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Chapter 1. Policy-as-Code: A Gentle Introduction


A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 1st chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mpotter@oreilly.com.




By some estimates, there have been more than 2.7 trillion lines of code written in the last 60-plus years. How many lines have you written? I don’t know how many lines I’ve written, but I’ve been writing code for almost 30 years. Only in the last 6 years have I used Policy-as-Code (PaC) to better control changes, guide me through complex systems and solutions, and ensure that what I write is what I mean to write, execute, and distribute.


Regardless of system or artifact, PaC has emerged as the standard for how we reduce unwanted, and nondeterministic changes and behaviors, across the systems and solutions we use, build, and support. PaC allows us to codify the guidelines we specify, follow, and impose. PaC inherits its utility from coding standards and best-practices, as well as the controls to implement them.


PaC shows up in and improves many systems and solutions today, from Cloud Computing and Kubernetes, to CICD, DevOps, DevSecOps, GitOps, and Software Supply Chain Security. In this book I examine PaC more closely and present ideas, patterns, and examples of how to use PaC to policy-enable your solutions. For now, in this chapter I introduce PaC concepts, how PaC should trace from your standards, and the characteristics of PaC that can be used to help you choose the right solution for your needs. By chapter end, you will have a process and a checklist that you can apply throughout this book to gauge how additional PaC solutions fit your needs.



What is policy?


You follow policies everyday. Policies help you make decisions, within the context of situations in which you operate. Usually, these policies are based on documented rules and guidelines. You agree to these rules and guidelines as part of employment, or membership in organizations in which you function. Policy is not new to you. Simply put, policy is a planned system of rules and guidelines that direct users and automation to execute within purposeful boundaries. Policy sets guardrails that both enlighten and limit.


I would add that with policy we try to achieve desired results or outcomes. At work, getting you to follow company policy is management’s way of achieving desired results or outcomes, like making sure that you properly document and report your time away from work.


Since policies in this book will be focused on Information Technology (IT) systems, we need a more IT focused policy definition. According to Torin Sandall, in his 2017 Medium article, “What is Policy? Part One: Enforcement”,



“In the context of software systems, policies are the rules that govern how the system behaves.”




I would add that policies also govern how actors behave within those systems. Policies define rules, and these rules specify how systems behave, as well as how they are configured, used for their defined purpose, and secured.


A major theme of this book is using policy and policy tools to prevent unwanted changes and enforce best practices in our systems and artifacts. It just makes sense that we adopt a policy definition that better covers the scope of our needs.


Now that we understand the basic idea and purpose of policy, let’s define a policy, and its structure and characteristics.



What is a policy?


We can easily model a policy by decomposing it into parts that make sense for our use. At a high level our policy model is made up of the following parts:



		Policy Name

		
	Used to label the policy for future reference

	

		Policy Purpose

		
	The reason this policy exists and what it tries to enforce or address

	

		Policy  Situation

		
	The context (including system and environment) in which the policy will be used

	

		Policy Rules

		
	An individual control or prescribed behavior, policies can have multiple rules

	

		Policy Actions

		
	Actions taken if policy rule is violated (not always part of the policy engine)

	




Next we will more closely examine the characteristics of policies that make them so useful and the declarative languages they use.



PaC policy characteristics


In the context of Policy-as-Code (PaC), policies have other characteristics that make them useful in IT systems. First, PaC policies are written, stored, managed, and interpreted as code artifacts. This makes them easier to manage and deploy to systems with the same automated tools and processes you may already use for application delivery.


Another important aspect of PaC policies, regardless of the underlying implementation, is their syntactical familiarity. As you will see later when you explore the individual PaC solutions in more detail, different policy languages enhance the adoption of PaC. For example, if your organization has deep JavaScript capabilities, then you might choose a PaC solution underpinned by the JavaScript language.


The declarative nature of PaC policies, or their configuration wrappers, aid in their adoption. The more declarative the PaC policy language, or configuration wrapper, is, the more intuitive the solution tends to be. However, how declarative or intuitive a language — or lexicon thereof — is to me is subjective, based on my knowledge, experience, and use cases. You may have different ideas about the declarative and intuitive natures of the languages you use or prefer.





The role of JSON and YAML


I think we can all agree that JSON and YAML are examples of the two most declarative and intuitive languages widely used in modern IT systems. In fact, many cloud computing and Kubernetes engineers use these languages on a daily basis to define and declare their configurations.


It’s not by accident that PaC tools have embraced these two languages to deliver policies to systems. In my experience, PaC policies written in JSON or YAML tend to be more declarative, expressive, and even self-documenting. However, even if the PaC policy language is not JSON or YAML, policy artifacts are usually delivered or configured wrapped with JSON or YAML constructs, making their use or configuration easy to understand.


Finally, given the structured nature of JSON and YAML, PaC naturally parses and evaluates these artifacts as part of policy matching and evaluation. Data, regardless of what it represents, is better suited for PaC evaluations when it can be structured in JSON or YAML. And, JSON and YAML can be converted to and from each other very easily.


Next, let’s see how we can avoid unwanted actions or changes by using PaC to erect guardrails.







Guardrails - preventing the unwanted


As I mentioned in the preface of this book, in the past I worked with organizations that used PaC to build boundaries for cloud computing operations. When it comes to preventing unwanted changes or behaviors by users or automation, these boundaries act as guardrails. If operations stay within the guardrails, like you normally drive along a highway, then those operations are not restricted. However, once those operations stray from the prescribed rules, set by policies, and try to operate outside the guardrails, then those operations are restricted by rules, enforced by policies.


Guardrails allow unrestricted flow between their edges. In the case of cloud computing, infrastructure changes fast, to meet business needs. Practitioners that manage security, compliance, and governance, erect guardrails, in the form of controls, to prevent unwanted behaviors that could put the business at risk. Regardless of the implemented control, there is a strong desire to not hinder allowed progress.


Many organizations put controls in place to determine how compute instances are provisioned. This helps prevent unwanted changes, regardless of the users’ intentions, or experience and knowledge levels. For example, it is common to see controls that prevent compute instances from existing, if they are associated with public IP addresses. The controls act as guardrails. Given your earlier policy model, you can visualize the policy for disallowing compute with a public IP address, seen in Figure 1-1.


[image: Policy model   ComputeNoPublicIP]
Figure 1-1. Policy model - ComputeNoPublicIP




In this example, when provisioning compute, as long as you stay within the guardrails, your actions proceed, unrestricted. However, if you create compute with a public IP, your progress is stopped, and the compute you provisioned is diabled or even terminated. Figure 1-2 shows a simple activity diagram of the flow.


[image: ComputeNoPublicIP policy activity diagram]
Figure 1-2. ComputeNoPublicIP policy activity diagram




Over time, guardrails teach you the correct flow and how to proceed without restrictions. Organizations, as a whole, move faster and more securely, when they operate between prescribed boundaries with low friction.


Now let’s see how we can use PaC to prevent the unwanted by reacting to the unplanned.





Plans - reacting to the unplanned


Users are constantly making changes to systems and artifacts. It’s next to impossible to judge what they will try next. Curtailing the actions of bad actors is even more difficult. However, it’s not impossible to determine what both are allowed to do next. Policies, enforced by PaC engines, construct a Defense-in-Depth (DiD) strategy, adding a layer of countermeasures, regardless of the source of change.


For example, let’s consider the scenario where you operate and maintain a Kubernetes cluster, or collection thereof. Even if users that deploy to your cluster(s) are in your organization, you won’t always have the control over their code or container images that you need in order to prevent their containers from compromising the integrity of your cluster(s). You can specify certain practices to prevent their containers from behaving badly, such as security settings, network settings, or even from where container images are allowed to be sourced. However, you cannot rely on users to follow your instructions; moreover, they may not have the requisite Kubernetes knowledge. Instead, you need guardrails.


To counteract the possibility of rogue code or containers overwhelming your cluster(s), you need policies in place, underpinned by policy engines that integrate with Kubernetes. We will explore this topic in more detail in later chapters, but for now, below are examples of baseline policies that you could implement:



		
	Limit sourcing of container images from only approved registries

	

		
	Enforce appropriate Kubernetes securityContext elements at the Pod and Container levels

	

		
	Prevent unwanted network egress and ingress from and to Pods by enforcing appropriate Kubernetes Network Policies

	

		
	Prevent Pod use of host networking and ports

	

		
	Prevent Pod use of host processes and namespaces

	

		
	Enforce container resource requests and limits

	




All of the above policies fit your earlier defined policy model. You can apply them to prevent the related unwanted changes to your clusters and the possibility of rogue code causing problems. Even if rogue code, or unwanted or drifted binaries, exists within a container, the chances of it causing harm are reduced, if not eliminated. This is part of a DiD strategy, with a focus on least-privilege. With these policies, the containers only get permissions and resources that they need to function correctly. With this approach, you actually react to the unplanned.


Note

Policy-as-Code (PaC) is just one part of a successful Defense-in-Depth (DiD) strategy. For more information about DiD, please start with NIST SP 800-53.




Now that we have defined policy and policies, and explored how they can help prevent the unwanted and react to the unplanned, we need to shift gears and explore how Open Source Software plays a key role in PaC.







Adopting open source software


When I hear the term Open Source Software (OSS), I think of software that is publicly accessible, such that anyone can review the code, or even modify it. Of course, this is subject to OSS licenses, and contributor guides and agreements. I also think of community, and with a larger project development community comes the possibility of greater stability and security.


The majority of PaC solutions are open source projects. Have you ever worked on, or contributed to, an OSS project? Have you ever had to adopt an OSS project for your needs? There are certain advantages and disadvantages to OSS, and not all OSS projects are created equally.


In my opinion, the two biggest advantages of OSS are the potential cost savings it can provide and its scale of contributions. Many OSS projects and libraries are used by organizations to reduce overall development effort. Someone else already wrote it, and if it works for your needs, then why should you duplicate the effort? All things being equal, you can move faster with OSS. Moving faster by reducing development effort usually means cost reductions.


By their nature, mature OSS projects can have a larger number of maintainers and contributors. This means that there are more eyes on the project, and contributions come from different perspectives. OSS project maintainers run the project, and guide the project, keeping to the defined project charter and direction. Contributors provide suggestions and potential changes, and are force-multipliers for OSS projects; they increase the effectiveness of project activities.


More involvement means more control and less chance of something being missed. While this doesn’t mean that you will not need to review and manage the project artifacts, like you would any other software project, it does increase the likelihood that major issues will be caught and fixed sooner.


Note

For more information about OSS maintainers and contributors, please see “How open source maintainers keep contributors—and themselves—happy”, Klint Finley, The Readme Project




Now that we know why we should use OSS, let’s balance the equation by considering some of the disadvantages of OSS.



Disadvantages of OSS


OSS projects are certainly not without disadvantages and risks. In fact, if I let it take over, the topic of OSS risk could consume most, if not all, of this book. Far and away the biggest disadvantage with OSS is the potential lack of support. I am not saying that OSS maintainers and contributors don’t support their community of users; my experience has been quite the opposite. However, OSS maintenance and contributions are usually done as side-efforts; maintainers and contributors have day jobs, outside of the projects they support.


While there are exceptions, the conflict between jobs and projects naturally limits how quickly maintainers and contributors can respond to requests. This may not work for organizations that are used to enterprise support agreements or require more deterministic response times for support requests. While third party enterprise support does exist for some OSS projects, this is not the norm.


When you use an OSS project, and you’re not a maintainer, you lack definitive control over the direction of the project. You have to decide if that lack of control, supplanted by a limited sphere of influence, fits your needs. In a lot of instances, it is a manageable compromise.


Note

For more information about OSS risk, please see “Understanding the Risks of Open-Source Software”, a whitepaper from Contrast Security.




OSS is not perfect, but used correctly it is still an enabler, if not a force-multiplier. Now, let’s look closer at some of the OSS aspects we should consider when deciding if we should use OSS projects.





Caring and feeding of OSS


While OSS offers advantages over internally developed projects, the use of OSS requires a certain caring and feeding. Below are some (not all) of the issues, with which you will need to deal, should you use OSS.



		Licensing

		
	Make sure that OSS project you want to use has a license that permits the way you want to use it. Can you fork it, if need be? Most organizations have an Open Source Program Office (OSPO) that defines what licenses can be used internally.

	

		Security

		
	Is security engineered into the project?

	

		Maturity

		
	How mature is this project? How many and what types of releases have been cut? Is it generally available (GA)? What is the rate of bugs and requested enhancements? How does the project handle changes?

	

		Dependencies

		
	What dependencies does the OSS project have? Are those dependencies documented? Are they safe?

	

		Active Support

		
	How active are the maintainers of the OSS project you are considering? When was the last time contributions were made to this project? Are they regular? How soon will bugs or vulnerabilities be corrected? Could you continue to support it if you needed to? Does your organization require a more formalized support agreement for external software?

	

		Project Direction

		
	Where is the project headed? Does your use case make sense for the project direction, or is it just an edge case?

	

		In-house Capability

		
	Are you or your team familiar with the technology or languages used on the OSS project? Can you all review the code and accurately decide upon its reliability and fitness for your use? Do you have the systems in place to store, manage, and vend the OSS project artifacts for secure and reliable use within your organization? Do you have the tools to thoroughly and reliably scan and detect vulnerabilities in OSS?

	




Tip

OSS projects should only be forked, beyond the short-lived forks used for pull-request contributions, as a last resort. Forking an OSS project is usually done to steer the project in a different direction and eventually replace it.




While necessity may be the “mother of invention” (Plato), desperate decisions lead to mistakes and misunderstandings. If you choose to use OSS for any reason, PaC or otherwise, choose to embrace the holistic effort involved in managing the OSS artifacts, as if you developed them yourself. And, if you need more influence over the OSS project, plan on contributing to the project, or even maintaining, if need be.


If you have an Open Source Program Office (OSPO), leverage their knowledge and experience to better guide you along the path of least resistance when it comes to consuming OSS projects. The OSPO has been there and done that, and is charged with helping your organization successfully and securely use OSS.


Note

For more information about OSPO and the community of practitioners, please see the “Talk Openly Develop Openly” organization.




Moving on from OSS concerns, let’s look at how PaC is linked to your organization’s standards and controls.







Standards and controls


Most organizations have groups that manage policies and standards, for example cyber security. These groups create their own standards and adopt recognized standards and best practices from outside the organization, from organizations like the Cloud Security Alliance (CSA), the Center for Internet Security (CIS), and the National Instiute of Standards and Technology (NIST). Additional standards bodies like the Payment Card Industry (PCI) are referenced as needed, based on business focus.


Standards are normally traceable, upstream, to organizational policies. The difference between organizational policies and standards is that policies are usually more focused on communicating organizational or managerial intent, where standards are usually focused on the specific and measurable requirements implied and needed by the policies.


Requirements defined by standards are followed by the organization. To govern, manage, and measure compliance to standards, organizations use internal, and sometimes external, Governance, Risk, and Compliance (GRC) teams. GRC teams focus on specific areas of the business, and in some cases, specific IT systems. In the case of IT, GRC teams work with systems and technology SMEs to define the controls needed to enforce requirements.


For example, your company’s Cloud Engineering team manages the use of public cloud services. To provide a secure and well-managed cloud computing experience, they work with GRC to define a set of controls that match the requirements set by organizational standards. The SMEs advise GRC about what is possible in the cloud. The working group, formed by the collaboration of GRC and Cloud Engineering, track the standards and associated controls through a matrix. In the example Standards and Controls matrix, seen In Table 1-1, the cardinality between standards and controls is one-to-many. Standards can have multiple controls.



	Table 1-1. Governance, Risk, and Compliance (GRC) Standards and Controls Matrix
	
		
				Standard
				Focus Area
				ID
				Control
				Status
		

	
	
		
				Non-customer-facing compute should not directly access endpoints beyond corporate network
				Information Security - Cloud Computing
				ISCC-1
				Prevent public IP addresses from being assigned to compute
				Approved
		

		
				 
				Information Security - Cloud Computing
				ISCC-2
				Prevent NAT from being associated with private subnets
				Under Development
		

	



The SMEs on the Cloud Engineering team agree to implement the controls, and manage internal efforts to build, test, and deploy the respective controls. The GRC teams are project stakeholders that guide Cloud Engineering on the requirements. GRC reviews the controls and confirms that the controls meet requirements.


The Cloud Engineering team uses PaC to implement the controls agreed to by the GRC working group. The PaC controls emit logs and messages that serve as auditable artifacts that are used by the SMEs to prove to GRC that the implemented controls are enforcing behaviors defined in the requirements. Similarly, GRC uses the auditable artifacts to satisfy management, and internal and external auditors.


Given the model in this example, there is traceability from broad organizational policies, to focused PaC policies used to implement controls. The pyramid model in Figure 1-3 depicts the hierarchy as well the narrowing of focus.


[image: Policy Traceability and Focus Pyramid]
Figure 1-3. Policy Traceability and Focus Pyramid




PaC policies enforce controls by preventing unwanted changes and behaviors, and reinforcing desired behaviors and practices. Simply put, PaC implements controls. Usually controls implemented by PaC will originate from standards, created or adopted by your organization. These controls should also be traceable and auditable.


Next, we will explore how PaC is changing how we leverage and extend code artifacts.





Policy-as-Code for Everything-as-Code


During the last several years, we have witnessed a transformation of sorts, with respect to how we provision and use IT resources; we moved and are moving to Everything-as-Code (EaC). Many of the processes we now use to provision, mutate, or validate IT resources use *-as-Code artifacts. For many of us, gone are the days of waiting weeks or months to receive compute capacity. Now, we just dial it up, so to speak, by applying Infrastructure-as-Code (IaC) artifacts, like JSON or YAML, or even Terraform plans, through our public or private cloud services. We can even provision bare-metal resources now, using tools like Tinkerbell.


While there’s usually a console that we can still use to provision our resources, using IaC affords us the opportunity to manage our infrastructure resources the same as we do our application code. We now use source-code management tools, as well as Continuous Integration (CI) tools, and even GitOps, to manage and apply infrastructure. And, while we usually apply IaC declaratively, we have now even blurred the lines between the imperative and declarative, and combined the two with tools like the Cloud Development Kit (CDK) from Amazon Web Services (AWS), or the Cloud Development Kit for Terraform (CDKTF) from HashiCorp.


Regardless of what you are doing or using, if you can do it with code, then you gain several tangible benefits that are lost when you perform manual tasks. For example, you can utilize the same single-source-of-truth (SSOT) that centralized source code management provides.


Source code management and CI tools provide automation to manage your *-as-Code artifacts. You can automate testing, as well as source code scanning. With automated tests and PaC, you apply policies to code to evaluate changes, before they are allowed to be merged. More automation leads to quicker issue detection, and allows you to fail and succeed faster, with more deterministic outcomes. In other words, you get more repeatability and reproducibility. And, as I have said before, less surprises are generally a good thing.


Applying PaC to your source code also helps you implement Compliance-as-Code (CaC). With CaC, compliance policies are used as tests, and often used in CI pipelines to validate *-as-Code artifacts before they can be used for downstream changes.


Security-as-Code (SaC) is related to CaC, and can also benefit from PaC. According to Jim Bird, in his book, “DevOpsSec”, 2016,



“Security as code is the practice of building security into DevOps tools and workflows by mapping out how changes to code and infrastructure are made and finding places to add security checks, tests, and gates without introducing unnecessary costs or delays.”




In my opinion, SaC, as defined by Jim Bird, implies PaC. PaC can be used to evaluate the artifacts and produce the attestations that are needed by DevOps gates. As long as the attestations (evidence) are parseable (JSON, YAML, etc.) by the PaC policy engine, then PaC suits this use case.


Over time, the PaC policies, used for CaC and SaC, form guardrails, just like test cases did for Test Driven Development (TDD). Ongoing automation of tests and PaC evaluations increases reliability of your code bases, and reduces unwanted variances from reaching your production environments.


Now that we have explored the use of PaC with the evolving EaC landscape, let’s move onto the engines and languages that run and build policies for our needs.





Policy engines and languages


As part of a PaC solution, policy engines perform the heavy-lifting, by interpreting the policy language and evaluating the data. According to Bruce A. Fette, in his 2009 book, “Cognitive Radio Technology”, Second Edition:



“A policy engine is a program or process that is able to ingest machine-readable policies and apply them to a particular problem domain to constrain the behavior of network resources.”




I like this definition as it surfaces three features that I think correctly characterize PaC policy engines:



		
	Ingesting machine-readable policies (Policy-as-Code)

	

		
	Applying policies to specific problem domains (data)

	

		
	Constraining behaviors (outcomes)

	




A policy engine ingests the policy to be used in the evaluation, data to be evaluated, and the query to be used. Then the policy engine evaluates the supplied data against the supplied policy, and produces an answer, used by the system, to which the policy engine is integrated or serves. Policies are written to match the data they evaluate; moreover, that matching happens before the policy evaluates the data, and after any input processes, such as parsing. Figure 1-4 shows a flow diagram of a typical policy-engine evaluation process.


[image: Policy Engine Evaluation Flow]
Figure 1-4. Policy Engine Evaluation Flow




In Figure 1-4, if a policy does not match the given data, the policy engine might return an undefined or empty object, an error, or even a False value. Some policy engines support the ability to load policies and supporting data asynchronously, and not just during evaluation cycles. And, there are policy engines that will even look up external data as part of the evaluation cycle.


In the context of a policy engine, policy language is the language in which the policy is written, and not necessarily the language in which the engine is written. And, not all policy engines use the same policy languages. Below is a list of policy engines that I cover in this book, and their associated policy languages.



		
	Cloud Custodian (c7n) - YAML

	

		
	jsPolicy - JavaScript

	

		
	k-rail - Golang

	

		
	KubeWarden - Rust

	

		
	Kyverno - YAML

	

		
	MagTape - Rego

	

		
	Open Policy Agent (OPA) - Rego

	

		
	OPA/Gatekeeper - Rego and YAML

	




I will visit each of these later in more detail, but for now, let’s look at how we can choose the right PaC solution for our needs, based on language as well as other factors.





Choosing the right PaC solution


Which policy engine should you use? The answer to that question depends on several factors. In fact, you may have to read most of this book and try multiple PaC solutions before you are ready to make that choice. The good news is that choosing the correct PaC solution, the one that best suits your needs, is not necessarily a one-way door decision. More to the point, it’s not unheard of for users to deploy multiple PaC solutions; they can coexist in the systems they serve.


The best practice for choosing the right PaC solution starts with honesty. Be honest with yourself, your team, and your organization. Don’t just choose what you think is the coolest solution, or even the most marketed, adopted, or well-known. Choose the solution that best fits your selection criteria, all (or at least the majority) of your selection criteria. Understand and define your must-haves vs. your should-haves, or even nice-to-haves. Weighting selection criteria is good for this classification process. Base your selection criteria on true representations of the needs and capabilities of your organization.


Know your use cases, intimately. Arguably, the next step in choosing the correct PaC solution for your needs is matching your use cases. This is followed closely by matching the user experience (UX) you will need, to foster the broadest acceptance and adoption within your organization. Obviously, part of the UX match is defining your users and understanding their needs. The use case and UX matching exercises help you avoid erroneous choices that result in solution mismatch.


Don’t try to boil the ocean with your chosen PaC solution. Be weary of edge cases. Even if the PaC solution you are considering satisfies a specific use case that is troubling your organization, it still may not be the right fit if it is an edge case, not broadly adopted or supported.


For example, consider the use case of code linting. While it’s true that some PaC solutions have linting use cases, such as OPA linting Rego, most PaC solutions are not suitable for that use case and the associated UX required for success; it’s not their focus. Linters are code-specific. For example, the OPA/Rego use case requires that Rego first be parsed into JSON.


Even if the PaC solution fits this use case, the provided UX may not be the best fit. For a good UX, linters are usually tightly integrated to integrated development environments (IDE), like Visual Studio Code or IntelliJ IDEA. Linters are also used by CI tooling, processing code integrations. While certain PaC solutions may work as linters, the use case may be an edge case. Unless you are really looking to pioneer that use case, there are simply better tools that produce better UXs.


Note

Later in this book we will explore PaC and Microservices, including the use case for linting API specifications with PaC solutions.




In the next section I discuss in detail the factors for PaC selection, how to construct your criteria, and how you can make data-driven decisions, based on how well factors meet your criteria.



Factors, criteria, and scorecards


When it comes to PaC selection criteria, there are many factors to consider. Even though the choice is relatively reversible, reversing the decisions is not without cost or business impact. So, it’s important to align the PaC selection factors, related to the choices, with your selection criteria.


Below is a non-exhaustive list of possible PaC selection factors. These factors, along with use cases and organizational-specific drivers, are used to define your relative selection criteria and create a corresponding scorecard. Your scorecard enables you to make informed and data-driven decisions. Keep in mind that your decisions may mean using multiple solutions; PaC solutions are not necessarily mutually-exclusive. For example, you may decide on one PaC solution for cloud computing IaC, while you use a different PaC solution for CICD or Kubernetes.



Example PaC selection factors:


Below are just some of the possible factors that you will need to consider before deciding on which PaC solution to adopt.



		Alignment - Organizational Capabilities

		
	Given the team(s) that will launch and manage the PaC solution, how well does the technologies (languages, etc.) used by the solution match the technical capabilities of said team(s)?

	

		Alignment - Organizational Strategies

		
	How well does the PaC solution match the internal strategies for how tools and applications are to be adopted and managed?

	

		Alignment - Organizational Standards

		
	How well do the controls to be built with the PaC solution fit the needs, at least partially, of the internal standards driving this decision?

	

		Analytics/Logging/Metrics

		
	How well does the PaC solution provide adequate logging, metrics, and analytics to support internal requirements, including audits?

	

		Automation (CICD)

		
	Can the PaC solution be used in CICD pipelines, shifting left from the target system? If so, how? Can deployment of the engine and policies be automated?

	

		Available Examples and Patterns

		
	Given your desired use cases, are there sufficient examples and patterns available for testing, evaluation, and proofs of concept?

	

		Community Adoption

		
	Who is using and supporting this PaC solution? How much adoption has the project seen?

	

		Complexity

		
	How difficult is it to install and manage this solution within your environments?

	

		Documentation

		
	How well is the solution documented? How understandable is the documentation?

	

		Operation Modes

		
	PaC solutions differ in how they can be used (server, libraries, CLI, etc.). What modes of operation are supported and do they fit your needs, and even enhance your practices?

	

		Project Recency

		
	How recent are contributions and changes to the project? Is the project still viable?

	

		Reporting

		
	Does the solution provide a reporting feature? Does it use or integrate to standard reporting tools? How well does it support data exchange standards, like OSCAL?

	

		Solution Extensibility

		
	Can you extend the solution with scripts, languages, or modules? How easy is this process?

	

		Solution/Project Maturity

		
	Has the solution/project gone through enough iterations? Is it mature enough to be operationalized? Are there examples or documentation for operationalizing the solution?

	

		Support Model

		
	How well is it supported? Can you purchase enterprise support, if need be?

	

		Use cases (IaC, Kubernetes, etc.)

		
	What are the primary use cases supported by the solution? Do they match your use cases?

	

		User Experience (UX)

		
	How easy is it to use? Is it intuitive and familiar? How much training will be required to deploy the PaC solution.

	




Now that we have factors, let’s look at how we can use them to create our selection criteria, and score PaC solutions.





PaC selection scorecard


Once the selection factors are defined and understood, then you can derive your selection criteria and create your scorecard. Selection criteria are composed of the selection factors relative to your situation, annotated with a weight. The factor weight indicates how important the individual factor is to your organization. For factors of zero importance, you can either weight the factor accordingly (with a zero), or leave it off the scorecard entirely. The fit score, Figure 1-5, is self-explanatory; it indicates how well the PaC solution selection criterion fits your needs.


[image: PaC Solution Selection Scorecard]
Figure 1-5. PaC Solution Selection Scorecard




In the scorecard in Figure 1-5, the Weight column contains values 1-3, indicating which of the three classifications (should-have, nice-to-have, must-have) are applied to the Selection Factors, to form the Selection Criteria, chosen for the evaluation. The scorecard includes evaluations for two solutions, side-by-side. You multiply the Fit columns in each evaluation section by the common Weight column to determine the individual Score for each Selection Criteria. The Fit column uses values 1-5. To indicate a bigger difference in the evaluations, you could change the ranges in the Weight and Fit columns to be larger, or even replace the base-10 numbers with Fibonacci numbers.


With this scorecard approach you can evaluate and choose the right solution for your needs. You use the scorecard to record your data-driven decisions, based on your evaluations. Your evaluations derive from active testing and/or proofs-of-concept. For OSS projects, the respective project communities can provide valuable assistance and insight about potential use cases and project direction.


Finally, you can use charts to visualize and communicate your decisions. Figure 1-6 is an example of a Lollipop Chart that clearly shows your aggregate evaluation without exposing your selection criteria details. This is ideal when presenting to stakeholders with limited time or attention spans. For more detail, I would suggest a radar chart, area chart, or even a radial-lollipop chart.
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Figure 1-6. Lollipop Chart Depicting Overall Scores




Now that we are equipped with a method to evaluate different PaC solutions, I wanted to introduce the Cloud Native Computing Foundation (CNCF) and touch on how they indicate the maturity of their “accepted” OSS projects.









The Cloud Native Computing Foundation


The Cloud Native Computing Foundation (CNCF) is part of the Linux Foundation. The CNCF describes itself as. The CNCF is a hub for open source and vendor-neutral projects that have been accepted by the CNCF. Part of their focus is to drive cloud native adoption.


According to the CNCF charter, the CNCF was created with a mission, “...to make cloud native computing ubiquitous.” What is Cloud Native Computing (CNC)? You are free to review the CNCF definition of Cloud Native Computing at your leisure.


For me, the CNCF definition of CNC describes technologies that we use for sustainable modern application development and delivery. Some of the CNCF characteristics I find most important and relevant to this book are:



		
	Automation

	

		
	Cloud computing (public, private, and hybrid)

	

		
	Frequent and deterministic changes

	

		
	Immutability

	

		
	Manageability

	

		
	Observability

	

		
	Scalability

	

		
	Security

	




CNC technologies are desirable for most organizations. However, even with the CNC definition, organizations may struggle to identify CNC projects and technologies that are ready for immediate consumption. This is where the CNCF comes in. Given the CNCF charter and CNC definition, only projects that meet the CNCF rigorous CNC guidelines are considered for membership into the CNCF. However, with this membership comes the label that these projects have a certain level of readiness to be used in CNC use cases.


Project maturity is an important aspect of evaluating OSS projects, and as I mentioned earlier, Solution/Project Maturity is part of my recommended PaC Selection Factors. In the context of the CNCF, the de facto indication of project maturity is found in the three levels of CNCF projects, Sandbox, Incubating, and Graduated. As we progress in the following chapters, I will point out the CNCF projects and their corresponding CNCF project level.



Out of scope

I did not set out to write an exhaustive tome, covering all the possible IT rules and policy tools found today. In fact, I purposefully de-scoped the rules and policy tools that are CSP-specific. Some of the tools and services that I explicitly do not cover in this book are:



		
	AWS Service Control Policies

	

		
	AWS Config

	

		
	Azure Policy

	

		
	Google Cloud Platform (GCP) Organization Policy Service

	

		
	Identity and Access Management (IAM) Policies

	




For the purposes of this book, I meant to cover PaC and PaC solutions that are, for the most part, vendor-neutral and CSP-agnostic.







Summary


We’ve covered a lot of information in this introduction to PaC, but we have just scratched the surface. In this chapter you were exposed to policy, policies, and Policy-as-Code (PaC). We discussed policy engines and languages, some uses of PaC (such as guardrails), as well as how to select the best PaC solution for your needs. With a general understanding of PaC and against the backdrop of OSS and the CNCF, we can now dive deeper into PaC solutions for the systems you use, build, and support.


Throughout the remainder of this book, I will present, in considerably more detail, specific PaC solutions, and their respective use cases, technology, and overall functionality. As you progress through this book, please take with you the PaC Selection Scorecard, to apply it along the way. I covered it in this first chapter, so that you could use it throughout the rest of this book as a preliminary guide for the multiple PaC solutions to follow. Finally, In the interest of not regurgitating already published documentation, I will focus on the practical knowledge of the upcoming PaC solutions, and only reference the documentation as needed.


In the next chapter, Chapter 2 - Open Policy Agent (OPA), I will begin my detailed presentation of PaC solutions with a deeper dive into Open Policy Agent.






      Chapter 2. Open Policy Agent

      
      A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 2nd chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mpotter@oreilly.com.




      I started using Open Policy Agent (OPA) in 2018, almost two full years after the project first started, and just after the project was accepted into the CNCF. Now OPA is a Graduated CNCF project, which can be seen as an attestation to its overall maturity as a PaC solution.

      When I think of OPA, the two things that immediately come to mind are general purpose and unification. OPA is domain agnostic, that means that it’s not focused on one single data domain or stack. In fact, OPA doesn’t come with built-in and ready-to-use Kubernetes or cloud computing policies. You pass it policies, data, and queries. It matches policies to the data you send it, and evaluates said data with the policies based on queries you provide.

      Because OPA is domain agnostic, it is general purpose. And, because of OPA’s general purpose utility, you can pass input (data) and policies (data), regardless of the domain or stack you are evaluating. This general purpose leads to PaC unification across domains and stacks. In other words, since OPA is domain agnostic, it can be used across many domains and stacks, thereby unifying the different policy needs, using one PaC solution.

      As we explore OPA in this chapter, we will start with the requisite Hello World example. Then we will move on to putting OPA through its paces using its different operational modes with the OPA Command Line Interface. Along the way we will discover bundles, bearer tokens, and WebAssembly. Where applicable, I will show examples of running OPA as a container using Docker Desktop for Mac. Then we will discuss Rego, OPA’s powerful policy language. Finally, we will survey the different means by which OPA can be extended and integrated.

      Now, it’s on to Hello World!

      
        Hello world

        Usually the quickest way to familiarize yourself with a new technology is to install it and try a Hello World example. However, I have found that the easiest way to understand how OPA evaluates data with policies and queries, is to use the Rego Playground. We will dive deeper into Rego (OPA’s policy language) and the Rego Playground later in this chapter, but for now, this example should help you understand where we’re headed.

        
          [image: OPA Hello World in the Rego Playground]
          Figure 2-1. OPA Hello World in the Rego Playground

        

        In the Hello World example in Figure 2-1, I wrote the Rego policy in the left pane of the interface. I entered the JSON data to be evaluated into the upper-right INPUT pane. The evaluation produced the outcome of the evaluation and deposited it into the lower-right OUTPUT pane. The output indicates that the input data we provided was matched and evaluated by the policy we wrote. Since the output was “hello”:”world”, the evaluation was true.

        You may also notice that the Rego Playground was built by Styra, the creators of OPA; this is annotated in the lower left corner of the screen. In the lower right corner of the screen is the version of OPA that is currently running in the Rego Playground, at the time of this writing.

        Now that we have the requisite “Hello World” example covered for OPA, let’s look at how we can install OPA and run its different modes of operation.

       

        
        
          OPA installation and modes

          The easiest way to install OPA on my Mac was via Homebrew, with the following command:

          $ brew install opa

          I am using an arm64-based Mac and Homebrew auto-detected the architecture and installed the correct binary. You’ll notice that the build information is missing from the output of the opa version command. This is typical for the arm64 architecture binaries as they are statically built.

          $ opa version
Version: 0.44.0
Build Commit:
Build Timestamp:
Build Hostname:
Go Version: go1.19.1
Platform: darwin/arm64
WebAssembly: unavailable

          To see build information, I pulled the Linux/AMD64 rootless OPA container image from Docker Hub. Then I ran the command using the container and Docker.

          $ docker run --rm --platform linux/amd64 openpolicyagent/opa:0.44.0-rootless version
Version: 0.44.0
Build Commit: e8d488f
Build Timestamp: 2022-09-07T23:37:30Z
Build Hostname: d26a30e452a1
Go Version: go1.19.1
Platform: linux/amd64
WebAssembly: available

          You’ll notice that along with the build information now present in the output, WebAssembly is also now available.

          You can also get started with OPA on your machine by downloading and installing the latest release, from the OPA GitHub Project, using a script similar to the one below. In the curl command the -o flag was used to select the file name, and the -sL flags to download the file silently and tell curl to follow any HTTP redirects.

          $ curl https://github.com/open-policy-agent/opa/releases/download/v0.44.0/opa_darwin_arm64_static -o opa -sL
chmod +x opa

          Tip

            Always verify the checksum of downloaded files. On my Mac I could use the shasum -a 256 opa command, and compared that output to the sha256 checksum stored with the OPA binary file.

          

          Before we dive into OPA modes, let’s explore the OPA Command Line Interface.

          
            OPA command line interface

            Once the OPA binary is installed, you can run OPA to see its Command Line Interface (CLI) commands.

            $ opa
An open source project to policy-enable your service.
Usage:
  opa [command]
Available Commands:
  bench        Benchmark a Rego query
  build        Build an OPA bundle
  capabilities Print the capabilities of OPA
  check        Check Rego source files
  completion   Generate the autocompletion script for the specified shell
  deps         Analyze Rego query dependencies
  eval         Evaluate a Rego query
  exec         Execute against input files
  fmt          Format Rego source files
  help         Help about any command
  inspect      Inspect OPA bundle(s)
  parse        Parse Rego source file
  run          Start OPA in interactive or server mode
  sign         Generate an OPA bundle signature
  test         Execute Rego test cases
  version      Print the version of OPA
Flags:
  -h, --help   help for opa
Use "opa [command] --help" for more information about a command.

            While I won’t cover every CLI command, you can see that the OPA CLI comes with many functions to run the different OPA operational modes, as well as manage policies. Different versions of OPA obviously have different capabilities. For this book, I used the latest version of OPA available to me, v0.44.0. If you want to see the capabilities of the OPA version you have installed, then you can run the capabilities command as seen below.

            $ opa capabilities -–current > opa.json

            In the above command, I directed the current OPA capabilities output to a (rather large) JSON file for easier reading. A snippet of the file appears below. It starts with listing the built-in functions that are included in the OPA version I installed. We will cover built-in functions later in our section on the Rego policy language.

            {
 "builtins": [
  {
   "name": "abs",
   "description": "Returns the number without its sign.",
   "categories": [
    "numbers"
   ],...

            Next up we will use the OPA CLI to run OPA in read-eval-Print loop mode.

          

          
            OPA read-eval-print loop

            The OPA CLI includes a Read-Eval-Print Loop (REPL) tool, that is similar to that of Python, Ruby, or Java (jshell). With the OPA REPL interactive shell you can run OPA commands for experimentation, or even policy prototyping and development. You invoke the OPA REPL with the run subcommand, as seen below.

            $ opa run
OPA 0.44.0 (commit , built at )
Run 'help' to see a list of commands and check for updates.
>

            Once inside the OPA REPL, you can check your system version. It’s always good to know how to get your version, if you need to troubleshoot issues or understand capabilities.

            > data.system.version
{
  "build_commit": "",
  "build_hostname": "",
  "build_timestamp": "",
  "version": "0.44.0"
}

            As seen above, when using the statically built OPA binaries, like the Darwin arm64 version I am using, build information is not made available again. However, running OPA as a container (Linux/AMD64) using Docker Desktop for Mac, with the below command, you see the build information in the output.

            # Docker run command
$ docker run -it --rm --platform linux/amd64 openpolicyagent/opa:0.44.0-rootless
# Output
> data.system.version
{
  "build_commit": "e8d488f",
  "build_hostname": "d26a30e452a1",
  "build_timestamp": "2022-09-07T23:37:30Z",
  "version": "0.44.0"
}
>

            The show debug command is also very important as it exposes your current REPL settings, as seen below.

            > show debug
{
	"explain": "off",
	"metrics": false,
	"instrument": false,
	"profile": false,
	"strict-builtin-errors": false
}

            To use our earlier Hello World example in the REPL, you can start the REPL and preload the Rego policy and the input document. As seen below, I used a YAML input document instead of JSON this time.

            $ opa run helloworld.rego repl.input:helloworld.yaml

            The above command loads the Rego policy and input YAML document (could have also been JSON) seen below.

            Rego Policy:

            # Rego
package examples.ch2
hello = "world" {
    msg := input.message
    msg == "world"
}

            The way to read the above policy is that if the input.message field exists and its value is “world”, then the hello rule will return “world”.

            Input Document:

            # YAML
---
message: world

            Once the REPL starts, you can view the loaded policy and input using the data command. The policy and input were loaded as documents, rooted under the data global variable, and displayed as JSON.

            > data
{
  "examples": {
    "ch2": {
      "hello": "world"
    }
  },
  "repl": {
    "input": {
      "message": "world"
    }
  }
}

            You can execute the following query to apply the policy against the input data.

            > data.examples.ch2.hello
"world"

            In the above query, we executed the data.examples.ch2.hello against the input document containing the message field. The rule matched the input with the input.message field. The statement of msg == “world” was evaluated. If the input.message field was not located in the input document or the input.message field value was not “world”, then the query would have returned as undefined.

            Tip

              To avoid undefined returns from policy evaluations, you should write your rule to specify a default value, such as default hello := false .

            

            To run the example as an OPA container in Docker, you could use the command below.

            $ docker run -it --rm -v $(pwd):/helloworld --platform linux/amd64 openpolicyagent/opa:0.44.0-rootless run helloworld/helloworld.rego repl.input:helloworld/helloworld.yaml
Run 'help' to see a list of commands and check for updates.
> data.examples.ch2.hello
"world"
>

            The above docker command required that we used volumes, so I mapped the /helloworld path to the present working directory, from where I called the docker run command. I then prefixed the files with the helloworld directory.

            # volumes
-v $(pwd):/helloworld
# prefixed paths
helloworld/helloworld.rego repl.input:helloworld/helloworld.yaml

            The opa repl is useful for prototyping and learning OPA. Next, we will explore OPA eval.

          

          
            OPA eval

            OPA eval is another CLI subcommand that is used to evaluate a Rego query and print the result. I think of eval as a “one-shot” OPA tool that is handy in bash scripts and automation steps, to apply policies to data, and return a machine readable result, at runtime. This makes eval useful for CICD and DevOps attestations and gates.

            Our Hello World example can be used with eval, using the following CLI command. The -i flag sets the input document for the evaluation and the -d sets the policy and or additional data. The -d flag can be repeated.

            $ opa eval -i helloworld.json -d helloworld.rego "data.examples.ch2.hello"
{
  "result": [
    {
      "expressions": [
        {
          "value": "world",
          "text": "data.examples.ch2.hello",
          "location": {
            "row": 1,
            "col": 1
          }
        }
      ]
    }
  ]
}

            The above eval command outputs machine-readable JSON, which makes it useful for automation purposes. To run this example as an OPA container in Docker, you could use the command below.

            $ docker run -it --rm -v $(pwd):/helloworld --platform linux/amd64 openpolicyagent/opa:0.44.0-rootless eval -i helloworld/helloworld.json -d helloworld/helloworld.rego "data.examples.ch2.hello"
{
  "result": [
    {
      "expressions": [
        {
          "value": "world",
          "text": "data.examples.ch2.hello",
          "location": {
            "row": 1,
            "col": 1
          }
        }
      ]
    }
  ]
}

          

          
            OPA exec

            OPA exec was added to OPA towards the end of 2021, and can be seen as the possible successor to OPA eval. Like eval, exec is a “one-shot” approach to using OPA, that returns JSON, and is useful for automation. However, exec can use advanced features that are unavailable to eval, like OPA config files. With config files, you can setup advanced OPA features, such as pulling remote bundles and sending decision logs to remote endpoints. In that context, OPA exec can be seen as the one-shot version of OPA run, making it more flexible, and better suited for production-ready, one-shot use cases. The exec command for our Hello World use case appears below, using the OPA bundle built earlier in the OPA server section.

            $ opa exec ./helloworld.json --decision examples/ch2/hello -b ./bundle.tar.gz
{
  "result": [
    {
      "path": "./helloworld.json",
      "result": "world"
    }
  ]
}

            Again, if you wanted to run this example as an OPA container, the below command can be used.

            $ docker run -it --rm -v $(pwd):/helloworld --platform linux/amd64 openpolicyagent/opa:0.44.0-rootless exec helloworld/helloworld.json --decision examples/ch2/hello -b helloworld/bundle.tar.gz
{
  "result": [
    {
      "path": "helloworld/helloworld.json",
      "result": "world"
    }
  ]
}

            Note

              Conftest is similar to OPA eval and exec. It uses Rego to write assertions against structured configuration data, like that used in IaC. We will discuss Conftest later in this book when we cover PaC and IaC solutions.

            

          

          
            OPA server

            I use OPA server mode the most. OPA server mode can be used as so-called “OPA agents” for policy daemons across multiple platforms for multiple use cases. In fact, most of my use cases involve running the OPA server as a container in Docker and Kubernetes.

            The simplest way to run the OPA server, using our Hello World example, is with the following run -s subcommand.

            $ opa run -s --bundle .
{"addrs":[":8181"],"diagnostic-addrs":[],"level":"info","msg":"Initializing server.","time":"2022-08-24T13:20:55-04:00"}

            Note

              When the OPA server starts, it compares its version to the latest available.

              {"current_version":"0.44.0","download_opa":"https://openpolicyagent.org/downloads/v0.45.0/opa_darwin_arm64","latest_version":"0.45.0","level":"info","msg":"OPA is out of date.","release_notes":"https://github.com/open-policy-agent/opa/releases/tag/v0.45.0","time":"2022-10-17T22:02:34-04:00"}

            

            To run this example as an OPA container in Docker, you could use the command below. You may notice that I added the port mapping with the -p flag.

            $ docker run -it --rm -p 8181:8181 -v $(pwd):/helloworld --platform linux/amd64 openpolicyagent/opa:0.44.0-rootless run -s --bundle helloworld/.

            Tip

              When running the OPA server using a container image it is a best practice to use the “rootless” version of OPA, as root access is not needed in most use cases. Moreover, running with root privileges is not recommended. If you run the server with an OPA container that is not configured for rootless execution, you should see this warning in the logs:

              {"level":"warning","msg":"OPA running with uid or gid 0. Running OPA with root privileges is not recommended. Use the -rootless image to avoid running with root privileges. This will be made the default in later OPA releases."...}

            

            Running the above commands from the directory containing our Rego policy, helloworld.rego, uses the bundle flag to load our local Rego files as an OPA bundle. What is an OPA bundle? Let’s check that out in the next section.

            
              Bundles

              Bundles are used to bundle data and policies, to be loaded into OPA, as opposed to using the REST API to load them. While I didn’t need to build a bundle, as the bundle flag took care of that inline with the opa run -s command, the opa build command can be used to build a bundle if need be, as seen below.

              $ opa build --ignore '.*' --ignore '*.yaml' --ignore '*.json' .

              The command above builds an OPA bundle in the current directory, while ignoring hidden, YAML, and JSON files. The bundle file, bundle.tar.gz, can be inspected with the tar command below. For reference, the data.json file is created even if no data files are included in the bundle. In the case of no data, only empty curly braces, {}, are present in the file.

              $ tar tvf bundle.tar.gz
-rw-------  0 0      0           3 Dec 31  1969 /data.json
-rw-------  0 0      0         108 Dec 31  1969 /helloworld.rego

              Additionally, OPA has its own inspect command, for bundles. Notice that our policy and the data placeholder file were placed in namespaces. Our policy namespace matches the package name that we supplied earlier in the Rego Playground, prefixed with data. Since we didn’t supply any additional data for our bundle, the data.json file was rooted in the data global variable.

              $ opa inspect bundle.tar.gz
NAMESPACES:
+-------------------+--------------------+
|     NAMESPACE     |        FILE        |
+-------------------+--------------------+
| data              | /data.json         |
| data.examples.ch2 | /helloworld.rego   |
+-------------------+--------------------+

              Once we have bundles, we must verify that they come from a trusted source. For that purpose, we need to sign our bundles so that bundle consumers can verify the bundles with a signature.

            

            
              Bundle signing

              Bundles can be signed using the opa sign subcommand, or by including the –-signing-key flag with the opa build command. Signing bundles ensures the integrity of bundles and that they come from a trusted source. This is important when OPA updates data and policies via bundles.

              To sign the bundle, I first created a PEM key file. I use the openssl tool to create my bundle-signing keys. The first command creates the private key that I use to sign the bundles, and the second command creates the public key that I distribute to the OPA instances to consume signed bundles.

              $ openssl genrsa -out key.pem 2048
$ openssl rsa -in key.pem -outform PEM -pubout -out key.pem.pub

              Once the keys are created, I use the below opa build command to build and sign the bundle. I have found that this is the easiest way to build and sign the bundle, while simultaneously storing the signatures in the bundle tarball.

              $ opa build -b . --signing-key ../keys/key.pem -o signed-bundle.tar.gz

              Using the below tar command I can see that the .signatures.json file is included in the bundle.

              $ tar tvf bundle.tar.gz
-rw-------  0 0      0          69 Dec 31  1969 /data.json
-rw-------  0 0      0         147 Dec 31  1969 /policy.rego
-rw-------  0 0      0         961 Dec 31  1969 /.signatures.json

              The .signatures.json file contains a JSON Web Token (JWT) that can be decoded.

              {
  "signatures": [
    "eyJhbGciOiJSUzI1NiJ9 …"
  ]
}

              Signatures JWT decoded on jwt.io:

              HEADER:ALGORITHM & TOKEN TYPE
{
  "alg": "RS256"
}
PAYLOAD:DATA
{
  "files": [
    {
      "name": "authz-bearer.rego",
      "hash": "4cedc703d3e851c8c8ae5247f09d68fdc030eb27520882eb819d7f9042a537d5",
      "algorithm": "SHA-256"
    },
    {
      "name": "employees.json",
      "hash": "0f97573c90635f16dc62b84600c951479abd29a04a883b5192a9199335746172",
      "algorithm": "SHA-256"
    },
    {
      "name": "helloworld.rego",
      "hash": "2b8c01dde0acb3962d8ebc89007c8438b37ab65731d826f2f7bae97d77d9664c",
      "algorithm": "SHA-256"
    }
  ]
}

              The decoded JWT contained SHA-256 checksums for the files in the bundle. The public key from my PEM private key would be shared with the OPA server to verify signatures of bundles upon update operations.

              Once the bundle is signed with a private key, we can use a public key to verify the bundle signature. In fact, when using a signed bundle we must verify the signature or tell OPA to skip verification, otherwise we see the following error:

              # Error for not verifying bundle signature
error: load error: bundle signed-bundle.tar.gz: verification key not provided
# Verify bundle signature
$ opa run -b signed-bundle.tar.gz --verification-key ../keys/key.pem.pub
# Skip bundle signature verification
$ opa run -b signed-bundle.tar.gz --skip-verify

            

            
              Bundles for extensions - WASM

              Bundles can also be used for extending OPA. For example, the opa build command below builds a bundle to be used with WebAssembly (WASM). The target is wasm and the entrypoint is examples/ch2/hello.

              $ opa build -t wasm -e examples/ch2/hello ./bundle/helloworld.rego

              With the opa inspect command you can see the policy.wasm binary in the bundle.

              $ opa inspect bundle.tar.gz
NAMESPACES:
+-------------------------+-------------------------+
|        NAMESPACE        |          FILE           |
+-------------------------+-------------------------+
| data                    | /data.json              |
| data.examples.ch2       | /bundle/helloworld.rego |
| data.examples.ch2.hello | /policy.wasm            |
+-------------------------+-------------------------+

              An example of how to use this approach can be had from the Open Policy Agent WebAssemby NPM Module project.

              Note

                The OPA WebAssembly (WASM) functionality is currently not available in the statically compiled OPA arm64 architecture binaries. While WASM can be added to arm64 binaries, the OPA project currently has no automated means to test the WASM in arm64 binaries, so without those tests, they correctly decided to leave WASM out of the arm64 binaries.

              

              Now that we can run an OPA server, we will explore how to query the server.

            

            
              Querying the server

              Once the server is running, you can view the uploaded data with the following curl command.

              $ curl localhost:8181/v1/data
{"result":{"examples":{"ch2":{"hello":"goodbye"}}}}

              You might notice that the hello rule now has a default return of “goodbye”. The updated policy appears below. Now with any missing or wrong fields in the input document, “goodbye” is returned, instead of undefined.

              package examples.ch2
default hello := "goodbye"
hello = "world" {
    msg := input.message
    msg == "world"
}

              To see the actual policy, you can use the following curl command.

              $ curl localhost:8181/v1/policies
{"result":[{"id":"helloworld.rego","raw":"package examples.ch2\n\ndefault hello := \"goodbye\"\n\nhello = \"world\" …

              To run the query to our Hello World example, you can use the following curl command to send an HTTP POST to the OPA server..

              $ curl localhost:8181/v1/data/examples/ch2/hello -d @opa-input.json
{"result":"world"}

              The opa-input.json file contains the following content. Notice that the input element must be added when making a call via the REST API.

              {
    "input":{
        "message":"world"
    }
}

              The HTTP request/response flow is seen in Figure 2-2. The key thing to remember here is that the request to OPA to evaluate data, based on policies stored in OPA, is an HTTP POST request, where the URL contains the query (refers to package and policy rules), and the input base document (discussed later in the Rego section) sent as the JSON payload. The result of the HTTP POST is also JSON. So, JSON-in and JSON-out are key to how and why OPA is domain and stack agnostic. As long as you can represent your domain, stack, artifact, etc. as JSON, send and receive JSON, and write policies that match and evaluate JSON, OPA can fulfill your PaC needs.

              
                [image: OPA Request Response Diagram]
                Figure 2-2. OPA Request/Response Diagram

              

            

            
              Query parameters

              The OPA Query API supports several parameters. One that I use often is the metrics parameter. 

              $ curl "localhost:8181/v1/data/examples/ch2/hello?metrics" -d @opa-input.json
{"metrics":{"counter_server_query_cache_hit":1,"timer_rego_input_parse_ns":305750,"timer_rego_query_eval_ns":365375,"timer_server_handler_ns":871833},"result":"world"}

              With the metrics parameter the OPA Query API returns the following performance metrics from my sample query.

              
                	counter_server_query_cache_hit

                	
                  number of cache hits for the query

                

                	timer_rego_input_parse_ns

                	
                  time taken (in nanoseconds) to parse the input

                

                	timer_rego_query_eval_ns

                	
                  time taken (in nanoseconds) to evaluate the query

                

                	timer_server_handler_ns

                	
                  time take (in nanoseconds) to handle the API request

                

              

              The metrics indicate that most of the operations performed by the OPA server—as a result of my request–were executed in fractions of a millisecond (ms). Performance metrics are a good method to validate system design, and OPA has them built into its REST API.

              Note

                Other OPA modes support the metrics parameter as well, in the form of command flags. For example, the opa eval command produces the following metrics.

                $ opa eval -i data/helloworld.json -d rego/helloworld.rego "data.examples.ch2.hello" --metrics
…
  "metrics": {
    "timer_rego_load_files_ns": 650917,
    "timer_rego_module_compile_ns": 1006375,
    "timer_rego_module_parse_ns": 389667,
    "timer_rego_query_compile_ns": 60292,
    "timer_rego_query_eval_ns": 221625,
    "timer_rego_query_parse_ns": 65750
  }
}

              

            

            
              Ad-hoc queries

              Though I don’t use them as much, you can submit ad-hoc queries to the OPA server. Unlike previous examples where I had to specify the package (examples.ch2) and rule (hello), with ad-hoc queries I write the rules and submit them to the server. Below is a JSON doc that contains the helloworld query along with my input data.

              {
    "query": "msg := input.message\nmsg == \"world\"",
    "input": {
        "message": "world"
    }
}

              Then I use a curl POST command to send the query and the input data to the OPA server.

              $ curl "localhost:8181/v1/query" -d @query-input.json

              The OPA server Query API also supports HTTP GET methods, using the “q” parameter, where the query and input data would need to be URL encoded. As this could get unwieldy for larger payloads, POST is usually recommended.

              Now that we have explored the OPA operational modes and have a functioning OPA server, let’s look at how we can secure the server with bearer tokens.

            

          

          
            Bearer Token Authentication (AuthN) and Authorization (AuthZ)

            To secure my OPA server, I have decided to use bearer tokens. I find bearer tokens simpler to use; you don’t have to sign each request. And even though the tokens are unencrypted plaintext, as long as I use them over HTTPS, or in an isolated or even air-gapped development environment, bearer tokens fit my needs.

            To use bearer tokens I must add the following to my OPA server:

            
              	
                Add a policy in the system.authz package to handle the authorization for token presenters. Load this as part of the bundle when the server starts.

              

              	
                Add the authentication=token flag to the server command.

              

              	
                Add the authorization=basic flag to the server command.

              

              	
                Add an Authorization header to inbound requests.

              

            

            The new server command appears below. I also added a log debug-level flag.

            $ opa run -s -l debug --bundle . --authentication=token --authorization=basic

            The AuthZ policy is seen below. I hard-coded the single token I am using, into the policy, for the purposes of this demo. In a real-world scenario I would most likely store the allowed bearer tokens in a separate secured vault, and load them as data into OPA as needed.

            Note

              This is a contrived example meant to illustrate a simple AuthZ approach. For a more realistic solution, I could use a JWT as the bearer token. Then I could include JWT payloads and claims, as well as secrets to be used in my AuthZ policy. An example of this approach is available in the Rego Playground in the Examples for JWT Decoding.

            

            The default return for the allow rule is false. Roles are associated with tokens. The lookup_permissions function looks up permissions for roles associated with the token passed in through the input.identity field, which gets its value from the request Authorization header.

            package system.authz
permissions := {
    "admin": {
        "path": "*"
    }
}
tokens := {
    "21ad4323-f187-4237-9b88-1e0aa6a4599d": {
        "roles": ["admin"]
    }
}
default allow = false
allow {                      
    some permission
    lookup_permissions[permission] 
    permission.path == "*"            
}
lookup_permissions[permission] {             
    token := tokens[input.identity]  
    role := token.roles[_]           
    permission := permissions[role]         
}

            Without a bearer token in the request, the request failed with a deny error.

            $ curl localhost:8181/v1/data
{
  "code": "unauthorized",
  "message": "request rejected by administrative policy"
}

            With the correct bearer token in the request Authorization header, I successfully made the request.

            $ curl localhost:8181/v1/data -H "Authorization: Bearer 21ad4323-f187-4237-9b88-1e0aa6a4599d"
{"result":{"examples":{"ch2":{"hello":"goodbye"}}}}

            In the above example we configured the server with authentication and authorization flags. However, it’s important to remember that OPA is not an AuthN identity provider (IDP). The bearer token we used was not issued–as proof–of my identity by OPA. Moreover, according to the documentation, “...OPA does not handle authentication”. Users do not register with OPA, and OPA does not issue credentials. Once the IDP has authenticated the user principal, artifacts from that authentication, such as a JWT, can be passed to OPA, in the input, for parsing and authorization.

            Note

              Later in this book, when we discuss OPA integration to Kubernetes, we will use TLS certificates to allow the Kubernetes API server to securely communicate with the OPA service.

            

            We have touched on Rego as we exercised the different OPA modes with our hello world examples. Now, let’s dive deeper into the Rego language that powers OPA’s decisions.

          

        

        
          Rego policy language

          While OPA is a general purpose policy engine, it is also purpose-built. According to the documentation:

          
          “OPA is purpose built for reasoning about information represented in structured documents.”

          
          Rego is OPA’s declarative assertion language that provides that reasoning. As a point of reference, declarative languages declare what you want to do, instead of imperatively how you want to do it. How it is done for you is an implementation detail of Rego. So, in a way, Rego is a Domain Specific Language (DSL) for applying reasoning and assertions to domain-agnostic, structured data. 

          In this section, I will cover the basics of how to use Rego. However, for a deeper Rego understanding, I strongly recommend the Rego Style Guide from Styra, and Rego Policy Language Documentation.

          To start us on our Rego learning path, we will begin with understanding the OPA document model and how it’s referenced in Rego.

          
            OPA document model

            Before we start with Rego, we must first understand the OPA document model. We saw a glimpse of it in earlier examples. As we saw in our server examples earlier, data and policies that we loaded from bundles, at server startup, were placed (namespaced) into the global data variable. When working with data, OPA models data into two documents, base documents and virtual documents. Base documents are data loaded from external sources to OPA, and virtual documents are data created by OPA, like policy decisions. 

            Base documents are placed into two global variables, determined by how they are added to OPA. Data added from bundles or HTTP PUT requests are long-lived and placed into the data global variable. For example, the below command and data illustrate how the HTTP PUT command can be used to put data into the OPA server using the REST API.

            # Projects data JSON file
cat data.json
{
    "projects": [
        {
            "method": "GET",
            "project": "book",
            "lead": "jimmy"
        }
    ]
}
$ curl -vX PUT http://localhost:8181/v1/data -d @data.json \
--header "Content-Type: application/json"
$ curl localhost:8181/v1/data
{"result":{"projects":[{"lead":"jimmy","method":"GET","project":"book"}]}}
$ curl localhost:8181/v1/data/projects
{"result":[{"lead":"jimmy","method":"GET","project":"book"}]}

            Data added via HTTP POST requests, normally as part of policy queries, are short-lived and stored in the input global variable. Regardless of how these data are stored, they are referenced by dot notation using data.<DATA> or input.<DATA>.

            We have seen these references used in our prior examples, and we will see them again as we explore the Rego syntax and logic structures in the next section.

          

          
            Rego syntax and logic

            I have always thought that one of the challenges with learning Rego was the idea that the syntax resembled imperative languages like C and Java, but the Rego assertion behavior was sufficiently different from these imperative languages. So, I’ll try to walk you through Rego examples, to give you an introductory understanding. However, you should plan to use the OPA Rego documentation to dive deeper, as needed.

            
              Rules

              In OPA’s document model, rules define the “content of virtual documents” through rule evaluation. Policies are made up of rules, and rules contain expressions. Our Hello World policy, seen below, has one rule, hello. That rule has a default value of “goodbye”, that is returned in a false condition. When OPA evaluates the rule, the virtual document produced will either be {"hello”: “world"} or {"hello”: “goodbye"}.

              package examples.ch2
default hello := "goodbye" (1)
hello = "world" {          (2)
	msg := input.message (3)
	msg == "world"       (4)
}
(1)Default rule value
(2)Rule Head
(3)Rule Body expression - load value from input
(4)Rule Body expression - compare input value to desired value

              As seen above, our rule has a Default Value, a Head and a Body. The Head element specifies the name of the rule, and in our case, the value (optional) of the rule to be returned in a true condition. Without the explicit “world” value, the rule will return a boolean true when all the rule statements are true, even though the default return is a string. 

              The Body element contains the expressions of the rule. A logical “ANDing” of rule expressions is applied, so every expression that is a comparison must be true for the rule to be true.

              The hello rule default value of “goodbye” is returned if:

              
                	
                  The input document doesn’t exist

                

                	
                  The input.message field doesn’t exist

                

                	
                  The input.message field doesn’t match the value of “world”

                

              

              The hello rule will return the value of “world”, its true value, if all the statements in the rule are true. If we add more statements, then we can see the logical “AND” being applied.

              hello = "world" {
    msg := input.message
    msg == "world"
    from := input.from
    from == "jimmy"
}

              In the above example, hello is true and returns “world” if all statements in the rule are true. The comparison statements with the == syntax must both be true. As a side note, the assignment statements, using :=, must be present or the variables msg and from will be marked “unsafe” and produce a policy compile error. And, while using the Strict mode with the Rego Playground or the CLI, the msg and from variables must also be used or a policy compile “unused variable” error is produced.

              To apply a logical “OR” condition, we need multiple rules with the same name in the Head, as seen below. These multiple rules form a rule set.

              hello = "world" {
    msg := input.message
    msg == "world"
    from := input.from
    from == "jimmy"
}
hello = "me" {
    msg := input.message
    msg == "me"
    from := input.from
    from == "jimmy"
}

              This new version of the policy will return the true value of “world” or “me” if the msg field equals “world” and the from field equals “jimmy” OR the msg field equals “me” and the from field equals “jimmy”, respectively.

              As we learned earlier, rules that are not evaluated true will return an undefined value, unless the rule or rule set has a default value defined. Only one default value can be defined per rule set.

            

            
              Functions

              Rego functions are a great way to apply the DRY Principle to your Rego and de-duplicate your code, while also applying modularity. Given our Hello World example, we could change the code to use a function to build our return message. The below version uses the build_return_msg function to build a return message.

              package examples.ch2
import future.keywords.in
default hello := "goodbye"
hello = output {
    input.method == "POST"
    input.message in {"world", "planet"}
    output := build_return_msg("Hello",input.from)
}
build_return_msg (msg, from) := result {
    result := sprintf("%s, %s", [msg, from])	
} 

              Notice in the modified code above that I imported the future.keywords.in package. This allowed me to use newer OPA operators like in, but maintain backwards compatibility. I also used a documented best practice of passing arguments to a function, instead of using the input and data global variables, thereby reducing ambiguous dependencies.

              The true condition result appears below.

              {
    "hello": "Hello, jimmy"
}

              Finally, I assigned the hello rule value to the “output” of the build_return_msg function. In doing so, I wanted to demonstrate that rules and functions can return any value, not just boolean or scalar values. For example, if I wanted to return an object with key/value pairs, I could reconstruct the build_return_msg as seen below.

              build_return_msg (msg, from) := result {
    result := {"msg":msg,"to":from}	
}

              The new output of the hello rule evaluation appears below.

              {
    "hello": {
        "msg": "Hello",
        "to": "jimmy"
    }
}

            

            
              Functions are rules

              If functions look similar to rules, it is because they are; functions are just rules that take arguments. Like rules, functions have a head and a body, and can be duplicated (same head) for logical OR’ing. For example, I could write functions to validate the input.method as seen below.

              is_write_method (method) {
    method == "POST"
}
is_write_method (method) = true {
    method == "PUT"
}

              The PUT or POST methods would result in a true condition. Like rules, functions have a default true in the head that can be left out.

            

            
              Built-in functions

              Beyond writing your own functions, Rego includes many built-in functions. These functions are arranged into functional categories, like Aggregates and Strings, and can be easily identified by their syntax: <name>(<arg-1>, ..., <arg-n>). For example, the count, sum, product, min, and max functions (Aggregates) and the sprintf function (Strings) are seen below, for a given input JSON array of numbers.

              # JSON input
{
    "nums": [0,1,2,3,4,5]
}
# Rego policy using built-in functions
msg := sprintf("For the given array, %v, the count is %v, the sum is %v, the product is %v, the minimum is %v, and the maximum is %v.", [input.nums,count(input.nums), sum(input.nums), product(input.nums), min(input.nums), max(input.nums)])
# JSON output
{
    "msg": "For the given array, [0, 1, 2, 3, 4, 5], the count is 6, the sum is 15, the product is 0, the minimum is 0, and the maximum is 5."
}

              Though not covered here in detail, the Rego language has many more built-in functions that make Rego more expressive and provide a better user experience. Next, let’s explore compound variable data types.

            

            
              Objects, collections, and comprehensions

              Like other languages, Rego supports compound values. For example, objects are unordered key/value pairs, like maps, seen below.

              # keys must be unique
animals := {"a":"deer", "b":"moose", "c":"bear"}

              Unlike some languages where arrays are strictly typed, Rego arrays can hold multiple types.

              stuff := [1,"hello",null,{"a":"b"}]

              Sets hold unique values, and are also unordered.

              # values are unique
material := {"metal","wood","cloth"}

              Sets can also be un-keyed documents.

              k := {"metal","wood","cloth"} == {"cloth","wood","metal"}

              Comprehensions can be used to create compound values. For example, you can use a set comprehension to convert an array of duplicate values into a unique-valued set.

              m := ["metal","wood","cloth","metal"]
u := {z | z = m[_]}

              Yields:

              "u": [
    "cloth",
    "metal",
    "wood"
]

              With the set comprehensions above, we built set collections using subqueries, in the form of { <term> | <body> }. The m[_] syntax is used to loop through every element in the array.

              Tip

                We use set comprehension often in Kubernetes policies, as seen below.

                # using a set comprehension to construct set from input
provided_labels := {k | input.request.object.metadata.labels[k]}

              

              Like any language, using composite data types—objects and collections—allows you to group, aggregate, and process related data. Rego comprehensions are useful for converting between these data types. Next we will look at Rego unification and how it differs from assignment and comparison.

            

            
              Unification vs. assignment and comparison

              Rego has several operators that can be used for different purposes. For example, in Rego, the == operator is used for equal-to comparisons. Comparison operators also include, !=, > >=, <, and <=. 

              The assignment operator is :=, and must be used on a variable assignment before the variable is referenced. Assignments to variables with the assignment operator can only happen once for that variable.

              Beyond the comparison and assignment operators, Rego throws us a curveball with the unification operator, =. Unification combines comparison and assignment by assigning values to variables that make the comparison true. In other words, by using the unification operator in your policies, you are asking for variable values that make your unification expression true. If those values are present, your expression will be true.

              # Rego policy
package examples.ch2
default allow := false
allow {
    some person
    input.path = ["users", person]
    input.method == "GET"
    person == input.user_id
}
# input
{
    "user_id": "jimmy",
    "method":"GET",
    "path":["users","jimmy"]
}
# output
{
    "allow": true
}

              In the above example, when the input.user_id and the second element in the input.path array both equal to “jimmy”, then the person == input.user_id expression is true.

              Tip

                If you are confused about the unification operator, don’t worry, you are not alone. In fact, the published best practice is to not use the unification operator in most cases; you should instead explicitly use the assignment and comparison operators in most cases. While this may make your policies slightly longer, it also minimizes ambiguation. 

                It just do happens that my example above is a good use case for unification.

              

              I just touched on Rego, its syntax, rules, functions, collections and objects. As it turns out, Styra, the creators of OPA, offer an Essential Foundations of OPA Policy course from their Styra Academy. It’s a good starter course for Rego. Next, let’s learn how we can write and test Rego policies.

            

          

          
            Writing and testing Rego

            You can use multiple tools to write your Rego policies. For prototyping policies I recommend the Rego Playground or the REPL. The Rego Playground provides a coding interface that includes syntax highlighting and error checking, as well as a means to manage OPA documents, like data, input, and output. I touch on it more directly later in this section.

            For editing, I also find the OPA Visual Studio Code (VSCode) integration to be very useful. In the VSCode screenshot in Figure 2-3, the extra “=” sign in the policy is detected when I use the Format Document command in the context-aware actions menu.

            
              [image: OPA VSCode Format Document Integration]
              Figure 2-3. OPA VSCode Format Document Integration

            

            You can also use the OPA CLI fmt command for the same purpose.

            $ opa fmt helloworld.rego
failed to parse Rego source file: 1 error occurred: helloworld.rego:7: rego_parse_error: unexpected eq token
	msg === "world"
	      ^

            OPA also provides a unit testing framework, and you use the OPA CLI test command to apply unit tests to your Rego policies. These tests are written as *_test.rego files, with each test case prefixed by test_. My tests appear below.

            package examples.ch2
import future.keywords
test_hello_world if {
	hello with input as {"message": "world"}
}
test_hello_goodbye if {
	not hello with input as {"message": "planet"}
}


The below command will execute the tests for our Hello World example.


$ opa test . -v
helloworld_test.rego:
data.examples.ch2.test_hello_world: PASS (767.71µs)
data.examples.ch2.test_hello_goodbye: PASS (170.361µs)
--------------------------------------------------------------------------------
PASS: 2/2

            The opa test command parses the Rego files (policies and tests) and checks for errors. You can also use the -f json flag to create machine readable output from the test executions, which is useful for automation. The below command includes a snippet of the JSON output.

            $ opa test . -v -f json
[
  {
    "location": {
      "file": "helloworld_test.rego",
      "row": 5,
      "col": 1
    },
    "package": "data.examples.ch2",
    "name": "test_hello_world",
    "duration": 294416
  },
…

            With writing and testing Rego now under our belts, we can dive deeper into the Rego Playground, and explore its rich feature set.

            
              The Rego Playground

              I find the Rego Playground to be easier to use when I am prototyping Rego, especially from scratch. I develop new policies in the Rego Playground, and then move my work to VSCode and git repositories. The Examples drop-down menu in the Rego Playground provides several useful example policies to help start you on your way. 

              I especially like the Strict and Coverage modes of the Rego Playground. Given our ongoing Hello World example, the Coverage mode, seen in Figure 2-4, shows us which statements were evaluated (green) and which ones were not (red)–in grayscale, red highlights are darker than green–for a given input document.

              
                [image: Rego Playground Coverage]
                Figure 2-4. Rego Playground Coverage

              

              You use Strict mode to make sure that your variables match your definitions. This is similar to the Option Declare in LotusScript or Option Explicit in VB.Net. 

              In Figure 2-5, I used another Rego Playground feature to highlight the statements that I wanted to execute, without executing other statements. When isolating that statement for execution, Strict mode produced the “unsafe variable” error in the OUTPUT pane; the statement that assigned the variable was not executed.

              
                [image: Rego Playground Strict Mode]
                Figure 2-5. Rego Playground Strict Mode

              

              As seen in Figure 2-4 and Figure 2-5, the Rego Playground also includes a Format button that works like the opa fmt CLI command, mentioned earlier.

              Finally, the Publish button publishes the Rego and provides a shareable link that changes with updates. The publish screen, seen in Figure 2-6, includes additional instructions for using the policy.

              
                [image: Rego Playground Publish]
                Figure 2-6. Rego Playground Publish

              

              One of the coolest things about publishing is that now we can run the OPA server with the policy and data bundle that we just published, as seen below.

              $ opa run -s --set services.play.url=https://play.openpolicyagent.org \
--set bundles.play.resource=bundles/SZPzoM4zRb
{"addrs":[":8181"],"diagnostic-addrs":[],"level":"info","msg":"Initializing server.","time":"2022-11-18T23:03:34-05:00"}
{"level":"info","msg":"Starting bundle loader.","name":"play","plugin":"bundle","time":"2022-11-18T23:03:34-05:00"}
{"level":"info","msg":"Bundle loaded and activated successfully. Etag updated to \"d6cafd309e74f766bca7f8366b2e1e596abd617a98b6e5d4387dfe1ce7958a00\".","name":"play","plugin":"bundle","time":"2022-11-18T23:03:34-05:00"}

              Now that we’ve explored writing and testing Rego and test-driven the Rego Playground, let’s switch gears and take a quick look at how OPA can be extended and integrated to better meet our needs.

            

          

        

        
          Extending and Integrating with OPA

          As you might guess, from a mature project like OPA there are several means by which OPA can be extended or integrated into your solutions. Obviously since OPA is an OSS project, you can contribute to the project. According to documentation you can extend OPA via its Golang API with custom built-in functions and plugins. For example, the opa-envoy-plugin project uses the OPA Golang API.

          You should also remember that OPA is just one project under the Open Policy Agent GitHub organization, an umbrella of 22 repositories (at the time of this writing). Within this organization, you will find several existing projects, such as, Conftest, Gatekeeper, and the OPA WebAssembly NPM Module (mentioned earlier in this chapter).

          You can easily integrate to OPA via its APIs and SDKs. These integration interfaces are categorized by purpose: 

          
            	
              Evaluation - using OPA’s policy evaluation functionality

              
                	
                  REST API (seen earlier in this chapter)

                

                	
                  Golang API

                

                	
                  WebAssembly (seen earlier in this chapter)

                

                	
                  Golang SDK

                

              

            

            	
              Management - managing policies (deploying, uploading logs, metrics, etc.)

              
                	
                  Bundle API

                

                	
                  Status API

                

                	
                  Decision Log API

                

                	
                  Health API

                

                	
                  Prometheus API

                

              

            

          

          We have seen that even though OPA provides a powerful set of tools to meet our PaC needs, we can also gain tighter integration to OPA via its SDKs and APIs.

          Note

            The OPA community can be found on Slack. There you can get help with OPA, OPA/Gatekeeper, and discuss contributing to OPA-related projects.

          

          OPA is not just a CLI and a server. OPA offers mature APIs and SDKs that make it easier to integrate OPA with your applications.

        

        
          Summary

          Open Policy Agent (OPA) is a very mature PaC solution, evidenced by its CNCF Graduated Project status. 

          As we discovered in this chapter, OPA offers several operational modes to fit our different needs, as well as several different means by which we can extend OPA or integrate OPA to our systems. The OPA policy language—Rego—may be a departure from the imperative languages you may be used to, but Rego is very powerful and flexible for evaluation and reasoning of structured data.

          If we consider the PaC Selection Scorecard from Chapter 1, OPA ticks many of the boxes in a positive way. There is a learning curve with OPA, especially if you haven’t used Rego before, but OPA should be able to support and satisfy many of your use cases and solutions, while providing a good user experience.

          In this chapter we focused on the general purpose utility of OPA and its toolset, and we lightly explored the Rego language that is used in OPA policies. In Chapter 3 we will use OPA to solve modern authorization problems using access control techniques, such as Role Based and Attribute Based Access Control.

        

      


Chapter 3. Policy-as-Code and Access Control



A Note for Early Release Readers


With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 3rd chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mpotter@oreilly.com.




In Chapter 2, we discovered how OPA offers several operational modes to fit our different needs. We explored Rego–the OPA policy language–and how it can be used for evaluation and reasoning of structured data.


Regardless of the system you operate, application you support, or the data you maintain, access control is an essential component thereof. In fact, access control is not an afterthought–at least it shouldn’t be–when building new solutions. Access control determines who–or what–can perform operations in your systems, what operations they can perform, and when–under what circumstances or in what situations–they can perform those operations.


Access control is divided into two main processes: authentication (AuthN) and authorization (AuthZ). AuthN is used to determine that users–or systems–are who they claim to be and provide proof in the form of identity principles and attributes. AuthZ is used–once identity is verified–to decide what privileges an actor has within a system.


In this chapter we start with a primer on Privileged Access Management (PAM), why it exists, and the types of PAM that are commonly used. I will expose to you Role Based and Attribute Based Access Control models, and how PaC can be used with these models to provide more dynamic AuthZ services. We will also explore tooling that reduces the operational burden of managing policy engines and the artifacts used by them to make AuthZ decisions.



Privileged Access Management


Every properly secured system controls access to permissions, and provides users with different levels of access. Privileged Access Management (PAM) is an amalgam of technologies and cybersecurity approaches designed, implemented, and integrated to control who can do what in systems under access control. The idea behind PAM is to control who and what can get privileged access and for when and how long they can get that access. PAM also includes logging of access decisions for auditability.


The Principle of Least Privilege (PoLP) is a well-known PAM standard for allocating access to authenticated system principals (a.k.a. system actors). Under PoLP a system actor only receives the permissions that the actor needs and is authorized to have, and only gets that access for the time they need it, for system interaction. For example, under a Role Based Access Control (RBAC) model, the permissions granted to system actors are based on a persona or role that the actor has within the secured system. In this context, permissions are the rules in the system that define the actions a principle can perform. The credentials returned as part of the role assumption are only good for a limited time. With PoLP, the actor is assigned a role, and the role is associated with a finite set of permissions for a finite time. The actor then gets only the permissions that the assigned role is allowed.


Let’s start our journey into access control models with RBAC.



Role-Based Access Control


As mentioned earlier, we use Role Based Access Control (RBAC) to provide permissions to system actors, based on their respective role within a secured system. This works well in an organization with a hierarchical structure. Under RBAC, the semantics of a system role are different, depending on the respective system and context of the actor. Users within an organization normally have different roles, requiring different permissions across the multiple systems with which they interact. These differences imply an overhead of role and permission management.


With RBAC, we create and manage “entitlements” in the form of roles and associated permissions. More precisely, users are entitled to certain permissions, based on the roles they are assigned. Entitlement management is often the biggest overhead of implementing a successful RBAC model. Auditors routinely examine entitlement systems to verify how roles are managed and provisioned.


RBAC is very useful, as it ties permissions to actor personas and roles, making it easier to understand the scope of permissions and why certain users get those permissions. Roles are used to scope permissions, which facilitates the application of PoLP. Onboarding of folks to systems is also easier when you can assign them a role, or accumulative set thereof, and intuitively understand which permissions the system actors will have.


An example of RBAC is used within Kubernetes to define permissions that actors have within a cluster. As you might imagine, different actors have different roles within different clusters. In general, Kubernetes uses Cluster Roles to specify cluster-wide permissions and Roles to specify namespace specific permissions. Permissions are given to actors by binding the Cluster Roles and Roles to specific principals.


Note

When the same permissions are needed in multiple Kubernetes namespaces, but scoped to namespace specific actors, it is a best practice to create Cluster Roles for uniformity of permissions across the cluster. Then namespace-scoped Role Bindings can be used to bind permissions to namespace-scoped actors. With this approach, you get uniform permissions across the cluster, with access that is scoped (isolated) to namespace resources.




Below is a snippet from the Kubernetes view Cluster Role that provides read only access, via the get, list, and watch verbs, to specific Kubernetes resources.




apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: view
rules:
- apiGroups:
  - ""
  resources:
  - configmaps
  - endpoints
  - persistentvolumeclaims
  - persistentvolumeclaims/status
  - pods
  - replicationcontrollers
  - replicationcontrollers/scale
  - serviceaccounts
  - services
  - services/status
  verbs:
  - get
  - list
  - watch … (edited for brevity)




To assign the above permissions, the example Kubernetes Cluster Role Binding, below, binds the view Cluster Role to the readonly-users group.




apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: cluster-readonly
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: view
subjects:
- apiGroup: rbac.authorization.k8s.io
  kind: Group
  name: readonly-users




Given the above Cluster Role and Cluster Role Binding, any authenticated principal that is part of the readonly-users group in the respective Kubernetes cluster will get read only permissions defined in the view Cluster Role. Using the kubectl who-can plugin, we can implement a RBAC best practice by auditing permissions. The below command lists principals that can watch pods.




# Audit permissions with who-can
$ kubectl who-can watch pods
No subjects found with permissions to watch pods assigned through RoleBindings
CLUSTERROLEBINDING     SUBJECT              TYPE
cluster-admin          system:masters       Group
cluster-readonly       readonly-users       Group        (edited for brevity)




In the previous example, the role permissions were explicitly defined in the role (Cluster Role). However, this is not always the case. Some RBAC models separate the permissions from the roles; moreover, the permissions are contained in policies that are attached to roles when necessary. This layer-of-indirection allows policies to be used across multiple roles.


For example, in Amazon Web Services (AWS) Identity and Access Management (IAM) roles do not contain permissions. Instead, permissions are defined in IAM policies and those policies are associated with roles, as seen in Figure 3-1. Policies used this way can be shared between roles. Roles can also contain inline-policies that are role-specific. Users assume those roles and gain permissions defined in the associated policies.


[image:   AWS IAM Roles with Policies]
Figure 3-1. AWS IAM Roles with Policies




Note

For more info about RBAC, please see the NIST documentation.




Now that we have a basic understanding of RBAC, let’s explore how OPA can be used to implement RBAC more dynamically.



OPA and RBAC


In Chapter 2 we learned that while OPA can handle AuthZ; it doesn’t handle credentials or AuthN. AuthN is not the same as AuthZ. AuthN is about verifying the identity of system actors based on provided evidence. AuthZ happens after AuthN and is the process of defining and enforcing permissions that authenticated actors have within systems.


OPA policies can be written to interrogate input data and apply policies for AuthZ. As it turns out, the Rego Playground–that we explored in Chapter 2–has a good example of prototyping RBAC policies. As seen in Figure 3-2, you can explore an RBAC example from the Examples menu in the Rego Playground.


[image:   Rego Playground RBAC Example]
Figure 3-2. Rego Playground RBAC Example




The policy in the RBAC example (minus some of the comments) is seen below.




package app.rbac
 
import future.keywords.contains
import future.keywords.if
import future.keywords.in
 
# By default, deny requests.
default allow := false
 
# Allow admins to do anything.
allow if user_is_admin
 
# Allow the action if the user is granted permission to perform the action.
allow if {
    # Find grants for the user.
    some grant in user_is_granted
 
    # Check if the grant permits the action.
    input.action == grant.action
    input.type == grant.type
}
 
# user_is_admin is true if "admin" is among the user's roles as per 
# data.user_roles
user_is_admin if "admin" in data.user_roles[input.user]
 
# user_is_granted is a set of grants for the user identified in the request.
# The `grant` will be contained if the set `user_is_granted` for every...
user_is_granted contains grant if {
    # `role` assigned an element of the user_roles for this user...
    some role in data.user_roles[input.user]
 
    # `grant` assigned a single grant from the grants list for 'role'...
    some grant in data.role_grants[role]
}
 




The above policy defaults to not allow users to access the underlying application.




default allow := false
 




The policy then allows users if (1) they are admins or (2) they have the requisite roles and permissions (grants) to perform the actions they are trying. Roles and permissions are loaded into the OPA engine via data provided below. As we learned in Chapter 2, we could load these data via OPA bundles, server flags, or even the REST API.




{
    "user_roles": {
        "alice": [
            "admin"
        ],
        "bob": [
            "employee",
            "billing"
        ],
        "eve": [
            "customer"
        ]
    },
    "role_grants": {
        "customer": [
            {
                "action": "read",
                "type": "dog"
            },
            {
                "action": "read",
                "type": "cat"
            },
            {
                "action": "adopt",
                "type": "dog"
            },
            {
                "action": "adopt",
                "type": "cat"
            }
        ],
        "employee": [
            {
                "action": "read",
                "type": "dog"
            },
            {
                "action": "read",
                "type": "cat"
            },
            {
                "action": "update",
                "type": "dog"
            },
            {
                "action": "update",
                "type": "cat"
            }
        ],
        "billing": [
            {
                "action": "read",
                "type": "finance"
            },
            {
                "action": "update",
                "type": "finance"
            }
        ]
    }
}




Given the policy and roles/permissions data, we can now test the input. In the default test input, seen below, alice is trying to perform a read operation on the dog type.




{
    "user": "alice",
    "action": "read",
    "object": "id123",
    "type": "dog"
}




Since alice is an admin in the system, this is an easy policy evaluation. The user is determined to be an admin, and the policy does not even try to evaluate if additional grants are needed. This is an example of OPA’s policy evaluation optimization.




{
    "allow": true,
    "user_is_admin": true,
    "user_is_granted": []
}




Figure 3-3 shows the Rego Playground, with the Coverage option enabled. Statements that were executed are marked in green, and statements not executed are marked in red–in grayscale, red highlights are darker than green.


[image:   Rego Playground optimized policy evaluation   user alice]
Figure 3-3. Rego Playground optimized policy evaluation - user alice




If we switch the input user to bob, then we see a different output. This time, the policy did not detect an admin, and had to evaluate roles and grants to see if bob could perform the read operation on the dog type.




{
    "user": "bob",
    "action": "read",
    "object": "id123",
    "type": "dog"
}




The Rego Playground coverage is seen in Figure 3-4. This time the policy had to evaluate rules to apply roles and grants.


[image:   Rego Playground optimized policy evaluation   user bob]
Figure 3-4. Rego Playground optimized policy evaluation - user bob




Below, we can see that while bob is not an admin, he has several grants, related to his two roles: employee and billing. The permissions bob receives via his roles are accumulative. Given the grants below, bob can perform read operations on the dog type.




{
    "allow": true,
    "user_is_granted": [
…
        {
            "action": "read",
            "type": "dog"
        },
…
    ]
}
 




RBAC is a well established access control model, and most organizations start with some sort of RBAC approach since it is easier to implement, especially in smaller environments. However, as organizations grow and volumes of personas, roles, and permissions need to be managed, RBAC can become cumbersome to maintain, without automated processes and routine monitoring and auditing. It may also be necessary to augment RBAC with additional layers of access control.


Organizations looking to augment or replace RBAC sometimes turn to Attribute Based Access Control (ABAC) as a more dynamic alternative. As we will see in the next section, OPA can be used to create ABAC policies as well.







Attribute-Based Access Control


Attribute Based Access Control (ABAC) uses attributes, a.k.a. characteristics, to dynamically determine access privileges. According to NIST, ABAC is:


“An access control approach in which access is mediated based on attributes associated with subjects (requesters) and the objects to be accessed.”


ABAC is considered more dynamic because you do not manage point-in-time entitlements, in an entitlement management system. With ABAC you need not manage roles, trying to match permissions to actor types, personas, or organizational structure. Instead, you modify attributes of system actors and system resources to be accessed. ABAC uses policies to compare and match attributes or characteristics of actors and resources, to determine permissions.


With ABAC, you design your architecture with attributes associated with your users and the resources they are trying to access. Then you write policies that use those attributes to define access based on the relationships you modeled. Given that the ABAC policies use actor and resource data, ABAC is also considered to be more data-driven than RBAC.


One of the most important aspects of ABAC is the decoupling of actor and resource metadata from each other, as well as the policies that produce AuthZ decisions. Actor metadata is usually managed in different systems than resource metadata. ABAC policies are separate from both. All three come together in an ABAC policy decisioning point. The implied decoupling in ABAC acts as a pace-layering mechanism, where actor metadata is allowed to change independently and at different cadences than resource metadata or policies. As long as the relative data models do not change, ABAC continues to function. When data models or characteristic types used for decisions change, policies need to change.


Now, let’s explore ABAC using OPA.



OPA and ABAC


For our ABAC example, we are again going to use OPA to handle the policy evaluations. As seen in Figure 3-5, we are storing attributes and policies in the OPA engine.


[image:   OPA and ABAC policy evaluation]
Figure 3-5. OPA and ABAC policy evaluation




As seen in Figure 3-5, when an ABAC AuthZ decision is received, OPA matches policies from its Policy Store to the inbound request. Then the OPA policy uses data from the Resource Attribute Store and the User Attribute Store to decide if the request should be authorized or denied.


It’s important to remember that the requestor in the above diagram is most likely another system or part of the same system where the policy decision point is embedded. In this model, OPA is the policy mediator that returns the AuthZ decisions.


If we consider the OASIS XACML Policy Architecture from the Kubernetes Policy Management Whitepaper referenced in Chapter 1, OPA functions as the PEP, PDP, PAP, and PIP modules in the architecture diagram depicted in Figure 3-6.


[image:   XACML Policy Architecture   Kubernetes Policy Management Whitepaper]
Figure 3-6. XACML Policy Architecture - Kubernetes Policy Management Whitepaper




In Figure 3-6, Policy Enforcement Points integrate to applications, and send policy decision requests to Policy Decision Points. Policy Decision Points retrieve–and normally cache–policies from Policy Administration Points. Additional information needed for policy evaluation is obtained from the Policy Information Points. It’s important to understand that these are logical areas of functionality and may be combined as one physical policy engine.


To start my ABAC example, I chose the Examples > Access Control > Attribute-based example within the Rego Playground. The example is modeled similarly to the RBAC example, but this time we are not using roles or grants. Instead we are using attributes stored in the policy engine data and passed into the policy engine via the input data. The policy is below.




# ABAC policy snippet
package app.abac
 
import future.keywords.if
import future.keywords.in
 
default allow := false
 
allow if user_is_owner
 
allow if {
    user_is_employee
    action_is_read
    user_is_on_shift
}
 
allow if {
    user_is_employee
    user_is_senior
    action_is_update
    user_is_on_shift
}
 
allow if {
    user_is_customer
    action_is_read
    not pet_is_adopted
}
 
user_is_owner if data.user_attributes[input.user].title == "owner"
 
user_is_employee if data.user_attributes[input.user].title == "employee"
 
user_is_customer if data.user_attributes[input.user].title == "customer"
 
user_is_senior if data.user_attributes[input.user].tenure > 8
 
action_is_read if input.action == "read"
 
action_is_update if input.action == "update"
 
pet_is_adopted if data.pet_attributes[input.resource].adopted == true
 
…




In the above policy snippet, the owner user is always allowed to perform their operations. The employee users can perform read operations if they are on-shift. The employee users can also perform update operations if they are senior and they are on-shift. Finally, customer users can perform read operations on non-adopted pets.


The above policy is written to use the attributes passed into OPA via the input request as well as the attribute data, about the users, pets, and shifts, stored in OPA. The data model is seen below.




{
    "user_attributes": {
        "alice": {
            "tenure": 20,
            "title": "owner",
            "shift": "D"
        },
        "bob": {
            "tenure": 15,
            "title": "employee",
            "shift": "N"
        },
…
    },
    "shifts": {
        "D": {
            "start": 9,
            "end": 17
        },
        "N": {
            "start": 15,
            "end": 23
        }
    },
    "pet_attributes": {
        "dog123": {
            "adopted": true,
            "age": 2,
            "breed": "terrier",
            "name": "toto"
        },
…
    }
}




For the above example, I added the logic to detect if non-owner employees were actually on shift, to make sure that no operations can be done by an employee not on shift. To do this, I added the following time handling logic that uses OPA’s built-in time functions.




tz := "America/New_York"
 
now := time.now_ns()
 
clock := time.clock([now, tz])
 
day := time.weekday(now)
 
shift := data.user_attributes[input.user].shift
 
user_is_on_shift if {
    is_weekday
    is_valid_time
}
 
is_valid_time if {
    clock[0] >= data.shifts[shift].start
    clock[0] < data.shifts[shift].end
}
 
is_valid_time if {
    clock[0] >= data.shifts[shift].start
    clock[0] == data.shifts[shift].end
    clock[1] == 0
    clock[2] == 0
}
 
is_weekday if day in ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"]




In the policy snippet above, I set the time zone to America/New York, and then I get the clock time using that timezone and the epoch time from the OPA time.now_ns() function. Then I check that the returned time is on a weekday, and that the time of the operation occurs between the start and end of the non-owner employee’s shift.


Given the following input and the stored data attributes, the below output is produced in the Rego Playground.




# Input Data
{
    "user": "bob",
    "action": "read",
    "resource": "dog123"
}
 
# Output Data
{
    "action_is_read": true,
    "allow": true,
    "clock": [
        22,
        4,
        10
    ],
    "day": "Thursday",
    "is_valid_time": true,
    "is_weekday": true,
    "now": 1663207450305625000,
    "pet_is_adopted": true,
    "shift": "N",
    "tz": "America/New_York",
    "user_is_employee": true,
    "user_is_on_shift": true,
    "user_is_senior": true
}




Given the right policy, ABAC is considerably more dynamic than RBAC. Modifying attributes promotes adaptability as well. If we leave the policy alone, the employee, customer, and pet data will be used by the policy to dynamically generate access control decisions. We don’t have to fuss with roles or grants, as long as we ensure that employee attributes are changed when employees change roles in the company. This is augmented by pulling employee data from a Human Resources or Employee Information System. Correctly modeled, the employee and resource attributes can be sourced from Human Resource and inventory systems, respectively. So, once the policies are written, data drives the decisions going forward.


Note

When implementing ABAC–especially in a cloud computing environment–tags and labels are used to apply resource metadata evaluated by ABAC policies. Because tags and labels are used to grant access via ABAC policies, it’s important that you tightly control who or what can create or modify these tags or labels, and under what conditions.




RBAC and ABAC are two AuthZ models that are used to implement least-privileged access in multiple systems. With these models PaC is used to evaluate roles and attributes with policies when granting access.


Regardless of what type of AuthZ model we use, we need to plan for how we will manage those policies, across the enterprise and multiple systems. Policy automation should provide context-rich authorization and a unified way to manage authorization, allowing policy decisions to be decoupled from the underlying application code.


In the next section we will explore tooling that makes it easier to manage and deploy our policies and data across different systems and use cases, while easing–if not eliminating–the common heavy lifting that is policy and data management.









Administering Policies and Data


As we saw in Chapter 2, OPA policies and data can be bundled and signed, and distributed via these signed bundles to OPA instances. To make this bundle approach work, we need a bundle server that can be reached by our OPA instances. Conversely, we need to configure our OPA instances to download bundles from the bundle server. Let’s explore a Golang-based bundle server.



Bundle Server


To illustrate how a bundle server works, I built this example bundle server using Golang. The main portion of the server uses the gorilla/mux project to create routers, handlers, and middleware to handle inbound HTTPS requests.


When the server starts in debug mode, it listens on socket 10.0.2.2: 8443 and produces the following startup logs. I use the 10.0.2.2 loopback address alias so that my OPA server–running in Docker–can connect to my local HTTPS server outside of Docker. The context of localhost and 127.0.0.1 are different between apps running in the Docker virtual machine and my desktop.




{"level":"info","time":"2022-12-11T20:05:26.159931-05:00","message":"Service started successfully."}
{"level":"info","time":"2022-12-11T20:05:26.16005-05:00","message":"Flags: map[], Args: [./main.bin]"}
{"level":"info","time":"2022-12-11T20:05:26.163098-05:00","message":"Listening on socket 10.0.2.2:8443"}
 




To test the server, I run the following cURL command to hit the server’s info endpoint with an HTTPS GET request, passing a bearer token for AuthZ. You should notice the -k flag with the cURL command; it is used to ignore the self-signed TLS certificate configuration I used for this example.




$ TOKEN=`cat token`
$ curl -k -H 'Accept: application/json' -H "Authorization: Bearer ${TOKEN}" https://10.0.2.2:8443/info
{"service-name":"opa-bundle-api","service-id":"078f5252-6a08-4303-b94b-f468dc4d2954"}
 




Once I verified that the info endpoint was working with a bearer token, then I tried the bundle download, again with the -k flag. The file server handler of my bundle server allows clients to download bundles as gzipped tarballs.




$ TOKEN=`cat token`
$ curl -k -H "Authorization: Bearer ${TOKEN}" https://10.0.2.2:8443/bundles/signed-main.tar.gz -o signed-main.tar.gz
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   265  100   265    0     0  38646      0 --:--:-- --:--:-- --:--:--  258k




With a successful file download test, we can now configure our OPA server to connect to the bundle server.




keys:
  project-bundle-key:
    key: |
      -----BEGIN PUBLIC KEY-----
      <PUBLIC_KEY>
      -----END PUBLIC KEY-----
 
services:
  - name: opa-bundle-api
    url: https://10.0.2.2:8443/v1/bundles
    allow_insecure_tls: true
    credentials:
      bearer:
        token: "eyJ…"
 
bundles:
  project:
    service: opa-bundle-api
    resource: signed-main.tar.gz
    persist: true
    polling:
      min_delay_seconds: 10
      max_delay_seconds: 20
    signing:
      keyid: project-bundle-key




Now we can start the OPA server with the above configuration file to connect to the bundle server.




$ opa run -s --config-file opa-conf.yaml
 




While not necessarily needed, I have enabled persisting the downloaded bundle via the bundles[_].persist setting. When persist is enabled, the OPA server creates the .opa/bundles working directory to persist bundles.


Note

Instead of adding the bundle-verification public key directly to the OPA config file, I could also use the —-set-file flag as seen below, to load the key at runtime, directly from the key file. This setting works inline with the existing configuration file.



$ opa run -s --config-file opa-conf.yaml --set-file "keys.project-bundle-key.key=keys/key.pem.pub"


For those following the Twelve-Factor App methodology, this is a good approach to separate secrets from code and configurations.




To run the server in Docker with the above config file, I mapped two volumes to provide config files and bundle-storage for the OPA container to download and persist bundles.




$ docker run -it --rm -p 8181:8181 -v $(pwd):/config -v $(pwd)/.opa:/.opa --platform linux/amd64 openpolicyagent/opa:0.46.1-rootless run -s --config-file=config/opa-conf.yaml




Once the OPA server is up, the following output is produced. We can see that the bundle settings we provided worked and the bundle was downloaded and activated successfully. Based on the config file, the OPA server will check for an updated bundle every 10-20 seconds.




$ opa run -s --config-file opa-conf.yaml
{"addrs":[":8181"],"diagnostic-addrs":[],"level":"info","msg":"Initializing server.","time":"2022-11-25T23:32:17-05:00"}
{"level":"info","msg":"Starting bundle loader.","name":"project","plugin":"bundle","time":"2022-11-25T23:32:17-05:00"}
{"level":"info","msg":"Bundle loaded and activated successfully. Etag updated to 642ddbafe569fcf983b02833402928dc.","name":"project","plugin":"bundle","time":"2022-11-25T23:32:17-05:00"}
 




In the preceding OPA server output, you can see that the bundle was downloaded and activated successfully. We can also see that an Etag was used to determine changes to bundles files.


Note

ETAGs, also known as Entity Tags, are used to reduce server bandwidth requirements by allowing cached content to be checked for changes before being re-downloaded from servers. For more information about Etags, please review the Mozilla developers documentation.




In my bundle server logs–in debug mode–we can see the OPA bundle request being served.




{"level":"debug","time":"2022-11-25T23:50:54.627103-05:00","message":"HTTP request URI: /v1/bundles/signed-main.tar.gz, HTTP request headers: map[Accept-Encoding:[gzip] Authorization:[Bearer eyJ…] If-None-Match:[642ddbafe569fcf983b02833402928dc] Prefer:[modes=snapshot,delta] User-Agent:[Open Policy Agent/0.46.1 (darwin, arm64)]]"}




Bundle servers, and the OPA bundle configuration, work well to provide bundles–policy and data–to OPA. However, given the number of AuthZ decisions that systems need to handle–possibly millions–and the number of policy changes that need to occur, manually managing and distributing policies does not scale well. Instead, we need solutions that allow us to centrally manage policies and scale policy distribution to many policy engine instances, in a secure and frictionless manner. There are several tools and services that can scale. The first tool we will examine is from Styra, the creators of OPA.





Styra DAS and Policy Based Access Management


Access control policies–evaluated in real time–and the systems we use to manage and distribute said policies, are together referred to as Policy Based Access Management (PBAM). Additionally, PBAM is used to describe an authorization strategy characterized by the following approaches:



		
	Use PaC to grant access through evaluation of roles and policies

	

		
	Decouple policy decisions from underlying application code

	

		
	Unify AuthZ management across multiple systems

	

		
	Event-driven updates to policies and data

	




Styra, the creators of OPA, have created a Software-as-a-Service (SaaS) product for PBAM called DAS, Declarative Authorization Service. DAS provides a unified and centralized management and distribution platform for your systems, policies, libraries, and stacks. From DAS you can instrument multiple systems with OPA agents, such as Kubernetes, Istio, Envoy, Infrastructure-as-Code (IaC), and several more.


With Styra DAS, you can centrally create and manage resources that help you instrument and manage your applications and systems. You can also model and manage reusable stacks and libraries to keep your access management, mutation, and validation DRY (don’t repeat yourself). Let’s explore DAS with the free version–Styra Das Free.


Styra DAS Free allows you to get started with DAS at no cost, save your time. Once you create a free account on Styra.com, you can immediately jump in and start creating systems, stacks, libraries, etc. While DAS may be new to you, once you log in, the interface intuitively guides you through the processes of creating and managing resources. And, Styra Academy hosts a collection of free courses–that I can personally recommend–designed to get you up and running with easy-to-follow instructions and examples. The DAS interface is seen below in Figure 3-7.


[image:   Styra DAS Workspace]
Figure 3-7. Styra DAS Workspace




Seen in Figure 3-7, my DAS workspace contains two systems, a local Kubernetes (Minikube) system and a local (custom) OPA system. On the far right, the DAS workspace displays recommendations, tutorials, and helpful links to courses and communities.


The Settings tab is system-context aware, and provides guidance for systems’ settings–including how to install components–such as OPA agents, and have them securely connect back to your DAS workspace. For example, on the Settings tab of my local-opa system, I was shown how to start my local OPA server referencing my workspace with a downloaded configuration file that was generated for my system configuration.




# Run OPA with Styra configuration
$ opa run --server --config-file=opa-conf.yaml




The config file is easy to understand. The major difference between the bundle-server example and this DAS example is that instead of configuring name bundles to download, we are using discovery to discover bundles made available to our system.




discovery:
  name: discovery
  prefix: <DISCOVERY_PREFIX>
  service: styra
labels:
  system-id: <SYSTEM_ID>
  system-type: custom
services:
- credentials:
    bearer:
      token: <TOKEN>
  name: styra
  url: <DAS_URL>
- credentials:
    bearer:
      token: <TOKEN>
  name: styra-bundles
  url: <DAS_BUNDLES_URL>




When I start my local OPA server with the above command, it connects to my remote DAS instance–over TLS–using a bearer token credential.




{"addrs":[":8181"],"diagnostic-addrs":[],"level":"info","msg":"Initializing server.","time":"2022-10-17T21:27:50-04:00"}
{"level":"info","msg":"Starting bundle loader.","name":"systems/a13dbce…","plugin":"bundle","time":"2022-10-17T21:27:51-04:00"}
{"level":"info","msg":"Starting decision logger.","plugin":"decision_logs","time":"2022-10-17T21:27:51-04:00"}
{"level":"info","msg":"Starting status reporter.","plugin":"status","time":"2022-10-17T21:27:51-04:00"}
{"level":"info","msg":"Status update sent successfully in response to plugin update.","plugin":"status","time":"2022-10-17T21:27:52-04:00"}
{"level":"info","msg":"Discovery update processed successfully. Etag updated to \"971261…\".","plugin":"discovery","time":"2022-10-17T21:27:52-04:00"}
{"level":"info","msg":"Bundle loaded and activated successfully…
 




With my local OPA server now connected to my DAS workspace, I can author policies that will be bundled and sent directly to my local OPA instance via a secure pipe.


[image:   Styra DAS rules IDE]
Figure 3-8. Styra DAS rules IDE




As seen in Figure 3-8, the Styra DAS Free rules IDE has a rich set of tools that allow me to edit, validate, and test my rules.


In addition to rules, I can edit datasets and publish them to the remote OPA server configured for the current system with which I am working. The dataset editor is seen in Figure 3-9.


[image:   Styra DAS dataset editor]
Figure 3-9. Styra DAS dataset editor




DAS will also monitor the systems to which it is supposed to be connected. In Figure 3-10, my local OPA server is down and no longer communicating to my DAS workspace–indicated by the error.


[image:   Styra DAS error connecting to remote OPA instance]
Figure 3-10. Styra DAS error connecting to remote OPA instance




Once the system connection is restored, DAS will automatically resume operations and ensure that published artifacts–policies, datasets, tests–are synchronized to the respective system via bundles automatically created and managed in your workspace.


DAS can be used to centrally manage policy and data, and offload that management for remote OPA instances, thereby reducing the operational burden of OPA engines. DAS provides near real-time updates to remote OPA agents. It expands upon the notion of bundle servers and provides a centralized hub to organize your systems, stacks, logs, policies, and data. This centralized management aids in auditing, which can be a challenge for ABAC.


Next we will look at a solution that eliminates the need to run OPA locally by integrating to remote APIs for AuthZ.





Styra Run


Styra Run is the newest SaaS offering–from Styra–that is used to directly instrument applications for AuthZ and data filtering without needing local OPA instances. Applications integrated to Run use the Run software development kit (SDK) to connect to the Run API. The API exposes the ability to remotely manage policies, data, and AuthZ decisions via SDK calls that can be added directly to application code. In this model the Policy Enforcement Points remain local to applications using the SDK, but the Policy Decision Point reside in the Run SaaS platform.


The Styra Run SDKs are split into two categories: back-end and front-end. The back-end SDKs facilitate server-side integrations and common applications. These SDKs currently support the following languages and frameworks:



		Golang

		
	https://github.com/StyraInc/styra-run-sdk-go

	

		Java

		
	https://github.com/StyraInc/styra-run-sdk-java

	

		Node.js

		
	https://github.com/StyraInc/styra-run-sdk-node

	




The front-end SDKs are for AuthZ in web browsers–for dynamic authz-based UI rendering–and currently support plain HTML/JavaScript and React.



		HTML/JavaScript

		
	https://github.com/StyraInc/styra-run-sdk-js

	

		React

		
	https://github.com/StyraInc/styra-run-sdk-react

	




To help developers get started with Styra Run, Styra has also created the TicketHub sample application that eases onboarding via tutorials. Run is positioned to help organizations offload locally managing policies and policy engines. Instead, applications call Run to get decisions. Besides the local application development and SDK integration, everything else–policy, data, policy engine–is managed remotely.


The folks at Styra created OPA and Styra tools can augment the OPA experience to help organizations better manage policies and data, and build enterprise-grade AuthZ systems. Next we will explore alternative tools used to manage the common heavy-lifting of AuthZ policy and data management. The first tool we will explore is Open Policy Administration Layer (OPAL).





Open Policy Administration Layer (OPAL)


Open Policy Administration Layer (OPAL) is an open-source project–backed by Permit.io–for administering authorization policies and data. OPAL connects to your policy and data stores, detects changes in policy and data resources, and responds to those changes by pushing updates to remote specific OPA agents.


To get started with OPAL, I downloaded the example Docker Compose file and modified it to monitor the main branch of my OPAL example repo. The new docker-compose.yaml file is seen below.




version: "3.8"
services:
  broadcast_channel:
    image: postgres:alpine
    environment:
      - POSTGRES_DB=postgres
      - POSTGRES_USER=postgres
      - POSTGRES_PASSWORD=postgres
  opal_server:
    image: permitio/opal-server:latest
    environment:
      - OPAL_BROADCAST_URI=postgres://postgres:postgres@broadcast_channel:5432/postgres
      - UVICORN_NUM_WORKERS=4
      - OPAL_POLICY_REPO_URL=https://github.com/Policy-as-Code-Book/pac-ch3-opal-repo
      - OPAL_POLICY_REPO_MAIN_BRANCH=main
      - OPAL_POLICY_REPO_POLLING_INTERVAL=30
      - OPAL_DATA_CONFIG_SOURCES={"config":{"entries":[{"url":"http://opal_server:7002/policy-data","topics":["policy_data"],"dst_path":"/static"}]}}
      - OPAL_LOG_FORMAT_INCLUDE_PID=true
    ports:
      - "7002:7002"
    depends_on:
      - broadcast_channel
  opal_client:
    image: permitio/opal-client:latest
    environment:
      - OPAL_SERVER_URL=http://opal_server:7002
      - OPAL_LOG_FORMAT_INCLUDE_PID=true
      - OPAL_INLINE_OPA_LOG_FORMAT=http
    ports:
      - "7000:7000"
      - "8181:8181"
    depends_on:
      - opal_server
    command: sh -c "./wait-for.sh opal_server:7002 --timeout=20 -- ./start.sh"
 




When I run the docker compose up command from the directory containing the Docker Compose file, the OPAL environment starts. Below are some of the log entries.




docker-compose up
Creating opal_broadcast_channel_1 ... done
Creating opal_opal_server_1       ... done
Creating opal_opal_client_1       ... done
Attaching to opal_broadcast_channel_1, opal_opal_server_1, opal_opal_client_1
…
opal_server_1        | 2022-09-18T05:49:40.201419+0000 | 10 | opal_server.server                      | INFO  | *** OPAL Server Startup ***
opal_server_1        | 2022-09-18T05:49:40.201560+0000 | 10 | opal_common.topics.publisher            | INFO  | started topic publisher
…
 




When the Docker Compose orchestration of OPAL starts, it starts an OPAL server, a PostgreSQL server (for the Publisher/Subscriber communication) and an OPAL client. The OPAL client then starts an OPA server. Once the OPAL server starts, it publishes a topic that is subscribed to by the OPAL client.


As seen in the diagram Figure 3-11, the OPAL server connects to the GitHub repository and polls for changes in policy and data. The OPAL client instance subscribes to the topic published by the OPAL server. Once a change is made to policy and/or data in the Git repo, the OPAL server detects the change in the next polling interval (default 30 seconds), downloads the change, and publishes a new topic message on the broadcast channel for the OPAL client.


[image:   OPAL Architecture from OPAL Documentation  source https   github.com permitio opal  ]
Figure 3-11. OPAL Architecture from OPAL Documentation (source https://github.com/permitio/opal/)




The OPAL client reaches out to the OPAL server pub/sub model via an outbound websocket connection, which makes it effective for positioning behind a firewall. This outbound network request is similar to the model used by Syra DAS. The OPAL client gets the topic message and calls the OPAL server to get the newly acquired policy and/or data. The OPAL client then creates an OPA bundle and pushes the bundle to the OPA server via the REST API with PUT commands. In this model, the OPAL client acts as a sidecar container, providing data to the OPA agent. As we’ll see later in this book, the idea of using sidecar containers to update OPA data and policies is a common pattern.


With the OPAL model, near real-time updates to your remote OPA agents are possible, with an event-driven GitOps approach. Shortly after policy and/or data are updated in your Git repository, OPAL will detect, download, and propagate the changes to OPA.


Next, we will explore using container images to deliver the same policy and data for which we used bundles in previous examples.





Using OCI images with OPA and Open Policy Registry


Open Policy Registry (OPCR) is a combination of an Open Container Initiative (OCI) registry and a CLI to package and store OPA policies and data. With OPCR you can build, version, and publish policy and data as OCI images. Given the wide adoption of containerization and the open standards created and shared by OCI, it makes sense that policy and data be available for consumption and propagated to OPA agents via OCI-compatible container images. And, since version 0.40.0, OPA has been able to use policy/data bundles packaged as OCI images.


To get started with OPCR, I created an account using GitHub OAuth. Then I created a GitHub personal access token (PAT)--with minimal privileges–to allow me to login to my account via the OPCR CLI. Once I had my account and credentials, then I installed the CLI, and logged into the OPCR with the CLI.




# Install the OPCR CLI
$ brew install opcr-io/tap/policy
 
# use GitHub PAT for password to login into remote account
$ GH_PAT=`cat <PATH_TO_GH_PAT_FILE>`
policy login -u jimmyraywv -p "$GH_PAT"
Logging in.
server: opcr.io
user: jimmyraywv
OK.




After successful login, an entry is made to the


Next, I built a policy OCI image using the CLI, from the following bundle material. Along with data and Rego files, I added the optional manifest file. The manifest file is a JSON file with specific format and items.




-rw-r--r--  .manifest
-rw-r--r--  data.json
-rw-r--r--  policy.rego
 




The main reason that I use manifest files is for data scoping inside OPA. If OPA is configured to download data from bundles, its default behavior is to load its entire policy and data cache from the bundle. For use cases where multiple data sources may be used to load policy and data, scoping that data is made easier with namespaces defined in bundle manifests.


The following bundle manifest provides a roots entry that scopes bundle data into namespaces. When this bundle is loaded, only data from that roots entry is written or overwritten, thereby allowing OPA to load data from multiple sources, without data collisions.




{
    "roots": ["normal","pacbook"]
}




When I build artifacts–of any kind, regardless of type or CLI–I use Make so that I can repeat the process without variation.




$ make build
[METADATA]
timestamp: [2022-12-11_05:54:07PM]
git commit: [793309a9eaf0ad39a61c5c964e813299752da8ee]
git URL: [https://github.com/Policy-as-Code-Book/work.git]
Image version: [v0.1.0-793309a9ea]
 
policy build ./bundle-material -t opcr.io/jimmyraywv/pacbook:v0.1.0-793309a9ea
 
Created new image.
digest: sha256:cabd3a636541622cde59b92bf22033627bc137840cefc57ed6265f000a12e187
 
Tagging image.
reference: opcr.io/jimmyraywv/pacbook:v0.1.0-793309a9ea
 




I also add help targets in Makefile to provide help about the different available targets.




$ make help
 
Usage:
  make <target>
 
General
  help             Display this help.
  meta             Provides metadata for other commands; good for DevOps logging. Can be called as a target, but is mostly used by other targets as a dependency.
 
Build and deploy
  build            Build container with Docker buildx, based on PLATFORM argument (default linux/amd64)
  login            Login to remote image registry
  push             Push to remote image registry
  pull             Pull from remote image registry
  clean            Clean by removing image and tarball
  run              Run the OPA repl with the bundle image
  bundle           Create bundle




On my M1 MacBook Pro, the images were stored locally under my user directory as tarballs.




$ ls ~/.policy/policies-root/blobs/sha256
cabd3a636541622cde59b92bf22033627bc137840cefc57ed6265f000a12e187




The created images can be viewed and inspected similarly to how the Docker CLI is used.




# List images
$ policy images
  REPOSITORY          TAG                IMAGE ID      CREATED     SIZE
  jimmyraywv/pacbook  v0.1.0-793309a9ea  cabd3a636541  1 hour ago  348B
 
#Inspect image
$ policy inspect jimmyraywv/pacbook:v0.1.0-793309a9ea
 
digest: sha256:cabd3a636541622cde59b92bf22033627bc137840cefc57ed6265f000a12e187
size: 348
created_at: 2022-12-11 17:54:07.502764 -0500 EST
updated_at: 2022-12-11 17:54:07.502764 -0500 EST
Annotations
  ANNOTATION                         VALUE
  org.opencontainers.image.created   2022-12-11T22:54:07Z
  org.opencontainers.image.ref.name  opcr.io/jimmyraywv/pacbook:v0.1.0-793309a9ea
  org.opencontainers.image.title     opcr.io/jimmyraywv/pacbook
  org.openpolicyregistry.type        policy
 




On my M1 MacBook Pro the policy CLI keeps a local index, in my user directory.




# cat ~/.policy/policies-root/index.json
{
    "schemaVersion": 2,
    "manifests": [
        {
            "mediaType": "application/vnd.oci.image.layer.v1.tar+gzip",
            "digest": "sha256:cabd3a636541622cde59b92bf22033627bc137840cefc57ed6265f000a12e187",
            "size": 348,
            "annotations": {
                "org.opencontainers.image.created": "2022-12-11T22:54:07Z",
                "org.opencontainers.image.ref.name": "opcr.io/jimmyraywv/pacbook:v0.1.0-793309a9ea",
                "org.opencontainers.image.title": "opcr.io/jimmyraywv/pacbook",
                "org.openpolicyregistry.type": "policy"
            }
        }
    ]
}




Just like in Chapter 2, we can use the tar command to view the actual files contained within the tarball.




$ tar tvf ~/.policy/policies-root/blobs/sha256/cabd3a636541622cde59b92bf22033627bc137840cefc57ed6265f000a12e187
-rw-------  0 0      0          72 Dec 31  1969 /data.json
-rw-------  0 0      0         160 Dec 31  1969 /bundle-material/policy.rego
-rw-------  0 0      0          45 Dec 31  1969 /.manifest




To use the image I created, I can call the policy repl command and specify the policy, and then I can view the data.




# Run OPA repl with newly-created policy/data bundle
$ policy repl opcr.io/jimmyraywv/pacbook:v0.1.0-793309a9ea
running policy [opcr.io/jimmyraywv/pacbook:v0.1.0-793309a9ea]
 
# View data
> data
{
  "normal": {
    "stuff": [
      {
        "lead": "jimmy",
        "method": "GET",
        "project": "book"
      }
    ]
  },
  "pacbook": {
    "things": {
      "allow": false
    }
  }
}




Next, I need to push the image to the remote registry.


$ make push




[METADATA]
timestamp: [2022-12-11_05:58:23PM]
git commit: [793309a9eaf0ad39a61c5c964e813299752da8ee]
git URL: [https://github.com/Policy-as-Code-Book/work.git]
Image version: [v0.1.0-793309a9ea]
 
policy push opcr.io/jimmyraywv/pacbook:v0.1.0-793309a9ea
 
Resolved ref [opcr.io/jimmyraywv/pacbook:v0.1.0-793309a9ea].
digest: sha256:cabd3a636541622cde59b92bf22033627bc137840cefc57ed6265f000a12e187
 
Pushed ref [opcr.io/jimmyraywv/pacbook:v0.1.0-793309a9ea].
digest: sha256:7a6b6d5187bb6de682609f671dc3012499726f407b1fcb08e2f06fae007801bc




Once pushed, I would run my local OPA with the OCI image downloaded from the remote registry using an OPA config file.


According to the GitHub project, OPCR is still a work in progress. My personal experience with OPCR is that the CLI user experience is easy to learn as it resembles the Docker CLI and well as the OPA CLI. The project–with the OCI image delivery vector–looks promising.







Summary


In this chapter we discussed Privileged Access Management (PAM) and the Principle of Least Privilege (PoLP). We explored Role Based Access Control (RBAC) and Attribute Based Access Control (ABAC), and how Policy-as-Code (PaC) could be used to dynamically manage these access control models.


RBAC is often used to control access in organizations where users are arranged into groups or organizational structures. Because of the central management of entitlements, RBAC is easier to audit. However, as RBAC permissions across the organization become more granular, the RBAC roles and policies grow, and become more complex and difficult to manage.


ABAC works well in flatter organizations, or even customer-facing applications, where users are not arranged into hierarchies. However, given the nature of ABAC and its reliance on data about resources and users, spread across systems, it is usually less transparent than RBAC, and more difficult to audit.


Using PaC we realized the difference between RBAC and ABAC, and the scenarios where they would be used. Understanding the different AuthZ models will help you choose the right option when adding AuthZ to your applications and services. RBAC is well known, however, ABAC offers a potentially more dynamic AuthZ model.


We then moved on to manage PaC policies and data with bundle servers. We learned how to connect OPA servers to bundle servers with bearer token AuthZ, Etag support, and Transport Layer Security (TLS), to auto-load signed bundles with signature verification. These features are table stakes for automated support of PaC policy and data management. Please use the example bundle management server to help you understand the processes needed to manage and serve bundles, and decide if another solution would be better for you.


Finally, we embraced Policy Based Access Management (PBAM) tooling with Strya DAS, Styra Run, Open Policy Administration Layer (OPAL), and Open Policy Registry. These tools are meant to offload much of the operational overhead of policy and data management, and even provide SDKs and APIs for application integration to SaaS environments. Given what we learned in Chapter 2 about building, signing, and using bundles, it’s easy to understand the utility of these solutions when we consider AuthZ across multiple systems or an enterprise.


After 5 years of experience with PaC, I am a firm believer in the value proposition that PaC offers organizations. AuthZ use cases are no exception. The tooling that is now available–that which we explored in this chapter– makes it easier to manage policies and data across the enterprises and multiple OPA agents.


Now that we have a thorough understanding of PaC, AuthZ, and PBAM, we are going to shift gears in the next chapter and begin our exploration of how PaC is used with Kubernetes to enhance AuthZ, security, and best practices. Chapter 4 is primarily a primer on multiple PaC use cases in Kubernetes. Once we have that foundational knowledge, we will start our survey of specific PaC solutions in subsequent chapters.






      Chapter 4. Policy-as-Code and Kubernetes

      
            
A Note for Early Release Readers


With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 4th chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mpotter@oreilly.com.




      In 2018 I took over leading a team that was building tooling to provision Kubernetes, similar to Kubernetes the hard way. We were building tooling, mostly using Bash shell scripts, to provision and manage clusters. I had been working with Kubernetes, part time, for almost two years at that point. We had considered tools like kOps to help build and upgrade clusters, but at the time, kOps did not meet our cloud computing needs.

      Note

        Even with the automated services, platforms, APIs, and tools available today to help folks build and manage Kubernetes, I recommend that folks investigate and try running Kubernetes the hard way. That experience was invaluable to my learning curve.

      

      One of my first tasks was to implement controls inside Kubernetes, to prevent unwanted cluster changes. We held an internal hackathon to help generate ideas about Kubernetes controls. That is when I discovered PaC, and how I could integrate policies into the Kubernetes API.

      In this chapter we will explore how PaC is used with Kubernetes to build controls that prevent unwanted changes, to erect guardrails that guide best practices, and to perform authorization. I will introduce concepts about PaC and Kubernetes integration, and use examples where necessary. Then in subsequent chapters we will dive deeper into each PaC solution.

      I will start by briefly reviewing the CNCF and introduce Kubernetes community organization, then I will ask you to hit the ground running with me as we go on a quick tour of use cases and solutions that PaC can offer Kubernetes. We will set the stage for deeper dives into each PaC solution, later in this book.

      
        Cloud Native Computing Foundation and Policy Management

        In Chapter 2 you were introduced to the Cloud Native Computing Foundation (CNCF) and its project structure. Here, I want to briefly cover how Kubernetes fits in. Kubernetes was accepted into the CNCF in 2016 and is now a Graduated project. However, the CNCF is still heavily involved in the direction of Kubernetes and the Kubernetes project community.

        Within the Kubernetes project community, management of activities are arranged into Special Interest Groups, a.k.a SIGs. These SIGs focus on a broad spectrum of efforts meant to improve Kubernetes. Each SIG is a community of practice focused on specific and related efforts in the Kubernetes project. In particular, the Auth Special Interest Group, a.k.a sig-auth, focuses on ongoing efforts related to Kubernetes authentication (AuthN), authorization (AuthZ), and security policy.

        When a narrower focus is needed for a temporary effort then Working Groups (WG) are formed. SIGs sponsor WGs and are also stakeholders of WG efforts.

        The Policy Working Group focuses on policy management architecture and policy proposals for Kubernetes. Sig-auth sponsors the Policy WG and is a listed stakeholder. In Chapter 3 you were introduced to the Kubernetes Policy Management Whitepaper that is stored in the sig-security project.

        Note

          For more information about the lifecycle of Kubernete SIGs, WGs, and User Groups (UGs) please refer to this Kubernetes community documentation.

        

        With a Kubernetes organization synopsis behind us, let’s look at how we can enhance and control Kubernetes operations with PaC. 

      

      
        Implementing Security Controls and Controlling Behaviors

        The rich feature set provided by Kubernetes reduces or outright eliminates the common tasks and heavy lifting involved in running containers at scale. Among those features are security configurations, along with settings that can be made to follow best practices. Just as security is not simply something bolted on at the end of a software project, planning a Kubernetes cluster–or collection thereof–requires security designs and decisions at the onset–Day 0, if you will–of your Kubernetes journey.

        However, with all the levers that you can pull to secure your Kubernetes applications and strengthen the robustness of their execution, Kubernetes does not force you to follow best practices or recommended security settings. That gap can be filled with PaC. And, in order to understand how PaC enhances Kubernetes and helps control behavior within clusters, we must first examine how changes are made within a running Kubernetes cluster via API server requests.

        
          API Server Requests

          Kubernetes components are divided into those that run on the Control Plane (CP) and those that run on nodes in the Data Plane (DP). CP components manage the cluster. Without diving too deep into Kubernetes architecture, Figure 4-1 shows the relationship between the CP components and the DP (node) components. 

          
            [image:   Control Plane and Data Plane components]
            Figure 4-1. Control Plane and Data Plane components

          

          The key component that ties things together is the Kubernetes API server. The API server handles requests from external clients, such as kubectl, as well as internal clients such as node kubelet agents and controllers. 

          Note

            kubectl is the command line interface (CLI) that is used to manage and interact with Kubernetes clusters.

          

          As you can see in Figure 4-1, communication between the node kubelet agents and the control plane goes through the API server. No kubelet talks directly to the CP components. Additionally, no components, save the API server, talk directly to etcd. The idea behind this architecture is that changes that come through the API server are persisted into etcd. Then those changes are sent to the CP components to make changes to the cluster.

          Note

            For a more in-depth view of Kubernetes architecture please refer to the Kubernetes component overview documentation.

          

          Kubernetes API server requests can be mutated or validated via admission controllers that are compiled into the API server code, or validated by AuthZ services. Next we will explore the admission controllers, how they are enabled, and their types.

        

        
          Admission Controllers

          In Kubernetes, an Admission Controller is code that runs after API server requests are authenticated and authorized, and before the request results in a change to etcd. Admission controllers are compiled into Kubernetes and are meant to intercept inbound requests. These controllers can be of type mutating, validating, or even both, and they add built-in controls for cluster security and behavior.. As seen in the Minikube API server log entries below, 12 mutating admission controllers and 11 validating admission controllers are loaded by default in Minikube 1.27.1

          
            # Mutating Admission Controllers
Loaded 12 mutating admission controller(s) successfully in the following order: NamespaceLifecycle,LimitRanger,ServiceAccount,NodeRestriction,TaintNodesByCondition,Priority,DefaultTolerationSeconds,DefaultStorageClass,StorageObjectInUseProtection,RuntimeClass,DefaultIngressClass,MutatingAdmissionWebhook.
 
# Validating Admission Controllers
Loaded 11 validating admission controller(s) successfully in the following order: LimitRanger,ServiceAccount,PodSecurity,Priority,PersistentVolumeClaimResize,RuntimeClass,CertificateApproval,CertificateSigning,CertificateSubjectRestriction,ValidatingAdmissionWebhook,ResourceQuota.

          

          Note

            Admission controllers do not respond to Kubernetes read operations, like get, watch, and list. To prevent these operations, you need to use AuthZ like RBAC.

          

          As you can see in the above admission controller lists, LimitRanger and ServiceAccount are both mutating and validating admission controllers. You may also notice that there are two “webhook” admission controllers listed:

          
            	
              MutatingAdmissionWebhook

            

            	
              ValidatingAdmissionWebhook

            

          

          These two “webhook” admission controllers are actually used to call configured Dynamic Admission Controllers, like the aforementioned policy engine services. In the next section we will dive deeper into Dynamic Admission Controllers and how their runtime utility enhances Kubernetes.

        

        
          Dynamic Admission Controllers

          Virtually every change introduced to a Kubernetes cluster enters through the API server. This means that changes progress through the same API-server request flow–depicted in Figure 4-2–on their way to be persisted into etcd. Dynamic admission controllers allow cluster users to add custom controllers to this API server request flow, to change how requests are allowed to proceed, without having to customize the API server. In this way, dynamic admission controllers are an extension to the API server.

          If the contents of a request are not persisted into etcd, that change is not made to the cluster. In fact, one of the most important purposes of the Kubernetes components is to maintain the state of the cluster, based on what is successfully stored in etcd.

          
            [image:   Kubernetes API server request flow]
            Figure 4-2. Kubernetes API server request flow

          

          In the request flow depicted in Figure 4-2, there are two steps at which PaC can be used to affect the inbound request. The Mutating Admission Webhook calls out to a configured policy engine service running on nodes in the cluster DP. The request payload is sent to this service, and if a mutating policy matches the request, then the service mutates the payload, before it continues to Object Schema Validation. 

          After Object Schema Validation, there is a second step in the flow where the policy engine service can affect the inbound request. The Validating Admission Webook calls out to a configured policy engine service to have the current payload validated by any policies that match. If the validation returns true, then the change is persisted to etcd, and downstream processes change the cluster. However, if the validation results in false (invalid) return, then the request stops, and the status is immediately returned back to the calling client, by the API server. An example of a returned failure message–for using the LATEST container image tag– can be seen below.

          
            Error from server ("DEPLOYMENT_INVALID": "GOOD_REGISTRY/read-only-container:latest" container image "latest" tag/version is not allowed. Resource ID (ns/name/kind): "opa-test/test/Deployment"): error when creating "test.yaml": admission webhook <WEBHOOK_NAME>" denied the request: "DEPLOYMENT_INVALID": "GOOD_REGISTRY/read-only-container:latest" container image "latest" tag/version is not allowed. Resource ID (ns/name/kind): "opa-test/test/Deployment"

          

          Now that we have a high-level understanding of why dynamic admission controllers exist, let’s dive deeper into their operation by examining how they communicate with the API server.

          
            API server request payload

            The Kubernetes API server sends an AdmissionReview API object to the configured webhook services. This object contains the request payload sent to the API server by the client requesting the change to the cluster. Mutating and Validating webhook services are sent API server requests via POST requests as Content-Type: “application/json”. These post requests deliver the AdmissionReview API object, to be matched and handled by the webhook services. Depending on the PaC solution being used, these AdmissionReview objects can be captured from the policy engine logs. 

            One of the easiest ways to see what this AdmissionReview object looks like is to create one from a source Kubernetes resource YAML file. The kube-review GitHub project is a utility that is used to model an AdmissionReview object from a source YAML file. This is also very handy when you want to prototype or test policies for admission.

            The following Pod YAML file will be used to create an AdmissionReview object–out of band from an API server request–using the kube-review create command.

            
              # test-pod.yaml
apiVersion: v1
kind: Pod
metadata:
  name: test-pod
  namespace: policy-test
spec:
  containers:
    - name: test-pause
      image: <IMAGE_URL>
      imagePullPolicy: Always
      securityContext:  
        allowPrivilegeEscalation: false  
        runAsUser: 1000  
        readOnlyRootFilesystem: true

            

            After installing the kube-review utility, the following command can be used to create an AdminissionReview object that reflects what the Kubernetes API server would send to the admission webhook services.

            
              $ kube-review create test-pod.yaml > kube-review.json
# AdmissionReview object
{
    "kind": "AdmissionReview",
    "apiVersion": "admission.k8s.io/v1",
    "request": {
        "uid": "d44c6009-1a75-428d-80ac-ba2ad13b985e",
        "kind": {
            "group": "",
            "version": "v1",
            "kind": "Pod"
        },
        "resource": {
            "group": "",
            "version": "v1",
            "resource": "pods"
        },
        "requestKind": {
            "group": "",
            "version": "v1",
            "kind": "Pod"
        },
        "requestResource": {
            "group": "",
            "version": "v1",
            "resource": "pods"
        },
        "name": "test-pod",
        "namespace": "test",
        "operation": "CREATE",
        "userInfo": {
            "username": "kube-review",
            "uid": "66befdaa-1097-4249-9279-4fe5ed2fa4f3"
        },
        "object": {
            "kind": "Pod",
            "apiVersion": "v1",
            "metadata": {
                "name": "test-pod",
                "namespace": "test",
                "creationTimestamp": null
            },
            "spec": {
                "containers": [
                    {
                        "name": "test-pause",
                        "image": "<IMAGE_URL>",
                        "resources": {},
                        "imagePullPolicy": "Always",
                        "securityContext": {
                            "runAsUser": 1000,
                            "readOnlyRootFilesystem": true,
                            "allowPrivilegeEscalation": false
                        }
                    }
                ]
            },
            "status": {}
        },
        "oldObject": null,
        "dryRun": true,
        "options": {
            "kind": "CreateOptions",
            "apiVersion": "meta.k8s.io/v1"
        }
    }
}

            

            The above JSON AdmissionReview object would be interpreted and perhaps logged by policy engine services integrated to the API server and running on nodes in the DP. Unless stopped by admission control, the request will ultimately result in an etcd update and a pod created (test-pod) in the policy-test namespace.

          

          
            Admission response

            In response to the API server request, the webhook services respond with AdmissionReview objects containing response elements. This is a contract they must fulfill. Below are several responses ranging from minimal to advanced response with status codes, messages, patches (mutating), and warnings. Every response must return the allowed element and the uid element–the uid element must match the uid of the original API server POST request.

            
              # minimal response - allowed and uid
{
  "apiVersion": "admission.k8s.io/v1",
  "kind": "AdmissionReview",
  "response": {
    "uid": "<value from request.uid>",
    "allowed": true
  }
}
 
# Response with error code and message
{
  "apiVersion": "admission.k8s.io/v1",
  "kind": "AdmissionReview",
  "response": {
    "uid": "<value from request.uid>",
    "allowed": false,
    "status": {
      "code": 403,
      "message": "something wasn’t allowed"
    }
  }
}
 
# Mutating webhook response with base64 encoded patch
{
  "apiVersion": "admission.k8s.io/v1",
  "kind": "AdmissionReview",
  "response": {
    "uid": "<value from request.uid>",
    "allowed": true,
    "patchType": "JSONPatch",
    "patch": "base64 encoded Patch"
  }
}
 
# Response with warnings
{
  "apiVersion": "admission.k8s.io/v1",
  "kind": "AdmissionReview",
  "response": {
    "uid": "<value from request.uid>",
    "allowed": true,
    "warnings": [
      "<WARNING_1>",
      "<WARNING_2>"
    ]
  }
}
 

            

            PaC engines will use the properties in the AdmissionReview object to match policies to inbound requests and mutate or validate requests. The primary method for integrating PaC to the Kubernetes API server is through admission controllers. We will explore these components next.

          

          
            Configuring dynamic admission controllers

            Kubernetes Dynamic Admission Controllers are made possible by loading the MutatingAdmissionWebhook and ValidatingAdmissionWebhook compiled admission controllers when the API server starts. With these two admission controllers running, we can configure extensions to the API server request flow at runtime, using services running on DP nodes. This means that after the API server is up and the cluster is running, we can add policy engine services to the DP at runtime and configure them to be called by API server webhooks. This approach reduces the need to customize API server settings from cluster to cluster.

            
              Mutating webhook configuration

              The dynamic admission webhooks are categorized as mutating and validating, just like the compiled admission controllers. The webhook configurations are used to configure how DP services–installed after the cluster starts and the API server is configured–can be used to communicate with and extend the API server. Let’s start with an example of a mutating webhook configuration. Using the below kubectl command, we can explore an example mutatingwebhookconfigurations resource.

              
                $ kubectl get mutatingwebhookconfiguration <WEBHOOK_CONFIGURATION_NAME> -o yaml
 
apiVersion: admissionregistration.k8s.io/v1
kind: MutatingWebhookConfiguration
metadata:
  name: <WEBHOOK_CONFIGURATION_NAME>
webhooks:
- admissionReviewVersions:
  - v1
  clientConfig:
    caBundle: <x509_CERT>
    url: https://127.0.0.1:23443/mutate
  failurePolicy: Ignore
  matchPolicy: Equivalent
  namespaceSelector: {}
  objectSelector: {}
  reinvocationPolicy: IfNeeded
  rules:
  - apiGroups:
    - ""
    apiVersions:
    - v1
    operations:
    - CREATE
    resources:
    - pods
    scope: '*'
  sideEffects: None
  timeoutSeconds: 10
 

              

              Let’s look closer at some of the settings.

              
                	    …admissionReviewVersions

                	
                  Array of supported versions for the webhook integration, the API server will send a request with the first version in the list and traverse the list until a suitable (if any) version succeeds

                

                	    …clientConfig.caBundle

                	
                   An x509 certificate used to authenticate the Kubernetes API server (client) to the webhook service, over TLS, for secure communication

                

                	…clientConfig.url

                	
                   Internal cluster address of the webhook service

                

                	….failurePolicy

                	
                   The webhook failure policy determines what happens when a call from the API server to the webhook fails to return in the configured timeout

                

                	    ...rules

                	
                   Rules for what Kubernetes resource requests should be sent by the API server to the webhook service

                

              

              Given the above settings, this mutating webhook will receive authenticated requests from the API server when Pods are created. The API server will wait a max of 10 seconds for a response from the mutation service. The API server will ignore failures and proceed to the step in the request flow, regardless of success or failure. 

            

            
              Validating webhook configuration

              Validating webhooks are configured similarly to mutating webhooks. Let’s explore an example with the following kubectl command.

              
                $ kubectl get validatingwebhookconfiguration <WEBHOOK_CONFIGURATION_NAME> -oyaml
 
apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
metadata:
  name: <WEBHOOK_CONFIGURATION_NAME>
webhooks:
- admissionReviewVersions:
  - v1
  clientConfig:
    caBundle: <x509_CERT>
    service:
      name: <WEBHOOK_SERVICE_NAME>
      namespace: <WEBHOOK_SERVICE_NAMESPACE>
      port: 443
  failurePolicy: Fail
  matchPolicy: Equivalent
  name: <WEBHOOK_NAME>
  namespaceSelector:
    matchExpressions:
    - key: <LABEL_NAME>
      operator: NotIn
      values:
      - ignore
  objectSelector: {}
  rules:
  - apiGroups:
    - '*'
    apiVersions:
    - '*'
    operations:
    - CREATE
    - UPDATE
    resources:
    - '*'
    scope: '*'
  sideEffects: None
  timeoutSeconds: 10

              

              Given the above validating admission webhook configuration, let’s explore the additional settings.

              
                	…clientConfig.service.name|namespace|port

                	
                  Internal Kubernetes service address of the validating webhook service called By the API server

                

                	...namespaceSelector

                	
                  Namespace select rule for including/excluding namespaces from processing with this validating webhook

                

              

              Given the above settings, this validating webhook will receive authenticated requests from the API server when any Kubernetes resource with any API group or version is created or updated. The exception to this rule is that no request for resources being created or updated in namespaces with the following label will be sent to the validating webhook service. 

              
                metadata.label.<LABEL_NAME>=ignore

              

              Note

                It is usually seen as a best practice to exclude system namespaces and namespaces in which the webhook services are running.This is done so that cluster operations are not compromised by overly-restrictive or incorrect policy settings. Compensating controls would be to use RBAC to restrict access to these namespaces. If dynamic mutating or validating admission controllers are causing issues with the cluster, the corresponding configurations can be disabled to regain cluster control.

              

              The API server will wait a max of 10 seconds for a response from the validation service. If the API server does not receive a response from the service within the configured timeout period, then the request, valid or otherwise, will fail. 

              Note

                Kubernetes Dynamic Admission Controllers use webhook integration to call validating and mutating services. These calls have timeout settings (default 10 seconds) for how long the call will wait before a timeout occurs. The webhook configurations also include a failurePolicy setting to configure how the API server should respond when the webhook call doesn’t return within the configured timeout period. The webhook will either fail open (where the API server request is allowed to proceed) or fail closed (where the API server request is blocked). The default is to fail closed. 

                There are tradeoffs for each failure scenario. While a fail-open scenario could be seen as a potential security issue, a fail-closed scenario could cause operational issues for the cluster. Further information about failure policies can be found in the Kubernetes documentation.

              

            

          

          
            Data beyond AdmissionReview

            With the AdmissionReview object, policy validations are context-aware, with the context being within the boundaries of the API server request under evaluation. This means that their primary data source is the AdmissionReview object. However, there are scenarios where additional–external–data is useful, if not required. A few of those use cases are listed below.

            
              	Container Image Signature Verification

              	
                External data provides the container image signature and the required public key used to verify the image

              

              	Cluster Aware Validation

              	
                When an API server request validation needs to consider existing cluster resources to render a decision

              

              	Non-Kubernetes Data Needed for Validation

              	Occasionally there are dependencies that need to be modeled in order for correct validation to occur


            

            External data can find its way into PaC solutions in multiple ways. Below are just a few that we will cover later in this book.

            
              	
                External data is pulled at evaluation time, as needed

              

              	
                External cluster data is collected by a sidecar container that listens to cluster change, and updated into the policy engined on a regular cadence

              

              	
                External data, from outside the cluster, is pushed into the policy engine at startup and when data changes

              

            

            Now, let’s look at the first operation that can be done in the Kubernetes API server request flow: mutation.

          

        

        
          Mutating Resources

          Kubernetes mutating admission controllers can mutate inbound server requests–via in-place patching–before requests are validated and used to change the cluster. This is a well known pattern in application development, where client-side data is translated, coerced, or changed–using server-side actions–before the data is validated and saved into server-side data storage. To see how this works, you can try it using kubectl. First we will apply the following namespace and pod resources.

          
            apiVersion: v1
kind: Namespace
metadata:
  name: test
---
apiVersion: v1
kind: Pod
metadata:
  name: test-pod
  namespace: test
spec:
  containers:
    - name: test-pause
      image: <IMAGE_URL>
      imagePullPolicy: Always
      securityContext:  
        allowPrivilegeEscalation: false  
        runAsUser: 1000  
        readOnlyRootFilesystem: true

          

          Next, we can add a label to the pod, with the following kubectl patch command.

          
            $ kubectl -n test patch pod test-pod --patch-file patch.yaml -o yaml
 
# patch.yaml
metadata:
  labels:
    owner: jimmy
 

          

          The new pod yaml is seen below.

          
            # Patched pod
apiVersion: v1
kind: Pod
metadata:
  name: test-pod
  namespace: test
  labels:
    owner: jimmy
…

          

          Kubernetes API server request mutation is used all the time, mostly unnoticed. Some of the use cases I have used and seen are:

          
            	
              Injecting sidecar containers into deployments for instrumentation, such as service mesh proxies, observability, and PaC solutions

            

            	
              Adding labels or annotations to resources

            

            	
              Changing security settings in pods and containers

            

            	
              Adding tolerations and node-affinity settings to pods for multi-tenancy solutions

            

          

          You can also review some of the mutating admission controllers listed above.

          Note

            After mutation, it’s still good zero-trust and Defense-in-Depth practices to validate inbound Kubernetes API server requests, ensuring that the desired settings are present in the request payload, even after mutation.

          

        

        
          Validating resources

          Validating Kubernetes API server requests prevents unwanted changes to your clusters. As mentioned before, this is a valid approach for implementing additional security and best practices.

          Validation use cases span security controls and best practices. Some of the validation I have seen–and for which I have written PaC policies–are listed below.

          
            	
              Enforce pod and container security configurations

            

            	
              Enforce container resource settings

            

            	
              Restrict from where container images are sourced

            

            	
              Prevent use of latest tag or no version tags on container images

            

            	
              Enforce multi-tenancy settings (node-affinity, taints, tolerations, etc.)

            

            	
              Container image signature validation

            

            	
              Ingress validation and collision protection

            

            	
              Enforce namespace Quotas and LimitRanges

            

            	
              Enforce pod priority classes

            

            	
              Enforce pod disruption budgets

            

            	
              Prevent external IP addresses from being used in ClusterIP services

            

            	
              Prevent resource creation or modifications in specific namespaces (this is also a AuthZ use case)

            

          

          Let’s take a look at an example validation policy used in the jsPolicy PaC solution.

          
            # Example jsPolicy validating policy
apiVersion: policy.jspolicy.com/v1beta1
kind: JsPolicy
metadata:
  name: "no-default-ns.jimmyray.io"
spec:
  operations: ["CREATE","UPDATE"]
  resources: ["*"]
  scope: Namespaced
  javascript: |
    if (request.namespace === "default") {
      deny("Create and Update in the default namespace is not allowed!");
    }

          

          As you can see, the above policy applies to CREATE and UPDATE operations, on any resource, in the default namespace. Properties from the AdmissionReview object–namespace and operation–are used by this policy to evaluate the incoming Kubernetes API server request and prevent these unwanted changes, as defined by the policy.

          Note

            It’s a best practice to not use the default namespace in a Kubernetes cluster. Because the default behavior of the kubectl CLI is to select the default namespace–when no namespace is specified in the command or the kubeconfig file–the default namespace is easily polluted and potentially compromised. Using a validating admission policy to prevent the use of the default namespace substantially reduces the chances of errant use of this namespace and non-deterministic behavior.

          

          We have looked at how Kubernetes API server requests can be mutated and validated; however, what do we do with resources that exist before new policies are added or when the PaC engines don’t catch violations? Let’s take a look at PaC auditing and background scanning.

        

      

      
        Auditing and Background Scanning Existing Resources

        As mentioned earlier, mutating and validating dynamic admission controllers can be configured to fail open or closed. In the mutating and validating examples–last two sections–the mutating webhook configuration was set to fail open, while the validating webhook configuration was set to fail closed. Setting the webhook configuration to fail open–failurePolicy: Ignore–errors on the side of caution. If for any reason the webhook fails to respond, the changes will proceed, regardless of missing mutation or validation. However, this setting also provides the biggest chance of permitting unwanted changes to update the cluster. It is considered less secure.

        If you decide to set the webhooks to fail closed–failurePolicy: Fail–changes will not be allowed to progress if the webhooks don’t successfully respond. While this is more secure, you can also compromise the operation of your cluster by preventing any changes–keeping in mind that many changes to a cluster originate from within the cluster, as opposed to external client requests. Compromising the operation of your cluster in this way is also known as “bricking” your cluster.

        To avoid gaps in your security and best practices controls, some Kubernetes PaC solutions support auditing or background scanning. With auditing or background scanning PaC solutions can come behind and log or report on missed violations. This can help prevent unwanted changes that slipped through when webhook services did not respond in the allotted time period and the request proceeded. Another great use case for auditing and background scanning is to perform impact testing and analysis when releasing new policies to clusters, without adversely affecting existing cluster resources with potentially disrupting enforcement policies. As we dive deeper into individual Kubernetes PaC solutions, we will explore these features, and their respective settings and operations.

        Next, let’s look at how we can reduce the heavy lifting of Kubetnetes and policy management by using PaC automation to generate resources and policies.

      

      
        Generating Resources and Policies

        The best part about PaC integration to the Kubernetes API server requests is that the controls we implement are primarily preventative. We can modify and even prevent unwanted changes from happening in our clusters with PaC, before they happen. However, use cases exist that require us to react to events in the cluster. For example, the Kubernetes Cluster Autoscaler responds to unschedulable pod events by provisioning additional cluster compute nodes.

        PaC solutions can also be used to respond to cluster events. For example, some Kubernetes PaC solutions provide the ability to generate Kubernetes resources and policies on the fly, in response to the application of other Kubernetes resources. Given a compatible PaC solution, you can reduce your policy management overhead by using resource and policy generation. Resource and policy generation increases the expressive nature of policies, and reduces the effort to maintain policies for all resources.

        For example, with Kyverno you can write policies for pods and use the Kyverno Auto-Gen feature to generate policies for corresponding controller resources that create pods, such as Deployment resources. With policy Auto-Gen you can reduce the need to manage policies for multiple resource types.

        Note

          Kyverno auto-gen also works with the Kyverno CLI. With the CLI, you can apply policies to YAML–outside of the Kubernetes cluster–before API server requests are made. And, for the record, Kyverno auto-gen works in the CLI as well.

        

        Another Kyverno feature, Generate Resources, uses generate-policy types to build policies in response to applied Kubernetes resources. Given a multi-tenancy use case where applications are isolated into their respective namespaces, generate-policies can be used to prepare the namespace for use, after it is created and before applications are deployed. 

        For example, using a generate-policy you can generate a deny-all network policy resource for each provisioned namespace as part of the provisioning process. This will lock down egress and ingress network traffic for all pods in the namespace. When the application is finally deployed to the namespace, network policies with appropriate egress and ingress rules can be used to provide the least-privileged network access needed for the respective application. This would then be followed-up with the appropriate mutation or validation policies to ensure that unauthorized network access is not configured in the applied network policies.

        Note

          jsPolicy has the Controller Policy feature–similar to Generate Resources–that reacts to cluster events.

        

        PaC solutions are not always from the Kubernetes ecosystem. Next we will look at “native” Kubernetes PaC solutions.

      

      
        Kubernetes Native Policy Features

        Until now we have focused on PaC solutions that are added to clusters to decorate them with additional functionality to enforce best practices and security controls. However, Kubernetes includes native tools that can also be used to apply similar controls. Now we will explore these native tools.

        
          Pod Security

          Pods are the atomic unit-of-compute in Kubernetes; they contain containers. When creating pods, security is primarily configured using the securityContext elements at the pod and container levels. The pod-level securityContext–found in the pod specification–is less granular than its container counterpart, and is overridden by the container-level securityContext when settings overlap. Otherwise, pod-level securityContext settings are used by all containers within the pod and are often combined with container-level settings. 

          An example of a container-level securityContext–with settings that are considered container security best practices–is seen below.

          
            # Container-level securityContext element - best practice settings
securityContext:  
  allowPrivilegeEscalation: false  
  runAsUser: 1000  
  readOnlyRootFilesystem: true
  runAsNonRoot: true
  capabilities:
    drop: ["ALL"]  
  seccompProfile:
    type: "RuntimeDefault"
 

          

          The above container-level securityContext settings are designed to run a container with least-privilege access, while also preventing the container from escalating privileges, and making unwanted calls to the node operating system kernel.

          Note

            In the Linux world, Containers contain applications–code, libraries, and interpreters–that run in user space. User space refers to the area outside of the operating system kernel. The space inside the kernel is called kernel space. For applications to successfully operate in user space, they need resources–CPU, memory, disk, network–obtained from kernel space. Containers contain user space and make system calls to user space. Container security is used to limit what a container can do in user space to only that which it needs to operate. It is also meant to limit the system calls that can be made from a container to the kernel.

          

          In the earlier days of Kubernetes, Pod Security Policy (PSP) resources were used to secure pods, and prevent unwanted behaviors from emanating from containers therein. PSPs enforced container security settings found in the pod and container securityContext elements. However, PSPs were notoriously difficult to configure and use, and this resulted in many misconfigurations that either lessened desired security or even hampered cluster operations.

          Many Kubernetes administrators added PaC solutions to their clusters to enhance security, enforce desired behaviors, and prevent undesired behaviors. This often meant that default PSPs were left wide open, in privileged mode. PSP resources were deprecated in Kubernetes 1.21 and removed in Kubernetes 1.25.

        

        
          Pod Security Admission

          PSPs were a Kubernetes in-tree feature, and so it was highly desirable to replace it with an in-tree solution. The Pod Security Admission (PSA) controller is that Kubernetes in-tree replacement for PSP. This admission controller went beta in Kubernetes 1.23 and stable in 1.25. PSA implements the Kubernetes Pod Security Standards (PSS), which define 17 security controls for pod configurations organized into three levels: 

          
            	
              Privileged (unsecure)

            

            	
              Baseline (secure)

            

            	
              Restricted (highly secure).

            

          

          Note

            The term in-tree–when used with Kubernetes–refers to where Kubernetes functionality resides. When a feature is shipped within a Kubernetes release, and available for use without installing additional software, then that component is known as in-tree. As a reference, PSPs were an in-tree feature. PaC solutions are made available from the Kubernetes ecosystem and installed into or integrated with Kubernetes; PaC solutions are considered out-of-tree.

            To be clear, the in-tree moniker is not necessarily an indicator of how simple to configure or user-friendly a feature is. In fact, PSPs were removed from Kubernetes–in large part–due to their complexity and difficult user-experience.

          

          PSA implements PSS using three modes of operation. The modes, coupled with the PSS levels, create logical security policies that are used to control pod security within a Kubernetes cluster by enforcing settings in the pod and container securityContext elements. The PSA modes are:

          
            	    enforce

            	
              Policy violations will prevent pods from provisioning

            

            	    warn

            	
              Policy violations will cause the Kubernetes API server to respond with Warnings

            

            	    audit

            	
              Policy violations will cause audit annotations on events recorded in the Kubernetes API server audit logs

            

          

          PSA is an admission controller that is loaded when the Kubernetes API server starts. As seen in k8s-psa-pss-testing–an OSS project that I created and for which I am a maintainer–PSA can be customized at API server start. Without such customization, cluster-wide pod security settings–using PSA and PSS–are set to the Privileged PSS level by default, for all three PSA modes. These default settings result in unsecure pod security settings in the respective cluster.

          To apply more secure PSA and PSS settings, Kubernetes namespaces must opt into more security using Kubernetes namespace labels. As seen in the code snippet below–from the k8s-psa-pss-testing project–labels are used to opt the namespace into specific PSA modes and PSS levels.

          
            apiVersion: v1
kind: Namespace
metadata:
  name: policy-test
  labels:    
    # pod-security.kubernetes.io/enforce: privileged
    # pod-security.kubernetes.io/audit: privileged
    # pod-security.kubernetes.io/warn: privileged
    
    pod-security.kubernetes.io/enforce: baseline
    pod-security.kubernetes.io/audit: baseline
    pod-security.kubernetes.io/warn: baseline
    
    # pod-security.kubernetes.io/enforce: restricted
    # pod-security.kubernetes.io/audit: restricted
    # pod-security.kubernetes.io/warn: restricted

          

          Additionally, multiple combinations of PSA modes and PSS levels can be used. In the example below, PSA enforce mode is set for the PSS Baseline level, while PSA audit and warn are set to PSS Restricted. This satisfies the use case where you would want to enforce a baseline pod security, but also understand the potential impact of moving to PSS Restricted.

          
            apiVersion: v1
kind: Namespace
metadata:
  name: policy-test
  labels:        
    pod-security.kubernetes.io/enforce: baseline
    pod-security.kubernetes.io/audit: restricted
    pod-security.kubernetes.io/warn: restricted

          

          PSA enforce is the only PSA mode that prevents changes from physically happening in a Kubernetes cluster. And, PSA enforce only reacts to pod changes; it does not prevent other Kubernetes resources that create or update pods from being created or updated, or any other resource, for that matter. For example, if a Kubernetes Deployment resource is applied to a cluster, and the pods specifications violate the current PSA/PSS settings for the namespace–in which the pods would reside–the pods would be rejected and prevented from being provisioned. However, the deployment would be created with no outward indication that anything was wrong. The pods just wouldn’t start, because the changes to provision the pods would not be validated and allowed to reach etcd.

          Since PSA enforce mode would not stop the Kubernetes deployment, you would need to examine the status of the Deployment resource to determine why the pods didn’t start. 

          
            kubectl -n policy-test get deploy test -oyaml
...
status:
  conditions:
...
  - lastTransitionTime: "2022-07-12T23:56:10Z"
    lastUpdateTime: "2022-07-12T23:56:10Z"
    message: 'pods "test-59955f994-wl8hf" is forbidden: violates PodSecurity "restricted:latest":
      allowPrivilegeEscalation != false (container "test" must set securityContext.allowPrivilegeEscalation=false),
      unrestricted capabilities (container "test" must set securityContext.capabilities.drop=["ALL"]),
      runAsNonRoot != true (pod or container "test" must set securityContext.runAsNonRoot=true),
      seccompProfile (pod or container "test" must set securityContext.seccompProfile.type
      to "RuntimeDefault" or "Localhost")'
    reason: FailedCreate
    status: "True"
    type: ReplicaFailure
...

          

          This is a difficult user experience and another reason why you would want to use all the PSA modes, and not just enforce. The PSA warn and audit modes do react to pod controllers like Kubernetes Deployment and Daemonset resources. So, even though the deployments would not be prevented, at least the Kubernetes API server client and API server audit logs would receive indications that there was a possible security violation. An example warning–sent to Kubernetes API server clients–can be seen below.

          
            Warning: would violate PodSecurity "restricted:latest": allowPrivilegeEscalation != false (container "test" must set securityContext.allowPrivilegeEscalation=false), unrestricted capabilities (container "test" must set securityContext.capabilities.drop=["ALL"]), runAsNonRoot != true (pod or container "test" must set securityContext.runAsNonRoot=true), seccompProfile (pod or container "test" must set securityContext.seccompProfile.type to "RuntimeDefault" or "Localhost")
deployment.apps/test created

          

          For folks replacing PSP or implementing pod security, PSA is a relatively simple migration, as long as the PSS levels meet their security needs. However, when Kubernetes users need more granularity and flexibility for their pod security schemes or even want to enforce other behaviors of additional Kubernetes resources, PaC solutions are a better choice.

          It’s also important to understand that PaC can be run on the same cluster as PSA and PSS; they are not mutually exclusive. In fact there are use cases where PaC enhances PSA and PSS security and user experience. For example, PaC can enhance the use of PSA and PSS by enforcing the PSA/PSS opt-in model. Using Kubernetes Dynamic Admission Controllers–mentioned earlier in this chapter–PaC can enforce the PSA/PSS labels on namespaces, via policies, and mutating and validating webhook configurations.

          Note

            For more information and examples of using PaC solutions with Kubernetes PSA/PSS, please review this blog that I co-authored with Jim Bugwadia of Nirmata, Managing Pod Security on Amazon EKS with Kyverno.

          

          Not all PaC solutions come from outside of Kubernetes; in other words, not all PaC is out-of-tree, from the Kubernetes ecosystem. In this section we reviewed PSA, an in-tree feature, which when coupled with PSS, provides the ability to apply policies for pod security. However, we have only lightly explored pod security in Kubernetes; we will dive deeper in subsequent chapters as we explore specific PaC solutions and their use with Kubernetes. 

          Now let’s explore a new Kubernetes in-tree feature that is internalizing PaC as part of a Kubernetes in-tree offering.

        

        
          Validating Admission Policy

          As of Kubernetes 1.26, a new in-tree PaC solution, Validating Admission Policy (VAP), is in Alpha state. VAP is a native (in-tree) PaC solution embedded into Kubernetes that is “highly configurable”. With VAP, cluster administrators and operators can build policies to enforce best practices and security controls.

          Unlike PSA, VAP works on pod and non-pod resources. VAP functionality resembles the PaC solutions that I will cover in the next several chapters. However, unlike those PaC solutions, VAP is built-in to Kubernetes, and requires no additional installed software.

          To use this Alpha feature, you must apply the correct configurations to enable it in your cluster.

          
            	
              Enable the ValidatingAdmissionPolicy feature gate

            

            	
              Enable the admissionregistration.k8s.io/v1alpha1 API

            

          

          The Kubernetes resources needed for VAP are:

          
            	    ValidatingAdmissionPolicy

            	
              Contains the rule logic for the policy, including to which resources and operations the policy is applied, as well as the CEL expressions

            

            	ValidatingAdmissionPolicyBinding

            	
              Binds the policy to a specific scope, like a namespace, and binds parameter resources to the policy

            

            	ParameterResource

            	
               Enables policy configuration to be separate from policy definition

            

          

          VAP goes beyond pod security, and offers a PaC solution built into Kubernetes, based on the Common Expression Language (CEL) from Google. CEL syntax resembles that of C or Java and is embedded into YAML resources. Below are VAP resource examples.

          
            # ValidatingAdmissionPolicy resource
apiVersion: admissionregistration.k8s.io/v1alpha1
kind: ValidatingAdmissionPolicy
metadata:
  name: "deploy-history-policy.jimmyray.io"
spec:
  failurePolicy: Fail
  paramKind:
    apiVersion: rules.jimmyray.io/v1
    kind: HistoryLimit
  matchConstraints:
    resourceRules:
    - apiGroups:   ["apps"]
      apiVersions: ["v1"]
      operations:  ["CREATE", "UPDATE"]
      resources:   ["deployments"]
  validations:
    - expression: "object.spec.revisionHistoryLimit <= params.historyLimit"
      reason: Invalid

          

          The above ValidatingAdmissionPolicy resource applies to deployments that are created or updated. The CEL syntax looks for the revisionHistoryLimit setting in the deployment specification. The failurePolicy field can be set to Fail or Ignore. Fail means that if the CEL expression is false, then the API operation fails and doesn’t change the cluster.

          The paramKind field sets up the parameter resource that the ValidatingAdmissionPolicy will use to get the parameter(s) it needs to evaluate the API server request.That parameter resource is seen below.

          
            # Resource parameter
apiVersion: rules.jimmyray.io/v1
kind: HistoryLimit
metadata:
  name: "deploy-history-limit.jimmyray.io"
historyLimit: 3

          

          To connect everything together we need the ValidatingAdmissionPolicyBinding, seen below. 

          
            # Binding
apiVersion: admissionregistration.k8s.io/v1alpha1
kind: ValidatingAdmissionPolicyBinding
metadata:
  name: "deploy-history-binding.jimmyray.io"
spec:
  policy: "deploy-history-policy.jimmyray.io"
  paramsRef:
    name: "deploy-history-limit.jimmyray.io"
  matchResources:
    namespaceSelectors:
    - key: environment,
      operator: In,
      values: ["policy-test"]
 

          

          The ValidatingAdmissionPolicyBinding links the policy and parameter resources and then scopes the policy application to the policy-test namespace.

          To test this policy we will use two deployments:

          
            	
              Known good spec with revisionHistoryLimit <= 3

            

            	
              Known bad spec with revisionHistoryLimit > 3 (including a missing revisionHistoryLimit field that defaults to 10)

            

          

          The error message upon failure is seen below.

          
            ValidatingAdmissionPolicy 'deploy-history-policy.jimmyray.io' with binding 'deploy-history-binding.jimmyray.io' denied request: failed expression: object.spec.revisionHistoryLimit <= 3
 

          

          After years of working with PaC I am cautiously optimistic about the potential of the ValidatingAdmissionPolicy feature, underpinned by CEL. ValidatingAdmissionPolicy has the potential to reduce the burden of managing infrastructure for PaC solutions that have to be installed in Kubernetes after clusters are provisioned. I am also excited to finally dive deeper into CEL, with use cases that make it easy for me to apply my PaC experience.

          Now, let’s briefly leave admission control behind and shift to access control as we look into how PaC can be used for AuthZ use cases in Kubernetes.

        

      

      
        AuthZ Webhook Mode

        At this point, I wanted to shift focus from admission control and look at another possibility of integrating PaC to Kubernetes for AuthZ. AuthZ in Kubernetes is designed to control access to the Kubernetes API server from external and internal clients. Kubernetes supports multiple modes of AuthZ, including node-level access, client AuthZ via webhook integration, and RBAC and ABAC that we explored in Chapter 3. 

        Unlike PaC–that is primarily integrated to dynamic admission controllers–the AuthZ webhook integration is configured at the API server during cluster startup. This type of AuthZ is not used as much as RBAC, but it can be combined with RBAC for more granular security. Webhook Mode can be very effective in integrating to external AuthN providers. The AuthZ webhook is not used as much as RBAC mainly due the need to configure the Kubernetes API server to integrate to cluster or remote services to handle AuthZ decisions. Additionally, Kubernetes multi-tenancy design decisions like using granular namespaces with RBAC, and augmenting AuthZ with mutating and validating admission services–integrated via dynamic admission controllers–has traditionally been easier to configure and support.

        As with admission controls, the Kubernetes API server posts JSON payloads to the AuthZ webhook services and receives allowed or denied decisions. Below is an example payload that is sent from the API server.

        
          # SubjectAccessReview
{
    "apiVersion": "authorization.k8s.io/v1beta1",
    "kind": "SubjectAccessReview",
    "spec": {
        "resourceAttributes": {
            "namespace": "kube-system",
            "verb": "get",
            "resource": "pods",
            "version": "v1"
        },
        "user": "jimmy",
        "groups": [
            "system:authenticated",
            "devops"
        ]
    }
}

        

        The first thing to notice is that the SubjectAccessReview example payload is smaller than the AdmissionReview example payload from earlier in this chapter. This is mainly due to the fact that the AdmissionReview contains within it the actual cluster resource changes that are desired, and the SubjectAccessReview primarily contains desired actions and AuthN principle information, such as group membership.

        Now that we understand the idea of AuthZ webhook mode, let’s look closer at how AuthZ decisions are made with this approach.

        
          AuthZ Decisions

          The configuration YAML for the AuthZ Webhook reuses the kubeconfig format, where the clusters node is used to configure AuthZ services–also known as authorizers–called by the API server. The users node is used to configure the API server to securely communicate with the webhook service. This means that multiple–chained–authorizers can be used for AuthZ decisions by the API server. 

          Decisions returned by the authorizers are either allowed or denied, and these decisions are not always mutually exclusive. Since multiple authorizers can be configured to return AuthZ decisions, it’s possible that not all authorizers can “allow” or authorize a user to perform an action. And, if an authorizer cannot allow the access, it doesn’t necessarily mean that the same authorizer can actually deny the access. It could be that the authorizer that cannot allow the access, simply doesn’t have deterministic rules to deny the access.

          In the case of multiple authorizers, an authorizer that cannot allow an access, for whatever reason, may pass the decision on to subsequent authorizers, by returning an allowed=false condition without returning a denied=true condition. An authorizer with the appropriate rules to act on the information passed in via the SubjectAccessReview–with deterministic logic–may also deny the request. With multiple authorizers, access decisions can become very granular. Table 4-1 explains how allow and deny decisions can be combined.

          
            Table 4-1. Possible Authorizer Decisions
            
              	allowed = true
              	
              	Authorizer can allow
            

            
              	allowed = false
              	
              	Authorizer cannot allow, but also cannot deny
            

            
              	allowed = false
              	denied = true
              	Authorizer can deny
            

          

          The authorizers return a SubjectAccessReview JSON object with the status field containing the decision and applicable messages.

          
            # Decision to allows access, message not necessary
{
  "apiVersion": "authorization.k8s.io/v1",
  "kind": "SubjectAccessReview",
  "status": {
    "allowed": true
  }
}
 
# Decision disallow access, but not deny, additional authorizers can deny
{
  "apiVersion": "authorization.k8s.io/v1",
  "kind": "SubjectAccessReview",
  "status": {
    "allowed": false,
    "reason": "Non-admin users cannot access admin namespaces."
  }
}
 
# Decision to disallow and deny
{
  "apiVersion": "authorization.k8s.io/v1",
  "kind": "SubjectAccessReview",
  "status": {
    "allowed": false,
    "denied": true,
    "reason": "Non-admin users cannot access admin namespaces."
  }
}
 

          

          When a denied=true response is sent back from an authorizer, it bypasses any need to reach out to additional configured authorizers for a decision.

          Now that we understand what authorizers do, let’s look at how they do it, with PaC integration.

        

        
          AuthZ Webhook and PaC

          Given the fact that JSON is exchanged between the API server and the AuthZ services, it’s easy to imagine how PaC tools can be used to make the AuthZ decisions for the API server. The trick is to start the API server and configure the AuthZ webhook, without preventing any needed changes before the AuthZ webhook is configured. 

          The Kubernetes documentation seems to indicate that an external service is used to create the AuthZ webhook integration. However, a PaC best practice is to localize the decision engines as close to the decision points as possible. Adding additional network hops by calling services external to the cluster can make the response slower and solution brittle. Running PaC engines within the cluster, with multiple pods, creates partition tolerance as well.

          An example of such a configuration that uses kind, OPA, and kubeadm to demonstrate this solution can be found as an OPA contribution. This solution runs OPA on the Kubernetes control plane nodes using Daemonset resources. The configuration–Figure 4-3–sets a static IP on the Kubernetes Service resource that fronts the multiple OPA pods created by the Daemonset.

          
            [image:   AuthZ webhook configuration using OPA]
            Figure 4-3. AuthZ webhook configuration using OPA

          

          Using Kubernetes taints and tolerations, the pods seen in Figure 4-3 are isolated to the Kubernetes control plane nodes. In fact, any services that are as sensitive to cluster operations–such as the API server AuthZ service–should be isolated to the control plane nodes. 

          
            Example policy

            To create the above authorizer decisions, given the above SubjectAccessReview object, the following example OPA policy will deny non-admin users from accessing admin namespaces.

            
              # OPA policy to restrict admin namespace access
package k8s.authz
 
import future.keywords.in
 
# Admin namespaces
admin_nss := ["kube-system","admin","opa"]
 
# Non-admin users cannot access admin namespaces.
deny[reason] {
    input.spec.resourceAttributes.namespace in admin_nss
    not "admin" in input.spec.groups
    reason := "Non-admin users cannot access admin namespaces."
}
 
decision = {
    "apiVersion": "v1",
    "kind": "SubjectAccessReview",
    "status": {
        "allowed": count(deny) == 0,
        "deny": count(deny) > 0,
        "reason": concat(" | ", deny),
    },
}

            

            The purpose of the AuthZ webhook is to allow or deny access to Kubernetes API server actions, based on information about the authenticated principle trying to perform the action. To be clear, this AuthN information is not seen in the AdmissionReview object used during mutating and validating admission via dynamic admission controllers, unless like data is added to the inbound request in a non-authoritative manner. So, even though PaC can easily be used to validate inbound API server requests via dynamic admission controllers, the information needed to authorize requests–as done by the AuthZ webhook authorizers–is not available. At this time, Kubernetes Dynamic Admission Controllers cannot be used for this type of AuthZ use case.

            Before we close out this chapter, we need to explore how PaC reporting can be implemented and utilized.

          

        

      

      
        Policy Reporting

        Different PaC solutions provide different means for reporting and logging. While all the PaC solutions I have used have different levels of logging, logging is not reporting, as much as metrics gathering is not logging. PaC reporting is used to verify that your PaC solution is providing the desired result; moreover, PaC reporting can create informational and auditable artifacts to satisfy internal and external regulatory requirements.

        When it comes to PaC reporting inside Kubernetes, the implementation–upon which I would base a standard–is the open format defined by the Kubernetes Policy Working Group. This Policy Report is underpinned by a Kubernetes Custom Resource Definition (CRD). Below is an example of this CRD installed by the Kyverno Policy Engine.

        
          # policyreports.wgpolicyk8s.io CRD
kubectl get crd policyreports.wgpolicyk8s.io -oyaml
 
apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
…
  name: policyreports.wgpolicyk8s.io
spec:
  conversion:
    strategy: None
  group: wgpolicyk8s.io
  names:
    kind: PolicyReport
    listKind: PolicyReportList
    plural: policyreports
    shortNames:
    - polr
    singular: policyreport
  scope: Namespaced
  versions:
…
    name: v1alpha2
    

        

        As seen in the abbreviated output–CRDs are notoriously long–the current version of the Policy Report CRD is v1alpha2. Given the adoption pattern of Kuberrnetes, adoption of new features usually doesn’t increase until the feature is promoted to at least beta status. That said, I have used Policy Reports with the Kyverno Policy Engine.

        Note

          Kubernetes Custom Resource Definitions (CRD) are used to extend the Kubernetes API. The kubectl api-resources command, seen below, can be used to view existing API resources in your cluster.

          $ kubectl api-resources | grep pod
NAME        SHORTNAMES   APIVERSION    NAMESPACED   KIND
pods        po           v1            true         Pod
…
 

          The kubectl explain command can be used to explore the APIs, as seen below.

          $ kubectl explain pod.spec.containers.name
KIND:     Pod
VERSION:  v1
 
FIELD:    name <string>
 
DESCRIPTION:
     Name of the container specified as a DNS_LABEL. Each container in a pod
     must have a unique name (DNS_LABEL). Cannot be updated.

        

        Policy Reports can be namespaced-scoped and cluster-scoped. Below is an example of a namespace-scoped Policy Report from the kyverno namespace.

        
          # List policy reports in the kyverno namespace
kubectl -n kyverno get policyreports.wgpolicyk8s.io
 
NAME           PASS   FAIL   WARN   ERROR   SKIP   AGE
cpol-example   2      0      0      0      0       1h10m
 
# Review Policy Report
kubectl -n kyverno get policyreports.wgpolicyk8s.io cpol-example -o yaml
apiVersion: wgpolicyk8s.io/v1alpha2
kind: PolicyReport
metadata:
…
  labels:
    app.kubernetes.io/managed-by: kyverno
  name: cpol-example
  namespace: kyverno
results:
- message: Validation rule 'autogen-example' passed.
  policy: example
  resources:
  - apiVersion: apps/v1
    kind: Deployment
    name: kyverno
    namespace: kyverno
  result: pass
  rule: autogen-example
  scored: true
  source: kyverno
…
summary:
  error: 0
  fail: 0
  pass: 2
  skip: 0
  warn: 0

        

        The above Policy Report is for the cpol-example Kyverno Cluster Policy that was auto-generated for deployment resources from a defined pod policy.. The report also indicates that the policy had two passed validations. The Policy Report is a useful artifact for human consumption and since it’s YAML, it is also machine readable, like policies themselves.

        Not all PaC solutions include reporting, and we will explore that feature and others as we dive deeper into specific PaC solutions in subsequent chapters.

      

      
        Summary

        If there is one thing I have learned from working with Kubernetes for the last six years, it is that Kubernetes is ever evolving, spurred on by its community of developers and stakeholders. As Kubernetes continues to change and evolve, it’s inevitable that PaC will as well. We are witnessing that evolution now, with new PaC features from the Kubernetes ecosystem as well as new in-tree solutions.

        In this chapter I surfaced several Kubernetes use cases that can be satisfied using PaC. You should now have foundational knowledge about admission controllers and their purpose in your clusters. I covered how you can mutate and validate inbound API server requests with dynamic admission controllers, as well as use policies to respond to events in your cluster, such as resource modifications (create and update). 

        We explored new in-tree solutions like Pod Security Admission and Validating Admission Policy. I took you on a short detour to explore how PaC can be used for AuthZ using Kubernetes Webhook Mode. Finally, we reviewed the emerging Policy Reporting standards from the Policy Working Group.

        With all the information that I asked you to digest in this chapter, I wanted to also remind you of my original recommendation–from Chapter 1–on how to choose the right PaC solution for your needs. There are several use cases in this chapter that you should consider for your PaC Selection Scorecard if you run and secure Kubernetes clusters.

        In the next several chapters, as we dive deeper into specific PaC solutions–how they fit and interact with Kubernetes–you should consider adding use cases from this chapter to your scorecard. Then as we discuss each solution, you should consider how well the solution fits the described use case, and your needs and capabilities. I will guide you along the way, discussing suitability, exposing issues and challenges, and making recommendations.

        We will start our survey of specific PaC solutions in Chapter 5, as we explore how Open Policy Agent is installed and used with Kubernetes for better security, control, and user experience.

      

    


      Chapter 5. Open Policy Agent and Kubernetes

      
            
A Note for Early Release Readers


With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 5th chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mpotter@oreilly.com.




      So far we have explored PaC as a general subject matter, with a focus on foundational knowledge. In Chapter 2 I introduced you to Open Policy Agent (OPA) and we examined the OPA suite of tools. We explored how to write, test, and manage policies, as well as how to extend and integrate with OPA. In Chapter 3, we looked into PaC and AuthZ, and again we reviewed examples of how OPA can be used in those use cases. Finally, in Chapter 4 I covered PaC and the different features, components, and use cases with which PaC is used within Kubernetes clusters. 

      In these next several chapters, I will cover specific PaC solutions and how they are used within Kubernetes clusters to satisfy mutating and validating use cases. Along the way I will expose to you best practices and potential challenges. From these chapters, you should learn how each PaC solution that I cover in this book best fits your needs and capabilities.

      In this chapter I will cover OPA and Kubernetes. As covered in Chapter 2, OPA is a domain-agnostic PaC solution that evaluates policies–written in Rego–against submitted and stored data. I will start with the installation and components, then I will dive deeper into Kubernetes-specific OPA policies, libraries, tools, and techniques.

      Note

        In this book, I may refer to OPA–not OPA/Gatekeeper–as OPA classic. I sometimes add the classic moniker to differentiate OPA from OPA/Gatekeeper.

      

      OPA is a very mature OSS project with a strong and active community of developers and users. The following links will help you gain more information about OPA:

      
        	
          
            GitHub Project
          

        

        	
          
            Main Website
          

        

        	
          
            Slack Community
          

        

        	
          
            CNCF Page
          

        

      

      As you read through this chapter, remember that–like other chapters–all the examples you see will either be included in referenced material that I surface, or will be made available from the chapter repository in the Policy-as-Code Book GitHub organization.

      Now, let’s start by installing OPA into Kubernetes–my local minikube–and we’ll see how it fits the mutating and validating webhook use cases.

      
        OPA Installation

        As we learned in Chapter 4, mutating and validating admission controllers are loaded when the Kubernetes API server starts. Two of the most common admission controllers–that also enable dynamic admission control–are the MutatingAdmissionWebhook and the ValidatingAdmissionWebhook. These admission controllers enable us to configure OPA and other PaC solutions–as admission control services–without having to load them as admission controllers–with custom API server settings–when the API server starts.

        Note

          The official installation instructions for installing OPA into a Kubernetes cluster can be found in this tutorial.

        

        The OPA server installs into Kubernetes–fronted by a service–that is called by the Kubernetes API server via dynamic admission control. As part of the installation, the kube-mgmt sidecar container is also installed. I will cover the kube-mgmt sidecar in the next section. Now let’s look at how we can configure Kubernetes validating webhooks using OPA.

        
          Validating Admission Webhook

          To properly install OPA into Kubernetes as an admission controller solution, you must configure a webhook configuration for the type of admission control you need. Below is an example ValidatingWebhookConfiguration resource to allow the API server to call the OPA service to validate inbound requests. With this configured resource the API server is configured as a client to the OPA server, for validation purposes.

          
            $ kubectl get validatingwebhookconfigurations opa-validating-webhook -oyaml
apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
metadata:
…
  name: opa-validating-webhook
webhooks:
- admissionReviewVersions:
  - v1
  clientConfig:
    caBundle: LS0…
    service:
      name: opa
      namespace: opa
      port: 443
  failurePolicy: Fail
  matchPolicy: Equivalent
  name: validating-webhook.openpolicyagent.org
  namespaceSelector:
    matchExpressions:
    - key: openpolicyagent.org/webhook
      operator: NotIn
      values:
      - ignore
  objectSelector: {}
  rules:
  - apiGroups:
    - '*'
    apiVersions:
    - '*'
    operations:
    - CREATE
    - UPDATE
    resources:
    - pods
    scope: '*'
  sideEffects: None
  timeoutSeconds: 10
 

          

          In the above YAML, I configured the validating webhook to timeout after 10 seconds, and fail–prevent cluster changes–upon timeout. I also set validation to only occur for resources that are in namespaces that are not labeled openpolicyagent.org/webhook=ignore; namespaces labeled thusly will be excluded.

          Note

            When using dynamic admission controls to call validating and mutating services, the webhook calls have timeout settings (default 10 seconds). The webhook failurePolicy setting configures how the API server should respond when the webhook call times out. According to the documentation, the failurePolicy defines how the webhook configuration should react to “unrecognized errors and timeout errors”. If set to Ignore, the webhook will fail open and the inbound change–regardless of validity–will proceed to the next step in the flow. If set to Fail, the webhook will fail closed, and the inbound change will stop, again regardless of the validity of the change.

            The timeoutSeconds, failurePolicy and namespaceSelector settings are used to tune the webhook configuration so that regardless of failure mode, the cluster remains operative. For example, it’s not a good idea to use a fail-closed scenario, without excluding system namespaces like kube-system and opa.

          

          In Chapter 4, we learned that validating and mutating webhook services receive AdmissionReview objects from the Kubernetes API server. In the above configuration, I set the version of the AdmissionReview to v1. This version must match the version that OPA policies expect, as seen on the policy snippet below.

          
            # Main policy - snippet
    main = {
      "apiVersion": "admission.k8s.io/v1",
      "kind": "AdmissionReview",
      "response": response,
    }
 

          

          The API server uses the internal OPA service address and the Base64 encoded certificate–clientConfig.caBundle–to communicate with the OPA server over TLS with a self-signed certificate. However, this does not prevent other clients within the cluster from connecting to OPA, even without the caBundle field. For example, as you can see below, I was able to run an alpine pod and connect to the OPA service, even with a self-signed TLS cert.

          
            # Connecting to OPA service within Kubernetes
$ kubectl -n opa run --image=alpine -it alpine-shell -- /bin/sh
If you don't see a command prompt, try pressing enter.
/ # apk add curl
…
OK: 10 MiB in 20 packages/ # curl -k https://opa.opa.svc/v1/data
{"decision_id":"c9278638-9c26-43c2-9f…

          

          Note

            The Kubernetes API server can be configured to authenticate to admission controllers. This requires custom configuration files added to the API server startup process, as well as OPA server AuthN and AuthZ settings, like we used in Chapter 2. Another layer of security could be implemented with network policy resources as well, used to control ingress to the OPA server.

          

          Under the rules section on the webhook configuration, I configured the validating webhook to review resources with the following characteristics:

          
            	
              All API groups

            

            	
              All API versions

            

            	
              CREATE and UPDATE operations

            

            	
              Pod resources only

            

            	
              Cluster and Namespace scopes

            

          

          I restricted the reviewed resources to pods to make it easier for demonstration. However, in a real-world production environment, I would most likely expand the rules to all resources, as seen below.

          
            rules:
  - operations: ["CREATE", "UPDATE"]
    apiGroups: ["*"]
    apiVersions: ["*"]
    resources: ["*"]

          

          Next, let’s explore reusable automation to install OPA and configure the resources needed for a validating webhook.

          
            Automated install and uninstall

            To make it easier to install–and uninstall–OPA and reduce the chances of errors, I automated the processes via a set of shell scripts that I call with a Makefile. Below I will step through the automation I used to reliably install OPA into a Kubernetes cluster. First, I configured the kubectl command. This layer-of-indirection approach allows me to customize the kubectl command if need be. Options for the kubectl command can be found with the kubectl options command. Then I configured labels and the OPA namespace.

            
              # shell install OPA script - up.sh
#!/usr/bin/env bash
 
OWNER="jimmy"
ENV="dev"
BILLING="lob-cc"
KUBECTL="kubectl"
CA_BUNDLE=""
 
cat templates/kubelet-api-admin-template.yaml | sed -e "s/__OWNER_VALUE__/${OWNER}/g"  | sed -e "s/__ENV_VALUE__/${ENV}/g" | sed -e "s/__BILLING_VALUE__/${BILLING}/g" > "generated/config/kubelet-api-admin.yaml"
${KUBECTL} apply -f generated/config/kubelet-api-admin.yaml
 
cat templates/ns-template.yaml | sed -e "s/__OWNER_VALUE__/${OWNER}/g" | sed -e "s/__ENV_VALUE__/${ENV}/g" | sed -e "s/__BILLING_VALUE__/${BILLING}/g" > "generated/config/ns.yaml"
${KUBECTL} apply -f generated/config/ns.yaml
 

            

            Next, I labeled the system namespaces–opa and kube-system–that I did not want the admission control policies to affect.

            
              ${KUBECTL} label --overwrite namespace kube-system openpolicyagent.org/webhook=ignore
${KUBECTL} label --overwrite namespace opa openpolicyagent.org/webhook=ignore
 

            

            Next, I generated the TLS material needed to operate OPA with TLS and allow the API server to connect to OPA running with self-signed certificates. I also create a TLS secret–containing the server certificate and the server private key. This secret is mapped to volume mounts used by the OPA server pod.

            
              openssl genrsa -out generated/secrets/opa-ca.key 2048
openssl req -x509 -new -nodes -sha256 -key generated/secrets/opa-ca.key -days 100000 -out generated/secrets/opa-ca.crt -subj /CN=admission_ca 2>&1
openssl genrsa -out generated/secrets/opa-server.key 2048
openssl req -new -key generated/secrets/opa-server.key -sha256 -out generated/secrets/opa-server.csr -subj /CN=opa.opa.svc -config templates/opa-server.conf 2>&1
openssl x509 -req -in generated/secrets/opa-server.csr -sha256 -CA generated/secrets/opa-ca.crt -CAkey generated/secrets/opa-ca.key -CAcreateserial -out generated/secrets/opa-server.crt -days 100000 -extensions v3_ext -extfile templates/opa-server.conf
 
echo "Trying to delete \"opa-server\" secret..."
${KUBECTL} -n opa delete secret opa-server 2>&1
${KUBECTL} -n opa create secret tls opa-server --cert=generated/secrets/opa-server.crt --key=generated/secrets/opa-server.key
 

            

            Note

              It’s important that openssl commands that create cryptography artifacts–opa-ca.key, opa-server.csr, and opa-server.crt–use the sha256 secure-hash algorithm, as the openssl default–sha1–is no longer supported.

            

            Next, I applied the Kuberneters resources to create the OPA server and needed RBAC permissions. 

            
              cat templates/admission-controller-template.yaml | sed -e "s/__OWNER_VALUE__/${OWNER}/g" | sed -e "s/__ENV_VALUE__/${ENV}/g" | sed -e "s/__BILLING_VALUE__/${BILLING}/g" > "generated/config/opa-admission-controller.yaml"
${KUBECTL} apply -f generated/config/opa-admission-controller.yaml
  
CA_BUNDLE="$(base64 generated/secrets/opa-ca.crt)"
 
Sleep 10
 

            

            I then waited–sleep–for 10 seconds for OPA and the kube-mgmt sidecar to start communicating, then I applied the Rego main policy configmap so that OPA would operate correctly.

            
              ${KUBECTL} apply -f policy-configmaps/1-main.yaml
 
CA_BUNDLE="$(base64 generated/secrets/opa-ca.crt)"
 
cat templates/validating-webhook-configuration-template.yaml | sed -e "s/__OWNER_VALUE__/${OWNER}/g" | sed -e "s/__ENV_VALUE__/${ENV}/g" | sed -e "s/__BILLING_VALUE__/${BILLING}/g" | sed -e "s/__CA_BUNDLE_VALUE__/${CA_BUNDLE}/g" > "generated/config/opa-validating-webhook-configuration.yaml"
${KUBECTL} apply -f generated/config/opa-validating-webhook-configuration.yaml
 

            

            Only after OPA was up and running and clients could communicate with OPA, did I apply the validating webhook configuration–to connect the Kubernetes API server to OPA–for the purpose of validating API server requests.

            Note

              In the above script, you may have noticed that I used a simple templating approach with the sed utility. I considered using Kustomize to create bases and overlays for different configurations; however, Kustomize is not really a templating tool, as much as it is a multiple configuration management and build tool. Since I didn’t know the openssl artifacts until script runtime, Kustomize was not the best choice, at least not alone. I could have used Kustomize for the common labels and configurations, but for simplicity I opted to continue with sed, alone. The shell-script and Makefile approach also makes it very easy for me to tweak settings when I am prototyping. Like many things related to Kubernetes, there are multiple ways to perform a task.

            

            Below is the output from the automation.

            
              $ make up
./up.sh 2>&1
clusterrolebinding.rbac.authorization.k8s.io/kubelet-api-admin created
namespace/opa created
namespace/kube-system labeled
namespace/opa labeled
Generating RSA private key, 2048 bit long modulus
....................................................................................+++
..........................+++
e is 65537 (0x10001)
Generating RSA private key, 2048 bit long modulus
...........................................................................................................+++
..........+++
e is 65537 (0x10001)
Signature ok
subject=/CN=opa.opa.svc
Getting CA Private Key
Trying to delete "opa-server" secret...
Error from server (NotFound): secrets "opa-server" not found
secret/opa-server created
clusterrolebinding.rbac.authorization.k8s.io/opa-viewer created
role.rbac.authorization.k8s.io/configmap-modifier created
rolebinding.rbac.authorization.k8s.io/opa-configmap-modifier created
service/opa created
deployment.apps/opa created
clusterrole.rbac.authorization.k8s.io/opa created
clusterrolebinding.rbac.authorization.k8s.io/opa created
configmap/opa-default-system-main created
configmap/deny-all-pods created
validatingwebhookconfiguration.admissionregistration.k8s.io/opa-validating-webhook created
 

            

            The install automation configures the OPA server container with the following settings. As you can see, I used a “rootless” version of the OPA for this installation; we learned in Chapter 2 of this best practice to strengthen security.

            
              - name: opa
  image: openpolicyagent/opa:0.47.3-rootless
  securityContext:  
    allowPrivilegeEscalation: false  
    runAsUser: 1000  
    readOnlyRootFilesystem: true
    runAsNonRoot: true
    capabilities:
      drop: ["ALL"]  
    seccompProfile:
      type: "RuntimeDefault"
  args:
    - "run"
    - "--server"
    - "--tls-cert-file=/certs/tls.crt"
    - "--tls-private-key-file=/certs/tls.key"
    - "--addr=0.0.0.0:8443"
    - "--addr=http://127.0.0.1:8181"
    - "--log-format=json"
    - "--set=status.console=true"
    - "--set=decision_logs.console=true"

            

            Note

              The installation process that I used is based on years of experience with OPA and Kubernetes, and official documentation. In fact, I used parts of the above script in 2018 when I first started with OPA and Kubernetes. That said, there is also a Helm chart that can be used to install OPA and its kube-mgmt sidecar. In fact, if you would rather just install OPA, without the kube-mgmt sidecar, you can do that with the values.yaml settings.

              mgmt:
  enabled: false

            

            Once OPA was installed, then I verified that it was functional through a couple of checks. First, I verified that the OPA policy configmaps that I installed were compiled and ingested without issues. The following kubectl commands checked the status label of each configmap.

            
              $ kubectl -n opa get cm opa-default-system-main -oyaml|grep openpolicyagent.org/kube-mgmt-status
    openpolicyagent.org/kube-mgmt-status: '{"status":"ok"}'
 
$ kubectl -n opa get cm library-k8s-helpers -oyaml|grep openpolicyagent.org/kube-mgmt-status
    openpolicyagent.org/kube-mgmt-status: '{"status":"ok"}'

            

            Another check that I found helpful was simply reviewing the OPA server logs, looking for REST API health checks.

            
              $ kubectl -n opa logs opa…
{"client_addr":"172.17.0.1:36366","level":"info","msg":"Received request.","req_id":82,"req_method":"GET","req_path":"/health","time":"2022-12-20T18:42:11Z"}
{"client_addr":"172.17.0.1:36366","level":"info","msg":"Sent response.","req_id":82,"req_method":"GET","req_path":"/health","resp_bytes":2,"resp_duration":1.964084,"resp_status":200,"time":"2022-12-20T18:42:11Z"}

            

            Now that we know how to install and configure OPA in Kubernetes, let’s uninstall it.

          

          
            Uninstalling OPA

            I uninstalled OPA in my test cluster using a similar make/shell process, seen below.

            
              #!/usr/bin/env bash
 
KUBECTL="kubectl"
${KUBECTL} delete ValidatingWebhookConfiguration -l app=opa
${KUBECTL} delete ns opa
${KUBECTL} delete ns opa-test
${KUBECTL} delete ns opa-test1
${KUBECTL} delete clusterrole opa
${KUBECTL} delete clusterrolebinding opa
${KUBECTL} delete clusterrolebinding opa-viewer
${KUBECTL} delete clusterrolebinding kubelet-api-admin
${KUBECTL} label namespace kube-system openpolicyagent.org/webhook-

            

            I also used make for the uninstall process.

            
              $ make down
./down.sh 2>&1
validatingwebhookconfiguration.admissionregistration.k8s.io "opa-validating-webhook" deleted
namespace "opa" deleted
clusterrole.rbac.authorization.k8s.io "opa" deleted
clusterrolebinding.rbac.authorization.k8s.io "opa" deleted
clusterrolebinding.rbac.authorization.k8s.io "opa-viewer" deleted
clusterrolebinding.rbac.authorization.k8s.io "kubelet-api-admin" deleted
namespace/kube-system unlabeled

            

            In this section I have alluded to the kube-mgmt sidecar, used by OPA. Next, we will take a deeper dive into kube-mgmt and see how it helps us use OPA in Kubernetes.

          

        

      

      
        Kubernetes Management Sidecar

        As we learned in Chapter 2, OPA has a mature CLI and REST API, to help manage policies and data needed for decisions. We also saw how bundles were used to manage policies and data for the different OPA modes. In Chapter 3 we explored tools that we could use to manage OPA policies and data across multiple systems.

        When you install OPA into a Kubernertes cluster, you have the option of how you want to manage OPA policies and data, just like running OPA outside of Kubernetes. You can use bundles and you can also use the OPA REST API. In fact, as I installed OPA–in the examples above–the OPA REST API was used by the Kubernetes Management sidecar to load data and policies into the OPA server.

        The Kubernetes Management sidecar–also known as kube-mgmt–runs within the same Kubernetes pod, and is used to manage OPA policies and data for the OPA container. Below is the configuration for this container.

        
          - name: kube-mgmt
  image: openpolicyagent/kube-mgmt:7.3.0
  securityContext:  
    allowPrivilegeEscalation: false  
    runAsUser: 1000  
    readOnlyRootFilesystem: true
    runAsNonRoot: true
    capabilities:
      drop: ["ALL"]  
    seccompProfile:
      type: "RuntimeDefault"
  args:
    - "--replicate-cluster=v1/namespaces"
    - "--replicate=networking.k8s.io/v1/ingresses"

        

        Now that we know how to configure kube-mgmt, let’s explore how it functions, and loads OPA policies into OPA.

        
          Kubernetes Policy Management

          The kube-mgmt sidecar loads Rego-based policies into OPA via HTTP PUT methods to the OPA REST API. kube-mgmt receives Rego policies–for loading into OPA–from configmaps loaded into the opa namespace. When configmaps are applied to the opa namespace, kube-mgmt processes the Rego therein, if the configmap is labeled with openpolicyagent.org/policy: rego. Configmaps not labeled thusly are ignored by kube-mgmt. The label and value are defaults when kube-mgmt boots. kube-mgmt compiles the Rego in the policy, and upon successful compilation, loads the policy into OPA. Below are examples of both failed and successful compile and load operations.

          
            # kube-mgmt cannot connect to OPA
openpolicyagent.org/kube-mgmt-status: '{"status":"error","error":{"Op":"Put","URL":"http://localhost:8181/v1/policies/opa/opa-default-system-main/main","Err":{"Op":"dial","Net":"tcp","Source":null,"Addr":{"IP":"127.0.0.1","Port":8181,"Zone":""},"Err":{"Syscall":"connect","Err":111}}}}'
 
# Policy could not be successfully compiled
openpolicyagent.org/kube-mgmt-status: '{"status":"error","error":{"code":"invalid_parameter","message":"error(s) occurred while compiling module(s)","errors":[{"code":"rego_parse_error","message":"unexpected minus token: expected number","location":{"file":"opa/opa-default-system-main/main","row":13,"col":7},"details":{"line":"uid---= input.request.uid","idx":6}}]}}'
 
# kube-mgmt successful compile and put
openpolicyagent.org/kube-mgmt-status: '{"status":"ok"}'

          

          kube-mgmt can also help us with loading Kubernetes data into OPA, which we’ll explore next.

        

        
          Kubernetes Data Management

          Clients with authorized access can put and modify data in the OPA server. For example, as we saw in Chapter 2, this can be done via HTTP PUT. As with policies, kube-mgmt can also be configured to load Kubernetes data from the local cluster. kube-mgmt data sources for OPA are from configmaps and Kubernetes cluster data.

          In the case of policy decisions that need more data than what is provided by the API server request–posted to OPA–kube-mgmt can be set to gather cluster resource data and replicate it into OPA. For example, if you wanted to write policies to prevent duplicate Kubernetes resources, you would need resource data from the cluster to know which resources already existed.

          When kube-mgmt comes online it boots its configmap processor, tries to read data from Kubernetes–as configured by replication settings–and then tries to load policy and data into OPA. It takes a few seconds before OPA is on line and kube-mgmt can successfully connect, evidenced by the kube-mgmt logs below.

          
            # kube-mgmt logs - configmap loader and Kubernetes 
time="2022-12-21T00:20:39Z" level=info msg="Loaded 5 resources of kind v1/namespaces into OPA. Took 98.316958ms"

          

          As you can see in the above logs, kube-mgmt was able to load policies and data into OPA. By querying the v1/data API, we can see that the Kubernetes resources were replicated.

          
            $ curl -k https://opa.opa.svc/v1/data
…
{"apiVersion":"v1","kind":"Namespace","metadata":{"creationTimestamp":"2022-12-19T19:11:32Z","labels":{"kubernetes.io/metadata.name":"kube-system","openpolicyagent.org/webhook":"ignore"}
…
 

          

          Kube-mgmt data replication is not the only way to load data into OPA. In the next section we will explore additional methods for loading data, beyond the replication.

          
            Data from configmaps

            Configmaps can be used to specify data–beyond replicated cluster resources–to be loaded into OPA by kube-mgmt. The below data configmap example is used to load projects data.

            
              kind: ConfigMap
apiVersion: v1
metadata:
  name: opa-data-projects
  namespace: opa
  labels:
    app: opa
    billing: lob-cc
    env: dev
    owner: jimmy
    openpolicyagent.org/data: opa
data:
  main: | 
    {"projects":[{"lead":"jimmy","method":"GET","project":"book"}]}

            

            In the above example, the openpolicyagent.org/data: opa label is used to mark configmaps that kube-mgmt should ingest and load as data. If kube-mgmt can load the data successfully, then it will set the openpolicyagent.org/kube-mgmt-status annotation as it did with policies.

            
              # Appl data resource
$ kubectl -n opa apply -f data-configmaps/0-data-json.yaml
configmap/opa-data-projects configured
 
# Review configmap status
$ kubectl -n opa get cm opa-data-projects -oyaml
apiVersion: v1
data:
  main: |
    {"projects":[{"lead":"jimmy","method":"GET","project":"book"}]}
kind: ConfigMap
metadata:
  annotations:
    openpolicyagent.org/kube-mgmt-status: '{"status":"ok"}'
  name: opa-data-projects
  namespace: opa
 
# Query OPA server for data
$ curl -k https://opa.opa.svc/v1/data/opa
{"decision_id":"65218a05-2681-46dc-a3a0-919cf1208e04","result":{"opa-data-projects":{"main":{"projects":[{"lead":"jimmy","method":"GET","project":"book"}]}}}}
 

            

            Now that we have explored kube-mgmt data management, let’s explore how to secure OPA, while still allowing Kubernetes and kube-mgmt to access OPA as needed.

          

        

        
          OPA AuthZ and kube-mgmt

          When OPA is used in Kubernetes only for the purposes of mutating and validating API server requests, then it should be secured with an AuthZ policy. The AuthZ policy ensures that clients–other than the Kubernetes API server–are not able to access the OPA server. This protects OPA policies and data from unwanted access. 

          The below policy is from the kube-mgmt README.md file; it is used to allow minimal anonymous access to OPA, while granting privileged access to kube-mgmt to be able to put, patch, and delete data–including policies–in OPA.

          
            package system.authz
 
# Deny access by default.
default allow = false
 
# Allow anonymous access to decision `data.example.response`
#
# NOTE: the specific decision differs depending on your policies.
# NOTE: depending on how callers are configured, they may only require this or the default decision below.
allow {
  input.path == ["v0", "data", "example", "response"]
  input.method == "POST"
}
 
# Allow anonymous access to default decision.
allow {
  input.path == [""]
  input.method == "POST"
}
 
# This is only used for health check in liveness and readiness probe
allow {
  input.path == ["health"]
  input.method == "GET"
}
 
# This is only used for prometheus metrics
allow {
  input.path == ["metrics"]
  input.method == "GET"
}
 
# This is used by kube-mgmt to PUT/PATCH against /v1/data and PUT/DELETE against /v1/policies.
#
# NOTE: The $TOKEN value is replaced at deploy-time with the actual value that kube-mgmt will use. This is typically done by an initContainer.
allow {
  input.identity == "$TOKEN"
}

          

          In the above policy, access is authorized under the following multiple conditions:

          
            	
              Anonymous POST to configured–or default–decision entry point

            

            	
              Anonymous GET to the health endpoint

            

            	
              Anonymous GET to the metrics endpoint

            

            	
              kube-mgmt access to OPA API with correctly supplied AuthZ token

            

          

          To use the aforementioned AuthZ policy, OPA and kube-mgmt must have additional configuration items to load the policy and token needed for access. An example of this configuration–from the kube-mgmt docs–is seen below. It uses the authentication=token and authorization=basic settings that we first saw in Chapter 2.

          
            spec:
  containers:
    - name: opa
      image: openpolicyagent/opa:0.47.3-rootless
      args:
        - "run"
        - "--server"
        - "--tls-cert-file=/certs/tls.crt"
        - "--tls-private-key-file=/certs/tls.key"
        - "--addr=0.0.0.0:443"
        - "--addr=http://127.0.0.1:8181"
        - "--authentication=token"
        - "--authorization=basic"
        - "/policies/authz.rego" # authorization policy used on startup
        - "--ignore=.*"          # exclude hidden dirs created by Kubernetes
      volumeMounts:
        - readOnly: true
          mountPath: /certs
          name: opa-server
        - readOnly: true
          mountPath: /policies
          name: inject-policy
    - name: kube-mgmt
      image: openpolicyagent/kube-mgmt:7.3.0
      args:
        - "--replicate-cluster=v1/namespaces"
        - "--replicate=extensions/v1/ingresses"
        - "--opa-auth-token-file=/policies/token"
      volumeMounts:
        - readOnly: true
          mountPath: /policies
          name: inject-policy
  volumes:
    - name: opa-server
      secret:
        secretName: opa-server
    - name: inject-policy
      secret:
        secretName: inject-policy

          

          With the above AuthZ policy–and OPA and kube-mgmt settings–your OPA mutating and validation service can be used securely by Kubernetes and kube-mgmt..

          In the next section, we will explore OPA Kubernetes policies, and how they are used and configured. 

        

      

      
        Kubernetes Policies

        As mentioned above, OPA Rego policies–that are stored in correctly-labeled Kubernetes configmaps–are loaded into OPA via the kube-mgmt sidecar. Below is an example of such a policy–used for resource validation–stored within a configmap.

        
          kind: ConfigMap
apiVersion: v1
metadata:
  name: deny-all-pods
  namespace: opa
  labels:
…
    openpolicyagent.org/policy: rego
data:
  main: |
    package kubernetes.admission
 
    import future.keywords.in
 
    deny[msg] {
    input.request.kind.kind == "Pod"
    input.request.operation in ["CREATE", "DELETE", "UPDATE"]
    msg = sprintf("Request object: %q", [input.request.object])
    }

        

        The above Rego policy–stored within a configmap and correctly labeled–matches to Pod resources, with specific operations, and denies all requests where the operation is either CREATE, DELETE, or UPDATE.

        Note

          The above deny-all policy is handy when troubleshooting OPA inside Kubernetes. The policy will deny all pod operations and then return the input.request.object to be examined. You can write this policy for any Kubernetes resource.

          $ kubectl -n default run --image=alpine -it alpine-shell -- /bin/sh
Error from server (Request object: "{\"apiVersion\": \"v1\", \"kind\": \"Pod\", \"metadata\": {\"creationTimestamp\": \"2022-12-21T02:25:51Z\", \"labels\": {\"run\": \"alpine-shell\"}, …

        

        Kubernetes webhook policies are divided into mutation and validation types. Let’s first look at Validation types.

        
          Validation Policies

          Even though the aforementioned policy just denies all requests, it is an example of an OPA validation policy. Validation policies use the Kubernetes AdmissionReview object as input data to validate API server requests. In the following code listings we will examine an OPA validation policy, and how it matches to–and then evaluates–inbound request data.

          The validation policy–delivered in a ConfigMap resource–begins with the package and import statements, followed by the deny rule. The first part of the deny rule is used to match the policy to the inbound requests data. If the request is used to create or update a Pod, the match is made.

          
            kind: ConfigMap
apiVersion: v1
metadata:
  name: pod-registry-allowed
  namespace: opa
  labels:
    app: opa
    billing: lob-cc
    env: dev
    owner: jimmy
    openpolicyagent.org/policy: rego
data:
  main: |
    package kubernetes.admission
 
    import future.keywords.in
 
    deny[msg] {
      req_kind = "Pod"
      req_op in allowed_ops
      image = pod_containers[_].image
      not reg_matches_any(image, valid_registries)
      msg = sprintf("POD_INVALID: %q image is not sourced from an authorized registry. Valid registries are %q. Resource ID (ns/name/kind): %q", [image, allowed_regs, req_id])
    }
 

          

          Once the match is made, the rest of the deny rule is used to evaluate the inbound data. This policy evaluates whether or not an inbound Pod request sources its container images from approved registries. Rules and statements–used by the deny rule to complete evaluation–comprise the rest of the policy.

          
            req_op = op {
    op := input.request.operation
}
 
pod_containers = c {
    c := input.request.object.spec.containers
}
 
req_id = value {
    value := sprintf("%v/%v/%v", [
        req_namespace,
        req_name,
        req_kind,
    ])
}
 
req_name = value {
    value := input.request.object.metadata.name
}
 
else = value {
    value := "NOT_FOUND"
}
 
req_namespace = value {
    value := input.request.object.metadata.namespace
}
 
else = value {
    value := "NOT_FOUND"
}
 
req_kind = value {
    value := input.request.kind.kind
}
 
else = value {
    value := "NOT_FOUND"
}
 
allowed_ops := ["CREATE", "UPDATE"]
 
allowed_regs := ["GOOD_REGISTRY", "VERY_GOOD_REGISTRY"]
 
valid_registries = {registry |
    registry = allowed_regs[_]
}
 
reg_matches_any(str, patterns) {
    reg_matches(str, patterns[_])
}
 
reg_matches(str, pattern) {
    contains(str, pattern)
}
 

          

          When the policy evaluates an inbound request and the request is invalid, the following error is returned to the client.

          
            Error from server (POD_INVALID: "public.ecr.aws/eks-distro/kubernetes/pause:3.2" image is not sourced from an authorized registry. Valid registries are "[\"GOOD_REGISTRY\", \"VERY_GOOD_REGISTRY\"]". Resource ID (ns/name/kind): "opa-test/test-pod/Pod"): error when creating "tests/99-test-pod.yaml"
 

          

          As seen in the above validation policy, OPA policy rules are used to match policies to and then evaluate inbound data. This pattern–first mentioned in Chapter 1–repeats across different PaC solutions and policy types. Now let’s look at how OPA is configured to allow webhook calls to reach Rego policies.

        

        
          OPA Policy Entry Point

          OPA uses a policy entry point to operate as a Kubernetes dynamic webhook service. Without this policy entry point–and matching policy packages and objects–OPA will not respond correctly to the API server. Depending on the webhook configurations, this could potentially compromise your Kubernetes cluster. As seen in the below errors, the missing policy entry point prevents normal cluster operations from completing successfully.

          
            # Cannot review opa logs
Kubectl -n opa logs opa-795c4cd467-htg9v
Defaulted container "opa" out of: opa, kube-mgmt
Error from server (InternalError): Internal error occurred: Authorization error (user=kube-apiserver-kubelet-client, verb=get, resource=nodes, subresource=proxy)
 
# Cannot create pod in opa namespace (even though opa namespace is labeled to be ignored)
kubectl -n opa run --image=alpine -it alpine-shell -- /bin/sh
If you don't see a command prompt, try pressing enter.
warning: couldn't attach to pod/alpine-shell, falling back to streaming logs: unable to upgrade connection: Authorization error (user=kube-apiserver-kubelet-client, verb=create, resource=nodes, subresource=proxy)
Error from server (InternalError): Internal error occurred: Authorization error (user=kube-apiserver-kubelet-client, verb=get, resource=nodes, subresource=proxy)
kubectl apply -f generated/config/kubelet-api-admin.yaml
Error from server (InternalError): error when creating "generated/config/kubelet-api-admin.yaml": Internal error occurred: failed calling webhook "validating-webhook.openpolicyagent.org": failed to call webhook: the server could not find the requested resource
 

          

          As seen in the above examples, not having the main OPA entry point correctly configured can lead to multiple errors with different symptoms; none of which intuitively indicate the missing main entry point is the issue.

          When OPA receives the API server request containing the AdmisisonReview object, it binds the AdmissionReview object to the OPA input document. The OPA entry-point policy–seen below–must generate the AdmissionReview.response to satisfy the contract we learned about in Chapter 4. This contract stipulates the following conditions:

          
            	
              Response uid must match request uid

            

            	
              The allowed field must be true or false

            

            	
              The status object should be provided for validation failures

            

          

          As you can see, the AdmissionReview.response–introduced in Chapter 4–is constructed to be sent back to the Kubernetes API server. You may also notice that the data.kubernetes.admission import is also part of this in this main policy. This import is not required in other policies added to OPA.

          
            apiVersion: v1
kind: ConfigMap
metadata:
  name: opa-default-system-main
  namespace: opa
…
data:
  main: |
    package system
 
    import data.kubernetes.admission
 
    main = {
      "apiVersion": "admission.k8s.io/v1",
      "kind": "AdmissionReview",
      "response": response,
    }
 
    default uid = ""
 
    uid = input.request.uid
 
    response = {
        "allowed": false,
        "uid": uid,
        "status": {
            "reason": reason,
        },
    } {
        reason = concat(", ", admission.deny)
        reason != ""
    }
    else = {"allowed": true, "uid": uid}

          

          In the above policy, the system.main object must be present for the validating admission webhook to function with default settings. Without this package and object, the Rego policies may still correctly compile, but the validation will fail for the missing system.main document, as seen in the error below.

          
            …    
"error": {
        "code": "undefined_document",
        "message": "document missing: data.system.main"
    }
…

          

          Querying the OPA server in the cluster can retrieve this system.main document.

          
            # OPA query run from Alpine container inside cluster
curl -k https://opa.opa.svc/v1/data/system/main
{"decision_id":"06ea19e3-de9c-4fe3-a34d-3a58cab39403","result":{"apiVersion":"admission.k8s.io/v1","kind":"AdmissionReview","response":{"allowed":true,"uid":""}}}

          

          The entry-point policy with the system.main object constructs the scaffolding for the AdmissionReview response. With this model, the other policies loaded into OPA do not need to do the same. This also reduces potential errors. The response includes the allowed, status, and uid fields. As a reminder, the uid must match the uid sent to OPA in the AdmissionReview.request; this is done by the uid = input.request.uid line.

          Next, we will explore how we can write reusable Rego, usable across multiple policies.

        

        
          Custom Helper Libraries

          Rego–like other languages–supports code libraries to reduce common coding and DRY (do-not repeat yourself). Using DRY methods also reduces errors. When I use OPA (classic) in Kubernetes, I almost always use my so-called helpers libraries to reduce common coding that I must write to make policies functional and more expressive. In the above OPA installation examples, I could have installed my helpers library with the following command.

          
            ${KUBECTL} apply -f policy-configmaps/0-lib.yaml

          

          The helpers library contains several functions that I reuse between multiple policies, to reduce code duplication. As you can see below, most of the helpers are focused on getting fields and objects from the inbound AdmissionReview object.

          
            # Rego Kubermetes helper library
kind: ConfigMap
apiVersion: v1
metadata:
  name: library-k8s-helpers
  namespace: opa
  labels:
    app: opa
    billing: lob-cc
    env: dev
    owner: jimmy
    openpolicyagent.org/policy: rego
data:
  main: |
    package lib.k8s.helpers
 
    allowed_operations = allowed_ops {
      allowed_ops := {"CREATE", "UPDATE"}
    }
 
    request_operation = op {
      op := input.request.operation
    }
 
    request_metadata_labels = labels {
      labels := input.request.object.metadata.labels
    }
 
    request_spec_template_metadata_labels = labels {
      labels := input.request.object.spec.template.metadata.labels
    }
 
    deployment_error = e {
      e := "DEPLOYMENT_INVALID"
    }
 
    deployment_containers = c {
      c := input.request.object.spec.template.spec.containers
    }
 
    required_deployment_labels = l {
      l := {"app", "owner"}
    }
 
    deployment_role = dr {
      dr := input.request.object.spec.template.metadata.annotations["iam.amazonaws.com/role"]
    }
 
    service_error = e {
      e := "SERVICE_INVALID"
    }
 
    allowed_ext_ips = l {
      l := ["1.1.1.1","2.2.2.2","3.3.3.3","4.4.4.4"]
    }
 
    ips_allowed(a,x) {
      allowedIPs := {ip | ip := a[_]}
      externalIPs := {ip | ip := x[_]}
      forbiddenIPs := externalIPs - allowedIPs
      count(forbiddenIPs) > 0
    }
 
    request_object = o {
      o := input.request.object
    }
 
    request_id = value {
      value := sprintf("%v/%v/%v", [
        request_namespace,
        request_name,
        request_kind
      ])
    }
 
    request_name = value {
      value := input.request.object.metadata.name
    }
 
    else = value {
      value := "NOT_FOUND"
    }
 
    request_namespace = value {
      value := input.request.object.metadata.namespace
    }
 
    else = value {
      value := "NOT_FOUND"
    }
 
    request_kind = value {
      value := input.request.kind.kind
    }
 
    else = value {
      value := "NOT_FOUND"
    }

          

          In the below policy–a Deployment version of the prior policy to restrict from where container images are sourced–I used the helper functions to go after inbound request data, such as operations, kind, images, and request ID. I constructed the request ID from a combination of the resource name, namespace, and kind.

          
            kind: ConfigMap
apiVersion: v1
metadata:
  name: deployment-registry-allowed
  namespace: opa
  labels:
…
    openpolicyagent.org/policy: rego
data:
  main: |
    package kubernetes.admission
 
    import data.lib.k8s.helpers as helpers
 
    deny[msg] {
      helpers.request_kind == "Deployment"
      helpers.allowed_operations[helpers.request_operation]
      image = helpers.deployment_containers[_].image
      not reg_matches_any(image,valid_deployment_registries_v2)
      msg = sprintf("%q: %q image is not sourced from an authorized registry. Resource ID (ns/name/kind): %q", [helpers.deployment_error,image,helpers.request_id])
    }
 
    valid_deployment_registries_v2 = {registry |
      allowed = "GOOD_REGISTRY"
      registries = split(allowed, ",")
      registry = registries[_]
    }
 
    reg_matches_any(str, patterns) {
      reg_matches(str, patterns[_])
    }
 
    reg_matches(str, pattern) {
      contains(str, pattern)
    }

          

          In the above policy I imported the helpers library and referenced it as helpers, with the following statement.

          
            import data.lib.k8s.helpers as helpers

          

          With helpers, we can reduce code duplication and errors, leveraging reusable libraries.

          We are going to shift gears a bit and explore how OPA can be used with mutating webhooks.

        

        
          Mutating Configuration and Policies

          Configuring OPA for mutating admission control in Kubernetes is similar to what we explored earlier in this chapter for validating admission; I used a similar shell script and make process. Below is the installed MutatingWebhookConfiguration resource.

          
            $ kubectl get mutatingwebhookconfigurations opa-mutating-webhook -oyaml
apiVersion: admissionregistration.k8s.io/v1
kind: MutatingWebhookConfiguration
metadata:
  labels:
    app: opa
    billing: lob-cc
    env: dev
    owner: jimmy
  name: opa-mutating-webhook
webhooks:
- admissionReviewVersions:
  - v1
  clientConfig:
    caBundle: LS0…
    service:
      name: opa
      namespace: opa
      port: 443
  failurePolicy: Fail
  matchPolicy: Equivalent
  name: mutating-webhook.openpolicyagent.org
  namespaceSelector:
    matchExpressions:
    - key: openpolicyagent.org/webhook
      operator: NotIn
      values:
      - ignore
  objectSelector: {}
  reinvocationPolicy: Never
  rules:
  - apiGroups:
    - '*'
    apiVersions:
    - '*'
    operations:
    - CREATE
    - UPDATE
    resources:
    - pods
    scope: '*'
  sideEffects: None
  timeoutSeconds: 10

          

          Again, the admission webhook will only affect pods during CREATE or UPDATE operations, and only in namespaces not labeled with openpolicyagent.org/webhook=ignore. Mutation of inbound resources–contained within API server requests–is done using the JSON patch schema defined in RFC 6902.

          As I mentioned earlier in this book, the OPA community is vast, and the GitHub Open Policy Agent organization is host to 22 repositories. To demonstrate how mutating admission works, I used a portion of an older GitHub project, the OPA Library. I installed the kubernetes/mutating-admission/main.rego policy via a configmap to build the entry-point policy that creates the contract fields for the Kubernetes AdmissionReview.response object. Since the Rego package was not system, I decided to change the OPA server default_decision argument, as seen below. One option would have been to change the packages to system.

          
            # OPA admission controller server arguments
args:
  - "run"
  - "--server"
  - "--tls-cert-file=/certs/tls.crt"
  - "--tls-private-key-file=/certs/tls.key"
  - "--addr=0.0.0.0:8443"
  - "--addr=http://127.0.0.1:8181"
  # - "--set=bundles.default.resource=bundle.tar.gz"
  - "--log-format=json"
  - "--set=status.console=true"
  - "--set=decision_logs.console=true"
  - "--set=default_decision=/library/kubernetes/admission/mutating/main"
 

          

          Another matching option would have been to not modify the default_decision argument for the OPA server, and instead add a path field to the webhook configuration, as shown below.

          
            # Mutating webhook service configuration
service:
  namespace: opa
  name: opa
  path: /v0/data/library/kubernetes/admission/mutating/main
  port: 443

          

          Note

            In Chapter 2, I introduced you to the OPA REST API /v1/… endpoint. The v1 API endpoint–when used with post queries–expects a defined input JSON document, as seen below.

            # Example input document
{
    "input":{
        "message":"world"
    }
}
 

            When the Kubernetes API server posts the AdmissionReview document to OPA–for a mutating or validating decision–it does not use the input document structure. The v0 API endpoint expects no such structure, it handles raw input, and the subsequent rules handle the POST request.

          

          Since the default decision path for OPA is /system/main, I needed to update either the entry-point package and main rule to match the default OPA decision path, the default_decsion argument to match the entry-point package and main rule, or the webhook service.path field to match the entry-point package and main rule. Without this match, I would see an error in the OPA decision logs, similar to that seen below.

          
            {"decision_id":"1739aacc-48e3-4346-a19a-6ba479dd6b26","error":{"code":"undefined_document","message":"document missing: data.system.main"},"...

          

          Next, I used the policy-patterns from the aforementioned OPA Library project to patch pods with labels, if the labels did not yet exist. My policy uses several helper functions that are contained in the entry-point Rego. To use them, I defined my policy Rego in the same package as the entry-point Rego.

          
            kind: ConfigMap
apiVersion: v1
metadata:
  name: label-pods
  namespace: opa
  labels:
…
    openpolicyagent.org/policy: rego
data:
  main: |
    package system
 
    ############################################################
    # PATCH rules 
    #
    # Note: All patch rules should start with `isValidRequest` and  
    # `isCreateOrUpdate`
    ############################################################
 
    # add billing,env,owner labels to pods
    patch[patchCode] {
      isValidRequest
      isCreateOrUpdate
      input.request.kind.kind == "Pod"
      not hasLabelValue(input.request.object, "billing", "lob-cc")
      patchCode = makeLabelPatch("add", "billing", "lob-cc", "")
    }
    patch[patchCode] {
      isValidRequest
      isCreateOrUpdate
      input.request.kind.kind == "Pod"
      not hasLabelValue(input.request.object, "env", "dev")
      patchCode = makeLabelPatch("add", "env", "dev", "")
    }
    patch[patchCode] {
      isValidRequest
      isCreateOrUpdate
      input.request.kind.kind == "Pod"
      not hasLabelValue(input.request.object, "owner", "jimmy")
      patchCode = makeLabelPatch("add", "owner", "jimmy", "")
    }

          

          The mutating process uses functions from the entry-point Rego to create a flattened array of patches, marshal the array into JSON, then base64-encode the patches to be sent back to the Kubernetes API server.

          
            # marshaling JSON from patch array, then base64 encoding
x := {
  "allowed": true,
  "uid": response_uid,
  "patchType": "JSONPatch",
  "patch": base64.encode(json.marshal(fullPatches)),}

          

          If we grab the decision logs from OPA–when a pod is created–and decode the base64-encoded string, we can see all three patches that were applied to the pod request, before it continued in the flow to validation, and potentially etcd.

          
            # AdmissionReview response returned to the API server
…"result": {
        "apiVersion": "admission.k8s.io/v1",
        "kind": "AdmissionReview",
        "response": {
            "allowed": true,
            "patch": "W3sib…fV0=",
            "patchType": "JSONPatch",
            "uid": "32c8e37c-8f01-4787-bf47-58e70d07fed1"
        }
    },...
 
# base64 decoded JSON patches
$ echo "W3si…fV0=" | base64 -d
[{"op":"add","path":"/metadata/labels","value":{}},{"op":"add","path":"/metadata/labels/billing","value":"lob-cc"},{"op":"add","path":"/metadata/labels/env","value":"dev"},{"op":"add","path":"/metadata/labels/owner","value":"jimmy"}]

          

          As you can see in the example above, the patches sent back to the API server are an array of JSON patch objects.

          Now that we have explored how validating and mutating webhooks use OPA, let’s explore how we can centralize the management of OPA resources.

        

      

      
        Centralized OPA Management with Styra DAS

        In Chapter 3 we explored using Styra DAS to centrally manage OPA agents and policy bundles. In fact, using OPA (classic) for Kubernetes validating and mutating webhook services enables you to use OPA management features, such as bundles and decision logs. 

        To use Styra DAS with my local Minikube environment, I created a system in my Styra DAS (Free) workspace. Then I used install commands–from my configured Styra system–to create the Styra resources in my local cluster. This can be seen in Figure 5-1.

        
          [image:   Styra system agent install]
          Figure 5-1. Styra system agent install

        

        Below is the automated install script that I used, built with the install commands I received from my Styra DAS workspace.

        
          ./up-styra.sh
clusterrolebinding.rbac.authorization.k8s.io/kubelet-api-admin created
namespace/kube-system labeled
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 20408    0 20408    0     0  24350      0 --:--:-- --:--:-- --:--:-- 24440
namespace/styra-system created
secret/opa-server created
configmap/opa-config created
secret/das-slp-token created
clusterrolebinding.rbac.authorization.k8s.io/opa-viewer created
service/opa created
statefulset.apps/opa created
secret/styra-access created
configmap/datasources-agent-config created
clusterrole.rbac.authorization.k8s.io/read-all-global created
clusterrolebinding.rbac.authorization.k8s.io/datasources-agent-read-all created
deployment.apps/datasources-agent created
validatingwebhookconfiguration.admissionregistration.k8s.io/opa-validating-webhook created
mutatingwebhookconfiguration.admissionregistration.k8s.io/opa-mutating-webhook created

        

        Once the Strya OPA resources are installed, I can view the pods running in the styra-system namespace.

        
          kubectl -n styra-system get pod
NAME                                 READY   STATUS    RESTARTS   AGE
datasources-agent-7c556dfdf6-49p6w   1/1     Running   0          5m33s
opa-0                                2/2     Running   0          5m33s
opa-1                                2/2     Running   0          5m17s
opa-2                                2/2     Running   0          5m

        

        With OPA agents installed and connected to my Styra workspace, I can now create policies that will be propagated to remote agents. Next, let’s explore the Styra tools to write, store, and deploy policies across your environments. 

        
          Policy Management

          To exercise the centralized policy management features of Styra DAS with my local Minikube environment, I created and published a rule in my workspace, seen in Figure 5-2. The rule IDE validates rules (syntax, etc.) and provides an interface to preview execution with mocks, input, and output documents, much like we experience with the Rego Playground.

          
            [image:   Editing and publishing rules in Styra DAS]
            Figure 5-2. Editing and publishing rules in Styra DAS

          

          As seen in Figure 5-2, the rule is set to enforce; it can also be set to monitor or ignore. Within Styra DAS (free) I can create up to 100 rules. Monitor is handy, should you need to send notifications to Slack channels, etc., without enforcing denials.

          If you would rather store and manage your policies in a Git repository than Styra DAS can be configured as a git client. Figure 5-3 depicts the git client settings.

          
            [image:   Styra DAS git client config]
            Figure 5-3. Styra DAS git client config

          

          As seen in Figure 5-3, you can optionally configure DAS to only pull from specific branches or tags, with specific git commit hashes, at specific paths.

          There are several DAS features that I think directly add value for OPA management, and one of my favorites is related to OPA rules. DAS offers Compliance Packs that group policies and best practices. Using pre-defined groups of policies, focused on specific security, and governance and compliance areas, is easier than trying to start from scratch. According to the Styra DAS documentation, Compliance Packs are only supported in Kubernetes systems. Below is a list of packs, and if they are available in the DAS free version.

          
            	
              Kubernetes Best Practices (available in free version)

            

            	
              CIS Benchmarks (available in free version)

            

            	
              MITRE ATT&CK

            

            	
              PCI DSS v3.2

            

            	
              Pod Security Policies (available in free version)

            

          

          Publishing the rule created an OPA bundle that was then downloaded to my local OPA agents. I also downloaded the bundle from my workspace and extracted the contents from the bundle tarball. There is a wealth of Rego knowledge to be had in those files.

          The bundle deployments can be seen in my Styra DAS workspace in Figure 5-4.

          
            [image:   Styra DAS bundle deployments]
            Figure 5-4. Styra DAS bundle deployments

          

          With the bundle now deployed locally, I can test the deny-all rule I created in Styra DAS, as seen below.

          
            $ kubectl -n test apply -f 1-test-pod.yaml
Error from server: error when creating "mutating/test/1-test-pod.yaml": admission webhook "validating-webhook.openpolicyagent.org" denied the request: Enforced: Request object: "{\"apiVersion\": \"v1\", \"kind\": \"Pod\"...

          

          In Figure 5-5, you can see the centralized logging that is part of the Styra DAS OPA management features.

          
            [image:   Styra DAS centralized OPA decision logs]
            Figure 5-5. Styra DAS centralized OPA decision logs

          

          Using Styra DAS with Kubernetes provides centralized tools to manage and deliver policies, data, and logs, to and from multiple OPA agents across multiple clusters.

          Before we wrap up, let’s walk through uninstalling Styra DAS.

        

        
          Uninstalling Styra DAS

          To uninstall the Styra DAS OPA resources I can use the uninstall commands made available to me in my workspace. Below is the output from the automation script I built with the commands I received from Styra DAS.

          
            ./down-styra.sh
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 20412    0 20412    0     0  23633      0 --:--:-- --:--:-- --:--:-- 23762
namespace "styra-system" deleted
secret "opa-server" deleted
configmap "opa-config" deleted
secret "das-slp-token" deleted
clusterrolebinding.rbac.authorization.k8s.io "opa-viewer" deleted
service "opa" deleted
statefulset.apps "opa" deleted
secret "styra-access" deleted
configmap "datasources-agent-config" deleted
clusterrole.rbac.authorization.k8s.io "read-all-global" deleted
clusterrolebinding.rbac.authorization.k8s.io "datasources-agent-read-all" deleted
deployment.apps "datasources-agent" deleted
validatingwebhookconfiguration.admissionregistration.k8s.io "opa-validating-webhook" deleted
mutatingwebhookconfiguration.admissionregistration.k8s.io "opa-mutating-webhook" deleted
No resources found
namespace/kube-system unlabeled

          

          Once the OPA resources are removed from my local Minikube cluster, I can see related errors in my Styra DAS minikube-system Deployments screen, seen in Figure 5-6. These errors indicate a connection issue between my Styra workspace and my local OPA agent.

          
            [image:   Styra DAS deployment errors]
            Figure 5-6. Styra DAS deployment errors

          

          The errors in Figure 5-6 should be used to troubleshoot connectivity issues, between Styra and remote OPA agents. With Styra DAS, you have a centralized view of your connected OPAs.

        

      

      
        Summary

        The most important aspect about OPA that I want readers to recognize is that OPA is a very mature solution to policy-enable Kubernetes mutation and validation use cases. Moreover, it has evolved as Kubernetes has evolved. In this chapter I used tools from 3-4 years ago–shell scripts and GitHub projects–that still function with the latest versions of OPA. To me, this means that OPA maturity has not sacrificed backwards compatibility. While I referred to OPA in this chapter as OPA classic, that term is not meant to denigrate OPA. OPA’s maturity has led to several enhancements as well as tools that make OPA easier to learn and more viable for enterprise adoption. 

        OPA was the first PaC solution that I used with Kubernetes, and I still find myself measuring some of the other solutions against it. While the PaC landscape has changed over the years, I think that OPA for Kubernetes is sometimes underrated. As a programmer, I find OPA appealing for its flexibility and extensibility. There are several points–within OPA and the surrounding Kubernetes configuration–where OPA can be modified to fit your needs, such as defining the main entry-point paths for webhook connectivity.

        When it comes to OPA policies for Kubenetes, we barely scratched the surface with the few examples I included in this chapter. While I have included more in the companion GitHub repository, there is a vast collection of policies in the OPA-Kubernetes community; when you decide to use OPA, you can tap into years of experience and an abundance of Rego in the wild. 

        Usually I am all about demonstrating the easiest way to install/configure/uninstall Kubernetes resources. In the case of OPA, that was definitely accomplished using Styra DAS integration. However, the kube-mgmt Helm chart may be a preferred option for you, if you (1) want or need a package-management approach to Kubernetes resources and (2) would rather have a more declarative automation, beyond my Makefile and shell script solutions. Of course, the Styra DAS solution also offers Helm installation as well as Kustomize, for those users and organizations that have standardized on those tools.

        When it comes to OPA, Rego was somewhat challenging for me at first, but now I am comfortable with its lexicon and syntax. I think that OPA users with programming backgrounds have an easier time with some of Rego’s features, such as packages, and building and importing libraries for reuse–like my helpers library. That being said, this is another area where Styra DAS can help. The rich IDE inside the DAS interface can be augmented with libraries of reusable snippets–business logic and data–as well as the Compliance Packs. And, if you have already been using the Rego Playground–as I routinely do for prototyping and troubleshooting–the preview feature of the DAS rules IDE should feel familiar.

        With the kube-mgmt sidecar, you can configure policies and data–configmaps and replicated Kubernetes resources–to be loaded into OPA. This adds data–beyond that in the input context–more API server request evaluations. And, we can apply AuthZ best practices to prevent unwanted access to OPA.

        If we consider the PaC selection scorecard from Chapter 1, OPA, again, checks several of the boxes for Kubernetes use cases. As we move forward with other PaC solutions, some of the most prominent differentiators between PaC solutions–with some notable exceptions–will lean more towards matching organizational capabilities, and less about core feature-sets.

        In Chapter 6, we will explore MagTape for use inside Kubernetes. Like some of the tooling exposed in this chapter, MagTape leverages the strength of OPA and Rego, but enhances it with layers of user-experience features and business logic.

      

    


      Chapter 6. MagTape and Kubernetes

      
      
A Note for Early Release Readers


With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 6th chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mpotter@oreilly.com.



      In this chapter I am going to focus on MagTape,an OSS PaC project–originally from T-Mobile–that is underpinned by OPA and Rego. MagTape wraps and extends OPA. In the context of design patterns, MagTape applies the Decorator design pattern to apply additional functionality to OPA, without changing the underlying OPA implementation.

      The purpose of MagTape’s extensions is to add business workflows, including a notification layer that integrates to Slack via webhooks. As a decorator or a wrapper of OPA, MagTape operates between the Kubernetes API server and the OPA service, like a proxy. MagTape configures a layer-of-indirection using init containers for OPA service integration.

      According to the project insights, most of the contributions to the MagTape project happened in 2020. There were also some in 2021 and 2022, but the project doesn’t seem to be too active. This is further evidenced by the relatively older versions of OPA and kube-mgmt that the MagTape install is currently set to use. That being said, I covered MagTape in the book to expose some interesting ideas and best practices for using OPA in Kubernetes. So, let’s get started by exploring how MagTape is installed and configured.

      
        Installing MagTape

        MagTap is easy to install and uninstall via the below commands that can be found in the project README.md.

        
          $ kubectl apply -f https://raw.githubusercontent.com/tmobile/magtape/v2.4.0/deploy/install.yaml 
$ kubectl delete -f https://raw.githubusercontent.com/tmobile/magtape/v2.4.0/deploy/install.yaml

        

        During the install I encountered the following error due to an outdated API version for PodDisruptionBudget (PDB) resources. I am running a Kubernetes 1.25.3 cluster.

        
          error: resource mapping not found for name: "magtape-pdb" namespace: "magtape-system" from "install.yaml": no matches for kind "PodDisruptionBudget" in version "policy/v1beta1"
ensure CRDs are installed first

        

        To fix the issues I edited the install YAML and updated the PDB to version v1. At that point, MagTape installed successfully.

        Note

          The installation of MagTape I used was set to use relatively older versions of OPA and kube-mgmt, opa:0.37.2-static and kube-mgmt:4.1.1, respectively. I left the settings alone, as I was more interested in exercising MagTape than upgrading it. 

        

        Once installed, I performed the normal checks to make sure MagTape was working and what was installed into my Minikube cluster. For demo purposes I set the replica count to 1. 

        
          $ kubectl -n magtape-system get pods
NAME                       READY   STATUS    RESTARTS   AGE
magtape-5b45bc79df-vfmc2   3/3     Running   0          4m47s
 
$ kubectl get validatingwebhookconfiguration
NAME              WEBHOOKS   AGE
magtape-webhook   1          169m
 

        

        As you can see, a ValidatingWebhookConfiguration was created. The settings of the webhook configuration are seen below.

        
          $ kubectl get validatingwebhookconfiguration magtape-webhook -oyaml
apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
metadata:
  labels:
    app: magtape
  name: magtape-webhook
webhooks:
- admissionReviewVersions:
  - v1
  clientConfig:
    caBundle: LS0…
    service:
      name: magtape-svc
      namespace: magtape-system
      path: /
      port: 443
  failurePolicy: Fail
  matchPolicy: Equivalent
  name: magtape.webhook.k8s.t-mobile.com
  namespaceSelector:
    matchLabels:
      k8s.t-mobile.com/magtape: enabled
  objectSelector: {}
  rules:
  - apiGroups:
    - '*'
    apiVersions:
    - '*'
    operations:
    - CREATE
    - UPDATE
    resources:
    - deployments
    - statefulsets
    - daemonsets
    - pods
    - poddisruptionbudgets
    scope: '*'
  sideEffects: None
  timeoutSeconds: 10

        

        The webhook configuration is similar to those that we have already seen, except that the above webhook will only pay attention to a subnet of Kubernetes resources, and only from namespaces that are opted into the MagTape review with the defined label. I have labeled the test namespace to be reviewed by MagTape.

        
          $ kubectl label ns test k8s.t-mobile.com/magtape=enabled
namespace/test labeled
$ kubectl get namespaces -l k8s.t-mobile.com/magtape=enabled
NAME   STATUS   AGE
test   Active   2d5h

        

        3 containers–and 1 init container–run in the MagTape pod. Those containers are listed below.

        
          	
            MagTape-init

          

          	
            MagTape

          

          	
            OPA

          

          	
            kube-mgmt

          

        

        You should be familiar with the OPA and kube-mgmt containers from Chapter 5, as well as how to configure a validating admission webhook. 

        Several configmaps are created as part of the Magtape install. As we learned in Chapter 5, the kube-mgmt container loads the policies from the configmaps into OPA if the configmaps are labeled with openpolicyagent.org/policy: rego.

        
          kind: ConfigMap
metadata:
  annotations:
    openpolicyagent.org/policy-status: '{"status":"ok"}'
  labels:
    app: opa
    openpolicyagent.org/policy: rego
  name: magtape-opa-entrypoint
  namespace: magtape-system
data:
  magtape.rego: |-
    package magtape
 
    # This acts as an entrypoint to call all policies under "kubernetes.admission"
 
    decisions[{"policy": p, "reasons": reasons}] {
 
      data.kubernetes.admission[p].matches
      reasons := data.kubernetes.admission[p].deny
 
    }
 

        

        We can also use the test pod to see what’s going on with the OPA instance running inside the MagTape pod.

        
          $ kubectl -n magtape-system run --image=alpine -it alpine-shell -- /bin/sh
/ # curl -k https://172.17.0.3:8443/v1/data/magtape
{"result":{"decisions":[]}}
 

        

        Now that we’ve seen the outcome of the install, let’s checkout the work that the init container does.

        
          MagTape init

          As we have already learned, TLS secrets are needed to allow the Kubernetes API server to send HTTPS requests to the webhook services. This requirement is managed by the MagTape init container. MagTape init–written in Python–takes care of the TLS settings that are needed for the webhook to call the MagTape application. Below is the log output from the init container.

          
            $ kubectl logs magtape-5b45bc79df-vfmc2 -c magtape-init
[2022-12-24 22:51:01,574] INFO: MagTape Init
[2022-12-24 22:51:01,574] INFO: Starting TLS init process
[2022-12-24 22:51:01,580] INFO: Did not find secret "magtape-tls" in the "magtape-system" namespace
[2022-12-24 22:51:01,580] INFO: Generating new cert/key pair for TLS
[2022-12-24 22:51:01,720] INFO: Building K8s CSR
[2022-12-24 22:51:01,722] INFO: Looking for existing CSR
[2022-12-24 22:51:01,726] INFO: Did not find existing certificate requests
[2022-12-24 22:51:01,726] INFO: Create k8s CSR
[2022-12-24 22:51:01,729] INFO: Certificate signing request "magtape-svc.magtape-system.cert-request" has been created
[2022-12-24 22:51:01,731] INFO: Patch k8s CSR: magtape-svc.magtape-system.cert-request
[2022-12-24 22:51:01,734] INFO: Certificate signing request "magtape-svc.magtape-system.cert-request" is approved
[2022-12-24 22:51:01,736] INFO: Waiting for certificate approval
[2022-12-24 22:51:01,738] INFO: Waiting for certificate approval
[2022-12-24 22:51:01,740] INFO: Waiting for certificate approval
[2022-12-24 22:51:01,742] INFO: Found approved certificate
[2022-12-24 22:51:01,743] INFO: Creating secret "magtape-tls" in namespace "magtape-system"
[2022-12-24 22:51:01,747] INFO: New secret created
[2022-12-24 22:51:01,747] INFO: Writing cert and key locally
[2022-12-24 22:51:01,753] INFO: Existing VWC "magtape-webhook" found
[2022-12-24 22:51:01,762] INFO: Found MagTape webhook defined in the VWC template
[2022-12-24 22:51:01,764] INFO: Comparing existing VWC to template
[2022-12-24 22:51:01,764] INFO: Existing VWC matches template
[2022-12-24 22:51:01,764] INFO: Done

          

          The MagTape init container also verifies if the ValidatingWebhookConfiguration.magtape-webhook resource is correct; if it is found to be incorrect, the init application will update it.

          In the next section we will explore how MagTape decorates–and improves upon–the OPA user experience.

        

      

      
        Proxying OPA with MagTape

        The MagTape web application is also written in Python–using the Flask microframework and Gunicorn. MagTape acts as a proxy server, in front of OPA. This means that the Kubernetes API server posts requests to the MagTape service, and then MagTape makes POST requests to the OPA container–using the v0 REST API endpoint. Figure 6-1 illustrates the architecture behind this concept.

        
          [image: MagTape OPA proxy]
          Figure 6-1. MagTape OPA proxy

        

        As you can see in Figure 6-1, while MagTape fronts OPA–using Python WSGI–kube-mgmt is still in the background, to load policies and data into OPA.

        If we review the logs of the MagTape container, we can see the Gunicorn WSGI components start and that MagTape is listening on port 5000.

        
          $ kubectl -n magtape-system logs magtape-5b45bc79df-vfmc2
Defaulted container "magtape" out of: magtape, opa, kube-mgmt, magtape-init (init)
[2022-12-24 22:51:03 +0000] [1] [INFO] Starting gunicorn 20.1.0
[2022-12-24 22:51:03 +0000] [1] [INFO] Listening at: https://0.0.0.0:5000 (1)
[2022-12-24 22:51:03 +0000] [1] [INFO] Using worker: gthread
[2022-12-24 22:51:03 +0000] [7] [INFO] Booting worker with pid: 7
[2022-12-24 22:51:03 +0000] [8] [INFO] Booting worker with pid: 8
[2022-12-24 22:59:30,059] INFO in magtape: 
##################################################################
[2022-12-24 22:59:30,059] INFO in magtape: Deny Level: OFF
[2022-12-24 22:59:30,059] INFO in magtape: Processing Deployment: test/test-deploy02
[2022-12-24 22:59:30,059] INFO in magtape: Request User: minikube-user
[2022-12-24 22:59:30,063] INFO in magtape: Call to OPA was successful

        

        Next, let’s explore how we can better control the volume of denied requests, without modifying policies.

        
          Controlling deny volumes

          When the Kubernetes API server sends a request to MagTape–for a resource to be validated–and that resource fails OPA validation, MagTape receives the failed validation, but doesn’t necessarily deny the API server request. Whether MagTape denies the request is based on the MAGTAPE_DENY_LEVEL environment variable, found in the magtape-env configmap. Environment variables from this configmap are loaded into the magtape container via the envFrom element.

          
            envFrom:
- configMapRef:
    name: magtape-env

          

          The MagTape policies–loaded into OPA–contain severity levels–LOW-MED-HIGH–and error codes.

          Note

            If we consider the Table 1-1 - Governance, Risk, and Compliance (GRC) Standards and Controls Matrix, from Chapter 1, it’s easy to see that we could add business information to this matrix such as severity and error codes, like those provided in the MagTape solution.

          

          In the below kubectl response we can see specific MagTape error codes and levels applied to the OPA failed validation via the ingested policies. However, since the MAGTAPE_DENY_LEVEL is set to OFF, the client will receive warnings even though API server request succeeds

          
            $ kubectl -n test apply -f ./testing/deployments/test-deploy02.yaml
Warning: [FAIL] HIGH - Found privileged Security Context for container "test-deploy02" (MT2001)
Warning: [FAIL] LOW - Liveness Probe missing for container "test-deploy02" (MT1001)
Warning: [FAIL] LOW - Readiness Probe missing for container "test-deploy02" (MT1002)
Warning: [FAIL] LOW - Resource limits missing (CPU/MEM) for container "test-deploy02" (MT1003)
Warning: [FAIL] LOW - Resource requests missing (CPU/MEM) for container "test-deploy02" (MT1004)
deployment.apps/test-deploy02 created

          

          The above output highlights the additional business logic added to the OPA validation via policy metadata and MagTape business logic–implemented in the Python code. 

          Below is an example MagTape policy that includes the severity and errcode elements in the policy_metadata. OPA uses this policy to evaluate a POST request. 

          The Kubernetes resources that are evaluated by this below policy are defined as in the targets element. They consist of pods and the resources that create pods.

          
            package kubernetes.admission.policy_privileged_pod
 
policy_metadata = {
    # Set MagTape Policy Info
    "name": "policy-privileged-pod",
    "severity": "HIGH",
    "errcode": "MT2001",
    "targets": {"Deployment", "StatefulSet", "DaemonSet", "Pod"},
}
 
servicetype = input.request.kind.kind
 
matches {
    # Verify request object type matches targets
    policy_metadata.targets[servicetype]
}
 
deny[info] {
    # Find container spec
    containers := find_containers(servicetype, policy_metadata)
 
    # Check for Privileged SecurityContext in container spec
    container := containers[_]
    name := container.name
    container.securityContext.privileged
    msg = sprintf("[FAIL] %v - Found privileged Security Context for container \"%v\" (%v)", [
        policy_metadata.severity,
        name, policy_metadata.errcode,
    ])
    info := {"name": policy_metadata.name, "severity": policy_metadata.severity, "errcode": policy_metadata.errcode, "msg": msg}
}
 
# find_containers accepts a value (k8s object type) and returns the container spec
find_containers(type, metadata) = input.request.object.spec.containers {
    type == "Pod"
} else = input.request.object.spec.template.spec.containers {
    metadata.targets[type]
}

          

          MagTape receives the response from OPA and checks its internal magtape_deny_level to decide if the API server request should be allowed or denied. In the current example, since the MAGTAPE_DENY_LEVEL is set to OFF, MagTape will return true to the API server, allowing the request.

          If we change the MAGTAPE_DENY_LEVEL to LOW, the OPA failure is evaluated by MagTape logic, and allowed=false is sent back to the API server, preventing the request from succeeding.

          
            $ kubectl -n test apply -f ./testing/deployments/test-deploy02.yaml
Warning: [FAIL] HIGH - Found privileged Security Context for container "test-deploy02" (MT2001)
Warning: [FAIL] LOW - Liveness Probe missing for container "test-deploy02" (MT1001)
Warning: [FAIL] LOW - Readiness Probe missing for container "test-deploy02" (MT1002)
Warning: [FAIL] LOW - Resource limits missing (CPU/MEM) for container "test-deploy02" (MT1003)
Warning: [FAIL] LOW - Resource requests missing (CPU/MEM) for container "test-deploy02" (MT1004)
Error from server: error when creating "./testing/deployments/test-deploy02.yaml": admission webhook "magtape.webhook.k8s.t-mobile.com" denied the request: [FAIL] HIGH - Found privileged Security Context for container "test-deploy02" (MT2001), [FAIL] LOW - Liveness Probe missing for container "test-deploy02" (MT1001), [FAIL] LOW - Readiness Probe missing for container "test-deploy02" (MT1002), [FAIL] LOW - Resource limits missing (CPU/MEM) for container "test-deploy02" (MT1003), [FAIL] LOW - Resource requests missing (CPU/MEM) for container "test-deploy02" (MT1004)

          

          In the above output we can still see all the previous warnings, but we can also see that now the API server request was denied by MagTape. In the next section we will explore how MagTape controls the volume of denials.

          
            The deny volume knob

            MagTape uses a combination of the severity and errcode elements from the policy_metadata, and threshold set by the MAGTAPE_DENY_LEVEL environment variable. The deny-level threshold logically acts like a deny volume knob. In Table 6-1, seen below, the deny-level settings are inversely related to the security levels that are blocked.

            
              Table 6-1. MagTape severity blocking
              
              
                	Deny Level
                	Severities Blocked
              

              
              
              
                	OFF
                	None
              

              
                	LOW
                	HIGH
              

              
                	MED
                	HIGH, MED
              

              
                	HIGH
                	HIGH, MED, LOW
              

            

            In our example above, when the deny level was set to LOW, it correlated to a low-volume of blocked requests. So, only the HIGH level severities were actually blocked by MagTape, even though OPA sent denials for all of the policies that failed. Setting the deny level to HIGH, would increase the volume of possible denials, preventing all severities from progressing.

            With this logical “volume knob”, MagTape can be used to increase or decrease possible denials. This approach would be valuable as maturity of platforms and users increases over time.

            Now that we have seen how to adjust the volume of denials, let’s see how easy it is to enable notifications from MagTape.

          

        

        
          Slack notifications

          One of my favorite features of MagTape is how easy it is to configure Slack notifications. If we examine the magtape-env configmap, we can see the Slack settings that are used to enable and configure Slack notifications.

          
            kind: ConfigMap
apiVersion: v1
metadata:
  name: magtape-env
  namespace: magtape-system
  labels:
    app: magtape
data:
  FLASK_ENV: "production"
  PYTHONUNBUFFERED: "TRUE"
  MAGTAPE_CLUSTER_NAME: "test-cluster"
  MAGTAPE_LOG_LEVEL: "INFO"
  MAGTAPE_DENY_LEVEL: "LOW"
  MAGTAPE_K8S_EVENTS_ENABLED: "TRUE"
  MAGTAPE_SLACK_ENABLED: "TRUE"
  MAGTAPE_SLACK_PASSIVE: "FALSE"
  MAGTAPE_SLACK_WEBHOOK_URL_DEFAULT: "https://hooks.slack.com/…"
  MAGTAPE_SLACK_USER: "mtbot"
  MAGTAPE_SLACK_ICON: ":rotating_light:"
  OPA_BASE_URL: "http://127.0.0.1:8181"
  OPA_K8S_PATH: "/v0/data/magtape"

          

          With the above Slack settings, denials sent back to the Kubernetes API server were also forwarded to my Policy-as-Code Book Slack workspace, to the #pac channel. To make this work, I had to install a webhook application into my Slack workspace, and then use the configured webhook URL in the magtape-env configmap. Once configured, I was able to receive Slack notifications from MagTape, as seen below in the MagTape log output and Figure 6-2.

          
            [2022-12-24 22:59:30,063] INFO in magtape: K8s Event are enabled
[2022-12-24 22:59:30,071] INFO in magtape: Slack alerts are enabled
[2022-12-24 22:59:30,402] INFO in magtape: Slack Alert (default) was successful (200)
[2022-12-24 22:59:30,403] INFO in magtape: Sending Response to K8s API Server

          

          The above log output indicates that the Slack webhook call was successful, with an HTTP 200 status code.

          
            [image: Slack notification from MagTape]
            Figure 6-2. Slack notification from MagTape

          

          As seen in Figure 6-2, I received the Slack alert–from the mtbot user–that included all the warning messages from OPA–passed through MagTape–as well as information about the resource under change. The Slack alert was customized with the rotating_light emoji, as a means of signaling a possible error message.

        

      

      
        Summary

        MagTape is not necessarily the most active project. However, there are several features in MagTape that I think should be considered as best practices and examples of user-experience (UX) benefits.

        I like the idea of repeatable policy structure. For example, including a policy_metadata element in each policy implements a reusable approach to identifying policies, defining policy targets, and providing information for downstream business logic. The severity and errcode elements could easily be sourced from business documents that define traceable controls.

        I also like the whole Web Server Gateway Interface (WSGI) approach used in the MagTape Python implementation. In fact, I think that other PaC solutions–including OPA–could benefit from an architecture that used pluggable business-logic modules.

        The “Deny Volume Knob” concept improves the UX by allowing you to reuse policies across multiple environments. You can adjust the denial volume based on the needs of each cluster. For example, production-level policies may not make sense for non-production environments. Turning the volume down to LOW and still receiving the warnings–without denying requests–does make sense when you want to introduce new controls without impeding productivity. We saw a similar pattern in Chapter 5 with the Styra DAS rule modes, Ignore, Monitor, Enforce. As you progress further in this book and explore additional PaC solutions, you will see similar patterns for policy and rule modes.

        The MagTape Slack-notification functionality provides immediate benefits to Slack users and teams. Given the adequate Slack workspace permissions, it was very easy to configure MagTape to send alerts to my Slack channel.

        Considering the PaC selection scorecard, MagTape makes us think about business logic and notification functionality that we would like to see in our PaC choice. That said, the two MagTape aspects that give me pause are lack of activity in the OSS project as well as the lack of mutating webhook support. However, as I said before, MagTape introduces several ideas for how our PaC solutions should work for us, to help us better align with business needs.

        In Chapter 7 we are going to explore OPA/Gatekeeper–a.k.a. Gatekeeper. Like MagTape, it uses OPA and Rego. Gatekeeper is a mature and very active CNCF “graduated” project that improves the UX of OPA, thereby increasing the adoption of OPA and Rego for PaC, while at the same time reducing the amount of Rego coding.
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kubectl label ns kube-system
openpolicyagent.org/webhook=ignore

# Install Styra Agents (]

curl -H "Authorization: Bearer

"https:// .sve.styra.com/vl/systens/
/assets/kubectl-all" | kubectl apply -f -
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Git authentication

© HTTPS SSH

Git username (required)

jimmyraywyv

Git secret (required)

A personal access token with full private repo control (recommended) or password

Git repository (required)

de-book/: das-pol

Systems cannot share the same repo, branch, and path
Git reference
[ main|

Policies on this branch or tag will be enforced

Git commit SHA

Pull only the specified commit SHA

Repository path

The subdirectory where the system’s policies will appear (e.g., clusters/prod)

O Delete Git settings Reset Test connection Save changes
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