

 [image: Cover image]
 Book cover of Getting Started with Containers in Azure

 Shimon Ifrah

Getting Started with Containers in Azure
Deploy Secure Cloud Applications Using Terraform
2nd ed.

 [image:]
 The Apress logo.

Shimon IfrahMelbourne, VIC, Australia

				ISBN 978-1-4842-9971-5e-ISBN 978-1-4842-9972-2
https://doi.org/10.1007/978-1-4842-9972-2
© Shimon Ifrah 2020, 2024
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This Apress imprint is published by the registered company APress Media, LLC, part of Springer Nature.
The registered company address is: 1 New York Plaza, New York, NY 10004, U.S.A.

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub (https://github.com/Apress/Getting-Started-with-Containers-in-Azure). For more detailed information, please visit https://www.apress.com/gp/services/source-code.
Table of Contents

Chapter 1:​ Getting Started with Azure and Terraform1
Introduction1
Goals of This Chapter2

Tools and Services for the Setup2
Visual Studio Code2

VS Code Extensions3

Windows Subsystem for Linux7

Azure CLI8

PowerShell 79

Terraform11
A High-Level Example of Terraform12

Installing Terraform on macOS13

Enabling Terraform Tab Completion on macOS13

Installing Terraform on Linux14

Installing Terraform on Ubuntu14

Enabling Terraform Tab Completion on Ubuntu14

Installing Terraform on Windows15

Terraform Package Manager15

How to Use tfenv16

Getting Started with Azure Infrastructure18
Authenticating to Azure19

Deploying Azure Infrastructure with Terraform20

Summary24

Chapter 2:​ Azure Web App for Containers25
Introduction25

Setting Up Web App for Containers26
Provider Configuration26

Web App for Containers Configuration26

The “Terraform Plan” Command28

Deploying Web App for Containers30
Deploying the Code30

Terraform Output36

Using a Git Ignore File with Terraform38

Cleaning Up Our Deployment40

Managing Web App for Containers40
Scaling40

Backing Up Web Apps41

Customizing Deployment42

Securing Web App for Containers44
HTTPS44

Private Endpoints46

Disabling Public Access to the Web App49

Summary51

Chapter 3:​ Azure Container Registry53
Introduction53

Key Features of Azure Container Images53

Setting Up the Azure Container Registry54
Terraform Configuration55

Deploying the Azure Container Registry56
Adding Tags58

Noticing the Output58

Building, Pushing, and Running Container Images with ASR Tasks59

Pulling an Image from ACR63

ACR Pricing Tiers64

Managing the Azure Container Registry65
ACR Tasks65

Running Azure CLI Commands with Terraform66
Terraform Null Resource66

Securing ACR68
Terraform Data Sources69

Securing Our ACR Configuration69

Using ACR with Azure Web App for Containers82
Using a Terraform Variables File82

Configuring Azure Web App with ACR83

Passing Variables Using “Terraform Apply”85

Checking the Logs85

Summary86

Chapter 4:​ Azure Container Instances87
Introduction87

Key Benefits of ACI87

Use Cases88

Deploying Azure Container Instances88
Full Code89

Deploying Multiple ACI Containers91

Using Azure Container Instances with Azure Container Registry92
The “Variables.​tf” File92

The “Main.​tf” File94

Applying the Code95

Mounting a Data Volume to an ACI Container95

Storage Account95

Azure File Share96

Mounting Data Volume to the Container96

The Complete Code97

Managing Azure Container Instances99
Connecting to a Running ACI Container99

Using Azure CLI to Run Commands inside ACI102

Viewing ACI Logs102
Using Azure CLI to View Logs103

Viewing Diagnostic Information104

Enabling Advanced Log Collection110
Configuring Azure Log Analytics110

Viewing the Logs113

Stopping, Starting, and Restarting ACI Containers with Azure CLI116
Stopping the Container Group117

Starting the Container Group117

Restarting the Container Group118

Liveness and Readiness Probes119
Liveness Probes119

Readiness Probe119

Summary120

Chapter 5:​ Azure Kubernetes Service121
Introduction121

About Kubernetes121
Kubernetes Components121

Getting Started with AKS123
Deploying the AKS Cluster124

Connecting to AKS Using the Azure Command-Line Interface125

Deploying an Application to the AKS Cluster126

Scaling the Application129

Connecting the AKS Cluster to the Azure Container Registry130
Using the ACR Container Image with AKS132

AKS Volumes133
Creating a Storage Class134

Creating a Volume Claim135

Configuring a Pod to Use a Persistent Volume135

Upgrading an AKS Cluster136
Autoupgrading the AKS Cluster138

Terraform Remote State140
Configuring the Remote State141

Adding Backend Configuration143

State Locking146

Exporting Azure Resources to Terraform148

Summary149

Chapter 6:​ Azure DevOps and Container Service151
Introduction151

Azure DevOps Services151

Setting Up Azure DevOps153
Creating an Azure DevOps Organization154

Creating a Project154

Creating a Personal Access Token156

Creating a Repository158

Using Terraform with Azure DevOps160
Installing Terraform Task160

Azure Pipelines161
Creating an Azure Container Registry162

Creating an Azure Pipeline165

Reviewing the Pipeline169

Building and Pushing a Docker Image to ACR with Azure Pipelines171

Using Terraform Destroy with Azure Pipelines177

The AzAPI Provider177
Deploying an ACR Using the AzAPI Provider178

Full Code180

Managing Secrets in Azure Key Vault and Azure DevOps181
Deploying Azure Key Vault Using Terraform181

Creating a Secret in Azure Key Vault183

Connecting Azure Key Vault to Azure Pipelines184
Accessing Key Vault Secrets from a YAML Pipeline185

Accessing Secrets from an Azure Pipeline187

Summary188

Chapter 7:​ Azure Compliance and Security189
Introduction189

Defender for Cloud189
Setting Up Azure with Defender for Containers191

Checking the Deployment193

Securing IaC Code with Defender for DevOps196

Installing Extensions196

Connecting the Azure DevOps Organization to Defender for DevOps198
Enabling the Plan200

Scanning a Terraform Pipeline for Vulnerabilities203

Summary206

Index207

About the Author

Shimon Ifrah
 [image:]
 A photo of Shimon Ifrah.

 is a solution architect, writer, tech blogger, and author with over 15 years of experience in the design, management, and deployment of information technology systems, applications, and networks. In the last decade, Shimon has specialized in cloud computing and containerized applications for Microsoft Azure, Microsoft 365, Azure DevOps, and .NET. Shimon also holds over 20 vendor certificates from Microsoft, Amazon Web Services, VMware, Oracle, and Cisco. During his career in the IT industry, he has worked for some of the world’s largest managed services and technology companies, assisting them in designing and managing systems used by millions of people every day. He is based in Melbourne, Australia.

About the Technical Reviewer

Kasam Shaikh
 [image:]
 A photo of Kasam Shaikh.

 is a prominent figure in India’s artificial intelligence landscape, holding the distinction of being one of the country’s first four Microsoft MVPs in AI. Currently serving as a senior architect at Capgemini, Kasam boasts an impressive track record as an author, having authored five best-selling books focused on Azure and AI technologies. Beyond his writing endeavors, Kasam is recognized as a Microsoft certified trainer and influential tech YouTuber (@mekasamshaikh). He also leads the largest online Azure AI community, known as DearAzure—Azure INDIA and is a globally renowned AI speaker. His commitment to knowledge sharing extends to his contributions to Microsoft Learn, where he plays a pivotal role.

 Within the realm of AI, Kasam is a respected subject matter expert in Generative AI for the Cloud, complementing his role as a senior cloud architect. He actively promotes the adoption of no-code and Azure OpenAI solutions and possesses a strong foundation in hybrid and cross-cloud practices. Kasam’s versatility and expertise make him an invaluable asset in the rapidly evolving landscape of technology, contributing significantly to the advancement of Azure and AI.

 In summary, Kasam Shaikh is a multifaceted professional who excels in both his technical expertise and knowledge dissemination. His contributions span writing, training, community leadership, public speaking, and architecture, establishing him as a true luminary in the world of Azure and AI.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. IfrahGetting Started with Containers in Azurehttps://doi.org/10.1007/978-1-4842-9972-2_1

1. Getting Started with Azure and Terraform

Shimon Ifrah1
(1)Melbourne, VIC, Australia

 Introduction

 Welcome to the first chapter of Deploy Containers on Azure Using Terraform. Since the release of the first edition of this book, many things have changed, and so I decided to do a complete rewrite of the original book and introduce the Terraform software and explain how it can help you simplify your deployments on Azure and, more important, how it can deploy fast and always produce the same results.

 The focus of this book will be on how to use Terraform to deploy container services, infrastructure services, and other services on Azure using infrastructure as code (IaC).

 Terraform is an open-source IaC tool developed by HashiCorp in order to simplify deployments of cloud infrastructure using descriptive code language.

 Once the code is deployed to Azure, it can also be version controlled and shared for development purposes.

 This chapter will focus on how to get started setting up your development environment to use Terraform and connect to Azure and on deploying a sample resource.

 Based on the assumption that you already have a working knowledge of Terraform and Azure, this book will focus on teaching the fundamentals of these technologies.

 To deploy resources to Azure using Terraform, there are a few tools I would recommend using to make your deployment journey smoother and easier.

 If you already have a preferred working setup and have the latest version of Terraform and Azure command-line interface (CLI) installed and up and running, you don’t have to use the setup outlined in this book, or the book recommended here.

 Goals of This Chapter

 The objectives of this chapter are to:	
 install all the required tools and services of Terraform

	
 understand at a high level what configuring Terraform does

	
 authenticate to Azure using Azure CLI

	
 deploy an Azure resource group using Terraform

 Tools and Services for the Setup

 In the following sections, we will go over the tools and services needed to deploy infrastructure to Azure using Terraform. These resources can be run on Windows, macOS, and Linux operating systems.

 The following tools and services are recommended:	
 Visual Studio Code

	
 Visual Studio Code extensions

	
 Windows Subsystem for Linux (recommended but not essential)

	
 Azure command-line interface

	
 PowerShell 7

	
 Azure PowerShell Module

	
 Terraform

 Visual Studio Code

 Visual Studio Code (VS Code) is a lightweight source code editor developed by Microsoft that is free to download. It supports a wide range of programming languages and frameworks, including .NET, Python, Java, Node, PHP, HTML, and many more.

 VS Code is currently one of the most popular source code editors because of the wide range of extensions it of offers to allow developers to write extensions that extend the functionality of the editor. In this book, we will use the Terraform extension.

 Installing VS Code

 VS Code is available for the Windows, macOS, and Linux operating systems. You can download all of these versions from the following URL: https://code.visualstudio.com/download.

 Once you download the correct version for your system, go ahead and install it.

 VS Code Extensions

 VS Code extensions are core components that allow software and infrastructure developers to work smarter by complementing their capabilities with new features, functionality, and integrations.

 Currently, the VS Code extensions library contains thousands of extensions that developers can use to produce cleaner and better code.

 In this book, we will use a few extensions to produce code and infrastructure in Azure.

 Installing VS Code Extensions

 To install extensions in VS Code, take the following steps:	1.

 Open VS Code.

	2.

 Click the “Extensions” icon, as shown in Figure 1-1.

 [image:]
 A screenshot of the list of 8 icons in V S code. The extension icon is selected from the list.

Figure 1-1
 The VS Code “Extensions” icon

 To get the most out of this book and Terraform, what follows are a few VS Code extensions I would recommend installing that will help you become a great infrastructure developer.	
 Azure Terraform: The official Microsoft VS Code extension for Terraform offers IntelliSense, linting, autocomplete, and ARM template support for Terraform configuration.

 [image:]
 A screenshot of the Azure terraform from the Microsoft store. It displays the logo with the header Azure Terraform. The disable and uninstall buttons are below it. Details, feature contributions, changelog, dependencies, and runtime status are listed.

Figure 1-2
 The Azure Terraform VS Code extension

 	
 HashiCorp Terraform: HashiCorp, the company behind Terraform, has its own official VS Code extension that offers IntelliSense, syntax validation, syntax highlighting, code navigation, code formatting, code snippets, a Terraform module explorer, and Terraform commands.

 [image:]
 A screenshot of the HashiCorp terraform from the Hashicorp store. It displays the logo with the header Hashicorp Terraform. Reload required, disable, uninstall, and switch to pre-release version buttons are below it. Details, feature contributions, changelog, and runtime status are listed.

Figure 1-3
 The HashiCorp Terraform VS Code extension

 	
 Azure Account: Another official Microsoft extension, Azure Account simplifies the connectivity process between VS Code and Azure. It allows developers to connect to multiple Azure subscriptions and manage Azure resources.

 [image:]
 A screenshot of the Azure account from the Microsoft store. It displays the logo with the header Azure account. The disable and uninstall buttons are below it. Details, feature contributions, changelog, and runtime status are listed.

Figure 1-4
 The Azure Account VS Code extension

 	
 PowerShell: Microsoft’s PowerShell VS Code extension offers support for PowerShell within VS Code and allows writing and debugging PowerShell scripts. The extension also offers the classic PowerShell Integrated Scripting Environment theme.

 [image:]
 A screenshot of the PowerShell from the Microsoft store. It displays the logo with the header power shell. The set color theme and uninstall buttons are below it. Details, feature contributions, changelog, dependencies, and runtime status are listed.

Figure 1-5
 The PowerShell VS Code extension

 	
 Linter: This extension offers linting capabilities that analyze and check the code written for errors and bugs. It also offers linting capabilities for YAML files used by Kubernetes code deployments.

 To lint YAML Ain’t Markup Language, or YAML, files, make sure you install the YAMLint package for macOS or Linux.

 [image:]
 A screenshot of the Linter. It displays the logo with the header Linter. The install button is below it. Details, feature contributions, and changelog are listed.

Figure 1-6
 The Linter VS Code extension

 The extensions just described will help you get started using Azure and Terraform very quickly. Make sure you have all of them installed.

 Windows Subsystem for Linux

 If you’re planning on using a Windows operating system to deploy resources to Azure using Terraform, I recommend you go with Windows Subsystem for Linux (WSL) if you have enough Linux Shell skills.

 WSL allows us to run Linux distributions natively on Windows 11 and Windows Server. It provides a convenient development environment for DevOps and Terraform specifically because of its:	
 seamless integration with the Windows operating system, allowing us to use all the native Linux tools and scripts without using a different system

	
 native command-line experience, giving us access to Linux packages and utilities

	
 access to DevOps tools that are available on Linux only

 By using WSL, developers and engineers can benefit from the strength of both operating systems and utilize all the tools and services they offer under a single system.

 Installing WSL on Windows 11

 Since the release of WSL back in 2016, the installation process has been simplified tenfold; now, installing WSL is just a matter of running a single command.

 To install WSL on a Windows 11 computer, open PowerShell or a Windows Command terminal as an administrator and run the following command:

 wsl–install

 This command will install and enable all the features that make WSL work on your computer and install the Ubuntu distribution of Linux, which is the default, but you can change it.

 If you’re using macOS or Linux, there is no need to change anything, as all the tools that we will use are natively available on both operating systems.

 Azure CLI

 The next tool that we need to install is the Azure CLI command-line interface, which will allow us to manage Azure using commands. Azure CLI is a cross-platform tool that is available on all operating systems.

 Installing Azure CLI on Windows with WinGet

 To install Azure CLI on a computer running Windows 11, open PowerShell in administrator mode and run the following command:

 winget install -e --id Microsoft.AzureCLI

 This command uses WinGet, which is Windows’s package manager that allows us to install tools and applications directly from the command line.

 Installing Azure CLI on Linux

 To install Azure CLI on a computer running Linux, visit the following page and select the Linux distribution you’re running:

 https://learn.microsoft.com/en-us/cli/azure/install-azure-cli

 If you’re using Ubuntu Linux, you can install Azure CLI using the following single command:

 curl -sL https://aka.ms/InstallAzureCLIDeb | sudo bash

 Installing Azure CLI on macOS

 To install Azure CLI on a macOS using Homebrew, run the following command from the macOS terminal:

 brew update && brew install azure-cli

 PowerShell 7

 Microsoft PowerShell is a cross-platform command-line utility that allows us to automate tasks using commands and scripts, and it is available on Windows, Linux, and macOS.

 With PowerShell, we can install the Azure PowerShell module and manage Azure resources directly from the command line using cmdlets or scripts.

 The main selling point of PowerShell 7 is its cross-platform support, which contributed to the program’s success and widened its limited exposure, previously being available for Windows environments only.

 PowerShell 7 can be installed on all platforms using different methods. For the sake of simplicity, I will just go over one method for each platform. For more information about the installation options, visit PowerShell’s official website at https://github.com/PowerShell/PowerShell.

 Installing PowerShell 7 on Windows

 The recommended way to install PowerShell 7 on a Windows computer is to use the Windows Package Manager WinGet command-line tool. WinGet allows us to install, upgrade, and remove applications and tools like PowerShell directly from the command line and comes preinstalled on Windows 11 and recent versions of Windows 10.

 To install PowerShell 7, open a Windows command terminal or PowerShell 5.1, which is also installed on Windows 10 and 11 by default, and run the following cmdlet:

 winget install --id Microsoft.Powershell --source winget

 To install the preview edition of PowerShell, run this command:

 winget install --id Microsoft.Powershell.Preview --source winget

 If you already have PowerShell 7 installed on your computer and would like to update it to the latest version, run the following command to check for updates:

 winget update

 To update all applications using WinGet, run the next command:

 winget update –all

 To update only PowerShell, you can run:

 winget update Microsoft.PowerShell

 Note that in some cases, you might need to uninstall PowerShell 7 before installing a new version with WinGet. To uninstall PowerShell 7, run the following cmdlet:

 winget uninstall Microsoft.PowerShell

 Once the previous version is uninstalled, install PowerShell 7 with the command that follows:

 winget install Microsoft.PowerShell

 Installing PowerShell 7 on macOS

 The recommended way to install PowerShell 7 on macOS is by using Homebrew, which is a package manager for macOS. Like WinGet, Homebrew takes care of the installation process and allows us to install, update, and remove applications.

 If you need to install Homebrew, open the Terminal application on your macOS and run the following command:

 /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

 After the Homebrew installation is completed, close and reopen the Terminal and run the following command to install PowerShell 7:

 brew install --cask powershell

 Once PowerShell 7 is installed, you can start using it by typing “pwsh.” The pwsh command starts PowerShell and allows you to run PowerShell cmdlets or scripts.

 To update all applications, including PowerShell, on macOS, run the following command:

 brew update

 After the command is finished, run the following command to start the update process:

 brew upgrade

 When the Homebrew update is completed, it will display a summary report of the updated packages, including PowerShell 7.

 Installing PowerShell 7 on Linux

 PowerShell can be installed on almost all Linux distributions. Here, I will show how to install it on Ubuntu 22.04.

 To install PowerShell, run the following commands from a bash terminal:

 sudo apt-get update

 sudo apt-get install -y wget apt-transport-https software-properties-common

 wget -q

 "https://packages.microsoft.com/config/ubuntu/$(lsb_release -rs)/packages-microsoft-prod.deb"

 sudo dpkg -i packages-microsoft-prod.deb

 rm packages-microsoft-prod.deb

 packages.microsoft.com

 sudo apt-get update

 sudo apt-get install -y powershell

 Once the installation is complete, you can start PowerShell by using the following command: pwsh. From this point forward, all PowerShell cmdlets will be the same on all operating systems.

 Terraform

 Now that we have all the tools we need to get started using Microsoft Azure and DevOps, it’s time to install Terraform and begin the process.

 Terraform is the most popular and widely used IaC software development tool available on the market and is considered an industry standard for infrastructure deployment.

 It’s also the oldest tool for infrastructure deployment and has been around for many years. Terraform supports most major cloud providers, like AWS, or Amazon Web Services, and GCP, or Google Cloud Platform.

 Terraform uses the concept of domain-specific language, also known as HashiCorp Configuration Language. The idea behind the language is to use a declarative approach to infrastructure code.

 In the declarative approach, we define the desired state of the infrastructure and let Terraform handle the deployment and configuration.

 A High-Level Example of Terraform

 The following is an example of code we can use to create an Azure Resource Group using Terraform:

 # main.tf

 provider "azurerm" {

 features {}

 }

 resource "azurerm_resource_group" "example" {

 name = "Apress-ch01"

 location = "West Europe"

 }

 In this example, we have a Terraform configuration file called main.tf.

 It is important to note that all Terraform configuration files need to use the .TF file extension in order to be deployed by Terraform.

 In Terraform, a provider has all the domain-specific code to deploy resources to a cloud provider like Azure. Each cloud provider has its own Terraform provider. The Azure Terraform provider is called Azure Resource Manager (Azure RM).

 The following code declares that we are using the Microsoft Azure Terraform provider.

 provider "azurerm" {

 features {}

 }

 Next, we will tell Terraform to create a resource group in the Azure Web Europe data center. The name of the resource group will be Apress-ch01. Once we run the code, Terraform will go ahead and deploy the resource group.

 We will go over the process for setting up and deploying a resource shortly. The previous code is just meant to serve as a high-level example of how Terraform deploys infrastructure

 Now that we have learned a bit about Terraform, let’s take a look at how to install it. Terraform is available for Linux, macOS, and Windows systems. My recommendation would be to use Terraform on Linux, macOS, or WSL. Because many DevOps tools are available natively on Linux and macOS, using Windows won’t produce the best development results.

 Installing Terraform on macOS

 The method I would recommend to install Terraform on a macOS is to use a package manager; in our case, it is best to use Brew.

 To install Terraform using Brew, you can use the next couple of commands on your macOS terminal.

 First, install the HashiCorp repository using the tap command: brew tap hashicorp/tap. Then, to install Terraform, run this command:

 brew install hashicorp/tap/terraform.

 If you already have Terraform installed and want to update it to the latest version, you can take the following steps.

 First, update Brew using the update command: brew update. Once Brew is updated, run this command: brew upgrade hashicorp/tap/terraform.

 Now Terraform is ready to go. To check which version of Terraform is installed on your machine, run terraform -version.

 Enabling Terraform Tab Completion on macOS

 To enable tab completion for Terraform, first make sure you have the Bash profile configured by running the following command: Touch ~/bashrc. Then, run this command:

 terraform -install-autocomplete.

 Installing Terraform on Linux

 In this section, I will install Terraform only on Ubuntu; if you’re running a different Linux distribution, you can go to the following URL to get the version you need: https://developer.hashicorp.com/terraform/tutorials/aws-get-started/install-cli.

 Terraform is available for the following Linux distributions:	
 CentOS/RHEL

	
 Fedora

	
 Amazon Linux

 Installing Terraform on Ubuntu

 To install Terraform on Ubuntu, we first need to install the HashiCorp package repository, which we can do here:

 wget -O- https://apt.releases.hashicorp.com/gpg | sudo gpg --dearmor -o /usr/share/keyrings/hashicorp-archive-keyring.gpg

 Then we need to install the GPG security signature using the following command:

 echo "deb [signed-by=/usr/share/keyrings/hashicorp-archive-keyring.gpg] https://apt.releases.hashicorp.com $(lsb_release -cs) main" | sudo tee /etc/apt/sources.list.d/hashicorp.list

 The last command will install Terraform:

 sudo apt update && sudo apt install terraform

 Enabling Terraform Tab Completion on Ubuntu

 To enable tab completion for Terraform on Linux Ubuntu, first make sure you have the Bash profile configured by running the following command:

 Touch ~/bashrc

 Then, run this command:

 terraform -install-autocomplete

 Installing Terraform on Windows

 The recommended method for installing Terraform on Windows is to use a package manager, and to do this we will again use WinGet.

 To search for Terraform with WinGet, open a PowerShell terminal and run the following command:

 winget search terraform

 The output from the command is shown in the following. The version of Terraform we’re looking for is 1.5.3.

 Name Id Version Match Source

 --

 Hashicorp Terraform Hashicorp.Terraform 1.5.3 winget

 Note

 When the ID of the app shows “Vendor. AppName,” it means that app is the official application.

 To install Terraform, run this command:

 Winget install Hashicorp.Terraform

 Terraform Package Manager

 Before we move on with, there is a tool I recommend you use to manage Terraform. This tool is optional but can help in managing Terraform across multiple deployments.

 Note

 Using tfenv is optional and not required to complete the labs in this book.

 The tool I’m talking about is tfenv. It is a version manager for Terraform. Tfenv allows you to manage multiple versions of Terraform on your local computer (similar to the Python virtual environment).

 The tfenv process of switching between Terraform environments is simple and allows us to maintain the compatibility of projects.

 As I mentioned previously, this tool is only available on Linux and macOS; you will come across many tools like this.

 Installing tfenv on macOS

 To install tfenv on macOS, we’ll use Homebrew with the brew command tool as shown in the following code:

 brew install tfenv

 In the next subsection, I will go over how to use tfenv.

 Installing tfenv on Linux

 To install tfenv on a Linux machine, use the following command, which uses Git to clone the source code of tfenv:

 git clone --depth=1 https://github.com/tfutils/tfenv.git ~/.tfenv

 echo 'export PATH=$PATH:$HOME/.tfenv/bin' >> ~/.bashrc

 Note

 Tfenv is not available in the Ubuntu package manager.

 Tfenv is now installed on your computer.

 How to Use tfenv

 Now that we’ve tfenv installed on our computers, let’s put it to the test and use it to manage different versions of Terraform.

 To view all the available tfenv commands, run the following command:

 Tfenv

 The output will list all the available options, as shown in the following:

 tfenv 3.0.0-18-g1ccfddb

 Usage: tfenv <command> [<options>]

 Commands:

 install Install a specific version of Terraform

 use Switch a version to use

 uninstall Uninstall a specific version of Terraform

 list List all installed versions

 list-remote List all installable versions

 version-name Print current version

 init Update environment to use tfenv correctly.

 pin Write the current active version to ./.terraform-version

 As you can tell, using tfenv is simple, which makes it very handy for operating and managing the Terraform versions.

 Let’s start by downloading a version of Terraform by typing in the following command to view which versions are available:

 Tfenv list-remote

 What follows is the output of that command (note that I am only showing 14 of the versions included in the list):

 1.6.0-alpha20230719

 1.5.3

 1.5.2

 1.5.1

 1.5.0

 1.5.0-rc2

 1.5.0-rc1

 1.5.0-beta2

 1.5.0-beta1

 1.5.0-alpha20230504

 1.5.0-alpha20230405

 1.4.6

 1.4.5

 1.4.4

 To install a specific version of Terraform, run the following command:

 tfenv install 1.5.2

 The command output follows. If you notice, it’s being downloaded from Terraform directly.

 Installing Terraform v1.5.2

 Downloading release tarball from https://releases.hashicorp.com/terraform/1.5.2/terraform_1.5.2_linux_amd64.zip

 ### 100.0%

 Downloading SHA hash file from https://releases.hashicorp.com/terraform/1.5.2/terraform_1.5.2_SHA256SUMS

 Downloading SHA hash signature file from https://releases.hashicorp.com/terraform/1.5.2/terraform_1.5.2_SHA256SUMS.72D7468F.sig

 To activate a version of Terraform, first list all the installed versions with a tfenv list, as follows:

 * 1.5.3 (set by /home/shimon/.tfenv/version)

 1.5.2

 1.3.0

 1.1.8

 To activate a different version of Terraform, run:

 Tfenv use 1.5.2

 If you check which version is active, it will show the following output:

 1.5.3

 * 1.5.2 (set by /home/shimon/.tfenv/version)

 1.3.0

 1.1.8

 As I mentioned at the beginning of this section, tfenv is an optional feature and it’s not required to deploy infrastructure. You will find that there are many handy tools available to help us be more productive and efficient with our deployments; tfenv is just one of them.

 Getting Started with Azure Infrastructure

 At this stage, we have all the tools required to deploy infrastructure on Microsoft Azure. So let’s get started and deploy something to Azure using Terraform.

 Note

 To deploy resources to Azure, you’ll need an active Azure subscription.

 Authenticating to Azure

 The first step required to deploy resources to Azure is to authenticate, which we’ll do using Azure CLI (PowerShell is not supported).

 To authenticate to Azure, run the following command and click the resulting link to open the Azure portal login:

 az login --use-device-code

 If you have multiple Azure subscriptions, run the following command to find the ID of the subscription to which you’re going to deploy resources and copy the subscription ID.

 az account list --output table

 Using the ID you copied, run the following command to set up the subscription:

 az account set subscription "SUBSCRIPTIONNAME"

 We are now authenticated and ready to deploy our first Azure resource.

 In this example, we are going to deploy an Azure Resource Group using Terraform with the following code:

 #1.Create_RG.tf

 terraform {

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 }

 }

 }

 provider "azurerm" {

 features {}

 }

 resource "azurerm_resource_group" "rg" {

 name = "ApressAzureTerraform"

 location = "Australia Southeast"

 }

 The previous code starts with a declaration of the Azure Terraform provider. The Azure terraform provider is called azurerm.

 We also have a provider features section where we can declare extra configuration items.

 #1.Create_RG.tf

 terraform {

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 }

 }

 }

 provider "azurerm" {

 features {}

 }

 The second part of the code is the declaration of the resource group we’re going to create and deploy to Azure.

 We are deploying a resource group called ApressAzureTerraform in the Australia Southeast data center.

 resource "azurerm_resource_group" "rg" {

 name = "ApressAzureTerraform"

 location = "Australia Southeast"

 }

 Deploying Azure Infrastructure with Terraform

 Now that we have a basic understanding of the code, let’s deploy the resource group to Azure.

 Terraform uses the following four commands to deploy, manage, and delete resources on any platform, not just Azure:

 Terraform init

 Terraform plan

 Terraform apply

 Terraform destroy

 In the following deployment, we’ll use all of these commands as we go through the cycle of creating and deleting resources from Azure.

 The “Terraform Init” Command

 We’ll start by running the terraform init command, which will initiate and download the latest version of the Azure Terraform provider:

 terraform init

 Note

 We can specify a Terraform provider by using the version option in the required_provider section.

 The output of the command is as follows:

 Initializing the backend...

 Initializing provider plugins...

 - Finding latest version of hashicorp/azurerm...

 - Installing hashicorp/azurerm v3.66.0...

 - Installed hashicorp/azurerm v3.66.0 (signed by HashiCorp)

 Terraform has created a lock file called .terraform.lock.hcl to record the provider selections it made. Include this file in your version control repository so that Terraform can guarantee it makes the same selections by default when you run "terraform init" in the future.

 The “Terraform Plan” Command

 Before we go ahead and deploy the code, let’s first use the Terraform plan command, which will show us what Terraform will do without deploying the code or making any changes.

 The output is shown in the following, and as you can see in the Plan line, we’ve added one resource.

 Terraform used the selected providers to generate the following execution plan. Resource actions are indicated with the following symbols:

 + create

 Terraform will perform the following actions:

 # azurerm_resource_group.example will be created

 + resource "azurerm_resource_group" "example" {

 + id = (known after apply)

 + location = "australiasoutheast"

 + name = "ApressAzureTerraform"

 }

 Plan: 1 to add, 0 to change, 0 to destroy.

 Note

 It is essential that you review the changes carefully, as changes made by Terraform are irreversible.

 The “Terraform Apply” Command

 To deploy the resources, we’ll use the following Terraform apply command to create a resource group:

 Terraform apply

 Let’s now review the planned changes one more time and type “yes” to confirm.

 Terraform used the selected providers to generate the following execution plan. Resource actions are indicated with the following symbols:

 + create

 Terraform will perform the following actions:

 # azurerm_resource_group.rg will be created

 + resource "azurerm_resource_group" "rg" {

 + id = (known after apply)

 + location = "australiasoutheast"

 + name = "ApressAzureTerraform"

 }

 Plan: 1 to add, 0 to change, 0 to destroy.

 Do you want to perform these actions?

 Terraform will perform the actions described above.

 Only 'yes' will be accepted to approve.

 Enter a value:

 After a little time, Terraform will display a message saying that the resources were deployed successfully. The output of the message follows:

 Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

 The “Terraform Destroy” Command

 The final step in the Terraform deployment cycle is to delete the infrastructure we just deployed, which we’ll do with the following destroy command:

 Terraform destroy

 Terraform will then again display a detailed configuration message outlining the changes and their impact on the infrastructure. It is critical that you review these changes carefully, especially when managing live and production resources.

 Terraform used the selected providers to generate the following execution plan. Resource actions are indicated with the following symbols:

 - destroy

 Terraform will perform the following actions:

 # azurerm_resource_group.rg will be destroyed

 - resource "azurerm_resource_group" "rg" {

 - id = "/subscriptions/subidremoved /resourceGroups/ApressAzureTerraform" -> null

 - location = "australiasoutheast" -> null

 - name = "ApressAzureTerraform" -> null

 - tags = {} -> null

 }

 Plan: 0 to add, 0 to change, 1 to destroy.

 Do you really want to destroy all resources?

 Terraform will destroy all your managed infrastructure, as shown above.

 There is no undo. Only 'yes' will be accepted to confirm.

 Enter a value:

 If you are OK with the changes, type “yes” and Terraform will delete the resources outlined in the output of the destroy command.

 Summary

 This chapter covered the basics of getting started with Terraform and installing the tools required to use it. In the last section, we put all our learning into practice and deployed an Azure resource group using Terraform.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. IfrahGetting Started with Containers in Azurehttps://doi.org/10.1007/978-1-4842-9972-2_2

2. Azure Web App for Containers

Shimon Ifrah1
(1)Melbourne, VIC, Australia

 Introduction

 We’ll start this chapter by deploying services to Azure. The first service we’re going to explore and deploy is Azure Web App for Containers. Using the knowledge we gained in Chapter 1, we will use VS Code, Azure CLI, and Terraform.

 Azure Web App for Containers is a service that is part of Azure Web Apps that allows us to deploy web or mobile applications to Azure without the need to deploy the underlying infrastructure, like servers and storage, allowing us to focus only on deploying our applications and let Azure manage the rest.

 The platform takes Azure Web Apps to the next level by allowing us to configure applications in Docker and ship them to Azure Web Apps but control all the runtime configuration within the application.

 The service also supports Docker and other container technologies that allow us to package our applications and dependencies into a container image.

 We have the choice to use multiple programming languages with the platform like:	
 .NET

	
 Java

	
 Python

	
 Node

 The deployment process also allows us to pull our images from container registries like Azure Container Registry (ACR) and Docker Hub or use source-code repositories like Azure Repos or GitHub.

 Setting Up Web App for Containers

 To get started deploying to Web App for Containers, review the Chapter 02 code in the repository for this book.

 If you look at the code, you’ll see that I have made some changes to how Terraform configuration should be used.

 Provider Configuration

 To simplify things and make the code more scalable and portable, I have created the following file: provider.tf.

 The provider file contains all the details of the provider, and in our case, it’s the Azure provider. By separating the provider configuration from the main configuration files, we centralize the provider configuration and reduce duplication.

 The content of the provider.tf is:

 terraform {

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 }

 }

 }

 provider "azurerm" {

 features {}

 }

 Web App for Containers Configuration

 Before we deploy an app to Web App for Containers, let’s review the code and understand how it works.

 Note

 Terraform code is called configuration.

 The first block in the configuration creates a resource group. The name of the block is “rg.” Terraform doesn’t care what you name it, but the naming does need to be consistent, and we will refer to it in the configuration.

 resource "azurerm_resource_group" "rg" {

 name = "ApressAzureTerraformCH02"

 location = "Australia Southeast"

 }

 The second piece of code, detailed in the following, creates a Linux Service plan called “Linux with P1v2 plan.”

 resource "azurerm_service_plan" "appservice" {

 name = "Linux"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 os_type = "Linux"

 sku_name = "P1v2"

 }

 These two blocks of code define the Docker image that will be used in the Web App for Containers and the settings that are needed for it to run.

 Note

 Later on in the book, we will create a private container register in Azure and use it for deployments.

 The last block of code, outlined in the following, creates the actual app that will be deployed to Web App for Containers. The important parts in the configuration are in the applications_stack and the app_settings blocks.

 resource "azurerm_linux_web_app" "webapp" {

 name = "ApressTFWebApp"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 service_plan_id = azurerm_service_plan.appservice.id

 site_config {

 always_on = "true"

 application_stack {

 docker_image_name = "httpd:latest"

 docker_registry_url = "https://index.docker.io/"

 }

 }

 app_settings = {

 "DOCKER_ENABLE_CI" = "true"

 }

 }

 The deployment that we’re using is not overly complicated but does have all the moving parts needed to run an application on Web App for Containers.

 The “Terraform Plan” Command

 Before deploying the code, it is a good idea to explore the Terraform plan command.

 The job of this command is to do the following tasks:	
 Dependency analysis: This analyzes the Terraform configuration files and code maps all resources, data sources, and modules that are needed for the deployment.

	
 State analysis: The state analysis checks if an existing state file exists (terraform.tfstate) and determine the current state of the infrastructure.

	
 Resource Comparison: This compare the desired state defined in the configuration files with the current state recorded in the state file (terraform.tfstate).

	
 Execution Plan: Once the dependency, state, and resource analyses are done, Terraform will generate this plan that outlines how the infrastructure will look and which actions need to be achieved (add, modify, or delete).

	
 Output: The final stage of this command is to display the execution plan and show which action will be taken against which resources.

 The purpose of the Terraform plan command is to preview the planned changes before applying them and review their potential impact on the infrastructure.

 When running a plan command, we need to navigate to the directory containing the Terraform configuration files and issue the following command:

 terraform plan

 The plan command will run the previous steps against every configuration file that ends with the .tf extension.

 The Terraform State File

 The Terraform state file acts as a recordkeeping mechanism for tracking the resources Terraform manages and their current state.

 The key functions of this file you need to know about are:	
 Mapping the file’s resources: Mapping the resources listed in the file (terraform.tfstate) and the resources in Azure is the purpose of this file. If the configuration of Azure resources is different, Terraform will try to “fix” it and give it the same configuration as those in the state files by deleting or removing those resources that can be risky.

	
 Mapping: The state file holds information about the resource type; name; provider; and attributes like DNS, IP Address, and so on.

	
 Locking: In a production environment, the state files should be hosted in centralized storage so that multiple members can access them and make changes to their infrastructure without overwriting their configuration. To prevent overwriting, Terraform can lock the state files when changes are made by a single user. We’ll learn how to use a remote state file later on.

	
 Remote state: By default, the state file is stored locally; however, in a production environment the best practice is to store it in remote storage and allow collaboration.

	
 Sensitive data: The state file should be excluded from source control storage because it contains sensitive data like passwords, API (application programming interface) keys, and more. When using a remote state file, the storage should be encrypted.

 Deploying Web App for Containers

 Now that we understand a bit more about the Terraform plan process and how the Terraform state file works, it’s time to deploy our Web App for Containers application.

 We deploy resources to Azure using the Terraform apply command. This command uses the Terraform configuration file and creates or modifies resources in Azure. The command does exactly when the it says it will do.

 Before making any changes, Terraform will display the execution plan with the proposed changes and will always ask for confirmation before proceeding with the changes.

 Note

 To skip the confirmation approval step, we can use auto-approve, which will work with the “plan,” “apply,” and “destroy” commands.

 When using the Terraform apply command in a production environment, always review the execution plan and ensure that you understand the changes Terraform will make before confirming.

 Deploying the Code

 To deploy our Web App for Containers app, we’ll take the following steps:	1.

 Open the VS Code terminal and browse the for the folder where the Terraform configuration exists.

	2.

 Log into Microsoft Azure using the following code:

 az login --use-device-code

	3.

 If you have more than one Azure subscription, use the following command to set your subscription:

 az account set --subscription "SUBSCRIPTIONID"

 Note

  To list all your Azure subscription IDs using PowerShell, use the following command: “get-azSubscription | Select-Object Name, subscriptionid.”

	4.

 Run the Terraform init command to download the Azure provider.

 The init command output should look like this:

 Initializing the backend...

 Initializing provider plugins...

 - Reusing previous version of hashicorp/azurerm from the dependency lock file

 - Using previously-installed hashicorp/azurerm v3.66.0

 Terraform has been successfully initialized!

 You may now begin working with Terraform. Try running "terraform plan" to see

 any changes that are required for your infrastructure. All Terraform commands

 should now work.

 If you ever set or change modules or backend configuration for Terraform,

 rerun this command to reinitialize your working directory. If you forget, other

 commands will detect it and remind you to do so if necessary.

	5.

 The next step is to run the following plan command and review the proposed infrastructure:

 Terraform plan

 The output should look like this:

 Terraform used the selected providers to generate the following execution plan. Resource actions are indicated with the following symbols:

 + create

 Terraform will perform the following actions:

 # azurerm_linux_web_app.webapp will be created

 + resource "azurerm_linux_web_app" "webapp" {

 + app_settings = {

 + "DOCKER_ENABLE_CI" = "true"

 }

 + client_affinity_enabled = false

 + client_certificate_enabled = false

 + client_certificate_mode = "Required"

 + custom_domain_verification_id = (sensitive value)

 + default_hostname = (known after apply)

 + enabled = true

 + hosting_environment_id = (known after apply)

 + https_only = false

 + id = (known after apply)

 + key_vault_reference_identity_id = (known after apply)

 + kind = (known after apply)

 + location = "australiasoutheast"

 + name = "ApressTFWebApp"

 + outbound_ip_address_list = (known after apply)

 + outbound_ip_addresses = (known after apply)

 + possible_outbound_ip_address_list = (known after apply)

 + possible_outbound_ip_addresses = (known after apply)

 + public_network_access_enabled = true

 + resource_group_name = "ApressAzureTerraformCH02"

 + service_plan_id = (known after apply)

 + site_credential = (sensitive value)

 + zip_deploy_file = (known after apply)

 + site_config {

 + always_on = true

 + container_registry_use_managed_identity = false

 + default_documents = (known after apply)

 + detailed_error_logging_enabled = (known after apply)

 + ftps_state = "Disabled"

 + health_check_eviction_time_in_min = (known after apply)

 + http2_enabled = false

 + linux_fx_version = (known after apply)

 + load_balancing_mode = "LeastRequests"

 + local_mysql_enabled = false

 + managed_pipeline_mode = "Integrated"

 + minimum_tls_version = "1.2"

 + remote_debugging_enabled = false

 + remote_debugging_version = (known after apply)

 + scm_minimum_tls_version = "1.2"

 + scm_type = (known after apply)

 + scm_use_main_ip_restriction = false

 + use_32_bit_worker = true

 + vnet_route_all_enabled = false

 + websockets_enabled = false

 + worker_count = (known after apply)

 + application_stack {

 + docker_image_name = "httpd:latest"

 + docker_registry_password = (sensitive value)

 + docker_registry_url = "https://index.docker.io/"

 + docker_registry_username = (known after apply)

 }

 }

 }

 # azurerm_resource_group.rg will be created

 + resource "azurerm_resource_group" "rg" {

 + id = (known after apply)

 + location = "australiasoutheast"

 + name = "ApressAzureTerraformCH02"

 }

 # azurerm_service_plan.appservice will be created

 + resource "azurerm_service_plan" "appservice" {

 + id = (known after apply)

 + kind = (known after apply)

 + location = "australiasoutheast"

 + maximum_elastic_worker_count = (known after apply)

 + name = "Linux"

 + os_type = "Linux"

 + per_site_scaling_enabled = false

 + reserved = (known after apply)

 + resource_group_name = "ApressAzureTerraformCH02"

 + sku_name = "P1v2"

 + worker_count = (known after apply)

 }

 Plan: 3 to add, 0 to change, 0 to destroy.

 The plan command is important and you should always take a few minutes to review the code. More specifically, always review the last line of the output that shows the planned changes for the action.

 In our case, the plan command will add the following three simple instructions: Plan: 3 to add, 0 to change, 0 to destroy. However, in existing environments, the output might show only the change and destroy instructions; make sure you go through the list of changes and understand them before proceeding to the apply command.	6.

 Next, we’ll run the following command:

 terraform apply

 The output of this command will be similar to that of the plan command. However, it will also include the following output plus confirmation:

 Plan: 3 to add, 0 to change, 0 to destroy.

 Do you want to perform these actions?

 Terraform will perform the actions described above.

 Only 'yes' will be accepted to approve.

 Enter a value:

 I will go ahead and type “yes” here and let Terraform create the web application as per the configuration.

 The Terraform application output is shown in the following code. The time it takes to create the infrastructure depends on the number of resources in the configuration. In our case, it should take less than a minute to complete the deployment.

 azurerm_resource_group.rg: Creating...

 azurerm_resource_group.rg: Creation complete after 1s [id=/subscriptions/subid/resourceGroups/ApressAzureTerraformCH02]

 azurerm_service_plan.appservice: Creating...

 azurerm_service_plan.appservice: Creation complete after 7s [id=/subscriptions/subid/resourceGroups/ApressAzureTerraformCH02/providers/Microsoft.Web/serverfarms/Linux]

 azurerm_linux_web_app.webapp: Creating...

 azurerm_linux_web_app.webapp: Still creating... [10s elapsed]

 azurerm_linux_web_app.webapp: Still creating... [20s elapsed]

 azurerm_linux_web_app.webapp: Still creating... [30s elapsed]

 azurerm_linux_web_app.webapp: Creation complete after 33s [id=/subscriptions/subid/resourceGroups/ApressAzureTerraformCH02/providers/Microsoft.Web/sites/ApressTFWebApp]

 Apply complete! Resources: 3 added, 0 changed, 0 destroyed.

 Now, the web app has been deployed and we can open the properties of the web app in the Azure portal and click the URL to see it in action.

 The output of the web app is shown in Figure 2-1.
 [image:]
 A screen reads it works exclamation mark.

Figure 2-1
 Httpd default home page

 In our deployment, we’re using the httpd Docker image, which runs the Apache Web Server, and it displays the default home page.

 You can find the web app URL in the Azure portal by taking the following steps:	1.

 Open the Azure portal using the following URL: https://portal.azure.com.

	2.

 Open the ApressTFWebApp web app.

	3.

 Click the “Default domain,” as shown in Figure 2-2.

 [image:]
 A screenshot depicts apress T F web app which highlights default domain and website link apress t f web app dot azure websites dot net.

Figure 2-2
 Web app URL

 Terraform Output

 I have to say that retrieving the web app URL required a few clicks, opening a web browser, and logging into the portal. To make our lives a bit easier, Terraform can also output the same information we retrieved from the browser on the output screen after deploying the application.

 The purpose of the output command is to display information about the deployment on our screen without requiring us to open the portal to look for it. After all, Terraform already has all the information about our deployment, so outputting it to the screen is simple.

 The Terraform output command is very powerful and allows us to retrieve deployment values from the Terraform state file that holds all the attributes. It also provides access to values without having to read the state file directly.

 Creating an Output File

 To use the output command, I recommend that you centralize all the output commands in one file called output.tf.

 As a reminder, so far in our Web App for Containers we have the following files:	
 File Name

 	
 Details

	
 webapp.tf

 	
 Main Web Apps for Containers configuration file

	
 Provider.tf

 	
 Azure provider configuration file

	
 Output.tf

 	
 Output configuration file

 To use the output command, I have created a file called output.tf with the following configuration:

 output "web_app_url" {

 value = azurerm_linux_web_app.webapp.default_hostname

 }

 In the configuration, I declared one output value would be called web_app_url with the Azure Web App default hostname value.

 To view the hostname of the deployed web app, we can run the terraform apply command as normal or output the value postdeployment using:

 terraform output

 The following output shows the web app URL we get when we run the Terraform apply command:

 azurerm_resource_group.rg: Refreshing state... [id=/subscriptions/subid /resourceGroups/ApressAzureTerraformCH02]

 azurerm_service_plan.appservice: Refreshing state... [id=/subscriptions/subid/resourceGroups/ApressAzureTerraformCH02/providers/Microsoft.Web/serverfarms/Linux]

 azurerm_linux_web_app.webapp: Refreshing state... [id=/subscriptions/subid/resourceGroups/ApressAzureTerraformCH02/providers/Microsoft.Web/sites/ApressTFWebApp]

 Changes to Outputs:

 + web_app_url = "apresstfwebapp.azurewebsites.net"

 You can apply this plan to save these new output values to the Terraform state, without changing any real infrastructure.

 Do you want to perform these actions?

 Terraform will perform the actions described above.

 Only 'yes' will be accepted to approve.

 Enter a value: yes

 Apply complete! Resources: 0 added, 0 changed, 0 destroyed.

 Outputs:

 web_app_url = "apresstfwebapp.azurewebsites.net"

 The previous example shows one output; however, in more complex deployments, we could output almost any attribute in the deployment.

 Using a Git Ignore File with Terraform

 Before we start adding more code and configuration, I’d like to take a moment to discuss the importance of using a .gitignore file with Terraform, in case you’re planning to use source control systems like GitHub or Azure Repos to store your code.

 Storing state files in the .terraform directory isn’t recommended, as these files should be protected and encrypted.

 To protect your source code, I recommended using a .gitignore file in your repository and exclude a number of files. With a .gitignore file, we tell Git which files should be ignored and not tracked by Git.

 To create a .gitignore file in our repository, we can create one by using the following command. The command should be executed in the same directory as your repository.

 touch .gitignore

 To exclude Terraform configuration files, I use the following configuration:

 # Ignore Terraform state files

 *.tfstate

 .tfstate.

 # Ignore .terraform directory, used to store plugins and state snapshots

 .terraform/

 # Ignore any local backup files

 *~

 # Ignore logs

 *.log

 # Ignore Mac-specific files

 .DS_Store

 # Ignore Visual Studio Code settings

 .vscode/

 # Ignore Terraform plan output files

 *.tfplan

 # Ignore sensitive files with secrets or API keys

 secrets.tfvars

 *.pem

 # Ignore any generated files or directories

 /bin/

 /out/

 If the .gitignore file is working, you’ll see the ignored files marked in white rather than green, as shown in Figure 2-3, indicating that they are not being tracked.

 Adding files to the .gitignore file after they’ve been tracked won’t remove them from the repository; it will only prevent future changes from being staged.

 To stop tracking files that Git already tracks, use the following Git command:

 Git rm --cached

 [image:]
 A screenshot depicts a Web App project includes Terraform files, dot terraform for internal data, dot git ignore, output dot t f, provider dot t f, terraform dot t f state for state, and web app dot t f for main configuration. READ ME dot m d provides documentation.

Figure 2-3
 Terraform file being ignored by Git, as indicated by being marked in white

 Using the Global Git Ignore File

 We can also make a global .gitignore file that will apply to multiple repositories by taking the following steps:	1.

 Create a .gitignore file outside your repository indicating all the files you’d like Git to ignore and not track.

	2.

 After adding the file, open a terminal window and find the repository with which you’d like to use the global file, then run the following command:

 git config --global core.excludesfile ~/.gitignore_global

 Cleaning Up Our Deployment

 Before moving onto the next section, let’s delete the Web App for Containers we just deployed using the following command:

 Terraform destroy

 Managing Web App for Containers

 In this section, we’ll focus on managing Web App for Containers and look into Azure features that can improve the deployment and management of apps running on Azure Web App for Containers.

 Scaling

 The first feature I want to touch on is the management of resources a Web App uses in terms of RAM and CPU. As I mentioned earlier, Terraform has the capability of managing almost any aspect of our deployment and scaling apps is one of them.

 Regarding scaling, Azure Web Apps resources are managed at the app service plan resource we have in our configuration. The code is as follows:

 resource "azurerm_service_plan" "appservice" {

 name = "Linux"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 os_type = "Linux"

 sku_name = "P1v2"

 }

 If you look closely at the code, we manage the resources by assigning a Stock Keeping Unit (SKU) using the sku_name option. Currently, Azure offers ten app service plan options for Linux, as listed in Figure 2-4.
 [image:]
 A screenshot displays hardware and feature views, showcasing 10 App Service pricing plans, including details like name, custom domain, auto scale, daily backups, and costs per hour and per month. Premium V 2 P 1 V 2 is selected.

Figure 2-4
 App service plan options for Linux

 The process of adding more resources to an app service plan is called “scale up,” and the opposite process is called “scale out.”

 To change an app service plan, we just need to change the sku_name value as follows, and then run Terraform apply.

 resource "azurerm_service_plan" "appservice" {

 name = "Linux"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 os_type = "Linux"

 sku_name = "S2"

 }

 Backing Up Web Apps

 Microsoft Azure backs up all deployed web apps every hour by default. Azure offers two types of backups, automatic and custom.

 Automatic backups are enabled by default at the following pricing tiers:	
 basic

	
 standard

	
 premium

	
 isolated

 With automatic backup, we are limited to 30 GB of backup, and backups run every hour without the option to run manual backups. Backups are retained for 30 days and cannot be downloaded to a local machine.

 If you require a custom approach to your backups, you can use a custom backup by setting up a storage account to hold the backups. Once configured, the backup frequency and the retention period can be configured and changed.

 Custom backups can be downloaded to an Azure storage blob.

 Customizing Deployment

 Before we move on to the next section, I’d like to show you how powerful Terraform is when it comes to customized deployments. In the following example, we’re going to generate a random web app name for our application using Terraform.

 To make our deployments easier and much more customized, Terraform has created a few providers that can help us generate random numbers, IDs, passwords, and more.

 Going back to our Web App for Containers code, I’m now going to add a new code block that will generate a random number that I will use to make my web app name.

 In the following code block, we’ll use the random provider to generate a random number and use it to create the name of our web app. The provider details are available at https://registry.terraform.io/providers/hashicorp/random/latest/docs.

 # Generate a random int

 resource "random_integer" "random" {

 min = 1

 max = 20

 }

 In essence, this code will generate a random number between 1 and 20. I will use that number in the web app code block to form my web app name and URL.

 resource "azurerm_linux_web_app" "webapp" {

 name = "ApressTFWebApp${random_integer.random.result}"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 service_plan_id = azurerm_service_plan.appservice.id

 site_config {

 always_on = "true"

 application_stack {

 docker_image_name = "httpd:latest"

 docker_registry_url = "https://index.docker.io/"

 }

 }

 app_settings = {

 "DOCKER_ENABLE_CI" = "true"

 }

 }

 When I run the Terraform apply command, Terraform will generate a number and use it to form the web app URL, the result of which will be:

 Apply complete! Resources: 4 added, 0 changed, 0 destroyed.

 Outputs:

 web_app_url = "apresstfwebapp18.azurewebsites.net"

 The URL has now been formed and has the number 18 in it.

 Variable Interpolation

 You probably noticed that in the part of the previous code where we generated the number and formed the web app URL we used the following code to form the name:

 "ApressTFWebApp${random_integer.random.result}"

 This example is perfect for taking the opportunity to introduce the concept of variable interpolation.

 In Terraform, variable interpolation is the process of using the values of variables within your Terraform configuration. Interpolation uses the following syntax:

 ${}

 There are two types of variable interpolation:	
 Variable: Used to reference the value of a variable.

	
 Resource: Used to reference the value of a resource (used in our web app configuration).

 Securing Web App for Containers

 In the final section of this chapter, we are going to focus on a few security features that are available to us and can be configured with Terraform, and I will provide examples of how to use them.

 HTTPS

 Azure Web Apps allows us to secure our applications using the HTTPS protocol, and by default, every deployment comes with an HTTPS URL enabled. To take this configuration a step further, we can also disable the use of HTTP using Terraform.

 We can add the following line to the web app block if we want to make our web app support HTTPS only:

 https_only = "true"

 We can also enforce our web application to communicate using only the transport layer security (TLS) 1.2 HTTPS protocol and disable the use of unsecured TLS protocols like TLS 1.0.

 The following line of code will set the minimum TLS protocol to 1.2:

 minimum_tls_version = "1.2"

 Another security feature that we can use is static IP restriction. By default, access to our web service is available to all IP (Internet protocol) addresses; however, we can limit which IP addresses have access to our application using IP restrictions.

 The following code block adds restrictions to our web app from a static IP block:

 ip_restriction {

 ip_address = "10.0.0.0/24"

 action = "Allow"

 # }

 In the following code we will add the following security settings:	
 HTTPS only

	
 Minimum TLS version

	
 IP restrictions

 resource "azurerm_linux_web_app" "webapp" {

 name = "ApressTFWebApp${random_integer.random.result}"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 service_plan_id = azurerm_service_plan.appservice.id

 https_only = "true"

 site_config {

 always_on = "true"

 minimum_tls_version = "1.2"

 application_stack {

 docker_image_name = "httpd:latest"

 docker_registry_url = "https://index.docker.io/"

 }

 ip_restriction { # Use only if needed

 ip_address = "10.0.0.0/24"

 action = "Allow"

 }

 }

 app_settings = {

 "DOCKER_ENABLE_CI" = "true"

 }

 }

 Private Endpoints

 Private endpoints for web apps provide the ultimate security feature for securing web apps in Azure. These endpoints only allow access to web apps from private networks and block access to them by general users on the Internet.

 A private network can be either an Azure Virtual Network (Vnet) or an on-premises network.

 Private endpoints allow access to web apps from on-premises networks only or from Azure private networks.

 To configure a private endpoint, we must create a Vnet and place the web app inside the network within the internal network interface controller (NIC).

 In brief, Azure private endpoints use a private network interface that is available on a virtual network. When a private endpoint is being created, a private IP address is assigned to the web app instead of a public IP address.

 We can also use access restrictions to white list or blacklist specific IP ranges or IP addresses.

 To access a private endpoint from a Vnet, Azure uses a private domain name system (DNS) zone to resolve the private IP address.

 Configuring Terraform for a Private Endpoint

 The following Terraform configuration will create Web App for Containers using the same web app configuration we used earlier in this chapter, but here we’ll instead configure the web app to use a private endpoint.

 To do this configuration, we’ll need the following resources:	
 Azure Virtual Network

	
 Azure Subnet

	
 Virtual network connectivity

	
 A Private DNS zone

	
 a Private Endpoint

 The configuration follows:

 resource "azurerm_resource_group" "rg" {

 name = "ApressAzureTerraformCH02.2"

 location = "Australia Southeast"

 }

 resource "random_integer" "random" {

 min = 1

 max = 20

 }

 resource "azurerm_virtual_network" "azvnet" {

 name = "Vnet-WebAPP"

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

 address_space = ["10.0.0.0/16"]

 }

 resource "azurerm_subnet" "webappssubnet" {

 name = "webappssubnet"

 resource_group_name = azurerm_resource_group.rg.name

 virtual_network_name = azurerm_virtual_network.azvnet.name

 address_prefixes = ["10.0.1.0/24"]

 delegation {

 name = "delegation"

 service_delegation {

 name = "Microsoft.Web/serverFarms"

 }

 }

 }

 resource "azurerm_subnet" "privatesubnet" {

 name = "privatesubnet"

 resource_group_name = azurerm_resource_group.rg.name

 virtual_network_name = azurerm_virtual_network.azvnet.name

 address_prefixes = ["10.0.2.0/24"]

 private_endpoint_network_policies_enabled = true

 }

 resource "azurerm_service_plan" "appservice" {

 name = "Linux"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 os_type = "Linux"

 sku_name = "P1v2"

 }

 resource "azurerm_linux_web_app" "webapp" {

 name = "ApressTFFront${random_integer.random.result}"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 service_plan_id = azurerm_service_plan.appservice.id

 https_only = "true"

 site_config {

 always_on = "true"

 minimum_tls_version = "1.2"

 application_stack {

 docker_image_name = "nginx:latest"

 docker_registry_url = "https://index.docker.io/"

 }

 }

 app_settings = {

 "DOCKER_ENABLE_CI" = "true"

 vnet_route_all_enabled = "true"

 }

 }

 resource "azurerm_app_service_virtual_network_swift_connection" "vnetintegrationconnection" {

 app_service_id = azurerm_linux_web_app.webapp.id

 subnet_id = azurerm_subnet.webappssubnet.id

 }

 resource "azurerm_private_dns_zone" "dnsprivatezone" {

 name = "privatelink.azurewebsites.net"

 resource_group_name = azurerm_resource_group.rg.name

 }

 resource "azurerm_private_dns_zone_virtual_network_link" "dnszonelink" {

 name = "dnszonelink"

 resource_group_name = azurerm_resource_group.rg.name

 private_dns_zone_name = azurerm_private_dns_zone.dnsprivatezone.name

 virtual_network_id = azurerm_virtual_network.azvnet.id

 }

 resource "azurerm_private_endpoint" "privateendpoint" {

 name = "backwebappprivateendpoint"

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

 subnet_id = azurerm_subnet.privatesubnet.id

 private_dns_zone_group {

 name = "privatednszonegroup"

 private_dns_zone_ids = [azurerm_private_dns_zone.dnsprivatezone.id]

 }

 private_service_connection {

 name = "privateendpointconnection"

 private_connection_resource_id = azurerm_linux_web_app.webapp.id

 subresource_names = ["sites"]

 is_manual_connection = false

 }

 }

 Disabling Public Access to the Web App

 By default, once the web app is configured, public access to it is enabled. To disable public access, we need to use the Azure portal.

 Note

 Disabling Azure Web App public access is not possible with Terraform.

 To disable public access, open your newly created web app and click “Networking,” as shown in Figure 2-5. Then, click “Access restriction” and uncheck “Allow public access,” as shown in Figure 2-6.
 [image:]
 A screenshot showcases the Networking section of Apress T F Front 7 Web App, providing options for managing inbound traffic, custom domains, access restrictions, and private endpoints.

Figure 2-5
 Setting up access restriction

 [image:]
 A screenshot depicts an option that includes save, refresh, and App access settings. Choose between Allow and Deny public network access, affecting both sites.

Figure 2-6
 Disabling public access

 We can also use the Azure CLI to disable public access with the following CLI command:

 az resource update --resource-group ApressAzureTerraformCH02.2 --name ApressTFFront7 --resource-type "Microsoft.Web/sites" --set properties.publicNetworkAccess=Disabled

 If someone on the Internet tries to open the web app after you’ve disabled public access, they’ll receive the error message shown in Figure 2-7.
 [image:]
 A screenshot displays an Error 403 Forbidden message, indicating that access to the web app has been blocked.

Figure 2-7
 Error message users will receive after public access has been disabled

 Summary

 In this chapter, we covered the configuration and deployment of Azure Web App for Containers using Terraform. During the process, we learned about the following:	
 the Terraform state file

	
 the global Git Ignore file

	
 backup web apps

	
 variable interpolation

	
 private endpoints

 With these features, users should understand all the moving parts of a Terraform deployment.

 As always, when deploying Terraform, it’s important to take extra time to review the terraform plan command and ensure you understand the impact of the planned changes on the environment.

 To control Azure resource costs, make sure you use the terraform destroy to delete the resources after you’re done with the trial setup.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. IfrahGetting Started with Containers in Azurehttps://doi.org/10.1007/978-1-4842-9972-2_3

3. Azure Container Registry

Shimon Ifrah1
(1)Melbourne, VIC, Australia

 Introduction

 In this chapter, we’re going to take a deep dive into Azure Container Registry (ACR) using Terraform. ACR is a private container registry service that enables us to store, manage, and secure container images in Azure.

 The ACR service is an essential part of any modern application development life cycle and has advanced features that streamline and improve the development workflow.

 ACR is also fully integrated with other Azure services like Azure Kubernetes Service (AKS), which we will also cover later in this book; Azure App Services; and Azure Function.

 Key Features of Azure Container Images

 Some of the most essential features of Azure Container Images are:	
 Security and privacy: ACR offers secure infrastructure to store and manage container images with services like access control and role-based access control (RBAC).

	
 Replication and optimization: Besides security, ACR allows users to replicate container images across multiple Azure regions and data centers, which results in quicker deployment times and reduced costs of data transfer.

	
 Seamless integration: ACR seamlessly integrates with other Azure services like AKS and Azure Web Apps.

	
 Role-based access control: ACR uses the Azure Active Directory (AD) for RBAC and allows users to grant permissions easily to other users and groups in Azure without creating duplicate identities.

	
 Automation: ACR can be integrated with Azure DevOps pipelines and can automatically build and push images to ACR.

	
 Private link: ACR supports Azure Private Link, which allows users to make the registry available from internal networks connected to Azure and block any access to it from public networks.

	
 Vulnerability scanning: With ACR vulnerability scanning, users can scan images and detect security risks and vulnerabilities inside of the images.

 Setting Up the Azure Container Registry

 To get started with ACR, we’ll dive straight in and do the following:	
 Create an ACR using a Terraform configuration

	
 Pull a Docker image using the Azure CLI

	
 Build the image using Azure CLI

	
 Push the image to ACR

	
 Run the image directly from ACR

 The main takeaway from the list of things we’re going to do is that we’re not going to use Docker to build and push our image using a Dockerfile. This is a capability of Azure CLI and can be done using ACR Tasks.

 ACR Tasks is a suite of features in ACR that allows us to build container images for any platform. It also allows us to automate the build process using triggers like source code updates.

 The advantage of ACR Tasks is that it eliminates the need for a local Docker engine installation and licensing for large businesses.

 For example, the Docker build command in ACR Tasks is az acr build, which builds and pushes the image to an ACR repository.

 Terraform Configuration

 The following Terraform configuration can be used to create an ACR:

 resource "azurerm_resource_group" "rg" {

 name = "ApressAzureTerraformCH02"

 location = "australiasoutheast"

 }

 resource "azurerm_container_registry" "acr" {

 name = "apresstfacr"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 sku = "Basic"

 admin_enabled = true

 tags = {

 environment = "dev"

 }

 }

 In the repository under Chapter 3, you’ll find the following files:	
 main.tf: This file contains the configuration for ACR.

	
 provider.tf: This file features provider configuration details.

	
 output.tf: Output the ACR repository details.

 Outputting Sensitive Information

 Before we proceed, let’s take a moment to learn about outputting sensitive information with Terraform. Since we’re creating a private ACR that requires credentials to log in, we need to output the login details.

 To do so, we’ll use the following output file:

 output "acr_url" {

 value = azurerm_container_registry.acr.login_server

 }

 output "admin_username" {

 value = azurerm_container_registry.acr.admin_username

 sensitive = true

 }

 output "admin_password" {

 value = azurerm_container_registry.acr.admin_password

 sensitive = true

 }

 The ACR details that we’re outputting are:	
 ACR URL: the public-facing URL that should be referenced when pushing an image to ACR.

	
 Admin username: the username that should be used to log in to ACR.

	
 Admin password: the password that will be used to log in in using the admin account.

 Deploying the Azure Container Registry

 Let’s now deploy our ACR. To do so, we’ll issue the following commands using our Terraform configuration file:	
 Terraform init: initiates the configuration.

	
 Terraform plan: plans the deployment.

	
 Terraform apply: deploys the ACR registry.

 The output of the plan command should look like this:

 Terraform used the selected providers to generate the following execution plan. Resource actions are indicated with the following symbols:

 + create

 Terraform will perform the following actions:

 # azurerm_container_registry.acr will be created

 + resource "azurerm_container_registry" "acr" {

 + admin_enabled = true

 + admin_password = (sensitive value)

 + admin_username = (known after apply)

 + encryption = (known after apply)

 + export_policy_enabled = true

 + id = (known after apply)

 + location = "australiasoutheast"

 + login_server = (known after apply)

 + name = "apresstfacr"

 + network_rule_bypass_option = "AzureServices"

 + network_rule_set = (known after apply)

 + public_network_access_enabled = true

 + resource_group_name = "ApressAzureTerraformCH03"

 + retention_policy = (known after apply)

 + sku = "Basic"

 + tags = {

 + "environment" = "dev"

 }

 + trust_policy = (known after apply)

 + zone_redundancy_enabled = false

 }

 # azurerm_resource_group.rg will be created

 + resource "azurerm_resource_group" "rg" {

 + id = (known after apply)

 + location = "australiasoutheast"

 + name = "ApressAzureTerraformCH03"

 }

 Plan: 2 to add, 0 to change, 0 to destroy.

 Changes to Outputs:

 + acr_url = (known after apply)

 + admin_password = (sensitive value)

 + admin_username = (sensitive value)

 If you look at the output, you’ll see that Terraform is going to create two resources, a resource group and an ACR.

 Adding Tags

 In case you didn’t notice in the ACR code, I’m also tagging the ACR resource with a tag that uses the following code:

 tags = {

 environment = "dev"

 }

 Noticing the Output

 Another important thing to notice in the deployment is the output. At the end of the deployment, you should see the following on the screen:

 Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

 Outputs:

 acr_url = "apresstfacr.azurecr.io"

 admin_password = <sensitive>

 admin_username = <sensitive>

 Make note of the acr_url value, as we’ll need it soon.

 To view the username and output, run the following command:

 terraform output -json

 The output from the command should be:

 {

 "acr_url": {

 "sensitive": false,

 "type": "string",

 "value": "apresstfacr.azurecr.io"

 },

 "admin_password": {

 "sensitive": true,

 "type": "string",

 "value": "PASSWORD SHOWS HERE"

 },

 "admin_username": {

 "sensitive": true,

 "type": "string",

 "value": "apresstfacr"

 }

 The terraform output -json command outputs the sensitive information we marked in the configuration to the screen in JSON format.

 Make sure to note the username and then proceed to the next section.

 Building, Pushing, and Running Container Images with ASR Tasks

 Now that we have a live ACR repository in Azure, it’s time to test it, build a container image, and push it to it.

 Using the details from the output, let’s do the following:	1.

 Create a Dockerfile: We’ll start by creating a local Dockerfile that will hold all the instructions of our image buildup.

 Creating the file is done in one step, and that’s to pull the hello-world Docker image by using the following code:

 echo "FROM mcr.microsoft.com/hello-world" > Dockerfile

	2.

 Build a Docker image using the Azure ACR Tasks CLI: Using the following Az CLI command, we’re going to build our image using the Dockerfile we created. Make sure you change the registry address to your own ACR URL.

 az acr build --image ch03/image01:v1 --registry apresstfacr.azurecr.io --file Dockerfile .

 The following command output shows all the steps ACR Tasks takes in order to push the image to ACR:

 The login server endpoint suffix '.azurecr.io' is automatically omitted.

 Packing source code into tar to upload...

 Uploading archived source code from '/tmp/build_archive_a50c78cc74ef40ebad7220c49518970e.tar.gz'...

 Sending context (43.665 MiB) to registry: apresstfacr...

 Queued a build with ID: cs1

 Waiting for an agent...

 Downloading source code...

 Finished downloading source code

 Using acb_vol_52a83d72-c559-4b69-86cd-7e11d920c69b as the home volume

 Setting up Docker configuration...

 Successfully set up Docker configuration

 Logging in to registry: apresstfacr.azurecr.io

 Successfully logged into apresstfacr.azurecr.io

 Executing step ID: build. Timeout(sec): 28800, Working directory: '', Network: ''

 Scanning for dependencies...

 Successfully scanned dependencies

 Launching container with name: build

 Sending build context to Docker daemon 203.3MB

 Step 1/1 : FROM mcr.microsoft.com/hello-world

 latest: Pulling from hello-world

 1b930d010525: Pulling fs layer

 1b930d010525: Verifying Checksum

 1b930d010525: Download complete

 1b930d010525: Pull complete

 Digest: sha256:92c7f9c92844bbbb5d0a101b22f7c2a7949e40f8ea90c8b3bc396879d95e899a

 Status: Downloaded newer image for mcr.microsoft.com/hello-world:latest

 ---> fce289e99eb9

 Successfully built fce289e99eb9

 Successfully tagged apresstfacr.azurecr.io/ch03/image01:v1

 Successfully executed container: build

 Executing step ID: push. Timeout(sec): 3600, Working directory: '', Network: ''

 Pushing image: apresstfacr.azurecr.io/ch03/image01:v1, attempt 1

 The push refers to repository [apresstfacr.azurecr.io/ch03/image01]

 af0b15c8625b: Preparing

 af0b15c8625b: Pushed

 v1: digest: sha256:92c7f9c92844bbbb5d0a101b22f7c2a7949e40f8ea90c8b3bc396879d95e899a size: 524

 Successfully pushed image: apresstfacr.azurecr.io/ch03/image01:v1

 Step ID: build marked as successful (elapsed time in seconds: 2.956972)

 Populating digests for step ID: build...

 Successfully populated digests for step ID: build

 Step ID: push marked as successful (elapsed time in seconds: 1.788662)

 The following dependencies were found:

 - image:

 registry: apresstfacr.azurecr.io

 repository: ch03/image01

 tag: v1

 digest: sha256:92c7f9c92844bbbb5d0a101b22f7c2a7949e40f8ea90c8b3bc396879d95e899a

 runtime-dependency:

 registry: mcr.microsoft.com

 repository: hello-world

 tag: latest

 digest: sha256:92c7f9c92844bbbb5d0a101b22f7c2a7949e40f8ea90c8b3bc396879d95e899a

 git: {}

 Run ID: cs1 was successful after 10s

	3.

 Run the following command to check if the image was successfully pushed to the repository (optional):

 az acr repository list --name apresstfacr

 In my case, the output shows the following single image; if multiple images are stored they will all be listed:

 [

 "ch03/image01"

]

	4.

 Run the image: The final step in this process is to check if the image can run once it has been uploaded to ACR. Once again, we’re going to use ACR Tasks using the following command:

 az acr run --registry apresstfacr.azurecr.io --cmd 'apresstfacr.azurecr.io/ch03/image01:v1' /dev/null

 The output of the command follows:

 Alias support enabled for version >= 1.1.0, please see https://aka.ms/acr/tasks/task-aliases for more information.

 Creating Docker network: acb_default_network, driver: 'bridge'

 Successfully set up Docker network: acb_default_network

 Setting up Docker configuration...

 Successfully set up Docker configuration

 Logging in to registry: apresstfacr.azurecr.io

 Successfully logged into apresstfacr.azurecr.io

 Executing step ID: acb_step_0. Timeout(sec): 600, Working directory: '', Network: 'acb_default_network'

 Launching container with name: acb_step_0

 Unable to find image 'apresstfacr.azurecr.io/ch03/image01:v1' locally

 v1: Pulling from ch03/image01

 1b930d010525: Pulling fs layer

 1b930d010525: Verifying Checksum

 1b930d010525: Download complete

 1b930d010525: Pull complete

 Digest: sha256:92c7f9c92844bbbb5d0a101b22f7c2a7949e40f8ea90c8b3bc396879d95e899a

 Status: Downloaded newer image for apresstfacr.azurecr.io/ch03/image01:v1

 Hello from Docker!

 This message shows that your installation appears to be working correctly.

 To generate this message, Docker took the following steps:

 1. The Docker client contacted the Docker daemon.

 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.

 (amd64)

 3. The Docker daemon created a new container from that image which runs the executable that produces the output you are currently reading.

 4. The Docker daemon streamed that output to the Docker client, which sent it to your terminal.

 To try something more ambitious, you can run an Ubuntu container with:

 $ docker run -it ubuntu bash

 Share images, automate workflows, and more with a free Docker ID:

 https://hub.docker.com/

 For more examples and ideas, visit:

 https://docs.docker.com/get-started/

 Successfully executed container: acb_step_0

 Step ID: acb_step_0 marked as successful (elapsed time in seconds: 11.035785)

 Run ID: cs2 was successful after 14s

 Pulling an Image from ACR

 Now that we have a container image hosted in ACR, it’s time to download it using the docker pull command. To pull an image from ACR, we will need to use the Docker CLI utility and the docker pull command.

 As ACR tasks are only capable of building and pushing, we must use Docker CLI.	1.

 To get started, note your ACR URL, username, and passwords extracted from the output, and run the following command to log in to ACR:

 docker login apresstfacr.azurecr.io

	2.

 Provide the login details and continue.

	3.

 After successfully authenticating to ACR, pull the image using the following command:

 docker pull apresstfacr.azurecr.io/hello-world

 ACR Pricing Tiers

 When designing an ACR infrastructure, it’s important that you understand the capabilities and pricing tiers that come with ACR.

 As listed in the following table, ACR offers three pricing tiers. My recommendation is that you start with the basic tier and upgrade as needed.	 	
 Basic

 	
 Standard

 	
 Premium

	
 Daily cost

 	
 $0.167

 	
 $0.667

 	
 $1.667

	
 Storage limit

 	
 10 GB

 	
 100 GB

 	
 500 GB

	
 Web hooks

 	
 2

 	
 10

 	
 500

	
 Replication

 	
 N/A

 	
 N/A

 	
 Available

 In our ACR configuration, we set the pricing tier in the following SKU section:

 name = "apresstfacr"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 sku = "Basic"

 admin_enabled = true

 Managing the Azure Container Registry

 In this section, we’re going learn about ACR management and how we can use Azure CLI to manage an Azure container registry.

 As we learned in the previous section, Azure CLI allows us to build and push images to an ACR registry, but instead of using the Azure portal we can also use the CLI for management purposes.

 ACR Tasks

 The following table lists several ACR tasks that are part of the Azure CLI command-line utility and describes what they do.	
 Command

 	
 Details

	
 az acr task logs --registry NAME -o table

 	
 Displays ACR task logs.

	
 az acr task create

 	
 Creates an ACR task.

	
 az acr task cancel-run

 	
 Cancels specific ACR task runs.

	
 az acr task show

 	
 Shows specific ACR task.

	
 az acr task run

 	
 Manually starts an ACR task.

	
 az acr task update

 	
 Updates an ACR task

	
 az acr task delete

 	
 Deletes a task from ACR.

 If, for example, we wanted to view all the ACR tasks that have finished running we could use the following command:

 az acr task list-runs --registry apresstfacr.azurecr.io --resource-group ApressAzureTerraformCH03 -o table

 The login server endpoint suffix '.azurecr.io' is automatically omitted.

 RUN ID TASK PLATFORM STATUS TRIGGER STARTED DURATION

 ------- ----- --------- -------- -------- --------------- ----------

 cs2 linux Succeeded Manual 08-09T04:30:56Z 00:00:14

 cs1 linux Succeeded Manual 08-09T04:19:05Z 00:00:10

 Running Azure CLI Commands with Terraform

 In some scenarios, such as when Terraform can’t manage the resources or is missing capabilities, you might need to run Azure CLI or Azure PowerShell commands after deployment in order to complete your configuration.

 Terraform Null Resource

 Because of the reasons just mentioned, Terraform has created the null resource that allows us to define actions like:	
 running commands

	
 running scripts

	
 custom logic

 The null_resource doesn’t create any resource or infrastructure and act as a placeholder for us to use and complement deployment as a last resort.

 A basic example of the null_resource is:

 resource "null_resource" "example" {

 triggers = {

 timestamp = timestamp()

 }

 provisioner "local-exec" {

 command = "echo Resource created at ${timestamp()}"

 }

 }

 This code can be used with any Terraform configuration file to run scripts or commands.

 To use the null_resource with our configuration, for example, we can add the following code and run the following Azure CLI Tasks command:

 az acr task list-runs --registry apresstfacr.azurecr.io --resource-group ApressAzureTerraformCH03 -o table

 The Terraform configuration is:

 resource "null_resource" "run-commands" {

 provisioner "local-exec" {

 command = <<EOT

 az acr task list-runs --registry ${azurerm_container_registry.acr.name} --resource-group ${azurerm_resource_group.rg.name} -o table

 EOT

 }

 }

 In the basic example, we’re using the provisioners model with local-exec options that run the code on the system Terraform is operating; in our case, that’s our local machine.

 We can also use Terraform variables in the code without hard-coding the ACR registry name and the Azure resource group.

 To use a variable, I’m choosing the ${} syntax and referencing the details needed by the Azure CLI command to run.

 The output from the null_resource and the command is:

 null_resource.run-commands: Creating...

 null_resource.run-commands: Provisioning with 'local-exec'...

 null_resource.run-commands (local-exec): Executing: ["/bin/sh" "-c" " az acr task list-runs --registry apresstfacr --resource-group ApressAzureTerraformCH03 -o table\n"]

 null_resource.run-commands (local-exec): RUN ID TASK PLATFORM STATUS TRIGGER STARTED DURATION

 null_resource.run-commands (local-exec): -------- ------ ---------- --------- --------- -------------------- ----------

 null_resource.run-commands (local-exec): cs2 linux Succeeded Manual 00:00:14

 null_resource.run-commands (local-exec): cs1 linux Succeeded Manual 00:00:10

 null_resource.run-commands: Creation complete after 1s [id=3069836889725941298]

 The full Terraform configuration is:

 resource "azurerm_resource_group" "rg" {

 name = "ApressAzureTerraformCH03"

 location = "australiasoutheast"

 }

 resource "azurerm_container_registry" "acr" {

 name = "apresstfacr"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 sku = "Basic"

 admin_enabled = true

 tags = {

 environment = "dev"

 }

 }

 resource "null_resource" "run-commands" {

 provisioner "local-exec" {

 command = <<EOT

 az acr task list-runs --registry ${azurerm_container_registry.acr.name} --resource-group ${azurerm_resource_group.rg.name} -o table

 EOT

 }

 }

 Securing ACR

 In the last section of this chapter, we’re going to focus on the security features of ACR, which we can implement using Terraform with the help of other Azure services.

 In this section, we’re going to deploy an ACR with the following features:	
 Azure Key Vault with premium tier

	
 Key Vault access policy

	
 Azure AD service principal account

	
 Enabling of ACR encryption

	
 Enabling of soft delete with seven days’ retention

	
 Purge protection

	
 Enabling of disk encryption

 Terraform Data Sources

 We’re going to use Terraform data sources for the first time in order to read information from existing Azure data sources and resources.

 We’re also going to use the Terraform data sources to read and reference Azure data sources like TenantId, look up usernames, and more.

 Data sources use a resource called data source, which we declare like this:

 data "azuread_service_principal" "serviceprincipal" {

 display_name = "acr-admin"

 }

 In this example, we’re looking up the service principal ID of an identity object called acr-admin.

 In the configuration code in the next section, we’re going to use data sources multiple times to reference ID and configuration items of resources in Azure and in the actual Azure configuration.

 Securing Our ACR Configuration

 To get us started understanding our ACR configuration, I will go over some of the configuration blocks that make up this deployment and explain them.

 The following code block reads the Azure client information using a data source; the reason we call this data source is to grab the Azure tenantId.

 data "azurerm_client_config" "current" {}

 The next piece of code will create a resource group. There is no change here from the previous ACR deployment.

 resource "azurerm_resource_group" "rg" {

 name = "ApressAzureTerraformCH03"

 location = "australiasoutheast"

 }

 The code that follows will create an Azure Key Vault that we’ll use to store the encryption key that will encrypt all the data in the container registry, including images.

 Key Vault is configured with the following:

 Enable Disk encryption

 Enable Soft Delete

 Enable purge protection

 Use a Premium SKU

 resource "azurerm_key_vault" "azvault" {

 name = "apresstfkeyvault"

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

 enabled_for_disk_encryption = true

 tenant_id = data.azurerm_client_config.current.tenant_id

 soft_delete_retention_days = 7

 purge_protection_enabled = true

 sku_name = "premium"

 access_policy {

 tenant_id = data.azurerm_client_config.current.tenant_id

 object_id = data.azurerm_client_config.current.object_id

 key_permissions = [

 "List",

 "Get",

 "Create",

 "Delete",

 "Get",

 "Purge",

 "Recover",

 "Update",

 "GetRotationPolicy",

 "SetRotationPolicy",

 "WrapKey",

 "UnwrapKey"

]

 secret_permissions = [

 "Get",

 "List",

 "Set"

]

 storage_permissions = [

 "Get",

 "List",

 "Set"

]

 }

 }

 data "azuread_service_principal" "serviceprincipal" {

 display_name = "acr-admin"

 }

 Next, we’ll create a Key Vault access policy, which is an access policy control specifying what kind of permissions each Azure AD identity has access to in the Key Vault. In our case, we’ll give a service principal account access to the vault with the permissions listed under key_permissions.

 resource "azurerm_key_vault_access_policy" "example-principal" {

 key_vault_id = azurerm_key_vault.azvault.id

 tenant_id = data.azurerm_client_config.current.tenant_id

 object_id = data.azuread_service_principal.serviceprincipal.object_id

 key_permissions = [

 "List",

 "Get",

 "Create",

 "Delete",

 "Get",

 "Purge",

 "Recover",

 "Update",

 "GetRotationPolicy",

 "SetRotationPolicy",

 "WrapKey",

 "UnwrapKey"

]

 }

 The code that follows will read the name of the Azure Key Vault we created, as we’ll need to use it soon.

 data "azurerm_key_vault" "azvault" {

 name = azurerm_key_vault.azvault.name

 resource_group_name = azurerm_resource_group.rg.name

 }

 This next code block will create an Azure Key Vault key that we’ll use to encrypt the data. The code has key configuration items like type and size. We’re also defining what kind of operations are allowed with the key and rotation policy.

 resource "azurerm_key_vault_key" "acrkey" {

 name = "acraccess"

 key_vault_id = azurerm_key_vault.azvault.id

 key_type = "RSA"

 key_size = 2048

 key_opts = [

 "decrypt",

 "encrypt",

 "sign",

 "unwrapKey",

 "verify",

 "wrapKey",

 "unwrapKey"

]

 rotation_policy {

 automatic {

 time_before_expiry = "P30D"

 }

 expire_after = "P90D"

 notify_before_expiry = "P29D"

 }

 }

 The following data source code block will read the name of the next key we created and stores it, as we will also use this one soon.

 data "azurerm_key_vault_key" "readkey" {

 name = azurerm_key_vault_key.acrkey.name

 key_vault_id = data.azurerm_key_vault.azvault.id

 }

 And in the next piece of code, we’ll create a user-assigned identity that we’ll use to manage ACR encryption and interaction with Azure Key Vault. The username is acr-admin.

 resource "azurerm_user_assigned_identity" "identity" {

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 name = "acr-admin"

 }

 The final block of code that follows will create an ACR with these features:	
 managed identity enabled

	
 use of a premium SKU

	
 encryption enabled

	
 access granted to the managed identity account we created

 resource "azurerm_container_registry" "acr" {

 name = "apresstfacr"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 sku = "Premium"

 admin_enabled = true

 tags = {

 environment = "dev"

 }

 identity {

 type = "UserAssigned"

 identity_ids = [

 azurerm_user_assigned_identity.identity.id

]

 }

 encryption {

 enabled = true

 key_vault_key_id = data.azurerm_key_vault_key.readkey.id

 identity_client_id = azurerm_user_assigned_identity.identity.client_id

 }

 }

 The full code follows. It is important that you go over the code to understand how the configuration is done. An important thing to note is that Terraform decides how to deploy resources and determines the order of deployment without looking at the order the code is written in.

 data "azurerm_client_config" "current" {}

 resource "azurerm_resource_group" "rg" {

 name = "ApressAzureTerraformCH03"

 location = "australiasoutheast"

 }

 resource "azurerm_key_vault" "azvault" {

 name = "apresstfkeyvault"

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

 enabled_for_disk_encryption = true

 tenant_id = data.azurerm_client_config.current.tenant_id

 soft_delete_retention_days = 7

 purge_protection_enabled = true

 sku_name = "premium"

 access_policy {

 tenant_id = data.azurerm_client_config.current.tenant_id

 object_id = data.azurerm_client_config.current.object_id

 key_permissions = [

 "List",

 "Get",

 "Create",

 "Delete",

 "Get",

 "Purge",

 "Recover",

 "Update",

 "GetRotationPolicy",

 "SetRotationPolicy",

 "WrapKey",

 "UnwrapKey"

]

 secret_permissions = [

 "Get",

 "List",

 "Set"

]

 storage_permissions = [

 "Get",

 "List",

 "Set"

]

 }

 }

 data "azuread_service_principal" "serviceprincipal" {

 display_name = "acr-admin"

 }

 resource "azurerm_key_vault_access_policy" "example-principal" {

 key_vault_id = azurerm_key_vault.azvault.id

 tenant_id = data.azurerm_client_config.current.tenant_id

 object_id = data.azuread_service_principal.serviceprincipal.object_id

 key_permissions = [

 "List",

 "Get",

 "Create",

 "Delete",

 "Get",

 "Purge",

 "Recover",

 "Update",

 "GetRotationPolicy",

 "SetRotationPolicy",

 "WrapKey",

 "UnwrapKey"

]

 }

 data "azurerm_key_vault" "azvault" {

 name = azurerm_key_vault.azvault.name

 resource_group_name = azurerm_resource_group.rg.name

 }

 resource "azurerm_key_vault_key" "acrkey" {

 name = "acraccess"

 key_vault_id = azurerm_key_vault.azvault.id

 key_type = "RSA"

 key_size = 2048

 key_opts = [

 "decrypt",

 "encrypt",

 "sign",

 "unwrapKey",

 "verify",

 "wrapKey",

 "unwrapKey"

]

 rotation_policy {

 automatic {

 time_before_expiry = "P30D"

 }

 expire_after = "P90D"

 notify_before_expiry = "P29D"

 }

 }

 data "azurerm_key_vault_key" "readkey" {

 name = azurerm_key_vault_key.acrkey.name

 key_vault_id = data.azurerm_key_vault.azvault.id

 }

 resource "azurerm_user_assigned_identity" "identity" {

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 name = "acr-admin"

 }

 resource "azurerm_container_registry" "acr" {

 name = "apresstfacr"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 sku = "Premium"

 admin_enabled = true

 tags = {

 environment = "dev"

 }

 identity {

 type = "UserAssigned"

 identity_ids = [

 azurerm_user_assigned_identity.identity.id

]

 }

 encryption {

 enabled = true

 key_vault_key_id = data.azurerm_key_vault_key.readkey.id

 identity_client_id = azurerm_user_assigned_identity.identity.client_id

 }

 }

 Now, if you open the Azure portal, go to the newly deployed ACR, and click “Encryption,” you’ll see that encryption has been enabled using the identity we set in the code, as shown in Figure 3-1.
 [image:]
 A screenshot of encryption in the Azure container registry. Encryption is selected from the settings on the left. It displays the settings for identity, key U R I, version, and automated key rotation.

Figure 3-1
 Checking that the encryption is enabled

 Another thing that can be configured is the removal of public access to our ACR, so that it is only available to internal Azure networks, as shown in Figure 3-2.
 [image:]
 A screenshot depicts the removal of public access. All network is selected from a public network access. Login server, geo-replications, and enabling dedicated data endpoints are listed under data endpoints.

Figure 3-2
 Removing public access to ACR

 If you click the “Private Access” tab shown in Figure 3-2, you’ll see that we can also configure ACR to have private access. After enabling private access to an ACR endpoint, ACR will accept traffic from private virtual networks only.

 ACR Georeplication

 Azure ACR allows us to optimize the performance of our container registry by enabling georeplication, so that it serves multiple regions using a single ACR registry.

 The main benefits of using ACR georeplication are:	
 an improvement of the performance and reliability of image deployments

	
 a reduction of the cost of data transfer across Azure regions

	
 being able to use a single ACR registry

	
 the ACR registry’s resilience, essential in case of an outage in an Azure region

 If needed, we can enable georeplication with Terraform by adding the following code block to the Key Vault code block:

 georeplications {

 location = "Australia Central"

 zone_redundancy_enabled = false

 tags = {}

 }

 The entire code ACR code block should look like this:

 resource "azurerm_container_registry" "acr" {

 name = "apresstfacr"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 sku = "Premium"

 admin_enabled = true

 tags = {

 environment = "dev"

 }

 identity {

 type = "UserAssigned"

 identity_ids = [

 azurerm_user_assigned_identity.identity.id

]

 }

 encryption {

 enabled = true

 key_vault_key_id = data.azurerm_key_vault_key.readkey.id

 identity_client_id = azurerm_user_assigned_identity.identity.client_id

 }

 georeplications {

 location = "Australia Central"

 zone_redundancy_enabled = false

 tags = {}

 }

 }

 Once the replication is enabled, you can check the status from the ACR page in the Azure portal under “Georeplication,” as shown in Figure 3-3. The two locations that form the Georeplications are shown under the Name header.
 [image:]
 A screenshot of the world map with a table. The world map has plots in various countries. S is typed on the search bar. It lists a table with columns headers name, location, provisioning state, and status.

Figure 3-3
 Confirming that georeplication is enabled

 Using ACR with Azure Web App for Containers

 Before we finish this chapter, I want to show you how we can use an Azure Container Registry in conjunction with Web App for Containers to pull images from a private registry. When we deployed Web App for Containers in Chapter 2, we used the Docker hub public registry, and we didn’t need to provide any authentication details.

 Now that we have a secure and private ACR up and running, we can use it with Web App for Containers and pull images directly from it.

 In the next subsection, we’ll learn about something new: Terraform variables that allow us to store the details of our ACR without having to hard-code directly in the Terraform configuration files.

 Note

 The code is available in the book repository under “Chapter02 -> WebappACR.”

 Using a Terraform Variables File

 Terraform variables allow us to store variables like server names, usernames, and other details in a variable file and reference the variable during runtime.

 In our case, we’re going to use a variable file to store the details of our ACR. The configuration of the variable follows. The file is called variables.tf; you can name it anything you like, as Terraform doesn’t care about the name of the file used.

 variable "acr_image" {

 type = string

 default = "ch03/image01:v1"

 }

 variable "acruser" {

 type = string

 default = "apresstfacr"

 }

 variable "acr_server" {

 type = string

 default = "https://apresstfacr.azurecr.io"

 }

 variable "acr_password" {

 type = string

 }

 In the previous file, we have declared four variables, which we populated with default values. The last variable is the password for the ACR username, which we aren’t going to save to the variable file. We’ll pass the password as a parameter using the command line, as you will soon see.

 Configuring Azure Web App with ACR

 The configuration for Web App for Containers is the same as the one we used in Chapter 2. The only changes are in the Web App configuration section as follow:

 docker_image_name = var.acr_image

 docker_registry_url = var.acr_server

 docker_registry_username = var.acruser

 docker_registry_password = var.acr_password

 As you can see, we are referencing the variables and not the actual values of the registry. To reference a variable, we use:

 var.varname

 The entire configuration for Web Apps for Containers with ACR registry is.

 resource "azurerm_resource_group" "rg" {

 name = "ApressAzureTerraformCH02"

 location = "Australia Southeast"

 }

 resource "random_integer" "random" {

 min = 1

 max = 20

 }

 resource "azurerm_service_plan" "appservice" {

 name = "Linux"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 os_type = "Linux"

 sku_name = "S2"

 }

 resource "azurerm_linux_web_app" "webapp" {

 name = "ApressTFWebApp${random_integer.random.result}"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 service_plan_id = azurerm_service_plan.appservice.id

 https_only = "true"

 site_config {

 always_on = "true"

 minimum_tls_version = "1.1"

 application_stack {

 docker_image_name = var.acr_image

 docker_registry_url = var.acr_server

 docker_registry_username = var.acruser

 docker_registry_password = var.acr_password

 }

 ip_restriction { # Use only if needed

 ip_address = "10.0.0.0/24"

 action = "Allow"

 }

 }

 app_settings = {

 "DOCKER_ENABLE_CI" = "true"

 }

 }

 Passing Variables Using “Terraform Apply”

 As mentioned previously, we’re not going to type the password of the ACR username in the variables file. We’ll instead pass the password using the following command:

 -var=varbame=varvalue

 The following Terraform apply command will deploy the code and pass the password to Azure:

 terraform apply -var="acrpassword= ACR PASSWORD"

 Checking the Logs

 Once Terraform has finished deploying the code, we can check if the web app managed to access the image using the deployment logs by doing the following:	1.

 To access the deployment logs, open the Azure portal and click on the web App we just deployed.

	2.

 Click the “Deployment Center.”

	3.

 Click the “Logs” tab.

 The logs are shown in the following:

 INFO - Pulling image: apresstfacr.azurecr.io/ch03/image01:v1

 INFO - v1 Pulling from ch03/image01

 INFO - 1b930d010525 Pulling fs layer

 INFO - 1b930d010525 Downloading 977B / 977B

 INFO - 1b930d010525 Verifying Checksum

 INFO - 1b930d010525 Download complete

 INFO - 1b930d010525 Extracting 977B / 977B

 INFO - 1b930d010525 Extracting 977B / 977B

 INFO - 1b930d010525 Pull complete

 INFO - Digest: sha256:92c7f9c92844bbbb5d0a101b22f7c2a7949e40f8ea90c8b3bc396879d95e899a

 INFO - Status: Downloaded newer image for apresstfacr.azurecr.io/ch03/image01:v1

 Pull Image successful, Time taken: 0 Minutes and 1 Seconds

 Summary

 In this chapter, we learned how to create an ACR registry with basic configuration as well as with advanced security features. The last part of the chapter was focused on the integration of ACR with Azure Web App for Containers.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. IfrahGetting Started with Containers in Azurehttps://doi.org/10.1007/978-1-4842-9972-2_4

4. Azure Container Instances

Shimon Ifrah1
(1)Melbourne, VIC, Australia

 Introduction

 In this chapter, we’re going to explore and containers and learn how to deploy them to the Azure Container Instances (ACI) service using Terraform infrastructure provisioning. Azure ACI is a serverless container service that removes the underlying infrastructure and focuses on the deployment of containers. With ACI, developers and engineers can deploy applications without worrying about managing virtual machines and related services.

 Key Benefits of ACI

 The key benefits of working with ACI can be summarized as follows:	
 Speed and simplicity: ACI simplifies deployments by eliminating the need for complex infrastructure.

	
 Lack of a server: ACI is a native serverless service, and users are charged for consumed resources only.

	
 Security: ACI workloads are secure and isolated; all applications run in their own dedicated environment.

	
 Scalability: ACI has a built-in autoscaling capability, allowing applications to scale per predefined autoscaling rules.

	
 Integration: ACI is fully integrated with other Azure services like ACR, Azure Functions, and others.

 Use Cases

 ACI’s main use cases include the following scenarios:	
 the development and testing of applications

	
 the deployment and architecture of microservices

	
 scaling and cost control

	
 running lightweight scheduled tasks

 Deploying Azure Container Instances

 To get started with ACI, we’ll begin by deploying an instance using Terraform. In the following deployment, we’ll use a public image that will pull an image from the Docker Hub public registry and deploy it as a Linux-based container.

 We need to use the azurerm_container_group resource to deploy an ACI instance, which can deploy a single container or group of containers. In our case, we’ll deploy a single container that exposes port HTTP (80) to the Internet and make it accessible using a web browser.

 The following code configures the ACI instance, and as you can see, we can configure the container resource allocation and distribute CPU and memory.

 resource "azurerm_container_group" "acigroup" {

 name = "ApressTerraform"

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

 ip_address_type = "Public"

 dns_name_label = "apressterraformbook"

 os_type = "Linux"

 container {

 name = "web-server"

 image = "httpd:latest"

 cpu = "2"

 memory = "4"

 ports {

 port = 80

 protocol = "TCP"

 }

 }

 tags = {

 environment = "dev"

 }

 }

 The other components that are available for configuration are the image name, DNS name, IP address type, and name of the container.

 Full Code

 To deploy the container, we’ll use the following full configuration and deploy it to Azure. As a reminder, the steps to deploy the container are as follows:	1.

 Save the file as a .tf.

	2.

 Run Terraform init.

	3.

 Run Terraform plan.

	4.

 Run Terraform apply.

 resource "azurerm_resource_group" "rg" {

 name = "ApressAzureTerraformCH04"

 location = "westus"

 }

 resource "azurerm_container_group" "acigroup" {

 name = "ApressTerraform"

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

 ip_address_type = "Public"

 dns_name_label = "apressterraformbook"

 os_type = "Linux"

 container {

 name = "web-server"

 image = "httpd:latest"

 cpu = "2"

 memory = "4"

 ports {

 port = 80

 protocol = "TCP"

 }

 }

 tags = {

 environment = "dev"

 }

 }

 To check whether the deployment was successful, I created an output file called output.tf that outputs all the information about the ACI instance to the terminal. The output will display the following details:	
 the fully qualified domain name (FQDN)

	
 the resource ID

	
 the public IP

	
 the availability zone

	
 tags

 The output.tf configuration file looks like this:

 data "azurerm_container_group" "acigroup" {

 name = azurerm_container_group.acigroup.name

 resource_group_name = azurerm_resource_group.rg.name

 }

 output "fqdn" {

 value = azurerm_container_group.acigroup.fqdn

 }

 output "id" {

 value = azurerm_container_group.acigroup.id

 }

 output "ip_address" {

 value = data.azurerm_container_group.acigroup.ip_address

 }

 output "zones" {

 value = data.azurerm_container_group.acigroup.zones

 }

 output "tags" {

 value = data.azurerm_container_group.acigroup.tags

 }

 Please note that for us to output values that are not in the configuration, we have to call the data resource of the entire resource, which in our case is azurerm_container_group.

 Deploying Multiple ACI Containers

 In the previous example, we deployed a single Azure Container Instances container, but if you need to deploy multiple instances, you can simply add them to the code like this:

 container {

 name = "web-server"

 image = "httpd:latest"

 cpu = "2"

 memory = "4"

 ports {

 port = 80

 protocol = "TCP"

 }

 }

 container {

 name = "web-server02"

 image = "nginx:latest"

 cpu = "2"

 memory = "4"

 ports {

 port = 82

 protocol = "TCP"

 }

 }

 Using Azure Container Instances with Azure Container Registry

 The next step in our ACI configuration is to use a container image from a private repository, and as we learned in Chapter 03, we can use Azure Container Registry (ACR) to host container images in a private and secure environment rather than using a public registry.

 In the following configuration, we’re going to use a variable file to apply a Docker image stored in ACR, similar to the one we used in Chapter 03 to configure Web App for Containers. The following variables.tf file is the same as the one I used in Chapter 03, but, in this case, I will populate the file with the details of my ACR.

 What follows is the content of the variables.tf file. The only missing variable is the password variable, which I will pass to Azure using the command line. As a reminder, variables are passed like this:

 terraform apply -var="acrpassword= ACR PASSWORD"

 The “Variables.tf” File

 The following variables file (variables.tf) helps us define variables in our configuration and avoid hard-coding resource names and values.

 variable "acr_image" {

 type = string

 default = "ch03/image01:v1"

 }

 variable "acruser" {

 type = string

 default = "apresstfacr"

 }

 variable "acr_server" {

 type = string

 default = "https://apresstfacr.azurecr.io"

 }

 variable "acr_password" {

 type = string

 }

 To configure an ACI instance to use a Docker image, I have added the following code block to handle the ACR authentication:

 image_registry_credential {

 server = var.acr_server

 username = var.acruser

 password = var.acr_password

 }

 In the container details, I am using a variable to reference the container image address as shown in the following code block:

 container {

 name = "container"

 image = var.acr_image

 cpu = "2"

 memory = "2"

 ports {

 port = 80

 protocol = "TCP"

 }

 The “Main.tf” File

 You can review and run the complete code after you deploy an Azure Container Registry. The following code creates a Linux ACI with two CPUs and open port 80 for incoming traffic from the internet.

 resource "azurerm_resource_group" "rg" {

 name = "ApressAzureTerraformCH04"

 location = "westus"

 }

 resource "azurerm_container_group" "acigroup" {

 name = "ApressTerraform"

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

 ip_address_type = "Public"

 dns_name_label = "apressterraformbook"

 os_type = "Linux"

 image_registry_credential {

 server = var.acr_server

 username = var.acruser

 password = var.acr_password

 }

 container {

 name = "container"

 image = var.acr_image

 cpu = "2"

 memory = "2"

 ports {

 port = 80

 protocol = "TCP"

 }

 }

 tags = {

 environment = "dev"

 }

 }

 Applying the Code

 To run the code, use the Terraform apply command and pass the ACR password variable via a command line like this one:

 terraform apply -var="acrpassword=ACR PASSWORD"

 Mounting a Data Volume to an ACI Container

 In this section, we’re going to deploy a new container instance and mount an Azure file share volume to it. By default, ACI containers don’t have any data volumes attached to them and are stateless, which means that once the container is restarted or stopped, the state is lost.

 To overcome this issue, data volumes are mounted in the form of Azure file shares in order to deploy ACI instances. Because the data is external and not part of the ACI instance, once the instance is stopped, the data remains unaffected by the state change.

 Azure file shares are only supported with Linux containers; therefore, in the following configuration, we will use Linux.

 To mount a data volume to our ACI instance, we’ll add three configuration blocks that will do the following:	
 create a storage account

	
 create a storage share

	
 mount a volume

 Let’s start by breaking the down the new code before deploying to Azure.

 Storage Account

 The following code block will create a standard-tier storage account and locally redundant storage (LRS) replication type. Just remember that the Azure storage account needs to be unique in the platform.

 resource "azurerm_storage_account" "storageact" {

 name = "apresstfch04storage"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 account_tier = "Standard"

 account_replication_type = "LRS"

 }

 You can name the storage account with any unique name and change the storage tier as needed. Also note that we’re using the same resource group and location, as there is no need to change them.

 Azure File Share

 In order for the container to access a data volume, we need to create one. By default, Azure storage accounts come without any shares, storage blobs, or other type of storage and just act as a logical unit for storage.

 The following code will create a file share with a 50-GB storage quote, which can be changed later on if needed either by using Terraform, Azure portal, Azure CLI, or Azure PowerShell.

 resource "azurerm_storage_share" "share" {

 name = "aci-apress-tf-share"

 storage_account_name = azurerm_storage_account.storageact.name

 quota = 50

 }

 Mounting Data Volume to the Container

 The last block of code will mount the data volume to our ACI container and set the following parameters:	
 the name

	
 the mount path inside the container

	
 the share name of Azure File Share

 volume {

 name = "logs"

 mount_path = "/apress/logs"

 read_only = false

 share_name = azurerm_storage_share.share.name

 storage_account_name = azurerm_storage_account.storageact.name

 storage_account_key = azurerm_storage_account.storageact.primary_access_key

 }

 After those three code blocks are added to the configuration, all that remains is to deploy the code with Terraform applied.

 The Complete Code

 The complete code is:

 data "azurerm_client_config" "current" {}

 resource "azurerm_resource_group" "rg" {

 name = "ApressAzureTerraformCH04"

 location = "westus"

 }

 resource "azurerm_storage_account" "storageact" {

 name = "apresstfch04storage"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 account_tier = "Standard"

 account_replication_type = "LRS"

 }

 resource "azurerm_storage_share" "share" {

 name = "aci-apress-tf-share"

 storage_account_name = azurerm_storage_account.storageact.name

 quota = 50

 }

 resource "azurerm_container_group" "acigroup" {

 name = "ApressTerraform"

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

 ip_address_type = "Public"

 dns_name_label = "apressterraformbook"

 os_type = "Linux"

 container {

 name = "web-server"

 image = "httpd:latest"

 cpu = "2"

 memory = "4"

 ports {

 port = 80

 protocol = "TCP"

 }

 volume {

 name = "logs"

 mount_path = "/apress/logs"

 read_only = false

 share_name = azurerm_storage_share.share.name

 storage_account_name = azurerm_storage_account.storageact.name

 storage_account_key = azurerm_storage_account.storageact.primary_access_key

 }

 }

 tags = {

 environment = "dev"

 }

 }

 Managing Azure Container Instances

 So far in the chapter, we have managed to do the following:	
 create an ACI Container

	
 connect the Azure Container Registry to an ACI container

	
 mount a data volume using Azure File Share

 With the previous configuration in place, we now need to introduce it to the Azure management and monitoring capabilities of container instances. To get started, we’ll begin by connecting to a running container terminal to check if the volume we mounted exists.

 Connecting to a Running ACI Container

 To check whether the volume was mounted and the logs of the container, we can use the Azure management console or the Azure CLI. To connect to a terminal session of a deployed ACI container, we will log in to the Azure portal and open the deployed ACI group, as follows:	1.

 Locate the “Settings” section.

	2.

 Click “Containers,” as shown in Figure 4-1.

 [image:]
 A screenshot of the deployed A C I portal. It lists a set of options such as overview, activity log, access control, tags, settings, monitoring, automation, and support plus troubleshooting. The containers under settings is selected.

Figure 4-1
 Locating the “Containers” link

 You’ll see the following information displayed in the “Containers” section of the page, as shown in Figure 4-2.	
 the number of containers running

	
 the image name and version

	
 the state

	
 start time

 [image:]
 A screenshot of the containers page. It displays one container with the headers name, image, state, previous state, start time, and restart count. Some headers are events, properties, logs, and connect. A pop-up window to choose start up command is displayed. Bin or bash is selected to connect.

Figure 4-2
 Containers page

 On the lower section of the screen, there are four tabs:	
 “Events”

	
 “Properties”

	
 “Logs”

	
 “Connect”

 Let’s click the “Connect” tab, then select “/bin/bash” as the startup command and click “Connect.”

 Once connected, you’ll be presented with a shell terminal where you can type any command that is available inside the installed shell. To check that the Apress directory was created, run the following command:

 cd /apress

 ls

 The terminal output will be:

 root@SandboxHost-638281002340986774:/usr/local/apache2# cd /apress/

 root@SandboxHost-638281002340986774:/apress# ls

 logs

 root@SandboxHost-638281002340986774:/apress#

 Using Azure CLI to Run Commands inside ACI

 If you prefer to use Azure CLI to enter commands inside a running ACI container, this is possible as well. You can skip the portal and use the following steps:	1.

 Connect to Azure using: az login.

	2.

 In a Linux container, run a command with:	a.

 the resource group name

	b.

 the container instances group name

	c.

 the command to run

 The following is an example of the Azure CLI command:

 az container exec –resource-group ApressAzureTerraformCH04 --name ApressTerraform --exec-command /bin/bash

 The output will be:

 az container exec --resource-group ApressAzureTerraformCH04 --name ApressTerraform --exec-command /bin/bash

 root@SandboxHost-638281002340986774:/usr/local/apache2# cd /apress/

 root@SandboxHost-638281002340986774:/apress# ls

 logs

 root@SandboxHost-638281002340986774:/apress#

 Viewing ACI Logs

 We can view ACI logs using the “Logs” tab on the Containers page, as shown in Figure 4-3.
 [image:]
 A screenshot of the A C I logs in containers page. It has one container with the headers name, image, state, previous state, start time, and restart count. The log tab is selected which displays a set of commands.

Figure 4-3
 Looking at ACI logs

 The logs are very detailed and will show any requests made to the container in real time.

 Using Azure CLI to View Logs

 If you prefer to use Azure CLI to view logs and automate some of the day-to-day tasks of checking the health of your container and logs, Azure CLI makes the process easy by offering the following command:

 az container logs

 In the case of our deployment, the command is:

 az container logs --resource-group ApressAzureTerraformCH04 --name ApressTerraform

 The output of the command will be:

 AH00558: httpd: Could not reliably determine the server's fully qualified domain name, using 127.0.0.1. Set the 'ServerName' directive globally to suppress this message

 AH00558: httpd: Could not reliably determine the server's fully qualified domain name, using 127.0.0.1. Set the 'ServerName' directive globally to suppress this message

 [Sun Aug 20 03:50:59.732696 2023] [mpm_event:notice] [pid 60:tid 140600843515776] AH00489: Apache/2.4.57 (Unix) configured -- resuming normal operations

 [Sun Aug 20 03:50:59.757204 2023] [core:notice] [pid 60:tid 140600843515776] AH00094: Command line: 'httpd -D FOREGROUND'

 10.92.0.6 - - [20/Aug/2023:04:03:14 +0000] "\x16\x03\x01" 400 226

 10.92.0.6 - - [20/Aug/2023:04:03:15 +0000] "\x16\x03\x01" 400 226

 10.92.0.6 - - [20/Aug/2023:04:03:15 +0000] "GET / HTTP/1.1" 200 45

 10.92.0.6 - - [20/Aug/2023:04:03:15 +0000] "GET /client/get_targets HTTP/1.1" 404 196

 10.92.0.6 - - [20/Aug/2023:04:03:16 +0000] "GET /upl.php HTTP/1.1" 404 196

 10.92.0.6 - - [20/Aug/2023:04:03:16 +0000] "\x16\x03\x01" 400 226

 10.92.0.6 - - [20/Aug/2023:04:03:16 +0000] "GET /geoip/ HTTP/1.1" 404 196

 10.92.0.6 - - [20/Aug/2023:04:03:17 +0000] "GET / HTTP/1.1" 200 45

 10.92.0.6 - - [20/Aug/2023:04:03:17 +0000] "GET /favicon.ico HTTP/1.1" 404 196

 10.92.0.6 - - [20/Aug/2023:04:03:17 +0000] "GET /1.php HTTP/1.1" 404 196

 10.92.0.6 - - [20/Aug/2023:04:03:17 +0000] "GET /bundle.js HTTP/1.1" 404 196

 10.92.0.4 - - [20/Aug/2023:04:03:18 +0000] "GET /files/ HTTP/1.1" 404 196

 10.92.0.4 - - [20/Aug/2023:04:03:18 +0000] "GET /systembc/password.php HTTP/1.1" 404 196

 10.92.0.6 - - [20/Aug/2023:04:27:08 +0000] "GET / HTTP/1.1" 200 45

 10.92.0.6 - - [20/Aug/2023:04:44:20 +0000] "GET / HTTP/1.0" 200 45

 10.92.0.6 - - [20/Aug/2023:04:48:37 +0000] "\x16\x03\x01" 400 226

 Viewing Diagnostic Information

 We can also view a container’s startup logs, which will help us troubleshoot deployment and configuration issues. We do that by reviewing the STDOUT (standard output) ad STDERR (standard error) streams of the console.

 The command to do that is:

 Az container attach

 To view the streams log of our container, we need to run the following command:

 az container attach --resource-group ApressAzureTerraformCH04 --name ApressTerraform

 This command will produce the output of the streams, which looks like:

 Container 'web-server' is in state 'Running'...

 Start streaming logs:

 AH00558: httpd: Could not reliably determine the server's fully qualified domain name, using 127.0.0.1. Set the 'ServerName' directive globally to suppress this message

 AH00558: httpd: Could not reliably determine the server's fully qualified domain name, using 127.0.0.1. Set the 'ServerName' directive globally to suppress this message

 [Sun Aug 20 03:50:59.732696 2023] [mpm_event:notice] [pid 60:tid 140600843515776] AH00489: Apache/2.4.57 (Unix) configured -- resuming normal operations

 [Sun Aug 20 03:50:59.757204 2023] [core:notice] [pid 60:tid 140600843515776] AH00094: Command line: 'httpd -D FOREGROUND'

 10.92.0.6 - - [20/Aug/2023:04:03:14 +0000] "\x16\x03\x01" 400 226

 10.92.0.6 - - [20/Aug/2023:04:03:15 +0000] "\x16\x03\x01" 400 226

 10.92.0.6 - - [20/Aug/2023:04:03:15 +0000] "GET / HTTP/1.1" 200 45

 10.92.0.6 - - [20/Aug/2023:04:03:15 +0000] "GET /client/get_targets HTTP/1.1" 404 196

 10.92.0.6 - - [20/Aug/2023:04:03:16 +0000] "GET /upl.php HTTP/1.1" 404 196

 10.92.0.6 - - [20/Aug/2023:04:03:16 +0000] "\x16\x03\x01" 400 226

 10.92.0.6 - - [20/Aug/2023:04:03:16 +0000] "GET /geoip/ HTTP/1.1" 404 196

 10.92.0.6 - - [20/Aug/2023:04:03:17 +0000] "GET / HTTP/1.1" 200 45

 10.92.0.6 - - [20/Aug/2023:04:03:17 +0000] "GET /favicon.ico HTTP/1.1" 404 196

 10.92.0.6 - - [20/Aug/2023:04:03:17 +0000] "GET /1.php HTTP/1.1" 404 196

 10.92.0.6 - - [20/Aug/2023:04:03:17 +0000] "GET /bundle.js HTTP/1.1" 404 196

 10.92.0.4 - - [20/Aug/2023:04:03:18 +0000] "GET /files/ HTTP/1.1" 404 196

 10.92.0.4 - - [20/Aug/2023:04:03:18 +0000] "GET /systembc/password.php HTTP/1.1" 404 196

 10.92.0.6 - - [20/Aug/2023:04:27:08 +0000] "GET / HTTP/1.1" 200 45

 10.92.0.6 - - [20/Aug/2023:04:44:20 +0000] "GET / HTTP/1.0" 200 45

 10.92.0.6 - - [20/Aug/2023:04:48:37 +0000] "\x16\x03\x01" 400 226

 Reviewing Diagnostic Events

 To tap into the diagnostic event stream of our ACI container, we can use the following command:

 az container show

 In our case, the command will look like this:

 az container show --resource-group ApressAzureTerraformCH04 --name ApressTerraform

 The output of the diagnostic command will show up in a JSON format like the following:

 {

 "confidentialComputeProperties": null,

 "containers": [

 {

 "command": [],

 "environmentVariables": [],

 "image": "httpd:latest",

 "instanceView": {

 "currentState": {

 "detailStatus": "",

 "exitCode": null,

 "finishTime": null,

 "startTime": "2023-08-20T03:50:59.437000+00:00",

 "state": "Running"

 },

 "events": [],

 "previousState": null,

 "restartCount": 0

 },

 "livenessProbe": null,

 "name": "web-server",

 "ports": [

 {

 "port": 80,

 "protocol": "TCP"

 }

],

 "readinessProbe": null,

 "resources": {

 "limits": null,

 "requests": {

 "cpu": 2.0,

 "gpu": null,

 "memoryInGb": 4.0

 }

 },

 "securityContext": null,

 "volumeMounts": [

 {

 "mountPath": "/apress/logs",

 "name": "logs",

 "readOnly": false

 }

]

 }

],

 "diagnostics": null,

 "dnsConfig": null,

 "encryptionProperties": null,

 "extensions": null,

 "id": "/subscriptions/SUBID/resourceGroups/ApressAzureTerraformCH04/providers/Microsoft.ContainerInstance/containerGroups/ApressTerraform",

 "identity": {

 "principalId": null,

 "tenantId": null,

 "type": "None",

 "userAssignedIdentities": null

 },

 "imageRegistryCredentials": null,

 "initContainers": [],

 "instanceView": {

 "events": [

 {

 "count": 1,

 "firstTimestamp": "2023-08-20T03:50:58.525000+00:00",

 "lastTimestamp": "2023-08-20T03:50:58.525000+00:00",

 "message": "Successfully mounted Azure File Volume.",

 "name": "SuccessfulMountAzureFileVolume",

 "type": "Normal"

 }

],

 "state": "Running"

 },

 "ipAddress": {

 "autoGeneratedDomainNameLabelScope": "Unsecure",

 "dnsNameLabel": "apressterraformbook",

 "fqdn": "apressterraformbook.westus.azurecontainer.io",

 "ip": "40.78.2.90",

 "ports": [

 {

 "port": 80,

 "protocol": "TCP"

 }

],

 "type": "Public"

 },

 "location": "westus",

 "name": "ApressTerraform",

 "osType": "Linux",

 "priority": null,

 "provisioningState": "Succeeded",

 "resourceGroup": "ApressAzureTerraformCH04",

 "restartPolicy": "Always",

 "sku": "Standard",

 "subnetIds": null,

 "tags": {

 "environment": "dev"

 },

 "type": "Microsoft.ContainerInstance/containerGroups",

 "volumes": [

 {

 "azureFile": {

 "readOnly": false,

 "shareName": "aci-apress-tf-share",

 "storageAccountKey": null,

 "storageAccountName": "apresstfch04storage"

 },

 "emptyDir": null,

 "gitRepo": null,

 "name": "logs",

 "secret": null

 }

],

 "zones": null

 }

 The diagnostic information is important when trying to troubleshoot an issue with the container.

 Enabling Advanced Log Collection

 In the previous section, we looked at how to view logs on a running ACI deployment per group or container. The issue with this approach is that it doesn’t scale well with multiple deployments or a large number of containers.

 Because of this reason, it is better to centralize the collection of logs into central log storage and analyze the logs.

 In the following configuration, we’re going to enable Azure Log Analytics in our ACI deployment and configure ACI to send container logs to a Log Analytics collection, where we can view and analyze them.

 Configuring Azure Log Analytics

 To configure Log Analytics in our ACI group, we’re going to add two configuration items to our last deployment without stopping the instances that are currently running. We’ll add one code block that will create a Log Analytics workspace and a second configuration block to our ACI group with the details of the newly created Log Analytics.

 The Log Analytics Resource Block

 The first addition to our Terraform configuration will add a workspace, as follows. We can name the resource and set the SKU and retention period.

 resource "azurerm_log_analytics_workspace" "log_analytics" {

 name = "apresstfch04storagelogs"

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

 sku = "PerGB2018"

 retention_in_days = 30

 }

 In the azurerm_container_group, we need to add a diagnostics code block to tell ACI to send all the logs to Log Analytics, where can review them and run reports against them.

 The code to do so is:

 diagnostics {

 log_analytics {

 workspace_id = azurerm_log_analytics_workspace.log_analytics.workspace_id

 workspace_key = azurerm_log_analytics_workspace.log_analytics.primary_shared_key

 }

 }

 When you’re ready, run the code to start the deployment.

 Completing the Configuration Code

 The complete Terraform configuration is:

 data "azurerm_client_config" "current" {}

 resource "azurerm_resource_group" "rg" {

 name = "ApressAzureTerraformCH04"

 location = "westus"

 }

 resource "azurerm_log_analytics_workspace" "log_analytics" {

 name = "apresstfch04storagelogs"

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

 sku = "PerGB2018"

 retention_in_days = 30

 }

 resource "azurerm_storage_account" "storageact" {

 name = "apresstfch04storage"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 account_tier = "Standard"

 account_replication_type = "LRS"

 }

 resource "azurerm_storage_share" "share" {

 name = "aci-apress-tf-share"

 storage_account_name = azurerm_storage_account.storageact.name

 quota = 50

 }

 resource "azurerm_container_group" "acigroup" {

 name = "ApressTerraform"

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

 ip_address_type = "Public"

 dns_name_label = "apressterraformbook"

 os_type = "Linux"

 diagnostics {

 log_analytics {

 workspace_id = azurerm_log_analytics_workspace.log_analytics.workspace_id

 workspace_key = azurerm_log_analytics_workspace.log_analytics.primary_shared_key

 }

 }

 container {

 name = "web-server"

 image = "httpd:latest"

 cpu = "2"

 memory = "4"

 ports {

 port = 80

 protocol = "TCP"

 }

 volume {

 name = "logs"

 mount_path = "/apress/logs"

 read_only = false

 share_name = azurerm_storage_share.share.name

 storage_account_name = azurerm_storage_account.storageact.name

 storage_account_key = azurerm_storage_account.storageact.primary_access_key

 }

 }

 tags = {

 environment = "dev"

 }

 }

 Viewing the Logs

 Once the deployment is complete, it’s time to check if logs are being shipped to Log Analytics. To do so, first open the ACI deployment and restart the Container group. You can use the Azure portal to restart the group by clicking “Restart” on the “Overview” page of the Container group, as shown in Figure 4-4.
 [image:]
 A screenshot of the Apress Terraform. Overview is selected from the menu list on the left. The headers restart is selected.

Figure 4-4
 Restarting ACI instances on the “Overview” page

 Once the restart is complete, you’ll be able to see Log Analytics in action. In the Azure portal, search for Log Analytics workspaces.

 The newly created workspace is shown in Figure 4-5.
 [image:]
 A screenshot of the record list in the log analytics workspace. The filters used are subscription equals all, resource group equals all, and location equals all. One record is displayed with headers name, resource group, and location.

Figure 4-5
 Log Analytics workspace

 On the workspace page, click “Logs,” as shown in Figure 4-6.
 [image:]
 A screenshot of the logs in the log analytics workspace. Log is selected from the menu list on the left. The query window displays a link of query packs.

Figure 4-6
 Selecting “Logs” on the workspace page

 In the Queries window, type the following query to view the last 200 logs in the containers running in ACI.

 ContainerInstanceLog_CL | limit 200

 The results are shown in Figure 4-7.
 [image:]
 A screenshot of a query and its results. The query is container instance log C L limit 200. The result displays a list with headers time generated, container group, container I D, container image, and container name.

Figure 4-7
 Viewing the last 200 log entries

 To view the last 200 events, run the following query:

 ContainerEvent_CL | limit 200

 If you’d like to learn more about the Log Analytics log query, you can visit the log language page, Kusto Query Language (KQL) Overview used by Azure: https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/.

 For ACI deployment, the main query source tables are:	
 ContainerInstanceLog_CL

	
 ContainerEvent_CL

 These tables contain information about logs and events generated by ACI containers. The log and event schemas are available for viewing on the Logs query page under “Custom Logs,” as shown in Figure 4-8.
 [image:]
 A screenshot of the container event C L list in custom logs. Some are computer, container group s, container I D, container name s, count s, location s, message, O S type s, and raw data.

Figure 4-8
 Log Schema

 Stopping, Starting, and Restarting ACI Containers with Azure CLI

 In the previous section, I asked you to restart your ACI deployment in order to generate events and logs in Log Analytics. We used the Azure portal to restart a running container.

 In many scenarios, using the portal is not optimal and might not scale well in the many use cases where automation is used.

 We can stop, start, and restart containers with Azure CLI by using the following Azure CLI commands.

 Stopping the Container Group

 To stop a running container, you can use this command: Az container stop.

 In our case, the command will look like this:

 az container stop --name ApressTerraform --resource-group ApressAzureTerraformCH04 --verbose –debug

 I’ve also added the verbose and debug switches to get more visibility into the stop process.

 Starting the Container Group

 To start a container, this is the command to use: az container start.

 In our case, the command will look like this:

 az container start --name ApressTerraform --resource-group ApressAzureTerraformCH04 --verbose –debug

 The output of the command will be:

 \ Running ..

 cli.azure.cli.core.sdk.policies: {"id":"/subscriptions/SUBID/resourceGroups/ApressAzureTerraformCH04/providers/Microsoft.ContainerInstance/containerGroups/ApressTerraform","status":"Succeeded","startTime":"2023-08-20T09:13:01.6699127Z","properties":{"events":[{"count":1,"firstTimestamp":"2023-08-20T08:21:33Z","lastTimestamp":"2023-08-20T08:21:33Z","name":"Pulling","message":"pulling image \"httpd@sha256:18427eed921af003c951b5c97f0bde8a6df40cc7cb09b9739b9e35041a3c3acd\"","type":"Normal"},{"count":1,"firstTimestamp":"2023-08-20T08:21:39Z","lastTimestamp":"2023-08-20T08:21:39Z","name":"Pulled","message":"Successfully pulled image \"httpd@sha256:18427eed921af003c951b5c97f0bde8a6df40cc7cb09b9739b9e35041a3c3acd\"","type":"Normal"},{"count":2,"firstTimestamp":"2023-08-20T08:21:54Z","lastTimestamp":"2023-08-20T08:32:24Z","name":"Started","message":"Started container","type":"Normal"},{"count":1,"firstTimestamp":"2023-08-20T08:32:23Z","lastTimestamp":"2023-08-20T08:32:23Z","name":"Killing","message":"Killing container with id 7281d7ef819dbd99d601de586032bfcedd0e8468b7bcdff1b0707e50067976f1.","type":"Normal"},{"count":1,"firstTimestamp":"2023-08-20T09:13:06Z","lastTimestamp":"2023-08-20T09:13:06Z","name":"Pulling","message":"pulling image \"httpd@sha256:18427eed921af003c951b5c97f0bde8a6df40cc7cb09b9739b9e35041a3c3acd\"","type":"Normal"},{"count":1,"firstTimestamp":"2023-08-20T09:13:13Z","lastTimestamp":"2023-08-20T09:13:13Z","name":"Pulled","message":"Successfully pulled image \"httpd@sha256:18427eed921af003c951b5c97f0bde8a6df40cc7cb09b9739b9e35041a3c3acd\"","type":"Normal"},{"count":1,"firstTimestamp":"2023-08-20T09:13:30Z","lastTimestamp":"2023-08-20T09:13:30Z","name":"Started","message":"Started container","type":"Normal"},{"count":1,"firstTimestamp":"2023-08-20T08:21:53.547Z","lastTimestamp":"2023-08-20T08:21:53.547Z","name":"SuccessfulMountAzureFileVolume","message":"Successfully mounted Azure File Volume.","type":"Normal"},{"count":1,"firstTimestamp":"2023-08-20T09:13:29.124Z","lastTimestamp":"2023-08-20T09:13:29.124Z","name":"SuccessfulMountAzureFileVolume","message":"Successfully mounted Azure File Volume.","type":"Normal"}]}}

 cli.knack.cli: Event: CommandInvoker.OnTransformResult [<function _resource_group_transform at 0x7f1c957f6cb0>, <function _x509_from_base64_to_hex_transform at 0x7f1c957f6d40>]

 cli.knack.cli: Event: CommandInvoker.OnFilterResult []

 cli.knack.cli: Event: Cli.SuccessfulExecute []

 cli.knack.cli: Event: Cli.PostExecute [<function AzCliLogging.deinit_cmd_metadata_logging at 0x7f1c957af010>]

 Restarting the Container Group

 To restart a running container group, the following command can be used:

 az container restart --no-wait.

 In our case, the full command will look like this:

 az container restart --name ApressTerraform --resource-group ApressAzureTerraformCH04 --verbose --debug --no-wait

 Liveness and Readiness Probes

 In the last section of this book, I will cover how to add liveness and readiness probes to an ACI container group to detect if the actual container has an issue and only accepts the request when the container is ready.

 Liveness Probes

 A liveness probe runs regular checks that diagnose the health of the container instance. It automatically triggers a restart if it detects that the container isn’t responding to the checks.

 Liveness probes are handy because they help us detect if the container needs a restart. We configure liveness probs by specifying a path, port, or command that ACI will run periodically.

 If the command is successful, the container is marked as healthy and no action is taken. If the check fails a few times, the container is marked as unhealthy and restarted automatically.

 Readiness Probe

 A readiness probe checks if the application is ready to accept incoming traffic after it completes a restart process. The checking mechanism is similar to that of the liveness probe and will result in stopping traffic from being directed into the container.

 To configure these two probes, let’s add the following configuration blocks and a single command to the container configuration block:

 commands = ["/bin/sh","-c","sleep 30","touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600"]

 readiness_probe {

 exec = ["cat","/tmp/healthy"]

 initial_delay_seconds = 2

 period_seconds = 60

 failure_threshold = 3

 success_threshold = 1

 timeout_seconds = 40

 }

 liveness_probe {

 exec = ["cat","/tmp/healthy"]

 initial_delay_seconds = 2

 period_seconds = 60

 failure_threshold = 3

 success_threshold = 1

 timeout_seconds = 40

 }

 Summary

 In this chapter, we learned about deploying Azure Container Instances and how to do the following:	
 integrate an ACI deployment with Azure Container Registry

	
 deploy multiple containers

	
 mount data volume to an ACI deployment

	
 view diagnostic information

	
 enable advanced log collection

	
 configure probes

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. IfrahGetting Started with Containers in Azurehttps://doi.org/10.1007/978-1-4842-9972-2_5

5. Azure Kubernetes Service

Shimon Ifrah1
(1)Melbourne, VIC, Australia

 Introduction

 In this chapter, we’ll take a deep dive into the Microsoft Azure Kubernetes Service (AKS) and learn how to deploy and manage containerized applications with the service. So far, we’ve covered the two main container services on Azure. Now, we’ll move to the third service, Kubernetes, which is considered an enterprise-ready solution.

 About Kubernetes

 Kubernetes is an orchestration and automation container management system developed by Google that was turned into an open-source platform in 2014. Kubernetes is so powerful that it is used by Google to run over one billion containers and power many of its cloud services.

 The scalability of Kubernetes is almost unlimited, which gives enterprises the ability to scale up or down during a short time. It is currently considered the standard tool for container management and automation in small and large organizations and has a market share of almost 80 percent and growing.

 There is no doubt that Kubernetes is the current go-to tool for orchestration and automation.

 Kubernetes Components

 In this section, I will go over each of the components that make up Kubernetes. Once we move on to working with AKS, we will use the knowledge of these components to understand the service better.

 Kubernetes is made up of the following three main components, each one consisting of three subcomponents.

 Kubernetes Master

 Kubernetes Master is the most important component in Kubernetes, and as the name implies, it is the master node, also known as the “control plane,” from which calculations and automation are controlled.

 The Kubernetes Master is made up of five components:	
 Kube-apiserver: This the API server that exposes all the APIs of Kubernetes to other components.

	
 Etcd: This is the key-value storage component that stores the cluster data.

	
 Kube-scheduler: The scheduler makes sure new pods are matched with a node.

	
 Kube controller-manager: The controller-manager is responsible for managing nodes, replicating between the nodes and the master, endpoints, and tokens.

	
 Cloud-controller manager: This is a new component that was released with version 1.6 of Kubernetes. It helps cloud providers control updates and releases of their Kubernetes deployments.

 Each controller is a separate logical component. However, they are managed as a single process on the master.

 Kubernetes Nodes

 In Kubernetes, the nodes are the actual servers that run the containers, also known as pods.

 The nodes are the computing units that perform the heavy lifting of deploying pods, volumes, and networking.

 The nodes have three components:	
 The kubelet: This agent service runs on each node and ensures that pods are running as planned.

	
 The kube proxy: This network component makes sure services are operated according to the network policies and rules set by the master component.

	
 The container runtime: This is the runtime container software that runs the containers, and in our case, this is where Docker is running.

 Kubernetes Add-Ons

 Add-ons are optional features that can be added to the Kubernetes cluster. The following add-ons are just a few of the many available:	
 DNS: This is a DNS service that serves DNS name resolution for Kubernetes; by default, all Kubernetes components are used.

	
 Web UI (dashboard): Web UI is a browser-based interface for Kubernetes management that allows users to perform administrative tasks using a web-based interface.

	
 Container resource monitor: This monitor logs metrics about running containers inside the cluster.

	
 Cluster-level logging: The logging records information about our Kubernetes cluster.

 Now that we have some background information about Kubernetes, let’s move to the next section, which will cover the Azure implementation of Kubernetes.

 Getting Started with AKS

 Before we get started with AKS and create our first cluster, it’s important that we understand the platform’s management domain. In the previous section, we learned about all the Kubernetes components and what each one does.

 In AKS, Microsoft Azure is responsible for managing the master components. The master components are beyond our reach, with users not being granted access to them. This fact takes [^away] the complexity of managing Kubernetes and leaves [^it up to us to only manage the nodes].

 Our control of AKS involves managing the Kubernetes nodes with minimal administrative tasks necessary, like scaling and updating them. In this section, we’ll go over the deployment process of AKS using Terraform and Azure CLI.

 Deploying the AKS Cluster

 To get started with AKS, let’s deploy a single-node cluster using the following Terraform configuration. At a minimum, an AKS cluster requires a single-node cluster running Linux. Windows nodes are also available, but they are outside of the scope of this book.

 resource "azurerm_resource_group" "rg" {

 name = "ApressAzureTerraformCH05"

 location = "australia southeast"

 }

 resource "azurerm_kubernetes_cluster" "akscluster" {

 name = "aks"

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

 dns_prefix = "aks"

 default_node_pool {

 name = "default"

 node_count = var.node_count

 vm_size = "Standard_D2_v2"

 }

 identity {

 type = "SystemAssigned"

 }

 tags = {

 Environment = "DEV"

 }

 }

 To deploy the cluster, we’ll use the code in this book’s repository and run the following Terraform commands:	
 Terraform init

	
 Terraform plan

	
 Terraform apply

 After running Terraform, you’ll need to apply the commands, review the output, and then make sure the cluster was deployed successfully. In the next section, we’ll learn how to connect to an AKS cluster using Azure CLI and deploy containerized applications to the cluster.

 Connecting to AKS Using the Azure Command-Line Interface

 Before we get started deploying a cluster, it might be a good idea to read an overview of the process on the Microsoft Ignite site: https://learn.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-deploy-cli.

 To connect to a running AKS cluster on Azure, we use the Kubernetes command-line client known as kubectl. To get the client installed, we’ll use the Azure CLI command az aks install-cli.

 Once the installation is complete, we can configure the CLI to connect to the cluster by first retrieving the credentials using the following command:

 az aks get-credentials --resource-group RGNAME –name CLUSTERNAME

 If you’re following the code of this book, the command will look like this:

 az aks get-credentials --resource-group ApressAzureTerraformCH05 --name AKS

 At this stage, we can go ahead and use the kubectl command to check the status of the nodes in our cluster. In our case, the following command will show one node:

 kubectl get nodes

 The output of the command should look like this:

 NAME STATUS ROLES AGE VERSION

 aks-default-13103899-vmss000000 Ready agent 11m v1.26.6

 Deploying an Application to the AKS Cluster

 Deploying applications to an AKS cluster requires us to use the kubectl command-line utility with a YAML configuration file that describes the deployment of the application.

 Using the code in the next section, we’ll deploy the nginx web server application using a public Docker image from the Docker Hub repository. To deploy an application to our AKS cluster, follow these steps:	
 Create a file called deployment.yaml.

	
 Use kubectl to deploy the application.

	
 Validate the deployment using kubectl.

 The “Deployment.yaml” File

 We can use the following YAML file to deploy the nginx web server application to our AKS cluster by saving the file in the same directory as the one where we run the Terraform deployment:

 apiVersion: apps/v1

 kind: Deployment

 metadata:

 name: web-server

 spec:

 replicas: 1

 selector:

 matchLabels:

 app: web-server

 template:

 metadata:

 labels:

 app: web-server

 spec:

 nodeSelector:

 "kubernetes.io/os": linux

 containers:

 - name: web-server

 image: nginx:latest

 resources:

 requests:

 cpu: 100m

 memory: 128Mi

 limits:

 cpu: 250m

 memory: 256Mi

 ports:

 - containerPort: 80

 name: redis

 apiVersion: v1

 kind: Service

 metadata:

 name: web-server

 spec:

 type: LoadBalancer

 ports:

 - port: 80

 selector:

 app: web-server

 If you look at the previous configuration file, you’ll see that I’m using a separator (---) to divide the deployment and the service. Kubernetes allows me to create a separate file for the service.

 We set the kind of deployment in the following configuration file. In this example, the kind is Deployment.

 apiVersion: apps/v1

 kind: Deployment

 metadata:

 name: web-server

 Now, run the following command to deploy the application:

 kubectl apply -f deployment.yaml

 The output of the command should look like this:

 deployment.apps/web-server created

 service/web-server created

 Checking the Deployment Status

 To check the deployment status of the application, we can use the following command:

 kubectl get service web-server –watch

 The command output should look like this:

 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

 web-server LoadBalancer 10.0.92.177 20.198.195.40 80:30821/TCP 10s

 We can copy the IP address in the EXTERNAL-IP field to check if the application is working. If you open a web browser and paste the external IP address in the address bar, you’ll come the home page of the nginx web server interface shown in Figure 5-1.
 [image:]
 A screenshot of the Nginx home page. It displays a message and links for online documentation and support and commercial support.

Figure 5-1
 Nginx home page

 Deleting the Deployment

 Once you’re happy with the results, you can delete the deployment from the AKS cluster by using the following command:

 kubectl delete -f deployment.yaml

 Scaling the Application

 In Kubernetes, the process of scaling applications is simple and straightforward because the containers are stateless and don’t store any data except configuration items.

 If you look at our deployment.yaml configuration file, you’ll notice the replicas item, which is set to 1 pod. We can easily change the replica value, create more pods, and scale applications to allow more capacity.

 We can scale applications by either changing the value of the replicas in the configuration file or running the following command:

 kubectl scale --replicas=3 deployment/web-server

 Enabling Autoscaling

 Another helpful feature of AKS is the ability to configure the deployment to autoscale automatically based on usage. For example, autoscaling can scale the pods in case the CPU level increases to 60 percent.

 Autoscaling can be configured using the kubectl command or a configuration file.

 When using kubectl, the following command will automatically scale the deployment if the CPU usage increases to 60 percent. The minimum number of pods in the deployment is set to 2 and the maximum to 5.

 kubectl autoscale deployment azure-vote-front --cpu-percent=60 --min=2--max=5

 Just keep in mind that in order for autoscaling to work, a CPU limit must be defined for the containers and pods in the deployment.

 To use the configuration file for autoscaling, we can use the following deployment.yaml file. We will deploy this file after we deploy the application and service.

 apiVersion: autoscaling/v1

 kind: HorizontalPodAutoscaler

 metadata:

 name: web-app-ha

 spec:

 maxReplicas: 5

 minReplicas: 2

 scaleTargetRef:

 apiVersion: apps/v1

 kind: Deployment

 name: web-server

 targetCPUUtilizationPercentage: 60

 To check if autoscaling is working and its status, we can use the following command:

 kubectl get hpa

 The output should look like this:

 NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

 web-app-ha Deployment/web-server 1%/60% 2 5 2 2m40s

 Connecting the AKS Cluster to the Azure Container Registry

 Now that we know how to deploy an AKS cluster to Microsoft Azure using Terraform, we can go on to the next step and learn how to integrate AKS with the Azure Container Registry, reviewed in Chapter 3.

 In the following configuration, we’ll deploy an AKS cluster and ACR registry togther and establish a connection between them using a system-assigned identity.

 Note

 The code for this deployment is available in the Chapter 5 repository.

 The following code will deploy both AKS and an ACR registry. The code is the same as that for the previous AKS deployment except for the following two new configuration blocks:	
 ACR configuration block: Deploys an ACR registry

 resource "azurerm_container_registry" "acr" {

 name = "apresstfacr"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 sku = "Premium"

 admin_enabled = true

 }

	
 Azure role assignment configuration block: Establishes an authentication mechanism with AKS

 resource "azurerm_role_assignment" "role" {

 principal_id = azurerm_kubernetes_cluster.akscluster.kubelet_identity[0].object_id

 role_definition_name = "AcrPull"

 scope = azurerm_container_registry.acr.id

 skip_service_principal_aad_check = true

 }

 The full code follows:

 resource "azurerm_resource_group" "rg" {

 name = "ApressAzureTerraformCH05"

 location = "southeastasia"

 }

 resource "azurerm_kubernetes_cluster" "akscluster" {

 name = "aks"

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

 dns_prefix = "aks"

 default_node_pool {

 name = "default"

 node_count = var.node_count

 vm_size = "Standard_D2_v2"

 }

 identity {

 type = "SystemAssigned"

 }

 tags = {

 Environment = "DEV"

 }

 }

 resource "azurerm_container_registry" "acr" {

 name = "apresstfacr"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 sku = "Premium"

 admin_enabled = true

 }

 resource "azurerm_role_assignment" "role" {

 principal_id = azurerm_kubernetes_cluster.akscluster.kubelet_identity[0].object_id

 role_definition_name = "AcrPull"

 scope = azurerm_container_registry.acr.id

 skip_service_principal_aad_check = true

 }

 Once the cluster and image are deployed, we can push an image to the new registry using the steps we learned in Chapter 3.

 Using the ACR Container Image with AKS

 To pull a Docker container image from an ACR registry, all we need to do is modify the deployment.yaml file we used to deploy the nginx docker image. We can do so win this way:	1.

 Change the name of the image from nginx:latest to ch03/image01:v1, or to the name of an image you have on your ACR registry, as follows:

 - name: web-server

 image: ch03/image01:v1

 resources:

 requests:

 cpu: 100m

 memory: 128Mi

 limits:

 cpu: 250m

 memory: 256Mi

 ports:

 - containerPort: 80

 name: redis

	2.

 Save the file, then deploy the application using the following kubectl command line:

 kubectl apply -f deployment.yaml

	3.

 To test the application, run the get service command with the name of the service:

 kubectl get service web-server –watch

 AKS Volumes

 In this section, I will show you how to mount a persistent storage volume to AKS and use it with containerized applications. The process is like the one we used in Chapter 4, where we mounted a storage volume to our ACI deployment.

 In AKS, we don’t create the underlying storage account or volumes using Terraform; the entire process is done using the kubectl command line and the YAML configuration files.

 In the following example, I will show you how to mount a persistent volume that can be dynamically provisioned to one or more pods. To create persistent storage volume using the following:	
 Create_Storage_Class.yaml

	
 Create_Volume_Claim.yaml

	
 Create_Pod_With_Volume.yaml

 Once the storage is configured and deployed, I will deploy the nginx web server and mount a persistent volume to it. All the data that is saved in the mounted storage will remain intact after I delete the pods.

 Creating a Storage Class

 The first step in configuring storage for an AKS cluster is to create an Azure file share as our underlying source of storage, as follows:	1.

 Deploy the following YAML file to hold the configuration of the storage class:

 kind: StorageClass

 apiVersion: storage.k8s.io/v1

 metadata:

 name: my-azurefile

 provisioner: file.csi.azure.com

 allowVolumeExpansion: true

 mountOptions:

 - dir_mode=0777

 - file_mode=0777

 - uid=0

 - gid=0

 - mfsymlinks

 - cache=strict

 - actimeo=30

 parameters:

 skuName: Premium_LRS

	2.

 Create a file named Create_Storage_Class.yaml and deploy it using the following cmdlet:

 kubectl apply -f Create_Storage_Class.yaml

 Once the storage class is ready, we’ll create a volume claim.

 Note

 The storage class is using Standard_LRS storage, or locally redundant storage. If you’d like to use georedundant storage, use Standard_GRS.

 Creating a Volume Claim

 Next, we’ll create a volume claim, also known as a persistent volume claim (PVC). This claim uses the storage class we created to dynamically provision storage volumes to pods.

 	1.

 To create the PVC, make a file called Create_Volume_Claim.yaml by using the following configuration:

 apiVersion: v1

 kind: PersistentVolumeClaim

 metadata:

 name: my-azurefile

 spec:

 accessModes:

 - ReadWriteMany

 storageClassName: my-azurefile

 resources:

 requests:

 storage: 100Gi

	2.

 To create the claim, run the following command:

 kubectl apply -f Create_Volume_Claim.yaml

	3.

 You can check if the PVC was deployed by running the following kubectl command:

 kubectl get pvc

 Configuring a Pod to Use a Persistent Volume

 Now that the persistent storage is configured, we can deploy a pod and mount a storage volume to it. That can be done like this:	1.

 Use the following YAML file:

 kind: Pod

 apiVersion: v1

 metadata:

 name: mypod

 spec:

 containers:

 - name: mypod

 image: nginx:latest

 resources:

 requests:

 cpu: 100m

 memory: 128Mi

 limits:

 cpu: 250m

 memory: 256Mi

 volumeMounts:

 - mountPath: /mnt/azure

 name: volume

 volumes:

 - name: volume

 persistentVolumeClaim:

 claimName: my-azurefile

	2.

 To deploy the pod, run the following command:

 kubectl apply -f Create_Pod_With_Volume.yaml

	3.

 To test the deployment and see if the storage was mounted successfully, connect to the running pod using the kubectl exec command and start the bash shell utility using the kubectl exec -it nginx -- /bin/bash command.

 Upgrading an AKS Cluster

 As I mentioned at the beginning of this chapter, AKS is an Azure-managed service, which means that Azure manages its underlying infrastructure. When it comes to AKS management, Azure allows us to upgrade our AKS cluster to the latest version on Kubernetes or wait for Microsoft to do the upgrade.

 Some organizations choose to upgrade before the Microsoft update so that they can use the new features faster and not have to wait for Microsoft.

 To update our AKS cluster to the latest version of Kubernetes, any of the following tools can be used:	
 Azure PowerShell

	
 Azure CLI

	
 Azure portal

 In our case, we’ll use the Azure CLI.

 The process to update an AKS cluster is:	1.

 Check for available updates by using the following command:

 az aks get-upgrades --resource-group ApressAzureTerraformCH05 --name AKS -o table

	2.

 The output of the command should show the following items: (a) the current version; and (b) available versions.

 Name ResourceGroup MasterVersion Upgrades

 ------- ------------------------ --------------- --------------

 default ApressAzureTerraformCH05 1.26.6 1.27.1, 1.27.3

 The command output shows that two updates are available (1.27.1 and 1.27.3) and ready for installation.

	3.

 To update the cluster to version 1.27.1 of Kubernetes, run the following Azure CLI command:

 az aks upgrade --resource-group ApressAzureTerraformCH05 --name AKS --kubernetes-version 1.27.3

	4.

 After running the upgrade command, the following confirmation message will appear.

 Kubernetes may be unavailable during cluster upgrades.

 Are you sure you want to perform this operation? (y/N): y

 Since control-plane-only argument is not specified, this will upgrade the control plane AND all nodepools to version 1.27.3. Continue? (y/N): y

	5.

 After a few minutes, the cluster will run the latest version of Kubernetes.

 Autoupgrading the AKS Cluster

 If you want to automate the upgrade process so that you don’t have to worry about doing it yourself, you can configure your AKS cluster to automatically upgrade.

 To do so, we need to first decide which upgrade channel to configure our cluster to follow. Table 5-1 shows the channels that are available to select from.Table 5-1
 Upgrade Channels That the AKS Cluster Can Follow

	
 Channel

 	
 Function

	
 None

 	
 Disables autoupgrades (default).

	
 Patch

 	
 Upgrades to the latest supported version of AKS as soon it becomes available.

	
 Stable

 	
 Upgrades to the latest supported patch and uses version N-1.

	
 Repid

 	
 Upgrades to the latest supported patch and minor version release.

	
 Node-image

 	
 Upgrades the node-image to the latest version.

 Once you decide which channel to use, open a terminal window and connect to AKS. Run the following command to configure auto-upgrade using the patch channel:

 az aks update --resource-group ApressAzureTerraformCH05 --name AKS --auto-upgrade-channel patch

 You can also configure autoupgrade from the Azure portal by opening the AKS “Cluster configuration” page, as shown in Figure 5-2.
 [image:]
 A screenshot of cluster configuration in A K S. Upgrade version at Kubernetes version under upgrade is highlighted. It is followed by the header authentication and authorization.

Figure 5-2
 Configuring autoupgrade with AKS “Cluster configuration”

 Use the following process for the AKS configuration:	1.

 Open the AKS cluster page from the Azure portal, Under the “Setting” option, click “Cluster configuration.’

	2.

 In the “Kubernetes version” section of the “Cluster configuration” page, click “Upgrade version.”

	3.

 On the “Upgrade Kubernetes version” page that appears, go to the “Automatic upgrade” drop-down list, as shown in Figure 5-3.

 [image:]
 A screenshot of the upgrade Kubernetes version page. It displays dropdown lists for automatic upgrade and Kubernetes version. Under ungrade scope, the option Upgrade control plane plus all node pools, is selected.

Figure 5-3
 The “Upgrade Kubernetes version” page

 	4.

 To disable autoupgrade, run the following command:

 az aks update --resource-group ApressAzureTerraformCH05 --name AKS --auto-upgrade-channel none

 Terraform Remote State

 Before we move on to the next chapter, I’d like to show you how to configure the Terraform remote state using Azure.

 terraform.tfstate is a configuration file that holds the configuration of the Azure resources that were created with Terraform. The state file represents the current configuration in Azure.

 It also serves as the source of truth for Azure resources that were created with Terraform. By default, the state file is stored locally in the directory where we run the Terraform commands to deploy resources.

 The main challenges with a local state file is that it only exists locally, if something happens to the file we can’t manage the environment using Terraform, and it doesn’t allow collaboration between team members.

 For these reasons, Terraform offers remote state management. With remote state management, the state file is stored in a shared location, and in our case, that location is an Azure storage account with file sharing enabled.

 Once the remote state is configured, the following benefits will be available:	
 Collaboration: Allows multiple team members to work on the same Terraform configuration simultaneously.

	
 Versioning: Allows users to track changes to infrastructure and roll back changes.

	
 Security: Provides encryption solutions to safeguard state files.

	
 Automation: Enables us to use continuous integration and continuous delivery (CI\CD) tools for infrastructure deployments.

	
 Scalability: Enables the scaling for the underlying storage of a state file.

 Configuring the Remote State

 To configure remote state management with Microsoft Azure, we’ll take the following steps in Terraform:	
 Creating a resource group

	
 Creating a storage account

	
 Creating a storage container

	
 Changing the state file location

	
 Adding the remote state to the configuration file and switching from the local state to the remote state

 The process is as follows:	1.

 To get started, use the following Terraform configuration file:

 resource "random_string" "resource_code" {

 length = 5

 special = false

 upper = false

 }

 resource "azurerm_resource_group" "tfstate" {

 name = "chapter5remotestate"

 location = "southeastasia"

 }

 resource "azurerm_storage_account" "tfstate" {

 name = "tfstate${random_string.resource_code.result}"

 resource_group_name = azurerm_resource_group.tfstate.name

 location = azurerm_resource_group.tfstate.location

 account_tier = "Standard"

 account_replication_type = "LRS"

 tags = {

 environment = "dev"

 }

 }

 resource "azurerm_storage_container" "tfstate" {

 name = "tfstate"

 storage_account_name = azurerm_storage_account.tfstate.name

 container_access_type = "blob"

 }

 The remote storage configuration files are in the repository under Chapter 5. Note that the configuration folder contains an output file that will export the storage account name, which we’ll need to complete the configuration.

 The output file looks like this:

 data "azurerm_storage_account" "storage" {

 name = azurerm_storage_account.tfstate.name

 resource_group_name = azurerm_resource_group.rg.name

 }

 output "storage_account_name" {

 value = azurerm_storage_account.tfstate.name

 }

	2.

 To start the deployment process, run:	a.

 Terraform init

	b.

 Terraform plan

	c.

 Terraform apply

 The output should be:

 Apply complete! Resources: 4 added, 0 changed, 0 destroyed.

 Outputs:

 storage_account_name = "tfstateblf8x"

	3.

 At this stage, we have a storage account that is ready to be used as a remote state. Note the storage account name, as we’ll need it soon. We now need to copy the security key that will allow us to authenticate to the storage account and write the configuration.

 Use the following two commands to get the storage access key. Save the key as an environment variable.

 ACCOUNT_KEY=$(az storage account keys list --resource-group chapter5remotestate --account-name tfstateblf8x --query '[0].value' -o tsv)

 export ARM_ACCESS_KEY=$ACCOUNT_KEY

 Adding Backend Configuration

 The feature that allows us to store state files remotely is called backend configuration. We’ll need to add it to our Terraform configuration files.

 A standard backend configuration file looks like this:

 backend "azurerm" {

 resource_group_name = "tfstate"

 storage_account_name = Storage_ACCOUNT_NAME

 container_name = "storage_container_name"

 key = "keyname.terraform.tfstate"

 }

 In our case, this is how the configuration will look:

 backend "azurerm" {

 resource_group_name = "chapter5remotestate"

 storage_account_name = "tfstateblf8x"

 container_name = "terraformstate"

 key = "0.storageaccount.terraform.tfstate"

 }

 You can find the configuration code in the provider.tf configuration file.

 To set up backend configuration:	1.

 Create a new Terraform resource for a new storage account as outlined in the following code. (You can use the “repository configuration_block” folder to create a storage account).

 terraform {

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 }

 }

 backend "azurerm" {

 resource_group_name = "chapter5remotestate"

 storage_account_name = "tfstateblf8x"

 container_name = "tfstate"

 key = "0.storageaccount.terraform.tfstate"

 }

 }

 provider "azurerm" {

 features {

 key_vault {

 purge_soft_delete_on_destroy = true

 }

 }

 }

	2.

 Run the following command and review the output to confirm that Terraform is using a remote state file.

 Terraform init

	3.

 Check the output and notice and review the third line (start with “use this backend...”).

 Initializing the backend...

 Successfully configured the backend "azurerm"! Terraform will automatically

 use this backend unless the backend configuration changes.

 Initializing provider plugins...

 - Finding latest version of hashicorp/azurerm...

 - Finding latest version of hashicorp/random...

 - Installing hashicorp/azurerm v3.71.0...

 - Installed hashicorp/azurerm v3.71.0 (signed by HashiCorp)

 - Installing hashicorp/random v3.5.1...

 - Installed hashicorp/random v3.5.1 (signed by HashiCorp)

 Terraform has created a lock file .terraform.lock.hcl to record the provider selections it made above. Include this file in your version control repository so that Terraform can guarantee to make the same selections by default when you run “terraform init” in the future.

 Terraform has been successfully initialized!

 You may now begin working with Terraform. Try running "terraform plan" to see any changes that are required for your infrastructure. All Terraform commands should now work.

 If you ever set or change modules or backend configuration for Terraform,

 rerun this command to reinitialize your working directory. If you forget, other commands will detect it and remind you to do so if necessary.

 Continue with the deployment and run

 terraform plan

 terraform apply

 Once the deployment is complete, open the Azure portal and navigate to the storage account.

 Click on Storage account

 Click on Containers

 Click on tfstate

	4.

 Review the Azure state file, as shown in Figure 5-4.

 [image:]
 A screenshot of the t f state container page. The overview is selected in the menu on the left. It displays options of upload, change access level, refreshes, and delete, followed by add filter. Data is displayed below the options.

Figure 5-4
 Reviewing the Azure state file

 State Locking

 To prevent two users from deploying resources to Azure at the same time, Azure storage blobs will automatically lock the state file before any write operation. To check whether a remote state file is locked, you can take the following steps:	1.

 Open the storage account from the Azure Portal.

	2.

 Click “Containers.”

	3.

 Click “tfstate.”

	4.

 Click the state file for which you want to check the status.

	5.

 Look for the “LEASE STATUS” field on the blob storage page and check the whether it is locked, as shown in Figure 5-5.

 [image:]
 A screenshot of the storage account of Terraform t f-state page. The page consists of details and text boxes to edit. The lease status field is unlocked, which is highlighted.

Figure 5-5
 “LEASE STATUS” field

 Exporting Azure Resources to Terraform

 Before wrapping up this chapter, I’d like to discuss a scenario where Azure resources are created using the Azure portal or Azure CLI and you want to manage them with Terraform.

 For instances like these, Azure created a tool called aztfexport that allows us to export Azure resources to Terraform.

 To do so:	1.

 Install the aztfexport tool on Linux WSL using the following commands:	a.

 sudo snap install go --channel=1.19-fips/stable --classic

	b.

 sudo go install github.com/Azure/aztfexport@latest

 Note

 To install the “aztfexport” tool on Windows or macOS, visit the following URL: https://github.com/azure/aztfexport.

 	2.

 To export a resource that was created using a non-Terraform tool, create a directory on your machine and open it using a terminal window.

	3.

 Log in to Azure using the Azure CLI: Az login.

	4.

 Create the following empty directory: sudo mkdir export.

	5.

 Note the name of the resource group where the resource is located and run the following command to export a resource group configuration: aztfexport resource-group RGNAME.

	6.

 Press the w key to confirm the export.

	7.

 Once the export is completed, you should see the following output:

 Microsoft Azure Export for Terraform

 Terraform state and the config are generated at: /home/shimon/github/ApressAzureTerraform/chapter05/aztfimport

 Press any key to quit

	8.

 Once the configuration is exported to the directory, run the following command:

 terraform init --upgrade

 terraform plan

	9.

 If the export was successful, you should see the following output from the Terraform plan command:

 No changes. Your infrastructure matches the configuration.

 Terraform has compared your real infrastructure against your configuration and found no differences, so no changes are needed.

 If you get this output, you can now manage the resource using Terraform.

 Summary

 In this chapter, we learned how to do the following: (1) deploy an AKS cluster; (2) connect an AKS cluster to the Azure Container Registry; (3) mount a storage volume to AKS pods; (3) upgrade the AKS cluster using a manual process or autoupgrade; (4) use the Terraform remote state to store configuration files; and (5) export Azure resources to Terraform.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. IfrahGetting Started with Containers in Azurehttps://doi.org/10.1007/978-1-4842-9972-2_6

6. Azure DevOps and Container Service

Shimon Ifrah1
(1)Melbourne, VIC, Australia

 Introduction

 Now that we’ve learned about all the container services Azure has to offer, it’s time to look at how we can use continuous integration and continuous delivery (CI/CD) tools like Azure DevOps to deploy and automate infrastructure using Azure Pipelines.

 This chapter will dive into the integration between Azure DevOps and Terraform and explore how infrastructure provisioning can be automated using CI/CD tools.

 As Azure cloud resource environments become more complex and integrated with one another, performing manual changes and configuration is no longer viable. Because of this reason, Azure DevOps provides a platform for defining and provisioning infrastructure as code to help with rapid deployment and repeatability.

 Using examples and step-by-step guides, in this chapter we will explore how Azure DevOps and Terraform complement each other and make infrastructure management more consistent and rapid.

 The goal of this chapter is to help you learn how to optimize resource provisioning and management using Azure DevOps tools.

 Azure DevOps Services

 Azure DevOps offers a comprehensive suite of DevOps tools that improve the collaboration between and delivery of software and infrastructure services.

 The main services the Azure DevOps platform offers are:	
 Version control: Azure Repos services offer version control capabilities using secure Git repositories with the following features:	
 branch management

	
 code review

	
 code merging

	
 change history

	
 code approval

	
 Continuous integration and continuous delivery: Azure Pipelines offers a powerful CI/CD solution using YAML files that allows us to:	
 build code and docker images

	
 test code and use cases

	
 deploy infrastructure to Azure or other cloud providers using Terraform

	
 create workflows

	
 Agile planning and tracking: Azure Boards enables teams to manage projects using agile project management tools. With Boards, you can:	
 create and manage user stories

	
 create and track work items

	
 create and plan sprints

	
 get real-time insights into the progress of projects

	
 allocate resources

	
 Automated testing: Azure Test Plans enables testing and monitoring of services using automation.

 In summary, Azure DevOps allows the collaboration between building and deployment of software, services, and infrastructure using automation and state-of-the-art tools. This chapter will focus on deploying infrastructure using automation to Azure.

 Setting Up Azure DevOps

 Before getting started, you’ll need to sign up for an Azure DevOps account and set up an Azure DevOps organization. To do so, go to the Azure DevOps home page at https://azure.microsoft.com/en-us/products/devops/ and click “Start free,” as shown in Figure 6-1.
 [image:]
 A screenshot depicts Azure DevOps offering modern development services for smarter planning, enhanced collaboration, and faster software delivery. A start free and start free with git hub button options.

Figure 6-1
 The Azure DevOps sign-up page

 After signing up for Azure DevOps, you’ll need to create an organization to host your projects.

 Creating an Azure DevOps Organization

 To complete the sign-up process, create an organization and make note of your organization’s name. The login URL to Azure DevOps is made up of the host web site plus your organization’s name as follows: https://dev.azure.com/[name of your organization].

 To host pipelines and repositories, you’ll need to create a project that acts as a logical unit for all the services a DevOps project needs.

 Creating a Project

 Once you log into Azure DevOps, you can create a project by clicking the “+ New Project” button in the top right corner of the main page, as shown in Figure 6-2.
 [image:]
 A screenshot illustrates a search bar along with options for creating a new project and filtering existing projects.

Figure 6-2
 Creating a new project

 In the “Create new project” screen that appears, enter the required information, as shown in Figure 6-3. Also note that you can change the version control system to the team foundation server and select a different work item process that uses Agile, Basic, Scrum, or CMMI (computer maturity model integration).
 [image:]
 A screenshot displays the project creation interface with options for the project name, description, visibility public or private, version control Git, and advanced settings like work item process Agile.

Figure 6-3
 Entering the required information for your new Azure DevOps project

 Once the project has been created, you can start using it. On the main project page, you’ll see all the available services that can be used to deploy and manage services, as shown in Figure 6-4.
 [image:]
 A screenshot lists an overview with tabs for summary, dashboards, wiki, boards, repositories, pipelines, test plans, and artifacts for the project named apress.

Figure 6-4
 Azure DevOps services

 To start using Azure DevOps services, you’ll need to create or define a source code repository that will act as a trigger point for all the services. Before creating a repository, though, you’ll first need to create a personal access token that will allow you to connect to Azure DevOps programmatically.

 Creating a Personal Access Token

 Before creating a repository, we’ll need to create a personal access token (PAT) that will allow us to authenticate easily to the service. To create a PAT:

 	1.

 Click the user settings icon located in the top-right corner of the screen, as shown in Figure 6-5.

	2.

 Select “Personal access tokens” from the drop-down menu that appears, as shown in Figure 6-5.

 [image:]
 A screenshot displays search, C I, preview features, profile, time and locale, permissions, notifications, theme, usage, personal access tokens, and S S H public keys in the settings menu.

Figure 6-5
 Selecting “Personal access tokens” on the drop-down menu

 	3.

 Then, click “New token” on the “Personal Access Tokens” page to create a new token. Figure 6-6 shows the “Create a new personal access token” screen. In this example, we’ll create a token that gives us full access to all the Azure DevOps services.

	4.

 On this screen, add a name for your token, select your organization and the token expiration date from the drop-down lists, and set “Scopes” to full access, as shown in Figure 6-6.

 [image:]
 A screenshot illustrates the creation of a new personal access token with the name Apress-book-creds, organization access, a 30-day expiration until 28 09 2023, and custom-defined scopes, including full access.

Figure 6-6
 Creating a new personal access token

 Now we’re ready to create a new repository and use our newly created PAT to authenticate. We can also create secure shell (SSH) keys and use them to authenticate to Azure DevOps. In this chapter, we’ll use Azure Repos and Azure Pipelines. Let’s start by creating a repository.

 Creating a Repository

 To create a repository in which to store our code, we will use Azure Repos; however, if you prefer to use another source-control service like GitHub, it’s probably also possible to connect to its repository.

 To create the repository:	1.

 Click “Repos” on the project page you just created.

	2.

 Because we haven’t initialized a repository, you’ll be taken the general repository page, allowing you to clone, push, or import a repository, as shown in Figure 6-7. Go ahead and click the “copy” icon next to HTTPS repository URL and then hit the “Initialize” button at the bottom of the page.

 [image:]
 A screenshot displays an empty Apress repository with cloning options via H T T P S or S S H. It provides choices to clone in V S Code, generate Git credentials, push an existing repository, import, or initialize with READ ME or dot git ignore.

Figure 6-7
 Initializing the Azure repository

 	3.

 Now open Visual Studio Code.

	4.

 Create a new directory.

	5.

 Run the following command to clone the new repository:

 git clone copied_url

	6.

 Once you run the command, you’ll be asked to provide the PAT password in order to authenticate and pull the repository.

 Using Terraform with Azure DevOps

 To use Terraform with Azure DevOps, we need to install the Terraform Task for Azure DevOps. The Terraform Task has the integration capabilities needed to work with Azure DevOps with minimum code. The integration makes the infrastructure deployment task straightforward, as you’ll soon see.

 Installing Terraform Task

 To install the Terraform Task for Azure DevOps, we’ll use the Azure DevOps marketplace, which has tasks that allow Azure DevOps to work with external services and integrate with tools like Terraform.

 To install the Terraform Task:	1.

 Click the “Marketplace” icon in the top-right corner of the Azure DevOps organization or project page.

	2.

 Select “Browse extensions” from the drop-down list, as shown in Figure 6-8.

 [image:]
 A screenshot depicts a search bar with access to the Marketplace, allowing users to browse and manage extensions.

Figure 6-8
 Azure DevOps marketplace

 	3.

 On the “Marketplace” home page, type “terraform” into the search bar. In the results that come up, click the “Terraform” option, offered by Microsoft DevLabs, as shown in Figure 6-9.

 [image:]
 A screenshot displays search results in the Visual Studio marketplace for Terraform-related extensions. It includes extensions from various contributors, each providing features for using Terraform with Azure Pipelines and Visual Studio Team Services.

Figure 6-9
 Choosing the Terraform option

 On the Terraform page that comes up, click “Get for free” to install the extension in the Azure DevOps organization and make it available with Azure Pipelines.

 Azure Pipelines

 In this section, we’re going to explore how to use Azure Pipelines and use a CI/CD pipeline to deploy an Azure Container Registry to Azure directly from the pipeline.

 For this exercise to work, we’ll utilize some of the previous concepts we learned in this book and incorporate them into a single learning exercise, as you’ll see shortly.

 In the exercise, we’ll do the following:	
 use the Terraform configuration file to create an ACR on Azure

	
 use a remote stage file (as done in the Chapter 5)

	
 use a YAML-based CI/CD pipeline

	
 use an Azure pipeline

 We’ll need to use a Terraform remote state file for this exercise to work successfully. When using Azure Pipelines, the pipeline runs on a temporary virtual machine that gets destroyed once the pipeline has finished running. If the state is saved on that machine, we could manage the resources postdeployment.

 Creating an Azure Container Registry

 For this exercise, I’m going to use a directory called Create_ACR, which is in the book’s repository in the “Chapter 6 Directory.”

 The code for the deployment follows this paragraph. For simplicity, I’m using a single file for this deployment; however, you could break down the file easily. Take a look at the backend section and replace the remote state details with your remote state (created in Chapter 5).

 ACR.TF

 The following file will configure an Azure Container registry (ACR).

 terraform {

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 version = ">= 2.26"

 }

 }

 backend "azurerm" {

 resource_group_name = "tfstate"

 storage_account_name = "tfstates14w8"

 container_name = "tfstate"

 key = "Create_acr.terraform.tfstate"

 }

 }

 provider "azurerm" {

 features {}

 }

 resource "azurerm_resource_group" "rg" {

 name = "apresstfchapter06"

 location = "australiasoutheast"

 }

 resource "azurerm_container_registry" "acr" {

 name = "appressacr"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 sku = "Basic"

 admin_enabled = true

 }

 AZURE-PIPELINES.YML

 What follows is the code the YAML-based pipeline file that will handle the deployment to Microsoft Azure and use the Terraform extension for Azure DevOps:

 trigger:

 - none

 pool:

 vmImage: ubuntu-latest

 steps:

 - task: TerraformInstaller@0

 inputs:

 terraformVersion: 'latest'

 - task: TerraformTaskV3@3

 inputs:

 provider: 'azurerm'

 command: 'init'

 workingDirectory: '$(System.DefaultWorkingDirectory)/Create_ACR'

 backendServiceArm: 'AZURE SUBSCRIPTION DETAILS'

 backendAzureRmResourceGroupName: 'tfstate'

 backendAzureRmStorageAccountName: 'tfstates14w8'

 backendAzureRmContainerName: 'tfstate'

 backendAzureRmKey: 'Create_acr.terraform.tfstate'

 - task: TerraformTaskV3@3

 inputs:

 provider: 'azurerm'

 command: 'plan'

 workingDirectory: '$(System.DefaultWorkingDirectory)/chapter06/Create_ACR'

 environmentServiceNameAzureRM: 'AZURE SUBSCRIPTION DETAILS''

 - task: TerraformTaskV3@3

 inputs:

 provider: 'azurerm'

 command: 'apply'

 workingDirectory: '$(System.DefaultWorkingDirectory)/Create_ACR'

 environmentServiceNameAzureRM: 'AZURE SUBSCRIPTION DETAILS''

 If you review the file, you’ll see that it is using three Terraform tasks to do the following:	
 initiate Terraform and connect to the remote state file.

	
 run terraform plan. You don’t have to use this step, but having it there for reference and review is nice.

	
 run terraform apply. This will deploy the previous code to an Azure subscription.

 Note

 An important thing to note is that you’ll need to configure the connection point to your Azure subscription, which we’ll do shortly. For this exercise to work, you’ll need to have contributor access to an Azure subscription at a minimum.

 Once you save the two files, go ahead and push the repository to the Azure Repo by running the following command from the repository’s main folder

 git add .

 git commit -m "Add Pipeline and ACR deployment"

 git push

 Note

 To make things easier, you can copy the files in Chapter 6 to your Azure DevOps repository.

 Creating an Azure Pipeline

 Once the code has been pushed to Azure Repos, we’ll be ready to create an Azure pipeline that will deploy an ACR to Azure.

 To do so:	1.

 From the Azure DevOps portal, click on “Pipelines” on the Azure DevOps project page.

	2.

 Click “Create Pipeline.”

	3.

 On the “Connect Repository” page, click “Azure Repos Git,” as shown in Figure 6-10.

 [image:]
 A screenshot illustrates the process of creating a new pipeline in Azure DevOps. It allows users to select the source location of their code from various options, such as Azure Repos Git, Bitbucket Cloud, GitHub, GitHub Enterprise Server, Other Git, or Subversion. The steps include Connect, Select, Configure, and Review.

Figure 6-10
 Selecting “Azure Repos Git”

 	4.

 In the “Configure” section of the “New pipeline” page, click the “Existing Azure Pipelines YAML file,” as shown in Figure 6-11.

 [image:]
 A screenshot depicts the steps to configure a new pipeline in Azure DevOps. Users can choose between a Starter pipeline or an existing Azure Pipelines Y A M L file for customization.

Figure 6-11
 Configuring your pipeline

 	5.

 For “Select an Existing YAML file,” choose the branch of the repository you want to use from the list (the default branch is “main”), and on the “Path” drop-down menu select the azure-pipelines.yml file, as shown in Figure 6-12.

 [image:]
 A screenshot illustrates the selection of an existing Azure Pipelines Y A M L file from the repository. Users can choose the branch and path to the Y A M L file for pipeline configuration.

Figure 6-12
 Selecting the “Azure Pipelines YAML” file

 	6.

 Once the pipeline is loading, we’ll need to configure the Azure DevOps connection point to Azure to allow Azure DevOps to change resources. On the “Review your pipeline YAML” page, above the Terraform tasks, click “Settings,” as shown in Figure 6-13.

 [image:]
 A screenshot showcases the creation of a new pipeline with a Y A M L configuration file. The Y A M L file includes details such as triggers, pool settings with Ubuntu image, and Terraform-related tasks for initializing an Azure Resource Manager azurerm provider.

Figure 6-13
 The Terraform task settings

 	7.

 Next, on the task’s settings page, locate the Azure subscription section.

	8.

 On the drop-down menu, click the Azure subscription you’d like to use to deploy the resource and click “Authorize.” Figure 6-14 shows the menu of subscriptions.

 [image:]
 A screenshot depicts 2 options such as Azure R M backend configuration and azure subscription.

Figure 6-14
 Choosing the Azure subscription

 	9.

 Now, take a few moments to review the configuration of the pipeline and the Terraform tasks. Once your service connections to Azure are ready, click the “Save and run” button and fill in the sections to commit the code, as shown in Figure 6-15.

 [image:]
 A screenshot displays the option to save and run the pipeline. Saving will commit the Y A M L file to the repository with the commit message Set up C I with Azure Pipelines. The user can choose to commit directly to the main branch or create a new branch for this commit.

Figure 6-15
 The “Save and run” pipeline

 Note

 If you receive a message that the pipeline must be authorized, click the “Resources Authorized” button to continue.

 Reviewing the Pipeline

 Once the pipeline starts running, you can review the tasks that are involved by clicking the job name in the “Jobs” section. The “Jobs in run” page will list all the stages and tasks the pipeline is going through and the status of each one, as shown in Figure 6-16.
 [image:]
 A screenshot displays a job sequence in Azure Pipelines run hash 20230829.4. Jobs involve initializing, repository checkout, and executing Terraform tasks on an Ubuntu-latest image using a hosted agent. Duration 1 minute 1 second.

Figure 6-16
 List of the stages and tasks of the pipeline on the “Jobs in run” page

 Clicking on one of the tasks will reveal the deployment detail and what Azure DevOps is doing in order to deploy the code from the runner machine. The following output shows the Terraform plan task in detail:

 Starting: TerraformTaskV3

 ===

 Task : Terraform

 Description : Execute terraform commands to manage resources on AzureRM, Amazon Web Services(AWS) and Google Cloud Platform(GCP)

 Version : 3.209.23

 Author : Microsoft Corporation

 Help : [Learn more about this task](https://aka.ms/AAf0uqr)

 ===

 /opt/hostedtoolcache/terraform/1.5.6/x64/terraform providers

 Providers required by configuration:

 .

 └── provider[registry.terraform.io/hashicorp/azurerm] >= 2.26.0

 /opt/hostedtoolcache/terraform/1.5.6/x64/terraform plan -detailed-exitcode

 Acquiring state lock. This may take a few moments...

 Terraform used the selected providers to generate the following execution

 plan. Resource actions are indicated with the following symbols:

 + create

 Terraform will perform the following actions:

 # azurerm_container_registry.acr will be created

 + resource "azurerm_container_registry" "acr" {

 + admin_enabled = true

 + admin_password = (sensitive value)

 + admin_username = (known after apply)

 + encryption = (known after apply)

 + export_policy_enabled = true

 + id = (known after apply)

 + location = "australiasoutheast"

 + login_server = (known after apply)

 + name = "appressacr"

 + network_rule_bypass_option = "AzureServices"

 + network_rule_set = (known after apply)

 + public_network_access_enabled = true

 + resource_group_name = "apresstfchapter06"

 + retention_policy = (known after apply)

 + sku = "Basic"

 To make sure the resource was created, open the Azure portal and locate the resource group called “apresstfchapter06” and confirm that you have an ACR registry called “apressacr,” as shown in Figure 6-17.
 [image:]
 A screenshot features the Azure Portal with options to manage resources in the apresstfchapter 0 6 resource group, including creating, deleting, refreshing, exporting, and assigning tags to resources like the appressacr container registry in Australia Southeast.

Figure 6-17
 The ACR registry

 At this stage, we have an ACR registry up and running in Azure that we’ve deployed with an Azure DevOps pipeline. Let’s go another step further and use Azure Pipelines to build a Docker image using the Dockerfile we used in Chapter 3. In this exercise, we’ll complete the following tasks:	
 building a Docker image using a Dockerfile with Azure Pipeline

	
 pushing the image to an ACR

 Building and Pushing a Docker Image to ACR with Azure Pipelines

 For this exercise, I’m going to use the same Dockerfile as the one we used in Chapter 3. The Dockerfile shown here is simple:

 FROM mcr.microsoft.com/hello-world

 Follow these steps:	1.

 Copy the Dockerfile to the repository where your Terraform configuration file is located, and push the changes to the repository.

	2.

 Create a new pipeline by clicking “New Pipeline” on the “Pipelines” page, as shown in Figure 6-18.

 [image:]
 A screenshot depicts a search option with the ability to create a new pipeline and filter existing pipelines.

Figure 6-18
 Creating a new pipeline

 	3.

 Now, select the repository and click “Next.” On the “Configure your pipeline” page, you’ll see that Azure DevOps is smart enough to have detected the Dockerfile and suggested a few pipelines you can choose from, as shown in Figure 6-19.

 [image:]
 A screenshot illustrates the steps to connect, select, configure, and review a new pipeline. The options include building a Docker image, pushing it to Azure Container Registry, and deploying to Azure Kubernetes Service.

Figure 6-19
 Configuring your pipeline

 	4.

 For this exercise, let’s go ahead and select the second pipeline, “Docker - Build and push an image to Azure Container Registry.”

	5.

 After indicating the pipeline, you’ll need to select the subscription in which the ACR registry is located. Figure 6-20 shows the “Select an Azure subscription” button.

 [image:]
 A screenshot displays the Docker option to build and push an image to Azure Container Registry. The user is prompted to select an Azure subscription for the process.

Figure 6-20
 Selecting an Azure subscription

 	6.

 In the “Docker” menu, shown in Figure 6-21, select the Azure Container Registry details we deployed earlier: the image name and the Dockerfile.

 [image:]
 A screenshot illustrates the Docker option to build and push an image to Azure Container Registry. The container registry is named appressacr, and the image name is set to apress with the Dockerfile path specified.

Figure 6-21
 Selecting the ACR details on the “Docker” screen

 The next screen will display the generated YAML pipeline, which looks like this:

 trigger:

 - main

 resources:

 - repo: self

 variables:

 dockerRegistryServiceConnection: AZURE SUBSCRIPTION

 imageRepository: 'apress'

 containerRegistry: 'appressacr.azurecr.io'

 dockerfilePath: '$(Build.SourcesDirectory)/chapter06/Create_ACR/Dockerfile'

 tag: '$(Build.BuildId)'

 vmImageName: 'ubuntu-latest'

 stages:

 - stage: Build

 displayName: Build and push stage

 jobs:

 - job: Build

 displayName: Build

 pool:

 vmImage: $(vmImageName)

 steps:

 - task: Docker@2

 displayName: Build and push an image to container registry

 inputs:

 command: buildAndPush

 repository: $(imageRepository)

 dockerfile: $(dockerfilePath)

 containerRegistry: $(dockerRegistryServiceConnection)

 tags: |

 $(tag)

	7.

 Review the pipeline and try to understand the Docker task with which you’ll build and push the image to ACR. Before you save and run the file, take a moment to rename the pipeline as shown in Figure 6-22. Click the “Rename” button and name the pipeline “buildAndPushACR.yml.”

 [image:]
 A screenshot displays the New pipeline screen, providing a review of the pipeline Y A M L file located at apress azure-pipelines dot y m l.

Figure 6-22
 Build and push an image to Azure Container Registry

 The output of the “Build and push to ACR” should look like this:

 #5 exporting layers done

 #5 writing image sha256:81a0f1bfdcc3147c40fa02caccd76c72fd78a6fed1c60d1fa646ae4205129db7 done

 #5 naming to ***/apress:284 done

 #5 DONE 0.0s

 ##[warning]No data was written into the file /home/vsts/work/_temp/task_outputs/build_1693287997921.txt

 /usr/bin/docker images

 /usr/bin/docker push ***/apress:284

 REPOSITORY TAG IMAGE ID CREATED SIZE

 node 16 ebdc80ddefea 12 days ago 909MB

 node 18 95d8a703ee8c 12 days ago 1.09GB

 buildpack-deps buster 0053f1bb059a 12 days ago 802MB

 buildpack-deps bullseye eac77ea4e8a0 12 days ago 833MB

 debian 10 de08540e8ff0 13 days ago 114MB

 debian 11 07585eb55737 13 days ago 124MB

 node 16-alpine 2573171e0124 2 weeks ago 118MB

 node 18-alpine 50c7e33a9de1 2 weeks ago 176MB

 alpine 3.16 187eae39ad94 3 weeks ago 5.54MB

 alpine 3.17 1e0b8b5322fc 3 weeks ago 7.05MB

 alpine 3.18 7e01a0d0a1dc 3 weeks ago 7.33MB

 ubuntu 22.04 01f29b872827 3 weeks ago 77.8MB

 moby/buildkit latest 896276ced360 3 weeks ago 172MB

 ubuntu 20.04 6df894023726 3 weeks ago 72.8MB

 ubuntu 18.04 f9a80a55f492 3 months ago 63.2MB

 node 14 1d12470fa662 4 months ago 912MB

 node 14-alpine 0dac3dc27b1a 5 months ago 119MB

 ***/apress 284 81a0f1bfdcc3 4 years ago 1.84kB

 mcr.microsoft.com/hello-world latest fce289e99eb9 4 years ago 1.84kB

 The push refers to repository [***/apress]

 af0b15c8625b: Preparing

 af0b15c8625b: Pushed

 284: digest: sha256:2ba0a8fbb31723c4afcd284bb26e1e48d01cb3e04cdef07b0311f3cae9c3da8f size: 524

 /usr/bin/docker history --format createdAt:{{.CreatedAt}}; layerSize:{{.Size}}; createdBy:{{.CreatedBy}}; layerId:{{.ID}} --no-trunc ***/apress:284

 createdAt:2019-01-01T01:29:27Z; layerSize:0B; createdBy:/bin/sh -c #(nop) CMD ["/hello"]; layerId:sha256:81a0f1bfdcc3147c40fa02caccd76c72fd78a6fed1c60d1fa646ae4205129db7

 createdAt:2019-01-01T01:29:27Z; layerSize:1.84kB; createdBy:/bin/sh -c #(nop) COPY file:f77490f70ce51da25bd21bfc30cb5e1a24b2b65eb37d4af0c327ddc24f0986a6 in / ; layerId:<missing>

 /usr/bin/docker inspect 81a0f1bfdcc3147c40fa02caccd76c72fd78a6fed1c60d1fa646ae4205129db7 -f {{.RootFS.Layers}}

 [sha256:af0b15c8625bb1938f1d7b17081031f649fd14e6b233688eea3c5483994a66a3]

 Finishing: Build and push an image to container registry

	8.

 At this stage, the only thing left to do is to check whether the image is available in ACR. Do that by opening the Azure portal and checking the ACR repository, as shown in Figure 6-23.

 [image:]
 A screenshot displays the Repositories section within the Container registry named appressacr. It provides options for managing repositories, including search, overview, activity log, access control, and tags.

Figure 6-23
 Checking whether the image is available in ACR

 Before we finish the chapter, I’d like to discuss the option of destroying resources with Azure DevOps. We can also use Azure Pipelines to destroy a Terraform deployment, and as a reference, I have provided the following code block you can use in another YAML pipeline to destroy a deployment.

 Using Terraform Destroy with Azure Pipelines

 To run the code, you can take the apply pipeline we used to deploy an ACR registry and replace the last task (apply) with the following code:

 - task: TerraformTaskV3@3

 inputs:

 provider: 'azurerm'

 command: 'destroy'

 workingDirectory: '$(System.DefaultWorkingDirectory)/Create_ACR'

 environmentServiceNameAzureRM: 'AZURE SUBSCRIPTION'

 The AzAPI Provider

 In this last section of the chapter, I’d like to introduce you to the AzAPI provider and its capabilities in terms of managing Azure resources with Terraform. As you know, the Azure Terraform provider relies on supported features that Microsoft releases via the Azure representational state transfer (REST) API.

 The issue with this is that Terraform isn’t capable of new features that haven’t yet been released or are in private or public preview. In some cases, because of Terraform’s limitations it can’t manage any aspect of a resource.

 The AzAPI provider allows us to communicate directly with the Azure REST API and access all the API features, including preview features.

 In the following exercise, we’re going to deploy an ACR using the AzAPI provider.

 Deploying an ACR Using the AzAPI Provider

 To take part in this exercise, you’ll need to open and use the Terraform configuration file under Chapter 6 and in the AzAPI folder. Let’s first review the code before deploying it.

 The first code block I’d like you to review is in the provider section, where we need to include the AzAPI provider:

 terraform {

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 }

 azapi = {

 source = "Azure/azapi"

 }

 }

 }

 provider "azurerm" {

 features {}

 }

 provider "azapi" {

 }

 The second code block that needs attention is the one where we configure the provider to connect to the Azure REST API. The API service we’re connecting to is shown in Table 6-1.Table 6-1
 Azure Container Registry REST API version details

	
 Service name

 	
 Container Registry

	
 API version

 	
 2023-01-01-preview

	
 Reference URL

 	
 https://learn.microsoft.com/en-us/rest/api/containerregistry/registries/create?tabs=HTTP

 The Terraform code that uses the service with AzAPI provider follows:

 resource "azapi_resource" "acr" {

 type = "Microsoft.ContainerRegistry/registries@2023-01-01-preview"

 name = "apressacr"

 parent_id = azurerm_resource_group.rg.id

 location = azurerm_resource_group.rg.location

 body = jsonencode({

 sku = {

 name = "Standard"

 }

 properties = {

 adminUserEnabled = true

 }

 })

 tags = {

 "Key" = "DEV"

 }

 response_export_values = ["properties.loginServer", "properties.policies.quarantinePolicy.status"]

 }

 If you look at the code and API in the reference URL provided in Table 6-1, you’ll see how the configuration calculates the API version and endpoint.

 Full Code

 You can review the full code and deploy it to Azure using Terraform. The deployment process is the same as any we’ve used before.

 terraform {

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 }

 azapi = {

 source = "Azure/azapi"

 }

 }

 }

 provider "azurerm" {

 features {}

 }

 provider "azapi" {

 }

 resource "azurerm_resource_group" "rg" {

 name = "apresstfchapter06"

 location = "australiasoutheast"

 }

 resource "azapi_resource" "acr" {

 type = "Microsoft.ContainerRegistry/registries@2023-01-01-preview"

 name = "apressacr"

 parent_id = azurerm_resource_group.rg.id

 location = azurerm_resource_group.rg.location

 body = jsonencode({

 sku = {

 name = "Standard"

 }

 properties = {

 adminUserEnabled = true

 }

 })

 tags = {

 "Key" = "DEV"

 }

 response_export_values = ["properties.loginServer", "properties.policies.quarantinePolicy.status"]

 }

 output "login_server" {

 value = jsondecode(azapi_resource.acr.output).properties.loginServer

 }

 Managing Secrets in Azure Key Vault and Azure DevOps

 In this section, we’re going to explore how to retrieve Secrets from Azure Key Vault with Azure Pipeline. Azure Key Vault is an Azure cloud service that allows us to store and manage sensitive information like security keys, certificates, and credentials.

 Azure Key Vault allows us to access sensitive information programmatically using tools like PowerShell, .NET, Python, and, in our case, Azure Pipelines. The advantage of Key Vault is that DevOps engineers don’t need to use hard-to-code passwords and sensitive information for their code.

 Note

 You can skip the deployment section if you have an existing Key Vault store.

 Deploying Azure Key Vault Using Terraform

 In case you don’t have Key Vault up and running, you can use the following code to deploy it to your subscription using Terraform.

 Full Terraform Code

 The end-to-end Terraform code is shown below.

 terraform {

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 }

 }

 }

 provider "azurerm" {

 features {

 key_vault {

 purge_soft_delete_on_destroy = true

 }

 }

 }

 data "azurerm_client_config" "current" {}

 resource "azurerm_resource_group" "rg" {

 name = "apresstfchapter06"

 location = "australiaeast"

 }

 resource "azurerm_key_vault" "azvault" {

 name = "keyvault"

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

 enabled_for_disk_encryption = true

 tenant_id = data.azurerm_client_config.current.tenant_id

 soft_delete_retention_days = 7

 purge_protection_enabled = false

 sku_name = "standard"

 access_policy {

 tenant_id = data.azurerm_client_config.current.tenant_id

 object_id = data.azurerm_client_config.current.object_id

 key_permissions = [

 "get",

]

 secret_permissions = [

 "get",

]

 storage_permissions = [

 "get",

]

 }

 }

 Once you’ve deployed the code successfully, open the Azure portal.

 Creating a Secret in Azure Key Vault

 To create a Secret in Azure Key Vault, follow these steps:	1.

 Search the deployed Key Vault.

	2.

 Under “Objects,” click “Secrets,” as shown in Figure 6-24.

 [image:]
 A screenshot depicts objects, keys, secrets and certificates.

Figure 6-24
 Selecting “Secrets”

 	3.

 Next, click “Generate/import,” create a new Secret, and call it “Test.”

 Connecting Azure Key Vault to Azure Pipelines

 Now it’s time to connect and integrate our newly created Azure Key Vault to Azure Pipelines.

 To do so:	1.

 Under “Pipelines” in the Azure DevOps project, click “Library,” as shown in Figure 6-25.

 [image:]
 A screenshot depicts a list of options for pipelines, environments, releases, library, task groups, deployment groups, test plans, and artifacts. Library is selected.

Figure 6-25
 Choosing “Library” in “Pipelines”

 	2.

 When you get to the “Library” page, click the plus sign next to the “Variable group” button as shown to create a new group. This group will create a connection between the two services.

	3.

 In the create new variable group details, fill in the group name; turn on “Link Secrets from an Azure Key vault as variables”; and select the name of the Azure Key Vault from the drop-down list and authorize it, as shown in Figure 6-26.

 [image:]
 A screenshot shows the Variable group settings. The group is named ApressVars with a description indicating linking secrets from an Azure Key Vault as variables. It is scoped to a specific Azure subscription and key vault. Options to manage, delete, and add variables are available.

Figure 6-26
 “Variable group” screen

 Accessing Key Vault Secrets from a YAML Pipeline

 To access Secrets stored in Azure Key Vault from a YAML pipeline, edit or create a new YAML pipeline. In the pipeline, search under "Tasks” for Azure Key Vault, as shown in Figure 6-27.
 [image:]
 A screenshot displays variables, Save and Run, tasks, and key-value search, showcasing the Azure Key Vault.

Figure 6-27
 Searching for Azure Key Vault

 For the details of Azure Key Vault, shown in Figure 6-28, select the names of your "Azure subscription” and “key vault” and enter the name of the Secret you’d like to retrieve. You can also use the * sign to load all the Secrets into the playbook.
 [image:]
 A screenshot shows the Azure Key Vault settings, including Azure subscription, key vault, secrets filter, and the option to make secrets available to the entire job.

Figure 6-28
 Filling in the Azure Key Vault task details

 After you add the details, add the code to the pipeline. The code in the YAML file should look like this:

 trigger:

 - main

 pool:

 vmImage: ubuntu-latest

 steps:

 - task: AzureKeyVault@2

 inputs:

 azureSubscription: 'AZURE SUBSCRIPTION'

 KeyVaultName: apress

 SecretsFilter: 'test'

 RunAsPreJob: true

 Accessing Secrets from an Azure Pipeline

 Once the task is added, every time the pipeline runs, the task will load the Secrets and make them available to tasks in the pipeline. To access a Secret stored in a pipeline, use the following two examples:

 • task: CmdLine@2

 inputs:

 script: 'echo $(test)'

 • powershell: |

 Write-Host "My secret variable is $env:MyVAR"

 env:

 MyVAR: $(test)

 The first code block uses a simple command-line task. The second block uses the Microsoft PowerShell task. These examples show how sensitive information can be used in Azure Pipeline tasks.

 A complete YAML pipeline will look like this:

 trigger:

 - main

 pool:

 vmImage: ubuntu-latest

 steps:

 - task: AzureKeyVault@2

 inputs:

 azureSubscription: 'AZURE SUBSCRIPTION'

 KeyVaultName: 'vaultname'

 SecretsFilter: 'test'

 RunAsPreJob: true

 - task: CmdLine@2

 inputs:

 script: 'echo $(test)'

 - powershell: |

 Write-Host "My secret variable is $env:MyVAR"

 env:

 MyVAR: $(test)

 Summary

 In this chapter, we focused on the core services of Azure DevOps and the integration of Terraform and Azure using the platform. We also explored how to use Azure Repos and Azure Pipelines.

 Additionally, we learned how to configure the Terraform extension for Azure DevOps, created an Azure Container Registry using an Azure pipeline, and used a remote state to save the deployment.

 In the last two sections of the chapter, we built and pushed a Docker image to ACR using a pipeline and used the AzAPI to access the latest version of Azure REST API to deploy an ACR.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. IfrahGetting Started with Containers in Azurehttps://doi.org/10.1007/978-1-4842-9972-2_7

7. Azure Compliance and Security

Shimon Ifrah1
(1)Melbourne, VIC, Australia

 Introduction

 In the last chapter of this book, I’d like to focus on a few security and compliance services that can help us keep our Azure environment safe and protected from malicious code and vulnerabilities.

 In the last few years and since the release of the first edition of this book, Microsoft has invested a lot of resources in developing tools and services that can easily and seamlessly integrate with Azure services and even Azure DevOps.

 This chapter will focus on going over how to use Microsoft Defender for Cloud to secure and stay compliant with our Azure workload, specifically Azure DevOps and container services.

 Defender for Cloud

 Defender for Cloud is Microsoft Azure’s main cloud security and compliance service that offers protection against malicious code and vulnerabilities, using components that target specific Azure workloads. A sub service of Defender for Cloud is Defender for Containers which allow us to protect workloads running on AKS, ACR and other container related services.

 For example, the Defender for Containers service allows users to protect Kubernetes nodes and clusters in real time. Defender for DevOps can be used to scan code, like that for Terraform configuration, against vulnerabilities in Docker images.

 Defender for Container’s full list of feature includes:	
 protecting Kubernetes clusters running on AKS

	
 detecting misconfigurations in AKS

	
 vulnerability assessment for Docker images stored in ACR

	
 vulnerability assessment for images running in AKS

	
 runtime threat protection for nodes and clusters

	
 providing alerts about threats

	
 ensuring compliance of AKS clusters with industry best practices

 Like most of the Azure cloud services, Defender for Cloud costs money. Figure 7-1 shows the price of each feature in Defender for Cloud’s suite of services.
 [image:]
 A screenshot of a window with 12 Azure cloud services and their prices for each feature in Defender for Cloud’s suite of services. Azure A P I management services is free, preview.

Figure 7-1
 Price list for Defender for Cloud’s suite of services

 Since this book is about Terraform, we’ll deploy the Defender for Cloud’s Defender for Containers service using Terraform.

 Setting Up Azure with Defender for Containers

 To get started, we’ll enable Defender for Containers using Terraform. I’ve created the following Terraform configurations file, which is located in the repository of this book under Chapter 7.

 Before you run the code, make sure to set your contact details in the azurerm_security_center_contact.

 If you take a look at the code, you’ll notice that we need to create a log analytics workspace.

 Full Configuration Code

 To deploy Microsoft Defender for Containers, run Terraform from the Chapter 7 located in the repository. Make sure you review the following plan output before deploying it to understand which services will be enabled and deployed:

 data "azurerm_subscription" "current" {}

 resource "azurerm_resource_group" "rg" {

 name = "apresstfchapter07"

 location = "australiasoutheast"

 }

 resource "azurerm_log_analytics_workspace" "la_workspace" {

 name = "apresstflog"

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

 sku = "PerGB2018"

 retention_in_days = 30

 }

 resource "azurerm_security_center_workspace" "defender" {

 scope = data.azurerm_subscription.current.id

 workspace_id = azurerm_log_analytics_workspace.la_workspace.id

 }

 resource "azurerm_security_center_subscription_pricing" "pricing" {

 tier = "Standard"

 resource_type = "Containers"

 }

 resource "azurerm_security_center_contact" "contact" {

 name = "Full Name"

 email = "Email"

 phone = "phone"

 alert_notifications = true

 alerts_to_admins = true

 }

 resource "azurerm_security_center_auto_provisioning" "autoprovision" {

 auto_provision = "On"

 }

 resource "azurerm_subscription_policy_assignment" "va-auto-provisioning" {

 name = "mdc-autoprovisioning"

 display_name = "Configure machines to receive a vulnerability assessment provider"

 policy_definition_id = "/providers/Microsoft.Authorization/policyDefinitions/13ce0167-8ca6-4048-8e6b-f996402e3c1b"

 subscription_id = data.azurerm_subscription.current.id

 identity {

 type = "SystemAssigned"

 }

 location = "East US"

 parameters = <<PARAMS

 { "vaType": { "value": "mdeTvm" } }

 PARAMS

 }

 resource "azurerm_role_assignment" "va-auto-provisioning-identity-role" {

 scope = data.azurerm_subscription.current.id

 role_definition_id = "/providers/Microsoft.Authorization/roleDefinitions/fb1c8493-542b-48eb-b624-b4c8fea62acd"

 principal_id = azurerm_subscription_policy_assignment.va-auto-provisioning.identity[0].principal_id

 }

 Checking the Deployment

 You can perform the following checks to ensure the code was deployed successfully:	1.

 To check if Microsoft Defender for Cloud was deployed successfully, open the Azure portal, and search for “Microsoft Defender for Cloud” as shown in Figure 7-2.

 [image:]
 A screenshot of the Azure portal displays the search options for Defender for Cloud, where the option Microsoft Defender for Cloud is selected under Services.

Figure 7-2
 Checking that the Defender for Cloud service has been successfully deployed

 	2.

 To check if the service was enabled successfully, scroll down to the “Management” section on the Defender for Cloud main page and click “Environment settings,” as shown in Figure 7-3.

 [image:]
 A screenshot of the Cloud security and the Management dropdown list where the environment settings option is highlighted under mnagement.

Figure 7-3
 Locating “Environment settings”

 	3.

 On the “Environment Settings” page, you should see the name of your Azure subscription as well as the newly created log analytics. Click the name of your subscription where the service was enabled.

	4.

 In the list of services, make sure the status of the “Containers” plan is set to “On,” as shown in Figure 7-4.

 [image:]
 A screenshot of the Cloud Workload Protection window displays 8 defender plans with pricing, resource quantity, monitoring storage, and status. Containers is set to ON.

Figure 7-4
 Defender plans

 	5.

 Click the “Settings” button in the Containers plan line to enable additional services. To see the service in action, go ahead and deploy an AKS cluster from the Chapter 5 configuration files located in the repository of this book.

	6.

 To check the status of container protection, click “Workload protections” on the Defender for Cloud main page and note the status of “Containers,” as shown in Figure 7-5.

 [image:]
 A screenshot of a window lists general and cloud security options, where workload protections option is highlighted in cloud security. It displays defender for cloud coverage on the right where containers option is highlighted. A donut chart indicates 60% fully coverage.

Figure 7-5
 Checking the status of container protection

 	7.

 To view the status of the Container image scanning service, click the “Container image scanning” icon in the “Advanced Protection” section, as shown in Figure 7-6.

 [image:]
 A screenshot of a window displays the text, container image scanning, along with an icon to its left, with one unprotected file.

Figure 7-6
 Checking the status of container image scanning

 	8.

 Once you click the icon, the number of vulnerabilities (if any) and unhealthy registries will be listed.

 Securing IaC Code with Defender for DevOps

 In this section, we’ll learn how to use Microsoft Defender for Cloud DevOps Security, or Defender for DevOps, to protect source code and CI/CD pipelines across Azure Repos and GitHub.

 Defender for DevOps works by connecting to a central repository service like Azure Repos and GitHub, scanning code for vulnerabilities, and checking if the code complies with best practices.

 To detect vulnerabilities, Defender for DevOps uses multiple open-source security vulnerability tools:	
 Bandit: Python scanning tool

	
 BinSkim: Scans binaries and Windows ELF

	
 Credscan: Scans for credential leaks

	
 ESlint: JavaScript scanning tool

	
 Template Analyzer: ARM and Bicep scanning tool

	
 Terrascan: Scans for Terraform, Kubernetes, Helm, and Dockerfile vulnerabilities

	
 Trivy: Scans for vulnerabilities in container images, file systems, and Git repositories

 Installing Extensions

 In Chapter 6, we learned about Azure DevOps extensions and installed the Terraform extension, which allowed us to use Terraform with Azure Pipelines. To scan for vulnerabilities and use Defender for DevOps, we need to install the following two extensions :	
 Microsoft Security DevOps

	
 SARIF SAST Scans Tab (Static Analysis Results Interchange Format SAST Scans Tab)

 The screen where you can download the Microsoft Security DevOps extension is shown in Figure 7-7.
 [image:]
 A screenshot of a window displays the Microsoft Security Dev Ops application and presents an overview under the Microsoft Security Dev Ops for Azure Dev Ops with a listed paragraph, and a section for basics.

Figure 7-7
 Downloading the Microsoft Security DevOps extension

 The screen where you can download the SARIF SAST Scans Tab extension is shown in Figure 7-8.
 [image:]
 A screenshot of a window titled, Azure Dev Ops, Azure pipelines, displays the SARIF SAST Scans Tab application and lists the options under overview.

Figure 7-8
 Downloading the SARIF SAST Scans Tab extension

 Go ahead and install both extensions.

 Connecting the Azure DevOps Organization to Defender for DevOps

 Now that we’ve installed the extensions, it’s time to connect our Azure DevOps organization to Defender for DevOps.

 We can do that like this:	1.

 Open the Defender for Cloud main page.

	2.

 Click “DevOps Security.”

	3.

 Click the “Add connector” button under “Connect DevOps environments,” as shown in Figure 7-9.

 [image:]
 A screenshot of a window lists 3 steps. Connect Dev Ops environment with an add connector button, Configure Pipelines with a warning mesage that reads, please finish step 2 to get full security value of Dev Ops, and Manage Dev Ops Security.

Figure 7-9
 Adding the connector

 	4.

 On the “Environment settings” page, click “+ Add environment” and select “Azure DevOps (preview),” as shown in Figure 7-10.

 [image:]
 A screenshot of a popup box displays the environment settings, with, + Add environment option on top, where the Azure Dev Ops preview option is highlighted.

Figure 7-10
 Adding the environment

 	5.

 On the “Create Azure DevOps connection” page, add a name for the Defender for DevOps connector; select the type of subscription you want (it needs to be the same as the one you enabled for Defender for Cloud); create a new resource group; and select the region you’re working in, as shown in Figure 7-11.

 [image:]
 A screenshot of the Create Azure Dev Ops connection window displays the options under the connector details. Includes 3 textboxes with dropdowns for name, subscription and resource group, and region, which are manadatory.

Figure 7-11
 The “Create Azure DevOps connection” page

 Enabling the Plan

 Now, we need to enable the Containers plan. At this stage, the service is in preview and doesn’t cost anything.

 To activate the plan, let’s take the following steps:	1.

 Go to the page where you select the plan located under Defender for Cloud, Environment Settings as shown in Figure 7-12.

 [image:]
 A screenshot of the Create Azure Dev Ops connection window displays the options under the Select Plans tab. The Dev Ops plan status button is set to on.

Figure 7-12
 The “Select plans” page

 	2.

 Next, we need to authorize Defender for DevOps to access the Azure DevOps resources, which is the most important step in the configuration. As shown in Figure 7-13, click the “Authorize” button and then go through the processes for authenticating and authorizing the connection between the two services. Make sure you click the “Accept” button when you’re done.

 [image:]
 A screenshot of the Create Azure Dev Ops connection window displays the options under the Authorize Connection tab to authorize defender for devops. An authorize button is at the bottom.

Figure 7-13
 Authorizing the connection between Azure DevOps and Defender for Cloud

 	3.

 In the “Edit connector account,” we now need to select how we’d like to allow Defender for DevOps to discover projects. The first and recommended option is to authorize this to be done at the organization level, so that it autodiscovers all the projects in the DevOps organization. The second option allows us to limit the scope of authorization to specific projects. Figure 7-14 shows the project discovery options.

 [image:]
 A screenshot of the Create Azure Dev Ops connection window displays the options under the Edit connector account with an Organization field, and auto discovery of projects option selected under the projects field.

Figure 7-14
 Options for discovery of projects

 	4.

 To complete the connection process, click “Create.” Note that the discovery process will take around four hours to complete.

	5.

 To check and review the status of the connection and see all the reviewed projects, go back to the DevOps Security page. You can access the page from the Defender for Cloud home page in the “Cloud Security” section. Figure 7-15 shows the DevOps Security page with the stats about the connector and the number of projects.

 [image:]
 A screenshot of a window displays options under the Security Overview. It lists the Dev Ops code scanning findings, Dev Ops Security results, and Dev Ops coverage. A donut chart indicates 0 vulnerabilities. The number of Git hub repositories is zero and the number of azure devops repositories is 14.

Figure 7-15
 The DevOps “Security Overview” page

 In the next exercise, we’ll run a pipeline and integrate the IaC scanning tool to scan our code.

 Scanning a Terraform Pipeline for Vulnerabilities

 Now that Defender for DevOps is fully configured and connected to our DevOps organization, let’s utilize the tool and see it in action. In this exercise, we’ll use the DevOps Security extension in our pipeline to scan our Terraform code for vulnerabilities.

 We can do that like this:	1.

 Log in to Azure DevOps and open the pipeline we created and let’s add the following code block:

 task: MicrosoftSecurityDevOps@1

 displayName: 'Defender for DevOps Security Scan'

 This task will scan the code using all the vulnerability tools available; however, if you’d like to limit the scope and only scan for IaC vulnerabilities, you can use the following task:

 task: MicrosoftSecurityDevOps@1

 inputs:

 categories: 'IaC'

 The full code should look like this:

 trigger:

 - none

 pool:

 vmImage: ubuntu-latest

 steps:

 - task: TerraformInstaller@0

 inputs:

 terraformVersion: 'latest'

 - task: MicrosoftSecurityDevOps@1

 displayName: 'Defender for DevOps Security Scan'

 - task: TerraformTaskV3@3

 inputs:

 provider: 'azurerm'

 command: 'init'

 workingDirectory: '$(System.DefaultWorkingDirectory)/chapter06/Create_ACR'

 backendServiceArm: 'AZURE SUBSCRIPTION'

 backendAzureRmResourceGroupName: 'tfstate'

 backendAzureRmStorageAccountName: 'tfstates14w8'

 backendAzureRmContainerName: 'tfstate'

 backendAzureRmKey: 'Create_acr.terraform.tfstate'

 - task: TerraformTaskV3@3

 inputs:

 provider: 'azurerm'

 command: 'plan'

 workingDirectory: '$(System.DefaultWorkingDirectory)/chapter06/Create_ACR'

 environmentServiceNameAzureRM: 'AZURE SUBSCRIPTION'

 - task: TerraformTaskV3@3

 inputs:

 provider: 'azurerm'

 command: 'apply'

 workingDirectory: '$(System.DefaultWorkingDirectory)/chapter06/Create_ACR'

 environmentServiceNameAzureRM: 'AZURE SUBSCRIPTION '

	2.

 You can add the extra code from the Azure pipeline directly or using VS Code and push the changes. Run the pipeline check and wait for it to complete. Once finished, click the “Scans” tab on the job summary page, as shown in Figure 7-16.

 [image:]
 A screenshot of the popup box displays a message, 20230829.5 update azure, pipelines dot y m l for Azure pipelines, apress, with a tickmark. An information tip reads, this run is being retained as one of 3 recent runs by main. Scans tab at the bottom is selected.

Figure 7-16
 “Scans” tab on the job summary page

 	3.

 The “Scans” tab will list all the vulnerabilities and best practice recommendations that showed up in the scan. Figure 7-17 shows some of the recommendations that might be made as a result of the scan.

 [image:]
 A screenshot of a popup box displays the options under the scans tab. It lists 2 options of A C Azure and A C Docker under Terrascan, with path and details.

Figure 7-17
 Recommendations based on scan results

 	4.

 Now, let’s go back to the “Security Overview” page in the Defender for DevOps console, as shown in Figure 7-18, and check the results of the scan. Once the scan is completed, results and stats will sync almost immediately to Defender for DevOps.

 In our case, the scan found three vulnerabilities that should be addressed, as shown in the figure.

 [image:]
 A screenshot of the Security Overview window. It displays the options under Dev Ops code scanning findings, Dev Ops security results, and Dev Ops coverage. A donut chart indicates 3 medium vulnerabilities. The number of Git hub repositories is zero and the number of azure devops repositories is 14.

Figure 7-18
 Scan results shown on the “Security Overview” page

 Remember to disable your Defender for Cloud plan once you’re finished with the exercises.

 Summary

 This chapter has been all about how to use Microsoft Defender for DevOps security tools to detect vulnerabilities and align configuration code with best practices. We learned how to do the following things: (1) set up Defender for Cloud using Terraform; (2) connect a DevOps organization to Azure DevOps; and (3) scan for security vulnerabilities in the Terraform code.

Index

A

 acr-admin

 ACR tasks

 advantage

 az acr build

 Azure CLI command-line utility

 building, pushing and running container images

 Docker CLI

 Agile project management tools

 Apache Web Server

 Automatic backups

 Autoscaling

 AzAPI provider

 deploy ACR

 full code and deploy to Azure

 aztfexport tool

 Azure CLI

 command-line interface

 on computer running Linux

 on macOS

 PowerShell 7

 on Windows with WinGet

 Azure cloud services

 Azure Container Instances (ACI)

 with ACR

 complete code

 file share

 “main.tf” file

 mount data volume

 storage account

 Terraform apply command

 variables.tf file

 benefits

 deployment

 full code

 multiple ACI containers

 enable Azure Log Analytics

 configuration

 Resource Block

 view logs

 liveness probe

 management and monitoring capabilities

 readiness probe

 restart container group

 to run commands inside ACI

 running ACI container

 start container group

 stop container group

 use cases

 view ACI logs

 diagnostic information

 reviewing diagnostic events

 use Azure CLI to view logs

 Azure Container Registry (ACR)

 with ACI

 SeeAzure Container Instances (ACI)

 deploy

 adding tags

 notice output

 resource actions

 Terraform configuration file

 features

 automation

 private link

 replication and optimization

 role-based access control

 seamless integration

 security and privacy

 vulnerability scanning

 integrate AKS

 outputting sensitive information with Terraform

 pricing tiers

 private container registry service

 pull image

 run Azure CLI/Azure PowerShell commands

 security features

 ACR configuration

 ACR georeplication

 encryption

 removal of public access

 Terraform data sources

 service

 set up

 Terraform configuration

 Terraform null resource

 with Web App for Containers

 configuration

 deployment logs

 Terraform variables file

 Terraform apply command

 Azure DevOps

 create organization

 create PAT

 create project

 create repository

 install Terraform Task

 services

 agile planning and tracking

 automated testing

 CI/CD

 version control

 sign-up page

 use Terraform

 Azure Key Vault

 advantage

 Azure cloud service

 connect to Azure pipelines

 access Secrets in pipeline

 access Secrets from YAML pipeline

 choose Library

 connect and integrate

 variable group screen

 create Secret

 Terraform code to deploy

 Azure Kubernetes Service (AKS)

 autoupgrade AKS cluster

 configuration

 connect AKS cluster to ACR

 connect using Azure CLI

 deploy application to AKS cluster

 check deployment status

 delete deployment

 deployment.yaml file

 deployment, AKS cluster

 export Azure resources to Terraform

 master components

 scaling applications

 enable autoscaling

 state locking

 storage volume

 configure pod to use persistent volume

 create storage class

 create volume claim

 Terraform commands

 Terraform state

 SeeTerraform remote state

 upgrade AKS cluster

 upgrade Kubernetes version page

 Azure Pipelines

 ACR registry

 azure-pipelines.yml file

 Create_ACR

 create pipelines

 choose Azure subscription

 configure pipeline

 save and run

 select Azure Pipelines YAML file

 select Azure Repos Git

 Terraform task settings

 destroy Terraform deployment

 review pipeline

 use CI/CD pipeline

 Azure Repos

 Azure Repos Git

 Azure Resource Manager (Azure RM)

 Azure REST API

 Azurerm

 azurerm_container_group

 azurerm_security_center_contact

 Azure virtual network (Vnet)

 Azure Web Apps

 SeeWeb App for Containers

B

 Backend configuration

 Bandit

 BinSkim

C

 Cloud-controller manager

 Cloud DevOps Security

 Cloud resource environments

 Cluster-level logging

 Container resource monitor

 Continuous integration and continuous delivery (CI/CD) tools

 Create_Pod_With_Volume.yaml

 Create_Storage_Class.yaml

 Create_Volume_Claim.yaml

 Credscan

D

 Data sources

 Defender for Cloud

 check deployment

 cloud security and compliance service

 in “Cloud Security” section

 configuration code

 create Azure DevOps connection

 feature

 main page and “Environment settings”

 service

 set up Azure

 status of container protection

 suite of services

 Defender for DevOps

 central repository service

 connect Azure DevOps organization

 install extensions

 multiple open-source security vulnerability tools

 scan code

 scan Terraform code for vulnerabilities

 “Security Overview” page

 deployment.yaml configuration file

 DevOps tools

 DNS service

 Docker Hub

E, F

 ESlint

 Etcd

G

 Georeplication

 Git command

 .gitignore file

H

 HashiCorp Configuration Language

 Hashicorp.Terraform

 HTTPS protocol

I, J

 init command

K

 key_permissions

 Key Vault

 Kube-apiserver

 Kube controller-manager

 kubectl command

 kubectl get pvc

 Kubernetes

 add-ons

 components

 Kubernetes Master

 nodes

 scalability

 Kube-scheduler

L

 LEASE STATUS field

 Linux

 app service plan options

 Liveness probes

 Log Analytics

 workspaces

M

 Microsoft AKS

 SeeAzure Kubernetes Service (AKS)

 Microsoft PowerShell

 Microsoft Security DevOps extension

N

 nginx web server application

 Nginx home page

 Nodes, Kubernetes

 components

 container runtime

 kubelet

 kube proxy

 pods

O

 output command

 output.tf configuration file

P, Q

 Persistent volume claim (PVC)

 Personal access token (PAT)

 plan command

 PowerShell 7

 cross-platform support

 on Linux

 on macOS

 official website

 on Windows computer

 Private domain name system (DNS) zone

 provider.tf

R

 Readiness probe

 Role-based access control (RBAC)

S

 SARIF SAST Scans Tab extension

 Secure shell (SSH) keys

 sku_name

T, U

 Template analyzer

 TenantId

 Terraform

 cloud providers

 enable tab completion on Linux Ubuntu

 HashiCorp Configuration Language

 high-level example

 IaC software development tool

 install on macOS

 install on Ubuntu

 install on Windows

 on Linux

 open-source IaC tool

 tab completion

 tfenv process

 tools and services

 Azure CLI

 SeeAzure CLI

 VS Code

 See alsoVS Code extensions

 Windows Subsystem for Linux (WSL)

 Terraform apply command

 Terraform destroy command

 Terraform init command

 Terraform output-json command

 Terraform plan command

 Terraform remote state

 backend configuration

 challenges

 configuration file

 configure

 remote state management

 state file

 Terraform state file

 terraform.tfstate

 Terrascan

 Tfenv

 install on computers

 on Linux machine

 on macOS

 TLS 1.0

 Trivy

V

 Variable interpolation

 variables.tf file

 Visual Studio Code (VS Code)

 VS Code extensions

 installation

 Azure Account

 Azure Terraform

 “Extensions” icon

 HashiCorp

 Linter

 PowerShell

 steps

W, X, Y, Z

 Web App for Containers

 with ACR

 SeeAzure Container Registry (ACR)

 deployment

 Terraform apply command

 files

 httpd default home page

 steps

 Terraform destroy

 Terraform output command

 using .gitignore file with Terraform

 management

 backs up deployed web apps

 customized deployments

 scaling

 ten app service plan options for Linux

 variable interpolation

 security features

 disabling public access

 HTTPS protocol

 Private Endpoints

 set up

 configuration

 provider configuration

 Terraform plan command

 Terraform state file

 Web app URL

 Web app URL

 Web UI

 Windows Subsystem for Linux (WSL)

 WinGet

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig5_HTML.jpg
Q Search

= 0 @lc‘i

Preview features

Profile
Time and Locale

Permissions

Notifications
Theme

Usage

Personal access tokens

SSH public keys

OEBPS/images/489078_2_En_5_Chapter/489078_2_En_5_Fig5_HTML.jpg
0.storageaccount.terraform.tfstate

i Download O Refresh El Delete <_—) Change tier I

Blob
Save >< Discard
TYPE Block blob
SIZE 149 KiB
ACCESS TIER Hot (Inferred)
ACCESS TIER LAST MODIFIED N/A
ARCHIVE STATUS -
REHYDRATE PRIORITY -
SERVER ENCRYPTED true
ETAG 0x8DBA780246D1838

VERSION-LEVEL IMMUTABILITY POLICY Disabled

CACHE-CONTROL

CONTENT-TYPE

CONTENT-MDS5

CONTENT-ENCODING

CONTENT-LANGUAGE

CONTENT-DISPOSITION

|

I application/json

| jP30KOK/KZQFiOXdUOIFVA== |

|

LEASE STATUS

e

Unlocked

LEASE STATE

LEASE DURATION

COPY STATUS

COPY COMPLETION TIME

Available

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig24_HTML.jpg
Objects
¥ Keys
[4 Secrets

k=l Certificates

OEBPS/images/489078_2_En_2_Chapter/489078_2_En_2_Fig4_HTML.jpg
@® Hardwareview @ Feature view Showing 10 App Service pricing plans

Single tenant

Name Custom domain Auto Scale Daily backups Staging slots. Zone Redundant vNet integration system Cost per hour Cost per month
V' Dev/Test (For less demanding workloads)

Free F1 - N/A N/A N/A - - - Free Free

Basic B1 La Manual N/A N/A - e - 0.026 AUD 19.044 AUD

Basic B2 e Manual N/A N/A % o = 0.051 AUD 37.085 AUD

Basic 83 we Manual N/A N/A - agd - 0.10 AUD 73.167 AUD
v Production (For most production workloads)

Standard S1 < Rules 10 5 < v g 0.165 AUD 120.275 AUD

Standard 52 v Rules 10 5 > v o 0.33 AUD 240.55 AUD

Standard S3 v Rules 10 H - v - 0.659 AUD 481.099 AUD

Premium v2 P1V2 v Rules, Elastic 50 20 v Z = 0.169 AUD 123.282 AUD
Premium v2 P2v2 v Rules, Elastic 50 20 i v = 0.336 AUD 245.561 AUD

Premium v2 P3V2 L Rules, Elastic 50 20 v 4 b 0.674 AUD 492.124 AUD

OEBPS/images/489078_2_En_1_Chapter/489078_2_En_1_Fig4_HTML.jpg
Azure Account ve.11.5
Microsoft # microsoft.com < 6,212,897 ‘ +* % ¥ ¥ Y (54)

A common Sign In and Subscription management extension for VS Code.

[iable [[Uninsail ¢

This extension is enabled globally.

DETAILS FEATURE CONTRIBUTIONS = CHANGELOG RUNTIME STATUS

Azure Account and Sign In

The Azure Account extension provides a single Azure sign in and subscription filtering experience for all
other Azure extensions. It makes Azure's Cloud Shell service available in VS Code's integrated terminal.

OEBPS/images/489078_2_En_7_Chapter/489078_2_En_7_Fig18_HTML.jpg
Security Overview

DevOps code scanning findings ©
High
0
IMedium
3

I léow

[Name

O 3 apress

DevOps security results

2o

Code scanning vulnerabilities

%0

0SS vulnerabilities

A3

1aC scanning vulnerabilities

%0

Exposed Secrets

Subscriptions == All Resource Types == Github Repository, Azure DevOps Repository

Pull request status Total exposed secrets Ty

Q off ® Healthy

NAO

0SS vulnerabilities Ty

DevOps coverage

Qo]

GitHub Connectors Azure DevOps Connectors

14 Total

1 Github repositories 0 | Azure DevOps repositories 14

1aC scanning vulnerabilities T Total code scanning vulne...

3 =— 0

N

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig23_HTML.jpg
Home > Resource groups > apresstfchapter06 > appressacr | Repositories >

«m, appressacr | Repositories « apress
Container registry Repository
« O Refresh -** O Refresh f Manage deleted artifacts E Delete repository
@ Overview |P Search to filter repositories ...] ol s
Activity log Repositories T Cache Rule

I P Search tofilter tags ...

A Access control (1AM)
€ Tags » Tags Ty Digest Ty

& Quick start

17. 1cb3ed4c...|

£ Events

OEBPS/images/489078_2_En_1_Chapter/489078_2_En_1_Fig3_HTML.jpg
HashiCorp Terraform vz.27.0
HashiCorp # hashicorp.com @ 2,941,408 * % ¥ ¥ % (175)

Syntax highlighting and autocompletion for Terraform

ReloadRequired Disable v Uninstall | | Switch o Pre-Relesse Version £

This extension is enabled globally.

DETAILS FEATURE CONTRIBUTIONS CHANGELOG RUNTIME STATUS

Terraform Extension for Visual Studio Code

The HashiCorp Terraform Extension for Visual Studio Code (VS Code) with the Terraform Language Server
adds editing features for Terraform files such as syntax highlighting, IntelliSense, code navigation, code
formatting, module explorer and much more!

OEBPS/images/489078_2_En_BookFrontmatter_Figc_HTML.jpg

OEBPS/images/489078_2_En_7_Chapter/489078_2_En_7_Fig6_HTML.jpg
‘ Container image scanning

1 Unprotected

OEBPS/images/489078_2_En_7_Chapter/489078_2_En_7_Fig11_HTML.jpg
Create Azure DevOps connection
Azure DevOps connection | PREVIEW

3) Authorize connection and create

© connector details

A Waming - The Security Admin role assignment was not detected for the logged-in user, under the currently scoped subscription. This
may lead to reduced functionality when interacting with connectors.

Enter a descriptive name for the Defender for DevOps instance, choose a Subscription and Resource Group to store the connection
information.

Name * I Select a name l

Subscription* (@ [Pay-As-You-Go M

- |

Resource group* @

Create new

Region * | Australia East v I
Defender for DevOps only supports Australia East, Central US and West Europe during
preview

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig15_HTML.jpg
Save and run
Saving will commit chapter06/Create_ACR/azure-
pipelines.yml to the repository.

Commit message

Set up Cl with Azure Pipelines

Optional extended description

Add an optional description...

@ Commit directly to the main branch

(O Create a new branch for this commit

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig6_HTML.jpg
Create a new personal access token %

Name

| Apress-book-creds l

Organization

| a

Expiration (UTC)

’ 30 days v ‘ | 28/09/2023 I

Scopes
Authorize the scope of access associated with this token

Scopes @ Full access
(O Custom defined

OEBPS/images/489078_2_En_2_Chapter/489078_2_En_2_Fig3_HTML.jpg
v Chapter02 /WebApp
> .terraform
" gitignore
£ terraform.lock.hcl
! Gitignore
¥ output.tf
* provider.tf
{} terraform.tfstate
= terraform.tfstate.backup
* webapp.tf
(@ README.md

OEBPS/images/489078_2_En_7_Chapter/489078_2_En_7_Fig17_HTML.jpg
Summary Scans

S Filter by keyword

terrascan 2

Path Details T

v AC_AZURE_0185: reme_containerRegistryResourcelock 1

o chapter06/Create_ACR/acr.tf Ensure Container Registry has locks

v AC_DOCKER_0041: imageVersionnotusinglatest 1

0 chapter06/Create_ACR/Dockerfile Ensure :latest version is not used for Docker file

OEBPS/css/sidebar.gif

OEBPS/images/489078_2_En_3_Chapter/489078_2_En_3_Fig3_HTML.jpg
Name Ty Location Ty Provisioning state Ty Status Ty
australiacentral australiacentral Succeeded Ready
australiasoutheast Australia Southeast Succeeded Ready

OEBPS/navigation.xhtml

 Contents

 		Cover

 		Front Matter

 		1. Getting Started with Azure and Terraform

 		2. Azure Web App for Containers

 		3. Azure Container Registry

 		4. Azure Container Instances

 		5. Azure Kubernetes Service

 		6. Azure DevOps and Container Service

 		7. Azure Compliance and Security

 		Back Matter

 Landmarks

 		Cover

 		Table of Contents

 		Body Matter

OEBPS/images/489078_2_En_BookFrontmatter_Figa_HTML.png
APIess®

OEBPS/images/489078_2_En_1_Chapter/489078_2_En_1_Fig5_HTML.jpg
PowerShell vz0z.6.0
Microsoft # microsoft.com ‘ < 8,642,986 \ % % % % % (150)

Develop PowerShell modules, commands and scripts in Visual Studio Code!

[setcolorTheme Uninetal 3

DETAILS FEATURE CONTRIBUTIONS CHANGELOG DEPENDENCIES RUNTIME STATUS

PowerShell for Visual Studio Code

OEBPS/images/489078_2_En_2_Chapter/489078_2_En_2_Fig2_HTML.jpg
Home > Resource groups > ApressAzureTerraformCHO2 >

ApressTFWebApp #

Web App

Ip Search J « Cf Browse [Stop — Swap > Restart [i] Delete () Refresh

@ overview - ‘
~ Essentials JSON View

Activity log i ’
Resource group (move) Default domain

R Access control (IAM) ApressAzureTerraformCHO2 apresstfwebapp.azurewebsites.net

@ Tags Status App Service Plan

/2 Diaagnose and solve probl Running Linux (P1v2: 1)

OEBPS/images/489078_2_En_1_Chapter/489078_2_En_1_Fig2_HTML.png
Azure Terraform ve.3.2 i
Microsoft € microsoft.com < 528,377 ‘ % % % % % (3)

VS Code extension for developing with Terraform on Azure

[istie [[uniomtan|vi

This extension is enabled globally.

DETAILS FEATURE CONTRIBUTIONS CHANGELOG DEPENDENCIES RUNTIME STATUS

Azure Terraform

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig16_HTML.jpg
< Jobs in run #20230829.4

Jobs

N Job
Initialize job
Checkout apress@main to s
TerraformlInstaller
TerraformTaskV3
TerraformTaskV3

TerraformTaskV3

Post-job: Checkout apress@mai...

Finalize Job

Report build status

® Job

Pool: Azure Pipelines
Image: ubuntu-latest
Agent: Hosted Agent
Started: Just now

Duration: 1m 1s

» Job preparation parameters

OEBPS/css/envelope.png

OEBPS/images/489078_2_En_2_Chapter/489078_2_En_2_Fig5_HTML.jpg
43 ApressTFFront7 | Networking

Web App

| P Search | « O Refresh /O Network troubleshooter }? Send us your feedback
¢ Tags 5 i !) : :) }

o When you enable private endp app assigned address inbound traffic feature is no longer applicable and will be tume
/2 Diagnose and solve problems
@ Microsoft Defender for Cloud Check your web app's networking configuration. Select any of the listed features to change your network set up. Learn n

' £ vents (preview)

Inbound Traffic Web
Deployment Aep

Manage access and incoming services. These custom domains direct traffic to your web
=¥ Deployment slots app.
@ Deployment Center

Features Domains

Settings

Q Access restriction apresstffront7.azurewebsites.net

ill Configuration

App assigr

& Authentication

1y Private endpoints on
@ Application Insights 124 P 0
% Identity
Inbound address
& Backups
& Custom domains 10024 D

&= Certificates

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig19_HTML.jpg
v Connect v Select Conﬁgure Review

New pipeline

Configure your pipeline

‘r Docker

docker Build a Docker image

‘v Docker

docker Build and push an image to Azure Container Registry

Deploy to Azure Kubernetes Service

Build and push image to Azure Container Registry; Deploy to Azure Kubernetes Service

Starter pipeline

Start with a minimal pipeline that y:

1 can customize to build and deploy your code.

Existing Azure Pipelines YAML file

Select an Azure Pipelines YAML file in any branch of the repository.

Show more

OEBPS/images/489078_2_En_7_Chapter/489078_2_En_7_Fig2_HTML.jpg
A defender for cloud

8

All Services (40) Marketplace (2)

Resource Groups (0)

Services

& Azure Database for MySQL servers

e Microsoft Defender for loT

Documentation (99+) Azure Active Directory (5)

R Cloud Access Routers
M Cloud Access Terminals

@ Cloud services (classic)

Resources (0)

OEBPS/images/489078_2_En_7_Chapter/489078_2_En_7_Fig12_HTML.jpg
@ Connector details @ Select plans

Select plans
@ Security por - With of your DevOy repositories, loud wil hel and prevent You'll be ¥ ina unified asset
inventory, and see your secure score.

O Select to enable for thi allows additional nd te permissions to perform actions on po:

Plan name & description Configurations Pricing Plan status
) in8iok Free (preview) O -«-» o)

Protect your DevOps

dvanced defenses.

OEBPS/images/489078_2_En_7_Chapter/489078_2_En_7_Fig5_HTML.jpg
Y soptons Wt

General

@ Defender CSPM plan s now available. This plan provid i d intelliger to help identity, prioritize and reduce risk. Upgrade —>
O Overview
@ Getting started Defender for Cloud coverage
7= Recommendations.
© Attack path analysis ® 1. W, 2,
O Security alerts 10 Key Vault Containers Servers
O —_—
@ Inventory Upgrade Upgrade Upgrade
& Cloud Security Explorer
—_—
Worksools = 2- R
) 1Fully covered (60%) —
& Community Agent not installed (0%) Storage Resource Manager sul iptions
& Diagnose and solve problems Not covered (40%) Upgrade all Upgrade Upgrade
Cloud Security
Siouti
© Securty posture ecurity alerts
@ Regulatory compliance 4 o'mm
O Workioad protections &
%, Firewall Manager 0
2 Lowseveiy

© DevOps security (preview) 0

OEBPS/images/489078_2_En_4_Chapter/489078_2_En_4_Fig5_HTML.jpg
Filter for any field... Subscription equals all Resource group equals all X Location equals all X +7 Add filter

Showing 1 to 1 of 1 records.

D Name T Resource group Ty Location Ty

D p apresstfch04storagelogs ApressAzureTerraformCH04 West US

OEBPS/images/489078_2_En_7_Chapter/489078_2_En_7_Fig8_HTML.jpg
Azure DevOps > Azure Pipelines > SARIF SAST Scans Tab

SARIF SAST Scans Tab

Microsoft DevLabs | X 176,540 installs | ¥ % % (4) | Free

Adds a 'Scans' tab to each Build Result and Work Item for viewing associated SARIF SAST logs.

Overview Q&A Rating & Review

This extension adds a tab named "Scans” in two locations:

¢ Build Result - Displays any SARIF logs (*. sarif) found within the CodeAnalysisLogs artifact.
* Work Item - Displays any SARIF logs (*.sarif) that are attached to the work item.

This extension is a lightweight wrapper around the SARIF Web Component.

SARIF is the Static Analysis Results Interchange Format. More information here.

OEBPS/images/489078_2_En_4_Chapter/489078_2_En_4_Fig8_HTML.jpg
4 Custom Logs

4 B ContainerEvent_CL
t Computer (string)
t ContainerGrouplinstanceld_g (st
t ContainerGroup_s (string)
t ContainerlD_s (string)
t ContainerName_s (string)
t Count_s (string)
t Location_s (string)
t Message (string)
t OSType_s (string)
t RawData (string)
t Reason_s (string)
t ResourceGroup (string)
t Subscriptionld (string)

O TimeGenerated (datetime)

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig10_HTML.jpg
Connect Select Configure Review

New pipeline

Where is your code?

Azure Repos Git YAML
Free private Git repositories, pull requests, and code search

Bitbucket Cloud = YAML
Hosted by Atlassian

GitHub YAML

Home to the world's largest community of developers

GitHub Enterprise Server YAML
The self-hosted version of GitHub Enterprise

Other Git

Any generic Git repository

Subversion
Centralized version control by Apache

WedDdds

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig21_HTML.jpg
Docker
Build and push an image to Azure Container Registry

Container registry

appressacr

Image Name

apress

Dockerfile

$(Build.SourcesDirectory)/chapter06/Create_ACR/Dockerfile

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig13_HTML.jpg
New pipeline

Review your pipeline YAML

@ apress / chapter06/Create_ACR/azure-pipelines.yml D

trigger:
- -none

1

2

3

4 pool:
5 vmImage: -ubuntu-latest
6

7

steps:

8 - task: TerraformInstaller@e

9 inputs:

1e | -terraformversion: - 'latest’
Settings

11 - task: TerraformTaskV3@3

12 inputs:

13 provider: - "azurerm’

14 command: - "init’

15 workingDirectory: - '$(System.DefaultWorkingDirectory)/Create_ACR'

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig8_HTML.jpg
w

= 6 ®

Marketplace

Browse marketplace

Manage extensions

Zlone

OEBPS/images/489078_2_En_2_Chapter/489078_2_En_2_Fig7_HTML.png
» Ermr 4.3 Flrbmddem

w’“',it}rleach has

OEBPS/images/489078_2_En_5_Chapter/489078_2_En_5_Fig2_HTML.jpg
aks | Cluster configuration

Kubernetes service

| P Search

| «

& Overview

& Activity log

‘h Access control (IAM)

@ Tags

Vi Diagnose and solve problems

@ Microsoft Defender for Cloud

Kubernetes resources

B3 Namespaces
Workloads

Services and ingresses
Storage

Configuration

D B & e &

Custom resources

£ Troubleshoot

Upgrade
You can upgrade your cluster to a newer version of Kub or config ic upgrade settings. If you upgrade your cluster, yoy
individual node pools, go to the ‘Node pools’ menu item instead.
Learn more about upgrading your AKS cluster &
View the Kubernetes changelog ¢
Kubernetes version 1273
Manual upgrade
AKS pricing tier © [Free v
Enable secret store CSI driver O D
A ication and Autt

Choose between local accounts or Azure AD for authentication and Azure RBAC or Kubernetes RBAC for your authorization
needs. Learn more

ication and Authorization © Local accounts with Kubernetes RBAC v

OEBPS/images/489078_2_En_1_Chapter/489078_2_En_1_Fig1_HTML.jpg
» & [
_. A

OEBPS/images/489078_2_En_2_Chapter/489078_2_En_2_Fig1_HTML.jpg
It works!

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig2_HTML.jpg
vy
14
w

(o)

55@@&@

+ New project

= Filter projects

OEBPS/images/489078_2_En_7_Chapter/489078_2_En_7_Fig15_HTML.jpg
-+ Add environment () Refresh [] DevOps workbook &7 Guides and Feedback | —> Getting Started | ©

% Configure
Security Overview
DevOps code scanning findings © DevOps security results DevOps coverage
High
b &o o 0o 1
Code scanning vulnerabilities 1aC scanning vulnerabilities. GitHub Connectors Azure DevOps Connectors
0 Medium
VULNERABILITIES 0 * % 14 Total
0 0SS vulnerabilities. Exposed Secrets
1 Github repositories 0 I Azure DevOps repositories 14
apress iptions == All Resource Types == Github Repository, Azure DevOps Repository
[:’ Name Ty Pull request status. Total exposed secrets Ty 0SS vulnerabilities Ty 1aC scanning vulnerabilities Ty Total code scanning vulne... Ty
O < apress Q off N/A - Unspecified NAD 0 0

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig27_HTML.jpg
Tasks

Q' key vault

?

Azure Key Vault

Download Azure Key Vault secrets

OEBPS/images/489078_2_En_4_Chapter/489078_2_En_4_Fig2_HTML.jpg
and 0 init containers

Name Image State Previous state Start time Restart count

web-server - 2023-08-:

logs Connect

OEBPS/images/489078_2_En_3_Chapter/489078_2_En_3_Fig2_HTML.jpg
Public access Private access

save X Discard O Refresh

Public network access:

Data endpoints

Login server

Geo-replications O

Enable dedicated data endpoint ©

Location

Australia Southeast

(® Al networks
O Selected networks
QO Dpisabled

Lapresstfacr.amrecr.io

Configure
O

Data endpoint

| *blob.corewindows.net

OEBPS/images/489078_2_En_4_Chapter/489078_2_En_4_Fig7_HTML.jpg
1 ContainerInstancelLog CL | limit 200

Results Chart
TimeGenerated [UTC] T4
8/20/2023, 8:25:07.058 AM
8/20/2023, 8:21:54.130 AM
8/20/2023, 8:21:54.130 AM
8/20/2023, 8:21:54.124 AM
8/20/2023, 8:21:54.121 AM

Time range : Last 12 hours \‘

ContainerGroup_s

ApressTerraform
ApressTerraform
ApressTerraform
ApressTerraform

ApressTerraform

Save v

2 Share v - New alert rule

ContainerlD_s

7281d7ef819dbd99d601de586...
7281d7ef819dbd99d601de586...
7281d7ef819dbd99d601de586...
7281d7ef819dbd99d601de586...
7281d7ef819dbd99d601de586...

= Export vV 57 Pinto v

Containerlmage_s

httpd@sha256:18427eed921af...
httpd@sha256:18427eed921af...
httpd@sha256:18427eed921af...
httpd@sha256:18427eed921af...
httpd@sha256:18427eed921af...

= Format query

ContainerName_s
web-server
web-server
web-server
web-server

web-server

OEBPS/images/489078_2_En_7_Chapter/489078_2_En_7_Fig9_HTML.jpg
1. Connect DevOps environments

Create a connector to your source code management systems. Discover DevOps resources and onboard them to
Microsoft Defender for Cloud.

2. Configure pipelines

Provide protection by adding the Defender for DevOps tools to CI/CD builds and deployments.

A\ Please finish step 2 to get full security value of DevOps. Learn more

3. Manage DevOps security

Explore DevOps security Recommendations and Inventory, Configure PR annotations, build remediation Logic Apps, and
more.

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig26_HTML.jpg
O Variable group O Security

Properties

Variable group name

| IVApressVars | ‘

Description

o Link secrets from an Azure key vault as variables ®

Azure subscription * | Manage =
v O
@ Scoped to subscription ‘azuresub’
Key vault name * Manage 2
v | 0
Variables
Delete Secret name Content type Status Expiration date

—+ Add

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig20_HTML.jpg
Docker

Build and push an image to Azure

Select an Azure subscription

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig3_HTML.jpg
Create new project

Project name *

apress
Description
Visibility
= &
Public ® Private

Only people you give
access to will be able to
view this project.

Anyone on the internet can
view the project. Certain
features like TFVC are not

supported.

Public projects are disabled for your organization. You can turn on public visibility with
organization policies.

~ Advanced

Work item process @

Version control @

v Agile

Git

OEBPS/images/489078_2_En_7_Chapter/489078_2_En_7_Fig3_HTML.jpg
Cloud Security
© Security posture

© Regulatory compliance
O Workload protections

™% Firewall Manager

@ DevOps security (preview)

Management
ill Environment settings
i Security solutions

5 Workflow automation

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig12_HTML.jpg
Select an existing YAML file X
Select an Azure Pipelines YAML file in any branch of the

repository.

Branch

| & main v

Path

/chapter06/Create_ACR/azure-pipelines.yml v

Select a file from the dropcown oOr type the path to your file

OEBPS/images/489078_2_En_2_Chapter/489078_2_En_2_Fig6_HTML.jpg
Save O Refresh

App access

Public access is applied to both main site and advanced tool site. Deny public network access will block all incoming traffic except that comes from private endpoints. Learn more ('

Allow public access © -

OEBPS/images/489078_2_En_5_Chapter/489078_2_En_5_Fig3_HTML.jpg
Upgrade Kubernetes version

You can upgrade your cluster to a newer version of Kubernetes or configure automatic upgrade settings. If you upgrade your cluster, you
can choose whether to upgrade only the control plane or to also upgrade all node pools. To upgrade individual node pools, go to the

‘Node pools' menu item instead.

Learn more about upgrading your AKS cluster ¢

View the Kubernetes changelog o

Automatic upgrade ©

Kubernetes version (O

Upgrade scope ©

| Enabled with patch (recommended) v |

| 1.27.3 (current) v]

This cluster is using the latest
available version of Kubernetes.

@) Upgrade control plane + all node pools (;\ Upgrade control plane only

o Cluster auto upgrade only supports upgrading both control plane and the node pools together.
If you want to upgrade control plane first and then upgrade the individual node pools set
automatic upgrade to disabled. Learn more o

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig18_HTML.jpg
Search = 0 0 & °

New pipeline

= Filter pipelines

OEBPS/images/489078_2_En_7_Chapter/489078_2_En_7_Fig14_HTML.jpg
/ Edit connector account

Organizations * I

Projects * © @ Auto discovery of projects
This applies to all current and future projects

O Selected projects

’ 0 selected

OEBPS/images/489078_2_En_1_Chapter/489078_2_En_1_Fig6_HTML.jpg
Linter ve.0.19
L. t Nando Vieira | < 207,839 | % % %k % (3)
'n er An extension for VSCode that provides linting for multiple languages in on packag

L

DETAILS FEATURE CONTRIBUTIONS CHANGELOG

Linter

Extension for code linting, all in one package.

OEBPS/images/489078_2_En_4_Chapter/489078_2_En_4_Fig3_HTML.jpg
ntainers
Name Image State Previous state Start time tart count

httpd:la

AHOOSS8: httpd: Could not reliably determine the server's fully qualified domain name, using 127.0.0.1. Set the 'ServerName' directive globally to suppress this message
AHOOS58: httpd: Could not reliably determine the server's fully qualified domain name, using 127.0.0.1. Set the 'ServerName' directive globally to suppress this message
[Sun Aug 20 ©3:50:59.732696 2023] [mpm_event:notice] [pid 60:tid 140600843515776] AHO@489: Apache/2.4.57 (Unix) configured -- resuming normal operations
[Sun Aug 20 03:50:59.757204 2023] [core:notice] [pid 60:tid 140600843515776] AHOG094: Command line: ‘httpd -D FOREGROUND'

.92.0.6 - - [20/Aug/2023:04:03:14 +0000] “\x16\x03\x01" 400 226

.92.0.6 - - [20/Aug/2023:04:03:15 +0000] “\x16\x03\x01" 400 226

.92.0.6 - - [20/Aug/2023:04:03:15 +0000] "GET / HTTP/1.1" 200 45

.92.0.6 - - [20/Aug/2023:04:03:15 +0000] "GET /client/get_targets HTTP/1.1" 404 196

.92.0.6 - - [20/Aug/2023:04:03:16 +0000] "GET /upl.php HTTP/1.1" 404 196

.92.0.6 - - [20/Aug/2023:04:03: "\x16\x03\x01" 400 226

.92.0.6 - - [20/Aug/2023:04:03: "GET /geoip/ HTTP/1.1" 404 196

.92.0.6 - - [20/Aug/2023:04:03: "GET / HTTP/1.1" 200 45

.92.0.6 - - [20/Aug/2023:04:03: "GET /favicon.ico HTTP/1.1" 404 196

.92.0.6 - - [20/Aug/2023:04:03: "GET /1.php HTTP/1.1" 404 196

.92.0.6 - - [20/Aug/2023:04:03: "GET /bundle.js HITP/1.1" 404 196

.92.0.4 - - [20/Aug/2023:04:03: "GET /files/ HTTP/1.1" 404 196

.92.0.4 - - [20/Aug/2023:04:03:] "GET /systembc/password.php HTTP/1.1" 464 196

.92.0.6 - - [20/Aug/2023:04:27:] "GET / HTTP/1.1" 200 45

.92.0.6 - - [20/Aug/2023:04:44: "GET / HTTP/1.0" 200 45

.92.0.6 - - [20/Aug/2023:04:48: "\x16\x03\x01" 400 226

OEBPS/images/489078_2_En_7_Chapter/489078_2_En_7_Fig1_HTML.jpg
‘ 4 Defender CSPM Resources
nZ Servers (Plan 2)

Q 0 App Service instances

i, 0 Azure SQL Databases

B0 5L servers on machines ©
a 0 Open-source relational databases
= 2 Storage accounts

& 0 Azure Cosmos DB accounts
% 0 Containers ©

® 2 Key Vaults

[‘] Resource Manager ©

@ 0 Azure API Management services

$5

$15

$15

$15

$15
$0.015

$15

$10
$0.15

$0.0012

$7

$0.25

$5

Free(preview)

Billable resource/Month

Server/Month

Instance/Month

Server/Month

Server/Month
Core/Hour

Server/Month

Storage account/Month ©
GB scanned (Malware Scanning)

O]
100RU/s per hour
VM core/Month

Vault/Month

Subscription/Month

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig14_HTML.jpg
AzureRM backend configuration

Azure subscription* ®

OEBPS/images/489078_2_En_7_Chapter/489078_2_En_7_Fig16_HTML.jpg
© #20230829.5 - Update azure-pipelines.yml for Azure Pipelines

s apress

@ This run is being retained as one of 3 recent runs by main (Branch).

Summary |Scans

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig17_HTML.jpg
apresstfchapter06 =

Resource group

P Search « + Create 3 Manage view v @ Delete resource group O Refresh i Export to CSV < Open query

(%) overview * v Essentials

Activity log
Resources ~ Recommendations
Access control (IAM) —_

&
R
@ Tegs Typeequalsall X Location equals all X
B

Resource visualizer
Showing 1to 1 of 1 records. E] Show hidden types ©
Events

D Name T
[0 @ appressacr

Settings

2, Deployments

F Add filter

Type Ty

Container registry

D Assigntags —> Move v

No grouping V||
Location Ty

Australia Southeast

OEBPS/images/489078_2_En_4_Chapter/489078_2_En_4_Fig6_HTML.jpg
.. apresstfchO4storagelogs | Logs

Log Analytics workspace

l L Search

I«

== Overview

@ Activity log

9}1 Access control (IAM)

€ Tags

A Diagnose and solve problems

Logs

-

Queries

Query packs: Select query packs

OEBPS/images/489078_2_En_7_Chapter/489078_2_En_7_Fig7_HTML.jpg
Microsoft Security DevOps

Microsoft | &, 5,306 installs | k% (3) | Preview

Build tasks for performing security analysis.

Get it free

Q&A Rating & Review

Microsoft Security DevOps for Azure DevOps

An extension for Azure DevOps that contributes a build task to run the

* |nstalls the Microsoft Security DevOps CLI

* |nstalls the latest Microsoft security policy

* |nstalls the latest Microsoft and 3rd party security tools

* Automatic or user-provided configuration of security tools
® Execution of a full suite of security tools

* Normalized processing of results into the SARIF format

® Build breaks and more

* (Captures the container images pushed in a build run

Basic
Add the MicrosoftSecurityDevOps build task to your pipeline's yaml:

steps:
- task: MicrosoftSecurityDevOps@l

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig28_HTML.jpg
< Azure Key Vault ®

Azure subscription * ©

Key vault * ©

Secrets filter * ®

test

() Make secrets available to whole job * @

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig11_HTML.jpg
Connect Select Configure

New pipeline

Configure your pipeline

. Starter pipeline
Start with a minimal pipeline that you can customize to build and deploy

. Existing Azure Pipelines YAML file

Select an Azure Pipelines YAML file in any branch of the re

Show more

your code.

OEBPS/images/978-1-4842-9972-2_CoverFigure.jpg
Getting Started
with Containers
in Azure

Deploy Secure Cloud Applications
Using Terraform

Second Edition

Shimon Ifrah

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig22_HTML.jpg
New pipeline

Review your pipeline YAML
@ apress / azure-pipelines.yml * D h

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig1_HTML.jpg
== Azure Explore v Products v Solutions v Pricing v Partners v Resources v

Azure DevOps

Plan smarter, collaborate better, and ship faster with a set of modern dev services.

Start free with GitHub

Overview Features Security Get started

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig7_HTML.jpg
apress is empty. Add some code!

Clone to your computer

SSH | https://i ‘apress/- | O OR @ CloneinVSCode vV
Generate Git Credentials

© Having problems authenticating in Git? Be sure to get the latest version Git for Windows or our plugins for Intelli), Eclipse, Android Studio or Windows command line.

Push an existing repository from command line

git remote add origin (u]

Import a repository

Import

Initialize #main branch with a README or gitignore

Add a README Add a .gitignore: None Initialize

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig9_HTML.jpg
Visual Studio

16 Results

)
Hﬂ

Terraform
Microsoft DevLa £,80.7K
microsoftcom @

Install terraform and run
terraform commands to
manage resources on Azure,.

* %k FREE

Visual Studio Code Subscriptions

Terraform
Peter Groenewe &11.9K
Build extension that enable
you to run Terraforms on the
build agent

ok Kk okd FREE

Showing: All categories v

N
H!

Terraform
Jamie Phillips

Use Terraform with VSTS.

ek %k Kk ok FREE

3
522K

Hosted On: Any v

Terraform
rt 16K

Tyler E

Build extension for running
Terraform commands.

* % FREE

Price: Any v

Build your own

N
=ﬂ

Azure Pipelines Terra
Charles Zipp 301K

Tasks to install and execute
terraform with Azure Pipelines
for Azure and AWS.

ek kK ok FREE

Certification: Any v

Publish extensions

Sort By: Relevance v

N
Hi

Azure Pipelines Terra
Jason Johnson 262K

Tasks to install and execute
terraform with Azure Pipelines
for Azure and AWS.

%k Kk ok FREE

OEBPS/images/489078_2_En_7_Chapter/489078_2_En_7_Fig10_HTML.jpg
Environment settings

-+ Add environment () Refresh 2 Guid

& Amazon Web Services iti_cloud account mana

&> Google Cloud Platform

) GitHub iew,
(preview) ce rules

J Azure DevOps (preview)
‘ m!l T expeciec

timeframes for recommendations

OEBPS/images/489078_2_En_5_Chapter/489078_2_En_5_Fig4_HTML.jpg
Home > Resource groups > chapterSremotestate > tfstateblf8x | Containers >

-l tfstate

Container
|,0 Search I « ‘-l‘ Upload E| Change access level O Refresh i Delete &
3 Overview Authentication method: Access key (Switch to Azure AD User Account)

Location: tfstate
Vi Diagnose and solve problems

Search blobs by prefix (case-sensitive)

A2 Access Control (IAM)

Settings *5 Add filter

@ Shared access tokens

Name
¥ Access policy

{1l properties (0 & ostorageaccount terraform.tfstate

© Metadata

OEBPS/images/489078_2_En_7_Chapter/489078_2_En_7_Fig13_HTML.jpg
Create Azure DevOps connection
Azure DevOps connection | PREVIEW

0 Connector details 0 Select plans © Authorize connection Review and create

Authorize Defender for DevOps

Selecting 'Authorize’ will grant Defender for Cloud access to your Azure DevOps resources. You may encounter issues if you
are not using the same identity for both Azure DevOps and the subscription where you are creating the connector. Please
click here (see step 2) to validate your currently selected Azure DevOps profile.

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig25_HTML.jpg
& Pipelines
B Environments
£

Releases

N Library

= Task groups

Deployment groups

OEBPS/images/489078_2_En_7_Chapter/489078_2_En_7_Fig4_HTML.jpg
A Cloud Workload Protection (CWP)

Microsoft Defender for Cloud

Plan

B servers

{87 appsenice

[Dstabases

= Storage

B containers

@ Keyvaur

(4] Resource Manager

@ anis

protections from

Piick

Plan 2 ($15/Server/Month) [0}
Change plan >

$15/Instance/Month o)
Details >

Selected: 0/4

Select types >

$10/Storage account/month

On-upload malware scanning ($0.15/GB) ©
Details >

ST/VM core/Month

Details >

$0.25/Vault/Month
Details >

$5/Subscription/Month
Details >

Free (preview)

Details >

to runtime in multi-cloud environments.

Resource quantity

1servers

0 instances.

Protected: 0/0 instances

0 storage accounts

0 container registries; 0 kubernetes cores

1 key vaults

0 Azure API Management services

Monitoring coverage

A Partial
Settings >

OEBPS/images/489078_2_En_6_Chapter/489078_2_En_6_Fig4_HTML.jpg
» o b B

)

|

4P E

apress

Overview

Summary

Dashboards

Wiki

Boards

Repos

Pipelines

Test Plans

Artifacts

OEBPS/images/489078_2_En_4_Chapter/489078_2_En_4_Fig4_HTML.jpg
Container instances

| L Search] «

© Overview

@ Activity log

82 Access control (IAM)
J Tans

- ApressTerraform = x

> start |C' Restart

A Essentials

Resource group (move)
Status
Location

|:] Stop E Delete O Refresh

ApressAzureTerraformCH04

: Running

: West US

OEBPS/images/489078_2_En_5_Chapter/489078_2_En_5_Fig1_HTML.jpg
Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

OEBPS/images/489078_2_En_3_Chapter/489078_2_En_3_Fig1_HTML.jpg
Container registry

l P search

I«

@& Overview

& Activity log

A2 Access control (IAM)
@ Tags

& Quick start

£ Events

Settings

t

3

@

Access keys

Encryption

Identity

Networking

Microsoft Defender for Cloud
Properties

Locks

A

apresstfacr | Encryption

Save X Discard

Azure Container Registry service encryption protects your data at rest. Azure Container Registry encrypts your images and
other artifacts when they're pushed to your registry and automatically decrypts when you pull them.

By default, data in the container registry is encrypted. You may choose to bring your own key for encryption of Azure Container
Registries.

Learn more about Azure Container Registry encryption.

Encryption key

Identity [User assigned: acr-admin)) D]

Key URI I https://apresstfkeyvault: . D
Change key

Version I s} |

Automated key rotation © Disabled - Using specific key version

OEBPS/images/489078_2_En_4_Chapter/489078_2_En_4_Fig1_HTML.jpg
| P Search «

€@ Overview
& Activity log
82 Access control (IAM)
€ Tags
Settings

&% Containers
% Identity
il! Properties
£ Locks
Monitoring
f4 Metrics

B Alerts

Automation

ice Tasks (preview)

5 Export template
Support + troubleshooting

& New Support Request

OEBPS/images/489078_2_En_BookFrontmatter_Figb_HTML.jpg

