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Chapter 1. 
Zero Trust Fundamentals


A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 1st chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at mcronin@oreilly.com.



In a time where network surveillance is ubiquitous, we find ourselves having a hard time knowing who to trust. Can we trust that our internet traffic will be safe from eavesdropping? Certainly not! What about that provider you leased your fiber from? Or that contracted technician who was in your datacenter yesterday working on the cabling?

Whistleblowers like Edward Snowden and Mark Klein have revealed the tenacity of government-backed spy rings. The world was shocked at the revelation that they had managed to get inside the datacenters of large organizations. But why? Isn’t it exactly what you would do in their position? Especially if you knew that traffic there would not be encrypted?

The assumption that systems and traffic within a datacenter can be trusted is flawed. Modern networks and usage patterns no longer echo those that made perimeter defense make sense many years ago. As a result, moving freely within a “secure” infrastructure is frequently trivial once a single host or link there has been compromised. 

You may think that an idea of using a cyberattack as a weapon to disrupt critical infrastructure like a nuclear plant or a power grid is far-fetched, but cyberattacks on the Colonial Pipeline in the United States and the Kudankulam Nuclear Power Plant in India serve as a stark reminder that critical infrastructure will continue to be a high-value target for attackers. So, what was common between the two attacks? 

Well, in both cases, security was abysmal. Attackers took advantage of the fact that the VPN connection to Colonial Pipeline network was possible using a plain text password without any multi-factor authentication in-place. In the other example, malware was discovered on an Indian nuclear power plant employee’s computer that was connected to the administrative network’s internet servers. Once the attackers gained access, they were able to roam within the network due to “trust” that comes with being inside the network.

Zero trust aims to solve the inherent problems in placing our trust in the network. Instead, it is possible to secure network communication and access so effectively that physical security of the transport layer can be reasonably disregarded. It goes without saying that this is a lofty goal. The good news is that we’ve got pretty powerful cryptographic algorithms these days, and given the right automation systems, this vision is actually attainable.



What Is a Zero Trust Network?


A zero trust network is built upon five fundamental assertions:


	
The network is always assumed to be hostile.



	
External and internal threats exist on the network at all times 



	
Network locality alone is not sufficient for deciding trust in a network.



	
Every device, user, and network flow is authenticated and authorized.



	
Policies must be dynamic and calculated from as many sources of data as possible.





Traditional network security architecture breaks different networks (or pieces of a single network) into zones, contained by one or more firewalls. Each zone is granted some level of trust, which determines the network resources it is permitted to reach. This model provides very strong defense-in-depth. For example, resources deemed more risky, such as web servers that face the public internet, are placed in an exclusion zone (often termed a “DMZ”), where traffic can be tightly monitored and controlled. Such an approach gives rise to an architecture that is similar to some you might have seen before, such as the one shown in Figure 1-1.


[image: Traditional network security architecture]
Figure 1-1. Traditional network security architecture



The zero trust model turns this diagram inside out. Placing stopgaps in the network is a solid step forward from the designs of yesteryear, but it is significantly lacking in the modern cyberattack landscape. There are many disadvantages:


	
Lack of intra-zone traffic inspection



	
Lack of flexibility in host placement (both physical and logical)



	
Single points of failure





It should be noted that, should network locality requirements be removed, the need for VPNs is also removed. A VPN (or virtual private network) allows a user to authenticate in order to receive an IP address on a remote network. The traffic is then tunneled from the device to the remote network, where it is decapsulated and routed. It’s the greatest backdoor that no one ever suspected. If we instead declare that network location has no value, VPN is suddenly rendered obsolete, along with several other modern network constructs. Of course, this mandate necessitates pushing enforcement as far toward the network edge as possible, but at the same time relieves the core from such responsibility. Additionally, stateful firewalls exist in all major operating systems, and advances in switching and routing have opened an opportunity to install advanced capabilities at the edge. All of these gains come together to form one conclusion: the time is right for a paradigm shift. By leveraging distributed policy enforcement and applying zero trust principles, we can produce a design similar to the one shown in Figure 1-2.


[image: Zero trust architecture]
Figure 1-2. Zero trust architecture





Introducing the Zero Trust Control Plane


The supporting system is known as the control plane, while most everything else is referred to as the data plane, which the control plane coordinates and configures. Requests for access to protected resources are first made through the control plane, where both the device and user must be authenticated and authorized. Fine-grained policy can be applied at this layer, perhaps based on role in the organization, time of day, geo-location, or type of device. Access to more secure resources can additionally mandate stronger authentication.

Once the control plane has decided that the request will be allowed, it dynamically configures the data plane to accept traffic from that client (and that client only). In addition, it can coordinate the details of an encrypted tunnel between the requestor and the resource. This can include temporary one-time-use credentials, keys, and ephemeral port numbers. 

It should be noted that the control plane decision to allow a request is time-bound rather than permanent. This means that if and when the factors that led the control plane decision to allow the request in the first place have changed, it may coordinate with the data plane to revoke the request access to the resource. 

While some compromises can be made on the strength of these measures, the basic idea is that an authoritative source, or trusted third party, is granted the ability to authenticate, authorize, and coordinate access in real time, based on a variety of inputs. We’ll discuss the control and data plane more in Chapter 2.







Evolution of the Perimeter Model


The traditional architecture described in this book is often referred to as the perimeter model, after the castle-wall approach used in physical security. This approach protects sensitive items by building lines of defenses that an intruder must penetrate before gaining access. Unfortunately, this approach is fundamentally flawed in the context of computer networks and no longer suffices. In order to fully understand the failure, it is useful to recall how the current model was arrived at.



Managing the Global IP Address Space


The journey that led to the perimeter model began with address assignment. Networks were being connected at an ever-increasing rate during the days of the early internet. If it wasn’t being connected to the internet (remember the internet wasn’t ubiquitous at the time), it was being connected to another business unit, another company, or perhaps a research network. Of course, IP addresses must be unique in any given IP network, and if the network operators were unlucky enough to have overlapping ranges, they would have a lot of work to do in changing them all. If the network you are connecting to happens to be the internet, then your addresses must be globally unique. So clearly some coordination is required here.

The Internet Assigned Numbers Authority (IANA), formally established in 1998, is the body that today provides that coordination. Prior to the establishment of the IANA, this responsibility was handled by Jon Postel, who created the internet map shown in Figure 1-3. He was the authoritative source for IP address ownership records, and if you wanted to guarantee that your IP addresses were globally unique, you would register with him. At this time, everybody was encouraged to register for IP address space, even if the network being registered was not going to be connected to the internet. The assumption was that even if a network was not connected now, it would probably be connected to another network at some point.


[image: A map of the early internet created by Jon Postel  dated February 1982]
Figure 1-3. A map of the early internet created by Jon Postel, dated February 1982







Birth of Private IP Address Space


As IP adoption grew through the late 1980s and early 1990s, frivolous use of address space became a serious concern. Numerous cases of truly isolated networks with large IP address space requirements began to emerge. Networks connecting ATMs and arrival/departure displays at large airports were touted as prime examples. These networks were considered truly isolated for various reasons. Some devices might be isolated to meet security or privacy requirements (e.g., networks meant for ATMs). Some might be isolated because the scope of their function was so limited that having broader network access was seen as exceedingly unlikely (e.g., airport arrival and departure displays). RFC 1597 (https://tools.ietf.org/html/rfc1597), Address Allocation for Private Internets, was introduced to address this wasted public address space Issue.

In March of 1994, RFC 1597 announced that three IP network ranges had been reserved with IANA for general use in private networks: 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16. This had the effect of slowing address depletion by ensuring that the address space of large private networks never grew beyond those allocations. It also enabled network operators to use non-globally unique addresses where and when they saw fit. It had another interesting effect, which lingers with us today: networks using private addresses were more secure, because they were fundamentally incapable of joining other networks, particularly the internet. 

At the time, very few organizations (relatively speaking) had an internet connection or presence, and as such, internal networks were frequently numbered with the reserved ranges. Additionally, security measures were weak to nonexistent because these networks were typically confined by the walls of a single organization.





Private Networks Connect to Public Networks


The number of interesting things on the internet grew fairly quickly, and soon most organizations wanted at least some sort of presence. Email was one of the earliest examples of this. People wanted to be able to send and receive email, but that meant they needed a publicly accessible mail server, which of course meant that they needed to connect to the internet somehow. With established private networks, it was often the case that this mail server would be the only server with an internet connection. It would have one network interface facing the internet, and one facing the internal network. With that, systems and people on the internal private network got the ability to send and receive internet email via their connected mail server.

It was quickly realized that these servers had opened up a physical internet path into their otherwise secure and private network. If one was compromised, an attacker might be able to work their way into the private network, since hosts there can communicate with it. This realization prompted strict scrutiny of these hosts and their network connections. Network operators placed firewalls on both sides of them

to restrict communication and thwart potential attackers attempting to access internal systems from the internet, as shown in Figure 1-4. With this step, the perimeter model was born. The internal network became the “secure” network, and the tightly controlled pocket that the external hosts laid in became the DMZ, or the demilitarized zone.


[image: Both internet and private resources can access hosts in the DMZ  private resources  however  cannot reach beyond the DMZ  and thus do not gain direct internet access]
Figure 1-4. Both internet and private resources can access hosts in the DMZ; private resources, however, cannot reach beyond the DMZ, and thus do not gain direct internet access







Birth of NAT


The number of internet resources desired to be accessed from internal networks was growing rapidly, and it quickly became easier to grant general internet access to internal resources than it was to maintain intermediary hosts for every application desired. NAT, or network address translation, solved that problem nicely. 

RFC 1631, The IP Network Address Translator, defines a standard for a network device that is capable of performing IP address translation at organizational boundaries. By maintaining a table that maps public IPs and ports to private ones, it enabled devices on private networks to access arbitrary internet resources. This lightweight mapping is application-agnostic, which meant that network operators no longer needed to support internet connectivity for particular applications; they needed only to support internet connectivity in general.

These NAT devices had an interesting property: because the IP mapping was many-to-one, it was not possible for incoming connections from the internet to access internal private IPs without specifically configuring the NAT to handle this special case. In this way, the devices exhibited the same properties as a stateful firewall. Actual firewalls began integrating NAT features almost instantaneously, and the two became a single function, largely indistinguishable. Supporting both network compatibility and tight security controls meant that eventually you could find one of these devices at practically every organizational boundary, as shown in Figure 1-5.


[image: Typical  and simplified  perimeter firewall design]
Figure 1-5. Typical (and simplified) perimeter firewall design







The Contemporary Perimeter Model


With a firewall/NAT device between the internal network and the internet, the security zones are clearly forming. There is the internal “secure” zone, the DMZ (demilitarized zone), and the untrusted zone (aka the internet). If at some point in the future, this organization needed to interconnect with another, a device would be placed on that boundary in a similar manner. The neighboring organization is likely to become a new security zone, with particular rules about what kind of traffic can go from one to the other, just like the DMZ or the secure zone.

Looking back, the progression can be seen. We went from offline/private networks with just one or two hosts with internet access to highly interconnected networks with security devices around the perimeter. It is not hard to understand: network operators can’t afford to sacrifice the perfect security of their offline network because they had to open doors for various business purposes. Tight security controls at each door minimized the risk.







Evolution of the Threat Landscape


Even before the public internet, communicating with a remote computer system was highly desirable. This was commonly done over the public telephone system. Users and computer systems could dial in and, by encoding data into audible tones, gain connectivity to the remote machine. These dial-in interfaces were the most common attack vector of the day, since gaining physical access was much more difficult.

Once organizations had internet-connected hosts, attacks shifted from occurring over the telephone network to being launched over the internet. This triggered a change in most attack dynamics. Incoming calls to dial-in interfaces tied up a phone line, and were a notable occurrence when compared to a TCP connection coming from the internet. It was much easier to have a covert presence on an IP network than it was on a system that needed to be dialed into. Exploitation and brute force attempts could be carried out over long periods of time without raising too much suspicion...though an additional and more impactful capability rose from this shift: malicious code could then listen for internet traffic.

By the late 1990s, the world’s first (software) Trojan horses had begun to make their rounds. Typically, a user would be tricked into installing the malware, which would then open a port and wait for incoming connections. The attacker could then connect to the open port and remotely control the target machine.

It wasn’t long after that people realized it would be a good idea to protect those internet-facing hosts. Hardware firewalls were the best way to do it (most operating systems had no concept of a host-based firewall at the time). They provided policy enforcement, ensuring that only whitelisted “safe” traffic was allowed in from the internet. If an administrator inadvertently installed something that exposed an open port (like a Trojan horse), the firewall would physically block connections to that port until explicitly configured to allow it. Likewise, traffic to the internet-facing servers from inside the network could be controlled, ensuring that internal users could speak to them, but not vice versa. This helped prevent movement into the internal network by a potentially compromised DMZ host.

DMZ hosts were of course a prime target (due to their connectivity), though such tight controls on both inbound and outbound traffic made it hard to reach an internal network through a DMZ. An attacker would first have to compromise the firewalled server, then abuse the application in such a way that it could be used for covert communication (they need to get data out of that network, after all). Dial-in interfaces remained the lowest hanging fruit if one was determined to gain access to an internal network.

This is where things took an interesting turn. NAT was introduced to grant internet access to clients on internal networks. Due in some part to NAT mechanics and in some part to real security concerns, there was still tight control on inbound traffic, though internal resources wishing to consume external resources might freely do so. There’s an important distinction to be made when considering a network with NAT’d internet access against a network without it: the former has relaxed (if any) outbound network policy.

This significantly transformed the network security model. Hosts on the “trusted” internal networks could then communicate directly with untrusted internet hosts, and the untrusted host was suddenly in a position to abuse the client attempting to speak with it. Even worse, malicious code could then send messages to internet hosts from within the internal network. Today, we know this as “phoning home”.

Phoning home is a critical component of most modern attacks. It allows data to be exfiltrated from otherwise-protected networks; but more importantly, since TCP is bidirectional, it allows data to be injected as well. A typical attack involves several steps, as shown in Figure 1-6. First, the attacker will compromise a single computer on the internal network by exploiting the user’s browser when they visit a particular page, by sending them an email with an attachment that exploits some local software, for example. The exploit carries a very small payload, just enough code to make a connection out to a remote internet host and execute the code it receives in the response. This payload is sometimes referred to as a dialer.

The dialer downloads and installs the real malware, which more often than not will attempt to make an additional connection to a remote internet host controlled by the attacker. The attacker will use this connection to send commands to the malware, exfiltrate sensitive data, or even to obtain an interactive session. This “patient zero” can act as a stepping stone, giving the attacker a host on the internal network from which to launch additional attacks.


[image: Client initiates all attack related connections  easily traversing perimeter firewalls with relaxed outbound security]
Figure 1-6. Client initiates all attack-related connections, easily traversing perimeter firewalls with relaxed outbound security




Outbound Security

Outbound network security is a very effective mitigation measure against dialer-based attacks, as the phone home can be detected and/or blocked. Oftentimes, however, the phone home is disguised as regular web traffic, possibly even to networks that are seemingly benign or “normal.” Outbound security tight enough to stop these attacks will oftentimes cripple web usability for users. This is a more realistic prospect for back-office systems.



The ability to launch attacks from hosts within an internal network is a very powerful one. These hosts almost certainly have permission to talk to other hosts in the same security zone (lateral movement) and might even have access to talk to hosts in zones more secure than their own. To this effect, by first compromising a low-security zone on the internal network, an attacker can move through the network, eventually gaining access to the high-security zones.

Taking a step back for a moment, it can be seen that this pattern very effectively undermines the perimeter security model. The critical flaw enabling attack progression is subtle, yet clear: security policies are defined by network zones, enforced only at zone boundaries, using nothing more than the source and destination details.

Other threats have risen as the world has become more ubiquitous over the years. Companies nowadays allow their workers to use their own devices for work in addition to the devices provided by the company, thanks to the popularity of Bring Your Own Device (BYOD). Employees can be more productive as a result of this, as they work from home more than ever before. During COVID-19, we discovered the advantages of BYOD when employees were no longer able to enter the workplace for extended periods of time. However, the attack surface area has grown because patching numerous devices with the most recent security fixes is significantly more difficult than patching a single device. Attackers deliberately look for devices that haven’t had their security patches updated in order to exploit vulnerabilities and obtain unauthorized access to them. In Chapter 5, we’ll look at the role of security patches and how to automate them to improve device trust.


Zero-click attack

A zero-click attack is a highly sophisticated attack that infects the user’s device without the user’s involvement. Zero-click attacks frequently take advantage of unpatched arbitrary code execution and buffer overflow security flaws. Because these attacks are conducted without user interaction, they can be incredibly effective. Popular apps like WhatsApp and Apple’s iMessage have been reported to be vulnerable to zero-click attacks. In 2021, Google provided a comprehensive investigation of the iMessage zero-click vulnerability, which describes the attack’s far-reaching ramifications. Patching all devices that have access to company resources and services is critical at all times.







Perimeter Shortcomings


Even though the perimeter security model still stands as the most prevalent model by far, it is increasingly obvious that the way we rely on it is flawed. Complex (and successful) attacks against networks with perfectly good perimeter security occur every day. An attacker drops a remote access tool (or RAT) into your network through one of a myriad of methods, gains remote access, and begins moving laterally. Perimeter firewalls have become the functional equivalent of building a wall around a city to keep out the spies.

The problem comes when architecting security zones into the network itself. Imagine the following scenario: you run a small ecommerce company. You have some employees, some internal systems (payroll, inventory, etc.), and some servers to power your website. It is natural to begin classifying the kind of access these groups might need: employees need access to internal systems, web servers need access to database servers, database servers don’t need internet access but employees do, and so on. Traditional network security would codify these groups as zones and then define which zone can access what, as shown in Figure 1-7. Of course, you need to actually enforce these policies; and since they are defined on a zone-by-zone basis, it makes sense to enforce them wherever one zone can route traffic into another.

As you might imagine, there are always exceptions to these generalized rules... they are, in fact, colloquially known as firewall exceptions. These exceptions are typically as tightly scoped as possible. For instance, your web developer might want SSH access to the production web servers, or your HR representative might need access to the HR software’s database in order to perform audits. In these cases, an acceptable approach is to configure a firewall exception permitting traffic from that individual’s IP address to the particular server(s) in question.

Now let’s imagine that your archnemesis has hired a team of hackers. They want to have a peek at your inventory and sales numbers. The hackers send emails to all the employee email addresses they can find on the internet, masquerading as a discount code for a restaurant near the office. Sure enough, one of them clicks the link, allowing the attackers to install malware. The malware phones home and provides the attackers with a session on the now-compromised employee’s machine. Luckily, it’s only an intern, and the level of access they gain is limited.


[image: Corporate network interacting with the production network ]
Figure 1-7. Corporate network interacting with the production network 



They begin searching the network and find that the company is using file sharing software on its network. Out of all the employee computers on the network, none of them have the latest version and are vulnerable to an attack that was recently publicized.

One by one, the hackers begin searching for a computer with elevated access (this process of course can be more targeted if the attacker has advanced knowledge). Eventually they come across your web developer’s machine. A keylogger they install there recovers the credentials to log into the web server. They SSH to the server using the credentials they gathered; and using the sudo rights of the web developer, they read the database password from disk and connect to the database. They dump the contents of the database, download it, and delete all the log files. If you’re lucky, you might actually discover that this breach occurred. They accomplished their mission, as shown in Figure 1-8.

Wait, what? As you can see, many failures at many levels led to this breach, and while you might think that this is a particularly contrived case, successful attacks just like this one are staggeringly common. The most surprising part however goes unnoticed all too often: what happened to all that network security? Firewalls were meticulously placed, policies and exceptions were tightly scoped and very limited, everything was done right from a network security perspective. So what gives?


[image: Attacker movement into corporate network  and subsequently production into network]
Figure 1-8. Attacker movement into corporate network, and subsequently production into network




Example Attack Progression


	
Employees targeted via phishing email 



	
Corporate machine compromised, shell shoveled



	
Lateral movement through corporate network



	
Privileged workstation located



	
Local privilege escalation on workstation—keylogger installed



	
Developer password stolen



	
Compromised prod app host from privileged workstation



	
Developer password used to elevate privileges on prod app host



	
Database credentials stolen from app



	
Database contents exfiltrated via compromised app host







When carefully examined, it is overwhelmingly obvious that this network security model is not enough. Bypassing perimeter security is trivial with malware that phones home, and firewalls between zones consider nothing more than source and destination when making enforcement decisions. While perimeters can still provide some value in network security, their role as the primary mechanism by which a network’s security stance is defined needs to be reconsidered.

The first step of course is to search for existing solutions. Sure, the perimeter model is the accepted approach to securing a network, but that doesn’t mean we haven’t learned better elsewhere. What is the worst possible scenario network security-wise? It turns out that there is actually a level of absoluteness to this question, and the crux of it lies in trust.





Where the Trust Lies


When considering options beyond the perimeter model, one must have a firm understanding of what is trusted and what isn’t. The level of trust defines a lower limit on the robustness of the security protocols required. Unfortunately, it is rare for robustness to exceed what is required, so it is wise to trust as little as possible. Once trust is built into a system, it can be very hard to remove.

A zero trust network is just as it sounds. It is a network that is completely untrusted. Lucky for us, we interact with such a network very frequently: the internet. The internet has taught us some valuable security lessons. Certainly an operator will secure an internet-facing server much differently than it secures its locally accessible counterpart. Why is that? And if the pains associated with such rigor were cured (or even just lessened), would the security sacrifice still be worth it?

The zero trust model dictates that all hosts be treated as if they’re internet-facing. The networks they reside in must be considered compromised and hostile. Only with this consideration can you begin to build secure communication. With most operators having built or maintained internet-facing systems in the past, we have at least some idea of how to secure IP in a way that is difficult to intercept or tamper with (and, of course, how to secure those hosts). Automation enables us to extend this level of security to all of the systems in our infrastructure.





Automation as an Enabler


Zero trust networks do not require new protocols or libraries. They do, however, use existing technologies in novel ways. Automation systems are what allow a zero trust network to be built and operated.

Interactions between the control plane and the data plane are the most critical points requiring automation. If policy enforcement cannot be dynamically updated, zero trust will be unattainable; therefore it is critical that this process be automatic and rapid.

There are many ways that this automation can be realized. Purpose-built systems are most ideal, though more mundane systems like traditional configuration management can fit here as well. Widespread adoption of configuration management represents an important stepping stone for a zero trust network, as these systems often maintain device inventories and are capable of automating network enforcement configuration in the data plane.

Due to the fact that modern configuration management systems can both maintain a device inventory and automate the data plane configuration, they are well positioned to be a first step toward a mature zero trust network.





Perimeter Versus Zero Trust


The perimeter and zero trust models are fundamentally different from each other. The perimeter model attempts to build a wall between trusted and untrusted resources (i.e., local network and the internet). On the other hand, the zero trust model basically throws the towel in, and accepts the reality that the “bad guys” are everywhere. Rather than build walls to protect the soft bodies inside, it turns the entire population into a militia.

The current approaches to perimeter networks assign some level of trust to the protected networks. This notion violates the zero trust model and leads to some bad behavior. Operators tend to let their guard down a bit when the network is “trusted” (they are human). Rarely are hosts that share a trust zone protected from themselves. Sharing a trust zone, after all, seems to imply that they are equally trusted. Over time, we have come to learn that this assumption is false, and it is not only necessary to protect your hosts from the outside, but it is also necessary to protect them from each other.

Since the zero trust model assumes the network is fully compromised, you must also assume that an attacker can communicate using any arbitrary IP address. Thus, protecting resources by using IP addresses or physical location as an identifier is not enough. All hosts, even those which share “trust zones,” must provide proper identification. Attackers are not limited to active attacks though. They can still perform passive attacks in which they sniff your traffic for sensitive information. In this case, even host identification is not enough—strong encryption is also required. There are three key components in a zero trust network: user/application authentication, device authentication, and trust. The first component has some duality in it due to the fact that not all actions are taken by users. So in the case of automated action (inside the datacenter, for instance), we look at qualities of the application in the same way that we would normally look at qualities of the user.

Authenticating and authorizing the device is just as important as doing so for the user/application. This is a feature rarely seen in services and resources protected by perimeter networks. It is often deployed using VPN or NAC technology, especially in more mature networks, but finding it between endpoints (as opposed to network intermediaries) is uncommon.


NAC as a Perimeter Technology

NAC, or Network Access Control, represents a set of technologies designed to strongly authenticate devices in order to gain access to a sensitive network. These technologies, which include protocols like 802.1X and the Trusted Network Connect (TNC) family, focus on admittance to a network rather than admittance to a service and as such are independent to the zero trust model. An approach more consistent with the zero trust model would involve similar checks as close to the service being accessed as possible (something which TNC can address—more on this in Chapter 5). While NAC can still be employed in a zero trust network, it does not fulfill the zero trust device authentication requirement due to its distance from the remote endpoint.



Finally, a “trust score” is computed, and the application, device, and score are bonded to form an agent. Policy is then applied against the agent in order to authorize the request. The richness of information contained within the agent allows very flexible yet fine-grained access control, which can adapt to varying conditions by including the score component in your policies.

If the request is authorized, the control plane signals the data plane to accept the incoming request. This action can configure encryption details as well. Encryption can be applied at the device level, application level, or both. At least one is required for confidentiality.

With these authentication/authorization components, and the aid of the control plane in coordinating encrypted channels, we can assert that every single flow on the network is authenticated and expected. Hosts and network devices drop traffic that has not had all of these components applied to it, ensuring sensitive data can never leak out. Additionally, by logging each of the control plane events and actions, network traffic can be easily audited on a flow-by-flow or request-by-request basis.

Perimeter networks can be found which have similar capability, though these capabilities are enforced at the perimeter only. VPN famously attempts to provide these qualities in order to secure access to an internal network, but the security ends as soon as your traffic reaches a VPN concentrator. It is apparent that operators know what internet-strength security is supposed to look like; they just fail to implement those strong measures throughout.

If one can imagine a network that applies these measures homogeneously, some brief thought experiment can shed a lot of light on this new paradigm. Identity can be proven cryptographically, meaning it no longer matters what IP address any given connection is originating from (technically, you can still associate risk with it—more on that later). With automation removing the technical barriers, VPN is essentially obsolete. “Private” networks no longer mean anything special: the hosts there are just as hardened as the ones on the internet. Thinking critically about NAT and private address space, perhaps zero trust makes it more obvious that the security arguments for it are null and void.

Ultimately, the perimeter model flaw is lack of universal protection and enforcement. Secure cells with soft bodies inside. What we’re really looking for is hard bodies, bodies that know how to check IDs and speak in a way they can’t be overheard. Having hard bodies doesn’t necessarily preclude you from also maintaining the security cells. In very sensitive installations, this would still be encouraged. It does, however, raise the security bar high enough that it wouldn’t be unreasonable to lessen or remove those cells. Combined with the fact that the majority of the zero trust function can be done with transparency to the end user, the model almost seems to violate the security/ convenience trade-off: stronger security, more convenience. Perhaps the convenience problem (or lack thereof) has been pushed onto the operators.





Applied in the Cloud


There are many challenges in deploying infrastructure into the cloud, one of the larger being security. Zero trust is a perfect fit for cloud deployments for an obvious reason: you can’t trust the network in a public cloud! The ability to authenticate and secure communication without relying on IP addresses or the security of the network connecting them means that compute resources can be nearly commoditized. Since zero trust advocates that every packet be encrypted, even within the same datacenter, operators need not worry about which packets traverse the internet and which don’t. This advantage is often understated. Cognitive load associated with when, where, and how to encrypt traffic can be quite large, particularly for developers who may not fully understand the underlying system. By eliminating special cases, we can also eliminate the human error associated with them.

Some might argue that intra-datacenter encryption is overkill, even with the reduction in cognitive load. History has proven otherwise. At large cloud providers like AWS, a single “region” consists of many datacenters, with fiber links between them. To the end user, this subtlety is often obfuscated. The NSA was targeting precisely links like these in rooms like the one shown in Figure 1-9.
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Figure 1-9. Room 641A—NSA interception facility inside an AT&T datacenter in San Francisco



There are additional risks in the network implementation of the provider itself. It is not impossible to think that a vulnerability might exist in which neighbors can see your traffic. A more likely case is network operators inspecting traffic while troubleshooting. Perhaps the operator is honest, but how about the person who stole his/her laptop a few hours later with your captures on the disk? The unfortunate reality is that we can no longer assume that our traffic is protected from snooping or modification while in the datacenter.





Role of Zero Trust in National Cybersecurity


In 2021, the United States White House released an executive order (EO 14028) calling out the need to improve national cybersecurity on an urgent basis. The backdrop of this EO was ever increasing sophisticated cyberattacks over the span of many years, predominantly from foreign advisories, putting national security at risk. EO 14028 specifically calls out advancement towards Zero Trust Architecture as a critical step in improving national cybersecurity. 

“The Federal Government must adopt security best practices; advance toward Zero Trust Architecture; ….” (Excerpt from EO 14028)

Adoption of Zero Trust is not just exclusive to the United States government by any means. Governments across the globe have been embracing it to improve the security posture. Another example is United Kingdom’s National Cyber Security Centre Zero Trust Architecture Design principles.

In later chapters, we’ll cover efforts from various government and non-government organizations like National Institute of Standards and Technology (NIST), Cybersecurity & Infrastructure Agency (CISA), The OpenGroup, etc in publishing Zero Trust architecture, principles, and guidelines. 





Summary


This chapter explored the high-level concepts that have led us toward the zero trust model. The zero trust model does away with the perimeter model, which attempts to ensure that bad actors stay out of the trusted internal network. Instead, the zero trust system recognizes that this approach is doomed to failure, and as a result, starts with the assumption that malicious actors are within the internal network and builds up security mechanisms to guard against this threat.

To better understand why the perimeter model is failing us, we reviewed how the perimeter model came into being. Back at the internet’s beginning, the network was fully routable. As the system evolved, some users identified areas of the network that didn’t have a credible reason to be routable on the internet, and thus the concept of a private network was born. Over time, this idea took hold, and organizations modeled their security around protecting the trusted private network. Unfortunately, these private networks aren’t nearly as isolated as the original private networks were. The end result is a very porous perimeter, which is frequently breached in regular security incidents.

With the shared understanding of perimeter networks, we are able to contrast that design against the zero trust design. The zero trust model carefully manages trust in the system. These types of networks lean on automation to realistically manage the security control systems that allow us to create a more dynamic and hardened system. We introduced some key concepts like the authentication of users, devices, and applications, and the authorization of the combination of those components. We will discuss these concepts in greater detail throughout the rest of this book.

Finally, we talked about how the move to public cloud environments and the pervasiveness of internet connectivity have fundamentally changed the threat landscape. “Internal” networks are now increasingly shared and sufficiently abstracted away in such a way that end users don’t have as clear an understanding of when their data is transiting more vulnerable long-distance network links. The end result of this change is that data security is more important than ever when constructing new systems.

The next chapter will discuss the high-level concepts that need to be understood in order to build systems that can safely manage trust.







Chapter 2. Managing Trust 

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 2nd chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at mcronin@oreilly.com.



Trust management is perhaps the most important component of a zero trust network. We are all familiar with trust to some degree—you probably trust members of your family, but not a stranger on the street, and certainly not a stranger who looks threatening or menacing. Why is that?

For starters, you actually know your family members. You know what they look like, where they live; perhaps you’ve even known them your whole life. There is no question of who they are, and you are more likely to trust them with important matters than others.

A stranger, on the other hand, is someone completely unknown. You might see their face, and be able to tell some basic things about them, but you don’t know where they live, and you don’t know their history. They might appear perfectly cromulent, but you likely wouldn’t rely on one for important matters. Watch your stuff for you while you run to the bathroom? Sure. Make a quick run to the ATM for you? Definitely not.

At the end, you are simply taking in all the information you can tell about the situation, a person, and all you may know about them, and deciding how trustworthy they are. The ATM errand requires a very high level of trust, where watching your stuff needs much less, but not zero.

You may not even trust yourself completely, but you can definitely trust that actions taken by you were taken by you. In this way, trust in a zero trust network always originates with the operator. Trust in a zero trust network seems contradictory, though it is important to understand that when you have no inherent trust, you must source it from somewhere and manage it carefully. There’s a small wrinkle though: the operator won’t always be available to authorize and grant trust! Plus, the operator just doesn’t scale :). Luckily, we know how to solve that problem—we delegate trust as shown in Figure 2-1.
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Figure 2-1. An operator declares trust in a particular system, which can in turn trust another, forming a trust chain



Trust delegation is important because it allows us to build automated systems that can grow to large scale and to operate in a secure and trusted way with minimal human intervention. The trusted operator must assign some level of trust to a system, enabling it to take actions on behalf of the operator. A simple example of this is autoscaling. You want your servers to provision themselves as needed, but how do you know a new server is one of yours and not some other random server? The operator must delegate the responsibility to a provisioning system, granting it the ability to assign trust to, and create, new hosts. In this way, we can say that we trust the new server is indeed our own, because the provisioning system has validated that it has taken the action to create it, and the provisioning system can prove that the operator has granted it the ability to do so. This flow of trust back to the operator is often referred to as a trust chain, and the operator can be referred to as a trust anchor.


Threat Models

Defining threat models is an important first step when designing a security architecture. A threat model enumerates the potential attackers, their capabilities and resources, and their intended targets. Threat models will normally define which attackers are in scope, rationally choosing to mitigate attacks from weaker adversaries before moving onto more difficult adversaries.

A well-defined threat model can be a useful tool to focus security mitigation efforts. When building security systems, like most engineering exercises, there is a tendency to focus on the fancier aspects of the engineering problem to the detriment of the more boring but still important parts. This tendency is especially worrisome in a security system, since the weakest link in the system is where attackers will quickly focus their attention. Therefore, the threat model serves as a mechanism for focusing

our attention on a single threat and fully mitigating their attacks. Threat models can also be useful when prioritizing security initiatives. Fighting state level actors is pointless if a system’s security measures are insufficient to defend against a simple brute force attack on a user’s poor password. As such, it is important to start first with simpler personas when building a threat model.


Common Threat Models

There are many different techniques for threat modeling in the security field. Here are some of the more popular ones:


	
STRIDE



	
DREAD



	
PASTA



	
Trike



	
VAST



	

MITRE ATT&CK




	
Common Vulnerability Scoring System





The varying threat modeling techniques provide different frameworks for exploring the threat space. Each of them is after the same goal: to enumerate threats to the system and further enumerate the mitigating systems and processes for those threats. Different threat models approach the problem from different angles. Some modeling systems might focus on the assets that an attacker would be targeting. Others might look at each software component in isolation and enumerate all the attacks that could be applied to that system. Finally, some models might look at the system as a whole from the attacker’s perspective: as an attacker, how might I approach penetrating this system. Each of these approaches has pros and cons. For a well-diversified mitigating strategy, a blend of the three approaches is ideal.

If we were to look at the attacker-based threat modeling methodology, we are able to categorize attackers into a list of increasing capabilities (ordered from least to most threatening):


	
Opportunistic attackers

So-called script kiddies, who are unsophisticated attackers taking advantage of well-known vulnerabilities with no predetermined target.



	
Targeted attackers

Attackers who craft specialized attacks against a particular target. Spear phishing and corporate espionage might fall under this bucket.



	
Insider threats

A credentialed but everyday user of a system. Contractors and unprivileged employees generally fall into this bucket.



	
Trusted insider

A highly trusted administrator of a system.



	
State-level actor

Attackers backed by foreign or domestic governments and assumed to have vast resources and positioning capabilities to attack a target.





Categorizing threats like this is a useful exercise to focus discussion around a particular level to mitigate against. We will discuss which level zero trust targets in the next section.




Zero Trust’s Threat Model

In RFC 3552, the Internet Threat Model is described. Zero trust networks generally follow the Internet Threat Model to plan their security stance. While reading the entire RFC is recommended, here is a relevant excerpt:


The Internet environment has a fairly well understood threat model. In general, we assume that the end-systems engaging in a protocol exchange have not themselves been compromised. Protecting against an attack when one of the end-systems has been compromised is extraordinarily difficult. It is, however, possible to design protocols which minimize the extent of the damage done under these circumstances.

By contrast, we assume that the attacker has nearly complete control of the communications channel over which the end-systems communicate. This means that the attacker can read any PDU (Protocol Data Unit) on the network and undetectably remove, change, or inject forged packets onto the wire. This includes being able to generate packets that appear to be from a trusted machine. Thus, even if the end-system with which you wish to communicate is itself secure, the Internet environment provides no assurance that packets which claim to be from that system in fact are.



Zero trust networks, as a result of their control over endpoints in the network, expand upon the Internet Threat Model to consider compromises at the endpoints.

The response to these threats is generally to first harden the systems proactively against compromised peers, and then facilitate detection of those compromises. Detection is aided by scanning of devices and behavioral analysis of the activity from each device. Additionally, mitigation of endpoint compromise is achieved by frequent upgrades to software on devices, frequent and automated credential rotation, and in some cases frequent rotation of the devices themselves.

An attacker with unlimited resources is essentially impossible to defend against, and zero trust networks recognize that. The goal of a zero trust network isn’t to defend against all adversaries, but rather the types of adversaries that are commonly seen in a hostile network.

From our earlier discussion of attacker capabilities, a zero trust network is generally attempting to mitigate attacks up to and including attacks originating from a “trusted insider” level of access. Most organizations do not experience attacks that exceed this level of sophistication. Developing mitigations against these attackers will defend against the vast majority of compromises and would be a dramatic improvement for the industry’s security stance.

Zero trust networks generally do not try to mitigate all state-level actors, though they do attempt to mitigate those attempting to compromise their systems remotely. State Level actors are assumed to have vast amounts of money, so many attacks that would be infeasible for lesser organizations are available to them. Additionally, local governments have physical and legal access to many of the systems that organizations depend upon for securing their networks.

Defending against these localized threats is exceedingly expensive, requiring dedicated physical hardware, and most zero trust networks consider the more extreme forms of attacks (say a vulnerability being inserted into a hypervisor which copies memory pages out of a VM) out of scope in their threat models. We should be clear that while security best practices are still very much encouraged, the zero trust model only requires the safety of information used to authenticate and authorize actions,

such as on-disk credentials. Further requirements on endpoints, say full disk encryption, can be applied via additional policy.






Strong Authentication

Knowing how much to trust someone is useless without being able to associate a real life person with that identity you know to trust. Humans have many senses to determine if the person in front of them is who they think they are. Turns out, combinations of senses are hard to fool.

Computer systems, however, are not so lucky. It’s more like talking to someone on the phone. You can listen to their voice, read their caller ID, ask them questions...but you can’t see them. Thus we are left with a challenge: how can one be reasonably assured that the person (or system) on the other end of the line is in fact who they say they are?

Typically, operators examine the IP address of the remote system and ask for a password. Unfortunately, these methods alone are insufficient for a zero trust network, where attackers can communicate from any IP they please and insert themselves between yourself and a trusted remote host. Therefore, it is very important to employ strong authentication on every flow in a zero trust network. The most widely accepted method to accomplish this is a standard named X.509, which most engineers are familiar with. It defines a certificate standard that allows identity to be verified through a chain of trust. It’s popularly deployed as the primary mechanism for authenticating (Transport Layer Security) TLS, formerly Secure Sockets Layer (SSL) connections.


SSL is Anonymous

The most widely consumed TLS configuration validates that the client is speaking to a trusted resource, but not that the resource is speaking to a trusted client. This poses an obvious problem for zero trust networks.



TLS additionally supports mutual authentication, in which the resource also validates the client. This is an important step in securing private resources; otherwise, the client device will go unauthenticated. More on zero trust TLS configuration in “Mutually Authenticated TLS” on page XX [157].

Certificates utilize two cryptographic keys: a public key and a private key. The public key is distributed, and the private key is held as a secret. The public key can encrypt data that the private key can decrypt, and vice versa, as shown in Figure 2-2. This allows one to prove they are in the presence of the private key by correctly decrypting a piece of data that was encrypted by the well-known (and verifiable) public key. In this way, identity can be validated without ever exposing the secret. 

Certificate-based authentication lets us be certain that the person on the other end of the line has the private key, and also lets us be certain that someone listening in can’t steal the key and reuse it in the future. It does, however, still rely on a secret, something that can be stolen. Not necessarily by listening in, but perhaps by a malware infection or physical theft.

So while we can validate that credentials are legitimate, we might not trust that they have been kept a secret. For this reason, it is desirable to use multiple secrets, stored in different places, which in combination grant access. With this approach, a potential attacker must steal multiple components.


[image: Bob can use Alice s well known public key to encrypt a message that only Alice is able to decrypt]
Figure 2-2. Bob can use Alice’s well-known public key to encrypt a message that only Alice is able to decrypt



While having multiple components goes a long way in preventing unauthorized access, it is still conceivable that all these components can be stolen. Therefore, it is critical that all authentication credentials be time-boxed. Setting an expiration on credentials helps to minimize the blast radius of leaked or stolen keys and gives the operator an opportunity to reassert trust. The act of changing, or renewing, keys/ passwords is known as credential rotation.

Credential rotation is essential for validating that no secrets have been stolen, and revoking them when required. Systems utilizing keys/passwords that are hard or impossible to rotate should be avoided at all cost, and when building new systems this fact should be taken into account early on in the design process. The rotation frequency of a particular credential is often inversely proportional to the cost of rotation.


Examples of Secrets Expensive to Rotate


	
Certificates requiring external coordination



	
Hand-configured service accounts



	
Database passwords requiring downtime to reset



	
A site-specific salt that cannot be changed without invalidating all stored hashes










Authenticating Trust

We spoke a little bit about certificates and public key cryptography. However, certificates alone don’t solve the authentication issue. For instance, you can be assured that a remote entity is in possession of a private key by making an assertion using its public key. But how do you obtain the public key to begin with? Sure, public keys don’t need to be secret, but you must still have a way to know that you have the right public key. Public key infrastructure, or PKI, defines a set of roles and responsibilities that are used to securely distribute and validate public keys in untrusted networks.

The goal of a PKI is to allow unprivileged participants to validate the authenticity of their peers through an existing trust relationship with a mutual third party. A PKI leverages what is known as a registration authority (RA) in order to bind an identity to a public key. This binding is embedded in the certificate, which is cryptographically signed by the trusted third party. The signed certificate can then be presented in order to “prove” identity, so long as the recipient trusts the same third party.

There are many types of PKI providers. The most popular two are certificate authorities (CAs) and webs of trust (WoTs). The former relies on a signature chain that is ultimately rooted in the mutually trusted party. The latter allows systems to assert validity of their peers, forming a web of endorsements rather than a chain. Trust is then asserted by traversing the web until a trusted certificate is found. While this approach is in relatively wide use with Pretty Good Privacy (PGP) encryption, this book will focus on PKIs that employ a CA, the popularity of which overshadows the WoT provider.


What Is a Certificate Authority?

Certificate authorities act as the trust anchor of a certificate chain. They sign and publish public keys and their bound identities, allowing unprivileged entities to assert the validity of the binding through the signature.

CA certificates are used to represent the identity of the CA itself, and it is the private key of the CA certificate that is used to sign client certificates. The CA certificate is well known, and is used by the authenticating entity to validate the signature of the presented client certificate. It is here that the trusted third-party relationship exists, issuing and asserting the validity of digital certificates on behalf of the clients. The trusted third-party position is very privileged. The CA must be protected at all costs, since its subversion would be catastrophic. Digital certificate standards like X.509 allow for chaining of certificates, which enables the root CA to be kept offline. This is considered standard practice in CA-based PKI security. We’ll talk more about X.509 security in Chapter 5.




Importance of PKI in Zero Trust

All zero trust networks rely on PKI to prove identity throughout the network. As such, it acts as the bedrock of identity authentication for the majority of operations. Entities that might be authenticated with a digital certificate include:


	
Devices



	
Users



	
Applications






Binding Keys to Entities

PKI can bind an identity to a public key, but what about a private key to the entity it is meant to identify? After all, it is the private key which we are really authenticating. It is important to keep the private key as close to the entity it was meant to represent as possible. The method by which this is done varies by the type of entity. For instance, a user might store a private key on a smart card in their pocket, where a device might store a private key in an onboard security chip. We’ll discuss which methods best fit which entities in Chapters 5, 6, and 7.



Given the sheer number of certificates that a zero trust network will issue, it is important to recognize the need for automation. If humans are required in order to process certificate signing requests, the procedure will be applied sparingly, weakening the overall system. That being said, certificates deemed highly sensitive will likely wish to retain a human-based approval process.




Private Versus Public PKI

PKI is perhaps most popularly deployed as a public trust system, backing X.509 certificates in use on the public internet. In this mode, the trusted third party is publicly trusted, allowing clients to authenticate resources that belong to other organizations.

While public PKI is trusted by the internet at large, it is not recommended for use in a zero trust network.

Some might wonder why this is. After all, public PKI has some defensible strengths. Factors like existing utilities/tooling, peer-reviewed security practices, and the promise of a better time to market are all attractive. There are, however, several drawbacks to public PKI that work against it. The first is cost.

The public PKI system relies on publicly trusted authorities to validate digital certificates. These authorities are businesses of their own, and usually charge a fee for signing certificates. Since a zero trust network has many certificates, the signing costs associated with public authorities can be prohibitive, especially when considering rotation policies.

Another significant drawback to public PKI is the fact that it’s hard to fully trust the public authorities. There are lots of publicly trusted CAs, operating in many countries. In a zero trust network leveraging public PKI, any one of these CAs can cut certificates that your network trusts. Do you trust the laws and the governments associated with all of those CAs too? Probably not. While there are some mitigation methods here, like certificate pinning or installing trust in a single public CA, it remains challenging to retain trust in a disjoint organization.

Finally, flexibility and programmability can suffer when leveraging public CAs. Public CAs are generally interested in retaining the public’s trust, so they do employ good security measures. This might include policies about how certificates are formed, and what information can be placed where. This can adversely affect zero trust authentication in that it is often desirable to store site-specific metadata in the certificate, like a role or a user ID. Additionally, not all public CAs provide programmable interfaces, making automation a challenge.




Public PKI Strictly Better Than None

While the drawbacks associated with public PKI are significant, and the authors heavily discourage its use within a zero trust network, it remains superior to no PKI at all. A well-automated PKI is the first step, and work will be required in this area no matter which PKI approach you choose. The good news is that if you choose to leverage public PKI initially, there is a clear path to switch to private PKI once the risk becomes too great. It begs the question, however, if it is even worth the effort, since automation of those resources will still be required.






Least Privilege

The principle of least privilege is the idea that an entity should be granted only the privileges it needs to get its work done. By granting only the permissions that are always required, as opposed to sometimes desired, the potential for abuse or misuse by a user or application is greatly reduced.

In the case of an application, that usually means running it under a service account, in a container or jail, etc. In the case of a human, it commonly manifests itself as policies like “only engineers are allowed access to the source code.” Devices must also be considered in this regard, though they often assume the same policies as the user or application they were originally assigned to.


Privacy as Least Privilege

The application of encryption in the name of privacy is an often overlooked application of least privilege. Who really needs access to the packet payload?



Another effect of this principle is that if you do need elevated access, that you retain those access privileges for only as long as you need them. It is important to understand what actions require which privileges so that they may be granted only when appropriate. This goes one step beyond simple access control reviews.

This means that human users should spend most of their time executing actions using a non-privileged user account. When elevated privileges are needed, the user needs to execute those actions under a separate account with higher privileges. On a single machine, elevating one’s privileges is usually accomplished by taking an action that requires the user to authenticate themselves. For example, on a Unix system, invoking a command using the sudo command will prompt the user to enter their password before running that command as a different role. In GUI environments, a dialog box might appear requiring the user’s password before performing the risky operation. By requiring interaction with the user, the potential for malicious software to take action on behalf of the user is (potentially) mitigated.

In a zero trust network, users should similarly operate in a reduced privilege mode on the network most of the time, only elevating their permissions when needed to perform some sensitive operation. For example, an authenticated user might freely access the company’s directory or interact with project planning software. Accessing a critical production system, however, should require additional confirmation that the user or the user’s system is not compromised. For relatively low-risk actions, this privilege elevation could be as simple as re-prompting for the user’s password, requesting a second factor token, or sending a push notification to the user’s phone. For high-risk access, one might choose to require active confirmation from a peer via an out-of-band request.


Human-Driven Authentication

For particularly sensitive operations, an operator may rely on the coordination of multiple humans, requiring a number of people to be actively engaged in order to authenticate a particular action. Forcing authentication actions into the real world is a good way to ensure a compromised system can’t interfere with them. Be careful, however—these methods are expensive and will become ineffective if employed too frequently.



Like users, applications should also be configured to have the fewest privileges necessary to operate on the network. Sadly, applications deployed in a corporate setting are often given fairly wide access on the network. Either due to the difficulty of defining policies to rein in applications, or the assumption that compromised users are the more likely target, it’s now become commonplace for the first step in setting up a machine to be disabling the application security frameworks that are meant to secure the infrastructure.

Beyond the traditional consideration of privilege for users and applications, zero trust networks also consider the privilege of the device on the network. It is the combination of user or application and the device being used that determines the privilege level granted. By joining the privilege of a user to the device being used to access a resource, zero trust networks are able to mitigate the effects of lost or compromised credentials. Chapter 3 will explore how this marriage of devices and users works in practice.

Privilege in a zero trust network is more dynamic than in traditional networks. Traditional networks eventually converge on policies that stay relatively static. If new use cases appear that require greater privilege, either the requestor must lobby for a change in policy; or, perhaps more frequently, they ask someone with greater privilege (a sysadmin, for example) to perform the operation for them. This static definition of policy presents two problems. First, in more permissive organizations, privilege will grow over time, lessening the benefit of least privilege. Second, in both permissive and restrictive organizations, admins are given greater access, which has resulted in malicious actors purposefully targeting sysadmins for phishing attacks.

A zero trust network, by contrast, will use many attributes of activity on the network to determine a riskiness factor for the access being requested currently. These attributes could be temporal (access outside of the normal window activity for that user is more suspicious), geographical (access from a different location than the user was last seen), or even behavioral (access to resources the user does not normally access). By considering all the details of an access attempt, the determination of whether the action is authorized or not can be more granular than a simple binary answer. For example, access to a database by a given user from their normal location during typical working hours would be granted, but access from a new location at different working hours might require the user to authenticate using an additional factor.

The ability to actively adjust access based on the riskiness of activity on a network is one of the several features that make zero trust networks more secure. By dynamically adjusting policies and access, these networks are able to respond autonomously to known and unknown attacks by malicious actors.


Dynamic Trust

Managing trust is perhaps the most difficult aspect of running a secure network. Choosing which privileges people and devices are allowed on the network is time consuming, constantly changing, and directly affects the security posture the network presents. Given the importance of trust management, it’s surprising how under-deployed network trust management systems are today.

Defining trust policies is typically left as a manual effort for security engineers. Cloud systems might have managed policies, but those policies provide only basic isolation (e.g., super user, admin, regular user) which advanced users typically outgrow. Perhaps in part due to the difficulty of defining and maintaining them, requests to change existing policies can be met with resistance. Determining the impact of a policy change can be difficult, so prudence pushes the administrators toward the status quo, which can frustrate end users and overwhelm system administrators with change requests.

Policy assignment is also typically a manual effort. Users are granted policies based on their responsibilities in the organization. This role-based policy system tends to produce large pools of trust in the administrators of the network, weakening the overall security posture of the network. These pools of trust have created a market for hackers to hunt for system admin accounts, like Conti ransomware group, which seeks out and compromises system administrators as the final step in their ransomware attack. Cybercriminal organizations, such as LAPSUS$, actively recruit company insiders to assist them in gaining access to corporate networks via VPN or CITRIX, as shown in Figure 2-3. Their goal is to gain access to the network, preferably using employee credentials that grant them privileged access. LAPSUS$ has used this method successfully against Samsung, NVIDIA, Vodafone, Microsoft, and Okta in recent years. Perhaps the gold standard for a secure network is one that does not have access to highly privileged system administrators. 
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Figure 2-3. Cybercrime group LAPSUS$ message on Telegram channel for recruiting employees/insiders.



These pools of trust underscore the fundamental issue with how trust is managed in traditional networks: policies are not nearly dynamic enough to respond to the threats being leveled against the network. Mature organizations will have some sort of auditing process in place for activity on their network, but audits can be done too infrequently, and are frankly so tedious that doing them well is difficult for humans. How much damage could a rogue sysadmin do on a network before an audit discovered their behavior and mitigated it? A more fruitful path might be to rethink the actor/trust relationship, recognizing that trust in a network is ever evolving and based on the previous and current actions of an actor within the network.

This model of trust, considering all the actions of an actor and determining their trustworthiness, is not novel. Credit agencies have been performing this service for many years. Instead of requiring organizations like retailers, financial institutions, or even an employer to independently define and determine one’s trustworthiness, a credit agency can use actions in the real world to score and gauge the trustworthiness of an individual. The consuming organizations can then use their credit score to decide how much trust to grant that person. In the case of a mortgage application, an individual with a higher credit score will receive a better interest rate, which mitigates the risk to the lender. In the case of an employer, one’s credit score might be used as a signal for a hiring decision. On a case-by-case basis, these factors can feel arbitrary and opaque, but they serve a useful purpose; providing a mechanism for defending a system against arbitrary threats by defining policy based not only on specifics, but also on an ever-changing and evolving score, we call it a “trust score”.




Trust Score

A zero trust network utilizes trust score to define trust within the network, as shown in Figure 2-4. Instead of defining binary policy decisions assigned to specific actors in the network, a zero trust network will continuously monitor the actions of an actor on the network to update their trust score. This score can then be used to define policy in the network based on the severity of breach of that trust (Figure 2-5). A user viewing their calendar from an untrusted network might require a relatively low trust score. However, if that same user attempted to change system settings, they would require a much higher score and would be denied or flagged for immediate review. Even in this simple example, one can see the benefit of a score: we can make fine-grained determinations on the checks and balances needed to ensure trust is maintained.


[image: Using a trust score allows fewer policies to provide the same amount of access]
Figure 2-4. Using a trust score allows fewer policies to provide the same amount of access




[image: The trust engine calculates a score and forms an agent  which is then compared against policy in order to authorize a request. We ll talk more about agents in Chapter 3.]
Figure 2-5. The trust engine calculates a score and forms an agent, which is then compared against policy in order to authorize a request. We’ll talk more about agents in Chapter 3.




Monitoring Encrypted Traffic

Since practically all flows in a zero trust network are encrypted, traditional traffic inspection methods don’t work as well as intended. Instead, we are limited to inspecting what we can see, which in most cases is the IP header and perhaps the next protocol header (like TCP in the case of TLS). If a load balancer or proxy is in the request path, however, there is an opportunity for deeper inspection and authorization, since the application data will be exposed for examination.



Clients begin sessions as untrusted. They must accumulate trust through various mechanisms, eventually accruing enough to gain access to the service they’re requesting. Strong authentication proving that a device is company-owned, for instance, might accumulate a good bit of trust, but not enough to allow access to the billing system. Providing the correct RSA token might give you a good bit more trust, enough to access the billing system when combined with the trust inferred from successful device authentication.


Strong Policy as a Trust Booster

Things like score-based policies, which can affect the outcome of an authorization request based on a number of variables like historical activity, drastically improve a network’s security stance when compared to static policy. Sessions that have been approved by these mechanisms can be trusted more than those that haven’t. In turn, we can rely (a little bit) less on user-based authentication methods to accrue the trust necessary to access a resource, improving the overall user experience.




Challenges with Trust Score

Switching to a trust score model for policies, which we introduced in Chapter 1, is not without drawbacks. The first hurdle is whether a single score is sufficient for securing all sensitive resources. In a system where a trust score can decrease based on user activity, a user’s score can also increase based on a history of trustworthy activity. Could it be possible for a persistent attacker to slowly build their credibility in a system to gain more access?

Perhaps slowing an attacker’s progress by requiring an extended period of “normal” behavior would be sufficient to mitigate that concern, given that an external audit would have more opportunity to discover the intruder. Another way to mitigate that concern is to expose multiple pieces of information to the control plane so that sensitive operations can require access from trusted locations and persons. Binding a trust score to device and application metadata allows for flexible policies that can declare absolute requirements yet still capture the unknown unknowns through the computed trust score.

Loosening the coupling between security policy and a user’s organizational role can cause confusion and frustration for end users. How can the system communicate to users that they are denied access to some sensitive resource from a coffee shop, but not from their home network? Perhaps we present them with increasingly rigorous authentication requirements? Should new members be required to live with lower access for a time before their score indicates that they can be trusted with higher access? Maybe we can accrue additional trust by having the user visit a technical support office with the device in question. All of these are important points to consider. The route one takes will vary from deployment to deployment.






Control Plane Versus Data Plane

The role of the Zero Trust control plane and data plane is introduced in Chapter 1. The distinction between the control plane versus the data plane is a concept that is commonly referenced in network systems. The basic idea is that a network device has two logical domains with a clear interface between those domains. The data plane is the relatively dumb layer that manages traffic on the network. Since that layer is handling high rates of traffic, its logic is kept simple and often pushed to specialized hardware. The control plane, conversely, could be considered the brains of the network device. It is the layer that system administrators apply configuration to, and as a result is more frequently changed as policy evolves.

Since the control plane is so malleable, it is unable to handle the high rate of traffic on the network. Therefore, the interface between the control plane and the data plane needs to be defined in such a way that nearly any policy behavior can be implemented at the data layer with infrequent requests being made to the control plane (relative to the rate of traffic).

A zero trust network also defines a clear separation between the control plane and data plane. The data plane in such a network is made up of the applications, firewalls, proxies, and routers that directly process all traffic on the network. These systems, being in the path of all connections, need to quickly make a determination of whether traffic should be allowed. When viewing the data plane as a whole, it has broad access and exposure throughout the system, so it is important that the services on the data plane cannot be used to gain privilege in the control plane and thereby move laterally within the network. We’ll discuss control plane security in Chapter 4.

The control plane in a zero trust network is made up of components that receive and process requests from data plane devices that wish to access (or grant access to) network resources, as shown in Figure 2-6. These components will inspect data about the requesting system to make a determination on how risky the action is, and examine relevant policy to determine how much trust is required. Once a determination is made, the data plane systems are signaled or reconfigured to grant the requested access.

The mechanism by which the control plane affects change in the data plane is of critical importance. Since the data plane systems are often the entry point for attackers into a network, the interface between it and the control plane must be clear, helping to ensure that it cannot be subverted to move laterally within the network. Requests between the data plane and control plane systems must be encrypted and authenticated using a non-public PKI system to ensure that the receiving system is trustworthy. The control/data plane interface should resemble the user/kernel space interface, where interactions between those two systems are heavily isolated to prevent privilege escalation.

This concern with the interface between the control plane and the data plane belies another fundamental property of the control plane: the control plane is the trust grantor for the entire network. Due to its far-reaching control of the network’s behavior, the control plane’s trustworthiness is critical. This need to have an actor on the network with a highly privileged role presents a number of interesting design requirements.


[image: A zero trust client interacting with the control plane in order to access a resource]
Figure 2-6. A zero trust client interacting with the control plane in order to access a resource



The first requirement is that the trust granted by the control plane to another actor in the data plane should have limited real-time value. Trust should be temporary, requiring regular check-ins between the truster and trustee to ensure that the continued trust is reasonable. When implementing this tenet, leased access tokens or short lifetime certificates are the most appropriate solution. These leased access tokens should be validated not just within the data plane (e.g., when the control plane grants a token to an agent to move through the data plane), but also between the interaction between the data plane and the control plane. The control plane decides whether or not to allow a request by considering all of its factors. Because trust is temporary and time-bound, if and when the factors that led the control plane decision to allow the request in the first place have changed, it may coordinate with the data plane to revoke the request access to the resource. By limiting the window during which the data plane and control plane can interact with a particular set of credentials, the possibility for physical attacks against the network is mitigated.






Summary

This chapter discussed the critical systems and concepts that are needed to manage trust in a zero trust network. Many of these ideas are common in traditional network security architectures, but it is important to lay the foundation of how trust is managed in a network without any.

Trust originates from humans and flows into other systems via trust mechanisms that a computer can operate against. This approach makes logical sense: a system can’t be considered trusted unless the humans who use it feel confident that it is faithfully executing their wishes.

Security has frequently been viewed as a set of best practices, which are passed down from one generation of engineers to the next. Breaking out of this cycle is important, since each system is unique, and so we discussed the idea of threat models. Threat models attempt to define the security posture of a system by enumerating the threats against the system and then defining the mitigating systems and processes which anticipate those threats. While a zero trust network assumes a hostile environment, it is still fundamentally grounded in the threat model, which makes sense for the system. We enumerated several present-day threat-modeling techniques so that readers can dig deeper. We also discussed how the zero trust model is based on the internet threat model and expands its scope to the endpoints that are under the control of zero trust system administrators.

Having trust in a system requires the use of strong authentication throughout the system. We discussed the importance of this type of authentication in a zero trust network. We also briefly talked a bit about how strong authentication can be achieved in today’s technology. We will discuss these concepts more in later chapters. In order to effectively manage trust in a network, you must be able to positively identify trusted information, particularly in the case of authentication and identity. Public key infrastructure (or PKI) provides the best methods we have today for asserting validity and trust in a presented identity. We discussed why PKI is important in a zero trust network, the role of a certificate authority, and why private PKI is preferred over public PKI.

Least privilege is one of the key ideas in these types of networks. Instead of constructing a supposedly safe network over which applications can freely communicate, the zero trust model assumes that the network is untrustworthy, and as a result, components on the network should have minimal privileges when communicating. We explained what the concept of least privilege is and how it is similar and different than least privilege in standalone systems.

One of the most exciting ideas of zero trust networks is the idea of variable trust. Network policy has traditionally focused on which systems are allowed to communicate in what manner. This binary policy framework results in policy that is either too rigidly defined (creating human toil to continually adjust) or too loosely defined (resulting in security systems that assert very little). Additionally, policy that is defined based on concrete details of interactions will invariably be stuck in a cat-and-mouse

game of adjusting policy based on past threats. The zero trust model leans on the idea of variable trust, a numeric value representing the level of trust in a component. Policy can then be written against this number, effectively capturing a number of conditions without complicating the policy with edge cases. By defining policy in less concrete details, and considering the trust score while making an authorization decision, the authorization systems are able to adjust to novel threats.







Chapter 3. 
Context Aware Agents 


A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 3rd chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at mcronin@oreilly.com.



Imagine you’re in a security-conscious organization. Each employee is given a highly credentialed laptop to do their work. With today’s work and personal life blending together, some also want to view their email and calendar on their phone. In this hypothetical organization, the security team applies fine-grained policy decisions based on which device the user is using to access a particular resource.

For example, perhaps it is permissible to commit code from the employee’s company issued laptop, but doing so from their phone would be quite a strange thing. Since source code access from a mobile device is decidedly riskier than from an enrolled laptop, the organization blocks such access. That said, an employee accessing corporate email from a personal device may be permitted. As you will learn throughout this chapter, context is critical when making decisions in a zero-trust environment.

The story described here is a fairly typical application of zero trust, in that multiple factors of authentication and authorization take place, concerning both the user and the device. In this example, however, it is clear that one factor has influenced the other—a user which might “normally” have source code access won’t enjoy such access from their mobile device. Additionally, this organization does not want authenticated users to commit code from just any trusted device—they expect users to use their organization’s device.

This marriage of user and device is a new concept that zero trust introduces, which we are calling an agent. In a zero trust network, it is insufficient to treat the user and device separately, because policy often needs to consider the two together to accurately enforce desired behavior. By defining an agent formally in the system, we are able to capture this relationship and use it to drive policy decisions.

This chapter will define what an agent is and how it is used. In doing that, we will discuss the types of data that are included in an agent, some of which is potentially sensitive. Given the nature of that data, we will discuss when and how an agent should be exposed to data plane systems. An agent, being a new concept, could benefit from standardization. We will explore the benefits of standardizing this agent.



What Is an Agent?


An agent is a combination of data known about the actors in a request. This typically consists of a user (also known as the subject), a device (an asset used by the subject to make the request), and an application (Web App, Mobile App, API endpoint etc.). Traditionally, these entities have been authorized separately, but zero trust networks recognize that policy is best captured as a combination of all participants in a request. By authorizing the entire context of a request, the impact of credential theft is greatly mitigated.

It’s best to think of an agent as an ephemeral entity that is formed on demand to evaluate a policy. The data that is used to form an agent—user or device information— will typically be stored in persistent storage and queried to form an agent.

When this data is queried, the union of the data at that point in time is what we call an agent. The benefit of this approach is that any changes to the data used to form an agent will change the agent itself. For example, if a user’s role changes, the agent used to evaluate policy for that user will also change. If a device is unenrolled from the system, any agents associated with that device will no longer be valid.


What is a subject?

The term “user” is commonly used to refer to user identity, but it is important to understand that the term “subject” is also used, particularly by standard bodies such as National Institute of Standards and Technology (NIST) and others, to define both human and non-human users (like headless or machine identities). This distinction will be emphasized further in subsequent chapters when we examine users in Chapter 6 and devices in Chapter 5. When we talk about the user in the rest of this chapter, we mean both user and machine identities. 





Agent Volatility


Some fields in the agent are made available specifically to mitigate against active attacks, and are therefore expected to change rapidly relative to the infrequent changes that IT organizations normally expect. Trust scores are an example of this type of dynamic data. Trust score systems can evaluate each request in the network, using that activity feed to update the trust scores of users, applications, and devices. Therefore, in order for a trust score to mitigate a novel attack, it needs to be updated as close to real time as possible. Chapter 4 goes into greater detail about trust scores.

In addition to rapidly changing data, agents will frequently have sparse data. A device undergoing bootstrapping is an example scenario where the agent will have less data when compared to a mature device. During the bootstrapping process, little is known about the device, yet it must still interact with corporate infrastructure to perform tasks like device enrollment and software installation. In this case, the bootstrapping device is not yet assigned to a user and can run into problems if policy expects an assigned user to be present in the agent. This scenario should be expected and reflected in the authorization policy.

Sparse data isn’t just found in bootstrapping scenarios. Autonomous systems in a zero trust network will frequently have sparse data when compared to human-operated systems. These systems, for example, will likely not authenticate the user account the application runs under, relying instead on the security of the configuration management system that created that user.





What’s in an Agent?


The granularity of data contained within an agent can vary based on needs and maturity. It can be as high level as a user’s name or a device’s manufacturer, or as low level as serial numbers and place of residence or issue. It should be noted that the more detailed data is more likely to have data cleanliness issues, which must be dealt with.


Agent Data Fields

The type of data stored in an agent can greatly vary in both presence and granularity. Here are some examples of data that one might find in an agent:


	
Agent trust score



	
User trust score



	
User role or entitlements 



	
User groups



	
User location



	
User authentication method (MFA, Password, etc.)



	
Device trust score



	
Device manufacturer



	
Host operating system manufacturer and version



	
Hardware Security Module (HSM) manufacturer and version



	
Trusted Platform Module (TPM) manufacturer and version



	
Current device location



	
IP address







Another point of consideration is if the data contained in the agent is trusted or not. For instance, device data populated during the procurement process is more trusted than device data which is reported back from an agent running on it. This difference in trust arises from difficulties in ensuring the accuracy and integrity of the reported information in the event that the device is compromised.







How Is an Agent Used?


When making an authorization decision in a zero trust network, it is the agent that is in fact authorized. While it is tempting to authorize the device and user separately, this approach is not recommended. Since the agent is the entity which is authorized, it is also the thing against which policy is written.

As noted in the previous section, the agent carries many pieces of information. So while more “traditional” authorization information like IP address can still be used, leveraging the agent also unlocks the use of “nontraditional” authorization information like device type or city of residence. As such, zero trust network policy is written against the agent as a whole, as opposed to crafting disjoint user and device policy. Using an agent to drive authorization policy encourages authors to consider the totality of the communication context. The marriage of user and device is very important in zero trust authorization decisions, and co-locating the data in an agent makes it difficult to ignore one or the other. As with other portions of the zero trust architecture, lowering the barrier to entry is key, and co-locating the data to make device/user comparisons easier is no different.


Data Co-location 

When user and device data are combined or co-located in a request forming an agent requesting access to a resource, the overall context becomes much clearer. 

Consider the following scenario: Adam requests access to a high business impact quarterly sales report via his iPhone running iOS operating system, which he uses as part of Bring Your Own Device (BYOD). If his iPhone does not have any mobile device management solution installed on it that can perform policy enforcement, his request may be denied because the device used is not considered trustworthy. The combination of user and device attributes is critical here; otherwise, Adam has access to the report as a user.



An agent, being the primary actor in the network, plays an additional role in the calculation of trust scores. The trust engine can use recorded actions, in addition to data contained within the agent itself, to score agents for their trustworthiness. This trust score will then be exposed as an additional attribute on the agent against which most policy should be defined. We’ll talk more about how the trust score is calculated in the next chapter.



Agents are Not for Authentication


It is important to understand the difference between authentication and authorization in the context of an agent. Agents serve solely as authorization components and do not play any part in authentication. In fact, authentication is a precursor to agent formation and is generally performed separately for user and device. For example, devices could be authenticated with X.509 certificates, while users might be authenticated through a traditional multifactor approach.

Following successful authentication, the canonical identifiers for users and devices can be used to form an agent and its details. A device-specific certificate might be used as the canonical identifier for the device and therefore be used to populate information like device type or device owner. Similarly, a username might serve as the lookup key to populate user information like their role in the company.

Typically authentication is session oriented, but in the case of authorization, it is best to be request oriented. As a result, caching the outcome of an authentication request is permissible, but caching an agent or the result of an authorization request is ill advised. This is because details in the agent, which are used to make authorization decisions, can change rapidly based on a number of factors, and it is desirable to make authorization decisions using the latest data. This is in contrast to authentication materials, which change much less often and don’t directly affect authorization itself.

Finally, the act of generating an agent should be as lightweight as possible. If agent generation is expensive, it will discourage frequent authorization requests due to performance reasons. We will talk more about how performance affects authorization in the next chapter.


Revoke Authorization First, Credentials Second

Successful authentication is the act of proving one’s identity to a remote system. That verified identity is then used to determine if the user actually has rights to access the resource in question (the authorization). In the event that access must be revoked, updating authorization is more effective than changing authentication credentials. This is doubly so when considering that authentication results are typically cached and assigned to session identifier. The act of validating an authenticated session is really an authorization decision.









How to Expose an Agent?


The data contained in an agent is potentially sensitive. Personally identifiable user information (e.g., name, address, phone number) will usually be present on the agent to facilitate detailed authorization decisions. This data should be treated with care to protect the privacy of users.

The sensitive nature of the data extends beyond users, however. Device details can also be sensitive data when it falls into the hands of a determined attacker. An attacker with detailed knowledge of a user’s device could use that data to craft a targeted remote attack, or even learn a pattern of that user’s physical location to steal the device.

To adequately secure the sensitive agent details, the entirety of the agent lifecycle should be contained to trusted control plane systems, which themselves are heavily secured. These systems should be logically and physically separated from the data plane systems, have clear boundaries, and change infrequently.

Most policy decisions will be made in the control plane systems, since the agent data is needed to make those decisions. However, it will often be the case that the authorization engine in the control plane is not in the best position to enforce application-centric policy, despite its ability to enforce authorization on a request-by-request basis. This is especially so in user-facing systems. As a result, some agent details will need to be exposed to data plane systems.

Let’s look at an example. An administrative application stores details on all the customers of a particular company. This system exposes that data to employees based on their role within the company. A search feature allows employees to search within the subset of data that they are allowed to access. The application needs to implement this logic, and it needs access to the role of the user in order to do so.

In order to allow applications to implement their own fine-grained authorization logic, agent details can be exposed to applications via a trusted communication channel. This could be as simple as injecting headers into network requests that flow through a reverse proxy. The proxy, being a zero trust control plane system, can view the agent to enforce its own authorization decisions and expose a subset of the data to the downstream application for further authorization.

Exposing agent details to the downstream application can also be useful to enable compatibility with pre-existing applications that have a rich authorization system. This compatibility goal highlights that agent details should be exposed to the application in a format that is preferred by the application. For third-party applications, the format of the agent data will vary. For first-party applications, a common structure for the agent data will ease management of the system.



Rigidity and Fluidity, at the Same Time


Knowing the format of an agent, and where to find particular pieces of data within it, is very important when considering how and by what it will be consumed. The “coordinates” of certain pieces of data must be fixed and well known in order to ensure consistency across control plane systems. A good analogy here is the schema of a relational database, which applications accessing the data must have knowledge of in order to extract the right pieces of information.

This data compatibility is extremely important when it comes to implementing and maintaining zero trust control plane systems. Zero trust networks, particularly more mature ones, are likely to construct an agent from multiple systems and data sources. Without a schema of sorts, not only will it be difficult to surface the data in a consistent manner, but it will also contribute negatively to the amount of effort required to introduce new control plane systems or agent data, something which is considered critical for a maturing zero trust network.

One thing to keep in mind, however, is that agent data is likely to be fairly sparse, thanks to the practically unavoidable data cleanliness issues encountered in source systems like device inventories. The result is a “best-effort” agent, where many fields may be unpopulated for one reason or another. Rather than seeking data cleanliness (a problem that only gets harder with scale), it is best to accept reality and craft policy that understands that not all data may be present. So while one may still require a particular piece of data to be present in the agent, it is a useful thought exercise to consider alternative pieces of data in its absence.





Standardization Desirable


One might wonder how it would be possible to standardize a data format that is so seemingly inextricably tied to the organization consuming it. After all, an agent is likely to contain information types that relate to business logic or other proprietary/local information. Is standardization even feasible in such a case?

Luckily, there are already some standards out there defining data formats that behave in such a way. One of the best examples is the Simple Network Management Protocol (SNMP), and its associated management information base (MIB).

SNMP is a protocol frequently used for network device management, allowing devices to expose data to operators and management systems in a standard yet flexible way. The MIB component describes the format of the data itself, which is a collection of OIDs, or object identifiers. Each OID describes (and is reserved for) a particular piece of data and is registered with ISO, a global standardization body. This lends itself well to widely accepted “coordinates” for certain pieces of data. Let’s look at an example, shown in Figure 3-1, of a simplified set of nodes in an OID tree.


[image: A simplified diagram showing the organization of nodes in an object identifier  OID  tree]
Figure 3-1. A simplified diagram showing the organization of nodes in an object identifier (OID) tree



In this example, the “ip” node and associated data would be addressed as 1.3.6.1.1.1.4. A MIB arranges and gives color to a set of OIDs. For example, a Cisco MIB might provide definitions for all OIDs under the 1.3.6.1.4.1.9 portion of the tree, including human-readable descriptions.

Of course, this registered list can be extended, and oftentimes chunks of OID space are carved out for organizations or manufacturers. In this way, an OID can be compared to an IP address, where an IP address globally identifies a computer system and an OID globally identifies a piece of data.

Unfortunately, there is no good OID equivalent of private IP address space, which would be useful for ad hoc or site-specific data. The best available compromise is to register (http://pen.iana.org/pen/PenApplication.page) for a Private Enterprise Number with IANA, which will give you a dedicated OID prefix for private use. Luckily, such registration is free and with few questions asked. There have been some efforts to create a private range similar to that found in IP. However, such efforts have been unsuccessful. Despite the lack of a truly free/private OID space for experimental or internal use, SNMP remains a useful analogy to make when considering the standardization of an agent. It describes the format and packaging of a set of data—data that is easily found and identified using their unique OIDs—and how that data can be transmitted and understood from one system to another.





In the Meantime?


While there have been several developments in zero trust networks in recent years, and standard bodies such as National Institute of Standards and Technology (NIST) and others have issued architecture guidance, agent standardization remains primarily an implementation task. In the meantime, agents take the form of least resistance, given the needs of the implementor. Whether it be a JSON blob, signed and encrypted JSON Web Token (JWT), or a custom binary format, it is recommended to ensure that the data contained within it be flexible and easily extensible. Loose typing or no typing should be preferred over strong typing, as the latter will make introducing new data and systems more difficult. Pluggable design patterns may help in moving to a standardized agent in the future. However, this is far from required, and should not be pursued if they impede the adoption of agent authorization in your network.


Sharing Agent Data Fields Using JWT

JSON Web Token (JWT), as defined by RFC 7519, is a compact way for two parties to exchange claims. JWTs are encoded as JSON objects that can carry the data fields needed to represent an agent. Additionally, you can also digitally sign and encrypt the JWT token when sharing information about an agent to ensure high integrity and confidentiality.









Summary


This chapter introduced the concept of an agent, a new entity in a zero trust network against which authorization decisions are made. Adding this concept is critical to realizing the benefits of a zero trust network.

We explored what goes into creating an agent. Agents contain rapidly changing data and frequently have data that is unavailable or inconsistent. Accepting that reality is important for success when introducing the agent concept.

Agents are used purely for making authorization decisions. Authentication is a separate concern, and the current authentication status is reflected in the properties of an agent. Control plane systems use the agent to authorize requests. These systems are the primary enforcers of authorization in a zero trust network, but sometimes they must expose agent details to applications that are better positioned to implement fine-grained authorization decisions. We explored how to expose this data to applications while maintaining privacy.

While standard bodies such as NIST have recently developed guidance around zero trust, the administration side of it is still very new, and as a result, no proven standard for agents exists. Defining a standard would allow for better reuse and interoperability of zero trust systems, aiding the adoption of this technology. We discussed a possible approach for standardizing the definition of an agent.

The next chapter will focus on the systems that are responsible for authorizing all requests in a zero trust network.







Chapter 4. Making Authorization Decisions

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 4th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at mcronin@oreilly.com.



Authorization is arguably the most important process occurring within a zero trust network, and as such, making an authorization decision should not be taken lightly. Every flow and/or request will ultimately require that a decision be made.

The databases and supporting systems we will discuss here are the key systems that come together to make and affect those decisions. Together, they are authoritative for access control and thus need to be rigorously isolated from each other. Careful distinction should be made between these responsibilities, particularly when deciding whether to collapse them into a single system, which should generally be avoided if possible.

Taking reality into account, this chapter will focus on high-level architectural arrangement of the components required to make zero trust authorization decisions, as well as how they fit together and enforce said decisions.



Authorization Architecture


The zero trust authorization architecture comprises four main components, as shown in Figure 4-1:


	
Enforcement



	
Policy engine



	
Trust engine



	
Data stores





These four components are distinct in their responsibilities, and as a result, we treat them as separate systems. From a security standpoint, it is highly desirable that these components be isolated from each other. These systems represent the practical crown jewels of the zero trust security model, so special care should be taken in their maintenance and security posture. It is critical from an implementation standpoint that isolation exists among these components so that a breach of one does not automatically lead to a breach of the entire system, both from a security and availability standpoint. This is typically handled by cloud-based systems, where SaaS-based services allow isolation based on various factors while services remain available under a single vendor’s umbrella. Another common pattern is the use of microservices, in which various services are distributed across providers and are exposed via well defined APIs. Because software systems are typically heavily distributed these days, planning for isolation should be prioritized early on.
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Figure 4-1.  Zero trust authorization systems



The enforcement component should exist in large numbers throughout the system and should be as close to the workload as possible. This is the component that actually affects the outcome of the authorization decision. It is typically manifested as a load balancer, proxy, or even a firewall. This component interacts with the policy engine, which is the piece that we use to make the actual decision. The enforcement component ensures that clients are authenticated, and passes the context of each flow/request to the policy engine. The policy engine compares the request and its context to policy, and informs the enforcer whether the request will be permitted or not.

The trust engine is leveraged by the policy engine for risk analysis purposes. It leverages multiple data sources in order to compute a risk score, similar to a credit score. This score can be used to protect against unknown unknowns, and helps keep policy strong and robust without complicating it with edge cases and signatures. It is used by the policy engine as an additional component by which an authorization decision can be made. Google’s BeyondCorp is widely recognized as having pioneered this technology.

Finally, the various data stores represent the source of truth for the data being used to inform authorization. This data is used to paint a full contextual picture of a particular flow/request, using small authenticated bits of data as the primary lookup keys (i.e., a username or a device’s serial number). These data stores, be they user data, device data, or otherwise, are heavily leveraged by both the policy engine and trust engine, and represent the backing against which all decisions are measured.





Enforcement


The enforcement component (depicted in Figure 4-2) is a natural place to start. It sits on the “front line” of the authorization flow and is responsible for carrying out decisions made by the rest of the authorization system.


[image: An agent receives a pre authorization signal to grant access to a system using traditional enforcement mechanisms. These systems together form the enforcement component.]
Figure 4-2. An agent receives a pre-authorization signal to grant access to a system using traditional enforcement mechanisms. These systems together form the enforcement component.



Enforcement can be broken down into two primary responsibilities. First, an interaction with the policy engine must occur. This is generally the authorization request itself (e.g., a load balancer has received a request and needs to know whether it is authorized or not). The second is the actual installation and ongoing enforcement of the decision. While these two responsibilities represent a single component in the zero trust authorization architecture, you can choose whether they are fulfilled together or separately.

The way you choose to handle this will likely depend on your use case. For instance, an identity-aware proxy can call the policy engine to actively authorize a request it has received, and in the same step use the response to either service or reject the request. This is an example of treating the concerns as unified. Alternatively, perhaps a pre-authorization daemon receives a request for access to a particular service, which then calls the policy engine for authorization. Upon successful authorization,

the daemon can manipulate local firewall rules to allow the specific request. With this approach, we rely on “standard” enforcement mechanisms that are informed/ programmed by the zero trust control plane. It should be noted, however, that this approach requires a client-side hook in order to notify the control plane of the authorization request. This may or may not be acceptable, depending on the level of control over your devices and applications.

Placement of the enforcement component is very important. Since it represents our control point within the data plane, we must ensure that enforcement components are placed as close to the endpoints as possible. Otherwise, trust can pool “behind” the enforcement component, undermining zero trust security. Luckily, the enforcement component can be modeled as a client of sorts and applied liberally throughout the system. This is in contrast to the rest of the authorization components, which are modeled as services.





Policy Engine


The policy engine is the component that has the power to make a decision. It compares the request coming from the enforcement component against policy in order to determine whether the request is authorized or not. Once determined, the result is returned to the enforcement piece for actual realization.

The arrangement of the enforcement layer and policy engine allows for dynamic, point-in-time decisions to be made, allowing revocation to occur rapidly. As such, it is important that these components be considered separately and independently. That is not to say, however, that they cannot be co-located.

Depending on a number of factors, a policy engine may be found hosted side by side with the enforcement mechanism. An example of this might be a load balancer that authorizes requests through inter-process communication (IPC) instead of a remote call. The most attractive benefit of this architecture is the lower latency to authorize the request. A low-latency authorization system enables fine-grained and comprehensive authorization of network activity; for example, individual HTTP requests could be authorized instead of the session-level authorization that commonly is deployed. It should be noted that it is best to maintain process-level isolation between the policy engine and enforcement layer. The enforcement layer, being in the user’s data path, is more exposed; therefore, integrating the policy engine in the same process could expose it to unwanted risk. Deploying the policy engine as its own process goes a long way to ensure that bugs in the enforcement layer don’t result in a policy engine compromise.



Policy Storage


The rules referenced by the policy engine need to be stored. These policy rules are ultimately loaded into the policy engine, but it is strongly recommended that the rules are captured outside of the policy engine itself. Storing the policy rules in a version control system is ideal and provides several benefits:


	
Changes to policy can be tracked over time.



	
Rationale for changing policy is tracked in the version control system.



	
The expected current policy state can be validated against the actual enforcement mechanisms.





Many of these benefits have historically been implemented using rigorous change management procedures. In that system, changes to the system’s configuration are requested and approved before ultimately being applied. The resulting change management log can be used to determine why the system is in the current state.

Moving policy definitions into version control is the logical conclusion of change management procedures when the system can be configured programmatically. Instead of relying on human system administrators to load desired policy into the system, we can instead capture the policy as data that a program can read and apply. In many ways, loading policy is then similar to deployable software. As a result, system administrators can use standard software development procedures (namely code review and promotion pipelines) to manage the changes in policy.





What Makes Good Policy?


Policy in a zero trust network is in some ways similar to traditional network security, and in other ways substantially different.


Zero Trust Policy Is Still Not Standardized

The reality today is that zero trust policy is still not standardized in the same way as a network-oriented policy. As a result, defining the standard policy language used in a zero trust network is a great opportunity.



Let’s look at what’s similar first. Good policy in a zero trust network is fine-grained. The level of granularity will vary based on the maturity of the network, but the desired goal is policy that is scoped to the individual resource being secured. This is not very different from a traditional network security model that aims to segment the network to decrease attack surface area.

The zero trust model starts to diverge from traditional network security in the control mechanisms that are used to define policy. Instead of defining policy in terms of network implementation details (such as IP addresses and ranges), policy is best defined in terms of logical components in the network. These components will generally consist of:


	
Network services



	
Device endpoint classes



	
User roles






Scale in the Age of Cloud: Pets vs. Cattle

As more businesses migrate to the cloud as part of what is commonly referred to as “digital transformation,” they are reducing their reliance on on-premise datacenters. The cloud brings with it a level of scale that businesses have never experienced before. By utilizing lightweight containers and server-less technologies, applications can scale in seconds to support very high throughput and then scale back, removing containers or server-less instances when they are no longer required, thus the term “Cattle” is commonly used to refer to them. In contrast, in an on-premise datacenter, physical servers are named and maintained for years by the businesses, so they are referred to as “Pets”. In the context of zero trust, policies must be dynamic enough to work consistently as scaling occurs, and this applies to both scaling up and scaling down.



Defining policy from logical components that exist in the network allows the policy engine to calculate the enforcement decisions based on its knowledge of the current state of the network. To put this in concrete terms, a web service running on one server today might be on a different server tomorrow, or might even move between servers automatically as directed by a workload scheduler. The policy that we define needs to be divorced from these implementation details to adapt to this reality. An example of this style of policy from the Kubernetes project is shown in Figure 4-3.


[image: A snippet from a Kubernetes network policy. These policies use workload labels  computing the underlying IP based enforcement rules when and where necessary.]
Figure 4-3. A snippet from a Kubernetes network policy. These policies use workload labels, computing the underlying IP-based enforcement rules when and where necessary.



Although there is no single way or standard for defining policies, they are typically configured in JSON or YAML format and are easy to understand semantically. Consider Google’s cloud custom access level policy, shown below, which defines conditions for known devices, such as corporate-owned and admin-approved devices running a known operating system.

{
   "name": "example_custom_level",
   "title": "Example custom level",
   "description": "An example custom access level.",
   "custom":  {
     "expr": {
       "expression": "device.is_corp_owned == true || (device.os_type != 
         OsType.OS_UNSPECIFIED && 
         device.is_admin_approved_device == true)",
       "title": "Check for known devices",
       "description": "Permits requests from corp-owned devices and admin-approved 
         devices with a known OS."
     }
   }
 }

Policy in a zero trust network also leans on trust scores to anticipate unknown attack vectors. By defining policy with a trust score component, administrators are able to mitigate risk that otherwise can’t be captured with a specific policy. Therefore, most policies should include a trust score component. Check out the example below of a conditional access policy in Microsoft’s Azure cloud that requires any user with a risk score of “medium” or “high” to perform mandatory multifactor authentication when signing in to an HR application (MFA).The trust score is covered in detail later in this chapter.

{
   "displayName": "Require MFA For High/Medium Sign-in Risk",
   "state": "enabled",
   "conditions": {
       "signInRiskLevels": ["high", "medium"],
       "clientAppTypes": [
           "all"
       ],
        "users": {
           "includeUsers": ["*"]
       }
   },
   "grantControls": {
       "operator": "OR",
       "builtInControls": [
           "mfa"
       ]
   }
}


Lack of Policy Standards

At the time of writing, there is no industry-wide standard for defining policies; however, efforts by organizations such as National Cybersecurity Center of Excellence (NCCoE) to create a publicly available description of the practical steps required to implement the cybersecurity reference designs for zero trust aid in understanding the various components of zero trust, including policies. You can read more about it by visiting their website.



Policy should not rely on trust score alone. Specific characteristics of the request being authorized can also be part of the policy definition. An example of this might be certain user roles should only have access to a particular service.





Who Defines Policy?


Zero trust network policy should be fine-grained, which can place an extraordinary burden on system administrators to keep the policy up to date. To help spread the load of this configuration burden, most organizations decide to distribute policy definition across the teams so they can help maintain policy for the services they own. Opening up policy definition to an entire organization can present certain risks, like well-meaning users who create overly broad policies, thereby increasing the attack surface area of the system they intended to constrain. Zero trust systems lean on two organizational workflows to counteract this exposure.


Policy Reviews

First, since policy is typically stored under version control, having another person review changes to the policy helps ensure that changes are well considered. Security teams can additionally review the changes and ask probing questions to ensure that the policy being defined is as tightly scoped as possible. Since the policy is defined using logical intent instead of physical components, the policy will change less rapidly than if it was defined in physical terms.

The second organizational measure used is to layer broad infrastructure policy on top of fine-grained policy. For example, an infrastructure group might rightly require that only a certain set of roles be allowed to accept traffic from the internet. The infrastructure team will therefore define policy that enforces that restriction, and no user defined policy will be allowed to circumvent it. Enforcing this constraint could take several forms: an automated test of proposed policy, or perhaps a policy engine that will simply refuse overly broad policy assertions from untrusted sources. Such enforcement can also be useful for compliance and regulatory requirements.









Trust Engine


The trust engine is the system in a zero trust network that performs risk analysis against a particular request or action. This system’s responsibility is to produce a numeric assessment of the riskiness of allowing a particular request/action, which the policy engine uses to make an ultimate authorization decision.

The trust engine will frequently pull from data contained in authoritative inventory systems to check attributes of an entity when computing its score. A device inventory, for example, could provide the trust engine with information like the last time a device was audited, scanned for compliance, or whether it has a particular hardware security feature.

Creating a numeric assessment of risk is a difficult task. A simple approach would be to define a set of ad hoc rules that score an entity’s riskiness. For example, a device that is missing the latest software patches could have its score reduced. Similarly, a user who is continually failing to authenticate could have their trust score reduced. While ad hoc trust scoring might be simple to get started with, a set of statically defined rules will be insufficient to meet the desired goal of defending against unexpected attacks. As a result, in addition to using static rules, mature trust engines use machine learning techniques to derive a scoring function.

Machine learning derives a scoring function by calculating observable facts from a subset of activity data known as training data. The training data is raw observations that have been associated with trusted or untrusted entities. From this data, features are extracted and used to derive a computer-generated scoring function. This scoring function, a model in machine learning terms, is then run against a set of data that is in the same format as the training data. The resulting scores are compared against human-defined risk assessments, and the model’s quality can then be refined based on its ability to correctly predict risk of the data being analyzed. A model that has sufficient accuracy can then be said to be predictive of the riskiness of yet unseen requests in the network.

Machine learning models can learn from a variety of attributes, like the user’s IP address, geo-location, device, and so on, to evaluate whether a current user request is anomalous or typical in the current context. Keep in mind that “false-positives” can occur anytime. This is because there are legitimate situations where the user activity in question is normal, but the prediction tends to be anomalous. In real life, an example of false-positive can be seen when a user travels to a new location, perhaps for a vacation, and makes an access request. In this case, the machine learning model has not yet been trained against this new user’s location, so it will most likely identify this as an anomalous pattern. Dealing with false-positives is a hot topic in machine learning, and it’s usually improved by adjusting factors such as learning period, precision, and recall, among others.


What Factors Should You Consider For Machine Learning?

Although it is impossible to compile an exhaustive list, consider the following factors as a starting point while working towards the machine learning model and training set. 

IP address, Autonomous System Number (ASN), and geo-location: These are important attributes that can assist in determining anomalous patterns by user/device over time. 

User Activity: This includes regular user requests which fall under day-to-day productivity, like access to different applications/API endpoints, and so on. 

Privileged activity: This includes activity which typically falls under administrator role, but also includes practically any activity that is categorized as privileged, such as deleting user accounts etc. 

Dormant accounts: Accounts which have been inactive for an extended period must be labeled as such. This aids in the detection of unusual activity. Fraudulent account access can be detected by identifying dormant accounts that suddenly become active.



While machine learning is increasingly used to solve hard computational problems, it does not obviate the need for more explicit rules in the trust engine. Whether due to limitation of the derived scoring models or for desired customization of the scoring function, trust engines will typically use a mixture of ad hoc and machine learning scoring methods.



What Entities Are Scored?


Deciding which components of a zero trust network should be scored is an interesting consideration. Should scores be calculated for each individual entity (user, device, and application), for the network agent as a whole, or for both? Let’s look at some Scenarios.


Using Network Agents For Scoring

Imagine a user’s credentials are being brute forced by a malicious third party. Some systems will mitigate this threat by locking the user’s account, which can present a denial-of-service attack against that particular user. If we were to score a user negatively based on that activity, a zero trust network would suffer the same problem. A better approach is to realize that we’re authenticating the network agent, and so the attacker’s network agent is counteracted, leaving the legitimate user’s network agent unharmed. This scenario makes a case that the network agent is the entity that should be scored.




Using Devices for Scoring

But just scoring the network agent can be insufficient against other attack vectors. Consider a device that has been associated with malicious activity. A user’s network agent on that device may be showing no signs of malicious behavior, but the fact that the agent is being formed with a suspected device should clearly have an impact on the trust score for all requests originating from that device. This scenario strongly suggests that the device should be scored.

Finally, consider a malicious human user (the infamous internal threat) is using multiple kiosk devices to exfiltrate trade secrets. We’d like the trust engine to recognize this behavior as the user hops across devices and to reflect the decreasing level of trust in their trust score for all future authorization decisions. Here again, we see that scoring the network agent alone is insufficient for mitigating common threats. Taken as a whole, it seems like the right solution is to score both the network agent itself and the underlying entities that make up the agent. These scores can be exposed to the policy engine, which can choose the correct component(s) to authorize based on the policy being written.

Presenting so many scores for consideration when writing policy, however, can make the task of crafting policy more difficult and error prone. In an ideal world, a single score would be sufficient, but that approach presents extra availability requirements on the trust engine. A system that tries to create a single score would likely need to move to an online model, where the trust engine is interactively queried during the policy decision making. The engine would be given some context about the request being authorized so it could choose the best scoring function for that particular request. This design is clearly more complex to build and operate. Additionally, for policy where a system administrator specifically wishes to target a particular component (say, only allow deployments from devices with a score above X), it seems rather roundabout.







Exposing Scores Considered Risky


While the scores assigned to entities in a zero trust network are not considered confidential, exposing the scores to end users of the system should be avoided. Seeing one’s score could be a signal to would-be attackers that they are increasing or decreasing their trustworthiness in the system. This desire to withhold information should be balanced against the frustration of end users’ ability to understand how their actions are affecting their own trust in the system. A good compromise from the fraud industry is to show users their scores infrequently, and to highlight contributing factors to their score determination.







Data Stores


The data stores used to make authorization decisions are very simply the sources of truth for the current and past state of the system. Information from these data stores flows through the control plane systems, providing a large portion of the basis on which authorization decisions are made, as demonstrated in Figure 4-4.

We previously spoke about the trust engine leveraging these data stores in order to produce a trust score, which in turn is considered by the policy engine. In this way, information from control plane data stores has flowed through the authorization system, finally reaching the policy engine where the decision was made. These data stores are used by the policy engine, both directly and indirectly, but they can be useful to other systems that need authoritative data about the state of the network.


[image: Authoritative data stores are used by the policy engine both directly and indirectly through the trust engine]
Figure 4-4. Authoritative data stores are used by the policy engine both directly and indirectly through the trust engine



Zero trust networks tend to have many data stores, organized by function. There are two primary types: inventory and historical. An inventory is a single consistent source of truth, recording the current state of the resource(s) it represents. An example is a user inventory that stores all user information, or a device inventory that records information about devices known to the company.

In an inventory, a primary key exists which uniquely represents the tracked entity. In the case of a user, the likely choice is the username; for a device, perhaps it’s a serial number. When a zero trust agent undergoes authentication, it is authenticating its identity against this primary key in the inventory. Think about it like this: a user authenticates against a given username. The policy engine gets to know the username, and that the user was successfully authenticated. The username is then used as the primary key for lookup against the user inventory. Keeping this flow and purpose in mind will help you choose the right primary keys, depending on your particular implementation and authentication choices.

A historical data store is a little bit different. Historical data stores are kept primarily for risk analysis purposes. They are useful for examining recent/past behavior and patterns in order to assess risk as it relates to a particular request or action. Trust engine components are most likely to be consuming this data, as trust/risk determinations are the engine’s primary responsibility.

One can imagine many types of historical data stores, and when it comes to risk analysis, the sky’s the limit. Some common examples include user accounting records and sFlow data. Regardless of the data being stored, it must be queryable using the primary key from one of the inventory systems. We will talk about various inventory and historical data stores as we introduce related concepts throughout this book.

Threat intelligence gathered from both internal and external third-party sources, such as Open Source Intelligence (OSINT), provides valuable insights that trust engines can use to determine a trust score. Consider a scenario in which a user’s credentials were leaked on the dark web as a result of a recent data breach. In this case, the trust engine can use threat intelligence to calculate the trust score against the user, which may lead to the policy engine denying the request or granting it limited access.

Compliance and regulatory standards like General Data Protection Regulation (GDPR), Federal Risk and Authorization Management Program (FedRAMP) etc. have an impact on the policy engine’s decision-making process when analyzing a request. Organizations typically maintain a versioned system for maintaining compliance and regulatory requirements that can be used to create policies, ideally entirely automated, but most likely requiring final human review before release. The end result is a robust system in which the policy engine can query the compliance and regulatory store to determine if a request should be granted or rejected.




Scenario Walkthrough

Before we wrap up this chapter, let’s consider a simple but real-world scenario that will help you understand the various components discussed in this and earlier chapters, plus how they interact with one another. Later chapters will expand on the scenario as we delve deeper into various aspects of zero trust, such as users, devices, applications, and traffic.

Let’s look at a typical workflow for a user named Bob, who works as a business manager for Wayne Corporation and is attempting to access a resource, such as a printer. Figure 4-5 depicts a high-level breakdown of the zero trust components in this scenario.
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Figure 4-5. A logical view of zero trust security model with control plane, data plane, user, and resources.



First, examine the components in the control plane, as shown in Figure 4-6. Bob’s personal information, such as his name, IP address, and location, is stored in the user store. The device data includes details such as the operating system and whether or not Bob’s devices have received the most recent security patch. Finally, activity logs record every interaction he has, including the timestamp (in unix format), IP address, and location.

The trust engine employs a machine learning model to dynamically calculate the trust score by looking for anomalous behavior in Bob’s activity logs. Its primary responsibility is to calculate and communicate the trust score to the policy engine.

The policy engine, which is at the heart of the control plane, uses trust score and compliance policies to determine whether Bob’s request should be granted or denied.


[image: To make an authorization decision against an access request  the policy engine utilizes a trust score as well as compliance rules.]
Figure 4-6. To make an authorization decision against an access request, the policy engine utilizes a trust score as well as compliance rules.



We’ll now take a closer look at the policy rules that govern the policy engine’s behavior. The first two are compliance-related, ensuring that the system always adheres to regulatory and operational business requirements. The third adds a trust score as a dynamic input to the policy, ensuring that requests are only granted if the score exceeds a certain threshold. Finally, if no other policy rule applies, the default behavior is set to deny the authorization request, ensuring that access must be denied unless a policy rule explicitly grants it.


	
Compliance: Allow requests only during office hours, Monday through Friday between 9am to 5pm Eastern Time Zone (EST). 



	
Compliance: Allow requests only from devices that have received the most recent security update. The goal is to ensure that devices are patched and less vulnerable to exploits.



	
Trust Score: Allow requests only if the trust score is greater than 7/10. A higher trust score inspires more confidence in this case, so a value of 7 is used. Typically, trust score values in policies are configurable and adjusted over time to ensure a balance; a low score allows malicious requests to slip through the cracks, while a high score may negatively impact genuine access requests.



	
Default: If no other policy rule is applied, this is the catch-all (thus default) rule that takes effect.. This rule is important because it is recommended to deny by default rather than allow by default. This is useful because there is no inherent trust in a zero-trust system, each request is evaluated on its own merits and is treated equally maliciously.





Next, consider the data plane, which includes enforcement, resources (printers, file shares, and so on), and the user Bob, who requests access to a resource (fileshare in this case). Figure 4-7 depicts the control plane as well as the data plane.
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Figure 4-7. Bob’s request to access the file share is denied after the policy engine evaluates the request using the trust score and other policy rules.



Here’s a step-by-step analysis of Bob’s request:


	
On Monday, at 9.30 a.m. Eastern Time Zone (EST), Bob requests access to the file share from his laptop. The laptop is fully patched and runs MacOS.



	
The enforcement component intercepts the request and sends it to the policy engine for authorization.



	
The policy engine receives the request and consults with the trust engine to determine the request’s trust score.



	
The trust engine uses a machine learning model to calculate the trust score based on the activity logs. Anomalies are detected because Bob’s IP address of 1.2.3.5 and location in Finland are unusual. Moreover, given that the requests were made from New York and Finland and are only a few seconds apart, the time stamps between the last two activities appear impossible for a human to match. The machine learning model decides that the request should be assigned a trust score of 3, indicating a low level of trust, and sends the score to the policy engine.



	
Policy engine receives the trust score from the trust engine. 



	
For authorization, the policy engine compares the request to all policy rules:


	
This first rule results in a grant (or allow) action because the request is made during the permissible hours on Monday.



	
The second rule results in grant (or allow) action because the request is made using a device that has been fully patched with the most recent security update. 



	
The third rule results in a deny action because the request received a trust score of 3, whereas the policy requires a trust score of 7 or higher to grant access. Because deny action is a final action, policy no longer processes any additional rules.







	
The policy engine sends a deny action to the enforcement component. It also sends additional information about the result, which can aid in understanding the reason for the denial of the requested action.



	
The enforcement component receives the policy engine’s result and denies Bob’s request, preventing him from accessing the file share. It also sends Bob a helpful message about how to improve his chances of gaining access to the resource if he decides to do so in a future request.





While basic in nature, the scenario walkthrough in this section provides a functional understanding of various components in the control plane and data plane working together to deny Bob’s request to access the file share. The key takeaway is that the system in place does not make authorization decisions based on ad hoc basics, but rather takes the overall context of the access request into account when making decisions.





Summary


This chapter focused on the systems that are responsible for making the ultimate decision of whether a particular request should be authorized in a zero trust network. This decision is a critical component of such a network, and therefore should be carefully designed and isolated to ensure it is trustworthy.

We broke this responsibility down into four key systems: enforcement, policy engine, trust engine, and data stores. These components are logical areas of responsibility. While they could be collapsed into fewer physical systems, the authors prefer an isolated design.

The enforcement system is responsible for ensuring that the policy engine’s authorization decision takes effect. This system, being in the data path of user traffic, is best implemented in a manner where the policy decision is referenced and then enforced. Depending on the architecture chosen, the policy engine might be notified before a request occurs, or during the processing of that same request.

The policy engine is the key system that computes the authorization decision based on data available to it and the policy definitions that have been crafted by the system administrators. This system should be heavily isolated. The policy that is defined should ideally be stored separately from the engine and should use good software development practices to ensure that changes are understood, reviewed, and not lost as the policy moves from being proposed to being implemented. Furthermore, since zero trust networks expect to have much finer-grained policy, mature organizations choose to distribute the responsibility of defining that policy into the organization with security teams reviewing the proposed changes.

The trust engine is a new concept in security systems. This engine is responsible for calculating a trust score of components of the system using static and inferred algorithms derived from past behavior. The trust score is a numerical determination of the trustworthiness of a component and allows the policy writers to focus on the level of trust required to access some resource instead of the particular details of what actions might reduce that trust.

The final component of this part of the system is the authoritative data sources that capture current and historical data that can be used to make the authorization decision. These data stores should focus on being sources of truth. The policy engine, the trust engine, and perhaps third-party systems can leverage this data so the collection of this data will have a decent return on investment from capturing it. 

The scenario walkthrough demonstrated how various control and data plane components interact to make the system work. In our scenario, the request from user Bob to access a file share was evaluated based on the overall context of the request, which included both a dynamic trust score calculation and various policies in place by the business to make a final authorization decision. This scenario walkthrough will be expanded upon in later chapters.

The next chapter will dig into how devices gain and maintain trust.







Chapter 5. Trusting Devices

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 5th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at mcronin@oreilly.com.



Trusting devices in a zero trust network is extremely critical; it’s also an exceedingly difficult problem. Devices are the battlegrounds upon which security is won or lost. Most compromises involve a malicious actor gaining access to a trusted device; and once that access is obtained, the device cannot be trusted to attest to its own security. This chapter will discuss the many systems and processes that need to be put in place to have sufficient trust of devices deployed in the network. We will focus on the role that each of these systems plays in the larger goal of truly trusting a device. Each technology is complicated in its own right. While we can’t go into exhaustive detail on each protocol or system, we will endeavor to give enough details to help you understand the technology and avoid any potential pitfalls when using it.

We start with learning how devices gain trust in the first place.


Bootstrapping Trust

When a new device arrives, it is typically assigned an equal level of trust as that of the manufacturer and distributor. For most people, that is a fairly high level of trust (whether warranted or not). This inherited trust exists purely in meatspace though, and it is necessary to “inject” this trust into the device itself.

There are a number of ways to inject (and keep) this trust in hardware. Of course, the device ecosystem is massive, and the exact approach will differ on a case-by-case basis, but there are some basic principles that apply across the board. These principles reduce most differences to implementation details.

The first of those principles has been known for a long time: golden images. No matter how you receive your devices, you should always load a known-good image on them. Software can be hard to vet; rather than doing it many times hastily (or not at all), it makes good sense to do it once and certify an image for distribution.

Loading a “clean” image onto a device grants it a great deal of trust. You can be reasonably sure that the software running there is validated by you, and secure. For this reason, recording the last time a device was imaged is a great way to determine how much trust it gets on the network.


Secure Boot

There are of course ways to subvert devices in a manner that they retain the implant across reimaging and other low-level operations, as the implant in these cases are usually themselves fairly low level.

Secure Boot is one way to help fend against these kinds of attacks. It involves loading a public key into the device’s firmware, which is used to validate driver and OS loader signatures to ensure that nothing has been slipped in between. While effective, support is limited to certain devices and operating systems. More on this later.



Being able to certify the software running on a device is only the first step. The device still needs to be able to identify itself to the resources that it is attempting to access. This is typically done by generating a unique device certificate that is signed by your private certificate authority. When communicating with network resources, the device presents its signed certificate. This certificate proves not only that it is a known device, but it also provides an identification method. Using details embedded in the certificate, the device can be matched with data from the device inventory, which can be used for further decision making.


Generating and Securing Identity

In providing a signed certificate by which a device may be identified, it is necessary to store the associated private key in a secure manner. This is not an easy task. Theft of the private key would enable an attacker to masquerade as a trusted device. This is the worst possible scenario for device authentication.

A simple yet insecure way to do this is to configure access rights to the key in such a way that only the most privileged user (root or administrator) can access it. This is the least desirable storage method, as an attacker who gains elevated access can exfiltrate the unprotected key.

Another way to do this is to encrypt the private key. This is better than relying on simple permissions, though it presents usability issues because a password (or other secret material) must be furnished in order to decrypt and use the key. This may not pose a problem for an end-user device, as the user can be prompted to enter the password, though this is usually not feasible for server deployments; human interaction is required for every software restart.

The best way by far to store device keys is through the use of secure cryptoprocessors. These devices, commonly referred to as a hardware security module (HSM) or a trusted platform module (TPM), provide a secure area in which cryptographic operations can be performed. They provide a limited API that can be used to generate asymmetric encryption keys, where the private key never leaves the security module. Since not even the operating system can directly access a private key stored by a security module, they are very difficult to steal.




Identity Security in Static and Dynamic Systems

In relatively static systems, it is common for an operator to be involved when new hosts are provisioned. This makes the injection story easy—the trusted human can directly cut the new keys on behalf of the hosts. Of course, as the infrastructure grows, this overhead will become problematic.

In automating the provisioning and signing process, there is an important decision to make: should a human be involved when signing new certificates? The answer to this largely depends on your sensitivity.

A signed device certificate carries quite a bit of power, and serves to identify anything with the private key as an authentic and trusted device. Just as we go through measures to protect their theft locally, we must also protect against their frivolous generation. If your installation is particularly sensitive, you might choose to involve a human every time a new certificate is signed.


Laws and Certificate Authorities

Modern browsers widely support certificates issued by well known trusted certificate authorities from many countries, including the United States and many others in the European Union, but this trust is vulnerable to geopolitical tensions. For example, during the Russian-Ukraine war in 2022 Russia began offering its own trusted certificate authority to replace certificates that needed to be renewed by foreign countries. Without this action, Russian websites were unable to renew their certificates because sanctions prevent many countries’ signing authorities from accepting payments from Russia. This serves as a stark reminder that, because issuing authorities are bound by the laws of the land, they can pose their own difficulties.



If provisioning is automated, but still human-driven, it makes a lot of sense to allow the human driving that action to also authorize the associated signing request. Having a human involved every time is the best way to prevent unauthorized requests from being approved. Humans are not perfect though. They are susceptible to fatigue and other shortcomings. For this reason, it is recommended that they be responsible for approving only requests that they themselves have initiated.

It is possible to accomplish provisioning and signature authorization in a single step through the use of a temporal one-time password (TOTP). The TOTP can be provided along with the provisioning request and passed through to the signing service for verification, as shown in Figure 5-1. This simple yet strong mechanism allows for human control over the signing of new certificates while imposing only minimal administrative overhead. Since a TOTP can only be used once, a TOTP verification failure is an important security event.

[image: A human providing a TOTP can safely authorize the signature of a certificate.]
Figure 5-1. A human providing a TOTP can safely authorize the signature of a certificate.



It goes without saying that none of this applies if you want to fully automate the provisioning of new hosts. Frequently referred to as “auto-scaling,” systems that can grow and shrink themselves are commonly found in large, highly automated installations.

Allowing a system to scale itself decreases the amount of care and feeding required, significantly reducing administrative overhead and cost. Signing a certificate is an operation that requires a great deal of trust; and just as with other zero trust components, this trust must be sourced from somewhere. There are three common choices:


	
A human



	
The resource manager



	
The image or device





The human is an easy and secure choice for relatively static infrastructure or end user devices, but is an obvious nonstarter for automated infrastructure. In this case, you must choose the resource manager or the image...or both.

The resource manager is in a privileged position. It has the ability to both grow and shrink the infrastructure, and is likely able to influence its availability. It provides a good analog to a human in a more static system. It is in a position to assert, “Yes, I turned this new host on, and here is everything I know about it.” It can use this position to either directly or indirectly authorize the signing of a new certificate.

To make the job of resource manager easier, many cloud vendors such as Microsoft, Google, and others provide built-in support for identities that do not require credentials and can be used to authenticate against specific services in a well-defined manner. Learn more about Google’s service accounts at https://cloud.google.com/compute/docs/access/service-accounts#serviceaccount and Microsoft’s managed identities at https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources.

Depending on your needs, it might be desirable to not grant this ability wholly to the resource manager. In this case, credentials can be baked into an image. This is generally not advised as a primary mechanism, as it places too much responsibility on the image store; and protecting and rotating images can be fraught with peril. In a similar way, HSMs or TPMs can be leveraged to provide a device certificate that is tied to the hardware. This is better than baking material into the image, though requiring a TPM-backed device to sign a new certificate is still not ideal, especially when considering cloud-based deployments.

One good way to mitigate these concerns is to require both the resource manager and a trusted image/device. Generic authentication material baked into the image (or a registered TPM key) can be used to secure communication with the signing service and can serve as a component in a multifaceted authorization. The following are examples of components for authorization consideration:


	
Registered TPM key or image key



	
Correct IP address



	
Valid TOTP (generated by resource manager)



	
Expected certificate properties (i.e., expected common name)





By validating all of these points, the certificate signing service can be relatively certain that the request is legitimate. The resource manager alone cannot request a certificate, and since it does not have access to the hosts it provisions, the most an attacker could do is impact availability. Similarly, a stolen image alone cannot request a certificate, as it requires the resource manager to validate that it has provisioned the host and expects the request.

By splitting these responsibilities and requiring multiple systems to assert validity, we can safely (well, as safely as is possible) remove humans from the loop.


Resource Managers and Containers

Sometimes it all comes down to terminology. In host-centric systems, resource managers create auto-scaling systems, making decisions about when and where capacity is needed. In containerized environments, the same decisions are made and executed by a resource scheduler. For the purposes of zero trust application, these components are practically identical, and the principles apply equally to host-centric and container-centric environments.








Authenticating Devices with the Control Plane

Now that we know how to store identity in a new device or host, we have to figure out how to validate that identity over the network. Luckily, there are a number of open standards and technologies available through which to accomplish this. Here, we’ll discuss two of those technologies and why they are so important to device authentication: first we’ll cover X.509 before moving on to look at TPMs.

These technologies enjoy widespread deployment and support, though this was not always the case. While we discuss real-world approaches to securing legacy devices in Chapter 8, we’ll additionally explore here what the future might hold for zero trust support in legacy hardware.


X.509

X.509 is perhaps the most important standard we have when it comes to device identity and authentication. It defines the format for public key certificates, revocation lists, and methods through which to validate certification chains. The framework it puts forth aids in the formation of identity used for secure device authentication in nearly every protocol we’ll discuss in this book.

One of the coolest things about X.509 is that the public/private key pairs it uses to prove identity can also be used to bootstrap encrypted communication. This is just one of many reasons that X.509 is so valuable for internet security.

Please refer to RFC5280, RFC4519, and the ITU-T X.509 documentation for more information on the X.509 certificate format and supported attributes.


Certificate chains and certification authorities

For a certificate to mean anything, it has to be trusted. A certificate can be created by anyone, so just having one with the right name on it does not mean much. A trusted party must endorse the validity of the certificate by digitally signing it. A certificate without a “real” signature is known as a self-signed certificate and is typically only used for development/testing purposes.

It is the responsibility of the registration authority (a role commonly filled by the certificate authority) to ensure that the details of the certificate are accurate before allowing it to be signed. In signing the certificate, a verifiable link is created from the signed certificate to the parent. If the signed certificate has the right properties, it can sign further certificates, resulting in a chain. The certificate authority lies at the root of this chain.

By trusting a certificate authority (CA), you are trusting the validity of all the certificates signed by it. This is quite a convenience, because it allows us to distribute only a small number of public keys in advance—the CA public keys, namely. All certificates furnished from there on can be linked back to the known trusted CA, and therefore also be trusted. We spoke more about the CA concept and PKI in general in Chapter 2.




Device identity and X.509

The primary capability of an X.509 certificate is to prove identity. It leverages two keys instead of one: a public key and a private key. The public key is distributed, and the private key is held by the owner of the certificate. The owner can prove they are in the presence of the private key by encrypting a small piece of data, which can only be decrypted by the public key. This is known as public key cryptography, or asymmetric cryptography.

The X.509 certificate itself contains a wealth of configurable information. It has a set of standard fields, along with a relatively healthy ecosystem of extensions, which allow it to carry metadata that can be used for authorization purposes. Here is a small sample of typical information found within an X.509 certificate:



Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 16210155439472130208 (0xe0f60a7cb39a38a0)
    Signature Algorithm: sha256WithRSAEncryption
        Issuer:C=US, ST=TX, L=Houston, O=Contoso Corp                         
        Validity
            Not Before: Aug 18 22:54:43 2022 GMT
            Not After : Aug 18 22:54:43 2025 GMT
        Subject: C=US, ST=TX, L=Dallas, O=Contoso Corp, CN=mgmt011134.contoso.corp 
        Subject Public Key Info:
            Public Key Algorithm: rsaEncryption
                Public-Key: (2048 bit)
                Modulus:
                    00:af:ff:04:2e:69:96:40:eb:62:20:a8:db:61:06:
                    ………………………………                       
                    3f:bd:b1:49:50:26:07:ac:72:c7:9b:81:5d:54:19:
                    88:8b
                Exponent: 65537 (0x10001)
        X509v3 extensions:
            X509v3 Basic Constraints: 
                CA:FALSE
            X509v3 Key Usage: 
                Digital Signature, Key Encipherment
            X509v3 Subject Alternative Name: 
                DNS:mgmt011134.contoso.corp, 
                DNS:10.69.54.169,  
                DNS:fdc0:8a12:793b:adf7:8da6:12cd:e34c:daf6
            X509v3 Extended Key Usage: 
                TLS Web Client Authentication,
                TLS Web Server Authentication
    Signature Algorithm: sha256WithRSAEncryption
         1e:e1:ed:8a:40:85:ac:fb:85:78:9c:88:ee:75:30:76:14:79:
         …………
         8d:9f:44:ea



The Issuer field specifies who issued the certificate, and the Subject field specifies for whom this certificate is intended. Both the Issuer and Subject fields contain information such as Country (C), State (S), Locality Name (L), Organization (O), and Common Name (CN), among other fields.

The sample certificate above issued to a device and includes the following information:


	
Country (C): US. This is the device’s assigned country.



	
State (S): TX, short for Texas. This is the device’s assigned state.



	
Locality Name (L): Dallas. This is the device’s assigned city.



	
Organization (O): Contoso Corp. This is the device’s assigned organization.



	
Common Name (CN): This is the device name or unique identifier assigned to the device.





Additionally, the Subject Alternate Field contains additional information such as the device’s IPv4 and IPv6 addresse.

Since the certificate is signed and trusted, we can use this information to make authorization decisions. Leveraging the X.509 fields in this way means that device access may be authorized without a call to an external service, so long as the server knows who/what it should be expecting.

Warning

You may have seen the use of the Organization Unit (OU) field in an X.509 certificate. However, in June 2021, the CA/Browser Forum passed a ballot SC47 to depreciate the use of Organization Unit (OU) field from all public trust TLS/SSL certificates. This change was made because OU represents a much smaller unit within an Organization (O), making it difficult for CA to assert its identity consistently. The proposed change went into effect on September 1, 2022.






Public and private components

As mentioned earlier, X.509 deals with key pairs rather than a single key. While it is overwhelmingly common that these are RSA key pairs, they don’t necessarily have to be. X.509 supports many types of key pairs, and we have recently begun to see the popularization of other key types (such as ECDSA).




Private key storage challenges

X.509 is incredibly useful for device authentication, but it doesn’t solve all the problems. It still has a private key, and that private key must be protected. If the private key is compromised, the device’s identity and privacy will be vulnerable as well. While other zero trust measures help guard against the damage this might cause (like user/application authentication or authorization risk analysis), this is considered a worst case scenario and should be avoided at all costs.

Private keys can be encrypted when they are stored, requiring a password to decrypt. This is a good practice because it would require more than just disk access to successfully steal, but is only practical for user-facing devices. In the datacenter, encrypting the private key doesn’t solve the problem because you still have to store the password, or somehow transmit it to the server, at which point the password becomes just as cumbersome as the private key itself.

Hardware security modules (HSMs) go a good distance in attempting to protect the private key. They contain hardware that can generate a public/private key pair and store the private key in secure memory. It is not possible to read the private key from the HSM. It is only possible to ask the HSM to do an operation with it on your behalf. In this way, the private key cannot be stolen as it is protected in hardware. We’ll talk more about TPMs, a type of HSM, in the next section.




X.509 for device authentication

The application of X.509 to device authentication in a zero trust network is immense. It is a foundational cornerstone in proving device identity for just about every protocol we have and is instrumental in enabling end-to-end encryption. Every single device in a zero trust network should have an X.509 certificate.

There is one important consideration to make, however. We are using X.509 to authenticate a device, yet the heart of the whole scheme—the private key—is decidedly software-based. If the private key is stolen, the whole device authentication thing is a sham!

These certificates are often used as a proxy for true device authentication because the keys are so long and unwieldy that you would never write one down or memorize one. They are something that would be downloaded and installed, and because of that, they don’t tend to follow users around—they more typically follow devices. While it might be determined that the risk associated with the private key problem is acceptable, it still stands as a serious issue, particularly for zero trust. Fortunately, we can see some paths forward, and by leveraging TPMs it is possible to inextricably marry a private key to its hardware.






TPMs

A trusted platform module (TPM) is a special chip that is embedded in a compute device called a cryptoprocessor, these chips are dedicated to performing cryptographic operations in a trusted and secure way. They include their own firmware and are often thought of as a computer on a chip.

This design enables a small and lean hardware API that is easily audited and analyzed for vulnerability. By providing facilities for cryptographic operations, and excluding interfaces for retrieving private keys, we get the security we need without ever exposing secret keys to the operating system. Instead, they are bound to the hardware.

This is a very important property and the reason that TPMs are so important for device authentication in zero trust networks. Great software frameworks for identity and authentication (like X.509) do a lot for device authentication. But without a way to bind the software key to the hardware device it is attempting to identify, we can‐ not really call it device identity. TPMs solve this problem, providing the necessary binding.


Encrypting data using a TPM

TPMs generate and store what is known as a storage root key, or an SRK. This key pair represents the trust root for the TPM device. Data encrypted using its public key can be decrypted by the originating TPM only.

The astute reader might question the usefulness of this function in the application of bulk data encryption. We know asymmetric cryptographic operations to be very expensive, and thus not suitable for the encryption of relatively large pieces of data. Thus, in order to leverage the TPM for bulk data encryption, we must reduce the amount of data that the SRK is responsible for securing.

An easy way to do this is to generate a random encryption key, encrypt the bulk data using known-performant symmetric encryption (i.e., AES), and then use the SRK to encrypt the resulting AES key. This strategy, shown in Figure 5-2, ensures that the encryption key cannot be recovered, unless in the presence of the TPM that originally protected it.

[image: The data is encrypted with an AES key  which in turn is encrypted by the TPM]
Figure 5-2. The data is encrypted with an AES key, which in turn is encrypted by the TPM



Most TPM libraries available for open consumption perform these steps for you, through the use of helper methods. It is recommended to inspect the internal operation of such methods before using them.


Intermediary keys and passphrases

Many TPM libraries (such as TrouSerS) create intermediary keys when encrypting data using the TPM. That is, they ask the TPM to create a new asymmetric key pair, use the public key to encrypt the AES key, and finally use the SRK to encrypt the private key. When decrypting the data, you must first decrypt the intermediate private key, use it to decrypt the AES key, then decrypt the original data.

This implementation seems strange, but there are some relatively sane reasons for it. One reason is that the additional level of indirection allows for more flexibility in the distribution of secured data. Both the SRK and intermediate keys support passphrases, so the use of an intermediary key enables the use of an additional, perhaps more widely known, passphrase.

This may or may not make sense for your particular deployment. For the purposes of “This key should only be decryptable on this device only,” it is OK (and more performant) to bypass the use of an intermediary key, if desired.

The most important application of TPM-backed secure storage is in protecting the device’s X.509 private key. This secret key serves to authoritatively prove device identity, and if stolen, so is the identity. Encrypting the private key using TPM means that while the key might still be taken from disk, it will not be recoverable without the original hardware.


Key Theft Is Still Possible

Encrypting the device’s private key and wrapping the key with the SRK does not solve all of the theft vectors. It protects the key from being directly read from disk, though an attacker with elevated privileges might still be able to read it from memory or simply ask the TPM to perform the operation for them. The following two sections provide additional information on how to further validate hardware identity (beyond X.509 identity).








Platform configuration registers

Platform configuration registers (PCRs) are an important TPM feature. They provide storage slots into which hashes of running software is stored. It starts with the hash of the BIOS, then the boot record, its configuration, and so on. This sequence of hashes can then be used to attest that the system is in an approved configuration or state. Here is a truncated example of the first few registers stored in the TPM:



PCR-00: A8 5A 84 B7 38 FC ...         # BIOS
PCR-01: 11 40 C1 7D 0D 25 ...         # BIOS Configuration
PCR-02: A3 82 9A 64 61 85 ...         # Option ROM
PCR-03: B2 A8 3B 0E BF 2F ...         # Option ROM Configuration
PCR-04: 78 93 CF 58 0E E1 ...         # MBR
PCR-05: 72 A7 A9 6C 96 39 ...         # MBR Configuration



This is useful in a number of ways, including in ensuring that only authorized software configurations are allowed to decrypt data. This can be done by passing in a set of known-good PCR values when using the TPM to encrypt some data. This is known as “sealing” the data. Sealed data can only be decrypted by the TPM which sealed it, and only while the PCR values match.

Since PCR values cannot be modified or rolled back, we can use TPM sealing to ensure that our secret data is not only locked to the device, but also locked to a specific software configuration and version. This helps to prevent attackers from using device access to obtain the private key, since only the unmodified and approved software can unlock it.




Remote attestation

We have learned many ways we can use embedded device security to protect private keys and other sensitive device-related data. The unfortunate truth is that so long as a private key is stored outside of a physical TPM, it is still vulnerable to theft. This fact remains because all it takes to recover the private key is to convince the TPM to unlock it once. This action discloses the actual private key—something that is not possible when it is stored on the TPM.

Luckily, the TPM provides a way for us to uniquely identify it. It’s another key pair called the endorsement key (EK), and each TPM has a unique one. The private component of an EK only ever exists on the TPM itself, and thus remains completely inaccessible by the operating system.

Remote attestation is a method by which the TPM generates something called a “quote,” which is then securely transmitted to a remote party. The quote includes a list of current PCR values, signed using the EK. A remote party can use this to assert both host identity (since the EK is unique to the TPM) and software state/configuration (since PCRs cannot be modified). We’ll talk more about how the quote can be transmitted in Chapter 8.


Why Not Just TPM?

You may find yourself wondering: why not use the TPM exclusively for device identity and authentication, and why include X.509 at all?

Currently, TPM access is cumbersome and non-performant. It can provide an X.509 certificate to confirm its identity, but it is limited in its interaction with the private key. For instance, the key used for attestation is only capable of signing data that originates in the TPM. For a protocol like TLS, this is a deal-breaker.

There have been some attempts to coerce the TPM attestation protocols into a more flexible form (like IETF draft https://datatracker.ietf.org/doc/draft-ietf-rats-tpm-based-network-device-attest which defines a TLS extension for device authentication via TPM), though none of them have gained widespread adoption at the time of this writing.



There are a few open source implementations of remote attestation, including one in the popular IKE daemon strongSwan. This opens the doors for leveraging TPM data to not only authenticate an IPsec connection, but also authorize it by using PCR data to validate that the host is running authentic and unmodified software.




TPMs for device authentication

It is clear that TPMs present the best option for strong device authentication in mature zero trust networks. They provide the linchpin between software identity and physical hardware. There are, however, a couple limitations.

Many datacenter workloads are heterogeneous and isolated, like virtual machines or containers, both of which need to resort to TPM virtualization to allow the isolated workload to accomplish similar goals. While there are implementations available (such as vTPM for Xen), trust must still be rooted in a hardware TPM, and designing a secure TPM-based system that is capable of live migration is challenging. Additionally, TPM support is still sparse despite its many uses and strengths. While TPM use would be expected in the context of device authentication in mature zero trust networks, it should not be considered a requirement. Adopting TPM support is no small feat, and there are much lower-hanging fruits in terms of zero trust adoption and migration.


HSM and TPM Attack Vectors

HSM/TPM attack vectors have been in the news lately with the discovery of new attacks that can be used to bypass the security features of these devices. These attacks are based on the way HSMs and TPMs are typically implemented; which uses a shared secret key to encrypt and decrypt data. This shared secret key is known as the “Endorsement Key” (EK).

The EK is used to encrypt and decrypt a second key, known as the “Storage Root Key” (SRK). The SRK is used to encrypt and decrypt the data that is stored on the HSM or TPM. The problem is that the EK is usually generated by the HSM or TPM manufacturer and is not kept secret, which means that if an attacker can obtain the EK, they can use it to decrypt the SRK and then access the data that is encrypted with the SRK.

Several attacks have been developed that can be used to obtain the EK from an HSM or TPM.


	
The first attack, known as the “ROCA” attack, was discovered in 2017. The ROCA attack is a mathematical attack that can be used to calculate the EK if the attacker has access to a small amount of data encrypted with the HSM or TPM.



	
The second attack, known as the “Side-Channel” attack, was discovered in 2018. The Side-Channel attack is a physical attack that can be used to obtain the EK by measuring the electrical characteristics of the HSM orTPM while encrypting or decrypting data.



	
The third attack, known as the “Fault Injection” attack, was discovered in 2019. The Fault Injection attack is a physical attack that can be used to introduce faults into the HSM or TPM while it is encrypting or decrypting data. These faults can then be used to obtain the EK.





These attacks have raised concerns about the security of HSMs and TPMs. In response to these concerns, several companies have been working on solutions to protect HSMs and TPMs from these attack vectors.

One solution that has been proposed is “confidential computing.” Confidential computing is a security technique that can be used to protect data that is stored or processed on an HSM or TPM. This method uses encryption to protect the data while it is being stored or processed, which means that even if an attacker obtains the EK, they will not be able to decrypt the data.

We have also noted another proposed solution [in section bootstrapping trust] known as “secure boot.” Secure boot is a security technique that can be used to ensure that only trusted software can be run on an HSM or TPM. Secure boot uses cryptographic signatures to verify the software’s identity on the HSM or TPM so that even if an attacker obtains the EK, they will not be able to run malicious software on the HSM or TPM.

As attacks against HSMs and TPMs become more sophisticated, it is important to ensure that your HSMs and TPMs are protected against these attack vectors. In addition to confidential computing and secure boot technologies, make sure you;


	
Keep your HSMs and TPMs up to date with the latest security patches.



	
Use HSMs and TPMs from reputable vendors.



	
Use HSMs and TPMs that have been independently audited.



	
Use physical and logical security measures to protect your HSMs and TPMs.



	
Keep your confidential data offline.



	
Destroy your confidential data when you no longer need it.












Hardware-Based Zero Trust Supplicant?

The most common approach for supporting legacy devices in a zero trust network is to use an authentication proxy. The authentication proxy terminates the zero trust relationship and forwards the connection to the legacy host.

While it is possible to enforce policy between the authentication proxy and the legacy backend, this mode of operation is less than ideal and shares a handful of attack vectors with traditional perimeter networks. When dealing with legacy devices, it is desirable to push the zero trust termination point as close to the device as possible.

When possible, it is preferable to use a dedicated hardware device rather than an application proxy. This device can act as a zero trust supplicant, carrying a TPM chip, and plug directly into a legacy device’s Ethernet port. Pairing the two in your inventory management system can allow for seamless integration between legacy devices and a zero trust network.

There are many applications that would significantly benefit from such a device. SCADA and HVAC systems, for instance, come to mind.






Inventory Management

Authenticating a device’s identity and integrity goes a long way in providing strong zero trust security, but being able to identify a device as belonging to the organization is only part of the challenge. There are lots of other pieces of information we need in order to calculate policy and make enforcement decisions.

Inventory management involves the cataloging of devices and their properties. Maintaining these records is equally important for both servers and client devices. It is sometimes more helpful to think of these as network entities rather than physical devices. While they indeed are commonly physical devices, they might also be logical entities on the network.

For instance, it is conceivable that a virtual machine or a container could be considered a “device,” depending on your needs. They have lots of the same descriptive properties that a real server might have, after all. Lumping all of the virtual machine traffic from a single host into one policy gets us right back to the perimeter model. Instead, the zero trust model advocates that the workloads be tracked in order to drive the network policies they require. This inventory (or workload) database in this case can be specialized in order to accommodate the high rates of change that virtualized/ containerized environments experience. So, while the traditional inventory management system and the workload scheduler might be different systems, they can still work together; for the purposes of this book, the scheduler service may act as an inventory management system of sorts, as shown in Figure 5-3.

[image: A scheduler and a configuration management database serve as inventory]
Figure 5-3. A scheduler and a configuration management database serve as inventory stores for the control plane



It is not uncommon to have more than one inventory management system. As an example, many companies have both asset management and configuration management software. Both of these store device metadata that is useful to us; they just store different sets, collected in different ways.


Configuration Management as an Inventory Database

Many configuration management systems, such as Chef or Puppet, offer modes in which data about the nodes they run on get persisted into a centralized database. Name, IP address, and the “kind” of server are examples of the type of information typically found in a CM-backed database. Using configuration management in this way is an easy first step toward developing an inventory database if you don’t have one already.




Knowing What to Expect

One of the great powers of a zero trust network is that it knows what to expect. Trusted entities can push expectations into the system, allowing all levels of access to be denied by default—only expected actions/requests are permitted.

An inventory database is a major component in realizing this capability. A huge amount of information about what to expect can be generated from this data; things like which user or application should be running on it, what locations we might expect it to be in, or even the kind of operating system are all pieces of information that can be used to set expectations.

In the datacenter, these expectations can be very strong. For instance, when provisioning a new server, we often know what IP address it will be assigned and what purpose it will serve. We can use that information to drive network ACLs and/or host based firewalls, poking holes for that specific IP address only where necessary. In this way, we can have all traffic denied, allowing only the very specific flows we are expecting. The more properties that can be expected, the better.

This is not such an easy prospect for client-facing systems, however. Clients operate in new and unexpected ways all the time, and knowing exactly what to expect from them and when is very difficult. Servers in the datacenter often have relatively static and long-lived connections to a well-defined set of hosts or services. By contrast, clients tend to make many short-lived connections to a variety of services, the timing, frequency, and patterns of which can vary organically.

In order to address the wild nature of client-facing systems, we need a slightly different approach. One way to do this is to simply allow global access to the service and to protect it with mutually authenticated TLS, forcing the client to provide a device certificate before it can communicate with it. The device certificate can be used to look the device up in the inventory database and determine whether or not to authorize it. The advantage is that lots of systems support mutually authenticated TLS already, and specialized client software is not strictly required. One can provide reasonably strong security without too badly hindering accessibility or usability.

A significant drawback to this approach, however, is that the service is globally reachable. Requiring client certificates is a great way to mitigate this danger. However, we have seen from vulnerabilities like Heartbleed that the attack surface of a TLS server is relatively large. Additionally, the existence of the resources can be discovered by simply scanning for them, since we get to speak TCP to the resource before we authenticate with it.

How can we ensure that we don’t engage clients that are not trusted? There has to be some untrusted communication, after all. What comes before the authentication?




Secure Introduction

The very first connection from a new device is a precarious one. After all, these packets must be admitted somewhere, and if they are not strongly authenticated, then there is a risk. Therefore, the first system that a new device contacts needs a mechanism by which it can authenticate this initial contact.

This arrangement is commonly known as secure introduction. It is the process through which a new entity is introduced to an existing one in a way that trust is transferred to it. There are many ways in which this can be affected; the method through which an operator passes a TOTP code to a provisioner in order to authorize a certificate request is a form of secure introduction.

The best (and perhaps only) way to do secure introduction is by setting an expectation. Secure introduction practically always involves a trusted third party. This is a system that is already introduced, and it holds the ability to introduce new systems. This trusted third party is the system that then coordinates/validates the specifics of the system to be introduced and sets the appropriate expectations.


Secure Introduction for Client Systems

Secure introduction of client-facing systems can be difficult due to the hard-to-predict nature of wild clients. When publicly exposing a client-facing endpoint is considered too risky, it is necessary to turn to more complicated schemes. The currently accepted approach is to use a form of signaling called pre-authentication, which announces a client’s intentions just prior to taking action. We’ll talk more about pre-authentication in Chapter 8.




What Makes a Good Secure Introduction System?


	Single-use

	
Credentials and privileges associated with the introduction should be single use, preventing an attacker from compromising and reusing the key.



	Short-lived

	
Credentials and privileges associated with the introduction should be short-lived, preventing the accumulation of valid but unused keys.



	Third-party

	
Leveraging a third party for introduction allows for separation of duty, prevents the introduction of poor security practice, and alleviates operational headaches.





While these requirements might at first seem rigorous, they can be met through fairly simple means. A great example can be found in the way Chef implements host introduction. Originally, there was a single secret (deemed the “validation certificate”) which was qualified to admit any host that possessed it as a new node. Thus, the introduction would involve copying this secret to the target machine (or baking it into the image), using it to register the new node, then deleting it.

This approach is neither single-use nor short-lived. Should the secret be recovered, it could be used by a malicious actor to steer application traffic to attacker-controlled hosts, or even trigger a denial of service.

Chef takes a different approach in later versions. Instead of having a static validation certificate, the provisioning system (via Chef client utility “knife”) communicates with the Chef server and creates a new client and associated client certificate. It then creates the new host, and passes in its client certificate. In this way, an expectation for the new client has been set. While these credentials are not short-lived, it remains as a superior approach.








Renewing & Measuring Device Trust

It is important to accept the fact that no level of security is perfect—not even yours. Once this fact is acknowledged, we can begin to mitigate its consequences. The natural progression is that the longer a device is operating, the greater its chances of being compromised. This is why device age is a heavily weighted trust signal.

For this reason, rotation is very important. We earlier spoke at length about the importance of rotation, and devices are no different. Of course, this “rotation” is manifested in different ways depending on your definition of “device.” If your infrastructure is run in a cloud, perhaps a “device” is a host instance. In this case, rotation is easy: just tear down the instance and build a new one (you are using configuration management, right?). If you’re running physical hardware, however, this prospect is a little more difficult.

Reimaging is a good way to logically rotate a device. It is a fairly low-level operation, and will succeed in removing the majority of persistent threats seen in the wild today. One can trust a freshly reimaged device more than one that has been running for a year. While reimaging does not address hardware attacks or other low-level attacks like those shown in Figure 5-4, it serves as a reasonable compromise in places where physical rotation is more difficult. Datacenter and supply chain security partially mitigate this concern.

[image: A disk image addresses the portions that house the vast majority of malware  but it s certainly not the whole picture]
Figure 5-4. A disk image addresses the portions that house the vast majority of malware, but it’s certainly not the whole picture



When it comes to managing client devices, the story changes quite a bit. Reimaging a client device is extraordinarily inconvenient for users. They customize the device (and its contents) over time in ways that are difficult to effectively or securely preserve. Oftentimes, when given a new device, they want to transfer the old image! This is not great news for people trying to secure client devices.

The solution largely depends on your use case. The trade-off between security and convenience will be very clear in this area. Everyone agrees that client devices should be rotated and/or reimaged every so often, but the frequency is up to you. There is one important relationship to keep in mind: the less often a device is rotated or reimaged, the more rigorous your endpoint security must be.

Without the relatively strong assurances of device security that we get with rotation, we must look for other methods to renew trust in a device that has been operating for a long time. There are two general methods through which this can be done: local measurement or remote measurement.


Local Measurement

Local measurement can be one of two types: hardware-backed or software-backed. Hardware-backed measurement is more secure and reliable, but limited in capability. Software-backed measurement is much less secure and reliable, but practically unlimited in its measurement capabilities.

One good option for hardware-backed local measurement is leveraging the TPM for remote attestation. Remote attestation uses a hardware device to provide a signed response outlining the hashes of the software currently running on that machine. The response is highly reliable and very difficult to reproduce. However, it generally only gives a picture of the low-level software or specifically targeted software. If an attacker has managed to get an unauthorized process running in user space, the TPM will not be very useful in its detection; thus, it has limited capability. See “Remote attestation” on page XX [78] for more information.

Software-backed local measurement involves some sort of agent installed on the endpoint which is used to report health and state measurements. This could be anything from a managed antivirus client to policy enforcement agents. These agents go to great lengths in order to attest and prove validity of the measurements they report, but even cursory thought quickly reaches the conclusion that these efforts are generally futile. Software-backed measurements lack the protection provided by hardware measurements, and an attacker with sufficient privilege can subvert systems like this.




Remote Measurement

Remote measurement is the best of the two options for one simple reason: it benefits from separation of duty. A compromised host can report whatever it wants to, possibly falsifying information in order to conceal the attacker. This is not possible with remote or passive measurement, since a completely different system is determining the health of the host in question.

Traditionally, remote measurement is performed as a simple vulnerability scan. The system in question will be periodically probed by a scanning device, which observes the response. The response gives some information away, like what operating system might be running on that device, what services might be active there, and maybe even what version of those services.

The scan results can be cross-referenced with known-bad signatures, like malicious software or vulnerable versions of legitimate software. Detection of known-bad signatures can then influence the trust of the device appropriately.

There are a number of open source and commercial options available in the vulnerability scanning arena, including OpenVAS, Nessus, and Metasploit. These projects are all fairly mature and relied on by many organizations.

Unfortunately, vulnerability scanning comes with the same fundamental problem as local measurement: it relies on interrogation of the endpoint. It’s the difference between asking someone if they robbed a bank, and watching them rob a bank. Sure, sometimes you can get the robber to admit that they did it, but a professional would never fall for that. Catching them in the act is much more effective. See “Network Communication Patterns” on page XX [92] for more about how to solve this dilemma.


Unified Endpoint Management (UEM)

Endpoint management is an example of software-based remote management. UEM systems allow an administrator to manage the security posture of all devices in an organization from a centralized console and play a critical role in achieving and maintaining device trust. Microsoft Intune, VMware AirWatch, MobileIron, ClearPass, and FreeIPA are all examples of endpoint management systems. While UEM systems were not designed with security as their primary focus, they have become an essential part of the security ecosystem because they are often used to enforce security policy on devices. For example, ensuring that devices have a minimum level of security before they are allowed to connect. These systems can also monitor devices for compliance with security policy, push updates out centrally, and be configured to alert the security team if the system is no longer managing a device.

Continuous monitoring is a key part of trusting devices. Security teams must constantly be on the lookout for changes in device behavior that could indicate a compromise. For example, changes in network traffic patterns might suggest that a device has been infected with malware and is now communicating with a malicious server, while changes in file access patterns might indicate that an unauthorized user is trying to access sensitive data.

Security teams must have visibility into all devices’ changes to properly assess the risk posed by those changes. However, it is not enough to monitor devices; security teams also need to be able to take action when a compromise is detected. UEM systems provide the ability to remotely lock or wipe a device if it is determined to be compromised, ensuring that its data will remain confidential even if a device is lost or stolen.

It is also essential to have a process in place for renewing trust in devices that have been compromised. All too often, organizations wipe away a device that has been compromised and start over with a new one. While this may be the safest option, it’s usually not practical or cost-effective. Instead, it’s much better to have a process for thoroughly cleaning and verifying a device before putting it back into production.

Device trust is a critical part of zero trust security. By understanding the various technologies and processes used to achieve device trust, you will be in a much better position to defend your organization against attacks.




Device Compliance Change Signals

The OpenID Foundation is currently working on a new standard called the Shared Signals and Events (SSE) Framework, which aims to standardize the exchange of status signals about changes in device, user, and machine identities, as well as application and session status, between cooperating parties. The OpenID Continuous Access Evaluation Profile, in particular, provides specific semantics to signal device compliance change in the form of JSON, as shown in the example below.


    "iss": "https://idp.example.com/123456789/",
    "jti": "24c63fb56e5a2d77a6b512616ca9fa24",
    "iat": 1615305159,
    "aud": "https://sp.example.com/caep",
    "events": {
        "https://schemas.openid.net/secevent/caep/event-type/\
        device-compliance-change": {
            "subject": {
                "device": {
                    "format": "iss_sub",
                    "iss": "https://idp.example.com/123456789/",
                    "sub": "e9297990-14d2-42ec-a4a9-4036db86509a"
                },
                "tenant": {
                    "format": "opaque",
                    "id": "123456789"
                }
            },
            "current_status": "not-compliant",
            "previous_status": "compliant",
            "initiating_entity": "policy",
            "reason_admin": {
                "en": "Location Policy Violation: C076E8A3"
            },
            "reason_user": {
                "en": "Device is no longer in a trusted location."
            },
            "event_timestamp": 1615304991643
        }
    }
}








Software Configuration Management

Configuration management is the process of tightly controlling and documenting all software changes. The desired configurations are typically defined as code or data, and checked into a revision control system, allowing changes to be audited, rolled back, and so on. There are many commercial and open source options available, the most popular of which being Chef, Puppet, Ansible, and CFEngine.

Configuration management software is useful in both datacenter and client deployments, and simply becomes required beyond a certain scale. Leveraging such software comes with many security wins, such as the ability to quickly upgrade packages after vulnerability announcements or to similarly assert that there are no vulnerable packages in the wild.

Beyond auditing and strict change control, configuration management can also be used as an agent for dynamic policy configuration. If a node can get a reliable and trusted view of the world (or part of it, at least), it can use it to calculate policy and install it locally. This functionality is practically limited to the datacenter though, since dynamic, datacenter-hosted systems are decidedly more static and predictable than client systems. We’ll talk more about this mode of zero trust operation later on.

The main difference between endpoint management and software configuration management is that endpoint management is focused on the security of individual devices, while software configuration management is focused on the security of the software that runs on those devices.


CM-Based Inventory

We have mentioned several times the idea of using a configuration management database for inventory management purposes. This is a great first step toward a mature inventory management system and can provide a rich source of information about the various hosts and software running in your infrastructure.

We like to think that CM-based inventory management is a “freebie” in that configuration management is typically leveraged for the bevy of other benefits it brings.

Using it as an inventory database most often comes about out of convenience. Maintaining this view is important: configuration management systems aren’t designed to act as inventory management systems...they’re designed to act as configuration management systems! Using it as such will surely bring a few rough edges, and you will eventually outgrow it. This is not to say don’t do it. It is better to actually realize a zero trust network by leveraging as much existing technology as possible than it is to never get there due to the high barrier to entry. Once we accept this fact, we can begin to leverage the wealth of data provided to us by the CM agents.


Searchable inventory

Some CM systems centrally store the data generated by their agents. Typically, this data store is searchable, which opens lots of possibilities for young zero trust networks. For instance, the agent can perform a search to retrieve the IP address of all web servers in datacenter A and use the results to configure a host-based firewall. Audits and report generation are greatly enhanced through searchable inventory as well. This applies not only to datacenter hosts, but also to clients. By storing the agent data and making it searchable, you can ensure that you changed the CM code to upgrade that vulnerable package, and that the package did indeed update where it said it did.






Secure Source of Truth

One important thing to remember when using CM systems in the zero trust control plane is that the vast majority of the data available to CM systems is self-reported. This is critical to understand, since a compromised machine could potentially misrepresent itself. This can lead to complete compromise of the zero trust network if these facts are not considered during its design.

Thinking back to trust management, the trusted system in this case is the provisioner. Whether it be a human or some automated system, it is in the best position to assert the critical aspects of a device, which include the following:


	
Device type



	
Role



	
IP address (in datacenter systems)



	
Public key





These attributes are considered critical because they are often used in making authorization or authentication decisions. If an attacker can update the device role, for instance, perhaps they can coerce the network to expose protected services. For this reason, restricting write access to these attributes is important. Of course, you can still use self-reported attributes for making decisions, but they should not be considered fact under any circumstance. It’s useful to think of self-reported attributes as hints rather than truth.






Using Device Data for User Authorization

The zero trust model mandates authentication and authorization of both the device and the user or application. Since device authentication typically comes before user authentication, it must be done without information gained through user authentication. This is not the case for user authentication.

When user authentication occurs, device authentication has already succeeded, and the network has knowledge of the device identity. This position can be leveraged for all kinds of useful contextual knowledge, enabling us to do much stronger user authentication than was previously attainable.

One of the more common lookups one might make is to check whether we would expect this user, given the type of device or place of issue. For instance, you are unlikely to see an engineer’s credentials being used from a mobile device that was issued to HR. So while the HR employee can freely access a particular resource using their own credentials, user authentication attempts using other credentials might be blocked.

Another good signal is user authentication frequency. If you have not seen a user login from one of their devices in over a year, and all of a sudden there is a request from that device furnishing the user’s credentials—well, I think it’s fair to be a bit skeptical. Could it have been stolen?

Of course, there is also a good chance that the request is legitimate. In a case like this, we lower the trust score to indicate that things are a little fishy. The lower score can then manifest itself in many ways, like still being trusted enough to read parts of the internal wiki, but not enough to log into financial systems.

Being able to make decisions like this is a big part of the zero trust architecture and underscores the importance of a robust inventory management database. While inventory management is strictly required for device authentication reasons, the contextual advantage given to user authentication is invaluable.




Trust Signals

This section serves as a reference for various trust signals that are useful in calculating device trust score and writing policy.


Time Since Image

Over time, the likelihood that a device has been compromised increases dramatically. Endpoint security practices aim to decrease the risk associated with long-lived or long-running devices. Still, these practices are far from perfect.

Imaging a device ensures that the contents of the hard drive match a known good. While not effective against some lower-level attacks, it provides a reasonably strong assurance of trust. In the moments immediately following the image restore, a tremendous amount of trust exists in the device, as only the hardware or the restore system itself would be able to taint the process. Over time though, that trust wears off as the system goes through prolonged exposure.




Historical Access

Device authentication patterns, similar to user authentication patterns, are important in understanding risk and act as a nice proxy for behavioral filtering. Devices which have not been seen in a while are more suspicious than ones that come and go frequently. Maybe suspicious is the wrong word, but it’s certainly unusual.

The request in question can also be tied to a resource, and it is wise to consider the device and the resource together in this context. For instance, a months-old device requesting access to a new resource is more suspicious than a request to a resource it has been accessing weekly for some time. This stands to say that the “first few” access attempts to a particular resource will be viewed with more skepticism than subsequent attempts.

Similarly, frequency can be analyzed to understand if a resource is being suspiciously over-utilized. A request from a device that has made 100 requests in the last day, but only 104 over the last month, is certainly more suspicious than one with 0 in the last day and 4 in the last month.




Location

While network location, including attributes like geo-location, IP Address, etc, are typically something we aim to not make strong decisions on with regard to the zero trust model, they still provides reliable trust signaling in many cases.

One such case might be a sudden location change. Since we are talking about device authentication, we can set some reasonable expectations about the way that device moves around. For instance, a device authentication attempt from Europe might be pretty suspicious if we have authorized that same device in the US office just a couple hours prior.

It should be noted that this is a bit of a slippery slope when it comes to the zero trust model. Zero trust aims to eliminate positions of advantage within the network, so using network location to determine access right can be considered a little contradictory. The authors recognize this and acknowledge that location-related data can be valuable while making authorization decisions. That said, it is important that this consideration not be binary. One should look for patterns in locations, and never make an absolute decision based solely on location. For instance, a policy which dictates that an application can only be accessed from the office is a direct violation of the zero trust model.




Network Communication Patterns

For devices that are connected to networks owned by the operator, there is an opportunity to measure communication patterns to develop a norm. Sudden changes from this norm are suspicious and can affect how much the system trusts such a device. Network instrumentation and flow collection can quickly detect intrusions by observing them on the network. Making authorization decisions informed by this detection is very powerful. One example might be shutting down database access to a particular web server because that web server began making DNS queries for hosting providers on another continent.

The same applies to client devices. Consider a desktop that has never before initiated an SSH connection but is now frequently SSHing to internet hosts. It is fair to say that this change in behavior is suspicious and should result in the device being less trusted than it was previously.




Machine Learning

Machine learning assists in calculating trust score by considering the entire context of the access request, including the user, device, and resource requested, as well as historical activity to identify anomalous requests. Machine learning models are typically trained over time to distinguish between anomalous and legitimate access patterns. As a result, machine learning can assist in reducing any potential blind spots in identifying malicious requests. However, as with other aspects of zero trust, relying solely on machine learning is not recommended; rather, using it in conjunction with other trust signals yields the best results.






Scenario Walkthrough 

We’ll conclude this chapter by expanding on the previous chapter’s scenario walkthrough and learning about the role of device trust in the evaluation of Bob’s authorization request.

Let’s start with a close look at the device data store, as shown in Figure 5-5. The device data contains details specific to the device that you expect, such as the device model, operating system details, firmware-related information, and, most importantly, whether the device is in compliance with the organization’s policy and when the last compliance check was reported. Also, take note of the use of universally unique identifiers (UUID) to uniquely identify the machine and the use of International Mobile Equipment Identity (IMEI) to uniquely identify a mobile device.

[image: Data about devices  including their software  hardware  and complaint status  is recorded in a data store. ]
Figure 5-5. Data about devices, including their software, hardware, and complaint status, is recorded in a data store.



The attribute “InCompliance” may need some explanation because it is critical in driving device trust. It is used to indicate whether a device adheres to an organization’s compliance standards, and this is primarily driven by current state of device encryption, the installation of the most recent security patch, firmware version, and the execution of any other necessary software agents on the device, including but not limited to anti-malware software, etc. Organizations typically store device compliance status and the last time it was checked in the data store as part of device data. Furthermore, devices tend to fall out of compliance if a compliance check fails or if the device is not available for compliance checks after a certain period of time, such as 48 hours, but this duration is typically determined by the organization’s compliance policy.

Following that, we examine activity logs, as shown in Figure 5-6, which depicts activity from two of Bob’s registered devices. By logging device activities, the trust engine can examine them for anomalous behavior. It is common for attackers to use infected devices to perform network scanning and use that information to gain access to critical resources. The example activity logs shows only a few basic attributes such as device id, IP address, and geo-location, but this can easily be expanded to include more richer set of attributes such as application or api being accessed, result of the activity, and so on.

[image: Activity logs record device activity and serve as an audit trail  which is useful for determining anomalous behavior from devices and calculating trust scores.]
Figure 5-6. Activity logs record device activity and serve as an audit trail, which is useful for determining anomalous behavior from devices and calculating trust scores.



The user store, as shown in Figure 5-7, contains Bob’s user (identity) data, which includes his name, registered authentication methods, device id, geo-location, IP address, and name. One thing to keep in mind is that certain user attributes change less frequently than others. For example, user name tend to stay the same for the most part, whereas device Id may change every few years as part of a typical organization’s device refresh. There is always room for adding more user attributes, as well as challenges with maintaining user data, which we will discuss in Chapter 6 as part of the user trust discussion.

[image: Bob s user identity data includes his name  authentication methods registered  device id  geo location  and IP address.]
Figure 5-7. Bob’s user identity data includes his name, authentication methods registered, device id, geo-location, and IP address.



The trust engine, as shown in Figure 5-8, evaluates and assigns a trust score to access requests from Bob using both dynamic and static rules. It actively uses data from various entities within the data store and deploys machine learning to ensure that any blind spots are identified, as well as using static rules for specific conditions. In this case, the trust score is calculated dynamically using machine learning to detect anomalous behavior using activity logs, which store historical user and device activity logs. The machine learning model classifies the request as highly anomalous, with a trust score of 1 or 2, moderately anomalous, with a trust score of 3 or 4, or low anomalous, with a trust score of 5 or 6.

The trust engine also takes into account the user’s authentication method, specifically whether or not MFA is used to verify their identity. Requests with only a single factor receive a low trust score of 3, whereas requests with MFA receive a high trust score of 7. The final trust score is calculated by averaging all of the scores assigned to a request. Please keep in mind that how trust score is calculated in real-world zero trust implementations is heavily dependent on the software, but every request must receive a final trust score that the policy engine can use for decision making.

[image: The trust engine evaluates and assigns a trust score to an access request using both dynamic and static rules.]
Figure 5-8. The trust engine evaluates and assigns a trust score to an access request using both dynamic and static rules.



Finally, as illustrated in Figure 5-9, we have a policy engine that defines rules based on the overall context of the authorization request, which includes the user, application, device, regulatory requirements, and trust score. The policy engine also takes the “deny all” approach. Essentially, unless the request is explicitly permitted by one of the rules, it will be denied access to the resource.

[image: The policy engine is ultimately responsible for granting or denying access requests.]
Figure 5-9. The policy engine is ultimately responsible for granting or denying access requests.



Let’s go through a few use cases.


Use case: Bob wants to send a document for printing

Here is what we know about Bob’s request:


	
Bob is requesting access to send a document to an organization’s printer.



	
Bob is using his laptop with the device id “ABC.”



	
Bob has used MFA and also used password as the first factor for authentication



	
Bob is making the request during office hours.






Request Analysis


	
Bob’s access request (action: print document, device-id: ABC,authentication: pwd/mfa, location: New York, IP:1.2.3.4, datetime: 24-july-2022-10:00am-est-timezone) reaches enforcement component.



	
The enforcement component forwards the access request to the policy engine for approval.



	
The policy engine receives the request and consults with the trust engine to determine the request’s trust score.



	
The trust engine evaluates request:


	
It finds no anomalies because the device access request pattern, as well as the IP address and location, appear to be consistent with historical data. It gives a high trust score of 6.



	
Bob has also completed MFA, so a trust score of 5 is assigned.



	
Device is in compliance and had its most recent compliance check in less than 36 hours.





Finally, the trust engine computes the average of trust scores, which is 5.5, and returns it to the policy engine.



	
Policy engine receives the trust score of 5.5 from the trust engine.



	
For authorization, the policy engine compares the request to all policy rules:


	
This first rule results in a grant (or allow) action because the request is made during the permissible office hours.



	
The second rule results in grant (or allow access to printer) action because the request has a trust score greater than 3.



	
The rules 3–4 do not apply to the current access request because it is specifically for a printer.



	
The fifth rule does not apply to the current request as trust score is greater than 3.



	
The sixth rule does not apply to the current request as the request is not for the help desk.



	
The seventh rule which is also a default rule will not be applicable. This rule is only executed when no other rules are executed.



	
The policy engine stops processing and makes the final decision to allow printer access.







	
The policy engine sends a allow action to the enforcement component



	
The enforcement component receives the policy engine’s result and allows Bob’s request to print the document.










Use case: Bob wants to delete an email 

Here is what we know about Bob’s request:


	
Bob wants to delete an email from his inbox.



	
Bob is using his mobile phone with the device id “XYZ.”



	
Bob has used MFA and also used his password as the first factor for authentication



	
Bob is making the request during office hours.






Request Analysis


	
Bob’s access request (action: delete email, device-id: XYZ,authentication: pwd/mfa, location: Dallas, IP: 6.7.8.9, datetime: 24-july-2022-9:45am-est-timezone) reaches enforcement component.



	
The enforcement component forwards the access request to the policy engine for approval.



	
The policy engine receives the request and consults with the trust engine to determine the request’s trust score.



	
The trust engine evaluates request:


	
It finds no anomalies because the device access request pattern, as well as the IP address and location, appear to be consistent with historical data. It gives a high trust score of 6.



	
Bob has also completed MFA, so a trust score of 5 is assigned.



	
Device is in compliance but its most recent compliance check was performed more than 36 hours ago so a trust score of 4 is assigned.





Finally, the trust engine computes the average of trust scores, which is 5, and returns it to the policy engine.



	
Policy engine receives the trust score of 5 from the trust engine.



	
For authorization, the policy engine compares the request to all policy rules:


	
This first rule results in a grant (or allow) action because the request is made during the permissible office hours.



	
The second rule does not apply to the current access request since the request is not for the printer.



	
The third rule does not apply to the current access request because trust score is lower than 7.



	
The fourth does applies to the current access request as trust score is less than 7 which restricts email access to read-only (no deletion or sending of email is allowed)



	
The fifth rule does not apply to the current request as trust score is greater than 3.



	
The sixth rule does not apply to the current request as the request is not for the help desk.



	
The seventh rule which is also a default rule will not be applicable. This rule is only executed when no other rules are executed.





The policy engine stops processing and makes the final decision to only allow Bob read-only access to the email inbox with no delete permissions.



	
The policy engine sends an allow action (read-only access to email) to the enforcement component.



	
The policy engine’s decision is received by the enforcement component, which grants Bob read-only access to his email inbox but denies him the ability to delete emails. This is a good way to ensure that user Bob’s ability to be productive is not completely hampered, but privilege tasks such as email deletion are limited.












Summary

This chapter focused on how a system can trust a device. This is a surprisingly hard problem, so a lot of different technologies and practices need to be applied to ensure that trust in a device is warranted.

We started with looking at how trust is injected into a device from the human operators. For relatively static systems, we can have a person involved in providing the critical credentials; but for dynamic infrastructure, that process needs to be delegated. Those credentials are incredibly valuable, and so we discussed how to safely manage Them.

Devices eventually need to participate in the network, and so understanding how they authenticate themselves is important. We covered several technologies, such as X.509 and TPMs, which can be used to authenticate a device on the network. Using these technologies along with databases of expected inventory can go a long way toward providing the checks and balances that give devices trust.

Trust is fleeting and degrades over time, so we talked about the mechanisms for renewing trust. Additionally, we discussed the many signals that can be continually used to gauge the trustworthiness of a device over time and the mechanisms used to manage devices. Perhaps the most important lesson is that a device starts out in a trusted state and only gets worse from there. The rate at which its trust declines is what we’d like to keep a handle on.

The scenario walkthrough revisits Bob from the previous chapter, but this time the focus is on device trust and how the policy engine, along with other components such as the trust engine and data store, handle various use cases.

The next chapter looks at how we can establish trust in the users of the system.
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Policy Engine

. Allow requests only during office hours (M-F) @ a.m. to 5 p.m. EST.

. Allow access to printers when the device is compliant and trust score is >= 3

. Allow email access when the device is compliant and the trust score is > 7.

. Allow read-only access to email when the device is compliant and the trust score is < 7.
. Deny request if trust score is < 3

. Exception: Allow access to helpdesk support service center portal

. Default - Deny request by default
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+ Name: Bob Timestamp: 1651066200 4. The trust engine calculate the trust score using machine learning.
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6. The policy engine evaluate the policy rules. I . The policy engine asks trust engine to caleulate trust score.

Policy Engine

1. [Compliance] Allow requests only during office hours (M-F) 9 a.m. to 5 p.m. EST.

2. [Compliance] Allow requests only from devices that have received the most recent security update.
3. [Trust Score] Allow requests only if the trust score is greater than 7/10 (higher the better).

4. [Default]: Deny request by default.

. Trust engine sends trust score back to policy engine.

T 7. The policy engine denies the authorization request.
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3. [Trust Score] Allow requests only if the trust score is greater than 7/10 (higher the better).

4. [Default]: Deny request by default.

Control Plane

Trust Engine

* A machine learning model
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LAPSUS$ Reply
We recruit employees/insider at the following!!!!

- Any company providing Telecommunications (Claro, Telefonica,
ATT, and other similar)

- Large software/gaming corporations (Microsoft, Apple, EA, IBM,
and other similar)

- Callcenter/BPM (Atento, Teleperformance, and other similar)

- Server hosts (OVH, Locaweb, and other similar)

TO NOTE: WE ARE NOT LOOKING FOR DATA, WE ARE LOOKING FOR
THE EMPLOYEE TO PROVIDE US A VPN OR CITRIX TO THE
NETWORK, or some anydesk

If you are not sure if you are needed then send a DM and we will
respond!!!!

If you are not a employee here but have access such as VPN or VDI
then we are still interested!!

You will be paid if you would like. Contact us to discuss that

@lapsusjobs € 837 @372K # 237PM 4
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Trust Engine

Analyze the request for anomalous behavior using device
and user activity logs, then dynamically assign a trust
score.

Requests from device with inCompliance=Yes but haven't
had a compliance check run in more than 36 hours

should be assigned a trust score of 4.

Request without MFA authentication from user should be
assigned a trust score of 3.

Request with MFA authentication from user should be
assigned a trust score of 5.
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