

The Engineering Executive’s Primer

Impactful Technical Leadership

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Will Larson

The Engineering Executive’s Primer

by Will Larson

Copyright © 2024 Will Larson. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

		Editors: Virginia Wilson and David Michelson

		Production Editor: Jonathon Owen

		Copyeditor:

		Proofreader:

		Indexer:

		Interior Designer: Monica Kamsvaag

		Cover Designer: Susan Thompson

		Illustrator: Kate Dullea

		June 2024: First Edition

Revision History for the Early Release

		2023-04-20: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098149482 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Engineering Executive’s Primer, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-098-14948-2

[LSI]

Preface

When I pick up a newspaper, I read stories about extraordinarily well run companies, and the pivotal role of the executives leading those companies. However, when I talk with industry peers, including those lauded executives themselves, I usually hear a different story: things are a mess. Each mess’ central cast varies a bit, but there are recurring characters. Friction between Engineering and Product. A micromanaging, or entirely disengaged, founder. Difficulty filling senior leadership roles. Urgency to complete a fundraise soon before they run out of money.

The techniques that executives use to overcome each of these messes are straightforward and documentable, but many executives have to learn these approaches themselves. I’ve been a long time believer that there are valuable, reusable patterns you can use to better understand engineering leadership, which is the foundational belief behind my first two books, An Elegant Puzzle and Staff Engineer, and I believe that identifying and studying foundational approaches is even more valuable for engineering executives.

Engineering executive jobs can be difficult, but they’re made unnecessarily challenging because most new executives learn solely from triangulating what worked at their last three jobs, and refine their approach over time aided by the painful clarity of making mistakes. What should you do when your CEO asks for engineering metrics to review each month? What even is an engineering strategy, and why does the team keep insisting they need one? Why do your company’s budgets keep accelerating Sales & Marketing spend while reducing investment in Engineering?

I believe we can significantly increase the effectiveness of the technology industry by writing down and sharing what good engineering executive practices look like, enabling executives to start from a reasonable, standard place. That’s what this book aims to do!

Who This Book is For

This book is for anyone in a software engineering executive role, anyone attempting to reach their first executive role, and for people trying to better understand the engineering executive they work with. If someone considering management is given a copy of The Manager’s Path, and someone starting to manage multiple teams is given a copy of An Elegant Puzzle, then I hope anyone aspiring to an engineering executive role is given a copy of this book.

If you’re looking for an in-depth exploration of how engineering should function at a company, then you’re in the right place. Some scenarios where I expect this book to be particularly helpful:

		
	You are an experienced engineering leader trying to find your first engineering executive role, or negotiating the contract for your first role

	

		
	You are onboarding as a company’s new engineering executive

	

		
	Your company doesn’t have an explicit engineering strategy, and you’re the person responsible for writing the first draft

	

		
	Your company plans to accelerate engineering hiring for next year, and you need to figure out how to hire effectively, and how to successfully onboard those new engineers

	

		
	You’ve been asked to rethink how engineering operates at your company: what are the right meetings, how do you communicate what’s important, and how do you decide what to work on

	

		
	Your CEO is asking you to provide engineering metrics to the board, and you want to find something useful without creating a bunch of overhead

	

		
	You want to manage yourself to remain effective through the many challenges of your engineering executive role: staying energized, avoiding being labeled as “hard to work with”, keeping perspective on your 40+ year career, and more

	

		
	You’ve decided to leave your job as an engineering executive, and want to do it in a responsible way

	

What This Book is Not

If you’re looking for details on how to run one engineering team, this won’t be the most useful book for you. This book does not explore practices for running team meetings, conducting one-on-ones, or giving feedback effectively. Instead, it focuses on how many teams work together effectively across a company’s engineering function. For the former, I heartily recommend Camille Fournier’s The Manager’s Path and my own An Elegant Puzzle.

Likewise, this book is focused on the whole engineering function, which is the intersection of technology-focused and people-focused leadership. There is no meaningful way to talk about leading an engineering function that doesn’t engage with both those leadership aspects. If you’re looking for a book more focused on technology-focused leadership, consider picking up Tanya Reilly’s The Staff Engineer’s Path or my own Staff Engineer.

Finally, this book won’t be helpful if you’re looking for advice on how to build a specific piece of technology. There are a thousand effective ways to build any given product, and this book won’t suggest any of them. Instead, it will discuss the value of standardizing, or not standardizing, your company’s approach to building and maintaining a large portfolio of products and systems. There are simply too many books out there about building technology to recommend any given one, so I’ll have to leave you to decide what might work better for that focus.

Navigating This Book

This book is designed to be used in two different ways. If you’re a new engineering executive, or starting a new role, then you should get the most out of reading this book front to back. That will give you a broad perspective on the topics that will come up while operating in an engineering executive role.

The second way to use this book is to come to it when you’re dealing with a particular challenge, jump to the relevant section, give it a read, and put it down until you run into your next challenge. Many topics within the book are connected–what use is an engineering strategy if you don’t have a clear way to communicate that strategy to your team?–but they’re all designed to stand on their own.

Clarifying Terms

To communicate more effectively, there are a handful of terms that I’m defining here to reduce potential confusion caused by inconsistent usage across companies and industry verticals:

		
	Executive is the functional leader of an area for the entire company. This definition is important, because it avoids relying on titles which vary widely. Depending on the company, its engineering executive might be called a Chief Technology Officer, Vice President of Engineering, or Head of Engineering. (Similarly, many companies refer to various groups, e.g. their Vice Presidents, as executives despite their not being the functional leader for a given function—these are not the sorts of executives I’m referring to in this book.)

	

		
	Team describes those directly reporting to a manager

	

		
	Organization describes the entire organizational chart (composed of multiple Teams and their managers) reporting to an executive. For example, all members of Engineering would be referred to as the Engineering organization

	

		
	Engineering (uppercase) is short-hand for the Engineering organization

	

		
	engineering (lowercase) is the industry or profession

	

Chapter 1. Creating Useful Organizational Values

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 6th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at vwilson@oreilly.com.

Uber’s best known corporate value is probably Super Pumped, which, in addition to being a one-time company value, is also the title of Mike Isaac’s account of Uber and the subsequent television show. However, for me personally, the value I remember most from Uber is Let Builders Build. I particularly remember the handful of engineers who would claim that any objection to their proposals was a cultural failure to let them build what they wanted. This friction around a well-intentioned value highlights just how challenging it can be to use values to operate a company.

As an Engineering executive, you will likely be involved in creating your company’s values, interpreting how those values apply to Engineering, and deciding whether Engineering has additional values of their own. In this chapter I will:

		
	clarify the kinds of problems that values solve effectively

	

		
	discuss whether organizations should have values distinct from company values

	

		
	propose the ideal time to establish values

	

		
	provide a clear method for evaluating proposed values

	

		
	describe the distinction between Engineering values and your Engineering strategy

	

		
	share an approach for rolling values out

	

		
	end with a discussion of the values that I’ve personally found effective within Engineering

	

Stated values possess no magic for cultural transformation, but with a bit of care they can be useful for consolidating cultural change that you’ve already made. You will leave this chapter prepared to decide whether stated values would be a useful addition to your organization today, and if so, how to create them.

What problems do values solve?

Stated values make it clear how you want people to make decisions. If senior team members live and model the values, then those values will become an active, living force. If stated values don’t align with behavior, then they’ll become a dusty, forgotten relict.

Some scenarios representing problems that values solve:

		
	You’re hiring more and more senior engineers and managers, who come with a significant amount of working experience at other companies. Documented values increase cohesion across the new and existing team. They also avoid the scenario where new hires unknowingly practice their previous companies’ values, causing a cultural rift between new and existing teams

	

		
	You’ve made a significant cultural change over the past year to welcome ideas from across the team rather than only accepting top-down ideas, and you want to formalize that change so it persists over time

	

		
	Engineering generally does a good job of reusing existing coding patterns and services, but a few vocal engineers are advocating for teams setting their own patterns independently of the organization’s existing ones. Formalizing the reuse of existing approaches when possible will prevent a prolonged conflict

	

		
	You’ve acquired a very small company of five engineers to join your existing organization of five hundred engineers. You’ve been clear in the acquisition process that you’re looking for the new team to merge into the existing organization, and your documented values help them navigate that change successfully

	

Values are extremely useful in all of these scenarios, but recognize: they are absolutely not an effective way to start the underlying culture change that they describe. Rather, they celebrate change that’s already in motion, and help make it permanent. (If this strikes you as controversial, think about how it holds true in your personal life. Claiming that you value punctuality doesn’t make it true; consistently arriving on time does.)

Should engineering orgs have values?

Before digging into crafting useful values, it’s worth spending some time discussing whether Engineering should have values at all. Organization-specific values tend to be controversial. Even if you’ve never heard of them, most companies have a written set of values somewhere, and many executive teams will take it poorly if you introduce Engineering values. Why not simply use the existing company values instead?

The best case is that you find company values that can be extended to match your goals. You might take Amazon’s leadership principle of Frugality and add some Engineering-specific nuance: in our pursuit of Frugality, we consider the full cost of building and maintaining a new service against the cost of paying a vendor, and we find using a vendor is often more frugal than building it ourselves. Adding an interpretation to an existing value reinforces that company value, rather than detracting from it, and is an easy sell to the wider executive team.

Sometimes, even if you get very creative at extending the existing values, there simply isn’t an existing value that fits. In that case, there are three paths forward: add a new company value, introduce Engineering values, or introduce Engineering leadership values (for Engineering Managers, Staff-plus Engineers, or ideally both).

Which will work best depends heavily on your company size, your executive team, and the sort of values you’re hoping to add. Some values simply aren’t as relevant outside of Engineering: a value around build-versus-buy makes less sense for organizations that don’t have the build option, and might make more sense as an Engineering value. Other values might work well for an entire company, such as creating net-new capacity rather than competing internally to capture existing capacity.

If the value is applicable to the whole company, and there’s excitement within the executive team to add another value, then I’d encourage you to start there. It’s much more work to maintain values than to create them, and adding to the company values will allow you to share the maintenance across the executive team. If it’s not widely applicable, then you have the choice between adding either Engineering values or Engineering leadership values.

Nominally, Engineering leadership values only apply to Staff-plus Engineers and Engineering Managers. In practice, almost everyone aspires to be a leader, and will model their behavior on leaders within the team, so leadership values tend to establish themselves as organizational values while side-stepping some of the tripwires that come with being explicit.

In addition to personally finding success with leadership values, there are other examples in the wild, notably Amazon’s Principal Engineering Community Tenets. (Note that these “Principal Engineering” tenets apply really well to anyone in Engineering, regardless of their title.)

What makes a value useful?

Companies sure do have a lot of stated values, but I am going to argue here that a significant number of those stated values are simply not useful. Often someone in the value statement creation process gets caught up in the dream of what the company could be, rather than what it is, and the values detach from reality. This turns a useful project into something that is at best useless, if not actively misleading. To avoid creating useless values of your own, walk through my short definition of what makes a value useful.

A useful value is reversible, applicable, and honest:

		
	Reversible: it can be rewritten to have a different or opposite perspective without being nonsensical.

	Reversibility is a precondition to the next two values, applicability and honesty, but it’s also meaningful in its own right. Effective values guide behavior, and it’s only practical to guide behavior when there are multiple, viable approaches. Irreversible values invite lip-service agreement rather than active participation.

	Example: Uber’s value of Make magic emphasized a willingness to delay product releases that were merely serviceable until they had a spark of delight. Many companies practice the reverse value of, Ship early and often. Any given successful company might take either approach.

	Counterexample: Amazon’s Are Right, A Lot. How do you reverse that into a reasonable value? Something like “Are right when it matters” initially sounds like the reverse, but on deeper inspection probably means roughly the same thing. A more extreme reverse like “Are Wrong, A Lot” wouldn’t make much sense unless you extend the value significantly to something like, Quickly Learn from Mistakes, which again, is conceptually very similar to Are Right, A Lot

	

		
	Applicable: it can be used to navigate complex, real scenarios, particularly when making tradeoffs.

	Many values are written down and forgotten. To keep a value alive and useful, it needs to be used frequently and visibly by the team. Applicability means a value that contributes to planning sessions, performance reviews, and hiring decisions.

	Example: Stripe’s value of Seek feedback clarifies the expectation that you should be actively seeking feedback on your work rather than working in isolation. If you’ve completed a Tech Spec without gathering input, then you know that at Stripe you’re not actually done: you need to seek feedback before finishing the work.

	Counterexample: Uber’s Be Yourself. It’s unclear how you’re supposed to apply this value to a practical scenario. Another counterexample is Stripe’s Be meticulous in your craft. It’s a beautiful aspirational value, but it’s sufficiently broad that two reasonable people can’t align on whether or not it applies to any given decision.

	

		
	Honest: it accurately describes real behavior.

	A touch of aspiration is OK, but useful values should explain how effective employees navigate the organization as it exists today. If it’s too aspirational, values become a trap for your best-intention employees. More cynical employees will ignore them anyway, modeling their behavior on the actions of successful internal role-models rather than your stated values. The only way for your entire team to operate on the same values is to describe behavior honestly. (If you want to change company behavior, change the behavior first, and document it second.)

	Example: Uber’s value of Meritocracy and Toe-Stepping has been criticized externally, but it was a very accurate reflection of the actual internal culture. You went into a meeting with folks at Uber, and that’s how they acted.

	Counterexample: Amazon’ Strive to be Earth’s Best Employer. There are many things uniquely good about working at Amazon, but few would argue that their frugality makes them the best employer.

	

As a test, let’s discuss a few values that meet all three criteria:

		
	Amazon’s Dive Deep asks leaders to engage with the details at hand. If they’re uncertain about the right path forward, dig in, rather than delegate. This is reversible: many successful companies instead delegate decisions down the hierarchy to whoever has the details rather than expecting leaders to drill in themselves. This is applicable: whenever you’re not sure about a given decision, you should dive into the details before moving forward. This is honest: most folks I’ve worked with from Amazon have embodied this mentality, and are willing to go deep into problems.

	

		
	Stripe’ Seek feedback asks folks to socialize plans and decisions before finalizing them. This is reversible: other companies would urge moving quickly by avoiding consensus building. As discussed earlier, this is applicable, because you know any major decision needs to be written up and shared. Finally, it’s also honest: this is how people behave at Stripe (when folks complain about Stripe, it’s often that it works this way too much).

	

		
	Uber’s Be an Owner, not a Renter asks folks to make decisions they’re willing to support long-term rather than assume someone else would absorb the long-term consequences. This is reversible: many early companies want to emphasize doing quick work (e.g. YCombinator’s Do Things that Don’t Scale). This is applicable: whenever you’re making a short-term versus long-term tradeoff, you can apply this value. This is honest: generally folks at Uber, particularly within Engineering, stayed on their team for the long haul and dealt with the consequences of their organizational and architectural decisions.

	

Each of these values is genuinely useful for deciding if a company is for you, and also for operating successfully within that company.

Some folks will argue that good values should be resistant to misuse. For example, my starting story about Let Builders Build might be a bad value because it was misinterpreted by the product engineering manager. I don’t personally worry too much about that. Self-interested individuals will always interpret things in unrealistic ways to their own benefit, and the solution is holding them accountable for their poor behavior, particularly if they are role models like Staff-plus Engineer or Engineering Manager.

There are two particularly common categories of non-useful (or colloquially, useless) values that occur frequently enough that they’re worth discussing directly:

		
	Identity values and prioritization values. Identity values are things like Amazon’s Are Right, A Lot, Uber’s Champion Mindset and Stripe’s Deliver Outstanding Results. Identity values can be reversible and may be honest, but they are very rarely applicable. How often are you finishing up a project where you think to yourself, “I should focus on being right, rather than wrong, for this one.”

	

		
	Prioritization values are Uber’s Celebrate Cities and almost every startup’s variant of Make Big Bold Bets. These values often are honest, but struggle to be either reversible or applicable. Uber’s Celebrate Cities asks that some work is done to acknowledge the cities that Uber operates in, but it doesn’t provide any context to appropriately size or prioritize that work. Most importantly, if you dig into any prioritization value, you will usually find a hidden identity value. For example, making big bets is really about the desire to be innovative and ambitious.

	

While you should try to avoid useless values, as long as they’re honest, they tend to be inert rather than harmful, so I wouldn’t spend too much time fighting against, particularly if you’re working on values as a participant (e.g. for the company) rather than as the final decider (e.g. for Engineering).

How are Engineering values distinct from a technology strategy?

There’s some intersection between Engineering values and our discussion in Ch. 4, Technology Strategy. The best way to think of the relationship between values and a strategy (business, technology, or otherwise) is that useful values generally can serve as a strategy’s guiding principle. Not all guiding principles are values (e.g. how you respond to a current market opportunity is unlikely to be a value), but most values are viable guiding principles.

For example, Reuse common technologies unless you see 10x improvement is a useful Engineering value, and could well be a guiding principle you use to address a specific set of circumstances. While values are usually presented in a way that’s divorced from the circumstances that help form them, you can reverse-engineer the implicit circumstances that fed into any given value’s creation.

By default, folks often view it as a failure if their organizational values and strategy have too much overlap, but I see them as tightly connected. Rather than a bad sign, I view overlapping organizational values and strategy as a sign of attentive, detail-oriented leadership.

When and how to rollout values

Somewhere, there’s a playbook that encourages new executives to quickly publish new values, similar to the nervous desire to show value that culminates in new executives announcing brand-new technology architectures shortly after joining. Don’t do that. Wait. Wait at least six months. If that’s too long, at minimum wait until you can evaluate whether a given value is honest or aspirational. You can absolutely test some values earlier in small groups, but if you’re confident you need to roll out values quickly after joining a company, I’d push you to consider whether this is the right work or if you’re retreating into comfortable work.

By focusing on honest values, you’ll have fewer rollout challenges from folks rejecting values outright, but the rollout will still be an involved process. Establishing values should follow the general patterns of good process rollout: identify the opportunity, document potential options, involve stakeholders early to build buy-in, test before finalizing to avoid folks feeling trapped, and iterate until it’s useful. It’s easy to announce values, but much harder to introduce values that get used. Reduce that risk by including the wider team, listening, and iterating a few times to synthesize a shared creation rather than a top-down one.

Once you’ve completed the initial rollout, it’s important to recognize that values are more like a garden than a building. If they’re not part of your daily processes, they’ll probably be forgotten:

		
	integrate them into your hiring process (including letting candidates opt-out if they don’t like them)

	

		
	explicitly talk about them in new-hire onboarding

	

		
	update your career ladder to require value-aligned behavior for promotions

	

		
	highlight culture-aligned accomplishments in one-on-ones, team meetings, and elsewhere

	

The one caveat to the standard process rollout is that if you end up writing company values rather than Engineering or engineering leadership values, then you will likely have quite a few peer executives or the CEO involved, and the reality is that executives are hard to hold to a process. This is mostly unavoidable, and you’ll just have to roll with the chaos a bit. (This is one of the reasons I think it’s worthwhile to consider Engineering leadership values as opposed to engaging with the company values overall.)

Some values I’ve found useful

Particularly successful companies export their stated values to the next generation of companies, which tends to make some values appear universal. Amazon’s Customer Obsession is a great example: how many companies formed after Amazon include a value around customer-centricity? Almost all of them! How many of those companies replicate Amazon’s genuine focus on customers? Remarkably few.

The challenge with copying values is tied directly into the definition of useful values: reversible, applicable, and honest. A value’s reversibility is universal, but whether the value is applicable to a company’s situation and an honest reflection of the company’s behavior varies greatly across companies. For example, while many companies pursue Frugality, only some practice it, and it requires an honest self-appraisal to determine if Frugality is a useful value for you.

Despite these inherent hazards of copying values, I do want to share some of the values that I’ve found particularly valuable in Engineering organizations that I’ve worked in. I’m not arguing you should adopt these specifically, but consider the rationale behind them and whether they might apply to your organization as well:

		
	Create capacity (rather than capture it). This value focuses leaders on creating new capacity from outside the company, rather than fighting internally for existing capacity. Creating capacity makes the first team mindset possible, because it aligns incentives across managers who would otherwise be competing with one another for budget. More discussion on this in Create capacity rather than capture it.

	Reversible? Yes, many organizations take a “fungible headcount” view on shifting teams and individuals, which encourages leaders to capture capacity to complete their goals.

	Applicable? Yes, this is highly relevant in any prioritization or headcount planning exercise.

	

		
	Default to vendors unless it’s our core competency. You can also write this as: build versus buy decisions should consider the full implementation and maintenance costs. It is often more intellectually interesting to build commodity solutions than to use existing vendor solutions, but the cost of operating, maintaining and extending those solutions is often much higher. Good build versus buy decisions look beyond the initial implementation cost, and don’t prioritize initial fun over long-term maintenance pain.

	Reversible? Yes, for example, early Uber had a strong Not Invented Here culture, and rarely used external vendors.

	Applicable? Yes, this is relevant to any platform or capability build versus buy decision.

	

		
	Follow existing patterns unless there’s an order of magnitude improvement. Engineering organizations often get caught in a slow burning but endless conflict about when to introduce new programming languages and tooling. It’s exceptionally valuable to have a clear answer to align folks on making these decisions. Discussion on this in Appendix: Magnitudes of exploration.

	Reversible? Yes, many companies encourage introducing new technology or have an infinitely high bar to adopting a new technology stack.

	Applicable? Yes, this is relevant whenever selecting the technology stack for a new project.

	

		
	Optimize for the {whole, business unit, team}. Pick one of these options to help leaders understand how they should balance decisions between impacting their team and impacting other teams. It’s also a good example of how values and architecture intersect: you can’t really optimize only for your team if you’re in a monolithic service without causing significant problems elsewhere.

	Reversible? Yes, there are successful organizations that optimize for the team, ones that optimize for the company, and so on. As long as the approach is aligned with the technical architecture, all of these are viable approaches.

	Applicable? Yes, this is useful whenever making tradeoffs across team and organization, e.g. selecting the technology stack for a new project.

	

		
	Approach conflict with curiosity. One of my foundational beliefs is that most professional conflict between reasonable people is driven by asymmetric information. If you approach conflict with curiosity, you can quickly learn the missing information and generally make the right decision without conflict.

	Reversible? Yes, although admittedly on the weaker side. A given successful company might focus on resolving conflict via subject-matter expertise, data, user feedback, and so on.

	Applicable? Yes, this is useful in any scenario with conflict.

	

Summary

In this chapter you have learned to evaluate values by their reversibility, applicability and honesty. You’ve used that approach to assess a number of well-known company values, and even the Engineering values that I have personally found valuable in my work. You now have the tools to decide whether to prioritize establishing Engineering values, company values, or if there’s still foundational work to make those values honest before cementing them into formal documentation.

Chapter 2. Measuring Engineering Organizations

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 7th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at vwilson@oreilly.com.

For the past several years, I’ve run a learning circle with engineering executives, and the second most frequent topic is what to measure when their CEO asks for a periodic report on Engineering metrics. Any discussion about measuring engineering organizations quickly unearths strong opinions. Some of the strongly held perspectives that I’ve heard are:

		
	Tracking Agile story points is either essential, or nearly criminal

	

		
	Engineering is just developer productivity, which you can track with SPACE

	

		
	Tracking incident frequency and impact is very valuable, as well as the opposing view that tracking these is a harmful antipattern

	

		
	It doesn’t matter what you track, because no one will read it anyway, so just make a pretty chart

	

All of these perspectives, even the last one, have a grain of truth to them. There is no one solution to engineering measurement, rather there are many modes of engineering measurement, all of which will help you operate as an Engineering executive. You need to measure Engineering to build software more effectively, and to hold your teams accountable for their work. You will also need to measure Engineering to collaborate cross-functionally, and to stay aligned with your CEO.

This chapter will walk through what you should measure for each of these scenarios to efficiently accomplish these varied goals. By the end, you will have a broad perspective on the options available for measuring Engineering, as well as the antipatterns to avoid as you begin measurement.

Note

You can use the Engineering Metrics Update template to report on these measures.

Measuring for yourself

When you enter a new executive role, your CEO will probably make an offhand remark that you will, “need to prepare an Engineering slide for the next board meeting in three weeks.” Preparing that Engineering slide for the Board is a very focusing moment, but take a step back before focusing on what the board wants.

Instead, start by measuring for yourself. What is the information that you need to operate the engineering organization effectively? As you start to document your measurement goals, I recommend starting with these four distinct buckets:

		Measure to plan

		
	what would help you align with cross-functional stakeholders to decide what to ship in a given quarter, half or year? Critically, this is not about how you ship (whether you use Agile, etc); rather, your goal is to support project selection and prioritization. You want a single place that shows the business, product, and engineering impacts of work. You might argue that planning is the product team’s responsibility, but only engineering can represent the full set of projects that engineering works on (e.g. product’s unlikely to roadmap your database migration). Start by tracking the number of shipped projects by team, and the impact of each of those projects.

	

		Measure to operate

		
	what do you need to know to be confident that your software and teams are operating effectively on a day-to-day basis? It can be helpful to think of these as measures of execution quality, and if they dip then it’s cause to consider if you should depart from your longer-term strategy to address the underlying issue at hand.

	Some good places to start are: tracking the number of incidents (each connected to an incident review writeup), minutes of user-facing API and website downtime, latency of user-facing APIs and websites, engineering costs normalized against a core business metric (for example, cost to serve your most important API, calculated simply by dividing API requests per month by engineering spend for that month), user ratings of your product (e.g. app store ratings), and a broad measure of whether your product’s onboarding loop is completing (e.g. what percentage of users reaching your website successfully convert into users).

	

		Measure to optimize

		
	what do you need to know to effectively invest time into improving engineering productivity? If you look at engineering as a system, how would you understand that system’s feedback loops? It’s worth noting that this tends to be how engineers themselves measure their experience working within your company.

	Start with SPACE or its predecessor, Accelerate. Both frameworks identify a number of measurable characteristics that correlate strongly with high productivity engineering efforts. Instrumenting those measurements can be heavy for an initial lift, in which case, start with a developer productivity survey

	

		Measure to inspire and aspire:

		
	how can you concisely communicate engineering’s transformational impact to the business? How would you energize a potential hire, new cross-functional executive, or board member about engineering’s contribution to making the business possible? Maintain a list of technical investments that turned something impossible into something so obvious that it isn’t really worth mentioning. When you speak at company meetings, anchor on these kinds of generational improvements, and try to include at least one such improvement into every annual planning cycle.

	As an example, imagine going from a scenario where you have frequent user-facing instability due to one API endpoint’s poor performance. If you replace that setup with an improved one where each API endpoint is only allowed to take a certain share of overall capacity, then you would have hardened your API to instability cascading across endpoints.

	

A frequent rejoinder when you discuss measurement is whether you’re measuring enough, because there’s always more you could measure: database CPU load, pull request cycle time, etc. The secret of good measurement is actually measuring something. The number one measurement risk is measuring nothing because you’re trying to measure everything. You can always measure more, and measuring more is useful, but measure across many small iterations, and don’t be afraid to measure something quick and easy today.

Measuring for stakeholders

One reason to focus on quick measurements rather than perfect measurements is that there are a lot of folks within your company who want you to measure something. There’s stuff that you find intrinsically valuable to measure, but there’s also stuff that your CEO wants you to measure, that Finance is asking you for, to present at monthly status meetings, and so on. There are also requests from both strategic peer functions (those evaluated on their contribution to shared business goals, such as revenue growth or product adoption) and tactical peer functions (those evaluated primarily on their internal operations, such as a Customer Success function graded on its ticket response time and user satisfaction).

While there are quite a few asks, the good news is that the requests are common across companies, and can usually be mapped into one of these four categories:

		Measure for your CEO or your Board

		
	Many experienced managers, likely including your CEO, manage through inspection, as discussed in Chapter 17, Inspection. This means they want you to measure something, set a concrete goal against it, and share updates on your progress against that goal. They don’t have an engineering background to manage your technical decisions, so instead they’ll treat your ability to execute against these goals as a proxy for the quality of your engineering leadership. If they dig into your measurements, they’ll focus on engineering’s contribution to the business strategy itself, rather than the micro-optimizations of how engineering works day-to-day.

	These measures don’t need to be novel, and your best bet is to reuse for your own purposes. Most frequently that is reusing your measures for planning or operations.

	The biggest mistake to avoid is asking your CEO to measure engineering through your Metrics to optimize. Although intuitively you can agree that being more efficient is likely to make engineering more impactful, most CEOs are not engineers and often won’t be able to take that intuitive leap. Further, being highly efficient simply means that engineering could be impactful, not that it actually is impactful!

	

		Measure for finance

		
	Finance teams generally have three major questions for engineering. First, how is actual headcount trending compared to budgeted headcount? Second, how are actual vendor costs trending compared to budgeted vendor costs? Third, which engineering costs can be capitalized instead of expensed, and how do you justify that in the case of an audit?

	You will generally have to meet finance where they are within their budgeting processes, which vary by company but generally are unified within any given company. The capitalization versus expensing question is more nuanced and deserves a more detailed discussion than I have room for here; I will say that the default approaches tend to be cumbersome, but there is almost always a reasonable intersection between the priorities of Finance, auditors and engineers that slightly disappoint each party while still meeting all parties’ requirements.

	Although I’ve rarely had finance ask for it, I find it particularly valuable to align with finance on engineering’s investment thesis for allocating capacity across business priorities and business units. At some point business units within your company will start arguing about how to attribute engineering costs across different initiatives (because engineering costs are high enough that allocating too many will make their new initiative incur a heavy loss rather than show promise), and having a clearly documented allocation will make that conversation much more constructive.

	

		Measure for strategic peer organizations

		
	Your best peer organizations are proactive partners in maximizing engineering’s business impact. Optimistically, this is because these functions are led by enlightened business visionaries. More practically, it’s because their impact is constrained by engineering’s impact, so by optimizing engineering’s impact, they simultaneously optimize their own. It’s common to find product, design and sales functions who are well-positioned for strategic partnership with engineering. You can usually use the same metrics you need for planning to align effectively with strategic peers organizations.

	

		Measure for tactical peer organizations

		
	While strategic peer organizations may agree to measure engineering on the impact of its work, more tactical organizations will generally demand to measure engineering based on more concrete outcomes. For example, a Customer Success organization may push engineering to be measured by user ticket acceptance rate and resolution time. Legal may similarly want to measure you on legal ticket resolution time. Tactical organizations are not tactical because they lack the capacity for strategic thinking, but rather because their organization is graded in a purely tactical way. If they align with engineering to maximize engineering’s impact, their organization will be perceived as underachieving.

	Tactical organizations are held accountable to specific, concrete numbers, and likewise want to hold engineering accountable to specific, concrete numbers of their own. Find something that you and the peer organization are able to agree upon, identify a cadence for discussing how effective that measure is at representing the real cross-organizational need, and iterate over time.

	

Measuring for stakeholders is often time consuming, and at times can even feel like a bit of a waste. While, even when done properly, it remains time consuming, it ultimately saves time because it consolidates messy, recurring discussions into simpler, more predictable contracts about maintaining specific, measurable outcomes.

Sequencing your approach

The combined list of stuff to measure for yourself and others can be exceptionally long. Almost every executive has a much longer list of things they want to measure than they can resource measuring. You’ll never actually measure everything you want. However, over the course of a year or two, you’ll be able to instrument the most important, iterate on them, and build confidence in what they actually mean.

I tried to create a concrete list of exactly what you should measure first to avoid spreading yourself too thin, but it wasn’t that useful. There’s just too much context for a rote list. Instead, I offer three rules for sequencing your measurement asks:

		
	Some things are difficult to measure, so only measure those if you’ll actually incorporate that data into your decision making. If you’re unlikely to change your approach or priorities based on the data, then measure something simple instead, even if it’s just a proxy metrics

	

		
	Some things are easy to measure, so be willing to measure those to build trust with your stakeholders, even if you don’t find them exceptionally accurate. Most stakeholders will focus more on the intention and effort than the actual output. It’s an affirmation that you’re willing to be accountable for your work, not a testament to the thing being measured.

	

		
	Whenever possible, only take on one new measurement task at a time. Measurement is challenging. Instrumentation can go awry. Data can be subtly wrong. Bringing on many new measures at once takes a lot of time from you or the subset of your organization that has a talent for validating new data.

	

Work through measuring something from each of the three categories to establish a baseline across these dimensions. Then, rather than being finished, you’ll likely want to start again, albeit with a bit less priority and focus. Measurement is not a one-time task, but instead an ongoing iteration. There will always be situational context that may lead you to prioritize a slightly different measurement approach.

That’s fine! Don’t get caught up in following this plan exactly; take the parts that are most useful.

Antipatterns

Measurement is rife with anti-patterns. The ways you can mess up measurement are truly innumerable, but there are some that happen so frequently that they’re worth calling out:

		Focusing on measurement when the bigger issue is a lack of trust.

		
	Sometimes you’ll find yourself in a measurement loop. The CEO asks you to provide engineering metrics, and you provide those metrics. Instead of seeming satisfied, the CEO asks for another, different set of metrics. Often the underlying issue here is a lack of trust. While metrics can support building trust, they are rarely enough on their own. Instead, push the CEO (or whoever remains frustrated despite bringing more metrics) on their frustration, until you get to the bottom of the concern masquerading as a need for metrics.

	

		Don’t let perfect be the enemy of good.

		Many measurement projects never make progress because the best options require data that you don’t have. Instrumenting that data gets onto the roadmap, but doesn’t quite get prioritized. A year later, you’re not measuring anything. Instead, push forward with anything reasonable, even if it’s flawed.

		Using optimization metrics to judge performance.

		It’s easy to be tempted to use your optimization metrics to judge individual or team performance. For example, if a team is generating far fewer pull requests than other teams their size, it’s easy to judge that team as less productive. That may be true, but it might also mean they work in a more complex area of the codebase. Instead, evaluate teams based on their planning or operational metrics.

		Measuring individuals rather than teams.

		Writing and operating software is a team activity, and while one engineer might be focused on writing code this sprint, another might be focused on being glue to make it possible for the first engineer to focus. Looking at individual data can be useful for diagnostic purposes, but it’s a poor tool for measuring performance. Instead, focus on measuring organization and team-level data. If something seems off, then consider digging into individual data to diagnose, but not to directly evaluate.

		Worrying too much about measurements being misused.

		Many leaders are concerned that their CEO or Board will misuse data. For example, they might throw a fit that many engineers are only releasing code twice a week, viewing it as a sign that the engineers are lazy. Recognize that these lines of discussion are very frustrating, but also that avoiding them doesn’t fix anything! Instead, take the time to educate stakeholders who are interpreting data in unconstructive ways. Keep an open mind, as there is always something to learn, even if a particular interpretation is wrong.

		Deciding alone rather than in community.

		I do recommend coming to measurement with a clear point of view on what you’ve seen work well, but that should absolutely be coupled with multiple rounds of feedback and iteration. Particularly when you’re new to a company, it’s easy to project your understanding of your last job onto the new one, which erodes trust. Instead, build trust by incorporating feedback from your team and peers.

If you’ve avoided these, you’re not guaranteed to be on the right path, but you’ve increased your odds.

Summary

In this chapter you learned different ways to measure Engineering, to support planning, operation, optimization, and inspire the team. You’ve further learned to take elements from each of these techniques to measure on behalf of your CEO, peers, stakeholders, and yourself. While many Engineering leaders view measurement as a toilsome obligation, you now have a broad set of techniques to make measurement a fundamental part of effectively leading your organization.

About the Author

Will Larson is the Chief Technology Officer at Calm and held senior engineering leadership roles at Stripe and Uber. He’s the author of An Elegant Puzzle and Staff Engineer, and is a prolific writer on his blog, Irrational Exuberance.

toc01.html
		Preface

		Who This Book is For

		What This Book is Not

		Navigating This Book

		Clarifying Terms

		1. Creating Useful Organizational Values

		What problems do values solve?

		Should engineering orgs have values?

		What makes a value useful?

		How are Engineering values distinct from a technology strategy?

		When and how to rollout values

		Some values I’ve found useful

		Summary

		2. Measuring Engineering Organizations

		Measuring for yourself

		Measuring for stakeholders

		Sequencing your approach

		Antipatterns

		Summary

		About the Author

UbuntuMono-BoldItalic.otf

UbuntuMono-Italic.otf

UbuntuMono-Regular.otf

css_assets/titlepage_footer_ebook.png
Beijing + Boston « Farham « Sebastopol + Tokyo K@AX{={[N

assets/cover_ER.png
OREILLY"

The Engineering
Executive's Primer

IMPACTFUL TECHNICAL LEADERSHIP

Early
Release

RAW &
UNEDITED

WILL LARSON

DejaVuSans-Bold.otf

DejaVuSerif.otf

UbuntuMono-Bold.otf

