sets

intersection & Selects elements that are common in both sets
difference - The elements in first set but not in second

Program: Frozen set operations

\\ton , “teSt"))
“to” , “tegt” ,

s=frozenset ((“this”, “is”,
sl=frozenset ((“this”,
print (“s:”,s)

print (“*sl:”,sl)

print (“s|sl:”,s|sl)
print (“s&sl:”,s&sl)
print (“s*s1:”,s"s1)
print (“*s-sl:”s-sl)
print (“*sl-s:”,sl-s)

“iS", \\111,1))

~ o~ o~~~ —

Output

s: frozenset ({‘test’, ‘is’, ‘to’, ‘this’'})

sl: frozenset ({1, ‘this’, '1’, ‘to’, ‘test’, ‘is’})
s|s1: ({1, ‘this’, "1’, ‘to’, ‘test’, ‘is’'})
s&sl: {‘this’ ‘to’, ‘test’})

s*sl: {1, "1 })
)
{

frozenset (
frozenset ‘is’,
frozenset

s-sl: frozenset

(
(
(
(

sl-s: frozenset ({’1’, 1})

711 FROZEN SET PREDEFINED OPERATIONS

Table 7.5 tabulates the frozen set predefined operations.

TABLE 7.5 Frozen Set Predefined Operations

Method Description

difference() Returns the first set elements only that were not existing in the
second set

intersection() Returns the elements that were common in the given sets

symmetric_ difference()
union()

Returns the distinct elements that were found in the given sets
Combines the given sets

154 m Learning Professional Python

Program 18: frozen set predefined operations

s=frozenset ((“this”, “ig”, “to”, “test”))
sl=frozenset ((“this”, “is”, “to”, “test”,"“1”,1))
print (“s:”,s)

print (“*sl:”,sl)

print (*union:”,s.union(sl))

print (“intersection:”,s.intersection(sl))

print (*difference s-sl1:”,s.difference(sl))

print (*difference sl-s: ”,sl.difference(s))

print (“symmetric difference s-sl: ”,
s.symmetric difference(sl))

print (“symmetric difference sl-s: ”,

sl. symmetric difference(s))

Output

s: frozenset ({‘test’, ‘is’, ‘to’, ‘this’})

sl: frozenset ({1, ‘this’, ’'1’, ‘to’, ‘test’, ‘is’})
union: frozenset ({1, ‘this’, ’'1’, ‘to’, ‘test’, ‘is’})
intersection: frozenset ({‘'this’, ‘is’, ‘to’, ‘test’})
difference s-gsl: frozenset ()

difference sl-s: frozenset({’1’, 1})

symmetric difference s-sl: frozenset ({1, ’1’})
symmetric difference sl-s: frozenset ({1, ’1’})

Program 19: Relational operators on frozen sets

s=frozenset ((1,2,3,4))
sl=frozenset ((1,2,3))
print (“s:”,s)

print (“sl:”,sl)

print (“s==sl:"s==s1)
print{“s!=s1”,s!=s1)
print (“s<sl:”,s<sl)
print (“s>sl:”,s>s1)

(
(

print (“s>=sl:”,s>=s1)
print (“s<=sl:”,s<=sl)
Output

s: frozenset ({1,2,3,4})
sl: frozenset ({1,2,3})

Sets m 155

s==sl: False
sl=81 True
s<sl: False
s>sl: True
s>=gl: True
s<=sl: False

Program 20: Operation on four frozen sets

s=frozenset ((“this”, “is”, “to”, “test”))

sl=frozenset ((“this”, “is”, “to”, “test”,“1”,1))

g2==frozenset ((1,2,3,2,“this”, “is”, “to”, “test”, “test”))

s3=frozenset ((“this is to test”,{l,2,3),(“pyhton”,
“set”, “example"),10.34567))

print (“s s)

print (“s ,81)

print (“s ,82)

print (“s ,83)

print(“unlon ", s.union(sl,s2,s3))

print (“intersection:”,s.intersection(sl, s2,s3))
print (*difference s-(sl,s2,s83):"”,s.

difference(sl,s2,s3))

print (*difference sl-(s,s2,s3):”,sl.
difference(s,s2,s3))

print (*difference s2-(sl,s,s3):"”,s2.
difference(s,sl,s3))

print (*difference s3-(sl,s2,s):”,s3.
difference(s,sl,s2))

Output

S: frozenset({‘to’, ‘test’, ‘this’, ‘is’})

sl: frozenset ({1, ‘to’, ‘this’, ‘is’, ‘test’, ’1'})

s2: {(1, 2, 3, 2), (‘this’, ‘is’, ‘to’, ‘test’,
‘test’) }

s3: frozenset ({10.34567, (1, 2, 3), ‘this is to test’,
(‘pyhton’, ‘set’, ‘example’)})

union: frozenset ({1, (‘pyhton’, ‘set’, ‘example’), (1,
2, 3, 2), ‘to’, ‘this’, 10.34567, (1, 2, 3), ‘is’
‘test’, ‘this is to test’, ’1’, (‘this’, ‘is’, ‘to’
‘test’, ‘test’)})

intersection: frozenset ()

difference s-(sl, s2,s3): frozenset /()

156 m Learning Professional Python

difference sl-(s, s2, s3): frozenset ({1, ’'1’'})

difference s2-(sl, s, s3): {(1, 2, 3, 2), (‘this’,
‘is’, ‘to’, ‘test’, ‘test’)}

difference s3-(sl, s2, s): frozenset({10.34567, (1, 2,
3), ‘this is to test’, (‘pyhton’, ‘set’, ‘example’)})

Program 21: operation on 3 frozen sets

s=frozenset ((“this”, “is”, “to”, “test”))
sl=frozenset ((“this”, “is”, “to”, “test”,“1”,1))
g2==frozenset ((1,2,3,2,“this”, “is”, “to”, “test”, “test”))
print (“s :",s)

print(“sl 1)

print (“s)

print(“unlon ,s.union(sl,s2))

print{“lntersectlon ,s.1lntersection(sl,s2))

print{“difference s-(sl,s2):”,s.difference(sl,s2))

print{“dlfference sl-(s,s2):”,sl.difference(s,s2))

print{“dlfference s2-(sl,s):”,s2.difference(s,sl))

Output

s: frozenset ({‘to’, ‘test’, ‘this’, ‘is’})

sl: frozenset ({1, ‘to’, ‘this’, ‘is’, ‘test’, ’1'})

s2: {(1, 2, 3, 2), (‘this’, ‘is’, ‘to’, ‘test’,
‘test’) }

union: frozenset({l, (1, 2, 3, 2), ‘to’, ‘this’, ‘is’,

‘test’, '1’, (‘this’, ‘is’, ‘to’, ‘test’, ‘test’)})
intersection: frozenset ()
difference s-(gl, s2): frozenset /()
difference sl- (s, s2): frozenset ({1, "1’'})
difference s2-(sl1, s): {(1, 2, 3, 2), (‘this’, ‘is’,
‘to’, ‘test’, ‘test’)}

EXERCISE

1. Perform the union and the intersection operations on the set.
2. Verify whether the set is the subset of another set.

3. Remove all elements from the set and the frozen set.

4. Compare two sets.

5. Find the max and min elements from the set and the frozen set.

CHAPTER 8

Dictionary

Dictionary is a Python data structure, and it is a set of key value pairs.

oS
(‘@)) Note: Each key must be unique. It may be any type, and keys are

case sensitive.

O
((@)) Note: More than one value per key is not allowed.

Empty dictionaries are constructed by an empty pair of curly braces, that

is, {}.

OARN
((@’) Note: By default, dictionaries are ordered collections.

In dictionary, each key is separated from its value by a colon (), the items
are separated by the comma operator, and both the keys and values are
enclosed by curly braces.

Access the dictionary values

Syntax

dictionaryname [key]

Program

marks = {‘java’: 80, ’python’: 90, ’'ruby’: 86}
print (list (marks) [0])

DOI: 10.1201/9781003414322-8 157

https://doi.org/10.1201/9781003414322-8

158 m Learning Professional Python

print (list (marks) [1])
print (list (marks) [2])
print (marks|[‘java’]l)

Output

java
python
ruby
80

The preceding program accesses key elements. The dictionary name in this
program is marks, and it consists of three elements. The keys in the marks
dictionary are java, python, and ruby, and the corresponding values for
the specified keys are 80, 90, and 86. To access the dictionary value, use the
dictionary and its key value, that is, to access the java value from the marks
dictionary, use marks|[‘java’].

Program

marks = {‘java’: 80, ’python’: 90, ’'ruby’: 86}
if "java” in marks:

print (“*Exists”)

else:

print (“*Does not exist”)

Output

Exists

The preceding program checks the existence of the key using the mem-
bership operators.

Program

marks = {‘java’: 80, ’python’: 90, ’ruby’: 86}
print (“*java” in marks)
print (“*c” not in marks)

Output

True
True

Dictionary = 159

The preceding program checks membership operators with dictionaries.

Program

test= (‘a’, 'b’, 'c’)
dict = dict.fromkeys (test)
print (“*“New Dictionary : %s” % str(dict))

dict = dict.fromkeys (test, 11)
print (”New Dictionary : %s” % str(dict))

Output

New Dictionary : {‘a’: None, ‘b’: None, ’c’: None}
New Dictionary : {‘a’: 11, ’'b’: 11, ’‘c’: 11}

The preceding program accesses dictionary using keys ().

Program

marks = {‘java’: 80, ’python’: 90, ’'ruby’: 86}
print (sorted (marks.keys ()))
print (sorted (marks.items()))

Output
[‘java’, ’'python’, ’‘ruby’]
[(‘java’, 80), (‘python’, 90), (‘ruby’, 86)]

The preceding program accesses dictionary using sorted ().

Program

marks = {‘java’: 80, ’python’: 90, ’'ruby’: 86}

print (“Value : %s” % marks.items())
Output
Value : dict items([(‘java’, 80), (‘python’, 90),

(*ruby’, 86)])

The preceding program accesses dictionary using items ().

160 m Learning Professional Python

Program

marks = {‘java’: 80, ’python’: 90, ’'ruby’: 86}
print (*Value : %s” % marks.values())

Output

Value : dict_values([80, 90, 86])
The preceding program accesses dictionary using values ().

Program

marks = {‘java’: 80, ’python’: 90, ’'ruby’: 86}
new = "JAVA”

old = "java”

marks [new] = marks.pop(old)

print (marks)

Output

{‘python’: 90, ’'ruby’: 86, 'JAVA’: 80}
The preceding program modifies a key and items in dictionary.

Program

marks = {‘java’: 80, ’python’: 90, ’'ruby’: 86}
print (marks.pop (“ruby”, None))
print (marks)

Output
86
{*java’: 80, ’'python’: 90}

The preceding program removes key from dictionary.

Program

marks = {‘java’: 80, ’python’: 90, ’'ruby’: 86}
print (marks)

marks [‘pascal’]=99

print (marks)

Dictionary = 161

Output
{*java’: 80, ’'python’: 90, ’'ruby’: 86}
{‘java’: 80, ’'python’: 90, ’'ruby’: 86, ’‘pascal’: 99}

The preceding program inserts keys and items in the dictionary.

Program

marks = {‘java’: 80, ’python’: 90, ’'ruby’: 86}
print (marks)

marks.update ({‘pascal’:99})

print (marks)

Output
{‘java’: 80, ’python’: 90, ’'ruby’: 86}

{*java’: 80, ’'python’: 90, ’'ruby’: 86, ’‘pascal’: 99}

The preceding program inserts keys and items in the dictionary using
update ().

Program

a=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

x = {n: n*n for n in a}

print (x)

Output

{l: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64,
9: 81, 10: 100}

The preceding program converts list to dictionary.

Program

d={'id’:1, 'name’ :’usharani’,’age’:33,’'1id’:5}
print(d[‘id’])

Output

5

The preceding program is a demonstration for duplicate keys.

162 m Learning Professional Python

The predefined function and the predefined method for dictionary is
tabulated in Table 8.1 and Table 8.2.

TABLE 8.1 Dictionary Functions

Function Description

cmp(d1,d2) Compares both elements of both dictionary
len(d) Total length of the dictionary(d)

Str(d) String representation of dictionary
Type(variable) Return type of dictionary

TABLE 8.2 Dictionary Methods

Method

Dict.clear
Dict.copy

Dict.fromKeys()
Dict.get(key,default=None)

Dict.has_key(key)

Dict.items()

Dict.keys()
Dict.setdefault(key,default=None)

Dict.update(d2)
Dict.values()

Description

Removes all elements of dictionary

Shallow copy of dictionary

Creates a new dictionary with keys from seq and
values set to value

For key key, returns value or default if key not in
dictionary

Returns true if key in dictionary dict, false otherwise

Returns a list of dicts (key, value) tuple pairs

Returns list of dictionary dict’s keys

Similar to get() but will set dict[key]=default if key is
not already in dict

Adds dictionary dict2’s key values pairs to dict

Returns list of dictionary dicts values

Program: Creating dictionary

d={1:7this”,2:7is”,3:"to” ,4:"test”}

print (d)

dl=dict (a=“this”,b=%ig”,c="to”,d="test”)

print (dl)

Output

{1: "this’, 2: ’is’, "to’, 4: 'test’}

{ra’: 'this’, 'b’: ’is’, ’'c’: 'to’, ’'d’: ’'test’}

Program: creating dictionaries by using from keys ()

k=('k1","k2","k3")
v=(10,20,30)

Dictionary = 163

d=dict. fromkeys (k, v)
print (d)

V1=(10)
dl=dict.fromkeys (k,vl)
print (dl)

d2=dict. fromkeys (k)
print (d2)

Output

{*k1’: (10, 20, 30), 'k2’: (10, 20, 30), 'k3’: (10,
20, 30)} {‘k1’: 10, ’'k2’: 10, 'k3’: 10}
{‘k1’: None, ’'k2’: None, ’'k3’: None}

8.1 ACCESSING THE ELEMENTS OF THE DICTIONARY

« By using for loop

« By using the key as the index

By using dictionaryname.values()
« By using dictionaryname.keys()

By using dictionaryname.items()

Program

d={l:”this”,2:”is”,3:to”,4:”test”}
print (d)

for x in d:

print (“key:”,x,”value:”,d.get (x))
print (*using index”)

for x in d:

print (d[x])

print (“keys”)

for x in d.values() :

print (x)

print (“values”)

for x in d.keys():

print (x)

print (“items”)

for x,y in d.items() :

print (x,vy)

164 m Learning Professional Python

Output

{1: 'this’, 2: 'is’, 3: 'to’, 4: ’'test’}
key: 1 value: this
key: 2 value: is
key: 3 wvalue: to
key: 4 value: test
using index

this

is

to

test

keys

this

is

to

test

values

4 test

Program

d={1:”"this”,2:7is”,3:"to" ,4:"test”}
k=d.keys ()

print (k)

v=d.values ()

print (v)

x=d.items ()

print (x)

Output

dict keys([1, 2, 3, 41)
dict values([‘this’, ’is’, ’to’, ’'test’])

dict items([(1, ‘this’), (2, ’is’), (3, ’'to’)

"test’)])

(4,

Dictionary m 165

The preceding program prints the dictionary keys and values separately.

Program: Dictionary sorting

d={3:"to”,2:”is”,1: "this”,4:"test”}

print (Yorigianal”,hd)

print (“sorting keys”,sorted(d.keys()))

print (“sorted dictionary:”,sorted(d.items()))

print (“sorted reverse dictionary:”,
d

sorted(d.items (), reverse=True))

Output

origianal {3: 'to’, 2: ’'is’, 1: ’‘this’, 4: 'test’}

sorting keys [1, 2, 3, 4]

sorted dictionary: [(1, ’this’), (2, "is’), (3, 'to’),
(4, "test’)]

sorted reverse dictionary: [(4, ’'test’), (3, 'to’),
(2, "is’), (1, ’'this’)]

8.2 COPYING THE DICTIONARY

There are two ways to copy the dictionary

« By using copy ()

« By using = operator

Program

d:{l:”this”,Z:”iS”,B:”to”,4:"test"}
print (d)

dl=d.copy ()

print (dl)

d2=dict (d)

print (d2)

Output

{1: 'this’, 2: "is’, 3: 'to’, 4: ’'test’}
{1: this’, 2: 'is’, 3: 'to’, 4: ’'test’}
{1: 'this’, 2: 'is’, 3: 'to’, 4: ’'test’}

The preceding program copies the dictionary using copy ().

166 m Learning Professional Python

Program

d={1:7this”,2:7is”,3:"to",4:"test"}
print (d)

dl=d

print (“copy dil:”,dl)

d2=dict (d)

print (“copy uisng dict () :”,d2)

Output

{1: 'this’, 2: ’'is’, 3: 'to’, 4: 'test’}

copy di: {1: ’'this’, 2: ’'is’, 3: 'to’, 4: 'test’}

copy uisng dict(): {1: ‘this’, 2: "is’, 3: 'to’, 4:
"test’}

The preceding program performs dictionary copy using = operator.

8.3 NESTED DICTIONARY

A dictionary that consists of another dictionary is called the nested
dictionary.

Program

d={‘'a’: ‘this’, 'b’: ’is’, ’‘c’: ’'to’, ’d’: ’'test’}
d1={‘a1’: "this’, 'bl’: ’"is’, ’'cl’: ’'to’, ’'dl’:

"test’}

d2={“d”: d, ”d1”:d1}

print (d2)

Output

{‘d': {‘a’: 'thiS', b’ 'iS', "¢’ 'to', rd’
‘test’}, 'di’: {‘al’: ’‘this’, 'bl’: ‘is’, ‘cl’:
"to’, ’'dl’: ’‘test’}}

The previous section is an example for the nested dictionary.

Program

d={ ‘a’ . rpythonr , "o [“thiS” , nign ,"to", ”test"] }
print (d)

Dictionary = 167

Output

{*a’: "python’, 'b’: [‘this’, ’is’, ’'to’, ’'test’]}
The preceding program consists of a list as the dictionary element.

Program

d={‘a’: ’'python’, ’'b’: tuple((“this”,”is”, ”to”,”test”)),

‘c’:get((“this is to test”)),’d’ :frozenset((“this”,”is
", "to”, "test”)) }

print (d)

Output

{+a’: 'python’, 'b’: (‘this’, ’is’, ’to’, ’'test’),
rar . {\OI, Iil, Itl, Ihl, ISI, ll, Iel}, rqr .
frozenset ({‘test’, ’'is’, ’'to’, ’this’})}

The preceding program consists of three data types to the Python
dictionary.

8.4 CHANGING THE DICTIONARY VALUES

There are two ways to change the values of the dictionary:

« By using the key as the index
By using the update ()

Program

d={1:"this”,2:”7is”,3:"to” ,4:"test"}
print (“orginal”,hd)

d[4]="testing”

print (*modified”,d)

d.update ({4:”test dictionary”})
print (“updated”,d)

Output

orginal {1: ‘this’, 2: ’is’, 3: 'to’, 4: ’'test’}

modified {1: ’this’, 2: ’is’, 3: ’'to’, 4: ’'testing’}

updated {1: ’‘this’, 2: ’is’, 3: ’'to’, 4: ’'test
dictionary’ }

168 m Learning Professional Python

The preceding program is modifying and updating dictionary.

8.5 ADDING THE ELEMENTS TO THE DICTIONARY

There are two ways in Python to add elements to the existing dictionary:

« By using the key as the index
By using the update ()

Program

d={1:"this”,2:”7is”,3:"to” ,4:"test"}
print (d)

dl“test”]=1

print (d)

Output
{1: ’this’, 2: ’is’, 3: 'to’, 4: 'test’}
{1: 'this’, 2: ’'is’, 3: 'to’, 4: ’'test’, ’'test’: 1}

The preceding program adds elements to dictionary by using key as the
index.

Program

d={l:”this”,2:”is”,3:”to”,4:”test”}
print (*orginal”,hd)

d.update ({5:”"python”,6:”dictionary” })
print (“updated”,d)

Output

orginal {1: ‘this’, 2: ’is’, 3: 'to’, 4: ’'test’}
updated {1: "this’, 2: ’'is’, 3: ’'to’, 4: ’'test’, 5:
‘python’, 6: ’'dictionary’}

The preceding program adds elements to the dictionary using the update().

8.6 REMOVING THE ELEMENTS OF THE DICTIONARY

There are four ways to delete the elements of the dictionary in Python:

» By using pop () - removes the item of the specified key

Dictionary = 169

« By using pop item () — removes the last inserted element
 Byusing del keyword - removes the element by using key as the index

By using clear () - empties the dictionary

Program

d={1:”"this”,2:”is”,3:"to”,4:"test"”}

"this’, 2: ’is’, 3: ’'to’, 4: 'test’}

{1
(4
{1: 'this’, 2: 'is’, 3: 'to’}
{2: "is’, 3: 'to’}

{2

The preceding program removes elements from dictionary.

Program

d={1:"this”,2:”is”,3:”to” ,4:"test"}
print (d)
d.clear ()
print (d)

Output

{1: 'this’, 2: ’'is’, 3: 'to’, 4: 'test’}

{}

The preceding program clears the elements of the dictionary.

8.7 DICTIONARY COMPREHENSION

Dictionary comprehension is a technique of transforming a dictionary to

another dictionary.

170 m Learning Professional Python

Program

d={i.lower(): i.upper() for i in ’python’}
print (d)

Output

{\pl: rpr, lyl: ryr, rgr. 1T, "ht . "H', 'o’': 'O,
n’ . INI}

The preceding program performs dictionary comprehension using
string methods.

Program

d={i: i*i for i in range(5)}

print (d)

s="python”

di={i: s[i] for i in range(0,len(s)) }

print (dl)

d2={i:i*i for i in [1,2,3,4,5] }#uisng list
print (d2)

d3={i:i*i for i in (1,2,3,4,5) }#uisng tuple
print (d3)

d4a={i:i*1i for i in {1,2,3,4,5}}

print (d4)

ds={x:i for x,i in enumerate([“this”,”is”,”to”,”test”])}
print (d5)

Output

{o: 0, 1: 1, 2: 4, 3: 9, 4: 16}

{o: 'p’, 1: 'y’, 2: 't’, 3: 'h’, 4: '0’, 5: 'n’}
{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

{o: ’this’, 1: ’is’, 2: 'to’, 3: ’'test’}

The preceding program creates dictionaries using dictionary compre-
hension of different data types.

Program

d={i: i for i in range(20) if i%2==0}
print (“even elements dictionary”,d)

Dictionary = 171

Output

even elements dictionary {O: 0, 2: 2, 4: 4, 6: 6, 8:
8, 10: 10,12: 12,14: 14,16: 16,18: 18}

The preceding program accesses even elements from the dictionary
using dictionary comprehension.

Program

d={1:7this”,2:7is”,3:"to" ,4:"test”)

print (“*original”,hd)

di={k:v for(k,v) in d.items() }

print (“copy”,dl)

d2={k*2:v for(k,v) in d.items()}

print (“copy d2”,d2)

d3={k:v*2 for(k,v) in d.items()}

print (“copy d3”,d3)

da={k:v.capitalize() for(k,v) in d.items() }
print (“copy”,d4)

Output

original {1: ‘this’, 2: ’‘is’, 3: 'to’, 4: ’'test’}

copy {1: 'this’, 2: ’is’, 3: ’'to’, 4: 'test’}

copy d2 {2: ’this’, 4: ’'is’, 6: 'to’, 8: ’‘test’}

copy d3 {1: ’thisthis’, 2: ’isis’, 3: ’'toto’, 4:
‘testtest’}

copy {1: 'This’, 2: ’'Is’, 3: 'To’, 4: 'Test’}

The preceding program performs dictionary copy using dictionary
comprehension.

Program

d={1:'a’,1.5:'b’,True:'c’, (0,1):'4d"}
print (d)

Output

{1: 'e¢’, 1.5: 'b’, (0, 1): 'd’'}

The preceding program creates dictionary with different data types as
keys.

172 m Learning Professional Python

8.8 OPERATORS IN DICTIONARY

We can use the different operators to perform some operations in the dic-

tionary. Some examples are listed here.

Program

d={l:”this”,2:”is”,3:”to”,4:”test”}

print (d)

print(*1 in d:”,1 in d)

print (“test in d:”,”test” in d.values())
print (*5 not in d:”,5 not in d)

Output

{1: "this’, 2: 'is’, 3: 'to’, 4: 'test’}
1 in d: True

test in d: True

5 not in d: True

The preceding program uses the membership operators on dictionary.

Program

d={1:7this”,2:”is”,3:"to”,4:"test”} dl={1:”this”, 2:
"ig”,3:"to”, 4:"test”,

5:”pyhton”, 6:”dictionary”}

print (*d:”,d)

print (*dil:”,dl)

print (“d==dl:”,d==d1l)
print (“d!=d1:”,d!=1)
Output

d: {1: 'this’, 2: ’is’, 3: ’'to’, 4: 'test’}

dil: {1: ‘this’, 2: ’'is’. 3: 'to’ 4: ’'test’, 5:
'pyhton’, 6: ’dictionary’}

d==dl: False

d!=dl: True

The preceding program uses the equality operators on dictionary.

Dictionary = 173

EXERCISE

1. Concatenate two dictionaries.

2. Create a dictionary where the keys are the numbers.
3. Sum all the values in the dictionary.

4. Sort a dictionary based on the keys.

5. Find the max value in the dictionary.

6. Print the dictionary in the table form.

7. Split the dictionary into two lists.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

CHAPTER 9

Modules and Packages

A module cab defines functions, classes, and variables. A module is a container
that consists of functions. When a module is imported, its content is
implicitly executed by Python. The initialization takes place only once,
when the first import occurs on the assignments done by the module aren’t
repeated unnecessarily.

9.1 PYTHON IMPORT STATEMENT

The user can use any python source file as a module by implementing an
import statement in some other python source file.

Syntax: Import module name

If there is a need to import more than one module, instead of using more
than one import statement, list all the modules in a single import state-
ment, and all the modules are separated by commas.

import modulel[, module2[, module3 . . . module NJ]]

9.2 PYTHON FROM . .. IMPORT STATEMENT

Pythons from statement lets the programmer import particular attributes
from a module into the existing namespace. The statement from import
does not import all the complete module in the current namespace.

DOI: 10.1201/9781003414322-9 175

https://doi.org/10.1201/9781003414322-9

176 m Learning Professional Python

Syntax

from module-name import attribute2[, attribute2 .
attribute nj]

To import all names from a module into the current name space, use
import *.

Syntax

from module import *

Namespace

A namespace is a space.

L 2ANS
((@)) Note: The names in a single namespace should be unique.

A package in Python is a directory structure, and it consists of modules,
sub-packages, and sub-sub-packages.

Modules are files containing Python statements and definitions like
functions and class definitions.

Module

Program: Invoking parameter less function using module

v [54] %%writefile samplel.py
Os
def funl():
print (“this is to test module”)

Writing samplel.py

v [55] import samplel
samplel. funl ()

this is to test module

In the preceding program, funl() exists in module samplel.py. In the main
program, the first line is the import samplel, that is, we are importing the
module samplel, and after importing the module, we can use all the vari-
ables and the functions from the imported module. The second line of the
main program is the samplel.funl(). This is a valid statement because we have
imported the module samplel, and we are invoking the function funl() from
the module samplel. The output for this program is this is to test module.

Modules and Packages m 177

Program

[56] %%writefile sample2.py
def square(n) :
print (“square” ,n*n)
def cube (n) :
print (“cube” ,n*n*n)

Writing sample2.py

[57] dimport sample2
sample2.square (10)
sample2.cube (5)

square 100
cube 125

The preceding program is about invoking parameterized function using
module. The module name is the sample2. In sample2, module square and
cube are two different functions. In the second program, we are import-
ing the sample2 module, so we can use the square and the cube functions
directly. The program outputs the square and cube values.

Program

" $swritefile sample3.py
class samp:
def display(self):
print (“*display method”)

G Writing sample3.py

[63] dimport samplel3 as t
s=t.samp ()
s.display ()

display method

The preceding program is invoking non-parameterized function using
module. The module name is the sample3. In sample3 module display is a
user-defined function. In the second program we are importing the sam-
ple3 module as t, and s is the object for the class samp that was created in
the module sample3. By using this object we can invoke the class function
that existed in another module.

178 m Learning Professional Python

Program

[64] %%writefile sample4d.py

class testing:

def display(self):
print (“*display method”)
Writing sample4d.py

[65] from sample4 import *

s=testing()

s.display ()
display method

The preceding program is invoking non-parameterized function using
module. The module name is the sample4. In sample4 module display
is a user-defined function. In the second program we are importing the
sample4 module. Here see the difference, in the previous programs we
used only statement import module name, but here from module import
* means importing all classes form the specified module. Next created the
object for the class testing that was created in the module sample4. By using
this object we can invoke the class function that existed in another module.

Program

[66] %%writefile mymodule.py
class testingl:

def init (self,i,]j):
print (“constructor”)
self.i=1
self.j=j

def display(self):
print (“i=",self.i)
print (“j=",self.j)

Writing mymodulel.py

" from mymodulel import *
s=testingl (10,20)
g.display ()

C constructor
i= 10

j= 20

Modules and Packages m 179

The preceding program is invoking parameterized constructor and
parameterized function using module. The module name is the mymodule.
In mymodule display is a user-defined function. In the second program
we are importing the mymodule. Next created the object for the class
testingl that was created in the module mymodule. At the time of the
object creation, the constructor of the class automatically invokes s. By
using this object we can invoke the class function that existed in another
module.

Program

[68] %%writefile mymodulel.py
class sample:

def init (self,i,]):
print (“constructor”)
self.i=1
self.j=j3

def display(self):
print (“i=",self.i)
print (“*j=",self.j)

Writing mymodulel.py

[69] from mymodulel import *
s=gample (10, 20)
s.display ()
print (“*in main prg i=",s.i)

constructor

i= 10

j= 20

in main prg i= 10

The preceding program is invoking parameterized constructor and
non-parameterized function using module. The module name is the
mymodulel. In mymodulel display is a user-defined function. In the sec-
ond program we are importing the mymodulel. Next created the object for
the class sample that was created in the module mymodulel. At the time of
the object creation, the constructor of the class automatically invokes. By
using this object, we can invoke the class function that existed in another

180 m Learning Professional Python

module. In the main program, the variables of the class that existed in
another module was invoked and retrieved the value of those variables.

Program

[70] %%writefile mymodule2.py
class sample:

def init (self,i,j)
print (“constructor”)
self.i=1
self.j=3

def display(self):
print (“i=",self.i)
print (“j=",self.j)

Writing mymodule2.py

[71] from mymodule2 import *
S=gample (10,20)
s.display ()
s.1=100
print (“*in main prg i=",s.1i)

constructor

i= 10

j= 20

in main prg i= 100

The preceding program is invoking parameterized constructor and
non-parameterized function using module. The module name is the
mymodule2. The mymodule2 display is a user-defined function. In the
second program we are importing the mymodule2. Next created the
object for the class sample that was created in the module mymodule2. At
the time of the object creation, the constructor of the class automatically
invokes. By using this object, we can invoke the class function that existed
in another module. In the main program, the variables of the class that
existed in another module was invoked and retrieved the value of those
variables. Here changing the module variable in main class.

Program

[72] %%writefile mymodule3.py
class sample:

Modules and Packages m 181

def init (self,i,j):
print (“*sample constructor”)
self.i=1
self.j=j

def display(self):
print (“i=",self.i)
print (“*j=",self.j)

class test:

def init (self,s):
print (“test constructor”)
self.s=s

def put (self):
print (“string:”,self.s)

Writing mymodule3.py

[73] from mymodule3 import *
s=sample (10, 20)
s.display ()
s.1=100
print (“in main prg i=",s.1i)
t=test (“python”)
t.put ()
t.s="module example”
print (“in main prg i=",t.s)

sample constructor
i= 10
j= 20
in main prg i= 100
test constructor
string: python
in main prg i= module example

The preceding program is invoking parameterized constructor and
non-parameterized function of the multiple classes using module. The
module name is the mymodule3. In mymodule3, two different classes
called the sample and test were created. The user-defined functions display
and put are functions in the classes sample, and in the second program
we are importing the mymodule3. Next created the object for the class
sample and test that was created in the module mymodule3. At the time of
the object creation, the constructor of the class automatically invokes. By
using this object, we can invoke the class function that existed in another

182 m Learning Professional Python

module. In the main program, the variables of the class that existed in
another module was invoked and retrieved the value of those variables.

Program: Printing the functions in the module

$swritefile mymodule5.py
class samplee:
def init (self,i,]):
print (“sample constructor”)
self.i=1
self.j=j
def display(self):
print (“i=",self.i)
print (“j=",self.j)
class testt:
def init (self,s):
print (“test constructor”)
self.s=s
def put (self):
print (“string:”,self.s)
def funl():
print (“parameterless function”)
def square(n) :
print (“square” ,n*n)
def cube(n) :
print (“cube” ,n*n*n)

from mymodule5 import *

print (dir (mymodule5))
s=samplee (10, 20)

s.display ()

s.1=150

S.j=s.1%*3

print (“in main prg i=,j=",s.1i,s.3)
t=testt (“test class”)

t.put ()

t.s="“usharani”

print (“in main prg i=",t.s)
mymodule5. funl ()

mymodule5. square (5)
mymodule5. cube (5)

Modules and Packages m 183

Output

[builtins *, ' cached ', ' doc_ ', ' file ',
‘' loader ', ' name_ ', ' package ', ' spec ',
‘cube’, ‘funl’, ‘samplee’, ‘square’, ‘testt’]

Sample constructor

i= 10

j= 20

in main prg i=,j= 150 450
test constructor

string: test class

in main prg i= usharani
parameterless function
square 25

cube 125

The preceding program is invoking parameterized constructor and
non-parameterized function of the multiple classes and non-class func-
tions using module.

9.3 PACKAGE

A package in Python is a collection of one or more relevant modules.

Program
Step 1: Mounted the GDrive in colab

[11] from google.colab import drive
drive.mount (‘' /content/GDrive/"’)

Mounted at /content/GDrive/

[13] import os
print (os.listdir ('GDrive’))

[‘MyDrive’, ‘.shortcut-targets-by-id’,
‘.file-revisions-by-id’, ‘.Trash-0']

Step 2: Created pythonpackage and change the path to the created
packages

[15] path = “GDrive/MyDrive/pythonpackage”
os.mkdir (path)

[16] os.chdir (‘GDrive/MyDrive/pythonpackage’)

184 m Learning Professional Python

Step 3: Create file pl.py in package pythonpackage
[17] $swritefile pl.py
def funl () :

print (“this is pl.py function”)
Writing pl.py
Step 4: Create file p22.py in package pythonpackage

[55] $swritefile p22.py
def fun2():
print (“*this is p2.py function”)

Writing p22.py

[46] %cd/content/GDrive/My Drive/pythonpackage’
/content

‘, Ils

C pl.py p2.py _ pycache

Step 5: Imported the pythonpackage and the pl file and call the

function funl that was created in the file p1

[48] import pl
from pl import *
pl.funl ()

this is pl.py function
Step 6: Imported the p2 file and call the function fun2 that was cre-
ated in the file p22

import p22
from p22 import *
p22.fun2 ()

this is p2.py function

Modules and Packages m 185

Program
Step 1: Mounted the GDrive in colab

[11] from google.colab import drive
drive.mount (' /content/GDrive/’)

Mounted at /content/GDrive/

[13] import os
print (os.listdir (‘GDrive’))

[‘MyDrive’, ‘.shortcut-targets-by-id’,
‘.file-revisions-by-id’, ‘.Trash-0’]

Step 2: Created pythonpackage and change the path to the created
packages

[15] path = “GDrive/MyDrive/pythonpackage”
os.mkdir (path)

[16] os.chdir (‘GDrive/MyDrive/pythonpackage’)

Step 3: Created file p3.py in package pythonpackage

$swritefile p3.py
class sample:
def init (self,i,j):
print (“sample constructor”)
self.i=1
self.j=j
def display(self):
print (“i=",self.i)
print (“*j=",self.j)

Step 4: Created file p4.py in package pythonpackage

$%writefile p4.py
class test:
def init (self,s):
print (“test constructor”)
self.s=s
def put (self):
print (“string:”,self.s)

186 m Learning Professional Python

Step 5: Imported the p3 module, its variables, and methods and
imported the p4 module, its variables, and methods

import p3

from p3 import *

import p4

from p4 import *

gs=gample (10,20)

g.disgplay ()

s.1=100

S.j=8.1%*3

print (“*in main prg i=,j=",s.i,s.j)
t=test (“python”)

t.put ()

t.s="package example”
print (“in main prg s=",t.s)

Output

Sample constructor

i= 10

j= 20

in main prg i=,j= 100 300

test constructor

string: python

in main prg i= package example

The preceding program created classes in the files and store in the pack-
age my_package

Program

p5.py

def £3():

print (“testing outside colab function”)

[93] from google.colab import files
src = list(files.upload() .values()) [0]
open(‘mylib.py’, 'wb’) .write (sxrc)
import mylib
mylib.£3 ()
Choose Files p5.py

° p5.py(n/a) - 53 bytes, last modified:

9/11/2021 - 100% done

Modules and Packages m 187

saving p5.py to p5 (22) .py
testing outside colab function

The preceding program is importing the Python file at run time and
loading that file function at run time. The uploaded file name is p5.py. It is
saved in the local desktop directory and uploaded at run time.

EXERCISE

1. Retrieve the elements of the list in the module program.

2. Retrieve the elements of the dictionary in the module program.

3. Retrieve the elements of the tuple and set in the module program.
4. Print the multiplication table using the module concept.

5. Display the contents of the CSV file using the module concept.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

CHAPTER 10

Functions

A function is a part of reusable code and provides a better modularity.
Functions can have parameters and return values. The functions in Python
are of four types:

o Built-in functions — Python language supports predefined functions
like print (), input ().

o Predefined functions - The programmers can create their own
functions.

o Modules

o Lambda functions

10.1 DEFINING A FUNCTION

Guidelines to define a function in Python:

1. Function blocks start with the keyword def followed by the user-
defined function name and parentheses.

2. The input parameters or arguments should be put within these
parentheses.

3. The parentheses are followed by the colon (:).

4. The initial statement of a function is the documentation string or doc
string of the function, and this statement is the optional.

DOI: 10.1201/9781003414322-10 189

https://doi.org/10.1201/9781003414322-10

190 m Learning Professional Python

5. The statements in the function are indented.

6. The last statement of the function is the return statement. This state-
ment exists the function and this statement is the optional.

7. Function ends where the nesting or indent ends.

Syntax of Function

def function name ([parameters]) :
#Doc string

Statement-1

Statement-2

Statement-3

return [expression]

Example Program

def test ():

print (“this is inside the function”)

print (“this is the second statement inside the
function”)

test ()

The output for the preceding program is as follows:

this is inside the function
this is the second statement inside the function

OAN
((@’) Note: The variable name and the function name should not be the
name.

For example:

def test ():

print (“inside function”)
test="a"

test ()

TypeError Traceback (most
recent call last)

Functions = 191

<ipython-input-98-4b4c6e06c695> in <modules ()
2 print (“inside function”)

3 test="a”

---->4 test()

TypeError: ‘str’ object is not callable

Type error has occurred in the preceding program because the variable
name and the function name are the same - test is given for both the vari-
able and function.

RN
((@)) Note: Name Error exception will be thrown if we invoke a function
before defining it.

For example:
test () #calling a function before defining the function
test ()
def test ():
print (*inside function”)

TypeError Traceback (most
recent call last)

<ipython-input-100-a2dea2f337e3> in <module> ()

---->1 test () #calling a function before defining the
function test ()

2 def test ():

3 print (*inside function”)

TypeError: ’'str’ object is not callable

The name error has occurred in the preceding program because the
function test is calling in line 1 before it is defined. The error name ‘test’ is
not defined has occurred.

There is no limitation for the number of the parameters in the function.
At the time of calling the function, the first argument is copied to the first
parameter, the second argument is copied to the second parameter, and
the process continues for the rest of the arguments.

192 m Learning Professional Python

Program
def sum (i, j):

print (“sum=“, i+ 7J)
sum (10,20)

Output

sum= 30

The program is about function with two parameters. In the preceding
program the value 10 is copied to the parameter i, and the value 20 is
copied to the parameter j. The previous section is an example for the
positional parameters.

Program

def sum (i, j, k):
print (“sum="“, i+ j+ k)
sum (10,20,30)

Output

sum= 60

The program is about function with three parameters. In the preceding
program the value 10 is copied to the parameter i, the value 20 is copied to
the parameter j, and the value 30 is copied to the parameter k. The previous
section is an example for the positional parameters.

10.2 PASS BY REFERENCE

All the parameters or the arguments in the python are passed by refer-
ence. When the programmer changes the passed value in the function, the
change echoes in the calling function.

Program

def test():
global 1
print (1)
1=[2,3,4,5]
1=[0,1]

Functions = 193

test ()
print (“*in main list=",1)

Output

[0, 11
in main list= [2, 3, 4, 5]

In the preceding program the list elements have been modified, and its
new values are reflected back in main function.

10.3 FUNCTION ARGUMENTS

Parameter is a variable, and it exists only inside functions in which they
have been defined. Assigning a value to the parameter is done at the
time of the function invocation. Parameters and arguments are differ-
ent. Parameters live inside functions, whereas arguments exist outside
the function. Parameter is an ordinary variable inside the function, and
these parameters aren’t visible anywhere else except inside the function
body.

Q

(4 :

¢) Note: The programmer must provide as many arguments as there
are provided parameters; otherwise error will occur.

For example

def test (i, J):

print (*i=v, i, 7j=*,3)
def (10)

Output

File "<ipython-input-105-4ec7275e726b>", line 3
def (10)

A

SyntaxError: invalid syntax

Error has occurred in the preceding program because at the time of
calling the function test, only one argument was given, but at the function
definition, two parameters were given. The arguments and the parameters
should be the same for the same function.

194 m Learning Professional Python

The programmer can call a function by applying the following types of
formal arguments:

1. Required arguments
2. Keyword arguments
3. Default arguments

4. Variable arguments

10.3.1 Required Arguments

The required arguments are also called the positional arguments. The
number of the arguments in the function call would match accurately with
the function definition. Required arguments are the arguments passed to
a function in correct positional order, that is, the i'" argument is copied to
the ith parameter.

Program

def test(i,j):

print (“i=*,i,7j=",7)
test (10,20)

test (20,10)

Output

i= 10 j= 20
i= 20 j= 10

The preceding program is about positional arguments. At line 3 when
function is called, the value 10 is passed to i, while calling second time test
function, the value 20 is copied to the variable i.

10.3.2 Keyword Arguments

Keyword arguments are associated with the function calls. When the
programmer uses the keyword arguments in a function call, the func-
tion definition recognizes the arguments by the parameter name. The
programmer can skip the arguments or place them out of order as the
python interpreter is able to utilize the keywords required to match
the values with parameters. The position doesn’t matter, that is, each argu-
ments value knows its destination based on the name (key) used.

Functions = 195

Program

def test (name, surname) :

print (“*name:” ,name, ”"surname:” , surname)

test (name="usharani”, surname="bhimavarapu”)
test (surname="bhimavarapu” ,name="usharani”)

Output

name: usharani surname: bhimavarapu
name: usharani surname: bhimavarapu

O
((@)) Note: When mixing both the keyword and the positional param-
eters, the positional parameters should be before the keyword parameters.

Program

def add(a,b,c):
print (“add=", (a+b+c))
add (10,c=20,b=30)

Output

add= 60

The preceding program is about mix of both the positional and the key-
word arguments.

Program

def add(a,b,c):
print (“*add=", (a+b+c))
add (c=10,20,b=30)

Output

File "<ipython-input-110-£7d678c0b9db>", line 3

add (c=10,20,b=30)

SyntaxError: positional argument follows keyword
argument

196 m Learning Professional Python

In the preceding program, an error has occurred because the first
argument is the keyword argument, but the second argument is the posi-
tional argument, so syntax error has occurred. The positional arguments
should be before the keyword arguments. Replace line 3 with add (c=20,
a=20,b=30) and given in the next example.

Program

def add(a,b,c):
print (“*add=", (a+b+c))
add (c=10,a=20,b=30)

Output

add= 60

Program

def add(a,b,c):
print (*add=", (a+b+c))
add (10,a=20,b=30)

TypeError Traceback (most
recent call last)
<ipython-input-112-d05b0£077928> in <module> ()
1 def add(a,b,c):

2 print (“add=", (a+b+c))

---->3 add(10,a=20,b=30)

TypeError: add() got multiple values for argument ’a’

In the preceding program, in function call add (), the first argument
is positional argument, and it is copied to the parameter a. The second
argument is the keyword argument and trying to copy the value 20
again to the parameter a. The error has occurred at this point because
of trying to pass multiple values to the same parameter a. When
using keyword arguments, avoid passing more than one value to one
parameter.

Functions m 197

10.3.3 Default Arguments

A default argument is an argument that supposes a default value if a value
is not given in the function call for that argument.

Program

def add(a=1,b=5,c=8):
print (“*add=", (a+b+c))
add (10)

Output

add= 23

Program

def add(a=1,b=5,c=8):
print (“*add=", (a+b+c))
add(10,20,30)

Output

add= 60

Program

def add(a=1,b=5,c=8):
print (“*add=", (a+b+c))
add ()

Output

add= 14

Program

def add(a=1,b=5,c=8):

print (“*add=", (a+b+c))
add (b=10)
Output

add= 19

198 m Learning Professional Python

Program

def add(a=1,b=5,c=8):
print (“*add=", (a+b+c))
add (a=10,c=20)

Output

add= 35

Program

def add(a,b=5,c):
print (*add=", (a+b+c))
add (a=10,c=20)

Output

File "<ipython-input-118-95703331lea7>", line 1
def add(a,b=5,c):

A

SyntaxError: non-default argument follows default
argument

When the user specifies the default arguments before the non-default
argument, an error will arise.

(‘@)) Note: The default arguments come after non-default arguments.

10.3.4 Variable Length Arguments

An asterisk (*) is arranged prior to the variable name that retains the values
of all non-keyword arguments.

Program

def test(*args) :
n = args([0]

for 1 in args:
if i < n:

n =1

return n

test(4,1,2,3,4)

Functions = 199

Output

1

10.4 ANONYMOUS FUNCTIONS

The anonymous functions are not stated in the normal approach by using

the def keyword. For the anonymous functions, the programmer must use
the lambda keyword.

Syntax

lambda [argl[, arg2[, arg3 . . . argnll]: expression
lambda arguments: expression

Program

t=lambda: None

print (t)

Output

(function (lambda) at 0x7£301££33d40>
The preceding program is for lambda statement.

Program

j = lambda 1 : i + 5
print (3 (3))

Output

8
The preceding program is for lambda statement with one parameter.

Program

m = lambda i,j : i+j
print (m(3,4))

Output

7

The preceding program is for lambda statement with two parameters.

200 m Learning Professional Python

Program

s = [1,2,3,4,5,6,7]
m = list (map(lambda i: i + 2, s))
print (m)

Output

The preceding program is for lambda and the map ().

Program

s = [1,2,3,4,5,6,7]
m = list(filter (lambda i: i1%2==0, 8))
print (m)

Output

[2, 4, 6]

The preceding program is for lambda and the filter ().
10.5 RETURN STATEMENT

Return is a keyword in Python. The return statement is the last statement,
and the return statement exists the function. The return statement is the
optional statement. It may or may not contain the arguments. There are

two variants for return statement.

Syntax

return
return (expression)

The return statement stops the function execution and goes back to the
point of the function invocation. When the programmer wants to return
to point of function invocation despite reaching the end of the program,

they can use the variants of the return statement.

Program

def test():
print (*inside function”)

Functions = 201

return;

print (“*end of functions”)
print (“in main”)

test ()

print (*end of main”)

Output

in main

inside function
end of main

In the preceding program, despite reaching the end of the program,
return to main program - unconditional return.

Program

def test():

return None

test ()

print (“end of main”)

Output

end of main

The preceding program explicitly returning none in the user-defined
function test.

RN
(‘@)) Note: Return implicitly means return None.

Program

def test(i):

if (i<10):

print (* should be >10")
return

test (5)

print (*end of main”)

Output

should be >10
end of main

202 m Learning Professional Python

In the preceding program, the return is used in the conditional state-
ment if.s.

Program

def test(i,j):

return (i+7j)

print (“add”, test (5,10))
print (“*end of main”)

Output

add 15
end of main

The preceding program result returns from the function.

Program

def test(i):

1if (i<10) :
return True

print (test (5))

Output

True

The preceding program returns boolean values. If the value of variable(i)
is less than value 10, then the program returns boolena value True.

10.6 FUNCTION VARIABLE SCOPE

Variables that are specified within a function body have a local extent, and
the variables defined outside have a global scope. The variables declared
inside the function body can be retrieved only in that function, whereas
the global variables can be accessed throughout the program, that is, in all
the functions.

Program

def test():
s="“test”
print (s)

Functions = 203

Output

python

Program

s="test”
def test():
s="python”
print (s)
print (s)

Output

test

Program

def test():
z=10

print (“z=", z)
print (“z=", z)

NameError Traceback (most
recent call last)

<ipython-input-144-4bf440bl933a> in <module> ()

2 z=10

3 print (“z=", z)

---->4 print (“z=", z)

NameError: name ’'7’ 1is not defined

Name error has occurred because the scope of the parameter is in the
function itself. Atline 4, trying to print the function parameter outside the
function. So the error x not defined is raised.

oS
(=) . .
¢ @) Note: The parameters cannot be accessed outside the function.

Program

def test (x):
i=10

204 m Learning Professional Python

i*=x

print (“*inside function i=“,1i)
i=25

test (5)

print (“*in main i=",1i)

Output

inside function i= 50
in main i= 25

Program

def test():

print (“inside function i="“,1)
i=10

test ()

print (“*in main i=“,1i)

Output

inside function i= 10
in main i= 10

The preceding program accesses variable in function that is defined
outside function.

AN
((@’) Note: The functions variable shadows the outside program variable.
A variable outside the function has a scope inside the function also.

Program

def test():

print (“*inside function i=",1i)
i=i+1

i=10

test ()

print (“*in main i=“,1)

UnboundLocalError Traceback (most recent call
last)

Functions = 205

<ipython-input-130-78236c23d9d2> in <module> ()
3 i=i+1

4 i=10
----> 5 test()
6 print (“in main i=",1)

<ipython-input-130-78236c23d9d2> in test ()

1 def test():

-—--> 2 print (“inside function i=“,1)

3 i=i+1

4 1=10

5 test ()

UnboundLocalError: local variable ‘i’ referenced
before assignment

In the preceding program, an error occurred because the function
is not able to modify the variable defined outside the function. In the
cited example, the variable i is defined outside the function at line 4. As
the variable i is defined outside the function, try to modify the variable
i at line 3 inside the function. So the occur raised. This type of error
can be removed by extending the scope of the variable. Without pass-
ing the argument, try to modify the variable that is out of the scope
variable.

Program

def test(i):

print (“inside function i=“,1)
i+=1

i=10

test (1)

print (“in main i=",1)

Output

inside function i= 10
in main i= 10

Modifications inside the function cannot reflect outside the function,
that is, changing the parameter values does not reflect outside the
function. The scope of the variable can be extended by using the global
keyword.

206 m Learning Professional Python

oS
(‘@)) Note: Scope of a variable can be extended inside the function by
using the global keyword.

Program

def test():

global i

print (“inside function i="“,1)
i=i+1

i=10

test ()

print (*in main i=",1i)

Output

inside function i= 10
in main i= 11

By using the global keyword inside the function, despite creating the
new variable inside the function, the function uses the outside function
defined variable. In the preceding program, using the global i at line 2, it
makes the variable i global. At line 4, trying to modify the variable i, this
modification reflects to the outside function.

Program

a=10

def test():

global a

print (*inside function a=",a)
a=50

print (“in main a="“,a)

Output
in main a= 10

10.7 PASSING LIST TO FUNCTION

List can be sent as an argument to the function.

Program

def test (1) :

Functions m 207

for i in 1:

print (i)

1=[“this”,”is”, "to”,"test”]
test (1)

Output

this
is
to
test

The preceding program accesses the list elements inside the function.

Program

def test():

global 1

print (1)

1=[2,3]

1=[0,1]

test ()

print (“*in main list=",1)

Output

[0, 1]
in main list= [2, 3]

The preceding program modifies the list elements inside the function.

Program

def test():

global 1

print (1)

1=[2,3,4,5]

1=[0,1]

test ()

print (“*in main list=",1)

Output

[0, 11
in main list= [2, 3, 4, 5]

208 m Learning Professional Python

The preceding program appends the list elements inside the function.

Program

def test():

global 1

print (1)

del 1[1]

1=[0,1]

test ()

print (*in main list=",1)

Output

[0, 11
in main list= [0]

The preceding program deletes list elements inside the function.

10.8 RETURNING LIST FROM THE FUNCTION

To return multiple values from the Python, we can return either the list or tuple.

Program

def test():

1=[]

print (“enter how many strings do u want to enter”)
n=int (input ())

for 1 in range(0,n,1):

s=input (“enter string”)

1l.insert (1, s)

return 1

print (test())

Output

enter how many strings do u want to enter
3

enter stringtesting

enter stringpython

enter stringsample

[‘testing’, ’'python’, ’‘sample’]

The preceding program returns list from the function.

Functions = 209

Program

def test():

1=11

print (“Yenter how many float \
values do u want to enter”)
n=int (input ())

for i in range(0,n,1):
f=float (input (“enter float”))
1.insert (i, f)

return 1

l=test ()

print (1)

sum=0

for i in range(len(l)):
sum+=1[1i]

print (“sum=", sum)

Output

enter how many float values do u want to enter
3

enter floatl.1l

enter float2.

w N

enter float3.
[1.1, 2.2, 3.3]
sum= 6.6

The preecding program returns list and processes the list.

10.9 RECURSION

A function calling itself is known as recursion.

Program

def rec(n):

if n == 1:

return n

else:

return n*rec(n-1)

n=>5

if n < 0:

print (*no factorial for negative numbers”)

210 m Learning Professional Python

elif n == 0:

print (*The factorial of 0 is 17)

else:

print (*The factorial of”, n, ”"is”, rec(n))
Output

The factorial of 5 is 120
The preceding program is about factorial number using recursion.

Program

def fib(n):

if n <= 1:

return n

else:

return (fib(n-1) + fib(n-2))
n =8

if n <= 0:

print (“enter a positive integer”)
else:

print (“Fibonacci sequence:”)

for 1 in range(n) :

print (fib (1))

Output

Fibonacci sequence:

0 U1l W N BEHE B O

The preceding program is about finocchi series using recursion.

Program

def prime(i,n):

if n==1i:

return O

else:

if (n%i==0) :

return 1

else:

return prime (i+1l,n)
n=9

print (“Prime Number are:

for i in range(2,n+1l):
if (prime(2,1)==0) :
print (i,end=" ")

Output

Prime Number are:
2 3 5 7

Functions = 211

The preceding program is about prime number series using recursion.

EXERCISE

1. Check the output for the following Python program:

def test():
print(“inside function”)

test(“17)

2. Check the output for the following Python program:

test(“17)
def test():
print(“inside function”)

test()

212 m Learning Professional Python

3. Check the output for the following Python program:
def test():
print(“inside function”)
print(“main function”)
test()
print(“end of main”)

4. Check the output for the following program:
def test(name):
print(“welcome”,name)
name=input(“enter ur name”)
test(name)

5. Check the output for the following program:
def test(i):
print(“inside function i="i)
i=i+l
i=int(input(“Enter integer:”))
print(“in main i=")
test(i)
print(“after function calling i=",i)

6. Check the result for the following Python program:
def test(name,surname):
print(“name:”,name,’surname:”,surname)
test(“usharani”,”bhimavarapu”)
test(“bhimavarapu”,”usharani”)

7. Check the output for the following program:
def test():
i=10

print(i)

CHAPTER 11

Date and Time

HE TIME MODULE AND the calendar module in Python helps to retrieve

data and time. The time module has the predefined methods to rep-
resent the time and to process the time. The time are expressed in seconds
since 00:00:00 hours January 1, 1970.

11.1 TIME MODULE

To access the time-related function, the user must import the time
module.

Syntax

import time

Example

import time
t=time.time ()
print (t)

Output

1631509053.0120902

The cited example prints ticks from January 1, 1970.

DOI: 10.1201/9781003414322-11 213

https://doi.org/10.1201/9781003414322-11

214 m Learning Professional Python

Example

import time
lt=time.localtime (time.time ())
print (1t)

Output

time.struct time(tm year=2021, tm mon=9, tm mday=13,
tm _hour=4, tm min=45, tm sec=30, tm wday=0,
tm yday=256, tm isdst=0)

The cited example prints local time.

11.2 CALENDAR

The calendar module has predefined methods to retrieve and process the

year and month.

Example

import calendar
C=calendar.month (2020,10)

print (c)
Output
October 2020
Mo Tu We Th Fr Sa Su
1 2 3 4

5 5 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

The cited example displays the calendar for the month 10 (October) and
for the year 2020.

11.3 TIME MODULE

The time module has predefined methods and attributes to retrieve and
process the time. The predefined attributes and the predefined methods of
the time module is tabulated in Table 10.1 and Table 10.2.

Date and Time = 215

TABLE 10.1 Predefined Attributes in Python Time Module

Attribute Description
time.timezone It is the offset of the local time zone from UTC in seconds.
Time.tzname It is the pair of local dependent string.

TABLE 10.2 Methods in Time Module

Function Description

time.altzone It is the offset of local time zone to UTC in
seconds.

time asctime Returns the date in a readable 24-character

([tupletime]) string.

time.clock() Returns the current CPU time.

time.ctime() Returns the date in a readable 24-character
string in terms of seconds.

time.gmtime([secs]) Returns a time tuple of UTC time.

time.localtime([secs]) Returns the local time.

time.mktime(tupletime) Returns the time since the epoch.

time.sleep(secs) Suspends the calling thread for the
specified time in terms of seconds.

time.strftime(fmt[,tupletime]) Returns the string format of time.

time.strptime Returns the time in the time tuple format.

(str,fmt="%a%b%d%H: %M:%S%Y’)
time.time() Returns the current time.
time.tzset() Resets the time conversion rules.

11.4 CALENDAR MODULE

The calendar module has predefined methods to retrieve and process the
year and month. By default, calendar considers the first day of the week as
the Monday and last day of the week as Sunday. Calendar module provides
the following list of functions.

The predefined methods in the calendar module are tabulated in
Table 10.3. The date format codes are tabulated in Table 10.4.

TABLE 10.3 Predefined Methods in the Calendar Modules

Function Description

calendar. calendar(year,w=2,l=1,c=6) Returns calendar for year and formatted by
the specified ¢, w and 1.

calendar. firstweekday() Returns the starting day of each week.

calendar. leapdays(y1,y2) Returns the number of leap days between

the given specified years.

(Continued)

216 m Learning Professional Python

TABLE 10.3

(Continued) Predefined Methods in the Calendar Modules

Function

calendar. month (year,month,w=2,1=1)
calendar. month calendar(year. month)
calendar. month range(year. month)

calendar.prcal(year,w=2,l=1,c=6)
calendar.prmonth(year,month,w=2,1=1)
Calendar. setfirstweekday(weekday)

Calendar. timegm(tupletime)
Calendar. weekday(year, month,day)

calendar. isleap(year)

Description

Returns the calendar for specified month/

Returns a list of weeks.

Returns the weekday of the month and the
total number of days in the specified
month.

Displays the calendar.

Displays the calendar for month.

Sets the weekday code. Default weekday
codes are 0 to Monday and 6 to Sunday.
Sets the weekday code.

Returns the time in term of seconds.

Returns the weekday code for the specified
date.

Checks whether the specified year is leap or
not.

TABLE 10.4 Date Format Codes

Directive Meaning Example
%a Weekday abbreviated name Sun, Mon,

%A Weekday full name Sunday, Monday, . . .
%w Weekday in terms of decimal number 0,1,2,3,4,5,6

%d Day of the month 01,02, ,31

%b Month abbreviated name Jan, Feb

%B Month full name January, February, . . .
%m Month in decimal form 01,02, 012

%y Year in decimal padded number (two digit) 00,01, 099

%Y Year as a decimal number (four digit) 0001, 002, ...2021,...9999
%H Hour (24) in decimal number 01,02,...023

%l Hour(12) in decimal number 01,02,...012

%p Time in the form of PM or AM PM or AM

%M Minutes 00, 01, ...059

%S seconds 00, 01, ...059

%f microsecond 000000, 000001, ...
%z HHMMSS form

%Z Time zone name

%j Day of the year in decimal number 001,002, ... 366

%U Weekday of the year in the decimal number 00,01, ...53

(Sunday is the first day of the week)

(Continued)

Date and Time m 217

TABLE 10.4 (Continued) Date Format Codes

Directive Meaning Example

%W Weekday of the year in the decimal number 00,01,...53
(Monday is the first day of the week)

%c¢ Local date and time Mon Sep 13, 10:10:00

%X Local date 13/09/2021

%X Local time 10:10:00

11.5 THE DATETIME MODULE

The datetime module works with dates and times.

Syntax
import datetime

Getting the current date by using the datetime module is as follows:

import datatime
d = datetime.date.today ()
print (d)

Output

2021-09-29

The today() method in the date class is used to get the date object, which
contains the current local date.

11.6 THE PYTZ MODULE

The pytz module supports the datetime conversion, enables the time zone
calculations, and allows to create the time zone-related datetime objects.

Example
import pytz
print (‘*the timezones are’, pytz.all timezones, ‘\n’)

The cited example returns all the time zones.

Example

import pytz
import datetime
from datetime import datetime

218 m Learning Professional Python

u = pytz.uzc

k = pytz.timezone (‘Asia/Kolkata’)

print (*UTC Time =’, datetime.now(tz=u))
print (*Asia Time =‘, datetime.now(tz=k))

Output
UTC Time = 2021-09-29 04:15:09.099077+00:00
Asia Time = 2021-09-29 09:45:09.100941+05:30

In the cited example, datetime instances were created using the time
zone instance.

11.7 THE DATEUTIL MODULE

The dateutil module allows one to modify the dates and times.

from datetime import *

from dateutil.relativedelta import *

import calendar

NOW = datetime. now()

Next month

print (NOW + relativedelta (months=+1))

Next month, plus one week

print (NOW + relativedelta (months=+1, weeks=+1))
Next month, plus one week, at 5 PM

Print (NOW + relativedelta (months=+1, weeks=+1,

hour=17))

Output

2021-10-29 04:29:08.289926
2021-11-05 04:29:08.289926
2021-11-05 17:29:08.289926

The cited example computes the relative dates for next week or next
month.

Example

import calendar as c
print (c.month(2020,11))

Date and Time = 219

Output
November 2020
Mo Tu We Th Fr Sa Su
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30

The cited example prints a specified month calendar in a specific
year.

Example

import calendar as c
print (c.leapdays (1920,2020))

Output
25

The cited example prints count the leap years between the range of
years.

Example

from datetime import date
print (date.today())
Output

2021-09-13

The cited example prints today’s date.

Example

import calendar as c
print (c.calendar (2020,1,1,1))

220 m Learning Professional Python

Output

January
Mo Tu We Th Fr

1 2 3
6 7 8 910
13 14 15 16 17
20 21 22 23 24
27 28 29 30 31

April

We Th Fr
1 2 3
8 910
1516 17
22 23 24
29 30

July

We Th Fr
1 2 3
8 910
15 16 17
22 23 24
29 30 31

Mo Tu

14
21
28

13
20
27

Mo Tu

14
21
28

13
20
27

October
We Th Fr

1 2
7 8 9
14 15 16
21 22 23
28 29 30

Mo Tu

12
19
26

13
20
27

Sa

11
18
25

Sa

11
18
25

Sa

11
18
25

Sa

3
10
17
24
31

2020
February

Su Mo Tu We Th Fr Sa

5
12
19
26

Su

12
19
26

Su

12

19
26

Su

11
18
25

3
10
17
24

Mo

11
18
25

Mo

10
17
24
31

Mo

16
23
30

4
11
18
25

Tu

12
19
26

Tu

11

Is
25

Tu

10
17
24

1
5 6 7 8
12 13 14 15
19 20 21 22
26 27 28 29

May
We Th Fr
1
6 7 8
13 14 15
20 21 22
27 28 29
August
We Th Fr Sa
1
8
15
22
29

Sa
2
9

16

23

30

5 6 7
12 13 14
19 20 21
26 27 28

November

Su Mo

2
9
16
23

Su

10
17
24
31

Su

16

23
30

2
9
16
23
30

Mo
1
8
15
22
29

Mo

14

21
28

We Th Fr Sa Su Mo

4 5 6 7
11 12 13 14
IS 19 20 21
25 26 27 28

1
8
15
22
29

14
21
28

March

Tu We Th Fr Sa

3 4 5 6
10 11 12 13
17 18 19 20
24 25 26 27
31

June

Tu We Th Fr

2 3 4 5

910 11 12
16 17 18 19
23 24 25 26
30
September
Tu We Th Fr

1 2 3 4

8 91011
1516 17 18
22 23 24 25
29 30

14
21
28

Sa

13
20
27

Sa

12
19
26

December
Tu We Th Fr Sa
1 2 3 4 5
8 910 11 12
1516 17 18 19
22 23 24 25 26
29 30 31

Su

15
22
29

Su

14

21

28

Su

13

20
27

Su

13
20
27

The cited example prints all months of a specific year.

Example

from datetime import date
t=date.today ()

print (“day”, t.day)

print (“*month”, t.month)
print (“year”, t.year)

Date and Time m 221

Output

day 13
month 9
year 2021

The cited example prints the individual date components.

Example

from datetime import date
t=date.today ()
print (“weekday:”,t.weekday())

Output

Weekday: O

The cited example prints the weekday.
A
((@)) Note: Monday:0 . . . Sunday:7

Example

from datetime import datetime
print (“*Todays date and time:”,datetime.now())

Output

Todays date and time: 2021-09-13 04:50:10.232992

The cited example prints today’s date and time.

Example

from datetime import datetime
n=datetime.now ()

print (“weekday date and time:” ,m.strftime(“%c”))
print (“date” n.strftime (“%x"))

print (*Time:"“,n.strftime (“%X"))

print (“Hours and Minutes:” ,n.strftime (“%H:
print (*time with Meridie“,n. strftime (“%I:

o o\
=
o ~—
mn —
o\°
T

222 = Learning Professional Python

Output

weekday date and time: Mon Sep 13 04:50:23 2021
date 09/13/21

Time: 04:50:23

Hours and Minutes: 04:50

time with Meridie 04:50:23 AM

The cited example prints date and time using strftime formats.

Example

from datetime import date
dl=date(2019,11,19)
d2=date (2020,11,17)
d=d2-dl

print (d.days)

print (type(d))

Output
364
<class ‘datetime.timedelta’>

The cited example prints difference between two dates.

Example

from datetime import date t=datetime.now ()

print (“Year 4 digits:”,t.strftime(“%Y”)) print(“Year 2
digits:”,t.strftime (“%y”))

print (*Month:”,t.strftime (“%m”))

print (*Minutes:”,t.strftime (“$M”)) print (“Date”, t.
strftime (“%d”)) print (“weekday”,t.strftime(“%a”))
print (“weekday Fullname”,t.strftime (“%A"))

print (“*weekday (decimal)”,t.strftime (“%w”))

print (*Month (abbr)”,t.strftime (“%b”))

print (*Month (FullName)”,t.strftime (“%B”))

print (*Microseconds: ", t.strftime (“%£”))

Output

Year 4 digits: 2021
Year 2 digits: 21

Date and Time m 223

Month: 09

Minutes: 50

Date 13

weekday Mon

weekday Fullname Monday
weekday (decimal) 1

Month (abbr) Sep

Month (FullName) September
Microseconds: 270905

The cited example prints formatted data and time using strftime.

Example

import datetime

print (“*“Max year”,datetime.MAXYEAR)

print (“*Min Year”,datetime.MINYEAR)

print (type (datetime.MAXYEAR)) print (type (datetime.
MINYEAR))

Output

Max year 9999
Min Year 1

<class ‘int’>
<class ‘int’>

The cited example prints the min and max year using the datetime module.

Example

import datetime

print (*Min year”,datetime.date.min)
print (“*Min year”,datetime.date.max)
print (type (datetime.date.min))
print (type (datetime.date.max))

Output

Min year 0001-01-01
Min year 9999-12-31
<class ‘datetime.date’>
<class ‘datetime.date’>

224 m Learning Professional Python

The cited example prints the data of the min and max year using the
datetime module.

Example

import datetime
d=datetime.date (2020,11,17)
print (“year:”,d.year)

print (“*month:”,d.month)
print (“day:”,d.day)

Output

year: 2020
month: 11
day: 17

The cited example separates the date, month, and year of the given date.

Example

import datetime as d
n=d.date.today ()

print (n)

n=n.replace (month=5,year=2021)
print (n)

Output
2021-09-13
2021-05-13

The cited example replaces today’s date with the specified date.

Example

import datetime
d=datetime.date.today ()
print (d.timetuple())

Output

time.struct time(tm year=2020, tm mon=11, tm mday=17,
tm _hour=0, tm min=0, tm sec=0, tm wday=1, tm yday=322,
tm isdst=-1)

Date and Time m 225

The cited example prints the time tuple attributes.

Example

import time
print (time.time ())

Output

1605595205.6687665
The cited example prints the timestamp.

Example

import calendar as c

from datetime import date
t=date.today ()

cal=c.Calendar ()

y=t.year

m=t .month

print (cal.monthdays2calendar (y,m))

Output

(f¢o, o), (o, 1), (o, 2), (0, 3), (o, 4), (o, 5), (1, 6)],
(2, o), (3, 1), (4, 2), (5, 3), (6, 4), (7, 5), (8, 6)],
[(9, 0), (10, 1), (11, 2), (12, 3), (13, 4), (14, 5), (15,
€)1, [(16, 0), (17, 1), (18, 2), (19, 3), (20, 4), (21, 5),
(22, 6)1, [(23, 0), (24, 1), (25, 2), (26, 3), (27, 4),
(28, 5), (29, 6)1, [(30, 0), (0, 1), (0, 2), (0, 3), (O,
4), (0, 5), (0, 6)]]

The cited example demonstrates monthdays2calendar ().

Example

import calendar as c

from datetime import date
t=date.today ()

cal=c .Caleindar()
y=t.year

m=t .month

226 m Learning Professional Python

for 1 in cal.monthdays2calendar (y,m) :
print (i)

Output
o, o), (o, 1), (o, 2), (0, 3), (0, 4), (0, 5
2, 0), (3, 1), (4, 2), (5, 3), (6, 4), (7, 5
9, 0), (10, 1), (11, 2), (12, 3), (13, 4), (14, 5

le, 0), (17, 1), (18, 2), (19, 3), (20, 4), (21, 5
23, 0), (24, 1), (25, 2), (26, 3), (27, 4), (28, 5
30, o), (o, 1), (0, 2), (o0, 3), (0, 4), (0, 5

The cited example demonstrates monthdays2calendar ().

Example

import calendar as c

from datetime import date

t=date.today ()

y=t.year

m=t .month

c= calendar.TextCalendar (firstweekday=5)
print (c.formatmonth(y,m,w= 5))

Output
September 2021
Sat Sun Mon Tue Wed Thu
1 2
4 5 6 7 8 9
11 12 13 14 15 16
18 19 20 21 22 23
25 26 27 28 29 30

The cited example demonstrates monthdays2calendar ().

Example

import calendar as c

from datetime import date t=date.today ()
y=t.year

m=t.month

c= calendar.TextCalendar (firstweekday=1)
print (c.formatmonth (y,m,w=3))

o o0 O O

o
—_ I I — —

[
o L e e

Fri

10
17
24

Date and Time m 227

Output
September 2021

Tue Wed Thu Fri Sat Sun Mon

1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 IS 19 20
21 22 23 24 25 26 27
28 29 30

The cited example demonstrates format month ().

Example

import calendar as c

from datetime import date
t=date.today ()

y=t.year

m=t .month

cal=c.Calendar ()

for 1 in cal.monthdayscalendar (y,m) :

print (i)

Output

[0,0,1, 2, 3, 4, 5]

(6,7, 8, 9, 10, 11, 12]

[13, 14, 15, 16, 17, 18, 19]
[20, 21, 22, 23, 24, 25, 26]
[27,28, 29, 30, 0,0 , 0]

The cited example demonstrates month days calendar ().

Example

import calendar as c

from datetime import date
t=date.today ()

y=t.year

m=t .month

cal=c.Calendar ()

print (cal.monthdayscalendar (y,m))

228 m Learning Professional Python

Output

(o, o, o, o0, o, o, 1], f[2, 3, 4, 5, 6, 7, 8], [9, 10,
11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22],
(23, 24, 25, 26, 27, 28, 291, [30, O, O, O, O, O, 0]]

The cited example demonstrates month days calendar().

Example

import calendar as c

from datetime import date
t=date.today ()

y=t.year

m=t .month

cal=c.Calendar ()

for i in cal.itermonthdays2 (y,m) :
print (i, end=" ")

Output

(o, 1) (o, 2) (o, 3) (o, 4) (0, 5) (1, 6)
(3, 1) (4, 2) (5, 3) (e, 4) (7, 5) (8, 6)
(1o, 1) (11, 2) (12, 3) (13, 4) (14, 5) (15,
, 0) (17, 1) (18, 2) (19, 3) (20, 4) (21, 5)
) (23, 0) (24, 1) (25, 2) (26, 3) (27, 4)
) (29, 6) (30, 0) (0, 1) (0, 2) (0, 3) (0, 4)
(0, 6)

(0, 0)
(2, 0)
(9, 0)
6) (16
(22, 6
(28, 5
(0)

, 5
The cited example iterates month days calendar ().

Example

import calendar as c

from datetime import date
t=date.today ()

cal=c.Calendar (firstweekday=5)
y=t.year

m=t .month

for i in cal.itermonthdays2 (y,m) :
print (i, end=" ")

Date and Time m 229

5) (15, 6) (16, 0) (17, 1) (18, 2) (19, 3) (20, 4)
(21, 5) (22, 6) (23, 0) (24, 1) (25, 2) (26, 3) (27,
4) (28, 5) (29, 6) (30, 0) (0, 1) (0, 2) (0, 3) (0, 4)

The cited example demonstrates month days calendar ().

Example

import calendar as c
cal=c.Calendar ()

for 1 in cal.iterweekdays() :
print (i, end=" ")

Output

01 2 3 456
The cited example demonstrates weekdays calendar ().

Example

import calendar as c
cal=c.Calendar (firstweekday=5)
for 1 in cal.iterweekdays() :
print (i, end=" ")

Output

56 01234

The cited example retrieves the weekdays if the first day of the week is
the 5.

Example

import calendar as c
from datetime import date

230 m Learning Professional Python

t=date.today ()

cal=c.Calendar ()

y=t.year

m=t .month

for day in cal.itermonthdays(y,m) :
print (day,end=" ")

Output

000000123456 7891011 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 30 0 0 0 0 0 O

The cited example retrieves the month days in the calendar.

Example

import calendar as c

from datetime import date
t=date.today ()

cal=c.Calendar ()

y=t.year

m=t .month

for 1 in cal.yeardayscalendar(y,m) :
print (i)

Output

(o, o, 1, 2, 3, 4, 51, [6, 7, 8, 9, 10, 11, 127,
(13, 14, 15, 16, 17, 18, 19], [20, 21, 22, 23, 24, 25,
261, [27, 28, 29, 30, 31, o0, 011, [[o0, O, O, O, O, 1,
2], [3, 4, 5, 6, 7, 8, 9], [10, 11, 12, 13, 14, 15,
161, [17, 18, 19, 20, 21, 22, 23], [24, 25, 26, 27,
28, 29, ol1, ([0, O, O, O, O, O, 11, [2, 3, 4, 5, 6,
7, 81, [9, 10, 11, 12, 13, 14, 151, [16, 17, 18, 19,
20, 21, 221, [23, 24, 25, 26, 27, 28, 291, [30, 31, O,
o, o, o, ol1, [[0, O, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10,
11, 121, [13, 14, 15, 16, 17, 18, 191, [20, 21, 22,
23, 24, 25, 26], [27, 28, 29, 30, 0, 0, 0]1, [[o0, O,
o, o, 1, 2, 31, [4, 5, 6, 7, 8, 9, 101, [11, 12, 13,
14, 15, 16, 171, [18, 19, 20, 21, 22, 23, 24], [25,
26, 27, 28, 29, 30, 3111, [[1, 2, 3, 4, 5, 6, 71, [8,
9, 10, 11, 12, 13, 141, [15, 16, 17, 18, 19, 20, 211,
[22, 23, 24, 25, 26, 27, 28], [29, 30, O, 0, O, O,

ol1, [[o, O, 1, 2, 3,
[13, 14, 15, 16, 17,
261, [27, 28, 29, 30,
2], [3, 4, 5, 6, 7, 8
161, [17, 18, 19, 20,
28, 29, 301, [31, O,
5, 61, [7, 8, 9, 10,
19, 201, [21, 22, 23,
o, 0, 011, [[o, 0, O,
11], [12, 13, 14, 15,
23, 24, 251, [26, 27,
0, 0, 0, 11, [2, 3, 4
13, 14, 15], [16, 17,
25, 26, 27, 28, 29],
[[[0, 1, 2, 3, 4, 5,
[14, 15, 16, 17, 18,
271, [28, 29, 30, 31,

4,

18,

31,
. 91,
21, 22, 23
0, 0, 0, O,
11, 12, 13]
24, 25, 26
1, 2, 3, 4
16, 17, 18
28, 29, 30
, 5, 6, 7,

18, 19, 20
[30, 0, O,

61, [7, 8,

19, 201, [2
0, 0, 0111

51,

191, [2

0, 011
(10,

(e,

Date and Time m 231

7, 8,
0, 21,
, [[o,
11, 12, 13,
1, [24, 25,
0]1, [Ilo,
, [14, 15,
. 271, [28,
1, [5, 6, 7
1, [19, 20,
, 31, 011,
81, [9, 10,
, 21, 221,
0, 0, 0, 0]
9, 10, 11,
1, 22, 23,

9, 1
22,

0, O

0,
23,
. 0,
14,
26, 27,
1, 2, 3,
16, 17,
29, 30,
, 8, 9,
21, 22,
[[o, O,
11, 12,
[23, 24,
1]
12,
24,

11,

24,
0,
15,

121,
25,
1,

4,
18,
0,
10,

0,

13] 1

25, 26,

The cited example retrieves the month days in the calendar for the com-

plete year.

Example

import calendar as c
from datetime import date
t=date.today ()

cal=c.Calendar ()

y=t.year
m=t .month

for 1 in cal.itermonthdates (y,m) :
print (i,end=" ")

Output

2020-10-26
2020-10-31
2020-11-05
2020-11-10
2020-11-15
2020-11-20
2020-11-25
2020-11-30
2020-12-05

2020-10-27
2020-11-01
2020-11-06
2020-11-11
2020-11-16
2020-11-21
2020-11-26
2020-12-01
2020-12-06

2020-10-28
2020-11-02
2020-11-07
2020-11-12
2020-11-17
2020-11-22
2020-11-27
2020-12-02

2020-10-29
2020-11-03
2020-11-08
2020-11-13
2020-11-18
2020-11-23
2020-11-28
2020-12-03

2020-10-30
2020-11-04
2020-11-09
2020-11-14
2020-11-19
2020-11-24
2020-11-29
2020-12-04

232 m Learning Professional Python

The cited example retrieves the days of the month starting from today’s

date.

Example

import calendar as

(¢}

from datetime import date

t=date.today ()
y=t.year
m=t .month

cal= calendar.TextCalendar (firstweekday=1)

print (c.prmonth (y,m,w=3))

Output
September 2021
Mon Tue Wed Thu Fri
1 2 3

6 7 8 9 10

13 14 15 16 17

20 21 22 23 24

27 28 29 30
None
Example

import calendar as

C

from datetime import date

t=date.today ()
y=t.year
m=t .month

cal= calendar.TextCalendar ()
print (cal.formatyear(y,2))

Output

January
Mo Tu We Th Fr Sa Su
1 2 3
4 5 6 7 8 910
1112131415 1617
1819202122 2324
2525272829 3031

2021

February
Mo Tu We Th Fr Sa Su
1 2 3 4 5 6 7
8 91011121314
1516 1718192021
222324252627 28

Sat Sun
4 5
11 12
18 19
25 26
March

Mo Tu We Th Fr Sa Su
1 2 3 4 5 6 7
8 91011121314

15161718 192021

22 2324 252627 28

293031

April
Mo Tu We Th Fr
1 2
5 6 7 8 9
121314 1516
1920212223
26 272829 30

July
Mo Tu We Th Fr
1 2
5 6 7 8 9
121314 1516
1920212223
26 272829 30

October

Mo Tu We Th Fr
1

4 5 6 7 8
11121314 15
1819202122
2525272829

Sa Su
3 4
1011
1718
24 25

Sa Su

3 4
1011
1718
24 25
31

Sa Su
2 3
910
16 17

23 24

3031

2021
May
Mo Tu We Th Fr Sa Su
1 2
3 4 5 6 7 8 9
10111213 14 1516
17181920212223
24 2526 27 28 29 30
31
August
Mo Tu We Th Fr Sa Su
1
2 3 4 5 6 7 8
9 101112131415
161718 19202122
2324 2526272829
3031
November
Mo Tu We Th Fr Sa Su
1 2 3 4 5 6 7
8 91011121314
15161718 192021
22 232425262728
29 30

Date and Time = 233

June
Mo Tu We Th Fr Sa Su
1 2 3 4 5 6
7 8 910111213
1415161718 19 20
21 222324252627
28 29 30

September
Mo Tu We Th Fr Sa Su
1 2 3 4 5
6 7 8 9101112
1314 1516 171819
20 21 22 23 24 25 26
272829 30

December
Mo Tu We Th Fr Sa Su

1 2 3 4 5
6 7 8 9101112
13141516 171819
2021222324 2526
2728293031

The preceding program displays the calendar for the complete year
based on today’s date and year.

Example

import calendar as c

print (c.firstweekday ())

Output
0

The preceding program displays the first day of the week in the numeri-

cal form.

Example

from datetime import timedelta

tl =

timedelta (seconds =

15)

234 m Learning Professional Python

t2 = timedelta(seconds = 74)
t3 = tl1l - t2

print (“t3 =", t3)
print (*t3 =", abs(t3))
Output

t3 = -1 day, 23:59:01

t3 = 0:00:59
The preceding program displays the negative delta time.

Example

from datetime import datetime, timedelta
now = datetime.now/()

tomorrow = timedelta (days=+1)

print (now + tomorrow)

Output
2021-09-13 05:52:56.799161
2021-09-14 05:52:56.799161

The preceding program displays today’s date and the next date using the
time delta module.

Example

from datetime import datetime, timedelta
tl = datetime.now ()

t2 = timedelta (days=+1)

print (tl1+t2)

Output

2021-09-14 06:52:01.829130
The preceding program performs arithmetic addition operation on time delta.

Example

from datetime import datetime, timedelta
tl = datetime.now ()

Date and Time m 235

t2 = timedelta(days=+1)
print (tl-t2)

Output

2021-09-12 06:52:18.075289

The preceding program performs arithmetic subtraction operation on
time delta.

Example

from datetime import timedelta
d = timedelta (microseconds=-1)
print (d*5)

Output

-1 day, 23:59:59.999995

The preceding program performs arithmetic multiplication operation
on time delta.

Example

from datetime import timedelta
d = timedelta (microseconds=-100)
print (d*0.1)

Output

-1 day, 23:59:59.999990

The preceding program performs float multiplication operation on time
delta.

Example

from datetime import datetime, timedelta
d = timedelta (microseconds=-100)

t2 = timedelta (days=+1)

print (d/t2)

236 m Learning Professional Python

Output

-1.1574074074074074e-09

The preceding program performs arithmetic division operation on time
delta.

Example

from datetime import datetime, timedelta
t2 = timedelta (days=+1)
print (t2/5)

Output
4:48:00

The preceding program performs arithmetic division operation on time
delta.

Example:

from datetime import datetime, timedelta
t2 = timedelta (days=+1)

print (t2/0.5)

Output

2 days, 0:00:00
The preceding program performs float division operation on time delta.

Example

from datetime import datetime, timedelta
tl = timedelta (microseconds=-100)

t2 = timedelta (days=+1)

print (t1%t2)

Output

23:59:59.999900

The preceding program performs modulo division operation on time delta.

Date and Time = 237

Example

from datetime import datetime timedelta
tl = timedelta (microseconds=-100)

t2 = timedelta (days=+1)

g, r=divmod (tl, t2)

print (q)

print (r)

Output

-1
23:59:59.999900

The preceding program performs div mod operation on time delta.

Example

from datetime import datetime, timedelta
tl = timedelta (microseconds=-100)

t2 = timedelta (days=+1)

print (+tl)

print (-tl)
)
)

Output

-1 day, 23:59:59.999900
0:00:00.000100
1 day, 0:00:00
-1 day, 0:00:00

The preceding program performs unary addition and unary subtraction
operation on time delta.

Example

from datetime import datetime, timedelta
tl = timedelta (microseconds=-100)

t2 = timedelta (days=+1)

print (str(tl))

print (str(t2))

238 m Learning Professional Python

Output

-1 day, 23:59:59.999900
1 day, 0:00:00

The preceding program performs the string representation of the time
delta object.

Example

from datetime import datetime, timedelta
tl = timedelta (microseconds=-100)

t2 = timedelta (days=+1)

print (repr(tl))

print (repr(t2))

Output

datetime.timedelta (days=-1, seconds=86399,
microseconds=999900)
datetime.timedelta (days=1)

The preceding program displays the representation of the time delta
object.

EXERCISE

1. Print a particular weekday using relative delta ().

2. Print the previous month and previous week using relative delta.

3. Write a Python program to subtract three days from today’s date.
4. Write a Python program to print today’s date and the current time.
5. Write a Python program to print today’s date and weekday.

6. Write a Python program to print today’s date, yesterday’s date, and
tomorrow’s date.

7. Write a Python program to print all the Saturdays of the specified
year.

8. Write a Python program to print the delay of 5 minutes 15 seconds
from the current time.

Date and Time = 239

9. Write a Python program to print the five-column calendar of the
specified year.

10. Write a Python program to find whether the current year is a leap
year or not.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

CHAPTER 12

Regular Expression

A regex, or regular expression, is a sequence of characters that forms a
search pattern. Regular expression can be used to check if a string con-
tains the specified search pattern. Python has a built-in package called re,
which can be used to work with the regular expressions. When the users
import the re module, they can start using regular expressions. In Python
re module supports regular expressions. The raw strings can be expressed
as rexpression.

12.1 THE RE MODULE

Python supports the python regular expression functionality, and this
functionality is supported using the re module. This module consists of
the predefined attributes and the methods to perform the regular pattern
matching and searching.

Syntax

import re

The different meta characters and different patterns are tabulated in
Tables 12.1, 12.2, 12.3, and 12.4.

DOI: 10.1201/9781003414322-12 241

https://doi.org/10.1201/9781003414322-12

242 m Learning Professional Python

TABLE 12.1 Regular Expression Modifiers
Modifier Description
rel Case-insensitive matching
re.L By following the current system locale,
interpretation of the words using the alphabetic group
re.M Do search at the end of the line and at the
beginning of the line
re.S Checking for period match including the new line
re.U Interprets the letters as per the Unicode letters
re.X Ignores white space

TABLE 12.2 Regular Expression Patterns w.r.t Control Characters

Pattern

A

Description

Searches at the beginning of the line

Searches at the end of the line

checks the single character

Searches for the characters within the brackets
Searches for the characters not with in the brackets

TABLE 12.3 Regular Expression Patterns w.r.t Patttern Matching

Pattern

re*

re+

re{n}

re{n,}
re{n,m}

ajb

(re)
(2:re)
(2#...)
(2=re)
(?'re)

(t>re)

Description
Searches for the zero or more occurrences of the specified
pattern

Searches for the one or more occurrences of the specified
pattern

Searches for the zero or one occurrences of the specified pattern

Searches for the n number of occurrences of the specified
pattern

Searches for the n or more occurrences of the specified pattern

Searches at least n and at most m occurrences of the specified
pattern

Searcher either for a or b

Remember the matched pattern

Does not remember the matched pattern

Comment

Specifies the position using the pattern

Specifies the position using the negation

Searches for the independent pattern

Regular Expression m 243

TABLE 12.4 Regular Expression Patterns w.r.t Escape Sequence

Pattern

\w
\W
\s
\S
\d
\D
\A

\Z
\z
\G
\b

\B

\1...

\9

Description

Searches to match for word
Searches to match for non-word
Searches for the white space
Searches for the non-white space
Searches for the digits

Searches for the non-digits

Returns match pattern if the corresponding characters are at the beginning of
the string.

Search at the end of the string

Search at the end of the string

Returns at the last match found

Returns match pattern if the corresponding

characters are at the beginning of the string or at the

end of the string

Returns match pattern if the corresponding

characters are present in the string but not at the beginning of the string
Returns a match for any digit between 0 and 9

12.2 PYTHON MATCH FUNCTION

The match is the predefined method in the re module, and this method
matches the pattern with the string by using the optional flags.

Syntax

re.match (pattern, string, flags=0)

The parameters for the match function are as follows:

Pattern - This sequence is the regular expression to be equated.

String — This would be examined to match the pattern at the begin-
ning of string.

Flags - These are modifiers, and different modifiers are separated
using bitwise or (|).

The match function yields match object on equal, otherwise none.

The group function () of match object

group(num=0) - returns complete match

groups () — returns all similar subgroups in a tuple

244 wm Learning Professional Python

Example

import re
s="this is to test the python regular expressions”

m=re.match(r’ (.*)are(.*?) .*’, s,re.M)
print (m)
if m:

))
print (m.group (1))
2))

print (m.group (

print (m.group (

Output

None

Example

import re

s="this is to test”
x=re.match(“*"t . . .”,s)
if x:

print (“found”)

else:

print (“*not found”)

Output

found

The preceding program searches whether any word starts with ‘t” and
word length is four.

12.3 THE SEARCH FUNCTIONS

The search function explores for first existence of re sequence within string.

Syntax

re.search (pattern, string, flags=0)
The parameters for the search function are as follows:

o Pattern - This pattern is to be matched.

o String - Searched at the beginning of string.

Regular Expression m 245

 Flags - These are modifiers, and different modifiers are separated
using bitwise or (|). The flags in the search function are optional

The search function sends match object on success, otherwise none

The group function () of match object
group(num=0) - returns complete match

groups () - returns all similar subgroups in a tuple

Example: Search function

import re

txt = “It is still raining”

s = re.search(“\s”, txt)

print (“First white-space at:”, s.start())

Output

First white-space at: 2

In the preceding example the first occurrence of the first empty space
is returned.

Example

import re

str = “This is to test”

s = re.search(“test”, str)
print (s.span())

print (s.group())

print (s.string)

Output

(11, 15)
test
This is to test

The preceding program searches for the string test in the given string
str (i.e., This is to test).

246 m Learning Professional Python

Example

import re

str = “This is to test the regex test”
s = re.search(“test”, str)
print (s)

print (type (s))

Output

<re.Match object; span=(11, 15), match=‘test’>
<class ‘re.Match’>

Example

import re

s = “this is to test”

r = re.search(r*\bt”, s)
print (r.start())

print (r.end())

print (r.span())

Output

0

(0, 1)

Example

import re

s = “this is to test”

r = re.search(r*\D{2} t”, s)
print (r.group())

Output
is t
12.4 PYTHON MATCH FUNCTION VS SEARCH FUNCTION

Match function checks for a match only at the beginning of the string,
whereas the search object checks for a match anywhere in the string.

Regular Expression m 247

Example

import re

a = [“this”, “is”, “to”, “test”]
for s in a:

x = re.match (™ (g\w+)\W(g\w+)”, s)
if x:

print ((x.groups()))

a = [“this”, “is”, “to”, “test”]

s = ‘test’

for t in a:

print (*Found “%s” in “%s” -> ' % (t, s), end=' ')
if re.search(t, s)

print (*found a match!’)

else:

print (‘no match’)

Output

Found “this” in “test” -> Found “is” in “test” ->
Found “to” in “test” -> Found “test” in “test” ->
found a match!

no match

Regular expression modifiers

Modifier Description

re.l Case-insensitive matching

re.L By following the current system locale, interpretation of the words using the
alphabetic group

re.M Do search at the end of the line and at the beginning of the line.

re.S checking for period match including the new line

re.U Interprets the letters as per the Unicode letters.

re.X Ignores white space

248 m Learning Professional Python

Regular expression patterns

Pattern

[~..l]
re*
re+
re?
re{n}
re{n,}
re{n,m}
alb
(re)
(2:re)
(2#...)
(?=re)
(?'re)
(2>re)
\w

\W

\s

\S

\d

\D

\A

\Z
\z
\G
\b
\B

\1..\9

Description

Searches at the beginning of the line

Searches at the end of the line

checks the single character

Searches for the characters within the brackets

Searches for the characters not with in the brackets

Searches for the zero or more occurrences of the specified pattern
Searches for the one or more occurrences of the specified pattern
Searches for the zero or one occurrences of the specified pattern
Searches for the n number of occurrences of the specified pattern
Searches for the n or more occurrences of the specified pattern
Searches at least n and at most m occurrences of the specified pattern
Searcher either foraor b

Remember the matched pattern

Does not remember the matched pattern

comment

Specifies the position using the pattern

Specifies the position using the negation

Searches for the independent pattern

Searches to match for word

Searches to match for non-word

Searches for the white space

Searches for the non-white space

Searches for the digits

Searches for the non-digits

Returns match pattern if the corresponding characters are at the beginning of
the string.

Search at the end of the string
Search at the end of the string
returns at the last match found

Returns match pattern if the corresponding characters are at the beginning of
the string or at the end of the string.

Returns match pattern if the corresponding characters are present in the string
but not at the beginning of the string

Returns a match for any digit between 0 and 9

12.5 THE COMPILE FUNCTION

The compile function in the re module is used to compile the regular

expression patterns. This function helps to look for the occurrences of the
matched pattern in the specified string.

Regular Expression = 249

Syntax

re.compile (patern, flags=0)
The parameters for the compile function are as follows:

o Pattern - This pattern is to be matched.

« Flags - For flags, refer to Table 12.1.
The re.compile() returns the matched pattern.

Example

import re

x=re.compile (‘\w+')

Print (x.findall (“This pen costs rsl100/-"))
Output

[‘This’, ‘pen’, ‘costs’, ‘rsl00’]
The preceding example displays alphanumeric group characters.

Example

import re

x=re.compile (‘\d’)

print (x.findall (“*this is my 1lst experiment on regex”))
Output

(r17]
The preceding program extracts the digits from the given string.

12.6 THE FINDALL () FUNCTION

The findall () function checks for all specified pattern matches in the given
string.

Syntax

re.findall (patern, string, flags=0)

250 m Learning Professional Python

The parameters for the match function are as follows:

o Pattern - This sequence is the regular expression to be equated.

« String - This would be examined to match the pattern at the beginning
of string.

« Flags — These are modifiers, and different modifiers are separated
using bitwise or ().

Example

import re
x=re.compile (*\W’)
print (x.findall (“"This is costs rsl00/0-"))

Output
[\ l, \ l, \ l, \/l, _l]

The preceding program displays the non-alphanumeric characters.

Example

import re

x=re.compile (‘\d’)

print (x.findall (“we got independence on 15th
august 1947"))

Output
[lll, 151, Ill, 191, 141, 171]

The preceding program extracts all the digits from the given string. The
\d extracts all the digits.

Example

import re

x=re.compile (*\d+")

print (x.findall (*we got independence on 15th
august 1947"))

Regular Expression m 251
Output

[715", 71947"]

Example

import re

str = “This is to test the regex test”
s = re.findall (“test”, str)

print (s)

Output

[‘test’, ‘test’]

12.7 THE SPLIT () FUNCTION

The Python re.split () function splits the given string based on the given
specific pattern. This function returns the list, which consists of the resultant
substring of the given string.

Syntax

re.split (pattern, string, maxsplit=0, flags=0)
The parameters for the match function are as follows:

« Pattern - This sequence is the regular expression to be equated.

o String - This would be examined to match the pattern at the begin-
ning of string.

o Maxsplit - The maximum number of splits that the user wants to
perform.

« Flags — These are modifiers, and different modifiers are separated
using bitwise or (|).

Example

import re

s = ‘five:5 twenty one:21 ten:10’
p = ‘\d+’

r=re.split(p, s, 1)

print (r)

252 m Learning Professional Python

Output

[‘five:’, ' twenty one:21 ten:10']

Example

from re import split

print (split (*\W+’, ‘this, is,to, test’))

print (split (*\W+’, ‘This, is,to, test’))

print (split (*\W+’, ‘This is my 1lst experiment in re’))

print (split (*\d+’, ‘This is my 100 experiment in re’))

Output

[‘this’, ‘is’, ‘to’, ‘test’]

[‘This’, ‘is’, ‘to’, ‘test’]

[‘This’, ‘is’, ‘my’, ’1lst’, ‘experiment’, ‘in’, ‘re’]

[‘This is my ‘', ‘experiment in re’]

Example

import re

print (re.split (*\d+’, ‘this is 1 test’, 1))

print (re.split (' [a-f]+’, ‘This IS To Test’, flags=re.
IGNORECASE))

print (re.split (' [a-f]+’, ‘This IS To Test’))

12.8 THE SUB () FUNCTION

The Python re.sub () function replaces the occurrences of the specified
pattern with the target pattern in the given string.

Syntax

re.sub (pattern, repl, string, count=0, flags=0)
The parameters for the match function are as follows:

« Pattern - This sequence is the regular expression to be equated.
 Repl - Replace string.

« String - This would be examined to match the pattern at the begin-
ning of string.

o Count — Number of replacements.

Regular Expression m 253

« Flags — These are modifiers, and different modifiers are separated
using bitwise or (|).

Example

import re

s = ‘this is to test’
p = ‘\s+’

ro

sl = re.sub(p, ¥, s)
print (sl)

Output

thisistotest

Example

import re

s = ‘this is to test’

r: N7

sl = re.sub(r‘\s+’, r, s, 1)
print (s1)

Output

thisis to test

Example

import re

s = ‘this is to test’
p = ‘\s+’

ror

sl = re.subn(p, ¥, s)
print (sl)

Output

(‘thisistotest’, 3)

Output
[‘this is ', ' test’]
[‘This IS To T', ‘st’]

[‘This IS To T', ‘st’]

254 m Learning Professional Python

12.9 THE RE.ESCAPE () FUNCTION

Python automatically escapes all the metacharacter by using the escape ()
function.

Example

import re
print (re.escape(“this is to test”))
print (re.escape (“this is to test \t “test”))

Output

this\ is\ to\ test

this\ is\ to\ test\ \ \ \“test
Example

import re

expr = ‘(a’b)’

eqn = ‘f*(a”b) - 3*(a"b)’

re.sub (re.escape (expr) + r‘\z2’, ‘c’, eqn)

Output

‘fx (a®b) - 3*c’

EXERCISE

1. Print a string that has ‘b’ followed by zero or one ‘@’.

2. Find sequences of uppercase letter followed by underscore.

3. Find sequences of uppercase letter followed by lowercase letters.

4. Extract the words that matches a word containing ‘s’.

5. Extract the words that start with a number or a underscore.

6. Extract the words that end with a number.

7. Extract all the substring from the given string.

8. Print the occurrences and the position of the substring within the string.
9. Replace all occurrences of space with a comma.

10. Extract all five-character words from the given string.

Index

A

D

abs function, 34

anonymous functions, 199
append method, 93
arguments, 193

ASCII character code, 84
assert, 4

assignments multiple, 12
assignment statements, 11, 22
attributes, 175

B

binary numeric literals, 16
binary operator, 19
Boolean literal, 16
break statement, 56
built-in mathematical functions, 34
built-in object types

dictionaries, 158

lists, 91

sets, 143

strings, 75

tuples, 127

C

call-by-reference, 171
comment, 6
comparison operator, 20
concatenation operator, 71
continue statement, 58
curly braces

dictionaries, 157

sets, 143

data type, 11

def statement, 7

del, 79

dictionary, 140

dictionary comprehensions, 169

E

elif, 41
else, 36
exec, 4
expression evaluation, 28

F

false, 3

findall method, 249
floating point numbers, 15
floor division, 20

flush method, 4

function, 168

G

garbage collection, 2
get method, 162
global variable, 11

if, 35

if else statement, 36
immutability, 127
import statement, 155
indentation, 7

255

256 m Index

index method, 129
index values, 78
infinite loops, 67

input (), 25

insert method, 93
int, 11

K

key-value pair, 140
keyword, 3

L

lambda expression, 116
len function, 77

list, 81

list comprehensions, 96
literal, 14

local scope, 13

local variable, 11
logical operator, 21
long integers, 13

loop, 4

loops, 49

M

module, 155
modulus operator, 17
multiplication, 17
multiprocessing, 325
multithreading, 326

N

namespace, 155
negative index, 67
nested conditionals, 45
none variable, 10

O

object, 230
object-oriented language, 1
operator, 16

P

package imports, 175
print function, 4

R

range function, 15

reduce function, 116

remove method, 146

replace method, 85

repr function, 238

re (regular expression) module, 241
return statement, 200

reverse method, 93

round function, 34

rstrip method, 85

S

self argument, 230
sets, 127

sleep function, 331
slice, 68

from statement, 175
for statement, 49
static method, 235
string, 67

T

time module, 213
tuple, 115
type conversion, 11

u

unary operator, 16
unpacking, 124

\

variable, 8

W%

while else, 64
while loop, 24

	Cover
	Half Title
	Series
	Title
	Copyright
	Contents
	Preface
	Author Biographies
	Chapter 1 ◾ Python Basics
	1.1 History of Python
	1.2 Advantages of Python
	1.3 Characteristics of Python
	1.4 Applications of Python
	1.5 Python Versions
	1.6 Python Identifiers
	1.7 Reserved Words
	1.8 Print () Function
	1.9 Lines and Indentation
	1.10 Multiline Statements
	1.11 Quotation in Python
	1.12 Comments in Python
	1.13 Multiple Statements on a Single Line
	1.14 Python Variables
	1.15 Naming Conventions to Variables
	1.16 Assigning Values to Variables
	1.17 Multiple Assignment
	1.18 None Variable
	1.19 Data Types
	1.20 Type Conversion
	1.20.1 Implicit Conversion
	1.20.2 Explicit Conversion

	1.21 Literals
	1.22 Binary Number System
	Exercise

	Chapter 2 ◾ Python Operators
	2.1 Operators Introduction
	2.1.1 Unary Operators
	2.1.2 Binary Operator
	2.1.3 Ternary Operator

	2.2 Binary Operators
	2.2.1 Arithmetic Operators
	2.2.2 Shortened Operators

	2.3 String Operators
	2.4 Operator Precedence
	2.5 Expression Evaluation
	2.6 Input () Function
	2.7 Libraries
	2.7.1 Math and CMath Libraries
	2.7.2 SciPy Library

	Exercise

	Chapter 3 ◾ Decision-Making and Conditionals
	3.1 Introduction
	3.2 If Statement
	3.3 If-Else Statement
	3.4 Nested-If-Else Statement
	3.5 Elif Statement
	3.6 While
	3.7 For Loop
	3.8 Nested For Loops
	3.9 Nested While
	3.10 Using Else Statement with For Loop
	3.11 The Pass Statement in For Loop
	3.12 Break Statement
	3.13 Continue
	3.14 While Loop and the Else Branch
	Exercise

	Chapter 4 ◾ Strings
	4.1 String Creation
	4.2 Accessing Values to a String
	4.3 Modify Existing String
	4.4 Escape Characters
	4.5 String Special Characters
	4.6 String Formatting Operator
	4.7 Triple Quotes
	4.8 Unicode Strings
	4.9 Built-In String Methods
	4.10 Deleting String
	Exercise

	Chapter 5 ◾ Lists
	5.1 Introduction
	5.2 Characteristics of Lists
	5.3 Decision-Making in Lists
	5.3.1 Range

	5.4 Accessing Values in the List
	5.5 Updating List
	5.6 Delete List Elements
	5.7 Sorting
	5.8 Copying
	5.9 Operators on Lists
	5.10 Indexing, Slicing
	5.11 Searching in List
	5.12 Nested List
	5.13 List Comprehension
	5.14 Matrix Representation
	Exercise

	Chapter 6 ◾ Tuple
	6.1 Tuple Creation
	6.2 Accessing Values in Tuples
	6.3 Updating Tuples
	6.4 Delete Tuple Elements
	6.5 Operations on Tuples
	6.6 Unpacking of Tuples
	6.7 Indexing, Slicing on Tuples
	Exercise

	Chapter 7 ◾ Sets
	7.1 Introduction
	7.2 Access Set Elements
	7.3 Adding Elements to the Set
	7.4 Remove an Element from the Set
	7.5 Delete the Set
	7.6 Python Set Operations
	7.7 Set Membership Operators
	7.8 Set Predefined Methods
	7.9 Frozen Set
	7.10 Frozen Set Operations
	7.11 Frozen Set Predefined Operations
	Exercise

	Chapter 8 ◾ Dictionary
	8.1 Accessing the Elements of the Dictionary
	8.2 Copying the Dictionary
	8.3 Nested Dictionary
	8.4 Changing the Dictionary Values
	8.5 Adding the Elements to the Dictionary
	8.6 Removing the Elements of the Dictionary
	8.7 Dictionary Comprehension
	8.8 Operators in Dictionary
	Exercise

	Chapter 9 ◾ Modules and Packages
	9.1 Python Import Statement
	9.2 Python from . . . Import Statement
	9.3 Package
	Exercise

	Chapter 10 ◾ Functions
	10.1 Defining a Function
	10.2 Pass by Reference
	10.3 Function Arguments
	10.3.1 Required Arguments
	10.3.2 Keyword Arguments
	10.3.3 Default Arguments
	10.3.4 Variable Length Arguments

	10.4 Anonymous Functions
	10.5 Return Statement
	10.6 Function Variable Scope
	10.7 Passing List to Function
	10.8 Returning List from the Function
	10.9 Recursion
	Exercise

	Chapter 11 ◾ Date and Time
	11.1 Time Module
	11.2 Calendar
	11.3 Time Module
	11.4 Calendar Module
	11.5 The Datetime Module
	11.6 The Pytz Module
	11.7 The Dateutil Module
	Exercise

	Chapter 12 ◾ Regular Expression
	12.1 The Re Module
	12.2 Python Match Function
	12.3 The Search Functions
	12.4 Python Match Function vs Search Function
	12.5 The Compile Function
	12.6 The Findall () Function
	12.7 The Split () Function
	12.8 The Sub () Function
	12.9 The Re.escape () Function
	Exercise

	Index

